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Editorial on the Research Topic
 Advances in Genomics of Crossbred Farm Animals




INTRODUCTION

Crossbreeding is a common strategy to promote animal production (Sheridan, 1981). In the past century, crossbreeding has been commonly conducted to produce commercial pigs and poultry as human food. In subtropical countries, crossbred cattle have been developed that combine the production performance of Taurine cattle with the tropical adaption of Zebu cattle. Composite cattle are developed by crossing two or more purebred breeds, aiming at exploiting breed complementarity and retaining some heterosis (hybrid vigor) in future generations. Dairy cattle are mostly purebred, but crossbred dairy cattle are becoming increasingly popular in recent years (VanRaden et al., 2020; Khansefid et al.). Strategically, crossbreeding is a potential approach to improve sustainability in animal breeding by reducing inbreeding and enhancing fertility, survival, and other functional traits (Sørensen et al., 2008).

Genomics is an interdisciplinary field of biology focusing on the studies of genomes (Culver and Labow, 2002). A genome is an organism's complete set of DNA, including all of its genes. Unlike classic genetics, which focuses on individual genes and their roles in inheritance, genomics deals with the collective characterization and quantification of all of an organism's genes, their interrelations, and their influence on the organism. From the genomics perspective, crossbred animals differ considerably from purebred animals because their genome is a mosaic of genome regions inherited from their purebred ancestors. Thus, genomics solutions for crossbred animals need to be different. For example, ancestry estimation or genomic breed composition (GBC) in purebred animals is primarily motivated for breed registries and the identification of purebred animals when the pedigree is missing or incomplete. In contrast, the estimated GBC for crossbred animals are used to infer their genomic make-ups from their ancestors. Such information can help estimate heterozygosity, understand their breeding history, and make management decisions for crossbreeding programs. The breeding objective with purebred animals is to increase additive genetic gains, but non-addtive genetic effects such as dominance and epistasis effects are pivotal to produce crossbred animals of high-performance market values.

The past decades have witnessed many milestone discoveries in animal genomics which have fundamentally revolutionized many aspects of animal breeding and production (Rexroad et al., 2019). Nevertheless, there are far more questions still unanswered. This Research Topic represented an effort toward enhancing the understanding and applications of crossbred genomics. It included 25 papers, covering several aspects of the crossbred genomics in farm animals.



INTERPRETATIONS OF GENOMIC BREED COMPOSITION AND “THE IMPURE PUREBRED PARADOX”

Genomic breed composition (GBC) of an individual animal refers to the partition of its genome according to the inheritance from its ancestors or ancestral breeds. The U.S. Council on Dairy Cattle Breeding (CDCB) uses an alternative term, namely Breed Base Representation (BBR), which is the adjusted genomic breed composition on each of five dairy breeds (Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey) as the potential parents (VanRaden and Cooper, 2015). Interpretations of GBC depend on the estimation methods. For example, admixture model postulates that an observed genotype for a progeny is an instance of a multinomial distribution, with genotype probability being a mixture governed by allelic frequencies of the ancestors. Hence, GBC are estimated by the weights or admixture coefficients (Bansal and Libiger, 2015). Linear regression estimated GBC of to be adjusted regression coefficients of coded genotypes for a progeny on the ancestral allele frequencies, and bounded between 0 and 1 (Chiang et al., 2010; Kuehn et al., 2014). A genomic prediction model estimates the SNP effects on candidate ancestry breeds as binary or categorical traits. GBC equals to the total genomic value for an animal pertaining to each ancestry breed (Akanno et al., 2017; Li et al., 2020). Wu et al. proposed a causal interpretation of GBC based on path theory, which decomposed the relationships between ancestors and their progenies into direct and indirect breed (path) effects. GBC was measured by relative ratio of direct (D-GBC) and combined (C-GBC) breed determination, respectively, from each putative ancestry breed to a progeny. C-GBC included direct breed effects and indirect breed effects due to genomic similarities. The estimated D-GBC and C-GBC were comparable when the ancestry breeds had a very distant relationship, and they corresponded well to the estimated GBC from linear regression and admixture model. However, large differences arose between D-GBC and C-GBC when ancestors were highly correlated. Overall, the estimated C-GBC was closer to the estimated GBC from linear regression and admixture models than D-GBC.

In reality, all the modern cattle breeds are correlated because they share common ancestors. The same is true with other farm animal species. The estimated GBC for a purebred animal is not always 100%. This phenomenon was referred to as “the Impure purebred Paradox” (Wang et al.). In the U.S. dairy genetic evaluation, for example, the reference population for a dairy breed consisted of animals with a BBR no ≥ 94% for that breed, and animals with BBR no ≥ 90% received single-breed genomic evaluation (Wiggans, 2021). This was because the current methods tend to produce a small GBC value to a non-ancestry reference breed. The more significant the genomic similarity, the more noise. Statistically, this situation was an indication of increased false-negative error rates in the identification of purebred animals. Wang et al. (2020) proposed applying regularization in admixture models to estimate GBC for purebred animals. Regularized admixture methods produced sparse solutions of admixture coefficients, thus effectively imposing penalties on small, non-essential components due to genomic similarity. The non-convex penalty outperformed the L1 norm penalty to suppress the noise in the estimated GBC.

Several issues are not addressed adequately. Firstly, accurately assessing GBC requires knowing or reliably estimating the allelic frequencies for the base population when the ancestor breeds were developed, because they are not observable. Secondly, while high-density SNP genotypes were used to estimate GBC, the impact of SNPs in high linkage disequilibrium on the estimated GBC has not been well-documented. In admixture models, for example, the likelihood is computed assuming mutual independence of SNP loci, but this assumption does not hold with high-density SNP arrays. Finally, the current methods do not estimate GBC exactly based on genomic similarities identical-by-descend (IDB) between a progeny and the ancestry (reference) breeds. Rather, they reflect more of genomic similarities identical-in-statue (IIS).



LIMITED EFFORTS WITH DIFFERENTIAL GENE EXPRESSION PROFILING

Expression profiling is a logical next step after genome sequencing, which reveals the activity of genes in hundreds and thousands and depicts a global picture of cellular functions (Subramanian et al., 2005). Expression profiling experiments involve measuring relative mRNA abundance in two or more experimental conditions. Altered gene expression suggests a change for the protein coded by the mRNA, probably indicating a homeostatic response or a pathological condition.

There were only three papers addressing differential gene expression in this Research Topic. Chen et al. compared the microRNA (miRNA) profiles of pectoral muscle in chickens at pre- to post-natal stages. Cui et al. identified differentially expressed miRNAs between cattle with high vs. low milk protein and fat percentages. A miRNA is a small single-stranded non-coding RNA molecule containing about 22 nucleotides in animals. It functions in RNA silencing and post-transcriptional regulation of gene expression. First discovered in the early 1990s (Lee et al., 1993), miRNAs were not recognized as a distinct class of biological regulators until the early 2000s (Bartel, 2004). Chen et al. investigated the expression pattern of pituitary-derived circular RNAs and their functions in Landrace × Yorkshire crossbred pigs. A circular RNA is a single-stranded RNA that forms a covalently closed continuous loop. Some circular RNAs have shown potential as gene regulators.

The size and complexity of these gene expression experiments are crucial to reach reliable interpretations. In reality, however, lacking sufficient sample sizes was mainly related to financial constraints, which led to reduced statistical power of the experiment and difficulty to identify essential but subtle changes, and limited the extent to which experiments performed in different laboratories appeared to agree. Different gene expression between purebred and crossbred animals may have implications on the expression of heterosis, but relevant studies are missing in this Research Topic.



THE JOURNEY CONTINUES WITH DISSECTING QUANTITATIVE TRAIT VARIATION AND GENETIC ARCHITECTURE

Quantitative trait locus (QTL) mapping aims at characterizing chromosomal regions or genes responsible for quantitative traits and diseases in terms of genomic positions, effects, and numbers. A simple QTL mapping experiment starts with crossing two parental lines differing in their trait values and marker variants. Segregated QTLs are observed and mapping in the consequent backcrosses or F2 population. Improved strategies, such as advanced intercross lines (AIL) (Darvasi and Soller, 1995), can increase the precision of quantitative trait loci (QTL) mapping due to more recombination events. An AIL is created by successive generations of pseudo-random mating after the F2 generation, and recombination events are accumulated continuously between generations. Wang et al. evaluated a nine-generation AIL derived from two divergent outbred chicken lines. Their results showed that the founder genomes were sufficiently shuffled in the F9 generation. This AIL reference population yielded a considerably narrower for mapped QTL than the F2 generations.

Genome-wide association studies (GWAS) emerged as a powerful tool to investigate associations between quantitative traits (including diseases) and genetic markers on the entire genome (Ozaki et al., 2002; Klein et al., 2005). There were six GWAS studies in this Research Topic, covering cattle, pigs, and chickens, respectively. Rezende et al. identified five genomic regions associated with carcass and meat quality traits in a crossbred Angus-Brahman population. Gao et al. found significant loci for meat quality traits in pigs. Carcass and meat quality are important traits that drive profitability and consumer demand for beef and pork. They are expensive to measure and unavailable until late in life or after the animal was harvested. Hence, genetic improvement of carcass and meat quality traits is not viable through traditional phenotypic selection, but these traits are perfect candidates for marker-assisted selection or genomic selection. Instead of alive measurement of carcass and meat quality traits, Grigoletto et al. attempted to localize chromosomal regions associated with non-invasive, ultrasound-based carcass and meat quality traits in Montana Tropical Composite beef cattle. Li et al. identified several candidate genes that are associated with metabolites, which are intermediate or end product (usually small molecules) of metabolism, in crossbred beef cattle. Li et al. found significant loci in chromosome 1 and chromosome 4, which explained 6.36 and 4.25% of the phenotypic variance of birth weight. Nie et al. revealed seven significant SNPs spanning a ~0.29 Mb, harboring 14 candidate genes for tail feather color, in dwarf chickens.

Selection tends to cause specific changes in the patterns of variation among selected loci and in neutral loci linked to them, leaving genomic footprints known as selection signatures (Kreitman, 2000). Such information helps understand how genomes were shaped during the breeding history and localize functional genes/genomic regions. Singh et al. identified eleven common regions harboring genes associated with production and adaptation in an Indian composite cattle breed developed by crossbreeding taurine dairy breeds with native indicine cattle. Their results suggested more substantial selective pressure on regions responsible for adaptation compared to milk yield. Paim et al. estimated the genomic composition of the regions identified as selected (selective sweeps) using a chromosome painting approach. Selected genomic regions as selection signatures for founder breeds were identified as well. van der Nest et al. identified ten candidate regions potentially under strong positive selection, harboring genes for health and production, in South African Simbra cattle (5/8 Taurine and 3/8 Indicine). Ganteil et al. assessed the patterns of runs of homozygosity (ROH) in animals from three-way crossbreeding. ROH are continuous stretches of homozygous genotypes in a diploid genome, and their quantification reflects autozygosity, which occurred when two parents shared at least one common ancestor (Peripolli et al., 2017).

Given the polygenic nature of quantitative traits and disease, an adequate sample size for GWAS often tends to be very large (Nishino et al., 2018). In reality, however, assembling large sample sizes is not always possible, particularly for carcass and meat quality traits because they are difficult or expensive to measure. A similar challenge arises when conducting GWAS in isolated small populations. Hence, literature synthetic or meta-analytical methods provides an alternative to incorporate data from multiple studies and arrive at more reliable conclusions by utilizing publicly accessible databases (Wu and Hu, 2012). Population stratification is another concern with GWAS, which often result in spurious associations if not properly accounted for. Population stratification can happen in large GWAS when perfect matching of cases and controls is virtually impossible. It is also likely to occur when studying recently admixed populations and variants with very small effect sizes.

GWAS do not necessarily pinpoint causal variant and genes, because most association signals map to non-coding regions of the genome (Hindorff et al., 2009; Mahajan et al., 2018). Functional characterization of genetic variants is needed to move from statistical association to causal variants and genes, especially in the non-coding genome. Computational methods are used to predict the regulatory effect of non-coding variants on the basis of functional annotations. Target genes can be identified using chromatin immunoprecipitation and chromosome conformation capture methods, and experimentally validated using cell-based systems and model organisms. A development in the past decade combined QTL analyses with gene expression profiling, i.e., by DNA microarrays. Such expression QTLs (eQTLs) describe cis- and trans-controlling elements for the expression of often disease-associated genes (Westra et al., 2013).

Most GWAS have been conducted using SNP arrays because they are cost-effective. Nevertheless, whole genome sequencing (WGS) permits studying the full frequency spectrum of variants, including rare variants that are difficult to capture by SNP arrays. We anticipate that, as the cost of WGS continues to decline, GWAS using WGS will eventually replace GWAS using SNP arrays. Until then, the majority of the common variants and a substantial fraction of the low-frequency and rare variants that contribute to disease risk can be identified using affordable SNP arrays combined with imputation to increasingly large WGS reference panels (Tam et al., 2019). Low-pass sequencing (i.e., an average depth <1 × coverage) combined with genotype imputation have been proposed as an alternative to genotyping arrays which showed increased power for GWAS (Pasaniuc et al., 2012; Gilly et al., 2019).



EXPENDING THE HORIZONS OF GENOMIC PREDICTION FOR CROSSBRED ANIMALS

Quantitative traits are determined by thousands of genes with small effects, which are often difficult to detect (Manolio et al., 2009; Slatkin, 2009). The merge of genomic selection led to a revolutionary paradigm shift in animal breeding (Meuwissen et al., 2001, 2016). With a sufficient number of markers covering the whole genome, genomic selection concentrates on estimating their total effect rather than testing single loci for their significance. Most genomic evaluations, say for dairy cattle, are separate by breed and crossbreds usually are not included except for the multibreed evaluation in New Zealand (Winkelman et al., 2015). Crossbred animals were removed based on counts of breed check markers (Wiggans et al., 2010). On the other hand, there has been an increasing interest in genomic predictions for crossbred animals in recent years (Sørensen et al., 2008). Starting from April 2019, CDCB offered a genomic evaluation for crossbred dairy cattle on more than 50 traits yet limited to crosses of five dairy breeds (VanRaden et al., 2020). Crossbred evaluations were averages of direct genomic values computed using marker effects for each of the five pure breeds, weighted by the animal's genomic breed composition (VanRaden et al., 2020).

Purebred prediction models do not fully meet the need for evaluating crossbred animals because they are limited to additive genetic effects only. On the other hand, non-additive genetic effects such as dominance and epistasis effects are essential components contributing to the crossbred performance. Stock et al. gave a literature review of genomic models for analyzing livestock crossbred data. Genomic models for crossbred animals extend purebred models with more complexity, such as the inclusion of dominance effects, breed-specific effects, imprinting effects, and the joint evaluation of purebred and crossbred performance data. A two-way cross additive model is the simplest example (Christensen et al., 2014), where the additive genetic value of a crossbreed animal, captured by SNP effects, is decomposed into a contribution that comes from the sire (or sire line) and a contribution from the dam (or dam line), plus a Mendelian sampling term. This basic model can be extended to three-way (Christensen et al., 2019) and four-way crossings and include dominance effects as well. SNP effects are assumed to be either the same or different SNP effects across pure lines. The latter are referred to as BOA (breed-of-origin of alleles) models (Sevillano et al., 2016, Lopes et al., 2017). Including dominance effects is in general advisable, leading to higher accuracy (e.g., Zeng et al., 2013; Xiang et al., 2016). Nevertheless, available studies are not sufficiently conclusive as to which existing method is most suitable for a specific crossbreeding or a genetic trait architecture. Deep learning methods are non-linear models providing flexibility to adapt to complicated relationships between data and output (reviewed by Montesinos-López et al., 2021). They are particularly appealing for crossbred predictions, but not covered in this Research Topic.

Apart from statistical models, the establishment of an appropriate reference population is also crucial to crossbred predictions. In dairy cattle, for example, genotype data are huge and unbalanced between breeds. Dairy genomic evaluations are conducted several times a year. Hence, combing genotypes from multiple breeds imposes great computational challenge. Besides that, multiple-breed predictions are less accurate than within-breed predictions. Training on crossbred animals can increase the prediction accuracies for crossbred animals (Esfandyari et al., 2015), but collecting data from crossbred animals is often difficult and expensive. Optimal training strategies for crossbred predictions remain to be exploited. Alvarenga et al. showed that including purebred and crossbred animals in a joint training population yielded the higher accuracies and lower biases than only training on purebred animals in single-trait or multiple-trait analyses. The multiple-trait model treated purebred and crossbred phenotypes as different traits. Khansefid et al. proposed a strategy by equalizing breed contributions in a mixed dairy breed reference of Holsteins, Jerseys, and their crossbreds, instead of a Holstein-dominated reference. Their results showed improved genomic predictions for crossbred and purebred animals using this strategy. With a support vector machine (SVM) regression model, Tusell et al. also showed increased accuracies by including crossbred information for training when predict the performance of purebred and crossbred pigs. As the genomic data are accumulating indefinitely, the computational challenge will extremely high. Hence, optimal sample selection is worth exploiting, which aims at choosing subsets of training samples that give the same or comparable prediction accuracy as the whole training set. This concept was proposed by Frankel (1984) to select a subset of the data that is representative of the whole resource by removing redundant or highly correlated samples. Also, high-performance computing offers a solution to bypass the computational bottleneck (Wu et al., 2011, 2012; Coninck et al., 2014).

Single-step genomic BLUP enables the inclusion of marker genotypes into the well-established BLUP methods, which often leads to increased prediction accuracies (Legarra et al., 2009; Misztal et al., 2009). This method has been challenged by defining the genetic base when pedigree and genomic information are used simultaneously. For predicting crossbred performance, the challenge becomes how to quantify relationships between different lines compositions and appropriately define different base generations. One solution is to use metafounders, which are pseudo-individuals, that describe the genetic relationship between the base population individuals (Christensen, 2012; Legarra et al., 2015). Junqueira et al. showed that using metafounders increased the accuracy of GEBV and the rate of genetic gain for tick resistance using single-step genomic BLUP in multi-breed beef cattle populations. They defined four metafounders, each for the three pure breeds (Hereford, Bradford, and Zebu) and the fourth metafounder assigned to the remaining base animals with an unknown breed of origin.

Genomic selection in indigenous or minor breeds is often limited by the number of animals with genotypes and phenotypes for training. Combining animals from breeds with similar backgrounds or development history can increase the training population sizes and prediction accuracy. Oliveira et al. reported a moderate genetic connectedness between Norwegian White Sheep and New Zealand Composite Sheep with similar development history, based on the consistency of gametic phase and other genetic diversity metrics. Their results suggested a promising opportunity for cross-country genomic selections. Gebrehiwot et al. found moderate to high genomic composition of European Bos taurus cattle in Western African crossbred cattle. Hence, the genomic information from European Bos taurus cattle can be borrowed to improve genotype imputation and genomic selection in the Western African crossbred cattle. While genomics studies are heavily directed toward major livestock species and breeds, genomics tools for minor livestock species and breeds are in need (Das et al.; Gebrehiwot et al.; Yang et al.).



CONCLUSIONS AND PROSPECTS

Genomics focuses on the structure, function, evolution, mapping, and editing of genomes (Culver and Labow, 2002). Genomics studies also included studies of intragenomic phenomena such as epistasis, pleiotropy, heterosis, and other interactions between loci and alleles within the genome (Pevsner, 2009). Given such a broad spectrum of genomics domains, the coverage of this Research Topic is very limited. The 25 articles are mostly in the domains of functional genomics and predictive genomics in crossbred animals. The former used available genomic data to describe gene functions and interactions, whereas the latter attempts to predict the performance of individual animals based on low- to high-density genotype data. Studies in structural genomics, epigenomics, and metagenomics in crossbred livestock animals are essential, but they are not addressed in this collection.

Advances in genomics have triggered a revolution in discovery-based research and systems biology concerning complex biological systems. Driving genomics to practice, genomic prediction is at the core of enhancing animal breeding and farming management. We anticipate more efforts to specifically exploit genomic prediction models and cost-effective training strategies for crossbred animals. Innovative genomic mating and crossbreeding is appealing for improving commercial crossbreeding. The objective for crossbreeding is to find optimal combinations which maximize the general combining ability (GCA) from the contributing parental lines and the special combining ability (SCA) between them, penalized by standard deviation of gamete breeding values passed from the parents to the offspring. This type of innovative mating or crossbreeding schemes is expected to produce high-performance and less-variable crossbred animals.

Finally, predicting heterosis remains a topic of interest. Heterosis is an old concept proposed by George Harrison Shull, American botanist and geneticist known as the father of hybrid corn, in 1914 (Shull, 1948). In animal breeding, it refers to crossbred performance superiority relative to the parental average (Lush, 1945). Two competing but not mutually exclusive hypotheses, dominance hypothesis and dominance hypothesis, have been proposed to explain heterosis or hybrid vigor (Crow, 1948). Epigenetic components of hybrid vigor were established recently, pinpointing the involvement of small RNAs in the growth, vigor and adaptation of hybrids (Ni et al., 2009; Baranwal et al., 2012). Heterosis is linearly related to heterozygosity, considered to be 100% in the first generation cross (F1) between two diverse parental breeds. In the following generations, it is measured as retained heterosis or heterozygosity relative to F1 (Dickerson, 1973). Genomic-estimated retained heterozygosity or heterosis (GRH) can be used to match parents to obtain optimized heterosis and produce progeny with improved performance and replacement females with better lifetime productivity (Akanno et al., 2017). A silent feature is that GRH provides an additional metric for the existing purebred genomic evaluation systems, for example, in beef cattle to include crossbred predictions without any infrastructural change (Basarab et al., 2018).
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The Montana Tropical® Composite is a recently developed beef cattle population that is rapidly expanding in Brazil and other tropical countries. This is mainly due to its improved meat quality and adaptation to tropical climate conditions compared to Zebu and Taurine cattle breeds, respectively. This study aimed to investigate the genetic architecture of ultrasound-based carcass and meat quality traits in Montana Tropical® Composite beef cattle. Therefore, we estimated variance components and genetic parameters and performed genome-wide association studies using the weighted single-step Genomic Best Linear Unbiased Prediction (GBLUP) approach. A pedigree dataset containing 28,480 animals was used, in which 1,436 were genotyped using a moderate-density Single Nucleotide Polymorphism panel (30K; 30,105 SNPs). A total of 9,358, 5,768, 7,996, and 1,972 phenotypic records for the traits Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT), and for marbling score (MARB), respectively, were used for the analyses. Moderate to high heritability estimates were obtained and ranged from 0.16 ± 0.03 (RFT) to 0.33 ± 0.05 (MARB). A high genetic correlation was observed between BFT and RFT (0.97 ± 0.02), suggesting that a similar set of genes affects both traits. The most relevant genomic regions associated with LMA, BFT, RFT, and MARB were found on BTA10 (5.4–5.8 Mb), BTA27 (25.2–25.5 Mb), BTA18 (60.6–61.0 Mb), and BTA21 (14.8–15.4 Mb). Two overlapping genomic regions were identified for RFT and MARB (BTA13:47.9–48.1 Mb) and for BFT and RFT (BTA13:61.5–62.3 Mb). Candidate genes identified in this study, including PLAG1, LYN, WWOX, and PLAGL2, were previously reported to be associated with growth, stature, skeletal muscle growth, fat thickness, and fatty acid composition. Our results indicate that ultrasound-based carcass and meat quality traits in the Montana Tropical® Composite beef cattle are heritable, and therefore, can be improved through selective breeding. In addition, various novel and already known genomic regions related to these traits were identified, which contribute to a better understanding of the underlying genetic background of LMA, BFT, RFT, and MARB in the Montana Tropical Composite population.




Keywords: candidate genes, composite cattle, crossbreeding, genomic regions, single-step Genome-Wide Association Studies (ssGWAS),  Genomic Best Linear Unbiased Prediction (GBLUP), tropical beef cattle



Introduction

Both carcass and meat quality traits are paramount for optimizing the profitability of the beef cattle industry. These traits are influenced by diet and feeding practices, pre- and post-slaughter management, and meat processing and storage methods (Adzitey, 2011; Guerrero et al., 2013; Njisane and Muchenje, 2017). Despite the apparent effectiveness of these alternatives, genetic selection is a complementary approach in which the gains achieved are permanent and cumulative over generations. In this context, carcass and meat quality traits have been measured and incorporated in worldwide beef cattle breeding programs (Reverter et al., 2000; Yokoo et al., 2010; Berry et al., 2017; Gordo et al., 2018). Carcass and meat quality traits can be measured in live animals using ultrasound technology, which is a noninvasive technique (Pathak et al., 2011; Scholz et al., 2015). Ultrasound-based traits that are indicators of carcass and meat quality include Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT), and marbling score (MARB) (Pathak et al., 2011; Font-i-Furnols and Guerrero, 2014; Gordo et al., 2018).

Brazil is one of the largest beef cattle producers in the world, with a population of over 230 million animals (USDA, 2019). More than 80% of the beef cattle animals currently raised in Brazil are from the Nellore breed (Bos taurus indicus; Zebu), which are well adapted to tropical conditions (Ferraz and Felício, 2010). However, Zebu breeds are also well known for poorer meat quality (Crouse et al., 1989; Bressan et al., 2016; Rodrigues et al., 2017) when compared to Taurine (Bos taurus taurus) breeds (e.g., Aberdeen Angus, Red Angus, Senepol, Charolais). An alternative to improve carcass and meat quality traits, while keeping the adaptation characteristics of Zebu cattle, is through the development of composite populations (i.e., crossbreeding between Taurine and Zebu animals; e.g. Piccoli et al., 2020).

The Montana Tropical® Composite population was firstly developed in 1994 following studies conducted by the U.S. Meat Animal Research Center at Clay Center, United States Department of Agriculture (USDA; Gregory et al., 1993; Gregory et al., 1994). This composite population was developed by crossing animals from four different biological types or breed groups (Ferraz et al., 1999): 1) Zebu breeds (Bos taurus indicus), 2) Adapted Taurine breeds (Bos taurus taurus), 3) British breeds (Bos taurus taurus), and 4) Continental European breeds (Bos taurus taurus).

Over the past few years, there has been a great interest in genetically improving this composite population and better understanding its genetic background underlying phenotypic variation of economic importance to the breeders. In this context, genome-wide association studies (GWAS) can be performed to identify Quantitative Trait Loci (QTL) associated with key traits (e.g. carcass and meat quality). Recent GWAS have successfully revealed significant genomic regions in beef cattle composite populations [(e.g., Weng et al., 2016; Hay and Roberts, 2018; Grigoletto et al., 2019)]. Wang et al. (2012) proposed a GWAS method based on the single-step Genomic Best Linear Unbiased Predictor (ssGBLUP; Legarra et al., 2009; Aguilar et al., 2010; Legarra et al., 2014), which has become the gold-standard method for GWAS [also termed single-step Genome-Wide Association Studies (ssGWAS)]. A variation of this method, the weighted single-step GBLUP (WssGBLUP; Wang et al., 2012) usually yields more accurate SNP effects (e.g. Zhang et al., 2016), and consequently, a greater power to identify QTLs and functional genes. In this context, the main goals of this study were to: 1) estimate variance components and genetic parameters for four ultrasound-based carcass and meat quality traits (i.e., LMA, BFT, RFT, and MARB) in Montana Tropical® Composite beef cattle and 2) identify relevant genomic regions, candidate genes, and metabolic pathways associated with these traits, using the WssGBLUP method.



Materials and Methods

Animal Care Committee approval was not obtained for this study as all the analyses were performed using pre-existing databases.


Animals and Phenotypic Data

The descriptive statistics of the pedigree file, including the breed composition of the animals is shown in Table 1. Breed was recorded by the producers/technicians or calculated based on pedigree relationship between the animals. The animals were classified within each biological group (NABC) as: 1) N: Zebu breeds, mainly represented by Nellore; 2) A: Taurine breeds adapted to tropical conditions (Senepol, Belmont Red, Bonsmara, and Caracu); 3) B: Taurine breeds of British origin (mainly Angus, Devon, and Hereford); and, 4) C: Continental European breeds (mainly Charolais, Limousin, and Simmental). To be considered as a Montana Tropical® Composite (Figure 1), the animals had to have at least three breeds in their genetic composition. In addition, the minimum percentage of the biological types (breed groups) required to be considered a Montana Tropical® Composite was 12.5% for group A and 25% for groups N and A together. The maximum proportion of each group allowed was 37.5% for group N; 87.5% for group A; and 75% for groups B and C (Santana et al., 2013). The main contributing breeds to the development of this composite population were Aberdeen Angus, Red Angus, Nellore, Senepol, Limousin, Simmental, Hereford, and Bonsmara.


Table 1 | Descriptive statistics of the pedigree dataset according to the breed and biological type composition of the animals.






Figure 1 | Illustration of a Montana Tropical® Composite bull (left) and location of the farms (right) participating in the Montana Tropical® Composite breeding program. The map regions in black indicate Brazilian states and the gray areas represent Paraguay and Uruguay. Photo Credits: Montana Tropical® Composite website (www.compostomontana.com.br/criadores-montana/).



Four ultrasound-based carcass and meat quality traits (LMA, BFT, RFT, and MARB), recorded on animals born between 2008 and 2016, were included in this study. Animals were raised in 18 farms located at different Brazilian states, Paraguay and Uruguay (Figure 1). In general, the animals were raised on pastures composed basically of Brachiaria brizantha. All farms provided feed supplements in the dry season (from May to August). With regard to the reproductive breeding scheme, around 60% of cows were artificially inseminated and 40% were kept in multiple-sire lots with a cows-to-bull’ ratio of 30:1 or 25:1. The majority of calves were born between September and December (Spring season in South America and the beginning of the rainy period) and weaned at 7 months of age. Weight recording was obtained at birth and weaning. Further records of yearling weight, scrotal circumference, and other productive traits were collected between 14 and 18 months. More details are presented in Santana et al. (2012), and in a previous GWAS study from the same population (Grigoletto et al., 2019).

The average (±standard deviation; SD) age of the animals at the ultrasound measurement was 580.27 (±75.08) days. Longissimus muscle area (LMA) was measured in cm2, between the 12th and 13th ribs. Backfat thickness (BFT) was measured in mm, at a point three-fourths of transverse orientation over the LMA (Brethour, 2004). Rump fat thickness (RFT) was also measured in mm, at the junction of the biceps femoris and gluteus medius between the ischium and ilium (Greiner et al., 2003; Gordo et al., 2012). Marbling score (MARB) was measured as an indicator of the percentage of intramuscular fat, using a subjective scale ranging from 1 to 12, based on the U.S. Department of Agriculture (USDA) quality grades (www.uspremiumbeef.com/DocumentItem.aspx?ID=21). All traits were evaluated by ultrasonography using the ALOKA 500 V device, with a 3.5 MHz linear probe. The images were analyzed using the LINCE® software (Gabín et al., 2012). Phenotypic quality control removed records deviating 3.5 SD from the overall mean within contemporary group (CG). The CGs were defined based on farms, years, and seasons of birth, sexes, and management groups. The CGs with less than five records were excluded from subsequent analyses. Descriptive statistics for the ultrasound-based carcass and meat quality traits after the data editing are shown in Table 2.


Table 2 | Descriptive statistics, variance components, and genetic parameter estimate for ultrasound carcass traits in the Montana Tropical® Composite cattle population.





Genotypic Quality Control

A total of 1,436 bulls were genotyped using a moderate-density SNP panel containing 30,105 SNPs (GeneSeek Genomic Profiler™ LDv4-GGP Bovine LDv4; Illumina, San Diego, CA). Genotype quality control was performed using the PREGSF90 program (Aguilar et al., 2014; Aguilar et al., 2019). In general, SNPs with minor allele frequency lower than 0.05, call rate lower than 90%, extreme deviation from Hardy–Weinberg equilibrium (defined as the maximum difference between observed and expected heterozygosity) greater than 0.15 (Wiggans et al., 2009), and SNPs located in nonautosomal chromosomes were excluded. A total of 27,196 SNPs distributed on 29 autosomal chromosomes, and 1,394 genotyped animals (42 animals were excluded due to call rate lower than 90%) remained for further analyses. BTA1 is the largest chromosome, with 158.72 Megabase pairs (Mb) covered by 1,602 SNPs, while the BTA27 is the shortest one, with 42.33 Mb covered by 512 SNPs.



Statistical Analyses

Variance components and breeding value prediction. Single-trait linear animal models and the average-information restricted maximum likelihood (AI-REML) procedure were used to estimate heritability and variance components, using the AIREMLF90 package from the BLUPF90 family programs (Misztal et al., 2002; Misztal et al., 2014). Genomic breeding values for all traits were directly predicted using the ssGBLUP procedure (Misztal et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). The ssGBLUP is a modified version of the traditional BLUP, in which the inverse of the pedigree-based relationship matrix (A−1) is replaced by the H−1 matrix. The H−1 is defined as follow (Legarra et al., 2009; Aguilar et al., 2010):

	

where A–1 was previously defined, τ and ω are the scaling factors used to combine G and A22 (assumed as τ = 1.0 and ω = 0.7 in order to reduce bias; Misztal et al., 2010; Tsuruta et al., 2011),   is the inverse of the pedigree-based relationship matrix for the genotyped animals, and G–.G-1 is the inverse of the genomic relationship matrix (G), which was calculated as (VanRaden, 2008):

	

where Z is the matrix containing the centered genotypes (−1, 0, 1) accounting for the observed allelic frequencies; and k is a scaling parameter, defined as 2 Σ p(1–p), in which p is the observed allele frequency of each marker. The weighting factor can be derived either based on SNP frequencies (VanRaden, 2008) or by ensuring that the average diagonal of G is close to one as in A22 (Vitezica et al., 2011). In order to minimize issues with G inversion, 0.05 of A was added to 0.95 of the G matrix.

The single-trait animal models used in this study included the direct additive genetic and residual as random effects. CG, direct (individual) heterozygosity (described below), and age of the animal at the measurement were included as fixed effects in the model. Thus, the statistical model used in this study can be described as:

	

where yijkl is the phenotypic record for each trait (LMA, BFT, RFT or MARB) recorded on the animal l, belonging to the CG i, at age j, and direct (individual) heterozygosity (HD) k. b1 and b2 are the linear regression coefficients related to the Age and HD effects, respectively, which were considered as deviations from the mean   and   The α1 is the direct additive genetic random effect for the animal l, and ϵijkl is the residual random effect associated with the animal l, direct (individual) heterozygosity k, age j, and CG i. Assuming a matrix notation, the previous model can be written as:

	

where, y is the vector of phenotypic observations for each trait; β is the vector of solutions for fixed effects; α is the vector of predictions for random additive genetic animal effect; ϵ is the vector of random residual terms; X and Z are the incidence matrices of fixed and random effects, respectively. It was assumed that: α ~ N(0 ) and ϵ ~ N(0 ) where  is the additive genetic variance;  is the residual variance; and I is an identity matrix. Thus, the (co)variance matrix (V) of the random effects can be expressed as:

	

where H is the relationship matrix used in the ssGBLUP method. The non-additive effects of heterozygosity were obtained by linear regression to the coefficients of direct (individual) heterozygosity (HD), which were calculated as (Dias et al., 2011):

	

which i represents the biological type (i.e., i = 1, 2, 3 or 4, indicating the proportion of N, A, B, C, respectively); Si and Di are the fractions of the ith biological type of sire and dam, respectively. Coefficients for biological types (N, A, B, and C) were equal to the proportion of each biological type in the breed composition (as recorded by the producers/technicians or calculated based on pedigree relationship between animals), and it was assumed that the sum of all proportions of biological types in one animal were equal to one. To avoid multicollinearity, direct additive effects of the biological type N were excluded from the statistical models, i.e., the effects for A, B, and C were estimated as deviations of the additive effects of N (Dias et al., 2011; Petrini et al., 2012).

Genetic correlations. A multiple-trait linear animal model was used to estimate the genetic and phenotypic correlation between all traits (LMA, BFT, RFT, and MARB) using pedigree and genomic information. Genetic and phenotypic correlations were calculated using the AIREMLF90 package from the BLUPF90 family programs (Misztal et al., 2002; Misztal et al., 2014). The multiple-trait model included the same fixed and random effects described above. However, it was assumed that: α ~ N(0, G⊗H); ϵ ~ N(0, R⊗I); where α, H, and I are the same as above; G is the additive genetic (co)variance matrix; R is the residual (co)variance matrix. In this reasoning, the (co)variance matrix for random effects was:

	

Genome-wide association studies (GWAS). The GWAS for each trait was carried out using the weighted ssGBLUP method (WssGBLUP; Wang et al., 2012). The same statistical models described to estimate the variance components and breeding values were used to identify genomic windows associated with the traits, as described by Wang et al. (2014) using the BLUPF90 family programs (Misztal et al., 2002; Misztal et al., 2014). The PREGSF90 software (Aguilar et al., 2014) was used as an interface to the genomic module to process the genomic information. Also, the POSTGSF90 software (Aguilar et al., 2014) was used to back-solve the GEBVs for each trait. To calculate the SNP effects and weights, we followed the steps proposed by Wang et al. (2014). This method uses an iterative process, which was repeated three times in this study, to increase the weight of SNPs with larger effects and decrease the weight of those markers with smaller (close to zero) effects (Wang et al., 2014). The GWAS results are reported as the proportion of variance explained by a moving genomic window of five adjacent SNPs. Genomic windows that explained more than 1% of the total genetic variance were considered as relevant, i.e. associated with the trait being analyzed.



Functional Analyses

Positional candidate genes were annotated considering an upstream and downstream interval of 100 kb (threshold defined based on the level of linkage disequilibrium in the population) using the Ensembl Genome Browser (www.ensembl.org/index.html) and the ARS-UCD1.2 version of the cattle genome (Zerbino et al., 2017). Furthermore, important SNPs (from the key genomic windows) were further explored using the Animal QTL Database (AnimalQTLdb; Zhi-Liang et al., 2019). Functional analyses were carried out to characterize the gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the Database for Annotation, Visualization and Integrated Discovery (DAVID; Huang et al., 2009). In order to increase the statistical power of the study, all candidate genes identified for the four traits were considered in the same functional analysis, as they are all correlated traits. The significance thresholds used were p-value < 0.05 and false discovery rate (FDR) < 5 based on the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), as implemented in the DAVID software (Huang et al., 2009).




Results


Genetic Parameter Estimates

The variance components and heritability (h2) estimates for LMA, BFT, RFT, and MARB are presented in Table 2. All traits had moderate to high heritability estimates, which ranged from 0.16 ± 0.03 to 0.33 ± 0.05. The genetic and phenotypic correlations are shown in Table 3. The highest genetic correlation was obtained between BFT and RFT (0.97 ± 0.02), followed by an unfavorable correlation between BFT and MARB (0.66 ± 0.01). The heritability estimates from the single-trait and averaged bivariate model analyses were similar, and therefore, only the heritability estimates from the single-trait models are reported and discussed here.


Table 3 | Genetic (above) and phenotypic (below) correlation (±standard error) for ultrasound carcass and meat quality traits in the Montana Tropical Composite beef cattle population.





GWAS and Functional Analyses

A total of 18, 22, 9, and 11 genomic windows explaining more than 1% of the total genetic variance were identified for LMA, BFT, RFT, and MARB, respectively. These regions are harboring or overlap with 241 positional genes. The main candidate genes are shown in Table 4 and the complete list is presented in the “Supplementary Material” section. The genomic windows identified are spread across all autosomal chromosomes, with exception of BTA8, BTA16, BTA19, BTA20, and BTA25 (Supplementary file — Tables S1–S4). The Manhattan plots for all traits are presented in Figure 2.


Table 4 | The main genomic regions explaining more than 1% of total genetic variance (%var) of ultrasound-based carcass traits in the Montana Tropical® Composite beef cattle.






Figure 2 | Manhattan plots of the genome-wide association analyses for Longissimus muscle area (A; LMA), backfat thickness (B; BFT), rump fat thickness (C; RFT) and marbling score (D; MARB) traits. The 29 autosomal chromosomes are shown in different colors. The x-axis represents the chromosome number whereas the y-axis shows the proportion of genetic variance explained by five adjacent SNPs. The gray line corresponds to the genome-wide threshold of each window that explained more than 1% of genetic variance.



Two overlapping regions were identified on BTA13: 1) at 47.7–48.5 Mb for BFT and MARB, and 2) at 61.5–63.5 Mb for BFT and RFT. The highest peaks associated with LMA, BFT, RFT, and MARB were located on BTA10 (5.4–5.8 Mb; 6.6% of the genetic variance), BTA27 (25.2–25.5 Mb; 9.3% of the genetic variance), BTA18 (60.6–61.0 Mb; 6.0% of the genetic variance), and BTA21 (14.8–15.4 Mb; 6.0% of the genetic variance), respectively (Figure 2). For LMA, a single genomic window was identified on BTA14 (22.8 to 23.2 Mb) explaining close to 4% of the total additive genetic variation. Another region explaining 1.17% of the total additive genetic variance was identified on BTA18 (5.4 to 5.6 Mb) and contains the WWOX gene which plays a role in the composition of intramuscular fatty acid associated with cholesterol homeostasis and triglyceride biosynthesis (Iatan et al., 2014). A region located on BTA13 (61.6–62.5 Mb) identified to be associated with both BFT and RFT harbors the candidate genes PLAGL2, ASXL1, and BPIFB2. This suggests that these genes might have pleiotropic effects on BFT and RFT. The genomic region located at BTA22 and harboring the SCAP and ENTPD3 genes accounted for 7.58% of the total genetic variance for BFT. It is worth noting that we highlighted selected genes related to BFT and RFT, however, a total of 13 mutual genes (HCK, TM9SF4, PLAGL2, POFUT1, KIF3B, ASXL1, NOL4L, COMMD7, DNMT3B, MAPRE1, EFCAB8, SUN5, BPIFB2) were identified for this common genomic region. A total of 12 biological processes (BP) and two pathways were significantly enriched (Table 5). Four biological processes involving visual behavior, associative learning, muscle tissue morphogenesis, and regulation of fatty acid biosynthetic processes were highlighted for further discussion.


Table 5 | Enriched Gene Ontology (GO) and KEGG terms obtained from the DAVID database (https://david.ncifcrf.gov; Huang et al., 2009).






Discussion


Genetic Parameters

The genetic parameters obtained for ultrasound carcass traits in the Montana Tropical Composite population (Table 2) are similar to literature reports (Mourão et al., 2007). For instance, Meirelles et al. (2010) estimated h2 of 0.24 ± 0.09 and 0.33 ± 0.09 for BFT and LMA, respectively, in Canchim beef cattle (a synthetic population based on crossing between Charolais and Zebu breeds). Silva et al. (2019) also reported moderate to high h2 estimates for BFT (0.17 ± 0.06), RFT (0.27 ± 0.07), and LMA (0.32 ± 0.02) in Nellore beef cattle. Hay and Roberts (2018) also reported a high h2 estimate for LMA (0.32 ± 0.08) in a composite population of 50% Red Angus, 25% Charolais, and 25% Tarentaise beef cattle. The moderate to high heritability estimates indicate that genetic progress can be achieved for these traits through selective breeding.

A high and favorable genetic correlation was estimated between BFT and RFT (r = 0.97 ± 0.02), indicating that these traits are controlled by a similar set of genes. Furthermore, this high genetic correlation suggests that indirect genetic progress can be attained by including only one of these two traits in a breeding program. Positive but unfavorable genetic correlations were estimated between BFT and MARB (r = 0.66 ± 0.01), RFT and MARB (r = 0.55 ± 0.02), LMA and BFT (r = 0.53 ± 0.08), and LMA and RFT (r = 0.39 ± 0.02). This is because the industry aims to increase MARB and LMA while keeping BFT and RFT at a constant level. However, as these correlations are far from the unit, genetic progress for all the traits can be achieved by including and properly weighting them in a selection index. A favorable correlation was observed between LMA and MARB (r = 0.23 ± 0.01). Gordo et al. (2018) also obtained a moderate and positive correlation between LMA and MARB in Zebu cattle. These findings indicate that selection for carcass traits might indirectly improve meat quality.



GWAS and Functional Analyses

To our best knowledge, this is the first study reporting genomic regions and genetic parameters for carcass and meat quality traits in the Montana Tropical® Composite. The WssGBLUP method enables the inclusion of phenotypes of ungenotyped animals in the GWAS, which improves the accuracy of marker effect estimation (Wang et al., 2012; Aguilar et al., 2019). The genomic regions presented in Table 4 are harboring candidate genes related to several biological mechanisms associated with carcass and meat quality traits. For instance, the PPP1R3B (protein phosphatase 1, regulatory subunit 3B) gene was identified to play a role in the expression of all the traits included in this study. PPP1R3B has been reported to be associated with meat quality traits in cattle, including pH, meat color, and shear force (Edwards et al., 2003; Kayan, 2011; Cinar et al., 2012), and skeletal muscle development in humans (Munro et al., 2002). In addition, this gene is associated with glucose and glycogen metabolism. Therefore, it may affect the energy availability in skeletal muscle and consequently, contribute to greater muscle growth (Zhao et al., 2019). Also, it regulates deposition of intramuscular fat relative to subcutaneous fat deposition (Choat et al., 2003).

The PLAGL2, CALCR, ASXL1, and BP1FB2 genes, identified to be associated with BFT and RFT, play a role in lipid metabolism (Van Dyck et al., 2007). More specifically, PLAGL2 is part of a subfamily of zinc finger (PLAG) gene family proteins (Kas et al., 1998). The PLAG1 gene, also identified in this study, has a great impact on carcass weight in cattle (Littlejohn et al., 2012). Moreover, many studies have shown that the PLAG gene family is a key regulator of mammalian growth and body weight (Littlejohn et al., 2012; Fortes et al., 2013; Utsunomiya et al., 2017; Muramatsu, 2018; Zhang et al., 2019). The CALCR gene, located on BTA4 and identified to be associated with BFT, was previously reported to be associated with angularity, body condition score and body depth in Holstein cattle (Magee et al., 2010). The gene INSIG1 (Insulin induced gene 1) has also been associated with growth and carcass traits, including body weight, hip width and withers height (Liu Y. et al., 2012), residual feed intake (Karisa et al., 2013) and milk fatty acids (Rincon et al., 2012). Furthermore, a group of genes (PLAG1, RPS20, ATP6V1H, RGS20, LYN, TCEA1, MRPL15, SOX17, RP1, CHCHD7, SDR16C5, SDR16C6, PENK, FAM110B, CYP7A1, SDCBP) located on a conserved region on BTA14, previously reported as a selective sweep region in dairy and beef cattle breeds (Zhao et al., 2015), might play a crucial role in carcass and meat quality traits. This region seems to be the most relevant association with carcass traits in beef cattle (Magalhães et al., 2016; Hay and Roberts, 2018; Zhang et al., 2019). Furthermore, LYN, XKR4, and TGS1 genes have already been associated with hip height (An et al., 2019), insulin-like growth factor 1 level (Fortes et al., 2012), and carcass traits (including RFT) in Blonde d’Aquitaine, Charolais, Limousine, Belmont Red, Santa Gertrudis, and Nellore cattle (Porto-Neto et al., 2012; Ramayo-Caldas et al., 2014; Magalhães et al., 2016).

The considerable number of common candidate genes (i.e., 114 genes) identified for multiple carcass traits suggests that there are important pleiotropic effects regulating phenotypic expression of these traits. This is also supported by the moderate to high genetic correlation observed here and in other studies (e.g. Tonussi et al., 2015; Herd et al., 2018). Recently, Silva et al. (2017) and Hay and Roberts (2018) reported several significant regions on BTA14 associated with BFT and other carcass traits in Zebu and composite beef cattle populations. The genomic region identified on BTA22 (harboring the SCAP and ENTPD3 genes) was also reported by Hay and Roberts (2018) to be associated with BFT in tropical composite cattle. The gene DNMT3B (DNA cytosine-5-methyltransferase 3 beta), associated with BFT in this study, was previously associated with marbling score, subcutaneous fat, Longissimus muscle area, body weight, carcass weight, dressing percentage in offspring of Wagyu and F1 crossbred cows of Limousin with Fuzhou Yellow cattle (Liu X. et al., 2012). LCORL has also been previously associated with carcass weight and fat thickness at the 12th rib in crossbred beef cattle (Lindholm-Perry et al., 2011).

The WWOX gene, located on BTA18, has been previously associated with meat color in Korean native cattle (Lee et al., 2018). Meat color is one of the main parameters that influence consumers’ preference (Font-i-Furnols and Guerrero, 2014). Additionally, meat color has currently been described to be related to cholesterol homeostasis and fatty acid biosynthesis, which is likely associated with lipid metabolism (Iatan et al., 2014). Furthermore, lipid metabolism in mammals is hypothesized to be associated with immune response and inflammatory processes. This consequently impacts lean deposition and subcutaneous fat deposition, as well as growth rate in cattle (Silva-Vignato et al., 2019).

The number of genotyped animals with phenotypes for the trait(s) of interest and the density of the panel used (number of SNPs after the quality control) are two key factors that influence the identification of important genomic regions, especially those located in regions with low levels of linkage disequilibrium or small effect on the trait. These two factors might have constrained the genomic regions that were identified in this study. However, the SNP panel used in this study contains informative SNPs identified in several breeds, which were also used to develop the Montana Tropical Composite population (Angus, Red Angus, Nellore, Brahman, Charolais, Gelbvieh, Hereford, Limousin, Simmental, Holstein, Jersey, Brown Swiss, Ayrshire, Guernsey, Gyr, Girolando, Brangus, Beefmaster, and Braford). This might have minimized these effects. In view of the limitations described here, further studies using larger datasets and denser SNP panels should be performed to validate the results reported in this study.



Functional Enrichment Analyses

The moderate to high genetic correlations obtained between RFT and MARB, BFT and RFT, and the common genomic regions and candidate genes identified indicate that muscle development and fat deposition are likely directly correlated processes. Berg and Butterfield (1976) described that as soon as the animal reaches mature age, changes in the proportions of specific tissues are observed. This includes a decrease in muscle-bone growth rates and an increase in fat deposition rate. The two main biological processes identified are: 1) “muscle tissue morphogenesis” (GO:006415) and 2) “regulation of fatty acid biosynthesis” (GO:0042304). A key gene of the muscle tissue morphogenesis is RXRA (Retinoid X receptor, alpha), which has been associated with weaning weight and yearling weight in Charolais and Brahman cattle (Paredes-Sánchez et al., 2015), and with BFT and meat fatty acids in an Angus–Hereford–Limousin crossbred population (Goszczynski et al., 2016). The fatty acid composition is directly linked with intramuscular fat content, and its major regulation is located in the skeletal muscle in mammals (Muoio et al., 2002). Meat fatty acid content is a crucial parameter of consumers acceptability and might become a key breeding goal in Nellore cattle (e.g., Lemos et al., 2016; Feitosa et al., 2017; Feitosa et al., 2019), one of the most influential breeds in the development of the Montana Composite population. In general, meat fatty acid content is related to meat quality and flavor and complex interactions occurring during the animals’ life and post-mortem period (Mullen et al., 2006).

Two of the highlighted processes are related to behavior indicator traits: 1) visual behavior and 2) associative learning. The associative learning is defined as the capacity of an individual learning a behavior based on the association of two or more events (Abramson and Kieson, 2016). In general, animals recognize events related to environmental factors through this process. For example, the animal's temperament from previous handling experiences produces an active learning process to determine how it will react in a next handling event. Furthermore, mounting behavior can result in carcass bruising and thus reduce carcass quality especially depending on the level of BFT (Hoffman and Lühl, 2012). This is a very important finding, as cattle temperament is significantly associated with handling stress and consequently, carcass damage, and reduction in meat quality (Yang et al., 2019). The association between visual behavior and associative learning processes can also be related to feeding behavior which is a relevant process associated with feed efficiency, growth rate, and carcass composition.

The KEGG pathway PI3K-AKT is associated with stimulation of cell growth and proliferation, and simultaneously inhibits apoptosis. In this regard, PI3Ks plays a major role in insulin metabolism (Ma et al., 2017), which is the major hormone controlling glucose and lipid metabolism (Dimitriadis et al., 2011). In this context, Shingu et al. (2001) suggested that insulin secretion may contribute to the difference in growth patterns and meat quality properties among beef cattle breeds. Another pathway enriched was “bta00270: Cysteine and methionine metabolism”, which is associated with meat flavor development in several species (Mecchi et al., 1964; Minor et al., 1965; Pepper and Pearson, 1969; Pippen et al., 1969), and likely associated with intramuscular fat (or MARB). Cysteine and methionine are considered the largest components of meat flavor (Werkhoff et al., 1990; Khan et al., 2015). Uncooked meat has little to no aroma and only a blood-like taste, thus, the meat flavor is thermally derived by reactions between carbohydrates and amino acids (Mottram, 1998).




Conclusions

Our findings indicate that ultrasound-based carcass and meat quality traits are heritable and therefore can be improved through selective breeding. The high genetic correlation between BFT and RFT indicate that indirect genetic response can be obtained by selecting for only one of them. The WssGBLUP method used to perform GWAS enabled the identification of various novel or already known candidate genes associated with the carcass and meat quality traits in the Montana Tropical® Composite population, but the traits studied have a polygenic nature. Some of the genes identified were previously associated with traits such as growth, carcass, body condition score, skeletal muscle growth, carcass fatness, and meat fatty acid composition. The main biological processes and pathways identified were “muscle tissue morphogenesis” and “regulation of fatty acid biosynthetic”, which biologically validate the ultrasound-based measurements. Further studies using larger datasets (ideally in independent populations) and denser SNP panels (>30 K) should be performed in order to validate the results reported in this study.



Data Availability Statement

The data supporting the results of this article are included within the article/Supplementary Material. The raw data cannot be made publicly available, as it is property of the Montana Tropical Composite breeders and this information is commercially sensitive. Reasonable requests for access to the raw datasets for research purposes can be e-mailed to: jbferraz@usp.br (JF).



Author Contributions

LG, JF, FB, and LB conceived and designed the project. LG, JF, JE, FOB, BS organized sample collection and genotyping. LG performed the analyses. LG, LB, and HO wrote the manuscript. All authors reviewed and approved the final version of the manuscript.



Funding

This study was financially supported by the Sao Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo — FAPESP) through the grants: 2014/07566-2, 2017/11919-6, and 2018/20393-0.



Acknowledgments

The authors acknowledge the Montana Tropical® Composite breeding program for providing the datasets for this study. We also thank the Animal Breeding and Biotechnology Group of the College of Animal Science and Food Engineering (Pirassununga, Sao Paulo, Brazil) for their contribution to the analysis and data collection and storage.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2020.00123/full#supplementary-material



References

 Abramson, C. I., and Kieson, E. (2016). Conditioning methods for animals in agriculture: a review. Ciência Anim. Bras. 17, 359–375. doi: 10.1590/1089-6891v17i341981

 Adzitey, F. (2011). Effect of pre-slaughter animal handling on carcass and meat quality. Int. Food Res. J. 18, 484–490.


 Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J. (2010). Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93, 743–752. doi: 10.3168/jds.2009-2730

 Aguilar, I., Misztal, I., Tsuruta, S., Legarra, A., and Wang, H. (2014). “PREGSF90–POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs,” in Proceedings of the 10th World Congress of Genetics Applied to Livestock Production(Vancouver, Canada). doi:10.1093/bioinformatics/btm108

 Aguilar, I., Legarra, A., Cardoso, F., Masuda, Y., Lourenco, D., and Misztal, I. (2019). Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Gen. Sel. Evol. 51, 28. doi: 10.1186/s12711-019-0469-3

 An, B., Xia, J., Chang, T., Wang, X., Xu, L., Zhang, L., et al. (2019). Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Anim. Gen. 50, 386–390. doi: 10.1111/age.12805

 Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

 Berg, R. T., and Butterfield, R. M. (1976). New concepts of cattle growth (University of Sydney: Sydney University Press). doi: hdl.handle.net/1813/1008

 Berry, D. P., Conroy, S., Pabiou, T., and Cromie, A. R. (2017). Animal breeding strategies can improve meat quality attributes within entire populations. Meat Sci. 132, 6–18. doi: 10.1016/j.meatsci.2017.04.019

 Bressan, M. C., Rodrigues, E. C., Paula, M. D. L. D., Ramos, E. M., Portugal, P. V., Silva, J. S., et al. (2016). Differences in intramuscular fatty acid profiles among Bos indicus and crossbred Bos taurus × Bos indicus bulls finished on pasture or with concentrate feed in Brazil. Ital. J. Anim. Sci. 15, 10–21. doi: 10.1080/1828051X.2016.1139478

 Brethour, J. R. (2004). The relationship of average backfat thickness of feedlot steers to performance and relative efficiency of fat and protein retention. J. Anim. Sci. 82, 3366–3372. doi: 10.2527/2004.82113366x

 Choat, W. T., Krehbiel, C. R., Duff, G. C., Kirksey, R. E., Lauriault, L. M., Rivera, J. D., et al. (2003). Influence of grazing dormant native range or winter wheat pasture on subsequent finishing cattle performance, carcass characteristics, and ruminal metabolism. J. Anim. Sci. 81, 3191–3201. doi: 10.2527/2003.81123191x

 Christensen, O. F., and Lund, M. S. (2010). Genomic prediction when some animals are not genotyped. Gen. Sel. Evol. 42, 2. doi: 10.1186/1297-9686-42-2

 Cinar, M. U., Kayan, A., Uddin, M. J., Jonas, E., Tesfaye, D., Phatsara, C., et al. (2012). Association and expression quantitative trait loci (eQTL) analysis of porcine AMBP, GC and PPP1R3B genes with meat quality traits. Mol. Biol. Rep. 39, 4809–4821. doi: 10.1007/s11033-011-1274-4

 Crouse, J. D., Cundiff, L. V., Koch, R. M., Koohmaraie, M., and Seideman, S. C. (1989). Comparisons of Bos indicus and Bos taurus inheritance for carcass beef characteristics and meat palatability. J. Anim. Sci. 67, 2661–2668. doi: 10.2527/jas1989.67102661x

 Dias, R. A. P., Petrini, J., Ferraz, J. B. S., Eler, J. P., Bueno, R. S., da Costa, A. L. L., et al. (2011). Multicollinearity in genetic effects for weaning weight in a beef cattle composite population. Livest. Sci. 142, 188–194. doi: 10.1016/j.livsci.2011.07.016

 Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., and Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diab. Res. Clin. Pract. 93, 52–59. doi: 10.1016/S0168-8227(11)70014-6

 Edwards, D. B., Bates, R. O., and Osburn, W. N. (2003). Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 81, 1895–1899. doi: 10.2527/2003.8181895x

 Feitosa, F. L. B., Olivieri, B. F., Aboujaoude, C., Pereira, A. S. C., de Lemos, M. V. A., Chiaia, H. L. J., et al. (2017). Genetic correlation estimates between beef fatty acid profile with meat and carcass traits in Nellore cattle finished in feedlot. J. Appl. Gen. 58, 123–132. doi: 10.1007/s13353-016-0360-7

 Feitosa, F. L. B., Pereira, A. S. C., Amorim, S. T., Peripolli, E., de Oliveira Silva, R. M., Braz, C. U., et al. (2019). Comparison between haplotype-based and individual snp-based genomic predictions for beef fatty acid profile in Nelore cattle. J. Anim. Breed. Genet. 1–9. doi: 10.1111/jbg.12463

 Ferraz, J. B. S., and Felício, P. E. (2010). Production systems–An example from Brazil. Meat Sci. 84, 238–243. doi: 10.1016/j.meatsci.2009.06.006

 Ferraz, J. B. S., Eler, J. P., and Golden, B. L. (1999). A formação do composto Montana Tropical. Rev. Bras. Rep. Anim. 23, 115–117.


 Font-i-Furnols, M., and Guerrero, L. (2014). Consumer preference, behavior and perception about meat and meat products: an overview. Meat Sci. 98, 361–371. doi: 10.1016/j.meatsci.2014.06.025

 Fortes, M. R., Reverter, A., Hawken, R. J., Bolormaa, S., and Lehnert, S. A. (2012). Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin-like growth factor 1 in Brahman bulls. Biol. Repr. 87, 58–51. doi: 10.1095/biolreprod.112.101089

 Fortes, M. R. S., Kemper, K., Sasazaki, S., Reverter, A., Pryce, J. E., Barendse, W., et al. (2013). Evidence for pleiotropism and recent selection in the PLAG 1 region in Australian B eef cattle. Anim. Genet. 44, 636–647. doi: 10.1111/age.12075

 Gabín, B., Camerino, O., Castañer, M., and Anguera, M. T. (2012). LINCE: new software to integrate registers and analysis on behavior observation. Proc. Comput. Sci. Technol.

 Gordo, D. G. M., Baldi, F., Lôbo, R. B., Filho, W. K., Sainz, R. D., and Albuquerque, L. G. D. (2012). Genetic association between body composition measured by ultrasound and visual scores in Brazilian Nelore cattle. J. Anim. Sci. 90, 4223–4229. doi: 10.2527/jas.2011-3935

 Gordo, D. G. M., Espigolan, R., Bresolin, T., Fernandes Júnior, G. A., Magalhães, A. F., Braz, C. U., et al. (2018). Genetic analysis of carcass and meat quality traits in Nelore cattle. J. Anim. Sci. 96, 3558–3564. doi: 10.2527/jas2011-3935

 Goszczynski, D. E., Mazzucco, J. P., Ripoli, M. V., Villarreal, E. L., Rogberg-Muñoz, A., Mezzadra, C. A., et al. (2016). Genetic characterization of PPARG, CEBPA and RXRA, and their influence on meat quality traits in cattle. J. Anim. Sci. Tech. 58, 14. doi: 10.1186/s40781-016-0095-3

 Gregory, K. E., Cundiff, L. V., Koch, R. M., and Lunstra, D. D. (1993). Germplasm utilization in beef cattle. Beef Res. Prog. Prog. Rep. 4, 7–19.


 Gregory, K. E., Cundiff, L. V., Koch, R. M., Dikeman, M. E., and Koohmaraie, M. (1994). Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle. J. Anim. Sci. 72, 1174–1183. doi: 10.2527/1994.7251174x

 Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V., and Wheeler, T. L. (2003). Prediction of retail product weight and percentage using ultrasound and carcass measurements in beef cattle. J. Anim. Sci. 81, 1736–1742. doi: 10.2527/2003.8171736x

 Grigoletto, L., Brito, L. F., Mattos, E. C., Eler, J. P., Bussiman, F. O., Silva, B. C. A., et al. (2019). Genome-wide associations and detection of candidate genes for direct and maternal genetic effects influencing growth traits in the Montana Tropical® Composite population. Livest. Sci. 229, 64–76. doi: 10.1016/j.livsci.2019.09.013

 Guerrero, A., Velandia Valero, M., Campo, M. M., and Sañudo, C. (2013). Some factors that affect ruminant meat quality: from the farm to the fork. Review. Acta Scientiarum. Anim. Sci. 35, 335–347. doi: 10.4025/actascianimsci.v35i4.21756

 Hay, E. H., and Roberts, A. (2018). Genome-wide association study for carcass traits in a composite beef cattle breed. Livest. Sci. 213, 35–43. doi: 10.1016/j.livsci.2018.04.018

 Herd, R. M., Arthur, P. F., Bottema, C. D. K., Egarr, A. R., Geesink, G. H., Lines, D. S., et al. (2018). Genetic divergence in residual feed intake affects growth, feed efficiency, carcass and meat quality characteristics of Angus steers in a large commercial feedlot. Anim. Prod. Sci. 58, 164–174. doi: 10.1071/AN13065

 Hoffman, L. C., and Lühl, J. (2012). Causes of cattle bruising during handling and transport in Namibia. Meat Sci. 92, 115–124. doi: 10.1016/j.meatsci.2012.04.021

 Huang, D. W., Sherman, B. T., Zheng, X., Yang, J., Imamichi, T., Stephens, R., et al. (2009). Extracting biological meaning from large gene lists with DAVID. Curr. Prot. Bioinf. 27, 13–11. doi: 10.1002/0471250953.bi1311s27

 Iatan, I., Choi, H. Y., Ruel, I., Reddy, M. P. L., Kil, H., Lee, J., et al. (2014). The WWOX gene modulates high-density lipoprotein and lipid metabolism. Circ. Card. Gen. 7, 491–504. doi: 10.1161/CIRCGENETICS.113.000248

 Karisa, B. K., Thomson, J., Wang, Z., Stothard, P., Moore, S. S., and Plastow, G. S. (2013). Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle. J. Anim. Sci. 91, 3502–3513. doi: 10.2527/jas.2012-6170

 Kas, K., Voz, M. L., Hensen, K., Meyen, E., and Van de Ven, W. J. (1998). Transcriptional activation capacity of the novel PLAG family of zinc finger proteins. J. Biol. Chem. 273, 23026–23032. doi: 10.1074/jbc.273.36.23026

 Kayan, A. (2011). “Identification of positional and functional candidate genes for meat and carcass quality in F2 Duroc x Pietrain resource population. [dissertation/master's thesis],” (Germany: University of Bonn).


 Khan, M. I., Jo, C., and Tariq, M. R. (2015). Meat flavor precursors and factors influencing flavor precursors—a systematic review. Meat Sci. 110, 278–284. doi: 10.1016/j.meatsci.2015.08.002

 Lee, S., Min-Wook, H., So-Young, C., and Kim, J. (2018). Genome-wide association analysis to identify QTL for carcass traits in Korean native cattle. J. Anim. Sci. 96, 516–516. doi: 10.1093/jas/sky404.1130

 Legarra, A., Aguilar, I., and Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92, 4656–4663. doi: 10.3168/jds.2009-2061

 Legarra, A., Christensen, O. F., Aguilar, I., and Misztal, I. (2014). Single Step, a general approach for genomic selection. Livest. Sci. 166, 54–65. doi: 10.1016/j.livsci.2014.04.029

 Lemos, M. V., Chiaia, H. L. J., Berton, M. P., Feitosa, F. L., Aboujaoud, C., Camargo, G. M., et al. (2016). Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Gen. 17, 213. doi: 10.1186/s12864-016-2511-y

 Lindholm-Perry, A. K., Sexten, A. K., Kuehn, L. A., Smith, T. P., King, D. A., Shackelford, S. D., et al. (2011). Association, effects and validation of polymorphisms within the NCAPG-LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Gen. 12, 103. doi: 10.1186/1471-2156-12-103

 Littlejohn, M., Grala, T., Sanders, K., Walker, C., Waghorn, G., Macdonald, K., et al. (2012). Genetic variation in PLAG1 associates with early life body weight and peripubertal weight and growth in Bos taurus. Anim. Genet. 43, 591–594. doi: 10.1111/j.1365-2052.2011.02293.x

 Liu, Y., Liu, X. L., He, H., and Gu, Y. L. (2012). Four SNPs of insulin-induced gene 1 associated with growth and carcass traits in Qinchuan cattle in China. Genet. Mol. Res. 11, 1209–1216. doi: 10.4238/2012.May.8.3

 Liu, X., Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., et al. (2012). Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle. Genet. Mol. Res. 11, 2569–2577. doi: 10.4238/2012.June.29.1

 Ma, M., Wang, X., Chen, X., Cai, R., Chen, F., Dong, W., et al. (2017). MicroRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/mTOR signaling pathway. RNA Biol. 14, 347–360. doi: 10.1080/15476286.2017.1279786

 Magalhães, A. F., de Camargo, G. M., Junior, G. A. F., Gordo, D. G., Tonussi, R. L., Costa, R. B., et al. (2016). Genome-wide association study of meat quality traits in Nellore cattle. PLoS One 11, e0157845. doi: 10.1371/journal.pone.0157845

 Magee, D. A., Sikora, K. M., Berkowicz, E. W., Berry, D. P., Howard, D. J., Mullen, M. P., et al. (2010). DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle. BMC Gen. 11, 93. doi: 10.1186/1471-2156-11-93

 Mecchi, E. P., Pippen, E. L., and Lineweaver, H. (1964). Origin of hydrogen sulfide in heated chicken muscle. J. Food Sci. 29, 393–399. doi: 10.1111/j.1365-2621.1964.tb01750.x

 Meirelles, S. L., Alencar, M. M. D., Oliveira, H. N. D., and Regitano, L. C. D. A. (2010). Efeitos de ambiente e estimativas de parâmetros genéticos para características de carcaça em bovinos da raça Canchim criados em pastagem. Rev. Bras. Zoot. 39, 1437–1442. doi: 10.1590/S1516-35982010000700006

 Minor, L. J., Pearson, A. M., Dawson, L. E., and Schweigert, B. S. (1965). Chicken flavor: the identification of some chemical components and the importance of sulfur compounds in the cooked volatile fraction. J. Food Sci. 30, 686–696. doi: 10.1111/j.1365-2621.1965.tb01825.x

 Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., and Lee, D. H. (2002). “BLUPF90 and related programs (BGF90),” in Proceedings of the 7th world congress on genetics applied to livestock production, (Montpellier, France) vol. 33. 743–744.


 Misztal, I., Legarra, A., and Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92, 4648–4655. doi: 10.3168/jds.2009-2064

 Misztal, I., Aguilar, I., Legarra, A., and Lawlor, T. J. (2010). "Choice of parameters for single-step genomic evaluation for type", in Proceedings of the 61st annual meeting of the European association for animal production, (Heraklion), 23–27.


 Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., and Vitezica, Z. (2014). Manual for BLUPF90 family of programs (Athens: University of Georgia).


 Mottram, D. S. (1998). Flavour formation in meat and meat products: a review. Food Chem. 62, 415–424. doi: 10.1016/S0308-8146(98)00076-4

 Mourão, G. B., Ferraz, J. B. S., Eler, J. P., Balieiro, J. C. D. C., Bueno, R. S., Mattos, E. C., et al. (2007). Genetic parameters for growth traits of a Brazilian Bos taurus x Bos indicus beef composite. Genet. Mol. Res. 6, 1190–1200.


 Mullen, A. M., Stapleton, P. C., Corcoran, D., Hamill, R. M., and White, A. (2006). Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci. 74, 3–16. doi: 10.1016/j.meatsci.2006.04.015

 Munro, S., Cuthbertson, D. J., Cunningham, J., Sales, M., and Cohen, P. T. (2002). Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit GL of liver. Diabetes 51, 591–598. doi: 10.2337/diabetes.51.3.591

 Muoio, D. M., Way, J. M., Tanner, C. J., Winegar, D. A., Kliewer, S. A., Houmard, J. A., et al. (2002). Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 51, 901–909. doi: 10.2337/diabetes.51.4.901

 Muramatsu, Y. (2018). Multiple marker effects of single nucleotide polymorphisms in two genes, NCAPG and PLAG1, for Carcass weight in Japanese black cattle. Open J. Anim. Sci. 9, 129–134. doi: 10.4236/ojas.2019.91011

 Njisane, Y. Z., and Muchenje, V. (2017). Farm to abattoir conditions, animal factors and their subsequent effects on cattle behavioural responses and beef quality—A review. Asian-Austr. J. @ Anim. Sci. 30, 755. doi: 10.5713/ajas.16.0037

 Paredes-Sánchez, F. A., Sifuentes-Rincón, A. M., Cabrera, A. S., Pérez, C. A. G., Bracamonte, G. M. P., and Morales, P. A. (2015). Associations of SNPs located at candidate genes to bovine growth traits, prioritized with an interaction networks construction approach. BMC Gen. 16, 91. doi: 10.1186/s12863-015-0247-3

 Pathak, V., Singh, V. P., and Sanjav, Y. (2011). Ultrasound as a modern tool for carcass evaluation and meat processing: a review. Int. J. Meat Sci. 1, 83–92. doi: 10.3923/ijmeat.2011.83.92

 Pepper, F. H., and Pearson, A. M. (1969). Changes in hydrogen sulfide and sulfhydryl content of heated beef adipose tissue. J. Food Sci. 34, 10–12. doi: 10.1111/j.1365-2621.1969.tb14351.x

 Petrini, J., Dias, R. A. P., Pertile, S. F. N., Eler, J. P., Ferraz, J. B. S., and Mourão, G. B. (2012). Degree of multicollinearity and variables involved in linear dependence in additive-dominant models. Pesq. Agrop. Bras. 47, 1743–1750. doi: 10.1590/S0100-204X2012001200010

 Piccoli, M. L., Brito, L. F., Braccini, J., Oliveira, H. R., Cardoso, F. F., Roso, V. M., et al. (2020). Comparison of genomic prediction methods for evaluation of adaptation and productive efficiency traits in Braford and Hereford cattle. Livestock Sci. 231, 103864. doi: 10.1016/j.livsci.2019.103864

 Pippen, E. L., Mecchi, E. P., and Nonaka, M. (1969). Origin and nature of aroma in fat of cooked poultry. J. Food Sci. 34, 436–442. doi: 10.1111/j.1365-2621.1969.tb12799.x

 Porto-Neto, L. R., Bunch, R. J., Harrison, B. E., and Barendse, W. (2012). Variation in the XKR4 gene was significantly associated with subcutaneous rump fat thickness in indicine and composite cattle. Anim. Gen. 43, 785–789. doi: 10.1111/j.1365-2052.2012.02330.x

 Ramayo-Caldas, Y., Fortes, M. R. S., Hudson, N. J., Porto-Neto, L. R., Bolormaa, S., Barendse, W., et al. (2014). A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. J. Anim. Sci. 92, 2832–2845. doi: 10.2527/jas.2013-7484

 Reverter, A., Johnston, D. J., Graser, H. U., Wolcott, M. L., and Upton, W. H. (2000). Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle. J. Anim. Sci. 78, 1786–1795. doi: 10.2527/2000.7871786x

 Rincon, G., Islas-Trejo, A., Castillo, A. R., Bauman, D. E., German, B. J., and Medrano, J. F. (2012). Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J. Dairy Res. 79, 66–75. doi: 10.1017/S002202991100080X

 Rodrigues, R. T. S., Chizzotti, M. L., Vital, C. E., Baracat-Pereira, M. C., Barros, E., Busato, K. C., et al. (2017). Differences in beef quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) cattle through a proteomic and phosphoproteomic approach. PLoS One 12, e0170294. doi: 10.1371/journal.pone.0170294

 Santana, M. L., Eler, J. P., Cardoso, F. F., Albuquerque, L. G. D., Bignardi, A. B., and Ferraz, J. B. S. (2012). Genotype by environment interaction for birth and weaning weights of composite beef cattle in different regions of Brazil. Livest. Sci. 149, 242–249. doi: 10.1016/j.livsci.2012.07.017

 Santana, M. L., Eler, J. P., Cardoso, F. F., Albuquerque, L. G. D., and Ferraz, J. B. S. (2013). Phenotypic plasticity of composite beef cattle performance using reaction norms model with unknown covariate. Animal 7, 202–210. doi: 10.1017/S1751731112001711

 Scholz, A. M., Bünger, L., Kongsro, J., Baulain, U., and Mitchell, A. D. (2015). Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review. Animal 9, 1250–1264. doi: 10.1017/S1751731115000336

 Shingu, H., Hodate, K., Kushibiki, S., Ueda, Y., Watanabe, A., Shinoda, M., et al. (2001). Profiles of growth hormone and insulin secretion, and glucose response to insulin in growing Japanese Black heifers (beef type): comparison with Holstein heifers (dairy type). Comp. Biochem. Phys. 130, 259–270. doi: 10.1016/S1532-0456(01)00249-6

 Silva, R. M. O., Stafuzza, N. B., de Oliveira Fragomeni, B., de Camargo, G. M. F., Ceacero, T. M., Cyrillo, J. N. D. S. G., et al. (2017). Genome-wide association study for carcass traits in an experimental Nelore cattle population. PLoS One 12, e0169860. doi: 10.1371/journal.pone.0169860

 Silva, R. P., Berton, M. P., Grigoletto, L., Carvalho, F. E., Silva, R. M., Peripolli, E., et al. (2019). Genomic regions and enrichment analyses associated with carcass composition indicator traits in Nellore cattle. J. Anim. Breed. Genet. 136, 118–133. doi: 10.1111/jbg.12373

 Silva-Vignato, B., Coutinho, L. L., Poleti, M. D., Cesar, A. S., Moncau, C. T., Regitano, L. C., et al. (2019). Gene co-expression networks associated with carcass traits reveal new pathways for muscle and fat deposition in Nelore cattle. BMC Gen. 20, 32. doi: 10.1186/s12864-018-5345-y

 Tonussi, R. L., Espigolan, R., Gordo, D. G. M., Magalhães, A. F. B., Venturini, G. C., Baldi, F., et al. (2015). Genetic association of growth traits with carcass and meat traits in Nellore cattle. Genet. Mol. Res. 14, 18713–18719. doi: 10.4238/2015

 Tsuruta, S., Misztal, I., Aguilar, I., and Lawlor, T. J. (2011). Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. J. Dairy Sci. 94, 4198–4204. doi: 10.3168/jds.2011-4256

 USDA. (2019). USDA Agricultural Projections to 2028. U.S. Department of Agriculture, Office of the Chief Economist, World Agricultural Outlook Board. Prepared by the InteragencyAgricultural Projections Committee. Long-term Projections Report OCE-2019-1, 108.


 Utsunomiya, Y. T., Milanesi, M., Utsunomiya, A. T. H., Torrecilha, R. B. P., Kim, E. S., Garcia, J. F., et al. (2017). A PLAG1 mutation contributed to stature recovery in modern cattle. Sci. Rep. 7, 17140. doi: 10.1038/s41598-017-17127-1

 Van Dyck, F., Braem, C. V., Chen, Z., Declercq, J., Deckers, R., Kim, B. M., et al. (2007). Loss of the PlagL2 transcription factor affects lacteal uptake of chylomicrons. Cell Met. 6, 406–413. doi: 10.1016/j.cmet.2007.09.010

 VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

 Vitezica, Z. G., Aguilar, I., Misztal, I., and Legarra, A. (2011). Bias in genomic predictions for populations under selection. Genet. Res. 93, 357–366. doi: 10.1017/S001667231100022X

 Wang, H., Misztal, I., Aguilar, I., Legarra, A., and Muir, W. M. (2012). Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. (Camb) 94, 73–83. doi: 10.1017/S0016672312000274

 Wang, H., Misztal, I., Aguilar, I., Legarra, A., Fernando, R. L., Vitezica, Z., et al. (2014). Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front. Gen. 5, 134. doi: 10.3389/fgene.2014.00134

 Weng, Z., Su, H., Saatchi, M., Lee, J., Thomas, M. G., Dunkelberger, J. R., et al. (2016). Genome-wide association study of growth and body composition traits in Brangus beef cattle. Livest. Sci. 183, 4–11. doi: 10.1016/j.livsci.2015.11.011

 Werkhoff, P., Bruening, J., Emberger, R., Guentert, M., Koepsel, M., Kuhn, W., et al. (1990). Isolation and characterization of volatile sulfur-containing meat flavor components in model systems. J. Agric. Food Chem. 38, 777–791. doi: 10.1021/jf00093a041

 Wiggans, G. R., Sonstegard, T. S., VanRaden, P. M., Matukumalli, L. K., Schnabel, R. D., Taylor, J. F., et al. (2009). Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. J. Dairy Sci. 92, 3431–3436. doi: 10.3168/jds.2008-1758

 Yang, F. L., Anschutz, K. S., Ball, J. J., Hornsby, P., Reynolds, J. L., and Pohlman, F. W. (2019). Evaluating the relationship of animal temperament to carcass characteristics and meat quality. Meat Mus. Biol. 3, 70–75. doi: 10.22175/mmb2018.08.0022

 Yokoo, M. J., Lobo, R. B., Araujo, F. R. C., Bezerra, L. A. F., Sainz, R. D., and Albuquerque, L. G. D. (2010). Genetic associations between carcass traits measured by real-time ultrasound and scrotal circumference and growth traits in Nelore cattle. J. Anim. Sci. 88, 52–58. doi: 10.2527/jas.2008-1028

 Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., et al. (2017). Ensembl 2018. Nucleic Acids Res. 46, 754–761. doi: 10.1093/nar/gkx1098

 Zhang, X., Lourenco, D., Aguilar, I., Legarra, A., and Misztal, I. (2016). Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Front. Genet. 7, 151. doi: 10.3389/fgene.2016.00151

 Zhang, R., Miao, J., Song, Y., Zhang, W., Xu, L., Chen, Y., et al. (2019). Genome-wide association study identifies the PLAG1-OXR1 region on BTA14 for carcass meat yield in cattle. Phys. Gen. 51, 137–144. doi: 10.1152/physiolgenomics.00112.2018

 Zhao, F., McParland, S., Kearney, F., Du, L., and Berry, D. P. (2015). Detection of selection signatures in dairy and beef cattle using high-density genomic information. Gen. Sel. Evol. 47, 49. doi: 10.1186/s12711-015-0127-3

 Zhao, L., Huang, Y., and Du, M. (2019). Farm animals for studying muscle development and metabolism: dual purposes for animal production and human health. Anim. Front. 9, 21–27. doi: 10.1093/af/vfz015

 Zhi-Liang, H., Park, C. A., and Reecy, J. M. (2019). Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 47, 701–710. doi: 10.1093/nar/gky1084



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer AM declared a shared affiliation, with no collaboration, with one of the authors, FB, to the handling editor at time of review.

Copyright © 2020 Grigoletto, Ferraz, Oliveira, Eler, Bussiman, Abreu Silva, Baldi and Brito. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 28 February 2020

doi: 10.3389/fgene.2020.00135

[image: image2]


Pituitary-Derived Circular RNAs Expression and Regulatory Network Prediction During the Onset of Puberty in Landrace × Yorkshire Crossbred Pigs


Zitao Chen, Xiangchun Pan, Yaru Kong, Yao Jiang, Yuyi Zhong, Hao Zhang, Zhe Zhang, Xiaolong Yuan * and Jiaqi Li *


National Engineering Research Centre for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China




Edited by: 
Shu-Hong Zhao, Huazhong Agricultural University, China

Reviewed by: 
Tang Zhonglin, Chinese Academy of Agricultural Sciences, China

Xiaodong Zhang, Anhui Agricultural University, China

*Correspondence: 
Xiaolong Yuan
 yxl@scau.edu.cn 
Jiaqi Li
 jqli@scau.edu.cn

Specialty section: 
 This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics


Received: 29 October 2019

Accepted: 04 February 2020

Published: 28 February 2020

Citation:
Chen Z, Pan X, Kong Y, Jiang Y, Zhong Y, Zhang H, Zhang Z, Yuan X and Li J (2020) Pituitary-Derived Circular RNAs Expression and Regulatory Network Prediction During the Onset of Puberty in Landrace × Yorkshire Crossbred Pigs. Front. Genet. 11:135. doi: 10.3389/fgene.2020.00135



Being the center of the hypothalamus-pituitary-ovary (HPO) axis, the pituitary plays a key role in the onset of puberty. Recent studies show that circular RNAs (circRNAs) can perform as miRNA sponges to regulate development in animals. However, the function of pituitary-derived circRNAs in first estrus remains unclear in pigs. In this study, we performed a genome-wide identification and characterization of circRNAs using pituitaries from Landrace × Yorkshire crossbred pigs at three stages: pre-, in-, and post-puberty, to describe such pituitary-derived circRNAs in pigs. A total of 5148 circRNAs were found in the gilts' pituitaries, averaging 18 682 bp in genomic distance, which consisted of approximately 91% exonic, 6% intergenic, and 3% intronic circRNAs. Furthermore, 158 novel circRNAs were identified for the first time and classified as putative pituitary-specific circRNAs. Their expression levels during the onset of puberty, significantly exceeded those of the other circRNAs, and the parental genes of these putative pituitary-specific circRNAs were enriched in “ssc04917: prolactin signaling pathway,” “ssc04080: neuroactive ligand-receptor interaction,” and “ssc04728: dopaminergic synapse” pathways, all of which were consistent with pituitary functioning. Additionally, 17 differentially regulated circRNAs were found and investigated for their potential interaction with miRNAs, along with genes, by constructing a circRNA-targeted miRNA-gene network. Taken together, these results provide new insight into the circRNA-mediated timing of puberty in gilts at the pituitary level.
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Introduction

Puberty can usually be defined as the first estrus of gilts, and the initiation of puberty implies the acquired capacity for sexual reproduction in pigs (Nonneman et al., 2016). An early onset of puberty can shorten the generation interval of livestock, and further accelerate the genetic breeding process (Rosales Nieto et al., 2014; Luo et al., 2017). Yet, surprisingly little is known about the molecular regulation of puberty's timing in pigs. Previous research has uncovered endocrinological differences across pubertal onset mainly driven by the hypothalamus-pituitary-ovary (HPO) axis (Angold et al., 1999; Blakemore et al., 2010). As the center bridging the hypothalamus and ovary in the HPO axis, the pituitary is an extremely important mediator for controlling the synthesis of hormones. During estrous cycling, an increase in the pulsatile release of gonadotropin-releasing hormone (GnRH) from the hypothalamus elicits an increased release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary (Root, 1980; Coe et al., 1981). Additionally, gonadotropin hormones released from the pituitary have been shown to be directly related to animals' reproductive associated traits (Barb et al., 2012).

Circular RNAs (circRNAs) are a novel type of circular RNA molecules lacking 5′–3′ polarities and polyadenylated tails (Chen and Yang, 2015), making them more structurally stable than linear RNAs (Qu et al., 2015). Most circRNAs consist of multiple exons, as well as introns of protein-coding genes, and are conserved among different animal species (Szabo and Salzman, 2016). With the advances made in next-generation sequencing technology, much research on circRNAs has been carried out using high-throughput RNA sequencing (RNA-seq). In pigs, recent work has demonstrated circRNAs' involvement in various organismal processes. For example, through a comprehensive analysis of porcine cardiac and skeletal muscles, Chen et al. (2018) showed that circRNAs contribute to differences in aging. Moreover, circRNAs were defined as a new biomarker in metabolism-related diseases based on a study of circRNAs occurring in the subcutaneous adipose tissues of two pig breeds (Li et al., 2018). For their role in estrus, Li et al. (2018) investigated the expression of circRNAs in the sheep pituitary, finding that circRNAs there participated in the regulation of estrus. By contrast, no puberty- or even estrus-associated study has yet been performed that has tried to identify circRNAs in pigs.

Generally, since gilts have an earlier age at first estrus, they may have a longer productive life, thus farrowing multiple litters and giving birth to more piglets (Patterson et al., 2010; Saito et al., 2011). To reveal the relationships between circRNAs and puberty in the pituitary, here we conducted RNA-seq analyses using pituitaries from Landrace × Yorkshire crossbred pigs at three stages: pre-, in-, and post-puberty, to identify circRNAs and then assemble a circRNA-targeted miRNA-gene network. To our best knowledge, this study is the first to investigate the potential regulatory roles of circRNAs during the onset of puberty in gilts, and so it should provide new insight into this key developmental process at the molecular level.



Materials and Methods


Ethics Statement

Animal care and experiments were conducted following the Regulations for the Administration of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China; revised in June 2004) and were approved by the Animal Care and Use Committee of the South China Agricultural University, Guangzhou, China (permit number: SCAU#2013-10).



Preparation of Animals and Samples

Three stages during the onset of puberty were used: pre-, in-, and post-puberty. The onset of puberty was identified by the standing reflex with the back-pressure test and boar contact (Patterson et al., 2002). A total of nine Landrace × Yorkshire crossbred gilts were used: three gilts of 160 days in age without any pubertal signs were selected as pre-puberty gilts (weight = 81.38 ± 2.40 kg); three gilts exhibiting first pubertal signs served as the in-pubertal gilts (weight = 110.00 ± 2.00 kg); three gilts 14 days beyond the pubertal phase were designated as the post-pubertal gilts (weight = 122.82 ± 9.11 kg). After euthanizing the gilts, their brains were removed immediately and excess tissues were removed. The anterior pituitaries were carefully dissected and frozen immediately in liquid nitrogen, then stored at –80°C until further use.



RNA Sequencing and Quality Control, and the Transcriptome Assembly

Pre-, in-, and post-pubertal gilts' pituitaries were homogenized separately in liquid nitrogen. The total RNAs were extracted from porcine pituitaries with the Trizol agent (Invitrogen, Carlsbad, CA, USA), followed by quality testing of the total RNAs using the Agilent Bioanalyzer 2100 system (Agilent, Palo Alto, CA, USA). Only those RNA samples with RNA Integrity Number value > 7.0 were deemed eligible. Then, the rRNA from the eligible total RNAs was removed using an Epicentre Ribo-zero rRNA removal kit (Epicentre, Madison, WI, USA). The rRNA-depleted RNAs were used to synthesize double-stranded cDNA via the mRNA-Seq Sample Preparation Kit (Illumina, SanDiego, CA, USA), for which a total of 5 μg cDNA per sample was sequenced using a HiSeq 2500 Sequencer according to the manufacturer's instructions, and 150 bp paired-end reads were generated. These raw reads were processed by 3′ adaptor-trimming and removal of low-quality reads—having > 10% unknown bases or > 50% low-mass bases—using Cutadapt software (Martin, 2011). The reads remaining after quality control were defined as the clean reads for further analysis. These acquired clean reads were then mapped onto pig reference genome Sus scrofa11.1, using BWA software (Li and Durbin, 2010).



CircRNA identification

CIRI software (Gao et al., 2015) was applied to obtain the back-spliced junction (BSJ) reads for circRNA prediction based on the annotation file downloaded from the Ensembl genome browser (ftp://ftp.ensembl.org/pub/release-94/gtf/sus_scrofa). Then the number of circRNAs' exons and the length of circRNAs were detected by CIRI-AS module in CIRI software. The expression levels of circRNAs were quantified as the number of reads spanning the BSJ reads in terms of RPM (i.e., mapped BSJ reads per million mapped reads), by using the EBSeq package (Leng et al., 2013). The differential expression of circRNAs was determined according to these criteria: false discovery rate (FDR) < 0.05, log2|fold_change| ≥ 1, and circRNA junction reads ≥ 5. Further graphical representations of results were performed in the R platform (R Foundation for Statistical Computing, 2018). Stage-specific circRNAs were defined here as those circRNAs only expressed in one pubertal stage. Known circRNAs of pig were downloaded from the circAtlas 2.0 datasets (Ji et al., 2019), an integrated resource of circRNAs in vertebrates (http://circatlas.biols.ac.cn/). In the circAtlas 2.0 database are tens of thousands of known circRNAs identified from nine porcine tissue types: brain, heart, kidney, liver, lung, skeletal muscle, spleen, testis, and retina. The circRNAs identified in the current study were matched with the database via both starting and ending genomic positions of circRNAs, and the novel circRNAs were regarded as the putative tissue-specific circRNAs. Significant differences between any two pubertal pig groups were tested with the Welch two-sample t-test.



Functional Enrichment Analysis

The circRNAs–miRNAs interactions were predicted with miRanda software (John et al., 2004). These were filtered for predictions with a maximum binding-free energy of less than –20 kcal/mol and a miRanda match score ≥ 150. Next, targeted mRNAs of each selected miRNA were predicted by Targetscan software (Witkos et al., 2011). The competing endogenous RNAs networks among the circRNAs, miRNAs, and mRNAs were built and visualized with Cytoscape software (Su et al., 2014). Functional enrichment analysis was performed using the DAVID bioinformatics resource (Huang et al., 2007). Finally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms with Benjamini-Hochberg method-adjusted P < 0.05 were identified.



qRT-PCR Analysis

Quantitative real-time reverse transcription-PCR (qRT-PCR) was carried out using the PrimeScript RT Reagent Kit (TaKaRa, Osaka, Japan) in a Mx3005P real-time PCR System (Stratagene, La Jolla, CA, USA) with SYBR Green, according to the manufacturer's protocol. Divergent primers of 5 circRNAs were designed to further test the accuracy of the RNA-seq, namely Circ 1:14408861|14457143, Circ 9:28120503|28122017, Circ 2:88184110|88206327, Circ 9:75284452|75290025, and Circ 15:74631515|74643464. GAPDH served as an internal reference to normalize the expression of circRNAs (Table S1). The PCR conditions were 94 °C denaturation for 5 min, 40 cycles at 94 °C for 10 s, 52 to 62 °C for 15 s, and 72 °C for 30 s. The 2-∆∆Ct method was used to analyze the qRT-PCR results. The Student's t test was used to assess differences in means of any two pubertal pig groups, for which a P < 0.05 was considered statistically significant.




Results


Identification of Pituitary-Derived circRNAs During the Onset of Puberty

A total of 5148 circRNAs were detected in all three pubertal stages: 2779, 4062, and 3167 circRNAs respectively in the pre-, in-, and post-puberty stages of pigs (Figure 1A). The average expression level of circRNAs were dynamically changing during the onset of puberty (Figure 1B). Sus scrofa chromosome (SSC) 1 harbored the most circRNAs, while the SSC10 had the highest density of circRNAs (Figure 1C). The average genomic distance of all circRNAs found was 18 682 bp, with 92% of the circRNAs shorter than 50 000 bp, and the number of circRNAs decreased as their size lengthened (Figure 1C). The most circRNAs were made up of two exons, and the length of most circRNAs was about 200 to 300 bp (Figure 1D). After annotation with the pig genome, the found circRNAs consisted of approximately 91% exonic, 6% intergenic, and 3% intronic circRNAs, respectively (Figure 1E).




Figure 1 | Identification of pituitary-derived circRNAs during the onset of puberty in pigs. (A) The Venn diagram of circRNAs detected in pre-, in-, and postpuberty; (B) Distribution and genomic distance of the circRNAs; (C) Proportion of circRNAs that originated from the exon, intergenic, and intronic regions; (D) The exon number of the circRNAs; (E) Distribution and transcript length of the circRNAs.





Putative Stage-Specific circRNAs in Gilts During the Onset of Puberty

A total of 389, 1165, and 545 circRNAs were identified as putative stage-specific circRNAs from the pre-, in-, and post-puberty groups, respectively (Figure 1A), and their pair-wise comparisons did not reveal any significant difference in bp length (t-test, P > 0.05). Further, the expression levels of pre-puberty specific circRNAs significantly exceeded those of post-puberty specific circRNAs (t-test, P < 2.20E−16), with the latter being significantly higher than the expression levels of in-puberty specific circRNAs (t-test, P < 2.20E−16) (Figure 2A). The KEGG pathways enriched using the parental genes of stage-specific circRNAs are listed in Table S2, of which the top five are shown in Figure 2B–D.




Figure 2 | Analysis of potential stage-specific circRNAs in pigs. (A) Boxplots of pre-, in-, and post-puberty stage-specific circRNAs' expression levels; the top 5 KEGG pathways enriched using parental genes of pre- (B), in-, (C) and post-puberty (D) stage-specific circRNAs. *** P < 0.001.





Putative Tissue-Specific circRNAs in Gilts' Pituitary

To explore the specific circRNAs in pituitary tissue, 4990 circRNAs were identified as known circRNAs that overlapped with those in circAtlas 2.0, while another 158 circRNAs were identified as being specifically expressed in pituitary tissue. Furthermore, the latter, hereon the “putative pituitary-specific circRNAs,” were significantly shorter than the known circRNAs (t-test, P = 7.86E-06) (Figure 3A) and these novel circRNAs had significantly higher expression levels than did the known circRNAs during the onset of puberty (t-test, P < 2.20E−16) (Figure 3B). The KEGG enrichment analysis of parental genes of these putative pituitary-specific circRNAs were enriched in “ssc04917: Prolactin signaling pathway,” “ssc04080: Neuroactive ligand-receptor interaction,” and “ssc04728: Dopaminergic synapse” pathways (Figure 3C).




Figure 3 | Analysis of potential tissue-specific circRNAs in pigs. (A) Boxplots of potential pituitary-specific and known circRNAs' length; (B) Boxplots of potential pituitary-specific and known circRNAs' expression level; (C) The KEGG pathways enriched using parental genes of potential pituitary-specific circRNAs. *** P < 0.001.





Analysis of Differentially Expressed circRNAs

A total of 14 differentially upregulated circRNAs and three differentially downregulated circRNAs were identified (Table 1). Some of them were derived from different transcripts of the same genes, such as ESR1 and RALGPS1. All differentially regulated circRNAs in the pre- vs. in-puberty groups were both derived from ESR1 (Table 1). Interestingly, one of them, circRNA “Circ 1:14408861|14457143,” was identified here for the first time. Furthermore, the circRNA “Circ 7:121001608|121012600” was downregulated in the in- vs. post-puberty groups yet upregulated in the pre- vs. post-puberty groups.


Table 1 | The differentially regulated circRNAs in this study of gilts in three pubertal groups.





Validation of circRNAs by qRT-PCR

To validate the accuracy of RNA-seq data, a total of five circRNAs, including four differentially expressed circRNAs—Circ 1:14408861|14457143 (Figure 4A), Circ 9:28120503|28122017 (Figure 4B), Circ 2:88184110|88206327 (Figure 4C), Circ 9:75284452|75290025 (Figure 4D)—and one randomly selected circRNA: Circ 15:74631515|74643464 (Figure 4E) were chosen and validated via qRT-PCR.




Figure 4 | Validation of circRNAs using qRT-PCR. The qRT-PCR results of (A) Circ 1:14408861|14457143, (B) Circ 9:28120503|28122017, (C) Circ 2:88184110|88206327, (D) Circ 9:75284452|75290025, and (E) Circ 15:74631515|74643464 are shown. The green, red, and blue columns represent the pre-, in-, and post-puberty pig groups, respectively. * P < 0.05.



When compared with the RNA-seq data, similar expression trends for the qRT-PCR results of all selected circRNAs were discovered, thus showing that the obtained qRT-PCR results of these above circRNAs were consistent with the RNA-seq data (Figure S1).



CircRNA-Targeted miRNA-Gene Network Prediction

To further explore the putative functions of differentially expressed circRNAs, these circRNAs were conducted to predict the binging sites with miRNA targets (Figure 5). The top five plausible miRNA targets were chosen according to their respective miRanda match score and are listed in Table 1. According to this study, we found that many of differentially expressed circRNAs interact with miRNAs that potentially regulate estrus of pigs. These predicted circRNA-targeted miRNA-gene networks will be the focus of further research.




Figure 5 | The circRNA-targeted miRNA-gene network prediction results of differentially regulated circRNAs. The network prediction results of differentially regulated circRNAs in (A) the pre- vs. in-puberty group, (B) the in- vs. post-puberty group, and (C) the pre- vs. post-puberty group.






Discussion

As a key physiological process of sexual maturation, the timing of puberty's onset provides a great opportunity for improving the efficiency of gilts' reproduction. In this study, we identified the genome-wide landscape of circRNAs in three important pubertal stages: pre-, in-, and post-puberty. The results showed that the number of circRNAs were dramatically altered among these three stages; the most circRNAs detected from in-puberty pigs, followed by those at post-puberty, with the least number occurring in the stage of pre-puberty. Many genome-wide analyses of circRNAs in mammals have been widely conducted using RNA-seq; these collectively indicate the number of circRNAs can differ between species, as well among different tissues or ontogeny stages. Of the 5148 circRNAs identified in our study, 158 circRNAs were distinguishable as putative pituitary-specific circRNAs that are involved in the prolactin signaling pathway, the neuroactive ligand-receptor interaction, and the dopaminergic synapse. Prolactin secreted by the pituitary was related to the regulation of reproductive function, the immune system, osmotic balance, and angiogenesis (Freeman et al., 2000). The secretion of prolactin is regulated by endocrine neurons between the hypothalamus and pituitary, and its regulation mainly depends on the secretion of dopamine (Bole-Feysot et al., 1998). For the distribution of circRNAs in the genomic regions, previous studies have shown extremely differences between different species and tissues. In pigs, Liang et al. (2017) found that 21.93% of circRNAs in intergenic regions and 68.40% in exon regions through carrying out nine organs. Yan et al. (2018) demonstrated that the found circRNAs consisted of approximately 74.31% exonic, 20.36% intergenic, and 5.33% intronic circRNAs in spleen, and Huang et al. (2018) demonstrated that more than 86% of circRNAs consisted of exons while nearly 10% originated from intronic and intergenic regions in liver. In rats, Yang et al. (2019) found that the circRNAs consisted of approximately 80.18% exonic, 0.15% intergenic, and 19.67% intronic circRNAs in pulmonary. These observations strongly support the view that circRNAs' expression occurs in a specie-specific, tissue-specific, and developmental stage-specific manner.

Importantly, we identified 17 circRNAs that were differentially expressed in the gilts, for which we speculated that some parental genes of differentially regulated circRNAs could influence the fertility and production traits of female mammals, such as ESR1 (Handa and Weiser, 2014), DENND1A (McAllister et al., 2014), RALGPS1 (Cochran et al., 2013), and MAML2 (Whittington et al., 2018). In addition, after identifying the miRNA targets of each differentially regulated circRNA, we found that some candidate miRNAs targeted by several circRNAs are linked to mammalian development of sex differentiation and maturation. For example, miR-145-5p was found likewise up-regulated after sexual maturity in pigs (Li et al., 2016) and miR-214-3p was shown to be involved in the onset of mouse primordial germ and somatic cell sex differentiation (Fernández-Pérez et al., 2018). Those findings coupled to our results suggest that circRNAs probably regulate the onset of puberty.

Interestingly, one of the differentially regulated circRNAs, circRNA “Circ 1:14408861|14457143,” was reported here in pig for the first time, and the top five miRNA targets of this particular circRNA had a predicted interaction with ESR1. ESR1 encodes an estrogen receptor alpha, a nuclear receptor activated by the sex hormone estrogen (Green et al., 1986). Previous studies confirmed that lacking an active ESR1 caused the disruption of normal pituitary tissue development and function. For instance, female mice lacking the estrogen receptor alpha in the pituitary gonadotroph have elevated levels of serum LH and LH beta-subunit gene expression, indicating that lacking estrogen has a negative feedback effect on the gonadotroph, with LH values and estrous cyclicity also found absent in these mice (Singh et al., 2009). Most circRNAs detected in our study are in the circAtlas 2.0 database, whose circRNAs were identified by at least two tools (CIRI2, DCC, find_circ, or CIRCexplorer2) to avoid false positives. Hence, the predictions made in the present study should be reliable.

Our dataset provides fresh insight into the existence of pituitary-derived circRNAs in pigs, yet this study did have a few limitations. Although the rRNA-depleted total RNA-seq analyses have been used to enrich for circRNAs in previous studies (e.g., Memczak et al., 2013; Tan et al., 2017; Sekar et al., 2018), there is no doubt that these sequencing analyses may not have comprehensively captured all occurring circRNAs. Furthermore, these enrichment steps may produce a few false BSJ reads that originated from linear RNAs, which could possibly lead to false detections of circRNAs. To guard against this, we used CIRI algorithms to identify circRNAs in this study, as they are reportedly effective for preventing the false detections of circRNAs that are caused by false BSJ reads (Gao and Zhao, 2018). Finally, the underlying mechanism of these circRNAs during pigs' pubertal onset still requires carefully elucidation and verification.



Conclusions

This investigation identified and described the circRNAs during the onset of puberty in gilts' pituitaries. In all, 5148 circRNAs were found, of which 158 were putative pituitary-specific expressed circRNAs. Because their expression levels were significantly higher than those of the remaining circRNAs during the onset of puberty, this suggested they are involved in regulating the key function of pituitary tissue. Upon further examination, 17 differentially regulated circRNAs were identified and these circRNAs were chosen to construct the posited circRNA-targeted miRNA-gene network. These results suggest circRNAs likely play a critical role in puberty's timing in gilts and thus provide useful information for future investigations of circRNA-mediated puberty at the pituitary level.
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Table S1 | The KEGG pathways of pre-, in-, and post-puberty stage-specific circRNAs.
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Birth weight of pigs is an important economic factor in the livestock industry. The identification of the genes and variants that underlie birth weight is of great importance. In this study, we integrated two genotyping methods, single nucleotide polymorphism (SNP) chip analysis and restriction site associated DNA sequencing (RAD-seq) to genotype genome-wide SNPs. In total, 45,175 and 139,634 SNPs were detected with the SNP chip and RAD-seq, respectively. The genome-wide association study (GWAS) of the combined SNP panels identified two significant loci located at chr1: 97,745,041 and chr4: 112,031,589, that explained 6.36% and 4.25% of the phenotypic variance respectively. To reduce interval containing causal variants, we imputed sequence-level SNPs in the GWAS identified regions and fine-mapped the causative variants into two narrower genomic intervals: a ∼100 kb interval containing 71 SNPs and a broader ∼870 kb interval with 432 SNPs. This fine-mapping highlighted four promising candidate genes, SKOR2, SMAD2, VAV3, and NTNG1. Additionally, the functional genes, SLC25A24, PRMT6 and STXBP3, are also located near the fine-mapping region. These results suggest that these candidate genes may have contribute substantially to the birth weight of pigs.

Keywords: birth weight, fine mapping, candidate genes, GWAS, pig


INTRODUCTION

The birth weight of pigs is an important economic trait in the livestock industry. It is closely associated with early survival, weaning weight, and growth rate after weaning (Quiniou et al., 2002; Smith et al., 2007). Pigs have been selectively bred to produce larger litters, however, with this increase in litter size, the average birth weight has decreased (Bergstrom et al., 2009; De Almeida et al., 2014). Birth weight reflects the intrauterine growth of piglets which is affected by both the maternal supply of nutrition and genetic factors (Roehe, 1999; Zohdi et al., 2012). Measures of birth weight heritability have ranged from 0.08 to 0.36 (Roehe, 1999; Roehe et al., 2010; Dufrasne et al., 2013), suggesting that it is substantially affected by own (fetal) genetic factors as well as maternal genetic effects. Therefore, it is a worthwhile endeavor to determine which genes or variants underly this variation in birth weight.

A few birth weight related markers have been identified by the study of candidate genes such as MYOG, MSTN and DBH (Te Pas et al., 1999; Jiang et al., 2002; Tomás et al., 2006). With the widespread use of customized single nucleotide polymorphism (SNP) arrays, an increasing number of potential markers have been identified by genome-wide association study (GWAS). Wang X. et al. (2016) found over two hundred SNPs associated with birth weight by using first parity sows whose offspring had extreme birth weights; Zhang et al. (2018) identified 17 genomic regions associated with birth weight; Wang et al. (2017) found 12 SNPs that were significantly associated with piglet uniformity; and 27 differentially selected regions associated with the birth weight of piglets were detected by Zhang et al. (2014). However, a birth weight GWAS of Large white pigs by Wang et al. (2018) was unable to determine any significant loci. The identification of birth weight associated markers remains difficult to reproduce.

With rapid development of next-generation sequencing technology, a number of techniques have been widely adopted for genotyping, including whole genome resequencing and reduced-representation sequencing (RRS) techniques such as genotyping-by-sequencing and restriction site-associated DNA sequencing (RAD-seq) (Baird et al., 2008; Huang et al., 2009; Elshire et al., 2011). Compared to SNP chip analysis, RRS approaches are based on restriction site associated fragments and have great advantages in both the number of SNPs acquired and the ability to identify novel SNPs. Currently, RRS approaches are widely employed in combination with GWAS (Bhatia et al., 2013). As SNP chip analyses only share a small subset of SNPs with RRS (Brouard et al., 2017), the combination of the two methods in one population may improve repeatability of GWAS findings.

Trait related loci can be identified with GWAS, however, the elucidation of the causative variant rather than the loci is the ultimate goal. The determination of the causative variant requires a high density of SNPs in a particular region of GWAS. If the region is not genotyped at a sequence level, the imputation technique can be used to fill in missing SNPs from the available reference panels. Due to linkage disequilibrium between SNPs, the GWAS signal extends across a large region. Although it is not always possible to directly identify the causative variant, the region containing the causative variant can be narrowed down by sophisticated methods (Fang and Georges, 2016; Huang et al., 2017). The key feature of these methods is determining SNPs that have a 95% probability of containing the causative variants, as calculated with posterior probabilities.

In this study, we used the DNA variants from two different genotyping approaches, SNP chip and RAD-seq, to perform GWAS for birth weight. To finely map causative genes, we built a reference panel for a region-of-interest by deep resequencing of 28 boars, by which the merged SNPs of RAD-seq and SNP chip were imputed at the sequence level. Finally, we detected the potential causative genes within or close to the finely mapped region.



MATERIALS AND METHODS


Animals and Phenotypes

Pedigree and phenotype records used for this study were provided by our lab. The pedigree contains 26,539 animals from 7 generations, including 14,226 Yorkshire and 12,313 Landrace animals. There were 12,661 and 10,635 records of birth weight for Yorkshire and Landrace piglets, respectively. After excluding disqualified records (missing birth date or abnormal records), 10,267 and 8,919 records Yorkshire and Landrace piglets were included, respectively. A total of 674 purebred sows (453 Yorkshire, 221 Landrace) born between 2014 and 2016 were selected for RAD-seq. After eliminating abnormal values (deviated from the third quartile), 668 high quality records were analyzed.



RAD-seq With BGI-seq500

Genomic DNA was isolated from the ear tissue of pigs; the double-digest restriction enzyme associated DNA sequencing method (RAD-seq) was performed using the methods of Andolfatto et al. (2011) with appropriate modifications. Briefly, the DNA concentration of all samples was normalized to 50 ng/pr in 96-well plates, and digested with FastDigestTaq I- MspI (Thermo Fisher Scientific) in 30 μL volume containing 20 μL DNA (1 μg). An anneal adapter (10 μM) was ligated to the digestion products by T4 DNA ligase with 23 TaqI-Ms. Then, 24 ligation products were pooled together to form one library with 15 μL per sample. Agencourt® AMPure® XP Reagent was used for library size-selection. The PCR system contained 50 ng size-selection products, 25 μL KAPA HiFi HotStart ReadyMix (kapasystem), and 10 pmol primers. PCR products were purified by Agencourt® AMPure® XP Reagent. The final library quality (concentration and fragment size distribution) was determined by a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and BiopticQsep100 DNA Fragment Analyzer (Bioptic), respectively. Every four library products (96 different barcodes) were mixed together in equal parts which a total weight at 170 ng. The cycling system contained 48 μL library mix, 1 × T4 DNA ligase buffer, 0.5 μL T4 DNA ligase (600 U/μL), and 100 pmol Splint Oligo, were reactions at 37°C and fragment size distribution were determined by a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and Bioptic Qsep100 DNA Fragment Analyze sample volume of Agencourt® AMPure® XP Reagent. Finally, the purified cyclizing libraries were sequenced with a BGI-seq500 platform (PE100).

Sequenced paired-end reads for each sow were identified by barcode and aligned against the Sscrofa reference genome (version Sscrofa 11.1)1 using the Burrows-Wheeler Aligner (version 0.7.12) software (Li and Durbin, 2009). SAMtools (version 0.1.19) (Li et al., 2009) was used to generate the consensus sequence for each sow and prepare input data for SNP calling with the Genome Analysis ToolKit (version 3.4) (McKenna et al., 2010). Raw SNPs with sequencing depth greater than 2,500 or less than 50 were removed, as SNP with extreme sequencing depth is most likely caused by a repeat DNA sequence or alignment error. The SNPs underwent quality control (QC) in which those with a call rate > 0.5, minor allele frequency (MAF) > 0.05, and p-value > 10–6 for the Hardy-Weinberg equilibrium test were kept, resulting in 140,948 SNPs. The missing genotypes were imputed with Beagle software (Browning and Browning, 2007), and the SNPs were filtered again with the above QC criteria. Finally, 139,634 high quality SNPs were retained for subsequent analysis.



SNP Chip Genotyping

These individuals were also genotyped with a Geneseek Porcine 50K SNP Chip (Neogen, Lincoln, NE, United States), which contained 50,697 SNPs across autosomes and sex chromosomes. QC of the SNPs was conducted using PLINK (version 1.07) (Purcell et al., 2007). The SNPs with MAF > 0.05, call rate > 0.97, and individual call rate > 0.95 were retained. Furthermore, we removed SNPs that were not mapped to the Sscrofa 11.1 genome, leaving 45,180 SNPs. The missing genotypes were imputed with Beagle software and underwent QC with the above QC criteria. Finally, 45,175 high quality SNPs were included.



Whole Genome Sequencing

We sequenced the whole genome of 28 boars, the ancestors of 453 Yorkshire sows (unpublished), with an average sequence depth ∼19× (ranged from 17.06× to 22.24×). After genome alignment with Burrows-Wheeler Aligner and SNP calling with the Genome Analysis Toolkit, 17,017,067 raw SNPs were detected. These SNPs were filtered using the Genome Analysis Toolkit with parameters “QUAL < 30 || QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0,” and using PLINK with MAF < 0.05 and p-value < 10–6 for the Hardy-Weinberg equilibrium test. We removed 761,590 additional SNPs with missing genotypes across the 28 boars, leaving 11,668,346 high quality SNPs, which were taken as the reference panel for imputation.



Sequence Level Imputation

The SNPs determined by RAD-seq (140,948 SNPs) and SNP chip (45,180 SNPs) were merged to produce a high density SNP set for sequence level imputation. After removing 427 duplicate SNPs from both SNP sets, 185,701 SNPs remained. We performed sequence level imputation with Beagle by taking the whole genome sequencing data of 28 Yorkshire boars (described above) and 20 Landrace pigs (downloaded from https://figshare.com/articles/data2019_tar_gz/9505259). After QC (MAF < 0.05 and p-value < 10–6), we obtained 9,012,073 overlapping SNP markers for the two breeds and imputed the RAD_ chip SNPs of the Yorkshire and Landrace pigs to a genome-wide level.



Variance Component Estimation and Heritability

Both pedigree and RAD_SNP information were used to build a kinship matrix among individuals to estimate the variance components of birth weight. The mixed linear model for this estimation was:

[image: image]

where Y is the phenotype vector, b is a fixed effects vector, i.e., herd-year-season, sex (only in pedigree-based estimation), breed (2 breeds in SNP-based and 6 strains in pedigree-based estimation) and birth parity, u is a vector of additive genetic effects following the multinormal distribution: u ∼ N (0, A[image: image]) and ∼ N (0, G[image: image]), respectively in pedigree and RAD_SNP based estimations, where A is the pedigree relationship matrix and G is the genomic relationship matrix constructed based on SNPs as described in VanRaden (2008). p is a material effects vector: p ∼ N (0, I[image: image]) and e is a residuals vector: e ∼ N (0, I[image: image]), and I is an identity matrix. [image: image], [image: image], and [image: image] are the additive genetic, material genetic, and residual variances, respectively. X, Z1, and Z2 are the incidence matrices for b, u, and p, respectively. The variance components were estimated using the average information restricted maximum likelihood procedure in DMU software (version 6, release 5.22). Heritability of birth weight was estimated as:
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The standard error of heritability was obtained as Klei and Tsuruta (2008) described.



Genome-Wide Association Study

The mixed model including a random polygenic effect can be expressed as:

[image: image]

where Y is the phenotype vector, which is corrected with estimated breeding values and fixed effects (only residuals left), and estimated breeding values are evaluated with the average information restricted maximum likelihood procedure in DMU; b is the estimator of fixed effects including breed, g is the SNP substitution effect and a is the vector of random additive genetic effects following the multinormal distribution a ∼ N (0, G[image: image]), in which G is the genomic relationship matrix that is constructed based on SNPs as described in VanRaden (2008), and [image: image] is the polygenetic additive variance. X, Z, and M are the incidence matrices for b, a, and g, respectively. e is a vector of residual errors with a distribution of N (0, I[image: image]). All single-marker GWAS analyses were conducted using the EMMAX software (Kang et al., 2010). Based on the Bonferroni correction, the genome-wide significant threshold was P < 1/N, where N is the number of informative SNPs.



Fine-Mapping

The BayesFM-MCMC package (Fang and Georges, 2016) was used to finely map causative variants, in which the threshold for SNP clustering was set as r2 = 0.5; the length of the Markov chain was 510,000 with the first 10,000 discarded (burn-in period). The threshold to declare significance was set at 1.1 × 10–5, which was determined from 0.05 divided by the number of SNPs in the GWAS region. We corrected the phenotypes by subtracting the corresponding breeding values and fixed effects, where the breeding values were estimated via the DMU package.



Gene-Annotation

SnpEff (version 4.3t) (Cingolani et al., 2012) was used to annotate the function of SNPs, in which the genome sequence and the genomic annotation databases (.gff) were required. The Sscrofa11.1 genome were downloaded from the National Center for Biotechnology Information3 and the genomic annotation file (.gff) was downloaded from the web ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/GCF_000003025.6_Sscrofa11.1_genomic.gff.gz.



RESULTS


RAD-seq and SNP Chip Genotyping

We obtained 139,634 SNPs from RAD-seq and only 45,175 SNPs from SNP chip analysis. First, we compared the allele frequencies (AF) of SNPs garnered from both genotyping platforms (Figure 1A). Compared with SNP chip analysis, RAD-seq more frequently found SNPs with lower AF. Specifically, the likelihood of RAD-seq finding SNPs with AF < 0.1 was nearly 0.3, almost two times higher than that of SNP chip analysis (∼0.1). We also compared the distance between adjacent SNPs determined by the two genotyping methods (Figure 1B). The adjacent SNPs found by RAD-seq were much closer together than those found with SNP chip analysis, suggesting that RAD-seq is more informative and may be helpful to detect causative genes. Finally, we determined the overlapping SNPs between the two SNP sets, and surprisingly found only 427 SNP overlaps.
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FIGURE 1. Minor allele frequency (MAF) and distance between single nucleotide polymorphisms (SNPs). (A) Frequency of SNPs in different MAF classes for restriction site associated DNA sequencing (RAD-seq) and SNP chip assays. (B) Frequency distribution of the distance between adjacent SNPs for RAD-seq and SNP chip assays.




Genome-Wide Association Study

We estimated heritability prior to the association study to fully understand how much birth weight is inherited. We used pedigree information and genome SNPs to estimate heritability. There were 14,226 and 12,313 individuals in the pedigree, and 10,267 and 8,919 records of birth weight for Yorkshire and Landrace, respectively. Genome-wide SNP information was used to build kinship among individuals and heritability was estimated as 0.094 ± 0.065. Then, once again using the pedigree, we estimated heritability in Yorkshire and Landrace pigs at 0.162 ± 0.026 and 0.131 ± 0.025, respectively (see Table 1), which are closer to previous reports than the heritability found when genome-wide SNP information was used.


TABLE 1. The estimated heritability of birth weight for Yorkshire and Landrace with different sources of information.

[image: Table 1]Next, we performed an association study for genome-wide SNPs based on a mixed model that accounted for population kinship (see section “Materials and Methods”). SNP sets from RAD-seq and SNP chip analysis were merged together, with two signals on chromosome 1 and 4 exceeding the threshold (Figure 2A). The positions of the lead SNPs for the two regions were chr1: 97,745,041 and chr4: 112,031,589, respectively; the MAF of the lead SNPs were 0.24 and 0.34 and they explained 6.36% and 4.25% of the phenotypic variance, respectively. We then focused on the two GWAS regions surrounding the lead SNPs, which are determined as the surrounding 1∼2 Mb region around the lead SNP. To confirm the two GWAS signals, we performed separate GWAS for the RAD-seq and SNP chip datasets. The region on chromosome 4 was determined to be significant for the RAD-seq dataset but not for the SNP chip dataset; where the reverse was true for the region on chromosome 1 (Figures 2C,E). Despite only reaching significance in one dataset, the –logP values of both regions peak in both datasets, confirming the reliability of the GWAS signals. To check for false positives caused by population stratification, we closely examined the theoretical and observed p-values with a Q-Q plot4. The -logP values are well fit by a linear regression against theoretical -logP values (Figures 2B,D,F), suggesting that population stratification has been well corrected for, although, it is important to note that two breed populations were simultaneously investigated.
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FIGURE 2. Genome-wide association study (GWAS) profiles from the merged SNPs of RAD-seq and SNP chip assays (A,C,E) and the corresponding Q-Q plot (B,D,F) the horizon lines represent the thresholds as determined by Bonferroni correction.




Fine Mapping

To further refine the regions containing causative genes and variants, we performed fine mapping of the GWAS region 1∼2 Mb around the lead SNP. To increase fine mapping accuracy, we utilized as many SNPs as possible by merging the SNPs from both RAD-seq and SNP chip analysis and removing duplicate SNPs. After applying a stringent filter, we obtained 5,226 and 7,184 SNPs in the fine mapping regions of chromosome 1 and 4, respectively. With this high density of SNPs, we were able to impute SNPs at a sequence level. Sequence-level imputation requires a sequence-level reference SNP set. We therefore re-sequenced 28 Yorkshire boars with an average coverage of ∼19x and downloaded the whole genome sequencing data of 20 Landrace pigs. This resulted in 11,668,346 and 18,954,748 sequence-level SNPs for Yorkshire and Landrace pigs, respectively. With these SNPs as a reference panel, we imputed the merged RAD-seq and SNP chip SNPs at a sequence level using Beagle software separately for each breed. Then, we employed BayesFM-MCMC software to narrow down the clusters containing causative variants. BayesFM-MCMC first clusters the SNPs within a GWAS region using a hierarchy clustering algorithm according to r2 among SNPs; then it models multiple causal variants by carrying out a Bayesian model selection across the cluster and generates the posterior probability for each SNP within the cluster, by which a credible set of SNPs with >95% posterior probability is constructed. The advantages of BayesFM-MCMC are that (1) it narrows down potential causative variants by indicating causal variants in the SNP set; and (2) it efficiently identifies more than one variant if multiple variants control the investigated trait.

However, because BayesFM-MCMC does not solve a mixed model with polygenic effects, we corrected the phenotype values by using the residuals (see section “Materials and Methods”). First, we conducted a single variant association for the GWAS chromosome region, 1,96,745,041–98,745,041, which produced a sharp peak in this region (Figure 3A). We then employed BayesFM-MCMC to further refine the regions, and one cluster signal with a posterior probability equal to 1 (greater than the threshold 0.5) was identified. To examine which SNPs predominantly explained the posterior probability in this cluster, we plotted the posterior probabilities for each SNP (output from BayesFM-MCMC). Most SNPs have miniscule posterior probabilities and no one SNP gives substantial posterior probability (f.i. greater than 0.5 or 0.2) in the identified cluster (Figures 3B,C). We then employed the 95% credible set defined by BayesFM-MCMC to further refine the causal variants, which contained 71 SNPs across a ∼100 kb region from 96,895,307 to 97,098,059 (see Supplementary Table S1 for detail). This 100 kb region contained the peak identified with the scan of single variants (Figure 3A), confirming the refined 100 kb region was reliable.
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FIGURE 3. Fine-mapping in the chromosome 1: 96,745,041–98,745,041 region. (A) Individual SNP association study and its locuszoom plot. (B) The posterior probability of clusters. (C) The posterior probability of SNPs.


Fine mapping of the region on chromosome 4, 111,031,589–113,031,589 (Figure 4B), identified one cluster signal with a posterior probability equal to 1. As before, we plotted the posterior probabilities for each SNP but most SNPs once again had miniscule posterior probabilities (less than or 0.05) (Figure 4C). The 95% credible set of causal variants in chromosome 4 contained 432 SNPs across over a ∼870 kb region from 111,700,218 to 112,569,735 (see Supplementary Table S2 for detail). The peak found in the single-SNP association profile (Figure 4A) is covered by this ∼870 kb region, once again confirming the reliability of BayesFM-MCMC for this purpose. The correlation (r2) among SNPs confirmed that they were highly linked, which explains why the individual posterior probabilities of these SNPs are very small.
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FIGURE 4. Fine-mapping in the chromosome 4: 111,031,589–113,031,589 region. (A) Individual SNP association study and its locuszoom plot. (B) The posterior probability of clusters. (C) The posterior probability of SNPs.




Candidate Genes

The 71 SNPs of interest on chromosome 1 are located in the intergenic region, which lies about 53 kb upstream of SKOR2 and over 317 kb downstream of SMAD2 (Table 2, see Supplementary Table S1 for details). We hypothesize that these variants are likely to have regulatory effects on the two nearby genes.


TABLE 2. Candidate genes for birth weight located around the causal variants.

[image: Table 2]The 432 highly linked SNPs on chromosome 4 are located within four genes, LOC106510205 (covered by 28 SNPs), LOC106510207 (covered by 26 SNPs), VAV3 (covered by 160 SNPs), and NTNG1 (covered by 218 SNPs, see Supplementary Table S2). Among these SNPs, one is a coding amino acid, seven are located in the 3′ untranslated region and 414 are located in the intron (see Supplementary Table S2 for details). The coding variant is a synonymous variant (c.1136 T > A), localized in gene VAV3. The remaining variants are in non-coding sites distributed in all four genes, suggesting the causal variant may have regulatory effect. We searched for functional genes near the tightly linked region, and thereby included SLC25A24, PRMT6, STXBP3 as candidate genes (Table 2).



DISCUSSION

We employed two genotyping methods, RAD-seq and a customized SNP chip assay, to obtain genome-wide distributed SNPs. The number of SNPs identified by RAD-seq was three times greater than those identified by customized SNP chip, among these, only 427 SNPs overlapped, consistent with previous reports (Brouard et al., 2017). Furthermore, we found that RAD-seq was able to genotype more low-frequency SNPs than the SNP chip assay. As we known, rare and low frequency variants have been found to partially explain phenotypic variation in some human diseases and agricultural traits (Quintana-Murci, 2016; Zhang et al., 2017).

By using genome-wide association combined with post-GWAS fine mapping, we refined one causative variant to a ∼100 kb region containing 71 SNPs. This region is located in the intergenic region between SKOR2 and SMAD2. Intergenic sequences are generally considered as junk sequences. However, in recent years, studies have increasingly shown that intergenic sequences contain long-distance regulatory elements and may also generate a large amount of non-coding RNA through transcription, thereby regulating the expression of surrounding genes (Chen and Tian, 2016). SKOR2 is homologous to the Ski/Sno family of transcriptional co-repressors, which has been shown to negatively regulate transforming growth factor β (TGFβ) signaling pathways by binding to Smads (Arndt et al., 2005). SKOR2 null mice are smaller than their siblings (Wang W. et al., 2011). SKOR2 polymorphism has also been reported to be associated with more rapid weight gain in African American males (Tu et al., 2015). SMAD2 is activated by TGFβ, and regulates multiple cellular processes, such as cell proliferation, apoptosis, and differentiation. As we known, TGFβ pathways play critical roles in bone development (Li et al., 2005). SMAD2 plays an essential role in regulating chondrocyte proliferation and differentiation in the growth plate (Wang W. et al., 2016). Additionally, SMAD2 was identified as the causative gene for the body-size of dogs, and was associated with the total number of piglets born in Yorkshire pigs as well as with high fecundity in dairy goats (Rimbault et al., 2013; Lai et al., 2016; Wang et al., 2018). Our results suggest that causative variants in this intergenic region may contribute to birth weight phenotypes by interfering with the regulatory function of the nearby distal regulatory elements and causing differential expression of the two surrounding genes.

We have refined the causative variant on chromosome 4 to a ∼870 kb region which resides in a big linkage disequilibrium block containing 4 genes, LOC106510205, LOC106510207, VAV3, and NTNG1. NTNG1 plays an important role in cell signaling during nervous system development (Nakashiba et al., 2000) and is associated with calf birth weight in Holstein cattle (Cole et al., 2014). LOC106510205 and LOC106510207 are predicted to be long non-coding RNA (lncRNA), and has not been functionally characterized to this point. As we known, lncRNA transcription plays an important role in both cis- and trans-regulation of nearby gene expression (Sun and Kraus, 2015). VAV3 is located in the center of the fine mapping region and is near the two lncRNAs. VAV3 is a member of the VAV gene family that activates actin cytoskeletal rearrangement pathways and transcriptional alterations (Zeng et al., 2000). VAV3 is versatile and also regulates osteoclast function, bone mass, and the homeostasis of the cardiovascular and renal systems (Faccio et al., 2005; Sauzeau et al., 2006). Previous knock-out results have shown that Vav3-deficient mice were protected from bone loss induced by systemic bone resorption stimuli such as parathyroid hormone or RANKL (Faccio et al., 2005). Furthermore, VAV3 is associated with hypothyroidism in humans, food conversion ratio in a male Duroc pig population, high body weight and growth rate in Boer goats, as well as sperm concentration in Holstein-Friesian bulls (Hering et al., 2014; Kwak et al., 2014; Wang et al., 2015; Onzima et al., 2018).

Several genes near the ∼870 kb tightly linked region were found to be related to growth and development or have been identified in others studies (Table 2). For example, SLC25A24 encodes a carrier protein that mediates electroneutral exchange of Mg-ATP or Mg-ADP against phosphate ions, is responsible for low fat mass in humans and mice (Urano et al., 2015), and is also related with bovine embryonic mortality (Killeen et al., 2016). Mutations in SLC25A24 have been found to be associated with fontaine progeroid syndrome in humans (Rodríguez-García et al., 2018). Furthermore, STXBP3 (also known as Munc18c), involved in insulin-regulated GLUT4 trafficking, has been found to be positively associated with body weight in Large White and Tongcheng pigs (Li et al., 2014). Finally, PRMT6, is reported to be associated with bull sperm concentration (Hering et al., 2014), and the expression of PRMT6 in skeletal muscle has been found to be regulated with a strong cis-expression quantitative trait loci (personal communication). Taken together, the region spanning VAV3 and NTNG1 is a very important genetic factor underlying the birth weight of pigs.

Most of the finely mapped SNPs obtained herein were located in intergenic regions or within introns. Therefore, we propose that these variants may have a regulatory effect on the expression of nearby genes, such as SKOR2, SMAD2, VAV3, and NTNG1, and thereby regulating body development. This research did not confirm such regulatory mechanisms but has highlighted them for further investigation.



CONCLUSION

We used the DNA markers from two different genotyping approaches to perform GWAS, and identified significant loci in chromosome 1 and chromosome 4 which explained 6.36% and 4.25% of the phenotypic variance, respectively. To increase the accuracy of fine mapping, we imputed the merged RAD-seq and SNP chip SNPs at a sequence level using the SNPs of high-coverage resequenced pigs as a reference panel. Then, we employed BayesFM-MCMC software to narrow down the genomic region of the clusters that contained causative variants. One cluster was located in an intergenic region, and the other in a gene coding region. Finally, we identified four promising candidate genes, SKOR2, SMAD2, VAV3, NTNG1, that have been associated with growth related traits in other species including cattle, humans, and dogs. Most SNPs in the fine mapping region were located in the intergenic region or introns, and as such we propose that these variants may have a regulatory effect on the expression of nearby genes, which deserves further investigation. The birth weight of pigs is an important economic factor in the livestock industry, identification of a causal variant would be beneficial to the molecular breeding of pigs.
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As crossbreeding is extensively used in some livestock species, we aimed to evaluate the performance of single-step GBLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) methods to predict Genomic Estimated Breeding Values (GEBVs) of crossbred animals. Different training population scenarios were evaluated: (SC1) ssGBLUP based on a single-trait model considering purebred and crossbred animals in a joint training population; (SC2) ssGBLUP based on a multiple-trait model to enable considering phenotypes recorded in purebred and crossbred training animals as different traits; (SC3) WssGBLUP based on a single-trait model considering purebred and crossbred animals jointly in the training population (both populations were used for SNP weights' estimation); (SC4) WssGBLUP based on a single-trait model considering only purebred animals in the training population (crossbred population only used for SNP weights' estimation); (SC5) WssGBLUP based on a single-trait model and the training population characterized by purebred animals (purebred population used for SNP weights' estimation). A complex trait was simulated assuming alternative genetic architectures. Different scaling factors to blend the inverse of the genomic (G−1) and pedigree ([image: image]) relationship matrices were also tested. The predictive performance of each scenario was evaluated based on the validation accuracy and regression coefficient. The genetic correlations across simulated populations in the different scenarios ranged from moderate to high (0.71–0.99). The scenario mimicking a completely polygenic trait ([image: image] 0) yielded the lowest validation accuracy (0.12; for SC3 and SC4). The simulated scenarios assuming 4,500 QTLs affecting the trait and [image: image] resulted in the greatest GEBV accuracies (0.47; for SC1 and SC2). The regression coefficients ranged from 0.28 (for SC3 assuming polygenic effect) to 1.27 (for SC2 considering 4,500 QTLs). In general, SC3 and SC5 resulted in inflated GEBVs, whereas other scenarios yielded deflated GEBVs. The scaling factors used to combine G−1 and [image: image] had a small influence on the validation accuracies, but a greater effect on the regression coefficients. Due to the complexity of multiple-trait models and WssGBLUP analyses, and a similar predictive performance across the methods evaluated, SC1 is recommended for genomic evaluation in crossbred populations with similar genetic structures [moderate-to-high (0.71–0.99) genetic correlations between purebred and crossbred populations].

Keywords: crossbred performance, ssGBLUP, simulated dataset, training population design, WssGBLUP


INTRODUCTION

Crossbreeding schemes are paramount for some livestock production systems in enabling the exploitation of complementarity among genetically-divergent breeds and heterosis effects (Wei and van der Werf, 1994). In tropical countries, crosses between two cattle sub-species are widely used to combine climatic adaptability (e.g., from Bos taurus indicus; Zebu breeds) and productive performance (e.g., from Bos taurus taurus; Taurine breeds) traits (Gregory and Cundiff, 1980; Mendonça et al., 2019). Genetic selection is performed on purebred animals in these production systems, aiming to optimize the performance of crossbred progeny. However, this poses various challenges to the breeding programs. For instance, there are large differences in additive and non-additive genetic parameters in traits measured in purebred or crossbred animals (Bijma and van Arendonk, 1998), which might constrain the pooling of all animals into a single training population for genomic analysis (Ribeiro et al., 2019). However, the large majority of livestock breeding programs do not account for non-additive genetic effects when estimating breeding values, and most economically important traits in livestock are not largely influenced by non-additive genetic effects (Varona et al., 2018).

Recording large-scale phenotypes on crossbred animals raised in commercial herds is usually a challenge, especially for hard- or expensive-to-measure traits, such as individual feed intake (Ibánêz-Escriche et al., 2009). Over time, several methods to perform genetic evaluations accounting for purebred and crossbred information have been proposed (Bijma and van Arendonk, 1998; Nayee et al., 2016; Junqueira et al., 2017). For instance, Wei and van der Werf (1994) proposed a model of breeding value prediction for both purebred and crossbred animals that maximizes the genetic response in crossbred animals, even for unknown, or inappropriate values of correlations of purebred and crossbred performances, and crossbreeding heritability. However, in the genomic era, Ibánêz-Escriche et al. (2009) have suggested that genomic information can increase the response to selection for crossbred performance even when selecting only purebred animals.

Genomic selection (Meuwissen et al., 2001) has been proven to be a useful tool to increase genetic gain, especially for difficult or expensive-to-measure and/or low-heritability traits. In this context, several methods have been proposed to calculate Genomic Estimated Breeding Values (GEBV) for livestock, such as the single-step Genomic Best Linear Unbiased Prediction (ssGBLUP; Misztal et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). The ssGBLUP enables combining the pedigree-based relationship matrix (A) with the genomic relationship matrix (G) into a hybrid matrix (H). This increases the accuracy and reduces the prediction bias of GEBVs when compared to those yielded from multi-step genomic predictions (Aguilar et al., 2010; Lourenco et al., 2015; Guarini et al., 2018). Recent studies have evaluated the use of purebred information to predict crossbred performance using the ssGBLUP method (Lourenco et al., 2016; Tusell et al., 2016; Pocrnic et al., 2019). In this context, Lourenco et al. (2016), using simulated crossbred pig datasets, concluded that the highest GEBV accuracies were attained when using a training population combining both purebred and crossbred animals' datasets. However, the ssGBLUP assumes equal variances for all Single Nucleotide Polymorphisms (SNPs), which may not be the most appropriate assumption from a biological point of view (Meuwissen et al., 2001; VanRaden, 2008; Goddard and Hayes, 2009). In a recent study, Porto-Neto et al. (2014) reported that nine out of ten traits evaluated were influenced by major genes. Consequently, methods that account for locus-specific variance (e.g., weighted ssGBLUP, WssGBLUP; Zhang et al., 2016) have been proposed. The main aim of these methods is to increase the predictive performance of GEBVs using computationally efficient tools that can be easily implemented in commercial breeding programs. In the WssGBLUP method, different SNP weights are used when calculating the G matrix.

The WssGBLUP has been successfully applied to several genomic prediction studies (Zhang et al., 2016; Lourenco et al., 2017; Guarini et al., 2019). However, to our best knowledge, there are no reports evaluating the prediction ability of WssGBLUP in crossbred animals, especially in F1 populations. Therefore, we aimed to compare the predictive performance of ssGBLUP and WssGBLUP using different training populations (based on purebred and/or crossbred animals) and alternative statistical models (single- or multiple-trait). One alternative for evaluating the predictive performance of genomic models is comparing GEBVs and True Breeding Values (TBVs). However, in practice, the TBVs are usually unknown and therefore simulated datasets can be advantageous when comparing models and genomic prediction approaches. In this context, we evaluated five simulated scenarios mimicking beef cattle populations (two purebred lines and four F1 populations), in which the trait under evaluation differed in terms of the number of Quantitative Trait Loci (QTLs) and the trait heritability (h2) explained by them ([image: image]). Furthermore, the impact of the genetic distance between training and validation populations used in the crossbreeding scheme was also investigated.



MATERIALS AND METHODS

Only (computationally) simulated datasets were used in this study. Therefore, the approval of an Institutional Animal Care and Use Committee was not required.


Simulated Population

Datasets of purebred and crossbred animals were simulated based on a beef cattle production system. The purebred populations were simulated to mimic Bos taurus indicus (Line1; Zebu cattle) or Bos taurus taurus (Line2; Taurine cattle) animals. Crossbred animals (F1) were originated from the crossing between females from Line1 and males from Line2. Phenotypes and TBVs were simulated for a trait with a h2 equal to 0.33 and phenotypic variance equal to 0.13. This was done to mimic the trait residual feed intake (RFI; an indicator of feed efficiency), which is a very important trait in beef cattle breeding programs (Branco et al., 2014) and has a similar genetic architecture compared to many other economically important (quantitative) traits in livestock.

The historical population consisted of 1,020 generations (Figure 1). During the first 1,000 generations (i.e., from generation −1,020 to generation −20), 2,000 individuals (1,000 males and 1,000 females) were randomly mated (Brito et al., 2011; Lourenco et al., 2016). From generation −19 to generation zero, a first “bottleneck” (i.e., population reduction) was created by reducing the total number of individuals from 2,000 to 1,500 (750 males and 750 females), which were also randomly mated. Thereafter, a second “bottleneck” was created by randomly sampling 100 males and 100 females from generation zero (1,500 individuals) of the historical population. These 200 individuals were used to create the expansion population (POP) containing 64,000 individuals. The population reductions (“bottlenecks”) were simulated to create an initial level of linkage disequilibrium (LD), which will be further explained.


[image: Figure 1]
FIGURE 1. Simulated population scheme representing bottleneck in historical population, breed differentiation, and origin of F1 for all simulated scenarios. The Bos taurus indicus population is represented by Line1, Bos taurus taurus is represented by Line2.


Animals in POP were subjected to random selection, mating, and culling for eight generations. To increase the number of animals in POP, we assumed that each female had five offspring, with the same proportion of males and females. At the end of the eighth generation, 64,000 animals were available in POP, which was then used to create Line1 and Line2. Line1 was developed based on 32,000 females and 640 males, and Line2 was developed based on 3,200 females and 64 males; all of them were randomly selected from the eighth generation of POP. In subsequent generations of Line1 and Line2, each female had one offspring (with the same probability of being male or female), and the replacement ratio for sires and dams was 0.60 and 0.20, respectively. Selection and culling in both Line1 and Line2 were performed based on the lowest and highest Estimated Breeding Values (EBVs), respectively. EBVs were estimated based on the Best Linear Unbiased Prediction method (Henderson, 1975), through an Animal Model and considering the True Additive Genetic Variance. After 10 generations in Line1 (Bos taurus indicus), and 30 in Line2 (Bos taurus taurus), the average LD values (between adjacent SNPs) were similar to those reported for Bos taurus indicus (r2 = 0.20) and Bos taurus taurus (r2 = 0.33) (Villa-Angulo et al., 2009). Both LD values were assessed in the last generation using the distance between SNPs up to 0.05 cM.

The F1 population originated from the random mating of 3,000 females from Line1 with 60 males from Line2. A total of four F1 populations were created and they differed with regards to the parental generation used in the crossbreeding scheme. Parental animals of the F1 populations were from: (i) F1-1: generations seven and 27; (ii) F1-2: eight and 28; (iii) F1-3: nine, and 29; (iv) F1-4: ten and 30; in Line1 and Line2, respectively. The differences in the generation of Line1 and Line2 (e.g., seven for Line1 and 27 for Line2) are due to the simulation scheme designed to mimic the current pattern of LD and genetic distance between Nellore and Angus, represented by Line1 and Line2, respectively.



Simulated Genotypes

The genomic prediction was performed using simulated genotypes for animals from generations six to eight (for Line1), generations 26 to 28 (for Line2), and all F1 individuals. Animals from the last two generations of the purebred lines (i.e., generations nine and ten for Line1, and 29 and 30 for Line2) were not included in the analyses in order to maintain a genetic distance between training and validation populations (described below). The simulated genotypes consisted of 52,886 bi-allelic SNPs distributed across 29 chromosomes (autosomes), mimicking the bovine genome. The size of the whole genome was ~2,696.54 cM. The number of SNPs and the size of each chromosome was defined based on information retrieved from the Illumina Bovine 50 K Beadchip (https://support.illumina.com/downloads/bovinesnp50v2.html), as suggested by Matukumalli et al. (2009). The SNPs were evenly spaced within each chromosome and the initial allele frequency for SNPs and QTLs were equal to 0.50 in the first generation of the historical population.

Different [image: image] and numbers of QTLs were used in this study: (i) [image: image]equal to zero, to represent a completely polygenic trait (SIM1); (ii) [image: image] equal to 1/3 of the trait h2 (i.e., [image: image]equal to 0.11), and 198 QTLs (SIM2); (iii) [image: image] equal to 1/3 of the trait h2 and 4,500 QTLs (SIM3); (iv) [image: image] equal to the trait h2 (i.e., 0.33), and 198 QTLs (SIM4); (v) [image: image] equal to the trait h2 and 4,500 QTLs (SIM5). The heritability only due to the QTL effects, [image: image], represents the proportion of the total genetic variation of a trait that is due to a limited number of QTLs (i.e., 198 or 4,500) out of all the markers simulated. In other words, it does not indicate the complete inheritance mode of the trait, but the proportion of the total genetic variance explained by the simulated QTLs. The number of QTLs (198) was defined based on a systematic review performed for RFI in beef cattle (Duarte et al., 2019). In addition, simulations considering 4,500 QTLs were also performed, assuming that not all QTLs for RFI are currently known.

The effect of each QTL was sampled from a Gamma distribution with a shape parameter of 0.40. The mutation rate for both SNPs and QTLs was considered as 10−5 per generation and locus. The QTL effect captured by the SNP marker can potentially change across populations and generations due to the population-specific allele frequency and LD levels between SNP markers and QTLs. In order to minimize the effects of the simulation (starting values) in the results, ten independent replicates were carried out for each scenario. Simulations were performed using the QMSim software (Sargolzaei and Schenkel, 2009).



Genotypic Quality Control

Genotypic quality control was performed independently for each population (Line1, Line2, and F1 populations) and replicated. The genotype quality control kept SNPs with minor allele frequency (MAF) higher 0.05, and departure from the Hardy–Weinberg Equilibrium (estimated as the difference between expected and observed frequency of heterozygous) lower than 0.15. Only common SNPs across populations were kept for further analyses. A summary of the descriptive statistics for Line1, Line2, and F1 in each scenario is shown in Table 1. Detailed descriptive statistics for each replicate are shown in the Supplementary Material (Tables S1A–S1E). The PREGSF90 software (Aguilar et al., 2014) was used to perform the genotypic quality control.


Table 1. Mean and standard deviation (inside parentheses) of phenotypes ([image: image]), inbreeding coefficients (F), average allele A frequency (ρA), average linkage disequilibrium (LD), and number of markers before (SNPbeforeQC), and after (SNPafterQC) genotypic quality control for Line1, Line2, and F1 populations, in the different scenarios (SIM).

[image: Table 1]



Genetic Connectedness Between Populations
 
Principal Component Analysis (PCA)

In order to better assess the population composition of the animals and to graphically display the results, we performed a PCA by decomposition of the genomic relationship matrix (G). Principal components were assessed using the flag “–pca” of PLINK 2.0 (Chang et al., 2015).



Consistency of Gametic Phase

The consistency of gametic phase was defined by the Pearson correlation of signed LD (measured by r) values between two populations [Line1 vs. Line2; Line1 vs. F1 (F1-1, F1-2, F1-3, and F1-4); Line2 vs. F1 (F1-1, F1-2, F1-3, and F1-4)]. The LD level between two SNP markers was measured by r2, in which r2 = [image: image]; where D = f(AB)−f(A)f(B), and f(AB), f(A), f(a), f(B), and f(b) are observed frequencies of haplotype AB and alleles A, a, B, and b, respectively (Hill and Robertson, 1968). The LD levels were obtained by the flag “–r2 dprime” using the PLINK 2.0 software (Chang et al., 2015). The signed r value was obtained by taking the square root of the r2 value and assigning the appropriate sign based on the D value. Data was sorted into bins based on pair-wise SNP marker distance to determine the breakdown in the consistency of gametic phase across distances, and to assess the consistency of gametic phase at the smallest distances in the current panel, given the number of genotyped SNPs. For each distance bin, the signed r values were correlated between all pairs of populations using the cor basic function of the R statistical software (R Core Team, 2019).



Allele A Frequency Correlation

Assessment of the allele A frequency correlation across populations was based on the Pearson correlation. The allele frequency was calculated for each population individually using the option “–freq” from PLINK 2.0 (Chang et al., 2015).




Genomic Prediction of Breeding Values
 
Methodological Scenarios

Comparisons between the ssGBLUP and WssGBLUP methods were based on the predictive ability of the GEBVs of the F1 animals. In other words, we aimed to identify the best scenario where the selection of purebred animals would result in the greatest crossbred performance (indicated by the GEBVs of crossbred animals). A total of five alternative scenarios (SC) were investigated: (SC1) ssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population; (SC2) ssGBLUP based on a multiple-trait model considering phenotypes recorded on purebred and crossbred training animals as different traits; (SC3) WssGBLUP based on a single-trait model including both purebred and crossbred animal datasets in the training population (and information from the three populations to estimate the SNP weights—further described); (SC4) WssGBLUP based on a single-trait model considering only purebred animals in the training population (and only the information from crossbred animals to estimate the SNP weights); (SC5) WssGBLUP based on a single-trait model considering only purebred animals in the training population (and their information to estimate the SNP weights). The main goal of SC4 was to account for the crossbred allele frequencies during the G calculation, and SC5 was performed to evaluate the use of only purebred information to predict crossbred performance.

The animals included in the training populations were purebred animals from generations six, seven, and eight (Line1), and generations 26, 27, and 28 (Line2). When crossbred animals were included in the training population, animals from F1-1 and F1-2 populations were used. The scenarios used to create the different training populations are summarized in Table 2. F1-3 and F1-4 were used as two different validation populations in all scenarios, in order to assess the impact of the genetic distance between training and validation populations in the genomic predictions.


Table 2. Structure of scenarios (SC) using the single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) or weighted ssGBLUP (WssGBLUP) approaches, in terms of training population and single nucleotide polymorphism (SNP) weights.

[image: Table 2]



ssGBLUP and WssGBLUP

The ssGBLUP and WssGBLUP methods were used to combine phenotypic, pedigree, and genotypic information. Therefore, the inverse of the H matrix (Misztal et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010) used in this study was created as:

[image: image]

Where A is the pedigree-based relationship matrix, which included up to five generations of animals with phenotypes or genotypes, A22 is the subset of the A matrix related to genotyped animals, the τ and ω values will be described further, and G is the genomic relationship matrix, which was created as follows (VanRaden, 2008):

[image: image]

Where D is a diagonal matrix with weights, k is a scale parameter defined as [image: image], M is a matrix of n SNPs for each animal, and P is a matrix containing two times the allele frequency of the second allele p at locus j (pj). In the ssGBLUP analyses, the D matrix was assumed as an identity matrix. In the WssGBLUP analyses, D was a diagonal matrix with values given by weights derived from the SNP solutions, as described by Wang et al. (2012). The SNP weights were obtained by back solving the GEBVs using the software BLUPF90 (Strandén and Garrick, 2009; Wang et al., 2012). First of all, the ssGBLUP was performed by using D matrix as an identity matrix (I). Then, the SNP weights were derived based on Strandén and Garrick (2009) and Wang et al. (2012):

[image: image]

Where û is a vector of estimated SNP effects, λ is the ratio of SNP variance to genetic variance, and GEBVs are the genomic estimated breeding values. The SNP weights to be considered in the next iteration (second iteration) were derived from the SNP effects as SNP variances:

[image: image]

Where dj is the j SNP weight (equivalent to j SNP variance); û is a vector of estimated j SNP effect; and p is the allele frequency of j SNP.

Consequently, a total of two iterations (i.e., using the identity matrix plus one iteration using the D matrix derived from SNP solutions) were used in the WssGBLUP because the second iteration provided higher GEBV accuracies in the preliminary analysis (Table S2). The SNP solutions were estimated using the POSTGSF90 software (Aguilar et al., 2014).

As genomic datasets were simulated, all individuals included in the pedigree also had genotypes. In order to make G−1 and A22−1 matrices compatible (Misztal et al., 2017; Oliveira et al., 2019), different values for the τ (from 0.9 to 2.5; defined at every 0.1) and ω (from 0.5 to 1.2; defined at every 0.1) parameters were tested. These ranges were chosen based on the literature (Misztal et al., 2017; Oliveira et al., 2019). As G−1 and A22−1 matrices were basically the same in all scenarios (i.e., the A22−1 matrix was the same in all scenarios, and G−1 matrix was the same in SC1, SC2, and SC3; and training crossbred animals were excluded from SC4 and SC5, but the validation crossbred animals remained on all SCs), τ and ω parameters were only tested using SC1. Thereafter, the tuning parameters that increased the accuracy and reduced the prediction bias of GEBVs were used in all analyses. Details about the methods used to calculate the accuracy and bias (based on regression coefficient) of GEBVs are described in section accuracy and regression coefficient. The inbreeding coefficient was estimated using the BLUPF90 family software (Misztal et al., 2002).



Statistical Models

The ssGBLUP and WssGBLUP analyses were performed using the BLUPF90 software (Misztal et al., 2002), based on single- and multiple-trait models. The single-trait models used in SC1, SC3, SC4, and SC5 are described as:

[image: image]

Where y, b, u and e are the vectors of observations; fixed effects (mean, sex, and population); additive genetic random effects, u ~ N(0,[image: image]); and random residuals, e ~ N(0,[image: image]), respectively. X and Z are the incidence matrices for b and u, respectively. [image: image] and [image: image] are the additive genetic and residual variances, respectively. Variance components were independently estimated for each scenario using the AIREMLF90 software (Misztal et al., 2002) and the A matrix, since it has been currently recommended in several ssGBLUP and WssGBLUP studies (Ali et al., 2019; Oliveira et al., 2019; Pocrnic et al., 2019). The multiple-trait model used in SC2 can be described as:

[image: image]

Where y3 is a vector of observations considering records from Line1, Line2, and F1 as three different traits; b3, u3, and e3 are the vectors of fixed effects (mean and sex), additive genetic random effects, u3 ~ N(0,G0 ⊗ H), and, random residuals, e3 ~ N(0,R ⊗ I), respectively. X3 and Z3 are the incidence matrices for the fixed and additive genetic effects, respectively. G0 and R are the additive genetic and residual variance-covariance matrices, respectively, described as:
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Where [image: image], [image: image], and [image: image] are the additive genetic variances for Line1, Line2, and F1, respectively; σu is the additive genetic (co)variance between pairs of populations; [image: image], [image: image], and [image: image] are the residual variances for Line1, Line2, and F1, respectively.




Accuracy and Regression Coefficient

The predictive ability of tested scenarios was evaluated based on a comparison of GEBVs and True Breeding Values (TBVs) of F1 populations. The main goal of the current study was to evaluate the predictive performance of genomic models when purebred parents are selected to produce crossbred progeny with higher genetic breeding value and improved performance, both indicated by higher GEBVs. Therefore, accuracies of genomic predictions were estimated as the Pearson correlation coefficients calculated between GEBVs and TBVs, for the validation populations (F1-3 and F1-4). In addition, the regression coefficient (an indicator of inflation or deflation of the TBVs on GEBVs) was assessed using a linear regression model of TBVs on GEBVs, for the validation animals. Paired Student's t test (Rosner, 1982) was applied to verify significant differences (P < 0.05) between accuracies and the regression coefficient from different scheme pairs by using the t-test function available in the R software (R Core Team, 2019).




RESULTS


Variance and Covariance Components

Genetic parameters and (co)variance components estimated in the different simulated scenarios using the A matrix are shown in Table 3. In general, variance components estimated from SIM1, SIM2, SIM3, and SIM5 ranged from 0.03 to 0.05 for the additive genetic variance, and from 0.08 to 0.09 for the residual variance. Heritability estimated in SIM1, SIM2, SIM3, and SIM5 ranged from 0.26 to 0.40, which were consistent with the initial value used in the simulation process (h2 equal to 0.33). For the Line2 and F1 populations in the SIM4, additive genetic variance and h2 were underestimated (additive genetic variance equal to 0.01, and h2 ranged from 0.11 to 0.13) in comparison to the other scenarios. Genetic correlations across populations in the different scenarios ranged from moderate to high (from 0.71 to 0.99).


Table 3. Mean and standard deviation (in parentheses) of variance and covariance components and genetic parameters estimated for Line1, Line2, and F1 populations.
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Genetic Connectedness Between Populations
 
Principal Component Analysis

Both purebred and F1 populations clustered separately, and the F1 animals clustered between both purebreds (as expected). This is shown by the first and second principal components (PC) of the genomic relationship matrix, in which the first principal component explained from 79 to 82% of the total variation (Figure 2). There was no projection overlapping in all five simulated scenarios, indicating that the populations were genetically divergent based on the relationship calculated from segregating SNPs.


[image: Figure 2]
FIGURE 2. Principal component decomposition of the genomic relationship matrix of repetition 1 colored by breed-group. Letters represent the simulated scenarios: (A) Simulated scenario with heritability explained by the quantitative trait loci ([image: image]) equal to zero (SIM1); (B) [image: image] equal to 1/3 of trait heritability (h2) (i.e., [image: image]equal to 0.11), and the number of QTLs equal to 198 (SIM2); (C) [image: image] equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); (D) [image: image] equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and (E) [image: image] equal to 0.33 and the number of QTLs equal to 4,500 (SIM5).




Consistency of Gametic Phase

As presented in Figure 3, the consistency of gametic phase was reasonably low within purebred lines and low-to-moderate between purebred and crossbred individuals, even at the smallest SNP distance bins (from 0 to 60 kb). The consistency of gametic phase of SNP pairs separated by distances of up to 60 kb between Line1 and Line2 ranged from 0.13 (SIM4) to 0.22 (SIM1).


[image: Figure 3]
FIGURE 3. Consistency of gametic phase (Pearson correlations of signed r values) at given distances for three population pairs. SIM1: simulated scenario with heritability explained by the quantitative trait loci ([image: image]) equal to zero; SIM2: [image: image] equal to 1/3 of trait heritability (h2) (i.e., [image: image]equal to 0.11), and the number of QTLs equal to 198; SIM3: [image: image] equal to 0.11 and the number of QTLs equal to 4,500; SIM4: [image: image] equal to trait h2 (0.33), and the number of QTLs equal to 198; and SIM5: [image: image] equal to 0.33 and the number of QTLs equal to 4,500.





Scaling Factors Used to Combine G−1 and [image: image] Matrices

Different values for τ (from 0.9 to 2.5) and ω (from 0.5 to 1.2) parameters were tested in SC1 when combining the G−1 and A22−1 matrices. Changes in accuracies and regression coefficients when using these different values are shown in Figures 4 and 5, respectively. In summary, small or no variation in the validation accuracies were observed when comparing different values of τ and ω (Figure 4), except for the combination of low τ and high ω that resulted in the lowest accuracies. This might be explained by an inappropriate combination of tuning parameters. However, a great impact of τ and ω combination was observed in the regression coefficients (Figure 5). Among all tested values, the combination of τ equal to 2.2 and ω equal to 0.5 yielded the least biased GEBVs (i.e., the regression coefficient was closer to one). Consequently, those τ and ω values were used in further analyses for all scenarios evaluated.


[image: Figure 4]
FIGURE 4. Heatmap of accuracy (r) for all combinations of τ and ω scaling factors to blend G−1 and [image: image] matrices when building the H matrix, using the dataset from the simulated scenario with heritability explained by the quantitative trait loci ([image: image]) equal to the trait heritability (h2) of 0.33 and 4,500 QTLs.



[image: Figure 5]
FIGURE 5. Heatmap of regression coefficient (β1) for all combinations of τ and ω scaling factors to blend G−1 and [image: image] matrices when building the H matrix, using the dataset from the simulated scenario with heritability explained by the quantitative trait loci ([image: image]) equal to the trait heritability (h2) of 0.33 and 4,500 QTLs.


With regards to the different simulated scenarios, when only a fraction (or nothing) of the trait h2 was attributed to the QTL effects [image: image], most combinations of τ and ω parameters yielded less accurate and highly biased GEBVs (validation accuracies were low and the regression coefficients were far from one). This suggests that the genetic architecture of the trait has a great effect on the performance of genomic predictions (Daetwyler et al., 2010). In this context, when the number of QTLs was high (4,500) and the h2 explained by them was equal to 0.33 (i.e., [image: image] equal to the trait h2), greater validation accuracies were observed (Figures 6A,C) and the GEBV bias decreased (Figures 6B,D).


[image: Figure 6]
FIGURE 6. Trend line for average validation accuracy (r, A,C) and regression coefficient (β1, B,D) across all scenarios: ssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population (and information from both populations to estimate the SNP weights (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering only purebred animals in the training population (and their information to estimate the SNP weights) (SC5); and simulated scenarios: heritability explained by the quantitative trait loci (h2QTL) equal to zero (SIM1); [image: image] equal to 1/3 of trait heritability (h2) (i.e., [image: image]equal to 0.11), and the number of QTLs equal to 198 (SIM2); [image: image] equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); [image: image] equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and [image: image] equal to 0.33 and the number of QTLs equal to 4,500 (SIM5). (A,B) represent F1-3 validation population and (C,D) represent F1-4 validation population.




Genomic Predictions

Due to a large number of scenarios investigated, the Results section will be split according to the validation population (F1-3 or F1-4).


F1-3 Validation Population

SIM1 is the simulation scenario that yielded the lowest GEBV accuracy and the highest bias estimates (e.g., regression coefficient far from one). The average GEBV accuracies in SIM1 ranged from 0.14 (SC3 and SC4) to 0.15 (SC1, SC2, and SC5; Figure 7A), and the regression coefficients ranged from 0.33 (SC3) to 0.52 (SC2 and SC4; Figure 7B). On the other hand, the simulated scenario with the highest accuracy and lowest bias (e.g., regression coefficient close one) was the SIM5. In SIM5, the average GEBV accuracies ranged from 0.44 (SC4 and SC5) to 0.47 (SC1 and SC2; Figure 7I), and the regression coefficients ranged from 0.87 (SC3 and SC5) to 1.27 (SC2; Figure 7J).


[image: Figure 7]
FIGURE 7. Average validation accuracies (r − A,C,E,G,I) and regression coefficients (β1− B,D,F,H,J) with, respectively standard deviations and different letters for each scenario representing significant differences (P < 0.05) for F1-3 validation population: ssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population (and information from both populations to estimate the SNP weights) (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering only purebred animals in the training population (and their information to estimate the SNP weights) (SC5). Simulated scenarios: heritability explained by the quantitative trait loci ([image: image]) equal to zero (SIM1); [image: image] equal to 1/3 of trait heritability (h2) (i.e., [image: image]equal to 0.11), and the number of QTLs equal to 198 (SIM2); [image: image] equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); [image: image] equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and [image: image] equal to 0.33 and the number of QTLs equal to 4,500 (SIM5).




F1-4 Validation Population

Similarly to the F1-3 validation set, the simulated scenarios SIM1 and SIM5 yielded the lowest and highest predictive abilities, respectively. Using the F1-4 validation population (one generation farther from the F1-3 training population) from the SIM1 dataset, the GEBV validation accuracy reduced by 13.98% when compared to the F1-3 validation set. Thus, the GEBV accuracies ranged from 0.12 (SC3 and SC5; SIM1) to 0.15 (SC2; SIM1; Figure 8A), and regression coefficients ranged from 0.28 (SC3; SIM1) to 0.52 (SC2; SIM1; Figure 8B). Based on the F1-4 validation set from SIM5, the validation accuracy reduced by 3.86% compared to F1-3. The accuracies ranged from 0.42 (SC4 and SC5; SIM5) to 0.46 (SC1, SC2, and SC3; SIM5; Figure 8I), and the regression coefficients ranged from 0.87 (SC5; SIM5) to 1.27 (SC2; SIM5; Figure 8J).


[image: Figure 8]
FIGURE 8. Average validation accuracies (r − A,C,E,G,I) and regression coefficients (β1− B,D,F,H,J) with, respectively standard deviations and different letters for each scenario representing significant differences (P < 0.05) for F1-4 validation population: ssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population (and information from both populations to estimate the SNP weights) (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering only purebred animals in the training population (and their information to estimate the SNP weights) (SC5). Simulated scenarios: heritability explained by the quantitative trait loci ([image: image]) equal to zero (SIM1); [image: image] equal to 1/3 of trait heritability (h2) (i.e., [image: image]equal to 0.11), and the number of QTLs equal to 198 (SIM2); [image: image] equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); [image: image] equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and [image: image] equal to 0.33 and the number of QTLs equal to 4,500 (SIM5).


The GEBV accuracies and regression coefficients for the other simulated scenarios (SIM2–SIM4) are presented in Figures 7C–G, 8C–G for F1-3 and F1-4 validation populations, respectively. Furthermore, the GEBV accuracies and regression coefficients calculated for each replicate are shown in Tables S3, S4 for F1-3 and F1-4 validation populations, respectively.





DISCUSSION


Variance and Covariance Components

Genetic correlations for the simulated trait across populations in the different scenarios ranged from moderate-to-high, which indicates that Line1, Line2, and F1 are moderate-to-high genetically correlated. Núñez-Dominguez et al. (1993) reported a moderate-to-high genetic correlation between purebred-crossbred populations (ranging from 0.55 to 0.97) for live weight measurements (e.g., birth, weaning, and yearling weights). Additionally, Newman et al. (2002) also reported moderate-to-high estimates ranging from 0.48 to 1.00 for moderate-to-high heritability traits (e.g., carcass weight and percentage of intramuscular fat). Based on a literature review, Wientjes and Calus (2017) reported an average genetic correlation between purebred-crossbred pigs equal to 0.63, with 50% of the estimates between 0.45 and 0.87 (Wientjes and Calus, 2017). The majority of the correlations observed in the current study are at the high end of this range. Assuming the exclusively moderate-to-high genetic relationship between all population pairs and a large training population, genomic predictions between those populations are expected to be reasonably accurate (Daetwyler et al., 2015).



Genetic Connectedness Between Populations

Principal Components Analysis absorbs the information of allele frequencies into a reduced number of independent variables, facilitating the interpretation of potential population structure. The first two PCs showed a clear separation between populations Line1 and Line2, and the F1 animals clustered between both purebred lines (Figure 2). Additionally, despite the differences in the F1 generations (F1-1, F1-2, F1-3, and F1-4), all of them were grouped in a single cluster.

The first principal component (PC1) was strongly correlated with Line1 in all simulation scenarios, except for SIM2 (Figure 2). This fact highlights that PC1 increases with an increasing relationship in Line1. However, different results can be expected due to the stochastic nature of the simulation analysis and the sampling process to create the training population (as observed for SIM2). Thus, the general pattern of PC1 in comparison to Line1 can be seen as a genomic index that ensures the strong relationship among individuals belonging to the same line.

The improvement of the predictive ability of two distinct training and validation populations (e.g., purebred and crossbred) depends on the similarity or consistency of gametic phase between the SNPs and QTLs across populations. By increasing the relationship distance between individuals, the genomic distance in which the linkage phase will be consistent across populations decreases. As presented in Figure 3, the consistency of gametic phase was reasonably low to moderate among all populations' pairs. As expected, Line1 and Line2 presented the lowest consistency of gametic phase. Populations paired with F1 (i.e., Line1 vs. F1, and Line2 vs. F1) presented the highest consistency of gametic phase.

Both results, PCA and consistency of gametic phase, suggest that better accuracies of genomic predictions could be attained when using a single-training population as the SNP effects seem to be population-specific. In other words, the lower predictive ability could be expected when SNP effects estimated based on Line1 is applied to Line2, or across any combination presented. However, those assumptions are contrasted by the genetic correlation between Line1 and Line2 (i.e., moderate-to-high genetic correlations).

Even though a moderate-to-high genetic correlation was observed between Line1 and Line2, there was still population stratification. The contrasting results from both analyses (genetic correlation vs. PCA + consistency of gametic phase + allele frequency correlation) might be explained by: (i) the similar selection direction for all populations (i.e., selection of lower EBV animals from Line1, Line2, and F1), which could result in a high genetic correlation across these populations for the trait under selection; (ii) single-trait selection, in which only the alleles associated with the trait (or in high LD) would contribute to higher genetic correlation between the populations, but not all the markers spread across the genome; and, (iii) specific population parameters (e.g., LD, effective population size, different number of generations, and SNP marker segregation). In other words, when simulating a genomic dataset, one needs to specify: (1) the number of QTLs affecting the trait (this can be interpreted as the causal mutations affecting the trait, which are usually the same across populations), and (2) the number of markers in the dataset, in which some will be in LD with the QTLs simulated, while the others might be non-related to the trait and spread out across the whole genome. Thus, it is not surprising that the QTL effects (causal mutations) and their allele frequencies across populations (Line1 and Line2) for the trait under study were similar, which is realistic.



Scaling Factors Used to Combine G−1 and [image: image] Matrices

The ssGBLUP and WssGBLUP methods assume that the statistical model is correct and that allelic frequencies come from the base population (Oliveira et al., 2019). However, these assumptions usually do not hold in practice, which can result in prediction bias (Vitezica et al., 2011). In this context, G−1 and A22−1 matrices are usually not on the same scale (Misztal et al., 2017; Oliveira et al., 2019). In order to obtain better prediction accuracies and reduce the bias, Tsuruta et al. (2011) and Misztal et al. (2013) reported that scaling factors should be used when combining G−1 and A22−1 matrices to create the H matrix.

The different scaling factors tested in this study had no or small influence in the validation accuracies (Figure 4). These findings are in agreement with those reported by Oliveira et al. (2019), who also observed a small impact of these parameters in the reliability of genomic predictions using real datasets from three Canadian dairy cattle breeds (Holstein, Jersey, and Ayrshire). On the other hand, Koivula et al. (2018) reported significant differences in the validation reliabilities across few pairwise combinations of τ and ω parameters.

As initially reported by Tsuruta et al. (2011) and Misztal et al. (2013), different combinations of τ and ω also had a great impact on the bias estimates in the current study (Figure 5). This can be explained by the reduction in the variance of the predicted genetic values resulting in larger regression coefficients (Martini et al., 2018), depending on the scaling factor combination used. In general, changes in τ had a smaller impact on the bias than changes in ω, as also reported by Oliveira et al. (2019). The best ω parameter assumed in this study (0.50) was lower than 1.00, which increases the importance of pedigree information on GEBV prediction. This is related to the fact that this study used a simulated dataset and therefore, the pedigree is complete and precise.



Genomic Prediction of Breeding Values
 
Accuracies

In general, significant differences were observed across scenarios (Figures 7, 8 for F1-3 and F1-4, respectively).


Single-trait vs. multiple-trait model

In general, single- and multiple-trait models yielded similar results across all the simulated scenarios and validation populations (Figures 7, 8). Calus et al. (2014) reported that a single-trait model can result in similar predictive accuracies compared to multiple-trait or non-linear models when assuming a high genetic correlation between the populations analyzed together. On the other hand, greater predictive ability was observed by using multiple-trait or non-linear models when the populations were less genetically correlated (Calus et al., 2014). Therefore, the genetic connectedness between populations in a pooled-breed analysis might interfere with the model performance (Calus et al., 2014). In the present study, all population pairs presented moderate-to-high genetic correlations for the trait simulated (Table 3), which might explain the similar predictive ability across all the scenarios investigated.



ssGBLUP vs. WssGBLUP

For the SIM1, SIM2, SIM3, and SIM5, SC1, and SC2 (using the ssGBLUP method) yielded the highest GEBV accuracies. This suggests that the ssGBLUP method, using either a single- or multiple-trait model, performs better than WssGBLUP for polygenic traits in crossbred animals. We expected that WssGBLUP would perform better for the scenarios SIM2 through SIM5, and especially for SIM4 and SIM5. Lourenco et al. (2017) reported that for less polygenic traits (such as the simulated scenarios mentioned above), the accuracy might be higher when using WssGBLUP instead of ssGBLUP. WssGBLUP is advantageous for traits with a reduced number of causative genes because its assumption is similar to the genetic architecture of those traits: a finite number of markers affecting the trait. However, no pattern was observed across those simulated scenarios for WssGBLUP. In SIM4, the SC3 scheme (characterized by the WssGBLUP using purebred and crossbred populations to estimate the SNP weights and predict the GEBVs) yielded the highest accuracy. The genetic variation of the trait in SIM4 is completely controlled by few QTLs. In other words, SIM4 is a less polygenic scenario across all others.

Accounting for breed-specific allele frequencies could potentially increase the predictive ability in multi-breed models (Dekkers, 2007; Ibánêz-Escriche et al., 2009; Christensen et al., 2014). This can be accounted for through WssGBLUP (e.g., Sevillano et al., 2019). However, small differences were observed by using ssGBLUP and WssGBLUP in the present study. The similarity across scenarios might also be partially explained by the data simulation structure that resulted in a moderate-to-high genetic correlation across all population pairs, as they were all selected based on a single trait. Additionally, the allele A frequency correlations among all population pairs ranged from moderate (0.24–0.48; Line1 vs. Line2; Tables S5A–S5E) to high (0.61–0.85; Line1 vs. F1, and Line2 vs. F1; Tables S5A–S5E). In real datasets, differences in allele frequencies diverge due to different breeding goals across generations and populations/breeds. Similarly, Lourenco et al. (2016) did not observe differences in GEBV accuracies when using breed-specific allele frequencies to build the G matrix in the genomic evaluation of crossbred animals. Furthermore, Ibánêz-Escriche et al. (2009) also reported that genomic selection for crossbred populations using models that fit the breed-specific effects of SNP alleles are not necessary.

Scenarios SC4 and SC5 had fewer individuals in the training population than SC1 and SC3 scenarios, which could lead to greater accuracies of both larger training population scenarios. Therefore, additional analyses using the same-size training populations of SC1 and SC3 vs. SC4 and SC5 were performed (Tables S6A–S6E). Small or no differences were observed by using a balanced dataset for SC1 and SC3 scenarios, which do not change the conclusions previously reported. Therefore, the differences between ssGBLUP and WssGBLUP were still small. However, the way the estimation of SNP weights has been carried out in this and other studies (Ibánêz-Escriche et al., 2009; Lourenco et al., 2016) might not be optimal. The weights derivation used is the easiest way to implement the WssGBLUP in commercial breeding programs, which justify the application of the method. Alternative ways to derive the SNP weights have been proposed and might result in better predictive ability (Su et al., 2014; Karaman et al., 2019), for example through Bayesian approaches.



Purebred vs. jointly purebred and crossbred training populations

There are studies indicating that the addition of crossbred information in the training population to predict crossbred performance has a positive impact on the predictive ability of GEBVs (Bijma and van Arendonk, 1998; Bijma et al., 2001; Lutaaya et al., 2002; Fragomeni et al., 2016; Iversen et al., 2017). However, Pocrnic et al. (2019), using a dataset with purebred and crossbred pigs, did not observe differences in GEBV accuracies when the SNP effects were estimated based solely on purebreds or obtained through combining purebred and crossbred animals in the training set. In this study, the high genetic correlations between purebred and crossbred populations (from 0.81 to 0.99 between Line1 and F1, and 0.94 to 0.98 between Line2 and F1) might explain the small differences observed when including crossbred information in the training population (from SC1 to SC4 vs. SC5, Figures 7, 8). In general, moderate-to-high genetic correlations between purebreds and crossbred populations tend to result in higher GEBV prediction accuracies (Pocrnic et al., 2019). This might be due to the purebred information's ability to capture most of the crossbred genetic variation when larger training sets are available.




Regression Coefficients

Significant differences were observed among regression coefficients estimated in the different scenarios (Figures 7, 8 for F1-3 and F1-4, respectively). The GEBV bias obtained in SC3 and SC5 may be due to the inefficient estimation of SNP weights in predicting crossbred information, as a merged dataset (purebred and crossbred) or just purebred information was used to estimate the SNP weights to predict GEBVs in the crossbred animals in SC3 and SC5, respectively. As previously mentioned, alternative ways to derive the SNP weights have been proposed, which could lead to better predictive performance (Su et al., 2014; Karaman et al., 2019). In general, less biased GEBVs were obtained in SC2, which is in agreement with several studies in the literature with regards to the superiority of multiple-trait models to predict the performance of crossbred populations (Tusell et al., 2016; Pocrnic et al., 2019).



Comparing Simulated Datasets

In general, higher GEBV accuracies and regression coefficients close to one were obtained for SIM4 and SIM5 (simulated datasets in which all genetic variances were explained by the QTLs). Simulated scenarios with a small or null number of QTLs (SIM1, SIM2, and SIM3) might lead to higher GEBV accuracy when using Bayesian variable selection models (Habier et al., 2011). In composite beef cattle populations, the accuracy of GEBVs averaged over twenty economically important traits ranged from 0.38 to 0.40 across different scenarios (Piccoli et al., 2017). It is worth noting that as the [image: image] reduced, the GEBV accuracy decreased and the bias increased. This indicates that simulated scenarios with [image: image]lower than h2 (total heritability) have a greater bias due to the fact that the relationship matrix does not account for an infinite number of loci (Kennedy et al., 1988).

As previously reported by Calus et al. (2014), a greater predictive performance of the multiple-trait model was observed under the lower relationship between purebred-crossbred populations (SIM1) than in a simulated higher relationship scenario (SIM4) (Figures 7, 8 and Table 3). In general, the crossbred information included in the training population during the GEBV estimation process had a greater impact on GEBV accuracy while using a simulated scenario with lower genetic correlation between purebred-crossbred populations, than other simulated scenarios with higher genetic correlation between populations.



F1-3 vs. F1-4 Validation Populations

Smaller differences in accuracies and regression coefficients were observed when the F1-3 validation population was used in comparison to the F1-4. This might be related to the smaller genetic gap between training and the F1-3 validation population (Muir, 2007; Goddard, 2009).





CONCLUSIONS

In general, the ssGBLUP method based on a single-trait model considering both purebred and crossbred (F1) animals in the training population (SC1), and ssGBLUP based on a multiple-trait model considering phenotypes recorded on purebred and crossbred training animals as different traits (SC2), yielded the highest accuracies and lowest biases of GEBVs. Considering the current stratification of the genotyped population [low consistency of gametic phase across purebred and F1 populations; clear distinction of populations based on PCA; but moderate-to-high genetic correlations (ranging from 0.71 to 0.99)] for the simulated trait across populations, the ssGBLUP using a single-trait model and a purebred and crossbred (F1) training population's scenario (SC1) is recommended. The SC1 resulted in a similar performance of genomic evaluations in crossbred animals and it is reasonably easy to be implemented in practical situations. Further studies using real datasets should be performed to validate these findings.
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INTRODUCTION

Carps constitute a very large group of freshwater fish belonging to the family Cyprinidae, and are predominant in aquaculture system accounting for ~71–75% of freshwater fish production (FAO, 2018). The largest producer of carp is China (78.7%), followed by India (15.7%); the remaining is produced by Bangladesh, Myanmar, Vietnam, Indonesia and Pakistan collectively, contributing more than 30% of global aquaculture production in terms of tons (FAO, 2017a). Among the three Indian major carp species (Labeo rohita, Catla catla and Cirrhinus mrigala), rohu carp (L. rohita) is the most popular due to its growth potential coupled with high consumer preference. The natural habitat of this species is the Indo-Gangetic riverine system, encompassing northern, eastern and central India, as well as the rivers of Pakistan, Bangladesh and Myanmar. The species has also been introduced in many other countries, including Sri Lanka, the former USSR, Japan, China, the Philippines, Malaysia, Nepal and some African countries. The traditional culture of rohu in the small ponds of the eastern Indian states dates back hundreds of years. L. rohita currently accounts for ~2.5% of total freshwater aquaculture production worldwide (FAO, 2017b). The Central Institute of Freshwater Aquaculture, India, has established a selective breeding programme for rohu carp with the aim of increasing the growth rate of this fish from 700 to 1,000 g in a year (Chondar, 1999) to more than 1,500 g a year. A genetically improved strain of rohu, called “Jayanti,” was developed. A 17% higher average growth rate per generation was achieved after four generations of selection (Das Mahapatra et al., 2006). Our previous studies have also reported DNA markers such as SSRs (Das et al., 2005; Patel et al., 2009; Sahu et al., 2012), SSR and SNP -based linkage maps (Robinson et al., 2014; Sahoo et al., 2015) and transcriptome resources (Robinson et al., 2012; Sahu et al., 2013) in this species. However, whole genome sequence of rohu carp is still lacking. In this study, we present the first draft genome of rohu to complement the on-going selective breeding program by generating genomic resources. Besides, the genome information can be useful for functional and comparative genomics, gene mapping, genome wide association, and genomic selection studies. With the advancement of sequencing technologies, there has been a rapid increase in the number of genome assemblies for terrestrial species compared to aquatic species (including fish) in the last decade, with a very small (Kelley et al., 2016) percentage of fish genomes given the most numerous taxonomic group and huge diversity exhibited by teleosts (Ravi and Venkatesh, 2018). The representation of carps in the genome database is further very limited.

Rohu carp is a member of Otophysi, a major clade of modern freshwater fishes. The superorder Otophysi is currently classified into four orders: Cypriniformes (carps and minnows; 4,262 species), Characiformes (tetras and piranas; ~2,100 species), Gymnotiformes (knifefishes and electric eel; 225 species) and Siluriformes (catfishes; ~3,700 species) (Eschmeyer and Fong, 2015; Nelson et al., 2016). Despite significant advances recently in delineating lineages within major taxonomic groups at the molecular level, an increasing number of whole-genome sequences of fish may be needed to address the evolution of otophysan lineages and the phylogenetics at the genome scale. Within this context, the genome sequence of rohu carp would provide an essential resource for evolutionary and biological studies in addition to carp genetic improvement.

Adopting the whole-genome shotgun protocol and a multi-platform sequencing approach, we for the first time generated a good quality genome assembly of rohu carp. By resequencing ten wild populations, we have also identified approximately five million SNPs. Additionally, we also performed phylogenetic analysis of rohu and thirteen other otophysan species to determine the phylogenetic position of rohu within otophysan lineages.


Value of the Data

Here we report for the first time the draft genome of Indian major carp, rohu widely cultured in Indian subcontinent. The scaffold N50 was found to be 1.95 Mb and there were 26,400 protein coding genes and 40.63% repeats.

Resequencing of 10 riverine rohu populations identified ~5 million SNPs which will provide a valuable resource for undertaking genome wide association studies, genomic selection, population genomics and fine-mapping of QTLs in this species.

Phylogenetic analysis taking protein sequences of 335 single copy genes of 14 Otophysans revealed that rohu carp (Labeoninae) was at a position equidistant to the other species in the Otophysi clade, forming a sister group.

All the six families and four subfamilies under the four otophysan lineages were monophyletic.




MATERIALS AND METHODS


Genome Sequencing

A single male rohu (~1 kg), belonging to seventh generation of ongoing selective breeding programme of ICAR-CIFA, was chosen for sequencing. Tissue samples were collected in September 2013. All handling of fish was carried out following the guidelines for control and supervision of experiments on animals by the Government of India and approved by Institutional Animal Ethics Committee (AEC) of ICAR-CIFA. The fish was anesthetized followed by harvesting of the testes, liver and muscle tissues, and isolation of high- molecular weight genomic DNA using standard phenol-chloroform extraction method (Sambrook et al., 1989). A multi-platform sequencing strategy was adopted to generate approximately 130-fold coverage sequence data for the estimated genome size of 1.5 Gb. Approximately 1,000 ng of genomic DNA per library was sheared using a Covaris S2 sonicator (Covaris, Woburn, Massachusetts, USA) to generate fragments ranging in size from 200 bp to 20 kb. A total of 18 libraries (single-end, paired-end and mate-paired) including one large insert library (Supplementary Table 1) were prepared for Roche 454 (GS FLX), Illumina (Miseq and Nextseq 500), Ion Torrent (PGM), and PacBio (Sequel) sequencing using respective protocols. Briefly, Roche libraries were prepared and sequenced using picotitre plates with Titanium or long-read chemistry (Roche Diagnostic, USA). Illumina Miseq libraries were prepared using the Nextera XT library prep kit and Illumina Nextseq 500 libraries were constructed following the TruSeq PCR-free HT library Prep Kit. In addition, one shotgun library for Ion-Torrent PGM and one large insert (15–20 kb) library for the PacBio (Sequel) platform were prepared following the manufacturer's instructions.



De novo Genome Assembly and Validation

The raw sequence data were checked for quality using FastQC and the NGSQC (NGSQC Patel and Jain, 2012). Low quality (Q <20) and short (<50 bp) reads were filtered out to obtain a set of usable reads. The assembly was obtained using the MaSuRCA assembler (Zimin et al., 2013). First, all data except for PacBio data were assembled using MaSuRCA, followed by scaffolding in SSPACE v3.0 (Boetzer et al., 2010). Gap closing was performed using GapCloser v1.12b, a part of SOAPdenovo2 (Luo et al., 2012). Second, PacBio reads were error corrected by Illumina paired-end data using pacBioToCA module implemented in Celera Assembler (Myers et al., 2000), followed by assembly in the CANU assembler v1.7 (Koren et al., 2017). Finally, the gap-closed scaffolds from both analyses were merged using Quickmerge (Chakraborty et al., 2016) (Supplementary Figure 1). Scaffolds more than 2 kb in size were retained to construct the final set. Further, the genome size of rohu was estimated by using the program Jellyfish as implemented in MaSuRCA. The completeness of the genome assembly was assessed using BUSCO version 3.0 (Simão et al., 2015) and Actinopterygii odb9 dataset having a set of 2,586 highly conserved core eukaryotic genes. In order to check the possible redundant sequences in the assembly, the k-mer distribution graph for the complete assembly was generated using jellyfish followed by a 21-mer profile using the Illumina PE reads. Further, the Illumina PE reads were mapped to assembly sequences for analyzing depth distribution for every base in the genome. The accuracy of the assembly was evaluated by anchoring the scaffolds onto published SNP and microsatellite marker maps for rohu (Robinson et al., 2014; Sahoo et al., 2015). For this, SNPs and microsatellite markers of rohu were used as queries against rohu scaffolds by Blastn module as implemented in the program CLC Bio workbench version 7.0.4, with the following parameters: e-value 1e-10, word size 10, match 2, mismatch −3 and % identity 90%.



Genome Organization

SSRs were screened from the genome using MISA software (Thiel et al., 2003). Repeat identification in the assembled genome of rohu was carried out by homology-based and de novo methods. We performed homology-based identification using RepeatMasker version 4.0.6 against D. rerio RepBase version 20.07 as the repeat library. The de novo repeat library was constructed using RepeatModeler version 1.0.10 which essentially uses two repeat-finding programs, RECON (Bao and Eddy, 2002) and RepeatScout (Price et al., 2005), along with Tandem Repeat Finder (Benson, 1999). The consensus sequences yielded were used as repeat library to mask repeats using RepeatMasker with default parameters. Transfer RNAs were screened across the genome using tRNA scan-SE (Lowe and Eddy, 1997).



Gene Prediction and Functional Annotation

We carried out combined annotation methods using de novo, homology-based as well as transcriptome-based approaches to annotate the rohu genome. The program AUGUSTUS version 3.2.3 (Stanke and Waack, 2003) was used for de novo prediction of protein coding genes from the repeat masked rohu genome assembly. RNAseq data derived from various tissues of rohu (generated in this study and available online) were used to support the prediction of proteins by mapping de novo assembled transcripts to the genome assembly. In homology-based predictions, putative genes were predicted using trained zebrafish model. We filtered out sequences <100 amino acids from the total predicted protein-coding genes, followed by a Blastp search against the NCBI non-redundant database with default parameters. From the resultant hits, partial and fragmented predictions were checked and removed by performing Blastp against well characterized protein sequences of zebra fish for the final set (Supplementary Figure 2). Functional assignment of the final set of predicted protein sequences was carried out by BLAST2GO v5.0 (Conesa et al., 2005).



Comparative Genome Analysis

To describe orthologous relationships for the rohu annotated genes, we compared them employing OrthoVenn (Wang et al., 2015) with three other diploid cyprinid species, Anabarilius grahami, Ctenopharyngdon idellus, and Danio rerio. Orthologous genes shared among these species were depicted through a Venn diagram. Moreover, to reveal the synteny conservation between rohu and zebrafish, the rohu genome sequence was compared with 25 chromosomes of the well-characterized zebrafish genome using Symap v3.4 (Soderlund et al., 2011).



Whole-Genome Resequencing and SNP Discovery

Resequencing of 10 wild populations of rohu, covering different geographical regions of India, was performed using the Illumina NextSeq 500 platform. The 10 different populations originated from the five Himalayan riverine systems encompassing northern, eastern and central India, and five peninsular riverine systems covering southern India. We sampled 3 individuals from each population and pooled their DNA for paired-end Illumina sequencing. The VDAP-GUI pipeline (Menon et al., 2016) was used for genome wide SNP discovery. Commonly used linux command (head—number of reads “filename.fastq” > “filename.fastq”) was used to extract the number of reads equivalent to the sample having lowest number of reads and then the data were pooled together to make one dataset for mapping against draft genome. The data and reference sequence were then imported into the pipeline, which included quality control by FastQC version 0.11.2 (www.bioinformatics.babraham.ac.uk/projects/fastqc/), quality filtering by PRINSEQ version 0.20.4 (prinseq.sourceforge.net/), and trimming with minimum quality scores of Q20 and sequence lengths of 30 bp. For reference mapping, the BWA-mem version 0.7.5a algorithm was used with the following parameters: match score 1, penalty for mismatches 4 and gap open penalty 6. The SNP/INDEL detection methods used in VDAP-GUI were SAMtools version 0.1.19, VarScan version 2.3.7, and FreeBayes version 0.9.10-3. A custom approach, namely, MultiCom that performs variant discovery using all the above three algorithms was also used. Final SNPs were identified by at least two algorithms. Duplicate removal was performed using the Picard tool (version 1.7.0) (https://broadinstitute.github.io/picard/).



Phylogenetic Analysis

Phylogenetic relationships were deduced by the maximum likelihood method, based on the protein sequences of 335 single-copy genes (Supplementary Data) commonly shared by fourteen otophysan species representing all four orders, Cypriniformes (8), Characiformes (2), Gymnotiformes (1), and Siluriformes (3). We downloaded the protein sequences of A. grahami, C. auratus, C. carpio, D. rerio, Sinocyclocheilus anshuiensis, S. graham, and Sinocyclocheilus rhinocerous (Cypriniformes, including rohu), Astyanax maxicanus, Pygocentrus nattereri (Characiformes), Electrophorus electricus (Gymnotiformes), and Ictalurus punctatus, Pangasianodon hypophthalmus and Tachysurus fulvidraco (Siluriformes) from the database. These protein data sets were clustered to identify orthologous gene families with ProteinOrtho (Lechner et al., 2011). Three hundred thirty five single-copy genes, common to all the above species, were selected from the clusters for alignment using the software MUSCLE (Edgar, 2004) with default parameters. The individual sequence alignments were concatenated, and gaps were removed before constructing the maximum likelihood phylogenetic tree using RAxML (Stamatakis, 2014) employing PROTGAMMAJTT model with 20,000 iterations toward convergence of the maximum likelihood model and 1,000 bootstrap replicates. Tree viewer was used for viewing the phylogenetic tree.




RESULTS AND DISCUSSION


Genome Assembly and Validation

The haploid rohu genome containing 25 chromosomes (Zhang and Reddy, 1991) was observed to have an estimated genome size of 1.5 Gb, which is similar to the lengths of male and female genome maps reported in an SNP-based linkage map of rohu (Robinson et al., 2014). The assembly resulted in 259,627 contigs and 13,623 scaffolds, with contig N50 and scaffold N50 values of 30.6 kb and 1.95 Mb, respectively (Table 1). The assembled genome size of L. rohita is 1.48 Gb, accounting for >98% of the estimated rohu genome size of 1.5 Gb. In total, 393 scaffolds of 13,623 were found to be more than 1 Mb in size. The draft assembly presented here is of good quality and comparable to other published teleost genomes of similar size (Supplementary Table 2). The rohu draft genome provides a proxy for genome completeness based on 2,586 BUSCOs, which includes 2,472 [95.6%] “complete” BUSCO genes, 1,667 [64.5 %] single-copy, 805[ 31.1%] duplicated, 19 [0.7%] fragmented and 95 [3.7%] missing BUSCOs. The k-mer distribution and depth coverage profiles generated indicated very less or no redundant sequences in the assembly (Supplementary Figures 3–17).


Table 1. Assembly statistics of rohu draft genome.
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We assessed the accuracy of the assembly by anchoring sequences onto the SNP and SSR-based genetic maps of rohu (Robinson et al., 2014; Sahoo et al., 2015). All SNP markers (3,193) with the sequence information matched at unique positions in 667 scaffolds, covering approximately 80% of the genome (Supplementary Table 3). The 667 scaffolds, totaling 1.18 Gb were spread across 1,416 cM of the genome, which was in agreement with the linkage groups of rohu. Similarly, 146 SSR loci covering 25 linkage groups of rohu were also matched (Supplementary Table 4).



Genome Organization

RepeatModeler was employed for de novo repeat modeling, and repeats were found to constitute 40.63% of the rohu genome. Of these, 34.11, 3.9, and 2.32% were interspersed repetitive DNA, satellite DNA and simple repeats, respectively (Supplementary Table 5). The GC percentage (36%) found in this study is similar to that of the genomes of other cyprinids (Supplementary Table 6). The overall percentage of repeat elements observed was similar to the repeat contents of the cavefish Sinocyclocheilus grahami (Yang et al., 2016) and grass carp Ctenopharyngodon idellus (Wang et al., 2015), higher than common carp Cyprinus carpio (Xu P. et al., 2014) and blunt snout bream Megalobrama amblycephala (Liu et al., 2017) but lower than zebrafish Danio rerio (Howe et al., 2013) (Supplementary Table 6). The most abundant repeat elements in the rohu genome were found to be DNA transposons, accounting for 33.58% of the classified elements, followed by retrotransposons (6.1%), LINEs (3.5%), and SINEs (0.8%), as observed in other carp genomes. Searching for genome-wide simple sequence repeat markers of the assembled rohu genome resulted in 557,193 SSRs, with dinucleotide repeats being the most abundant (Supplementary Table 7).



Gene Prediction and Functional Annotation

The rohu genome is predicted to contain 26,400 protein-coding genes; 2,516 tRNAs (2,292 tRNAs for standard amino acids, 3 selenocysteine tRNAs, 39 undetermined isotypes, and 182 predicted pseudogenes) were predicted using tRNAScan-SE. More than 85% of the predicted genes were supported by rohu transcriptome data as well as protein database. The number of genes predicted for rohu is similar to that for other diploid cyprinids, such as zebrafish, blunt snout bream and grass carp (Supplementary Table 6). Additionally, scaffold_11,425 of a size of 16,606 bp, was found to be of mitochondrial origin, with 13 mRNAs, 22 tRNAs, and 2 rRNAs. Evolution of more complex eukaryotic organisms was impossible without gene duplication (Ohno, 1970), and analysis of duplicated genes in the rohu genome revealed 6,798 (26%) genes with more than one copy, comparable to the numbers observed for channel catfish (Liu et al., 2016) and zebrafish (Howe et al., 2013).



Comparative Genome Analysis

The orthologous gene family analysis in diploid cyprinids, C. idellus, A. grahami, and D. rerio using, OrthoVenn resulted in a total of 22,724 clusters (rohu, 16,085; zebrafish, 17,731; white minnow, 15,372; grass carp, 20,433 orthologous clusters and 20,034 single-copy gene clusters) (Supplementary Table 8). A total of 8,994 orthologs are shared by all four species, with 1,669 species-specific gene clusters. Rohu and grass carp share the highest number of clusters (14,559), followed by rohu and zebrafish (13,232 clusters) and rohu and white minnow shared 10,918 (Figure 1A). Synteny between L. rohita and D. rerio was observed to be well-conserved (Figure 1B), as evidenced from synteny analysis between rohu scaffolds and zebrafish chromosomes.
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FIGURE 1. Comparative genomics of rohu (A) Venn diagram showing orthologous gene clusters among four diploid cyprinids, Labeo rohita, Anabarilius grahami, Ctenopharyngodon idellus, and Danio rerio. (B) Synteny conservation between rohu and zebrafish using Symap. The genome view is depicted by Circos plot where 25 zebrafish chromosomes (1 to 25) are shown in upper side and 188 largest scaffolds of rohu in the lower side of the ring. The connecting ribbons indicate the location of conserved synteny blocks between the two species. (C) Phylogenetic relationships of Labeo rohita with 13 other otophysans, inferred from 335 single-copy orthologous genes (protein sequences). Otophysan orders, families and subfamilies are identified by vertical bars against species names. ML bootstrap values are shown at the nodes.




Whole-Genome Resequencing and SNP Discovery

Genome-wide SNP discovery using the NGS approach is straightforward and involves assembly of low depth sequencing data, followed by mapping of reads to a reference sequence, leading to variant calling. In contrast to livestock species, breeding programmes in the aquaculture sector have been slower to adopt genomics tools, mainly due to the paucity of genomic resources such as linkage maps, SNP arrays and reference genomes for important cultivable fish species. For species such as rainbow trout, salmon, and common carp, genomic selection (GS) and genome-wide association studies (GWAS) are being performed to improve the accuracy and speed of selective breeding for important performance traits (Bangera et al., 2017; Vallejo et al., 2018). To capture the variations in the rohu genome, low-depth resequencing of 10 wild rohu populations comprising thirty individuals was performed using Illumina Nextseq 500, which generated 60 Gb sequence data (40-fold coverage) of rohu genome. To improve the accuracy of SNP calling, three programs, SAMtools, VarScan, and FreeBayes, were used in the present study generating 4.95 million SNPs. The number of SNPs ranged from 380,991 to 679,963 in each population, and the number of common SNPs between any two populations ranged from 100,743 to 200,764. Identification of SNP markers has recently been carried out for several teleost species e.g., common carp, rainbow trout and greater amberjack (Xu J. et al., 2014; Palti et al., 2015; Araki et al., 2018). However, due to lack of SNP resources, SNP panels and arrays are not available for rohu carp. Thus, the SNPs identified from riverine populations of rohu in the present investigation, provide a valuable resource for undertaking genome wide association studies, genomic selection, population genomics and fine-mapping of QTLs in this species.



Phylogenetic Relationship of Rohu Carp Within Otophysi

The phylogenetic position of L. rohita within Otophysi, revealed that rohu carp (Labeoninae) was at a position equidistant to the other species in the Otophysi clade, forming a sister group.

All the six families and four subfamilies under the four otophysan lineages were recovered as monophyletic groups (Figure 1C). Several hypotheses have been offered to discuss the evolutionary history of Otophysi. Characiformes was found to be a sister group to Gymnotiformes (Rosen et al., 1970); some authors argued for a sister group between Siluriformes and Gymnotiformes (Fink and Fink, 1981), whereas others found Characiformes to be paraphyletic (Nakatani et al., 2011). Our results reveal Characiformes, comprising the families Characidae and Serasalmidae, to be monophyletic, and together with Siluriformes, it forms a sister group with Gymnotiformes. This is in agreement with one of the tree topologies (Ha08) reported earlier (Nakatani et al., 2011). Classifications based on families and subfamilies are essential for diverse groups, such as Otophysi, when drawing taxonomic and evolutionary conclusions. Our results of sub familial relationships analysis within Cypriniformes are in agreement with recent studies (Xu P. et al., 2014; Jiang et al., 2018).

In summary, we report here the draft genome of rohu carp and associated genomics resources. Performing phylogenetic analysis, we show that rohu forms a sister group relationship with all remaining otophysans. The draft genome of rohu and SNPs generated in the present study represent essential resource for genetic improvement of important performance traits in this species. Besides, the information generated will provide foundation for future research in evolutionary biology and comparative genomics.
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The Norwegian White sheep (NWS) and New Zealand Terminal Sire Composite (NZC) sheep breeds have been developed based on crossing of multiple breeds, mainly of Northern European origin. A close genetic relationship between these populations could enable across-country genomic evaluations. The main objectives of this study were to assess the genetic connectedness between Norwegian and New Zealand sheep populations and estimate numerous genetic diversity metrics for these two populations. A total of 792 NWS and 16,912 NZC animals were genotyped using a high-density Illumina SNP chip panel (∼606K SNPs). The NZC animals were grouped based on their breed composition as: Finn, Lamb Supreme, Primera, Texel, “Other Dual Purpose”, and “Other Terminal Sire”. The average level of linkage disequilibrium ranged from 0.156 (for Primera) to 0.231 (for Finn). The lowest consistency of gametic phase was estimated between NWS and Finn (0.397), and between NWS and Texel (0.443), respectively. Similar consistency of gametic phase was estimated between NWS and the other NZC populations (∼ 0.52). For all composite sheep populations analyzed in this study, the majority of runs of homozygosity (ROH) segments identified had short length (<2,500 kb), indicating ancient (instead of recent) inbreeding. The variation in the number of ROH segments observed in the NWS was similar to the variation observed in Primera and Lamb Supreme. There was no clear discrimination between NWS and NZC based on the first few principal components. In addition, based on admixture analyses, there seems to be a significant overlap of the ancestral populations that contributed to the development of both NWS and NZC. There were no evident signatures of selection in these populations, which might be due to recent crossbreeding. In conclusion, the NWS composite breed was shown to be moderately related to NZC populations, especially Primera and Lamb Supreme. The findings reported here indicate a promising opportunity for collaborative genomic analyses involving NWS and NZC sheep populations.

Keywords: admixture, gametic phase, homozygosity, inbreeding, linkage disequilibrium


INTRODUCTION

The Norwegian White Sheep (NWS) is a composite breed that accounts for 70–75% of the total Norwegian sheep population. This breed is well known for its prolificacy and high growth rates. Sheep in Norway originates from the Northern European short tail breeds (Drabløs, 1997). In the 18th and 19th centuries, better-performing breeds (e.g., Merino for wool production; Oxford Down, Shropshire, Southdown, Leicester, Cheviot, Blackface, and Southerland for meat production) were imported from the United Kingdom and other European countries and used for crossing with Norwegian breeds. Subsequently, three distinct breeds Dala, Rygja and Steigar highly influenced by the imports were formed in the first half of the 20th century. Crossing between these three breeds along with imported Texel and Finn sheep took place in the second half of the 20th century. The composite NWS was officially formed in 2000 including all aforementioned breeds. Nowadays, the NWS is considered a dual-purpose breed (meat and wool), with large emphasis on meat production traits. The NWS breeding program is well organized and has resulted in substantial annual genetic progress for growth and carcass yield, reduced subcutaneous fat, and increased litter size and milking ability (NSG, 2019).

The development history of the New Zealand sheep breeds is somewhat similar to the NWS, with regards to the founder breeders used in their formation and crossbreeding schemes (Brito et al., 2017a). Considering the high genetic variability in each of these composite populations, a collaborative initiative could be a feasible alternative to increase the accuracy of genomic breeding values and other genomic analyses. Benefits may be two-fold, firstly to enlarge the training population of each country and secondly to predict breeding values for traits recorded in a single population (e.g., meat quality, methane emissions).

The genetic connectedness between these two populations can be determined based on the consistency of gametic phase (assessed based on linkage disequilibrium – LD between single nucleotide polymorphisms – SNPs and quantitative trait loci – QTL), as well as other genetic diversity metrics, including admixture and population structure (Brito et al., 2017a; Prieur et al., 2017). Therefore, combining animals from breeds with similar development history can be an option to overcome the small size of training population for certain traits in each population, especially if the divergence between breeds is recent (Gautier et al., 2007; de Roos et al., 2008). The New Zealand sheep industry is characterized by a high proportion of composite breeds and crossbreed animals (Blair, 2011; Brito et al., 2017a), with various overlapping founder breeds in comparison to the NWS. However, the genetic similarity between NWS and NZC sheep populations has not yet been investigated. Knowledge on the genetic diversity and connectedness between NWS and NZC populations will contribute to a better understanding of the development history of both populations and might result in important practical applications. Thus, the main objectives of this study were to: (1) assess the genetic diversity of NWS and NZC sheep populations based on various metrics; and (2) estimate the genomic connectedness between both populations.



MATERIALS AND METHODS

All data used in this study were obtained from existing databases made available by the Norwegian Association of Sheep and Goat Breeders (NSG; Ås, Norway) and Animal Genomics (AgResearch; Mosgiel, New Zealand). Therefore, no Animal Care Committee approval was necessary for the purposes of this study.


Genotypic Data and Quality Control

A total of 792 NWS and 16,912 NZC animals were genotyped using a high-density (HD) SNP panel (Ovine Infinium® HD SNP Beadchip; Kijas et al., 2014). The NZC animals were grouped based on their recorded breed composition as: Finn, Lamb Supreme, Primera, Texel, “Other Dual Purpose”, and “Other Terminal Sire”. The NZC breed groups were formed following Brito et al. (2017a). Note that both Finn and Texel were derived from sampling flocks derived from animals imported to New Zealand in the late 1980s and as such would have a strong population bottleneck. In order to avoid bias due to small sample size (Brito et al., 2017b), only populations that had at least 50 genotyped animals were included in this study. The threshold of 50 animals was defined based on preliminary analysis. In addition, similar thresholds were used in other genetic diversity studies, e.g., Kijas et al. (2012), Prieur et al. (2017), and Brito et al. (2017b).

The genotypic quality control was performed using the PLINK 1.9 software (Purcell et al., 2007), separately for each population, and considering all sheep populations together (specification of the quality control used for the calculation of each diversity metric are described later on). In brief, SNPs with unknown or duplicated genomic positions and/or located in the sexual chromosomes, minor allele frequency (MAF) lower than 0.01, call rate lower than 95%, and extreme departure from the Hardy Weinberg equilibrium (p-value < 10–15) were excluded. The number of genotyped animals in each population, based on birth year, and the descriptive statistics of the quality control are shown in Table 1.


TABLE 1. Descriptive statistics of the genomic datasets used for the analyses.
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Population Characterization and Genetic Diversity Metrics


Linkage Disequilibrium

The extent of linkage disequilibrium (LD) was calculated for each breed group using the –r2 flag available in the PLINK 1.9 software (Purcell et al., 2007). Therefore, LD was calculated as the squared correlation between two alleles at different loci (Hill and Robertson, 1968), i.e.,:

[image: image]

where D = f(AB) − f(A)f(B), and f(AB), f(A), f(a), f(B) and f(b) are observed frequencies of AB, A, a, B, and b, respectively. Within-population quality control was used to calculate LD for each breed (Table 1).

Average LD values were obtained through a binning approach, in which SNP pairs were sorted into one of 20 bins, based on pair-wise marker distances. The 20 distance bins (described later) were defined to represent the LD decay, as suggested by Barbato et al. (2015). Thus, as defined in preliminary analysis (results not shown), bins reported in this study were required to have at least 50 pairwise estimates and were defined as: lower than 0.01 Mb, from 0.01 until 0.10 defined every 0.01 Mb, from 0.1 to 1 Mb defined every 0.10 Mb, and greater than 1.10 Mb.



Consistency of Gametic Phase

Consistency of gametic phase was determined by calculating the square root of the LD values and adding the sign obtained from the disequilibrium (D) metric, as used in the calculation of LD. The D values were calculated using the –dprime-signed option available in the PLINK 1.9 software (Purcell et al., 2007). Thereafter, the consistency of gametic phase was assumed as the Pearson correlation coefficient between each two breed-group pair, using the signed-squared-root values. The breakdown in the consistency of gametic phase across distances was determined based on the same bins described above. Only SNPs in common (after within-population quality control) among all populations were used to calculate consistency of gametic phase.



Proportion of Polymorphic SNPs and Distribution of SNPs by MAF Range

The proportion of polymorphic SNPs (after within-population quality control) for each population was calculated based on SNPs with MAF greater than 0.01 (1%). The distribution of SNPs was calculated for 10 MAF range bins: from 0.01 until 0.50 defined every 0.05 points in MAF.



Heterozygosity

The observed heterozygosity (HO) per animal, within population, was calculated as the total number of heterozygotes divided by the total number of genotypes. The HO was compared to the expected heterozygosity (HE) under Hardy-Weinberg Equilibrium. These estimates were calculated after performing the genotypic quality control for each population (Table 1), except the Hardy Weinberg equilibrium criteria. Both metrics were calculated using the –hardy option in PLINK 1.9 (Purcell et al., 2007).



Average Pairwise Genetic Distance

The average pairwise genetic distance between individuals from each population was calculated as one minus the average proportion of alleles shared between two individuals (DST). Thus, the DST was calculated using the –genomic option available in the PLINK 1.9 software (Purcell et al., 2007) as:
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where IBS1 and IBS2 are the number of loci that share 1 or 2 alleles identical-by-state (IBS), respectively, and m is the total number of loci. LD pruning was performed prior the calculation of the genetic distance, by using the –indep option of PLINK 1.9, considering a window size of 50 SNPs, 5 SNPs to shift the window at the end of each step, and the variance inflation factor equal to 2 (PLINK default parameter). A genotypic quality control considering all sheep populations together was used to estimate the average pairwise genetic distance.



Runs of Homozygosity (ROH)

Runs of homozygosity were identified using the –homozyg option available in the PLINK 1.9 software (Purcell et al., 2007), considering the default options. The default options included the use of scanning window containing 50 SNPs and at most 1 heterozygous call in a ROH. In addition, the maximum average distance between SNPs in each ROH was set as 50 kb and the maximum distance allowed between consecutive SNPs in the same ROH was 1,000 kb. The minimum number of SNPs to be considered a ROH was calculated following Lencz et al. (2007), in order to minimize the probability of homozygous sequences to be observed by chance. The percentage of false positive ROH was set to 5% (i.e., p-value < 0.05).


Inbreeding Coefficients

Three different measurements of genomic inbreeding were calculated for all sheep populations: (1) genomic inbreeding based on excess of homozygosity; (2) genomic inbreeding based on the variance of additive genotypes; and (3) ROH-based inbreeding. The genomic inbreeding based on excess of homozygosity was calculated as currently performed in PLINK 1.9 (Purcell et al., 2007), using all genotyped animals and SNPs that remained from the genotypic quality control performed individually for each population (Table 1). The genomic inbreeding based on the variance of additive genotypes was calculated as the diagonal of the genomic relationship matrix (G, calculated as in VanRaden, 2008, method 1, considering the observed allele frequencies) minus 1. ROH-based inbreeding was calculated as the genome length covered by ROH divided by the total genome length across all 26 autosomes. Pedigree-based inbreeding was also calculated for the NWS animals, using the Meuwissen and Luo (1992) algorithm, as implemented in the INBUPGF90 software (Misztal et al., 2002). All animals related to the genotyped animals (i.e., that had any relationship with genotyped animals) were included in the analyses (n = 27,114 animals).



Clustering Populations and Admixture Analysis


Principal Component Analysis (PCA)

Principal component analysis was performed to investigate the genomic similarities between NWS and NZC sheep populations, using the –pca flag available in the PLINK 1.9 software (Purcell et al., 2007). Principal components were estimated based on the variance-standardized genomic relationship matrix (G, calculated as in VanRaden, 2008, method 2), in which the covariance for each SNP was divided by the respective SNP’s variance (calculated from the observed MAF). LD pruning was also performed and the genotypic quality control was performed considering all populations together.



Admixture Analysis

The genomic make-up (population structure) of each animal was assessed using the ADMIXTURE software (Alexander et al., 2009). In summary, this software clusters individuals into k pre-defined ancestral groups based on distinctive allele frequencies. The optimal k value was defined through a 10-fold cross-validation procedure, with k ranging from 1 to 25. Thus, the k value with the lowest cross-validation error was assumed as the optimal k value to represent the optimal number of ancestral breeds. Standard errors were estimated using 100 bootstrapping replicates, and the convergence acceleration method used was the quasi-Newton method, with q = 3 secant conditions (Alexander et al., 2009).

The genomic dataset after performing quality control considering all populations together and linkage disequilibrium pruning was used. As sample size can affect the Admixture analysis, a randomly selected sample of 150 animals from each sheep population was used for the analyses.



Genomic Population Tree

The genomic population tree was created using the IBS matrix generated by the –matrix option in PLINK 1.9 (Purcell et al., 2007). An average distance matrix among populations was calculated as 1 – (average IBS), which was used to plot the genomic population tree using the plot(hclust) function available in R (R Core Team, 2013). The same dataset described for the admixture analysis was used to create the genomic population tree.



Signatures of Selection


FST Statistic

FST was calculated for each SNP as the squared deviation of the average frequency in the NWS population from the average frequency across NZC populations (i.e., pairwise comparisons) divided by the allele frequency variance. This was implemented using the –fst option available in PLINK 1.9 (Purcell et al., 2007). Only SNPs that were in common for all breed groups were used to estimate the FST statistic. Genotypic quality control was performed considering all populations together. LD pruning was also performed. In this context, SNPs with FST values greater than the average plus three standard deviations from the mean were considered to be under selection.



RESULTS


Population Characterization and Genetic Diversity Metrics

The genetic diversity metrics estimated for NWS and NZC sheep populations are summarized in Table 2. The average distances between adjacent SNPs were similar across populations and ranged from 0.023 Mb (NWS, “Other Dual Purpose”, Lamb Supreme, and “Other Terminal Sire”) to 0.025 Mb (Finn). The average LD between adjacent SNPs ranged from 0.156 (Primera) to 0.231 (Finn). Among all NZC populations, “Other Dual Purpose” and “Other Terminal Sire” Composites presented the most similar average LD compared to NWS (∼ 0.17). The lowest consistency of gametic phase was estimated between NWS and Finn (0.397), and between NWS and Texel (0.443), respectively. Similar consistency of gametic phase was estimated between NWS and the other NZC populations (∼ 0.52). The distribution of SNPs by MAF ranges is shown in Figure 1. The proportion of polymorphic SNPs was lower in the Finn and Texel breeds (83.6 and 88.6%, respectively), and similar among the other populations (∼ 94.0%). However, the distribution of SNP percentage was approximately constant by MAF ranges in the different populations (Figure 1).


TABLE 2. Average distance between single nucleotide polymorphisms (Dist, in Mb), average linkage disequilibrium (LD), consistency of gametic phase (GP), proportion of polymorphic SNPs (Polim,%), observed (HO) and expected (HE) heterozygosity, average pairwise genetic distance (DST), and inbreeding coefficients estimated based on excess of homozygosity (FE), variance of additive genotypes (FG), and runs of homozygosity (FROH), for Norwegian White Sheep (NWS) and New Zealand Composite sheep populations.
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FIGURE 1. Distribution of single nucleotide polymorphisms (SNP percentage) by minor allele frequency ranges in the Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).


The HO was lower than the HE for NWS and “Other Dual Purpose” (Table 2). All populations had a similar average pairwise genetic distances (∼ 0.27). In general, inbreeding coefficients estimated based on the excess of homozygosity and variance of additive genotype were similar across populations. In addition, populations with HO lower than HE showed negative inbreeding coefficients estimated based on these methods (i.e., Finn, Primera, Texel, and Lamb Supreme). Low inbreeding coefficients were obtained for ROH-based inbreeding. Finn had the highest, and “Other Terminal Sire” and NWS the lowest levels of genomic inbreeding.


Detailed Study of NWS Inbreeding Coefficients

Due to the lack of reports on inbreeding levels in NWS, a detailed description will be provided here. The average (SD) pedigree-based inbreeding coefficients for the NWS were 0.009 (0.019) and 0.027 (0.025), considering all and only genotyped animals, respectively (up to 27 generations back). Pearson correlations between estimated inbreeding coefficients using different methods for the NWS are shown in Supplementary Table S1.

As expected, inbreeding coefficients estimated based on the excess of homozygosity and ROH had the highest correlation (0.99; Supplementary Table S1). On the other hand, correlations calculated between inbreeding coefficients estimated based on the variance of additive genotypes and the other methods were negative and of low magnitude (ranging from −0.15 to −0.37). The number of NWS genotyped animals and average inbreeding coefficients per birth year are presented in Supplementary Figure S1.

The majority of NWS genotyped animals were born in 2016 (∼ 35%). In addition, a strong decrease in inbreeding estimated based on the variance of additive genotypes was observed after 1998. The average inbreeding coefficients estimated based on the ROH was almost constant over time (∼ 0.01). A slight increase in pedigree- and excess of homozygosity-based inbreeding was observed over time, but still with a low average of 0.0011 and 0.0008 over years, respectively.



LD and Consistency of Gametic Phase

The LD decay pattern for all populations is shown in Figure 2. In general, the highest LD was observed for Finn (ranged from 0.322 to 0.100) and Texel (ranged from 0.305 to 0.086). The LD decay pattern for NWS was similar to the observed for “Other Terminal Sire” and “Other Dual Purpose”. Primera had the lowest LD levels across most distances and ranged from 0.248 to 0.025. At the average distance between adjacent SNPs (∼0.02 Mb), the average LD estimates were moderate in all populations (>0.15).
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FIGURE 2. Average linkage disequilibrium (LD) at given distances for Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).


The consistency of gametic phase between NWS and the NZC sheep populations is shown in Figure 3. Among all NZC sheep populations, Finn had the lowest consistency of gametic phase with the NWS at all analyzed distances (ranging from 0.443 to 0.026). On the other hand, Primera, Lamb Supreme, and “Other Dual Purpose” NZC populations had the highest consistency of gametic phase with NWS, respectively (ranging from 0.580 to 0.090, 0.571 to 0.098, and 0.561 to 0.090, respectively).
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FIGURE 3. Consistency of gametic phase at given distances between Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).




ROH

The descriptive analysis of the ROH is summarized in Table 3. The proportion of ROH segments in each length category for NWS and NZC sheep populations are shown in Figure 4. As the number of genotyped animals can influence the ROH detection, 150 randomly selected animals from each population were also used to estimate ROH (Supplementary Table S2 and Supplementary Figure S2).


TABLE 3. Descriptive statistics of the runs of homozygosity (ROH) for the Norwegian White Sheep (NWS) and New Zealand sheep populations.
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FIGURE 4. Proportion of runs of homozygosity segments in each length category for the Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).


As expected, a higher number of ROH segments were observed when including all the available genotypes in the analysis. However, the average number and size of segments, the average number of SNPs in a ROH, proportion of sites homozygous and the proportion of ROH segments in each ROH length category were similar in both scenarios (Table 3, Figure 4, and Supplementary Table S2, respectively).

The variation in the number of ROH segments observed in the NWS was similar to the variation observed in Primera and Lamb Supreme. However, the average number of ROH segments was higher for NWS (48.3) than Primera (16.4) and Lamb Supreme (32.4). In general, there was a large variability in the average genome size covered by homozygous segments across populations (Table 3). The maximum genomic region covered by ROH segments were observed in “Other Terminal Sire” (775,800 kb) and “Other Dual Purpose” (773,087 kb) animals, which are from breeds formed by numerous small-sized breeds. The NWS showed moderate average of total length of segments (177,692 kb). However, a high variability was observed among individuals. The average SNP density (number of SNPs per kb) and the proportion of homozygous sites were similar across all populations (∼ 5 SNPs/kb, and ∼0.997, respectively).

The majority of ROH segments observed in the composite breeds had short length (i.e., segments were shorter than 2,500 kb), indicating ancient inbreeding. Primera, Lamb Supreme, and “Other Dual Purpose” had the highest proportion of short segments compared to the other sheep populations, which is likely associated with ancient inbreeding. In all populations, only a small proportion of ROH segments were longer than 10,000 kb. Primera and Lamb Supreme had the lowest proportion of long segments (>2,500 kb; Figure 4).



Clustering Populations and Admixture Analysis


PCA

The principal component decomposition of the genomic relationship matrix into the first three principal components is shown in Figure 5. The first, second and third principal components explained 21.65, 12.68, and 9.32% of the total genomic variance, respectively. In general, the plot of the first and second (Figure 5A), and second and third (Figure 5C) principal components partially discriminate NWS, Finn, and the other NZC populations. However, the first and third principal components (Figure 5B) shows a common clustering among individuals from all populations.
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FIGURE 5. Principal component decomposition of the genomic relationship matrix colored by breed. Breeds from Norway (represented as red triangular dots): Norwegian White Sheep (NWS). New Zealand sheep populations (represented as circular dots): Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS). Letters in the figure represent the decomposition of the first and second (A), first and third (B), and second and third (C) principal components, respectively.




Admixture Analysis

Among all number of ancestral populations compared (i.e., k = 1, 2, …, 25), k = 21 had the lowest cross-validation error (Supplementary Figure S3), and therefore, it was used to represent the optimal number of ancestral populations in this study. The individual breed composition based on k = 21 is presented in Figure 6. Finn and Texel seem to have originated from a similar genetic resource, based on a lower number of ancestral populations compared to NWS and other NZC sheep populations. The ancestral populations that originated the NWS are similar to the ancestral populations that contribute in the development of “Other Dual Purpose”, Primera and Lamb Supreme.
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FIGURE 6. Breed composition per animal calculated for Norwegian White Sheep (NWS) and different New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).




Genomic Population Tree

The genomic population tree constructed based on the genomic distance estimated between NWS and the different NZC sheep populations is presented in Figure 7. In summary, the Lamb Supreme was grouped close to Primera, while Texel was grouped close to “Other Terminal Sire” breed group. The Lamb Supreme and Primera composite breeds were closer to “Other Dual Purpose” than Texel and “Other Terminal Sire” breed groups. In addition, Figure 7 shows a greater differentiation between Finn and NWS and the other NZC sheep populations. In this context, the NWS breed seems to be more related to the NZC populations than Finn.
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FIGURE 7. Genomic population tree comparing the genomic distance between Norwegian White Sheep (NWS) and different New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).




Signatures of Selection


FST Statistic

A summary of the FST statistics is shown in Table 4 and the percentage of SNPs falling into each FST category is illustrated in Figure 8. Most SNPs had very low FST level (<0.10; Figure 8), indicating that only a few genomic regions were potentially fixed due to intensive selection pressure. The majority of genomic regions were identified when contrasting NWS and Finn (5.19%), and NWS and Texel (2.20%). However, it is important to point out that the average of the FST statistics considering only the selected SNPs was low, even for those breeds (0.47 for NWS and Finn, and 0.41 for NWS and Texel).


TABLE 4. Mean and standard deviation (inside brackets) of the FST statistics considering all (FSTAll) and only the selected (FSTSelected) single nucleotide polymorphisms (SNP) for the contrasted sheep populations.
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FIGURE 8. Distribution of FST values for the Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).




DISCUSSION


Population Characterization and Genetic Diversity Metrics

The average distance between SNPs was similar across populations as all individuals were genotyped using an HD SNP chip panel. Finn presented the greatest average distance between SNPs (0.025 Mb; Table 2), which is a consequence of the larger number of SNPs excluded due to low MAF (Table 1). The larger number of SNPs excluded due to MAF is likely related to the smaller number of genotyped animals and the reduced genetic diversity compared to the other populations. In general, the distribution of SNP percentage was approximately constant by MAF ranges (Figure 1), and the proportion of polymorphic SNPs was high in all analyzed populations (Table 2). Thus, even though the proportion of monomorphic SNPs can be underestimated because not all breeds were included in the development of the HD SNP chip, there is an indication of high genetic diversity in all populations evaluated in this study.

Heterozygosity measures the level of genetic variation within a population. Thus, usually populations developed based on a large number of ancestral populations or under intensive crossbreeding schemes have high HO and HE (Brito et al., 2017a). In this context, the levels of HO and HE were high (>0.32; Table 2). The HO was slightly lower than HE in NWS and “Other Dual Purpose”. Brito et al. (2017a), studying the genetic diversity among Primera, Lamb Supreme, Texel, and “Other Dual Purpose” also reported similar levels of HO and HE. Similarly, Prieur et al. (2017), working with Romney, Coopworth, Perendale, and Texel NZC sheep populations, reported levels of heterozygosity around 0.36. Kijas et al. (2012), performing a genome-wide scan for the signatures of selection using 74 diverse breeds from all over the world, reported an average (SD) HO of 0.33 (0.03). Thus, even though the authors did not include the NWS and NZC populations (those studied here), HO estimates found in this study seems to corroborate with their report. On the other hand, higher heterozygosity estimates were reported by Vahidi et al. (2016) (∼ 0.72) and Neubauer et al. (2015) (∼ 0.75), using microsatellites to study Iranian indigenous and Hungarian sheep, respectively.

Usually average pairwise genetic distances have been used to access the genetic distance among populations (e.g., Tolone et al., 2012; Neubauer et al., 2015). However, within-population genetic distance is another metric of genetic diversity. In this study, similar average pairwise genetic distances were estimated in all populations (Table 2), suggesting similar levels of genetic diversity within each population. Gaouar et al. (2016), using microsatellite markers to estimate the population structure and genetic diversity of five Moroccan sheep breeds, reported higher levels of genetic diversity among animals (∼ 0.75). In dairy goats, Brito et al. (2017b) reported similar average pairwise genetic distances to those found in this study, for the Nubian and Toggenburg breeds (∼ 0.26).


Inbreeding

Inbreeding can be defined as the probability of an individual receiving, at a given locus, the same ancestral-allele from both parents (Wright, 1922). Several studies have reported the negative effects of inbreeding in sheep (e.g., Drobik and Martyniuk, 2016; Gholizadeh and Ghafouri-Kesbi, 2016), goats (Deroide et al., 2016; Mahmoudi et al., 2018), and cattle (Smith et al., 2010; Pereira et al., 2016; Reverter et al., 2017). Therefore, monitoring inbreeding is important to avoid inbreeding depression. On average, genotyped animals in this study had a low level of genomic inbreeding (Table 2). This might be attributed to the high gene flow between different flocks and recent use of crossbreeding in the development of composite populations.

Similar average inbreeding coefficients were estimated based on the excess of homozygosity and variance of additive genotype, which may be related to the fact that both approaches use the same SNP information (Purcell et al., 2007; VanRaden, 2008). The inbreeding based on ROH is highly dependent on the ROH length, which can change with the population (Rodríguez-Ramilo et al., 2019). Finn had the highest level of genomic inbreeding based on all metrics. This could be due to the reduced sample size and sampling approach (e.g., few flocks sampled). Nonetheless, careful mating decisions are advised especially in this breed.

Differences in the pattern of inbreeding coefficients over the years (Supplementary Figure S1) highlight the need of using different methods to better understand the levels of inbreeding in the flock. It is important to note that founder animals were assumed unrelated in this study, which explains the pedigree inbreeding values of zero in the first years. In this context, using different methods to deal with founder animals, such as meta-founders (Legarra et al., 2015; Van Grevenhof et al., 2019), might more accurately model the inbreeding level based on pedigree information. ROH-based inbreeding was similar over time, which might be due to the low levels of inbreeding in these populations.



LD and Consistency of Gametic Phase

The accuracy of genomic predictions and the power of QTL detection in genome-wide association studies are partially determined by the levels of LD in a population (Goddard, 2009). Usually crossbreed populations exhibit faster LD decay compared to pure breeds (Prieur et al., 2017). The largest LD values observed for Finn and Texel (Table 2 and Figure 2) indicate less independent segregation between SNP markers and QTLs. The low to moderate LD levels indicate that large training populations might be required to obtain accurate genomic breeding values (Meuwissen et al., 2001; VanRaden et al., 2009).

The performance of across-population genomic predictions are highly dependent not only on the levels of LD, but also on the consistency of gametic phase. The consistency of gametic phase measures the association between SNPs and QTLs alleles across breeds, as well as the QTL effects between breeds (Brito et al., 2017a). Thus, if the genetic distance between populations is large, the linkage phase will not be consistent across populations over long distances in the genome. The low consistency of gametic phase estimated between NWS and Finn indicates that there might be no improvement in the performance of genomic predictions by combining both breeds in a single training population. The consistency of gametic phase estimated among NWS and the other NZC populations was moderate (Table 2 and Figure 3), indicating a potential benefit on using a common training population for genomic predictions. This is even more important for smaller training populations (reduced number of animals with genotypes and phenotypes for certain traits and populations) and has yielded positive results (Lund et al., 2010; Zhou et al., 2019). Furthermore, Kizilkaya et al. (2010) and Toosi et al. (2010) showed, based on simulation studies, that denser SNP panels are needed to perform across-breed genomic predictions, in order to establish a high consistency of gametic phase among SNPs and QTLs in the different breeds.

Similar LD estimates, but higher consistency of gametic phase were found by Brito et al. (2017a) when studying the relatedness between NZC populations. Prieur et al. (2017) reported lower LD estimates (∼ 0.10) in Coopworth, Romney, Perendale, and Texel. The variation in LD and consistency of gametic phase estimates corroborates with Kijas et al. (2012), who found large differences in the estimates among 74 worldwide sheep breeds. No reports were found in the literature for NWS. Sheep LD estimates reported in the literature are usually lower than estimates reported for other livestock species (e.g., Khatkar et al., 2008; Porto-Neto et al., 2013a, b). This might be due to a smaller bottleneck in the domestication process, use of a larger number of breeds and reduced use of reproductive technologies (e.g., artificial insemination).



ROH

The ROH pattern contributes to a better understanding of population history (Purfield et al., 2012, 2017; Bjelland et al., 2013). ROH can arise when the same chromosomal segment, inherited from the same common ancestor by both parents, is passed together to the offspring (Broman and Weber, 2002; Rodríguez-Ramilo et al., 2019). Short ROH are usually related to ancient inbreeding as the probability of recombination from repeated meiosis events will “break-up” the chromosomal segments (Purfield et al., 2012; Rodríguez-Ramilo et al., 2019). On the other hand, long ROH segments are related to recent inbreeding. Longer average ROH segments were observed for Texel and Finn (Table 3). However, this might be due to the reduced sample size and sampling process (previously mentioned). The highest proportions of short ROH segments observed for Primera, Lamb Supreme, and “Other Dual Purpose” (Figure 4) indicate that these populations are not highly affected by recent inbreeding.

The similar ROH results observed when using all genotyped animals or a random sample (Tables 3, Supplementary Table S2, Figures 4, and Supplementary Figure S2) indicates that the latter can be used to accurately estimate ROH, in order to speed up the analysis. However, the number of ROH segments identified per animal in each population (Table 3) is related to the number of animals used in the analysis. Comparing ROH results from different studies is challenging as there are multiple factors that can affect the identification of ROH, including the genotype quality control (Albrechtsen et al., 2010), the number of heterozygous genotypes (Purfield et al., 2012), and the different thresholds imposed during the sequence analysis (Howrigan et al., 2011). Therefore, as suggested by Rodríguez-Ramilo et al. (2019), there is a great need to establish consistent criteria to identify and quantify ROH. The criteria used in this study were similar to those used by Brito et al. (2017b).



Clustering Populations and Admixture Analysis


PCA

A partial discrimination between NWS, Finn, and the other NZC populations was observed when analyzing the first and second, and second and third principal components (Figure 5). However, the first and third principal components showed an overlap among individuals from all different sheep populations. These findings suggest that there is moderate genetic similarity between these populations, which may be due to their reasonably similar development history.



Admixture Analysis

The choice of the optimal number of ancestral populations is a notoriously difficult statistical problem, which also requires knowledge on the populations’ history (Pritchard et al., 2000; Alexander et al., 2009; Brito et al., 2015). The large optimal number of ancestral populations (k = 21) is likely due to the fact that the populations studied here are, mainly composite breeds formed based on multiple (>20; Brito et al., 2017a) founder breeds with different origins. Finn and Texel seemed to have a lower number of ancestral populations, which may be because these are the most specialized breeds included in this study. This is supported by the historical process reported by Brito et al. (2017a) and Prieur et al. (2017) for the NZC Texel breed. The ancestral populations from NWS and “Other Dual Purpose” were similar, especially for the great amount of contribution from the ancestral populations represented by the blue and pink colors in Figure 6. In this context, Brito et al. (2017a), studying the history of NZC breeds, reported that the most common breeds that contributed to the “Other Dual Purpose” population were Coopworth, Romney, Highlander and Landmark.



Genomic Population Trees and Signatures of Selection

The genomic population tree constructed based on the genomic distance estimated between NWS and the different NZC sheep populations showed that there is some differentiation between Finn and NWS and the other NZC sheep populations (Figure 7). In this context, NWS appears to be more related to the other NZC populations than to Finn. Most SNPs had very low FST values (Figure 8), and the average of FST statistics considering only the selected SNPs was low (Table 4). These findings suggest that no genomic regions were potentially under selection in the studied populations.



CONCLUSION

Relatively high genetic diversity was observed within each sheep population. The NWS breed seems to be moderately related to the NZC sheep populations, especially Primera, Lamb Supreme and “Other Dual Purpose”. The moderate genetic relationship between populations from both countries is likely due to the high number of ancestral breeds used in their development. The findings reported here indicate a promising opportunity for collaborative genomic analyses involving NWS and NZC sheep populations.
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A variety of statistical methods, such as admixture models, have been used to estimate genomic breed composition (GBC). These methods, however, tend to produce non-zero components to reference breeds that shared some genomic similarity with a test animal. These non-essential GBC components, in turn, offset the estimated GBC for the breed to which it belongs. As a result, not all purebred animals have 100% GBC of their respective breeds, which statistically indicates an elevated false-negative rate in the identification of purebred animals with 100% GBC as the cutoff. Otherwise, a lower cutoff of estimated GBC will have to be used, which is arbitrary, and the results are less interpretable. In the present study, three admixture models with regularization were proposed, which produced sparse solutions through suppressing the noise in the estimated GBC due to genomic similarities. The regularization or penalty forms included the L1 norm penalty, minimax concave penalty (MCP), and smooth clipped absolute deviation (SCAD). The performances of these regularized admixture models on the estimation of GBC were examined in purebred and composite animals, respectively, and compared to that of the non-regularized admixture model as the baseline model. The results showed that, given optimal values for λ, the three sparsely regularized admixture models had higher power and thus reduced the false-negative rate for the breed identification of purebred animals than the non-regularized admixture model. Of the three regularized admixture models, the two with a non-convex penalty outperformed the one with L1 norm penalty. In the Brangus, a composite cattle breed, estimated GBC were roughly comparable among the four admixture models, but all the four models underestimated the GBC for these composite animals when non-ancestral breeds were included as the reference. In conclusion, the admixture models with sparse regularization gave more parsimonious, consistent and interpretable results of estimated GBC for purebred animals than the non-regularized admixture model. Nevertheless, the utility of regularized admixture models for estimating GBC in crossbred or composite animals needs to be taken with caution.

Keywords: admixture models, breed composition, bovine, linear regression, SNP, sparse regularization, nonconvex penalty


INTRODUCTION

The estimation of genomic breed composition (GBC) of individual animals is useful in many aspects, such as predicting heterosis (Akanno et al., 2018), correcting population stratification effects in genetic association studies (Jiang et al., 2010; Mebratie et al., 2019), understanding the population structure and breeding history of the breeds of interest (Gobena et al., 2018), and making management decisions for crossbreeding programs (Pickrell and Pritchard, 2012; Akanno et al., 2018). In the past decades, pedigree information has been used to determine the breed composition of animals (Frkonja et al., 2012). The reliability of pedigree-estimated breed composition, however, can be compromised by missing, inaccurate, or incomplete records (vanRaden and Cooper, 2015). Another advantage with a pedigree-based estimator is that it yields the same GBC estimates for full-sib progenies of the same family. In reality, they can vary drastically in their actual genomic composition inherited from ancestors as the result of crossing-overs and chromosomal assortments taking place during meiosis. Instead, GBC can be estimated more accurately using genomic data, such as SNPs (Chiang et al., 2010; Kuehn et al., 2011; He et al., 2018) and sequence data (Bansal and Libiger, 2015; Taliun et al., 2017).

A variety of statistical methods and software packages have been developed to estimate GBC (Alexander et al., 2009; Kuehn et al., 2011; Frkonja et al., 2012; Bansal and Libiger, 2015). For example, a likelihood-based admixture model (vanRaden and Cooper, 2015; He et al., 2018) has been widely used. It postulates that a genotype of an SNP for a given animal is a random event following a probability being a mixture of the corresponding allele frequencies of its ancestors or ancestral breeds (Bansal and Libiger, 2015). A challenge with this model is that it tends to produce non-zero GBC components produced to reference breeds that shared genomic similarities with a test animal, which in turn offsets the estimated GBC for the breed to which this animal belongs. The consequence is that not all purebred animals have 100% estimated GBC of their respective breeds, which we refer to as the “Impure purebred Paradox.” Statistically, it indicates an elevated false-negative rate in the identification of purebred animals. The same situation happens with other statistical models such as linear regression. In dairy cattle, for example, the Council of Dairy Cattle Breeding (CDCB) in the USA has established a procedure termed Breed Base Representation (BBR) representing five dairy purebred reference groups (PRG): Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey. The measure of the same name estimated the genomic breed composition of individual animals using linear regression, with the estimates restricted to be between 0 and 100% for each PRG and summed up to 1 per genotyped animal. Their results showed that the mean BBR percentages were 94.8, 97.0, 97.8, 99.0, and 96.5%, respectively for all males genotyped for these breeds (201,283 animals), and 95.0, 97.1, 96.9, 98.9, and 96.5%, respectively, for all genotyped females (994,949 animals). Similar results were reported in beef cattle as well by Kuehn et al. (2011), who estimated GBC in seven breeds using linear regression. Their results showed that the regression coefficients varied from 0.737 (Angus) to 0.981 (Hereford). The regression coefficients were low for Angus (0.737) and Red Angus (0.883) because these two beef breeds share a high genetic similarity.

In the present study, regularized admixture methods were utilized to produce sparse solutions of admixture coefficients, thus imposing penalties on small, non-essential components due to genomic similarity. Three forms of sparse regularization were incorporated into the admixture models, which included the L1 norm penalty, minimax concave (MCP) penalty, and smooth clipped absolute deviation (SCAD). The L1 norm is the most commonly used convex surrogate (Tibshirani, 1996), whereas the other two are non-convex (Fan and Li, 2001; Zhang, 2010). The difference between convex optimization and non-convex optimization is that the former has one minimum, and hence the local optimum is also the global optimum. However, the latter can have multiple local minima, which are not all the same as the global minimum (Zhao et al., 2018). Nonconvex penalties can often lead to a better recovery in signals or variable selection in machine learning but at the expense of introducing a more challenging optimization problem (Jiao et al., 2016). The purpose of the present study was to evaluate the performance of the three sparsely regularized admixture models in the estimation of GBC for purebred and composite animals, respectively, in comparison with the non-regularized admixture model as the baseline model (Bansal and Libiger, 2015).



MATERIALS AND METHODS


Animals and Genotype Data

The dataset used in the present study included 107,593 animals from ten breeds, nine pure breeds, and one composite breed. All these animals were genotyped on the GeneSeek Genomic Profiler (GGP) bovine 50 K version 1 SNP chip (49,463 SNPs), except that 349 Brahman animals were genotyped on the Illumina 777K bovine SNP chip (777,962 SNPs). The reference populations consisted of eight Bos taurus taurus breeds and one Bos taurus indicus cattle breed. The former included two dairy breeds (Holstein and Jersey) and six beef breeds (Angus, Hereford, Limousine, Shorthorn, Simmental, and Wagyu). Brahman is the only indicus cattle breed used in the present study. Summary statistics of the reference animals and their genotypes were shown in Table 1.


Table 1. Descriptive statistics of genotype data for the ten cattle breeds used in the present study.

[image: Table 1]

Genomic breed composition was estimated based on SNP panels. The largest panel had 15,708 SNPs (referred to as the 16K SNP panel) which were common SNPs across five commercial bovine SNP chips, namely, Illumina Bovine high-density (HD or 777K) chip, GGP ultra-high-density (UHD or 150K) SNP chip, GGP HD (80K) SNP chip, GGP 50K version 1 SNP chip, and GGP low-density (LD or 40K) version 4 SNP chip. The main reason for us to use the shared content of these commercial SNP chips was to facilitate the estimation of GBC using currently available SNP chips in the market. Then, three panels of uniformly-distributed SNPs (1K, 5K, and 10K) were selected from the list of 16K common SNPs using the selectSNP package (Wu et al., 2016). The reason for using subsets of uniformly-distributed SNPs in the present study was because they tended to minimize linkage disequilibrium on average, given the number of reference SNPs.

The reference animals for each of the nine pure breeds (not including Brangus) were selected using the 5K SNP panel based on the likelihood approach previously described by He et al. (2018). Briefly speaking, the likelihood that an animal belonged to a specific breed was computed, assuming independent multinomial distributions of the SNP genotypes, computed for each animal. Then, outliers were excluded from each reference population by removing animals with (-2)log(likelihood) exceeding a given cutoff value (which was taken to be two by default). This process excluded 2,170 animals in total, retaining 101,818 “representative” reference animals for the nine purebred cattle breeds. The distributions of (−2)loglikelihoods computed for the animals in the nine pure breeds are shown in Figure S1.



Admixture Model

Consider M SNPs, each having two alleles A and B. The three possible genotypes were coded numerically to be 2 (AA), 1 (AB), and 0 (BB). Let there be L reference (or putatively ancestral) populations, and let qjk be the frequency of allele A at the kth SNP in the jth reference population. For a given animal, denote [image: image] = [x1, x2, …, xk] ′ to be the vector of admixture coefficients, where xj represents the genomic admixture proportion of this animal of the jth population. Then, weighted allele frequency at SNP k, given the allele frequencies and the admixture proportions for each reference population, was computed to be [image: image]. Assuming Hardy-Weinberg equilibrium (HWE) at each SNP locus, a genotype, say gk at locus k, is an instance generated with the following probabilities:

[image: image]

The log-likelihood of all the observed genotypes on this individual was given by:

[image: image]

The above likelihood (2) can be written as:

[image: image]

where [image: image]. Our goal was to determine the values for the admixture coefficient vector [image: image] = [x1, x2, …, xk]′ that maximizes [image: image] subject to the constraints xj ≥ 0 and [image: image].



Regularized Admixture Model With L1 Norm Penalty

In the ADMIXTURE-L1 model, estimates of sparse solution [image: image] of the model (2) were obtained by maximizing the logarithm of likelihood of the data with sparsity enforcing L1-norm penalty on parameters {xj} ( j = 1, ⋯, k) as follows:

[image: image]

where λ(λ > 0) is Lagrange multiplier (i.e., a regularization parameter) that determines the amount of sparsity in xj.

The gradient of [image: image] with respect to xj were given by

[image: image]

where [image: image] denotes the sum of the admixture coefficients.

In (4), [image: image] of [image: image] is differentiable with respect to [image: image] Solving (4) is complicated by the non-differentiability of [image: image] at [image: image]. We used the subgradient with minimum norm (Bertsekas et al., 2003) of [image: image] in (4) as the steepest descent direction and took a step resembling the Newton iteration in this direction with a Hessian approximation to solve the above problem (Gill et al., 1984). Subgradient methods are among the most popular ways for non-differentiable optimization (Bertsekas et al., 2003). More detail on the calculation of the search direction is available in Appendix A.



Regularized Admixture Model With MCP or SCAD Penalty

In ADMIXTURE-MCP and ADMIXTURE-SCAD, the estimate of sparse solution [image: image] of the model (2) is obtained by maximizing the logarithm of likelihood of the data sparsity enforcing non-convex penalty MCP on the parameters {xj} ( j = 1, ⋯, k) as follows:

[image: image]

where λ(λ > 0) and [image: image] (I{ϵ} = 1 if ϵ holds, and I{ϵ} = 0 otherwise).

Given γ > 1, SCAD has

[image: image]

In the above, γ is the concavity parameter of MCP or SCAD, which essentially characterizes the concavity of the MCP or SCAD regularizer: A larger γ implies that the regularizer is less concave. In this paper, we let γ = 3 as usual. Please refer to Appendix A for obtaining the subgradient of rλ(|xj|) and Appendix B for computing GBC using Algorithm 1 by just replacing the subgradient of |xj| with the subgradient of rλ(|xj| ).




RESULTS AND DISCUSSION


Determining Optimal Values for the Regularization Parameter λ

The optimal values for the parameter λ of the three sparsely regularized admixture models were obtained using three-fold cross-validation, based on the 5K SNP panel, and illustrated in three cattle breeds (Angus, Holstein, and Limousine). The non-regularized admixture model served as the baseline model for comparison because it was equivalent to ADMIXTURE-L1 with λ = 0. Briefly, all the animals for each breed were randomly split into three subsets. Then, the animals in two subsets were combined and used as the reference population for estimating the allele frequencies of SNPs in the 5K panel. The third subset was used as the testing set, in which GBC was computed for each animal. The procedure rotated three times so that each subset was used for testing once and only once. The percentage of animals with GBC = 1 for their respective breeds was computed for each of the three sparsely regularized admixture models under varied settings for the regularization parameter λ. Then, the optimal values of regularization parameter λ were taken as such that each sparsely regularized admixture model gave a higher percentage of purebred animals with 100% GBC of their respective breeds than the non-regularized ADMIXTURE (λ = 0). By this criterion, the range of optimal values of λ for the three regularized admixture models appeared to be 0 < λ < 0.60 for Holstein, 0 < λ < 0.36 for Angus, and 0 < λ < 0.30 for Limusine (see Figure 1). In Holstein, the maximal percentage of individual animals with GBC =1 was 92.7% (ADMIXTURE-L1 with λ = 0.1), 99.5% (ADMIXTURE-MCP with λ = 0.25), and 99.7% (ADMIXTURE-SCAD with λ = 0.25). In Angus, the maximum percentage of individuals with GBC = 1 obtained using the regularized admixture models was 92.9% for ADMIXTURE-L1 with λ = 0.1, 97.6% for ADMIXTURE-MCP with λ = 0.25, and 98.2% for ADMIXTURE-SCAD with λ = 0.25. In Limousine, the maximal percentage of individuals with GBC =1 was relatively lower, which was 64.6% (ADMIXTURE-L1 with λ = 0.1), 70.9% (ADMIXTURE-MCP with λ= 0.25), and 71.4% (ADMIXTURE-SCAD with λ = 0.20). We, therefore, decided to take λ = 0.1 for Admixture-L1, and λ = 0.25 for Admixture-MCP and Admixture-SCAD to estimate GBC in the following analyses.


[image: Figure 1]
FIGURE 1. Percent of individuals with GBC=1 obtained by the three regularized ADMIXTURE methods, each with a varying value for the regulation parameter lambda (λ). Curves were extracted from the surfaces in this figure by fixing the GBC =1 for ADMIXTURE-L1, ADMIXTURE-MCP, and ADMIXTURE-SCAD in Angus, Holstein, and Limousin, respectively.




Estimated Genomic Breed Composition for Purebred Animals

With the optimal λ values given to the regularized models and λ = 0 for the non-regularized model, GBC was estimated for animals in each of the nine pure breeds using the four statistical models. In Table 2 are the percentages of animals by the ranges of estimated GBC obtained using the four models with the 16K SNP panel for Angus, Holstein, and Limousine, respectively. Estimated GBC for these three breeds using all the four SNP (1K, 5K, 10K, and 16K) are shown in Tables S1– S3. Furthermore, estimated GBC for all the six breeds (also including Brahman, Hereford, Jersey, Shorthorn, Simmental, and Wagyu breeds) using the 5K SNP panel are shown in Tables S2–S5. Hereafter, the percent of animals with GBC = 1 in each breed was taken empirically to be the power for the identification of purebred animals, though this criterion was stringent.


Table 2. Percent (%) of animals by categories of estimated GBC obtained using four statistical models with the 16K SNP panel in Angus (A), Holstein (H), and Limousine (L).

[image: Table 2]

The power of identifying purebred animals varied with the size of SNP panels. The 1K SNP panel had the highest power for identifying purebred animals in most of the nine breeds, e.g., Angus and Limous, and the power of identifying purebred animals decreased as the SNP panel size increased (Table S1). In Holstein, the 1K SNP panel had either greater or approximately comparable power as the 16K SNP panel (Table S1). The loss in power as the panel size increased was large with the non-regularized model but very slightly with the three regularized models. A possible reason is the following. The admixture assumed that all SNP loci were independent in the likelihood. However, this assumption did not hold precisely in reality due to linkage disequilibrium (LD) between SNPs. With uniformly-distributed SNPs, we found that the 1K SNP panel had the smallest LD between SNPs, compared to the larger SNP panels. Thus, the 1K SNP panel gave more accurate likelihood values computed for these animals than those obtained with larger SNP panels, subsequently leading to the highest power for identifying purebred animals. Nevertheless, the models with regularization seemed to be more robust to the violation of the model assumption about the independence of SNPs than the non-regularized model.

Of the four admixture models, the regularized admixture models had higher power in the identification of purebred animals than the non-regularized admixture model. With the 16K panel, for example, the percentage of animals with Angus GBC =1 was 69.6% with the non-regularized admixture model, and it was substantially higher (94.1–97.3%) with the three regularized models (Table 2). Similar trends were observed in all the other breeds (Tables S1–S7). Concerning the three models with regularization, the two models with non-convex penalties (ADMIXTURE-MCP and ADMIXTURE-SCAD) had a higher power for identifying purebred animals than the one with the L1 norm penalty (ADMIXTURE-L1).

The identification power of purebred animals varied drastically with the nine breeds. The percent of animals with GBC = 1 was the lowest (47.4–74.4%) in Limousine (Table 2) and the highest (99.7–100%) in Brahman (Table 2 and Tables S1–S7). Because Brahman was the only indicus cattle breed, which had distant relationships with the taurus cattle breeds, the power of identifying purebred Brahman cattle was thus the highest. For the remaining seven breeds, the percent of animals with GBC =1 obtained using the three regularized admixture models with the 5K SNP panel was high in Angus (93.3–98.4%) (Table S1), Hereford (97.6–99.8%) (Tables S5–S7), Holstein (93.2–99.7%) (Table S1), Jersey (97.4–99.3%) (Tables S5–S7), and Wagyu (95.1–98.8%) (Tables S5–S7), but was it was relatively low in Shorthorn (79.5–83.7%) and Simmental (60.1–65.1%) (Tables S5–S7). There were mainly two main reasons for the low power of purebred identification in Limousine and Simmental. In Limousine, for example, there was an unignorable number of the “Limousine” animals, which were possibly “progressive” crosses of Limousine with Angus arity of Limousine cattle with Angus (Figure 2) and not excluded when applying the cutoff of (−2)loglikelihood > 2 during the data cleaning (Figure S1F). Thus, the estimated GBC for these “Limousine” animals showed an unignorable portion of Angus GBC (Figure 2). The three regularized admixture models improved the power substantially but limited by the portion of “progressive” crosses of Limousine. A similar situation was observed with Simmental cattle as well.


[image: Figure 2]
FIGURE 2. Histogram of the means of estimated GBC for 5,041 Limousin animals, obtained using four statistical models, respectively. Bar plot of the mean GBC across the 10 breeds, which were estimated by ADMIXUTUR ADMIXUTURE-L1 (λ = 0.1), ADMIXUTURE-MCP (λ = 0.25), and ADMIXUTURE-SCAD (λ = 0.25) using 5K SNP panel. Standard deviations (SD) is abled on the bar of Limousin.




Estimation of GBC for Composite Animals

The four admixture models were also used to estimate GBC for the 3,605 Brangus animals. This composite beef breed was developed to utilize the superior traits of Angus and Brahman cattle. For official registration, a Brangus animal is expected to be genetically stabilized at 3/8 Brahman and 5/8 Angus, solid black or red, and polled, and both sire and dam must be recorded with the International Brangus Breeders Association (IBBA). Unlike estimating GBC for a purebred animal, our interest for a composite animal was to know how much of its genome was inherited from each of its ancestral breeds.

With the nine reference populations and the 5K SNP panel, small admixture coefficients showed up for non-ancestral breeds, such as Hereford, Limousine, Shorthorn, and Simental, in addition to the two large admixture components for the two ancestral breeds (Figure 3). Because of these non-zero GBC for non-ancestral breeds, the estimated GBC of Brangus pertaining to the two ancestral breeds (Angus and Brahman) were underestimated, and these two ancestral admixture components did not add up to 1 (Table 3). For example, based on the non-regularized ADMIXTURE model, these Brangus were on average 54.3% Angus and 25.1% Brahman. The three regularized admixture models elevated the estimated GBC for the two ancestral breeds, possibly owing to the penalties imposed on small GBC components of non-ancestral breeds, but the estimated GBC for Angus (59.5–61.5%) and Brahman (27.9–28.6%) were still were under-estimated, and they did not add up to 1 (Table 3). It is a well-known fact that the Brangus are descendants of Angus and Brahman. Hence, one can reasonably compute the GBC of Angus and Brahman, respectively, as relative ratios of admixture components corresponding to these two breeds only while ignoring estimated GBC for the remaining breeds. The latter can be understood as the conditional probability of GBC of the two ancestral breeds for Brangus, given the probability that Angus and Brahman are their ancestors. The “conditionally” estimated GBC for these Brangus using the non-regularized admixture model was on average 68.3% Angus and 31.7% Brahman, whereas, with the three regularized admixture models, average estimated GBC was 67.9–68.2% Angus and 31.8–32.1% Brahman (Table 3). Alternatively, GBC for these Brangus was estimated by including only the two ancestral breeds in the reference. With the latter approach, the average estimated GBC for Brangus was 71.1% Angus and 28.9% Brahman based on the non-regularized admixture model and 74.6–77.1% Angus and 22.9–25.4% Brahman based on the three regularized admixture models (Table 3).


Table 3. Percent (%) of animals by categories of estimated GBC obtained using four statistical models in Brangus.
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FIGURE 3. Histogram of the means of estimated GBC for 3,605 Brangus(0.625 Angus, 0.375 Brahman) obtained the four statistical models, respectively. Bar plot of the mean GBC across the ten breeds, which were estimated by ADMIXUTUR, ADMIXUTURE-L1 (λ = 0.1), ADMIXUTURE-MCP (λ = 0.25), and ADMIXUTURE-SCAD (λ = 0.25) using 5K SNP panel. Standard deviations (SD) were abled on the Angus and Brahman bars.


The estimated Angus composition in these Brangus animals, as obtained using the four models, were presumably higher than the pedigree-expected Angus ratio of 62.5%. There were possibly two reasons for the elevated Angus GBC. Firstly, the Brangus have been selected for traits with which Angus has advantages. Hence, the selection, in turn, could shift allelic frequencies more toward the Angus origin. Secondly, there was a mixture of UltraBlack animals in this Brangus dataset. A King-robus principal component analysis (PCA) based on the genotypes of the 3,605 Brangus was conducted to infer the genetic relationships of these Brangus animals using the King-robus software (Manichaikul et al., 2010). The first principal component (PC1) and the second principal component (PC2) described 25.1 and 11.6%, respectively, of the total variation of Angus GBC in this Brangus population. Three clusters were identified in Figure 4, which suggested population stratification of Brangus that varied in their genomic composition for Angus. The majority (~86%) of these Brangus cattle were 55–80% Angus. For the remaining Brangus cattle, around 4% of animals were < 55% Angus, and around 10% of animals were >80% Angus. The Brangus cattle having >80% Angus genomic component were mostly “Ultrablack” (UB) animals. In October 2005, the International Brangus Breeders Association (IBBA) board of directors approved the creation of the “Ultrablack” program to take advantage of the strengths of the Brangus and Angus. A 1/2 “Ultrablack” animals (i.e., the progeny produced from mating a registered Brangus to a registered Angus) were, on average, 81.25% Angus. Finally, these sparsely-regularized models consistently produced larger estimated GBC than the non-regularized model, which might be an indication of possible estimation errors. The true GBCs of these Brangus animals, however, were unknown.


[image: Figure 4]
FIGURE 4. Population distribution across the first (PC1) and second principal component (PC2) on the genotype data of the Brangus individuals. Animals are labels based on their Angus percent of GBC estimated by ADMIXTURE.


Finally, two assumptions under the present models are worth discussion. First, it was assumed that each reference population comprised samples of purebred animals only. This assumption, however, can be violated in reality because a low level of introgression in the reference samples can occur. For example, Brahman cattle carry an average composition of 91% Bos indicus and 9% Bos taurus (O'Brien et al., 2015). Some of the taurine genome retained in Brahman even resulted from recent artificial selection (Fortes et al., 2013). Clustering errors indistinguishable from the admixture methods occur when ghost admixture (i.e., introgression from an unsampled population) or recent bottlenecks are embedded into the demographic history of an analyzed population (Lawson et al., 2018). Nevertheless, this assumption was taken approximately for the convenience of modeling and computation. We also observed that, given a significant number of animals in a reference population, the deviation in estimated allelic frequencies for this reference population due to the mixture of a tiny portion of cross-bred animals tended to ignorable. Therefore, its impact on the estimated GBC of the test animals also tended to be trivial as well. In the Brahman population, for example, there are 25 crossbred progenies of Brahman, which were excluded from the reference population in the present study. But including them in the reference had very little impact on the estimated allelic frequencies and the estimated GBC of the test animals in the present study.

Secondly, the present admixture models assumed that the allele frequencies of the ancestral breeds are known and are estimated a prior, which differed from the unsupervised model-based clustering algorithms. The latter was originally conceived to not only estimate ancestry in admixed individuals but also to study the trajectory of divergence between ancestral populations that produced the empirical data. This is important because modern-day breeds of cattle—especially Bos taurus breeds—were formed quite recently (i.e., in an evolutionary scale) from mixtures of previously geographically isolated lineages that were only moderately divergent (FST < 0.10), and are not necessarily pure distinct lineages from a population genetics stand point. Assuming fixed allele frequencies for ancestral ignore the trajectory of genetic characteristics of ancestral populations over time, but it simplifies the computing in practice. This is particularly advantageous with the proposed sparsely-regularized admixture models, which are often more computationally intensive than the non-regularized admixture models. Finally, some methods can even accommodate complex admixtures, such as support vector machines (Haasl et al., 2013; Durand et al., 2014). Comparison of our methods with support vector machines was not evaluated in the present study but can be of interest for future studies.




CONCLUSION

Estimated GBC for purebred animals is complicated by the presence of small admixture components assigned to non-ancestral breeds due to the genomic similarities. Thus, not all purebred animals have 100% GBC for their respective breed categories, leading to an increased false-negative rate for pure-breed identification. Otherwise, a lower cutoff of estimated GBC for purebred animals needs to be used instead, which, however, is arbitrary. Our results showed that the use of sparse regularization in the admixture models with appropriately-chose values of λ effectively shrank non-ancestral GBC estimates toward zero, therefore reducing the false-negative rate and at the same time increasing the identification power of purebred animals. Of the three sparse regularized admixture models, the two models with nonconvex penalties (ADMIXTURE-MCP and ADMIXTURE-SCAD) outperformed the admixture model with L1 norm penalty (ADMIXTURE-L1).

The power of breed identification of purebred animals varied with reference SNP panels used in the non-regularized admixture model. The 1K panel giving the greatest power in most breeds because it had the smallest average LD between SNPs, which approximately satisfied the model assumption about the independence of SNPs. Therefore, the computed likelihood values using the 1K panel are more accurate than larger panels (5K, 10, and 16K). Nevertheless, the three regularized admixture models were more robust to the violation of model assumption for SNP independence than the non-regularized admixture model when estimating GBC using various SNP panels, because the power of purebred identification with the regularized admixture model decreased at a considerably slower rate than the non-regularized admixture model as the SNP panel sizes increased. As a rule of thumb, a cutoff of GBC for pure-breed identification is recommended to be 95% for the non-regularized admixture model and between 0.98 and 0.99 for regularized admixture models, assuming no significant population stratification and no significant genomic correlations between the reference breeds.

For composite animals, the three admixture models with sparse regularization tended to produce larger GBC for these Brangus animals than the non-regularized admixture model, which possibly indicated the presence of estimation bias with the regularized models. While imposing sparse regularization on estimated GBC is favorable for reducing false-negative error rate when identifying purebred animals, it can lead to bias in estimated GBC for crossbred or composite animals, in particular when dynamic segregation was still going on. Hence, the utility of regularized admixture models for estimating GBC in composite animals needs to be taken with caution and the results need to be checked against those obtained using non-regularized admixture models.

Finally, a software package that implements the admixture models with regularization is made available for non-commercial use (The web link will be provided once the paper is accepted).
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MiRNA Profiling in Pectoral Muscle Throughout Pre- to Post-Natal Stages of Chicken Development
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MicroRNA (miRNA) is known to be an important regulator of muscle growth and development. The regulation of microRNA on the skeletal muscle phenotype of animals is mainly achieved by regulating the proliferation and differentiation of myoblasts. In this study, we sequenced a total of 60 samples from 15 developing stages of the pectoral muscle and five other tissues at 300 days of Tibetan chicken. We characterized the expression patterns of miRNAs across muscle developmental stages, and found that the chicken growth and development stage was divided into early-embryonic and late-embryonic as well as postnatal stages. We identified 81 and 21 DE-miRNAs by comparing the miRNA profiles of pectoral muscle of three broad periods and different tissues, respectively; and 271 miRNAs showed time-course patterns. Their potential targets were predicted and used for functional enrichment to understand their regulatory functions. Significantly, GgmiRNA-454 is a time-dependent and tissue-differential expression miRNA. In order to elucidate the role of gga-miRNA-454 in the differentiation of myoblasts, we cultured chicken myoblasts in vitro. The results show that although gga-miRNA-454-3p initiates increase and thereafter decrease during the chicken myoblasts differentiation, it had no effect on primary myoblasts proliferation. Furthermore, we confirm that gga-miRNA-454 inhibits myoblast differentiation by targeting the myotube-associated protein SBF2.

Keywords: chicken, miRNA, myoblast, differentiation, gga-miRNA-454


INTRODUCTION

Skeletal muscle is a type of striated muscle tissue responsible for all voluntary movement in animals. It accounts for half of the total body weight of the chicken. It is an important organization involved in regulation of animal metabolism, and strength (Pavlath and Horsley, 2003). The growth and development of skeletal muscle have an essential influence on meat production performance of poultry (Anne et al., 2016). Previous research on Tibetan chicken muscles involved physical characteristics and processing properties (Qiu et al., 2011). Some assessed the adaptation of lowland chickens to highland from several aspects of liquid characteristics, blood gas and blood volume (León and Monge, 2004). Previous reports on Tibetan chickens have focused mainly on the physiological, biochemical and molecular mechanisms related to the adaptation of high-altitude environments (Monge and Leónvelarde, 1991; Xiao et al., 2005; Weber, 2007). However, there are few studies on the growth and development of Tibetan chickens, especially the regulation of miRNA on muscle growth and development of Tibetan chicken.

Skeletal muscle development is a complicated biological process controlled by various regulatory factors and signaling pathways. The muscles in avian development are composed of multiple myogenic groups (Cossu and Molinaro, 1987; Stockdale and Jeffrey, 1987). Myoblasts from embryonic and adult chicken development exhibit intrinsically distinct classes of myogenic populations. Embryonic myoblasts are most abundant on day 5, whereas fetal myoblasts are most abundant between days 8 and 12 (Stockdale, 1993). In chicken, during early embryonic and late fetal development, several myoblasts fuse to form myotubes containing multiple muscle colonies with various types of fast and slow myosin heavy chain (Bentzinger et al., 2012). Moreover, it has been reported that the initial stage of myogenesis in poultry is 3–7 days in the embryonic stage, and the subsequent fetal stage or the second stage is 8–12 days in the embryonic stage (Cossu and Molinaro, 1987). The proliferation of chicken embryonic myoblasts and the process of their differentiation into myotubes largely determines the number of muscle fibers after birth (Brown, 1987; Goldspink and Ward, 1979). MiRNAs are involved in various aspects of skeletal muscle development by targeting transcription factors at different stages (Güller and Aaron, 2010). Due to the tissue specificity of miRNA expression, several muscle-specific miRNAs (“myomiRs”), such as miRNA-1, miRNA-133, miRNA206 and miRNA-499 have been identified that control signaling pathways mediating skeletal myogenesis (Horak et al., 2016). MiRNAs are considered as an integral part of muscle formation regulatory network, and some miRNAs are colinearly expressed in time and space during body development (Wienholds and Ronald, 2005). Of note, some miRNAs are expressed in diverse tissues of animals and belong to non-specific miRNAs. However, the expressions of miR-23–27–24 clusters have limited effect on muscle growth and development in animals (Lee et al., 2019).

The study of chicken miRNA regulation mainly involves development in many aspects, including embryos, bones, gonads, and neuro development, the rest are in terms of immune function as well as viral infection and treatment (Hornstein et al., 2005; Dahlberg and Lund, 2007; Rodriguez et al., 2007; Hicks et al., 2008; McGlinn et al., 2009; Zhao et al., 2009; Bannister et al., 2011; Burnside and Morgan, 2011; Song et al., 2013). Studies of miRNAs in chicken embryos have shown that fibroblast growth factor (FGF)-mediated signaling negatively regulates the initiation of miR-206 gene expression, demonstrating for the first time that developmental signaling pathways impact miRNA expression (Sweetman and Tina, 2006). In addition, by comparing the miRNA expression profiles of myoblast in the proliferative stage, it was found that miR-221 and miR-222 were significantly down-regulated during chicken myoblast differentiation (Cardinali et al., 2009). Expression of the cell cycle inhibitor protein gene (p27) regulates differentiation and maturation of skeletal muscle cells (Cardinali et al., 2009). Recently study showed that under hypoxia conditions, specific microRNA (miRNA) regulates lung development, and hypoxia induces the elevation of miR-15a, thereby inhibiting the expression of Bcl-2 protein in Tibetan chicken (Du et al., 2017).

This study constructed 13 miRNA libraries of pectoral muscles and 6 different tissues at different growth stages, screened time-dependent and tissue-differential expression miRNAs, and further analyzed possible target genes and related regulatory pathways of these miRNAs to enrich chicken miRNA The information reveals the spatiotemporal specific expression characteristics of miRNAs in muscles, and lays the foundation for a deep understanding of their role in regulating muscle growth and development.



MATERIALS AND METHODS


Ethics Statement

All experimental protocols were subject to the Institutional Animal Care and Use Committee in the College of Animal Science and Technology, Sichuan Agricultural University, China.



Sample Collection and RNA Extraction

The muscle tissue used in embryonic period of this experiment was collected by incubation of the eggs in time, and all the fertile eggs were bought from Jiuding yuan Ecological Livestock and Poultry Breeding Co., Ltd. located in Mao County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province. The entire embryo organization was collected on the 5th day (E5) and 7th day (E7) of the embryonic stage. We collected pectoral muscle tissue from six experimental periods at the embryonic stage of 9th day (E9), 12th day (E12), 15th day (E15), 18th day (E18), 20th day (E20) and the first day after hatching (D1). Further, we collected pectoral muscle tissue from seven periods post-hatching, including the 36th day (D36), 100th day (D100), 300th day (D300), 2nd year (2Y), 5th year (5Y), 8th year (8Y) and 12th year (12Y), and six tissues originated from different germ layers at the age of 300th day including brain, liver, ovary, spleen, kidney, pectoral muscle. All samples were collected in triplicates. To collect various tissues, birds were slaughtered after giving anesthesia, and samples were wrapped in aluminum foil, flash frozen in liquid nitrogen and transported to laboratory, then stored at −80°C until RNA extraction. Total RNA was extracted from individual sample using RNAiso Plus reagent (TaKaRa) following manufacturer’s recommendations. RNA was quantified by Nanodrop ND-2000 spectrophotometer (Thermo Fisher Scientific, United States); and RNA purity was evaluated by agarose gel electrophoresis. All RNA samples were stored at −80°C for subsequent study.



Small RNA Sequencing and Data Analyses

Both Small RNA library construction and sequencing were performed Illumina (Solexa) platform (ANNOROAD, Beijing, China). The raw reads stored in FASTQ-formatted files were subjected to quality filtering using fast-tool kit software to remove low quality reads (>20% bases with a mass value <30), thereby the high-quality reads were obtained. Cutadapt software (Martin, 2011) was used to further remove the sequencing adapters and fragments <18 nt and >30 nt in length. Subsequently, the remaining 18∼30 nt clean reads were aligned to Repbase database1 to exclude transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA) using bowtie2 software (Langmead, 2010) with perfect matches. The high quality reads were mapped to Gallus gallus genome to identify known mature miRNAs or pre-miRNAs using miRBase database v.212. The unannotated sequences were mapped to reference genome of zebra finch (Taeniopygia guttata) is closely related species with chicken in order to predict novel miRNAs using mapper.pl script from mirDeep2 (Friedlander et al., 2008). We take miDeep2 scores ≥5 and the secondary structure p value as yes as candidate miRNAs. A candidate novel miRNA predicted by at least two samples was considered as a novel miRNA.



Analysis of miRNA Expression Profiles

Hierarchical clustering analysis was performed based on a distance matrix of the Pearson correlation of the samples. Principal component analysis finds low-dimensional linear combinations of data with maximal variability. To identify miRNAs which were differentially expressed across development, we separated 13 time points to three periods based on the HCL results and used t-test to detect differentially expressed miRNAs (DE-miRNA) between the three periods and six tissues of D300, respectively, genes with P-value ≤ 0.05, fold change (FC) ≥2 or ≤0.5 were denoted as DE-miRNAs (Ying et al., 2014). The R package, maSigPro (Nueda et al., 2014) was used for time course analysis of expression data. A cut-off value for the R-square of the regression model was taken as 0.6.



Functional Analysis of Target Genes

Prediction of DE-miRNAs targets was performed by the intersection of miRDB3 and TargetScan4. Next, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for functional annotation of target genes were performed using Metascape5 (Zhou et al., 2019). All genes in the genome were used as enrichment background with p-value < 0.01, a minimum count of three, and an enrichment factor >1.5.



Quantitative Real-Time PCR Analysis

We perform Real-time quantitative PCR analysis for randomly selected 5 known differentially expressed miRNAs and 3 novel miRNAs. First-strand cDNA was synthesized using miRNA first-strand cDNA synthesis kit (Aidlab Biotechnology Co. Ltd., Beijing, ChinaqRT-PCR was carried out using the TransStart® Top Green qPCR SuperMix (TransGen Biotech, Beijing, China). The qRT-PCR was performed using mRNA-specific primers and a universal miRNA reverse primer 5′-TCTAGAGGCCGAGGCGGCCGACATGT-3′. The primer sequences are listed in the Table 1. U6 gene and β-actin gene were used as endogenous internal controls for normalization. We collected cells before transfection as a control group. The cells in this control group were not treated with mimic, inhibitor, mimic NC, inhibitor NC. When studying the expression of gga-miR-454 during the growth of primary myoblasts, we counted the gga-miR-454 expression collected at 24 h as 1, and compared it with other time points to calculate the difference. The 2–ΔΔCT method was used to determine the relative miRNA and mRNA abundance (Livak and Schmittgen, 2001).


TABLE 1. The primer information of Q-PCR.
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Preparation of Chicken Embryo Extract

The entire embryo was collected by removing the head and internal organs and washed with DMEM and minced into small fragments with sterilized scissors. The fragments were mixed with DMEM/F12 medium in a 1:1 volume with a 50 mL syringe repeatedly. Repeated freeze-thaw three times in −80°C. or liquid nitrogen (Kita et al., 1998). After centrifugation at 10,000 g for 10 min, supernatant was carefully collected into a 15 mL centrifuge tube and stored frozen at −20°C. Aggregates were removed by centrifugation at 700 g for 10 min prior to use of the reagents, followed by the addition of 5% complete medium supernatant.



Isolation and Culture of Primary Myoblasts

Embryonated chicken eggs (Arbor Acres) were purchased from Large Poultry Breeding professional cooperative in Xinjin County, Chengdu, Sichuan province, China. We refer to the methods reported in the previous literature (Gerstenfeld et al., 1984; Yablonka and Nameroff, 1987; Hartley et al., 1992). Eggs were maintained in incubator at 37.5°C with a relative humidity of 60% for 10 days. Myoblasts were isolated from pectoralis muscle by employing enzyme digestion and Percoll density centrifugation. Briefly, the pectoral muscle tissue from 10 embryos was collected under aseptic conditions and washed with phosphate-buffered saline (PBS) containing penicillin (100 units/mL) and streptomycin (100 μg/mL). Then muscle tissues were minced with sterilized sharp scissors into small fragments of about 1mm3. The fragments were digested with 0.1% concentration of the type I collagen enzyme (Solarbio C8140) of two volumes of meat for 30 min at 37°C, and the supernatant was discarded after centrifugation at 300g for 5 min. Digestion was repeated with 0.25% trypsin (Gibco) of three volume of remaining muscle tissue for 20 min at 37°C. Then, the muscle lysate was sieved sequentially filtered with a 200 and 400 mesh stainless steel strainer to remove large debris and the myoblasts were collected by centrifugation of 2000 rpm for 10 min. A cell population that contained skeletal myogenic precursor cells was recovered from 20/60% percoll interface (Yablonka et al., 1988). The isolated cells were seeded in growth medium (GM) containing DMEM/F12, 5% chicken embryo extract and 15% fetal bovine serum (FBS). To induce myoblasts differentiation, cells were seeded in differentiation medium (DM) containing 2% horse serum in DMEM.



Cell Staining

The concentration of myoblast cells was adjusted to about 4 × 104 cells/well and then inoculated into the 24-well plates (5% CO2 incubator at 37°C), which was then induced to differentiate after 24 h. It is fixed and dead at the time point of 24, 48, and 72 h of the paving slab, respectively. Specifically, the cells were first washed with preheated PBS for 5 min each, then fixed in methanol for dehydration (5 min), and then dried on the ultra-clean table for 10 min. Cells were then incubated with May-Grünwald dilution solution (1:3 in the sodium phosphate buffer) for 5 min and washed twice with distilled water. Finally, cells were stained with Giemsa dilution solution (1:5 in distilled water) for 20 min and then rinsed thrice with distilled water. The cells visualized under an optical microscope and microscopic images were captured with 100× magnifications.



Chicken Myoblasts Transfection

When chicken myoblasts reached approximately 80% confluence, cells were treated with micrONTM miRNA mimic (100 nM) and micrOFFTM miRNA inhibitor (200 nM) supplied by Ruibo Biotechnology Co., Ltd., Guangzhou. Negative controls for mimics and inhibitors were provided by Ruibo Biotechnology Co., Ltd., Guangzhou, using 100 nM and 200 nM transfection concentrations, respectively. In this in vitro transfection cell experiment, we used used miRNA mimic NC (100 nM) and miRNA inhibitor NC (200 nM) as negative controls, respectively. In addition, the recommended range is 10∼200 nM by Ruibo Biological, usually a larger number of miRNA inhibitors are needed to observe a better inhibitory effect, which is equivalent to several times the miRNA mimic amount, which may be the mechanism of competitive inhibition with miRNA inhibitors and efficiency. The cells were transfected by using Lipofectamine 3000 reagent (Invitrogen, United States), according to manufacturer’s direction.



Immunofluorescence Analysis

The cells were fixed in 4% paraformaldehyde for 15 min at room temperature in a 24-well plate. Permeable cells were treated with 1% Trion X-100 for 10 min at 4°C. The cells were then blocked with 2% bovine serum albumin for 30 min at 37°C. Subsequently, cells were stained with MyHC primary antibody (1:100, F59 Santa) at 4°C overnight and were incubated with goat anti-mouse IgG conjugated to TRITC (1:100) (Zenbio). Finally, the cells nuclei were stained with DAPI (1 μg/Ml) to protect the cells from counterstaining by incubating the cells for 10 min at room temperature. The cells were observed and photographed using a fluorescent microscope.



MiRNA Target Identification

miRNA and potential mRNA interaction binding sites were predicted by Targetscan6 (Lewis et al., 2005)andRNAhybrid2.27 (Gruber et al., 2008). QPCR was used to detect the expression of target genes after transfection of mimics and inhibitors.



Dual-Luciferase Assay

The 3′-UTR of SBF2 was amplified and cloned into the pmirGLO dual-luciferase reporter eukaryotic expression vector completed by Shanghai Bioengineering Co., Ltd., Shanghai. The mutant SBF2 3′UTR plasmids were generated by missing the seven gga-miRNA-454 binding sites (5′-TGCACTA-3′). DF-1 cell (Fudan University Cell Bank) were co-transfected with 100 ng of the wild or mutant SBF2 3′UTR dual-luciferase reporter and 0.25 μL of the miR-454 mimic or negative control duplexes using Lipofectamine 3000 reagent (Invitrogen, United States) in 24 well plate. After transferring into the cells for 48 h, the cells were collected and the reaction intensity of firefly fluorescence and sea-renal fluorescence was measured, and the ratio of the two reaction intensities was calculated to correct.



Statistical Analysis

Expression of all genes and miRNAs were calculated using 2–ΔΔCT method, all data were represented as mean ± SEM based on at least 3 replicates for each treatment. The ANOVA program of IBM SPSS20 Statistics (SPSS Inc, Chicago, IL, United States) software was used to analyze the relative expression of each gene, and the multiple comparison was performed by Duncan method. The final result is plotted using GraphPad Prism 5 (GraphPad Software, Inc, San Diego, CA, United States).



RESULTS


RNA-Seq Result

Collect 13 different periods of pectoral muscle tissue and two chicken embryos and five other tissues of D300, three replicates per sample, a total of 60 samples were used for next-generation sequencing. We obtained a total of 745,165,420 raw reads, with an average of 12,419,423 reads per sample. The raw reads Q20 was between 98.89–95.75% of these 60 samples. Q30 was between 97.88 and 91.6% (Supplementary Table S1). Then the information of the novel miRNAs of all samples was predicted, and the miRNA of at least two samples were predicted as the novel miRNA. Statistics of miRNA species in different developmental stages and in different tissues (Supplementary Figure S1). We calculated the base lengths of Clean data in 15 periods and found that the miRNA length distributions in different periods were basically the same, mainly concentrated between 21–24 nt (the percentage of totals ranged from 69.89 to 90.43) (Supplementary Figure S2). The number of miRNA expression gradually decreases with the development of muscles and eventually stabilizes. A total of 834 miRNAs including 631 preciously identified miRNAs and 203 novel miRNA candidates were obtained across 13 pectoral muscle developmental stages. Additionally, a total of 672 miRNAs including 548 known miRNAs and 124 novel miRNAs were identified among six tissues collected at the age of 300 days (Supplementary Table S2). Sequencing data has been uploaded to NCBI (GSE 139304).



MiRNAs Can Be Classified as Three Time-Dependent Patterns According Their Expression Profiles

In order to obtain an overview of the miRNA expression profiles of 60 Tibetan chicken samples, we performed hierarchical clustering analysis and principal component analysis. PCA and HCL analysis was performed using the expression profiles of different periods of miRNAs. Three clusters containing early -embryonic (Pre_e, including E9 and E12), late embryonic (Lat_e, including E15, E18, E20, and D1) and postnatal stages (Bir_g, including D36, D100, D300, Y2, Y5, Y8, and Y12) were found (Supplementary Figures S3B, S3D). Indicates that major distinctions in the miRNA expression profiles occurred during these three time periods. Clustering analysis revealed that the lowest miRNA expression similarity was shown between Y8 and Y12 (Pearson correlation, R = 0.809), whereas E9 and E12 showed the highest expression correlation (Pearson correlation, R = 0.996), suggesting the correlation between embryonic prophase were relatively weak compared to with the post-embryonic growth periods stages. Further, the different tissue samples examined were separated based on tissue type, in which the brain, liver, kidney and heart were clearly separated (Supplementary Figures S3A, S3C).



GgmiRNA-454 Is a Time-Dependent miRNA

Time series analysis was performed to explore the developmental dynamics of miRNAs across chicken pectoral muscle. A total of 271 miRNAs showed time-course patterns during the stage of chicken growth and developmental curve, divided into 9 clusters (Supplementary Tables S7, S8). Gga-miRNA-454 showed a trend of increasing first, then decreasing, and finally stabilizing in the four cluster (Figure 1). To evaluate the stage-dependent transcriptomic activities across the life cycle of the chicken, we performed differential miRNA expression analysis by comparing any two adjacent developmental stages. These developmental stages include early -embryonic, late embryonic and postnatal stages. A total of 81 dynamic DE-miRNAs were obtained by time difference analysis (Figure 2A). The results showed that 144 miRNAs (32 up-regulated 112 down-regulated)were detected in early -embryonic stage and late embryo stage (Pre_E vs Lat_E), and 287 miRNAs (88 up-regulated, 199 Down-regulation) were detected in late postnatal and postnatal growth stages (Lat_E vs Bir_G), and 357 miRNAs (82 up-regulation, 275 down-regulation) were detected in early -embryonic and post-natal growth stages (Pre_E vs Bir_G) (Figures 2B–D). GgmiRNA-454 is differentially expressed in the above three periods. In addition, a total of 21 miRNAs from tissue differential analysis also predicted targets for 291 unique genes (Figure 3A). Gga-miR-454 has significant differences compared with other tissues (Figure 3B).
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FIGURE 1. Time-series analysis.
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FIGURE 2. Time difference analysis: (A) The Venn diagram indicates the number of dynamic miRNAs; (B) miRNAs differentially expressed between Pre_E and Lat_E; (C) miRNAs differentially expressed between Lat_E and Bir_G; (D) miRNAs differentially expressed between Pre_E and Bir_G.
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FIGURE 3. Organizational difference analysis: (A) The Venn diagram indicates the number of different tissues miRNAs; (B) Expression of gga-miRNA-454 in different tissues.




Target Prediction and Functional Roles

A total of 21 DE-miRNAs from tissue differential analysis predicted a target of 291 unique genes. GO functional classification and enrichment analysis of each gene was annotated by Metascape. The top 20 GO enrichment items were classified into three functional groups: biological process group (11 items), molecular function group (5 items), and cellular component group (4 items). Target genes were mainly enriched in Oocyte meiosis, Hedgehog signaling pathway, Tight junction, Regulation of actin cytoskeleton, Signaling pathways regulating pluripotency of stem cells, Wnt signaling pathway, TGF-beta signaling pathway, MAPK signaling pathway, Pathways in cancer, etc. (Figures 4A,B and Supplementary Tables S3, S4).
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FIGURE 4. Gene Ontology and KEGG Pathway Enrichment Analysis of target genes of stage development and tissue differentially expressed miRNAs: (A) Heatmap of Gene Ontology (GO) of target genes of tissue differentially expressed miRNAs enriched terms colored by p-values; (B) Heatmap of Kyoto Encyclopedia of Genes and Genomes (KEGG) of target genes of tissue differentially expressed miRNAs enriched terms colored by p-values; (C) Heatmap of Gene Ontology (GO) of target genes of stage development differentially expressed miRNAs enriched terms colored by p-values; (D) Heatmap of Kyoto Encyclopedia of Genes and Genomes (KEGG) of target genes of stage development differentially expressed miRNAs enriched terms colored by p-values.


There are 58 miRNAs that overlap in dynamic DE-miRNA and time-course miRNA. A total of 58 time-dependent miRNAs predicted a target of 2,546 unique genes. In addition, enrichment results of 58 time-dependent miRNAs were obtained (Figures 4C,D and Supplementary Tables S5,S6). The top 20 GO enrichment items were classified into three functional groups: biological process group (13 items), molecular function group (2 items), and cellular component group (5 items). Regarding KEGG, Target genes were significantly enriched in 20 canonical pathways including Thyroid hormone signaling pathway, Breast cancer, TGF-beta signaling pathway, Dopaminergic synapse, AMPK signaling pathway, Endocytosis Axon guidance, Pathways in cancer, Hippo signaling pathway, Autophagy -animal, MAPK signaling pathway, etc.



Verify the Accuracy of the High-Throughput Sequencing by q-PCR

In order to verify the accuracy of high-throughput sequencing, we randomly performed q-PCR detection of 6 known differentially expressed miRNAs and 3 novel miRNAs. The results showed that q-PCR expression of miRNAs were completely consistent with our sequencing data (Supplementary Figure S4). We found that miR-133c-3p had highest expression level in discrete periods among nine miRNAs, and the trend of expression level increased with time. MiR-133-3p is a key regulatory molecule of MiR-133 family, specifically expressed in muscle and is capable of inducing myoblast proliferation (Chen et al., 2006).



Primary Chicken Myoblasts Show Muscle Fusion and Achieve Transfection Efficiency

Cells were stained at the 24, 48, and 72th of differentiation to visualize myotubes, cytoplasm and nuclei, the nucleus and cytoplasm of the cells can be clearly seen (Figures 5A–C). From the attachment of the cells for 24 h, the cells are found in a single state. At 48 h, the cells become full and elongated at a dense concentration, and many long spindle-like solitary nuclei appear in the field of view, then 72 h, saw the number of myotubes increased, the shape became thicker. At the same time, we measured the transfection efficiency of cells cultured in vitro (Figures 5D,E).
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FIGURE 5. Cell staining and transfection efficiency detection: (A) 24-h Giemsa staining (100×); (B) 48-h Giemsa staining (100×); (C) 72-h Giemsa staining (100×); (D) expression of gga-miR-454 after cell transfection of inhibitor; (E) expression of gga-miR-454 after cell transfection of mimic; (F) expression of gga-miR-454 during the growth of chicken primary myoblasts.




Gga-miRNA-454 Has no Effect on Myoblast Proliferation but Inhibits Myoblast Differentiation

We found that miR-454 showed a trend of increasing initially and then decreasing during the process of myoblast proliferation and differentiation, suggesting its potential involvement in myoblast proliferation and differentiation processes (Figure 5F). To observe the effects of gga-miRNA-454 on myoblast proliferation, we transfected chicken primary myoblast cultured in GM with an miR-454 mimic and inhibitors or scrambled negative control duplexes. Giemsa staining demonstrated that proliferation rate of miR-454-transfected cells was remarkably reduced compared with that of the control cells with larger myotube density in the visual field (Figures 6A–D), whereas miR-454 loss-of-function promoted cell differentiation rate, indicating that miR-454 can inhibit chicken myoblast proliferation. The QPCR assay showed that the mRNA expression level of MyHC and MyoG in the gga-miRNA-454 mimic group was significantly decreased at 24 and 48 h after transfection (Figures 6E,F). NC in the Figure 6E and Figure 6F represents miRNA mimic negative control. In the gga-miRNA-454 inhibitor group, the mRNA expression levels of MyHC and MyoG showed a significant increase at 24 and 48 h (Figures 6G,H). NC in the Figure 6G and Figure 6H represents miRNA inhibitor negative control. 5-Ethynyl-2′-deoxyuridine (EdU) cell proliferation assay showed that miR-454-transfected cells had no effect on myoblast proliferation (Figure 7). In addition, miR-454 reduced the formation of myotubes, and the area of myotube leveled with MyHC was significantly decreased (P < 0.001) after 48 h of differentiation in the transfected gga-miR-454 mimic compared with that of control group (Figures 8A,B). In contrast, the area of MyHC fluorescently labeled protein was significantly increased after gga-miR-454 inhibitor transfection (P < 0.001) (Figures 8C,D). Therefore, the above results showed that gga-miRNA-454 play an inhibitory role in the differentiation of chicken myoblasts.
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FIGURE 6. Effect of transfection of gga-miRNA-454 mimics and inhibitors on myoblast differentiation: (A) Giemsa staining of transfected gga-miRNA-454 mimic cells (40×); (B) Giemsa staining of transfected mimic-NC cells (40×); (C) Giemsa staining of transfected gga-miRNA-454 inhibitor cells (40×); (D) Giemsa staining of transfected inhibitor-NC cells (40×); (E–H) Detection of expression of differentiated genes after transfection of mimetics and inhibitors by QPCR.
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FIGURE 7. Effect of gga-miR-454 on myoblast proliferation: (A) EDU detection of myoblasts by mimics and inhibitors of gga-miR-454; (B) Percentage of EDU-positive cells transfected with gga-miR-454 mimics and inhibitors.



[image: image]

FIGURE 8. Immunofluorescence of transfected gga-miR-454 mimic and inhibitor (100×): (A) Immunofluorescence of transfected gga-miR-454 mimic; (B) Immunofluorescence area statistics of different transfected gga-miR-454 mimic; (C) Immunofluorescence of transfected gga-miR-454 inhibitor; (D) Immunofluorescence area statistics of different transfected gga-miR-454 mimic.




Gga-miRNA-454 Inhibits Myoblast Differentiation by Targeting the Myotube-Associated Protein SBF2

Target gene prediction results showed that chicken SBF2 3′UTR has a potential binding site with miR-454 with a good target relationship (ΔG = −25.6 kcal/mol) (Figure 9A). Here, we studied the involvement of SBF2 in the inhibition of miR-454 during chicken myoblast proliferation. QPCR results shown that SBF2 gene expression levels were significantly inhibited in the gga-miRNA-454 mimic group compared with the control group, whereas significantly increased in the gga-miRNA-454 inhibitor group. SBF2 can be a potential target gene for miRNA-454 (Figure 9B). The transfection of myoblasts with miR-454 in GM downregulated SBF2 mRNA expression level, and the inhibition of endogenous miR-454 in GM using miR-454 inhibitor increased SBF2 mRNA expression. In addition, to validate whether SBF2 is a target gene of miR-454, we constructed two dual-luciferase reporters with the wide-type and mutant 3′-UTRs of SBF2, respectively. Compared with miR-NC, pmirGLO-miR-454 induced a significant decrease in normalized luciferase activity of the vector containing the putative miRNA-binding site. In addition, the mutation of the miR-454-responsive elements in the binding site of SBF2-3′-UTR (SBF2-mut) resulted in loss of the inhibitory effects of miR-454 (Figure 9C). These results suggested that the predicted site is a target of miR-454 and is responsible for miR-454 targeting of the SBF2-3′-UTR.
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FIGURE 9. Targeting relationship between gga-miRNA-454 and SBF2 gene: (A) Target gene prediction; (B) Detection of SBF2 gene expression after transfection of mimic and inhibitor by QPCR; (C) Dual luciferase activity assay.




DISCUSSION

As a public data for miRNA expression of Tibetan chicken, we have generated a comprehensive chicken RNA-Seq transcriptomic encompassing five organs across 15 developmental stages from juvenile to old age for both sexes. The main muscle fibers of birds are formed within six days of hatching and the secondary muscle fibers are mainly formed during the embryo development at 12–16 days (Liu, 2012). Taking into account this, the embryonic period of day 5, 7, 9, 12, 15 and day 1 after birth has become a common time point for studying muscle development. Currently, there are few reports on the role of miRNAs in chicken muscle growth and development. Here, we predicted 203 and 124 novel miRNAs in Tibetan chicken from sequencing of samples from different periods and different tissue, respectively. Further functional characterization of these miRNAs had a deeper understanding of Tibetan chicken muscle specificity and developmental process dependence. In this study, a total of 21 DE-miRNAs were screened based on tissue difference analysis, Of them, miR-1 and miR-133 were known for their key roles in skeletal muscle development (Keith and Wen, 2015). In addition, miR-193 has been reported to be associated with myotonic dystrophy type 2 (DM2) (Greco et al., 2012) and miR-365 associated with inhibition of vascular smooth muscle cell proliferation (Peng et al., 2014). There are also some miRNAs to be taken into account, such as miR-6553-3p, miR-1744-3p, miR-1635.

Based on the results of sample correlation analysis, it is found that miRNAs of stage E9 and E12 were closely interrelated, E15, E18, E20, and D1 shared a similar gene expression signature, whereas D36, D100, D300, Y3, Y5, Y8, and Y12 were clustered together. This result is consistent with the stage of chicken muscle growth and development. Therefore, we divide the 13 periods into three major periods: early -embryonic, late embryo and postnatal stages. Finding miRNAs related to muscle development using differential expression analysis and single time series analysis methods in different periods. A total of 271 time-course miRNAs were screened by applying biological methods, including some muscle-specific miRNAs, such as miR-1 and miR-133, and some non-specific miRNAs, such as miR-23a, miR-26a, miR-181, miR-222 have been reported to be involved in the regulation of muscle growth and development (Dey et al., 2012; Hudson et al., 2014; Bloch et al., 2015). A total of 58 time-dependent miRNAs are both DE-miRNAs and show time-course patterns. The time-dependent miRNAs included let-7, miR-133, miR-208b miR-499. Many miRNAs had been found to participate in the differentiation of muscle fiber types in developing embryos or adult muscles. The regulatory roles of these miRNAs are mainly related to TGF-beta signaling pathway, AMPK signaling pathway, MAPK signaling pathway, etc. These pathways had been reported to be involved in muscle growth and development (Schiaffino et al., 2013; Thomson, 2018; Du et al., 2019). The most significantly enriched pathway was MAPK signaling pathway. Regulation of extracellular growth factors through activation of this pathway affects myoblast differentiation. Notably, Endocytosis Axon guidance, Pathways in cancer, Hippo signaling pathway, Autophagy -animal, Thyroid hormone signaling pathway, Breast cancer, also related to muscle growth and development. When the miRNA mimic transfection concentration reached 100 nM and the miRNA inhibitor concentration reached 200 nM, it could achieve the effect of over-expression and inhibit miRNA-454 (Figures 5D,E).

Among these miRNAs, miR-454 attracted our attention because it is a time-dependent and tissue-differential expression miRNA. In poultry, only little research on chicken gga-miR-454 have been reported. Recently, gga-miR-454 has been identified as direct inhibiter of infectious bursal disease virus (IBDV) replication by targeting the viral genomic segment B (Fu et al., 2018). In addition, gga-miR-454 expression was found lower in eight diverse tissues of chickens not infected with Marek’s disease virus, which may play a major role in the pathogenesis of Marek’s disease and tumor transformation (Yao et al., 2008). The miR-454 has been shown to be down-regulated in certain human malignancies and is associated with tumor progression. It plays a major role in colorectal cancer, prostate cancer, gastric cancer, lung cancer, liver cancer, and osteosarcoma (Wu et al., 2014; Liang et al., 2015; Song et al., 2017).

The miR-454 regulates triglyceride synthesis in bovine mammary epithelial cells by targeting PPAR-γ, which may be a crucial factor in enhancing the quality of dairy products (Zhang et al., 2019). Hitherto, the function of miRNA-454 has been explored in several human diseases, and its response to pathogenic infection, however, its role in muscle development has not yet been reported (Wu et al., 2014; Liang et al., 2015; Song et al., 2017). We have shown that gga-miR-454 was up-regulated during the proliferation and then gradually down-regulated during of chicken myoblasts differentiation. Our results demonstrated that gga-miR-454 inhibits the expression of MyHC and MyoG gene, and inhibit myoblast differentiation.

The dual luciferase reporter gene assay indicated that the SBF2 gene is a target gene of gga-miR-454. The SBF2 gene encodes a member of the pseudo phosphatase which belongs to myotube-associated protein family (Othmane et al., 1999). In addition, interference with SBF2 expression can inhibit the proliferation and invasion of human oral cancer cells and induce apoptosis, suggesting that the role of SBF2 gene can be determined by inhibiting the TGF-β pathway (Tian et al., 2016). Two representative TGF-β family members including TGF-β and BMP are endogenously control myogenesis the TGF-β pathway in a phase-specific manner (Furutani et al., 2011). We assumed that the SBF2 gene may also exert an effect on myoblast differentiation by acting on TGF-β pathway. However, the precise adjustment mechanism still worth for further study.



CONCLUSION

In this study, we sequenced a total of 60 samples from 15 developing stages of the pectoral muscle and five other tissues at 300 days of Tibetan chicken. We characterized the expression patterns of miRNAs across muscle developmental stages, and found that the chicken growth and development stage was divided into early -embryonic, late embryo and postnatal stages. We identified 81 and 21 DE-miRNAs by comparing the miRNA profiles of pectoral muscle of 3 broad periods and different tissues, respectively; and 271 miRNAs showed time-course patterns. Their potential targets were predicted and used for functional enrichment to understand their regulatory functions. Significantly, GgmiRNA-454 is a time-dependent and tissue-differential expression miRNA. In order to elucidate the role of gga-miRNA-454 in the differentiation of myoblasts, we cultured chicken myoblasts in vitro. The results show that although gga-miRNA-454-3p initiates increase and thereafter decrease during the chicken myoblasts differentiation, it had no effect on primary myoblasts proliferation. Furthermore, we confirm that gga-miRNA-454 inhibits myoblast differentiation by targeting the myotube-associated protein SBF2.
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2
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3
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5
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6
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7
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Livestock breeding has shifted during the past decade toward genomic selection. For the estimation of breeding values in purebred breeding schemes, genomic best linear unbiased prediction has become the method of choice. Systematic crossbreeding with the aim to utilize heterosis and breed complementary effects is widely used in livestock breeding, especially in pig and poultry breeding. The goal is to improve the performance of the crossbred animals. Due to genotype-by-environment interactions, imperfect linkage disequilibrium, and the existence of dominance and imprinting, purebred and crossbred performances are not perfectly correlated. Hence, more complex genomic models are required for crossbred populations. This study reviews and compares such models. Compared to purebred genomic models, the reviewed models were of much higher complexity due to the inclusion of dominance effects, breed-specific effects, imprinting effects, and the joint evaluation of purebred and crossbred performance data. With the model assessment work conducted until now, it is not possible to come to a clear recommendation as to which existing method is most suitable for a specific breeding program and a specific genetic trait architecture. Since it is expected that a superior method includes all the different genetic effects in a single model, a dominance model with imprinting and breed-specific SNP effects is proposed. Further progress could be made by assuming realistic covariance structures between the genetic effects of the different breeding lines, and by using larger marker panels and mixture distributions for the SNP effects.
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INTRODUCTION

The crossing of different lines or breeds is widely used in animal breeding with the main aim to produce superior offspring. This superiority results from heterosis and from breed complementary effects. Continuous and discontinuous crossbreeding schemes have been designed and are implemented in various livestock species (Lopez-Villalobos et al., 2000; Samorè and Fontanesi, 2016). In discontinuous schemes, crossbred animals are used solely for production and are not selected as parents of the next generation. Breeding takes place in the parental breeds and the breeding goal is usually to improve crossbred performance. The level of organization in such a system is high and it is sometimes difficult to utilize by-products, such as male offspring of mother lines. These schemes can be predominantly found in livestock species with a high female reproduction rate such as pigs and poultry. In continuous breeding schemes, the female crossbreds are used as parents to breed the next generation. These systems are sometimes implemented in livestock species with a low female reproduction rate such as cattle. Since there are substantial non-additive effects for reproduction traits in dairy cattle (Jiang et al., 2017), the aims of crossbreeding in dairy cattle are to improve reproduction traits and other functional traits by exploiting heterosis and imprinting and by removing inbreeding depression (Sørensen et al., 2008; Buckley et al., 2014).

A further form of crossbreeding is the upgrading of low-performance breeds with high-yielding breeds. This introgression of genes from high-yielding breeds increases the production level in subsequent generations and reduces inbreeding depression by increasing the genetic diversity of the low-performance breed. This breeding system has frequently been applied to local breeds, such as the German Vorderwald cattle (Hartwig et al., 2014, 2015). However, if upgrading is repeated over several generations, then the breed eventually goes extinct because the native alleles are removed from its gene pool. The formation of a synthetic breed can also be seen as a special form of crossbreeding. A well-known example is the establishment of the so-called Schwarzbuntes Milchrind in the former East Germany (Freyer et al., 2008).

Livestock breeding has shifted toward genomic selection, which is now frequently implemented in large pure breeds. The core of the system that has been implemented in pure breeds is a reference population that consists of genotyped and phenotyped animals. The phenotypes are either the animal's own performance records, or deregressed conventional breeding values. The reference population is needed for the prediction of marker effects. The marker effects are then used for predicting genomic breeding values of the genotyped selection candidates. The reliability of genomic breeding values depends on the size of the reference population, on the effective number of chromosome segments, and on the method used for the prediction of marker effects (Goddard, 2009).

Extensive research has been dedicated to develop statistical models for the prediction of marker effects. These statistical models include the SNP-BLUP model that assumes normally distributed SNP effects, various Bayesian models that assume more heavy-tailed distributions, as well as non-parametric and semi-parametric models (Meuwissen et al., 2001; Gianola, 2013). More complex models assume different SNP variances, depending on the type of control region the SNP belongs to MacLeod et al. (2016). Some models avoid the prediction of marker effects by building a genomic relationship matrix based on SNP genotypes. The most prominent method based on genomic relationships is GBLUP, which is an equivalent model to SNP-BLUP (VanRaden, 2008; Goddard, 2009). The genotyped selection candidates are included in the model, and their genomic breeding values are calculated by utilizing their genomic relationships with the reference population. GBLUP assumes that all animals are genotyped, which is in general not the case. Therefore, the genomic breeding values are blended in a second step with pedigree-based breeding values to obtain genomically enhanced breeding values on which selection decisions are based. This two-step procedure can be avoided with so-called single-step GBLUP models (ssGBLUP). They were developed as extensions of GBLUP. Single-step models include genotyped and non-genotyped animals simultaneously (Legarra et al., 2009, 2014; Aguilar et al., 2010; Christensen and Lund, 2010) and assume a particular covariance structure for the breeding values that is computed from genomic and pedigree-based relationships. Fernando et al. (2014) extended the single step model toward non-normally distributed marker effects. In purebred routine application mostly additive effects are considered, with dominance being an integral part of the estimated breeding values. Some genomic models were extended toward accounting for dominance explicitly, but this increased the realibilities of the breeding values only slightly (Su et al., 2012; Wellmann and Bennewitz, 2012; Azevedo et al., 2015).

To summarize, it seems that in practical purebred genomic evaluations, GBLUP and ssGBLUP have and will become the models of choice, and non-additive gene effects are usually not an issue. The picture is however somewhat different if data from crossbred animals in combination with the parental purebred data is analyzed. The potential applications of genomic models with non-additive genetic effects have been reviewed by Varona et al. (2018). The main breeding goal is in this case to improve the performance of the crossbred animals. Due to genotype-by-environment interaction, imperfect LD, and the existence of dominance, epistasis and imprinting, purebred and crossbred performances (PP and CP, respectively) are not perfectly correlated (e.g., Wei and van der Werf, 1995; Dekkers, 2007; Zumbach et al., 2007; Duenk et al., 2019). Wientjes and Calus (2017) reviewed existing literature about purebred-crossbred correlations in pigs. The average from 201 reported correlation coefficients was 0.63 with 50% of the reported coefficients being between 0.45 and 0.87. The purebred-crossbred correlation affects the optimal design of the reference population (van Grevenhof and van der Werf, 2015) and the choice of an appropriate genomic model.

While genomic models are well-established for pure breeds, much research has been conducted in the recent years to develop genomic models for the analysis of crossbred data. The aim of this study is to review genomic models for the prediction of crossbred performance that were recently developed and were evaluated either using simulated or real crossbred data.



GENOMIC MODELS

Genomic models for crossbred data are extensions of purebred models. The extensions were made in several directions. Most genomic models for the analysis of crossbred data are developed for two-way crosses. A two-way cross [image: image] is created from a sire line [image: image] and a dam line [image: image], which are usually not inbred. The pure lines have breeding values [image: image] and [image: image] for PP, and breeding values [image: image] and [image: image] for CP. Typically, some animals are genotyped, whereas others are not. The goal is to obtain accurate predictions of the breeding values for CP by utilizing phenotypic information from genotyped and ungenotyped purebred and crossbred animals. An overview over the considered models is given in Table 1.


Table 1. Additive and dominance models for the prediction of crossbred performance.

[image: Table 1]

The SNP alleles are usually assumed to be biallelic, so they may be coded as alleles 1 and 2. Most authors use centered allele content matrices as proposed by VanRaden (2008). The centering does not affect the predictions, but affects the model-based reliabilities (Strandén and Christensen, 2011). We denote with

[image: image]

the centered allele content matrix for the genotyped animals from line [image: image], whereby the allele content [image: image] of animal i from line A is the number of copies of allele 2, animal i has at SNP m, and [image: image] is the frequency of allele 2 of SNP m in line [image: image]. Moreover, we denote with

[image: image]

the centered allele origin matrix for alleles from cross [image: image] that originate from line [image: image]. That is, [image: image] is the number of copies of allele 2, crossbred animal i has obtained from sire line [image: image] at SNP m. These matrices are needed to define genetic values of purebred and crossbred animals. The vector with breeding values for CP for animals from line [image: image] has the representation

[image: image]

where [image: image] is the vector with allele substitution effects for CP. The vector with breeding values for PP has the representation

[image: image]

where [image: image] is the vector with allele substitution effects for PP. The equations for [image: image] and [image: image] are similarly.

Most genomic models for two-way crosses utilize, that the vector [image: image] with additive genetic values of the crossbred animals can be decomposed into a contribution [image: image] that comes from sire line [image: image], and a contribution [image: image] that comes from dam line [image: image]. That is,

[image: image]

where

[image: image]

The contribution [image: image] from line [image: image] can be further decomposed into a contribution that comes from the breeding values [image: image] for CP, and into a vector [image: image] that contains the Mendelian sampling terms of the transmitted gametes (Wei and van der Werf, 1994). That is,

[image: image]

where matrix [image: image] assigns animals from line [image: image] to their crossbred offspring.

Different models have been developed for predicting CP, which can broadly be classified into additive models and dominance models. While some models predict the breeding values for CP directly with Equation (5), others predict the vector [image: image] with allele substitution effects for CP. In the latter case, the estimated breeding values [image: image] for CP in line [image: image] are obtained by substituting [image: image] with the prediction [image: image] in Equation (1).


Additive Models

Different additive models have been proposed in the literature. Some models assume that the crossbred animals are genotyped, whereas others do not. The general additive model for a two-way cross is a trivariate model that has two equations for the parental lines, and one equation for the cross. It has the general representation

[image: image]

where [image: image] are vectors with phenotypic records of the respective subpopulation, [image: image] are vectors of fixed effects with design matrices [image: image], and [image: image] are vectors of non-genetic random effects with design matrices [image: image]. Finally, [image: image] are the breeding values for PP, and [image: image] are the residual terms. The term “…” in the third equation depends on the respective model.

The first two model equations are needed because PP and CP are genetically correlated (Wientjes and Calus, 2017), so phenotypic records of purebred animals increase the reliabilities of the breeding values for CP.


The Parental Additive Model

The parental additive model is based on Equations (2), (3), and (5), and is suitable when the crossbred animals are not genotyped. The model assumes that the Mendelian sampling terms are part of the residuals, so the model equations become

[image: image]

where [image: image], [image: image], [image: image], and [image: image].



The BSAM and ASGM Model

The model with breed-specific allele effects (BSAM) and the model with breed-independent allele effects, which is also called the across-breed SNP genotype model (ASGM) are based on Equations (2–4), and require that the crossbred animals are genotyped. While the ASGM model predicts one effect per SNP, the BSAM model predicts one effect for the paternal allele, and one for the maternal allele of the crossbred animals. Origin-specific allele effects may occur e.g., due to a different LD pattern between the marker and the QTL, different gene frequencies at the QTL, imprinting effects, or the epistatic effects may be different in the pure breeds. This results in different effects of the marker alleles and thus affects the estimated breeding values.

The first two equations of the BSAM and ASGM model are as above, whereas the third model equation becomes for the BSAM

[image: image]

An equivalent representation for the ASGM model is

[image: image]

Ibánez-Escriche et al. (2009) predicted CP of the parental lines from genotyped crossbred animals with BSAM and ASGM, whereby the breed-specific allele substitution effects of the BSAM model were a priori independent. The allele substitution effects were estimated with BayesB, which is a method that assumes that many of them are actually zero. An oligogene trait was simulated with breed-independent QTL effects. Although the SNP effects are expected to be breed-specific due to differences in LD between markers and QTL, the authors found that the BSAM model outperformed ASGM only if the number of markers was low, the number of records for training was high, and if the parental breeds were distantly related.

Lopes et al. (2017) used the BSAM model with normally distributed SNP effects to predict breeding values for CP from crossbred data, and compared the results with conventional GBLUP. The model provided similar prediction accuracies as conventional GBLUP for the traits litter size and gestation length in pigs. It may be not superior to GBLUP because the allele substitution effects of the different breeds were implicitly assumed to be uncorrelated, which is an assumption that is not likely to be fulfilled.

Sevillano et al. (2019) extended the BSAM and ASGM model toward a three-way cross and distinguished SNP that showed a strong trait association from all remaining SNP. For the trait associated SNP breed-specific effects were estimated, whereas for the remaining SNP one effect was estimated, regardless of the allele origin. This model was compared with the BSAM model and with the ASGM model for the trait daily gain by assuming normally distributed SNP effects. Purebred as well as crossbred data was used for training. The results showed a superiority of their method only if the estimated genetic correlations between PP and CP for the trait associated SNPs and the remaining SNPs were unequal.

Vandenplas et al. (2017) derived equations for predicting the reliability of genomic breeding values for CP for BSAM and ASGM models and assumed normally distributed SNP effects. The authors found that BSAM outperformed ASGM for a specific parental line, if the effective number of chromosome segments in the crossbred reference animals that originate from the parental line is less than half the effective number of all chromosome segments that are independently segregating.



Additive Single Step Model

While BSAM has the disadvantage that all crossbred animals have to be genotyped, the parental additive model has the disadvantage, that the information provided by the Mendelian sampling terms cannot be utilized for prediction. These problems could be resolved by using a trivariate model of the form

[image: image]

that includes both, genotyped and phenotyped animals. Christensen et al. (2014) derived the joint covariance matrix [image: image] of [image: image], [image: image], and [image: image] by using the pedigree-based model of Wei and van der Werf (1994) as a starting point. The authors derived the covariance matrix [image: image] from pedigree relationships, and replaced it in a subsequent step by a covariance matrix [image: image] that combines pedigree and genotype information.

Xiang et al. (2016a) validated the model of Christensen et al. (2014) in a two-way pig cross for the trait number of piglets born. The authors found that the inclusion of crossbred genomic information improved the model-based reliabilities for CP and reduced to some extent the bias of prediction.

Tusell et al. (2016) used a single-step model for two-way crossbred pigs and the sire line [image: image], so the model reduced to a bivariate model. The purebred animals were partly genotyped. Since the crossbred animals were not genotyped, the third equation in the model of Christensen et al. (2014) was replaced by a parental additive model equation, i.e., the Mendelian sampling terms were part of the residual. This resulted in a model equation of the form

[image: image]

The authors evaluated six growth and meat traits and found that the genetic correlations between purebred and CP were larger than 0.69 for all traits. The accuracies of the genomic breeding values were higher than those obtained from univariate single-step models that took either purebred or CP into account, and also higher than those obtained with pedigree-based models.




Dominance Models

Crossbreeding utilizes heterosis and breed complementarity. A widely accepted hypothesis is that heterosis arises predominantly from dominance effects. An animal carries a dominance effect only if it is heterozygous at a particular QTL. We denote with

[image: image]

the centered indicator matrix for heterozygosity. That is, [image: image] equals one, if animal i is heterozygous at SNP m, and [image: image] is the heterozygosity of SNP m in line [image: image]. The dominance model assumes that the vector [image: image] with genotypic values of the crossbred animals has the representation

[image: image]

where [image: image] is the population mean, [image: image] is the vector with population-dependent additive effects, and [image: image] is vector with population-dependent dominance effects. The genotypic values of purebred animals are defined accordingly. The trivariate dominance model for a two-way cross and the parental lines has therefore the representation

[image: image]

which we call the dominance model with line-dependent effects. The vector [image: image] with breeding values for CP from breed [image: image] has the representation given in Equation (1), but the vector with allele substitution effects for CP is

[image: image]

where [image: image] is vector with allele frequencies in the opposite line, and the Hadamard product “∘″ is the component-wise product. The breeding values and allele substitution effects for line [image: image] are defined accordingly. Predictions [image: image] and [image: image] of [image: image] and [image: image] are needed to get predictions of the allele substitution effects for CP in line [image: image] with equation

[image: image]

Some solvers are unable to account for the fact that [image: image] for most traits. As shown by Xiang et al. (2016b), one may write [image: image] such that [image: image]. Then, the term [image: image] in Equation (7) equals [image: image] where [image: image] is treated as an additional fixed effect. The same needs to be done for the parental lines. We can write [image: image], where M is the number of SNPs, [image: image] is the vector with heterozygosities of the crossbred animals, and [image: image] is the average heterozygosity of the crossbred animals. Hence, the value [image: image] quantifies the inbreeding depression per unit of genomic inbreeding.

Vitezica et al. (2016) demonstrated how dominance models with normally distributed SNP effects can be transformed into equivalent dominance models with animal effects, whereby different covariance matrices are needed for the additive component and the dominance component of the animal effects. That is, if all SNP effects are normally distributed, then the SNP effects model can be replaced by the equivalent animal effects model

[image: image]

from which the SNP effects can be backsolved. Thereby, the animal effects satisfy [image: image], and [image: image], and so on. The joint covariance matrices of the animal effects are given in Christensen et al. (2019).

The SNP effects in Equation (7) were assumed to be line-dependent, which may be the case because the LD between SNP and QTL differs between lines. This may be neglected if the marker panel is sufficiently large. In this case, the SNP effects can assumed to be line-independent, and we obtain the simplified model

[image: image]

which we call the dominance model with line-independent effects.

Vitezica et al. (2013) emphasized that two different parameterizations of the dominance model exist. The first parameterization, which is given by Equation (6), is suitable for two-way crosses, and includes the additive and dominant SNP effects. In contrast, the second parameterization includes the allele substitution effects and the dominance deviations of the SNP. Both parameterizations are equivalent, but their interpretation is different.


Model Evaluation

Zeng et al. (2013) compared a Bayesian dominance model with the corresponding BSAM model and the corresponding ASGM model. A BayesCπ type method was used to estimate the marker effects, so the prior assumption was that the SNP effects are either zero, or come from a normal distribution. The comparison was done for a simulated two-way crossbreeding program. A number of 20 generations of selection was simulated with the aim to improve CP in both parental lines. The marker effects were estimated only once in generation one from crossbred animals and used in all subsequent generations. The simulated traits showed a different degree of dominance variance, ranging from “large” to “realistic,” or null. The dominance model was superior to the BSAM model and to the ASGM model. This superiority depended on the fraction of dominance and thus heterosis in the data, but even for situations where no dominance was simulated, the accuracy of the dominance model was similar to the additive model, indicating the robustness of the model. It can tentatively be concluded, that the use of a dominance model is in general advisable, even if dominance is not an important source of trait variability.

Xiang et al. (2016b) used a dominance model with line-dependent effects for a two-way cross and the parental breeds. The SNP effects were normally distributed, and the additive and dominance effects of the three different populations were correlated. The authors found that the increased predictive ability of the dominance model arose solely from capturing inbreeding depression. This suggests that dominance effects of individual QTL have not been captured. The reason may be that a 60K SNP panel is not sufficient for achieving high LD between markers and QTL, and that the normality assumption is unlikely to be fulfilled.

Esfandyari et al. (2016) compared a Bayesian dominance model with the corresponding Bayesian ASGM model at the example of litter size in a two-way pig cross, whereby BayesC of Habier et al. (2011) was used for prediction. Training was on the parental lines. The prediction accuracies for PP and CP obtained with the dominance model were both higher than those for PP obtained with the ASGM model.



Implications for Breeding Programs

All additive models for predicting CP rely on phenotypic data collected from crossbred animals. This can be problematic in situations where the crossbred animals are not individually identified and thus such data collection pipeline is not implemented. This is likely the case on many farms housing crossbred animals. While additive models require phenotypes from crossbred animals, this is not the case for dominance models because the breeding values for CP can be derived from additive and dominance effects that are predicted in the pure breed, and from the allele frequencies in the opposite breed. Esfandyari et al. (2015a) proposed therefore to use dominance models for selecting purebred animals for CP based on purebred phenotypic and genotypic information only. They did a simulation study and estimated the marker effects with Bayesian LASSO (Park and Casella, 2008; los Campos et al., 2009). The results showed that the gain in CP was higher when the purebreds were selected for CPs, which demonstrated the feasibility of the method even when no crossbred data is available. Moreover, combining several related lines into a single reference population increased the prediction accuracy. However, as shown by Esfandyari et al. (2015b), training on crossbred animals leads to a higher selection response than training on purebred animals. A likely explanation is, that the level of heterozygosity was higher than in the purebred data.

Although genomic selection for CP is a promising strategy to increase selection response for CP in the short and medium term, Esfandyari et al. (2018) found that genomic selection for CP leads eventually to lower CP in the long term than genomic selection on PP. This hold regardless of whether training was on purebred or crossbred animals.




Dominance Model With Imprinting

Dominance effects, as well as additive effects may depend on the breed of origin, which may be due to imprinting or breed complementarity. It could therefore be advantageous to account for imprinting explicitly. A dominance model with imprinting needs to distinguish between the paternal and the maternal allele. If an animal has received allele A1 from line [image: image] and allele A2 from line [image: image], then we denote its genotype as A1A2. The centered indicator matrix for genotype A1A2 is given by

[image: image]

where [image: image] equals one, if animal i from cross [image: image] has genotype A1A2 at SNP m, and [image: image] is the proportion of animals from cross [image: image] that have this genotype at SNP m.

The dominance model with imprinting assumes that the vector [image: image] with genotypic values of the crossbred animals has the representation

[image: image]

where [image: image] is the population mean, vectors [image: image] and [image: image] contain breed-of-origin dependent additive effects, and vectors [image: image] and [image: image] contain breed-of-origin dependent dominance effects. The model equation for the crossbred animals becomes

[image: image]

If imprinting in the parental lines is neglected, then the model equations for the parental lines remain as in Equation (7). The vector with allele substitution effects for CP of line [image: image] is in this case

[image: image]

where [image: image] is the vector with allele frequencies in the opposite line. The proof is given in the Supplementary Material. When the SNP effects in the cross do not depend on the breed of origin, then the model simplifies, and becomes identical to the dominance model with line-dependent effects.

Nishio and Satoh (2015) proposed two alternative parameterizations for models with dominance and imprinting and fitted them by assuming normally distributed SNP effects. Their first model includes an additive effect, a dominance effect, and an imprinting effect for the heterozygous genotype, while their second model includes a paternal and a maternal gametic effect, and a dominance effect. The models provided in a simulation study more accurate estimates of genotypic values than GBLUP. While the models of Nishio and Satoh (2015) have the advantage that only 3 effects are needed in the equivalent SNP model for modeling the contribution of each SNP to the genotypic value of an animal, the model in Equation (9) has the advantage that more rigorous prior assumptions can be made for the joint distribution of the effects. That is, if the paternal lines are closely related, then the additive effects [image: image] and [image: image] could assumed to be a priori highly correlated, as well as the dominance effects [image: image] and [image: image]. However, the parameterization does not allow to predict the vectors [image: image] and [image: image] individually.

Esfandyari et al. (2015b) compared in a simulation study a Bayesian dominance model with imprinting with the corresponding dominance model with line-independent effects, but used a different parameterization. The model considered imprinting because it included a separate effect for each phased genotype. Compared to the model proposed above, it has the disadvantage that the effects have no direct interpretation as additive and dominance effects. The genetic effects of the parental breeds were a priori independent. Even though the authors did not simulate imprinting, they found that the dominance model with imprinting was superior, if the reference population was sufficiently large, and if both lines were not closely related. The reason may be that the LD between markers and QTL was different in the cross and in the parental lines, so the additive effects and dominance effects were population-dependent.




DISCUSSION

In this paper, genomic models for the analysis of discontinuous crossbred data were reviewed. Compared to purebred genomic models, the reviewed models were of much higher complexity due to the inclusion of dominance effects, breed-specific effects, imprinting effects, and the use of PP and/or CP data. In the following some additional aspects regarding the distribution of the SNP effects and the model choice are considered.


Distribution of SNP Effects

The normal distribution is the most common assumption about the distribution of SNP effects. Such models have the advantage, that they have an equivalent representation as animal models with genomic covariance matrices for which fast solvers exist, such as DMU (Madsen et al., 2010), WOMBAT (Meyer, 2007), ASReml (Gilmour et al., 2009), blupf90 (Misztal, 1999), or MiX99 (Vuori et al., 2006). Although the assumption of a normal distribution is not likely to be fulfilled when large marker panels are used, the experience with purebred data suggest that the reliabilities of the breeding values are only slightly worse than those obtained with non-normally distributed marker effects. However, the situation in crossbreeding is different because the parental lines are commonly distantly related, and it may be envisaged to evaluate all lines simultaneously in order to increase the reliabilities of the breeding values. This requires that all QTL are in high LD with at least one marker, which implies the necessity to use a large marker panel. However, if the marker panel is large, then only few markers are needed to capture the effect of any QTL. Consequently, the true effects of most markers are actually zero. The model for genomic selection should account for this and assume as a prior distribution for the SNP effects a mixture of two distributions. One component provides the distribution for markers that are in strong LD with a QTL, and the other one is actually zero. In this case, a random-variable γm is commonly introduced, which indicates whether the effects of an SNP m are different from zero. Well-known examples are BayesB (Meuwissen et al., 2001), BayesC (Habier et al., 2011), and BayesR (Erbe et al., 2012). Such algorithms are usually implemented with MCMC algorithms, which results in long computation times. However, alternative and faster implementations are available for some models (e.g., Meuwissen, 2009; Shepherd et al., 2010).

For models with additive and dominance effects, an important aspect is, whether these effects are a priori independent or not. It may be advantageous to assume that all effects of a particular SNP m are of the same order of magnitude. This is possible if all effects of a particular SNP m have conditionally on the common covariance matrix [image: image] a normal distribution, where [image: image]-χ2(v, s) and Σ is an appropriately chosen covariance matrix. For the dominance model with line-dependent effects, this means that

[image: image]

It can be shown that in this case, all effects of SNP m would have for γm = 1 a t-distribution with v degrees of freedom, and are for γm = 0 equal to zero. Moreover, the magnitude of the effect size would be similar for all effects of a given SNP m, which reduces the proportion of overdominant SNP. Developing a fast algorithm for such a model is an area for future research.



Model Choice

The most suitable model for a breeding program depends on the achievable accuracies for the breeding values of the selection candidates, and on the available data. Among the additive models, the parental model provided the least accurate predictions for CP, which is because the Mendelian sampling terms are part of the residual and can therefore not be utilized for prediction. It has, however, the advantage that the crossbred animals do not need to be genotyped and may therefore be suitable for animals with low economic value.

The BSAM and ASGM models provided similar results in most cases. The BSAM model, however, needs the trace of the alleles from the purebred parent breed to the crossbred end product, which is a source of potential errors. This might even be more a problem when more complex crossbred structures are involved, e.g., three- or four-way crossbred data. Vandenplas et al. (2016) and Sevillano et al. (2016) developed a statistical pipeline for this purpose and applied it to a three-way crossbred pig data set.

The reviewed papers suggest that the dominance models provide more accurate genomic breeding values for CP than the additive models. Although Xiang et al. (2016b) showed that this gain in accuracy results in the case of normally distributed SNP effects almost solely from capturing inbreeding depression, this may be not the case when large marker panels and appropriate Bayesian models are used for evaluation. Dominance models have the additional advantage that breeding values for crossbred performance can be obtained from purebred animals, so phenotyping and genotyping crossbred individuals may not be necessary. However, as shown by Esfandyari et al. (2015b), the accuracy of the breeding values can be increased when phenotyped and genotyped crossbred individuals are included in the reference population.

Three different dominance models have been applied to crossbred data, which are the dominance model with line-independent effects, the dominance model with line-dependent effects, and the dominance model with imprinting. The dominance model with line-dependent effects is likely to be inferior to the model with line-independent effects if the SNP effects of the different lines are falsely assumed to be statistically independent, the reference population is small, and the lines are closely related. This could be avoided by specifying a covariance between the SNP effects of the different lines.

When imprinting is relevant, then a dominance model with imprinting is of interest. For example, Jiang et al. (2017) found that there is substantial imprinting for reproduction traits in dairy cattle. The application of imprinting models requires that the crossbred animals are genotyped and that the alleles are traced from the parental lines to the crossbred animals. Unfortunately, to the best of our knowledge, these models are not well-analyzed yet. More research should be done in this area, which includes to analyze all models with common data sets.




CONCLUSION

Genomic models for crossbred data are of much higher complexity than models for purebred data, which results from the inclusion of dominance effects, breed-specific effects, imprinting effects, and from the joint evaluation of PP and CP. Although much research has already been done to develop genomic models for crossbred data, it can be expected that further progress can be made by developing statistical models that include all the different genetic effects in a single model, assume realistic covariance structures between the genetic effects of different breeding lines, use large marker panels, and assume realistic distributions for the SNP effects. The comparisons made in the reviewed papers are not sufficiently comprehensive to come to a clear recommendation as to which existing method is most suitable for a specific breeding program and a specific genetic trait architecture. Some papers suggested a superiority of dominance models. In the reviewed papers, the focus was on discontinuous crossbreeding schemes. This was because, to our best knowledge, no genomic models have been published that are specifically designed for continuous crossbreeding schemes.
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Cattle breeding routinely uses crossbreeding between subspecies (Bos taurus taurus and Bos taurus indicus) to form composite breeds, such as Brangus. These composite breeds provide an opportunity to identify recent selection signatures formed in the new population and evaluate the genomic composition of these regions of the genome. Using high-density genotyping, we first identified runs of homozygosity (ROH) and calculated genomic inbreeding. Then, we evaluated the genomic composition of the regions identified as selected (selective sweeps) using a chromosome painting approach. The genomic inbreeding increased at approximately 1% per generation after composite breed formation, showing the need of inbreeding control even in composite breeds. Three selected regions in Brangus were also identified as Angus selection signatures. Two regions (chromosomes 14 and 21) were identified as signatures of selection in Brangus and both founder breeds. Five of the 10 homozygous regions in Brangus were predominantly Angus in origin (probability >80%), and the other five regions had a mixed origin but always with Brahman contributing less than 50%. Therefore, genetic events, such as drift, selection, and complementarity, are likely shaping the genetic composition of founder breeds in specific genomic regions. Such findings highlight a variety of opportunities to better control the selection process and explore heterosis and complementarity at the genomic level in composite breeds.

Keywords: composite breeds, crossbreeding, local ancestry, Bos taurus, Bos indicus


INTRODUCTION

Breeding methods that exploit heterosis are common in livestock production. In cattle, the challenge for adopting terminal crossbreeding systems is consistent genetic composition of replacement heifers from the maternal breed (Lightner and Williams, 2018). Composite breeds (also referred to as synthetic breeds) allow for consistency in heterosis retention and heifer replacement. Brangus, developed in the United States, are an example of a composite breed, defined as 62.5% Angus and 37.5% Brahman (International Brangus Breeders Association1). The breed represents the complementarity between the tropically adapted Bos taurus indicus and the temperate high-valued carcass of Bos taurus taurus cattle (Gregory and Cundiff, 1980; Buzanskas et al., 2017). Brangus registration by the International Brangus Breeders Association started in 1949.

After a composite breed is formed, a genetic improvement program can be applied, selecting animals across generations based on expected progeny differences (EPD) for specific traits. The United States Brangus breeder association (IBBA) has developed EPDs for birth weight, weaning weight, yearling weight, milk production, total maternal, calving ease direct, calving ease maternal, scrotal circumference, ribeye area, and intramuscular fat (International Brangus Breeders Association;1). Therefore, artificial selection pressure, at varying levels of intensity, would have been employed on these traits. In this process, the inbreeding level can increase due the selection of few parents, especially bulls, and, consequently, decreasing heterosis. In this scenario, genomic selection signatures may arise after composite formation (Goszczynski et al., 2017). These genomic regions with selective sweeps may have different genomic breed composition than expected due to selective advantages of genes coming from one of the founder breeds.

The evaluation of selection signatures and genomic breed composition in composite breeds can contribute to a better understanding of the genetic effects associated with traits under selection and the inheritance of loci in crossbreeding systems (Grigoletto et al., 2019). Concerning the dynamics of composite breed development (Paim et al., 2020), we can gain new insights for crossbreeding systems based on a genomic perspective. The aim of this work was to expand our knowledge of composite breed genomics by identifying genomic inbreeding and selection signatures in Brangus. Further, we aimed to evaluate the genomic breed composition of these selected regions, identifying differential founder (Angus or Brahman) contributions to that region.



MATERIALS AND METHODS


Animals

High-density SNP data (777,962 SNP, BovineHD Beadchip, Illumina, San Diego, CA, United States) from 68 Brahman, 95 Angus, and 59 prominent Brangus sires born from 1970 to 2010 were evaluated in total. Of the animals genotyped, 36 Brahman and 20 Brangus samples were acquired from the National Animal Germplasm Program’s (NAGP-ARS-USDA) gene bank (Fort Collins, CO, United States). The other samples were genotyped by the USMARC research center (ARS-USDA, Clay Center, NE, United States).

The Brangus pedigree, provided by the IBBA, consists of 1,152,050 individual animal records from which the genetic relationship coefficients were computed. The coefficient of genetic relationship was used to cluster the current Brangus population using Ward’s method in proc cluster of SAS University Edition (Copyright© 2012–2018, SAS Institute Inc., Cary, NC, United States). Brangus were grouped into 17 clusters. The Brangus animals sampled for genotyping represented all 17 clusters. Sampled Brangus bulls were born in 12 states in the southern United States from 1970 to 2010, and these bulls had 43,393 progeny recorded by the IBBA.



Pedigree Evaluation

The pedigree file was evaluated using the optiSel package (Wellmann, 2017) in R 3.4.2 software (R Core Team, 2017). The Angus, Brahman, and crossbred animals (with pedigree breed composition other than the 5/8 Angus, 3/8 Brangus) were considered as ancestors, totaling 75,449 ancestors in the pedigree file. The number of equivalent generations for each animal (hereinafter called generations) was calculated by the equation: g = ∑(1/2)n, where g is the equivalent generation number and n is the number of generations separating the individual from each known ancestor. The method used is similar to the equation described by Welsh et al. (2010).

A summary of the pedigree analysis of the Brangus bulls used is shown in the Supplementary Material (Supplementary Figure 1). The index of pedigree completeness (PCI) was 0.94 (±0.143 SD), computed following the MacCluer et al. (1983) algorithm. PCI is the harmonic mean of the pedigree completenesses of the parents, summarizing the proportion of known ancestors in each ascending generation. Pedigree inbreeding of 0.04 (±0.035) was found for the breed. The average pedigree relationship was 0.086 (±0.081), and only 1.69% of the pairs had a pedigree relationship higher than 0.3.



Filtering and Quality Control of Genomic Data

Markers with a call rate lower than 95% or not physically mapped to the bovine genome assembly UMD3.1 were removed from the analyses. The remaining genotypes were 698,282 SNP markers on the autosomes and 38,581 SNP on the sex chromosomes (37,538 in X and 1,043 in Y). Markers with minor allele frequency lower than 1% were removed. One Brangus sample with a call rate lower than 90% was removed.



Runs of Homozygosity and Selection Signatures

The runs of homozygosity (ROH) analyses were conducted in SNP and Variation Suite® v8.7 (Golden Helix, Inc., Bozeman, MT,2). The parameters were set to a minimum run length equal to 1000 kb with minimum of 70 SNP, allowing runs to contain up to two heterozygotes and five missing genotypes with a maximum gap equal to 50 kb and minimal SNP density of 1 SNP per 50 kb.

The minimal number of SNP to constitute a ROH (l) was determined by the same method used by Purfield et al. (2012) and determined by Lencz et al. (2007):
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where ns is the number of SNPs per individual, ni is the number of individuals, α is the percentage of false positive ROH (set to 0.01 in this study), and het is the mean SNP heterozygosity across all SNP.

The incidence of common ROH was transformed to each breed’s frequency, dividing by the number of animals of each breed in the analysis. Normality tests were performed, and the frequency threshold defining the top 1% of the observations for each breed was determined. The homozygous regions above the frequency threshold of each breed (38% for Angus, 25.4% for Brahman, and 25.9% for Brangus) were considered as selected regions.

According to the length of the ROH, it is possible to estimate the number of generations traced back to the common ancestor, which generates the homozygosity in that region. We classified the ROH into 4 classes (1 = more than 10 generations, 2 = between 5 and 10, 3 = between 3 and 5, and 4 = less than 3 generations) using the equation proposed by Curik et al. (2014): E(LIBD−H|gcA) = 100/(2gcA), where E(LIBD–H | gcA) is the expected length of an identical by descendent (IBD) haplotype (in centiMorgans – cM), and gcA is the number of generations from the common ancestor. The conversion from the recombination rate metric to physical distance (from cM to Mb) was performed using the average of the results of Arias et al. (2009) and Weng et al. (2014). Based on the Curik et al. (2014) equation, for example, an ROH longer than 13 Mb has most likely originated from a common ancestor less than three generations ago.

A genomic inbreeding coefficient based on ROH (FROH) was calculated on each animal according to McQuillan et al. (2008) with the equation
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where LROHj is the length of ROHj, and Ltotal is the total size of the autosomes (using the estimated value in the Btau5.0.1 genome assembly of 2,522,199,562 bp). For each animal, FROH was calculated based on each of the four classes explained before and for each chromosome using the total size of each chromosome as Ltotal (following the chromosome size estimated by the Btau5.0.1 genome assembly).



Chromosome Painting

We used the copying model, implemented in ChromoPainter (Lawson et al., 2012), to estimate the ancestry of regions across each genomic region. This copying model relates the patterns of linkage disequilibrium (LD) across chromosomes to the underlying recombination process. The method uses a hidden Markov model to reconstruct a sampled haplotype. To reinforce chromosome-painting results, we ran Fst analyses (Weir and Cockerham, 1984) for each region comparing the pairs (Angus vs. Brangus and Brahman vs Brangus). The function–fst in the plink1.9 software3 was used.

We used the founder breeds, Angus and Brahman, as haplotype donors to the Brangus haplotypes. The ChromoPainter analyses were performed twice (allowing or not allowing self-copying) using the linked model. The recombination files were created using the Perl scripts provided on the ChromoPainter website4. Beagle3.3 (Browning and Browning, 2007) was used to phase the genotypes (using 20 iterations).



Simulation Model

We performed a population genetics simulation using the online tool5. The initial parameters were set to an initial allele frequency of 62.5% (representing the Angus allele in the first generation of Brangus); 10 generations; effective population size of 100; no selection, mutation, migration, and inbreeding (similar to a neutral model). We performed 50 simulations for each generation. The raw data were used to calculate the summary statistics (mean and standard deviation) and to determine the expected lower and upper value (within 99% of the Gaussian distribution) of the expected founder composition for each locus. These lower and upper values were applied as a threshold in the visualization of chromosome painting results to identify regions with significant enrichment of alleles coming from one of the founders.



Identification of Genes and QTL in Selective Signatures

Genes in the selected regions (ROH islands) were identified in the Golden Helix GenomeBrowse® visualization tool v2.1 (Golden Helix, Inc, Bozeman, MT,6). The genes were identified based on the NCBI Bos taurus annotation release 105 and Btau5.0.1 genome assembly. The genes list obtained was submitted in the NetworkAnalyst online tool7, aiming to characterize the biological process of these genes through the Enrichment Network tool using the PANTHER database. Thereafter, a search in the literature and in the Cattle QTL database (available online at8) was executed to identify traits related to genes located in each significant genomic region.




RESULTS

The runs of homozygosity (ROH) were categorized into four classes according to the expected number of prior generations to a common ancestor (>10, >5, >3, and <3 generations). The ROH classified as coming from a common ancestor within the previous 3 generations (>13 Mb) was found in Brangus between the 4th and 5th generations, and the incidence increased thereafter for most chromosomes (Figure 1). That said, 54.2% of Brangus animals had long ROH (>13 Mb) indicative of recent inbreeding. However, chromosomes 17, 23, 26, and 28 did not have any ROH in this length range (Supplementary Figure 1).
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FIGURE 1. Runs of homozygosity (ROH) length observed in Brangus cattle according to the equivalent generation number of each animal. Dashed lines indicate the length threshold for ROH that relates to a common ancestor at 3, 5, and 10 prior generations (red, blue, and green, respectively) following the equation proposed by Curik et al. (2014).


The genomic inbreeding coefficient based on ROH (FROH) was significantly (p < 0.0001) higher for Angus cattle compared to Brahman and/or Brangus (Figure 2). Brangus had lower FROH than Angus for all classes. Brahman and Brangus cattle had the same FROH for the ROH coming from a common ancestor tracing through 10 generations (all classes with ROH > 3.9 Mb), which was not expected and suggests a high effective population size for Brahman. For ROH coming from more than 10 previous generations (ROH < 3.9 Mb), Brangus cattle had higher FROH than Brahman cattle.
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FIGURE 2. Genomic inbreeding based on runs of homozygosity (FROH) by breed and by ROH length classes. The t-test comparison results are shown in the top (ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).


Pedigree inbreeding had a positive and significant relationship with FROH, and a similar pattern was observed in all the classes of ROH length (Supplementary Figure 2). Brangus cattle had 8.5 ± 3.97% of genomic inbreeding and 3.9 ± 3.41% of pedigree inbreeding. Animals with no inbreeding at pedigree had close to 6% of genomic inbreeding. Averaged across chromosomes, the rate of FROH increased ≈1% per generation in Brangus (FROH = 0.0196 + 0.0097∗generation, [image: image] = 0.19, p-value = 0.0004). The increase in FROH was not observed for all chromosomes; only chromosomes 4, 10, 13, 15, 23, 26, and 29 had a positive FROH slope with generation number (Supplementary Figure 3). All the aforementioned chromosomes, except for 13, had a high proportion of Angus composition.

Ten genomic regions had ROH with frequency higher than 25.9% in Brangus (the top 1% of ROH frequency). Two of the 10 regions were found to be ROH islands for both founder breeds, and three ROH islands were observed in Angus (Figure 3). ROH above a 1% threshold were identified in 10 and 21 regions for Brahman and Angus, respectively (Supplementary Figure 4).
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FIGURE 3. Frequency of each SNP in a run of homozygosity (ROH) in Brangus population according to the chromosome and position. The orange horizontal line indicates the 1% threshold to classify the SNP to be in an ROH island. Highlighted points indicate SNP above the 1% threshold in the founder breeds (blue for Angus, green for Brahman, and red in both founder breeds).


The genes and known QTLs within homozygous Brangus regions are shown in Table 1. The main biological process observed in gene network enrichment analysis from these homozygous regions were bile acid metabolic process, fatty acid beta oxidation, pentose phosphate shunt, neuron synaptic transmission, protein folding, regulation of cell cycle, cholesterol metabolic process, and unsaturated fatty acid biosynthesis. The main traits observed in QTL analysis of these regions were body weight, milk fat, calving ease, milk production, milk protein, body weight at birth, and fat thickness at the 12th rib (Supplementary Figure 5). The breed of origin of these regions was investigated using chromosome painting (Figure 4). FST results show Brangus had a closer relationship with Angus than with Brahman in these ROH regions (Table 1). The haplotypes in the regions of chromosomes 1, 4, 22, 26, and 27 appear to have originated from Angus. The regions in chromosomes 8, 14, 16, 21, and 23 have a mixture of Angus and Brahman origin, falling within the range of expected ancestry based on the whole genome.


TABLE 1. Homozygous regions observed in Brangus animals and the identification of genes underlying QTL in each region.
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FIGURE 4. Probability of ancestry for regions in chromosomes (Chr) 1, 4, 8, 14, 16, 21, 22, 23, 26, and 27 identified as a selection signature (ROH island) in Brangus animals (above the top 1% threshold, 25.9% for Brangus). The plots show the average probability of ancestry according to the position in the region calculated from chromosome painting results. Horizontal dashed line in gray represent the expected maximum (top 1%) and minimum (bottom 1%) threshold for Brahman ancestry according to simulated data.




DISCUSSION

Overall, Brangus had 63% of the inbreeding level of Angus, based on runs of homozygosity (ROH) (Figure 2). Brangus had higher inbreeding than Brahman only in the shortest category of ROH (<3.9 Mb), which suggests the number of generations after crossbreeding was not sufficient to break down short ROH. Brangus had a higher Angus proportion (70.4%) than expected (62.5%) in the whole genome (Paim et al., 2020). The high Angus proportion might be related with the initial crossbreeding to develop the composite associated with genetic drift and selection for specific traits (Paim et al., 2020). Therefore, the higher Angus proportion may be linked to this excess of short ROH in Brangus compared to Brahman. Moreover, inbreeding across chromosomes was not equal; this may suggest that new levels of homozygosity are starting to form as a function of selection pressure and the use of sires that are deemed superior to their contemporaries.

The length of ROH agree with the generation criteria of Curik et al. (2014). The ROH coming from a common ancestor within 3 prior generations (>13 Mb) appeared between the 4th and 5th generation and increased afterward, suggesting inbreeding has started to accumulate in this relatively new breed.

The inbreeding level increased approximately 1% per generation corresponding to an effective population size (Ne) of 51.55 (Ne = 1/2ΔF) (FAO, 2013). According to FAO Guidelines for in vivo conservation of animal genetic resources (FAO, 2013), the desired inbreeding rate per generation should not exceed 1% (equal to Ne = 50). A 1% increase in inbreeding was associated with decrease of −0.23% in yearling weight and −0.64% in body condition score in a tropical composite beef cattle (Reverter et al., 2017). Therefore, selection pressure and finite population size promotes increased inbreeding, suggesting that inbreeding management remains important for composite breeds.

Three selected regions in Brangus (chromosomes 4, 16, and 23) were identified as Angus selection signatures, and two regions on chromosomes 14 and 21 were identified as selection signatures in both founder breeds (Figure 3). Chromosome painting results showed that five of the 10 homozygous regions in Brangus were predominantly Angus in origin (probability >80%), and the other five regions were of mixed origin but always with Brahman contributing less than 50% (Figure 4).

The traits associated with the predominantly Angus regions identified in the Cattle QTL database were body condition, body weight, calving ease, birth weight, fat thickness at the 12th rib, and milk traits. For example, the region on chromosome 23 (0–1090080bp) with high ROH frequency in Angus and Brangus harbored the KHDRBS2 gene, which was previously associated with calving ease (Cole et al., 2011).

One homozygous locus on chromosome 4 contained the LEP gene, which is associated with 96 traits in the Cattle QTL database. This gene is expressed in adipose tissue and codes for leptin, a hormone known to regulate feed intake and energy balance in mammals (Woronuk et al., 2012). This gene had been associated with marbling, fat thickness, rib eye area, and feed intake in several beef cattle breeds (Souza et al., 2010; Woronuk et al., 2012; Kononoff et al., 2017). Leptin is considered an extremely important gene for puberty onset (Williams et al., 2002). A high Angus contribution (90.4%) to this homozygous region was identified in Brangus (Table 1). Therefore, an allele coming from Angus was probably selected in Brangus.

Another homozygous region in chromosome 16 also was associated with first service conception in yearling Brangus heifers (Peters et al., 2013). Bos indicus–influenced heifers are known to have challenges achieving puberty early in life (Sartori et al., 2010; Fortes et al., 2012b). Therefore, high selection pressure in Brangus for early puberty since breed formation probably existed.

Another homozygous region (BTA 14) was previously identified as a QTL for weaning weight in Brangus (Weng et al., 2016). Cánovas et al. (2014) reported two genes on BTA14 at 24Mb associated with Brangus heifer fertility traits. This region harbors PLAG1 and XKR4 genes. The XKR4 was associated with subcutaneous rump fat thickness, scrotal circumference, serum concentration of prolactin, and sexual precocity (Fortes et al., 2012a; Porto Neto et al., 2012; Bastin et al., 2014; Takada et al., 2018). PLAG1 has been implicated in the regulation of stature and weight (Littlejohn et al., 2012; Pryce et al., 2012; Song et al., 2016). This gene was associated with yearling weight in Australian Tropical Composite breeds (Porto-Neto et al., 2014). The association studies of these genes used both taurine and indicine cattle, which confirms our observation of a selection signature in both founder breeds and a mixed origin of this region in Brangus.

The C allele of a putative functional mutation (rs109231213) near PLAG1 significantly increased hip height, weight, net food intake, age at puberty in males and females and decreased concentration of IGF-I in blood and fat depth (Fortes et al., 2013). These authors reported that haplotypes carrying the C allele had the same surrounding 10 SNP haplotype in B. taurus and Brahman, probably because the C allele was introgressed into Brahman from B. taurus cattle. The region with reduced heterozygosity surrounding the C allele was small in B. taurus and in Angus in this study (1.7 Mb) but 21.6 Mb long in Brahmans, here as well as in Fortes et al. (2013). Therefore, this allele represents a mutation that has been selected almost to fixation in B. taurus and, likely, introduced into Brahman cattle during crossbreeding with taurine cattle when indicine cattle were introduced into the United States (Sanders, 1980; Fortes et al., 2013).

Selection for growth and growth-related traits, such as average daily gain, feed conversion, and body size, has been conducted to improve beef productivity in both taurine and indicine breeds in the United States for several decades (Willham, 1982). Therefore, it is likely that favorable alleles for growth in genes with large phenotypic effects have also increased in frequency in both and the distribution of allele frequencies at these QTL have become similar between both populations.

The high Angus contribution for the selected genomic regions in Brangus cattle could support the use of the Brangus data for genomic selection and QTL identification (fine mapping) for Angus. This reinforces previous simulation studies that a crossbred or an admixed population can be used as training data for genomic selection and can provide reasonably accurate estimates of genomic breeding values of purebred selection candidates (Toosi et al., 2010). Marker estimates obtained from crossbred populations can be used to select purebreds looking for crossbred performance (Ibanez-Escriche et al., 2009; Toosi et al., 2010; MacNeil et al., 2011; Zeng et al., 2013; Lopes et al., 2017). Moreover, the results highlight how selection criteria can shape the genetic makeup of the composite.

The genetic composition of a composite breed is dynamic and changes across generations (Paim et al., 2020). Here, the selected regions in Brangus were mainly from Angus. The core idea of developing a composite breed is to exploit heterosis and complementarity between the breeds and, in the Brangus example, explore combining the tropical adaptation of zebu cattle and high yield and meat quality of Angus. These results and those previously reported (Paim et al., 2020) suggest Brangus is moving toward traits where Angus excel due to the selection imposed by breeders. Yield and meat quality (marbling) are measured and genetic values are available in the association’s breed improvement program. The “tropical adaptation” traits, however, are not measured, and consequently, there is no genetic evaluation for their improvement. Therefore, it is important to develop and apply methods of measuring tropical adaptation and selecting for it; otherwise, this beneficial attribute of Brangus could be lost in future Brangus generations.



CONCLUSION

The majority of selection signatures in Brangus cattle came from Angus, which can be related to the traits of interest for genetic improvement and selection. These results demonstrate how quickly selection and drift can shift the genetic architecture of a population. Genomic inbreeding was found to be increasing in the composite population with advancing generations. Therefore, breeders should be aware of the need to manage inbreeding in this population. Moreover, composite cattle breeders need to be aware that selection for a set of specific traits that favor one of the progenitor breeds over the other can and will alter the original breed proportions and which, over the long term, may decrease the utility of the composite.
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The advanced intercross line (AIL) that is created by successive generations of pseudo-random mating after the F2 generation is a valuable resource, especially in agricultural livestock and poultry species, because it improves the precision of quantitative trait loci (QTL) mapping compared with traditional association populations by introducing more recombination events. The growth traits of broilers have significant economic value in the chicken industry, and many QTLs affecting growth traits have been identified, especially on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially contain dozens of genes. To promote a better understanding of the underlying genetic architecture of growth trait differences, specifically body weight and bone development, in this study, we report a nine-generation AIL derived from two divergent outbred lines: High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate that the population of the F9 generation sufficiently randomized the founder genomes and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27, which was reduced to 120 Kb. An ancestral haplotype association analysis showed that most of the dominant haplotypes are inherited from HQLA but with fluctuation of the effects between them. We highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome 4 by identifying the founder selection signatures, which are explained by the loss of association power that results from rare alleles. Our study provides a reasonable resource for detecting quantitative trait genes and tracking ancestor history and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.

Keywords: chicken, advanced intercross line, bone growth, ancestral inference, QTL fine-mapping, genome-wide association study, selective sweep, haplotype association study


INTRODUCTION

Identifying key polymorphisms and dissecting the genetic architecture of complex growth traits is of considerable interest in fields like agriculture breeding and evolution. F2 crosses between divergent outbred lines are traditionally used to map quantitative trait loci (QTL) in domestic animal and plant populations (Andersson et al., 1994; Perez-Enciso et al., 2001). However, it is not enough to rely on a single generation of meiotic recombination to break up and randomize the parental genomes to finely map causal variants of complex quantitative traits (Flint et al., 2005). Improved strategies, such as the use of larger sample cohorts, the construction of advanced intercross lines (AIL) (Besnier et al., 2011; Parker et al., 2012), nested association mapping population (NAM), and multi-parent advanced generation inter-cross (MAGIC) in animals and plants (Poland et al., 2011; Gatti et al., 2014; Pascual et al., 2015) can increase the precision of quantitative trait loci (QTL) mapping by introducing more recombination events and together provide a series of alternatives to the traditional association mapping of populations.

Advanced intercross lines (AILs) were first introduced by Darvasi and Soller (1995). An AIL is created by successive generations of pseudo-random mating after the F2 generation, and recombinations are accumulated continuously between generations and are easier to construct in species with short generation intervals and a high tolerance of inbreeding decline. To date, AIL has been used as a common strategy to improve the mapping resolution for the genome wide association studies (GWASs) of model animals, such as fruit flies (Mackay et al., 2012), mice (Gonzales et al., 2018), chicken (Zan et al., 2017), and C. elegans (Doitsidou et al., 2016). The significant advantages of AILs include reducing the QTL confidence interval by 3- to 27-fold and finely splitting the original QTL into two linked QTLs (Besnier et al., 2011; Parker et al., 2014; Arends et al., 2016). However, we should always pay attention to the tradeoff between mapping resolution and statistical power, as the causal allele may become rare with a continuous increase of the inbreeding coefficient in the AIL (Yalcin et al., 2010; Parker et al., 2016).

Bone growth is crucial to poultry production, as skeletal problems are associated with economic benefits and animal welfare issues (Tsudzuki et al., 2007; Kapell et al., 2012). Too long legs give rise to leg problems in high body weight chickens (Deeb and Lamont, 2002). In healthy chicken, shank length (SL) and shank circumference (SC) are the two most commonly used parameters for evaluating bone growth in chickens (Tsudzuki et al., 2007) and are highly correlated with body weight (BW) (Gao et al., 2010). Moreover, shank traits can be measured without slaughter and we can track bone growth of different periods. We previously reported two major QTLs for growth traits located on chicken chromosome 1 (GGA1) and GGA27 via a linkage analysis in the F2 generation (Sheng et al., 2013). To promote a better understanding of the underlying genetic architecture for growth trait differences, specifically body weight and bone development, here, we report a nine-generation AIL derived from High Quality chicken Line A (HQLA) × Huiyang Bearded (HB) chicken. Detailed information on HQLA, HB, and AIL is presented in the materials and methods and Figure 1. We employed genotyping-by-sequencing (GBS) SNPs from F0, F8, and F9 (Wang et al., 2017) and Beadchip SNPs from the F2 of AIL (Sheng et al., 2013). Based on these data, we characterized the gradient of the population structure over these generations and the potential functional genes of growth traits by a genome wide association study (GWAS), selective sweep analysis, haplotype association, and ancestral inference. The integrated analysis of selection in F0 and GWAS for AIL provides both power and precision and demonstrates the transmission of important genetic information between generations.
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FIGURE 1. Descriptive statistics for the nine-generation advanced intercross line (AIL) pedigree. The AIL was initiated with 16 High Quality chicken Line A (HQLA) and 16 Huiyang Bearded (HB) chicken in July 2008 with three generations every 2 years on average. The circle size represents the number of individuals contributing to the next generation (red for cocks and blue for hens), and the number in parentheses records the sample size of each generation. The ordinate curve represents the sex-averaged mean body weights at 7 weeks of age.




MATERIALS AND METHODS


The AIL Population

The High Quality chicken Line A (HQLA) is a closed population founded by the commercial Anak broiler breed and a Chinese indigenous chicken line, followed by strong artificial selection over more than 10 generations, according to a weight-based selection index, while maintaining the meat quality and plumage color. The Huiyang Bearded chicken (HB) is a Chinese meat-type breed with a long history (1,600 years), which is characterized by its slow growth, high meat quality, and muff and beard phenotype (Guo et al., 2016); currently, HB is in the stage of conservation and breeding. At 7 weeks of age, the HQLA was 3.2-times the body weight of HB (Figure 1). The F2 cross was generated by the reciprocal crossing of the founder lines [4 HQLA♂ × 12 HB♀ and 4 HB♂ × 12 HQLA♀, details presented in Sheng et al. (2013)]. Later AIL generations (F3 to F9) were founded by birds from the F2 population and bred using random mating (Figure 1). The population size of each generation was maintained at more than 1,000 individuals. The body weight at 7 weeks of age (BW7) was around 900 g.



Phenotype

For the F9 generation, body weight was measured at hatching and every other week until 12 weeks of age. During weeks 4–12, the shank length and shank circumference were also measured every 2 weeks. Boxplots for each phenotype were generated to scan for outliers. Individuals that were further than 1.5 times IQR away from the upper or lower quartile of the boxplots were removed. Descriptive statistics of the phenotypes are provided in Supplementary Table S1.



Genotype

We employed GBS SNPs of F0, F8, and F9 (Wang et al., 2017) and Illumina Chicken 60K Beadchip SNPs of F2 (Sheng et al., 2013) for further filtering and analysis. In brief, for F9 generation, double-enzyme GBS (EcoRI/MseI) libraries were prepared and sequencing was performed on a Illumina Nextseq500 sequencer. The TASSEL-4.0 GBS analysis pipeline was used to discover SNPs. Using VCFtools (0.1.17), the raw GBS SNP filter criteria was set to: –maf 0.05 –max-alleles 2 –min-alleles 2 –minDP 5 –minGQ 98 –max-missing 0.2 (Danecek et al., 2011). Genotype phasing of the clean SNPs was done using Beagle 5.0 (Browning and Browning, 2007) with gt model and impute = true parameters, other parameters were left as default. The GBS SNPs were evenly distributed across chromosomes (Supplementary Figure S1). In F2 generation, SNPs (autosome 1–28) that failed to meet the following criteria were removed: individual call rate (>0.9), individual SNP call frequency (>0.9), and minor allele frequency (MAF > 0.05). All the genomic coordinates of the SNPs were uniformly converted to the chicken reference genome Gallus gallus, version 5.0 (Ensembl release 94). After that, we kept 161,376 GBS SNPs for 16 HQLA, 14 HB, 185 F8, 602 F9 individuals, and 43,472 Chip SNPs for 492 F2 individuals.



Genetic Parameter Estimation

We evaluated the changes in the population genetic parameters as a component of generation transmission. LD decay statistics were analyzed by PopLDdecay 3.31 (Zhang et al., 2019) with a max distance of 2 Mb. The inbreeding coefficient (F), nucleotide diversity (π), nucleotide divergent, and minor allele frequency (MAF) were evaluated by VCFtools (0.1.17) (Danecek et al., 2011). The heritability and genetic correlations of all traits were estimated using GCTA package (v1.92) (Yang et al., 2011).



Genome Wide Association Study

The mixed linear model (MLM) approach was used for the GWAS of the F9 generation, as implemented in the GCTA package (v1.92) (Yang et al., 2011). The basic model was: y = a + bx + g + e, where y is the phenotype, a is the mean term, b is the additive effect (fixed effect) of the candidate SNP to be tested for association, x is the SNP genotype indicator variable, g is the polygenic effect (as captured by the GRM calculated using all SNPs), and e is the residual. The GWAS statistical model of body weight included the sex and batch as discrete covariates and hatch weight as a quantitative covariate. For shank traits, body weight at the same age were also included as a covariate, because we focused on QTL scans which are associated with bone growth. A quantile-quantile (Q-Q) plot generated in CMplot1 was used to assess the potential impact of population stratification (Supplementary Figure S2). Bonferroni correction was applied to correct the number of estimated independent markers. A subset of SNPs that were in approximate linkage equilibrium was obtained by removing one in each pair of SNPs if the LD was greater than 0.2 using PLINK v1.07 (Purcell et al., 2007). QTL intervals were established after the remaining top SNPs and their neighboring SNPs with r2 >0.3.



Selective Sweep

To investigate the signatures of selection between HQLA and HB, four statistical tests were used, including XP-EHH and iHH (linkage disequilibrium-based), Tajima’s D (frequency spectrum-based), and Fst (population differentiation-based), to investigate the signatures of selection between HQLA and HB. The XP-EHH and iHH value at each locus were estimated by The selfscan program (v1.2.0a) (Szpiech and Hernandez, 2014), and the genetic map for our population was 3 cM/Mb. The statistics for Fst and Tajima’s D were calculated using VCFtools (0.1.17) (Danecek et al., 2011) with a window size of 200 Kb and step size of 100 Kb.



Haplotype-Based Association Analyses

A haplotype-based association analysis was performed in the ∼120 Kb fine-mapped QTL region on GGA27 using the following model:

Y = Xβ + Zu +e

where Y is a column vector containing the SL10 of the F9 individuals. X is the design matrix including the coding for the sex of the birds. For each specific interval, there are n haplotypes for m individuals constructed by several SNPs. Z is the design matrix (m × n) containing each haplotype count (coded as 0, 1, 2) of each individual. β is a vector that estimates the fixed effect of sex, u is a column vector that estimates the allele substitution effects for each haplotype, and e is the normally distributed residual.



Ancestral Inference

The RFmix software (v2.03) (Maples et al., 2013) is based on a discrimination analysis model that can be used to estimate the genetic ancestry composition of each individual and each chromosome. Using the F0 population as the ancestor population, RFmix was used to evaluate the local ancestral source of individuals in the F9 generation. To determine the haplotype window size, we set conditional random field spacing (# of SNPs) (-c) to 9 based on the results of LD with r2 = 0.2 as the critical value, and generations since admixture (-G) set to 9. Other parameters were left as default.



RESULTS


Genetic Architecture of the AIL Population

Inspection of the 161 K variants segregating in AIL chicken identified several notable characteristics. The ancestral genome regions that inherited HQLA and HB were uniformly distributed and fully mixed in the F9 generation (Figure 2A). A total of 156,664 HQLA-HB type recombination events were identified on 1,204 chromosomes (602 individuals on GGA1 to GGA28). Each F9 produced an average of 260.24 ± 21.92 crosses, and the average ratio of HQLA and HB ancestral components was 51.9–48.1%. PCA showed that all F9 individuals were clustered in the middle of the two founders, and we did not detect a widespread population structure or cryptic relatedness in the F9 population (Figure 2B), which prevented false positive associations.
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FIGURE 2. Genetic evaluation of the AIL population. (A) The HQLA-HB type recombination events accumulated from F0 to F9, taking chromosome 1 of all F9 sequencing samples (n = 602) as an example. Local ancestors are marked with HQLA in red and HB in blue. (B) PCA (principal component analysis). (C) The extent of the LD in different generations of AIL. Values are the mean LD r2 values for all pairs of SNPs binned by distance. The nucleotide diversity (300 Kb windows) and inbreeding coefficient are shown in (D,E). (F) Minor allele frequency (MAF) distribution for the populations of F0 and F9.


LD (r2) decays in HQLA were significantly faster than those in HB, which is consistent with the ancestral cross history of HQLA (Figure 2C). The F2 generation is characterized by limited short-range recombination and continued to accumulate as the distance increased. The r2 decays rapidly in F8 and F9 individuals in comparison to F2 populations (r20.1 = 27 Kb in F9 and r20.1 = 570 Kb in F2), supporting the suitability of the F9 population for high-resolution mapping.

We used GBS SNPs to estimate the nucleotide polymorphisms (π) in each population (except F2) (Figure 2D) and the inbreeding coefficient (F) (Figure 2E). HQLA showed higher nucleotide polymorphisms but lower heterozygosity levels (higher F value) than HB. This profile is consistent with the strong artificial selection history of the HQLA population. Fortunately, the F9 generation maintained a high nucleotide polymorphism, and only 552 SNPs (0.34%) were lost compared to the F0 GBS data. Considering the distribution of minor allele frequencies (MAFs) (Figure 2F), a high proportion SNPs (30.43%) in F9 had lower allele frequencies (MAF < 0.1) than F0 (22.46%). This pattern shows that the AIL population still experiences a slight genetic drift and bottleneck between F0 and F9.



GWAS Identified Two Major QTLs Affecting Growth Traits in the F9 Generation

The growth traits of this study population have high heritability (0.48–0.82, Supplementary Table S2). Using a mixed linear model, we performed GWAS between the 161,376 GBS SNPs and 17 growth traits, including BW2-BW14, SC4-SC12, and SL4-SL12, in 599 F9 individuals. All traits have a high phenotypic and genetic correlation, especially between the same traits at different periods. The correlation between SC and BW at different periods is higher than the correlation between SL and BW (Supplementary Table S3). At a Bonferroni of 5% (1.01 × 10–6, 0.05/49,318), we identified a large major QTL mainly affecting body weight at GGA1: 168.6–171.7 Mb (Q1) and a small major QTL mainly affecting shank development at GGA27: 3.60–3.72 Mb (Q2) (Figures 3A,B and Supplementary Figure S3). These QTL peaks were narrower than those of the F2 linkage analysis (Sheng et al., 2013). The most significant associations were for BW8 at GGA1: 169,241,142 bp (p = 3.8 × 10–16) and SL10 at GGA27: 3,608,297 bp (p = 6.1 × 10–8). Q1’s confidence interval was 25-fold that of Q2, partly because the recombination rate of GGA27 (12.05 cM/Mb) was 4.9-fold that of GGA1 (2.44 cM/Mb) (Sheng et al., 2013) and the LD in GGA1 is more extensive than that in GGA27 (Supplementary Figure S4). The broad loci in Q1 make it difficult to infer which genes are responsible for the association. We speculate that there is more complex genetic architecture concealed in Q1, such as multiple linked minor QTLs. However, clarifying this architecture further is a very difficult. The following fine-mapping work mainly focuses on the Q2 interval. It should be noted that the Z chromosome was excluded in this study due to the pre-GWAS of 297 cocks (ZZ) showing no significant signal on the Z chromosome.


[image: image]

FIGURE 3. Joint analysis of GWAS in F9 and selection signature identification in F0. The Manhattan plots for BW8 (A) and SL10 (B). The genome-wide 5% significance threshold -log10P was 5.99. (C) XP-EHH and iHH in HQLA and HB using a ±2 cutoff (top 4.4% genomic region). (D) Tajima’s D in HQLA and HB and (E) the Fst value with a 200 Kb window using the 99th percentile cutoff. The orange vertical dashed (marked by the letter Q) represents the QTL interval, and the red and blue vertical dashed (marked by the letter S) represent the selection signature intervals dominated by HQLA and HB, respectively.




Selective Sweep Analysis on the F0 Generation Retrieved a Missing QTL on GGA4

The genes or variants underlying the large phenotypic differences between HQLA and HB likely evolved rapidly after artificial selection. Based on this principle, we employed different statistical tests to investigate the signatures of selection, including frequency spectrum-based Tajima’s D, the linkage disequilibrium-based XP-EHH method, and the population differentiation-based Fst method. However, one must carefully evaluate the results of selection signals since small sample sizes may introduce large drift effects. Hence, we combined our GWAS results with the Animal Quantitative Trait Loci Database2 to conduct a further screening of each selection signal interval. By comparing the growth traits associated QTLs with the candidate selection interval obtained by at least one method, we identified a total of 10 clear selection signal intervals (S1–S10), four of which occurred mainly in HQLA and six of which occurred in HB (Figures 3C–E).

Among these, we highlight the narrowed S6 interval on GGA4 (Figures 3C, 4A,B) matched the QTL database’s lists of growth traits. This signal spans GGA4: 75.28–75.67 Mb, harbors some candidate genes (PACRGL, SLIT2, KCNIP4, and mir-218-1), and has been reported to be significantly associated with chicken body weight in different populations, such as White Leghorn × Rhode Island Red cross (Sasaki et al., 2004), Silky Fowl × White Plymouth Rock cross (Gu et al., 2011), Beijing-You chickens (Liu et al., 2013), New Hampshire × White Leghorn cross (Nassar et al., 2015), and Dongxiang Blue-shelled chickens × White Leghorn cross (Guo et al., 2020). However, our association results were negative at this location because HQLA and HB were selected in the same direction (nearly fixed in HB, Figure 4C), resulting in an extremely low allele frequency difference (ΔAF) between them, which led to a further loss of statistical power in F9-GWAS.
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FIGURE 4. Comparison of the selection interval S6 in (A–C) and the QTL interval Q2 in (D–F). (A,D) The association results of S6 on GGA4 and Q2 on GGA27 with the genes displayed below. (B,E) The XP-EHH signature of S6 and Q2. (C,F) The MAF distribution for HB and the allele-frequency differences between the HQLA and HB (ΔAF) in S6 and Q2, respectively.




Fine-Mapping and Local Ancestral Inference for the Mosaic QTL on GGA27

A 120 Kb QTL region (GGA27: 3.60–3.72 Mb) was identified by 34 GBS SNPs and aggregated using r2 >0.3 with the top five SNPs of SL10. The GWAS significant SNPs were not continuously distributed across the region but were instead located in two peaks separated by regions with no genetic hitchhiking (Figure 4D). It is difficult to identify the selected interval by the window-based selection method under large allele frequency fluctuations (Figures 4E,F) (the mosaic association model).

We further analyzed the genetic architecture of this QTL using haplotype association analysis. To identify the haplotypes contributing to the association signal, a multilocus backward-elimination analysis was performed across the 34 SNPs in the 1.2 Mb region, and the top SNP on GGA1:169,241,142 bp was selected to control for Q1 effects. Four SNPs (GGA27: 3,608,297 bp, 3,620,306 bp, 3,644,245 bp, and 3,686,628 bp) were identified to have statistically independent associations with SL10 at a 5% False Discovery Rate (FDR) threshold. The haplotypes tagged by these 4 SNPs were estimated; in total, 12 haplotypes were detected (MAF > 0.01 in F9). Tracing back to the F0 generation, we confirmed three HQLA-origin haplotypes (A, red), four HB-origin haplotypes (B, blue), two shared haplotypes (gray), and three recombination haplotypes (orange) (Figure 5).
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FIGURE 5. Haplotype association analysis for the shank length at 10 weeks of age in the 120 Kb candidate region on GGA27. Four SNPs were associated with SL10 in a multilocus backward-elimination analysis across the segment. Haplotypes were estimated in the founder populations (HB and HQLA) and the F9 AIL generation across these markers. Twelve haplotypes were inferred in F9 at haplotype frequencies (HF) >0.01, including five unrecombined HQLA haplotypes (red), six unrecombined HB haplotypes (blue), two shared haplotypes (gray), and three recombination haplotypes (orange). Overall, the haplotype substitution effects exhibited a gradual distribution of effects on SL10 in F9.


We first focused on the dominance-recessiveness relationship and computed the phenotype scale for AA, AB, and BB as 1.37 ± 0.65 cm (n = 95), 0.08 ± 1.22 cm (n = 201), -1.53 ± 0.64 cm (n = 151), respectively. The results showed that HQLA carries the main length increasing alleles, and heterosis does not commonly exist in crosses of AB. Next, the additive haplotype substitution effects on SL10 were estimated. There was a gradient distribution of haplotype allele effects between decreasing SL10 by 1.57 cm and increasing it by 2.38 cm (Figure 5). Although most of the length increasing haplotypes are inherited from HQLA, there is still fluctuation among them, which is the same in HB. This effect distribution does not seem to be caused by only one causal mutation. Some well-known candidate genes related to body size and bone growth are located within this interval and are worthy of follow-up research, including PHOSPHO1, IGF2BP1, ZNF652, and GIP (Figure 4D). However, the proportion of our recombination haplotypes is too small to give further genetic evidence in the current population. Further recombinations (more offspring in AIL Fn) and higher density markers (Davies et al., 2016; Yang et al., 2019) will clarify this issue.



DISCUSSION

Crosses among well-characterized strains are a mainstay of modeling organism genetics. We reported a running chicken AIL that was generated by crossing HQLA × HB, which was differentially bred for fast growth and slow growth prior to subsequent intercrossing. Systematic characterization of the genetic architecture of AIL makes it possible to evaluate the suitability of different genomic situations for GWAS. Overall, the F9 of AIL has low linkage disequilibrium between markers to obtain accurate mapping resolution, an absence of population structure to prevent false positive associations, and relatively stable allele frequency to ensure a high enough power to detect the majority of quantitative trait loci (QTLs). We highlighted the fine-mapped QTL on the GGA27 derived from GWAS, haplotype association, and local ancestry inference, which implicated four candidate genes corroborated by extant human, mouse, and chicken genetic data.

Although the basic strategy to build the AIL was similar to that in other studies, certain practical considerations, along with the AIL’s complex genetic background, affected the design of this study and its outcomes in important ways. For example, we observed rich diversity and intense LD decay in the F0 generation, even though the four males were full siblings, and the 12 females were either half or full siblings, in the HQLA and HB founders, which is very different from the inbred AIL line of mice (Gonzales et al., 2018) and other model organisms (Mackay et al., 2012; Nicod et al., 2016). Compared with other chicken AILs, HQLA-HB-AIL presents lower levels of SNP diversity loss (11% SNPs with MAF < 0.05 in F9) than broiler × Fayoumi AIL (60% SNPs with MAF < 0.05 in F18 and F19) (Van Goor et al., 2015). Moreover, our previous study (Guo et al., 2016) reported that the single-nucleotide genome-wide polymorphisms of F0 were 1.38-fold those of the founders of the Virginia chicken AIL population (Zan et al., 2019), which illustrates the high polymorphisms in our population. Thus, this AIL is more human-like or similar to laboratory outbred mice (Yalcin et al., 2010) than the inbred AIL mice model, namely that this AIL has lower levels of LD, lower MAFs, and is more abundant haplotype diversity; the resulting mosaic association model also supports this conclusion. This is a double-edged sword that improves fine-mapping accuracy but affects power by increasing the multiple testing burden (Parker et al., 2016). In addition, the diversity of F0 may be due to the breeding process because HQLA is a commercial strain formed first by crossing and then by directed selection. This factor gives this population greater similarities to the three-ancestor MASIC population from the perspective of ancestors, which can be monitored by estimating individual ancestry (Supplementary Figure S5) using the unsupervised ADMIXTURE method (Alexander et al., 2009).

We also presented a joint analysis of GWAS, and selective sweep of this AIL was able to comprehensively extract more genomic features. Firstly, although we cannot rule out the effect of genetic drift on the selection results, the diversity of F0 still reduces the false positive rate of the selection signal to some extent, which allows all candidate intervals to be further studied based on their association with other phenotypes. Secondly, we showed a typical example of failing to replicate prior results on GGA4, which we explained by the loss of GWAS power that results from rare alleles. This result demonstrated that local diversity may be lost, even if two founder strains generally maintain large phenotypic/genotypic differences, which is also a major performance difference between AIL and MAGIC. Besides, this study used ∼160 K SNPs, which means that a very large sample size which not available currently is required to meet the multiple testing correction of detecting epistatic QTLs. Therefore, a comprehensive analysis of interaction between directional epistasis and mutation effects will also be a very interesting issue to be explored in the near future.

Another core issue of this study is the dissection of key growth-related (especially for bone development) genes. We focused on the narrow QTL on GGA27 that contains fewer genes, and we highlighted some genes that are noted by the existing literature for their role in the corresponding traits. This result finely replicated the F2 finding (Sheng et al., 2013) and is consistent with the QTL-mapping in Japanese cockfighting (Tsudzuki et al., 2007) and Pekin ducks (Zhou et al., 2018). The lead SNP at chr27:3,608,297 is associated with the shank length in F9 AILs, which lies in the intron of the ZNF652 gene. Although the function of this gene has not been reported in detail, discoveries from human GWAS have replicated the significant correlation between ZNF652 and body height in two independent cohorts [rs35587648, p = 7 × 10–42 in Lango Allen et al. (2010) and rs2072153, p = 4 × 10–8 in Kichaev et al. (2019)]. Interestingly, three other genes at this locus, PHOSPHO1, IGF2BP1, and GIP, have been reported to be related to skeletal development. PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase that has been implicated in the generation of Pi for matrix mineralization, a process central to skeletal development. Phospho1–/– mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Insulin-like growth factor II mRNA-binding protein 1 (IGF2BP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control (Bell et al., 2013). The IGF2BP1–/– mice were, on average, 40% smaller than their wild-type and heterozygous littermates; growth retardation was apparent from E17.5 and remained permanent into adult life (Hansen et al., 2004). Moreover, a GWAS study revealed that a putative regulatory mutation causes the continuous expression of the IGF2BP1 gene after birth, which increases body size of Pekin ducks by 15% (Zhou et al., 2018). Glucose-dependent insulinotropic polypeptide (GIP) also has been recognized in the last decade as an important contributor to bone remodeling and is necessary for optimal bone quality (Guo et al., 2020). GIP stimulates osteoblasts and increases bone formation. A decline in GIP leads to a decline in bone metabolism, which could be one of the mechanisms that induces osteopenia in diabetics (Zofkova, 2015). It is possible that all four genes are associated with shank length and further affect body weight as they are all involved in growth traits, which is also suggested by the progressive haplotype accumulation effect (Figure 5). In short, the above genes provide a starting point to further study the shank traits. The next analysis requires multi-omics methods, i.e., combined with a map-based approach, gene expression analysis, metabolic regulation analysis, causality analysis, and other optional methods to investigate the molecular mechanism and causal mutations in this region.

In summary, the HQLA-HB-AIL chicken, which balanced the avoidance of rare alleles with the requirement for rapid linkage disequilibrium (LD) decay, is a reasonable resource for detecting quantitative trait genes. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27. Further, we highlighted the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) for bone development. We also identified a missing QTL on chromosome 4 via the joint analysis of GWAS and a selection signature analysis, which demonstrated the local limitations of this population but can be remedied by a multidimensional analysis. Overall, our study provides a promising resource for this field of study and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.
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FIGURE S1 | Chromosome-wise SNP density in the GBS panel in physical distance.

FIGURE S2 | Quantile-quantile (Q-Q) plot of all 17 traits.

FIGURE S3 | The Manhattan plots for 15 traits. Phenotypes including BW2 to BW6, BW10 to BW14, SC4 to SC12, SL4 to SL8, and SL12. The genome-wide 5% significance threshold -log10P was 5.99.

FIGURE S4 | LD decay near two QTL interval. The red line represents the LD pattern of GGA1: 168–171 Mb (543 SNPs) and the black line represents the LD pattern of GGA27: 2.16–5.16 Mb (391 SNPs).

FIGURE S5 | Analysis of population structure of F0 and F9. Supervised analysis showed that all F9 individuals were clustered in the middle of the two founders. Unsupervised analysis showed K = 3 is the best model that is consistent with the breeding process of HQLA and F9 cross.

TABLE S1 | Descriptive statistics of the phenotypes.

TABLE S2 | Heritability of 17 traits.

TABLE S3 | Genetic and phenotypic correlation coefficient of 17 traits.

TABLE S4 | The phenotype data.
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Metabolites, substrates or products of metabolic processes, are involved in many biological functions, such as energy metabolism, signaling, stimulatory and inhibitory effects on enzymes and immunological defense. Metabolomic phenotypes are influenced by combination of genetic and environmental effects allowing for metabolome-genome-wide association studies (mGWAS) as a powerful tool to investigate the relationship between these phenotypes and genetic variants. The objectives of this study were to estimate genomic heritability and perform mGWAS and in silico functional enrichment analyses for a set of plasma metabolites in Canadian crossbred beef cattle. Thirty-three plasma metabolites and 45,266 single nucleotide polymorphisms (SNPs) were available for 475 animals. Genomic heritability for all metabolites was estimated using genomic best linear unbiased prediction (GBLUP) including genomic breed composition as covariates in the model. A single-step GBLUP implemented in BLUPF90 programs was used to determine SNP P values and the proportion of genetic variance explained by SNP windows containing 10 consecutive SNPs. The top 10 SNP windows that explained the largest genetic variation for each metabolite were identified and mapped to detect corresponding candidate genes. Functional enrichment analyses were performed on metabolites and their candidate genes using the Ingenuity Pathway Analysis software. Eleven metabolites showed low to moderate heritability that ranged from 0.09 ± 0.15 to 0.36 ± 0.15, while heritability estimates for 22 metabolites were zero or negligible. This result indicates that while variations in 11 metabolites were due to genetic variants, the majority are largely influenced by environment. Three significant SNP associations were detected for betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) based on Bonferroni correction for multiple testing (family wise error rate <0.05). The SNP rs81117935 was found to be located within the Catenin Alpha 2 gene (CTNNA2) showing a possible association with the regulation of L-alanine concentration. Other candidate genes were identified based on additive genetic variance explained by SNP windows of 10 consecutive SNPs. The observed heritability estimates and the candidate genes and networks identified in this study will serve as baseline information for research into the utilization of plasma metabolites for genetic improvement of crossbred beef cattle.

Keywords: candidate genes, crossbred beef cattle, functional enrichment analyses, metabolomics, single-step GBLUP


INTRODUCTION

The metabolic phenotype (or “metabotype”) is a characteristic metabolite profile that depends on the interactions between genetic and environmental effects. Commonly, the metabolic phenotype of an individual is measured from easily accessible biofluids such as urine or blood (Nicholson and Lindon, 2008). Additionally, blood metabolites have been shown to be powerful tools for the indication of the nutritional and health status of humans and animals. For example, in humans, several blood metabolites have been identified as biomarkers for diseases (López-López et al., 2018). In livestock species, associations between metabolites and economically important traits such as feed efficiency (Karisa et al., 2014), growth performance (Widmann et al., 2013), and animal health (Montgomery et al., 2009) have been reported.

Metabolome-genome-wide association study (mGWAS) is a powerful tool for identifying genetic variants underlying metabolic phenotypes and provides new opportunities to decipher the genetic basis of metabolic phenotypes. Importantly, mGWAS detect genetic variants that are functionally associated with metabolic phenotype variation. For example, previous studies have reported that single nucleotide polymorphisms (SNPs) in the glutamine synthase 2 gene (GLS2) were associated with glutamine in human serum, which provides a potential biological association, as the enzyme GLS2 catalyzes the hydrolysis of glutamine (Suhre et al., 2011; Kettunen et al., 2012). Furthermore, genome-wide hits with unknown gene function offer an opportunity to infer novel biological mechanisms of the SNP-metabolite association. For instance, Suhre et al. (2011) experimentally studied the association of the SNP rs7094971 inside the solute carrier family 16, member 9 gene (SLC16A9) with carnitine and validated that the hitherto uncharacterized protein was indeed a carnitine transporter in Xenopus oocytes. Additionally, as metabolites lie between genomic and external phenotypes, they could explain the variation of external phenotypes by revealing biological mechanisms underlying the associations between them. Recent application of GWAS have successfully uncovered genetic variants that contribute to variation in both the external phenotype (e.g., type 2 diabetes) and the metabolic phenotype (e.g., fasting glucose levels) (Stranger et al., 2011).

Due to the rapidly growing number of candidate biomarkers and the increasing role of metabolites in genetic studies, the knowledge of the genetic basis of metabolites is therefore a prerequisite to evaluate new biomarkers and dissect the genetic architecture of metabolites. Until now, however, knowledge regarding the genetic level of metabolites in beef cattle has been limited. Thus, the objectives of this study were to estimate genomic heritability of 33 plasma metabolites in crossbred beef cattle, to identify genetic variants, genomic regions and candidate genes associated with metabolite variation, and to understand the biological functions and gene networks linked to these associations.



MATERIALS AND METHODS


Animal, Blood Samples and Nuclear Magnetic Resonance (NMR) Spectroscopy

All management and procedures involving live animals, where applicable, conformed to the guidelines outlined by the Canadian Council on Animal Care (1993); otherwise, existing data sets from the various Canadian research herds were used.

The dataset used in this study was obtained from the Phenomic Gap Project (McKeown et al., 2013). This project started in 2008 aiming to generate feed efficiency, carcass and meat quality phenotypes as well as genomic information for Canadian crossbred beef animals as previously described by Akanno et al. (2014). A total of 475 Canadian multibreed composite and crossbred beef cattle was used in this study. The animals comprised of bulls, slaughter steers, slaughter heifers and replacement heifers submitted to a feedlot feeding test from 2009 to 2012 and the test groups were labeled as contemporary groups. The population structure consisted of Beefbooster composite breed (n = 224) which is predominantly Charolais-based with infusion of Holstein, Maine Anjou, and Chianina1, Hereford-Angus (n = 181) crosses, Charolais (n = 68), and Angus (n = 2).

Blood samples were collected in EDTA tubes from each animal by jugular venipuncture on the first day of the feedlot feeding test and immediately frozen at −80°C which is considered appropriate for storage. Our assumption is that all samples were affected equally by the freezing process if at all. Therefore, although the metabolite profiles may not be the same as those obtained from fresh samples, the freezing process should not be a source of variation for this study since all samples were frozen the same way according to best practice. Frozen blood samples were sent to the Metabolomics Innovation Center at University of Alberta, AB, Canada in 2014 for analysis. The variation in time of sample collection is expected to be captured under the “contemporary group” variable applied in subsequent statistical analysis. Each frozen sample was thawed at room temperature then centrifuged at 10,000 rpm for 10 min to separate the plasma then filtered through 3 kDa molecular weight cut-off filters (Merck Millipore Ltd., Darmstadt, Germany) to remove macromolecules, including lipids and proteins. As the filter tube manufacturer treats the filter membranes with glycerol as a preservative, filters were washed and centrifuged five times before use. Samples made up of less than 570 μl after filtration were diluted with HPLC water to ensure adequate volume for NMR acquisition. A total of 5 mm NMR tube (New Era Enterprises Inc., Vineland, NJ, United States) contained a total of 700 μl of total volume of 570 μl filtered serum, 60 μl DSS and 70 μl D2O. This mixture was vortexed and centrifuged shortly before it was transferred to an NMR tube for data acquisition. All metabolite concentrations obtained were adjusted by appropriate factors to account for the above dilutions, and represent the contents of the filtered samples, not the contents of the NMR tube.

Spectra were acquired on a 500MHz VNMRS spectrometer equipped with a 5mm cold probe (Agilent Technologies, Santa Clara, CA, United States). The pulse sequence used was a 1D-noesy with a 990 ms presaturation on water and a 4 s acquisition period. Spectra were collected with 256 transients and four steady-state scans at 298K.

Spectra were zero filled to 64k points and Fourier transformed. Spectral phasing was performed on the spectra along with baseline correction. In total, 33 metabolites were identified and quantified with a targeted profiling approach using the Profiler and Library Manager modules in the same software which contains a total of 304 metabolites. Each spectrum was peer reviewed by a separate analyst and a final review pass was done on all of the spectra before exporting concentration results. Concentration measurements were adjusted to report metabolite concentrations after the filtration of the samples.



Genotyping, Quality Control and Prediction of Genomic Breed Composition

Animals were genotyped using Illumina BovineSNP50 v2 BeadChip (Illumina Inc., San Diego, CA, United States) at Delta Genomics, Edmonton, AB, Canada. The genotypes were coded as 0, 1, and 2 and quality control was performed using the Synbreed package (Wimmer et al., 2012) in R statistical software. All markers on sex chromosomes and autosomal markers with minor allele frequency <1%, call rate <90%, and severe departure from Hardy-Weinberg equilibrium (P < 10–5) were removed. Missing genotypes were imputed using Synbreed package. After quality control, 45,266 SNPs on 29 bovine autosomes for 475 individuals remained and were used for this study.

Genomic breed composition was predicted for all individuals using ADMIXTURE software (Alexander et al., 2009). To predict breed composition for each animal, a 10-fold cross-validation procedure was performed to find the best possible number of ancestors or breeds (K value). The value of K = 4 was chosen because it had the smallest cross-validation error and yielded the most accurate breed composition prediction based on prior knowledge. The four postulated ancestral breeds were Hereford, Angus, Charolais and Beefbooster TX line. The distribution of predicted genomic breed composition is shown in Figure 1. Estimates of genomic breed composition were fitted as covariates in the various statistical models to correct for population stratification and breed effects.


[image: image]

FIGURE 1. Distribution of predicted genomic breed composition of crossbred beef cattle population (n = 475). Beefbooster is red, Angus is yellow, Hereford is green, Charolais is blue.




Phenotypic Quality Control

Phenotypic records included 33 plasma metabolite concentrations quantified from blood samples of 475 animals. A linear regression model implemented in R statistical software was used to assess the significance of all systematic effects associated with variation in plasma metabolites. Fixed factors found to be significant (P <0.05) included contemporary groups (herd and birth year), animal type (bulls, slaughter steers, slaughter heifers, and replacement heifers) and genomic breed composition. These factors were subsequently included in the mixed model used for estimating heritability and GWAS. Contemporary group and animal type were fitted in the model as fixed class effect whereas breed fractions were fitted as fixed covariates. Residual values of the linear regression model were checked and those residuals with more or less than 3 standard deviations from the mean of residuals were considered as outliers and the associated records were excluded. The distribution of residuals after excluding outliers was close to a normal distribution (i.e., a bell shape without a big tail). The summary statistics of all metabolites after phenotypic quality control are given in Table 1. In general, the concentration of plasma metabolites ranged from 20.72 μM (L-methionine) to 5,024.04 μM (L-lactic acid), on average.


TABLE 1. Descriptive statistics for 33 plasma metabolites: number of animals per metabolite (n), mean, standard deviation (SD), coefficient of variation (CV), minimum (Min.) and maximum (Max.).

[image: Table 1]


Variance Components and Heritability Estimation

Variance components and heritability of 33 metabolites were estimated using a single-trait animal model and genomic relationship matrix. The genomic relationship matrix was constructed based on total filtered SNP markers (i.e., 45,266 SNPs) and using one of VanRaden’s formulations ZZ′/2∑pi(1−pi), where Z contains centered genotypes codes and pi is the minor allele frequency for locus i (VanRaden, 2008). The following mixed effect model (1) implemented in ASReml version 4.1 (Gilmour et al., 2015) was applied:

[image: image]

Where y is a vector of phenotypic observation; X is the design matrix that relates the fixed effects to the observation and b is a vector of fixed effects of contemporary groups, animal type and genomic breed composition. W is a design matrix relating observations to random animal genetic effects; a is a vector of random additive polygenic effects that is assumed to be normally distributed as: [image: image], whereG is genomic relationship matrix and [image: image] is the additive genetic variance, e is a vector of random residual effects that is assumed to be normally distributed as [image: image], with I being an identity matrix and [image: image] is the residual error variance.



Metabolome-Genome-Wide Association Study

The genomic heritability obtained from model (1) was used to screen all metabolites for metabolome genome wide association analyses. Metabolites with zero or near zero heritability were excluded from mGWAS. Here, the SNP P values for 11 metabolites with non-zero heritability were determined using a single-step genomic BLUP (ssGBLUP) approach as described by Aguilar et al. (2019) and followed by the estimation of the proportion of additive variance explained by 10 consecutive SNP windows using a Weighted ssGBLUP (WssGBLUP) approach (Wang et al., 2012). Both approaches were implemented in the BLUPF90 programs (Misztal et al., 2002). The mGWAS model used was similar to model (1) above except that a was assumed to follow [image: image], where H is the matrix that combines genomic and pedigree information (Aguilar et al., 2010). The inverse of H for mixed model equations is:

[image: image]

A is the pedigree-based numerator relationship matrix for all animals, A22 is the numerator relationship matrix for genotyped animals, and matrix G is the genomic relationship matrix, where G was weighted as described by Wang et al. (2012) for the WssGBLUP method.

A rejection threshold based on Bonferroni correction for multiple testing (0.05/45,266) was applied, which is equal to 5.96 in the −log10 scale. The quantile–quantile (Q–Q) plots of P values for each SNP were used to compare observed distributions of −log (P value) to the expected distribution under the null hypothesis for each metabolite. Manhattan plots of P values for each SNP were also used to illustrate significant associations at the level of each chromosome for the metabolites. All plots were completed using the R package qqman (Turner, 2014).



Candidate Gene Identification

To identify a candidate gene, the surrounding region of each significant SNP was surveyed by expanding 100-kbp upstream and downstream, respectively. The 200-kbp region was defined based on the average linkage disequilibrium (r2) between pairs of syntenic SNPs within this distance which is known to be 0.20 in a related beef cattle population (Lu et al., 2012).

Further, additional candidate genes associated with the top 10 SNP windows that explained the largest proportion of genetic variance for each metabolite from the WssGBLUP approach were identified. Positional candidate genes within 200-kbp regions and those inside the top 10 SNP windows were mapped on Bos taurus genome view in Biomart available at the Ensembl database UMD 3.1 version (Zerbino et al., 2018). The functions of all identified genes were manually searched from the literature to see if they had a previously identified relationship with the associated metabolites under investigation.



Analysis of Least Square Means for Significant SNP

The least square mean of SNPs significantly associated with metabolites were assessed based on model (2) and implemented in R where applicable, to see how different allele combinations for these SNPs resulted in observed differences in the metabolite concentration.

[image: image]

Where y,X,b, and e are the same as in model (1) and (2); SNP is a vector of genotype class 0, 1 and 2 fitted as a classification factor.



Functional Enrichment Analyses

The interpretation of mGWAS using metabolite concentrations as the target phenotype is a complicated task, because their concentrations are influenced indirectly by mRNA and protein expression as well as directly by several environmental effects. Pathway analysis using prior knowledge improves the interpretation of mGWAS data and provides insight from the genetics of biochemical conversions and biological functions. Functional analyses for the genes associated with each metabolite were performed using Ingenuity Pathway Analysis software2 (IPA). Several lists including metabolites (PubChem CID) and candidate genes (Bovine Entrez gene IDs) in Supplementary Table S1 were imported in IPA for biological function analysis and network construction. Biological functions were considered significantly enriched if the P value for the overlap comparison test between the input list and the knowledge base of IPA for a given biological function was less than 0.05. Identification of significant pathways in biological processes was described in detail by Calvano et al. (2005). The analysis was performed following IPA default setting and parameters were set to allow the network to show indirect relationships for the imported metabolite and gene lists. Indirect relationships assist in the identification of other metabolites/genes that were not among the ones in the input list but may be associated with them based on the IPA biological reference. In addition, the resulting gene networks are scored and then sorted based on the score not based on P value, as multiple testing for this sort of analysis is not feasible.



RESULTS


Heritability Estimates

Eleven metabolites showed low to moderate heritability that ranged from 0.09 ± 0.15 (succinic acid) to 0.36 ± 0.15 (choline), while heritability estimates for 22 metabolites were zero or negligible. Table 2 shows the results of all metabolites with heritability.


TABLE 2. Estimates of additive variance ([image: image]), residual variance ([image: image]), heritability (h2) and their standard error (SE) for 11 plasma metabolitesa.
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SNP Association, Candidate Genes and Genetic Effects

Three significant SNP associations were detected for betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) based on Bonferroni correction for multiple testing (family wise error rate <0.05) (Table 3 and Figures 2–4). The SNPs were located on chromosome 5, 11, and 22, respectively. The SNP rs81117935 was found within the catenin alpha 2 gene (CTNNA2), while the other two SNPs were not mapped to any known candidate gene (Table 4).


TABLE 3. SNPs significantly associated with metabolites: chromosome (Chr), position of SNP on chromosome (bp), minor allele and minor allele frequency (MAF), nucleotide of SNP, P values of significant test and Bonferroni correction of P values.
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FIGURE 2. Manhattan plot (A) and QQ plot (B) for betaine, significant SNPs were determined by Bonferroni correction (red line).
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FIGURE 3. Manhattan plot (A) and QQ plot (B) for L-alanine, significant SNPs were determined by Bonferroni correction (red line).
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FIGURE 4. Manhattan plot (A) and QQ plot (B) for L-lactic acid, significant SNPs were determined by Bonferroni correction (red line).



TABLE 4. 200-kpb regions around the significant SNPs: chromosome (Chr), position of the region on chromosome (bp), gene in the regions and the location of the gene compared to SNP location.

[image: Table 4]
In addition to the identified significant SNPs, the WssGBLUP method also identified more genomic regions associated with heritable metabolites based on additive genetic variance explained by SNP windows of 10 consecutive SNPs. The proportion of additive genetic variance explained by top 10 SNP windows and genes mapped in these windows are shown in Supplementary Table S1. The SNP window (107,403,824–107,704,991 bp) located on chromosome 5 was found to be associated with citric acid and explained the highest proportion of additive genetic variance (4.21%) while the SNP window (35,619,632–36,428,58 bp) with the lowest proportion of additive genetic variance (0.62%) was located on chromosome 26 and associated with L-lactic acid. A total of 368 unique genes were identified within the selected SNP windows (Supplementary Table S1). Further, five SNP windows showed pleiotropic effects on two or more metabolites and were mapped to 17 candidate genes (Table 5).


TABLE 5. Chromosome (Chr) and position of overlapped windows (bp) and genes in the overlap windows.

[image: Table 5]
The least square means of the genotypic classes are given in Figure 5. All three significant SNPs (rs109862186, rs81117935, and rs42009425) showed characteristics of additivity with the associated metabolite as concentration either increased or decreased with the number of “B” alleles for the three genotypic classes.
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FIGURE 5. Least square means for the genotypic classes of significant SNPs associated with betaine (A), L-alanine (B), and L-lactic acid (C), respectively. All three significant SNPs (rs109862186, rs81117935, and rs42009425) showed characteristics of additivity with the associated metabolite.




Functional Enrichment Analyses

The eleven heritable metabolites and their candidate genes were significantly enriched (P < 0.05) for biological functions related to cellular, tissue, and organ development, cell-to-cell signaling and interaction, molecular transport, small molecule biochemistry, lipid metabolism, carbohydrate metabolism, and cellular growth and proliferation. All significant biological functions and their P values for each metabolite are provided in the Supplementary Table S2. Additionally, the IPA software produced 33 networks with the input metabolite and candidate gene lists (Supplementary Table S3) and one of the most informative networks (Figure 6) was related to lipid metabolism and cell-to-cell signaling and interaction with betaine and some of its candidate genes.
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FIGURE 6. The enrichment network for betaine and associated genes, and the molecules in IPA database. The enriched pathway predicted by IPA showed a potential relationship between betaine, insulin, and phospholipids.




DISCUSSION


Heritability Estimates

Metabolites have the potential to serve as biomarkers for production traits and diseases in livestock (Montgomery et al., 2009), and the concentration of biomarkers should not vary too much over the short term within an individual because such variation could undermine the predictive association in a single sample (Nicholson et al., 2011b). Most highly conserved metabolites are also highly heritable (Yousri et al., 2014) and less influenced by the environmental changes. In this study, we performed a baseline investigation into the heritability of plasma metabolites in crossbred beef cattle and identified potential associations between heritable metabolites and SNP markers. As certain metabolites are essential for growth and health, knowledge of the genetic parameters of these important metabolites could trigger directional selection toward regulating their concentration in metabolic processes. For instance, alanine is an essential amino acid for T cell activation (Ron-Harel et al., 2019) which affects immunity level. Here, a total of 11 metabolites out of 33 showed low to moderate heritability, suggesting their potential as biomarkers for genetic selection. Betaine and choline which showed moderate heritability in this study have been previously identified to be associated with residual feed intake in beef cattle (Karisa et al., 2014), thus, they could potentially be used as biomarkers for improving feed efficiency in beef cattle. The majority of the metabolites with negligible heritability may be largely influenced by environmental effects such as age, gender, nutrition, medication, and possibly underlying diseases (Beuchel et al., 2019). The non-heritable status of these metabolites may be used as a guide to animal management. For example, ruminants fed silage-based diets are likely to ingest ethanol because of ethanol production in fermented feeds (Nishino and Shinde, 2007) and the process of ethanol detoxification in liver could affect splanchnic nutrient metabolism (Obitsu et al., 2013). Ethanol showed a negligible heritability in this study, which suggests that the variation of ethanol concentration may be mainly affected by management factors such as feed.

In a related study that utilized milk metabolites from dairy cattle, Buitenhuis et al. (2013) found heritability estimates that were similar to estimates observed for five metabolites from the current study. Although, these studies are not completely comparable, this finding corroborates the possible existence of a genetic basis for plasma metabolites. In addition, the negligible heritability or large standard error observed for some of the metabolites may be due to the limited number of animals utilized. Thus, further study may be warranted as this is the first attempt to characterize the genetic basis of plasma metabolites in crossbred beef cattle.



SNP Association, Candidate Genes and Genetic Effects

Genetic profiling of plasma metabolites has been previously studied in other species to assess their value as biomarkers for disease prediction (López-López et al., 2018). Recently, metabolomics GWAS was performed to identify genomic regions associated with variation in milk metabolites in dairy cattle (Buitenhuis et al., 2013). To the best of our knowledge, this study is the first attempt at profiling the genetic basis of plasma metabolites in crossbred beef cattle. The SNPs and candidate genes identified here revealed the potential association between metabolomics and genetics, which could help fill the knowledge gap that exist between genetic level and external phenotype. The possible signals detected in this study were associated with betaine, L-alanine and L-lactic acid, and the peaks for significant additive SNPs including rs109862186, rs81117935, and rs42009425 were on chromosome 5, 11, and 22. Two of the SNPs rs109862186 and rs42009425 showed no evidence of a candidate gene within 200-kbp distance, however, SNP rs42009425 associated with L-lactic acid was reported to be associated with clinical mastitis in French Holstein cattle (Marete et al., 2018). The SNP rs81117935 associated with L-alanine was found to be located within the candidate gene CTNNA2 which is one of three human alpha-catenin genes. Alpha-catenin functions as a linking protein between cadherins and actin-containing filaments of the cytoskeleton (Cooper and Hausman, 2000), however, it is not known whether CTNNA2 gene may regulates the concentration of L-alanine in bovine blood. The least square mean results (Figure 5) showed that the concentration of L-alanine was significantly (P < 0.05) greater in individuals that are homozygotes for the “A” allele of SNP rs81117935 while no significant differences existed for the other two genotypic classes. Our finding suggests that CTNNA2 gene may play a role in the regulation of plasma L-alanine which requires further investigation.

Further, several candidate genes associated with heritable metabolites were mapped inside the selected SNP windows of 10 consecutive SNPs based on WssGBLUP analyses. Here, choline kinase alpha gene (CHKA) which is associated with choline was mapped inside the SNP window (46,143,465–46,796,930 bp) on chromosome 29. This gene encodes an enzyme called choline kinase alpha (Hosaka et al., 1992) which catalyzes the phosphorylation of choline to phosphocholine (Aoyama et al., 2004) as a first step in the biosynthesis pathway of phosphatidylcholine (Lacal, 2001). Phosphatidylcholine is one of the most abundant phospholipids in all mammalian cell membranes (van der Veen et al., 2017) and plays a critical role in membrane structure and also in cell signaling (Lacal, 2001). The importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been reviewed by van der Veen et al. (2017). Lipid metabolism has been previously identified as an important biological function in relation to beef cattle residual feed intake (Chen et al., 2011; Alexandre et al., 2015; Mukiibi et al., 2018). Therefore, the relationship between CHKA gene and choline metabolite used in this study have potential value for improving feed efficiency in beef cattle. Interestingly, several overlapped SNP windows were also identified, which indicates that either two metabolites were controlled by the same gene or by different genes within a SNP window (Table 5). The substantial polygenic and pleiotropic nature of the metabolite variation observed in the current study have been previously reported in human metabolomics studies (Hu et al., 2018; Gallois et al., 2019).

Several reasons may lead to the few significant SNPs identified. Firstly, variation in metabolite concentrations may be due to the polygenic nature of the genes underlying the variation. Polygenic inheritance for primary metabolites have been reported in plants (Rowe et al., 2008; Chan et al., 2010; Wen et al., 2014) and could potentially exist in beef cattle as evident in our study that utilized primary metabolites. Secondly, the crossbred nature of our studied population could lead to inconsistent linkage disequilibrium across multiple populations (De Roos et al., 2009). Thirdly, the ability to identify SNPs and quantitative trait loci with large effects on any of the metabolites depends partly on the amount of variation in metabolite concentration that can be attributed to genetic source. Here, low to moderate heritability were observed for some of the metabolites studied. Marker density is another factor that may lead to identification of fewer significant SNPs associated with variation in metabolites. In this study, 50K SNP panel was used for mGWAS, however, some causative SNPs may not be included in this panel and thus, would likely not be detected. Studies involving other beef cattle traits have shown that increasing marker density from 50K to 7.8 million SNPs can capture more additive genetic variance and can detect additional or novel significant SNPs (Wang et al., 2020; Zhang et al., 2020). Therefore, high-density SNP marker panel or whole-genome sequence data are suggested for future studies. Lastly, a stringent significance threshold based on Bonferroni correction for multiple testing was imposed to identify significant SNPs and exclude false positive results. However, compared with traditional GWAS, metabolites are highly correlated to other similar metabolites and often cannot be considered as independent. The traditional multiple testing methods may therefore eliminate some valuable SNPs. Some groups have computed the Bonferroni correction by counting all the metabolites (Gieger et al., 2008; Illig et al., 2010; Suhre et al., 2011), while a few other groups have adopted a less stringent strategy by taking into account the number of independent metabolites as determined by a principal component analysis to adjust for multiple test correction (Demirkan et al., 2012).



Functional Enrichment Analyses

A one-to-one metabolite-to-gene correspondence is not known a priori (Nicholson et al., 2011a) but functional enrichment analyses could provide enriched functions and networks of metabolites and identified candidate genes to give a whole picture of gene-metabolite associations. Some biological functions that are significantly enriched may help us improve understanding of molecular factors for some important traits, such as feed efficiency. The eight most significantly enriched biological functions for beef cattle feed efficiency included lipid metabolism, amino acid metabolism, carbohydrate metabolism, energy production, molecular transport, small molecule biochemistry, cellular development, and cell death and survival (Cantalapiedra-Hijar et al., 2018). Our results supplement the part played by genetic and molecular factors for these functions, thus, available data with both information (i.e., metabolite data and feed efficiency related traits) could be used to elucidate this hypothesis. Detailed insight into the specific pathways that are affected by variation in metabolites is a useful first step to select the most likely hypotheses. A good example is betaine which is widely distributed within the animal body (Xia et al., 2018) and was reported to enhance the synthesis of methylated compounds such as phospholipids as well as directly influence lipid metabolism (Huang et al., 2008). In addition, a recent study showed that insulin was associated with phospholipid alterations, but the mechanism is still not clear (Chang et al., 2019). Interestingly, the enriched pathway constructed by IPA showed a relationship between betaine, insulin and phospholipids and provides new insight into the connection between them (Figure 6), however, this connection requires experimental validation.



CONCLUSION

This study estimated heritability of 33 plasma metabolites for crossbred beef cattle and found low to moderate heritability for 11 metabolites, which provides evidence for the genetic basis underlying the variation of metabolite concentrations. Three significant SNP associations were detected for betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) which suggest that the genetic effects may be largely polygenic. The SNP rs81117935 was found to be within CTNNA2 gene which is possibly associated with the regulation of L-alanine concentration in bovine blood. Other candidate genes were identified based on additive genetic variance explained by SNP windows of 10 consecutive SNPs. The observed heritability estimates and candidate genes and networks identified in this study will serve as baseline information for further research into the utilization of plasma metabolites for genetic improvement of crossbred beef cattle.
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Genomic breed composition (GBC) of an individual animal refers to the partition of its genome according to the inheritance from its ancestors or ancestral breeds. For crossbred or composite animals, knowing their GBC is useful to estimate heterosis, to characterize their actual inheritance from foundation breeds, and to make management decisions for crossbreeding programs. Various statistical approaches have been proposed to estimate GBC in animals, but the interpretations of estimates have varied with these methods. In the present study, we proposed a causality interpretation of GBC based on path analysis. We applied this method to estimating GBC in two composite breeds of beef cattle, namely Brangus and Beefmaster. Three SNP panels were used to estimate GBC: a 10K SNP panel consisting of 10,226 common SNPs across three GeneSeek Genomic Profiler (GGP) bovine SNP arrays (GGP 30K, GGP 40K, and GGP 50K), and two subsets (1K and 5K) of uniformly distributed SNPs. The path analysis decomposed the relationships between the ancestors and the composite animals into direct and indirect path effects, and GBC was measured by the relative ratio of the coefficients of direct (D-GBC) and combined (C-GBC) effects from each ancestral breed to the progeny, respectively. Estimated GBC varied only slightly between different genotyping platforms and between the three SNP panels. In the Brangus cattle, because the two ancestral breeds had a very distant relationship, the estimated D-GBC and C-GBC were comparable to each other in the path analysis, and they corresponded roughly to the estimated GBC from the linear regression and the admixture model. In the Beefmaster, however, the strong relationship in allelic frequencies between Hereford and Shorthorn imposed a challenge for the linear regression and the admixture model to estimated GBC reliably. Instead, D-GBC by the path analysis included only direct ancestral effects, and it was robust to bias due to high genomic correlations between reference (ancestral) breeds.

Keywords: beef cattle, crossbred animals, genomic composition, SNP arrays, path analysis


INTRODUCTION

Genomic breed composition (GBC) of an individual animal refers to the partition of its genome according to the inheritance from its ancestors or ancestral breeds. At the DNA level, every individual has two haplotypes, which are linages of genes and markers. One haplotype is inherited from the father and the other from the mother. In crossbreeding, a haplotype segment is usually present in many individuals as descendants of a common ancestor from which the segment originates. It is also possible that one progeny can carry two segments that are identical-by-status (IBS), meaning identical by chance, because they are not inherited from the same ancestor. The chance of IBS, however, is minimal if many markers are included in the segments, e.g., based on runs of homozygosity (ROH), which are long DNA segments containing consecutive homozygous loci (Ferencakovic et al., 2011; Purfield et al., 2012). The information about GBC is very useful in many aspects. For purebred animals, knowing their genomic composition can help the registry of purebred animals when the pedigree is missing (Kuehn et al., 2014; Norman et al., 2016) or the identification of population structures (Pritchard et al., 2000; Pickrell and Pritchard, 2012). For crossbred or composite animals, GBC is often used to estimate heterozygosity, to understand their breeding history, to characterize their actual inheritance from foundation breeds, and to make management decisions for crossbreeding programs (VanRaden and Cooper, 2015; Akanno et al., 2017; Gobena et al., 2018; He et al., 2018).

Various statistical methods have been proposed to estimate GBC (Pritchard et al., 2000; Tang et al., 2005; Frkonja et al., 2012; Bansal and Libiger, 2015), but the interpretations of estimates have varied across methods. For example, linear regression estimated the GBC of an individual by adjusted regression coefficients of coded genotypes of each animal as the progeny on the ancestral allele frequencies (Chiang et al., 2010; Kuehn et al., 2014; VanRaden and Cooper, 2015). The regression coefficients, however, have no precise interpretation of GBC because they can be any real values, not bounded between 0 and 1. Statistically speaking, linear regression is more of a prediction method rather than an appropriate approach for quantifying genomic causality relationships. When applying the least squares, for example, the linear regression equation is fitted by minimizing the discrepancy between the observed dependent values and their fitted value given by the linear equation. Hence, the usefulness of such an equation is that it gives the best or closest prediction, independently of the meaning of predictors, and it provides no exact indication on the causality relationships of these variables. Likewise, estimated GBC using a genomic prediction model is also based on estimated variable effects, which is more of a prediction by its nature than of causality (Akanno et al., 2017). Besides, a multiple regression model is not robust to high correlations between independent variables. In reality, however, modern cattle breeds are genetically related to various extent (Ajmone-Marsan et al., 2010). Such strong relationships between breeds give rise to the problem of multicollinearity, which in turn leads to ill-estimated linear regression coefficients, e.g., when obtained with least-squares. Another approach for estimating GBC is the admixture model, which postulates that an observed genotype is an instance of a multinomial distribution with the genotype probability being a mixture of those of their ancestors. In this case, the GBC of an individual animal is estimated by the weights of the admixture (Bansal and Libiger, 2015). Like in the case of the linear regression approach, if ancestors are highly correlated, it also imposes a challenge to precisely estimate the weights for the admixture model.

Path analysis has been developed to model causal relationships between variables. In the path analysis, exogenous (independent) variables produce both direct and indirect path effects on one or more endogenous (dependent) variables. The indirect path effects due to the correlations between the exogenous variables are also referred to as the correlational effects (Land, 1969). Path analysis was initially developed by Sewall Wright in a series of general essays (Wright, 1921, 1934, 1954, 1960a,b) as an analytical tool for quantitative genetics to measure “the direct influence along each separate path in such a system and to find the degree to which variation of a given effect is determined by each particular cause” (Wright, 1921).

In the present study, we proposed the use of path analysis to decompose the causality relationships between composite (or crossbred) animals and their putative ancestors (or reference breeds) and to estimate GBC of individual animals in terms of the relative determination of respective ancestral (or reference) breeds. Two measures of GBC were used, one accounting only for the direct path effects of each reference breed, and the other including both direct and indirect path effects for each reference breed. The indirect path effects were attributable to the correlations between the reference breeds. Estimated GBC from the path analysis was compared with those obtained using the linear regression and the admixture model, and their similarities and dissimilarities were discussed as well.



MATERIALS AND METHODS


Animals, Genotypes, and SNP Panels

The genotypes of 150,676 animals sampled from two composite breeds and eight reference breeds of beef cattle were used in the present study (Table 1). The composites included 7,605 Beefmaster and 7,969 Brangus. The reference animals included 45,396 Angus, 2,320 Brahman, 10,423 Hereford, 1,587 Shorthorn, 17,769 Gelvieh, 7,680 Limousin, 23,722 Simmental, and 26,689 Wagyu before data cleaning. These animals were genotyped on GeneSeek Genomic Profiler (GGP) LD V3 (GGP 30K) bovine SNP chip (32,179 SNPs), GGP bovine SNP 40K chip (40,660 SNPs), and GGP bovine 50K bovine SNP chip (49,463 SNPs), respectively (Neogen GeneSeek Operations, Lincoln, NE). The GGP 40K bovine SNP chip included common 31,901 SNPs with the GGP 30K. The GGP bovine 50K had 11,333 SNPs in common with GGP bovine 30K SNP chip and 16,369 SNPs in common with GGP bovine 50K SNP chip. Data cleaning removed monomorphic SNPs across all breeds, and SNPs with 10% missing in each breed. After data cleaning, 10,226 common SNPs (referred to as the 10K SNP panel) across the three GGP bovine SNP chips were retained. Then, from the 10K set, two sets: (1) 1,000 uniformly distributed SNPs (1K panel), and (2) 5,000 uniformly distributed SNPs (5K panel), were selected using the selectSNP package (Wu et al., 2016). A map view of the three SNP panels is shown in Supplementary Figure 1. These three SNP panels were used to estimated GBC for the composite animals.


TABLE 1. Number of genotyped animals and number of SNPs on GeneSeek Genomic Profiler (GGP) 30K (GGP 30K), 40K (GGP 40K), and 50K (GGP 50K) SNP chips used in the present studya,b.

[image: Table 1]Data cleaning on reference animals was conducted following He et al. (2018). Briefly, the likelihood that an animal belonged to a specific breed was computed based on a Bayesian multinomial model, assuming independence between SNP loci. Then, outliers with the negative two times the likelihood being greater than two were excluded in each reference population. After data cleaning, 135,102 reference animals from eight breeds remained as the reference animals. Of the eight reference cattle breeds, Brahman is the only Bos taurus indicus breed, and it had the most remote relationships with the seven Bos taurus taurus cattle breeds. The relationships between the eight reference breeds were depicted by a hierarchical clustering analysis (Murtagh and Legendre, 2014) using the 5K SNP panel and shown in Supplementary Figure 2. All composite animals were included in the subsequent analyses because they were test animals and not used as the reference. Histograms of allele frequencies for the 10K SNPs for the eight reference breeds and the two composite breeds are shown in Supplementary Figure 3. The distributions of allele A frequencies for these breeds (except Brahman) were approximately “bell-shaped,” but they were not typical of a normal distribution. They mostly had “thick” tails, representing SNPs with small minor allele frequencies (MAF). In particular, the distribution of allele A frequencies for Brahman had “outstanding” proportions of SNPs with MAF. These GGP bovine SNP chips (30K, 40K, and 50K) were primarily designed for Bos Taurus cattle, not for Bos indicus cattle. Possibly, many SNPs could have small MAF or even be monomorphic. It is also possible that there existed population mixture or stratification with this Brahman dataset.

The genomic breed composition (GBC) was estimated in the two composite breeds. Brangus was developed to combine the desirable traits of Angus and Brahman cattle (Briggs and Briggs, 1980). Angus cattle are known for their superior carcass qualities. Moreover, Angus cows are well known for their excellent fertility and their capability for milking. The Brahman has gone through rigorous natural selection and has developed disease resistance, and overall they have hardiness and outstanding maternal instincts. For official registration, a Brangus animal needs to be genetically stabilized at 3/8 Brahman and 5/8 Angus by pedigree, be solid black or red, and polled, and both sire and dam must be recorded with the International Brangus Breeders Association (IBBA) (San Antonio, TX). The Beefmaster was developed in the early 1930s from a crossing of Hereford cows and Shorthorn cows with Brahman bulls (Briggs and Briggs, 1980). The original intention was to produce cattle that could produce economically in the challenging environment of South Texas. Nowadays, these cattle are regarded as a versatile, multipurpose breed because they can be used for both milk and beef production. The exact mixture of the foundation cattle is unknown but is generally thought to be about 25% Hereford, 25% Milking Shorthorn, and 50% Brahman.



Statistical Methods


Linear Regression and the Likelihood-Based Admixture Model

These two models served as the benchmark for comparison in the present study. In the linear regression approach, the genotypes of a crossbred animal are coded to be the proportion (or frequency) of say allele A in the genotype for all involving SNPs across the genome. Then, the coded genotypes are regressed to the corresponding allele A frequencies of SNPs for a set of reference populations (Chiang et al., 2010; Hulsegge et al., 2013; Kuehn et al., 2014). Let AA = 1, AB = 0.5, and BB = 0, which can also be interpreted to be the allele A frequencies at the individual level. Denote yi to be a M×1 vector of genotypes pertaining to animal i, where M is the number of SNPs involved, and denote xj to be an M×1 vector of allele A frequencies of the M SNPs genotype in reference population or breed j, for j = 1,…,K where K is the number of breeds. Then, the GBC is estimated based on the following linear model:

[image: image]

where μ is an intercept, and bj is the regression coefficient pertaining to population or breed j, and ei is a vector of residuals. Because regression coefficients are not bounded between 0 and 1 by nature, some adjustments are necessary to restrict the sum of the regression coefficients for each animal to be 1 (VanRaden and Cooper, 2015; He et al., 2018).

For crossbred animals whose ancestors originated in different populations, their genetic composition exhibits multiple ancestries associated with multiple different genetic clusters or populations, which therefore can be described by the admixture model (Pritchard et al., 2000; Tang et al., 2005; Alexander et al., 2009; He et al., 2018). The admixture model estimates GBC as the weights for an underlying admixture distribution, which governs the realization of genotypes for individual animals, and each component in the admixture corresponds to the allele frequency of each reference breed. Consider M SNPs, each with two alleles A and B. Let there be T reference or putatively ancestral populations with allelic frequencies of these SNPs assumedly to be known. Denote xij to be the allele frequency of the allele A at the ith SNP in the jth population. Following Bansal and Libiger (2015), we estimated the allelic frequencies of SNPs a priori and then treated them as known in the admixture model. Let wj represent the admixture proportion for the jth population and W = [w1, w2,…,wk]′ be the vector of admixture coefficients. Then, weighted allele frequency at SNP i given the allele frequencies and the admixture proportions was calculated to be [image: image], where xij was the allele A frequency of the ith SNP in the jth reference breed. Assuming Hardy-Weinberg equilibrium (HWE) at each SNP locus, the probability of observing genotype yi at locus i is:

[image: image]

For a given vector of admixture proportions, the log-likelihood of the observed genotypes g for an individual was defined as:

[image: image]

Alternatively, the above likelihood can be written as:

[image: image]

where [image: image]. Given the matrix of allele frequencies xij (1≤i≤Mand  1≤j≤ K) for k populations, our goal was to determine the vector W = [w1, w2,…,wK]′ of admixture proportions that maximize L(W) subject to the constraints wj≥0 and [image: image].Optimization of (4), however, is challenged by the constraint on the admixture proportions, that is wj≥0 and [image: image]. Alexander et al. (2009) used sequential quadratic programming combined with a quasi-Newton acceleration method to optimize the likelihood function. This method, however, involves the manipulation and inversion of a possibly large matrix, which can be computationally intensive. Following Bansal and Libiger (2015) and He et al. (2018), we utilized the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to optimize the likelihood function (4). The BFGS algorithm is a popular quasi-Newton method for solving non-linear optimization problems, which utilizes the first derivatives of the likelihood function and approximates the Hessian matrix of the second derivatives (Nocedal and Wright, 2006). The constraint [image: image] is handled by scaling the individual admixture coefficients by their sum, that is, replacing wj with [image: image] in the likelihood function.



Path Analysis

Intuitively, path analysis can be viewed as an extension of linear regression in the form of standardized multiple regression, yet with a focus on inferring causality (Wright, 1921). By centering yi and each xj on zero (i.e., subtracting the expectation of each corresponding variable), and after dividing both sides of equation (1) by the standard deviation of y, the linear regression model can be expressed as:

[image: image]

which can be further re-arranged as:

[image: image]

Now, Let [image: image],[image: image],[image: image], [image: image], and [image: image]. Then, the above equation is simplified to be:

[image: image]

Here, [image: image], [image: image], and [image: image] are standardized vectors for genotypes, allele A frequencies, and residuals, respectively, and [image: image] is a standardized regression coefficient for an exogenous variable, which is also referred to as a path coefficient. That is,

[image: image]

In (6), [image: image] is the path coefficient pertaining to the residual term, which is also referred to as the coefficient of alienation (Land, 1969). For the estimation of GBC, the presence of this residual term is relevant for two main reasons. Firstly, Mendelian sampling deviates the GBC of individual animals from their expected values. Secondly, the allele frequencies of the ancestral breeds are contemporary, which can be different from those of the base populations when the crossbreeding for creating this composite breed was initiated. Over the years, allele frequencies of the ancestral breeds can change to a varying extent due to selection, migration, and inbreeding. In what follows, we ignore the superscript “∗” for the convenience of notation. If we replace the standardized regression coefficients with the path coefficient notation in (6), it gives:

[image: image]

In the path analysis, a path coefficient measures the fraction of standard deviation of standardized genotypes of a crossbred animal for which each ancestor or ancestral breed is directly responsible, in the sense of the fraction which would be found if the allele frequencies of one ancestral breed varies to the same extent as in the observed data while all other variables (i.e., allele frequencies of the other ancestral breeds) are constant.

The theory of path analysis states that the correlation between y and xj is the sum of direct path coefficient plus a sum of terms each quantifying a correctional or an indirect path effect:

[image: image]

Thus, a path coefficient represents the direct effect of an ancestor or ancestral breed to be a cause on the genome of a crossbred animal while the latter is assumed to be an effect, whereas the correlation ry_i x_j reflects the genomic similarity between them. Then, the determination of an endogenous variable (genotypes of a crossbred animal) on an exogenous variable (allele frequencies of a reference population) is measured by the coefficient of determination. For example, the coefficient of determination of xj on yi is given by the sum of the squared direct path coefficient and the terms representing the determination of all possible indirect paths. That is,

[image: image]

The above is referred to as the coefficient of combined determination for an exogenous variable (xj), which includes correlational, indirect path effects. When the correlational effects are zero or ignored, the above reduces to the coefficient of direct determination of xj on yi,

[image: image]

Hence, the coefficient of direct determination of an exogenous variable to the endogenous variable, which is the squared path coefficient, measures the proportion of the variance of the endogenous variable for which an exogenous variable is directly responsible. Then, it can be shown that the total variation of the endogenous variable is entirely determined by a linear combination of the exogenous and the residual variable(s). That is,

[image: image]

Thus, in view of genomic determination, GBC can be measured by the relative ratio of the coefficients of either the direct or combined determination. Hereafter, the former is referred to as D-GBC and the latter C-GBC hereafter. That is,

D-GBC[image: image] (13)

[image: image]
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The sum of GBC for an individual animal is one when using either of the above two formulas. The difference between the above two measures of GBC is that correlational or indirect path effects are included in the estimated C-GBC with (14) but not in the estimated D-GBC with (13). From the viewpoint of genetic determination, the correlational or indirect path effects are attributable to genomic similarities. The proportion of the variance of the endogenous variable that is not accounted for by the set of exogenous variables in the system is then quantified to be:

[image: image]

Note that 1-R can be used as a measure of reliability say for estimated C-GBC. Given two individuals having the same values of C-GBC but different R values, estimated C-GBC is more reliable for the one with a smaller value of 1-R.

In the above, we have discussed the path analysis applied to estimate GBC as a form of standardized linear regression, in which standardized genotypes of each crossbred animal are regressed on standardized allele frequencies of reference breeds. The genotypes are coded as the portion of allele A in the genotypes (i.e., AA = 1, AB = 0.5, and BB = 0), which can also be viewed as the frequency allele A at the individual level. Put in another way, the frequency of allele A at each SNP locus for a given population can be viewed as the average genotype for that population. Another approach is to obtain the path coefficients using the correlations between them, as suggested by the relationships shown in (9). If we extend each equation in (9) for each of the crossbred animals, it gives:

[image: image]

where, for example, ry_i x_1 is the correlation between the genotypes of the crossbred animals and the corresponding SNP allele frequencies in the first reference population. In matrix notation, the above becomes:

[image: image]

where pyx = (pyix1… pyxT)′,ryx = (ryx1…ryxT)′, and

[image: image]

Therefore, the vector of path coefficients is obtained as:

[image: image]

Now consider only two exogenous variables,x1 and x2. The solutions of the path coefficients are obtained as the following:

[image: image]

In the above, py_i x_1 is also recognized as the semi-partial correlation of x1 on yi, and py_i x_2 is the semi-partial correlation of x2 on yi. Like a partial correlation, a semi-partial correlation compares variations of two variables after certain factors are controlled for. The difference between them is that, with a semi-partial correlation, one holds the third variable (x2) constant for either x1 or yi but not both, whereas with a partial correlation, one holds the third variable constant for both (Baba et al., 2004). In terms of their quantities, the absolute value of a semi-partial correlation, say between x1 and yi, is always no greater than that of the partial correlation between the two variables. We used Pearson’s correlations of allele A frequencies in the path analysis, though the distributions of allele A frequencies were not exactly normal distributions, but taken to be so approximately. Alternatively, Spearman’s correlations can be used as well, which can better capture monotonic relationships. Nevertheless, relational plots of allele frequencies between breeds showed apparently linear relationships between a composite breed and its ancestral breed, not monotonic relationships. That was another reason for us to use Pearson’s correlations in the present study. As we found later, both types of correlations gave well comparable results.

A numeric example is shown in Figure 1, where the GBC is computed for an Ultrablack, given the assumed GBC of Brangus. The International Brangus Breeders Association has created an appendix registry designation of Ultrablack (and Ultrared) for animals, which are between 12.5 and 87.5% Brangus and the remainder Angus (or Red Angus) (Waldrip, 2017). For the convenience of discussion, we will use Ultrablack to represent first-generation Ultrablack animals (1/2 Brangus × 1/2 Angus). For the convenience of discussion, we assume that rAB = 0 (no correlation between Angus and Brahman) and pCEC = 0 (no residual effect) in this example. Let [image: image] and [image: image], which is equivalent to a causality interpretation that the Angus origin and Brahman origin accounted for 5/8 (62.5%) and 3/8 (37.5%), respectively, of the genomic variation of Brangus. Then, the GBC of a 1/2 UltraBlack Brangus is computed as follows:

[image: image]
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FIGURE 1. Path diagram of the relationships between Brangus (and 1/2 UltraBlack) and two ancestral breeds, namely Angus and Brahman pyx = path coefficient from x to y; rAB = correlation between Angus (A) and Brahman (B).


In the above, AD is a direct path from Angus to an Ultrablack, and ACD is an indirect path from Angus to an Ultrablack via Brangus. Similarly, BCD is an indirect path from Brahman to an Ultrablack via Brangus. Note that both indirect paths, ACD and BCD, are two compound paths. The coefficient of a compound path is the product of all component segments. Hence, under the assumption of no correlation between the two ancestral breeds, computed GBC of an Ultrablack agreed with pedigree-expected ratios of genomic composition for an Ultrablack animal, which is 81.25% Angus and 18.75% Brahman. Therefore, assuming no correlation between the two ancestral breeds, the causality interpretation of GBC agreed with the pedigree-expected GBC for an Ultrablack animal.



RESULTS AND DISCUSSION


Estimated Genomic Breed Composition for Brangus

The Brangus was highly correlated in terms of allelic frequencies with Angus (0.671–0.714) and moderately correlated with Brahman (0.442–0.481) because the Brangus was descended from these two breeds (Table 2). The Brangus animals also had moderate or high correlations with some non-ancestral breeds, such as Simmental (0.585–0.628), Limousine (0.512–0.557), and Shorthorn (0.452–0.520), due to the significant correlations between Angus and these non-ancestral beef breeds. Also based on allelic frequencies, Angus was highly correlated with Gelbvieh (0.765–0.793), Limousine (0.628–0.792), Shorthorn (0.552–0.611), and Simmental (0.776–0.812). The Brahman is a Bos taurus indicus cattle breed, and it had low correlations with the seven Bos taurus Taurus cattle breeds (0.035–0.239). Thus, a high correlation between the Brangus and a reference breed does not indicate the genomic causality but the genomic similarity between them.


TABLE 2. Path analysis using the correlation data for 7,969 Brangus animals with eight reference breeds and three SNP panels (1K, 5K, and 10K).

[image: Table 2]The path analysis estimated the genomic effects of these reference breeds on the Brangus. With the eight reference breeds, the estimated path coefficients for the two ancestral breeds were the largest among the eight reference breeds, which were 0.510–0.552 for Angus, and 0.396–0.407 for Brahman (Table 2). The D-GBC for the two ancestral breeds was estimated to be 60.2–63.4% (Angus) and 34.4–36.5% (Brahman), and the C-GBC for the two ancestral breeds, which included both direct and indirect path effects, was estimated to be 57.1–58.6% (Angus) and 29.6–32.2% (Brahman) (Table 2). It is noted that, with the eight reference breeds, the estimated D-GBC and C-GBC for the two ancestral breeds were both considerably below the pedigree-expected ratios of 62.5% for Angus origin and 37.5% for Brahman origin, regardless of the genotyping platforms and SNP panels used. Hence, by including non-ancestral reference breeds, it introduced noise (i.e., small estimated GBC for non-ancestral breeds) in the estimation of GBC for the Brangus, which in turn offset to a varying extent the estimated GBC for the ancestral breeds. The estimated D-GBC for non-ancestral breeds was mostly less than 1%, but the estimated C-GBC for non-ancestral was large, which for example, was 5.11–6.72% for Gelbvieh and 2.63–4.67% for Shorthorn, and 1.41–1.77% for Limousine (Table 2). Estimated D-GBC and C-GBC by the path analysis using the genotype data showed similar patterns (Supplementary Table 1). Therefore, when the eight reference cattle breeds were used, the small amounts of estimated GBC for non-ancestral breeds offset the estimated GBC for the ancestral breeds, thus leading to underestimated GBC for the ancestral breeds, regardless of the models used.

The bias in the estimated GBC can be minimized by excluding non-ancestral breeds from the reference breed panel based on a priori information. Because Brangus cattle are descended from Angus and Brahman, we estimated D-GBC and C-GBC by including only the two ancestral breeds as the reference breeds. Then, with these two reference breeds only, the estimated D-GBC for the Brangus using the correlation data was 71.2–72.0% Angus and 28.0–28.8% Brahman, and the estimated C-GBC for the Brangus was 70.2–71.2% Angus and 28.7–29.8% Brahman (Table 3). Pearson’s correlations were used by path analysis throughout the present study, though the allele frequencies of the SNPs were not exactly normal distributions. Switching to using Spearman’s correlations, for example, led to slightly different results, but they were well comparable to the results obtained based on Pearson’s correlations. For example, based on the Spearman’s correlations of allele A frequencies, the estimated D-GBC was 69.4–74.1% of Angus and 25.9–30.6% of Brahman. These values are within a comparable range of those obtained based on Pearson’s correlations of allele A frequencies. The estimated D-GBC from the path analysis using the genotype data was 69.5–71.8% Angus and 28.2–30.5% Brahman, respectively, and the estimated C-GBC were 68.2–70.9% Angus and 29.1–31.8% Brahman (Table 4). With the genotype data, the admixture model suggested that the Brangus were on average 68.8–70.3% Angus and 29.7–31.2% Brahman, whereas the linear regression indicated that Brangus was 68.6–70.4% Angus and 29.6–31.4% Brahman (Table 4). The estimated D-GBC and the estimated C-GBC for the Brangus in the path analysis agreed approximately with each other when the correlation in allelic frequencies between the two ancestral breeds was low (0.051–0.090). In other words, the correlational indirect path effects between the ancestral breeds are trivial, and thus the estimated D-GBC agreed well with the estimated C-GBC. The estimated D-GBC and C-GBC from the path analysis also corresponded well to the estimated GBC from the admixture model and linear regression in this Brangus population (Table 4). It also came to our attention that the estimated GBC did not show significant differences between different genotyping platforms and between three SNP panels used (Tables 3, 4).


TABLE 3. Path analysis using the correlation data for 7,969 Brangus animals with two ancestral breeds (Angus and Brahman) as the reference and three SNP panels (1K, 5K, and 10K).

[image: Table 3]
TABLE 4. Comparison of estimated GBC for 7,969 Brangus with genotype data, obtained by the admixture model, linear regression, and path analysis techniques, respectively, using only Angus and Brahman in the reference breed set.

[image: Table 4]The estimated Angus compositions for these Brangus animals by the three methods were all considerably higher than the pedigree-expected Angus ratio (5/8 = 0.625) in Brangus. In the path analysis using the correlation data, for example, the average of estimate Angus GBC was 71.67% across the three genotyping platforms and the three SNP panels. There are possibly two reasons for the elevated Angus composition in these Brangus animals. Firstly, Brangus animals have been selected toward Angus type phenotypes for years, which in turn could have left up the Angus genomic composition in Brangus. Secondly, these Brangus animals included some UB individuals. The estimated GBC for these 7,696 Brangus animals was plotted in ascending order of their Angus composition (Figure 2). The mixture of the UB animals was identified by the sharp increase of Angus GBC on the right-hand side of the plot, which roughly accounted for up to one-fourth of the Brangus animals. By roughly taking the portion of 1/2 UB animals to be 25%, which have an average of 81.25% Angus composition, we estimated that the actual Angus composition of the Brangus (non-UB) animals could be (71.67%−81.25%*0.25)/0.75 = 68.5%.


[image: image]

FIGURE 2. Distribution of estimated genomic breed composition for 7,969 Brangus animals in ascending order of their Angus composition, obtained using three statistical methods: (A) admixture model, (B) linear regression, and (C) path analysis (D-GBC).




Estimated Genomic Breed Composition for Beefmaster

The Beefmaster was highly correlated with the three ancestral breeds: Brahman (0.544–0.570), Hereford (0.504–0.549), and Shorthorn (0.443–0.558) (Table 5). There were also moderate to high correlations (0.396–0.551) between the Beefmaster and some non-ancestral beef breeds (e.g., Gelbvieh, Limousin, and Simmental) (Table 5), which arose from the genomic similarities between the ancestral breeds and the non-ancestral breeds. A moderate to a high correlation in allelic frequencies between the Beefmaster and a reference breed was no indication of the genomic causality, but the genomic similarity between them. Of the three ancestral breeds, the correlation was low between Brahman and Hereford (0.035–0.059) and between Brahman and Shorthorn (0.052–0.10), but it was moderate to high between Hereford and Shorthorn (0.381–0.428).


TABLE 5. Path analysis using the correlation data for 7,605 Beefmaster animals with eight reference breeds and three SNP panels (1K, 5K, and 10K).

[image: Table 5]With the correlation data and the eight reference breeds, the path analysis gave the largest estimates of direct path coefficients to the three ancestral breeds, which were 0.495–0.522 (Brahman), 0.342–0.380 (Hereford), and 0.216–0.245 (Shorthorn). Accordingly, the estimated D-GBC for the Beefmaster was 56.2–59.2% (Brahman), 27.5–31.3% (Hereford), and 11.1–12.4% (Shorthorn), whereas the estimated C-GBC for the Beefmaster was 42.6–51.3% (Brahman), 28.5–35.9% (Hereford), and 13.5–15.6% (Shorthorn). Like in the case of Brangus, with the eight reference breeds, estimated GBCs for the ancestral breeds were offset by the small GBC components for non-ancestral breeds (Table 5). The estimated GBC of non-ancestral breeds in the Beefmaster were mostly less than 1% for D-GBC and all below 5% for C-GBC. Estimated D-GBC varied only between different data types, and genotyping platforms, and between the three SNP panels used. The same was true with estimated C-GBC (Table 5). These conclusions coincided with what we had with the Brangus. When limited to three ancestral breeds (Brahman, Hereford, Shorthorn) as the reference, the estimated D-GBC agreed roughly with the estimated C-GBC for the Beefmaster. The estimated D-GBC was 51.3–55.6% (Brahman), 28.6–33.0% (Hereford), and 14.5–17.2% (Shorthorn), whereas the estimated C-GBC was 47.6–51.3% (Brahman), 29.8–34.1% (Hereford), and 17.3–20.6% (Shorthorn) (Table 6). The differences between the estimated D-GBC and the estimated C-GBC for Beefmaster were relatively larger than those observed for Brangus. Similar discrepancies were observed in the results obtained from the path analysis with the genotype data (Table 7). In Beefmaster, the discrepancies between the estimated D-GBC and the estimated C-GBC in the path analysis arose from some significant correlations in allelic frequencies between the ancestral breeds (e.g., between Hereford and Shorthorn). In general, the estimated C-GBC included correlational indirect path effects, but the estimated D-GBC included direct path effects only. The impact of correlations in allelic frequencies between the ancestral breeds on the estimated C-GBC is explained analytically as follows. In Figure 3 is the path diagram for the relationships between the Beefmaster and the three ancestral breeds. Let [image: image],[image: image], and [image: image]. Proportionally, the relative direct genomic determination of the three ancestral breeds on the Beefmaster is 50% Brahman, 25% Hereford, and 25% Shorthorn. Thus, when assuming zero correlations between the ancestral breeds and no residual effects, the estimated C-GBC is the same as the estimated D-GBC: 50% Brahman, 25% Hereford, and 25% Shorthorn. However, with non-zero correlations between the ancestral breeds, estimated C-GBC can deviate substantially from estimated D-GBC. For example, let rBH = 0.10,rBS = 0.05, and rHS = 0.40. The estimated C-GBC for each ancestral breed is computed to be a relative ratio of combined determination coefficients for each ancestral breed:
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TABLE 6. Path analysis using the correlation data for 7,605 Beefmaster animals with three ancestral breeds as the reference and three SNP panels.
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TABLE 7. Comparison of estimated GBC for 7,605 Beefmaster animals with genotype data, obtained by the admixture model, linear regression, and path analysis techniques, respectively.
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FIGURE 3. Path diagram of the relationships between Beefmaster and three ancestral breeds, namely Brahman, Hereford, and Shorthorn. pyx = path coefficient from x to y; rxy = correlation between x and y.


Therefore, with non-zero correlations between the three ancestral breeds as the reference, in particular when one or more of the correlations are large, estimated C-GBC would deviate considerably from the estimated D-GBC. Generally speaking, the larger the correlation between the ancestral breeds, the larger the deviation that it will generate.

In Beefmaster, the estimated GBCs from the admixture model and the linear regression approach seemed to deviate substantially from pedigree-expected values (i.e., 50% Brahman, 25% Hereford, and 25% Shorthorn). They did not correspond to those obtained from the path analysis neither. The estimated GBC of the Beefmaster obtained from the admixture model was 34.1–36.3% (Brahman), 34.8–38.0% (Hereford), and 26.8–29.5% (Shorthorn). The estimated GBC of the Beefmaster obtained from the linear regression was 34.7–37.4% Brahman, 35.0–38.8% Hereford, and 25.6–28.3% Shorthorn. Relatively speaking, the estimated GBC from the admixture model and the linear regression were closer to the estimated C-GBC than the estimated D-GBC, possibly because they all included correlational indirect path effects except the estimated D-GBC. The distributions of the estimated GBC for 7.605 Beefmaster animals in ascending order of the Brahman composition obtained using the three statistical models are shown in Figure 4.


[image: image]

FIGURE 4. Distribution of the estimated genomic breed composition for 7,605 Beefmaster animals in ascending order of their Brahman composition, obtained using three statistical methods: (A) admixture model, (B) linear regression, and (C) path analysis (D-GBC).


In the linear regression approach, high correlations between exogenous variables translate into strong multicollinearity, which imposes some challenges to the identification of the likelihood in the admixture model. The problem of model identification may not necessarily affect the prediction accuracy, but individual parameters can be unidentified and cannot be estimated uniquely or reliably. Similarly, high correlations between exogenous variables can bring challenges for the admixture model to precisely assess the weights for the underlying admixture components, which in the admixture model were the allele frequencies of ancestral breeds as random variables. Arguably, the linear regression approach and the admixture model are not appropriate for estimating GBC when the ancestral breeds are highly correlated. Instead, estimated D-GBC from the path analysis are robust to deviations due to correlational path effects.



CONCLUSION

We proposed a causality interpretation of genomic breed composition implemented by the path analysis for composite animals in the present study. Two measures of GBC using path analysis were proposed in the present study. Of them, D-GBC considered only direct path effects of each reference breed, whereas C-GBC also included indirect path effects due to the correlation between reference breeds. In Brangus, because the two ancestors breeds are remotely related, or they have a close to zero correlation, the estimated D-GBC agreed with the estimated C-GBC in the path analysis, and they both agreed well with the estimated GBC by the admixture model and linear regression. However, when the ancestors are highly correlated, which was the case with Beefmaster, the estimated D-GBC showed relatively larger differences from the estimated C-GBC in the path analysis because the latter included correlational effects due to genomic similarity between ancestors. Relatively speaking, the estimated GBC from the admixture model and linear regression were closer to the estimated C-GBC by path analysis than the estimated D-GBC. A possible reason is that the estimated GBC from the admixture model and linear regression (and C-GBC by path analysis) included correlational effects. Thus, path analysis provides an alternative interpretation and an estiamation method of GBC, which arguably has advantages when reference (ancestral) breeds are highly genetically correlated. Finally, estimated GBC varied only slightly between different genotyping platforms (30K/40K vs. 50K) and between the three SNP panel sizes (1K, 5K, and 10K) when subsets consisted of uniformly distributed SNPs.
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Genomic technologies have been increasingly applied in livestock production due to their utility in production management and animal genetic improvement. The current project aimed to develop genomic resources for the Canadian bison industry, specifically a parentage verification tool and a subspecies composition tool. Both products stand to help with building and maintaining purebred and crossbred bison populations, and in turn bison conservation and production. The development of this genomic toolkit proceeded in two stages. In the single-nucleotide polymorphism (SNP) discovery and selection stage, raw sequence information from 41 bison samples was analyzed, and approximately 52.5 million candidate biallelic SNPs were discovered from 21 samples with high sequence quality. A set of 19,954 SNPs (2,928 for parentage verification and 17,026 for subspecies composition) were then selected for inclusion on an Axiom myDesign custom array. In the refinement and validation stage, 480 bison were genotyped using the custom SNP panel, and the resulting genotypes were analyzed to further filter SNPs and assess tool performance. In various tests using real and simulated genotypes, the two genomic tools showed excellent performance for their respective tasks. Final SNP sets consisting of 191 SNPs for parentage and 17,018 SNPs for subspecies composition are described. As the first SNP-based genomic toolkit designed for the Canadian bison industry, our results may provide a new opportunity in improving the competitiveness and profitability of the industry in a sustainable manner.
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INTRODUCTION

Bison meat is a growing and economically relevant industry in Canada. According to the Canadian Bison Association, the industry has seen a compounded annual growth rate of 5% since 1996, with the Canadian herd at roughly 145,000 animals as of January 1, 20171. Prices have also shown a strong increasing trend since 2003, from $1.18/lb. to $5.75/lb2. In 2019, Canada exported more than 20,000 live bison to the United States, and its global export of bison meat was worth more than 17 million Canadian dollars3. A notable opportunity exists in the Canadian bison industry to apply genomic tools to assist in the operational management of bison herds. For this reason, we developed genomic tools based on single-nucleotide polymorphisms (SNPs) discovered in the American bison (Bison bison) for parentage verification and genome composition estimation.

Pedigree records are critical for herd management in animal production, for which parentage verification is a valuable tool. Genetic markers have been used in verifying the parentage of animals for decades. The early efforts can be traced back to the 1980s, and a variety of marker types have been used (Quinn et al., 1987; Wetton et al., 1987; Scott et al., 1992; Queller et al., 1993), differing in terms of informativeness, resolution, reproducibility, and cost (Mueller and Wolfenbarger, 1999; Nadeem et al., 2018). SNP discovery efforts, coupled with the availability of high-throughput SNP genotyping arrays, have led to the use of SNPs for parentage verification in many livestock species. For example, a set of 100 core SNPs and 100 backup SNPs makes up the set used for parentage in cattle (ISAG-ICAR SNP panel)4. These applications of SNPs have demonstrated their many advantages (Flanagan and Jones, 2019). However, an initial investment is required to identify and validate suitable SNPs for the development of the SNP-based genomic tools.

The American bison is composed of two subspecies, plains bison (Bison bison bison) and wood bison (Bison bison athabascae), with no reproductive isolation between them (Bork et al., 1991). The ability to assess subspecies composition is of interest to the Canadian bison industry, as it would facilitate efforts to maintain subspecies genetic integrity and to explore crossbreeding. The latter could help to manage the level of hybrid vigor and breed complementarity in commercial production (Bourdon, 1997). For farmed animals with reliable pedigree records and origin information, genome composition can be calculated in a relatively straightforward manner. Alternatively, when such information is not available, which is generally the case for bison, genetic markers can be used (Frkonja et al., 2012). Previous work in bison used restriction fragment length polymorphism (RFLP) and microsatellite markers to explore the genetic relationship between different bison populations (Bork et al., 1991; Polziehn et al., 1996; Cronin et al., 2013) and provided insights into the genetic difference between the two subspecies and the subspecies composition of hybrids. However, to date, the Canadian bison industry has not made wide use of subspecies composition analysis. As is the case with parentage verification, SNPs would offer important advantages, but informative and reliable SNPs must first be identified.

In this study, we performed high-throughput sequencing and used existing sequence data to discover candidate SNPs for parentage verification and subspecies composition analysis. We then genotyped the candidate SNPs in hundreds of additional individuals and performed simulations to refine these SNP lists and to develop a breed composition equation and score. Based on the performance of these tools on a variety of known and simulated samples, they can inform management decisions aimed at improving traits and maintaining subspecies integrity and hybrid vigor. By providing detailed information on the SNP contents of each tool and the breed composition prediction approach, we hope that the tools can be used by others and further refined through, for example, the characterization of additional reference samples.



MATERIALS AND METHODS

The development of the genomic tools in the current project proceeded in two stages: (1) SNP discovery; and (2) SNP validation and refinement. In the first stage, bison whole-genome DNA sequencing data was generated or collected, SNPs were identified, and a custom medium-density SNP panel was constructed. In the second stage, a validation bison population was genotyped using the custom SNP panel, the performance of the panel SNPs for parentage and subspecies composition estimation was evaluated, and a finalized set of SNPs was proposed. The packages used in the data analysis and related parameters can be found in Supplementary Table S1.


Stage 1: SNP Discovery


Sequenced Animals

Aiming to obtain genomic information from the North American bison population, we sequenced 27 bison samples collected from Canada and the United States. Genomic DNA extraction from Bison bone and hair samples was carried out using the Qiagen BioSprint 96 DNA DNeasy extraction protocol (Qiagen, Mississauga, ON, Canada). Extracted DNA was quantified using the Qubit dsDNA HS Assay (Life Technologies, Burlington, ON, United States). Sequencing libraries were constructed according to the NEXTflex DNA Sequencing Kit protocol (Bio-O Scientific, Austin, TX, United States). Between 150 ng to 1 ug of input Bison DNA was sheared using the Covaris S2 focused sonicator (Covaris Inc., Woburn, MT, United States), achieving an average fragment size of 300 to 400 bp. Size selection of end-repaired product during library preparation followed the gel-free size selection clean up process using Agencourt AMPure XP magnetic beads (Beckman Coulter, Mississauga, ON, Canada). To enable sequencing multiplexing, adapter indices from the NEXTflex DNA Barcode kit (Bio-O Scientific) were added to the libraries with 6–10 rounds of PCR amplification. QC was performed on each library using the 2100 Bioanalyzer DNA 1000 chip (Agilent Technologies, Santa Clara, CA, United States) and Qubit dsDNA HS Assay (Life Technologies) to determine the quality and quantity of each library, respectively. 26 of the 27 libraries were sequenced using the 2 × 150 cycles paired-end sequencing workflow on the HiSeqX Ten (Illumina, San Diego, CA, United States) at the McGill University and Génome Québec Innovation Centre. One library was sequenced under the CanSeq150 project using the same workflow at the Sequencing Facility of The Center for Applied Genomics (TCAG) in the Hospital for the Sick Kids. Existing whole-genome DNA sequencing data from a further 14 bison (Forgacs et al., 2016) was included in the analysis. The resulting data set includes plains (n = 26) and wood (n = 13) bison (Table 1). The sequence reads have been deposited in the Sequence Read Archive (SRA), under BioProject PRJNA658430.


TABLE 1. List of sequenced bison.

[image: Table 1]


Sequence Alignment and SNP Calling

DNA sequence reads were assessed for quality using FastQC v0.11.7 (Andrews, 2010), trimmed with Trimmomatic v0.36 (Bolger et al., 2014), and then aligned to the bovine UMD3.1 reference genome with Burrows-Wheeler Aligner v0.7.17 (Li and Durbin, 2009). Aligned sequences were converted to bam files with Samtools v1.8 (Li et al., 2009). The bam files were then sorted, and optical duplicates were marked using Picard tools v2.18.7 (Picard Toolkit, 2019). SNP and indel variants were called using GATK4 v4.0.6.0 (Poplin et al., 2017). More details about the workflow of sequence alignment and variant calling can be found in Figure 1 and Supplementary Table S1.


[image: image]

FIGURE 1. Sequence alignment and SNP calling workflow.




SNP Selection and Custom SNP Panel Creation

Two sets of SNPs were prepared for inclusion on a single custom SNP panel, one set for parentage verification, and one set for subspecies composition. More details about the SNP selection are provided in Figure 2 and Supplementary Table S1. Only bison samples with an average sequencing depth of at least 5 over the whole genome were included in the analysis for SNP selection (n = 21; 15 plains bison and 6 wood bison). SNPs with any of the following characteristics were removed from consideration: (1) another polymorphism exists in the 36 bp flanking sequences; (2) more than two alleles observed; (3) GATK QUAL score <1000; (4) missing rate >20%; or (5) does not pass the QC criteria recommended by GATK45. The remaining SNPs were further selected based on the intended application. For parentage verification, the selection was mainly based on genotyping quality and SNP informativeness. More specifically, SNPs that met the following criteria were selected for parentage verification: (1) minor allele frequency (MAF) >0.45; (2) missing rate <5%; (3) exhibits Hardy-Weinberg Equilibrium (p > 0.0001); (4) QUAL score >10000; (5) requires only one probe per strand6. SNP thinning was conducted so that no two SNPs were located within 1 Mbp to each other, and SNPs removed during the thinning remained and served as “alternative SNPs.” For subspecies composition, SNPs were selected if the MAF was greater than 0.1 and they showed difference in allelic frequencies (nominal p-value < 0.0001) between the two subspecies in a genome-wide association study (GWAS). The filtering was conducted with VCFtools v0.1.15 (Danecek et al., 2011), and the GWAS was conducted with Plink v1.9 (Chang et al., 2015). Selected SNPs were submitted to Affymetrix. Those SNPs that were recommended by Affymetrix’s quality check were included in a custom Axiom SNP panel. In addition, aiming at 3,000 SNPs for parentage verification, the “alternative SNPs” were submitted for assessment, and the Affymetrix-recommended ones were added to the panel. A complete list of the parentage and subspecies-identification SNPs on the panel is provided in Supplementary Table S2.
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FIGURE 2. SNP selection procedure for the custom panel for parentage and subspecies composition analysis.





Stage 2: SNP Refinement and Validation


Animals Genotyped Using the Custom Panel

A 480 bison (including three bison sequenced during the first stage) were genotyped with the custom bison SNP panel in order to evaluate its performance. These animals came from 19 data sources from Canada and the United States. Animals with a call rate lower than 95% (n = 19) were excluded from subsequent analysis due to possible low sample quality. For evaluating parentage verification, there were 21 known mother-calf pairs in the dataset. For evaluating subspecies composition estimation, subspecies labels (“plains bison” or “wood bison”) were available for 291 bison with subspecies assignment confidence levels of 1 (Absolutely Confident) or 2 (Somewhat Confident). These confidence levels were solicited from the providers of the samples and ranged from 1 (Absolutely Confident) to 3 (Less Confident) (Table 2).


TABLE 2. Confidence level of the subspecies label in the validation population.

[image: Table 2]



SNPs for Parentage Verification

Although SNPs had originally been selected for two different purposes in stage one, all panel SNPs were evaluated for utility in parentage verification. Those panel SNPs that met all the following criteria were selected for parentage: (1) overall call rate >95%; (2) call rate in each subspecies >90%; (3) overall MAF >0.4; (4) MAF in each subspecies >0.3; (5) conversion type is not any one of NoMinorHom (no minor homozygote), OTV (off-target variant), or MonoHighResolution (not polymorphic)7; and (6) in Hardy-Weinberg Equilibrium with a nominal p-value > 0.05. Figure 3 and Supplementary Table S1 show the criteria used in the selection of SNPs for parentage verification in more detail.


[image: image]

FIGURE 3. Workflow of SNP selection for parentage verification, based on genotype data from the validation population.



Removing SNPs in linkage disequilibrium

Those SNPs that passed the screening for parentage verification were pruned to remove SNPs in linkage disequilibrium (LD). With any others since independent SNPs provide more power in parentage exclusion. The pruning was conducted using Plink v1.9 by removing the less informative SNP (i.e., with a lower MAF) in LD. The SNPs that remained in the dataset following LD pruning (n = 191) were treated as the final set of SNPs for parentage verification. The criteria used in the pruning can be found in Appendix 1.



Efficiency of parentage exclusion

For the final set of SNPs for parentage verification, a multi-locus probability of exclusion (PE) was calculated as a measurement of performance in parentage verification. Multi-locus PE is the probability to exclude (1) a random unrelated parent when the other parent is known (Q1); (2) a random unrelated parent when the other parent is unknown (Q2); or (3) a random unrelated offspring (Q3) (Dodds et al., 1996). The single-SNP PE (including Q1, Q2, and Q3) for each SNP can be calculated based on its MAF in the validation population. In order to assess the performance of our final set of SNPs for parentage verification, we explored the relationship between the number of “top SNPs” and the multi-locus PE, where “top SNPs” were defined as the SNPs with the greatest MAF in the validation population.

By applying dense SNPs in parentage verification, the multi-locus PE can be extremely close to one. In the following description and discussion, the probability of non-exclusion (PN) was used to present the efficiency of parentage tools. The relationship between PE and PN is:

[image: image]

PE was calculated using R8 and the formulae described by Dodds et al. (1996).



Testing with known mother-calf pairs

The final set of SNPs for parentage verification was tested with the 21 known mother-calf pairs in the validation population. The genotypes of each pair were compared to detect possible false exclusion. In addition, for each one of the 21 calves, comparisons were conducted to exclude “presumably unrelated candidates” as its father, where the “presumably unrelated candidates” were those genotyped animals coming from a different source based on available information and unlikely to be the father. The test served to evaluate the robustness of our SNP set (Tortereau et al., 2017). The comparison simulated a common parentage scenario, where the genotypes are known for both the mother and the calf, and the paternity of a putative father is to be determined (scenario Q1) (Jamieson and Taylor, 1997).



SNPs for Subspecies Composition

All SNPs selected at stage one went into a screening for subspecies composition SNPs, which was mainly based on genotyping quality. A SNP was deemed to be low-quality if (1) its call rate was lower than 95% in the whole validation population; (2) its call rate was lower than 90% in either subspecies; or (3) it was categorized into one of the three following conversion types during genotyping: NoMinorHom (no minor homozygote), OTV (off-target variant), or MonoHighResolution (not polymorphic)9.

The remaining SNPs were tested in three ways: (1) exploratory analysis: visualizing the population structure of the validation population by multi-dimensional scaling (MDS); (2) qualitative analysis: classifying bison into groups through K-means and comparing the result to their origin label, and (3) quantitative analysis: estimating the subspecies composition.


Multi-dimensional scaling

The utility of the selected SNPs in subspecies composition was first tested with MDS. This technique provides a way to visualize the SNP-based genetic distance between samples in a lower-dimensional space (Li and Yu, 2008). The distance was calculated as the Euclidean distance between samples based on their genotype (allele counts) of the selected SNPs. The analysis was conducted with the cmdscale function from the R stats package10. More details can be found in Supplementary Table S1. In the output of MDS, it was expected that bison from each subspecies would cluster together to form two distinct groups.



K-means clustering

Hartigan’s k-means clustering was used to test whether the selected SNPs could classify samples into two groups, corresponding to plains and wood bison, which would be strong evidence to support that the selected SNPs are informative for estimating subspecies composition. The algorithm aims to partition the samples into a specified number of clusters (two in this case) so as to minimize the within-cluster variances (squared Euclidean distances) (Saatchi et al., 2011). The analysis was performed using the k-means function from the R stats package11. Additional details can be found in Supplementary Table S1. The clustering result was expected to agree with the origin label of the bison.



Genome composition of bison in the validation population

In order to provide a quantitative measurement of the genome composition (i.e., genome proportions from plains bison and wood bison), we further developed an estimation equation based on constrained genomic regression (Boerner and Wittenburg, 2018). The plains bison with a subspecies assignment confidence level of 1 (n = 203) and the wood bison with a subspecies assignment confidence level of 1 (n = 57) were treated as reference populations, and their population allele frequencies were calculated for the selected SNPs. The estimation equation was applied to bison with a confidence level of 1 or 2 labeled as “plains bison” (n = 234) or “wood bison” (n = 57).

The ith bison’s genome composition was estimated with a constrained regression:

[image: image]

where fi = (fi1, fi2, …, fim) is the allele frequencies of the m SNPs for that bison, fP = (fP1, fP2, …, fPm) is the allele frequencies of the m SNPs in the plains reference population, fW = (fW1, fW2, …, fWm) is the allele frequencies of the m SNPs in the wood reference population, bPi is the genome proportion from plains bison for the ith bison (PlainsScore), and e is the residual error. Since we focused on estimating the genome composition contributed by plains and wood bison without considering other possible contributors, 1 − bPi is the genome proportion from wood bison for the ith bison. The constraint of 0 ≤ bP ≤ 1 ensures that the genome compositions are between 0 and 1. The calculation was conducted with R/limsolve (see “text footnote 8”)12.

The constrained genome regression approach has three features that led us to apply it here: (1) it runs in a “supervised” mode, where the reference populations are known; (2) it does not explicitly require the SNPs to be in linkage equilibrium; and (3) it has achieved high estimation accuracy in simulation analysis (Boerner and Wittenburg, 2018).



Genome composition of simulated populations

In addition to the real data from the validation population, the genome composition estimation method was applied to six populations simulated using the package hybriddetective (Wringe et al., 2017). The simulated populations were: (1) pure plains; (2) pure wood; (3) F1 (plains × wood); (4) F2 (F1 × F1); (5) backcross to plains (F1 × plains); and (6) backcross to wood (F1 × wood). The genotypes in each population were simulated based on the allele frequencies in the corresponding parental populations. More details can be found in Supplementary Table S1. Each simulation population consisted of 500 animals.






RESULTS


Stage 1: SNP Discovery

Twenty-seven American bison samples were sequenced for SNP discovery, and data from an additional 14 bison samples were obtained from previous studies. Raw sequence reads were mapped to the bovine UMD3.1 reference genome, and 21 samples with an average sequencing depth of at least 5 over the whole genome were used for SNP calling. The number of raw reads, read mapping percentages, and average sequence depth is given for each sample in Table 1. Approximately 62 million genomic variants were discovered from the analysis, among which around 52.5 million variants were biallelic SNPs13. After the first stage of SNP selection (Figure 2), 2,928 SNPs were selected as candidates for parentage verification, and 17,026 SNPs as candidates for subspecies composition. These SNPs were included on a custom Affymetrix panel, which was then used to genotype 480 bison in what we refer to as the validation population.



SNPs for Parentage Verification

Further filtering of SNPs based on MAF, genotype quality, and LD was performed using the 461 bison genotypes that passed quality checks. This filtering produced a final set of 191 SNPs deemed suitable for parentage verification. The distribution of these SNPs across autosomes is shown in Figure 4.
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FIGURE 4. The distribution of the SNPs for parentage verification on autosomes.



Efficiency of Parentage Exclusion

A multi-locus probability of non-exclusion (PN) was calculated for the 191 SNPs based on their MAF, as a measurement of performance in parentage verification. Three types of PNs were calculated: (1) the PN for a random unrelated parent when the other parent is known (termed “Q1”); (2) the PN for a random unrelated parent when the other parent is unknown (termed “Q2”); and (3) the PN for a random unrelated offspring (termed “Q3”). The three PNs for this SNP set were 7.0 × 10–18, 1.1 × 10–11, and 5.0 × 10–28, respectively (Figure 5). For comparison, the ISAG-ICAR SNP panel, a commonly used bovine parentage verification tool, achieves a PN of 7.2 × 10–26 for Q3, and 1.4 × 10–10 for Q2 on the German Holstein population (Schütz and Brenig, 2015). The comparable results suggested that the SNPs selected in our analysis are informative and suitable for parentage verification. For American bison, a microsatellite panel including 15 markers has reported a PN of 0.0266 for Q2 and 0.0024 for Q1. More recent microsatellite panels have been used in parentage testing for American bison, usually including more markers, but no PE or PN report was found.
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FIGURE 5. Probability of exclusion (PE) and probability of non-exclusion (PN) for different numbers of top parentage SNPs. Multi-locus PE is the probability to exclude (1) a random unrelated parent when the other parent is known (Q1), (2) a random unrelated parent when the other parent is unknown (Q2), or (3) a random unrelated offspring (Q3).




Testing With Known Mother-Calf Pairs

The genotyped set of animals included 21 known mother-calf pairs. All 21 pairs were recovered with perfect concordance using the 191 SNPs. In the meanwhile, consistent with the very low PN values calculated based on MAF, the test successfully excluded all “presumably unrelated candidates” for paternity in the typical parentage testing scenario.




SNPs for Subspecies Composition

A set of 17,018 SNPs remained for use in subspecies composition analysis after filtering based primarily on genotyping quality in the validation population. Their performance in subspecies composition estimation was evaluated with clustering techniques (MDS and k-means) and constrained genomic regression.


Multi-Dimensional Scaling

The results of MDS (Figures 6, 7) shows that the plains bison and the wood bison in the validation population visually group into three clusters in 2-dimensional space. The two clusters on the left side correspond to the plains bison samples, and the cluster on the right side corresponds to the wood bison samples. On the X1 axis, those plains bison with an assignment confidence level of 1 (absolutely confident) tend to be further away from the group of wood bison. These observations support that the two subspecies are separable using our selected SNP set. The plot also implies that the plains bison in the validation population can be further divided into two sub-populations. However, the focus of the current analysis is on subspecies composition.
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FIGURE 6. Multi-dimensional scaling (MDS) visualization of genetic distances between plains and wood bison determined using the custom panel.
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FIGURE 7. Multi-dimensional scaling (MDS) visualization of genetic distances between plains and wood bison determined using the custom panel. Cluster inference was performed by k-means clustering.


Those bison labeled as hybrid did not appear to be a group between plains and wood bison. Instead, they are largely overlapping with one of the plains bison group. Given that the “Hybrid” label was almost exclusively associated with a low confidence level, these animals were not able considered to be informative when judging the effectiveness of our SNP set. Instead, further validation related to hybrid bison was conducted using a variety of simulated datasets.



K-Means Clustering

The k-means clustering using genotypes was also able to separate the plains bison and the wood bison. When the cluster number was set as 2, the k-means clustering assigned those bison with reliable origin (confidence level 1 and 2, n = 292) into two groups: One group included exactly the 57 wood bison, and the other one included 234 plains bison and 1 hybrid bison. The results suggest that the selected SNP set provides sufficient information for plains bison and wood bison composition estimation.



Genome Composition Estimation

Six populations (pure plains, pure wood, F1, F2, backcross to plains, and backcross to wood) were simulated based on the reference populations (i.e., the bison with a subspecies assignment confidence level of 1), with 500 bison simulated in each population. The genetic distance between the simulated populations and the real validation populations can be found in Figure 8. The simulated pure bison clustered around the center of the corresponding pure reference populations. The simulated F1 and F2 populations largely overlapped, and they were located in the middle between the simulated pure plains and pure wood population. The five simulated populations aligned into a line on the figure, which was expected based on their relationship. The simulation is based on population-level allele frequencies in the reference populations. As a result, the simulated pure bison populations, especially the plains bison, are more genetically homogeneous than the corresponding real populations.
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FIGURE 8. Multi-dimensional scaling (MDS) visualization of genetic distances between simulated populations determined using the custom panel.


These simulated animals served as a way to test the performance of the genomic composition estimation method, especially in hybrid populations. Table 3 shows the estimated genome composition from plains bison (PlainsScore) for the validation population and simulated populations. The reference plains population has a median PlainsScore of 100%, and the reference wood population has a median PlainsScore of 0.87%. These values were expected for the most reliably labeled plains and wood bison. Those bison labeled as plains with a subspecies assignment confidence level of 2 had a median PlainsScore of 98.67%. The mean of PlainsScore was more sensitive to the existence of outliers and tended to deviate more from the expected value for the three populations. For the six simulated population, their median PlainsScore and mean PlainsScore were very close to their expected values.


TABLE 3. Estimated subspecies composition for reference population and simulated population.
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DISCUSSION

Genomic technologies have attracted keen interest in animal producers by their potential in production management and animal genetic improvement. They have been, therefore, increasingly applied in livestock production, especially in dairy, beef, and pork industries (van der Steen et al., 2005; Van Eenennaam et al., 2014; Berry et al., 2016). Our project aims to provide two valuable genomic tools for animal management in the Canadian bison industry: parentage verification and subspecies composition estimation. Parentage verification plays an essential role in breeding management as a powerful tool for maintaining pedigree information. Reliable pedigree information will clarify the outcome of breeding and support informed decision-making, such as introducing bulls with preferred phenotypes or great genetic merit. However, for the bison industry, maintaining reliable pedigree records may be relatively challenging, partially due to the lack of artificial insemination (Dorn, 1995) and the use of multi-sire pasture breeding in some herds. A low-cost genomic tool for parentage verification would be a valuable asset. In the last two decades, parentage verification for the American bison is mostly based on microsatellites14 (Schnabel et al., 2000; Halbert et al., 2004; Mooring and Penedo, 2014). By applying the SNP-based tool developed in the current study, a much higher PE can be achieved thanks to a larger number of informative genetic markers (McClure et al., 2018). Other advantages of the SNP-based genomic tools may include the better reproducibility of genotyping and improved time and cost efficiency.

In this work, sequence information from 41 individuals was used to discover more than 52.5 million candidate SNPs. It is important to note that more than 13.5 million (25.7%) of these SNPs were monomorphic in the bison samples, and thus could represent fixed differences between bison and cattle. Although not of utility in this study, such SNPs could be helpful for assessing cattle introgression. The number of discovered SNPs in other studies mapping reads from a related species to the bovine genome is variable, with differences likely arising from a variety of factors including sequence divergence, the number of animals sequenced, and the sequencing and analytical approaches used. For example, more than 23 million SNPs were discovered using one Gayal (Bos frontalis) and the bovine genome UMD3.1 as the reference (Mei et al., 2016), and more than 35 million SNPs were detected using 52 Nellore bulls (Bos primigenius indicus) with the latest bovine genome ARS_UCD1.2 as the reference (Fernandes Júnior et al., 2020). The use of the bovine reference genome in this manner has drawbacks. For example, there may be reads that do not align well due to genome differences that have accumulated, making any overlapping variants undetectable. In addition, genome differences could lead to spurious variants when reads from distinct loci align to a single region on the reference. Although filtering strategies can address some of these issues, it will be worthwhile re-aligning the data from this study to a high-quality bison reference genome once available.

Our genomic tools will also help with a concern of the Canadian bison industry and non-industry individuals, which is the genetic integrity of plains bison and wood bison. Conservation goals are to maintain genetically pure bison without introgression from other species, especially cattle (Freese et al., 2007), and to maintain pure wood bison and pure plains bison. The key to the latter is to correctly distinguish pure bison for each subspecies and hybrid bison. Based on the samples available to us, the genome composition estimation tool will provide valuable information. Conversely, for bison meat production, the genome composition estimation tool will enable more accurate and reliable crossbreeding between the two subspecies, by which producers may explore the possibility of improving animal performance by exploiting heterosis. An important consideration for bison producers will be the cost of these technologies relative to the projected benefits. Given the widespread of use of parentage tests in cattle and other livestock species that employ similar numbers of SNPs [e.g., the ISAG-ICAR cattle SNP panel (see “text footnote 4”)] and the application of breed composition tools [e.g., breed base representation in dairy cattle (Norman et al., 2016)], it seems likely that these tools can be economically viable. In 2018, a genomic toolkit including both parentage and breed composition tests for cattle was priced at about CA$45 per sample in Canada15. This cost can reasonably be expected to go down over time due to continued advances in technology.

The two SNP-based genomic tools showed high performance in various tests conducted using a validation population (480 bison) and a simulated dataset (genotypes of 3000 bison). Compared with a previously reported parentage tool for bison (Schnabel et al., 2000), our SNP-based parentage tool achieved a higher PE (i.e., lower PN), largely due to the increase in the number of included genetic markers. When compared with a recent SNP-based parentage tool, the commonly used ISAG-ICAR SNP-based tool for cattle, our parentage tool showed comparable performance in parentage exclusion (PE and PN). For plains/wood bison composition, the genomic tool successfully distinguished those plains bison and wood bison labeled with confidence, and correctly classified all animals in the simulated purebred and crossbred populations.

The accuracy and reliability of our genomic tools can be further improved over time by integrating more testing data and reliable reference animals. The improvement can be threefold. First, as more bison are genotyped, the information about genotyping quality (e.g., call rate or reproducibility) will help to detect SNPs that are difficult to genotype correctly, which should be removed from the tools (McClure et al., 2018). Second, genotype mismatch may be detected even for parent-offspring pairs with reliable records or strong genomic evidence. SNPs showing a significantly higher rate of mismatch should be excluded since they do not show the expected inheritance pattern. For example, a SNP that does not follow Mendelian inheritance in parent-offspring pairs or trios may be affected by copy number variation. Third, including more bison with known origin into the reference population will provide a better estimation of allele frequencies in plains bison and wood bison, which should improve the accuracy of the genome composition estimation. One challenge of this current work is the limited numbers of reference samples and the need for reliable subspecies labels. Ongoing efforts to obtain high-quality samples with clear lineage information could help to refine the genome composition scores. Nonetheless, based on the hundreds of samples included in our study, the composition analysis should have utility in the Canadian bison industry populations.
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FOOTNOTES

1https://www.canadianbison.ca/resources/resources/data-and-statistics/bison-producers

2https://www.canadianbison.ca/resources/resources/data-and-statistics/price-trends

3https://www.canadianbison.ca/resources/resources/industry-reports/bison-market-and-supply-update

4https://www.isag.us/Docs/Guideline-for-cattle-SNP-use-for-parentage-2012.pdf

5https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants

6http://tools.thermofisher.com/content/sfs/brochures/axiom-mydesign-genotyping-technical-note.pdf

7More details describing the conversion types can be found in the SNPolisher User Guide at http://tools.thermofisher.com/content/sfs/manuals/SNPolisher_User_Guide.pdf

8https://www.r-project.org/

9More details describing those conversion types can be found in the SNPolisher User Guide at http://tools.thermofisher.com/content/sfs/manuals/SNPolisher_User_Guide.pdf

10https://stat.ethz.ch/R-manual/R-patched/library/stats/html/cmdscale.html

11https://stat.ethz.ch/R-manual/R-patched/library/stats/html/kmeans.html

12https://cran.r-project.org/web/packages/limSolve/index.html

13Not all the discovered genomic variants were polymorphic in the sequenced bison population. Since the bison sequence reads were mapped to bovine reference genome, the discovered SNPs also included those genomic loci that were fixed in the 41 sequenced bison samples (about 25.7% of the discovered SNPs).

14https://vgl.ucdavis.edu/services/dnatyping.php

15https://www.canadiancattlemen.ca/features/genomic-tools-for-crossbred-cattle-in-the-works/
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APPENDIX 1 SNP PRUNING

If the square of correlations (r2) in genotype allele counts was greater than 0.015 between any two SNPs, the less informative SNP (i.e., with a lower MAF) was pruned.

When LD is measured in terms of the Pearson’s correlation in genotype allele counts, its null distribution (i.e., no LD) can be approximately treated as a Student’s t-distribution with degrees of freedom n-2.
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In our analysis, the sample size n is 461. A cutoff of r2 < 0.015 pruned a SNP if it was significantly (p = 0.001) in correlation with any other SNPs.
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A total of 31 differentially expressed genes in the mammary glands were identified in our previous study using RNA sequencing (RNA-Seq), for lactating cows with extremely high and low milk protein and fat percentages. To determine the regulation of milk composition traits, we herein investigated the expression profiles of microRNA (miRNA) using small RNA sequencing based on the same samples as in the previous RNA-Seq experiment. A total of 497 known miRNAs (miRBase, release 22.1) and 49 novel miRNAs among the reads were identified. Among these miRNAs, 71 were found differentially expressed between the high and low groups (p < 0.05, q < 0.05). Furthermore, 21 of the differentially expressed genes reported in our previous RNA-Seq study were predicted as target genes for some of the 71 miRNAs. Gene ontology and KEGG pathway analyses showed that these targets were enriched for functions such as metabolism of protein and fat, and development of mammary gland, which indicating the critical role of these miRNAs in regulating the formation of milk protein and fat. With dual luciferase report assay, we further validated the regulatory role of 7 differentially expressed miRNAs through interaction with the specific sequences in 3′UTR of the targets. In conclusion, the current study investigated the complexity of the mammary gland transcriptome in dairy cattle using small RNA-seq. Comprehensive analysis of differential miRNAs expression and the data from previous study RNA-seq provided the opportunity to identify the key candidate genes for milk composition traits.

Keywords: mammary gland, mRNA, miRNA, RNA-seq, dairy cattle


BACKGROUND

MicroRNAs (miRNAs), which are a class of non-coding small RNA (sRNA) molecules with the length of 18-24 nucleotides, are important regulators of gene expression. They can play important roles in a wide range of biological processes, including animal and plant development, cell differentiation, proliferation, apoptosis, and metabolism (Martello et al., 2010; Chen et al., 2012; Rottiers and Näär, 2012; Almughlliq et al., 2019; Barbu et al., 2020). In animal cells, miRNAs interact with a specific sequence in mRNA of the target gene and post-transcriptionally negatively regulate the expression of target genes by inhibiting their translation or inducing degradation of the target mRNAs (Huntzinger and Izaurralde, 2011; Barbu et al., 2020). MiRNAs have emerged as new potential biomarkers for miRNA-gene interactions and gene networks responsible for human diseases and economically important traits in livestock. Several diseases and conditions have been reported to be linked with the abnormal expression in miRNAs relating with differentiation, apoptosis and development (Lewis et al., 2005; Berezikov et al., 2006b; Lee et al., 2007). Many experimental techniques and computational methods have been developed to identify miRNAs (Aravin and Tuschl, 2005; Berezikov et al., 2006a; Landgraf et al., 2007), and large number of miRNAs have been identified in primates, rodents, birds, fish, and plants (Lagos-Quintana et al., 2003; Chen et al., 2005; Finucane et al., 2008; Glazov et al., 2008).

The bovine mammary gland is a complex organ which grows and develops after calving and is able to produce more than 30,000 kg of milk in a complete lactation cycle (Hennighausen and Robinson, 2005; Muroya et al., 2019). Because of its important functions, the mammary gland, especially mammary epithelial cells, has been used as the target tissue for gene expression profiling in order to identify key genes underlying milk production traits in dairy cattle (Silveri et al., 2006; Bionaz and Loor, 2008, 2011; Bionaz et al., 2012; Zhang et al., 2016; Pu et al., 2017; Cai et al., 2018; Ju et al., 2018; Yang et al., 2018; Billa et al., 2019; Li et al., 2020). However, only a few studies have been reported related to the miRNAs in the bovine mammary gland. A total of 798 mature bovine miRNAs have been deposited in miRBase (Luoreng et al., 2018), Release 22.1 (October 2018) and 55 of them were detected in the mammary gland. Li et al. (2012b) reported 283 known miRNAs and 74 novel miRNAs in the mammary gland of Holstein cows, among which 56 miRNAs were differentially expressed between lactating and non-lactating cows and might be involved in regulating lactation. Shen et al. (2016) identified 292 known miRNAs and 116 novel miRNAs in the bovine mammary epithelial cells, and three of them (bta-miR-33a, bta-miR-152 and bta-miR-224) might be involved in milk fat metabolism. Li et al. (2015) detected 370 known and 341 novel miRNAs in the bovine mammary gland infected with Staphylococcus aureus, and 358 known and 232 novel miRNAs in control group, 77 of which were differentially expressed between infected and healthy Holstein cows. In addition, Le Guillou et al. (2012) found that the overexpression of miR-30b caused a defect in lactation and delayed involution in mouse mammary gland.

In a previous study from our lab (Cui et al., 2014), 31 differentially expressed genes was identified by using RNA sequencing (RNA-Seq) to investigate the mammary gland epithelial tissues of four lactating Holstein cows with extremely high and low milk protein (PP) and fat percentages (FP). The objectives of the present study were to investigate the miRNA expression profiles in the same mammary gland samples that were used in the previous RNA-Seq study to identify known and novel miRNAs, and to perform an analysis of the differentially expressed miRNAs and previously identified genes. Some candidate miRNAs and their target genes that may be involved in milk protein and fat metabolism were identified.



MATERIALS AND METHODS


Animals and Mammary Gland Tissue Samples

In the current study, the mammary gland epithelium samples of four lactating Chinese Holstein cows (high group vs. low group) same as our previous RNA-Seq experiment (Cui et al., 2014) were used. These four cows were selected from 30,000 Holstein cows in Beijing Sanyuanlvhe Dairy Farming Center, and the average PP and FP were 3.1% (2.7–3.8%) and 3.6% (3.1–4.5%) in this population. In order to keep the environmental factors identical, these four cows in almost the same period of lactation (353, 341, 377, and 325 days) were collected from the same farm possessing a total of 800 Holstein cows. Selected cows were divided into two groups according to the phenotypic values for PP and FP: two cows (high group) had high PP (3.6% and 3.8%) and FP (3.9% and 4.5%); the other two cows (low group) showed low PP (3.0%, 2.9%) and FP (3.2%, 3.1%).

The cows were killed by electroshock, and then they were bled, skinned, and dismembered in the same slaughterhouse. The rear mammary gland from each individual was harvested within 30 min after slaughtered. White mammary ducts and pink epithelium tissue were clearly observed when the right rear quarter of the mammary gland was cut in half lengthways from the teat and some milk were flowed out. Five pieces of epithelium tissue samples per cow were carefully collected and placed into a clean RNAse-free Eppendorf tube, and then stored in liquid nitrogen for subsequent RNA isolation. All procedures of collecting samples were carried out in strict accordance with the protocol approved by the Animal Welfare Committee of China Agricultural University (Permit Number: DK996). Total RNA was extracted from one piece of mammary gland epithelium samples from each cow and quality was controlled according to the protocols described by Cui et al. (2014). The value of RNA integrity number (RIN) from each sample was above 8.0.



Small RNA Sample Preparation and Sequencing

The preparation of small RNA library, including quality control and sequencing, was performed by Novogene (Beijing, China). The preparation of library was performed on 3 μg total RNA per sample using an IlluminaTruSeq™Small RNA Sample Preparation Kit (Illumina, San Diego, CA, United States). The samples were indexed using four codes in order to facilitate sequencing of these samples on one flow cell channel. Quality control in library preparation showed that adapter-adapter contamination was <5% and 85% of the sequences were miRNAs. The samples were subsequently sequenced on the Illumina Hiseq2000 platform and 50-bp single-end reads were obtained.



Sequencing Data Analysis

The sequencing data were obtained in the format of Illumina FASTQ (Illumina). The procedure of data filtering included removing low quality reads, reads containing poly-N stretches, reads with 5′primer contaminants, reads with 3′primers or the insert tag, and reads with poly-A, T, G, or C stretches. Thereafter, the sRNA tags within a certain range (18-30 nt) were retained for the successive steps. The Q20, Q30, and GC-content of the cleaned reads were calculated to evaluate the quality of data. Then, the sRNA tags were mapped to the bovine genome assembly (UMD3.1.66) using Bowtie (Langmead et al., 2009), no mismatches were allowed and the “seed” region size was set at 8 (Gupta et al., 2012; Giurato et al., 2013; Aggarwal et al., 2014; Kuksa et al., 2018). The mapped sRNA tags were aligned to the 798 bovine miRNA precursor sequences in miRBase (Release 22.1) to identify the known miRNA in the sRNA libraries allowing one mismatch. The sRNA tags that matched known miRNAs from species other than bovine may be novel bovine miRNAs, and were predicted the secondary structure, the Dicer cleavage site, and the minimum free energy of the mapped sRNA sequences using the miREvo (Wen et al., 2012) and miRDeep2 (Friedländer et al., 2012) software packages.

The expression of miRNA was measured as counts per million (CPM) using the following formula: normalized expression = mapped read count/total reads × 1000000 (Zhou et al., 2010), and DESeq2 R package (1.8.3) (Anders and Huber, 2010; Trapnell et al., 2013) was used to identify significantly differentially expressed miRNAs between high and low groups of cows. The threshold for differential expression was—log2 (FC)— > 1 and FDR p < 0.05 when using DESeq2 R package for differential expression miRNA analysis so that miRNAs with—log2 (FC)— > 1 and adjusted FDR p < 0.05 were designated as differentially expressed.

Furthermore, two cows in the same group were used to eliminate the background noise of individual-specific transcription by applying a pairwise approach, which enabled acquisition of more relevant data from the two groups.



Target Prediction, Pathway, and Annotation Analysis

TargetScan 6.2 and MiRanda (Enright et al., 2003) were used to predict putative target genes with the established miRNA seed database and the bovine genome sequence (UMD3.1.66). TargetScan 6.2 predicts targets by searching for the presence of conserved 8mer, 7mer, and 6mer sites that match the seed region of each miRNA. MiRanda predicts targets based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian miRNAs.

Gene ontology (GO) functional enrichment analysis was used for the candidate target genes of the miRNAs. GOseq with the Wallenius non-central hyper-geometric distribution (Young et al., 2010), which can adjust for the bias in gene length, was implemented for the GO enrichment analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2008) pathways analysis was performed using KOBAS 2.0 (Mao et al., 2005) software to test the statistical enrichment of the candidate target genes in the KEGG pathways.



Quantitative Real Time PCR

Expression levels of selected miRNAs were confirmed by quantitative real-time PCR (qRT-PCR) using the DyNAmo SYBR Green PCR kit (Applied Biosystems, Foster City, CA, United States) on a LightCycler480 (Roche Applied Science, Penzberg, Germany). qRT-PCR of target mRNAs was performed using specific miRNA stem-loop primers (Supplementary Table 8) and all reactions were run in triplicate. Relative quantification of miRNA was quantified using the 2–Δ Δ CT method and normalized against the U6 gene (ssD0904071006: Guangzhou RiboBio, Guangzhou, China) for each sample.



Plasmid Construction and Site-Directed Mutagenesis of 3′UTR in Predicted Target Genes

The 3′un-translated region (UTR) of four predicted target genes for the identified miRNAs, TRIB3, M-SAA3.2, PTHLH, and VEGFA, were PCR amplified using DNA collected from the bovine mammary gland samples applied for sequencing in this study as a template, and connected into pmirGLO Dual-Luciferase miRNA Target Expression Vector (pmirGLO, Promega) (Figure 1), respectively. The primers were listed in the Table 1. Afterward, the connected products were transfected into Escherichia coli, and then verified the correct sequence and orientation by sequencing. The QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, United States) was used to generate the 3′UTR variants of TRIB3, M-SAA3.2, PTHLH, and VEGFA where seed sequences recognized by microRNAs were deleted (Figures 2, 3). After the point mutation, same way was applied in order to find the correct mutant sequences for such four genes.
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FIGURE 1. The pmirGLO vectors with the predicted 3’UTR target sequences of the 4 differentially expressed genes (A) pmirGLO-TRIB3-3′UTR; (B) pmirGLO- M-SAA3.2-3′UTR; (C) pmirGLO-PTHLH-3′UTR; (D) pmirGLO-VEGFA-3′UTR.



TABLE 1. PCR primers for TRIB3, PTHLH, VEGFA and M-SAA3.2.
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FIGURE 2. Domain structures of the 4 differentially expressed genes showing the locations of the seed sequence of the miRNAs within the 3’UTR of theirs.
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FIGURE 3. Locations and sequences of the miRNAs target sites in the 3’UTR of the 4 differentially expressed genes. The sequences of the miRNAs are indicated, along with mutations introduced in the target sites (underlined nucleotides) for generating the mutated reporter constructs.




Luciferase Reporter Assays

To further explore the repressing mechanism of miRNAs on the expression of 4 target genes (TRIB3, M-SAA3.2, PTHLH, and VEGFA) expression, the full-length TRIB3, M-SAA3.2, PTHLH and VEGFA 3′UTRs and the corresponding mutant version (the seed sequences were deleted) were transfected into human embryonic kidney HEK293 cells (GM-070001H: Shanghai, China), respectively. These cells were cultured at 37°C with 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 4.5 g/liter glucose, 5% fetal bovine serum (Invitrogen), 2 mmol/liter glutamine, and antibiotics. Before transfection, HEK293 cells were plated into 24-well plates at 1.0 × 105 cells/well 24 h. 30 ng empty pmirGLO vector, pmirGLO-TRIB3/M-SAA3.2/PTHLH/VEGFA-3′UTR with 50 μl opti-MEM (Invitrogen) and 30 nM (final concentration) mimic miRNA, inhibitor miRNA, control miRNA (GenePharma) were co-transfected into each well with 1 μl Lipofectamine 2000 (Invitrogen). 30 ng mutants of the TRIB3/M-SAA3.2/PTHLH/VEGFA 3′UTR with 50 μl opti-MEM (Invitrogen) and 30 nM (final concentration) mimic miRNA, control miRNA (GenePharma) were co-transfected into each well with 1 μl Lipofectamine 2000 (Invitrogen). Relative firefly luciferase activities (normalized to Renilla luciferase activities) were measured 24 h after transfection with the Dual-Luciferase Reporter Assay Kit (Promega) on TECAN Infinite 200 multifunctional microplate reader (TECAN). All experiments were performed in triplicate so that data averaged from three independent experiments.



RESULTS


Sequencing and Mapping of the sRNA Tags

Four new miRNA libraries were constructed using sRNA isolated from bovine mammary glands and sequenced using Illumina next-generation sequencing. A total of 10,538,878 (high milk PP and FP), 12,745,512 (high milk PP and FP), 9,744,027 (low milk PP and FP), and 9,682,136 (low milk PP and FP) high-quality cleaned reads were obtained from the four sRNA libraries (Supplementary Table 1; NCBI SRA accession numbers: SRR3631014, SRR3631016, SRR3631053, and SRR3631054). Distribution of the length for reads showed that most of the generated reads had 21 (>24%), 22 (>30%), and 23 (>13%) nucleotides (Supplementary Figure 1), which is the size of most known mature miRNAs. When aligning the sequenced reads against the bovine genome assembly (UMD3.1.66), it was found that 77.57%, 76.93%, 80.88%, and 78.15% of them uniquely aligned from the four libraries, respectively (Supplementary Table 1); 55-57% of them were aligned in the same direction as the reference genome sequence, and 20-25% were aligned in the opposite direction (Supplementary Table 2). The correlation coefficient (R2) between the two individuals within the high and low groups for milk PP and FP was calculated based on the CPM mapped fragment of each cow and was shown to be 0.988 and 0.980, respectively. This indicated that the similarity of the two biological replicates within each group was sufficiently high (Supplementary Figure 2).



MicroRNAs Identification and Target Prediction

Among the uniquely aligned reads across the four samples and six downloaded miRNA libraries (Cai et al., 2018), 24,320,809 (54.4%) matched known miRNAs in miRBase (Release21.0), which resulted in 497 known bovine miRNAs and 49 novel bovine miRNAs were identified (Supplementary Tables 3, 4). Subsequently, two well-established target prediction tools, TargetScan and miRanda, were used to predict target mRNAs of the miRNAs, and a total of 12,202 target genes were commonly predicted for the known and novel miRNAs (Supplementary Table 5). It is noteworthy that some well-known genes associated with milk composition traits were included such as β-casein (CSN2), κ-casein (CSN3), α-lactalbumin (LALBA), diacylglycerol O-acyltransferase 2 (DGAT2), growth hormone receptor (GHR), signal transducer and activator of transcription 5B (STAT5B), and stearoyl-coenzyme A desaturase (SCD) etc. This finding implied that the identified mammary miRNAs in this study were involved in metabolism of milk protein and lipid through the regulation of key genes affecting these traits.



Differentially Expressed miRNAs Between the High and Low Groups for Milk PP and FP and Target Prediction

The miRNAs that differed between the high and low PP and FP groups were determined in this study. A total of 71 top half miRNAs displayed significantly differential expression between the high and low groups using the DEseq2 algorithm (p < 0.05, FDR q < 0.05), with 35 were up-regulated and 36 were down-regulated in the high milk PP and FP group compared with the low group (Table 2). Subsequently, a total of 5,634 target genes were commonly obtained for these differentially expressed miRNAs by TargetScan and miRanda (Supplementary Table 7).


TABLE 2. Seventy-one differentially expressed miRNAs between the high and low milk protein and fat percentages groups.

[image: Table 2]Afterward, the results of the sequencing were validated with an independent method of real-time PCR assay. By using the same four mammary gland samples as used for sequencing, eight known miRNAs and seven novel miRNAs identified in the present study were randomly chosen for validation. It was found that the expression levels of miR-125a, miR-2904, miR-345-5p, miR-378c and Novel-18 were significantly higher in the high milk PP and FP group than in the low group (p < 0.05), and the expression levels of miR-21-3p, miR-29c, miR-106b and miR-190a were lower in the high group than in the low group (p < 0.05). Whereas, Novel-13, Novel-2, Novel-22, Novel-32, Novel-4 and Novel-42 did not display significant differences on miRNA levels between the two groups (p > 0.05) (Figure 4). Such expression patterns were exactly consistent with those shown by small-RNA sequencing data.
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FIGURE 4. mRNA expression levels of the 15 randomly selected miRNAs validated with qRT-PCR. *indicates p < 0.05. Blue columns represent the relative miRNA expression levels by qRT-PCR normalized by U6 in the high group and red columns represent the relative miRNA expression levels by qRT-PCR normalized by U6 in the low group.




Gene Ontology Enrichment and Pathway Analysis

To further investigate the functional associations of the target genes, gene ontology (GO) annotation analysis was performed. It was found that these targets have a wide range of diverse functions, among which most were involved in protein and lipid metabolism, mammary gland development and differentiation, and immune functions (p < 0.01, FDR q < 0.01). Under the GO biological process category, the enriched terms related to lipid and protein metabolisms and cell growth were included such as protein binding, protein localization, protein transport, protein complex, regulation of protein metabolic process, lipid biosynthetic process, programmed cell death, protein targeting, lipid metabolic process, amino acid transport, regulation of protein kinase activity, and cellular response to mechanical stimulus (Supplementary Table 6).

A KEGG metabolic pathway analysis was also performed to identify functions that associate with the predicted target genes using KOBAS. Targets were enriched for functions such as mitogen-activated protein kinases (MAPK), adipocytokine, mammalian target of rapamycin (mTOR), glycosphingolipid biosynthesis, glycerophospholipid metabolism, hypoxia inducible factor-1 (HIF-1), and phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathways (Table 3).


TABLE 3. KEGG pathways assigned to the predicted target genes of the 497 known and 49 novel miRNAs identified in this study.

[image: Table 3]For the 71 top half differentially expressed miRNAs, 5,634 target genes were obtained and the targets were highly enriched in biological process consisting of synthesis and metabolism of protein and energy metabolism, as well as pathways mainly related to synthesis and metabolism of lipid and protein including glutathione metabolism, NF-kappa B signaling pathway, mTOR signaling pathway, fatty acid degradation, fatty acid metabolism and protein processing in endoplasmic reticulum (Table 4).


TABLE 4. KEGG pathways assigned to the predicted target genes of the 71 differentially expressed miRNAs identified in this study.

[image: Table 4]


Comparison of the Target Genes of the Differentially Expressed miRNAs and the Differentially Expressed Genes Reported Previously

In our previous study (Cui et al., 2014), 21 of the target genes, which are listed in Table 5, were found to be differentially expressed between the high and low groups using the same four mammary gland samples in the current study. Among the 21 differentially expressed target genes, the expressions of only six down-regulated genes and one up-regulated gene matched the expression profiles of the differentially expressed miRNAs that targeted them. While 5 down-regulated genes were targeted by at least one up-regulated miRNA each, and 10 genes were targeted by both up-regulated and down-regulated miRNAs. Especially, 7 of the 21 differentially expressed target genes were the most promising candidate genes affecting milk protein and fat percentage identified by integrated analysis of differential gene expression, previously reported quantitative trait loci (QTLs) and genome-wide association studies (GWAS) (Cui et al., 2014), including tribbles homolog 3 (TRIB3), serum amyloid A1 (SAA1), serum amyloid A3 (SAA3), mammary serum amyloid A3 (M-SAA3.2), vascular endothelial growth factor A (VEGFA), parathyroid hormone-like hormone (PTHLH) and ribosomal protein L23A (RPL23A). In addition, KEGG pathway analysis using KOBAS, showed that two of the 21 target genes, DNA-damage-inducible transcript 3 (DDIT3) and nuclear receptor subfamily 4, group A, member 1 (NR4A1), were involved in the MAPK signaling pathway that plays critical role in protein synthesis and metabolism and fatty acid metabolism pathway (p < 0.05; Tables 3, 4), and 2 other genes, vascular endothelial growth factor A (VEGFA) and cyclin-dependent kinase inhibitor 1A (CDKN1A), were involved in the mTOR, HIF-1, PI3K-Akt, p53 and duct acid secretion signaling pathways, which are mostly related to synthesis and metabolism of protein and fat (p < 0.05; Tables 3, 4).


TABLE 5. Twenty-one differentially expressed target genes from our previous study for the 71 differentially expressed miRNAs.
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MicroRNAs Repress the Expression of Target Genes Through the Binding of a Specific Target Sequence in Their mRNA 3′UTR

To study the regulatory functions of the identified miRNAs, four differentially expressed genes were chosen including TRIB3, M-SAA3.2, PTHLH and VEGFA, which having the expression pattern negatively correlated with their targeting miRNAs. Using the dual luciferase reporter assays, whether miR-2904, miR-339b/miR-146b/miR-339a, miR-29c/miR-106b/miR-190a, and miR-2904/miR-106b/miR-21-3p regulated the expression of the TRIB3, M-SAA3.2, PTHLH and VEGFA, respectively, were detected. Consequently, it was found that the luciferase level in HEK293 cells with mimics of miR-2904 decreased 40% relative to those with the empty vector, respectively (p < 0.05), while the inhibitor of miR-2904 yielded the same luciferase level as negative control (p > 0.05) (Figure 5). However, when the predicted binding sites of such miRNA seed sequences were mutated, luciferase activity was efficiently restored to the control levels (p > 0.05; Figure 5). Such results clearly indicated the notable regulatory role of the miR-2904 on the expression of TRIB3 by directly targeting its 3′UTR. Similarly, with regard to M-SAA3.2, it was also found that the overexpression of miR-146b, miR-339a and miR-339b decreased the luciferase levels in HEK293 cells by 80%, 72% and 74% after transfecting these mimics compared with the negative controls, respectively (p < 0.05), and the depressed expression of such miRNAs did not change the luciferase level in HEK293 cells transfected with their inhibitors (p > 0.05), respectively (Figure 6). When the mutant 3′UTR of M-SAA3.2 and mimics of the 3 miRNAs were co-transfected, the luciferase activity was same as the control level (p > 0.05; Figure 6). For PTHLH, the luciferase level in HEK293 cells transfected with the mimics of miR-29c, miR-106b and miR-190a was decreased by 37%, 49%, and 50% relative to the negative control, respectively (p < 0.05; Figure 7), however, the same level was kept by transfecting the inhibitors of such miRNAs (p > 0.05), respectively (Figure 7). When the mutant version of the PTHLH 3′UTR and mimics of miR-29c, miR-106b and miR-190a were co-transfected, respectively, the luciferase activities were same as the control levels (p > 0.05; Figure 7). Whereas, the expression of VEGFA was not affected by miR-2904, miR-106b and miR-21-3p (p > 0.05, Figure 8).
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FIGURE 5. MicroRNAs represses the expression of TRIB3 via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with miRNA mimic, miRNA inhibitor, miRNA control and empty vector for the TRIB3 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values were normalized to Renilla luciferase. Blue columns represent the luciferase activity co-transfected with miRNA mimic control; Red columns represent the luciferase activity co-transfected with miRNA inhibitor control; Green columns represent the luciferase activity co-transfected with miRNA mimic; Pink columns represent the luciferase activity co-transfected with miRNA inhibitor. (A) Represents the luciferase activity of TRIB3 after over- or down-expressed miR-2904 compared with controls. (B) Represents the luciferase activity of TRIB3 after transfecting mutant vector of miR-2904 compared with control. *Significant difference between the control and the treatment; **Very significant difference between the control and the treatment.
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FIGURE 6. MicroRNAs represses the expression of M-SAA3.2 via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with miRNA mimic, miRNA inhibitor, miRNA control and empty vector for the M-SAA3.2 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values were normalized to Renilla luciferase. The meanings of different colors are consistent with Figure 5. (A,C,E) Represents the luciferase activity of M-SAA3.2 after over- or down-expressed miR-146b, miR-339a and miR-339b compared with controls, respectively. (B,D,F) Represents the luciferase activity of M-SAA3.2 after transfecting mutant vector of miR-146b, miR-339a and miR-339b compared with control, respectively. **Very significant difference between the control and the treatment.
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FIGURE 7. MicroRNAs represses the expression of PTHLH via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with miRNA mimic, miRNA inhibitor, miRNA control and empty vector for the PTHLH 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values were normalized to Renilla luciferase. The meanings of different colors are consistent with Figure 5. (A,C,E) Represents the luciferase activity of PTHLH after over- or down-expressed miR-29c, miR-106b and miR-190a compared with controls, respectively. (B,D,F) Represents the luciferase activity of PTHLH after transfecting mutant vector of miR-29c, miR-106b and miR-190a compared with control, respectively. **Very significant difference between the control and the treatment.
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FIGURE 8. MicroRNAs did not repress the expression of VEGFA via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with miRNA mimic, miRNA inhibitor, miRNA control and empty vector for the VEGFA 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values were normalized to Renilla luciferase. The meanings of different colors are consistent with Figure 5. (A,B,C) Represents the luciferase activity of VEGFA after over- or down-expressed miR-2904, miR-106b and miR-21-3p compared with controls, respectively.




DISCUSSION

The current study is the first comparative profiles of the mRNA and miRNA transcriptome in the mammary gland epithelium of dairy cows to the best of our knowledge. In this study, we generated an extensive miRNA expression profile of the mammary glands from lactating cows with extremely high and low milk PP and FP, and identified a total of 497 known bovine miRNAs and 49 novel bovine miRNAs. In previous studies, bovine miRNAs were identified using computational and direct cloning approaches (Coutinho et al., 2007; Gu et al., 2007; Jin et al., 2009, 2010; Long and Chen, 2009; Li et al., 2012b, 2015; Shen et al., 2016). Li et al. (2012b) identified 298 known miRNAs in lactating and non-lactating mammary gland of Holstein cows using miRNA-seq; 204 of them were among the 497 known miRNAs identified in the current study. Furthermore, 9 of the 71 differentially expressed miRNAs (miR-100, miR-10a, miR-133a, miR-1, miR-146b, miR-148a, miR-221, miR-30f, and miR-339b) identified in the current study were also reported by Li et al. (2012b) as differentially expressed between lactating and non-lactating bovine mammary glands. Gu et al. (2007) identified 31 distinct miRNAs in the mammary glands of Holstein cows, and all of these miRNAs was detected in the present study except miR-142b. Shen et al. (2016) identified 292 known miRNAs in the bovine primary mammary cells, among which 217 miRNAs and 38 differentially expressed miRNAs were also identified in the current study. For the 30 differentially expressed miRNAs in the lactating goat mammary gland fed ad libitum or deprived of food affecting milk composition reported by Mobuchon et al. (2015), only 6 miRNAs, including miR-660-5p, miR-451-5p, miR-125b, miR-196a, miR-223-3p, and miR-223-5p were detected as well in the current study. miR-30b related to lactation in mouse (Le Guillou et al., 2012) was also detected in this study, but did not show differential expression between high and low groups. The reason could be due to the mammary gland tissues were collected from different time points of lactation between the previous (Le Guillou et al., 2012) and the current studies.

miR-15a has been reported to be critical in cell development (Bonci et al., 2008), cell cycle (Bandi et al., 2009), and death (Cimmino et al., 2005; Aqeilan et al., 2010). Li et al. (2012a) found that miR-15a can inhibit the viability of mammary epithelial cells as well as the mRNA and protein expression of GHR, which is a major gene for milk composition traits (Bonci et al., 2008). In the current study, we also detected miR-15a and predicted that it may target GHR as well as candidate genes for milk PP and FP identified in our previous study, namely activating transcription factor 3 (ATF3), VEGFA, parathyroid hormone-like hormone (PTHLH), cation transport regulator homolog 1 (CHAC1), and NR4A1. Therefore, miR-15a was considered may affect milk composition by regulating the expression of these genes, although miR-15a was not one of the differentially expressed miRNA identified in this study. It was reported that miR-23b inhibited the expression of the transforming growth factor-beta (TGF-β) signaling (Finnerty et al., 2010). In the current study, miR-23b and 5 other miRNAs (miR-2454-3p, miR-496, miR-503-3p, miR-6520, and novel-6) were predicted to regulate STAT5B, which is known to be involved in TGF-β signaling (Passerini et al., 2008; Hosui et al., 2009). In addition, genes that are known to affect milk traits (CSN3, CSN2, LALBA, DGAT2, STAT5B, and SCD) were predicted to be targets of some of the identified miRNAs, which implied that they may play critical regulatory roles in mammary gland development and milk composition.

It was found that 21 of 31 differentially expressed genes detected in our previous study (Cui et al., 2014) were the predicted targets for some of the 71 differentially expressed miRNAs detected in the present study. Serum amyloid A1 (SAA1), serum amyloid A1 (SAA3), and mammary serum amyloid A3.2 (M-SAA3.2) were predicted to be regulated by miR-146b (SAA1 was also regulated by miR-125a and miR-125b); VEGFA was regulated by miR-125a, miR-125b, miR-106b, and miR-2904; and ribosomal protein L23a(RPL23A), tribbles homolog 3 (TRIB3), and PTHLH were regulated by miR-378c, miR-2904, and miR-106b, respectively. Moreover, Cai et al., performed RNA sequencing with mammary gland tissue samples from six Chinese Holstein cows with three extremely high and three low milk protein percentage phenotypes and miR-2904, miR-339b, miR-146b, miR-339a, miR-29c, miR-106b, miR-190a, miR-21-3p, miR-15a, miR-486, miR-135, miR-101a, miR-152 and miR-139 were found differentially expressed, which were also identified in our study and targeted on four differentially expressed genes (TRIB3, PTHLH, VEGFA, and M-SAA3.2). These seven genes represent the most promising candidates may affect milk PP and FP in dairy cattle (Cui et al., 2014). Specifically, miR-146b was reported to be involved mainly in leukemia, epidermal growth factor receptor (EGFR), MAPK, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways (Mathews et al., 2004; Taganov et al., 2006; Xiang et al., 2014). The EGFR and MAPK signaling pathways have been demonstrated to be related to adipocyte differentiation (Devaraj et al., 2009; Gao and Bing, 2011) and the NF-κB pathway controls the DNA transcription protein complexes. In human study, miR-146b was shown to regulate the NF-κB signaling pathway in which breast cancer metastasis suppressor 1 (BRMS1) has already been implicated, and inhibited both migration and invasion related to metastasis (Taganov et al., 2006; Xiang et al., 2014). Members of the miR-125 family were reported to be implicated in a variety of carcinomas and other diseases as either repressors or promoters. Sun et al. (2013) found that up-regulated miR-125 significantly inhibited the expression of VEGFA both in vitro and in vivo (Jiang et al., 1997). The miR-125 family was found to be a NF-κB-dependent gene in the study by Kim et al. (2012). miR-378c was shown to be involved in the regulation of RPL23A, which plays a critical role in translation and participates in apoptosis, cell division, and differentiation (Wool, 1996; Fang et al., 2012; Knezevic et al., 2012). This is consistent with previous reported study where miR-378c was found associated with apoptosis (Lee et al., 2007; Fang et al., 2012; Knezevic et al., 2012; Wang et al., 2014).

The GO and KEGG pathway analyses indicated that VEGFA, NR4A1, DDIT3, and CDKN1A were involved in the MAPK, mTOR, HIF-1, and PI3K-Akt signaling pathways, respectively. These four genes were predicted as target genes for miR-106b, miR-2904, miR-125a(b), miR-21-3p, miR-224, miR-31, miR-345-5p, and miR-3431. mTOR signaling is known as playing a fundamental role in adipogenesis (Laplante and Sabatini, 2009), which is the process that leads to the formation of adipose tissue and the most important energy storage site in mammals. It has been demonstrated that mTORC1 positively regulates the activity of sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARG) (Benmoussa et al., 2020), which are two transcription factors that control the expression of genes encoding proteins involved in lipid and cholesterol homeostasis (Kim and Chen, 2004; Porstmann et al., 2008; Kim et al., 2012). HIF-1 is a heterodimeric transcription factor that increases the phosphorylation of signal transducer and activator of transcription 5A (STAT5A) in mammary epithelial cells, and the phosphorylation of STAT5 is known to play important roles in the regulation of milk protein gene expression and mammary development (Shao and Zhao, 2014; Benmoussa et al., 2020). Several studies have shown that hypoxia causes mammary epithelial disorganization and induces a cancer cell-like phenotype in human mammary epithelial cells (MECs) (Whelan et al., 2010; Whelan and Reginato, 2011; Vaapil et al., 2012). The PI3K-Akt pathway has important functions in mammary gland development and function (Wickenden and Watson, 2010). One of the most important functions of Akt is the regulation of glucose homeostasis and metabolism, particularly in muscle and fat tissues (Enright et al., 2003). Therefore, these miRNAs could play critical roles in regulating formation of milk composition trait.

Considering that microRNAs regulate gene expression by targeting specific sequences in the 3′UTR of their cognate genes (Lewis et al., 2005; Friedman et al., 2009), the regulatory roles of some miRNAs on their predicted targets were verified using dual luciferase report assay transfected with mimics, inhibitors and mutants of seed sequences. The results demonstrated that miR-2904, miR-29c/miR-146b/miR-339a, miR-339b/miR-106b/miR-190a indeed down-regulated the expression of the TRIB3, M-SAA3.2 and PTHLH, respectively. The molecular mechanisms of how these miRNAs regulate their targets will be further validated through RNAi and over-expression in bovine mammary epithelial cell lines. In addition, it is generally recognized that miRNAs regulate the expression of target genes by inhibiting their translation or inducing degradation of the target mRNAs in animal cells. However, several predicted target genes were regulated in the same direction of expression as those of the corresponding miRNAs between high and low groups. The reason could be due to either target prediction error of the current commonly used prediction softwares (TargetScan 6.2 and MiRanda) or some unknown biological mechanisms. Actually, target prediction was only the first step for studies on interaction between miRNA and their targets. The miRNAs and targets with reverse expression patterns will be considered as the key components for further validation.

In this study, only two biological replicates, which were the same as in our previous RNA-seq investigation (Cui et al., 2014), were used for each condition due to the availability of mammary gland sample from lactating cows, especially high production ones. In order to minimize false-positive errors and ensure substantial detection power and accuracy, two strategies were applied to detect the differentially expressed miRNAs between milking Holstein cows with high PP and FP and cows with low PP and FP, by controlling the critical influencing factors. Small RNA transcripts were deeply sequenced (9-10G data per transcriptome), and only those differentially expressed miRNAs ranked in the top half of the expressed miRNAs were considered, as suggested by Rapaport et al. (2013), Trapnell et al. (2013). Rapaport et al. (2013) investigated the impact of different sequencing depths and number of replicates on the identification of differentially expressed genes, where the authors demonstrated that with most methods, over 90% of differently expressed genes at the top expression levels could be detected with using two replicates and 5% of the reads (Rapaport et al., 2013; Trapnell et al., 2013). The differentially expressed miRNAs expressed in the bottom half level were eliminated to ensure the power in detection. Although mRNA sequencing data was used in this study, detection of differentially expressed miRNAs is based on same statistical theory and software (Anders and Huber, 2010). However, more biological replications are still preferred and recommended in order to provide broader application (Rapaport et al., 2013; Trapnell et al., 2013). The more replicates are performed, the more the detection power is improved. The potential regulatory roles on target genes from such differentially expressed miRNAs will be validated further by performing more in-depth investigation.



CONCLUSION

Using sRNA sequencing, 497 known bovine miRNAs and 49 novel bovine miRNAs were identified in the mammary glands of lactating dairy cows. Among all these miRNAs, 71 were differentially expressed between cows with the high and low milk PP and FP. Combined with our previous RNA-Seq data, 21 differentially expressed genes were predicted as the targets for some of the 71 differentially expressed miRNAs. Biological processes related to protein metabolism, fat metabolism, and mammary gland development were enriched for some of the identified miRNAs, which indicated that they may play critical roles in regulating of milk protein and fat traits in dairy cattle. Expression of the TRIB3, M-SAA3.2 and PTHLH were significantly down-regulated by miR-2904, miR-29c/miR-146b/miR-339a and miR-339b/miR-106b/miR-190a through binding the specific target sequences in 3′UTR of these genes, respectively.
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Pedigree information is incomplete by nature and commonly not well-established because many of the genetic ties are not known a priori or can be wrong. The genomic era brought new opportunities to assess relationships between individuals. However, when pedigree and genomic information are used simultaneously, which is the case of single-step genomic BLUP (ssGBLUP), defining the genetic base is still a challenge. One alternative to overcome this challenge is to use metafounders, which are pseudo-individuals that describe the genetic relationship between the base population individuals. The purpose of this study was to evaluate the impact of metafounders on the estimation of breeding values for tick resistance under ssGBLUP for a multibreed population composed by Hereford, Braford, and Zebu animals. Three different scenarios were studied: pedigree-based model (BLUP), ssGBLUP, and ssGBLUP with metafounders (ssGBLUPm). In ssGBLUPm, a total of four different metafounders based on breed of origin (i.e., Hereford, Braford, Zebu, and unknown) were included for the animals with missing parents. The relationship coefficient between metafounders was in average 0.54 (ranging from 0.34 to 0.96) suggesting an overlap between ancestor populations. The estimates of metafounder relationships indicate that Hereford and Zebu breeds have a possible common ancestral relationship. Inbreeding coefficients calculated following the metafounder approach had less negative values, suggesting that ancestral populations were large enough and that gametes inherited from the historical population were not identical. Variance components were estimated based on ssGBLUPm, ssGBLUP, and BLUP, but the values from ssGBLUPm were scaled to provide a fair comparison with estimates from the other two models. In general, additive, residual, and phenotypic variance components in the Hereford population were smaller than in Braford across different models. The addition of genomic information increased heritability for Hereford, possibly because of improved genetic relationships. As expected, genomic models had greater predictive ability, with an additional gain for ssGBLUPm over ssGBLUP. The increase in predictive ability was greater for Herefords. Our results show the potential of using metafounders to increase accuracy of GEBV, and therefore, the rate of genetic gain in beef cattle populations with partial levels of missing pedigree information.
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INTRODUCTION

Pedigree information is incomplete by nature and commonly not well-established because many of the genetic ties existent between genealogical information on individuals are not known a priori or can be wrong (Junqueira et al., 2017). Nonetheless, pedigrees are usually available for livestock species and have been widely used in genetic evaluations to improve the accuracy of breeding value estimation.

New opportunities to assess relationships between individuals arose in the genomic era. As expected, genomic-based relationships are independent of pedigree information and, therefore, are not affected by missingness or incorrect pedigree recording. Several genomic prediction methods are available in the literature (Meuwissen et al., 2001; VanRaden, 2008; Aguilar et al., 2010; Fernando et al., 2014). Some of the methods (i.e., BayesX, SNP-BLUP, and GBLUP) implicitly assume that pedigree structure is absent (Christensen, 2012), and the extension to several populations, including multiple breeds, is not straightforward because it requires that pedigree and genomic information is compatible (Harris and Johnson, 2010; Misztal et al., 2013). The challenge under genomic approaches is the correct inference of the genetic base population. Usually, the base population for genomic models is assumed to be the available set of genotyped individuals, which is mainly composed of recent animals. In models that combine genomic and pedigree relationships, i.e., ssGBLUP (Aguilar et al., 2010), the compatibility between the pedigree and the genomic base is crucial to avoid bias in GEBV (Vitezica et al., 2011). However, taking care of this compatibility does not solve the issue of limited pedigree recording. Because pedigrees for animal populations only started being recorded recently, the fact that animals could be related before that is ignored.

When multiple breeds are combined in the same evaluation, there is usually no pedigree information between breeds. However, Porto-Neto et al. (2013) and Decker et al. (2014b) showed that cattle populations had common founders. Christensen (2012) provided some insights on how to estimate founder relationships. His suggestions are valid when a single population is assumed a priori; however, inference extensions to several founder populations were not exploited. Legarra et al. (2015) reported a metafounder theory to consider relationships within and across founder populations; this theory provided a generalization of unknown parent groups and the developments shown by Christensen (2012). The metafounder concept relies on the definition of pseudo-individuals that add some level of genetic relationship between base individuals in the population (i.e., founders). In this context, we aimed to evaluate the impact of metafounders on the estimation of breeding values for tick resistance under a ssGBLUP model for a multibreed population composed by Hereford, Braford, and Zebu animals.



MATERIALS AND METHODS

Approval of Animal care and use committee was not needed because this study used existing datasets historically collected by the animal breeding program. The raw data cannot be made public available because they are property of the Braford and Hereford producers, Embrapa, and GenSys Consultants (i.e., data are commercially sensitive). For research purposes, the data requests should be forwarded along with the research proposal to fernando.cardoso@embrapa.br.


Phenotype, Genotype, and Pedigree Information

The data used for investigating the inclusion of metafounders in genomic evaluations were provided by Conexão Delta G Breeding Program (Rio Grande do Sul, Brazil). Hereford and Braford animals from eight herds had log-transformed tick counts recorded. Braford is a breed resultant of a crossing between Hereford and Zebu (e.g., Nellore, Brahman, Guzerá). A detailed descriptive statistic for the log-transformed tick count is in Table 1. Animals were between 326 and 729 days old at the time of recording. The contemporary groups combined farm, gender, year of birth, management group, and tick count date. Contemporary groups discarded from the dataset had less than five animals and tick counts above or below 3.5 standard deviations from the mean. After editing, 146 contemporary groups remained for further analysis. The phenotypic data included records from 4,363 animals (928 Hereford and 3,425 Braford) raised under extensive conditions, and the pedigree file included 12,755 animals. A total of 35.68% of the animals in pedigree had both parents known, 20.10% of the animals had unknown sire, 0.24% had unknown dam, and 43.98% had both parents unknown (i.e., base animals). Among all phenotyped individuals, 2,188 (525 Hereford and 1,663 Braford) had three subsequent tick counts, 1,934 (391 Hereford and 1,543 Braford) had two counts, and 241 (12 Hereford and 229 Braford) had only one count. Therefore, a total of 10,673 tick counts were recorded on 2,369 Herefords, and on 8,304 Brafords that had a maximum of 3/4 of Zebu proportion. The Zebu breed proportion, heterozygosity, and recombination loss effects were calculated as proposed by Cardoso and Tempelman (2004) and included as linear covariates in the model.


TABLE 1. Descriptive statistics of the log-transformed tick count records for Hereford and Braford.

[image: Table 1]In total 130 sires were genotyped with a high-density SNP panel (BovineHD—Illumina bead chip with 777,962 SNPs), whereas the BovineSNP50 Illumina panel (54,609 SNPs) was used to genotype 3,591 animals. A total of 41,045 overlapping SNPs were selected for quality control. The quality control criteria adopted for SNP exclusion were the Hardy–Weinberg equilibrium chi-square test (p = 10–7), genotype call rate (CR) (<98%), minor allele frequency (MAF) (<3%), near-perfect collinearity with other SNPs (r > 0.98), and SNPs in the same physical position. The criteria adopted to reject samples were CR < 90%, heterozygosity deviation above three standard deviations, gender identification errors, and identical genotypes between different individuals (more than 99.5% of similarity for all markers). After quality control, a total of 3,591 samples (666 Braford and 2,862 Hereford) and 39,550 markers were retained for further analysis. Aiming to build a complete 39,550 marker panel, missing genotypes (0.89% of all genotypes) were imputed across breeds according to the sliding window method using FImpute (Sargolzaei et al., 2011).



Metafounder Relationships

The metafounder relationship used in this study was derived from the methodology proposed by Legarra et al. (2015). In summary, their approach is a general framework that considers each ancestral population containing a finite-sized pool of gametes. Conceptually, that assumption contrasts with the classical population genetics supposition and suggests that several ancestral populations might be genetically related, and therefore, connected. In the aforementioned paper, the authors presented modifications to the pedigree-based relationship matrix for populations under different structures (i.e., single and multiple base populations). The concept of metafounder relies on the definition of pseudo-individuals to add some level of within and/or across genetic relationships between base (i.e., founder or ancestral, γ = 1/Ne) individuals in the population. It is assumed that every individual from any population might have some degree of known or unknown relationship due to a common ancestor. From the perspective of founder individuals, their relationship can be derived by the use of metafounders, constructing a modified pedigree relationship matrix, A(Γ). The Γ matrix contains the relationship between metafounders (composed by at least one γ), and its simplest form is exhibited when the ancestral population is composed of only one breed, indicating that Γ is a scalar. In cases where the founder population is composed of several populations and eventually, with crossbred animals, it is possible to build an extended and more complex Γ. The latter is exactly the case of the population used in this study, which is composed of Hereford and Braford (an admixture between Hereford and Zebu) animals.

A total of four metafounders were defined based on breed of origin, with one metafounder assigned to Hereford, another one for Braford, and a third one for Zebu. The fourth metafounder was assigned to the remaining base animals with an unknown breed of origin. The description of each metafounder group is in Table 2. Recursive computations of A(Γ) followed usual rules (Emik and Terrill, 1949; Karigl, 1981; Aguilar and Misztal, 2008). The only required modification to include metafounders is the assumption of γ as the self-relationship for founders. Note that self-relationship for base animals is traditionally assumed to be zero due to lack of historical pedigree information. The Γ matrix, which is composed by within- and across-founder relationships, was estimated using SNP markers under a generalized least square (GLS) approach (Garcia-Baccino et al., 2017). In our study, Γ was a 4 × 4 (co)variance matrix between means across markers and breeds. Below is a description of the GLS linear model fitted in this study where the breeding values are split into within- and across-breed components:


TABLE 2. Number of males and females included in pedigree in each metafounder constructed based on breed of origin and within (diagonal) and across (off-diagonals) gamma values (Γ) estimated using generalized least square.

[image: Table 2][image: image]

where mi is a vector of gene contents in the form [0, 1, 2] from locus i, Qk,b is a matrix, the rows of which sum to 1, and contains the fraction of ancestry b in individuals k, μi is a vector for the average of each population, Wb is an incidence matrix relating individuals from b group in the pedigree to observed genotypes, with partial relationship matrices for vectors [image: image] and [image: image], and Ab(b,b′) the matrix of pedigree-based relationships among individuals in population b. The residual term can be defined as [image: image]. The BLUE of μi can be obtained and then the variance and covariance between means for markers within and across populations [image: image] are estimated. Finally, Γ was estimated as [image: image], where [image: image] and σμ_b^ μ_b’ are the variance and covariance parameters for each Hereford (H), Braford (B), Zebu (Z), and unknown breed of origin (U).



Statistical Models

Three different models were tested in this study, aiming to evaluate the gain in prediction accuracy due to the inclusion of metafounders in genetic evaluations. The first model contained only relationships based on pedigree information (BLUP); the second model was the single-step genomic BLUP (ssGBLUP), which combines pedigree and genomic information; the third model was the ssGBLUP with metafounders (ssGBLUPm). No restrictions were imposed on the approach to avoid or minimize inbreeding, and because of that, a total of 130 inbred individuals out of 72,755 were defined by non-zero inbreeding coefficient. The average inbreeding coefficient from inbred animals was 5.73%, with a maximum of 25%, and 0.06% for all 72,755 animals.

To reduce the computational time for variance components estimation in average information REML (AIREML), the starting values were estimated through pedigree-based model via Gibbs sampling algorithm implemented in GIBBS2F90 (Misztal et al., 2002). This software implements a Bayesian method using Gibbs sampler via the Markov Chain Monte Carlo (MCMC) algorithm. Thus, a Bayesian bivariate pedigree-based repeatability model for tick count was defined as following data distribution:

[image: image]

where yijkl is the lth log-transformed phenotypic record for breed k (1 = Hereford, 2 = Braford) in the jth animal, from the ith contemporary group; β is a vector of systematic effects; ω = [ωAkωDkk′ωAAkk′] is a vector of Zebu breed proportion, heterozygosity, and recombination loss effects, represented respectively by ωA_k, ωD_kk’, and ωAA_kk’. Additionally, [image: image] is a vector of random contemporary group effects; [image: image] is a vector of random direct additive genetic effects, where Go is the additive genetic (co)variance matrix and A is the numerator relationship matrix; [image: image] is a vector of random permanent environmental effects. Furthermore, x1jk, x2jk, x3jk are known vectors, and zk is an incidence matrix where the elements of x2jk in column order are follows: (1) fk, defined as the proportion of alleles from the kth breed and corresponding to ωA_b; (2) fkk’ being the probability that a randomly chosen locus from an individual j, one allele is derived from breed k and the other allele is derived from breed k’, associated with ωD_bb’; and (3) [image: image] corresponding to ωAAbb′ (Cardoso and Tempelman, 2004). Finally, [image: image] is the residual variance for the kth trait. Inverted Wishart prior densities are specified for the covariance components as follows: C|ΣC,n∼IW(ΣC,n), G|ΣG,n∼IW(ΣG,n), D|ΣD,n∼IW(ΣD,n), R|ΣR,n∼IW(ΣR,n), where Σq is the respective scale matrix for each q effect and degrees of belief parameter given by n. All effects were fitted using degree of belief equals 1 and Σq→∞ aiming to fit a flat distribution.

A total of 100,000 iterations were generated, with the first 30,000 discarded as burn-in, and 1 every 10th sample was stored for posterior analysis. Posterior means were then used as starting values in AIREMLF90 (Misztal et al., 2002) using the YAMS package for efficient sparse computations (Masuda et al., 2014). AIREMLF90 calculates REML (co)variance estimates with the Average-Information algorithm, which uses a second derivative REML algorithm.

A two-trait repeatability animal model was used to estimate breeding values. The model can be seen as an incomplete version of the development proposed by Wei and Van der Werf (1994) because records from one of the purebreds (Zebu animals) were not available. Notations hereafter follow Wei and Van der Werf (1994). The model can be defined as:
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where yi is the vector of log-transformed tick counts in the ith breed – Hereford (H) and Braford (B); Xi, and Zi, are incidence matrices that relate phenotypes to its respective fixed, direct additive, and permanent environmental effect levels, respectively. The vector of fixed effect (βi) was composed by an overall mean and contemporary groups as cross-classified variables; zebu breed proportion, heterozygosity, recombination loss, and linear and quadratic effects of age at tick counting were considered as covariables. The vector of permanent environmental effect was defined as [image: image]; and the residual vector as [image: image] Moreover, the vector of direct additive effects for BLUP was defined as [image: image]; where [image: image] and [image: image] are the additive variances for the Hereford and Braford traits, respectively, and σHB is the additive covariance between breeds.

For ssGBLUP and ssGBLUPm, the A matrix was replaced by H and H(Γ), respectively, where H is the realized relationship matrix and Γ is a matrix of relationships among metafounders. The H–1 can be defined as following:

[image: image]

where [image: image] is the inverse of the pedigree relationships for genotyped animals. The inverse of the realized relationship matrix with metafounder, H(Γ)–1, was also constructed using the same approach, however, the pedigree-based relationship matrix was constructed as A(Γ) instead of A; likewise, A22 was replaced by A22(Γ). The genomic relationship matrix (G), was constructed as:

[image: image]

where M is the matrix of SNP genotypes for each animal, P is a matrix of two times the frequency of the second allele p at locus j (pj), and s is the number of SNP markers. The denominator is a scaling factor for G. Under ssGBLUP, G was constructed using realized allele frequencies in the genotyped data, whereas 0.5 allele frequency was used for all loci in ssGBLUPm. VanRaden (2008) suggests the use of allele frequencies from base animals (i.e., unselected population) to create the genomic matrix. However, SNP markers are not available for base animals and approximations needs to be used. In those circumstances, allele frequencies from current population are used to build genomic matrix and scaling diagonal and off-diagonal elements of G are required to ensure A, A22, and G compatibility in single-step approach (Chen et al., 2011; Forni et al., 2011). The use of 0.5 allele frequency in ssGBLUPm refers to the population with maximum heterozygosity. All Γ computations were performed using a new software (GAMMAF90) being developed by BLUPF90 group1. The software was written in Fortran 95 and it is integrated in the new BLUPF90 software.



Scenarios

The BLUP model was fitted using the regular relationship matrix constructed based on Henderson (1976) rules. The relationship matrix used in ssGBLUP and ssGBLUPm was described in the previous section.

To compare the estimated variance components and genetic parameters between models, ssGBLUPm parameters needed to be adjusted corresponding to (co)variances among the unrelated breeds (scaled) (Legarra et al., 2015). More specifically, the scaled genetic variances for Hereford (Braford) were [image: image]; the scaled genetic covariance for crossbred performance was σaHB(1−γHB/2). Note the γH and γB represents the metafounder genetic relationship within Hereford and Braford, respectively, and γHB represents the across metafounder genetic relationship between Hereford and Braford. Heritabilities were calculated using these scaled (co)variance components. The genetic correlation between Hereford and Braford was calculated as [image: image]. Finally, repeatability for Hereford and Braford was calculated as [image: image] and [image: image], respectively. The same formulas were used to compute heritability, genetic correlation, and repeatability for BLUP and ssGBLUP models, using the (co)variances estimated by AIREML.



Within-Breed Predictive Ability

In this study, the within-breed predictive ability was used to measure the model ability to predict unknown phenotypes. For that, we used a forward validation approach. The selection of animals to compose the validation set in the forward validation was based on year of birth. Therefore, training animals were born from 2008 to 2010, and validation animals were born in 2011. A total of 198 and 766 animals were part of validation sets for Hereford and Braford, respectively.

The predictive ability was defined as the correlation between phenotypes adjusted for fixed effects ([image: image]) from a model using all data where [image: image] is the adjusted phenotype for animals in the ith breed (Hereford and Braford) and fixed effects as defined in AIREML model. The predictive ability for Hereford was calculated as cor ([image: image] using information only for the validation animals. Similarly, the predictive ability for Braford was computed as cor [image: image]. Standard error for the predictive ability was generated from 5,000 non-parametric bootstrapping replicates. All computation was implemented using boot function from boot R package (Canty, 2002; Team, 2013). Regression of phenotypes adjusted for fixed effects on (G)EBVs for Hereford and Braford was used as a measure of the inflation (bias) of the prediction method, where a regression coefficient of one denotes no bias.



RESULTS AND DISCUSSION


Metafounder Relationship and Inbreeding

A total of four metafounders were included in the ssGBLUPm model. Three metafounders were defined based on breed of origin (Hereford, Braford, and Zebu) and the last metafounder was assigned to the remaining base animals with unknown breed of origin. Table 2 shows the number of males and females included in each metafounder group.

Self- and across- relationships (Γ) between Hereford, Braford, and Zebu breeds estimated by generalized least squares are also shown in Table 2. As previously defined by Legarra et al. (2015), [image: image] can be seen as self-relationships. The relationship coefficient between metafounders was greater than zero, suggesting a degree of overlap between ancestor populations. The estimates of metafounder relationships indicate that the Hereford and Zebu populations in our study might have some ancestors in common. However, as previously stated, there is no genomic information for Zebu animals in this study; in fact, only a fraction of all zebu descendants was used for computations. Thus, the population under study is a special case of the metafounder theory (Legarra et al., 2015) where records from one of the pure breeds is unknown, but genomic information for crossbreds is available. Moreover, the SNP panel used in this analysis is a blend of different SNP-chips where the missing genotypes were imputed. Our intention was not to draw any assumptions on how Hereford and Zebu breeds have shared a certain portion of the alleles over generations. For that purpose, there are other approaches already published in the literature (Alexander and Lange, 2011; Decker et al., 2014a).

The inbreeding coefficients calculated based on pedigree and genomic information (with and without metafounders) are shown in Figure 1. A detailed description of inbreeding coefficients within breed compositions (i.e., Zebu, Hereford, and Braford) are available in Supplementary Figure S1. Many individuals used in this study had missing pedigree information. Due to the lack of information, almost all the diagonal elements in A without metafourders are equal zero. Because of the inclusion of metafounders, an upward shift was observed in the inbreeding coefficients calculated based on A and H. Additionally, a few negative inbreeding coefficients were observed. This result suggests that parents were less related than the average in the base population (assuming allele frequencies of 0.5). The classical quantitative genetics theory postulates that inbreeding for individuals with known parents is a function of parent’s relationships. Founder individuals are typically assumed to be drawn from a large, unrelated, ancestral population mated at random. Consequently, inbreeding coefficients for founder animals are usually defined as zero due to the lack of information. A different condition arises under the metafounder theory where base animals are assumed to be related due to a common ancestral population. In this case, the probability that identical gametes are shared between individuals may increase; thus, inbreeding coefficients are upward shifted (Figure 1).


[image: image]

FIGURE 1. Inbreeding estimates obtained from the diagonal elements of the pedigree (A) and the realized (H) relationship matrices (with and without metafounders).


Additional information about the diagonal and off-diagonal elements of all required matrices to create H and H(Γ) matrices are available in Table 3. As previously stated, the inclusion of metafounders in the numerator relationship matrix and the assumption of allele frequency equals 0.5 causes an upward shift on A22 and G.


TABLE 3. Descriptive statistics for diagonal and off-diagonal elements of genomic matrices required under genomic evaluations.

[image: Table 3]


Variance Components, Heritability, and Genetic Correlations

Variance components, heritability, and genetic correlations are available in Table 4. As previously described, variance components from the metafounder model were scaled to provide a fair comparison with BLUP and ssGBLUP models. Across different models, it can be seen that additive genetic, residual, and phenotypic variances estimated based on the Hereford data were smaller than those based on Braford. Permanent environmental variances were similar across models.


TABLE 4. Description of variance components, heritability, and genetic correlation estimates (with respect standard-errors) for Hereford and Braford using multibreed pedigree and genomic information.

[image: Table 4]In general, variance components and heritabilities were not considerably different between the genomic models. The most remarkable difference is seen in the heritability estimates on Hereford breed, where the inclusion of metafounders led to an increase of heritability. On the other hand, the inclusion of genomic information resulted in smaller heritability estimates on Braford breed. Both conditions can be attributed to improvements on additive genetic relationships, and consequently, on permanent environment effects estimation. The heritability shift observed between non-genomic and genomic models suggests that incomplete pedigree information may led to biased estimates on variance components, consequently, on heritability. This effect was already reported by Junqueira et al. (2017). A similar result was observed by Aldridge et al. (2020) when evaluating several traits in swine. The goal with the use of metafounders is to make both pedigree and genomic information more compatible (Legarra, 2016; Meyer and Swan, 2019). In addition, van Grevenhof et al. (2019) argued that variance components from a model with metafounders might be more accurate after variance components rescaling, consequently the estimation of more accurate breeding values are expected. In fact, when pedigrees are well structured, the inclusion of genomic information might not cause an increase in heritability. However, the pedigree for the population used in this study has many individuals with unknown parents. The different results between genomic and non-genomic models come from a better estimation of relationships through SNP, when pedigree is incomplete. As observed by Junqueira et al. (2017), improved additive relationships can cause changes of additive and permanent environmental effects. In cases where a proper model is used and variance components are better estimated, higher heritabilities could be observed, which can benefit selection. This can help to boost the annual genetic gain in breeding programs because more reliable heritability estimate is translated into more accurate prediction of breeding values.

Genetic correlations (ra) between Hereford and Braford were 0.67 (0.022), 0.45 (0.015), and 0.41 (0.017) for BLUP, ssGBLUP, and ssGBLUPm models, respectively. Note that under genomic models, the genetic correlation is lower than in BLUP. As stated by Hidalgo et al. (2020), variance components and genetic parameters based on A and H can be different if the population is under genomic selection. In such a case, genomic information is part of the selection process, and if the genomic information is not included, variance components can be biased. The genetic correlation is useful when designing breeding schemes and defining breeding objectives. In the case of genetic correlation between different breeds, our results show that some genomic regions responsible for the control of tick resistance are being expressed in both purebreds and crossbreds. This result indicates that the selection of Hereford for tick count resistance may also account for a positive impact on Braford resistance, when the latter originates from selected Hereford parents.



Predictive Ability and Bias

The predictive ability for all 198 Hereford and 766 Braford animals used in the forward validation is in Figure 2 and Supplementary Figure S2. Forward validation is a good strategy to mimic the reality of breeding programs and genetics datasets, where breeding values of young animals are predicted based on data from older animals. As expected, the pedigree-based model had the worse predictive ability (0.051 and 0.126 for Hereford and Braford, respectively) when compared to ssGBLUP (0.173 and 0.205) and ssGBLUPm (0.208 and 0.209). With metafounders, there was an additional gain in predictivity for both breeds, especially for Herefords. This is because the number of phenotypes and genotypes available for Herefords is much smaller compared to Brafords, and any increase in prediction accuracy is expected to have a direct and positive impact under practical conditions when selecting breeding candidates. However, our results may still be limited by the size of the dataset, number of genotyped animals, and due to lack of animals with known parents in the pedigree. Perhaps, all allelic diversity present in the Hereford population could not be captured; therefore, further analyses using larger populations with more complete pedigree information are required to have a better understanding of the impact of using metafounders for the estimation of GEBV.


[image: image]

FIGURE 2. Predictive ability from a forward validation in Hereford and Braford when using pedigree (BLUP), single-step genomic BLUP (ssGBLUP), and ssGBLUP with metafounders (ssGBLUPm). Error bars represents the standard errors estimated using non-parametric bootstrapping.


The degree of bias of the prediction methods is indicated by the coefficient of regression of phenotypes adjusted by fixed effects on (G)EBVs (Table 5). The optimal method to predict the genetic merit of animals would have a regression coefficient close to 1. For Hereford breed, the inclusion of metafounders provided the smallest bias and standard error. On the other hand, BLUP was the smallest biased model for Braford, with ssGBLUPm still showing the smallest standard error. According to Kennedy et al. (1988) relationships account for selection, drift, and non-random mating, but do not account for wrong definition of the base population or finite number of loci (Vitezica et al., 2011; Junqueira et al., 2017). Under those circumstances, fitting metafounders would contribute to the estimation of breeding values due to the addition of genetic relationships for founders of the populations. However, as the uncertainty of relationship increases, the variance of estimated breeding values may also increase. Consequently, the breeding values might show high bias, as it was observed on Braford ssGBLUP and ssGBLUPm. More studies are required to evaluate the benefits of the inclusion of metafounders under different proportions of known relationship information. In a simulation study, Bradford et al. (2019) observed the addition of metafounders led to less biased models, especially for traits with moderate to low heritability, as the case of tick count (h < 0.25).


TABLE 5. Regression coefficients (standard error) of phenotypes adjusted by fixed effects on (G)EBVs for young Hereford and Braford animals under pedigree and genomic models.

[image: Table 5]Our study shows the potential of the use of metafounders to increase the rate of genetic gain across generations due to a more acurate estimation of breeding values, in accordance to Xiang et al. (2017). Perhaps, the challenge for Brazilian breeding programs would be the availability of a large amount of marker information to calculate a more reliable and robust Γ since the matrix is built based solely on SNPs. This study focused on evaluating the impact of metafounders on the estimation of breeding values, with Γ being computed based on all genotyped animals. However, only a fraction (28%) of the population is genotyped and the number of genotyped animals is limited; which is the reality in almost all livestock populations. Therefore, there is still a lack of knowledge on how large the number of phenotyped and genotyped animals connected to metafounders should be needed to obtain accurate Γ estimates. Future studies should investigate the impact of the number of genotyped animals from different breeds on the estimates.



CONCLUSION

The inclusion of genomic information in a multibreed Hereford/Braford population provides greater predictive ability than pedigree-based models for both breeds because of a better estimation of genetic relationships. When the level of pedigree missingness is high, the inclusion of metafounders can help to further increase the ability to predict future performance in small multibreed populations.
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This study assessed the accuracy and bias of genomic prediction (GP) in purebred Holstein (H) and Jersey (J) as well as crossbred (H and J) validation cows using different reference sets and prediction strategies. The reference sets were made up of different combinations of 36,695 H and J purebreds and crossbreds. Additionally, the effect of using different sets of marker genotypes on GP was studied (conventional panel: 50k, custom panel enriched with, or close to, causal mutations: XT_50k, and conventional high-density with a limited custom set: pruned HDnGBS). We also compared the use of genomic best linear unbiased prediction (GBLUP) and Bayesian (emBayesR) models, and the traits tested were milk, fat, and protein yields. On average, by including crossbred cows in the reference population, the prediction accuracies increased by 0.01–0.08 and were less biased (regression coefficient closer to 1 by 0.02–0.16), and the benefit was greater for crossbreds compared to purebreds. The accuracy of prediction increased by 0.02 using XT_50k compared to 50k genotypes without affecting the bias. Although using pruned HDnGBS instead of 50k also increased the prediction accuracy by about 0.02, it increased the bias for purebred predictions in emBayesR models. Generally, emBayesR outperformed GBLUP for prediction accuracy when using 50k or pruned HDnGBS genotypes, but the benefits diminished with XT_50k genotypes. Crossbred predictions derived from a joint pure H and J reference were similar in accuracy to crossbred predictions derived from the two separate purebred reference sets and combined proportional to breed composition. However, the latter approach was less biased by 0.13. Most interestingly, using an equalized breed reference instead of an H-dominated reference, on average, reduced the bias of prediction by 0.16–0.19 and increased the accuracy by 0.04 for crossbred and J cows, with a little change in the H accuracy. In conclusion, we observed improved genomic predictions for both crossbreds and purebreds by equalizing breed contributions in a mixed breed reference that included crossbred cows. Furthermore, we demonstrate, that compared to the conventional 50k or high-density panels, our customized set of 50k sequence markers improved or matched the prediction accuracy and reduced bias with both GBLUP and Bayesian models.

Keywords: genomic prediction, crossbred, multi-breed, dairy cattle, GBLUP, Bayesian


INTRODUCTION

The interest in providing genomic predictions for crossbred dairy cows has increased especially in recent years (Harris, 2005; Sørensen et al., 2008; VanRaden et al., 2020). Crossbreeding in dairy cattle is common in New Zealand (making up almost 50% of the milking herd according to New Zealand Dairy Statistics 2018–2019)1, where often the aim of crossbreeding between Holstein (H) and Jersey (J) breeds is to combine the best of both breeds, and crossbred dairy bulls are commonly mated to crossbred cows (Harris, 2005; Harris and Johnson, 2010b). In addition to heterosis and breed complementarity effects, in recent years, crossbreeding is considered more as a potential approach to improve sustainability in dairy cattle breeding by reducing problems related to inbreeding and to improve fertility, survival, and other functional traits (Sørensen et al., 2008). Consequently, the number of genotyped crossbred animals is growing, and both New Zealand and United States already provide genomic evaluations for dairy crossbreds (Winkelman et al., 2015; VanRaden et al., 2020).

The establishment of a suitable reference population for crossbred predictions in dairy cattle is challenging because ideally the same reference population should be used to predict the purebreds for more than a single breed. This is because genomic evaluations for dairy cattle are typically very computationally intensive; they are undertaken at a national level for all dairy animals, involve millions of animal records from both purebred and crossbred animals, and are re-analyzed several times per year. Furthermore, the reducing cost of genotyping has resulted in very large numbers of cows being genotyped in addition to bulls because commercial farmers are interested in using genomic prediction to select female replacement animals (e.g., millions of animals in the United States; VanRaden et al., 2020). While it is possible that a combination of purebred and crossbred animals would be the ideal reference population for crossbreds, it is uncertain that this would be the optimal reference population for the purebred animals. For purebred dairy cattle, genomic prediction (GP) is often performed within a single purebred reference population because often the accuracy of predictions show high reliability, whereas the accuracy of across-breed GP is low (Kemper et al., 2015).

The accuracy of GP is highly dependent on the linkage disequilibrium (LD) between causal mutations and the dense single nucleotide polymorphism (SNP) markers spread across the genome (Meuwissen et al., 2001; Habier et al., 2007). Hence, within-breed GP in major dairy purebreds using a standard 50k chip (Illumina Bovine SNP50K) works well and has been adopted in the dairy industry of many countries (Hayes et al., 2009b). Furthermore, for within-breed GP in dairy cattle breeds, previous studies showed that there was no, or limited, gain in accuracy due to an increase in marker density (Harris and Johnson, 2010a; Su et al., 2012; VanRaden et al., 2013).

The estimated SNP effects from the reference population would be generally applicable for GP in another population if the LD between SNP and causal mutations remains the same or is very similar across the populations. However, across-breed GP, which uses the estimated SNP effects from one breed to calculate genomic estimated breeding values (GEBV) in another breed, generally shows a low accuracy. For example, using H as a reference for GP in J and vice versa is reported to produce a much-lower-accuracy GEBV compared to within-breed GP (Harris et al., 2008). This could be partially associated with the high conservation of LD between markers using standard 50k chip within H or J breeds, whereas to reach almost the same amount of LD across breeds would require about 300,000 SNPs (de Roos et al., 2008). Furthermore, there might be some causal mutations which do not segregate in all breeds or their allele effects differ in different breeds due to epistasis and differences in allele frequencies (Goddard et al., 2018). In across-breed GP, the increase in accuracy of GEBV using high-density (HD) genotypes (>600 k SNP) compared to 50 k SNP has also been reported to be limited (Harris et al., 2008; Erbe et al., 2012).

Combining data from different pure breeds into a single large reference population compared to within-breed GP and using HD instead of lower-density genotypes for multi-breed GP have been reported to show small gains (up to about 5%) in the accuracy of predictions (Pryce et al., 2011; Erbe et al., 2012; Hozé et al., 2014; Kemper et al., 2015; Goddard et al., 2018). Furthermore, a multi-breed reference over-dominated by one breed has recently been reported to reduce the accuracy of prediction in the breed with a minor contribution to the reference population (van den Berg et al., 2020).

Instead of increasing the overall density of SNP, an alternative approach to improve GP for both crossbred and purebred performance might be to increase the “functional density” of markers on medium-density SNP chips by enrichment with causal mutations. Then, individuals could be genotyped with a lower-priced custom medium-density SNP chip, and the GP should not suffer from an excessive number of markers for which effects should be estimated (Goddard et al., 2018). Given the paucity of functional information and millions of variants across the genome, obtaining a custom set of variants is challenging because preferably the set should be useful for predicting multiple traits. VanRaden et al. (2017) reported that using the imputed HD genotypes increased the reliabilities of GP by only 0.6 percentage points, but adding a subset of 16,648 SNP with the largest estimated effects to the 60,671 conventional SNP genotypes increased reliabilities by 2.7 percentage points. Xiang et al. (2019) proposed a comprehensive method to rank sequence variants with functional and evolutionary significance combined with their multi-trait associations across 34 important dairy traits. These authors then used this ranking together with further analyses to prioritize a custom set of medium-density markers (∼50,000) for a cost-effective SNP panel that we will refer to here as the “XT_50k chip.”

In simulation studies, it has been shown that the accuracy of GP for crossbred animals can be increased by combining pure breeds into a single reference population if the LD between markers and causal mutations is well conserved across pure breeds (Esfandyari et al., 2015b). Additionally, Esfandyari et al. (2015a) reported that using crossbreds in the reference population improved the accuracy of crossbred predictions. It is possible to account for the breed origin of alleles, but this showed no consistent advantage over a multibreed approach in real pig data, and accurately allocating a specific breed origin to alleles was an added complication (Esfandyari et al., 2015a; Sevillano et al., 2016; Vandenplas et al., 2016). An alternative and more straightforward method for GP in crossbred is to use the estimated breed proportions of each animal to calculate a weighted average of the breeding values (WA_GEBV) from two or more purebred reference populations (VanRaden et al., 2020). This approach is especially useful when few crossbred animals are available for the reference population, for example, because crossbreds are not routinely phenotyped. However, a limitation of the method is that crossbreds cannot be exploited in the reference population.

In GP, using multi-breed populations, there is evidence that Bayesian statistical methods can improve the accuracy of GEBV compared to GBLUP methods (Hayes et al., 2009a; Lund et al., 2016; van den Berg et al., 2019). In GBLUP, the prior assumption is that SNP effects are from a single normal distribution, and therefore all have small but non-zero effects (Meuwissen et al., 2001). However, Bayesian models assume that the SNP effects follow a non-normal distribution (Meuwissen et al., 2001; Habier et al., 2011) or a mixture of normal distributions with a proportion of SNP having a zero effect such as in BayesR (Erbe et al., 2012; Wang et al., 2015; MacLeod et al., 2016). Therefore, in a multi-breed reference where LD between causal mutations and markers is preserved at shorter distances, Bayesian models should be able to fine-map quantitative trait loci (QTL) more precisely and produce GEBV with high accuracy than GBLUP (Toosi et al., 2010; Goddard et al., 2018). Accordingly, MacLeod et al. (2014) found that a multi-breed reference with a Bayesian approach outperformed GBLUP for GP in animals that had low relatedness to the reference set.

We propose that a single multi-breed reference population including crossbreds, coupled with a set of markers selected to be closer to causal mutations and a Bayesian prediction model, could be beneficial for GP in crossbreds while also maintaining or improving accuracy in purebreds compared to single breed reference populations.

In the first part of this study, we assessed the accuracy and bias of GEBV for purebred and crossbred H and J cows using within-breed, across-breed, and multi-breed GP strategies. The first aim was to investigate the effect of including crossbreds in the reference population on purebred and crossbred GP. The second aim was to test three sets of markers: (a) the Illumina Bovine 50k SNP marker panel, (b) a custom set of ∼46 k markers enriched for putative causal mutations (XT_50k), and (c) the Illumina Bovine HD SNP chip augmented with approximately 1,000 custom SNP (HDnGBS). The third aim was to compare the accuracy of GP using the GBLUP or Bayesian (emBayesR) methods for all the above reference sets and marker sets.

In the second part of the study, we compared the accuracy and bias of GP using a multi-breed reference population that was either H-dominated or had balanced-breed proportions in which the potential negative effects of unequal contribution of the breeds on GP could be avoided. We also explored the benefits of including crossbred cows in the balanced-breed reference population. Similar to the first part of the study, GP was performed with three sets of markers and using GBLUP and emBayesR approaches.



MATERIALS AND METHODS


Animals

The animals used in this study were available from CRV and consisted of 14,987 pure H (5,409 H bulls, 953 Red H bulls, and 8,625 H cows), 5,016 pure J (1,101 J bulls and 3,915 J cows), and 20,281 crossbred cows. All cows were born in New Zealand, and the bulls were from New Zealand or Netherlands. The crossbred cows were further divided to three subgroups according to the H:J breed composition as described in “Breed Allocation” (10,125 ∼75%H:25%J, 8,675 ∼50%H:50%J, and 1,481 ∼25%H:75%J).



Reference Sets

We designed different reference sets to assess GP within breed, across breed, and for crossbreds (including or excluding crossbred cows). Furthermore, we studied the potential benefits of using a balanced-breed instead of a H-dominated reference population.

The different reference sets are shown in Table 1. Ref. 1 and Ref. 2 consisted of all pure H and all pure J animals, respectively. Ref. 3 contained all purebred (H and J), and Ref. 5 consisted of all purebred and crossbred animals. Ref. 4. and Ref. 4′ were both based on two separate single-breed reference populations (Ref. 1 and Ref. 2) but where the predictions were proportionally combined for the crossbred prediction and the single reference prediction used for the purebreds. This follows the United States dairy evaluation approach for crossbred cows (VanRaden et al., 2020). For Ref. 4, the breed proportions of validation cows were defined by using a principal component analysis (PCA) of their genomic relationship matrix (GRM) to compare and correct as needed the pedigree defined by a four-letter breed group based on paternal and maternal grandparents. For Ref. 4′, Admixture software (Alexander et al., 2009) was used to define continuous breed proportions with the assumption that there were only two breeds in the population (k = 2). Ref. 6, Ref. 7, and Ref. 8 had balanced-breed proportions, and all had the same set of 2,202 bulls (1,101 H and 1,101 J) but differed in the cows added in. Ref. 6 included equal numbers of pure H and J cows, while Ref. 7 contained equal numbers of only crossbred cows. Ref. 6 and Ref. 7 also contained the same number of animals. Finally, Ref. 8 included both the purebred cows from Ref. 6 and the crossbred cows from Ref. 7, and this was close in the number of animals to Ref. 3 (H-dominated). The subsets of animals used in these balanced-breed reference sets were sampled randomly from the full reference to avoid changes in the average relationships between the reference animals and the validation animals. Otherwise, any non-random sampling from the full reference could result in the subset being more/less closely related to the validation set, and this would confound the results of GP when compared with the full reference. To help better differentiate between GP approaches, the reference animals and validation sets were intentionally allocated to minimize very highly related individuals between these groups.


TABLE 1. Number of purebred and crossbred animals in different reference sets.
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Validation Sets

The same validation cows were used in all comparisons. The cows in the validation sets were selected to avoid high relationships with animals in the reference set that included all pure and crossbred animals (i.e., Ref. 3), so there were no sires, full-sib brothers and sisters, and maternal half-sib sisters and half-sib brothers of validation cows in the reference sets. The number of paternal half-sib sisters were restricted to be as low as possible. The cow validation set consisted of 3,589 cows divided into five breed groups as described in “Breed Allocation” (H, ∼75%H:25%J, ∼%50 H:50%J, ∼%25 H:75%J, and J). Table 2 shows the number of cows in each validation breed group and the number of their sires, in addition to the average, standard deviation, and median number of paternal half-sib sisters of validation cows across different reference sets.


TABLE 2. Description of the validation cow sets. Included is the number of cows in each breed group, number of sires that they represented, and average ± standard deviation (median) of the number of paternal half-sib sisters (HSS) of validation cows in the different reference sets (details of reference sets in Table 1).
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Phenotypes

The phenotypes of milk traits (milk, fat, and protein yields) for CRV bulls were de-regressed proofs (DRP) on the Australian scale, derived from international within-breed MACE (2018) breeding values (Liu, 2009). The phenotypes for the cows were also DRP equivalents calculated by DataGene in 2018 using test day records with random regression models and correcting for the fixed effects (herd, year, season, lactation) following the approach used for the official Australian dairy cattle evaluations2. It was convenient to use all data processed on the Australia scale because they were available as part of another research project described in Haile-Mariam et al. (2020) combining Australian and New Zealand data.



Genotypes

Three different sets of markers were evaluated for GP:

(1) conventional Illumina Bovine50k SNP panel with 40,850 SNP after quality control and that overlapped the Illumina BovineHD panel;

(2) Illumina BovineHD 800k SNP panel with an additional custom set of about 1,000 SNP (HDnGBS). This set was then pruned for strong LD where one of each pair of SNP in LD r2 > 0.95 was pruned out using PLINK (Purcell et al., 2007). This reduced the number of SNP from 633,375 to 316,396 (pruned HDnGBS), making genomic prediction analysis more computationally efficient. We tested the accuracy of the full panel versus the pruned panel in several analyses and found no significant difference between the full and the reduced marker sets, so we presented only the GP with pruned HDnGBS genotypes in this paper; and

(3) customized set of 46,516 SNP (XT_50k) which were selected from whole genome sequence according to multiple criteria to be closer to or potentially the causal mutations for 34 economically important traits in dairy cattle (Xiang et al., 2019, 2020).

Most of the genotypes in our study were first imputed from lower-density chips (approximately 8,000 SNP overlapping the 50k panel) up to standard 50k and then imputed from 50k to HD using FImpute (Sargolzaei et al., 2014). Pedigree information was not used for imputation. The HD SNP set was imputed to the whole genome sequence using Minimac3 (Das et al., 2016) having pre-phased the data with Eagle2 (Loh et al., 2016). Run6 version of the 1,000-bull genome (Daetwyler et al., 2014; Bouwman et al., 2018) was used as the sequence imputation reference, and this was also pre-phased with Eagle2 prior to imputation of the HD genotypes. The custom set of ∼1,000 SNP and XT_50k SNP was extracted from imputed whole genome sequence. The LD pruning process for the HDnGBS set was done with consideration of preferentially removing SNP tagging the custom set of ∼1,000 SNP. Finally, before performing GP, SNP with minor allele frequency less than 0.002 were removed.



Breed Allocation

The bulls in our study were purebred by pedigree and allocated to the H or J breed groups accordingly. However, the cows were allocated to purebred and crossbred (sub)groups according to their pedigree information and the first principal component (PC) calculated from the GRM using GCTA (Yang et al., 2011) on a core set of 8,185 autosomal low-density SNP that had been genotyped in all animals. This was done because not all cows had full breed information and some had incorrect breed codes. The bull and cow four-letter breed code that depicts the maternal and paternal grandparent breed based on pedigree was used to set the first PC boundaries of each group, and the PCA was used to correct breed codes that appeared incorrect or were incomplete. The prediction of breed proportion was also performed in Admixture software (Alexander et al., 2009) using the same SNP set and including the New Zealand purebred bulls and cows. The number of ancestral populations (k) in Admixture was set to equal the expected number of breeds (H and J: i.e., k = 2).



Genomic Prediction

We performed GP with two statistical methods, Genomic Best Linear Unbiased Prediction (GBLUP) (Meuwissen et al., 2001) and emBayesR (Wang et al., 2015).


GBLUP

The GEBV for the animals were calculated using MTG2 (Lee and van der Werf, 2016) and by fitting the model shown in Equation 1 for each of the reference sets and each of the milk traits (milk, fat, and protein yields). Furthermore, GEBV were calculated using three different marker sets (50k, XT_50k, or pruned HDnGBS genotypes) to construct the GRM in the model (Yang et al., 2010).
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where y is a vector of DRP for the milk traits (milk, fat, or protein yields) of the animals in the reference, X is a design matrix allocating DRP to fixed effects, b is the vector of fixed effects (mean, sex, and breed group), and Z is a design matrix allocating DRP to GEBV in vector u. The variance of the breeding values is calculated as Var(u) = Gσ2g, where σ2g is the additive genetic variance, G is the GRM constructed from genotypes of the animals in the reference and validation sets, and e ∼ (0, Eσ2e) is a vector of random residual effects in which σ2e is the error variance and E is a diagonal matrix as diag(E)i = 1/wi, where wi is the weighting coefficient for the ith animal. Weighting coefficients were calculated differently for cows and bulls using Eqs. 2 and 3, respectively (Garrick et al., 2009).
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where h2 is heritability (=0.33), t is repeatability (=0.56), c is the proportion of variance not explained by markers (=0.2), n is the number of records for each cow, and p is the number of daughters for each bull.



emBayesR

Genomic estimated breeding values for the animals were also calculated with emBayesR method (Wang et al., 2015) using an in-house software and fitting the model shown in Equation 4. Benefiting from an approximate EM algorithm in the initial phase, emBayesR is a faster approach for GP compared to fully dependent Markov chain Monte Carlo (MCMC) algorithm in BayesR (Erbe et al., 2012) while still sampling the SNP effects from a mixture of normal distributions.
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where y, X, b, and e are as described in Eq. 1, v is the vector of estimated SNP effects, and W is a design matrix of SNP genotypes that were standardized to have a variance of 1. The proportion (and the additive genetic variance) of the SNP effects sampled from four normal distributions were set to 0.94 (0), 0.049 (0.0001), 0.01 (0.001), and 0.001 (0.01). Thus, for example, each SNP had 94% prior chance to have 0 contribution in explaining the genetic variance of the trait. The number of iterations in the emBayesR analyses was adapted to achieve consistent results across the five chains, requiring 1,500 to 2,200 EM iterations with the convergence parameter set as 1 × 10–7 and 5,000 to 15,000 BayesR iterations. Finally, the results were averaged across the five MCMC chains.



Validation

In all reference sets, other than Ref. 4 and Ref. 4′, the GEBV were calculated for the validation cows similar to reference animals but masking their phenotypes in Eqs. 1 and 4. In Ref. 4 and Ref. 4′, the breed proportion was used to calculate a weighted average of the two GEBV (WA_GEBV) calculated from purebred H and J reference sets (VanRaden et al., 2020). In Ref. 4, the GEBV for each animal in the validation set was calculated by multiplying their GEBV from both Ref. 1 (H only) and Ref. 2 (J only) by the proportion of H and J breeds estimated according to the approximate breed groups allocated through PCA and pedigree information. In Ref. 4′, the GEBV were calculated as for Ref. 4, but using the exact breed proportions estimated from Admixture software.

The accuracy and bias of GP for each of the five validation breed groups were calculated separately. The accuracy was the Pearson’s correlation coefficient between GEBV and DRP, and the bias of GP was assessed by calculating the regression coefficient of DRP on GEBV, so the GP was least biased when the regression coefficient showed the least deviation from one.



RESULTS


Breed Group Allocation

An important aspect of this study was to ensure that the cows were correctly allocated to breed groups because crossbred cows in New Zealand are sometimes inter-crossed for several generations through the use of crossbred bulls, and some cows had incomplete or incorrect pedigree breed definitions. A combination of pedigree breed codes and a PCA of the GRM were used to allocate cows to five breed categories (H, 75%H:25%J, 50%H:50%J, 75%J:25%H, and J; Figure 1). This breed group allocation was then also evaluated with Admixture software as shown in Figure 2. Generally, the exact breed proportions predicted in Admixture matched well with the approximated breed proportion using PCA and pedigree information.
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FIGURE 1. The second principal component (PC) is plotted against the first PC of the genomic relationship matrix constructed using a low-density set of genotypes of all purebred and crossbred animals in this study.
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FIGURE 2. The admixture breed proportions estimated with Admixture software where each horizontal line represents the breed proportion of each animal.




Reference Populations: Refs. 1–5

In the first part of our study, we compared the accuracy and bias of GP using reference sets (Table 1) that were either single breed (Refs. 1 and 2), a mix of purebreds (Refs. 3 and 4), or a mix of purebreds and crossbreds (Ref. 5). The main focus of testing different reference sets was to determine if there were reference sets that work equally well for crossbred and purebred GP. The results for the accuracy and bias of GP in the five breed group validation sets are shown as an average across three milk traits (milk, fat, and protein yields) in Figures 3, 4, respectively, because the results showed consistent trends across these traits for all comparisons. However, the individual trait results for different GP scenarios are provided in Supplementary Figures 1, 2.


[image: image]

FIGURE 3. Accuracy of genomic predictions in five validation sets using different reference populations (Refs. 1–5: details in Table 1). The results are averaged across milk, fat, and protein yields.
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FIGURE 4. Bias of genomic predictions in five validation sets using different reference populations (Refs. 1–5: details in Table 1). The results are averaged across milk, fat, and protein yields.


The comparison between different reference sets showed that across-breed GP (i.e., predicting H from the reference consisting of only purebred J and vice versa) had the lowest accuracy and largest bias. As expected, the within-breed GP performed well (i.e., predicting H and J from reference sets consisting of only purebred H and purebred J, respectively). The crossbred validation group with breed composition closest to the purebred reference set had the second best accuracy of GP in Refs. 1. and 2, while a steep decline was seen in the other crossbred groups using these single-breed reference sets.

Combining purebred H (Ref. 1) and J (Ref. 2) animals into a single reference (Ref. 3) resulted in an average increase in the accuracy by 0.09 and a reduction of bias by 0.08 for crossbreds compared to single breed references. In Ref. 3 compared to Ref. 1, on average, ∼25%H:75%J cows achieved a maximum gain in accuracy (0.21) and reduction in bias (0.32). However, for purebred J cows, the H-dominated Ref. 3 compared to Ref. 2 reduced their accuracy by about 0.03 and considerably increased the bias by 0.11.

In Ref. 4, we proportionally combined GEBV derived from the H and J single-breed reference sets (Refs. 1 and 2) according to the approximated PCA breed proportions for each validation set. Although this method did not improve the accuracy of predictions compared to Ref. 3, it did on average reduce the bias by 0.18. The average reduction in bias was highest in ∼50%H:50%J (0.23), followed by ∼25%H:75%J (0.21) and ∼75%H:25%J (0.09). We also tested substituting these approximate breed proportions with the exact Admixture breed composition for each cow to calculate their GEBV (Ref. 4’). The accuracy and bias were similar to Ref. 4, and these can be seen in Supplementary Figure 1 (labeled Ref. 4′).

In Ref. 5, generated by adding crossbred cows to Ref. 3 (H and J), the accuracy increased by between 0.03 to 0.08 in crossbreds compared to Ref. 3 and Ref. 4. For Ref. 5, in comparison to Ref. 3, there was an average reduction in bias for all validation breed groups that was highest in ∼50%H:50%J (0.14), followed by ∼75%H:25%J (0.11) and ∼25%H:75%J (0.09), compared to purebred cows with a reduction in bias of GEBV (0.06). However, in comparing Ref. 5 to Ref. 4, there was only a reduction in bias for the pure H and the ∼75%H:25%J, while on average the bias increased for the ∼50%H:50%J, 25%H:75%J, and pure J breed groups.



Genotypes: Marker Sets 50k, XT_50k, and Pruned HDnGBS (Refs. 1–5)

For single-breed references, comparing three different sets of markers (Figures 3, 4) showed that using XT_50k or pruned HDnGBS instead of 50k increased the accuracy of GP for within-breed prediction (H and J) by about 0.02. In Ref. 1, using XT_50k (and pruned HDnGBS) instead of 50k consistently improved the accuracy of GP for crossbred cows by, on average, 0.05 (and 0.04) and also reduced bias by about 0.08 (and 0.06). In reference sets 3, 4, and 5, there was also a small but consistent advantage in the crossbred GBLUP accuracy for the XT_50k set over the 50k and pruned HDnGBS, but there were no consistent differences in the accuracies using emBayesR. In reference sets 3, 4, and 5, there was no consistent trend for bias across the three marker sets.



Methods: GBLUP Versus emBayesR (Refs. 1–5)

Comparing the two different statistical methods for GP (Figures 3, 4), it was shown that the emBayesR method gave a consistent increase in accuracy compared to GBLUP for crossbred and purebred prediction using single-breed reference sets (Refs. 1 and 2). On average, there was also a small but consistent advantage in accuracy for emBayesR versus GBLUP in Refs. 3, 4, and 5 for 50k and pruned HDnGBS marker sets. However, the benefits of emBayesR over GBLUP in accuracy diminished with the use of the custom XT_50k marker set. The differences in bias between emBayesR and GBLUP were less consistent: for example, in Ref. 3, emBayesR reduced the bias of GP in crossbred cows by about 0.03 compared to GBLUP, but the bias was similar for both methods in Ref. 5.



Equalizing Breed Proportions in Reference Sets

In the second part of our study, we compared the accuracy and bias of GP in Ref. 3 (mixed H and J purebreds and dominated by H) versus three additional reference sets, where breed proportion was equalized (Refs. 6, 7, and 8: Table 1) in Figures 5, 6. Refs. 6, 7, and 8 all included the same ∼2,200 H and J bulls but differed in cow composition: purebreds (Ref. 6), crossbreds (Ref. 7), or pure and crossbreds (Ref. 8).
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FIGURE 5. Accuracy of genomic predictions in five validation sets using different reference populations (Ref. 3 and Refs. 6–8: details in Table 1). The results are averaged across milk, fat, and protein yields. Ref. 3 is Holstein-dominated, while Refs. 6–8 have balanced-breed proportions.
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FIGURE 6. Bias of genomic predictions in five validation sets using different reference populations (Ref. 3 and Refs. 6–8: details in Table 1). The results are averaged across milk, fat, and protein yields. Ref. 3 is Holstein-dominated, while Refs. 6–8 have balanced-breed proportions.


First, comparing H-dominated Ref. 3 that had ∼18,500 purebred animals versus Ref. 6 that had only ∼9,000 purebreds balanced across H and J (all J animals from Ref. 3 but the H set randomly reduced from ∼14,000 to ∼4,500 animals), on average, the bias was considerably reduced for all validation sets in Ref. 6, with the most impact in purebreds (reducing by 0.14 for H, 0.10 for J, 0.06 for 75%H:25%J, 0.09 for 50%H:50%J, and 0.10 for 25%H:75%J). The accuracies were similar to Ref. 3, but there was a consistent trend for the H accuracy to fall in Ref. 6 by 0.01 to 0.02 and J to increase by 0.01 to 0.02. Therefore, GP in the J breed benefited from simply removing a large proportion of H to achieve similar breed proportions in Ref. 6, resulting in both bias and accuracy being restored to similar levels as using purebred J reference (Ref. 2).

Ref. 7 had the same number of animals as Ref. 6, but crossbred cows replaced purebred cows. This resulted in a consistent average increase in the accuracy of GP for the crossbred validation sets compared to Ref. 6. and Ref. 3. However, the accuracy for the H and J purebreds consistently reduced. Ref. 8 included all the cows from Ref. 6 and 7 (pure and crosses) with ∼15,700 animals, and this restored the purebred accuracies to either the same (H) or higher (J) than Ref. 3 and Ref. 6. For the all the crossbred validation sets, accuracy was consistently increased in Ref. 8 compared to Refs. 3 and 6. There was a dramatic reduction in bias for Ref. 8 (balanced-breed) compared to the H-dominated Ref. 3 for all five validation sets: on average, the reduction of bias was 0.19 for H, 0.13 for J, and 0.16 for the crossbred validation sets. Overall, the bias was always highest in the H-dominated Ref. 3 compared to Refs. 6, 7, and 8.

Figure 7 shows the distribution of the estimated genomic relationships between a set of purebred bulls common to Refs. 3, 6, 7 and 8 (1,101 H and 1,101 J) and the cows in the five validation breed groups. The genomic relationships displayed between these common sets of reference bulls and validation cows were estimated separately for each reference set and validation animals using the XT_50k genotypes. It can be seen that the genomic relationships had a very different distribution when estimated in the reference population that was dominated by purebred H (Ref. 3) compared to the equalized breed sets in Refs. 6, 7, and 8.
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FIGURE 7. The distribution of genomic relationships estimated between a common set of bulls in Ref. 3 and Refs. 6–8 (1,101 H and 1,101 J) and the cows in the five validation breed groups. The genomic relationships were estimated using the XT_50k genotypes.




DISCUSSION

This study used approximately 18,500 purebred and 18,200 crossbred dairy animals to comprehensively test a range of strategies to jointly optimize the accuracy of GP for crossbreds and purebreds. A novel strategy was tested in which breed proportions were balanced in a mixed-breed reference population with the inclusion of a large number of crossbred cows and also using a custom SNP chip enriched with sequence variants. In many dairy industries, one breed dominates, while other breeds and crosses are important but have substantially lower numbers genotyped. While this study focused on GP in H and J breeds, the results are likely to be equally relevant to GP in other breeds and other livestock groups, such as beef cattle and sheep, particularly where one breed is more dominantly used compared to other breeds.

As expected, our single purebred references (Refs. 1 and 2) were suitable only for within-breed GP but provided a baseline for comparing accuracy and bias for other reference sets. These single-breed marker effects were also used to compute a WA_GEBV for crossbreds (VanRaden et al., 2020). VanRaden et al. (2020) reported the successful use of breed representation of up to five dairy breeds estimated with Findhap (VanRaden and Cooper, 2015) for the WA_GEBV. We had crossbreds of just two breeds and found a similar accuracy of WA_GEBV using either approximate breed proportions from PCA or the breed proportions estimated using Admixture software (Refs. 4 and 4′), implying that either approach was valid. However, for crossbreds of more than two breeds, it would be more practical to use software such as Admixture or Findhap to predict breed proportion. Similar to VanRaden et al. (2020), we found that the WA_GEBV approach was competitive (Ref. 4) if no crossbred phenotypes were available because it increased the accuracy compared to a single breed, reduced the bias for crossbreds compared to a multi-breed reference, and maintained purebred accuracies. Combining the purebreds into a single multi-breed reference caused our J accuracy to drop, implying a negative impact from the multi-breed reference being dominated by H. A similar finding has been reported for the accuracy of GP of Australian Red breed by van den Berg et al. (2020) when using a mixed breed reference strongly dominated by H. Previous simulation and plant studies also showed that increasing the size of the reference population by including individuals not closely related to the validation set could reduce the accuracy of GP (Neyhart et al., 2017; Mangin et al., 2019).

Although the WA_GEBV approach offers analytical simplicity, unfortunately, it does not exploit crossbred data where available. Previous studies have reported the significance of including crossbred animals in the reference for better GP (Esfandyari et al., 2015a; van Grevenhof and van der Werf, 2015). We also found that combining all the purebred and crossbred animals (Ref. 5) could improve accuracy compared to the WA_GEBV (Ref. 4), but still this incurred an increase in bias of predictions for crossbreds. We believe this is in a large part due to the domination of H breed in the reference (both purebreds and crossbreds) because the bias reduced considerably by balancing the proportion of H and J in Ref. 6 compared to the H-dominated Ref. 3. Furthermore, the genomic relationship between the common reference bulls and validation cows (Figure 7) shows very different distributions of relationships estimated in the H-dominated Ref. 3 compared to the balanced-breed reference sets 6, 7, and 8, probably due to differences in allele frequencies between the breeds. Excluding a large proportion of H and 75%H:25%J from the reference to equalize breed proportions, Ref. 6 did reduce the prediction accuracy in H and 75%H:25%J when compared to the full Ref. 8 (mixed breed and cross set). Notably, however, the accuracy for the H validation was still equal to that achieved with the purebred-H-only reference set (Ref. 1), and bias was less in Ref. 6 vs. Ref. 8. This suggests that a reference set with more balanced-breed proportions and including crossbreds may provide a practical compromise for genomic prediction for both purebreds and crosses. However, in specific cases, this will also depend on the numbers available for the minor breed because if too many H need to be removed, then the accuracy of prediction for the H will drop below that achieved from a single-breed H reference set (Ref. 7 vs. Ref. 8). In this case, for purebred H predictions, the alternative would be to combine the H purebreds with their closest crosses because our results demonstrated that the inclusion of crossbreds in the reference set improved the prediction accuracy in the purebreds (Ref. 8 vs. Ref. 6). Altogether the results highlight the importance of trying to ensure that genotyped reference sets are developed to include as many as possible of the minor breeds and their crosses to encourage genetic diversity and progress across all breed groups. While we demonstrated improved GP from the balanced-breed set that included pure and crossbred cows (Ref. 8), it is possible that this could be further improved by adding some more H and H-cross animals from the full set, provided that they are chosen to be the most closely related to the validation animals. For example, van den Berg et al. (2020) reported that combining a limited number of H closely related to Australian Red in a H-dominated multi-breed reference was the best strategy to improve the GP in Australian Red. However, in the context of trying to simultaneously improve the accuracy of both purebred and crossbred groups, this may not be straightforward. A method proposed by Harris and Johnson (2010b) within the GBLUP framework to account for differences in allele frequency between H, J, and crossbreds could be tested in future work to determine if this mitigates the H domination effect.

In our study, while the accuracy of GP for crossbred cows improved considerably with the balanced multibreed reference that included crossbreds (Ref. 8), the accuracy for crossbreds was still often lower than the accuracy of predicting purebreds. However, this could be due in part to the lower accuracy of DRP in crossbred validation cows compared to that in purebred cows and the lower relatedness, on average, of crossbred validation cows compared to purebred bulls (Figure 7). The only exception was the ∼25%H:75%J validation set that met the expected level of accuracy relative to the purebreds (Ref. 8). This may be because, on average, this set shared more half-sib sisters with Ref. 8 compared to the other two crossbred validation sets (Table 2). Therefore, in an industry setting, the accuracy of crossbreds may be found to be close to the average of parental breeds if there is high relatedness between crossbred cows in the reference population with those in the new test sets. It is also likely that the inclusion of crossbred bulls in the reference would increase the accuracy of GP in crossbred cows because crossbred bulls in New Zealand are mainly used for mating with crossbred cows (New Zealand Dairy Statistics 2018–2019)3.

Another model that has been tested for genomic prediction of multiple breeds and crosses is the multi-trait model, where the same trait is fitted as a correlated trait. However, this multi-trait approach for GP in dairy cattle showed no consistent improvement over a single-trait model (Olson et al., 2012; Haile-Mariam et al., 2019; van den Berg et al., 2020). Given that the correlation between DRP for milk traits for the same animals in our study was previously reported to be high (Haile-Mariam et al., 2019) and given that dairy cattle purebred and crossbred cows are raised under the same condition and even in the same herds, a multi-trait approach was not expected to improve the accuracy of GP.

Our custom panel, XT_50k, included ∼35,000 variants (out of 46,516) that were close to or included causal mutations for a range of 34 dairy traits (Xiang et al., 2019). This means that it is different to most custom panels in that the majority of SNP were selected as more highly predictive rather than the majority being random variants enriched with a smaller selected set. It is useful to evaluate the accuracy of GP in validation sets that are more distantly related to see if the LD phase between markers and QTL is preserved more strongly. Therefore, it is interesting to note that, for the pure H reference (Ref. 1), the XT_50k genotypes maintained a considerably higher accuracy in the more distantly related validation sets compared to the 50k. In fact, for the most distantly related validation sets in Ref. 1, the XT_50k accuracy even exceeded the high-density panel (HDnGBS) and, as expected, the emBayesR approach showed a higher accuracy than GBLUP. The reason for this is likely because the GBLUP model assumes an infinitesimal model where all markers have a small effect, while the emBayesR model assumes that a large proportion of the markers have no effect and also allows for a more complex genetic architecture by modeling a mixture of normal distributions, which better accommodates estimating large effect mutations such as the DGAT1 mutation for milk traits (Grisart et al., 2004).

The extra value of the XT_50k was less clear in the pure J reference (Ref. 2), which is possibly a reflection of the variant discovery work to select markers for the XT_50k being undertaken in a H-dominated set of animals (Xiang et al., 2019). However, it could also be partly influenced by the fact that the J reference set was less powerful than the H reference that was three times larger. The average improvement here of up to 6% from the XT_50k versus the 50k set is in line with other studies. For example, VanRaden et al. (2017) reported that adding 16,648 SNP to a 60k panel increased the reliabilities of within-breed GP when compared to HD genotypes. Brøndum et al. (2015) reported that adding 1,623 sequence variants identified by genome-wide association study from multiple breeds to a custom chip increased the reliabilites by up to 5 percentage points for production traits in French H.

It was also interesting that, while emBayesR mostly outperformed GBLUP, in our study, both approaches performed equally well for the XT_50k set with multi-breed references. Some previous studies showed that the accuracy of GBLUP models was more competitive with Bayesian models when selected QTL markers were modeled by fitting a separate GRM to that of the random markers to allow their effects to be sampled from a normal distribution with a higher variance (Khansefid et al., 2014; Brøndum et al., 2015; Moghaddar et al., 2018). It is possible that, in our study, GBLUP showed competitive accuracies to emBayesR without fitting the selected variants as a separate component because around 80% of the variants in the XT_50k set were selected as QTL markers, with only approximately 8,000 that were random markers. This makes the XT_50k custom panel quite different to those previously reported where the proportion of QTL markers was much lower than the remaining random marker set.



CONCLUSION

Our study compared different reference populations, SNP marker sets, and statistical approaches (GBLUP and emBayesR) for GP in purebred and crossbred H and J cows. Generally, we found that a H-dominated reference had a negative effect on GP of J and crossbreds. Balancing the breed proportions in the reference set achieved a comparable accuracy to a H-dominated reference but a consistently reduced bias for both crosses and purebreds. Inclusion of crossbred cows in the reference population improved the accuracy especially for crossbreds. Using a custom marker panel (XT_50k) instead of standard 50k or pruned HD panels further improved the prediction accuracy and reduced the bias. Remarkably, the advantage of emBayesR over GBLUP was very limited when XT_50k genotypes were used in GP, indicating the benefits of using a selected set of markers. In conclusion, to improve crossbred GP, we recommend a balanced-breed reference containing crossbred animals and using a set of SNP close to QTL and enriched for causal mutations. Our results indicate that this may also be a competitive reference for GP in purebreds, particularly for the less numerous breeds. We also recommend further research to find an optimized method of selecting a subset of the dominant breed for a balanced reference or other corrective algorithms to mitigate the major breed domination effect on the accuracy and bias of GP in pure and crossbred cattle.
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Vrindavani is an Indian composite cattle breed developed by crossbreeding taurine dairy breeds with native indicine cattle. The constituent breeds were selected for higher milk production and adaptation to the tropical climate. However, the selection response for production and adaptation traits in the Vrindavani genome is not explored. In this study, we provide the first overview of the selection signatures in the Vrindavani genome. A total of 96 Vrindavani cattle were genotyped using the BovineSNP50 BeadChip and the SNP genotype data of its constituent breeds were collected from a public database. Within-breed selection signatures in Vrindavani were investigated using the integrated haplotype score (iHS). The Vrindavani breed was also compared to each of its parental breeds to discover between-population signatures of selection using two approaches, cross-population extended haplotype homozygosity (XP-EHH) and fixation index (FST). We identified 11 common regions detected by more than one method harboring genes such as LRP1B, TNNI3K, APOB, CACNA2D1, FAM110B, and SPATA17 associated with production and adaptation. Overall, our results suggested stronger selective pressure on regions responsible for adaptation compared to milk yield.

Keywords: crossbred cattle, FST, integrated haplotype score, selection signature, XP-EHH


INTRODUCTION

The benefits of crossbreeding between high yielding Bos taurus and environmentally resistant Bos indicus breeds in tropical production systems have been well-established over the last half-century. Crossbred cattle have played an important role in meeting India's rising demand for milk. Despite constituting only 20.7% of India's milch herd, the crossbreds contribute 26% of India's annual milk production of 187.75 metric tons (DAHDF, 2018-19; 20th Livestock Census, 2019).

A four breed crossing scheme was initiated at the Indian Veterinary Research Institute in 1968. Briefly, a foundation stock of 400 indigenous Hariana cattle was inseminated with Holstein Friesian (HF), Jersey and Brown Swiss (BSW) semen to produce three genetic groups viz., 1/2 Hariana × 1/2 HF, 1/4 Hariana ×1/2 HF ×1/4 BSW, and 1/4 Hariana ×1/2 HF ×1/4 Jersey. These genetic groups were evaluated for production, reproduction and environmental adaptation for seven generations. This was followed by inter-mating and selection to create the present day composite breed Vrindavani, having 25–50% Bos indicus and 50–75% Bos taurus inheritance (Singh et al., 2011). From the records of the distribution of frozen semen straws of the superior Vrindavani bulls, and the cows auctioned to the farmer, it is estimated that presently about 50,000 Vrindavani cattle are in the field.

Over the last decade, SNP microarrays and whole genome sequencing technology has enabled researchers to explore the genetic architecture and signatures of post-admixture selection in composite breeds (Decker et al., 2014; Kim and Rothschild, 2014; Cheruiyot et al., 2018). In Vrindavani cattle, the Bovine SNP50K array has recently been used to investigate the population structure of the breed (Chhotaray et al., 2019; Ahmad et al., 2020). Since the inception of the Vrindavani breeding program almost five decades ago, the breed has been under selection for milk production and adaptation to tropical conditions. We hypothesized that natural and artificial selection has left footprints on the genome of Vrindavani cattle over the years. Identification of the regions under selection could improve our understanding of the molecular mechanisms driving the environmental adaptation and increased milk production of composite Bos taurus × indicus breeds in the tropics. Therefore, the objective of this study was to detect signatures of selection in the genome of the Vrindavani cattle using two complementary approaches. First, the integrated haplotype score (iHS) was used to detect within-population selection signatures. Second, we compared Vrindavani to Hariana, HF, Jersey and BSW by haplotype based (XP-EHH) and single SNP based (FST) methods to discover the genomic regions where the composite breed has diverged from each of its parental populations since the admixture.



MATERIALS AND METHODS


Sample Collection, Genotyping and Quality Control

Blood samples from 96 lactating Vrindavani cattle in lactations ranging from 1 to 6 were collected from Cattle and Buffalo breeding farm of the ICAR-Indian Veterinary Research Institute, Bareilly, UP (28.3670° N, 79.4304° E), following approval by the Institutional Animal Ethics Committee (IAEC). The cows under study were offspring of 16 sires and were born between year 2013 to 2018, with average lactation stage of 176 days. The Vrindavani bulls on the farm were selected and culled on the basis of dam and daughter's milk yield, respectively. Involuntary culling was practiced for cows with mastitis.

Genomic DNA was isolated using Qiagen DNeasy Blood Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions. The quality and quantity of DNA were evaluated using NanoDrop spectrophotometer, agarose gel electrophoresis and Qubit fluorometer. The extracted DNA samples were genotyped with the BovineSNP50 v3 BeadChip (Illumina, Inc.) using manufacturer's protocols (AgriGenome Labs Pvt. Ltd., India) consisting of 53,218 SNPs across the genome at a mean distance of 37.4 kb. Genotypes were called and processed using the GenomeStudio software package (Illumina, Inc.). The SNP coordinates followed the ARS-UCD1.2 assembly of the bovine genome.

Data of all the 96 Vrindavani animals were used for population structure analysis and within-breed signatures of selection (iHS). Quality filtering of data was performed using PLINK v1.9 (Purcell et al., 2007) by filtering non-autosomal and unmapped SNPs. SNPs with less than a 90% call rate, minor allele frequency lower than 0.01 and a significant (P < 0.00001) deviation from Hardy-Weinberg equilibrium were also removed, leaving a dataset of 41,342 SNPs. After filtering, the total genotyping rate was 99.81%, and no individual was removed for missing genotypes.



Population Structure Analysis

The expected heterozygosity (He), observed heterozygosity (Ho) and minor allele frequency (MAF) was estimated using PLINK 1.07 (Purcell et al., 2007). Principal Component (PCA) and Admixture (Alexander et al., 2009) analyses were performed to validate the breed separation in our merged dataset. The results were visualized in R with the basic plot function (R Core Team., 2018).



Selection Signature Analyses

The within population signatures of selection in Vrindavani (n = 96) were computed using the integrated haplotype score (iHS) (Voight et al., 2006). The ancestral allele information for the iHS test was obtained from Rocha et al. (2014) for the 50K SNP data. The iHS was calculated for each autosomal SNP in Vrindavani through the package rehh (Gautier et al., 2017). Candidate regions were identified using a scan window of 100 kb with a 50 kb overlap. Windows with an average iHS score of 3 (three standard deviations above the mean) or above were considered as candidate regions for selection.

To ascertain between-population selection signatures, Vrindavani was compared to each of its parental populations using XP-EHH (Sabeti et al., 2007) and FST (Weir and Cockerham, 1984).

The genotypic data of Vrindavani's parent taurine breeds (BSW, HF, Jersey) were accessed using WIDDE (http://widde.toulouse.inra.fr/widde/widde/main.do?module=cattle) and Hariana cattle through KRISHI (https://krishi.icar.gov.in/jspui/handle/123456789/31167) web portals. These included 50K SNP data of HF (n = 30), Jersey (n = 21), BSW (n = 24), and the HD (777K) genotypes of Hariana (n = 18). The common SNPs between 50K and HD chip data of Hariana were extracted for further analysis. Since large differences between the sample sizes of the groups under comparison can cause inaccurate FST estimates (Barendse et al., 2009; Bhatia et al., 2013), a subset of 25 Vrindavani animals was used for the across-population comparisons. We calculated the pairwise identity by state (IBS) scores for all the 96 Vrindavani animals using PLINK, and retained the 25 animals with the least amount of shared similarity (IBS).

Genotypic data of all the breeds were merged and quality control was performed again by using the settings mentioned above leaving 34,197 variants for downstream analysis. The genotypes were phased using BEAGLE v5.1 (Browning et al., 2018) using default settings (burnin = 6; iterations = 12; phase-states = 280).

The XP-EHH scores were calculated for each pairwise comparison using the package rehh, taking the parental breeds as the reference population. To detect positive selection in Vrindavani, average XP-EHH scores were computed for 100-kb regions with a 50 kb overlap. Regions with absolute XP-EHH scores of 3 (Three SD above the mean) or above were considered as putative candidate regions. The pairwise FST was calculated with VCFTOOLS (Danecek et al., 2011), with a sliding window of 100 kb and a 50 kb step size. Windows belonging to the top 0.1% of the FST values were considered as potential regions under selection. The genes present in the candidate regions were annotated using the Ensembl Biomart genes database (release 100). Functional and pathway enrichment analysis was performed using DAVID (Huang et al., 2009). Each positively selected region was cross referenced with the literature.




RESULTS


Descriptive Statistics and Population Structure Analyses

The heterozygosity and MAF values of Vrindavani (Ho = 0.34, MAF = 0.28) were found similar to the European breeds, particularly to HF (Table 1). The genetic relationship between the Vrindavani population and its parent breeds was visualized using PCA. The first and second principal components explained 62.3% and 11.7% of the total variation, placing the Vrindavani cattle in between the taurine and indicine breeds which is in agreement with their known lineage (Figure 1A). They are however noticeably closer to the Holstein cluster than any of the other parental breeds. In concordance with Ahmad et al. (2020), Admixture analysis with K = 4 showed that the average breed composition proportions for our population of Vrindavani was 42.5%, 26.0%, 17.1%, and 14.4% of HF, Hariana, Jersey and BSW, respectively (Figure 1B).


Table 1. Number of animals, means of observed (HO) and expected heterozygosity (HE), minor allele frequencies (MAF) and differentiation (FST) between each breed with Vrindavani.
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FIGURE 1. (A) Principal Component Analysis (PCA) plot showing clustering of Vrindavani crossbred cattle and parent breeds. (BSW, Brown Swiss; HAR, Hariana; HOL, Holestein; JER, Jersey; VRI, Vrindavani). (B) Admixture analysis of Vrindavani cattle showing proportion of ancestral population (K = 4).




Within Population Selection Signatures in Vrindavani (iHS)

Considering the recent selection history in Vrindavani breed, the selection sweeps were identified using integrated haplotype score (iHS) approach. A total of 46 significant SNPs (iHS ≥3) distributed across 12 autosomes were identified within the candidate regions (Figure 2A, Supplementary Table 1). The strongest iHS signal (3.9) was found on BTA14 (30.35–30.44 Mb). The top 10 regions with their iHS values and genes are shown in Table 2. Functional annotation of the selected regions identified candidate genes related with milk production (APOB, ANO3, DNMT3A, and POMC) and environmental adaptations or immunity (DNAJC5B and FYB2).


[image: Figure 2]
FIGURE 2. (A) Plot of the integrated haplotype score (iHS) plot for the Vrindavani cattle. (B–E) Cross-population extended haplotype homozygosity (XP-EHH) plots for Vrindavani's comparisons with (B) Brown Swiss, (C) Jersey (D) Holstein, and (E) Hariana. The dotted lines indicate mean ± 3 standard deviations as threshold.



Table 2. List of the top 10 regions identified by the integrated haplotype score measures (iHS), and the genes present within them.
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Across Population Selection Signatures (FST and XP-EHH)

The Manhattan plots of pairwise XP-EHH analysis between Vrindavani and its parent breeds are presented in Figures 2B–E, and the information about the significant regions is in Supplementary Table 2. The selection signals (positive value of XP-EHH for Vrindavani), against all parent breeds were detected on 8 autosomes, of which clusters of SNPs are observed on BTA1, BTA2, BTA3, BTA4, BTA11, BTA15, BTA16, and BTA25. BTA4 and BTA3, exhibit the highest number of selected regions in all the breed comparisons. The selective sweep located on BTA4 (91.8–92.2 Mb) was detected in comparisons with both BSW and Hariana. It contains the genes SND1 and LRRC4 associated with somatic cell count, milk yield and residual feed intake. Two regions on BTA2 (56.4–56.6 Mb) and BTA25 (31.15–31.3 Mb) were detected in comparisons with Hariana and Jersey. It contains LRP1B gene and QTLs for somatic cell count and reproduction traits (Cole et al., 2011).

The mean FST values of Vrindavani in comparison to HF, Jersey, BSW and Hariana were 0.081, 0.110, 0.122, and 0.175, respectively. The pairwise FST across genome of the Vrindavani against its parental breeds were plotted in Supplementary Figure 1. A total of 124 regions were identified, which were distributed across all autosomes except BTA25 and BTA26 in breed comparisons (Supplementary Table 3). The regions on the chromosomes having highest FST values against HF, BSW, Jersey and Hariana were located on BTA4, BTA7, BTA10, and BTA3, respectively.

The FST signals on overlapping regions located on BTA7 (45.3–48.9 Mb), BTA10 (37.4–37.7 Mb) and on BTA14 (12.3–12.6 Mb) were observed in comparison with BSW and Jersey, harboring genes involved with production, reproduction and functional traits (H2AFY, SPOCK1, PLA2G4D, PLA2G4F, and GANC). Two selected regions on BTA14 from 12.3 to 12.6 Mb (against BSW and HF) and 27.3–27.9 Mb (against Jersey and HF) were identified. These regions include SPIDR gene (Scaffold protein involved in DNA repair) associated with milk and milk protein yield) and NKAIN3 gene (Na+/K+ transporting ATPase interacting 3) related with insulin-like growth factor one level.



Comparative Analysis of Selection Signatures

A total of 13 regions on BTA2, BTA3, BTA4, BTA10, BTA11, BTA14, BTA15, and BTA16 were determined by more than one approach; with a region on BTA3 (70.2–72.2 Mb) common to all three approaches (Table 3). Out of six regions detected by both the between population approaches (pairwise FST and XP-EHH), four regions were detected in comparisons with taurine breeds (BSW, Jersey and HF); one region in comparison with the indicine breed (Hariana) and one region against both taurine and indicine breeds (Table 3). Functional annotation of the commonly detected regions shows several candidate genes already reported as selection signals or associated with economic traits in different cattle breeds. Genes present in these regions enriched biological processes such as response to virus (GO:0009615) and post embryonic development (GO:0009791), and molecular functions such as ATP binding (GO:0005524) and motor binding (GO:0003774) shown in Supplementary Table 4.


Table 3. Selection sweeps identified by more than one test in the Vrindavani chromosomes (BTA) and annotated genes in these regions.
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DISCUSSION

The Admixture analysis and PCA plot reflected the presence of both indicine and taurine ancestry in our Vrindavani population, with a higher proportion of taurine ancestry (Holstein). The dominance of the Holstein component in Vrindavani cattle has also been recently reported in a different set of Vrindavani population (Ahmad et al., 2020).

In the present study, we wished to evaluate the effect of natural and artificial selection on the Vrindavani genome, compared to its parent breeds. Due to genetic drift (Akey et al., 2002), and ascertainment bias of the SNP chip toward taurine breeds, it is difficult to distinguish true signatures of selection from false positives in crossbred cattle. Thus, three different methods of signature of selection (iHS, FST, and XP-EHH) were applied with stringent thresholds to capture putative regions of selection across the genome.

The regions commonly detected by pairwise cross population methods (XP-EHH and FST) against taurine breeds on BTA4 contained the CACNA2D1 gene, which is a member of the calcium voltage-gated channel auxiliary subunit alpha-2/delta. It is previously reported to be a candidate gene associated with somatic cell score (Deng et al., 2011) and mastitis resistance (Yuan et al., 2011). Another gene on this chromosome is TFEC, reported to be a selection signature in African cattle and related with resistance to ticks and other tropical disease (Tijjani et al., 2019).

On BTA14, FAM110B, and UBXN2B genes were identified to be associated with productive traits, reproductive traits (Grigoletto et al., 2019) and feed efficiency (Seabury et al., 2017). Flori et al. (2009) has also reported FAM110 as selection signature for dairy cattle under artificial selection. The STK33 gene on BTA15 reported in the FST and XP-EHH analyses against the Jersey and HF cattle, respectively, were reported as selection signatures in Gir cattle and are associated with milk production in indicine cattle (Maiorano et al., 2018).

Commonly identified regions from iHS and cross-population approaches against Hariana contain TNNI3K and ADGRL4/ELTD1 genes on BTA 3. TNNI3K is a cardiac troponin interacting kinase, associated with udder depth (Kramer et al., 2014), inflammation mechanisms (Wiltshire et al., 2011) and lameness in Holstein–Friesian cattle (Sánchez-Molano et al., 2019). The ADGRL4/ELTD1 gene is associated with milk fat yield (Li et al., 2010) and tick resistance (Porto Neto et al., 2011) in dairy cattle. Another gene DDX1 on BTA11 was reported to be involved in bovine mammary involution in environmental stress conditions (Dado-Senn et al., 2018). DDX1 is also reported to be associated with linoleic acid content in Nellore cattle (Lemos et al., 2016) and viral resistance (Xue et al., 2019). A common region in comparisons with both taurine and indicine breeds is detected on BTA2. It harbors LRP1B gene which codes for low density lipoprotein related with milk yield (Chen et al., 2015) and somatic cell score (Cole et al., 2011). LRP is widely expressed in several tissues and plays important roles in lipoprotein catabolism, blood coagulation, cell adhesion and migration (Haas et al., 2011).

Overall, the results revealed that selection was operative more strongly in the regions related to environmental adaptation than milk yield, despite the latter being a focus of artificial selection. This could be explained by the presence of a large (50–75%) taurine inheritance in the Vrindavani genome, so a deviation from the parental breeds with respect to adaptation was not unexpected.

The slow rate of genetic gain with respect to the artificially selected productivity traits, due to the small and closed nature of the institutional herd examined in this study may also be responsible for our findings. Vrindavani is still a relatively new breed, and we expect these selection signatures to be more prominent in the coming generations.



CONCLUSION

This study provided the first overview of the selection footprints in the genome of the composite Vrindavani cattle of India. The signatures of selection for Vrindavani breed reveals several genomic regions which were involved in milk production and adaptation. Our results confirmed some of the key candidate genes such as CACNA2D1, DDX1, and ADGRL4 which were known to be previously associated with immune related and adaptation pathways. Interestingly, the findings suggest that selection in Vrindavani was operative more strongly in the regions related to environmental adaptation than milk yield, despite the latter being a focus of artificial selection. To further reduce false positives and increase the resolution of detection of selection signatures, we suggest validation of this study in a larger field herd using the HD genotyping array or whole-genome sequence data.
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This research assessed the ability of a Support Vector Machine (SVM) regression model to predict pig crossbred (CB) performance from various sources of phenotypic and genotypic information for improving crossbreeding performance at reduced genotyping cost. Data consisted of average daily gain (ADG) and residual feed intake (RFI) records and genotypes of 5,708 purebred (PB) boars and 5,007 CB pigs. Prediction models were fitted using individual PB genotypes and phenotypes (trn.1); genotypes of PB sires and average of CB records per PB sire (trn.2); and individual CB genotypes and phenotypes (trn.3). The average of CB offspring records was the trait to be predicted from PB sire’s genotype using cross-validation. Single nucleotide polymorphisms (SNPs) were ranked based on the Spearman Rank correlation with the trait. Subsets with an increasing number (from 50 to 2,000) of the most informative SNPs were used as predictor variables in SVM. Prediction performance was the median of the Spearman correlation (SC, interquartile range in brackets) between observed and predicted phenotypes in the testing set. The best predictive performances were obtained when sire phenotypic information was included in trn.1 (0.22 [0.03] for RFI with SVM and 250 SNPs, and 0.12 [0.05] for ADG with SVM and 500–1,000 SNPs) or when trn.3 was used (0.29 [0.16] with Genomic best linear unbiased prediction (GBLUP) for RFI, and 0.15 [0.09] for ADG with just 50 SNPs). Animals from the last two generations were assigned to the testing set and remaining animals to the training set. Individual’s PB own phenotype and genotype improved the prediction ability of CB offspring of young animals for ADG but not for RFI. The highest SC was 0.34 [0.21] and 0.36 [0.22] for RFI and ADG, respectively, with SVM and 50 SNPs. Predictive performance using CB data for training leads to a SC of 0.34 [0.19] with GBLUP and 0.28 [0.18] with SVM and 250 SNPs for RFI and 0.34 [0.15] with SVM and 500 SNPs for ADG. Results suggest that PB candidates could be evaluated for CB performance with SVM and low-density SNP chip panels after collecting their own RFI or ADG performances or even earlier, after being genotyped using a reference population of CB animals.

Keywords: pigs, crossbred, single nucleotide polymorphism, genomic prediction, support vector machine, machine learning


INTRODUCTION

Feed efficiency and growth rate are two of the most important components of productivity and sustainability of meat production. Many meat production livestock systems rely on crossbred (CB) animals (pig, poultry, rabbits, and some beef cattle systems), but the genetic improvement of these traits commonly takes place in purebred (PB) lines based on PB performance only. However, the ultimate goal of selection is achieving competitive performances in CB animals raised in commercial farms. The genetic gain attained from within line selection in the PB line will not be efficiently transferred to the CB population if the genetic correlation between PB and CB performances ([image: image])differs markedly from unity. A low correlation might be due to genotype by environment interactions or presence of non-additive genetic effects (Wei and van der Steen, 1991). For feed efficiency (FE) and growth traits in pigs, the average estimate of [image: image] is 0.66 across 27 studies reviewed (Wientjes and Calus, 2017). This moderate [image: image] value indicates that accounting for CB information in genetic evaluation of pig PB lines would be a reasonable strategy to boost CB performance (Wei and van der Werf, 1995).

With the availability of high-density single nucleotide polymorphism (SNP) genotype data, several parametric genomic selection (GS) models can be used to evaluate candidates for improved PB and CB performances. Some of the proposed parametric models account for additive genetic effects only (Ibañez-Escriche et al., 2009; Christensen et al., 2014, 2015; Tusell et al., 2016). Other models include both additive and dominance effects using either genomic information from PB animals (Esfandyari et al., 2016) or treating PB and CB data as different traits (Vitezica et al., 2016; Xiang et al., 2016). These models differ in complexity and type of phenotypic and genotypic information required. To our knowledge, non-parametric GS models that account for non-additive genetic effects have not been proposed yet in the PB-CB context. Finding a suitable genome-enabled prediction model fitted at a reduced genotyping cost, but still capable of predicting yet-to-be observed two‐ or three-way CB FE and growth performances from PB genotypes, is of great interest.

Machine learning methods could be useful for CB performance prediction purposes because of their ability to predict outputs without assumptions about the genetic determinism underlying a trait. This property can be relevant for predicting CB performance because of the need to accommodate non-additive genetic effects. Machine learning methods are increasingly used when the number of parameters is much larger than the number of observations, as it is the case of high-throughput datasets such as those with high-density genetic markers for GS. Machine-learning models that are non-linear in either predictor variables or parameters have been proposed in animal and plant breeding to enhance genome-enabled prediction of complex traits (Gianola et al., 2006, 2011; Gianola and van Kaam, 2008). Among them, a support vector machine is regarded as one of the most efficient machine learning algorithms, and it has been used successfully in many different fields (James et al., 2013; Attewell et al., 2015) including livestock and plant breeding (Moser et al., 2009; Long et al., 2011; Montesinos-López et al., 2019).

Feature selection, i.e., selection of a subset of predictor variables from the input data, reduces computation requirements and negative effects on prediction performance of irrelevant variables via over-fitting, an especially important matter in studies with high-dimensional/high-throughput data (Chandrashekar and Sahin, 2014). Finding a prediction model able to perform well with a small subset of SNPs can be of interest to predict CB performance from low-density SNP chips. In particular, the possibility to evaluate selection candidates of the PB lines for improved CB performance at a low genotyping cost, especially if a CB reference population is needed, is of great interest.

The goal of this research was to assess the ability of support vector machine (SVM) regression model trained with different sources of phenotypic and genotypic information to predict CB feed efficiency and growth rate in pigs. The ultimate objective is to design potential strategies for improving pig crossbreeding productive performance at reduced genotyping cost.



MATERIALS AND METHODS

All data used in this study were obtained from existing database made available by Topigs Norsvin (Beuningen, Netherlands). Therefore, no Animal Care Committee approval was necessary for the purposes of this study.


Animals

Animals were produced by Topigs Norsvin (Beuningen, Netherlands). They consisted in 5,708 boars from a terminal sire line (PB) and 5,007 three-way CB growing-finishing pigs (CB, 3,399 males and 1,608 females) originated from the cross of 348 PB boars and 621 sows from two different maternal lines to produce the commercial CB sow, sired by the PB terminal sire line. All PB animals were born and raised in two specific pathogen free nucleus farms, one of them located in the Netherlands, the other one in France. All CB animals were born and raised in two commercial farrows to finish farms in Netherlands. Semen exchange between both nucleus farms takes place routinely. Semen of the (PB) terminal sire line used to produce the CB pigs predominantly originated from sires born on one of the two nucleus farms.

Both nucleus farms as well as both farrow to finish farms were equipped with IVOG feeding stations (INSENTEC, Marknesse, Netherlands) that register individual feed intake of group housed pigs. All pigs had ear tags with unique numbering; therefore, individual feed intake records were available for all pigs for each day on test. The pigs were fed with ad libitum, a commercially available diet, until the end of the performance test (PB) or throughout their entire life (CB).



Phenotypes

Average daily gain (ADG, g/day) was measured for PB animals between the beginning (median age of 68 days and median weight of 31 kg) and the end of the test (median age of 155 days and median weight of 130 kg). ADG was measured for CB animals between the start of the grower-finisher period (median age of 68 days and median weight of 25 kg) until the day before slaughter (median age of 173 days and median weight of 124 kg). Only records from PB/CB animals starting the test/grower-finisher period between 50 and 105 days of age and remaining on test/grower-finisher period between 60 and 120 days were retained.

Backfat thickness was determined ultrasonically on live animals (US-fat in mm) in PB animals at the end of the test period and on carcass with the Capteur Gras Maigre device (Sydel, in mm) in CB animals. Metabolic weight (g) was calculated as [image: image], where [image: image] and [image: image] are the weights at the beginning and at the end of the test period, respectively.

Among all PB and CB data available, three subsets of data were considered: (i) individual phenotypes from genotyped PB individuals (dPB), (ii) individual CB phenotypes that were offspring of genotyped PB sires (dCBSIRE), and (iii) individual phenotypes from genotyped CB individuals (dCB). Notice that some PB sires originating dCBSIRE records had their own dPB records and that dCB included only genotyped CB animals.

Separately in each data subset, multivariate outlier records of ADG, daily feed intake, backfat thickness, and metabolic weight were identified and removed within batch, farm and sex (only for CB records) when the squared Mahalanobis distance to the center of the distribution was >12 (Drumond et al., 2019). Then, residual feed intake (RFI) was estimated as the residual of a linear regression of daily feed intake on average daily gain, backfat thickness, and metabolic weight (lm function, R Core Team, 2019). After that, phenotypes of ADG and RFI were pre-adjusted by environmental effects, fitting a linear model (lm function, R Core Team, 2019) for each data subset. The model included the effects of age at the start of the test (covariate), duration of the performance test (covariate), and the combination of farm and batch (farm × batch) and sex (only included in the CB data subsets). The farm × batch effect resulted from the combination of two farms and 2 month period batches for both PB and CB data. Only farm × batch levels with ≥10 records were retained for the analyses. The adjusted records for the three data subsets were obtained after subtracting the estimates of these systematic environmental effects to the original traits. The average of adjusted CB records per PB sire was calculated in the dCBSIRE dataset (median of number of offspring records per sire was of 10 with a SD = 11.8).

Table 1 shows the number of records available for each dataset and summary statistics of the phenotypes.



TABLE 1. Mean (SD in parentheses and range in square brackets) of residual feed intake (RFI) and daily gain (DG) at fattening for the three data subsets.
[image: Table1]



Genotypes

Animals were genotyped using the Illumina Porcine SNP60 BeadChip (Illumina, Inc., San Diego). SNPs with a call rate lower than 0.90 and a minor allele frequency lower than 0.05 were removed from the whole genotype dataset. Animals with a call rate lower than 0.90 and parent-offspring pairs that displayed Mendelian inconsistencies were discarded. After this quality control, 46,610 SNPs were retained to pursue the analyses. Separately in each data subset, zero and near-zero-variance predictors were identified and removed with the nearZeroVar function with a cut-off for the ratio of frequencies for the most common value over the second most common value of 95/5 (Caret R package, Kuhn, 2008). Subsequently, the findCorrelation function (Caret R package, Kuhn, 2008) with a cut-off = 0.8 was used to diminish highly pair-wise correlations between features. After this genotype edition, 9,523 SNPs were retained for the PB individuals from the dPB dataset and 9,533 SNPs for the PB sires from the dCBSIRE dataset. Genotypes from the CB individuals of the dCB dataset were trimmed keeping the same 9,533 SNPs retained for the PB sires to ensure, for predictive purposes, that the SNPs were also segregating in the PB line.



Information Used for Model Fitting and Prediction

Three types of training sets and two types of testing sets differing in the type of genotype and phenotype information included were used to assess the most convenient phenotypic and genotypic data to predict CB pig feed efficiency and growth rate for establishing a suitable strategy to select PB candidates for improved CB performance. The evaluated scenarios are summarized in Figure 1.
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FIGURE 1. Three types of training sets (trn.1, trn.2, and trn.3) and two types testing sets (tst.1 and tst.2) differing in the phenotype and genotype data used to train and test the prediction models. Pink pig and spotted white pig represent individual purebred (PB) and crossbred (CB) phenotype records, respectively. Three spotted white pigs represent average CB offspring phenotype records per PB sire. DNA chains with “PB,” “CB,” and “PB sire” represent the genotype of the PB animal, the genotype of CB animal, and the genotype of the PB sire of the CB offspring, respectively.


In the first training set (trn.1), genotypes from PB animals were used as predictor variables of their own adjusted RFI or ADG record (dPB). In the second training set (trn.2), genotypes of the PB sires were the predictor variables for the target response of average of adjusted CB records per PB sire (dCBSIRE). Thus, in this training set, average CB offspring performance was considered a PB sire’s trait. Finally, the third training set (trn.3) consisted of individual CB adjusted phenotypes and genotypes (dCB). Thus, in trn.1, the reference population in which the model is fitted is exclusively composed of information from the PB animals. In trn.2, the model is fitted on phenotype records of CB pigs using genotype information from PB animals. Finally, in trn.3, the model is fitted exclusively using individual CB information.

The first testing dataset (tst.1) consisted of yet-to-be observed PB adjusted records (target trait) that were predicted from the own individual PB genotype (dPB). The second testing set (tst.2) consisted of yet-to-be observed average of adjusted CB offspring records per PB sire (target trait) to be predicted from the sire genotype.

The combination of trn.1. and tst.1 (scenario trn.1-tst.1) allows to know the within PB line prediction quality when own individual PB genotypes and phenotypes are used. This is considered as the benchmark result because current selection strategies are based on PB individual prediction. The tst.2 in combination with trn.1, trn.2, and trn.3 allowed assessing the most convenient phenotypic and genotypic data to predict CB pig feed efficiency and growth rate. The combination of trn.1 and tst.2 (scenario trn.1-tst.2) allows assessing the ability of the PB sire genotype to predict their average CB offspring performance when the prediction model is fitted using individual PB phenotypes and genotypes. In this case, the own phenotype and genotype information of the sires from whose CB offspring performance are predicted may be present or not in the training data, which could have consequences on the quality of prediction. The PB candidates could be evaluated either right after being phenotyped themselves or even before (when only their genotypes are available). If predictions are accurate enough, the resultant fitted model could be used to improve CB performance by selection in PB lines very early in time without the need of CB progeny and CB genotypes. The fitted model obtained in trn.2 requires progeny records available from PB sires. Combined with tst.2 (scenario trn.2-tst.2), it could be used to improve CB performance by selection of PB lines in the case that genes involved in growth rate and feed efficiency differ between PB and CB populations. Finally, the scenario resulting from the combination of trn.3 with tst.2 (trn.3-tst2) explored the feasibility of using a CB reference population to fit a model to be used for predicting CB progeny performance from PB sire genotypes. This strategy would allow selecting PB lines for improved CB performance when CB and PB performances have a different genetic determinism (e.g., presence of relevant non-additive variance and, therefore, potential heterosis, Esfandyari et al., 2015) while evaluating PB candidates early in time. However, it requires genotyped and phenotyped CB animals, which is not a common practice in pig breeding schemes.



Model Fitting and Assessment of Predictive Performance

For all scenarios and different combinations of prediction method (i.e., learner) and SNP subset size, model fitting and hyper-parameter optimization were conducted with a nested cross-validation. Nested cross-validation allows estimating the generalization error of the underlying model and its hyper-parameter search (Bischl et al., 2016). It consists of several training-validation and testing dataset splits. An outer k-fold cross-validation using all data was performed using k-1 equal size parts of the original data sets for training the model, and the remaining one for testing. Hyper-parameter tuning was performed in an inner cross-validation within each outer training fold. Same data split (i.e., same data subsets) was used across combinations of learners and datasets to compare prediction performance in the same conditions regarding data structure and composition.

Within each outer training set, features (i.e., SNPs) were standardized and selected according to a ranking based on the Spearman Rank correlation between the feature and the target trait. Different subsets with increasing number (50, 250, 500, 750, 1,500, and 2,000) of the most correlated SNPs were selected. For each of those SNP’s subsets, a SVM regression model (explained in more in detail in the “Learner” section below) was fitted to the corresponding training set after identifying the optimal hyper-parameters in an inner 6-fold cross-validation.

Model fitting and assessment of predictive performance in trn.1-tst.1 scenario was conducted with an outer 10-fold cross validation randomly splitting dPB into 10 folds. Within each of these 10 folds, standardization of the predictor variables using the mean and SD from the corresponding training set was first carried on in both the training and testing sets. Then, the prediction performance of the model fitted with trn.1 was also evaluated in tst.2 separately for (i) the CB sires in tst.2 whose own individual performance also appeared in the trn.1 training set (“IN training sires”) and (ii) from those CB sires in tst.2 that did not intervene in the trn.1 training set (“OUT of training sires”). Model fitting and assessment of predictive performance in trn.2-tst.2 and trn.3-tst.2 combinations were conducted with an outer 5-fold cross validation repeated five times because of the smaller amount of available data. In trn.2-tst.2 scenario, the average of adjusted CB records of the PB genotyped sires (257 records from dCBSIRE) was randomly split into five approximately equal subsets. In scenario trn.3-tst.2, the 5-fold was obtained, ensuring that sires with records in the testing set had no individual CB progeny records in the training set of the same fold. Feature standardization in all of those testing sets was carried on using their own information (i.e., the mean and standard deviation of the SNPs).

The predictive performance of the models in the testing sets was evaluated in terms of accuracy, as the Spearman correlation between the true and the predicted trait across the k outer testing sets (SC), and in terms of stability/generalizability of the results, as the interquartile range (IQR) of those values.



Prediction Performance in the Youngest Generations

Predictive performances obtained in trn.1-tst.1, trn.1-tst.2, trn.2-tst.2, and trn.3-tst.2 using k-fold cross-validation allowed evaluating not only the predictive ability but also the stability of results (i.e., sensitivity to changes in the data set) from models fitted using different types of phenotype and genomic information. In a breeding program, the aim is to predict the productive performance of the selection candidates belonging to current generation from data coming from individuals of previous generations. Trying to emulate this situation, for each scenario animals from the last two generations (YOUNG) were assigned to the testing set, whereas the remaining ones (OLD) were used in the training set. Animals were assigned to a generation using the pedigree R package (Coster, 2013) using their pedigree information. Table 2 shows the amount of records and the number of generations available in the training and testing sets. Notice that because of data were split by generation, only a single prediction per scenario was obtained (i.e., no cross-validation was performed). Thus, for each SNP subset, models were fitted in a unique training dataset, after hyper-parameter tuning by 6-fold cross-validation, and tested on a unique testing set corresponding to the two latest generations. Accuracy of prediction was measured as the Spearman correlation between observed and predicted phenotype, with its median and IQR assessed through a bootstrap approach (Efron, 1981). Pairs of predicted and observed phenotypes in the testing set were assumed to be independent and identically distributed. Pairs corresponding to the number of individuals in the testing set were sampled with replacement from the whole testing set 500 times, and the Spearman correlation was computed in each of the 500 bootstrap samples. Denote these new scenarios as trn.1OLD-tst.1YOUNG, trn.1OLD-tst.2YOUNG, trn.2OLD-tst.2YOUNG, and trn.3OLD-tst.2YOUNG. Dataset trn.1OLD contained individual phenotype and genotype information of PB OLD animals. Dataset trn.2OLD included average adjusted CB offspring records from PB OLD sires. Dataset trn.3OLD consisted of individual phenotype and genotype information of CB OLD animals. Dataset tst.1YOUNG contained individual phenotype and genotype information of PB YOUNG individuals and dataset tst.2.YOUNG included average adjusted CB YOUNG offspring records from PB sires. Then, the prediction performance of the model fitted with trn.1OLD was evaluated in tst.2.YOUNG separately for (i) the CB sires in tst.2.YOUNG whose own individual performance also appeared in the trn.1OLD training set (“IN training sires”) and (ii) from those CB sires in tst.2.YOUNG that did not intervene in the trn.1OLD training set (“OUT of training sires”).



TABLE 2. Number of records and generations included in the different types of training (trn) and testing sets (tst).
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Learner

SVM for regression was used as learner. It aims at identifying, for a set of prediction variables (x), a function that has a maximum deviation ε from the observed values (y) and has a maximum margin. SVM generates a model representing a tube with radius ε fitted to the data. A complete review on this method can be found in Smola and Schölkopf (2004). The power of the SVM resides in a particular mathematical element known as kernel. One of the most used kernel is the Gaussian Radial Basis (RBF) because almost every surface can be obtained with it (Christianini and Shawe-Taylor, 2000). One of the main parameters in a SVM is the “cost parameter” (C), which is a trade-off between the prediction error and the simplicity of the model. Gamma is the other hyper-parameter of SVM regarding the Gaussian function inside the RBF kernel. Performance of SVM is very sensitive to changes in this parameter. Tested values for hyper-parameter C were 0.001, 0.1, 1, 5, and 10 and for parameter Gamma 0.005, 0.05, 0.5, and 5. The “e1071” R package was used for the analyses (Meyer et al., 2019).

Genomic BLUP (GBLUP) was used as a reference predictive method, and it was implemented to assess predictive performance within dPB dataset (trn.1-tst.1) and to assess its performance for predicting average CB offspring performances from PB sires genotypes among the other scenarios. In all cases, the same outer training and testing datasets partitions than those used with SVM were used. The GBLUP is a genome enabled the best linear unbiased prediction model (VanRaden, 2008). GBLUP uses genomic relationships to estimate the breeding values of the individuals. The genomic relationship matrix was computed with the 46,610 SNPs available (VanRaden, 2008) and included all animals involved in each scenario. Variance components in each scenario were estimated using Gibbs2f90 software (Misztal, 1999). Single chains of 250,000 iterations were run by discarding the first 25,000. Samples of the parameters of interest were saved every 10 iterations. Then, for each scenario, predicted phenotypes in the corresponding folds were the BLUP solutions obtained with Blupf90 software (Misztal, 1999) using the previously estimated variance components.




RESULTS

Predictive performance of all SVM reached a maximum within the range of SNP subset sizes investigated, suggesting that increasing the SNP subset size beyond 2,000 features would not increase the model prediction performance for the dataset structure and characteristics of this study.


Prediction Performance of Individual Purebred Records


Figure 2 shows boxplots of the Spearman correlations between observed and predicted RFI and ADG records obtained from a 10-fold cross-validation in trn.1-tst.1 scenario with GBLUP and SVM with different SNP subsets. The median SC (IQR, in square brackets) between predicted and yet-to be observed PB records across testing sets obtained with GBLUP was 0.23 [0.04] for RFI and 0.28 [0.03] for ADG. The highest predictive performance obtained with SVM was 0.25–0.26 [0.03] for RFI with a subset of 500, 750, or 1,000 SNPs and 0.30 [0.05] with a subset of 500 SNPs for ADG. In both traits, the prediction performance was slightly higher with SVM combined with an appropriate SNP subset than with the standard GBLUP that used all available SNPs after quality control.
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FIGURE 2. Boxplots of the Spearman correlations between observed and predicted residual feed intake and daily gain at fattening records obtained with genomic BLUP (GBLUP) and support vector machine (SVM) using different subset sizes of single nucleotide polymorphisms (SNPs) as predictor variables in a 10-fold cross-validation for scenario trn.1-tst.1 (see Figure 1 for a description).




Prediction Performance of Average Crossbred Offspring Records

Prediction performances of several models fitted using different sources of information in the training set for predicting average CB offspring performances from PB sires genotypes are presented in this section. Figure 3 shows boxplots of the Spearman correlations between observed and predicted RFI and ADG records obtained in the tst-2 with SVM combined with increasing SNP subset sizes and GBLUP in the trn1.1-tst.2, trn.2-tst.2, and trn.3-tst.2 scenarios.
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FIGURE 3. Boxplots of the Spearman correlations between observed and predicted residual feed intake and daily gain at fattening records obtained with GBLUP and SVM using different subset sizes of SNPs as predictor variables in a k-fold cross-validation for scenario trn.1-tst.2 (upper panel), trn.2-tst.2 (middle panel), and trn.1-tst.2 (lower panel). See Figure 1 for scenario description. In scenario trn1.tst2, “IN” refers to the situation in which the sires have their own performance in the training set and “OUT” refers to the opposite situation.


The ability of the PB sire genotype to predict their average CB offspring performance when the SVM model was fitted using individual PB phenotypes and genotypes (trn.1-tst.2 scenario, upper panels Figure 3) substantially differed between the sires that appeared themselves in the trn.1 (i.e., their individual performance is included in trn.1) from those who did not. The number of sires that contributed to the model fitting in trn.1 with their own PB performance was on average (SD) across the 10-fold 120.6 (3.8) out of 257 sires available. For RFI, the highest predictive ability of CB offspring records of the sires having their own performance in the training set was obtained with SVM and 250 SNPs (0.22 [0.03]) then, increasing the number of SNPs reduced the predictive performance. For ADG, the highest SC median was obtained with SVM and 500, 1,000, or 1,500 SNPs (0.12 [0.05]), and then with 2000 SNPs, SC was reduced. With SVM, the highest predictive ability of average CB offspring records of the sires that did not have their own performance in the training was obtained with 250, 500, or 750 features for RFI (0.11 [0.03–0.06]), whereas it was null for ADG. GBLUP showed also no predictive ability for ADG for the “OUT of training sires” and very poor prediction ability for the “IN training sires” (0.10 [0.02]). However, for RFI, GBLUP showed the highest predictive ability of all models for the “OUT of training sires” (0.25 [0.07]), whereas predictive ability for the “IN training sires” was low. On average, the stability of the results was better for sires having individual records in the training sets than for un-recorded sires across models.

The ability of the PB sire genotype to predict their average CB offspring performance improved when model was fitted using the same target trait and features used for the predictions (trn.2-tst.2 scenario, middle panels Figure 3). The highest predictive ability was obtained with 500 or 750 SNPs for RFI (0.15 [0.09]) and with 1,000 SNPs for ADG (0.17 [0.11]). Predictive ability of GBLUP was lower than the obtained with the best SVM model for both traits: 0.08 [0.12] for RFI and 0.09 [0.11] for ADG. The stability of the predictions was low in this scenario, given the large IQR obtained for the SC values across testing sets and models in both traits, which can lead to quite good or quite bad predictions (SC ranging from −0.12 to 0.45 for RFI and from −0.23 to 0.48 for ADG depending on the testing set).

Finally, the ability of PB sire genotypes to predict their average CB offspring performance from models fitted with individual CB information (trn.3-tst.2) is presented in Figure 3 (lower panels). The highest predictive performance for RFI was obtained with GBLUP (0.29 [0.16]) followed by SVM with 1,000 features (0.19 [0.09]), whereas the highest for ADG was obtained with SVM with only 50 features (0.15 [0.09]). Prediction ability with GBLUP was of 0.10 [0.15] for ADG. Like in trn.2-tst.2 scenario, the interquartile ranges of the SC across testing sets in the trn.3-tst.2 scenario were large, showing the instability of the prediction obtained using these datasets (SC ranging from −0.16 to 0.47 for RFI and from −0.15 to 0.39 for ADG depending on the testing set).



Prediction Performance in the Youngest Generations

In this section, the prediction ability of the models used to predict average CB offspring performances from the youngest generations with the different scenarios trained on previous generations are presented.


Figure 4 shows boxplots of the Spearman correlations between observed and predicted RFI and ADG records obtained with the bootstrap sampling in the testing sets of trn.1OLD-tst.2YOUNG, trn.2OLD-tst.2YOUNG, and trn.3OLD-tst.2YOUNG scenarios with SVM using an increasing number of the most informative SNP as predictor variables and GBLUP. The presence of own individual PB phenotype and genotype in the training set improved the prediction ability of the PB sire genotype to predict its young CB offspring performance for ADG but not for RFI, where both groups of sires had similar prediction performances (“IN training sires” vs. “OUT of training sires” in trn.1OLD-tst.2YOUNG, Figure 4, upper panels). The highest median SC (IQR in brackets) between predicted and yet-to be observed average adjusted CB offspring records for the “IN training sires” obtained with SVM was 0.34 [0.21] and 0.36 [0.22] for RFI and ADG, respectively, with 50 SNPs. The highest median SC (IQR in square brackets) obtained for the “OUT of training sires” with SVM was of 0.33 [0.31] with 1,500 SNPs for RFI and 0.11 [0.31] with 500 SNPs for ADG. The median SC for the “OUT of training sires” obtained for GBLUP was 0.17 [0.26] and 0.30 [0.29] for RFI and ADG, respectively. The median SC for the “IN training sires” obtained for GBLUP was null for RFI and 0.12 [0.21] for ADG.
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FIGURE 4. Box plots for the bootstrap distribution of Spearman correlations between observed and predicted residual feed intake and daily gain at fattening records obtained with Genomic BLUP (GBLUP) and support vector machine (SVM) using different subset sizes of SNPs as predictor variables in different scenarios. Testing sets were all composed of animals from the last two generations while training sets contained information from animals belonging to all previous ones. See Figure 1 for scenario description. In scenario trn1.tst2, “IN” refers to the situation in which the sires have their own performance in the training set and “OUT” refers to the opposite situation.


The ability of the youngest PB sires to predict their average CB offspring performance with their genotypes when model was fitted using the same target trait and features from previous generations (trn.2OLD-tst.2YOUNG scenario, middle panels from Figure 4) was of 0.17 [0.20] and 0.18 [018] with SVM with 500 and 750 SNPs, for RFI and ADG, respectively. This scenario leads the poorest predictive CB offspring performance compared to the other two ones. GBLUP showed the same poor prediction ability: 0.06 [0.18] for RFI and 0.09 [0.22] for ADG.

The ability of the youngest PB sire genotypes to predict their average CB offspring performance from models fitted with individual CB information from previous generations (trn.3OLD-tst.2YOUNG, upper panels from Figure 4) was 0.28 [0.18] for RFI with SVM and 250 or 750 SNPs and 0.34 [0.15] for ADG with SVM with 500 SNPs. In this scenario, predictive performances were null with SVM combined with the smallest SNPs subset. Predictive performance of GBLUP was 0.34 [0.17] for RFI and 0.14 [0.18] for ADG.

Finally, a general trend was observed. The SVM models that showed the highest prediction ability and stability across the k-fold cross-validations in the three scenarios (i.e., prediction performance in tst.2 from model fitting in trn.1, trn.2., and trn3, Figure 3), also gave good predictions in the youngest generations (tst.2YOUNG) when models were fitted with data from older generations (trn.1 OLD, trn.2OLD, and trn3 OLD, Figure 4). However, the clearly higher prediction performance of CB offspring of the “IN training sires” compared to the “OUT of training sires” in the 10-fold-CV (trn.1-tst.2, Figure 3) was not clearly denoted when data was split according to OLD and YOUNG generations (trn.1OLD‐ tst.2OLD, Figure 4).




DISCUSSION

One of the major benefits of implementing GS in pig breeding is that elite boars in nucleus herds can be evaluated on traits recorded on animals that even do not bear any kinship with them. Traits related to CB performance, whose genetic improvement is crucial in pig crossbreeding schemes (Meuwissen et al., 2016), are among them. In this research, the use of different sources of information to predict CB performance to evaluate PB candidates for RFI and ADG with reduced SNP subsets was explored using SVM. Its prediction performance was compared to that of GBLUP, used as benchmark.

SVM models have been used in genome-wide prediction due to their ability to deal with potential non-linearity between features and target traits in animals and plants (Moser et al., 2009; Long et al., 2011; Montesinos-López et al., 2019). Our results indicate that SVM regression models were efficient in terms of prediction performance even when using a reduced subset of SNPs. This implies that low-density SNP panels could be cost-effective for breeding programs, since many animals could be genotyped at low cost, leading to a potential increase in selection intensity. In addition, feature selection (i.e., selection of a subset of predictor variables from the input data) reduces computation requirements and adverse effects on prediction performance of irrelevant variables due to over-fitting, which is especially an important problem in studies with high-dimensional/high-throughput data (Chandrashekar and Sahin, 2014). Feature selection was performed here in each outer training set using the rank correlation between the target trait and the SNP prediction. Selection of markers must be done using training set data only and must be repeated at each replication of the cross-validation when a new training dataset is encountered. If feature selection is done using the whole dataset before cross-validation, biased estimates of model accuracy are obtained (Hastie et al., 2009). In addition, when features have a high level of redundancy, different training samples can lead to different feature ranks (and, therefore, different subsets of features), which yield the same prediction accuracy. In order to design a low-density SNP panel for genetic selection or diagnostic, the stability of feature selection methods is important. The agreement of prediction models produced by an algorithm when trained on different training sets is known as “preferential stability” (Somol and Novovicova, 2010). Therefore, it is important to use a feature selection method that achieves a good prediction performance on independent data sets but that also produces a stable set of predictors, this understood as subsets that are less sensitive with respect to changes in the training set. The choice of method also depends on the available computational resources. It is desirable to evaluate feature selection methods for each specific problem/dataset because there is no group of methods that outperforms all other ones in every dataset (Somol and Novovicova, 2010; Haury et al., 2011; Bommert et al., 2020). In this study, rank correlation was chosen as metric based on his behavior when using data from scenario trn1.tst1.


Prediction Performance of Individual Purebred Records

Within PB animals (trn.1-tst.1 scenario), SVM with an optimal number of selected SNPs outperformed the predictive performance of the benchmark model (GBLUP) in the two traits analyzed (Figure 2). Phenotype prediction using GBLUP is performed through the use of genomic breeding values obtained from the additive combination of all SNP marker effects simultaneously (Meuwissen et al., 2001). In our study, GBLUP using all SNPs available was the benchmark model. Further research could be to test predictive performance of GBLUP using subsets of the most informative SNPs. The GBLUP has been successful for selection purposes in many breeding programs (de los Campos et al., 2013; Meuwissen et al., 2016). However, its parametric assumptions are not always met and other more flexible approaches may attain better predictive accuracies (Gianola et al., 2006). The genetic basis of target phenotypes is a major factor affecting differences in prediction accuracy between parametric and non-parametric methods. For instance, SVM and other non-parametric models outperformed parametric models when epistasis influences phenotypes in a simulation study (Howard et al., 2014). This is because non-parametric models can deal with interactions among predictor variables and non-linear relationships with the target variable, (but without explicitly modeling these interactions or functional forms). Nevertheless, using such methods for selection purposes in a classical framework is not straightforward. This is because coefficient estimates are difficult to interpret, precluding quantification of additive genetic variance. However, if these methods provide a good prediction performance due to their ability to capture genetic effects in the broad sense (including additive genetics effects), their potential in GS cannot be ignored.



Prediction Performance of Average Crossbred Offspring Records

In the scenarios used to test the ability to predict CB offspring performance from PB sire genotypes, results suggested that the best SVM models (in terms of prediction quality and stability of results) gave good predictions of average CB offspring records of young candidates using a model fitted with information from previous generations. However, predictive performance results in the “YOUNG/OLD scenarios” should be taken with caution because only a single realization was performed in each comparison. The bootstrap approach performed in the testing sets, provides only an approximate uncertainty measurement of prediction accuracy. Ideally, learners must be tested across several realizations of independent training/testing data sets.

Scenarios trn.1-tst.2 and trn.1OLD-tst.2YOUNG assessed the ability to predict CB performance in a context, where only PB information is used to fit the model. This is classical in pig crossbreeding schemes, where genetic improvement of CB traits is expected to occur as a correlated response to genetic improvement in PB traits. The ability of the PB sire genotype to predict average CB offspring performance when the prediction model was fitted using individual PB phenotypes and genotypes was low for both RFI and ADG (trn.1-tst.2 scenario, Figure 3). In this scenario, the PB genotype was used to predict a different response/target trait in the training and in the testing datasets (individual phenotype vs. average CB progeny phenotype). Thus, predictions obtained in tst.2 somehow reflect that genetic differences within a PB line do not produce similar changes in the CB population, as estimated correlations between PB and CB traits suggested (Wientjes and Calus, 2017). However, prediction of CB offspring performance was systematically better for sires that had their own record in the training set (“IN training” sires), than for sires lacking records in the training set (“OUT of training” sires), where predictions were very poor. The best SVM model outperformed prediction ability of GBLUP except for predicting “OUT of training” sires CB performances were a quite high an unexpected predictive accuracy was found for RFI using GBLUP. Unfortunately, we cannot find a suitable explanation for the higher predictive performance for the “OUT of training” sires with respect to the “IN training sires” for RFI. We would expect that sires recorded in the training would get better predictions of their CB offspring in the testing set, as it has been the tendency for all the SVM models and for GBLUP in the other trait. A PCA biplot with the two first principal components of the G matrix did not reveal any hidden population structure involving trn1 and IN and OUT of training tst2 individuals, that could explain this result (not shown).

When evaluating the models under more realistic conditions of selection (trn.1OLD-trn.2YOUNG, Figure 4), predictions of CB performance of the “IN training sires” were improved for ADG, while remaining of similar magnitude for RFI. The very poor predictions achieved for the young “OUT of training” sires suggests that the strategy to evaluate PB lines for CB performance that leads to the shortest generation interval and reduced genotyping efforts is clearly far from being feasible for ADG. However, it could be an option for improving RFI, because moderate prediction performances were obtained either for the “IN training” or the “OUT of training” YOUNG sires. Nevertheless, when the own individual performance of the young PB sire was included in the data used to fit the model, (which reduces the response to selection per time units) an acceptable but low prediction quality would be attained in its yet-to-be observed CB offspring (“IN training sires” from trn.1OLD-tst.2YOUNG, Figure 4), specially for ADG. Therefore, candidates for selection can be evaluated for their yet-to-be observed CB offspring performance right after their own RFI and ADG performances are available. This is of interest for traits recorded in selection candidates that are usually evaluated at the end of the fattening period (at about 160 days of age, Tribout et al., 2013), such as RFI and ADG. This implies that the evaluation for CB performance would not require maintaining costs of the candidates until they would have progeny CB records and candidates could be evaluated for both PB and CB performance simultaneously, which makes possible to include CB traits in selection decisions of the PB lines. However, it is important to note that the accuracy of prediction obtained for the “IN training sires” is probably the result of genetic relationships captured by the marker instead of improved accuracy due to linkage disequilibrium between the genes and the markers, as shown by Habier et al. (2007). This could explain the low prediction accuracy obtained when individuals in the testing set were not directly related with individuals in the training set. Habier et al. (2007) recommended consideration of the accuracy of predictions from several generations after marker estimation, and not only from a single generation if the objective is to make predictions over some generations after estimation of marker effects. No substantial differences in prediction ability were encountered between GBLUP and SVM models for most of the cases evaluated in trn.1OLD-tst.2YOUNG. However, GBLUP gave better prediction ability for predicting ADG offspring records of “OUT of training” young PB sires than the best SVM model.

In the presence of genotype by environment and genotype × genotype interactions, PB performance can be a poor predictor of CB offspring performance, so the use of a CB population as training dataset is advisable (Dekkers, 2007; Zeng et al., 2013; Esfandyari et al., 2015, 2016). Thus, another strategy would be to have a reference population including genotyped and phenotyped CB individuals to fit the model and then to evaluate PB candidates for their yet-to-be observed CB offspring performance using their own genotypes. This approach was assessed in trn.3-tst.2 scenario, which leads to a prediction quality similar to the best situation in trn1.tst2. Prediction of average CB offspring performance of the youngest PB sire using their own genotypes with the best models fitted with individual CB information from previous generations (trn.3OLD-tst.2YOUNG) was good and close in magnitude to that obtained for the “IN training sires” using PB data for training (trn.1OLD-tst.2YOUNG), specially using GBLUP. This means that with a CB reference population for model fitting, PB candidates can be evaluated for CB performance at an early age, right after being genotyped. This strategy would reduce generation interval, but at the cost of also genotyping CB individuals. Alternatively, the reference population could be composed of a mixture of PB and CB animals, in order to get a more representative collection of genetic effects and interactions. Other strategy could be implementing a multi-label prediction model jointly considering PB and CB information. Exploring such strategies is a subject for further research. In a simulation study, Esfandyari et al. (2016) concluded that training a parametric GS model accounting for dominance effects using CB data led to greater phenotypic response at the CB level compared to training the model on PB lines.

The idea behind scenario trn.2-tst.2 was to fit a prediction model using the same genotype and phenotype information than what was intended to be predicted on PB candidates, assuming that a phenotype expressed in PB animals was not necessarily under the same gene action as a phenotype expressed in CB animals. This scenario requires progeny records from the PB sires available in the training dataset, lengthening the generation interval. The resulting prediction ability with SVM models, although still low, was slightly better than the one obtained with the models fitted with trn.1 (trn.2-tst.2 vs. trn.1-tst.2, Figure 3). This could be due to the fact that genes or effects involved in growth rate and feed efficiency differ between PB and CB populations, in which using same information for model fitting and prediction is advisable. The instability encountered in the predictions of trn2.tst.2 scenario can be explained by the small amount of data available in this dataset (i.e., only 257 average CB records were available). This problem was not compensated by the better predictive performance expected for an average than for a single data point. It would be expected that averaging CB offspring records per sire would average out dam effects and other environmental effects not accounted for in the data pre-adjustment. Prediction accuracy of the youngest PB sire generations was very poor with all models, possibly because a low level of relatedness between individuals of the training and testing sets (Habier et al., 2007). SVM models outperformed the prediction performance of GBLUP.

Our research was mostly focused in finding a prediction model suitable for improving a terminal sire line for growing-finisher pigs CB performance, with effects from maternal lines (i.e., effects of CB dams) ignored. To our knowledge, this is the first evaluation made of a non-parametric approach for predicting CB phenotypes from SNP genotypes. In a two‐ or three-way crosses context, the advantage of using a non-parametric over a parametric approach is that the first does not need to explicitly specify non-additive genetic effects (such as dominance and epistasis) nor to account for potential non-linear relationships between genotypes and phenotypes. We could show that the tested models could outperform the benchmark GBLUP in some of the scenarios explored, opening promising future axes of research to refine the use of these methodologies in crossbreeding genomic evaluations.




CONCLUSION

SVM is an efficient method for predicting average RFI and ADG CB performances from PB sire genotypes using a selected subset of SNPs (250–1,000). This makes SVM appealing for select candidates to selection of PB sire lines for improved CB performance with low-density SNP chip panels. Given the predictive performance of SVM in the scenarios explored, selection candidates could be evaluated for CB performance after collection of their own RFI and ADG performances in a classical pig crossbreeding scheme framework or sooner right after being genotyped using a reference population of CB animals. Genetic progress and economic impact of these approaches need to be addressed.
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Crossbreeding in livestock can be used to increase genetic diversity. The resulting increase in variability is related to the heterozygosity of the crossbred animal. The evolution of diversity during crossbreeding can be assessed using genomic data. The objective of this study was to describe patterns of runs of homozygosity (ROH) in animals resulting from three-way crossbreeding, from parental pure lines, and in their crossbred offspring. The crossbreeding scheme consisted of a first crossbreeding Pietrain boars and Large White sows, after which the offspring of the Pietrain × Large White were crossed with Duroc boars. The offspring of the second crossbreeding are called G0, the offspring of G0 boars and G0 sows are called G1. All the animals were genotyped using the Illumina SNP60 porcine chip. After filtering, analyses were performed with 2,336 animals and 48,579 autosomal single nucleotide polymorphism (SNP). The mean ROH-based inbreeding coefficients were shown to be 0.27 ± 0.05, 0.23 ± 0.04, and 0.26 ± 0.04 for Duroc, Large White, and Pietrain, respectively. ROH were detected in the Pietrain × Large White crossbred but the homozygous segments were fewer and smaller than in their parents. Similar results were obtained in the G0 crossbred. However, in the G1 crossbreds the number and the size of ROH were higher than in G0 parents. Similar ROH hotspots were detected on SSC1, SSC4, SSC7, SSC9, SSC13, SSC14, and SSC15 in both G0 and G1 animals. Long ROH (>16 Mb) were observed in G1 animals, suggesting regions with low recombination rates. The conservation of these homozygous segments in the three crossbred populations means that some haplotypes were shared between parental breeds. Gene annotation in ROH hotspots in G0 animals identified genes related to production traits including carcass composition and reproduction. These findings advance our understanding of how to manage genetic diversity in crossbred populations.

Keywords: runs of homozygosity, genomic inbreeding, crossbreeding, swine, genomic diversity


1. INTRODUCTION

Crossbreeding exploits genetic diversity between breeds with different objectives including the contribution of new genes, the heterosis effect, complementarity between production traits, and increased genetic variability (Bidanel, 1992). Increase in genetic variability in crossbred animals is related to their heterozygous status. Crossbred animals become heterozygous for all loci when parental breeds are homozygous for a different allele. When crossbreeding is used to create a new synthetic line, two or more parental breeds can be crossed. Crossbred offspring can be mated among themselves at each generation. After several generations, the animals will become genetically homogeneous and this population can be considered a new line. One important point is the management of genetic diversity during this process. In this context, characterizing genetic diversity with pedigree data is impossible because genealogical relationships among parental breeds used in the crossbreeding cannot be established. However, genomic data can be analyzed to overcome the problem (Zhang et al., 2019).

Genomic-based inbreeding coefficients can be computed to provide information about diversity in a population. In a recent study, Schäler et al. (2020) distinguished between four different approaches to calculate the coefficients: variance of additive genetic values, single nucleotide polymorphism (SNP) homozygosity, uniting gametes, and runs of homozygosity (ROH). The first three coefficients depend on estimating allele frequencies in the population, contrary to ROH-based inbreeding coefficients. ROH-based inbreeding coefficients are of real interest in crossbred populations with high levels of heterozygosity, because inbreeding coefficients calculated using intermediate allele frequencies are close or equal to 0 (Zhang et al., 2015).

In a diploid genome, ROH are continuous stretches of homozygous genotypes, and their quantification reflects autozygosity (Ferenčaković et al., 2013; Peripolli et al., 2017). Autozygosity occurs when the two parents of an individual have at least one common ancestor. ROH can be influenced by genetic drift, genetic bottlenecks, mating between relatives, or intensive selection (Peripolli et al., 2017). ROH are not distributed evenly along the genome. Pemberton et al. (2012) defined two types of regions in terms of ROH distribution: hotspots, with a high frequency of ROH, and coldspots, with a low frequency. Hotspots show a loss of diversity compared to coldspots. In pig, Bosse et al. (2012) showed that ROH distribution can be influenced by demographic phenomena and the chromosomal recombination landscape. An ROH gene content analysis in the same study showed that only a few ROH are under positive selection.

The study of ROH in crossbred animals provides information on the genomic similarities between parental lines. ROH shared between two porcine breeds has already been demonstrated in Large White and Landrace pigs (Zanella et al., 2016). Persistence of ROH in crossbred pigs has been reported in real animals in two-way crossbreeding (Landrace × Large White) and in simulated animals in three-way crossbreeding [Duroc × (Landrace × Large White)] (Howard et al., 2016; Gómez Raya et al., 2019). These results indicate that similar haplotypes were selected in porcine breeds and can persist in crossbred offspring.

The objective of this study was to analyze ROH patterns during three-way crossbreeding aimed at creating a new porcine line. ROH were searched for individuals resulting from three parental pure breeds and their offspring over two generations in order to characterize and compare autozygosity among pure breeds, and to monitor the modification of ROH in the crossbreed.



2. MATERIALS AND METHODS


2.1. Genotyped Animals

Genomic data were obtained from the breeding company NUCLEUS (Le Rheu, France) from a three-way crossbreeding protocol (Figure 1). Animals from three pure lines were genotyped: 80 Pietrain (PI) boars, 240 Large White (LW) sows, and 89 Duroc (DRC) boars. Crossbred animals were also genotyped: Pietrain × Large White crossbred offspring (442 PLW sows), Duroc × PLW crossbred offspring (69 G0 boars and 471 G0 sows) and G0 × G0 crossbred offspring (472 G1 boars and 473 G1 sows). Genotyping was carried out by the Labogena laboratory using the Illumina Porcine Chip, Porc_XT_60K. We used a reference map based on the Sus scrofa 11.1 pig genome assembly. Quality control of genotypes was performed with PLINK v1.9 software (Chang et al., 2015). Only markers on autosomes were kept. Markers with more than 5% of missing genotypes were discarded. We checked that all the animals had more than 90% genotyped markers. No minor allele frequency (MAF) pruning was used here according to Meyermans et al. (2020). After quality control, 2,336 animals and 48,579 SNP were retained for analysis.


[image: Figure 1]
FIGURE 1. Crossbreeding scheme. Squares represent males, circles represent females, and diamonds represent unspecified gender. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.




2.2. Population Structure Analysis

First, a multidimensional scaling analysis (MDS) was conducted to visualize the genetic distances between animals and the structure of the pig population using PLINK v1.9 software. After this we computed Cockerham and Weir (1984) FST analysis with PLINK v1.9 software to quantify genetic differentiation among pig groups. Finally, an admixture analysis was performed with ADMIXTURE v1.3.0 software (Alexander et al., 2009). Here, the number of genetic populations considered was 3 (for K parameter), the number of pure breeds involved in the crossbreeding.



2.3. Detection of Runs of Homozygosity

ROH were detected with PLINK v1.9 software. First, to choose the minimum size to define an ROH (in terms of SNP and kb) and the minimum SNP density in an ROH, we selected a range of minimum numbers of SNP and minimum size in kb according to Peripolli et al. (2017). Tests of parental populations (Pietrain and Large White) were then performed to choose the values that neither underestimated nor overestimated the number of ROH detected (Ganteil et al., 2020). The values selected to define an ROH were 30 SNP and 1,000 kb and the minimum density was set at one SNP per 100 kb. Regarding the parameters for the number of SNP in the sliding window, Curik et al. (2014) recommended using a sliding window equal or larger than the minimum size used to define an ROH. We thus decided to set the sliding window at 30 SNP. We allowed one missing SNP per sliding window. To obtain strictly homozygous ROH, no heterozygous SNP were allowed per sliding window. All the other parameters available in PLINK that are not mentioned above were default settings.

The ROH were also divided into three classes based on length: 1–8, 8–16, and >16 Mb corresponding to small, medium, and large ROH, respectively.



2.4. Estimation of ROH-Based Inbreeding

Genomic analyses after detection of ROH were performed with the R package DetectRUNS (Biscarini et al., 2019). We calculated the ROH-based inbreeding coefficient (FROH) for each animal as:

[image: image]

where ∑LROH is the sum of the length of all the ROH detected in an animal in bp, and Lautosomes is the total length of the autosomes covered by markers in bp.

The most frequent SNP in ROH are ROH hotspots. To define the ROH hotspots, we first computed the frequency at which each SNP is detected in an ROH in each pure breed and crossbred population. Then, using the method proposed by Purfield et al. (2017), we selected the top 1% of SNP observed in an ROH in each pure breed and crossbred population and adjacent SNP above this threshold were merged into genomic regions corresponding to ROH hotspots.



2.5. Genomic Annotation

Genomic annotation was performed in G0 crossbreds, the first generation of the new line. In this generation, ROH hotspots mean frequent haplotype sharing between Pietrain, Large White, and Duroc. Genes in ROH hotspots in G0 animals were extracted using Biomart on the Ensembl website (https://www.ensembl.org/biomart/martview/fbef5263e7166fc734235c9325399e4d, version 100 released in April 2020). As dataset, we used the current pig genome assembly (build 11.1), and the regions of interest on the chromosomes were used as a filter to extract gene symbols.




3. RESULTS


3.1. Population Genetic Structure

Figure 2 shows the genetic distances between each animal. The three founder populations, Pietrain, Large White and Duroc, were well-separated and distant populations. The crossbred PLW are halfway between Pietrain and Large White populations. This result is consistent with the chromosome composition of PLW: half Pietrain and half Large White. The first axis separates the Pietrain, Large White, and PLW populations from Duroc. The G0 and G1 crossbred are plotted in the center of the MDS plot halfway between Duroc and PLW. G0 animals were more grouped than G1 animals, which were more spread out in the center of the MDS plot. This result highlights random segregation and recombination of chromosomes during meiosis. Thus, G1 animals all inherited in different proportions of Duroc, Pietrain, and Large White chromosomal segments. In addition, new original combinations of alleles from the 3 parental breeds are present in this generation. These results illustrate a generation of genetic diversity between G0 and G1 animals.


[image: Figure 2]
FIGURE 2. Population structure shown in a multidimensional scaling analysis (MDS) plot of all animals. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.


In Figure 3, we presented the pairwise Weir and Cockerham' FST values between all purebred and crossbred populations. Among the pure breeds, we observed the highest differentiation coefficients between Duroc and Pietrain and Duroc and Large White (0.201 and 0.198, respectively). Pietrain and Large White are less genetically differentiated with a FST value of 0.159. Between crossbred offspring and their parental pure breeds, we observed FST values ranged between 0.044 and 0.09. Concerning G0 and G1 crossbred, they have the lowest observed FST value.


[image: Figure 3]
FIGURE 3. Weir and Cockerham FST heatmap for all groups. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.


With the admixture analysis, we can validate the crossbreeding scheme (Figure 4). We observed the admixture of the crossbred populations based on 3 different genetic origins. PLW animals were half Pietrain and half Large White. After, G0 and G1 animals presented similar profiles of admixture, approximately a quarter Pietrain, a quarter Large White, and a half Duroc.


[image: Figure 4]
FIGURE 4. Admixture analysis of each population from the three-way crossbreeding. The number of clusters was set to K = 3. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.




3.2. ROH Patterns

We observed different ROH patterns among the 3 pure breeds and 3 crossbred populations studied (Figure 5). The three pure breeds had both the greater cumulative ROH length and more ROH than the crossbred animal. ROH persisted in the three crossbred populations due to haplotypes shared between parental breeds. The most ROH and the longest cumulative size were observed in Duroc animals. Pietrain and Large White animals had similar numbers of ROH, whereas Pietrain tended to have higher cumulative length, which means that these animals had larger ROH than Large White. G1 animals had the most ROH and the longest cumulative size of ROH of the three crossbred populations, and G0 animals had the smallest number of ROH and the lowest cumulative size. PLW animals were between the two.


[image: Figure 5]
FIGURE 5. Individual pattern of runs of homozygosity (ROH). The cumulative length of ROH is plotted against the number of ROH detected for each animal. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.


We observed the mean length of ROH detected per chromosome for each pig population (Figure 6). Pure breeds presented the highest mean length of ROH along the chromosomes. Pietrain animals had the highest observed mean length of ROH in particular for SSC6, SSC8, and SSC15 compared to other groups. For crossbred animals, in all chromosomes, G1 had a mean length of ROH greater than G0.


[image: Figure 6]
FIGURE 6. Mean length of runs of homozygosity (ROH) detected per chromosome and group. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.


Figure 7 shows the ROH-based inbreeding coefficient (FROH) for each pure breed and crossbred population. As expected, average FROH was lower in the crossbred individuals (PLW, G0, and G1) than in the pure breeds (PI, LW, and DRC). The average FROH for each group was 0.27 ± 0.05, 0.26 ± 0.04, 0.23 ± 0.04, 0.13 ± 0.02, 0.10 ± 0.01, and 0.05 ± 0.01 for Duroc, Pietrain, Large White, G1, PLW, and G0, respectively.


[image: Figure 7]
FIGURE 7. Runs of homozygosity (ROH)-based inbreeding coefficient (FROH) for each genetic type. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.




3.3. ROH Hotspots

Figure 8 shows the frequency of a single SNP detected inside an ROH along the genome. The exact genomic position of ROH hotspots are reported in Supplementary Table 1. The occurrences of ROH varied among the three pure breeds along the genome. ROH hotspots were identified in Duroc animals on SSC2, SSC3, SSC9, SSC13, SSC14, and SSC15, and in Pietrain animals on SSC6 and SSC8. Finally, in Large White animals, ROH hotspots were identified on SSC1, SSC3, SSC4, SSC6, SSC7, SSC13, SSC14, and SSC17. Some SNP were located in ROH particularly on SSC8, in all Pietrain animals. Among crossbred animals, PLW animals presented ROH hotspots on SSC1, SSC3, SSC4, SSC6, SSC8, and SSC14. G0 and G1 animals had ROH hotspots located close together, especially on SSC1, SSC4, SSC7, SSC9, SSC13, SSC14, and SSC15. These results highlight regions of the genome where there is high probability of haplotype sharing between the three parental breeds.


[image: Figure 8]
FIGURE 8. Manhattan plots of the frequency of SNP detected inside a runs of homozygosity (ROH). The horizontal line indicates the cutoff level for ROH hotspot detection in each genetic group. It corresponds to the top 1% SNP most frequently observed in an ROH in each pure breed and crossbred population. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.




3.4. ROH Size Categories

We divided the homozygous segments into three size classes: small, medium, and large (Figure 9). The small category was the most widely represented across the pure breeds and crossbred populations. The highest frequency of small ROH was observed in the G0 population and the lowest in the Pietrain population. Minimum frequencies of the two other size classes were observed in G0. The three pure breeds showed the highest level of ROH in the medium and large classes. Among the three crossbred populations, G1 animals had the highest proportion of medium and large ROH.


[image: Figure 9]
FIGURE 9. Frequency of runs of homozygosity (ROH) in the three size classes per genetic type. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.


To analyze the distribution of large ROH in more detail, we only used the frequency of SNP detected in large ROH (Figure 10). In the Pietrain breed, we detected two frequent chromosomal regions with large ROH on SSC6 and SSC8 shared between more than 60 and 80% of animals, respectively. In Large White, large ROH were located on SSC1 and SSC13, and in Duroc animals on SSC9. Like Pietrain, the PLW crossbred had long ROH located on SSC8. G0 had no chromosomal regions with frequent large ROH, but in their offspring (G1) we observed a slight increase in large ROH on many chromosomes, for example, SSC1, SSC6, SSC8, SSC9, SSC13, SSC14, and SSC15.


[image: Figure 10]
FIGURE 10. Manhattan plots of the frequency of SNP detected inside large runs of homozygosity (ROH). DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.




3.5. Relation Between ROH and Gene Annotation

Among the ROH hotspots in G0 animals (Figure 8), we first selected hotspots larger than 1 Mb. Thereafter, we kept only ROH hotspots with an average frequency of detection of SNP in ROH greater than 0.40. Seven ROH hotspots were kept on SSC1, SSC4, SSC13, SSC14, and SSC15. The size of the regions ranged from 1.45 Mb (SSC14) to 7.26 Mb (SSC1) (Table 1). We extracted the list of genes detected in the ROH hotspots and we reviewed the literature on these genes to find information that could be related to pig production. Thus, we identified 24 genes of interest in these hotspots. They were associated with production traits that could have been under similar selection in the three founder breeds.


Table 1. Runs of homozygosity (ROH) hotspots in G0 and putative genes of interest under similar selection in the three founder breeds.

[image: Table 1]




4. DISCUSSION

To our knowledge, this is the first ROH characterization in a three-way crossbreeding program with the aim of creating a new synthetic pig line. The objective of a new line is to combine the qualities of several parental breeds in a new synthetic breed. In this context, managing diversity is a major constraint to long-term genetic progress. Studying ROH during the creation of a new line is a useful way to characterize the existing diversity in founder pure breeds and the resulting diversity in the crossbred animals in the new line.


4.1. Autozygosity in the Purebred

The three pure breeds had relatively similar FROH. Other authors have already compared ROH patterns of different breeds. These studies are difficult to compare because population samples differ in origin and size, and the parameters used for the detection of ROH may greatly influence the results (Meyermans et al., 2020). However, we observed large ROH in pure lines, as already described in other studies (Bosse et al., 2015; Howard et al., 2016; Gorssen et al., 2019). Large ROH correspond to recent inbreeding (Curik et al., 2014), which is expected to be more harmful than ancient inbreeding, because selection has had time to reduce the frequency of deleterious alleles that are purged over time (Doekes et al., 2019).

ROH hotspots were not uniformly distributed along the genome across the three pure breeds. Consequently, ROH hotspots in the genome may highlight signatures of selection in pure breeds. Four ROH hotspots were detected in the central region of SSC8 in Pietrain. Moreover, this region contained large ROH (≥16 Mb) as already highlighted in other studies on Pietrain populations (Bosse et al., 2015; Gorssen et al., 2019). One of hypotheses proposed by these authors is the presence of a selection signature in this region. We showed that Large White shared similar haplotypes in SSC8 with Pietrain because we detected ROH in PLW animals. But this region seems less fixed in Large White than in Pietrain. Another hypothesis to explain this ROH pattern could be limited recombination in this region, which is close to the center of SSC8. In pig, this chromosome is metacentric (Raudsepp and Chowdhary, 2011). Previous studies showed that regions with high chromosomal recombination rates tend to be close to telomeres, and close correlations between ROH distribution or size with recombinations and GC content have already been observed in pig (Bosse et al., 2012; Tortereau et al., 2012). The regions with low recombination rates on SSC8 identified by Tortereau et al. (2012) include almost all the ROH hotspots detected in our Pietrain population. However, these low recombination rates did not generate ROH hotspots in Duroc and Large White. More information about the biological functions of the genes located in this region is needed to better understand this specific ROH pattern in Pietrain. However, ROH hotspots cover a large chromosomal region on SSC8 making gene detection more difficult to interpret. Studying the evolution of these hotspots with crossbreeding between Pietrain and other porcine breeds would be a good way to monitor the evolution of ROH in the second generation and to analyze recombination events. In fact, the persistence of large ROH segments in crossbred offspring suggests the absence of recombination in these ROH (Bosse et al., 2012).



4.2. Autozygosity in the Three Crossbred Populations

ROH were also detected in crossbred individuals. Our results confirm those of previous studies of the persistence of ROH in crossbred animals (Howard et al., 2016; Gómez Raya et al., 2019), where the existence of ROH is explained by haplotype sharing between parental breeds. PLW animals had a higher FROH than G0 animals. Moreover, the G0 population presented the lowest level of autozygosity among the crossbred. As expected, the maximum diversity during the constitution of this new line appeared to be achieved in this generation. In PLW, ROH are generated by haplotype sharing between Pietrain and Large White and in G0 by haplotype sharing between Pietrain and Duroc or Large White and Duroc. Gómez Raya et al. (2019) showed that the correlation between the probability of autozygosity and the genetic differentiation (FST) of breeds was negative. Consequently, Pietrain and Large White may be genetically closer than Pietrain and Duroc or Large White and Duroc. To support this hypothesis, we analyzed FST in our three pure breeds. The differentiation between Duroc and Pietrain or Duroc and Large White was higher than that between Pietrain and Large White. These results are consistent with the FST obtained by Gorssen et al. (2019). Moreover, genetic distance between these three breeds has already been analyzed (Buchanan and Stalder, 2011) and the phylogenetic tree showed that Pietrain and Large White are close, whereas Duroc is far away, thus supporting FST results.

Admixture analysis showed similar admixture profiles between G0 and G1. Variations in the proportions of the three pure breed genome are due to random segregation of chromosomes and chromosomal recombinations during the meiosis. After this, MDS plot showed that the G1 population was more dispersed than the G0 population.This results suggests the generation of more diversity in G1 animals than in G0, but, the ROH patterns in G1 animals revealed an increase in autozygosity compared to G0 animals. In G1 animals, ROH have two different origins: either similar breed-specific haplotypes or haplotypes shared between breeds. The ROH patterns observed in G1 animals suggest that random segregation of chromosomes and recombinations during meiosis not only contribute to autozygosity but also to heterozygosity. Indeed, ROH size distribution differs in G1 and pure breeds, we observed fewer large and medium ROH in G1 than in pure breeds due to recombinations. This observation thus confirms the generation of genetic variability at G1.

G1 animals also had more large and medium size ROH than G0 animals. This result shows that some large haplotypes were not homozygous in generation G0 but became homozygous in generation G1 with no breakage due to recombinations. Studying the evolution of these ROH segments in the next generation of the new line would help understand the distribution of recombination events along the genome and would also be interesting with the aim of maximizing diversity in a newly created line.

Our study showed the interest of using ROH to describe diversity in a crossbred population. For the management of diversity, the concept of ROH can be extended to calculate coancestry. de Cara et al. (2013) suggested a method to estimate chromosomal segments shared between two individuals because these segments may be causing ROH in the offspring. So, a mating strategy based on this method limits the generation of ROH in the offspring. Genetic management simulations performed with this method appear to effectively maintain diversity and fitness compared to methods based on marker-by-marker coancestry or genealogical coancestry (de Cara et al., 2013; Bosse et al., 2015). This method could be associated with a monitoring of ROH in the future generations of the new line. Furthermore, when creating a new line, controlling the percentage of allele origin from the founder pure breeds would be a good way to preserve the allele specificity of the different founders. Different methods have been developed to meet this objective, including the breed origin to allele (BOA) approach, which assigns BOA in crossbred animals (Vandenplas et al., 2016).

The next objective of this new line will be the development of a breeding program. But an important question here is when to start selection? Indeed, the crossbred population must be sufficiently mixed and genetically homogeneous before starting the selection. Some authors suggested starting selection after 2 or 3 generations (Legault et al., 1996), but this could be relevant with genomic data to provide information justifying the choice of the starting generation for selection.



4.3. Gene Annotation Analysis

In animal breeding populations, selection can influence the fixing and extension of ROH (Kim et al., 2013). The aim of our analysis of gene content in ROH hotspots in G0 animals was to investigate the potential effect of a similar selection that fixed the haplotypes in our three founder breeds and could generate ROH in G0 individuals.

The ROH hotspot on SSC1 carries four interesting genes. First, IGF1R (insulin like growth factor 1 receptor) was detected. Pierzchała et al. (2012) showed that the gene expression in the liver of pigs of different breeds was significantly correlated with carcass composition traits, negatively with fat content and positively with meat content. The gene MEF2A (myocyte enhancer factor 2A) was identified in a new model of regulation of myogenesis in pigs in which it is hypothesized to play an important role in the balance between intramuscular adipogenesis and myogenesis (Zhao et al., 2011). Then, we detected two genes, ALDH1A3 (aldehyde dehydrogenase 1 family member A3) and LRRK1 (leucine-rich repeat kinase 1). When Suwannasing et al. (2018) conducted a GWAS in Large White for different reproduction traits, they found these two genes significantly associated with all studied traits.

On SSC4, we identified an ROH hotspot in a region close to the ROH hotspots identified by Howard et al. (2016) and Szmatoła et al. (2020). In this region, we detected genes MMP16 (matrix metallopeptidase 16), CNGB3 (cyclic nucleotide gated channel subunit beta 3), CPNE3 (Copine 3), RMDN1 (regulator of microtubule dynamics 1), WWP1 (WW domain containing E3 ubiquitin protein ligase 1), SLC7A13 (solute carrier family 7 member 13), and ATP6V0D2 (ATPase H+ transporting V0 subunit d2) like in the study of Szmatoła et al. (2020). Moreover, this region contains many QTL referenced in PigQTLdb associated with production and meat carcass traits (Hu et al., 2019).

PLOD2 (procollagen-lysine,2-oxoglutarate 5-dioxygenase 2) on SSC13 codes for a membrane-bound enzyme involved in the formation of extracellular matrix. Four mi-RNAs involved in the inhibition of PLOD2 are differentially expressed in animals with different muscle development profiles (Ropka-Molik et al., 2018).

On SSC14, in the first ROH hotspot we detected the gene ALOX5 (arachidonate 5-lipoxygenase). Mehrabian et al. (2008) found this gene to be involved in adiposity-related metabolic pathways. In a second ROH hotspot on SSC14, we identified two genes linked to reproductive traits, LIF (LIF interleukin 6 family cytokine) and GAL3ST1 (galactose-3-O-sulfotransferase 1). LIF has two previously studied polymorphisms, one of which had a significant additive effect on number of piglets born alive in German Large White (Spötter et al., 2009). GAL3ST1 was detected in an ROH hotspot in Large White (Shi et al., 2020) and is hypothesized to be involved in spermatogenesis (Suzuki et al., 2010). In the same genomic region, we also found INPP5J (inositol polyphosphate-5-phosphatase J) and PLA2G3 (phospholipase A2 group III), which are associated with two type of fatty acids (docosahexaenoic acid and n-3 polyunsaturated fatty acid) in Large White (Zappaterra et al., 2018).

The four next genes were detected on the first ROH hotspot on SSC15. XIRP2 (Xin actin binding repeat containing 2) is involved in the organization of the actin cytoskeleton. In a study comparing transcriptomics data of muscular tissues in Polish Landrace and in Pulawska, a local breed, a mutation in XIRP2 was detected in Polish Landrace animals but absent in Pulawska animals (Piórkowska et al., 2017). These authors hypothesized that this mutation could cause finer microtubules in Polish Landrace and could be linked to the lesser meat quality observed in the Polish Landrace compared to the local breed. B3GALT1 (beta-1,3-galactosyltransferase 1) is a membrane-bound glycoprotein. Sun et al. (2016) observed less expression of B3GALT1 in the liver of animals fed with high fiber diet compared with in the liver of animals fed with a low fiber diet. STK39 (serine/threonine kinase 39) is an actor of the cellular stress response signaling pathway. In a comparative study between human and porcine species, STK39 was reported to be significantly associated with subscapular skinfold thickness in human and back-fat thickness in pig (Kim et al., 2012). CERS6 (ceramide synthase 6) is involved in sphingolipids synthesis. In mice, knock-out of the CERS6 gene provided protection against obesity (Hammerschmidt et al., 2019). Finally, we detected the gene NCKAP1 (NCK-associated protein 1) in a second ROH hotspot on SSC15. Hamill et al. (2012) compared transcriptomic profiles of pork meat of varying tenderness and found NCKAP1 overexpressed in tender meat.

We detected several genes in ROH hotspots in G0 animals. Gene annotation is difficult particularly in large ROH hotspots with a large number of genes, and sometimes no annotation is available. However, we were able to distinguish interesting genomic regions on SSC4, SSC14, or SSC15, which could contain genes under similar selection in the three founder breeds. It could be relevant to characterize with more precision these genes to analyze if some polymorphisms of interest could have been selected.




5. CONCLUSIONS

The maximization of diversity during the first generations of a new synthetic line is a prerequisite for long-term genetic progress. We have shown that ROH detection is an interesting tool to characterize inbreeding in crossbred animals. ROH persisted in crossbred offspring of a three-way crossbreeding program over two generations. This phenomenon can be explained by haplotype sharing between the three parental breeds. We have observed an increase in genetic diversity between G0 and G1 with an analysis SNP by SNP but we have observed an increase of ROH inbreeding too. This result suggests that it could be interesting to continue the characterization of ROH in next generations of the new line to manage genetic diversity.
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In this study, we evaluated an admixed South African Simbra crossbred population, as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to understand their genetic architecture and detect genomic regions showing signatures of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K). Genomic structure analysis confirmed that the South African Simbra cattle have an admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra genome maintains favorable traits from both breeds. Genomic regions that have been targeted by selection were detected using the linkage disequilibrium-based methods iHS and Rsb. These analyses identified 10 candidate regions that are potentially under strong positive selection, containing genes implicated in cattle health and production (e.g., TRIM63, KCNA10, NCAM1, SMIM5, MIER3, and SLC24A4). These adaptive alleles likely contribute to the biological and cellular functions determining phenotype in the Simbra hybrid cattle breed. Our data suggested that these alleles were introgressed from the breed's original indicine and taurine ancestors. The Simbra breed thus possesses derived parental alleles that combine the superior traits of the founder Brahman and Simmental breeds. These regions and genes might represent good targets for ad-hoc physiological studies, selection of breeding material and eventually even gene editing, for improved traits in modern cattle breeds. This study represents an important step toward developing and improving strategies for selection and population breeding to ultimately contribute meaningfully to the beef production industry.

Keywords: simbra, crossbreeding, genomic selection, indicine, taurine


INTRODUCTION

Cattle play an important part in the agricultural economy worldwide. Modern cattle were derived from at least two independent domestication events that gave rise to two subspecies of cattle (Loftus et al., 1994; Ajmone-Marsan et al., 2010). The one is humpless Taurine (Bos taurus taurus) cattle, with Bos primigenius primigenius ancestry, which was domesticated ~10,500 years ago in Eastern Europe. The other is the humped zebu or Indicine (Bos taurus indicus) cattle, with Bos primigenius namadicus ancestry, which was domesticated ~7,000 years ago in India (Bradley et al., 1996). Domestication of cattle resulted in animals with high overall genetic and phenotypic variability (Taberlet et al., 2008).

The rise of the “breed” concept, and associated intensive artificial selection, had resulted in specialized cattle breeds that underwent further organized selection to enhance production and adaptability (Iso-Touru et al., 2016). Taurine breeds have been intensively selected for milk and meat yield (Low et al., 2020). For example, selection for traits associated with meat production (e.g., fast growth, carcass quality, meat quality, and meat yield) and increased fertility gave rise to Simmental, which is the oldest and one of the most widespread Taurine beef breeds (Bordbar et al., 2020; Ríos-Utrera et al., 2020). In contrast, selection for high tolerance to parasites, heat resistance and overall hardiness gave rise to Indicine breeds, such as Brahman, the first beef cattle breed developed in the United States (Dikmen et al., 2018).

Various crossbreeds have also been developed to improve environmental adaptability and desirable performance (Paim et al., 2020). These cattle breeds combine the favorable traits/genes that characterized their purebred parental breeds. An added benefit inherent of crossbreeding is heterosis or hybrid vigor that may give rise to qualities that are more superior in the crossbreed than its parental inbred lines (Harrison and Larson, 2014; Frankham, 2015; Gouws, 2017). Furthermore, crossbreeding remains an important mechanism for increasing the overall genetic variation of modern cattle breeds (Kristensen et al., 2015), especially given the substantial losses incurred due to intensive selection for improved productivity and adaptability (Albertí et al., 2008; Taberlet et al., 2008). However, despite these benefits, it is still unclear whether the genetic composition of a crossbreed is stable over time (Paim et al., 2020). It is also not known if crossbreeding may cause reduction in performance and fitness due to genetic erosion and outbreeding depression (Harrison and Larson, 2014; Frankham, 2015; Gouws, 2017). Genetic erosion may cause reduction in performance since genetic diversity is necessary for evolution to occur, while loss of genetic diversity is related to inbreeding that reduces reproductive fitness (Reed and Frankham, 2003).

The Simbra crossbreed was developed in the United States in the late 1960s, shortly after the first Simmental arrived from Europe (Gouws, 2016). It has been described as the “all-purpose American breed “and was developed by hybridization of the Brahman and Simmental breeds (Gouws, 2016). Generally, crossbreeding of Brahman with Taurine breeds produces hardy animals with better meat quality than purebred Brahmans (Crouse et al., 1989; Johnson et al., 1990; Schatz et al., 2014). The high tolerance of Simbra to harsh conditions (e.g., heat, humidity, parasites, seasonally poor pasture quality, and large distances required to be walked while grazing) is thus derived from its Brahman parentage. In turn, its good meat quality (e.g., carcass composition and conformation), early sexual maturity, milking ability, rapid growth, and docile temperament are attributed to its Simmental ancestry (Smith, 2010). Although Simbra cattle are mainly produced in the USA, the breed was also introduced to other countries. For example, Simbra was introduced to South Africa in the late 1990s where it is among the 10 most popular breeds in the country (Scholtz et al., 2008). Several population studies provided insight regarding genetic structure of popular South African cattle breeds (e.g., Simmental, Afrikaner and Nguni) (Bennett and Gregory, 1996; Pico, 2004; Martínez and Galíndez, 2006; Greyling et al., 2008; Sanarana et al., 2016; Pienaar et al., 2018). However, little is known about the genetic diversity and population structure within and between South African Simbra and the ancestral Brahman and Simmental breeds.

Various studies showed that information mined from whole genome data is useful for estimating proportional ancestry, maximizing genetic variability and for developing breeding strategies (Kim et al., 2017; Sharma et al., 2017; Bhati et al., 2020). In other words, knowledge emerging from genomic studies can be used to improve livestock in terms of meat and milk production, disease resistance and reproductive health (Kim et al., 2017; Sharma et al., 2017; Bhati et al., 2020). For example, genome-wide association studies (GWAS) have been used to identify genes involved in meat quality in different Taurine (Gutiérrez-Gil et al., 2008; McClure et al., 2012; Allais et al., 2014; Xia et al., 2016), Indicine (Tizioto et al., 2013; Magalhães et al., 2016), and crossbreeds (Bolormaa et al., 2011; Lu et al., 2013; Hulsman et al., 2014). Genome-based selection strategies are thus increasingly regarded as invaluable for ultimately improving cattle fitness, productivity, and quality (Daetwyler et al., 2014; Kim et al., 2017).

The overall goal of this study was to estimate the adaptive potential of the Indicine- and Taurine-derived genomic components in the South African Simbra cattle breed. We therefore aimed to (i) determine levels of heterozygosity; (ii) infer the overall population structure and admixture ancestry in Simbra cattle; (iii) and identify genomic regions subject to positive selection and to associate these with putative productivity and adaptive traits. For this purpose, Simbra, Brahman and Simmental animals were genotyped using the cost-effective Illumina's low density Bovine BeadArray (7K) technology that allows the genotyping of a larger number of individuals, as part of the South African Beef Genomics Project. Several studies have successfully used this approach in genome-wide association studies as genotyping large numbers of individuals with thousands of SNPs remains prohibitively expensive for many research groups. The data generated in this study will be instrumental for informing and designing appropriate management and breeding strategies for maximizing Simbra productivity in South Africa and cattle in general.



MATERIALS AND METHODS


Animals

A total of 321 animals were genotyped in this study. These included animals from the South African Simbra crossbred population (Simbra, n = 69), as well as Brahman (Bos taurus indicus, n = 161) and Simmental (Bos taurus taurus, Simmental n = 91) populations. These animals were part of stud breeding programs aimed at producing registered Simbra (3/8 Brahman, 5/8 Simmental; Figure 1) that is registered in a herdbook, Brahman and Simmental cattle and were not part of a designed experiment. They were selected based on phenotypic appearance, which was consistent with typical breed characteristics and pedigree information accepted by local breeders and breed societies.


[image: Figure 1]
FIGURE 1. Illustration of two hybridization schemes (A) and (B) used to establish the Simbra crossbreed (adopted from Paim et al., 2020). A 5/8 Simmental and 3/8 Brahman are the optimum composition needed to retain the favorable traits both parental breeds (O' Connor et al., 1997; Smith, 2010). Controlled breeding programs are used to establish the next Simbra generations with the optimum composition.




SNP Genotyping and Quality Control

Genomic DNA was extracted at the ARC-Biotechnology Platform from blood/hair root samples using Qiagen's DNeasy extraction kit (Qiagen, Valencia, CA). The quality and quantity of the DNA were estimated using a Qubit® 2.0 fluorometer (Life Technologies, ThermoFisher Scientific, USA), Nanodrop 1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE), and agarose gel electrophoresis. These DNAs were then used in genotyping experiments at the ARC-Biotechnology Platform as part of the SA Beef Genomics Project during the period 2015–2018. This was done using the Illumina BovineLD v2 BeadChip (7K) (Illumina, San Diego, CA), which features 7,931 single nucleotide polymorphism (SNP) probes that are distributed across the whole bovine genome, with <3 kilobase pair (kb) median gap spacing. Samples were processed according to the Illumina Infinium-II assay protocol (Illumina, Inc. San Diego, CA, 92122, USA). Only autosomal chromosomes were used, and SNP quality control was assessed using PLINK (Purcell et al., 2007). SNPs with a call rate <95% and minor allele frequencies (MAF) <5% across all breeds were removed. SNPs with a high linkage disequilibrium (LD) at a threshold of LD ≥0.8 were also pruned. The SNP & Variation Suite v.8.8.3 (Golden Helix Inc., Bozeman, MT, USA; www.goldenhelix.com) was used to estimate the identity-by-descent (IBD) values between pairs of individuals that can be used to detect and remove related and duplicate samples.



Genetic Diversity

Various analytical tools were used to estimate the genetic diversity among the Simbra, Brahman and Simmental populations. The observed heterozygosity estimates for each population, as an indication of within-breed diversity, were calculated from observed genotype frequencies obtained from PLINK (Purcell et al., 2007). Here, observed heterozygosity was calculated as (N - O)/N, where N is the number of “non-missing genotypes” for a given individual and O is the number of observed homozygous genotypes for that individual. We also estimated the inbreeding coefficient (F) as a measure of “excess” homozygosity using the SNP & Variation Suite.



Population Structure

Principal Components Analysis (PCA) (Patterson et al., 2006) and fastSTRUCTURE (Raj et al., 2014) analyses were used to identify patterns of admixture and relatedness among the Simbra cattle, in relation to the Simmental and Brahman populations. PCA was performed using the EIGENSTRAT methodology embedded in the SNP & Variation Suite. The fastSTRUCTURE analysis employed an admixture model and two clusters (K = 2; based on the number of ancestral populations) (Smith, 2010). The analysis was executed using independent allele frequencies, and a burn-in of 100 000 iterations, followed by 1 000 000 Markov Chain Monte Carlo iterations. Graphical display of the admixture output was generated using Distruct v1.1 (http://web.stanford.edu/group/rosenberglab/distruct.html).

Local ancestry for admixed Simbra animals were inferred using PCAdmix (Brisbin et al., 2012), which uses PCA to determine the posterior probabilities for the ancestry of a genomic region along each chromosome. More specifically, PCAdmix classifies blocks of SNPs by ancestry through PCA, projecting the loadings of admixed individuals based on the loadings of putative ancestors. It employs a Hidden Markov Model (HMM) to smooth the results and returns the posterior probabilities of ancestry affiliation for each block from the HMM (Brisbin et al., 2012).

To prepare input files for PCAdmix, haplotypes were built using Beagle 5.1 by phasing and imputing missing genotypes from the SNP unphased data (Browning et al., 2018). Chromosomes for each individual in a population were artificially strung together to create two haploid genomes for the individual to increase the amount of information used for PCA. Since PCAdmix requires predefined ancestral groups, we selected two main ancestral groups (Simmental and Brahman cattle) for the Simbra cattle. PCAdmix was assigned with a posterior probability threshold of 0.8. In order to remove highly linked alleles from different populations and avoid spurious ancestry transitions, ancestral populations were thinned using a SNPs pairwise linkage disequilibrium (LD) value (r2) of <0.8. We defined a constant recombination rate of 1e-8 based on the assumption that 0.01 recombination occur per 1,000 kb (equivalent to 1 cM) (Khayatzadeh et al., 2016).



Identification of Selection Signatures

To identify signatures of selection we used LD-based methods that search for haplotypes driven to complete fixation (Vitti et al., 2013). These include the integrated haplotype score (iHS), which is a within-population statistic reflecting the amount of extended haplotype homozygosity (EHH) for a given SNP along the ancestral allele relative to the derived allele. Because of the limitation of this statistic when the selected allele is near fixation, we also used the method developed by Tang et al. (2007) that compares EHH profiles between pairs of populations. Based on EHHS, a so-called “site-specific EHH measure,” the Tang et al. method estimates a weighted average of the EHH at both alleles of each SNP in each population. Then, the distribution of the standardized log-ratio of the integrated EHHS (iES) between pairs of populations (referred to as Rsb) is used to detect signals of selection. The advantage of the Tang et al. method is that it calculates EHH for the entire population instead of partitioning it into ancestral and derived alleles, which eliminates the allele frequency constraint and makes it capable of detecting selection sweeps near fixation. The Rsb scores for Simbra crossbred cattle were calculated using the Simmental and Brahman as a reference population.

In this study, the ancestral alleles required for the computation of iHS were inferred as the most common alleles in the entire dataset following Bahbahani and Hanotte (2015). Haplotypes for the iHS and Rsb analyses were derived with fastPHASE (Scheet and Stephens, 2006) using 10 starts (T10) and 25 iterations (C25) of the expectation-maximization (EM) algorithm (Scheet and Stephens, 2006). The iHS and Rsb analyses were performed using the rehh package (Gautier and Vitalis, 2012) in R version 3.4.4. For the analysis of within-population an iHS score >5 (equivalent to P-value = 1e-06) and for the analysis of between-population differences a Rsb score >5 (equivalent to P-value = 1e-06) were used to infer the candidate genomic regions under selection.

We also examined the gene content within genomic regions containing signatures of selection. This was done using the annotated UMD3.1 reference genome for the Taurine breed Hereford available on the Bovine Genome Database (https://bovinegenome.elsiklab.missouri.edu/). To determine potential overlap of these regions with previously published quantitative trait loci (QTLs), the bovine database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/search) incorporated in the Animal QTL database (Animal QTLdb) of Hu et al. (2019), was used.




RESULTS


SNP Genotyping and Quality Control

After quality control to remove SNPs with <95% call rate, MAF <0.05 and LD (r2 = 0.8), 4 488 SNPs were retained for analyses. We also performed a sample filtering to limit the inclusion of very closely related individuals (Figure 2A). Accordingly, all 321 animals were retained for analysis (i.e., 69 Simbra, 161 Brahman, and 91 Simmental genomes), based on IBD values of ≥0.45. IBD represents the probability that two randomly chosen alleles of an individual are inherited from a common ancestor, with the length of haplotypes shared between individuals being inversely proportional to the time since divergence from that common ancestor (Browning and Browning, 2010).
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FIGURE 2. Identity-by-descent (IBD) results of the crossbred South African Simbra population, as well as the ancestral South African Simmental and Brahman populations (A). Green indication a closer genetic distance and red indicating that the genetic distance is farther. FastSTRUCTURE (Raj et al., 2014) results from the 7k SNP panel set at K = 2 according to the historical number of ancestral populations (Smith, 2010). Simmental ancestry are indicated in red, while Brahman ancestry are indicated in blue (B). First principal component (PC1) vs. second principal component (PC2) results from the principal component analysis (PCA) for the Simbra, Simmental and Brahman populations computed using the SNP and Variant Suite v.8.8.3 (Golden Helix Inc., Bozeman, MT, USA; www.goldenhelix.com) (C).




Genetic Diversity

Among the three populations, Simbra and Simmental had comparable observed heterozygosity values (i.e., 0.427 with standard deviation [±SD] of 0.020 and 0.417 with ±SD 0.015, respectively), which were much higher than those for Brahman (0.295, ±SD 0.029, n = 161). In comparison with the Simmental (0.0003, ±SD 0.031) and Simbra cattle (−0.011, ±SD 0.045) populations, limited diversity was observed for Brahman (0.022, ±SD 0.103) population.



Simbra Population Structure and Genomic Content

FastSTRUCTURE separated the animals genotyped in this study into three distinct clusters (Figure 2B). A similar clustering pattern was observed using PCA (Figure 2C), where 55.66% of the genetic variability was explained by the first two principal components (with the first explaining 50.2%). These three clusters corresponded to the Brahman and Simmental ancestor populations, and the Simbra population, representing an admixture between the Taurine and Indicine cattle.

The Simbra hybrid genomes were partitioned into segments of inferred Simmental and Brahman ancestry using the PCAdmix algorithm (Figure 3). We used the default parameters in PCAdmix thereby removing SNPs in high LD (r2 > 0.8) and SNPs that were monomorphic between the breeds. Subsequent ancestry inference of each genome revealed that the South African Simbra breed is composed of a higher average proportion of Taurine (64.8%, ±SD 8) than Indicine (35.2%, ±SD 8) backgrounds (Figure 3A), as was expected for the breed (O' Connor et al., 1997; Smith, 2010). However, 19 of the 69 Simbra individuals had genomic compositions that deviated substantially from this expectation (Figure 3A); i.e., the Indicine contribution was <27.2% in 9 genomes and >43.2% in 10 genomes.


[image: Figure 3]
FIGURE 3. Local ancestry for the crossbred South African Simbra cattle population (A) and representative haplotypes (B,C) inferred using PCAdmix (Brisbin et al., 2012). The Brahman and Simmental cattle populations were used as source populations (Smith, 2010).


Using the PCAdmix algorithm, we determined the most probable ancestry along each chromosome of the Simbra genomes (Figures 3B,C). Accordingly, we identified 256 genetic ancestry blocks (i.e., block SNPs with the same inferred ancestry), spread across 29 Bos taurus autosomes (BTA1–BTA29) with polymorphic SNPs (call rate less <95% and MAF >5% across all breeds). Of these blocks, 191 (75%) showed a similar pattern as observed above for the average genome composition (i.e., 64.8%, ±SD 8 with Taurine and 35.2%, ±SD 8 with Indicine). The remaining 65 deviated substantially from the expected distribution pattern, with 22 blocks (33.9%) having an excess of Indicine ancestry blocks (>43.2% Brahman blocks) and 43 blocks (66.1%) having excess Taurine ancestry (>27.2% Simmental blocks).



Genomic Regions Containing Signatures of Positive Selection

Our analyses revealed the presence of nine genomic regions containing signatures of positive selection in the Simbra genome (Table 1). These regions were identified using intra-population iHS and inter-population Rsb analyses (Vitti et al., 2013). Focusing on the Simbra hybrid cattle, the intra-population iHS analysis identified eight of these regions, which were located on BTA 1, BTA 2, BTA 3, BTA 9, BTA 19, BTA 20, and BTA 21 (Table 2; Figure 4A). Additionally, the Rsb analyses identified five positive selection regions (i.e., on BTA 2, BTA 3, BTA 19, BTA 20, and BTA 21) using Simmental as reference population, and two using Brahman as reference population (i.e., on BTA 21 and on BTA 23) (Table 2; Figures 4B,C). Five of these genomic regions were detected using both the iHS and Rsb statistics. The region on BTA 21 was identified with Rsb analyses employing both Simmental and Brahman as reference populations, while the remainder (i.e., on BTA 2, BTA 3, BTA 19, and BTA 20) were detected using the Simmental reference population. Overall, five (BTA 1, BTA 3, BTA 5, BTA 21, and BTA 23) of the nine regions in which positive selection was detected were located within genetic ancestry blocks that displayed a deviation in the expected genomic composition for Simbra (Table 2).


Table 1. Genomic regions identified using iHS and Rsb being under divergent selection in Simbra crossbred cattle and Brahman and Simmental as reference breeds.
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Table 2. Functional annotation of genomic regions showing evidence of selection in the Simbra crossbred cattle.
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FIGURE 4. Manhattan plots of genome-wide signatures of positive selection analyses. Distribution of iHS scores in the Simbra crossbred cattle (A), Rsb analysis with the Simbra and Simmental cattle (B), and Rsb analysis with the Simbra and Brahman cattle (C). The iHS and Rsb analysis was performed using the rehh package (Gautier and Vitalis, 2012) in R v. 3.4.4. The dashed line corresponds to a significance threshold (–log10) that was set at 6, which is equivalent to P-value = 1e−06.


Comparison of all of the identified genomic regions harboring signals for positive selection signatures to the genomic resources included in the Animal QTL database, indicated that nine of the identified regions overlapped with those underlying previously published QTLs for cattle (Table 2). These QTLs were previously linked to different biological properties, including reproduction (interval to first oestrus after calving, QTL:170016; lactation persistency, QTL:125219; ovulation rate, QTL:10570), milk traits (milk lauric acid content, QTL:172178), production traits (residual feed intake, QTL:4383; carcass weight, QTL:15914), health (ketosis, QTL:179821), and adaptation traits (Heat tolerance, QTL:31195).

The candidate genomic regions with signatures of positive selection also harbored annotated genes (6–77 genes) (Tables 1, 3, Supplementary Table 1). These included genes that encode putative kinesin family member 13A (KIF13A), the small integral membrane protein 5 (SMIM5), MIER family member 3 (MIER3), Solute carrier family 24 member 4 (SLC24A4), muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1 or MuRF-1), as well as the potassium voltage-gated channel subfamily A member (KCNA10).


Table 3. Examples of candidate genes within the candidate regions of the different analyses conducted in the study.
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DISCUSSION

This is the first study to utilize genome-wide polymorphism data to investigate the genetic diversity, population structure and patterns of local ancestry of the South African Simbra hybrid breed and its Taurine and Indicine ancestor breeds. We also used the SNP data obtained to identify candidate genomic regions with signatures of adaptive introgression and positive selection. The availability of the genome sequencing data from the SA Beef Genomics Project will make it possible in the future to augment conventional livestock breeding and performance management programmes with genomic information.

Our results showed that hybridization of the Taurine and Indicine breeds conferred a higher genetic diversity of the Simbra breed in comparison with the purebred breeds (Ghafouri-Kesbi, 2010; Zhang et al., 2015). This was obvious from the negative inbreeding coefficient (f) estimate that indicated an excess of heterozygosity even beyond what is expected under Hardy-Weinberg equilibrium in the Simbra population (Maiorano et al., 2018). Compared to the two ancestral breeds, the South African Simbra population had the highest genetic diversity, although it was only marginally higher than that of the Simmental breed. Therefore, hybridization of subspecies remains an important tool for expanding the genetic variation within modern cattle breeds (Gregory and Cundiff, 1980). Also, the genetic diversity inherent to South African Simbra holds significant potential for improvements in production and environmental adaptability (Sölkner et al., 1998; Becker et al., 2013).

The limited diversity observed for Brahman breed is most likely a consequence of intensive artificial selection for improved productivity (Albertí et al., 2008). It was previously suggested that the low genetic diversity in the Brahman breed may be partly ascribed to the use of elite sires (Makina et al., 2014). Such practices are consistent with the observed F value (0.0003), which are suggestive of some inbreeding in the Brahman populations examined (van der Westhuizen et al., 2019). Genetic diversity within the Simmental population was slightly higher than in the Brahman breed. This may be because the cattle BeadChip was optimized for use in Bos taurus taurus breeds (Cheruiyot et al., 2018).

Genome-wide polymorphism data indicated that the genomic background of the South African Simbra hybrid breed represents a mosaic of the Taurine and Indicine ancestor breeds, as was expected (Smith, 2010). Our data also confirmed the optimal 5/8 Simmental and 3/8 Brahman composition of the Simbra genomes included in this study, since this composition ensures maintenance of favorable traits from both breeds (i.e., meat tenderness of the Simmental breed and heat-tolerance of the Brahman breed) (O' Connor et al., 1997; Smith, 2010). Additionally, the PCA and FastSTRUCTURE data also clearly demonstrated that the South African Simbra has evolved into a unique breed, as three distinct clusters were identified. This suggests that, after initial formation and subsequent intense artificial selection and breeding, the Simbra breed composition has stabilized over time (Paim et al., 2020).

Our results suggested that crossbreeding, followed by selection, was key in shaping the genome of the South African Simbra hybrid breed (Ríos-Utrera et al., 2020). Consistent with previous studies (e.g., Bahbahani and Hanotte, 2015; Bahbahani et al., 2017), the two EHH-based statistics used in this study allowed for the identification of genomic regions that display signatures of positive selection in the hybrid genome. These included regions that were identified using the intra-population iHS statistics, as well as the inter-population Rsb statistics using the Simmental and Brahman cattle as reference populations. The candidate regions identified using the iHS and Rsb statistics supports the role of selection pressures, and not natural demographic processes, in shaping the genomic pattern of these regions (Bahbahani et al., 2018). Also, 25% of the regions displayed ancestry deviation. Furthermore, only five genomic regions that displayed signatures of positive selection overlapped with regions containing locus-ancestry deviation. This may be because EHH-based statistics identify older signals of selection, while ancestry deviation is likely caused by recent post-admixture selection (Oleksyk et al., 2010; Bahbahani et al., 2018). Regions that display ancestry deviation observed in the young Simbra crossbreed that was developed in the United States in the late 1960s (Gouws, 2016), is most likely the result of recent post-admixture selection.

The South African Simbra hybrid breed appears to be evolving separately from its ancestoral breeds, with selection driving the increase in prevalence of advantageous alleles derived from both the parent breeds (Xu et al., 2015). The presence of genomic regions displaying locus-ancestry deviation supports the likelihood that they are important for the adaptability of Simbra cattle to the local environment (Bahbahani et al., 2018). The inter-population Rsb statistics, using Brahman as reference, allowed for the identification of Taurine haplotypes in regions that are under selection. Similarly, Rsb statistics using Simmental as reference allowed for the identification of regions that support selection pressures on Indicine haplotypes. As suggested recently, the identified genomic regions under selection may have adaptive significance to maximize their reproductive fitness and their adaptability to environmental challenges (Bahbahani et al., 2018).

Analysis of genes and known QTLs in regions of the Simbra genome that harbor signals of positive selection suggest that these are likely involved in its improved environmental adaptability and productivity (Paim et al., 2020; Ríos-Utrera et al., 2020). Many of the genes located in these genomic regions have previously been implicated in traits that are highly valued in the Simbra composite breed (Smith, 2010). The location of these regions also overlapped or co-occurred with previously reported bovine quantitative trait loci (QTLs) (https://www.animalgenome.org), which strongly reflect the overall breeding goals of the Simbra breed (Smith, 2010). For example, one of the adaptive regions located on BTA 23 co-occurred with a QTL associated with body weight (Lu et al., 2013). This region that is derived from the Simmental ancestry is important for growth performance in the Simbra breed (Pico, 2004; Amen et al., 2007; Smith, 2010; Maúre et al., 2018). The heritability of these traits may be due to positive selection of gene regions that is caused by beneficial polymorphisms in the genes affecting the traits, because mutation that provides a fitness advantage will increase in frequency in the population (Taye et al., 2017).

Most of the genomic regions experiencing positive selection were implicated in traits that are valued in breeds of Indicine ancestry. For example, the region located on BTA 5 that displays locus-ancestry deviation (excess of Brahman parent alleles) co-occurred with a QTL associated with ovulation rate. This confirms that regions/genes related to fertility and reproduction are hotspots of selection in breeds living in tropical environments (Bahbahani et al., 2018). The region located on BTA 20 co-occurred with a QTL associated with heat intensity (i.e., heat tolerance), and is derived from the Brahman ancestry. Adaptation to the harsh South African environment that is valued in the Indicine parent breed will allow for the Simbra breed to adapt to climate change that will likely cause South Africa to become hotter and drier (Girvetz et al., 2019). Of the genomic regions displaying positive selection, and that co-occurred with known QTLs linked with production in the Simmental breed, many were also previously demonstrated to be under selection in Western and Russian Simmental populations (Mészáros et al., 2019). These included QTLs associated with carcass weight that are located on BTA 9, milk production located on BTA 2 and BTA 21, as well as fertility located on BTA 1, that display locus-ancestry deviation (excess of Simmental parent alleles) (Berkowicz et al., 2012; Do et al., 2014; Gebreyesus et al., 2019; Zhang et al., 2019). These genomic regions include genes that encode for a SLC24A4 homolog located on BTA 21, which is known to be associated with milk production and fertility (Nayeri and Stothard, 2016; Nayeri et al., 2016). Our results could therefore highlight new regions and pathways that may contribute to variation in reproductive health, fertility, and milk production in cattle in general.

Many of the genes occurring in regions under positive selection in Simbra were previously identified using genome-wide association studies (GWAS) where they were linked to meat quality of Taurine, Indicine and composite breeds (Allais et al., 2014; Hulsman et al., 2014; Magalhães et al., 2016; Xia et al., 2016). For example, KCNA10 encoded on BTA 3 is likely involved in determining meat quality in Simbra that may be derived from the Simmental parent breed (Lang et al., 2000; Fleet et al., 2011). Other genes, derived from the Brahman parent breed that include SMIM5 encoded on BTA 19 that display locus-ancestry deviation (excess of Brahman parent alleles), may negatively influence carcass and meat properties (e.g., marbling) (Mateescu et al., 2017; Taye et al., 2017). Some of the adaptive alleles identified in Simbra were implicated in the sensory characteristics of meat (e.g., tenderness, flavor, juiciness, and color), which are mainly affected by proteolytic activities of muscle (Taye et al., 2017). For example, a homolog of TRIM63 (also called MuRF-1), located on BTA 2, has been linked with meat tenderness in Nellore cattle (Indicine) (Muniz et al., 2016). MuRF-1 is an important component of the ubiquitin-proteasome system, which is the main proteolytic pathway in skeletal muscle growth in domestic animals (Koohmaraie et al., 2002). This pathway regulates the balance between the amounts of muscle proteins synthesized and degraded to control the skeletal muscle mass (Koohmaraie et al., 2002). Accordingly, the ubiquitin-proteasome system and its components have been linked to meat tenderness (Yin et al., 2010; Taye et al., 2017), productivity and economic value of animals (Sadri et al., 2016; Nakanishi et al., 2019). The high number of genes identified in this study and other studies that are associated with meat quality, underscore the complexity of this trait and that it is regulated by multiple interrelated causative factors and layers of feedback regulation (Diniz et al., 2019).

Some of the genomic regions subject to positive selection are likely involved in overall health and fitness of the Simbra breed. For example, the region located on BTA 3, which is known to be under selection in Western and Russian Simmental populations (Mészáros et al., 2019) and most likely derived from the Simmental parent breed, overlaps with a QTL associated with ketosis (QTL:179821). The latter is a metabolic disorder where negative energy balances (when energy demand exceeds intake) affect animal health and productivity (Nayeri et al., 2019). It has been postulated that such failure to maintain internal homeostatic and homeorhetic regulation maybe caused by intense genetic selection (Nayeri et al., 2019). Furthermore, metabolic disorders have also been demonstrated to negatively influence the immune response in cattle (Wathes et al., 2009; Esposito et al., 2014). The results of this study can be used for further genetic analysis to identify causal variants that affect ketosis and metabolic diseases.

Likewise, health and fitness traits that had likely been derived from Indicine ancestry were also encoded in Simbra genomic regions subject to selection. These regions are located on BTA 5, BTA 19, BTA 20, and BTA 21, which appear to be derived from Brahman. BTA 5 harbors a gene encoding KCNA10 (potassium voltage-gated channel subfamily A member 10) known to influence potassium metabolism and play a role in human and animal production and health (Lang et al., 2000; Fleet et al., 2011). This protein regulates acid-base balance and maintains cellular pH and electrical gradients (Lang et al., 2000; Fleet et al., 2011), which has previously been demonstrated to influence meat quality in cattle (Diniz et al., 2019). Likewise, BTA 21 contains the SLC24A4 gene that encodes a member of potassium-dependent sodium or calcium exchanger protein family, which may influence pigmentation related traits that may influence health (e.g., UV protection) (Sulem et al., 2007). The selection region on BTA 19 contains a gene encoding the small integral membrane protein 5 (SMIM5) that is associated with udder health and clinical mastitis in Holstein cattle (Wu et al., 2015). The region experiencing selection on BTA 20 harbors a gene that encodes MIER family member 3 Uncharacterized protein (MIER3), which is associated with survival in Holstein and Jersey cattle (Raven et al., 2014).

Finally, analysis of genome-wide polymorphisms further showed that the genetic diversity of the South African purebred Brahman parental breed was slightly lower than the Simmental population. This is similar to what has been reported previously (Qu et al., 2006; Agung et al., 2016; Utrera et al., 2018). The low level of diversity in the Brahman breed may be an indication of relative homogeneity in the South African populations as a consequence of intensive artificial selection for improved productivity (Albertí et al., 2008; Taberlet et al., 2008). It was also previously suggested that the low genetic diversity observed in the Brahman breed may be partly ascribed to the use of elite sires (Makina et al., 2014). Such practices are consistent with the observed inbreeding coefficient (f) estimate (0.022), which is suggestive of some inbreeding in the Brahman populations examined (van der Westhuizen et al., 2019). Although it cannot be excluded that the low genetic diversity in the Brahman population may be due to the fact that the cattle BeadChip was optimized for use in Bos taurus taurus breeds (Cheruiyot et al., 2018), it is important that genetic diversity must be maintained and increased for sustainable production and management of this purebred cattle breed.



CONCLUSIONS

The SNP array data allowed for the assessment of genetic diversity, population structure and admixture of the South African Simbra population. Our findings contribute to the current knowledge of the genetics of the Simbra breed, and provides insight into how genomic architecture changes with hybridization and crossbreed formation. Results of this study emphasize the importance of assessing the genetic diversity, population structure and admixture of other South African cattle breeds. It also emphasize the importance of implementing a management strategy to increase diversity in the purebred breeds.

The genome-wide SNP array further allowed for the identification of signatures of positive selection in the Simbra hybrid genome, and these putatively introgressed genomic regions may have adaptive significance, affecting important phenotypic traits (e.g., adaption, reproduction, and production) in the breed. These include Indicine-derived alleles associated with heat tolerance and Taurine-derived alleles that are associated with body weight.

Knowledge of the genetics controlling meat quality will increase the ability of the industry to produce better meat, which will benefit consumers and should increase the demand for beef, which is of great interest to the beef industry (Mateescu et al., 2017). The identified adaptive introgression of alleles of Indicine- and Taurine derived ancestral genes may lay the foundation for ad-hoc physiological studies and targets for selection (and potentially gene editing), that may increase production and health in modern cattle breeds. Ultimately, this study represents an important step toward developing and improving strategies for targeted selection and breeding that will ultimately contribute meaningfully to the beef production industry of South Africa.
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Meat quality is an important trait for pig-breeding programs aiming to meet consumers’ demands. Geneticists must improve meat quality based on their understanding of the underlying genetic mechanisms. Previous studies showed that most meat-quality indicators were low-to-moderate heritability traits; therefore, improving meat quality using conventional techniques remains a challenge. Here, we performed a genome-wide association study of meat-quality traits using the GeneSeek Porcine SNP50K BeadChip in 582 crossbred Duroc × (Landrace × Yorkshire) commercial pigs (249 males and 333 females). Meat conductivity, marbling score, moisture, meat color, pH, and intramuscular fat (IMF) content were investigated. The genome-wide association study was performed using both fixed and random model Circulating Probability Unification (FarmCPU) and a mixed linear model (MLM) with the rMVP software. The genomic heritability of the studied traits ranged from 0.13 ± 0.07 to 0.55 ± 0.08 for conductivity and meat color, respectively. Thirty-two single-nucleotide polymorphisms (SNPs) were identified for meat quality in the crossbred pigs using both FarmCPU and MLM. Among the detected SNPs, five, nine, seven, four, six, and five were significantly associated with conductivity, IMF, marbling score, meat color, moisture, and pH, respectively. Several candidate genes for meat quality were identified in the detected genomic regions. These findings will contribute to the ongoing improvement of meat quality, meeting consumer demands and improving the economic outlook for the swine industry.

Keywords: genome-wide association study, crossbred pigs, meat quality, moisture, conductivity, marbling score, meat color, intramuscular fat content


INTRODUCTION

Meat quality, a comprehensive indicator that includes moisture, intramuscular fat (IMF), pH, meat color, water-holding capacity, marbling, and tenderness (Noidad et al., 2019), is among the most important traits in the swine industry. In addition to genetics, non-genetic factors, such as species, management, and environmental background, affect meat quality (Womack et al., 2012). Historically, swine research efforts focused on growth performance but neglected meat quality. However, as living standards improve globally, more consumers are prioritizing meat quality. Consequently, pig farmers are interested in improving meat quality to meet the new meat-market demands (Nonneman et al., 2013).

Multiple genes, including major genes and genes with moderate or minor effects, control meat quality. RN, RKAG3, RYR1, PHKG1, MC4R, and insulin-like growth factor 2 (IGF2) are the major genes reported to affect meat-quality traits (Milan et al., 2000; Barbut et al., 2008; Yu et al., 2008; Oczkowicz et al., 2013; Ma et al., 2014; Lu et al., 2018). In total, 30,580 quantitative trait loci (QTLs) were released for public access on the pig QTL database1, which reported 691 pig traits associated with meat quality. Previous research identified many candidate genes for meat-quality traits, including adenylosuccinate lyase (ADSL) associated with drip loss and pH (Ramos et al., 2006; Karol et al., 2010) and ubiquitin-specific peptidase 43 (USP43) associated with five meat-quality traits, including IMF, marbling, moisture, meat color, and color score (Luo et al., 2012). Some regions were identified for multiple traits, such as on SSC6 from 28 to 29.5 Mb for purge and IMF containing the candidate genes glucose-6-phosphate isomerase (GPI) and KCTD15 (Nonneman et al., 2013). The BDKRB2 and UTRN genes were identified to associate with IMF in Duroc population using single-locus and multi-locus genome-wide association studies (GWASs) (Ding et al., 2019). The MYCT1 and BINP3 genes were found to associate with both meat color and pH in Qingyu pigs (Wu et al., 2020). Additionally, most QTLs have been identified using linkage mapping, thus representing large chromosomal regions (Varona et al., 2002). As high-density single-nucleotide polymorphism (SNP) arrays become more accessible, GWASs are being widely used to identify candidate genes despite most meat-quality traits exhibiting low-to-moderate heritability (Hermesch et al., 2000; Suzuki et al., 2005). Further exploration of meat-quality-related genes remains necessary owing to the insufficient research on gene localization of meat-quality traits.

Many breeding enterprises favor crossbred Duroc × (Landrace × Yorkshire) pigs [D (LY)] for their high feed-utilization rates and large eye muscle area, while meat quality is often neglected. Meat-quality traits are difficult to measure and cannot be assessed without slaughter, which greatly increases the difficulty and cost of breeding programs selecting for meat quality. In the present study, a GWAS was conducted using the Porcine SNP50 Genotyping BeadChip to identify QTLs for meat-quality traits in a crossbred D (LY) porcine population. This study was conducted to identify candidate genes and potential breeding markers and more deeply investigate the genetic architecture of meat-quality traits.



MATERIALS AND METHODS


Ethics Statement

All experimental animals were handled in accordance with the guidelines of the Institutional Animal Care and Use Committee of Foshan University. The Institutional Animal Care and Use Committee of Foshan University approved this study.



Animals

We collected 582 D (LY) commercial pigs (249 males and 333 females) from two farms (Fengda and Xinglin) of Guangxi Yangxiang Co., Ltd. These pigs were offspring of 45 boars and 96 sows. The pigs were reared under the same management conditions and similar environments, with automatic water and free food intake (with the nutritional formula shown in Table 1). Boars and sows were raised separately, and the young boars were castrated 6–7 days after birth. The pigs were slaughtered in the same commercial abattoir at 150 ± 3 days of age.


TABLE 1. Nutritional formula of the D (LY) population.

[image: Table 1]


Phenotypes

Trained personnel recorded the phenotypic data for six meat-quality traits per individual pig as per the guidelines of the National Pork Producers Council (NPPC, 1991) of the United States. All meat-quality measurements were taken on the left side of the carcass. Meat color was measured as follows: (1) grayish white (abnormal flesh color), (2) mild gray (inclined to abnormal flesh color), (3) normal bright red, (4) slightly dark red (normal flesh color), and (5) dark purple (abnormal flesh color). Marbling score was assessed from 1 to 5. Both measurements were assessed subjectively via the longissimus muscle (LM) according to the NPPC. pH was measured via the LM using a Delta 320 pH meter (Mettler Toledo, Columbus, OH, United States) 45 min after slaughter. IMF was determined from the thoracic lumbar LM via Soxhlet petroleum-ether extraction. Moisture was analyzed via the thoracic lumbar LM by routine oven drying. Conductivity was measured via the dorsal LM between the 13th and 14th ribs using the LF-STAR conductivity meter (Matthaus, Pottmes, Germany). Meat color, pH, marbling score, and conductivity were measured in triplicate for each sample, and the average of the three measurements was used.



Genotyping and Quality Control

DNA was extracted from the ear tissue using a genome extraction kit (Wuhan NanoMagBio Technology Co., Ltd., China). DNA quality was assessed by measuring the light absorption ratios (A260/280 and A260/230) at ≥40 ng/μl. Genomic DNA was genotyped on the GeneSeek Porcine 50K SNP Beadchip (GeneSeek, Lansing, MI, United States). Quality control of the SNP data was conducted using PLINK software (Purcell et al., 2007). Briefly, individuals with call rates >0.95 and markers with call rates >0.99, minor allele frequencies (MAF) >0.05, and Hardy–Weinberg (HWE) P > 10–4 were retained. All markers located on sex chromosomes or in unmapped regions were excluded. Missing genotypes were imputed using the Beagle software (Browning and Browning, 2009). After quality control, 34,057 SNPs were used for subsequent analyses. Supplementary Table 1 shows the SNP distribution after data quality control and the average distance between adjacent SNPs on each chromosome.



Statistical Analyses

Genomic heritability of the meat-quality traits was calculated by dividing the genetic variance by the sum of the genetic and residual variances using the hiblup package (Yin et al., 2019). The model can be written as follows:

[image: image]

where y is the vector of phenotypic values; b is a vector of fixed effects, including sex, farm of origin, and batch containing the year-season effect; and u represents breeding values. X and Z were design matrices for b and u, respectively; e represents the residual error vector. In this study, [image: image], in which [image: image] is the unknown additive genetic variance, and G is the genomic relationship matrix (VanRaden, 2008).

Association analysis was performed using the fixed and random model Circulating Probability Unification (FarmCPU) (Liu et al., 2016) and mixed linear model (MLM) (Price et al., 2006) with the rMVP software (Yin et al., 2020). The FarmCPU model iteratively uses the fixed and random effects to simultaneously control false positives and false negatives. The model can be written as follows:

[image: image]

where y is the vector of phenotypic values; T is a matrix of fixed effects, including sex, farm of origin, batch containing the year-season effect, and the top three principal components with the corresponding effect, wi; Pj is the genotype matrix of j pseudo quantitative trait nucleotides (QTNs), which was used as the fixed effects; and qj is the corresponding effect. mk is a vector of genotypes for the kth marker to be tested, and hk is the corresponding effect. e is the residual effect vector with distribution, [image: image], where [image: image] represents the residual variance. The random effect model was used to select the most appropriate pseudo QTNs. The model can be written as follows:
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where y is the vector of the phenotypic values of meat quality; u is the genetic effects defined by [image: image], where K is the kinship matrix defined by pseudo QTNs, and [image: image] is an unknown genetic variance; and e is the residual effect vector.

The MLM can be written as follows:

[image: image]

where y is the vector of phenotypes of each D (LY) pig, a is the vector of the same fixed effects as those in the FarmCPU model, b is the vector of the SNP substitution effects, and c is the vector of random additive genetic effects with [image: image], where G is the genomic relationship matrix, and [image: image] is the unknown additive variance. W, Z, and S are the incidence matrices for b, a, and c, respectively. Because the Bonferroni correction was too strict, the genome-wide significant thresholds were set as p < 1/N, where N was the number of SNPs tested in the analyses as per previous studies (Liu et al., 2015; Xiong et al., 2015; Ding et al., 2019). In this study, N was 34,057, and the significant threshold was set to 2.94E–5. Phenotypic correlations among the meat traits were calculated within the R statistical environment and used to determine whether they reflected the relationships between the GWAS results.



Annotation of Candidate Genes

Potential candidate genes were identified within 500 kb upstream and downstream of the genome-wide significant SNPs on the Sus scrofa11.1 genome from the Ensembl database2. Candidate genes were then selected for traits according to their biological function.



Haplotype Block Analysis

Haplotype block analysis was performed with Haploview software. Linkage disequilibrium blocks were defined using Haploview with the default parameters (Gabriel et al., 2002) based on SNPs with MAF values > 0.05, Mendelian errors < 2, and p in the HWE test < 10–3.




RESULTS


Phenotype Description and Correlation Among Meat Traits

Tables 2, 3 summarizes the statistical information and genomic heritability of the meat-quality traits. Supplementary Figure 1 shows the trait distributions. The mean values for moisture, IMF, conductivity, pH, marbling score, and meat color were 71.1%, 2.43%, 2.65 mS, 6.36, 3.41, and 3.74, respectively. The genomic heritability estimates for moisture, IMF, conductivity, pH, marbling score and meat color were 0.48, 0.31, 0.13, 0.39, 0.37, and 0.55, respectively. Table 4 shows the phenotypic correlation coefficients for moisture, IMF, conductivity, pH, marbling score, and meat color. Significant positive correlations were found between pH and marbling score (r = 0.43; p < 0.01), meat color and moisture (r = 0.59; p < 0.01), and marbling score and IMF (r = 0.20; p < 0.01). Moisture was significantly negatively correlated with IMF (r = −0.41; p < 0.01), pH (r = −0.44; p < 0.01), and marbling score (r = −0.32; p < 0.01).


TABLE 2. Descriptive statistics for meat-quality traits of 582 pigs.
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TABLE 3. Estimation of genetic parameters for meat quality.
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TABLE 4. Correlation coefficients of meat-quality trait phenotypes in the pigs.
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Significantly Associated SNPs Identified via GWAS and Functional Analysis

Thirty-two SNPs were identified as significant for the traits investigated (Figures 1–6). Among the detected SNPs, five, nine, seven, four, two, and five were associated with conductivity, IMF, marbling score, meat color, moisture, and pH, respectively. In addition, linkage disequilibrium (LD) analysis was performed by using the data of the D (LY) population, and the results are shown in Figure 7. The results show that LD decay tends to be stable statuses when the distance is 1 Mb. Thus, genes that located within 1 Mb near the significant SNPs are identified as potential candidate genes for traits. In this study, 140 functional genes located within 1 Mb of the significant SNPs were considered potential candidate genes (Supplementary Table 2). Eight genes were selected as candidate genes for meat-quality traits according to their biological functions.


[image: image]

FIGURE 1. (A) Manhattan plots. (B) Quantile–quantile (QQ) plots of the mixed linear model (MLM) and fixed and random model Circulating Probability Unification (FarmCPU) analyzed for conductivity traits in D (LY) pigs. (C) Haplotype blocks on SSC15, including all significant conductivity-associated single-nucleotide polymorphisms (SNPs).
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FIGURE 2. Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU analyzed for IMF traits in D (LY) pigs.
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FIGURE 3. Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU model analyzed for marbling score in D (LY) pigs.
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FIGURE 4. Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU models analyzed for meat color in D (LY) pigs.
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FIGURE 5. Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU model analyzed for moisture in D (LY) pigs.
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FIGURE 6. Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU analyzed for pH in D (LY) pigs.
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FIGURE 7. The linkage disequilibrium decay in populations of D (LY).




Conductivity

Five significant SNPs for conductivity were identified on chromosomes 6 and 15 (Figure 1A). Table 5 provides detailed information on the significant SNPs, including the SNP, chromosome (Chr), location (bp), P-value, whether the SNP is located on or flanking the gene, and distance between the flanking genes and significant SNPs. Three significant SNPs were located within a 0.20-Mb segment (from 56.34 to 56.54 Mb) on SSC15. Among them, the two most significant, ALGA0085588 and ALGA0085585, were located within HERC2 and 93.3 kb upstream from HERC2, respectively, and were detected by both the MLM and FarmCPU. ALGA0085594 was also located within HERC2 via the FarmCPU method. These three significant SNPs on SSC15 were in a 534-kb haplotype block (Figure 1C). The other significant SNPs, ASGA0083580 and DRGA0006706, were, respectively, located within FHOD3 and 53.2 kb upstream from DSG1 on SSC6.


TABLE 5. Genome-wide significant conductivity-associated SNPs.
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IMF

The MLM and FarmCPU methods identified nine significant SNPs associated with IMF (Figure 2 and Table 6). Among these significant SNPs, four (WU_10.2_10_48312614, WU_10.2_10_47748520, DRGA00 10501, and WU_10.2_10_48118152) were located within a 0.50-Mb segment (from 43.10 to 43.60 Mb) on SSC10. The most significant SNP (WU_10.2_10_48312614) was identified by both models and was located within an intron of ST8SIA6. ALGA0006955, ALGA0031885, H3GA0023123, DBWU0000868, and ASGA0059395 were located on SSC1, 5, 7, 9, and 13, respectively.


TABLE 6. Genome-wide significant SNPs associated with IMF.
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Marbling

Both models identified seven significant SNPs associated with marbling (Figure 3 and Table 7). One SNP (M1GA0013120) was identified by only MLM. The most significant SNP (WU_10.2_12_33077453) was located 141.0 kb upstream of ANKFN1.


TABLE 7. Genome-wide significant SNPs associated with marbling score.
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Meat Color

The FarmCPU identified four significant SNPs associated with meat color (Table 8 and Figure 4); the MLM identified no SNPs for meat color. Three of the four significant SNPs were located within 0.39 Mb (from 9.20 to 9.59 Mb) on SSC18. The most significant SNPs, M1GA0023045 and WU_10.2_18_10095600, were located 22.2 kb from KDM7A on SSC18. The other significant SNPs (WU_10.2_12_18572268, ASGA0078801, and WU_10.2_18_10095600) were located within an intron of NMT1 on SSC12 and DENND2A and KDM7A on SSC18, respectively.


TABLE 8. Genome-wide significant SNPs associated with meat color.

[image: Table 8]


Moisture

The FarmCPU identified two significant SNPs associated with moisture; the MLM identified no significant SNPs associated with moisture (Table 9). Figure 5 shows the Manhattan and QQ plots. The significant SNPs, WU_10.2_11_56636318 and ALGA0062389, were, respectively, located 275.5 and 325.9 kb downstream from NDFIP2.


TABLE 9. Genome-wide significant SNPs associated with moisture.
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pH

Five significant SNPs on SSC1 and SSC13 were significantly associated with pH (Table 10 and Figure 6). Among these SNPs, four (WU_10.2_1_934682, WU_10.2_1_974053, INRA0002536, and ASGA0099314) were identified via both the FarmCPU and MLM. The most significant SNP (ASGA0099314) was located within ETV5, a protein-coding gene.


TABLE 10. Genome-wide significant SNPs associated with pH.
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DISCUSSION

As living standards continuously improve, consumers have higher expectations and more rigorous demands regarding meat quality. Consequently, meat quality is becoming an important trait in the swine industry and a major issue for pig breeding programs (Moeller et al., 2010; Gallardo et al., 2012; Nonneman et al., 2013). With the development of SNP arrays, GWAS analyses have become important for improving meat quality in the swine industry. For example, a previous study showed that several candidate genes, including MC4R, IGF2, ADRB3, and ATP1A2, heavily affected meat quality (Lu et al., 2018; Mármol Sánchez et al., 2020). Researchers showed that the AG genotype of ADRB3 had a higher marbling score and that it could be an important marker for improving marbling scores (Kenchaiwong et al., 2020). In this study, we performed a GWAS of meat-quality traits on crossbred commercial D (LY) pigs and detected candidate genes and markers to improve meat-quality traits.

In this work, the genomic heritability of the meat-quality traits ranged from 0.13 to 0.55, which was similar to the results of a previous study (Miar et al., 2014). The estimated heritabilities of these meat-quality traits were of low or moderate magnitude, showing that meat quality can be genetically improved. We identified 32 SNPs that were significantly associated with meat-quality traits in crossbred D (LY) pigs. Limited SNPs were analyzed, possibly owing to the sample size and hybrid nature of the three-way crossbred population. Previous studies identified nine SNPs for meat-quality traits in a population of 610 D (LY) pigs, and 28 SNPs were identified in a population of 336 purebred Chinese Erhualian pigs (Liu et al., 2015). Thus, the GWAS results may have been related to both the variety and population size of the pigs.

Notably, in addition to duplicating the QTL for meat quality found in a previous GWAS, we identified four novel QTLs. These four novel QTLs were located on a 0.20-Mb region (56.34–56.54 Mb) significantly associated with conductivity on SSC15, a 0.39-Mb region (9.19–9.58 Mb) significantly associated with meat color on SSC18, a 0.04-Mb region (0.56–0.60 Mb) significantly associated with pH on SSC1, and a 4.25-Mb region (52.26–56.51 Mb) on SSC1. Additionally, a 2.59-Mb region (51.89–49.30 Mb) on SSC11 was identified as being significantly associated with marbling and moisture, containing the significant SNPs WU_10.2_11_53938211 at 49.30 Mb for marbling, and WU_10.2_11_56636318 at 51.89 Mb and ALGA0062389 at 51.83 Mb for moisture. The results showed that some chromosomal regions might have diverse effects on meat-quality traits. Moreover, similar to the results of Luo et al. (2012), moderate correlation coefficients were identified between marbling and moisture (r = −0.33; p < 0.01). Thus, the correlation between traits might explain the pleiotropic effects in some regions.

We identified five significant SNPs as being significantly associated with conductivity. Two of these (ALGA0085585 and ALGA0085588) were identified by the FarmCPU and MLM and were located near HECT and RLD domain-containing E3 ubiquitin protein ligase 2 (HERC2). ALGA0085594 was also located within HERC2. Previous research found that ATP1A2 was strongly associated with muscle electrical conductivity because it encoded a subunit of the Na+/K+-ATPase responsible for maintaining an electrochemical gradient across the plasma membrane (Mármol Sánchez et al., 2020). Furthermore, ATP1A2 polymorphisms were associated with fat-cut percentage (Fontanesi et al., 2012). The function of HERC2 has been related to decreased body fat mass in mice. We speculated that HERC2 likely affects the electrical conductivity by affecting fat metabolism in pigs. Desmoglein 3 (DSG3), another candidate gene for conductivity, was located 0.1 Mb from the significant SNP, DRGA0006706, a protein-coding gene whose gene ontology annotations indicate that it is related to cytosolic metabolic processes (Drag et al., 2019) and calcium ion binding (Gaudet et al., 2011).

The ASGA0059395 SNP was located within roundabout guidance receptor 2 (ROBO2) of the ROBO family. Some researchers showed that ROBO2 was involved in fat metabolism, especially in fatty acid composition and includes C18:3IMF (Sato et al., 2017). Furthermore, SNP WU_10.2_10_48312614 was detected via two methods and located 0.45 Mb upstream from transmembrane protein 236 (TMEM236). No research has found TMEM236 to be involved in fat metabolism, but its related genes, transmembrane protein 120A (TMEM120A) and transmembrane protein 120B (TMEM120B), affect adipocyte differentiation and metabolism in mice and are highly expressed in fat (Batrakou et al., 2015). Additionally, transmembrane protein 60 (TMEM60) is another homologous gene associated with marbling fat in cattle (Lim et al., 2014). TMEM236 is reportedly associated with fat color (Xia et al., 2016). Thus, ROBO2 and TMEM236 are strong potential candidate genes for IMF. Several researchers have reported a positive correlation between marbling and IMF (Luo et al., 2012; Ma et al., 2013), which is consistent with the results of this study. Similarly, fat metabolism also affects marbling. Ankyrin repeat and fibronectin type III domain-containing 1 (ANKFN1), located 0.14 Mb from SNP WU_10.2_12_33077453, is involved in regulating fat androstenone levels (Drag et al., 2019) and might be an important potential candidate gene for marbling.

Meat color is a complex trait and is affected by pigment concentration, structural conditions of the muscle tissue, and the muscle acidification rate (Fan et al., 2008; Mármol Sánchez et al., 2020). In the present study, the SNPs M1GA0023045 and WU_10.2_18_10095600 on SSC18 located 106.5 and 139.6 kb upstream of solute carrier family 37 member 3 (SLC37A3), respectively, were first associated with meat color. The related genes, solute carrier family 15 member 4 (SLC15A4) and solute carrier family 25 member 17 (SLC25A17), participate in regulating pork quality. Researchers reported that the SLC15A4 c.658AA genotype had better water-holding capacity and reduced color b∗ and color L∗ (D’Astous-Pagé et al., 2017). SLC25A17 was also associated with meat color in a previous study (Ma et al., 2013). Therefore, SLC37A3 may be a potential candidate gene for meat color, although no reports have demonstrated its role in meat quality.

Meat moisture content was strongly negatively correlated with IMF content in our study, which was consistent with previous studies (Chin et al., 2012; Luo et al., 2012). Leaner meats generally contain more water because water is essential for protein synthesis and muscle building. In this study, the QTLs (from 51.84 to 51.89 Mb) on SSC11, including WU_10.2_11_56636318 and ALGA0062389, were identified via the FarmCPU model. Previous researchers found that the QTL on SSC11 was associated with IMF content, drip loss, and meat color score (Kim et al., 2005; Won et al., 2018). In this study, we, for the first time, identified the QTLs on SSC11 as being associated with moisture.

pH is an important meat-quality trait, is affected by glycogen metabolism, and can affect Pale-Soft-Exudative (PSE) and Dark-Firm-Dry (DFD) production. Studies have suggested that PPP1R3B is a candidate gene for pH because it affects glycogen by stimulating glycogen accumulation (Worby et al., 2008) and decreases muscle glycogen phosphorylase phosphatase activity (Doherty et al., 1995). Regulating synaptic membrane exocytosis 1 (RIMS1), which plays a role in regulating voltage-gated calcium channels during neurotransmitter and insulin release in humans, was located 17.4 kb of ALGA0003423 on SSC1. This gene might regulate glycogen metabolism through insulin, thus affecting pork pH values. Furthermore, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), another candidate gene for pH, encodes a protein that binds the 5′-untranslated region of IGF2 mRNA and regulates its translation. It plays an important role in glycogen metabolism, and variation of this gene has been associated with susceptibility to diabetes (Cho et al., 2008). Thus, RIMS1 and IGF2BP2 may be potential candidate genes for pH based on their biological functions.

Many factors affect the validity of GWAS results. Population stratification is an important factor that can lead to false positives (Pearson and Manolio, 2008). Many studies have reported that adding group structure to GWAS models improved the accuracy of the results (Yu et al., 2006; Zhang et al., 2010). In this study, we performed a principal component analysis and obtained the eigenvalue decomposition of the genomic relationship matrix. The results of the principal component analysis are shown in Figure 8. The results showed that the first, second, and third principal components comprised 13.7, 9.7, and 8.5% of the total genomic variance, respectively. To eliminate the influence of population stratification, the top three principal component effects controlling the population genetic background were added into this research model. The number of statistical models was used to control false positives by adding population structure and the MLM that was most commonly used for GWAS. However, although the MLM reduced the incidence of false positives, it induced false negatives by over-fitting the model to a degree that enabled missing potentially important associations (Kaler et al., 2017). As shown in this study, although Manhattan plots from both MLM and Manhattan plots were similar in meat color and moisture, MLM leads to false-negative results, while FarmCPU can overcome the shortcomings of MLM and successfully identified SNPs or candidate gene for traits. Additionally, we used two models, the FarmCPU and MLM, to perform a GWAS for six meat-quality traits in 582 D (LY) pigs. Figures 1–6 show the QQ plots for meat traits in the different models. In the FarmCPU, the deflation factors for IMF, moisture, marbling, conductivity, meat color, and pH were 0.9, 1.1, 1.0, 1.1, 1.1, and 0.9, respectively; in the MLM, these factors were 1.0, 0.9, 1.0, 1.0, 0.9, and 0.9, respectively. We found no obvious population stratifications, and the populations could be managed well using the FarmCPU and MLM. Additionally, although we identified candidate genes for meat-quality traits from their biological function and proximity to significant SNPs (within 1 Mb), candidate genes may exist outside this distance. FarmCPU identified 29 of 32 significant SNPs. Moisture and meat color were not identified in the MLM, thus limiting its use in the present study. The FarmCPU found all candidate genes for meat-quality traits in this study, whereas the MLM only found half of these candidate genes. Previous studies also indicated that FarmCPU identified more candidate genes in both animals and plants because it better controlled for false negatives and false positives (Meng et al., 2017; Wang et al., 2018; Kaler et al., 2019; Bollinedi et al., 2020). Overall, the results suggested that the FarmCPU model worked well in detecting candidate genes, particularly for complex meat-quality traits.
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FIGURE 8. Population principal component analysis.




CONCLUSION

We conducted a GWAS for meat-quality traits in 582 D (LY) pigs using both FarmCPU and MLM. Thirty-two significant SNPs and several subsequent candidate genes were identified as being associated with meat-quality traits. The biological functions of the candidate genes aligned well with regulating the corresponding meat-quality traits. Furthermore, the FarmCPU worked well in identifying candidate genes, particularly for complex meat-quality traits. Overall, the significant SNPs and candidate genes identified herein may benefit pig-breeding programs and contribute to further improving meat quality.
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Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection. Before genomic selection can be implemented in crossbred populations, it is important to explore if pleiotropic effects exist between carcass and meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus–Brahman population that included purebred and crossbred animals. Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide association studies were first used to investigate the relevance of direct additive genetic effects on each carcass, sensory and visual meat quality traits. A second analysis for each trait included all other phenotypes as covariates to correct for direct causal effects from identified genomic regions with pure direct effects on the trait under analysis. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more than 1% of additive genetic variance of two or more traits. Moreover, three suggestive pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell growth, muscle development, lipid metabolism and fat deposition, and important factors in muscle proteolysis. A functional analysis of these genes revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell–cell adhesion. These results contribute with novel information about the complex genetic architecture and pleiotropic effects of carcass and meat quality traits in crossbred beef cattle.
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INTRODUCTION

A common strategy to improve beef production in tropical and subtropical areas is crossbreeding. Approximately 40% of all beef cattle in the United States are raised in the subtropical Southern and Southeastern areas (Cundiff et al., 2012). The combination of high environmental temperature and humidity, greater incidence of parasite-transmitted diseases, and nutritionally lower quality pastures negatively impacts the growth rate and reproductive performance of Taurine (Bos taurus taurus) beef cattle breeds (Burrow, 2015). To attenuate these impacts, producers in tropical and subtropical areas use crossbreeding between European Taurine and Zebu (Bos taurus indicus) breeds as a strategy to enhance beef production (Lamy et al., 2012). The resulting crossbred animals combine the tropical adaptation of Zebu cattle with the production performance of Taurine cattle, and in tropical and subtropical conditions they frequently perform better than purebred cattle from the parental breeds due to heterosis (Burrow, 2015). In subtropical areas of the United States, Angus × Brahman crosses are preferred for beef production over other Zebu–Taurine combinations (Chase et al., 2004).

Carcass and meat quality (visual and sensory) are two of the most important attributes for the beef industry because they drive profitability and consumer demand. Carcass and meat quality are complex concepts that are described through multiple traits like ribeye area and marbling (carcass quality); tenderness, flavor, and juiciness (visual meat quality); and color, texture, and firmness (sensory meat quality). Each one of these individual component traits are complex in nature, under the control of multiple genes, and influenced by environmental factors. Most of these component traits are challenging and expensive to measure and unavailable until late in life or after the animal was harvested. Genetic improvement of such traits is not viable through traditional phenotypic selection, but these traits are perfect candidates for genomic selection if genetic markers accounting for a large proportion of the additive genetic variation can be identified.

The genetic architecture of carcass quality traits in beef cattle has been more extensively investigated in purebred (Bolormaa et al., 2011; Tizioto et al., 2013; Magalhães et al., 2016; Mateescu et al., 2017) than in crossbred populations (Peters et al., 2012; Lu et al., 2013; Leal-Gutiérrez et al., 2018; Grigoletto et al., 2020). Less information is available on meat quality in both purebred and crossbred populations largely because of the cost and difficulty associated with measuring these traits on a large number of individuals. Genomic selection is being incorporated in an increasingly large number of cattle populations, initially for traits which are routinely recorded to ensure high levels of accuracy. Thus, it is important to explore the existence of pleiotropic effects between these carcass quality and meat quality (visual and sensory) attributes. This will ensure that genomic selection programs targeting carcass quality traits will not negatively affect the meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus–Brahman population.



MATERIALS AND METHODS


Cattle Population and Phenotypic Data

The University of Florida Institutional Animal Care and Use Committee approved the research protocol used in this study (number 201003744). The cattle population for this study consisted of 2,384 steers from the University of Florida multibreed Angus × Brahman herd (Elzo et al., 2016) born between 1989 and 2018. The breed composition of animals in this multibreed population ranged from 100% Angus to 100% Brahman, including purebred animals and all crosses in between them.

Steers were transported to a commercial packing plant when they reached 1.27 cm of subcutaneous fat over the ribeye (FOE, cm), where they were harvested under USDA-FSIS inspection. Carcass quality traits available included hot carcass weight (HCW, kg), marbling score, FOE, and rib eye area (REA, cm2). Carcasses were ribbed between the 12th and 13th rib and marbling and REA were visually appraised and recorded by graders 48 h postmortem. Marbling (MARB) was graded as follows: Practically Devoid = 100–199, Traces = 200–299, Slight = 300–399, Small = 400–499, Modest = 500–599, Moderate = 600–699, Slightly Abundant = 700–799, Moderately Abundant = 800–899, Abundant = 900–999. Visual meat quality traits recorded included color (COLOR) on a scale of 1 = extremely bright cherry red to 8 = extremely dark, texture (TEXT) on a scale of 1 = very fine to 7 = extremely coarse, and firmness (FIRM) on a scale of 1 = very firm to 7 = extremely soft. All visual meat quality phenotypes were taken by trained personnel between the 12th and 13th ribs, 48 h postmortem and approximately 1 h after ribbing to allow for oxygenation of the Longissimus muscle. Given the small number of observations at the high end of the range for COLOR, TEXT, and FIRM, scores 7 and 8 were combined for COLOR, scores 5, 6, and 7 were combined for TEXT, and scores 4 and 5 were combined for FIRM.

One 2.54 cm thick steak from the longissimus dorsi between the 12th and 13th ribs was sampled from each animal, and sensory meat quality traits were assessed in a sensory panel according to the American Meat Science Association Sensory Guidelines. Steaks were transported to the University of Florida Meat Science Laboratory where they were aged for 14 days at 4°C and then frozen at -20°C. Prior to sensory panel assessment, steaks were thawed at 4°C for 24 h, and cooked on an open-hearth grill to an internal temperature of 71°C. Sensory panels consisted of 8–11 trained members, and six animals were assessed by each panel. Two 1 cm × 1 cm × 2.54 cm samples from each steak were provided to each panelist. The sensory panel measurements analyzed by the sensory panelists included: tenderness (TEND; 8 = extremely tender, 7 = very tender, 6 = moderately tender, 5 = slightly tender, 4 = slightly tough, 3 = moderately tough, 2 = very tough, 1 = extremely tough), juiciness (JUIC; 8 = extremely juicy, 7 = very juicy, 6 = moderately juicy, 5 = slightly juicy, 4 = slightly dry, 3 = moderately dry, 2 = very dry, 1 = extremely dry), and beef flavor intensity (FLAV; 1 = extremely bland, 2 = very bland, 3 = moderately bland, 4 = slightly bland, 5 = slightly intense, 6 = moderately intense, 7 = very intense, 8 = extremely intense). Average sensory score from all members of the panel for each steak was used as input in the statistical analyses.

A factor analysis was used to identify high percentages of explained common variances between HCW and REA and between FOE and MARB (data not shown). Subsequently, REA and MARB were selected for further analyses based on their economic importance and likelihood of being included as selection objectives in genetic evaluation programs. Using a similar approach, TEND, JUIC, and FLAV were selected to describe the sensory meat quality, and COLOR, TEXT, and FIRM were chosen to explain visual meat quality.



Genomic Data

DNA was extracted from blood with the QIAamp DNA Blood Mini DNA kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol and stored at −20°C. Genotyping was carried out on 1,038 of the 2,384 animals using the Bovine GGP F250 array (GeneSeek, Inc., Lincoln, NE, United States) which contains 221,115 single nucleotide polymorphisms (SNPs). The SNP markers mapping to the sex chromosomes, with minor allelic frequency (MAF) lower than 0.01% and call rate lower than 90% were excluded. After quality control, 125,042 SNP markers were retained for subsequent genomic analysis.



Estimation of Additive Genetic Parameters

Average information restricted maximum likelihood (AIREML) variance components, heritabilities, additive genetic correlations, and phenotypic correlations were estimated using single-trait and two-trait single-step genomic best linear unbiased prediction (ssGBLUP) from single-trait and two-trait animal linear mixed models. Computations were performed with the airemlf90 package from the BLUPF90 family of programs from Ignacy Misztal and collaborators, University of Georgia. The ssGBLUP procedure utilizes all available phenotypic, pedigree and genotypic information (Misztal et al., 2009). Thus, the ssGBLUP mixed model equations require the inverse of the joint pedigree-genomic relationship matrix (H−1) instead of the inverse of the classical pedigree-based relationship matrix (A−1). The H−1 is defined as follows (Legarra et al., 2009; Aguilar et al., 2010):

[image: image]

where G−1 is the inverse of the genomic relationship matrix and [image: image] is the inverse of the pedigree relationship matrix for genotyped animals. The G matrix was constructed based on VanRaden (2008), assuming allelic frequencies from the current population:

[image: image]

where Z is a centered incidence matrix of genotype covariates (0,1,2), and 2∑pi(1−pi) is a scaling parameter in which pi is the frequency of the reference allele at the ith SNP. To avoid singularity issues, G inverse was built as G−1 = (0.95G + 0.05A22)−1.

The single-trait and two-trait animal mixed models used in this study included the direct additive genetic and residual as random effects, year of birth as a class effect, and age at slaughter as a covariate, except for TEND and FLAV where age at slaughter was not significant. The single-trait animal mixed models were as follows:

[image: image]

where y is a vector of phenotypic records, X is an incidence matrix linking phenotypic records to fixed effects, b is a vector of fixed effects, Z is an incidence matrix relating phenotypic records to direct additive genetic effects, u is a vector of random animal direct additive genetic effects, and e is a vector of random residuals. The random vectors u and e were distributed as [image: image] and [image: image], where [image: image] is the direct additive genetic variance, [image: image] is the residual variance, H is the joint pedigree-genomic relationship matrix, and I is an identity matrix. Thus, the (co)variance matrix of u and e random vectors in single-trait models (V1) was as follows:

[image: image]

The two-trait animal mixed models used to estimate phenotypic and genetic correlations between pairs of traits included the same fixed and random effects as the single-trait models. However, it was assumed that u ∼MVN(0,T⊗H) and e ∼MVN(0,R⊗I), where T that is the additive genetic (co)variance matrix and R that is the residual (co)variance matrix were defined between the two traits under analysis, MVN represents the multivariate normal distribution, and ⊗ denotes the Kronecker product. Thus, the (co)variance matrix of u and e random vectors was as follows:

[image: image]



Genome-Wide Scan for Pleiotropic Effects

Single-trait genome-wide association studies (GWAS) were carried out using the weighted ssGBLUP (WssGBLUP) procedure (Wang et al., 2012) to investigate the relevance of direct additive genetic effects on each of the carcass, sensory, and visual meat quality traits. The WssGBLUP uses an iterative process, which was repeated three times in this study, to estimate SNP effects and weights. In this approach, the weights of SNPs with larger effects increase, while the weights of markers with smaller effects decrease. Briefly, SNP effects and weights for the GWAS were derived as in Wang et al. (2012) as follows:

1. Set the diagonal matrix of SNP variance or weights as identity, D = I.

2. Construct the G matrix: G = ZDZ′λ, where λ = 1/2∑pi(1−pi).

3. Predict GEBVs using ssGBLUP with blupf90 package.

4. Convert GEBVs to SNP effects ([image: image]) with postGSf90 package: [image: image], where [image: image] is the GEBV of genotyped animals.

5. Compute the weight for each SNP (di) using a non-linearA variance method: [image: image], where CT is a constant for departure from normality equal to 1.05, [image: image] is the estimated absolute SNP effect, and [image: image] is the standard deviation of the vector of estimated SNP effects, with the maximum change in SNP variance limited to 10 (VanRaden, 2008; Lourenco et al., 2020).

6. Normalize SNP weights to maintain the additive genetic variance constant.

7. Iterate from step 2, using the obtained weights to compute the G-matrix.

Inbreeding was considered in the set-up of A−1 to avoid using ad-hoc scaling parameters while keeping GEBV within an acceptable level of inflation/deflation (Lourenco et al., 2020). The percentage of the direct additive genetic variance explained by a given SNP window was calculated according to Wang et al. (2012) as:

[image: image]

where wi is the additive genetic value of the ith1-Mb genomic window, B is the total number of adjacent SNPs within the ith window, Zj is the vector of genotypes of the jth SNP for all individuals, and [image: image] is the estimated additive genetic effect for the jth SNP within the ith window.

The models used to identify genomic windows associated with the carcass, sensory and visual meat quality traits included all fixed and random effects from the variance component models. In addition, these models included phenotypes for all traits other than the target trait as covariates to correct for causality (Li et al., 2006; Leal-Gutiérrez et al., 2018). Genomic windows explaining more than 1% of direct additive genetic variance were considered to be associated with the analyzed trait. Common genomic regions involving overlapping windows associated with two or more phenotypes were considered as pleiotropic regions. Additionally, common genomic regions including overlapping windows explaining more than 1% of the direct additive genetic variance for one trait and between 0.9 and 1% of the direct additive genetic variance for another trait were considered as suggestive pleiotropic regions. In both cases, the direct effect of a genomic region on two or more traits persists even after each trait was adjusted for all remaining traits.



Functional Analysis

Genes within pleiotropic regions were identified using the Biomart tool from Ensembl genome browser (Zerbino et al., 2018). It was assumed that causative mutations were located within pleiotropic regions detected with the GWAS. Thus, SNP markers with the largest absolute estimated effect across two or more traits within each pleiotropic region were used to identify genes with a pleiotropic effect. A SNP marker was assigned to a particular gene if it was located within the gene. Gene ontology (GO) terms for all genes inside the pleiotropic regions were also retrieved from the Ensembl database to help determine biological functions and possible mechanistic pathways influencing carcass and meat quality traits. GO and pathway enrichment and clustering analyses of all annotated genes within pleiotropic regions were carried out using the PANTHER Overrepresentation Test (Mi et al., 2019) and the DAVID v6.8 Functional Annotation Tool (Huang et al., 2009).



RESULTS AND DISCUSSION


Carcass Quality, Visual and Sensory Meat Quality Traits

Table 1 presents numbers of animals, means, SD, minimum and maximum for carcass quality, sensory meat quality, and visual meat quality traits in the multibreed Angus–Brahman population. Similar values were reported for these traits in Brahman and Brahman-influenced populations (Riley et al., 2003; Smith et al., 2007).


TABLE 1. Descriptive statistics for carcass, sensory meat quality, and visual meat quality traits in a multibreed Angus–Brahman population.

[image: Table 1]Ribeye area and marbling score are economically important for producers, particularly marbling due to its high impact on carcass value set by packers. The average REA (80.72 ± 10.96) and marbling score (410.44 ± 96.89) were comparable to national beef industry averages (Shackelford et al., 2012; Boykin et al., 2017), and similar to data previously reported for the multibreed Angus–Brahman population (Elzo et al., 2012, 2016; Leal-Gutiérrez et al., 2019). This indicates that marbling scores from Angus x Brahman crossbreds are similar to the national beef industry average and include superior carcasses. Further, this similarity in marbling scores is especially important for the Southern United States because crossbreeding with B. t. indicus is commonly used to provide some level of adaptability to hot and humid environmental conditions. However, producer profitability may decrease because crossbred cattle with visible B. t. indicus characteristics are penalized and their carcasses are discounted (Riley et al., 2005).

While carcass quality is the primary factor determining the value of a carcass in the beef industry supply chain, consumers evaluate beef products at purchase time based on visual quality and at consumption time based on sensory quality. Both the visual and sensory evaluation of the beef product have an important impact on the decision to make a repeated purchase, which is important for sustained or increased demand (Schroeder et al., 2013). Sensory panel members classified steaks from this population to be on average slightly to moderately tender, slightly to moderately juicy and having slightly to moderately intense beef flavor. About 70% of all steaks were rated tender, 91% juicy, and 73% having intense flavor. Color was on average slightly to moderately dark cherry red and similarly texture was fine to moderately fine, and firmness was firm to moderately firm. Overall, 77% of the steaks were rated as dark cherry red or lighter, 80% fine in texture, and 63% firm.



Genetic Parameters

Table 2 presents single-trait AIREML estimates of genetic variances ([image: image]), residual variances ([image: image]), and heritabilities (h2) with standard deviation (SD) for carcass quality, sensory meat quality, and visual meat quality traits in the multibreed Angus–Brahman population. Heritability estimates for MARB, REA and TEND were moderate, ranging from 0.43 to 0.53, and consistent with the average of heritability estimates reported in the literature (reviewed by Mateescu, 2014). The low estimates of h2 for the other sensory panel and visual meat quality traits (0.11–0.18) were generally consistent with values reported in the literature (Reverter et al., 2003; Dikeman and Pollak, 2005; King et al., 2010; Mateescu, 2014).


TABLE 2. Single-trait AIREML estimates of genetic variances ([image: image]), and residual variances ([image: image]), and heritabilities (h2) with standard deviation (SD) for marbling, rib eye area, juiciness, flavor, tenderness, color, texture, and firmness in a multibreed Angus–Brahman population.

[image: Table 2]Two-trait AIREML estimates of direct additive genetic and phenotypic correlations between carcass quality, sensory meat quality and visual meat quality traits are presented in Table 3. Ribeye area had consistently the lowest phenotypic correlations with all other traits (−0.05 to 0.04). Positive moderate phenotypic correlations existed between MARB and TEND (0.32), MARB and JUIC (0.32), TEND and JUIC (0.51), TEND and FLAV (0.43), JUIC and FLAV (0.42), and JUIC and COLOR (0.36). Negative moderate phenotypic correlations were estimated between MARB and FIRM (−0.37) and JUIC and FIRM (−0.33). Examination of direct additive genetic correlations between traits in this study is important to understand the challenges and limitations that could result from the inclusion of any of these traits in selection schemes. High and favorable direct additive genetic correlations existed between MARB and a number of other traits (JUIC, FLAV, and FIRM), between all sensory meat quality traits (TEND, JUIC, and FLAV), and between FLAV and TEXT and FLAV and FIRM. The moderate favorable direct additive genetic correlation of 0.21 observed in the present population between two economically important traits MARB and TEND was lower than other estimates of 0.40 (Reverter et al., 2003) and 0.61 (Wheeler et al., 2010). However, this value (0.21) was comparable to estimates by Riley et al. (2003) for Brahman cattle, reinforcing the long-held belief of a unique fat-tenderness relationship in B. t. indicus versus B. t. taurus cattle. The direct additive genetic correlations reported here between TEND and other visual meat quality traits are supported by other studies in both tropical and temperate breeds (Reverter et al., 2003). Although the relationship between carcass quality traits (particularly marbling) and meat sensory traits (tenderness, juiciness, and flavor) is a very important one, few direct additive genetic correlations have been published to date. This is primarily due to the difficulty and high cost of measuring sensory quality traits in large populations.


TABLE 3. Two-trait AIREML estimates of phenotypic (above diagonal) and direct additive genetic (below diagonal) correlations between carcass quality, sensory meat quality, and visual meat quality traits in a multibreed Angus–Brahman population.

[image: Table 3]


Genome-Wide Mapping of Pleiotropic Effects

The proportion of the direct additive genetic variance explained by 1-Mb SNP windows for carcass quality, sensory meat quality, and visual meat quality traits across the entire bovine genome is shown in Supplementary Figure 1. The presence of genomic regions associated with two or more traits in this study could be due to the direct and/or indirect effects of these genomic regions on the traits (Li et al., 2006; Leal-Gutiérrez et al., 2018). Direct additive genetic effects are the result of a single causal variant related to multiple traits, independently of its individual effects on each of them and the dependency or causal relationship between different phenotypes. These direct additive genetic effects are considered true pleiotropic effects (Stearns, 2010; Wagner and Zhang, 2011). On the other hand, complex relationships exist between carcass quality, sensory meat quality, and visual meat quality traits and most of them measure some common attributes of the system. For example, the amount of marbling measured by MARB is highly dependent on the variation captured by REA because fat is deposited as the animal grows, and marbling will subsequently impact the meat quality traits (O’Connor et al., 1997; Smith et al., 2007). Because of these dependencies, a genetic variant associated with one trait will show an association with the other traits even if it does not have a direct effect on these other traits. These are considered indirect effects and are expected to disappear when a trait is corrected for the other phenotypes in the system.

Conditional genome scan fitting correlated traits as covariates for the trait of interest allows correcting for indirect effects and capturing direct additive genetic effects of genomic regions under analysis (Li et al., 2006). Thus, this approach was implemented to scan for pleiotropic regions affecting carcass quality, sensory meat quality, and visual meat quality traits in the multibreed Angus–Brahman population. The single-trait WssGBLUP analyses correcting for indirect effects (i.e., including all remaining traits as covariates; Figure 1 and Supplementary Figure 2) identified a total of 3,462 non-overlapping 1-Mb genomic windows for MARB, 3,091 for REA, 3,218 for TEND, 3,710 for JUIC, 3,306 for FLAV, 3,381 for COLOR, 3,319 for TEXT, and 3,345 for FIRM. Out of these, 4, 8, 5, 8, 3, 6, 2, and 5 windows explained more than 1% of the direct additive genetic variance for MARB, REA, TEND, JUIC, FLAV, COLOR, TEXT, and FIRM, respectively (Supplementary Tables 1–8). Significant overlapping genomic windows from these analyses with target traits corrected for all other traits are expected to represent genomic regions with pleiotropic effects on the corresponding overlapped traits. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 (Table 4) explained more than 1% of the direct additive genetic variance of two or more carcass quality, sensory meat quality, and visual meat quality traits. Moreover, three suggestive pleiotropic regions, defined as regions explaining more than 1% of the direct additive genetic variance for one trait and between 0.9 and 1% for another trait, were identified on BTA10 and BTA19 (Table 4). It is important to point out that these eight pleiotropic regions were previously identified as relevant to carcass quality, sensory meat quality and visual meat quality traits, explaining at least 0.7% of the additive genetic variance of these traits (Supplementary Figure 1).


[image: image]

FIGURE 1. Manhattan plots for bovine chromosomes harboring pleiotropic regions with effect on MARB, REA, TEND, JUIC, FLAV, COLOR, TEXT, and FIRM with significance thresholds indicated at 1% of the additive genetic variance (dash-dotted red line). The variance explained by 1-Mb genomic windows was estimated using single-trait WssGBLUP analyses correcting for indirect effects (i.e., including all remaining traits as covariates). The pleiotropic regions were highlighted in green, and suggestive pleiotropic regions were highlighted in purple.



TABLE 4. Genomic windows explaining more than 1% of direct additive genetic variances and pleiotropic genomic regions associated with carcass quality, sensory meat quality, and visual meat quality traits in a multibreed Angus–Brahman population.

[image: Table 4]
Two pleiotropic windows were identified on BTA5. The first one was located at 26.7–27.5 Mb and explained a high proportion of the direct additive genetic variance in REA (2.63%) and MARB (1.31%). The second one was located at 56.2-56.9 Mb and explained 4.72% of the direct additive genetic variance for REA, 2.45% for TEND, 2.12% for MARB, 1.58% for TEXT, 1.33% for FIRM, and 1.06% for JUIC. The first region around 25–28 Mb on BTA5 was previously reported to be associated with numerous carcass and meat quality traits in beef cattle, specifically MARB and REA (McClure et al., 2010; Baeza et al., 2011). The second window on BTA 5 was found to be associated with MARB and REA (Nalaila et al., 2012; Peters et al., 2012; Saatchi et al., 2014), TEND (Casas and Shackelford, 2000), while a more distant region (68.9–69.1 Mb) was associated with juiciness (Gill et al., 2010).

One genomic window located on BTA7 (51.6–52.5 Mb) had pleiotropic effects on MARB (explaining 2.22% of the direct additive genetic variance), TEND (1.65% of the direct additive genetic variance) and TEXT (1.34% of the direct additive genetic variance), and had a suggestive pleiotropic effect on COLOR (0.92% of the direct additive genetic variance). Previous reports also associated this BTA7 region with MARB (McClure et al., 2010; Mateescu et al., 2017), TEND (Allais et al., 2014), and fat color (Bedhane et al., 2019).

The genomic region between 61.9 and 62.5 Mb on BTA18 accounted for 2.31, 2.09, and 1.09% of the direct additive genetic variance for FLAV, COLOR, and TEND, respectively. Although no specific associations with these traits have been reported, this BTA18 chromosomal region was involved with other carcass traits in cattle (Cole et al., 2011; Höglund et al., 2012; Rolf et al., 2012).

A pleiotropic region located on BTA 29 (43.1–43.4 Mb) simultaneously affected TEND (1.42% of direct additive genetic variance) and FLAV (1.22% of direct additive genetic variance). This is an important region because of its reported association with meat quality, in particular TEND, and because it harbors the μ-calpain gene, a well-established candidate gene due to its role in myofibrillar protein degradation.

A suggestive pleiotropic region on BTA10 (76.2–77.2 Mb) explained 1.11 and 0.98% of the direct additive genetic variance for JUIC and MARB. Lastly, two suggestive pleiotropic regions were detected on BTA19 (27.0–28.0 and 38.2–39.1 Mb). The first region was associated with TEND (1.13% of the direct additive genetic variance) and had a suggestive effect on TEXT (0.94% of direct additive genetic variance), while the second region explained 1.04 and 0.95% of direct additive genetic variance genetic variances for JUIC and COLOR, respectively.



Genes Within Pleiotropic Regions

The pleiotropic genomic regions described above contained about 317 genes (Supplementary Table 9). However, only candidate genes will be described and discussed here. Genes flagged by the top 20 markers within a specific pleiotropic window (i.e., markers with the largest absolute estimated effect across two or more traits), and with a known function directly or indirectly associated with carcass and meat quality traits were defined as candidate pleiotropic genes.

At least two genes in the first pleiotropic region on BTA5 (26.7–27.5 Mb) are directly involved in muscle physiology and lipid metabolism: Cysteine Sulfinic Acid Decarboxylase (CSAD) and Tensin-2 (TNS2); hence influencing marbling and ribeye area. The CSAD gene is involved in taurine biosynthesis. Taurine, although not used in protein synthesis, is the most abundant free amino acid in mammalian tissues and has multiple functions, including skeletal muscular structure and function (Ito et al., 2008, 2010; De Luca et al., 2015) and lipid metabolism, preventing fat deposition (Murakami, 2015; Wen et al., 2019). Tensin plays a role in skeletal–muscle regeneration (Ishii et al., 2013), and may also cooperate with other actin-binding proteins to modulate actin assembly (Lo et al., 1994).

The second pleiotropic region on BTA5 (56.2–56.9 Mb) harbors three candidate genes involved in lipid metabolism and muscle development, namely Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1), Myosin 1A (MYO1A), and Nascent Polypeptide-Associated Complex Alpha Subunit (NACA). The LRP1 gene plays important roles in many cellular and biological processes, including cell growth and lipid metabolism (Dato and Chiabrando, 2018), and regulates muscle fiber development and myoblast proliferation (Lv et al., 2019). MYO1A is a well-known gene related to muscle development, whereas the NACA gene is involved in the regulation and differentiation of myoblast cells and myogenic lineages (Berger et al., 2012), and lipid metabolism (Cui et al., 2012). In addition, MYO1A, R3H Domain Containing 2 (R3HDM2), Tachykinin 3 (TAC3), and G Protein-Coupled Receptor 182 (GPR182) genes were also reported to be simultaneously associated with carcass and meat quality latent variables in the same multibreed Angus–Brahman population (Leal-Gutiérrez et al., 2018). Lastly, two other genes identified as pleiotropic in this region were the G Protein-Coupled Receptor 182 (GPR182) gene that was differentially expressed in the skeletal muscle of finishing pigs fed a lysine-deficient vs. a lysine-adequate diet (Wang et al., 2016), and the Retinol Dehydrogenase 16 (RDH16) gene that is involved in retinol metabolism and seems to be involved in steatosis in Japanese Black cattle (Ishida et al., 2017). This second BTA5 region is of particular importance because of its pleiotropic effects on most of the traits under investigation. The highlighted candidate genes regulate muscle development, myoblast proliferation, and lipid metabolism. In addition to the obvious effect on MARB and REA, these genes could also affect TEND, TEXT and FIRM given the impact of muscle fiber diameter and density on these traits (Pearson, 1990; Lv et al., 2019).

The pleiotropic window identified on BTA7 contains Protocadherin Beta 1 (PCDHB1), which may directly impact marbling, tenderness, and texture. Protocadherins are cell-adhesion molecules and Refoyo-Martínez et al. (2019) found PCDHB1 to be under selection in cattle. Cadherins are structural proteins and some of them were associated with marbling, suggesting that they play important roles in cell adhesion and differentiation in several bovine tissues (Lim et al., 2011; Caballero et al., 2014; Martignani et al., 2020). In muscle, cadherins could be involved in processes that lead to less tender and visually coarser meat. Consequently, PCDHB1 could directly influence marbling, tenderness, and texture.

The pleiotropic window identified on BTA18 contains Retinol Dehydrogenase 13 (RDH13) which could affect color and flavor. Vitamin A, or retinol, gives beef a yellowish hue (Daley et al., 2010). Regulation of retinol in muscle by RDH13 would therefore have a direct effect on color. Elevated levels of vitamin A precursors in the diet were associated with altered fatty acid composition of beef (Daley et al., 2010). Additionally, RDH13 was associated with fat deposition in beef cattle (Lindholm-Perry et al., 2017). The effect of RDH13 on beef fatty acid composition could have a direct impact on flavor. Another gene in this window is Ubiquitin Conjugating Enzyme E2 S (UBE2S), a member of the ubiquitin-conjugating enzyme family with important roles in protein metabolism and remodeling of adherens junctions. The role of UBE2S in ubiquitin-mediated proteolysis supports the association with TEND and this is further reinforced by a GWA study in Nellore beef cattle which identified the UBE2S gene as related to meat tenderness (Carvalho et al., 2017).

The suggestive pleiotropic region on BTA10 contains the Spectrin Repeat Containing Nuclear Envelope Protein 2 (SYNE2) and Spectrin Beta, Erythrocytic (SPTB) genes. Both genes encode spectrin proteins that bind actin filaments in the cell to the nuclear membrane stabilizing the cell’s nucleus. SYNE2 was previously identified in the same multibreed Angus–Brahman population as a candidate gene in a region explaining a large percentage of direct additive genetic variances for carcass quality (Leal-Gutiérrez et al., 2018). It is an obvious candidate gene due to its possible role in proteolysis and cell compartmentalization (Zhang et al., 2007). Changes in the expression of SPTB were associated with embryonic lethality in cattle (Oishi et al., 2006).

The first suggestive pleiotropic region on BTA19 (27.0–28.0 Mb) contains four genes that may play important regulatory functions in metabolism and gene expression: Dynein Axonemal Heavy Chain 2 (DNAH2), Chromodomain Helicase DNA Binding Protein 3 (CHD3), Arachidonate 15-Lipoxygenase Type B (ALOX15B), and Phosphoribosylformylglycinamidine Synthase (PFAS). The DNAH2 gene codes for a motor protein found in cilia and flagella that was related to intramuscular fat content and carcass weight in pigs (Hlongwane et al., 2020). The CHD3 protein deacetylates histones for chromatin remodeling and may have an important regulatory function. The ALOX15B gene plays a role in cell signaling. This lipoxygenase converts arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid, which is involved in G-protein coupled receptor activation and was associated with obesity in humans (Goossens et al., 2017). Finally, PFAS is involved in de novo synthesis of purines and mutations in this gene were linked to embryonic lethality in cattle (Michot et al., 2017).

The second suggestive pleiotropic region on BTA19 (38.2–39.1 Mb) contains Pyridoxamine 5’-Phosphate Oxidase (PNPO), G Protein-Coupled Receptor 179 (GPR179), and Rho GTPase Activating Protein 23 (ARHGAP23). The PNPO gene regulates vitamin B6 synthesis and mutations in this gene are known to cause seizures (Ciapaite et al., 2020). The GPR179 binds glutamate and ARHGAP23 is a GTPase involved in signal transduction through transmembrane receptors, thus they may have a regulatory function impacting juiciness and color.

A total of 19 genes were annotated in the pleiotropic region identified on BTA29 (43.1–43.4 Mb) and several of them are structural proteins. Genes coding for anchoring proteins, previously identified as associated with meat quality traits by Leal-Gutiérrez et al. (2018), could contribute to tenderization because they allow the attachment of cytoskeletal proteins, plasma and organelle membranes, and extracellular matrix proteins. However, the most important gene in this region is CAPN, an essential factor in postmortem muscle proteolysis. Numerous polymorphisms in the CAPN-CAST system were identified as associated with meat tenderness in various cattle populations (Leal-Gutiérrez and Mateescu, 2019). While no functional mutation was identified in CAPN, this gene remains the main candidate gene for meat quality because of its biological role. Many of the genes in this region have been identified as associated with meat tenderness, but more importantly, have been found to interact with each other, co-localize, and have co-expression relationships (Braz et al., 2019).



Functional Analysis

Gene ontology and pathway enrichment analyses were performed to gain insight into the genes located within the most significant pleiotropic regions using PANTHER Overrepresentation Test and the DAVID Functional Classification Clustering tools. The PANTHER classification according to protein family and functionally important domains and sites using the INTERPRO database (Mitchell et al., 2019) is presented in Figure 2. Significant DAVID Functional Annotation Clustering results for the top pleiotropic regions are shown in Table 5. DAVID Functional Annotation Clusters are considered significant above an enrichment score of 1.1.
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FIGURE 2. Molecular function analysis of genes located within pleiotropic regions for carcass quality, sensory meat quality, and visual meat quality in a multibreed Angus–Brahman population.



TABLE 5. Top pathways enriched in pleiotropic regions for carcass quality, sensory meat quality, and visual meat quality traits from the DAVID functional annotation module analysis.
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Overrepresented terms for GO Biological Processes within the most significant pleiotropic regions included “Regulation of Apoptotic Process,” “Regulation of Cell Proliferation,” “Cytokine-Mediated Signaling Pathway,” “Linoleic Acid Metabolic Process,” “Cell Adhesion via Plasma Membrane Adhesion Molecules.” Overrepresented terms for GO Molecular Functions included “Iron Ion Binding,” “Calcium Ion Binding,” “Steroid Hormone Receptor Activity,” “DNA Binding,” “Translation Initiation Factor Activity,” and “Transcription Factor Activity,” Many of these biological pathways were previously reported to be important for carcass quality, meat quality, and tenderness in beef cattle (Guillemin et al., 2012; Mudadu et al., 2016; Ramayo-Caldas et al., 2016; Mateescu et al., 2017; Leal-Gutiérrez et al., 2019). It is important to highlight a few of these enriched pathways given their biological importance in the carcass and meat quality traits under investigation. Numerous genes identified in the significant pleiotropic regions are involved in calcium-related processes such as calcium ion binding, calcium channel, and calcium channel regulator. It was anticipated that calcium and potassium play a major role in meat tenderness because of their contribution to the proteolytic system responsible for muscle contraction and postmortem tenderization. Genes involved in cell signaling and modulation of cell–cell adhesion were also identified as enriched, supporting previous findings in this population (Leal-Gutiérrez et al., 2019). Disruption of structural proteins in the myocytes during and after the aging process is an important determining factor of meat quality. This is via proteolysis of structural proteins such as desmin and talin during aging through the activity of the endogenous μ-calpain-calpastatin system (Koohmaraie and Geesink, 2006; Bee et al., 2007).



CONCLUSION

Weighted ssGWAS single-trait genome-wide associations were used to identify genomic regions with pleiotropic effects on carcass quality, sensory meat quality, and visual meat quality traits in a multibreed Angus–Brahman population. Five genomic regions on BTA5, BTA7, BTA18, and BTA29 explained more than 1% of direct additive genetic variance of two or more carcass quality, sensory meat quality, and visual meat quality traits. Moreover, three other suggestive pleiotropic regions were identified on BTA10 and BTA19. A total of 317 genes were identified across all pleiotropic regions. Many of the candidate pleiotropic genes encode anchoring or cytoskeletal proteins, important factors in muscle proteolysis, and key players in cell growth, muscle development, lipid metabolism and fat deposition. A functional analysis of the genes identified in the pleiotropic regions revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell–cell adhesion. Results presented here contribute with novel information on the complex architecture of direct additive genetic correlation between carcass and meat quality traits in crossbred beef cattle.
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Several studies have evaluated computational methods that infer the haplotypes from population genotype data in European cattle populations. However, little is known about how well they perform in African indigenous and crossbred populations. This study investigates: (1) global and local ancestry inference; (2) heterozygosity proportion estimation; and (3) genotype imputation in West African indigenous and crossbred cattle populations. Principal component analysis (PCA), ADMIXTURE, and LAMP-LD were used to analyse a medium-density single nucleotide polymorphism (SNP) dataset from Senegalese crossbred cattle. Reference SNP data of East and West African indigenous and crossbred cattle populations were used to investigate the accuracy of imputation from low to medium-density and from medium to high-density SNP datasets using Minimac v3. The first two principal components differentiated Bos indicus from European Bos taurus and African Bos taurus from other breeds. Irrespective of assuming two or three ancestral breeds for the Senegalese crossbreds, breed proportion estimates from ADMIXTURE and LAMP-LD showed a high correlation (r ≥ 0.981). The observed ancestral origin heterozygosity proportion in putative F1 crosses was close to the expected value of 1.0, and clearly differentiated F1 from all other crosses. The imputation accuracies (estimated as correlation) between imputed and the real data in crossbred animals ranged from 0.142 to 0.717 when imputing from low to medium-density, and from 0.478 to 0.899 for imputation from medium to high-density. The imputation accuracy was generally higher when the reference data came from the same geographical region as the target population, and when crossbred reference data was used to impute crossbred genotypes. The lowest imputation accuracies were observed for indigenous breed genotypes. This study shows that ancestral origin heterozygosity can be estimated with high accuracy and will be far superior to the use of observed individual heterozygosity for estimating heterosis in African crossbred populations. It was not possible to achieve high imputation accuracy in West African crossbred or indigenous populations based on reference data sets from East Africa, and population-specific genotyping with high-density SNP assays is required to improve imputation.
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INTRODUCTION

Indigenous cattle in Africa are an important genetic resource for diverse human communities, providing products and by-products, such as food, wealth, and economic security (Okomo-Adhiambo, 2002). Genetic improvement programs using artificial selection within the local population are one method to improve productivity (Effa et al., 2009; Tegegne et al., 2010). Crossbreeding of locally adapted cattle with high-yielding European dairy breeds is an alternative strategy to improve productivity and improve the livelihoods of African smallholder farmers in a relatively short period (Wuletaw, 2004; Tegegne et al., 2010). Crossbreeding can increase dairy cattle production by creating new combinations of genotypes of different breeds to optimize the additive and heterotic genetic expression and achieve the desired balance of productivity and adaptation trait expression (Gregory and Cundiff, 1980; Simm, 1998).

The level of extra heterosis in crossbreds compared to purebreds is a function of the degree of heterozygosity for the origin of alleles from the ancestral populations, referred to as ancestral origin heterozygosity in this study. In a homogeneous crossbred population that results entirely from inter-se crossing, the level of ancestral origin heterozygosity is a function of the breed composition. In other crossbred populations, the level of ancestral origin heterozygosity depends on the breed composition of the parents of an individual (McAllister, 2002). For example, an F1 cross has an ancestral origin heterozygosity of 1.0, which is twice the ancestral origin heterozygosity and hence twice the expected heterosis of an F2 cross, even though they have identical breed composition. In order to estimate the level of heterosis in crossbred populations, one needs to have an estimate of the ancestral origin heterozygosity for each individual that is recorded and available for genomic evaluation. An estimate of breed composition and ancestral origin heterozygosity can be obtained from complete pedigree information, but pedigree information is unavailable in most smallholder crossbred dairy populations (Rege, 2001). An alternative is to genotype animals for large numbers of SNPs and use this information to estimate breed composition and heterozygosity.

Molecular genetic markers, most recently SNPs, can be used to estimate the genetic ancestry of individuals. Methods embedded in software such as ADMIXTURE (Alexander et al., 2009) or STRUCTURE (Pritchard et al., 2000; Falush et al., 2003) estimate global ancestry, i.e., the ancestral breed proportions averaged across the whole genome. These software programs do not provide estimates of ancestral origin heterozygosity. Methods such as Lanc-CSV (Brown and Pasaniuc, 2014), LAMP-LD (Pasaniuc et al., 2009; Baran et al., 2012), and MULTIMIX (Churchhouse and Marchini, 2013) provide estimates of local ancestry, i.e., the breed origin of haplotypes, and hence breed proportion at every point in the genome. This allows ancestral origin heterozygosity to be estimated at every point in the genome and hence also the average ancestral origin heterozygosity of an individual.

Local ancestry mapping, using the LAMP software (Sankararaman et al., 2008), was employed in African cattle populations by Flori et al. (2014) and Bahbahani et al. (2015) to examine whether their SNP-based signatures of selection showed a bias to either of the two assumed ancestral populations. The LAMP software was also used by Khayatzadeh et al. (2018) to assign ancestral origin of SNP genotypes in a European admixed cattle population, allowing SNP dominance effects and epistatic loss to be estimated. The African populations we study here evolved from one or two (African Bos taurus and African zebu, respectively) or three (crossbred dairy populations) principal ancestral populations. We used LAMP-LD, which performs better than LAMP when there are more than two ancestral populations (Baran et al., 2012) to estimate global and local ancestry in these populations.

Crossbreeding and selection are important synergic approaches to improve production in the long-term. In the absence of pedigree recording in most indigenous and crossbred dairy populations, high-density SNP genotypes can be used to generate a genomic relationship matrix (GRM), enabling genetic improvement to be rapidly implemented (VanRaden, 2008). However, genomic selection requires the routine genotyping of a large number of recorded individuals and selection candidates, which can be expensive. A strategy to increase genotypic information while reducing testing costs is to genotype a large number of individuals with a lower-density assay and impute to higher density genotypes (Khatkar et al., 2012; Wiggans et al., 2012; Berry et al., 2014).

Several software programs have been developed for SNP imputation. These are mainly based either on linkage disequilibrium (LD) information such as Beagle (Browning and Browning, 2007), IMPUTE2 (Howie et al., 2009), MaCH (Li et al., 2010), Minimac (Howie et al., 2012); or on a combination of LD and family or pedigree information such as Dagphase (Druet and Georges, 2010), FImpute (Sargolzaei et al., 2011), AlphaImpute (Hickey et al., 2012), and FindHap (VanRaden et al., 2011).

Recently, Aliloo et al. (2018) assessed the genotype imputation accuracy in 3,083 East African crossbred cattle genotyped with the Illumina 777k SNP assay, using FImpute v2.2 (Sargolzaei et al., 2014), Beagle v4.1 (Browning and Browning, 2016), and Minimac v3 (Das et al., 2016) and found that Minimac v3 and a reference set that combines crossbred and ancestral purebred animals generally gave the highest accuracy of imputations. But this study provided no information about whether data from East African crossbreds would be useful in the imputation of other crossbred populations in Africa or for indigenous populations. The accuracy of genotype imputation across populations is highly affected by the LD and persistence of the LD phase between populations, which has not been assessed for African indigenous or crossbred populations. Berry and Kearney (2011) have documented that the degree of relationship between validation and reference populations is one of the factors affecting imputation accuracy. Therefore, it is necessary to estimate the ancestral background of the indigenous and crossbred populations to make an informed decision about which animals and breeds to best use as reference populations.

The overall objective of the current study was to assess the ability to infer genotypes and genotype ancestry in African populations based on diverse and local information as enablers of a range of genetic improvement applications. The study investigates: (1) Inference of global and local ancestry in West African crossbreds to obtain substantially more information on their genetic history. ADMIXTURE and PC analyses were performed to estimate the global ancestry, while LAMP-LD was used for local ancestry inference with different approaches in West African crossbreds. We then compared the performance of global and local ancestry inference methods; (2) Estimation of ancestral origin and individual heterozygosity proportions in West African crossbreds. The ancestral origin heterozygosity proportion was calculated from the local ancestry inferences obtained from LAMP-LD, while the individual heterozygosity was calculated across all loci which are heterozygous; (3) Accuracy of genotype imputation in African indigenous and West African crossbred cattle populations when imputing from low and medium-density to high-density SNP panels, using East and West African reference populations separately or combined. This is the first imputation study considering African indigenous and West African crossbred populations.



MATERIALS AND METHODS


Animals

SNP genotype data of 4,291 animals representing European Bos taurus dairy breeds, East and West African indigenous and crossbred dairy cattle sampled from different countries were used for this study (Table 1). These data were obtained from several public-domain databases, plus projects run by the International Livestock Research Institute (ILRI) and collaborators (Marshall et al., 2017, 2020; Ema et al., 2018), and the Genomics Reference Resource for African Cattle (GRRFAC) supported by the Centre for Tropical Livestock Genetics and Health (CTLGH), and the Dairy Genetics East Africa project (DGEA; Strucken et al. (2017). The breed classifications of the West African crossbred animals were based on farmers’ and enumerators’ assumptions as well as, where available, recorded sire and dam information. These crossbred animals were classified as undefined crossbreds or as crosses between the local breed Gobra with Holstein-Friesian, Montbéliarde, or Normande.


TABLE 1. Animal populations, numbers, and sources.
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Genotyping and Quality Control

The samples were genotyped on either the Illumina BovineSNP50 BeadChip array (Illumina Inc., San Diego, CA, USA) comprising 54,609 SNPs or the Illumina BovineHD Beadchip (Illumina Inc., San Diego, CA, USA) containing 777,962 SNPs, as presented in Table 1. Data from the Bovine HapMap Consortium et al. (2009) and the 50k data from Decker et al. (2014) were obtained post quality control. Genotypes from the DGEA project and Scotland’s Rural College (SRUC) data were filtered using “SNPQC” an R pipeline (Gondro et al., 2014), retaining SNPs that had a median GC score >0.6 and a call rate >90%. The data from Senegal smallholder farms (Marshall et al., 2017, 2020; Ema et al., 2018) were processed for quality control using the GenABEL package (Aulchenko et al., 2007) in R Core Team (2018), retaining SNPs and animals with call rates >90%. Data from CTLGH and GRRFAC were quality controlled, including a median GC score >0.6 and a call rate >0.90%. In all datasets, only autosomal SNPs were included in this study.

The datasets were merged, keeping only common SNPs (37,632 SNPs) between the reference (detailed below) and West African crossbred populations for inference of global and local ancestry and estimates of heterozygosity proportions (dataset 1). For the genotype imputation, SNPs that had a minor allele frequency (MAF) lower than 0.01 were removed from medium and high-density datasets. FImpute V 2.2 (Sargolzaei et al., 2014) was used to impute the sporadically missing genotypes of individuals to have complete datasets for all animals at all loci. The number of SNPs retained was 28,649 from medium-density (dataset 2), and 621,309 SNPs from high-density panels (dataset 3) across 29 B. taurus autosomes based on UMD 3.1 genome assembley (Zimin et al., 2009).



Global Ancestry Inference of West African Crossbred Animals

The global ancestry inference is important to estimate the fraction of ancestry contributed by each ancestral population as averaged across the entire genome. In this study, the global ancestry inference was undertaken using Senegalese (West African) crossbred populations. The reference populations were African B. taurus breeds (N’Dama, N’Dama1, Lagune, Baoule, and Lagunaire, N = 87), European B. taurus dairy breeds (Guernsey, Holstein, Jersey, Friesian, and Montbéliarde, N = 105), and a pooled Bos indicus population (N = 105). The pooled Bos indicus sample included 12 Bos indicus breeds from India, selected from 525 indigenous samples such that within breed relationships were minimal (Aliloo et al., 2020). The pooled indigenous reference population was from Senegal (Gobra, Maure, Djakore, hybrid animals between Gobra and Maure, and Gobra and Guzerat, N = 105), and the number of indigenous animals were reduced to make similar population size with other reference groups (also used in heterozygosity estimation). The African B. taurus, Bos indicus, and indigenous reference animals are those with zero European B. taurus breed proportion as determined by prior ADMIXTURE and PC analyses (Gebrehiwot, 2020; Gebrehiwot et al., 2020).

A maximum likelihood model, as implemented in the software ADMIXTURE 1.23 (Alexander et al., 2009), was used to estimate the global ancestry proportions of crossbred animals. ADMIXTURE was used in two alternatives supervised analyses where the ancestral reference populations were a pooled sample of European B. taurus and a pooled sample of indigenous breeds from Senegal (two-way admixture) (1), and African B. taurus populations, Bos indicus, and European B. taurus dairy breeds (three-way admixture) (2). These reference populations were chosen based on the ancestral information of Senegalese crossbreds as detailed by Gebrehiwot et al. (2020) and Gebrehiwot (2020).

The principal component analysis (PCA) was performed to explore and visualize the genetic variation between West African indigenous and crossbred animals and the reference populations. The PCA was based on a GRM constructed from SNP data according to the first method of VanRaden (2008) and calculated as:
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where the scaling parameter d was:
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The centered genotype matrix (Z) was constructed by subtracting the P matrix from the genotype matrix M, where P = 2*(pi−0.5), and pi is the allele frequency at locus i.



Local Ancestry Estimation in West African Crossbred Animals

The genome of admixed individuals resembles a mosaic of chromosomal regions originating from different ancestral populations. Finding the regional ancestry at each genomic location provides more information than the usual estimation of global ancestry alone (Padhukasahasram, 2014). Here, LAMP-LD software (Pasaniuc et al., 2009; Baran et al., 2012) was used to estimate the locus-specific ancestry of West African crossbreds in two scenarios of ancestry mapping. The two scenarios were two-way and three-way admixtures, using the same ancestral populations as for the global ancestry inference (see above). To infer the local ancestry, the dataset was first phased using Eagle v2.3.5 (Loh et al., 2016). The local ancestries of admixed animals were obtained from LAMP-LD with a window size of 12 SNPs and 15 as the number of states. LAMP-LD infers the ancestry in each window based on a likelihood model to trace the origins of admixed populations based on the haplotype patterns in ancestral reference populations.



Estimation of Heterozygosity Proportion

Estimation of heterozygosity proportion in West African crossbred populations was undertaken using two approaches. Individual heterozygosity was calculated across all loci, scored as “1” if an individual was heterozygous at a locus and “0” for each homozygous locus; the mean across all loci was then recorded. The ancestral origin heterozygosity proportion was calculated from the local ancestry inferences obtained from LAMP-LD. Each haplotype of a given crossbred individual was scored as “1” if it was a heterozygous state of European B. taurus and indigenous ancestry (two-way), or African B. taurus or Bos indicus versus European B. taurus ancestry (three-way), and scored “0” otherwise. The sum of these scores was divided by the number of loci to obtain the average ancestral origin heterozygosity across the genome.



Upper and Lower Limits of Heterozygosity

In crosses between two populations, the ancestral origin heterozygosity has upper and lower bounds that depend on the breed proportions of the crossbred animal and the breed proportions of its parents. The expectations can be obtained as the expected frequency of heterozygotes at a single locus, if the two ancestral parents are fixed for opposite alleles at that locus. For example, the ancestral origin heterozygosity of the two parental populations is zero. That for an F1 is exactly 1, which is the upper bound of heterozygosity, while that of an F2, resulting from the mating of two F1 animals is expected to be 0.5, which is the lower bound of heterozygosity for animals with 50% ancestry from each parent. The upper bound of the expected heterozygosity applies to all crossbreds that have at least one parent being a purebred ancestor. The lower bound applies to all inter-se matings between crossbred parents that have identical ancestral breed composition. The expected ancestral heterozygosity of all other crosses between crossbred parents lies between the upper and lower bounds of ancestral origin heterozygosity for animals of that breed composition.

Analogous bounds can be obtained for individual heterozygosity when it is assumed that all the animals of a given ancestral pure breed have the same heterozygosity. In this case expected heterozygosity can be considered as a trait whose expectation is the sum of additive genetic and heterosis effects. If H1 and H2 are the heterozygosity of parent breeds 1 and 2, respectively, and pi is the breed proportion of parent breed 2 and ai is the expected ancestral origin heterozygosity of crossbred animal i, then the expected heterozygosity of that animal, Hi, is:
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where x = HF1 – H1 if p < 0.5 and x = HF1 – H2 if p > 0.5, and HF1 is the average individual heterozygosity of F1 animals. The upper and lower bounds for ancestral and individual heterozygosity are used in the results to illustrate the utility of ancestral versus individual heterozygosity as a useful metric in the estimation of genetic parameters of performance in crossbred populations.



Genotype Imputation in West African Cattle Populations

Imputation was undertaken using a population-based algorithm, Minimac v3 (Das et al., 2016) with pre-phased data from Eagle v2.3.5 (Loh et al., 2016). Minimac v3 was chosen for genotype imputation because it provided the highest imputation accuracy in East Africa crossbred populations compared to FImpute and Beagle (Aliloo et al., 2018).


SNP Information for Imputation

The SNPs in common between the medium-density genotypes (dataset 2) and the commercially available Illumina BovineLD v2 SNP array (containing 7,931 SNPs) were retained to create the low-density dataset. There were 5,043, 28,649, and 621,309 SNPs in low-density, medium-density (dataset 2) and high-density (dataset 3) datasets, respectively.



Genotype Imputation Scenarios

Imputation was undertaken within and across geographical regions focussing mainly on West Africa using East African populations as a reference. As detailed in Table 2, a total of 36 imputation scenarios were considered to impute West African indigenous and crossbred populations, while four scenarios were used to impute East African indigenous and crossbred populations. Half of the imputation scenarios (18) were designed to investigate the imputation accuracies from low-density to medium-density SNP panels, and the other half was used for the imputation from medium-density to high-density SNP panels (Table 2). Based on the geographical regions where the reference populations were sampled from, the 36 imputation scenarios could be classified into three major groups based on the reference sets: using East African indigenous and crossbred individuals combined or separately (Scenario 1), using West African indigenous and crossbred individuals combined or separately (Scenario 2), and using a combination of East and West African indigenous and crossbred individuals (Scenario 3).


TABLE 2. Scenarios and the number of animals used in the reference and validation sets to assess imputation accuracy.
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To assess the imputation accuracy, direct imputation was performed for Scenario 1 and five-fold cross-validation for Scenarios 2 and 3. The target individuals for Scenarios 2 and 3 were randomly divided into five groups, and each group was used as a validation set, while the four remaining groups were used as a reference population.

Imputation accuracy was determined with two different criteria: (1) the allelic correlation of imputed versus real genotypes, and (2) the concordance rate computed as the ratio between the number of correctly imputed alleles versus the total number of imputed alleles.



RESULTS AND DISCUSSION


Global and Local Ancestry Inferences in West African Crossbreds

Estimates of global and local ancestry for the two-way admixture generated by ADMIXTURE and LAMP-LD, are shown in Figure 1. Each vertical bar represents an individual with the proportion of each ancestry depicted in a different color. The average European B. taurus and indigenous breed proportions estimated from ADMIXTURE (Figure 1A) were 0.481 (SD = 0.201) and 0.519 (SD = 0.201), respectively, and from LAMP-LD (Figure 1B) 0.491 (SD = 0.199), and 0.509 (SD = 0.199), respectively. The correlation between the breed proportion estimates obtained from the two algorithms was 0.995, showing that they have a strong association.
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FIGURE 1. Estimates of breed proportion of West African crossbreds using two-way admixture from (A) ADMIXTURE and (B) LAMP-LD.


Estimates of global and local ancestry from the three-way admixture using ADMIXTURE and LAMP-LD are shown in Figure 2. The average European B. taurus, African B. taurus, and Bos indicus breed proportions from ADMIXTURE (Figure 2A) were 0.515 (SD = 0.199), 0.185 (SD = 0.091), and 0.300 (SD = 0.146), respectively. The average estimates of ancestral breed proportions from LAMP-LD (Figure 2B) were 0.501 (SD = 0.194), 0.181 (SD = 0.088) and 0.319 (SD = 0.143), respectively. The correlation between the estimates of the three breed proportions obtained from ADMIXTURE versus LAMP-LD were 0.994, 0.981, and 0.994, respectively. This correlation was consistent with previous results by Chen et al. (2014), who found that the LAMP-LD estimates showed a correlation of 0.989 with a supervised ADMIXTURE analysis in human populations. The estimates of average European breed proportion from ADMIXTURE and LAMP-LD for the three-way scenario were slightly higher (3.4 and 1%, respectively) than results for two-way admixture. Gebrehiwot et al. (2020) and Gebrehiwot (2020) found an average exotic dairy proportion of 0.503 (SD = 0.187) using twelve ancestral reference populations in a supervised ADMIXTURE analysis of West African crossbreds with overlapping data, which is consistent with the estimates here.
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FIGURE 2. Estimates of breed proportion of West African crossbreds using three-way admixture from (A) ADMIXTURE and (B) LAMP-LD.


The PCA found that the first two PCs accounted for 77.24 and 13.48% of the total genetic variation in the GRM, differentiating Bos indicus from B. taurus and African B. taurus from other groups (Figure 3). This is consistent with the patterns found by several studies (Hanotte et al., 2002; Gautier et al., 2009; Kim et al., 2017; Verdugo et al., 2019; Gebrehiwot et al., 2020), analyzing various combinations of African indigenous and crossbred data along with the three reference groups. The Bos indicus reference populations clustered tightly together, showing that they are a pure Bos indicus population, while the African B. taurus populations clustered together with a few Baoule individuals appearing to be admixed with Bos indicus. The crosses between European dairy breeds and African indigenous breeds were distributed between the European and indigenous populations. A substantial number of Gobra × Holstein-Friesian, Gobra × Montbéliarde, Gobra × Normande, and undefined crossbreds clustered in an intermediate position between the indigenous and European breeds (Figure 3). The history of this crossbred population suggests that these animals are likely F1 crosses but PCA cannot differentiate an F1 from any other cross resulting in approximately 50% indigenous ancestry. Maure and Djakore clustered in an intermediate position between Bos indicus and African B. taurus ancestral populations, while Gobra, the Gobra × Maure cross, and the Gobra × Guzerat cross spread between these two ancestral populations, showing a wide genetic diversity among individuals.
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FIGURE 3. Plots of PC1 vs. PC2 for Bos indicus, African and European Bos taurus, West African indigenous and crossbred populations.




Estimation of Heterozygosity


Individual Heterozygosity in the Reference Populations

The average individual heterozygosity values for European B. taurus, African B. taurus, Indian Bos indicus, and indigenous reference populations as well as West African crossbred populations are presented in Table 3. Friesian and Jersey cattle populations showed the highest and lowest average heterozygosity of the European dairy breeds with 0.331 (SD = 0.013) and 0.261 (SD = 0.014), respectively. These results are consistent with previous estimates; for example, Mbole-Kariuki et al. (2014) found heterozygosities of 0.33 (SD = 0.01) and 0.25 (SD = 0.03) for Holstein-Friesians and Jersey, respectively.


TABLE 3. Average heterozygosities of reference and West African crossbred populations.
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As expected, the average heterozygosity proportion in crossbred animals was higher (0.3277, SD = 0.030) than in the pooled pure reference and indigenous populations (Table 3). However, the average heterozygosity proportion in crossbreds were lower than in Friesian, which is due to the outlier animal in the crossbred group that showed a low heterozygosity proportion (0.166). The mean heterozygosity of the crossbreds without the outlier is 0.328. This is still somewhat lower than the Friesian heterozygosity, however, the crossbreds have a larger SD (0.029 vs. 0.013) and the median for the crossbreds is slightly higher (0.339) than the mean, indicating somewhat a skewed distribution. Moreover, the maximum heterozygosity of the crossbreds is higher than any of the other populations. The pooled European B. taurus and African B. taurus populations had an average heterozygosity of 0.295 (SD = 0.030) and 0.198 (SD = 0.015), respectively. Bos indicus had a low average heterozygosity of 0.158 (SD = 0.014), which is even lower than in other studies (Kasarapu et al., 2017; Utsunomiya et al., 2019); however, most other studies did not use Bos indicus breeds from India but breeds that are known to have a complex breeding history including introgression of B. taurus breeds such as Brahman, Nelore, or Gyr. The low heterozygosity level in Bos indicus populations is likely due to ascertainment bias of the SNPs on the assay, which seems to be even more pronounced in Bos indicus breeds from India. The pooled indigenous animals had an average heterozygosity of 0.238 (SD = 0.023), consistent with the extra heterozygosity expected in admixtures between the African B. taurus and Bos indicus ancestral populations. Including heterozygosity proportion in the model for genetic evaluation increases the prediction accuracy of traits and it also has the potential to be used in mate selection in order to maximize heterozygosity in the offspring (De Cara et al., 2011; Iversen et al., 2019). A previous study by Mbole-Kariuki et al. (2014) using a medium-density (50k SNPs) dataset reported a lower average heterozygosity level for N’Dama 0.17 (SD = 0.08) than the pooled African B. taurus, and a higher average heterozygosity level for Sheko 0.26 (SD = 0.003) compared to the pooled indigenous animals in our study.



Ancestral Origin Heterozygosity in West African Crossbreds

The ancestral origin heterozygosity proportions estimated by LAMP-LD are plotted against the estimated European breed proportion from either ADMIXTURE or LAMP-LD for the two-way (Figure 4) and three-way admixture (Figure 5). Animals with low heterozygosity and low (<2% based on the two-way ancestry analysis) European breed proportion are interpreted to be pure indigenous, and animals with low heterozygosity, but high (>98%) European breed proportion are assumed to be pure European dairy breeds. Estimation of European breed proportion using LAMP-LD (Figures 4B, 5B) showed a clearer cluster than the result obtained from ADMIXTURE (Figures 4A, 5A). However, animals that showed up as pure indigenous in all other analyses were estimated by a three-way admixture with LAMP-LD to have a small proportion of European B. taurus ancestry. This appears to be due to the model allocating a proportion of the African B. taurus ancestry to be European B. taurus ancestry.
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FIGURE 4. Ancestral origin heterozygosity in West African crossbreds plotted against European breed proportion estimated from a two-way admixture using (A) ADMIXTURE and (B) LAMP-LD.
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FIGURE 5. Ancestral origin heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using (A) ADMIXTURE and (B) LAMP-LD.


Theoretically, all crossbreds must sit within the bounds set by the straight lines between F1 animals, with a European breed proportion of 0.5 and ancestral origin heterozygosity of 1.0, and the pure indigenous and European breeds that have European breed proportion of zero and 1.0, respectively, and an ancestral origin heterozygosity of zero. Animals that sit on the outer boundaries are crosses where at least one parent is purebred, whereas animals inside the boundaries result from a mating of two crossbred parents. Based on this assumption, Figure 4B fits the model almost exactly. The plots based on ADMIXTURE estimates of breed proportion (Figures 4A, 5A) fit the model least well because the method of estimating global ancestry by ADMIXTURE differs from that used by LAMP-LD, leading to inconsistencies between the estimate of breed composition (global ancestry).

Although it cannot be seen because of over-position of data points, in Figures 4B, 5B, a high proportion of crossbred animals with almost exactly 50% European breed proportion had ancestral origin heterozygosity of almost exactly 1.0 (Figure 4B) or very close to 1.0 (Figure 5B), which is the heterozygosity expected for F1 crosses. This is visible in Supplementary Figures 1A (two-way admixture) and 1B (three-way admixture), where the number of data points within a particular area of the plot is counted and presented by a color gradient to show how many animals occur at each position on the plot. Comparing Figures 4, 5, and Supplementary Figure 1 shows that the three-way ancestry model leads to more variable estimates of European breed proportion by both ADMIXTURE and LAMP-LD, and more variable estimates of ancestral heterozygosity by LAMP-LD. Most notably, the LAMP-LD estimates of ancestral heterozygosity for the putative F1 animals are all almost exactly equal to the expected value of 1.0 when using the two-way ancestry model, whereas the estimates from the three-way ancestry model, while mostly still close to 1.0, include estimates as low as 0.9.

Supplementary Figure 1 shows that there are clusters of animals on the outer boundaries around 25 and 75% European breed proportions, respectively. These are most likely backcrosses of F1 animals to pure indigenous or pure European animals, which are expected to have European breed proportions that vary around 25 and 75%, and heterozygosities that vary around 0.5 because of a random sampling of gametes from the parents. As most clearly seen in Figure 4B, the majority of animals sit on the boundary lines indicating that in this crossbred population, the majority of animals result from a mating involving at least one purebred parent rather than inter-se matings among crossbred animals. This is consistent with the fact that these crossbred dairy populations are relatively recently established and are expanding (K. Marshall, personal communication).

To further clarify the genetic structure of the crossbred animals clustered in the intermediate position of the PC plot in Figure 3, we color-coded the individuals based on ancestral origin heterozygosity (Figure 6). This confirms that the majority of animals in the two bands in the middle of the plot are F1 animals with an ancestral origin heterozygosity of 1.0. The majority of Gobra x Holstein-Friesian crosses were clustered in the first band (between PC1 = −0.025 to 0.000 and PC2 = −0.02 to −0.01), while the majority of Gobra × Montbéliarde and Gobra × Normande crosses were clustered in the other band. A substantial number of undefined crossbred animals were clustered in one or the other of the two bands with ancestral origin heterozygosities close to 1.0, showing that they are Gobra x Holstein-Friesian and Gobra x Montbéliarde F1 crosses.
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FIGURE 6. Plots of PC1 vs. PC2 for all West African crossbred animals showing their ancestral origin heterozygosity as color code from red (heterozygosity = 1) to blue (heterozygosity = 0).




Individual Heterozygosity in West African Crossbreds

The plot of individual heterozygosity against European breed proportion for the West African crossbred cattle obtained from ADMIXTURE and LAMP-LD using the three-way admixture is shown in Figures 7A, 8A, respectively. For completeness, Supplementary Figure 2 shows the individual heterozygosity against European breed proportion obtained from ADMIXTURE and LAMP-LD using two-way admixture. To avoid duplication, only the results of the three-way admixture are discussed here. The animals in red color in the Figures 7A, 8A have ≥90% of their European breed proportion being Holstein-Friesian, while the animals shown in blue color in Figures 7B, 8B are those having ≥90% of their European breed proportion being Montb liarde.
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FIGURE 7. Individual heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using ADMIXTURE. The black and green lines are upper and lower boundaries of expected heterozygosity for (A) Holstein-Friesian and (B) Montbéliarde crosses.
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FIGURE 8. Individual heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using LAMP-LD. The black and green lines are upper and lower boundaries of expected heterozygosity for (A) Holstein-Friesian and (B) Montbéliarde crosses.


Across all animals, the individual heterozygosity ranged from 0.166 to 0.37, and the European breed proportion ranged from 0 to 1. There are evident clusters of animals that have high heterozygosity proportions (>32%) and are close to 50% European breed proportion. Virtually all of these animals are those shown to be F1 crosses in the ancestral origin heterozygosity results.

The black lines are the expected heterozygosity proportions for the progeny of crosses involving an average Holstein-Friesian parent (Figures 7A, 8A) or an average Montbéliarde parent (Figures 7B, 8B). The green lines are the expected heterozygosity proportions for the progeny of inter-se matings between crossbred animals of identical breed composition. The black lines form a theoretical upper boundary of heterozygosity of crossbred animals, while the green lines are the theoretical lower boundary. Holstein, Friesian and Montbeliarde reference samples were used to obtain the average heterozygosity proportion of the pure Holstein-Friesian and Montbéliarde parental populations, respectively, and then used in obtaining the upper and lower boundaries of the expected heterozygosity. The average heterozygosity of indigenous animals was obtained as the average heterozygosity of animals with <2% European breed proportion based on a two-way ancestry analysis. The average heterozygosity of F1 Holstein-Friesian versus F1 Montbéliarde crossbreds was obtained by identifying F1 animals from the ancestral origin heterozygosity analyses, and matching these to animals whose European breed proportion was ≥90% Holstein Friesian or ≥90% Montbéliarde.

The average individual heterozygosity proportions for the parental indigenous, Holstein-Friesian, and Montbéliarde populations were 0.241 (ranged from 0.166 to 0.258), 0.311 (ranged from 0.276 to 0.343), and 0.295 (ranged from 0.279 to 0.303), respectively. The mean and range of indigenous animals include a single outlier with very low heterozygosity, which the PC plots and admixture analyses indicated was a pure Bos indicus animal; most likely one of the pure Guzerat animals known to have been imported into the sample area from Brazil. This outlier was assigned as crossbred in our data using farmers’ assessment of breed composition based on the external appearance of the animal, however, our genomic breed composition prediction methods showed the opposite. Previously, Weerasinghe (2014) tested the extent of farmers knowledge on the ability to identify the breed composition of the East African crossbreds and concluded that farmers have a poor understanding of the breed composition of their animals.

The Holstein-Friesian crosses showed a higher average heterozygosity proportion than the Montbéliarde crosses, and this leads to higher upper and lower boundaries of heterozygosity of Holstein-Friesian crossbreds. The fit to the data is clearly better in Figure 8 than Figure 7, due largely to LAMP-LD providing more accurate estimates of European breed proportion than ADMIXTURE. However, the fit to the data, in general, is very poor in both figures, with a high proportion of animals sitting outside the upper and lower boundaries of heterozygosity. This is due primarily to the large variation in heterozygosity among purebred ancestors. This variation can be expected among ancestors in any crossbred population. Thus, in marked contras to ancestral origin heterozygosity, individual heterozygosity will provide a very poor measure of heterozygosity caused by crossbreeding and hence very poor estimates of heterosis of performance when used in analyses of additive and heterosis effects in this, and by extrapolation other crossbred populations. An additional factor in the current population is the small proportion of crosses resulting from pure Guzerat or Guzerat x indigenous ancestors. These can be seen in Figures 7, 8 as animals appearing well below the green line. They are also evident in Figure 2 as animals with zero or well below expected African B. taurus ancestry, and in the PC plot (Figure 3) as animals well below the distribution of points for most crossbreds. A few animals that are scattered well below the expected lower boundaries, such as an animal with European breed proportion around 65% and Holstein-Friesian proportion ≥90%, might be a cross among close relatives resulting in high inbreeding.

Overall the results on ancestral origin versus individual heterozygosity show the clear superiority of ancestral mapping heterozygosity to infer ancestry of individual animals and as an estimate that can be used to obtain estimates of additive and heterosis effects in crossbred populations. The ancestral haplotype inference from LAMP-LD also produced estimates of European breed proportion that were more consistent with expectations than ADMIXTURE, which showed an upwards bias of estimates of European breed proportion for animals with very low European breed proportions when using a three-way analysis. Although not tested here, it is possible that this bias in estimates of European breed proportion could be corrected by rescaling the Admixture estimates. But deriving the rescaling method would require that either the true ancestral bred proportions were known, which will never be the case, or that better estimates are available such as those obtained from LAMP-LD. So, in most cases it seems preferable to simply use the LAMP-LD estimates directly.



Accuracy of Genotype Imputation in West African Cattle Populations


Genotype Imputation From Low-Density to Medium-Density

The concordance and correlation of imputation from low to medium density under various scenarios are shown in Figure 9. As expected, for all scenarios the concordance was higher and much less varying than the correlation. Several authors report both the correlation and concordance rate to compare the accuracy of imputation in cattle populations (Dassonneville et al., 2012; Berry et al., 2014; Aliloo et al., 2018). However, using the concordance rate as the best measure of imputation accuracy may be misleading because it was found to inflate accuracy for rare and low-frequency variants due to chance concordance or chance agreement (Hickey et al., 2012). To illustrate the effects of MAF on imputation accuracy, the value of correlation and concordance of imputed SNPs for the 2F_LD-MD scenario were plotted against the MAF (Supplementary Figure 3). A higher concordance value was achieved for SNPs with low MAF and the value declined as MAF increased, while the correlation value was not influenced by MAF. This is due to a high chance of correctly assigning rare alleles based on the allele frequencies of the population by transferring the major allele as the missing allele.
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FIGURE 9. Genotype imputation accuracy and GRM correlation between real and imputed genotypes for imputation from low to medium-density.


In this study, the concordance was included for comparison with published literature but is not further discussed here as it represents a poor measure of the accuracy of imputation. From this point onwards, the estimate of the accuracy of imputation is the correlation of imputed versus true SNP genotypes. A total of 23,606 SNPs were imputed from low to high-density dataset. The imputation accuracies from low to medium-density were very low for all scenarios, ranging from 0.142 to 0.717. The best-case scenario (1F_LD-MD; r = 0.717), has an r2 of only 0.514; i.e., only 51.4% of the variation in SNP genotypes is accounted for imputation. Low accuracy of imputation may not be a major problem for some applications. Figure 9 also shows the correlation of the off-diagonal elements to the GRM built with imputed versus true genotypes, and these range from 0.894 to 0.992. This suggests that genomic estimated breeding values (GEBV) resulting from imputed versus real genotypes should be very highly correlated in many cases (Wu et al., 2016; Aliloo et al., 2018).

The imputation accuracies for the crossbreds were relatively higher when crossbreds or a combination of indigenous and crossbred populations were used as the reference sets. For Scenario 1, where East African populations were used as a reference, the accuracy was higher within the East African crossbred populations (Scenario 1F_LD-MD), while it was very low for imputation of West African indigenous populations (Scenario 1A_LD-MD and Scenario 1C_LD-MD). The accuracy improved when the imputation was performed within the West African indigenous (Scenario 2A_LD-MD) and crossbreds (Scenario 2D_LD-MD). The inclusion of East African indigenous to West African indigenous reference set did not improve the imputation accuracy (Scenario 2A_LD-MD versus Scenario 3A_LD-MD), while adding East African crossbreds to the West African crossbred reference set (Scenario 3D_LD-MD) resulted in a slight decrease in imputation accuracy.

Imputation accuracies are generally expected to be reasonably high for European dairy breeds, given that the SNP assays were in part designed for use in European B. taurus breeds and that training of imputation is often based on large sample sizes. Several authors reported an imputation accuracy (correlation) greater than 0.9 in European dairy breeds (Dassonneville et al., 2012; Mulder et al., 2012; Berry et al., 2014). This allows their widespread use for imputation and then the application to generate genomic EBVs, allowing lower cost and wider application of genotyping in genetic improvement. The accuracy in our African crossbred populations never approaches that found in European dairy breeds, even where the reference data involves many thousand animals sampled from the same population, as in the use of East African data to impute East African crossbred genotypes. We, therefore, infer that a new assay will need to be designed if low-density assays are to be reliable for use in genetic analyses of African crossbred dairy cattle. Although we have much less data on indigenous breeds than crossbreds, and hence cannot clearly differentiate the impact of low sample size versus poor assay design, it is reasonable to infer that newly designed assays will also be required for use in African indigenous breeds. Another reason could be the higher genetic diversity in African indigenous breeds compared to European dairy breeds (Gebrehiwot, 2020; Gebrehiwot et al., 2020), which might complicate imputation and reduces accuracy.



Genotype Imputation From Medium-Density to High-Density

The imputation concordance and correlation and the correlation of off-diagonal elements of the GRM for imputation from medium to high density are shown in Figure 10. A total of 592,660 SNPs were imputed from medium to high-density dataset. As expected given the substantially larger number of SNPs involved and hence smaller distance between adjacent SNPs, the imputation accuracy was always higher than when imputing from low to medium density.
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FIGURE 10. Genotype imputation accuracy and GRM correlation between real and imputed genotypes for imputation from medium to high-density.


In general, the accuracy was higher when imputation was performed within the geographical region than across geographical regions. This observation was also made in European dairy breeds, were a Holstein reference population yielded a lower imputation accuracy in German Black Pied cattle, despite providing a larger reference, compared to using a reference population of the same breed (Korkuæ et al., 2019). The accuracy was the highest (correlation = 0.899) when East African crossbreds were used as a reference set to impute East African crossbreds (Scenario 1F_MD_HD). This was because of the larger size of the reference set, and the reference set being sampled from the same population as the target set. Recently, Aliloo et al. (2018) reported a slightly higher imputation accuracy (correlation = 0.927) using a combined data of East African crossbred cows and bulls compared to the accuracy obtained in our study, which the data used here is a subset of the populations used by these authors. The slightly higher accuracy is likely due to the higher number of SNPs in their medium-density (dataset (42k SNPs) compared to the number available in our study (29k SNPs).

In West African populations, the accuracy of imputation was higher for crossbreds than the indigenous populations. This is in concordance with (Rowan et al., 2019) who reported that a multi-breed composite reference significantly increased imputation accuracy compared to a within-breed reference population. The highest correlation (0.702) for West African indigenous animals was found when a West African indigenous reference population was used (Scenario 2A_MD-HD), while the lowest correlation (0.478) was found when an East African indigenous reference population was used (Scenario 1C_MD-HD). The lower imputation accuracy for the indigenous populations compared to that of crossbreds is likely due to a combination of the smaller reference population size and the relatively high effective population sizes (Ne) and high genetic diversity in the African indigenous breeds (Gebrehiwot, 2020; Gebrehiwot et al., 2020). The accuracy of imputation for the indigenous populations would likely have been improved if the imputation had been performed within indigenous breeds, hence maximizing the shared LD between SNPs, rather than pooling all the indigenous data together; but sample sizes were too small here to test that hypothesis. The research here does not directly identify a target number to be genotyped but by extrapolation from imputation in the East African crossbred populations (Aliloo et al., 2018) at least 1,000 animals will be needed.

The addition of East African indigenous data to the West African indigenous reference data (Scenario 3A_MD-HD) and the addition of the East African crossbred data to the West African crossbred reference data (Scenario 3D_MD-HD) decreased the accuracies of prediction of West African indigenous and West African crossbreds by 4 and 1%, respectively. Brøndum et al. (2012) reported a similar reduction of imputation accuracy in a Holstein population when Danish, Swedish and Finnish Red cattle populations were added to the Holstein-Friesian reference set. This is likely due to a lack of consistent LD phase between these populations. In all scenarios, adding indigenous and crossbred reference data to impute crossbreds or adding crossbred data to indigenous data to impute in indigenous animals either decreased accuracies or increased only slightly (<3%) compared to use of crossbred or indigenous reference data alone. These small changes in accuracy, even when a large amount of data was added (e.g., Scenario 1C_MD-HD and 1D_MD-HD versus Scenario 1A_MD-HD and 1B_MD-HD, respectively), indicate that the additional data had little or no shared LD phase with the target population. Taken together, the results show that in order to obtain reasonably high accuracy of imputation within African indigenous or crossbred populations substantial reference data will need to be collected for the target populations because reference data from indigenous or crossbred populations from other regions of Africa generally provide poor accuracy of imputation.

The correlations of the off-diagonal elements of the GRMs constructed using real versus imputed genotypes (Figure 10) were all above 0.985. This is consistent with previous findings that even with a high error rate in genotype imputation, the genomic prediction accuracy still can be high (Wu et al., 2016; Aliloo et al., 2018). Our study further assessed the correlations of off-diagonal elements of the GRMs constructed using the real low-density versus medium-density and medium-density versus high-density genotypes for East African indigenous and crossbred populations and obtained correlation of 0.958 and 0.990 and 0.938 and 0.987, respectively. The high correlations among off-diagonal elements of GRMs from different density panels implies that the loss in genetic gain to implement genomic prediction using low or medium-density datasets compared to high-density genotypes is small in the East African cattle populations. Previously, Habier et al. (2009) and Cleveland et al. (2010) supported the feasibility of undertaking genomic prediction based on low-density genotypes for practical implementation, and the cost-efficiency of low-density genotypes allows a much larger proportion of the population to be included in the genomic evaluation procedure (Wiggans et al., 2012).

Overall, genomic information from high-density genotypes provides the opportunity to increase the rate of genetic progress in breeding programs (Hayes and Goddard, 2001). Though the price of high-density marker arrays is continually reducing, genotyping cost still is one of the main limiting factors for cost-efficient genomic applications. This high cost could be an issue in developing countries in Africa, where financial resources are very limited for the key stakeholders, such as smallholder dairy farmers. Therefore, a strategy that is used to overcome the cost limitations is to genotype a sufficiently large number of reference individuals from a given population with higher density or fully sequenced while the majority will be genotyped with lower density. This cost-effective strategy provides reliabilities of GEBVs that are similar to those obtained if selection candidates were genotyped with the higher-density chip (Khatkar et al., 2012; Mulder et al., 2012).



CONCLUSION

This study shows that ancestral heterozygosity can be estimated with high accuracy in African crossbred populations and will be far superior to the use of observed individual heterozygosity for estimating heterosis in such crossbred populations. The population-based imputation results highlighted the effects of different reference populations, SNP density, and sample size on imputation accuracy. It has been hoped by research groups working in Africa that high imputation accuracy might be achieved in African populations by using large-scale imputation information from other populations to impute in populations in which there is limited high-density genotype information, as has often been found to be possible for different breeds in developed countries. Unfortunately, the results show clearly that it was not possible to achieve high imputation accuracy in West African crossbred or indigenous populations based on large reference data sets from East Africa, and so larger population-specific genotype samples, especially considering the larger genetic diversity of African indigenous cattle, will be required to achieve high accuracy. This study provides a strong foundation to integrate genotype imputation into routine genomic evaluation pipelines for African cattle populations as a cost-effective way to boost the power of genomic-based genetic improvement.
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Although the genetic foundation of chicken body feather color has been extensively explored, that of tail feather color remains poorly understood. In the present study, we used a synthetic chicken dwarf line (DW), derived from hybrids bred between a black tail chicken breed, Rhode Island Red (RIR), and a white tail breed, dwarf layer (DL), to investigate the genetic rules associated white/black tail color. Even though the body feathers are predominantly red, the DW line still comprises individuals with black or white tails after more than 10 generations of self-crossing and selection for the body feather color. We first performed four crosses using the DW chickens, including black-tailed males to females, reciprocal crosses between the black and white, and white males to females to elucidate the inheritance pattern of the white/black tail. We also performed a genome-wide association (GWA) analysis to determine the candidate genomic regions underlying the tail feather color using black tail chickens from the RIR and DW lines and white individuals from the DW line. In the crossing experiment, we found that (i) the white/black tail feather color is independent of body feather color; (ii) the phenotype is a simple autosomal trait; and (iii) the white is dominant to the black in the DW line. The GWA results showed that seven single-nucleotide polymorphisms (SNPs) on chromosome 24 were significantly correlated with tail feather color. The significant region (3.97–4.26 Mb) comprises nine known genes (NECTIN1, THY1, gga-mir-1466, USP2, C1QTNF5, RNF26, MCAM, CBL, and CCDC153) and five anonymous genes. This study revealed that the white/black tail feather trait is autosome-linked in DW chickens. Fourteen genes were found in the significant ~0.29 Mb genomic region, and some, especially MCAM, are suggested to play critical roles in the determination of white/black tail feather color. Our research is the first study on the genetics underlying tail feather color and could help further the understanding of feather pigmentation in chickens.

Keywords: dwarf chicken, tail feather color, inheritance pattern, genetics, genome-wide association study


INTRODUCTION

Tail feather color can be different from body feather color in birds. Compared with body feather color, the genetic basis of chicken tail feather color remains poorly defined. Tail feather color is a naturally and sexually selected trait in chickens, as well as in wild birds such as the rock sparrow (Griggio et al., 2011), barn swallow (Kose and Møller, 1999), and peacock (Weiss and Kirchner, 2010), and is combined with artificial selection in poultry, especially chickens. Black and white are predominant tail feather colors in chickens; however, some chicken breeds also display red, blue, yellow, purple, or multi-colored tail feathers.

Feather color is a genetically complex trait, the foundation of which has been extensively explored in birds (Delmore et al., 2016; Cooke et al., 2017), especially chickens. The dominant white, dun, and smoky colors are associated with the PMEL17 polymorphism (Kerje et al., 2004). Mutations in MLPH causes the dilution of both black eumelanin and red/brown pheomelanin pigments (Vaez et al., 2008). Furthermore, more than one gene, such as TYR (Chang et al., 2006; Dorshorst et al., 2010) and SLC45A2 (Gunnarsson et al., 2007), can be responsible for white feather color. The extended black plumage is associated with MC1R (Kerje et al., 2003; Dávila et al., 2015; Charoensook et al., 2017). The sex-linked barring feather pattern is controlled by the CDKN2A/B locus (Hellstrom et al., 2010).

Relatively few studies have investigated the inheritance of chicken tail color as an isolated trait. Geneticists normally regard tail color as part of the body plumage color because the tail color is strongly intertwined with body feather color in some chicken breeds. White chickens always have white tails (Figures 1A,B), individuals with barred plumage always have barred tails (Figure 1C), and black cockerels also have black tails (Figures 1D–H). However, the segregation of tail feather and body feather colors is widely represented in some breeds (Figures 1I–P). Additionally, the daughters of male Rhode Island Red (RIR; with sex-linked recessive red plumage and a black tail) and female Rhode Island White (RIW; with sex-linked dominant white plumage) present red body feathers and white tail color, indicating that body feather color and tail color are controlled by different genes in these chickens. We also observed that dwarf line (DW) hybrids generated from more than 10 generations of self-crossings between RIR and a white-tailed dwarf layer (DL) line contain both white- and red-tailed individuals, even though the hybrids were selected for red body feather color. Therefore, in this study, we used this population to investigate the genetic basis of white/black tail phenotypes in chickens.
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FIGURE 1. Chicken feather color. (A–H) Body feather color is consistent with tail feather color; (I–P) body feather color is different from tail feather color. Image Source: (A) Kerje et al. (2004), (B,D) Feng et al. (2014), (C) Hellstrom et al. (2010), (E–L) Li et al. (2019), (M,N) Wang et al. (2017), and (O,P) Zhang et al. (2016).




MATERIALS AND METHODS


Animals

The birds used in this study were derived from RIR and DL chicken populations (Beinongda commercial breeding farm and Jiangsu Institute of Poultry Science experiment farm). The RIR, a dual-purpose commercial breed, has red body plumage and black tail plumage, and the red feather color is determined by a Z chromosome-linked recessive allele. The DL chicken is a layer line with white plumage, which is defined by a Z-linked dominant allele. The DW chickens with white and black tail feathers were generated through more than 10 generations of self-crossings of RIR and DL. Because only the red body feather color was selected in each generation, independently of tail color, the DL population presents both black and white tail feathers, whereas most display red body plumage (Figure 2).

[image: Figure 2]

FIGURE 2. Dwarf hens displaying white or black tail feather color. (A) Black tail; (B) white tail.




Inheritance Pattern of Tail Feather Color

To explain the inheritance pattern of the tail colors, four crosses were performed using the black-tailed DW and white-tailed DW: black × black (cross 1), black males × white females (cross 2), white males × black females (cross 3), and white × white (cross 4). Two replicates of the four crosses (crosses 5–8) were used to confirm the results. Tail feather color was identified at 7 weeks of age when the tail feathers emerged.



Mapping the Genomic Region Underlying White/Black Tail Feather Color by a GWAS

A total of 176 adult female chickens were selected, including 96 black-tailed RIRs and 80 DWs (38 black-tailed and 42 white-tailed) to perform the GWAS (Figure 2). Blood samples from both populations were collected from the wing vein and placed into centrifuge tubes containing anticoagulating agent.

Genomic DNA was extracted using phenol/chloroform (Green and Sambrook, 2017), and genotyping was performed using a 600 K Affymetrix Axiom Chicken Genotyping Array (Affymetrix, Inc. Santa Clara, CA, United States; Kranis et al., 2013). Affymetrix Power Tools v1.16.0 (APT) software was then used for quality control and genotype calling. Specifically, only samples with dish quality control >0.82 and call rate >97% were used in the subsequent analysis.

Single-nucleotide polymorphisms (SNPs) with a minor allele frequency <1% or a p-value of deviation from Hardy-Weinberg equilibrium (PHWE) <1 × 10−6 were removed. Ultimately, 175 individuals and 479,579 SNPs were retained for the association analysis. Classical multi-dimensional scaling analysis was used to detect the population structure using PLINK v1.09 software (Purcell et al., 2007).



Statistical Analysis

To test the association of each SNP with tail feather color, a mixed model (Price et al., 2010) association analysis was used, including fixed effects (overall mean and covariates) and random effects (SNP effect, individual effect, and residual errors), according to the GEMMA (v0.94.1) manual (Zhou and Stephens, 2012). In the present study, 175 genotyped birds were obtained from two different populations; therefore, the first two principal components (accounting for 23.89 and 2.31% of the total variability) were used as a covariate to account for population structure in the analysis.

All the selected SNPs were subjected to linkage disequilibrium analysis, using the --indep-pairwise 25 5 0.2 and --blocks-max-kb 500 commands in PLINK, to generate a pruned subset of 48,848 SNPs and 77,137 haploblocks with linkage equilibrium. Bonferroni adjustment is a widely used method for multiple hypothesis testing. Given the correlation between the SNPs in linkage disequilibrium, the traditional Bonferroni adjustment appears to be overly conservative, with the key assumption that all the tests are independent (Johnson et al., 2010). Herein, the sum of independent blocks plus singleton markers was used to define the number of independent statistical tests (Nicodemus et al., 2005; Gu et al., 2011). With this approach, 125,985 independent tests were suggested to determine the p-value threshold. Consequently, the genome-wide significant and suggestive p-values were 3.97 × 10−7 (0.05/125,985) and 7.94 × 10−6 (1/125,985), respectively. To further location candidate region that affect trait, we performed linkage disequilibrium (LD) analysis with genome significantly SNPs in Haploview software (v4.2; Barrett et al., 2005).

In addition, the annotated genes were identified using the NCBI and Ensembl annotations of the Gallus Ensemble version 5.0 genome. A Manhattan plot of genome-wide p-values of the association analysis was created using R.1




RESULTS


White Tail Feather Color in Dwarf Chickens Is an Autosome-Linked Dominant Character

We first made four crosses between white-tailed and black-tailed chickens and the chickens all showed red body feather color. Because a few outliers were identified in the four crosses, we generated the other four crosses to confirm our results. Almost all the offspring presented red body plumage, with a few exceptions where the body feather color was white (Figure 3). Because body feather color might affect tail feather color, we only used the offspring with red body plumage to understand the inheritance pattern of white/black tail color. Table 1 presents the distribution of white or black tail progenies in the eight crosses.
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FIGURE 3. Main feather color subtypes in the offspring of Dwarf chickens. (A–D) The different feather color phenotypes of Dwarf hens; (E–G) the different feather color phenotypes of Dwarf cockerels. (H) Some offspring have gray tail feathers.




TABLE 1. Progeny phenotypes of eight crosses in the Dwarf chicken population.
[image: Table1]

We found that the white/black tail feather color is a Mendelian trait, and the white is dominant to the black (Table 1). The same results were obtained with both replicates. Because the red body feather and tail feather colors were segregated, we concluded that the genes controlling white/black tail color were different from those controlling red body feather color; additionally, there was no epistatic effect between them.



Candidate Genes on Chromosome 24 Identified by the GWAS

After quality control, 175 female chickens were analyzed, 134 (76%) of which presented black tail feather color as the controls, and 41 (24%) presented white tail feather color as the cases. Based on the Manhattan plot for the white/black tail feather color, we observed seven significantly associated SNPs spanning from 3.97 to 4.26 Mb (~0.29 Mb) on chromosome 24 (p < 3.97 × 10−7) in the sexually mature hens (Figure 4A; Table 2). The linkage disequilibrium plot (Figure 4B) showed the detected SNP markers were strongly linked in a haplotype block. Moreover, 14 candidate genes were found to be related to tail feather color, including nine annotated genes and five anonymous genes, namely: NECTIN1, THY1, gga-mir-1466, USP2, C1QTNF5, RNF26, MCAM, CBL, CCDC153, ENSGALG00000046117, ENSGALG00000006746, ENSGALG00000037367, ENSGALG00000032979, and ENSGALG00000039907. Additionally, 36 autosomal SNPs were suggestively related (7.94 × 10−6) to the white/black tail feather in chicken (Figure 4A; Supplementary Table S1).

[image: Figure 4]

FIGURE 4. (A) Manhattan plot showing the association of all single-nucleotide polymorphisms (SNPs) with the tail feather color (white/black) trait of Dwarf and Rhode Island Red chickens. SNPs were plotted on the x-axis according to their position on each chromosome against their association with these traits on the y-axis (shown as −log10 p-values). The red and blue lines indicate the genome-wide and suggestive significant association with p-values of 3.97 × 10−7 (0.05/125,985) and 7.94 × 10−6 (1/125,985), respectively. (B) Linkage disequilibrium (r2) plot association with white/black tail feather color.




TABLE 2. Single-nucleotide polymorphisms (SNPs) significantly associated with the tail feather color in the genome-wide association study (GWAS).
[image: Table2]




DISCUSSION

Tail feather color (white/black) in DW chickens is a qualitative trait, and we assumed that it was controlled by a single gene. The results of our crossing experiments supported our assumption, and revealed that the white tail feather color in DWs is an autosome-linked dominant trait. However, the crosses produced some offspring with white body plumage and gray tail feathers (Table 1), which has two possible explanations. First, the body and tail feather colors are not controlled by the same gene in DW chickens. Second, an intermediate feather color existed in the population at an early developmental period, and most of the heterozygous individuals were classified as having gray tail feathers; however, a few progeny might have been erroneously classified as black- or white-tailed.

We also aimed to locate positional candidate genes associated with tail feather color using a 600 K SNP panel for genotyping DW and RIR chickens. We identified 14 candidate genes in the most significant region on chromosome 24, which corresponded to nine known and five anonymous genes.

One candidate gene, melanoma cell adhesion molecule (MCAM), which encodes an endothelial adhesion receptor or an independent receptor for fibroblast growth factor 4, was identified as playing an essential role in lymphocyte endothelium interactions and morphogenesis (Guezguez et al., 2007; Gao et al., 2017). Melanocytes are derived from melanoblasts that originate from neural crest cells in early chicken embryos (Yu et al., 2004), and fibroblasts can influence melanogenesis (Muriel et al., 2010; Kim et al., 2016). Furthermore, Mangahas et al. (2004) reported that human MCAM is involved in primary melanocyte development via endothelin upregulation. The endothelin 3 locus has been reported to be responsible for hyperpigmentation in chickens (Dorshorst et al., 2011). Moreover, the tumor suppressor locus cyclin-dependent kinase inhibitor 2A/B can affect pigmentation phenotypes in the chicken (Hellstrom et al., 2010). Together, these observations indicate that MCAM may play an important role in the determination of tail feather color, a possibility that warrants future validation in the chicken.

Besides the promising candidate gene MCAM, other candidate genes were also identified in this ~0.29 Mb region, and have various functions (Table 2). For example, C1QTNF5, USP2, and NECTIN1 have been reported as being disease-associated (Hayashi et al., 2016; Stanton et al., 2017; Zhu and Gao, 2017; Takahashi et al., 2018). CBL can promote B cell receptor endocytosis and attenuate ligand-induced signaling (Jacob et al., 2008), while RNF26 was found to be associated with lysosomal positioning and movement (Cabukusta and Neefjes, 2018). THY1 is correlated with myofibroblast apoptosis (Liu et al., 2017).

Currently, the mechanism underlying tail feather color remains almost unknown. However, the GWAS results of this study may contribute to determining the relationship between these candidate genes and tail feather color. Further research is necessary to determine the genetic basis underlying tail feather color in chickens.



CONCLUSION

Our study showed that the white/black tail feather trait is autosome-linked in DW chickens. In addition, the GWAS revealed seven significant SNPs spanning a ~0.29 Mb region on GGA24 associated with the tail feather color in DW chickens, corresponding to 14 genes. Notably, among these 14 genes, MCAM may play a critical role in the formation of white/black tail feather color. Overall, the candidate genes detected herein can help elucidate the genomic architecture underlying white/black tail feather color and provide novel insights into the mechanisms regulating feather color development in DW chickens and other breeds.
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59

57

60

60

60

58

Product size/bp

213

149

78

140

Duetal., 2017
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Reference / Validation Breed Group

Ref.1: 13,985 Pure_H [ ] Pure_H [] ~75%H:25%J ] ~50%H:50%J ] ~25%H:75%.J ] Pure_J

Ref.2: 4,484 Pure_J [] Pure_H ~75%H:25%.J B ~50%H:50%.J B ~25%H:75%J

Ref.3: 13,985 Pure_H + 4,484 Pure_J [ ] Pure_H [ ] ~75%H:25%.J [] ~50%H:50%J B ~25%H:75%J

Ref.4: 13,985 Pure_H & 4,484 Pure_J (PCA Breed) D Pure_H B ~75%H:25%J B ~50%H:50%J B ~25%H:75%J

Ref.5: 13,985 Pure_H + 4,484 Pure_J + 18,226 Crossbred [] Pure_H I ~75%H:25%J B ~50%H:50%J B ~25%H:75%J
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Scenario Population in reference Population in validation

LD-MD

MD-HD

Number in reference

Number in validation Number in reference Number in validation

Scenario 1

1A EAI WA 228 485 228 87
1B EXX WXX 2,982 394 2,982 141
1C EAI + EXX WA 228 + 2,982 485 228 + 2,982 87
1D EAI + EXX WXX 229 + 2,982 394 229 + 2,982 141
1E EAI EAI 182 46 182 46
1F EXX EXX 2,385 597 2,385 597
Scenario 2

2A WAI WA 388 97 69 18
2B WAI WXX 388 79 69 29
2C WXX WA 315 97 112 18
2D WXX WXX 315 79 112 29
2E WAI + WXX WAI 388 + 315 97 69 + 112 18
2F WAI + WXX WXX 388 + 315 79 69 + 112 29
Scenario 3

3A WAI + EAI WAI 388 + 228 97 69 + 228 18
3B WAI 4 EAI WXX 388 + 228 79 69 + 228 29
3C WXX 4 EXX WAI 315 + 2,982 97 112 + 2,982 18
3D WXX + EXX WXX 315 + 2,982 79 112 + 2,982 29
3E WAI + EAIl + WXX + EXX WAI 388 + 228 + 315 + 2,982 97 69 + 228 + 112 42,982 18
3F WAI + EAIl + WXX + EXX WXX 388 + 228 + 315 + 2,982 79 69 + 228 + 112 4 2,982 29

WAI = West African indigenous, EAIl = East African indigenous, WXX = West African crossbreds, EXX = East African crossbred.
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Breed

Friesian
Guernsey

Holstein
Jersey

ontbéliarde
Pooled Bos indicus
N’Dama
N’Dama
N’Damat
N’Dama2
N’Dama3

Lagune

Lagunaire
Somba

Baoule

Baoule

Djakore*

Gobra*

Gobra*

Maure*

Maure*

Gobara x Maure*
Gobara x Guzerat*
Bororo

Fulani

Kuri

Borgou
Undefined indigenous
Ankole

SEAZ

Boran
Danakil-Harar
Begait-Barka
Boran

ringa-Red
Singida-White
Sheko

Kenyan crossbred

Uganda crossbred
Ethiopia crossbred
Tanzania crossbred
Senegal crossbreed
Senegal crossbreed

[otal

Population group

EuB.t
EuB.t

EuB.t
EuB.t
EuB.t
B.i

WA
WA
WA
WA
WA

WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA

s

$509909099PETREESEES

Origin/country

United Kingdom

United States and
United Kingdom

United States and NZ
United States and NZ
France

India

Guinea

Senegal

Cote d’lvoire

Southeast Burkina Faso

Southwest Burkina
Faso

Benin

West Africa
Togo

Burkina Faso
Burkina Faso
Senegal
Senegal
Senegal
Senegal
Senegal
Senegal
Senegal
Chad
Benin
Chad
Benin
Senegal
Uganda
Kenya

Kenya

Ethiopia
Ethiopia
Ethiopia

fanzania

lanzania
hiopia

ganda
hiopia
Tanzania
Senegal
Senegal

E
Kenya
u
E

Number of animals

25
20

20
20
20
105
20
14
20
14
17

20
5
20
20
19
7
118
14
12
15
10
31
20
20
20
20
66
35
21
28
30
30
28
13
22
18
1,378
555
545
462
253
141
4,291

Array (lllumina)

BovineHD
BovineHD

BovineHD
BovineHD
BovineSNP50
BovineHD
BovineHD
BovineHD
BovineSNP50
BovineSNP50
BovineSNP50

BovineSNP50
BovineHD
BovineSNP50
BovineSNP50
BovineHD
BovineSNP50
BovineSNP50
BovineHD
BovineSNP50
BovineHD
BovineSNP50
BovineSNP50
BovineSNP50
BovineSNP50
BovineSNP50
BovineSNP50
BovineSNP50
Bovine

Bovine
Bovine
Bovine
Bovine
Bovine

Bovine
Bovine
Bovine
Bovine

U o obewwiibwi b u

H
H
Hi
H
H
H
BovineH|
Hi
H
H
H
BovineH|
BovineH|
BovineSNP50

BovineHD

Genotype source

SRUC

Bovine HapMap Consortium et al., 2009

Bovine HapMap Consortium et al.,
Bovine HapMap Consortium et al.,

Decker et al., 2014
., 2019

Strucken et a

Bovine HapMap Consortium et al.,

GRRFAC
Decker et al., 2014
Decker et al., 2014
Decker et al., 2014

Decker et al., 2014

Decker et al., 2014

Decker et al., 2014

GRRFAC

arshall et al., 2020

arshall et al., 2020

GRRFAC

arshall et al., 2020

GRRFAC
arshall et al., 2020
arshall et al., 2020

Decker et al., 2014

Decker et al., 2014

Decker et al., 2014

Decker et al., 2014
arshall et al., 2020

DGEA

DGEA

DGEA

DGEA

DGEA

DGEA

DGEA

DGEA

DGEA
DGEA
DGEA
DGEA
arshall et al., 2020
CTLGH

Bovine HapMap Consortium et al.,

2009
2009

2009

2009

Bovine HapMap Consortium et al., 2009

*Senegalese indigenous populations used in the pooled indigenous population (N = 105), EuB.t = European Bos taurus, B.i = Bos indicus, WAI = West African indigenous,
EAl = East African indigenous, WXX = West African crossbreds, EXX = East African crossbreds, USA = United States of America, UK = United Kingdom, NZ = New Zealand,

SRUC = Scottish Rural University College, CDN = Canadian Dairy Network.
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GO:0003743~translation initiation factor activity
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Statistics associated with GO terms include significance of enrichment or EASE score (P-value) and false discovery rate (FDR).
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BTA Startlocation End location Trait Variance Explained, %

Pleiotropic Window BTA5: 26,723,850-27,497,503

5 26,723,850 27,719,719 MARB 1.3t
5 26,497,783 27,497,503 REA 2.63
Pleiotropic Window BTA5: 56,183,908-56,925,298

5 55,929,423 56,925,298 MARB 212
8 55,947,945 56,939,150 REA 4.72
] 56,081,838 57,079,618 TEND 2.45
] 56,183,908 57,182,379 JUIC 1.06
5 55,929,423 56,925,298 TEXT 1.58
5 55,929,423 56,925,298 FIRM 1.33
Pleiotropic Window BTA7: 51,559,142-52,520,697

7 51,634,263 52,520,697 MARB 222
7 51,559,142 52,520,697 TEND 1.65
7 51,364,596 52,357,001 COLOR 0.92
7 51,634,263 52,520,697 TEXT 1.84
Suggestive‘ Pleiotropic Window BTA10:76,188,006-77,186,559
10 76,188,006 77,186,559 MARB 0.98
10 76,188,006 77,186,559 JUIC 1.1
Pleiotropic Window BTA18:61,896,649-62,491,546

18 61,559,385 62,559,371 TEND 1.09
18 61,492,108 62,491,546 FLAV 231
18 61,896,649 62,896,636  COLOR 2.09
Suggestive! Pleiotropic Window BTA19:26,984,181-27,979,809
19 26,984,181 27,979,809 TEND 1.13
19 26,984,181 27,979,809 TEXT 0.94
Suggestive! Pleiotropic Window BTA19:38,188,955-39,131,233
19 38,140,728 39,131,233 JUIC 1.04
19 38,188,955 39,167,086  COLOR 0.95
Pleiotropic Window BTA29:43,148,023-43,405,926

29 43,148,023 44,147,635 TEND 1.42
29 42,416,823 43,405,926 FLAV 1.22

1Overlapping windows explaining more than 1% of the direct additive genetic
variance for one trait and between 0.9 and 1% for another trait.

MARB, marbling score; REA, ribeye area; TEND, tenderness score; JUIC, juiciness
score; FLAV, beef flavor score; COLOR, color; TEXT, texture; FIRM, firmness.
Genomic windows explaining between 0.9 and 1% of direct additive genetic
variances are shown in italic font. The pleiotropic or suggestive pleiotropic windows
are defined based on overlapping windows. Columns show the chromosome
(BTA), the start and end location of the genomic region, the associated trait, and
the direct additive genetic variance explained (%).
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Trait' MARB REA TEND JUIC FLAV COLOR TEXT FIRM

MARB 0.19 0.32 0.32 0.21 003 -022 -037
REA —0.03 0.10 -0.083 -0.05 0 —0.01 0.04
TEND 0.21 0 0.51 0.43 0.16 -0.08 -0.17
Juic 066 -0.15 0.64 0.42 036 -0.01 -0.33
FLAV 099 027 0.99 0.99 0.10 0.05 -0.19
COLOR -0.19 0.02 0 -0.54 -0.37 023 -0.19
TEXT  -0.30 024 -053 -099 -0.99 0.02 0.16

FIRM  —-0.38 024 -0.16 -0.32 -099 -022 -0.24

1MARB, marbling score; REA, ribeye area; TEND, tenderness score; JUIC, juiciness
score; FLAV, beef flavor score; COLOR, color; TEXT, texture; FIRM, firmness.
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Data subset description
(abbreviation)

Individual phenotypes from
genotyped PB individuals (dPB)
Individual phenotypes of CB
offspring from genotyped PB sires
(dCBsse)

Individual phenotypes from
genotyped CB individuals (dCB)

RFI (g/day)

—44 (216)
[~710, 635]
71 (169)
[-437, 611)
0.10(150.10)
[-518, 583]

Average daily  Number of records

gain (ADG; g/d)

1112 (128)

5,708
(688, 1,508]
877 (88.55)

3,495 from 257 sires

666, 1,265]
885.5 (87.39)
[541.0, 1285.0] 3,197

Farm x batch levels

6

a7

53

Males/Females

5,708/0

2,520/975

2262/935

Sires/dams

217/1120

257/490

252/478





OPS/images/fgene-11-546052/fgene-11-546052-i000.jpg
k
fi=Z
p> xjwj





OPS/images/fgene-11-567818/fgene-11-567818-g004.jpg
| amigo
0002 1WAS
loosiuns

looorras

%. e © foswas
%|i.. “ looswas

Average dally gain, tr.1 - tst.2

. % * foszwns
B e L
uoneionoo uewseads ’
e S —— | ameo
z
K
mﬂ loosiwas
3 %_H 0001 WA
£ ﬁ = | osLAS
H z
E % : | ooswns
H
3
& m —= | oszwins
.vm e b 0SWAS
& & S “ @
uoneleuo0D uewieads )

Average dally gain,trn.2-tst.2

o8]

Residual feed Intake, trn.2-tst.2

0]

—T—

uoneleuo0 uewseads

S

| 0oswins
0SZWAS

05 WAS

08!

amgo

{000z WA

loosiwAs

{0001 was

| 0smAS

005 WAS

05ZWAS

05 WAS

04
081

uoneleuo0 uewseads

Average dally gain, trn.3-tst.2

Residual feed intake, trn3-tst.2

| amigo

%

0002 1AS

%

loosiuns

0001 WAS

"

| oscmas

i

i

| oosmAS

| oszwns

%

osWAS

0.8
04f
.0sl

uoe(e100 uewIEeds

0.4

| amgo
000z AS
loosiwns
looor s
| oscwins
o0s1AS
| oszmins

—T—

uoe(au00 uewIRads

osAS

08
04l
08!





OPS/images/fgene-11-546052/fgene-11-546052-g004.jpg
100%

90%

80%

X
=}
~

60%

50%

40%

30%

20%

10%

0%

TvL
TeeL
T€0L
Tv89
1599
T9%9
TL29
1809
1685
T0LS
T1SS
| 743
TETS
137494
TSLY
1957
TLEY
18117
166€
108¢
T19¢
Teve
1243
1v0€
TS8C
199C
TLvT
18¢¢C
T60C
To6T
TTLT
TZstT
TEET
Wit
156
T9L
TLS
I8¢
161

m Hereford Shorthorn

Brahman

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

TP
| 1442
T€0L
v89
1599
99
TL29
1809
168S
T0LS
T1SS
TZES
TEIS
11754
1SLy
19s
TLEY
181y
T66€
108¢
T19¢
TZve
TeCE
Tv0€
158¢
199¢
TLve
T8¢t
160¢
1061
TTLT
TestT
TEET
Wit
156
19L
TLS
18¢
16T

m Hereford Shorthorn

Brahman

100%

X
(=)
=)

80%

70%

60%

50%

40%

30%

20%

10%

0%

TivL
9TZL
T20L
9789
1€99
9€V9
1A 74°)
9v09
1585
9595
T9%S
99ZS
TLOS
9/8%
189
98hY
T6¢y
960
T06€
90LE
TISE
9TEE
Teie
926C
T€LT
9€ST
Tvee
Elan4
1561
9SLT
T9ST
99€T
LT
9.6
18L
98S
T6€
96T

u Hereford Shorthorn

Brahman





OPS/images/fgene-11-567818/fgene-11-567818-g003.jpg
Average daily gain: tm.1 - tst2

o
£

Residual feed intal

eINBOUT

@iNsoUT

&

A

uonejesop uewieads

025

025,

| ameo

0002 1WA

0051 WA

{0001 wAS

0SLWAS

005 WAS

05ZWAS

osWAS

ango

000z1WAS

0051 AS

0001 TS

| oszins

005 WAS

05ZWAS

osWAS

Average daily gain: trm.2 - tst.2

tn2-tst2

Residual feed intal

050/

o:50]

B
! B
“hlet—
i

E
O
]

i

uonE(a100 Uewieads

—FT-
S
— L
I«.,EIQJ
.
L

(@100 Ueweads.

025

025

| amao

10002WAS

loos1wAs

looo1wAs

| osms

005 HAS

| oszws

| oswins

| amas

lo00zwAs

1001 WAS

loooLwAs

| osewns

00SWAS

0ZHAS

05 WAS.

Average dally gain: trn.3 - tst.2

a
£

Resldual feed ntal

l..m.m—l | ameo

IIAB‘] . 00z wAS

[ —

= lmmlll ooswAS
]IEI[

| oswAs

00/
2

0.0/

025,

- | ameo

10002 WAS

8
ool o
= -

10001 WAS

. | oszwns

.Iil_MD‘]
lmm.lll o o0sWAS
i

I e

uonE[21100 UewsLads.

050!
2
025,





OPS/images/fgene-11-546052/fgene-11-546052-g003.jpg
TBs

Brahman (B) Hereford (H) Shorthorn (S)
PuB PmH Pums
PMEy

Beefmaster(M) +———————— Ey





OPS/images/fgene-11-567818/fgene-11-567818-g002.jpg
Average daily gain: trn.1 - tst.1

Residual feed intake: trn.1 - tst.1

04

o4

Sf~
Sl
il
g B
<l

jo1100 uewsRadS

T+
I
-
O
- -
o
-

uoneja100 uewiLads.

T
Bl

L=

| amao

loooz A

0051 HiAS

0001 WA

| osewins

| cosins

| oszvinS

0sWAS

| ameo.

|00z wAs

loosiwAs

{0001 WA

0SLVAS

| coswns

05ZWAS

| osas





OPS/images/fgene-11-546052/fgene-11-546052-g002.jpg
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

66v9
87€9
LST9
986S
ST8S
¥v9S
€LVS
20€S
TE€1S
096
68LY
8T9¥
Lyvy
9LTy
SOty
VEBE
€9L€E
76SE
TZve
0sze
6L0€
806C
LELT
995C
S6€T
vzee
€S0T
88T
LT
ovST
69€T
86TT
L20T
958

S89

145

E€vE

Ut

Angus ® Brahman

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

66v9
87€9
LST9
9865
S18S
vv9S
€LYS
0es
TETS
0961
68LY
8T9Y
VA444
9Lty
(0] 4
VE6E
€9L€
6SE
e
0sze
6L0€
8067
LELT
995C
S6ET
12444
€50C
7881
1Lt
0ovST
69€T
86TT
L20T
958
S89
145
32
[4A"

Angus ® Brahman

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

66v9
87¢€9
LST9
986S
S18S
vv9s
€LYS
0ges
TE1S
096t
68LY
8T9Y
VA444
744
014
vE6E
€9L€
6SE
e
0sze
6L0€
8067
LELT
99SC
S6€C
17444
£50¢
7881
TTLT
ovST
69€T
86TT
£20T
958

S89

vis

343

[4A7

® Brahman

Angus





OPS/images/fgene-11-567818/fgene-11-567818-g001.jpg
TRAINING SETS

trn.d

trn.2

trn.3

TESTING SETS
tst.1

tst.2






OPS/images/fgene-11-567818/crossmark.jpg
©

2

i

|





OPS/images/fgene-11-546052/fgene-11-546052-i006.jpg





OPS/images/fgene-11-546052/fgene-11-546052-i005.jpg





OPS/images/fgene-11-567818/inline_3.jpg





OPS/images/fgene-11-546052/fgene-11-546052-i004.jpg





OPS/images/fgene-11-567818/inline_2.jpg





OPS/images/fgene-11-546052/fgene-11-546052-i003.jpg





OPS/images/fgene-11-567818/inline_1.jpg





OPS/images/fgene-11-589496/fgene-11-589496-g001.gif





OPS/images/fgene-12-566047/fgene-12-566047-t001.jpg
Cross Parents Black-tailed offspring White-tailed offspring Mottled offspring
Male Female Male Female Male Female Male Female
1 B8 B8 66 58 1 0 0 0
2 B8 we 26 36 49 39 0 7
3 w B 26 27 14 27 0 6
4 w w 6 8 53 62 0 20
5 B B 146 1 /
6 B8 w 8 74 /
7 w B8 33 46 /
8 w w 16 104 ¥

"Black tail feather.
“White tai feather.

“Outlier, assuming that white tail feather color in the DW chicken is an autosome-linked dominant trait

Gray-tailed
offspring

AN NO N~~~
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Number of cows
Number of sires
Ref. 1 HSS

Ref. 2 HSS

Refs. 3 and 4 HSS
Ref. 5 HSS

Ref. 6 HSS

Ref. 7 HSS

Ref. 8 HSS

H

1,002
314
1.37 £ 1.83(0)
0.04 + 0.36 (0)
1.41 +1.92(0)
6.55 + 8.58 (2)
0.79 + 1.36 (0)
1+1.8(0)
(1)

1.78 £2.66 (1)

75%H:25%J

863

381
0.83 + 1.47 (0)
0.18 + 0.56 (0)
1+1.63(0)
10.34 + 13.31 (3)
0.59 + 1.23 (0)
3.53 £ 5.41 (1)
412 £ 5.87 (1)

50%H:50%J

868
355
0.42 +£0.9 (0
0.96 +2.57 (0)
1.38 £2.96 (0)
10.07 £ 13.63 (3)
1.12+£2.71(0)
4.6 £6.57 (1)
572 +£8.29 (1)

25%H:75%J

324
128
1.21£1.21(1)
6.51+8.31 (9)
7.72 +£9.09 (5)
76.4 4 83.63 (37)
7.31+£8.78 (9)
36.01 £39.3 (18)
43.32 + 45.69 (23)

J

532
136
116 £1.18(1)
9.85 +10.97 (6)
11.02 £12.07 (8)
55.93 + 62.69 (29)
10.41 £11.36 (7)
26.43 +28.97 (13)
36.84 + 38.55 (23)

Total

3,589
951

0.96 & 1.46 (0)
2.334+6.23 (0)
3.3+6.82(0)
21.94 + 43.48 (4)

2.84 +6.49 (0)
9.41 4+ 20.55 (1)
12.24 £ 25.85 (1)
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Purebred bull Purebred cow Crossbred cow

Reference acronym! Total number H Red-H J H J 75%H:25%J 50%H:50%J 25%H:75%J
Ref. 1 13,985 4,407 953 - 8,625 - — = =

Ref. 2 4,484 - - 1,101 - 3,383 - e o

Ref. 3 18,469 4,407 953 1,101 8,625 3,383 - e o

Ref. 4 18,469 4,407 953 1,101 8,625 3,383 - = —

Ref. 5 36,695 4,407 953 1,101 8,625 3,383 9,262 7,807 1,157
Ref. 6 8,968 1,101 - 1,101 3,383 3,383 - = ~

Ref. 7 8,968 1,101 - 1,101 - - 1,167 4,452 1,157
Ref. 8 15,784 1,101 - 1,101 3383 8,383 1,167 4,452 1,157

1 The multi-breed Refs. 6-8 represent balanced-breed sets while Refs. 3-5 are Holstein-dominated sets.
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Genomic Relationship

0.50-

-0.25-
Ref.3 Ref.6 Ref.7 Ref.8
Reference / Validation Breed Group
Ref.3: 13,985 Pure_H + 4,484 Pure_J [ ] Pure_H [ ] ~75%H:25%J [ ] ~50%H:50%J ~25%H:75%J B Pure_J
Ref.6: 4,484 Pure_H + 4,484 Pure_J [ ] Pure_H L[] ~75%H:25%J ] ~50%H:50%J ~25%H:75%J ] Pure_J
Ref.7: 1,101 Pure_H + 1,101 Pure_J + 6,766 Crossbred [ ] Pure_H ] ~75%H:25%J B ~50%H:50%J B ~25%H:75%.J B Pure_J
Ref.8: 4,484 Pure_H + 4,484 Pure_J + 6,766 Crossbred [] Pure_H B ~75%H:25%J B ~50%H:50%J B ~25%H:75%J B rure J
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White Leghorn Emei black
chicken fowl
Jiuyuan

Silkie chicken black-bone
fowl

Plymouth Rock f2 Tianfu black-
chicken bone fowl
Shouguang Muchuan
chicken black-bone

fowl

€€L<C

Shimian
caoke fowl

Pengxian
yellow fowl

Miyi fow!

Tibetan fowl

4 4<€L

Hongshan
chicken |

Guangpo

chicken
Beijing You

chicken ‘l

Houdan E
chicken ‘





OPS/images/fgene-11-598580/fgene-11-598580-g006.jpg
1.50-

50k XT_50k

HDnGBS_pruned

dnigo

" Ref6 Ref.7 Ref.8

Reference / Validation Breed Group
Ref.3: 13,985 Pure_H + 4,484 Pure_J [ ] Pure_H ~75%H:25%J ~50%H:50%J
Ref.6: 4,484 Pure_H + 4,484 Pure_J [ ] Pure_H ~75%H:25%J ] ~50%H:50%J
Ref.7: 1,101 Pure_H + 1,101 Pure_J + 6,766 Crossbred [ ]| Pure_H ] ~75%H:25%J B ~50%H:50%J
Ref.8: 4,484 Pure_H + 4,484 Pure_J + 6,766 Crossbred [] Pure_H B ~75%H:25%.J B ~50%H:50%J

Ref.8

Ref3  Ref6 Ref.7

 Ref6 Ref.7 Ref.8

~25%H:75%J

N B Pure J
] ~25%H:75%J

B

|

I Pure_J
L]
[

~25%H:75%J
~25%H:75%J

Pure_J
Pure_J

ysohegwo
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Breed Number of Mean SD Minimum Maximum

animals

Friesian 25 0.331 0.013  0.303 0.360
Guernsey 20 0.268 0.014 0.234 0.291
Holstein 20 0.311 0.015 0.276 0.343
Jersey 20 0.261 0.014  0.227 0.286
Montbéliarde 20 0.295 0.008  0.279 0.303
Pooled populations

European Bos taurus 125 0.295 0.080 0.227 0.360
African Bos taurus 87 0.198 0.015  0.141 0.218
Bos indicus 105 0.1568 0.014  0.110 0.181
Indigenous 105 0.238 0.023 0.129 0.261
Crossbreds* 394 0.328 0.030 0.166 0.370

*Crosses between the local breed Gobra with Holstein-Friesian, Montbéliarde,
Normande, and undefined crossbreds.
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Test BTA (Start-End Annotated genes
Mb)

XPEHH(Hariana), Fer(Hariana); 8 (70.2-72.18)  TNNIBK
iHS

XPEHH(Jersey, Hariana); Fsr(HF)  2(65.5-66.7)  LRP1B

XPEHH(Jersey); Fsr(HF) 4(38.1-40.1)  CACNA2D1, 7SK SEMASC

XPEHH(Jersey); Fsr(HF) 4(52.28-53.65 TFEC

XPEHH(HP): Fsr(Jersey) 15 (43.3-44.1)  TRIMBS, STK83,
DENNDSA, SCUBE2,
NRIP3

XPEHH(Jersey); Fsr(BSW) 16(21.1-22.9) SPATA17, RRP15

XPEHH(Jersey); iHS 11(77.3-780 TDRD15, APOB

XPEHH(Hariana); iHS 3(64.1-65.8)  ADGRLA/ELTD1

Fer(BSW); iHS 10 (6767-68.20) MYOSA bta-mir-1248-2,
MYO5C

FerHF); iHS 14(24.36-24.62) FAM110B,UBXN2B

Fer(Hariana); iHS 11 (82.67-83.20) DDX1, NBAS
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BTA

14
1

1

SR RN

Start

30,356,171
77,798,022
89,219,877
75,039,363
73,971,560
82,677,576
57,670,680
88,677,121
61,535,026
65,667,175

End

30,448,182
77,927,967
89,464,197
75,644,478
74,224,519
83,207,199
57,681,112
89,136,086
61,675,889
65,807,163

iHS

3.913994
3.631122
3.570568
3545228
3.483963
3.404882
3.398117
3.383668
3201714
3.270202

Gene

DNAJCSB
TDRD15, APOB
C8A, FYB2
LRRC7
DNMT3A, POMC, EFR3B
DDX1, NBAS
CD200R1L
DAB1
LCT, UBXN4, R3HDM 1, MIR128-1
ADGRL4
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Breed

Windavani
Brown Swiss
Jersey
Holestein-Friesian
Hariana

24
21
30
18

Ho (Mean + SD)

0.38+£0.13
0.3140.20
0.31+0.19
0.35+0.16
029 +0.18

He (Mean  SD)

034 £0.11
029 +0.17
0.26 £0.17
034 £0.15
028 +0.15

MAF

0.28
022
023
0.26
0.20

Fst

0.13
0.14
0.08
0.24
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SNP

15314910357

rs313984397

rs317369751

15313530951

15316093292

15313273705

15317350539

GGA'

24

24

24

24

24

24

24

Position* (bp)

4,235,437

4,258,648

4,209,809

4,190,968

3,966,635

4,137,245

4,018,982

Minor/major

T/C

cT

T/C

NG

T/C

G/A

G/A

p-value

1.12e:07

1.54e-07

1.64e-07

1.65¢-07

3.00e-07

3.460-07

3.620-07

MAF®

bw RIR
0.14 0.00
0.16 0.00
011 0.00
011 0.00
0.06 0.00
0.08 0.00
0.13 0.00

Candidate genes (location) Full name

CBL (ntron) Gbl proto-oncogene

CCDC153 (intron) Goiled-coil domain
containing 153

MCAM (ntron) Melanoma cell

adhesion molecule

RNF26 (downstream 7.14 kb) ~ Ring finger protein 26

ENSGALGO0000032979  NA
(intron)
C1QTNFS (upstream 2.25 kb)  G1q and TNF related 5

USP2 (downstream 3.82 kb)  Ubiaitin specific
peptidase 2

ENSGALGO0000039907  NA

(upstream 8.51 kb)

THY? (downstream 17.10 kb) Thy-1 cell surface
antigen

gga-mir-1466 (downstream  gga-mir-1466

17.03 kb)

NECTINT (upstream 65.18  Nectin cel adhesion

Kb) molecule 1

ENSGALGO0000006746  NA
(downstream 47.62 kb)
ENSGALGO0000037367  NA
(downstream 37.50 kb)
ENSGALGO0000046117  NA
(upstream 13.32 kb)

Functions

8 cell receptor
endocytosis and ligand-
induced signaling (Jacob
etal, 2008).

NA

Coordination of
morphogenesis (Gao
etal, 2017)and
endothelial adhesion
(Guezguez et al., 2007).
Lysosomal positioning
and movement
(Cabukusta and Neefies,
2018).

NA

Disease-related
(Schwartze et al,, 2017;
Stanton et al., 2017;
Dinculescu et al., 2018).
Cell growth or death and
disease-related (Zhu and
Gao, 2017).

Myofibroblast apoptosis
(Liu et al., 2017).
NA

Disease-related
(Takahashi et al, 2018),
hair follicle
morphogenesis (Hayashi
etal, 2016).

NA

NA

NA

DW, Dwart line; RIR, Rhode Island Red line.
'Chicken chromosome.
*Position of SNPs according to the Gallus_galus-5.0 primary reference genome assembly
*Minor allele frequency.
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Statistics GGP30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation Brangus vs. Angus 0.699 0.671 0.692 0.714 0.689 0.711
Brangus vs. Brahman 0.442 0.451 0.475 0.444 0.456 0.481

Path coefficient Brangus < -Angus 0.668 0.645 0.654 0.678 0.663 0.673
Brangus < -Brahman 0.418 0.410 0.416 0.424 0.415 0.420

D-GBC Brangus < -Angus 71.9% 71.2% 71.2% 71.9% 71.8% 72.0%
Brangus < -Brahman 28.1% 28.8% 28.8% 28.1% 28.2% 28.0%

C-GBC Brangus < -Angus 71.2% 70.6% 70.2% 71.2% 71.1% 70.9%
Brangus < -Brahman 28.7% 29.8% 29.8% 28.7% 28.9% 29.1%

The Brangus animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.
The correlation of allele A frequencies between Angus (A) and Brahman (B) computed for the three SNP panels was rag = 0.0517 (1K), 0.062 (5K) and 0.090 (10K).
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Statistic Breed

Correlation with Brangus Angus
Brahman
Gelbvieh
Hereford
Limousin
Shorthorn
Simmental
Wagyu
Path coefficient Angus
Brahman
Gelbvieh
Hereford
Limousin
Shorthorn
Simmental
Wagyu
D-GBC Angus
Brahman
Gelbvieh
Hereford
Limousin
Shorthorn
Simmental
Wagyu
C-GBC Angus
Brahman
Gelbvieh
Hereford
Limousin
Shorthorn
Simmental
Wagyu

GGP 30K/GGP 40K

1K 5K 10K
0.699 0.671 0.692
0.442 0.451 0.475
0.635 0.606 0.627
0.362 0.316 0.310
0.632 0.512 0.541
0.507 0.452 0.478
0.610 0.585 0.611
0.278 0.311 0.344
0.527 0.510 0.539
0.402 0.396 0.404
0.107 0.086 0.071
0.019 0.031 0.008
0.030 0.034 0.030
0.087 0.060 0.051
—0.007 0.003 0.007
—0.029 0.008 0.003
60.2% 60.4% 62.9%
35.2% 36.5% 35.3%
2.48% 1.71% 1.09%
0.07% 0.22% 0.01%
0.20% 0.28% 0.19%
1.64% 0.82% 0.56%
0.01% 0.00% 0.01%
0.18% 0.02% 0.00%
56.9% 57.1% 56.7%
30.2% 32.2% 30.2%
6.67% 5.13% 6.66%
0.59% 0.92% 0.59%
1.41% 1.60% 1.41%
4.34% 2.63% 4.34%

0% 0.16% 0%

0% 0.22% 0%

GGP 50K

1K 5K 10K
0.714 0.689 0.711
0.444 0.456 0.481
0.647 0.622 0.645
0.374 0.325 0.321
0.546 0.527 0.557
0.520 0.468 0.495
0.624 0.602 0.628
0.288 0.318 0.353
0.538 0.520 0.552
0.403 0.401 0.407
0.096 0.085 0.073
0.023 0.032 0.009
0.037 0.037 0.031
0.091 0.068 0.058
—0.005 0.006 0.007
—0.023 0.007 0.003
61.4% 60.7% 63.4%
34.4% 36.0% 34.6%
1.94% 1.63% 1.09%
0.11% 0.23% 0.02%
0.29% 0.31% 0.20%
1.77% 1.08% 0.71%
0.00% 0.01% 0.01%
0.12% 0.01% 0.00%
57.6% 57.2% 57.6%
29.4% 31.5% 29.4%
5.87% 511% 5.87%
0.75% 0.95% 0.75%
1.75% 1.75% 1.76%
4.63% 3.08% 4.63%

0% 0.30% 0%

0% 0.20% 0%

The Brangus animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.
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Type Breed GGP30K GGP40K GGP50K nAnim
nAnim nSNP nAnim nSNP nAnim nSNP Before DC After DC
Composite Beefmaster 23 32,179 300 40,663 7,282 49,463 7,605 7,605
Brangus 1,319 32,179 3,053 40,660 3,605 49,463 7,969 7,969
Ancestral Angus 6,839 32,179 18,198 40,660 20,359 49,463 45,396 45,367
Brahman - - 1,811 30,720 509 43,984 2,320 2,271
Hereford 4,000 32,179 4,000 40,660 2,423 49,463 10,423 10,414
Shorthorn - - 355 40,660 1,232 49,463 1,687 1,577
Non-ancestral Gelbvieh 2,763 32,179 5,498 40,660 9,508 49,463 17,769 17,735
Limousin 373 32,179 2,264 40,660 5,043 46,915 7,680 7,677
Simmental 3,130 32,179 5,838 40,660 14,754 49,463 23,722 23,697
Wagyu 1,463 32,179 1,506 40,660 23,720 49,463 26,689 26,364
Sum 19,910 42,823 88,435 152,160 150,676

anAnim = number of genotyped animals; nSNP = Number of SNPs on the chip;
bnAnim (Before DC vs. After DC) = Total number of animals BEFORE or AFTER data cleaning.
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Chromosome Positions (Mb)

1 132.98-140.24
4 48.06-60.94
13 84.93-88.06
14 46.83-48.28
14 89.96-91.65
15 72.38-75.16
15 88.36-91.67

Size (Mb)

7.26
288
3.13
1.45
1.69
2.78
3.21

Number of SNP

101
37
43
45
49
39
34

Genes of interest

IGF1R, MEF2A, ALDH1AS, LRRK1

MMP16, CNGB3, CPNE3, RMDN1, WWP1, SLC7A13, ATP6VOD2
PLOD2

LIF;, GAL3ST1, INPP5J, PLA2G3

ALOX5

XIRP2, B3GALT1, STK39, CERS6

NCKAPT

ROH hotspots listed here are larger than 1 Mb with an average frequency of detection of SNP in ROH greater than 0.40.
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Statistic Breed GGP 30K/GGP 40K GGP 50K
1K 5K 10K 1K 5K 10K
Correlation with Beefmaster Angus 0.384 0.339 0.385 0.436 0.381 0.434
Brahman 0.552 0.549 0.556 0.544 0.561 0.570
Gelbvieh 0.477 0.450 0.477 0.551 0.486 0.521
Hereford 0.511 0.504 0.504 0.549 0.548 0.543
Limousin 0.441 0.396 0.437 0.528 0.432 0.479
Shorthorn 0.485 0.443 0.483 0.558 0.477 0.520
Simmental 0.454 0.415 0.452 0.526 0.455 0.496
Wagyu 0.367 0.361 0.376 0.435 0.356 0.377
Path coefficient Angus —0.008 —0.030 —0.005 0.011 —0.007 0.023
Brahman 0.498 0.495 0.501 0.522 0.509 0.513
Gelbvieh 0.040 0.066 0.042 0.047 0.059 0.047
Hereford 0.347 0.345 0.342 0.380 0.379 0.363
Limousin 0.015 0.018 0.016 0.041 0.025 0.026
Shorthorn 0.230 0.216 0.227 0.245 0.228 0.235
Simmental 0.028 0.024 0.027 0.020 0.033 0.029
Wagyu 0.041 0.058 0.042 0.023 0.027 0.011
D-GBC Angus 0.02% 0.22% 0.01% 0.03% 0.01% 0.12%
Brahman 58.3% 58.3% 59.2% 56.5% 56.2% 57.9%
Gelbvieh 0.37% 1.02% 0.42% 0.47% 0.76% 0.49%
Hereford 28.3% 28.3% 27.5% 30.0% 31.3% 29.0%
Limousin 0.05% 0.07% 0.06% 0.34% 0.13% 0.15%
Shorthorn 12.4% 11.1% 12.2% 12.4% 11.3% 12.1%
Simmental 0.19% 0.13% 0.17% 0.08% 0.23% 0.19%
Wagyu 0.39% 0.80% 0.41% 0.11% 0.16% 0.08%
C-GBC Angus 0% 0% 0% 0% 0% 0%
Brahman 44.9% 51.3% 44.9% 42.6% 48.8% 42.3%
Gelbvieh 3.54% 3.00% 3.54% 4.82% 27.4% 4.82%
Hereford 33.6% 28.5% 33.6% 35.9% 31.2% 35.9%
Limousin 0% 0.63% 0% 0% 0.95% 0%
Shorthorn 15.5% 13.5% 15.5% 15.9% 141% 15.6%
Simmental 0% 0.89% 0% 0% 1.34% 0%
Wagyu 2.41% 2.15% 2.41% 1.11% 0.86% 1.11%

The Beefmaster animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.
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Model

Admixutre

Linear regression

Path analysis (D-GBC)

Path analysis (C-GBC)

Panel

1K
5K
10K
1K
5K
10K
1K
5K
10K
1K
5K
10K

GGP 30K/GGP 40K GGP 50K
Angus Brahman Angus Brahman

Mean SD Mean SD Mean SD Mean SD

69.9% 7.3% 30.1% 7.3% 70.3% 71% 29.7% 71%
69.8% 6.8% 30.2% 6.8% 70.1% 6.8% 29.9% 6.8%
68.8% 71% 31.2% 71% 69.1% 7.0% 30.9% 7.0%
70.0% 7.6% 30.0% 7.6% 70.4% 7.6% 29.6% 7.6%
69.5% 7.4% 30.5% 7.4% 69.8% 7.5% 30.2% 7.5%
68.6% 7.5% 31.4% 7.5% 69.0% 7.6% 31.0% 7.6%
71.8% 11.9% 28.2% 11.9% 71.5% 12.3% 28.5% 12.3%
69.6% 11.8% 30.4% 11.8% 70.2% 12.4% 29.8% 12.4%
69.5% 11.7% 30.5% 11.7% 70.2% 12.3% 29.8% 12.3%
70.9% 11.7% 28.1% 11.7% 70.6% 12.19% 29.4% 12.1%
68.7% 11.5% 31.3% 11.5% 69.3% 12.0% 30.7% 12.0%
68.2% 11.3% 31.8% 11.3% 68.8% 11.8% 31.2% 11.8%
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# Population n Plains score (%)

Median Mean SD

1 Reference - Plains 203 100.00 99.09 2.28
(Confidence level 1)

2 Reference — Wood 57 0.87 2.16 3.02
(Confidence level 1)

3 Plains bison 31 98.67 94.81 9.81
(Confidence level 2)

4 Simulated-Plains 500 99.94 99.85 0.20

5 Simulated-Wood 500 0.00 017 0.26

6 Simulated - F1 500 49.95 49.97 0.43

7 Simulated - F2 500 50.04 50.05 0.54

8 Simulated-Backcross—Plains 500 75.00 74.99 0.48

8 Simulated-Backcross-Wood 500 25.03 25.03 0.49

There is no wood bison with a confidence level 2.
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Confidence level Description Count in the validation population

Plains Wood Hybrid
1 Absolutely confident. 203 57 0
The animal has documentation to show the origins
2 Somewhat confident. 31 0 1
The animal came from a highly reliable source, but it has no
documentation showing the origins
3 Less confident. 31 0 72

Cannot reliably track the origins of the animal or no
documentation exists regarding the origins

4 No data about the confidence 61 5 0
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ID Type Location Source # Raw reads % Reads mapped* Average sequencing

depth
P1 Plains Caprock Canyons State Park, TX Existing 33,573,898 38% 0.43
P2 Plains Caprock Canyons State Park, TX Existing 35,711,612 44% 0.53
P3 Plains Caprock Canyons State Park, TX Existing 63,428,284 46% 1.01
P4 Plains Caprock Canyons State Park, TX Existing 71,988,836 50% 1.24
P5 Plains the Greater Yellowstone Area Existing 345,862,044 12% 1.21
P6 Plains the Greater Yellowstone Area Existing 300,481,696 26% 2.68
Pz Plains Yellowstone National Park Existing 171,167,934 88% 551
P8 Plains Yellowstone National Park Existing 193,911,748 87% 6.19
P9 Plains Yellowstone National Park Existing 285,445,650 83% 8.67
P10 Plains Yellowstone National Park Existing 329,693,516 84% 10.12
P11 Plains Caprock Canyons State Park, TX New 764,693,316 66% 23.47
P12 Plains Caprock Canyons State Park, TX New 843,431,132 62% 23.94
P13 Plains Cypress Hills, SK New 939,516,516 7% 0.48
P14 Plains Drumheller, AB New 1,080,363,884 8% 0.59
P15 Plains Elk Island National Park, AB New 872,769,454 63% 25.40
P16 Plains Elk Island National Park, AB New 874,658,572 67% 27.36
P17 Plains Junction of Bow and Belly Rivers, AB New 1,075,618,578 8% 1.68
P18 Plains Prince Albert, SK New 962,343,124 42% 19.78
P19 Plains Red Rock/YNP Turner Ranch New 899,967,488 78% 37.39
P20 Plains Santa Catalina Island, CA New 899,471,994 58% 2517
P21 Plains Santa Catalina Island, CA New 1,268,225,668 44% 26.43
p22 Plains Swift Current, SK New 946,903,882 11% 0.71
P23 Plains Unknown New 610,183,530 11% 0.48
P24 Plains Wind Cave National Park, SD New 776,956,818 65% 23.71
P25 Plains Wind Cave National Park, SD New 853,107,274 66% 26.35
P26 Plains Yellowstone National Park New 973,793,586 73% 36.37
U1 Unknown Unknown New 540,095,712 2% 0.08
U2 Unknown Unknown New 838,346,982 1% 0.12
W1 Wood Elk Island National Park, AB Existing 12,968,260 41% 0.18
w2 Wood Elk Island National Park, AB Existing 17,859,638 48% 0.29
W3 Wood Elk Island National Park, AB Existing 58,711,530 45% 0.91
W4 Wood Elk Island National Park, AB Existing 75,729,836 38% 0.99
W5 Wood Alberta, Canada New 465,548,626 18% 295
W6 Wood Athabasca Lake, SK New 974,026,536 11% 1.23
W7 Wood Elk Island National Park, AB New 979,762,842 69% 34.14
W8 Wood Elk Island National Park, AB New 991,502,862 73% 36.54
W9 Wood Elk Island National Park, AB New 986,508,748 75% 37.33
W10 Wood Unknown New 1,018,582,276 4% 0.44
W11 Wood Unknown New 1,026,497,582 70% 38.42
W12 Wood Wood Buffalo National Park New 1,000,759,832 24% 8.75
W13 Wood Wood Buffalo National Park New 1,014,848,338 39% 15.27

Bison samples with an average sequence depth >5 were used for SNPs calling. *The percentage was calculated as #(Reads aligned without any bit set in 1804 in the
SAM FLAG)/#(Raw Reads) * 100%, i.e., a read was not considered as mapped if any of the following was true: (1) it was not mapped; (2) its mate was not mapped; (3) it
was not the primary alignment, (4) it failed platform/vendor quality checks; or (5) it is PCR or optical duplicate.
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Simbra, Simbra+Simmental

Simbra

Simbra

Simbra
Simbra, Simbra-+Simmental

Simbra, Simbra+Simmental

Simbra, Simbra+Simmental, Simbra+Brahman

Simbra+ Brahman

aSignatures of selection was identified using the two LD-based methods (Rsb and iHS) (Vitti et al., 2013).

Selection region position (Mb)®

1:131.6-1335

2:126.6-128.6

3:32.0-34.0

5:66.6-67.7

9:9.8-11.8
19:56.6-67.7
20:21.2-23.2
21:56.6-58.6

23:38.3-40.3

bCandidte regions are represented s (BTA: start - stop Mb), BTA, Bos taurus autosomes.
SENSEMBLE gene ID obtained from Ensembl (nttp://www.ensembl.org/index.htm).
JENSEMBLE gene name obtained from Ensembl (http://www.ensembl.org/index.htmi).

ENSEMBLE gene ID®

ENSBTAG00000014589,
ENSBTAG00000008299

ENSBTAG00000001613,
ENSBTAG00000005085

ENSBTAG00000015459

ENSBTAG00000018361,
ENSBTAG00000008322

ENSBTAG00000048046

ENSBTAG00000010768,
ENSBTAG00000011713

ENSBTAG00000014248,
ENSBTAG00000047548
ENSBTAG00000006620

ENSBTAG00000019217

ENSEMBLE Gene name

Claudin 18 (CLDN18) Interleukin
20 receptor subunit

beta (L20RB)

PDLIM1 interacting kinase 1

like (PDIK1L) Tripartite motif
containing 63 (TRIM63)
Potassium voltage-gated
channel subfamily A member 2
(KCNA2)

R3H domain containing

2 (R3HDM2) Potassium
voltage-gated channel subfamiy
Amember 10 (KCNA10)
Uncharacterized protein
Smallintegral membrane protein
5 (SMIMS) Uncharacterized
protein

MIER famiy member 3
Uncharacterized protein (MIERS)
Solute carrier family 24 member
4(SLC24A%)

Kinesin family member 13A
(KIF13A)
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1K
5K
10K
1K
5K
10K
1K
5K
10K
1K
5K
10K

GGP 30K/GGP 40K GGP 50K

Brahman Hereford Shorthorn Brahman Hereford Shorthorn
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
35.9% 4.2% 37.3% 5.6% 26.8% 5.8% 34.2% 4.7% 38.0% 6.0% 27.8% 6.8%
35.4% 3.3% 36.0% 3.3% 28.5% 3.7% 34.1% 3.9% 37.0% 3.4% 29.0% 4.9%
36.3% 3.3% 34.8% 3.2% 28.9% 3.7% 352% 4.0% 35.3% 3.2% 29.5% 4.8%
36.4% 4.7% 38.0% 6.1% 25.6% 6.1% 34.7% 5.4% 38.8% 6.6% 26.5% 7.7%
36.8% 3.7% 36.2% 3.8% 27.0% 4.1% 35.2% 4.4% 37.4% 3.8% 27.4% 5.5%
37.4% 3.7% 35.0% 3.6% 27.6% 4.1% 36.1% 4.5% 35.6% 3.6% 28.3% 5.5%
50.7% 9.8% 34.9% 10.4% 14.4% 7.2% 47.0% 11.1% 36.9% 11.1% 16.1% 10.9%
54.7% 7.8% 30.3% 6.8% 15.0% 5.8% 51.1% 9.3% 32.8% 6.7% 16.0% 8.6%
54.9% 7.7% 28.7% 6.2% 16.3% 6.2% 52.2% 9.5% 30.0% 6.2% 17.7% 9.1%
43.2% 9.0% 37.0% 8.5% 19.8% 6.8% 39.9% 9.9% 38.7% 9.0% 21.3% 9.5%
47.5% 7.3% 32.4% 5.8% 20.0% 5.2% 44.3% 8.4% 34.6% 5.6% 21.0% 7.4%
46.9% 7.1% 30.8% 5.3% 22.2% 5.4% 44.5% 8.4% 32.0% 51% 23.5% 7.5%
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Selectiontest®  Selected Selection region Top significant QT Biological role® References

population position (Mb)® SNP°

iHS Simbra BTA1:131.6-133.5 BovineHDO100037757 170016 Interval to first Zhang et al,, 2019

estrus after calving

iHS, Rsb Simbra, BTA2:126.6-128.6 BovineHD0200037032 125219 Lactation Doetal, 2014
Simbra+Simmental persistency

iHS Simbra BTA3:32.0-34.0 BovineHD0300010276 179821 Ketosis Nayeri et al., 2019

iHS Simbra BTA5:55.6-57.7 BovineHDO500016044 10570 Ovulation rate Kirkpatrick et al., 2000

iHS Simbra BTA998-118 BovineHDOY00002705 15914 Carcass weight Berkowioz et al., 2012

iHS, Rsb Simbra, BTA19:55.6-57.7 BovineHD1900016000 4383 Residual feed Berkowicz et al., 2012
Simbra+Simmental intake

iHS, Rsb Simbra, BTA20:21.2-23.2 BovineHD2000006648 5016 Heat intensity Hoglund et al., 2009
Simbra-+Simmental

iHS, Rsb Simbra, BTA21:56.6-58.6 BovineHD2100016574 172178 Milk lauric acid Gebreyesus etal.,
Simbra+Simmental, content 2019
Simbra+Brahman

Rsb Simbra+Brahman BTA23:38.3-40.3 BovineHD2300011367 11177 Body weight (birth) McClure et al., 2010

aSignatures of selection was identified using the two LD-based methods (Rsb and iHS) (Viti et al, 2013).

bCandidate regions are represented as (BTA: start - stop Mb), BTA, Bos taurus autosomes.

<Top significant SNP for the Rsb and iHS analyses.

9Potential overlap of the regions that display signatures of selection with previously published quantitative traitloci (QTLs) in the bovine database (http://www.animaigenome.org/cgi-
bin/QTLdb/BT/search).

®Biological role of the QTL in the bovine database (http://www.animalgenome.org/

in/QTLdb/BT/search).
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Statistics GGP30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K
Correlation with Beefmaster Brahman 0.552 0.549 0.556 0.544 0.561 0.570
Hereford 0.511 0.504 0.504 0.549 0.548 0.543
Shorthorn 0.485 0.443 0.483 0.558 0.477 0.520
Path coefficient Brahman 0.513 0.514 0.517 0.536 0.522 0.526
Hereford 0.375 0.381 0.371 0.420 0.417 0.398
Shorthorn 0.275 0.263 0.276 0.310 0.282 0.298
D-GBC Brahman 54.9% 55.2% 55.6% 51.3% 51.9% 52.8%
Hereford 29.3% 30.3% 28.6% 31.5% 33.0% 30.2%
Shorthorn 15.7% 14.5% 15.8% 17.2% 15.2% 16.9%
C-GBC Brahman 50.1% 51.3% 51.0% 46.0% 47.6% 48.0%
Hereford 31.1% 31.5% 29.8% 33.4% 34.1% 31.4%
Shorthorn 18.8% 17.3% 19.2% 20.6% 18.3% 20.6%

The Beefmaster animals were genotyped on either GGP S0K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively. Correlations of allele frequencies
were 0.059 (1K), 0.045 (5K) and 0.035 (10K) between Brahman and Hereford, 0.052 (1K), 0.069 (5K) and 0.7100 (10K) between Brahman and Shorthorn, and 0.460 (1K),
0.381 (5K) and 0.428 (10K) between Hereford and Shorthomn.
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iHS
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iHS
Rsb.
Rsb.
Rsb

Selected population

Simbra

Simbra
Simbra+Simmental
Simbra
Simbra-+Simmental
Simbra

Simbra

Simbra
Simbra-+Simmental
Simbra
Simbra+Simmental
Simbra
Simbra+Brahman
Simbra+Simmental
Simbra-+Brahman

Selection region
position (Mb)®

BTA1:131.6-133.5
BTA2:126.6-128.5
BTA2:126.6-128.6
BTA3:32.0-34.0
BT/ .0-33.9
BTAG6:66.6-57.7
BTA9:9.8-11.8
BTA19:56.7-67.7
BTA19:55.6-57.7
BTA20:21.2-23.2
BTA20:21.2-23.2
BTA21:56.6-58.7
BTA21:56.8-68.7
BTA21:56.8-68.7
BTA23:38.3-40.3

Statistic scores®

6.54
11.00
10.46
9.25
6.62
11.24
18.77
106
57
11.89
5.22
7.76
5.79
6.06
513

4Signatures of selection was identified using the two LD-based methods (Rsb and iHS) (Vitt et al., 2013).

bCanclidate regions are represented as (BTA: start - stop Mb), BTA, Bos taurus autosomes.

Selective sweep
region size (Mb)

1.9
19
2
2
1.9
-5
2
2
21
2
2
201
19
19
20

®Asb and IHS score >5 (equivalent to P-value = Te—05) were used to infer the candidate genomic regions under selection.
9Regions that displayed a deviation in the expected genomic composition for Simbra, with either an excess of Indicine or Taurine ancestry.

Number of SNPs

49
51

3882

56
55
81

56
56

14

Number of genes

13
44
44
34
34
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20
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SNP

WU_10.2_1_934682

WU_10.2_1_974053

ALGA0003423
INRA0002536

ASGA0099314

TSNP located on the Sus scrofa Build 11.1 assembly.

Chr!

13

Location (bp)

557,299

596,709

52,262,327
56,511,890

123,889,649

MAF

0.34

0.35

0.45
0.33

0.37

P value

1.02E-05/
1.40E-05

1.16E-05/
1.58E-05

2.63E-05
1.01E-05/
1.39E-05
6.60E-06/
9.35E-06

Located gene

PHF10

ENSSSCG00
000004008

ETVS

Flanking genes

TCTE3/C6orf120

C6orf120/THBS2

RIMS1/KCNQ5
ENSSSCG00000050040/
ENSSSCG00000029003
ENSSSCG0000003
9758/DGKG

2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, ll) represent the FarmCPU and MLM, respectively.

Distance? Method?
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SNP Chr!'  Location (bp) MAF P value Located gene Flanking genes
WU_10.2_11_56636318 11 51,835,854 0.42  6.26E-06 - NDFIP2/ENSSSCG00000051397
ALGA0062389 11 51,886,282 0.26  8.98E-06 - NDFIP2/ENSSSCG00000051397

Distance?

—275,5649/+307 ,411
—325,977/+256,983

Method®

"SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, Il) represent the FarmCPU and MLM, respectively.
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SNP Chr!

WU_10.2_12_18572268 12
ASGA0078801 18
M1GA0023045 18
WU_10.2_18_10095600 18

Location (bp)

18,323,553
9,196,074
9,659,135
9,689,637

TSNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, Il) represent the FarmCPU and MLM, respectively.

MAF

0.43
0.19
0.44
0.47

P value

1.53341E-05
2.23566E-05
6.84623E-06
2.53367E-05

Located gene

NMT1
DENND2A

KDM7A

Flanking genes

PLCD3/C1QL1
ADCK2/MKRN1
SLC37A3/KDM7A
SLC37A3/PARP12

Distance?

—21,069/+86,557
—23,041/+137,610
—106,542/+22,249
—136,944/+85,407

Method®
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Differentially log2 (Fold_Change) ~ p-Value g-Value  Differentially expressed log2 (Fold_Change) ~p-Value  g-Value

expressed miRNA target genes identified in

identified our previous

in this study RNA-seq study?®

miR-133a 21331 1.0203E-14  5.8256E-14  TRIB3 —2.64 3.38E-08  2.63E-05
miR-1388-5p ~1.6419 3.96E-32 2.75E-31

miR-2004 1.2383 4.05E-14 3.08E-13

miR-345-5p ~1.1028 00000415 0.0001496

miR-362-3p ~1.0196 1.90536-06  1.0284E-05

miR-106b ~1.2266 3.96E-41 31A6E-40  PTHLH -0.76 1.69E-05  0.006194
miR-190a ~1.0688 8.23E-10 4.04E-09

miR-29¢ —1.0287 1.5384E-92  2.7568E-91

miR-106b ~1.2266 3.96E-41 3.16E-40  VEGFA -1.25 1.35E-06  0.000647
miR-125a 1.3422 1599E-185  2.447E-184

miR-125b 1.0211 74226228 1.291E-226

miR-21-3p —1.7439 1.36€-08 6.19E-08

miR-2004 1.2383 4.05E-14 3.08E-13

miR-125a 1.3422 1599E-185  2.447E-184  SAAT -5.84 9.99E-07  0.000541
miR-125b 1.0211 7.4206-228  1.291E-226

miR-146b ~1.6573 4.4E-161 9.71E-160

miR-146b ~1.6573 4.4E-161 971E-160  SAA3 -2.09 9.90E-11  1.47E-07
miR-146b —1.6573 4.4E-161 9.71E-160  M-SAA3.2 -2.49 4.39E-05  0.013339
miR-33% —1.0197 7156247 152E-245

miR-339 —1.2469 3.98E-87 4.356-86

miR-378c 1.2476 00000142 0000072  RPL23A -5.31 1.886-05 0038988
miR-135a 1.2434 0.000017  0.0000832  ATF3 -2.70 1.24E:06  0.000641
miR-142-3p —1.5988 7.5E-41 5.86E-40

miR-156 —1.4638 5.45E-13 3.76E-12

miR-21-3p ~1.7439 1.36E-08 6.19E-08

miR-142-3p —1.5088 7.5E-41 5.86E-40  CHACT —2.86 862E08  5.97E-05
miR-223 —2.2887 9.68E-16 5.78E-15

miR-33% -1.0197 7A5E-247  1.526-245

miR-339 —1.2469 3.98E-87 4.35E-86

miR-108b ~1.2266 3.96E-41 3.16E-40  SLC25A38 -0.70 157607 7.35E-05
miR-142-5p —1.1379 43E-147  6.09E-146

miR-143 1.0707 0 0

miR-224 1.001 00000703 0.00037589

miR-2478 1.2552 9.38E-07  0.00000499

miR-2904 1.2383 4.05E-14 3.08E-13

miR-345-5p ~1.1028 00000415 0.0001496

miR-21-3p —1.7439 1.36€-08 6.19E-08  NR4AT 2.42 4.10E-07  0.000243
miR-224 1.001 00000703 0.00037589

miR-3600 1.2895 0 0 CDH16 —1.27 1.20E-06  0.000641
miR-362-3p ~1.0196 19053E-06  1.0284E-05  EIF4G3 ~0.49 9.76E-06  0.004052
miR-106b —1.2266 3.96E-41 3.16E-40  CDKNIA -2.20 1.22E-05  0.004742
miR-125a 1.3422 1.509E-185  2.447E-184

miR-125b 1.0211 74226228 1.291E-226

miR-22-3p 1.2895 0 0

miR-31 —1.1149 4.96E-18 4.56E-17

miR-3431 1.0333 0.00021287 ~ 0.0010055

miR-345-5p ~1.1028 00000415 0.0001496

miR-148a 1.0635 0 0 BOLA-DQB -6.92 1.21E-05  0.004742
miR-108b ~1.2266 3.96E-41 316E-40  H4 —2.17 207E-05  0.007179
miR-125a 1.3422 1.509E-185  2.447E-184  FAM71A -1.00 253605 0.008504
miR-125b 1.0211 74226228  1.291E-226

miR-224 1.001 00000703  0.00037589  DDIT3 -1.70 401E05 0012494
miR-411c-3p ~1.0705 2.31E-09 1.11E-08

miR-3431 1.0333 0.00021287 ~ 0.0010085  HISTIH2AC —2.01 554E-05 0.016423
miR-363 11211 0.00018844  0.0008567

miR-1388-5p ~1.6419 3.96E-32 275631 P4HA2 -0.69 9.24E-05  0.025587
miR-23a ~1.0206 0 0

miR-30f 1.0409 3.84E-67 6.78E-66

miR-345-5p -1.1028 00000415 0.0001496

miR-9-5p —2.9879 2.98E-21 3.06E-20

miR-190a ~1.0688 8.23E-10 404E-09  C4BPA -1.57 9.20E-10  1.04E-06

TRIBS, tribbles homolog 3; PTHLH, parathyroid hormone-like hormone; VEGFA, vascular endothelial growth factor A;RPL23A, ribosomal protein L23a; ATF3, activating
transcription factor 3; SAAT, serum amyloid A1; CHACT, cation transport regulator homolog 1; SAA3, serum amyloid A3; SLC25A38, solute carrier family 25, member 38;
NR4A1,nuclear receptor subfamily 4, group A, member 1;CDH16, cadherin 16; EIF4GS, eukaryotic transiation intiation factor 4 gamma, 3; CDKN1A,cyclin-dependent
kinase inhibitor 1A;BOLA-DQB, major histocompatibility complex, ciass I, DQ beta; Hd, histone Hd; FAM71A, family with sequence similarity 71, member A; DDIT3,DNA-
damage-inducible transcript 3;M-SAA3.2, mammary serum amyloid A3.2; HISTH2AC, histone cluster 1, H2ac;P4HAZ, prolyl 4 alpha 1:C4BPA,
complement component 4 binding protein, aipha.
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SNP

ALGA0018939
WU_10.2_4_111643880

M1GA0013120

ASGA0044293

WU_10.2_10_56204072
WU_10.2_11_53938211
WU_10.2_12_33077453

Chr?

w

10
11
12

Location (bp)

50,684,383
101,653,530

72,761,757

110,280,507

3,387,068
49,300,307
32,245,751

MAF

0.11
0.36

0.46
0.26
0.43

P value

1.38E-08
1.29E-08

1.65E-10/
2.32E-06

7.12E-07

8.68E-10
2.99E-09
1.67E-12

Located gene

HAO2

MYCBP2

Flanking genes

ENSSSCG00000
006719/WARS2

ENSSSCG0000004
8637/SAMD9

ENSSSCG00000034739/
ENSSSCG00000015460

BRINPS/~
FBXL3/SCEL

ENSSSCG00000025681/
ANKFN1

Distance?

—79,702/+133970

—222,088/+202058

—470,685/+179,469

—19,445/-
—149,298/+351,366
—89,735/+141,018

Method®

"SNP located on the Sus scrofa Build 11.1 assembly.

2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, 1) represent the FarmCPU and MLM, respectively.
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ALGA0006955

ALGA0031885
H3GA0023123

DBWU0000868
WU_10.2_10_48312614

WU_10.2_10_47748520

DRGA0010501
WU_10.2_10_48118152
ASGA0059395

Chr?

1

10

10
10
13

Location (bp)

169,163,416

47,014,709
112,784,720

8,933,427
43,603,091

43,105,103

43,457,312
43,496,534
177,464,038

MAF

0.24
0.15

0.12
0.38

0.37

0.20
0.15
0.43

P value

6.56E-06

2.66E-05
1.94E-05

1.09E-06

5.59E-07/
4.15E-06

1.25E-056

5.82E-06
5.30E-06
1.33E-06

Located gene

ITPR2

POLD3
ST8SIA6

CUBN

TRDMT1
TRDMT1
ROBO2

Flanking genes

ENSSSCG0000004
5715/NR2E3

INTS13/-

RPS6KA5 ENSSSCG0000
0002438

LIPT2/CHRDL2

VIM/ENSSSCG000
00046521

ENSSSCG0000004
8231/TRDMT1

CUBN/VIM
CUBN/VIM
ENSSSCG00000046597/~

Distance?

—362,891/+197,313

—154,156/-
—31,103/46,939

—92,697/+80,680
—76,919/180,018

—20,418/329,341

—11,444/+58,156
—81,921/+20,773
—462,956/—

Method®

"SNP located on the Sus scrofa Build 11.1 assembly.

2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, Il) represent the FarmCPU and MLM, respectively.
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Pathways Input number p-Value Differentially expressed
genes identified in our
previous RNA-Seq study?:2°

Glutathione metabolism 27 0.015447

p53 signaling pathway 33 0.01608 CDKN1A
Synaptic vesicle cycle 30 0.020395 CDKN1A
Cell cycle 51 0.027481

NF-kappa B signaling pathway 39 0.030627

Fc gamma R-mediated phagocytosis 37 0.035842

Collecting duct acid secretion 15 0.047867 CDKN1A
mTOR signaling pathway 51 0.027261 VEGFA
Fatty acid degradation 15 0.03017

Fatty acid metabolism 18 0.030625 DDIT3
Protein processing in endoplasmic reticulum 49 0.040795

KOBAS software was used to test the statistical enrichment of the candidate target genes in the KEGG pathways. 8NR4A1, nuclear receptor subfamily 4, group A,
member 1; DDIT3, DNA-damage-inducible transcript 3; VEGFA, vascular endothelial growth factor A; CDKN1A, cyclin-dependent kinase inhibitor 1A.
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Pathways Input number p-Value Differentially expressed target genes identified
in our previous RNA-Seq study?:18

Lysosome 101 0.00015

MAPK signaling pathway 182 0.00026 NR4A1, DDIT3
Endocytosis 182 0.00030

Leukocyte transendothelial migration 89 0.00119

Adherens junction 82 0.00166

Glycosaminoglycan biosynthesis 11 0.00257

Chagas disease (American trypanosomiasis) 82 0.00260

mTOR signaling pathway 108 0.00270 VEGFA
Synaptic vesicle cycle 47 0.00289

Adipocytokine signaling pathway 49 0.00299

Bacterial invasion of epithelial cells 59 0.00299

Tight junction 102 0.00304

Collecting duct acid secretion 24 0.00324

Pertussis 61 0.00327

Glycosphingolipid biosynthesis il 0.00345

SNARE interactions in vesicular transport 30 0.00355

Glutathione metabolism 44 D.00557

Homologous recombination 23 0.00774

Fc gamma R-mediated phagocytosis 68 0.01124

Linoleic acid metabolism 28 0.02387

Pyrimidine metabolism 87 0.02475

Alpha-linolenic acid metabolism 20 0.02550

Glycerophospholipid metabolism 75 0.03191

HIF-1 signaling pathway 78 0.03455 VEGFA, CDKN1A
PI3K-Akt signaling pathway 241 0.03942 VEGFA, CDKN1A
Apoptosis 22 0.04444

Arachidonic acid metabolism 55 0.04654

DNA replication 29 0.04704

KOBAS software was used to test the statistical enrichment of the candidate target genes in the KEGG pathways. 8NR4A1, nuclear receptor subfamily 4, group A,
member 1, DDIT3, DNA-damage-inducible transcript 3; VEGFA, vascular endothelial growth factor A; CDKN1A,cyclin-dependent kinase inhibitor 1A.
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SNP

DRGA0006706
ASGA0083580
ALGA0085585
ALGA0085588

ALGA0085594

Chr!

6
6
15
15

15

Location (bp)

115,184,412
120,435,160
56,344,774
56,452,924

56,538,806

MAF

0.14
0.06
0.40
0.40

0.33

P value

1.63E-05
1.30E-05
1.02E-05/1.82E-05
1.02E-05/1.82E-05

2.75E-05

Located gene

FHOD3

HERC2

HERC2

Flanking genes

DSC1/DSG1
MOCOS/TPGS2
MFHAS1/HERC2
MFHAS1/ENSSSCGO0
000047765
MFHAS1/ENSSSCGO
0000047765

Distance?

—108,315/+53,265
—417,040/+154,871
—49,683/+93,333
—157,833/+361,732

—243,715/+275,850

Method®

"SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, Il) represent the FarmCPU and MLM, respectively.
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(Mb)

1.56

70.02
91.47

38.70
24.42

41.24

11.24

21.56

13.17

End (Mb)

10.78

71.46
95.01

39.80
28.79

44.36
213
12.22
1.09

24.46

13.51

Length

(Mb)

9.22

1.44
25.00

1.10
4.37

3.12
213
0.99
1.09

2.90

0.34

nSNPsP

2763

514
1060

225
1331

711
165
243
167

672

92

Angus®

96.5%

81.8%
90.4%

70.6%
72.4%

65.3%
71.7%
83.6%
58.4%

86.3%

88.9%

Angus

0.057

0.014
0.067

0.120
0.069

0.146
0.23

0.181

0.058

0.107

0.145

d
Fst

Brahman

0.277

0.074
0.406

0.489
0.214

0.44
0.613
0.281
0.092

0.306

0.319

nGenes®

23

16
76

30
38

75
27
24

76

8

nQTLsf

50

33

14
280

562
78
23
28

315

25

nTraits?

33

31

34

46

20
23

57

12

Genes associated with traits"

POLLED locus, ADAMTS5 (milking speed), IFNART (fat thickness
at the 12th rib), CCT8 (conception rate, net merit)

Leptin (feed intake and energy balance), AHCYL2 (Longissimus
muscle area)

XKR4 (heifer pregnancy, prolactin level, scrotal circumference,
subcutaneous rump fat thickness), PLAG1 (average daily gain,
body weight, carcass weight, intramuscular fat, longissimus
muscle area, marbling score, scrotal circumference, stature),
CHCHD? (stature), SDR16C5 (fat color in carcass, insulin-like
growth factor 1 level, milk fat percentage, scrotal circumference,
beta-carotene concentration in fat), SDR16C6 (insulin-like growth
factor 1 level, scrotal circumference, stature), FAM110B (carcass
weight, insulin-like growth factor 1 level), SDCBP (carcass
weight), TOX (carcass weight, insulin-like growth factor 1 level),
CA8 (insulin-like growth factor 1 level, milk protein yield), RAB2A
(carcass weight), CHD7 (insulin-like growth factor 1 level)

KHDRBS?2 (calving ease, daughter pregnancy rate, foot angle,
milk fat percentage, milk fat yield, length of productive life, milk
protein percentage, somatic cell score, stillbirth, strength)

BTRC (milk c14 index, milk myristoleic acid content), SUFU (milk
¢14 index, milk myristoleic acid content, udder structure), CNNM2
(milk c14 index, milk myristoleic acid content, stearic acid
content), INA (myristoleic acid content), NT5C2 (milk ¢14 index)

Genes were identified on the NCBI Bos taurus Annotation Release 105 and Btau5.0.1 genome assembly. 2Chromosome. ®Number of markers (SNP) inside the region in homozygosity. °Probability of the region coming
from Angus according to chromosome painting results. 9Fst: Fixation index (Weir and Cockerham, 1984). ®Number of genes inside the region. fNumber of QTLs identified in Cattle QTL database. SNumber of traits

associated with the QTLs. "Genes in the region that area associated with a trait (traits of each gene between parenthesis).
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Traits

Moisture
IMF
Conductivity
pH

Marbling
Meat color

Moisture

—0.416"
0.038
—0.444*
—0.326™

0.595™

IMF

—0.041
0.078
0.203**

—0.137*

Conductivity

—0.448™
—-0.212"
—0.050

pH

0.433*
—0.260"

Marbling

—0.083"

Meat color

*p < 0.05; *p < 0.01. IMF, intramuscular fat.
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Gene name

TRIB3
PTHLH
VEGFA
M-SAA3.2

Forward primer sequence

AAAGAGATATGGGTCTCTATGGCTGA
TTCTCTTTGCAGGAGGCATTGA
AGACGTCTCACCAGGAAAGACT
GTCATTGATCCCTTGGAAAGAGGAG

Reverse primer sequence

AAGATGGATGAAATATGTAAGAGAGATGACA
TTCACCTTCTGAGTCATGATGTAATTTAG
GACGGAGGTGGGTTAACCACTCA
CTGTCCTTATACCAAGAATGACACAC

Amplicon (bp)

806
475
1050
361

Tm (°C)

57
57
59
59
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Traits Additive genetic variance (SE) Residual variance (SE) h2 (SE)

Moisture 1.17(0.25) 1.29 (0.19) 0.48 (0.08)
IMF 0.21(0.06) 0.47 (0.06) 0.31(0.08)
Conductivity 0.04 (0.02) 0.25 (0.02) 0.13(0.07)
pH 0.04 (0.01) 0.06 (0.01) 0.39 (0.08)
Marbling 0.12(0.03) 0.20 (0.02) 0.37 (0.08)
Meat color 0.11(0.02) 0.09 (0.01) 0.55 (0.08)

SE, standard error.
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B Negative control

15 B Negative control

® Inhibitor negative control B Inhibitor negative control

B miR-2904 mimic 10 B miR-106b mimic

B miR-2904 inhibitor B miR-106b inhibitor

Empty Vector Full-Length Vector Empty Vector Rilkucagthivedor

B Negative control

® Inhibitor negative control
B miR-21-3p mimic

B miR-21-3p inhibitor

Empty Vector Full-Length Vector
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Traits

Moisture, %

IMF, %
Conductivity, mS
pH

Marbling (1-5)
Meat color (1-5)

N

519
522
550
578
582
581

Mean

71.10
2.43
2.65
6.36
3.41
3.74

SD

2.10
0.87
0.53
0.37
0.61
0.55

CV/%

2.95
35.68
19.99

5.74
17.82
14.71

Min.

63.57
0.06
1.63
5.29
2.00
1.50

Max.

75.53
5.20
4.87
6.99
5.00
5.25

IMF, intramuscular fat; hy, heritability estimates.
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Empty Vector

Empty Vector

Empty Vector

Full-Length Vector

Full-Length Vector

Full-Length Vector

M Negative control
® Inhibitor negative control
® miR-29¢ mimic

B miR-29c¢ inhibitor

m Negative control
® Inhibitor negative control
# miR-106b mimic

B miR-106b inhibitor

m Negative control
® Inhibitor negative control
= miR-190a mimic

B miR-190a inhibitor
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m Negative control

= miR-29¢ mimic

Full-Length Vector Mutant version Vector
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Full-Length Vector Mutant version Vector
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Components Content
30~70 kg 70 kg~Live weight

Energy, MJ/kg 3,292 3,291
Moisture, % 11.74 11.61

Crude protein, % 16.5 15.0

Crude fat,% 1.83 1.68
Calcium,% 0.60 0.55

SID Lys, % 0.90 0.77

SID Met, % 0.27 0.18

SID Trp,% 0.12 0.10
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Traits

Acetone, L-lactic acid
L-Alanine, choline
L-Alanine, betaine
L-Alanine, creatine
Creatine, choline

Chr

19
21
28

Position (bp)

28,675,718-29,049,389
13,336,301-13,632,174
24,357,241-24,917,540
49,290,972-49,623,230
15,916,594-16,124,333

Gene name

GBE1
IER2, STX10, TRMT1, LYL1, NACC1, NFIX, CACNATA
RAP1GAP2, SPATA22, OR1G1, ASPA, TRPV1, TRPV3
GEMIN2, PNN
ANK3
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Trait Chr Position (bp) Gene name Gene location compared to SNP location

Betaine 5 118,720,845-118,920,845 - -
L-Alanine 11 54,665,154-54,865,154 CTNNA2 SNP is within gene
L-Lactic acid 22

41,009,447-41,209,447
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Trait SNP Chr Position (bp) Minor allele and MAF Nucleotide (major/minor allele) P Bonferroni correction
Betaine rs109862186 5 118,820,845 B (0.18) T/C 7.63E-07 0.03
L-Alanine rs81117935 11 54,765,154 A (0.45) T/C 9.10E-07 0.04

L-Lactic acid rs42009425 22 41,109,447

A(0.19) AG 9.94E-07 0.04
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Trait

Choline
Creatinine
Betaine
Pyruvic acid
L-Lactic acid
Citric acid
Creatine
D-Glucose
Acetone
L-Alanine
Succinic acid

2

Oa

6,598.90
1,0561.67
402.10
1,027.32
639,240
47718
160.55
17,497.10
29.39
768.05
78.47

2

O¢

11,5645.80
1,947.73
783.09
2,007.84
2,268,490
1,719.37
843.99
100,579.00
185.01
7,824.22
838.28

h2

0.36
0.35
0.34
0.34
0.22
0.22
0.16
0.15
0.14
0.09
0.09

SE

0.15
0.17
0.16
0.24
0.16
0.15
0.15
0.14
0.21
0.13
0.15

aMetabolites with zero or near zero heritability estimates were not listed.
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Trait

1-Methylhistidine
2-Hydroxybutyrate
Acetic acid
Betaine

Creatine

Citric acid
Choline

Ethanol
D-Glucose
Glycine

Glycerol

Fumaric acid
Formic acid
L-Tyrosine
L-Phenylalanine
L-Alanine
L-Proline
L-Isoleucine
L-Histidine
Lysine

L-Lactic acid
Pyruvic acid
Succinic acid
3-Hydroxybutyric acid
Creatinine
L-Glutamine
L-Leucine
L-Methionine
3-Hydroxyisovaleric acid
L-Valine
Acetone
Methanol
Dimethyl sulfone

435
460
462
448
451
448
456
404
452
451
452
300
454
475
454
446
465
465
450
460
450
321
448
457
451
441
475
193
155
454
260
447
449

Mean SD
56.26 22.71
41.23 17.02
264.60  256.05
111.67 52.97
127.59 44.39
120.27 65.38
346.37  173.98
61.38 84.91
837.40  692.11
378.65 162.32
511.10  354.71
23.85 8.48
30.34 2825
65.51 19.32
67.54 19.54
390.34  148.99
129.58 41.02
52.85 19.88
76.09 28.57
70.34 26.19
5,024.04 2,790.01
87.56 81.42
58.47 34.46
86.65 41.66
132.14 57.85
58.97 23.00
93.08 39.48
2072 4.49
32.38 13.02
14716 49.58
35.97 19.84
135.47 76.28
46.86 19.41

cv

0.40
0.41
0.97
0.47
0.35
0.54
0.50
1.38
0.83
0.43
0.69
0.36
0.93
0.29
0.29
0.38
0.32
0.38
0.38
0.37
0.56
0.93
0.59
0.48
0.44
0.39
0.42
0.22
0.40
0.34
0.55
0.56
0.41

Min.

156.34
12.26
33.40
29.62
41.98
156.61
61.35
13.58
68.42
90.38
15.68
10.75
9.46
22.88
27.53
104.46
42.09
16.11
23.35
16.24
886.17
14.23
14.86
18.29
30.77
14.35
25.63
12.08
11.70
49.88
12.47
31.35
16.31

Max.

136.31
94.48
2,056.21
298.33
262.67
338.45
960.08
560.94
3,731.80
896.70
1,632.64
66.11
370.87
119.90
125.61
852.47
257.82
120.63
150.45
164.49
15,976.05
395.75
280.58
272.70
308.61
119.97
302.17
33.77
79.06
313.97
125.08
383.19
128.60

Unit:uM.
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Total number
No. of bases
Max. size
N50 value

Contigs (bp)

259,627
1,236,201,637
12,383,302
30,672

Merged all
scaffolds (bp)

147,061
1,563,356,456
15,225,768
2,123,649

After gap closing (bp)
(Length > 2,000 bp)

13,623
1,484,730,970
15,225,769
1,959,535
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Parameters? Model”

BLUP SSGBLUP $SGBLUPmM
Hereford Braford Hereford Braford Hereford Braford

2 0003 (0.000) 0027 (0.002) 0.009 (0.004) 0,018 (0.003) 0013 (0.001) 0018 (0.002)
o3 0018 (0.002) 0,006 (0.001) 0013 (0.004) 0.013(0.002) 0009 (0.001) 0013 (0.001)
4 0060 (0.000) 0074 (0.001) 0.060 (0.002) 0.074(0.002) 0.060 (0.002) 0074 (0.001)
3 0.081(0.004) 0106 (0.004) 0.082(0.011) 0.105 (0.006) 0082 (0.004) 0105 (0.004)
n 0040 (0.003) 0250 (0.003) 0110 (0.044) 070 (0.015) 0.160 (0.005) owso{ooon
r 0260(0.013) 0310(0.012) 0260 (0.080) 0.300 (0.030) 0270 (0.008) 300 0.010)
fa 0670 (0.022) 0450 (0.018) 0410 0. ow)

402, additive genetic variance; o3, permanent environment variance; of, residual variance; o3, phenotypic variance; h?, additive heritabilty; r, repeatabilty; ra, genetic
correlation.

PBLUR, pedigree-based BLUP; ssGBLUR single-step genomic BLUP; ssGBLUPM, ssGBLUP with metafounders. Variance components under ssGBLUPM were scaled
following the material and methods descriotion.
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Parameter

Matrix? Mean Minimum Maximum Variance
Diagonal
A 1.001 1.000 1.250 0.000
Ay (T) 1.258 1.200 1.447 0.000
G 1.001 0.838 1.204 0.002
G () 1.289 1.185 1.407 0.001
Off-diagonal
A 0.002 0.000 0.750 0.000
Ao () 0.504 0.399 1.079 0.001
G 0.002 -0.228 0.678 0.002
G(I) 0.558 0.380 1.051 0.002

2Az2, numerator relationship matrix of genotyped animals; G, genomic matrix; T,
matrices using metafounder information.
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r

Metafounders Males Females Hereford Bradford Zebu Unknown

Hereford 1,991 1,032 0.61 0.46 0.34 0.49
Braford 3,932 2,431 0.53 0.57 0.50
Zebu 34 34 Symm 0.96 0.52

Unknown 1,228 1,084 0.51
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Descriptive statistics? Breed

Hereford Braford
N 2,369 8,304
Minimum 0.0004 0.0004
Q25 1.18 1.1
Mean 1.45 1.33
Median 1.46 1.38
Q75 1.74 1.60
Maximum 2.78 272
SD 0.47 0.43

aN, number of observations; Q25, quantile 25%; Q75, quantile 75%,; SD, standard
deviation.
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Model Nine-reference breeds Two-reference (ancestral) breeds

Angus Brahman Angus Brahman
Mean® sD Mean s Mean sD Mean sD
ADMIXTURE 54.3(68.3) 19 25.1(31.7) 631 714 6.70 28.9 670
ADMIXTURE-L1 61.5(68.2) 156 28.6(31.8) 121 774 870 22.9 8.70
ADMIXTURE-MCP 59.8(68.1) 129 27.9(31.9) o1 746 710 254 7.10
ADMIXTURE-SCAD 59.5(67.9) 131 28.1(32.1) 104 753 750 247 750

aJ the brackets are the relative GBC ratio of Angus and Brahman origin only, respectively, computed with nine reference breeds.
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00
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ADMIXTURE, non-regularized admixture model (x. = 0); ADMIXTURE-L1, admixture model with L1 norm penalty (» = 0.1); ADMIXTURE-MCP, admixture model with MCP penalty (. =
0.25); ADMIXTURE-SCAD, admixture model with SCAD penalty (» = 0.25).
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Breed Number of Number of Mean FregA

genotyped animals® SNPs (sD)®

Angus 20,359 (20,322) 49,463 0492 (0.247)
Brahman 349 (349) 777,962 0439 (0.343)

68 (43) 49,463 0.431(0.363)
Brangus 3,605 49,463 0477 (0281)
Hereford 2,423 (2,421) 49,463 0496 (0.271)
Holstein 20,350 (20,246) 49,463 0.489 (0.254)
Jersey 15,689 (15,607) 49,463 0.489 (0.288)
Limousine 5,043 (5,041) 49,463 0490 (0.228)
Shorthorn 1,282 (1,218) 49,463 0.491 (0.258)
Simmental 14,754 (14,727) 49,463 0.490 (0.226)
Wagyu 23,721 (21,844) 49,463 0.483 (0.302)

411 the brackets are the number of genotyped animals remained after excluing outlers.
bMean FreqA (SD) = mean (standerd deviation) of allele A frequencies of genotyped SNP
for each breed.
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1Contrasted populations

NWS vs. Finn
NWS vs. Primera
NWS vs. Texel
NWS vs. DP

NWS vs. LambSup
NWS vs. TS

Fstau

0.09 (0.123)
0.04 (0.058)
0.08 (0.092)
0.04 (0.055)
0.04 (0.059)
0.05 (0.072)

Selected (%)

5.19
0.29
2.20
0.01
0.21
0.83

Fsrselected

0.47 (0.107)
0.39 (0.034)
0.41 (0.048)
0.36 (0.014)
0.38 (0.028)
0.41 (0.052)

"Norwegian White Sheep (NWS) was contrasted with different New Zealand
sheep populations. Sheep populations from New Zealand are: Finn, Primera,
Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal
Sire” (TS). SNP with Fsr values greater than the average plus three standard

deviations were selected.
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Ntotal
Min SNPs
nSEG

Kbi

Kb

nSNP

density

phom

NWS

38,188
50
482
[0-85]
177,692
[0-647,569)
3,685
[1,000-82,746]
775
[100-17,105]
a9
[3.3-14)
0.997
[0.893-1]

Finn

2,585
35
517
[29-78)
217,651
[71,553-353,140]
4210
[1,001-67,656]
811
[101-13,401)
5.4
[87-146)
0.997
[0.963-1]

Primera

139,971
55
164
(0-89)
37,609
(0-547,796]
2,208
[1,000-94,879]
443
[100-18,753)
55
B.1-16.1]
0996
[0.874-1]

Texel

20071
46
912
(32-131)
313411
(82,556-647,105]
3,435
1,000-75,723)
694
[100-15,323)
50
3.3-13.8]
0.997
0.940-1)

oP

103,083
54
563
[2-132)
164,412
[10,949-773,087)
2922
1,000-131,632]
616
{100-27,778)
48
3.0-168]
0997
[0912-1]

LambSup

197,510
56
324
3-82
78717
5,295-348,486]
2,428
[1,000-58,583]
502
[100-12.472)
50
B.1-212)
0.997
[0.890-1]

TS

6,939
a1
421
[e-136]
144,698
[13,644-775,800]
3,441
[1,000-44,028)
719
[101-0,515)
49
[83-139]
0.997
(0.932-1)

Sheep populations from New Zealand are: Finn, Primera, Texe, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS). Ntotal: total
number of segments. Min SNPs: minimum number of single nucleotide polymorphisms (SNP) in a ROH, calculated as suggested by Lencz et al. (2007). nSEG: average
number of segments for the indlvidual deciared homozygous. Kbi: average size of total homozygous segments per indivicual. Kb, average of total number of kb contained
within homozygous segments. nSNP average number of SNPs in run. Density, inverse SNP density in Kb/SNP. Phom, proportion of sites homazygous. Minimum and
maximum values are shown inside brackets.
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Nws

"Dist 0.023 (0.016)
o 0.174(0.242)
2ap -
Polim 93.50%
HO 0333 (0.142)
HE 0335 (0.142)
DST 0.270 (0.011)
FE 0.007 (0.031)
FG 0007 (0.103)
FROH 0.001 (0.000)

Finn

0025 (0.018)
0.231(0.289)
0397
83.60%
0346 (0.164)
0.331(0.148)
0263 (0.023)
~0.046 (0.035)
~0042(0.107)
0,020 (0.007)

Primera

0.024(0.017)
0.156 (0.228)
0548
94.80%
0.352 (0.141)
0.343 (0.136)
0.271 (0.005)
-0.018 (0.016)
~0.018 (0.026)
0.000 (0.000)

Texel

0.024 (0.017)
0222(0.281)
0443
88.60%
0.330(0.157)
0,325 (0.151)
0.259 (0.018)
~0016(0.038)
—0.012(0.184)
0.004 (0.001)

oP

0.023 (0.016)
0.172/(0.239)
0526
94.20%
0.333(0.138)
0.339(0.14)
0.274(0.013)
0.017 (0.051)
0.016(0.076)
0.001(0.000)

LambSup

0.023(0.016)
0.167 (0.235)
0538
94.40%
0.347 (0.14)
0.342(0.137)
0.272(0.007)
-0.014(0.021)
-0.012(0.032)
0.000(0.000)

TS

0.023(0.016)
0177 (0242)
0512
93.50%
0.340(0.143)
0340 (0.139)
0274(0.018)
0001 (0.048)
0001 (0.107)
0006 (0.004)

Dist and LD were estimated between adfacent single nucleotide polymorphisms. GP was estimated n distances lower than 0.02 Mb, between NWS and New Zealand
sheep populations. Sheep populations from New Zealand are: Fin, Primera, Texel, *Other Dual Purpose” (DF), Lamb Supreme (LambSup), and "Other Terminal Sire”
(TS). Standard deviations in brackets.
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Country Breed

Norway NwS
New Zealand Finn
Primera
Texel
0P
SLambSup
T8
Al

Number of animals

792
50
8,554
220
1,831
6,092
165
17,704

Year of birth

1977 10 2016
1997 0 2005
2008 to 2016
1985 0 2016
1996 0 2016
1995 0 2016
2005 to 2016
1977 t0 2016

526,044
482,501
502,238
504,836
526,874
525,952
526,175
523,355

Number of SNPs removed

OMAF

34,189
79,316
26,145
57,631
30,492
29,300
34,048
25,081

“cR

16,141
15,350
14,006
14,551
17,401
13,626
16,893
13,880

THWE

793
0
34,688
149
2,400
8,289
51
14,901

TNWS, Norwegian White Sheep; DR, “Other Dual Purpose”; *LambSup, Lamb Supreme; *TS, *Other Terminal Sire", MAF; minor allele frequency lower than 0.01; °CR,
call rate lower than 95%; 7HWE, Hardy Weinberg equilibrium (p-value < 10~'5).
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