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Role of Macrophage
Colony-Stimulating Factor Receptor
on the Proliferation and Survival of
Microglia Following Systemic Nerve
and Cuprizone-Induced Injuries

Vincent Pons, Nataly Laflamme, Paul Préfontaine and Serge Rivest*

Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval
University, Québec City, QC, Canada

Microglia are the innate immune cells of the CNS and their proliferation, activation,
and survival have previously been shown to be highly dependent on macrophage
colony-stimulating factor receptor (CSF1R). Here we investigated the impact of the
receptor in such processes using two different models of nerve injuries, namely
hypoglossal axotomy and cuprizone-induced demyelination. Both models are associated
with a robust microgliosis. The role of CSF1R was investigated using the gene
deletion Cre/Lox system, which allows the conditional knock-out following tamoxifen
administration. We found that after 5 weeks of cuprizone diet that CSF1R suppression
caused a significant impairment of microglia function. A reduced microgliosis was
detected in the corpus collosum of CSF1R knock-out mice compared to controls. In
contrast to cuprizone model, the overall number of Ibal cells was unchanged at all the
times evaluated following hypoglossal axotomy in WT and cKO conditions. After nerve
lesion, a tremendous proliferation was noticed in the ipsilateral hypoglossal nucleus to
a similar level in both knock-out and wild-type groups. We also observed infiltration
of bone-marrow derived cells specifically in CSF1R-deficient mice, these cells tend to
compensate the CSF1R signaling pathway suppression in resident microglia. Taking
together our results suggest a different role of CSF1R in microglia depending on the
model. In the pathologic context of cuprizone-induced demyelination CSF1R signaling
pathway is essential to trigger proliferation and survival of microglia, while this is not the
case in a model of systemic nerve injury. M-CSF/CSF1R is consequently not the unique
system involved in microgliosis following nerve damages.

Keywords: microglia, proliferation, brain injuries, demyelination, monocytes, CSF1R

INTRODUCTION

Macrophage colony-stimulating factor receptor (CSF1R) is a receptor of the tyrosine kinase family.
It is broadly expressed in the organism by monocytes, resident macrophages, osteoclasts, Paneth
cells, dendritic cells, and in the brain microglia. Two ligands bind CSF1R, macrophage colony-
stimulating factor (mCSF) and Interleukine-34 (IL-34), which have complementary roles on the
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proliferation of innate immune cells, especially on monocyte
and macrophage populations (1). In the brain, it acts on
the phagocytosis, survival, and proliferation of microglia (2).
Microglia are the resident immune cells of the brain. These
mononuclear phagocytes arise from hematopoietic progenitors
in the yolk sac during embryogenesis and are generated at the
postnatal stage. These immune cells are implicated in brain
homeostasis, and can detect any inflammatory and damage
sites (3).

Microglia and CSFIR signaling pathway are involved in
different neuroprotective roles, such as clearing myelin debris
and toxic proteins from the cerebral environment. In this regard,
modulation of the receptor is thought to be a novel therapeutic
avenue for diseases, such as Alzheimer’s disease (AD), multiple
sclerosis (MS), and brain tumors (2, 4-7). To better understand
how CSFIR drives proliferation of microglial cells, we have
deleted this receptor specifically in CX3CR1-postive cells in
different nerve damage and pathologic models. Hypoglossal
axotomy model provides a sterile proliferative system to better
understand the cellular and molecular events associated with
microglia proliferation, without interfering with the environment
found from pathological models (8). After the systemic nerve
section, a tremendous microglial proliferation takes place in
the ipsilateral hypoglossal nucleus. The cuprizone model allows
to study cellular and molecular mechanisms involved in the
demyelination/remyelination processes, while excluding the
autoimmune component. Here also there is a robust microgliosis
in brain regions where myelin and oligodendrocytes are affected
by the copper-chelating toxin (9).

Here we have investigated the role of CSFIR on the
proliferation of microglia using the gene deletion Cre/Lox
system, which allows the knock-out following tamoxifen
administration. We used two different models causing microglial
cell proliferation to determine whether CSF1R is crucial for both
sterile and toxin cues. Our results show that CSFIR is essential
for microglia proliferation in cuprizone-fed mice indicating that
this signaling pathway in such a mouse model of progressing
MS is vital for microglial survival and proliferation. Surprisingly
deletion of this receptor has no impact on such cellular functions
following hypoglossal nerve injury. Moreover, a compensatory
mechanism seems to take place for the loss of CSFIR with
overexpression of TREM2 in microglia.

MATERIALS AND METHODS

Animals Surgery

Animals were injected with tamoxifen following several
time-course (Figure2). Males, 2 to 4-month-old mice were
anesthetized using isofluorane (Baxter Corporation, Ontario,
Canada) 3-4% and oxygen 0.8-1.5 1/min, then they were shaved.
To mitigate the pain, we used Maxilene®4, lidocaine cream 4%
(Ferndale Laboratories, Inc., MI 48220 USA), applied on the
neck 5 min prior the surgery. After the pre-surgery preparation,
isofluorane is set to 1.5-2% and oxygen flux was adjusted to
1.5-2 /min. Animals were placed in the supine position, and the
right hypoglossal nerve was transected with scissors. Mice were
kept alive 1 week after surgery.

Cuprizone Diet

0.2% wt/wt cuprizone (bis-cyclohexylidene hydrazide; Sigma-
Aldrich) was mixed with regular ground irradiated chow and
fed to experimental animals for 5 weeks. The chow was changed
every 2 days and food intake was monitored throughout the
protocols. Control animals were fed with regular irradiated
ground chow and manipulated as often as cuprizone-fed
mice. After terminating the 5 weeks of cuprizone diet mice
were euthanized.

Conditional CSF1R KO Mice

B6.Cg-Csflr tm1jwp/] mice (JaxMice; stock number 02212) were
crossed with the B6.129-Cx3crltm2.1 (CreER)Jung/Orl mice
(EMMA mouse respiratory; EM:06350). The resulting mouse has
a tamoxifen-inducible CRE activity specifically in microglial cells,
leading to a non-functional CRF1R protein.

Tamoxifen Preparation and Administration

Tamoxifen was dissolved in corn oil and Ethanol 100% for
1h at 37 degrees, vortexed every 15min. We used ~75mg
tamoxifen/Kg body weight and 100 pl tamoxifen/corn oil
solution was administered via intraperitoneal injection for 4
consecutive days. Tamoxifen was injected 4 days before cuprizone
diet, and 7, 13, or 21 days before nerve transection. For the
hypoglossal nerve lesion, protocols are named, respectively, Short
Protocol (SP), Principal protocol (P1), and Long Protocol (LP).

Chimeric Mice

Experimental animals received a total of 80 mg/kg of Busulfan
administered i.p. every 12h for 4 days, followed by 2 days of
single i.p. injection of 100 mg/kg cyclophosphamide. After a
24-h rest, 3 x 107 bone marrow cells isolated from the tibia
and femur of donor mice were injected into the tail vein of
target animals. C57BL/6-Tg (CAG-EGFP) 10 sb/J (JaxMice stock
number 003291) mice were used as donors. For details on this
procedure, please refer to Laflamme et al. (10).

Sacrifices

All mice were deeply anesthetized with ketamine/xylazine and
sacrificed via intracardiac perfusion with 0.9% saline followed by
4% PFA pH 7.4 or pH 9. The brains were then retrieved, post-
fixed 10-24 h in 4% PFA pH 7.4 and transferred in 4% PFA pH
7.4 + 20% sucrose for a minimum of 15 h. Brains were sliced in
coronal sections of 20-um thickness with a freezing microtome
(Leica Microsystems), serially collected in anti-freeze solution
and kept at —20°C until usage.

Immunohistochemical Staining

Brain sections were washed (4 x 5min) in KPBS. An
antigen retrieval step was performed to stain for CSFIR.
More specifically, sections were boiled 10min in sodium
citrate. 10mM pH 6 just before the blocking step and then
blocked in KPBS containing 1% BSA, and 1% Triton X-100.
The tissues were then incubated overnight at 4°C with the
primary antibody anti-Iba-1 (rabbit, 1:1,000; WAKO Chemical
019-19741), or with the primary antibody anti-CSF1R (sheep,
1:500; R&D System AF3818), or with the primary antibody
Tmem119 (rabbit, 1:1,000; ABCAM ab209064). After washing
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the sections in KPBS (4 x 5min), tissues were incubated in
the appropriate secondary antibody (biotinylated goat anti-
rabbit IgG; 1:1,500, Vector Laboratories. biotinylated rabbit
anti-sheep IgG; 1:1,500, Vector Laboratories) for 2h at room
temperature. Following further washes in KPBS and 1 h-
long incubation in avidin-biotin peroxidase complex (ABC;
Vector Laboratories) the sections were then incubated in 3,3-
diaminobenzidine tetrahydrochloride (DAB; Sigma) to reveal
the staining. The sections were mounted onto Micro Slides
Superfrost® plus glass slides, dehydrated and then coverslipped
with DPX mounting media.

Immunofluorescent Staining

Brain sections were washed (4 x 5min) in KPBS then blocked
in KPBS containing 1% BSA, and 1% Triton X-100. The tissues
were then incubated overnight at 4°C with the primary antibody
anti-Iba-1 (rabbit, 1:1,000; WAKO Chemical 019-19741). After
washing the section in KPBS (4 x 5 min), the tissue was incubated
in the appropriate secondary antibody (IgG anti-rabbit Alexa
546; Invitrogen A11010) for 2 h at room temperature. Following
further washes in KPBS and incubation with DAPI to identify the
nuclei, the sections were mounted onto Micro Slides Superfrost®
Plus glass slides and coverslipped with Fluoromount-G (Electron
Microscopy Sciences).

Western Blot

Brain protein lysates were extracted as previously described (11).
Proteins were then loaded in 8-16% agarose precast gels (Biorad)
and electroblotted onto 0.45 pum Immobilon PVDF membranes.
Membranes were immunoblotted with primary antibodies anti-
Iba-1 (rabbit, 1:1,000; WAKO Chemical 019-19741), followed
by the appropriate horseradish peroxidase (HRP)-conjugated
secondary antibodies and revealed by Clarity western (ECL)
substrate (biorad). Quantification was done by determining
integrative density of the bands using Thermo Scientific Pierce
my Image Analysis Software v2.0. Optical values were normalized
over actin.

Quantitative Real-Time PCR
Tissues were homogenized in Qiazol buffer (Qiagen,
Germantown, MD, USA) and total RNA was extracted using the
miRNeasy micro kit on-column DNase (Qiagen, Hilden, DE)
treatment following the manufacturer’s instructions. Quantity
of total RNA was measured using a NanoDrop ND-1000
Spectrophotometer (NanoDrop Technologies, Wilmington,
DE, USA) and total RNA quality was assayed on an Agilent
BioAnalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA).
First-strand cDNA synthesis was accomplished using 4 g of
isolated RNA in a reaction containing 200 U of Superscript IV
Rnase H-RT (Invitrogen Life Technologies, Burlington, ON, CA),
300 ng of oligo-dT}g, 50 ng of random hexamers, 50 mM Tris-
HCI pH 8.3, 75 mM KCl, 3 mM MgCl,, 500 uM deoxynucleotides
triphosphate, 5 mM dithiothreitol, and 40 U of Protector RNase
inhibitor (Roche Diagnostics, Indianapolis, IN, USA) in a final
volume of 50 pl. Reaction was incubated at 25°C for 10 min,
then at 50°C for 20 min, inactivated at 80°C for 10 min. PCR
purification kit (Qiagen, Hilden, DE) was used to purify cDNA.
Oligoprimer pairs were performed by IDT (Integrated
DNA Technology, Coralville, IA, USA) (Table 1). A quantity
corresponding to 20 ng of total RNA was used to perform
fluorescent-based Realtime PCR quantification using the
LightCycler 480 (Roche Diagnostics, Mannheim, DE).
Reagent LightCycler 480 SYBRGreen I Master (Roche
Diagnostics, Indianapolis, IN, USA) was used as described
by the manufacturer with 2% DMSO. The conditions for
PCR reactions were: 45 cycles, denaturation at 95°C for 10s,
annealing at 60°C for 10s, elongation at 72°C for 14s and
then 74°C for 5s (reading). A melting curve was performed to
assess non-specific signal. Relative quantity was calculated using
second derivative method and by applying the delta Ct (12).
Normalization was performed using the reference gene shown
to be genes having stable expression levels from embryonic life
through adulthood in various tissues (13) hypoxanthine guanine
phosphoribosyl transferase 1 (HPRT1) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Quantitative Real-Time
PCR measurements were performed by the CHU de Québec
Research Center (CHUL) Gene Expression Platform, Quebec,
Canada and were compliant with MIQE guidelines.

TABLE 1 | Sequence primers and gene description.

Gene symbol Description GenBank Size (pb) Primer sequence 5’ — 3’
S/AS
Tmem119 Mus musculus transmembrane protein 19 (Tmem19) NM_133683 121 ACTGCTTCCTGGATGTGTTTGTCTC/
CCCAGGTTGTTATTAGCCGAGGT
TREM2 Mus musculus triggering receptor expressed on myeloid cells NM_001272078 160 TGGTGTCGGCAGCTGGGTGAG/
2 (Trem2), 2 transcripts CGGCTTGGAGGTTCTTCAGAGT
Hprt1 Mus musculus hypoxanthine guanine phosphoribosyl NM_013556 106 CAGGACTGAAAGACTTGCTCGAGAT/
transferase 1 CAGCAGGTCAGCAAAGAACTTATAGC
GAPDH Mus musculus glyceraldehyde-3-phosphate dehydrogenase NM_008084 194 ggctgcccagaacatcatcect/
atgcctgcttcaccaccttcttg
ADNg Mus musculus chromosome 3 genomic contig, strain NT_039239 209 CACCCCTTAAGAGACCCATGTT/
C57BL/6J (HSD3B1 intron) CCCTGCAGAGACCTTAGAAAAC
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Image Acquisition and Analyses

Image acquisition of Fluorescent staining images was performed
using a Zeiss LSM800 confocal microscope supported by the
Zen software (2.3 system) using the 10x, 20x, and 40x lenses.
Confocal images were then processed using Fiji (ImageJ Version
2.0.0-rc-43/1.51n). For analyses and brightfield image acquisition
of staining, Iba-1 and CSFIR, 8-bit grayscale TIFF images of
the regions of interest were taken in a single sitting for whole
protocols with a Qimaging camera (Qcapture program, version
2.9.10), attached to Nikon microscope (C-80) with the same
gain/exposure settings for every image. To evaluate the level
of Iba-1" immune response in the regions of interest (corpus
callosum and hypoglossal nucleus), the images were imported
into Image] (1.37) and the percentage of area occupied by the
staining was measured using the threshold parameter. Cells count
was assed manually using Image] (1.37). Analysis was performed
in double blinded to avoid bias of analysis, each microglial
cell body in hypoglossal nucleus were counted. Fluorescent
staining of images was performed using a Zeiss LSM800
confocal microscope supported by the Zen software (2.3 system).
Confocal images were then processed using Fiji (ImageJ Version
2.0.0-rc-43/1.51n).

Statistical Analyses and Figure Preparation
Data are presented as mean =+ standard error of the mean (SEM).
Statistical analyses were carried with the Prism software (version
8.0, GraphPad Software Inc.). Values were considered statistically
significant if p < 0.05. All panels were assembled using Adobe
Photoshop CC 2018 (version 19.1.0) and Adobe Illustrator CC
2018 (version 23.0.1).

RESULTS

Mouse Model of CSF1R Deletion
Specifically in Microglia

To delete CSFIR in microglia, we crossed CSFIRY/! mice
with the CX3CRI1-CrefRT? mice and exposed them to i.p.
tamoxifen (TAM) injections as previously reported by us (6).
After injection, Cre complex goes to the nucleus and interacts
with the Lox site, which leads to excision of CSFIR gene
Exon 5 (Figure 1A). In order to determine when the knock-
out affect a maximum of cells, we have performed three
different time-courses (Supplementary Figure 1A). The surgery
made 13 days after the last tamoxifen injection provided
the best results. Quantification of CSFIR in the hypoglossal
nucleus shows a strong effect of the knock-out since the
CSF1R expression was dramatically decreased (Figures 1B,C).
To further test the relevance of our model, we used CSFIR-
loxP-CX3CR1-cre/ERT2,Rosa™!* mice. Mice express robust
tdTomato fluorescence following Cre-mediated recombination
and a large amount of CX3CR1-positive cells in the brain are
affected by the knock-out (Figure 1D). Quantification shows that
82.9% of Iba-17 cells are Rosa™!“4* (Figure 1E). These data
indicate that our model is reliable, and strongly efficient to delete
CSFR1 selectively in microglia.

Microglial Proliferation in Hypoglossal

Nucleus Is Maximal 7 Days After the Lesion
Hypoglossal nerve lesion causes a robust proliferation of
microglia in the ipsilateral side of the nucleus, especially at time
7 days post injury (Figures 2A,B). Although few new cells are
detected 24 h after the lesion, these are quite numerous at 4 and
7 days in the ipsilateral side of hypoglossal nerve-injured mice.
After this time point, the number of new Ibal positive cells slowly
decreased to a basal level at day 31 after lesion (Figure 2B).
Considering that the peak proliferating level is 7 days post-
surgery, we selected this time point to determine the potential
role of CSFIR in this mechanism.

Knocking-Out CSF1R Selectively in

Microglia Does Not Affect Cell Proliferation
As previously described, a marked proliferation of microglia
takes place in the ipsilateral hypoglossal nucleus 7 days after
the systemic nerve injury. Following our protocol, CSFIR-
loxP-CX3CR1-cre/ERT2 mice had surgery 13 days after last
tamoxifen injection to allow the complete knock-out in microglia
(Figure 3G). Taking into consideration that CSF1R signaling
pathway is known to be essential for microglia proliferation
in pathological conditions (14, 15), our data are unexpected.
Indeed, CSFRI deletion did not affect microgliosis and a
strong proliferation of Iba-17 cells was observed in hypoglossal
nucleus of CSFIR knock-out group (Figure 3A). There were
actually no significant differences between WT and cKO
groups (Figures 3B,F) and at all the time courses tested
(Supplementary Figure 1). To further validate this surprising
result, we determined the Iba-1 protein levels by Western
blot and found a similar amount of Iba-1 levels in the brain
of both groups of mice (Figure 3C). These results are quite
interesting because they indicate that knocking-out CSFIR in
microglial cells in a non-pathologic context does not impair
their proliferation (Figure 3F). These findings put in light on the
subjective importance of CSF1R signaling pathway depending on
a pathologic or non-pathologic situation. We have also noticed
that the morphology of microglia in the CSFIR ¢cKO mice seemed
different from those of control mice (Figure 3E). They have
more ramifications and their cell bodies are thicker in CSF1R-
deficient mice. This phenotype match with the shape observed
in TREM2 overexpression cells (16) (Figure 3D) and this results
could be the clue of a compensating mechanism overcoming the
CSFIR deletion.

CSF1R Depletion Induces Infiltration of
Peripheral Cells

These results lead us to wonder if cells from the periphery could
compensate and replenish Ibal-positive cells in the ipsilateral
hypoglossal nucleus in the CSFR1-deficient mice after TAM
injection. We then generated chimeric mice using chemotherapy-
based regimen (Figure 4A). This method was used because it
does not impact the integrity of the blood-brain barrier, which is
limiting the infiltration of bone marrow-derived cells (17). Once
the chimerism was confirmed by flow-cytometry, we injected
TAM and then 13 days later, mice underwent nerve injury as

Frontiers in Immunology | www.frontiersin.org

January 2020 | Volume 11 | Article 47


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Pons et al.

Microglial Proliferation Following Brain Injuries

A
,""’ X X ‘~~~\‘~
'/. I—’—{(SF]RG”‘e Exon 4 I—Lgx—( Exon5 I—Lgx—[ Exon6 |—— 5
#"CX3CR1 8
,,’cell Nucleus CRE N
B CSF1R (o] Hypoglossal Nucleus
skakokk
5 '—'
53
9
4- i:’
) 3
3= B
og 34
+
x s
T8 2
7]
o >
1+
0-
WT+TAM cKO
D Cre recombinase reactivity E
1.0
0y
2 0.8
s
: >
= 2 0.6
2
£
‘2 0.4+
BN
0.2+
0.0 T
Rosa-TAM Rosa+TAM
FIGURE 1 | CSF1R is deleted specifically in microglia. (A) We Show the genetic construction of CSF1R Ko mice. (B) Quantification presented as percentage of area
occupied by staining, measured in the hypoglossal nucleus. Values are expressed as means + SEM. Statistical analyses were performed using t-test 'p < 0.001
significantly different from cKO group. (C) Representative images of CSF1R staining in hypoglossal nucleus 7 days after lesion. (D) Confocal images showing
co-localization of RedTomato positive cells (red) with Iba1 immunoreactive cells (green). (E) Quantification of RedTomato staining. Mice were injected with tamoxifen.
White arrows point-out some examples of co-localization. n = 7 mice. Scale bar 200 pwm.

described in the protocol above. We stained chimeric brains with
antibody against Iba-1 to unravel infiltrating GFP-positive cells
vs. resident microglia. Unlike wild type animals, numerous GFP
cells were found in the brain CSF1R knock-out mice (Figure 4B).
Bone marrow-derived cells infiltrated different regions, such as
the area postrema and the hypoglossal nucleus. However, the
number of Ibal™ cells remained similar between wild type and
knock-out mice despite the fact that 38.4% of GFP™ cells were
also Iba-1" in contrast to cuprizone model (Figure 4C). These
data are quite interesting because bone marrow-derived cells are

naturally attracted when CSF1R is deleted in resident microglia,
but the role of these infiltrating cells are not yet well-understood
(Figure 4B).

To better understand the role of infiltrating cells we
have quantified the number of Tmeml119 positive cells in
hypoglossal nucleus area and Tmem119 gene expression, this
marker is specific to microglia (18) (Figures 4D,E). There was
no significative difference in Tmem119 cell count and gene
expression between groups suggesting that most proliferating
microglia (61.6%) derive from resident cells. Moreover, to
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FIGURE 2 | Microglial proliferation in hypoglossal nucleus is maximal 7 days after the lesion. (A) Scheme of hypoglossal nerve transection surgery. (B) A progressive
increase of Iba1 staining is observed from 24 h to 7 days post axotomy, which declined at 31 days. n = 3 mice. Scale bar: 100 pm.

complete the study we have verified whether bone marrow-
derived cells were positive for Tmem119 and we did not
find such positive GFP + Tmeml19 cells confirming our
findings (Supplementary Figure 1C). We have also determined
the expression levels of different chemokines that could be
involved in such infiltration process following TAM injection, but
we did not see significant changes between WT and cKO brains
(data not shown).

CSF1R-Depleted Microglia Affect Their
Proliferation in the Cuprizone Diet Model of

Acute Demyelination

Cuprizone-induced demyelination is an experimental mouse
model to study different pathological events, especially in the
progressive forms of MS. Myelin debris induce microglial
activation and microgliosis via CSF1R, which plays a critical role
in the clearance of myelin debris for a proper remyelination (6).
Following a cuprizone diet for 5 weeks, we have deleted CSFIR
selectively in microglia using CSF1RY/ CX3CR1-CrefR™? mice.
When exposed to tamoxifen, these mice exhibited a significant
reduced microgliosis in corpus callosum (Figures 5A,E). The
quantification of Ibal™ cells shows a significant difference
between WT and CSFIRTf CX3CR1-Cre®X"2 groups of mice
(Figure 5B). It is important to note that the number of Iba-
1" cells is no longer different between both groups after the
remyelination process several weeks when cuprizone is removed
from the diet indicating that CSFIR does not affect survival but
proliferation of microglia (Figures 5C,D). These data underline
a critical role of CSF1R for microgliosis in this mouse model of
progressive MS.

DISCUSSION

Our results show that inhibition of the CSFIR pathway
in microglia in a non-pathologic context does not impair

microglial proliferation, which indicates that mCSF receptor
is not necessarily implicated in proliferation in this model.
CSFIR is known to play a major role in the proliferation and
survival of several cell types in various models of diseases
(19, 20). Curprizone model mimics the myelin loss observed
in MS, especially the primary and secondary progressing form
where proliferating microglia play a key role to remove myelin
debris to allow a proper remyelination process when mice
are no longer exposed to the toxin. In a previous study,
CSFIR cKO animals exhibited a heavy myelin debris burden
in the corpus callosum along with a reduced number of
microglia when compared to their controls. The immune
response associated with the remyelination process was also
impaired (6).

On the other hand, the hypoglossal nerve lesion is a model
to study the marked microglial proliferation in a non-brain
pathological context after sectioning the nerve at the peripheral
level. Our study aimed to study the role CSFIR pathway in such a
phenomenon by deleting the gene using the conditional Cre/Lox
system, which was highly efficient and effective as revealed with
the CSF1R-loxP-CX3CR1-cre/ERT2, Rosa'™!* mice. However,
our approaches failed to validate the potential role of the mCSF-
CSFR1 pathway in microglial proliferation or survival following
several time courses post hypoglossal nerve lesion. It suggests that
CSFIR is not involved or is not the only receptor involved in
these processes. This may not be explained by the low expression
level of the Cre/Lox recombinase since most of Ibal-positive cells
in hypoglossal nucleus were also red in the Rosa mice. These
data suggest another mechanism underlying the survival and
proliferation of resident microglia following a non-pathological
brain condition.

Other studies have demonstrated a critical role of CSFIR in
microglia survival by using a specific tyrosine kinase inhibitor in
healthy mice (21). Using a molecule to shut down a signaling
pathway is quite different from using a cell specific inducible
gene deletion. The molecule may affect various populations of
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cells and not specifically microglia, which may explain these
different outcomes. Here the Cre/Lox system is restricted to
CX3CR1 cells that does not affect their proliferation after
hypoglossal nerve lesion but seems to change their phenotypes.
Indeed, the structure of CSF1R knock-out microglia are different

with their cell bodies that are sharper and darker, and they
exhibit more ramifications. Triggering receptor expressed on
myeloid cells 2 (TREM2) pathway could be involved in these
structural changes, which have been reported in presence of
TREM2 overexpression (22). This receptor is also known to
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take part in microglia activation and survival (16) and there = and Akt. DAP12 ITAM domain is phosphorylated following
is a link between CSF1R and TREM2 with DAP12. DAP12  CSFIR activation triggering 3 catenin, a molecule that acts on
is a mediator of CSFIR proliferation pathway through MAPK  cellular cycle (1). TREM2/DAP12- mediated signal also promotes
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proliferation of microglia (22). In this regard, we have observed Interestingly, CSF1R suppression leads to infiltration of
a significant increased expression of TREM2 in the brain of  circulating CX3CR1-positive cells after the surgery, although
CSF1R-deficient mice (Figure 3D). The ablation of CSF1R could  most of the proliferating microglia were resident Ibal cells
lead to a compensation by the overexpression of TREM2 and  in hypoglossal nucleus. This was confirmed by the count
DAP12 phosphorylation in microglia explaining their phenotypic ~ and the expression levels of transmembrane protein 119
changes without affecting their proliferation. (Tmem 119) mRNA expression, a specific marker of microglia
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(18) that remained the same between WT and cKO groups
(Figures 4D,E). The presence of bone marrow-derived cells is
not yet well-understood, as well as the method of recruitment.
The chemotherapy-based regiment used to make chimeric mice
does not affect the blood-brain barrier (17) and there is no such
recruitment in wild-type mice after hypoglossal nerve lesion at
any of the time evaluated.

Our study aimed to understand the role of CSFIR in
microglial proliferation and survival in a non-pathologic context.
We have used two different models, one mimicking the
demyelination in progressive MS and in another one of pure and
sterile proliferative microglia not associated with pathological
conditions in the brain parenchyma. On one hand CSFIR-
deleted mice feed with cuprizone exhibited an important drop
of microglial cells in corpus callosum area, indicating the vital
role of CSFIR signaling pathway for microglia proliferation in
this context. On the other hand, CSFIR knock-out mice exhibited
a marked microgliosis with no sign of impairment in response
to a systemic nerve section. These data are quite novel since
most studies that provided solid evidence for the essential role
in the mCSF-CSFIR pathway in microgliosis were actually during
various pathologies of the CNS. The mechanisms mediating these
effects after hypoglossal nerve lesion have yet to be unraveled and
whether TREM2 overexpression compensates for CSFIR deletion
in microglia will be investigated in future studies.
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Siponimod (BAF312) Activates Nrf2
While Hampering NFkB in Human
Astrocytes, and Protects From
Astrocyte-Induced
Neurodegeneration

Emanuela Colombo, Claudia Bassani, Anthea De Angelis, Francesca Ruffini,
Linda Ottoboni, Giancarlo Comi, Gianvito Martino and Cinthia Farina*

Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy

Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central
nervous system (CNS) with heterogeneous pathophysiology. In its progressive
course oligodendrocyte and neuroaxonal damage is sustained by compartmentalized
inflammation due to glial dysregulation. Siponimod (BAF312), a modulator of two
sphingosine-1-phosphate (S1P) receptors (S1P1 and S1P5) is the first oral treatment
specifically approved for active secondary progressive MS. To address potential direct
effects of BAF312 on glial function and glia-neuron interaction, we set up a series of
in vitro functional assays with astrocytes generated from human fibroblasts. These cells
displayed the typical morphology and markers of astroglia, and were susceptible to
the action of inflammatory mediators and BAF312, because expressing receptors for
IL1, IL17, and S1P (namely S1P1 and S1P3). Targeting of S1P signaling by BAF312
inhibited NFkB translocation evoked by inflammatory cytokines, indicating a direct
anti-inflammatory activity of the drug on the human astrocyte. Further, while glia cells
exposed to IL1 or IL17 downregulated protein expression of glutamate transporters,
BAF312-treated astrocytes maintained high levels of GLAST and GLT1 regardless of the
presence of inflammatory mediators. Interestingly, despite potential glial susceptibility
to S1P signaling via S1P3, which is not targeted by BAF312, NFkB translocation and
downregulation of glutamate transporters in response to S1P were inhibited at similar
levels by BAF312 and FTY720, another S1P signaling modulator targeting also S1P3.
Accordingly, specific inhibition of ST1P1 via NIBR-0213 blocked S1P-evoked NFkB
translocation, demonstrating that modulation of S1P1 is sufficient to dampen signaling
via other S1P receptors. Considering that NFkB-dependent responses are regulated by
Nrf2, we measured activation of this critical transcription factor for anti-oxidant reactions,
and observed that BAF312 rapidly induced nuclear translocation of Nrf2, but this effect
was attenuated in the presence of an inflammatory milieu. Finally, in vitro experiments
with spinal neurons exposed to astrocyte-conditioned media showed that modulation of
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S1P or cytokine signaling in astrocytes via BAF312 prevented neurons from astrocyte-
induced degeneration. Overall, these experiments on human astrocytes suggest that
during neuroinflammation targeting of S1P1 via BAF312 may modulate key astrocyte
functions and thereby attain neuroprotection indirectly.

Keywords: astrocytes, BAF312, fingolimod, neurodegeneration, neuroinflammation, NFkB, Nrf2, siponimod

INTRODUCTION

Multiple sclerosis (MS) is a complex, highly debilitating
inflammatory disease of the central nervous system (CNS) and
represents the most common cause of neurological disability in
young adults (1). Most of the available drugs display efficacy in
the relapsing-remitting (RR-MS) form of the disease (2), where
frequent waves of infiltrating immune cells into the CNS lead to
demyelination, but not in progressive MS, where oligodendrocyte
and neuroaxonal damage is sustained by compartmentalized
inflammation due to glial dysregulation (3). After several years
of disease most of the RR-MS patients enter the progressive
stage (called secondary progressive MS, SP-MS), characterized
by steady accumulation of disability in absence of acute clinical
events (4). Sphingosine 1-phosphate (S1P)-S1P receptor axis
is a known pharmacological target in MS, due to its key role
in the regulation of immune cell migration from peripheral
lymphoid organs to CNS (5). S1P signals through five G protein-
coupled receptors (S1P1-5), which are widely expressed and
control several cellular processes, such as growth, survival and
differentiation (5). Neurons and glia cells in the CNS may bear
S1P receptors (6, 7), opening to the possibility of interfering with
events occurring in the nervous tissue via targeting S1P signaling
pathway. Fingolimod (FTY720), the first oral therapy approved
for RR-MS, is a prodrug that, after activation by phosphorylation,
binds to all SIP receptors with the exception of S1P2 (8), and
thereby induces lymphopenia (9), reduces the inflammatory
activation of circulating and CNS-resident myeloid cells (10-
13), and blocks astrocyte activation during neuroinflammation
(7, 14, 15). Despite the lack of efficacy for fingolimod in
progressive MS (16), the potential neuroprotective effects due
to the blockade of S1P-S1P receptor axis in CNS prompted the
development of novel SIP receptor modulators which work as
active drugs. The recent phase-3 EXPAND trial demonstrated
that oral administration of siponimod (BAF312), which targets
S1P1 and S1P5 (17), attenuates the risk of disability progression
in SP-MS, with a major effect in those patients with inflammatory
disease (18). For this reason the European Medicines Agency
recommended BAF312 as first oral treatment for active SP-
MS in November 2019'. BAF312 treatment significantly hinders
lesion enlargement and brain atrophy after 12 months (18),
demonstrating relevant protective properties in CNS tissue via
mechanisms which remain to be clarified. In vitro models for
human astrocytes can be generated from readily accessible cells,
such as fibroblasts, and provide the unprecedented possibility
to explore the contribution of this glia cell population to
human diseases, study its interaction with neuronal cells and

Uhttps://www.ema.europa.eu/en/medicines/human/summaries- opinion/mayzent

test potential neuroprotective drugs. To address direct effects
of BAF312 on glial function and glia-neuron interaction, we
generated human astrocytes from reprogrammed fibroblasts and
set up a series of in vitro assays to verify whether BAF312 may
hamper glial inflammatory activity and support physiological and
anti-oxidant functions of the astrocyte.

MATERIALS AND METHODS

Fibroblast Reprogramming and

Differentiation Into iAstrocytes

Human skin biopsies were obtained from two healthy subjects
after signing of informed consent approved by the Ethics
Committee of Ospedale San Raffaele. Fibroblasts were isolated
and reprogrammed to generate human iPSC clones with the
Sendai virus technology (CytoTune-iPS Sendai Reprogramming
Kit, Thermo Fisher Scientific) (19). iPSC clone characterization
is described in (20). Human neural precursor cells (hiPSC-
NPCs) were generated with the dual SMAD inhibition
(SB431542/Dorsomorphin)/Hedgehog  pathway  activation
(SAG/Purmorphamine)/WNT pathway activator (CHIR99021)
and maintained in proliferation medium as described in (21).
For astrocyte differentiation, the iNPCs were seeded at low
density in Geltrex (Thermo Fisher Scientific)-coated T75 flasks
(2 x 10° cells/flask) for 24 h. The day after, proliferation medium
was changed to DMEM supplemented with 1% antibiotics,
200 mM L-Glutamine, 100 mM Sodium Pyruvate (Thermo
Fisher Scientific), 10% FCS and 0.3% N2 (22). Astrocytes were
allowed to differentiate for several weeks, detached using trypsin
and checked for morphology and marker expression at different
time points. Phase contrast images for morphologic assessment
were obtained at Leica DMIL LED microscope.

Stimulation of Human iAstrocytes

Human iAstrocytes were incubated with 100 nM Fingolimod
(FTY720-phosphate, Selleckchem), 100 nM Siponimod (BAF312,
Selleckchem) or 1 pwM NIBR-0213 (Merck) or vehicle (PBS
or DMSO max 0.4% v/v) for 1 hour. Cells were then treated
with IL1P (10 ng/ml, Thermo Fisher Scientific), IL17 (10 ng/ml,
Peprotech) or S1P (100 nM, Echelon Biosciences). Incubation
times were 1 h for S1P1 internalization assay, 30 min for NFkB
assay, 1, 2 or 4 h for Nrf2 assay or 24 h for glutamate transporter
assay. Cells were then processed for immunofluorescence and
stained with appropriate primary antibodies. For the generation
of astrocyte conditioned media iAstrocytes were pre-incubated
with drugs, and then exposed to the inflammatory stimuli for
8 h. Astrocyte medium was replaced with fresh neuronal medium
and, after additional 24 h culture, supernatants were collected,
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centrifuged to remove cell debris, and stored at —80°C. Before
addition to primary neurons, astrocyte supernatants were diluted
down to 1:4 with medium.

RNA Extraction, cDNA Synthesis, and

Qualitative PCR

Total RNA was extracted by Tri Reagent Solution (Thermo
Fisher Scientific) and reverse transcribed using random
hexamer primers and Superscript III reverse transcriptase (all
from Thermo Fisher Scientific) following the manufacturers’
instructions. To remove contaminating DNA, RNA was treated
with DNasel enzyme (Thermo Fisher Scientific). As positive
control, human peripheral blood mononuclear cells (PBMC)
were isolated from a healthy donor as described in (10) and
total RNA was extracted. Qualitative RT-PCR was performed
using GoTaq G2 DNA polymerase (Promega) and dNTPs set
(Thermo Fisher Scientific). The sequences of used primers are
as follows: 5-GGA GTA GTT CCC GAA GGA CC-3’ (sense)
and 5-TCT AGA ATC CAC GGG GTC TG-3' (antisense) for
S1P5 receptor (236-bp product), 5'-GAT GAC ATC AAG AAG
GTG GTG AA-3' (sense) and 5-GTC TTA CTC CTT GGA
GGC CAT GT-3' (antisense) for glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (246-bp product). Thirty-two cycles
of amplification were performed at 94°C for 30 s, at 60°C for
30 s, and at 72°C for 1 min. PCR products were separated by
electrophoresis on 2% agarose gel and visualized with SYBR Safe
(Thermo Fisher Scientific) staining.

Generation and Treatment of Primary

Spinal Neurons

Primary spinal neurons were obtained from 16-day-old Sprague
Dawley rat embryos as described (7, 23). Briefly, embryonal
spinal cords, depleted of spinal root ganglia, were dissected,
carefully minced and digested for 15 min at 37°C with 500 pg/ml
DNAsi I (Roche) and 0.25% trypsin (Thermo Fisher Scientific)
in L-15 medium (Thermo Fisher Scientific) supplemented with
antibiotics. After digestion, tissue homogenate was washed 3
times with L-15 medium and finally cultured in Neurobasal
medium (Thermo Fisher Scientific) supplemented with 10 ng/ml
glial cell-derived neurotrophic factor (GDNF; Sigma), 20 ng/ml
fibroblast growth factor (FGF; Peprotech), 50 pg/ml insulin
(Sigma), B27 supplement (Thermo Fisher Scientific), 1% FCS
(Euroclone), and 10 mM Glucose. Cells were seeded on poly-D-
lysine and collagen (both from Sigma) coated glass coverslips.
After 24 h 15 pM Cytosine b-D-arabinofurnoside (AraC;
Sigma) was added to cultures and left for 4 days to eliminate
contaminating microglia cells, astrocytes and oligodendrocytes.
Neurons were exposed to astrocyte conditioned media for
8 h, then processed for immunofluorescence and stained
with monoclonal antibody against $-tubulin. All nuclei were
stained with DAPI. For assessment of neuronal counts, the
numbers of DAPI positive nuclei were quantified and reported
as percentage of control (neurons exposed to supernatants
from vehicle-treated astrocytes; sSCTRL). Neuronal network was
measured by P-tubulin signal and expressed as percentage
of controls.

Immunofluorescence Experiments

Astrocytes or neurons were plated on coverslips, fixed in 4%
PFA or MetOH, permeabilized with 0.2% Triton X-100 (Merck),
blocked in PBS + 1% BSA (Merck) + 5% FCS and stained with
primary antibodies. Then, cells were incubated with appropriate
species-specific Alexa Fluor 488/594-conjugated secondary
antibodies (Thermo Fisher Scientific), counterstained with
4/,6-diamidino-2-phenylindole (DAPI, Sigma) and mounted
with fluorescent mounting medium (Agilent). The following
primary antibodies were used: rabbit anti-GFAP (Agilent), mouse
anti-nestin (Merck Millipore), mouse anti-vimentin (Abcam),
rabbit anti-S100f (Abcam), rabbit anti-EDG1 (Santa Cruz
Biotechnology), rabbit anti-EDG3 (Santa Cruz Biotechnology),
mouse anti-ILIR (R&D), rabbit anti-IL17R (Santa Cruz
biotechnology), rabbit anti- NFkB p65 (Abcam), rabbit anti-
GLAST (Abcam), guinea pig anti-GLT1 (Merck Millipore), rabbit
anti-Nrf2 (Abcam), mouse anti Neuronal Class III $-Tubulin
(Covance). The following secondary antibodies were used:
Alexa Fluor 488 donkey anti-rabbit IgG (H + L), Alexa Fluor
594 donkey anti-rabbit IgG (H + L), Alexa Fluor 488 donkey
anti-mouse IgG (H + L), Alexa Fluor 594 donkey anti-mouse
IgG (H + L), Alexa Fluor 488 goat anti-guinea pig IgG (H + L)
(all from Thermo Fisher Scientific). Fluorescence images were
captured at fluorescence microscope (Leica DM5500B) or Leica
TCS SP5 confocal laser-scanning microscope equipped with 40x
oil objective. LASAF and LASX softwares were used for image
acquisition, and Image] (download at: http://rsbweb.nih.gov/ij/)
software was used for image analysis. To quantify nuclear NFkB
and Nrf2, DAPI images were converted to 8-bit, and regions
of interest (ROIs) were generated to select (DAPI positive)
nuclei. Then ROIs were applied to the corresponding NFkB
or Nrf2 images, fluorescence thresholds were fixed on the
unstimulated condition, and the fraction of positive nuclei
was assessed (an example of analytical strategy is depicted for
Nrf2 in Supplementary Figure S3). Similarly, the fraction of
highly fluorescent astrocytes above the threshold was used
to quantify cellular GLAST and GLT1 expression under the
distinct conditions.

Statistical Analyses

Data in figures are presented as mean =+ standard deviation
(SD) or standard error of the mean (SEM) as indicated in
figure legends. The exact number of independent experiments
performed is reported in figure legends. Unpaired t-test was
performed to compare means. All p-values were two-sided and
subjected to a significance level of 0.05. In figures, asterisks denote
statistical significance as *p < 0.05; **p < 0.01; ***p < 0.001.
Statistical analyses were performed in Excel or GraphPad Prism.

RESULTS

Generation and Characterization of

Human iAstrocytes
Human fibroblasts were isolated from skin biopsies and
reprogrammed to generate human iPSC clones, which were
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differentiated first in iPSC-derived NPCs and then into mature
astrocytes (hereon called iAstrocytes). Cells were cultured
for several weeks and sampled at different time points to
assess their morphology and phenotype. First, we observed
a significant change in cell size and morphology during the
differentiation process from iNPC, as human iAstrocytes clearly
showed an increment in cell size and acquired the typical
morphology of astroglia (Figure 1A). Immunofluorescence
experiments confirmed that classical astrocyte markers were
highly expressed in all analyzed cultures. In fact, iAstrocytes
were positive for GFAP, S100f3, nestin and vimentin that
remained expressed at high levels also at advanced culture
stages (Figures 1B,D). As reactive astrocytes in MS lesions
display coordinated upregulation of receptors for inflammatory
cytokines (IL1R, IL17R) and the lipid mediator SIP (SI1P1 and
S1P3) (7), we checked protein expression of these receptors
on human ijAstrocytes and observed strong positivity for all
of them (Figures 1C,E), indicating that our in vitro human
cell model mimics the phenotype of the reactive glia cell
in the human pathological tissue and may be responsive to
inflammatory mediators. Human iAstrocytes did not express
transcripts for S1P5, another possible target of BAF312 or
FTY720 (Supplementary Figure S1).

BAF312 Blocks Inflammatory Activation
of iAstrocytes and Supports

Maintenance of Glutamate Transporters
We set up in vitro assays with our human cell system to study the
effects of BAF312 and FTY720 on different astrocyte functions.

As these drugs were shown to induce rapid SIP1
internalization in rodent astrocytes (24, 25), we checked
this phenomenon in our cells and confirmed that, differently
from control cells, iAstrocytes displayed intracellular S1P1
aggregates with perinuclear distribution when exposed to
FTY720 or BAF312 for 1 h (Supplementary Figure S2).

NFkB is a key transcription factor in cytokine and SIP
signaling, and plays a pivotal role in the amplification of
inflammatory and neurodegenerative processes (5, 26). We
verified whether our human iAstrocytes activated NFkB
in response to inflammatory cues and studied the effect
of SIP signaling modulators on astrocyte behavior. As
shown in Figures 2A,B, IL1 or IL17 strongly induced
nuclear translocation of NFkB-p65 in human iAstrocytes,
however, this effect was blocked by astrocyte exposure to
BAF312 or FTY720.

Maintenance of extracellular glutamate concentrations
below neurotoxic levels is a critical function of glial glutamate
transporters GLAST and GLT1 (27). Both transporters were
expressed on resting iAstrocytes (CTRL; Figures 2C,E), but
strongly downregulated in cells exposed to inflammatory
cytokines for 24 h (Figures 2C-F). Differently, cells treated
with BAF312 or FTY720 maintained high GLAST and
GLT1 expression even under inflammatory conditions
(Figures 2C-F).

Astrocytes may react to the mediator S1P via S1P1 and
S1P3. While FTY720 targets both receptors, BAF312 is selective

iAstrocytes
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FIGURE 1 | Characterization of iPSC-derived astrocytes. (A) Phase contrast
images showing human iNPC (left panel) and human iAstrocytes (right panel).
(B,C) Representative immunofluorescence stainings for GFAP, S1008, nestin,
vimentin (B) and S1P1, S1P3, IL1R and IL17R (C) in human iAstrocytes. DAPI
was used for nuclear staining. (D,E) Percentage of cells positive for astrocyte
markers at two timepoints during differentiation. Reported quantifications were
performed on three different human iAstrocytes preparations from the same
iNPC cell line. Bars represent SEM. Same observations were recorded in
human iAstrocytes from a second INPC cell line. Scale bar = 30 pm.

for S1P1 only, leaving open the possibility of responding to
S1P via S1P3. To check this hypothesis we used the NF«B
assay to measure astrocyte activation in response to S1P and
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differentially interfered with S1P signaling via FTY720 or
BAF312. As shown in Figure 3, selective blockade of S1P1
and not S1P3 with BAF312 achieved similar, strong inhibition
of S1P-induced NFkB-p65 translocation to that exerted by
FTY720 (Figures 3A,B). As additional control, iAstrocytes were
treated with NIBR-0213, a potent and selective SIP1 antagonist
(28), and S1P-mediated NFkB-p65 nuclear translocation was
assessed. Similarly to BAF312, specific inhibition of S1P1
via NIBR-0213 abolished S1P-evoked NFkB-p65 translocation
(Figures 3C,D). S1P also downregulated protein expression of
glutamate transporters on iAstrocytes (Figures 3E-G), however,
this process was equally hindered by FTY720 and BAF312
(Figures 3E-G).

All together these data indicate that triggering of
inflammatory signaling cascades in glia cells may be prevented
by S1P receptor modulators, and that S1P1 targeting via BAF312

is sufficient to directly dampen inflammatory activation via other
S1P receptors and support physiological astrocyte functions.

BAF312 Induces Nrf2 Activation in

Human iAstrocytes

Activation of the transcription factor Nrf2 represents a
key checkpoint for cellular antioxidant responses and its
induction in astrocytes may confer neuroprotection during
neuroinflammation (29). To ascertain whether BAF312 and
FTY720 may regulate Nrf2 activation in glial cells, human
iAstrocytes were stimulated with the drugs over a few hours
and assessed for Nrf2 expression by immunofluorescence. Under
resting conditions, iAstrocytes displayed mainly cytoplasmic
Nrf2 expression (Figure 4A), however, exposure to SI1P
modulators for 1 h significantly increased Nrf2 nuclear levels
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FIGURE 3 | S1P1 targeting is sufficient to support physiological astrocyte functions. (A) Representative immunofluorescence stainings for NFkB-p65 in human
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human iAstrocyte cultures stimulated with S1P eventually in the presence of NIBR-0213. Percentage of NFkB-p65 positive nuclei is reported in (D).

(E) Representative immunofluorescence stainings for GLAST in human iAstrocytes exposed to vehicle (CTRL), S1P alone or after pre-incubation with BAF312. (F,G)
Frequency of GLAST (F) or GLT1 (G) high positive cells under the different experimental conditions. DAPI was used for nuclear staining. Data are shown as

mean =+ SD of a representative experiment out of three independent experiments. Scale bars: 30 um. *p < 0.05, *p < 0.01, **p < 0.001.

(Figures 4A,B), an effect that persisted over time (Figure 4B).
We then checked whether this action was maintained under
inflammatory conditions, and noted that Nrf2 induction was
significantly reduced in the presence of IL1, IL17 or S1P
(Figures 4C-F). These experiments indicate that S1P receptor
modulators may directly activate protective responses in glial
cells via Nrf2, but that their efficacy may be affected upon
neuroinflammation.

BAF312 Hampers Astrocyte-Induced

Neurodegeneration

To test the overall impact of astrocyte mediators on neurons,
we exposed human iAstrocytes to the drugs and then to the
inflammatory mediators for 8 h, changed the medium to remove
stimuli and collected the supernatants after a further 24 h culture.
Astrocyte-conditioned media were then added to pure cultures
of spinal neurons, which were then assessed for cell number
and morphology via DAPI and B-tubulin stainings. While
supernatants from non-treated (sSCTRL) or FTY720- or BAF312-
treated cultures (sFTY720, sBAF312) did not affect neuronal
survival and network integrity, conditioned media from human
iAstrocytes stimulated with the inflammatory factors (sIL1, sIL17,
and sS1P) triggered robust degenerative responses characterized
by neuronal loss and neurite fragmentation (Figures 5A-C).

However, when astrocyte media were generated in the presence
of BAF312 or FTY720, their addition to spinal neurons did
not trigger neurodegeneration despite astrocyte exposure to
the inflammatory mediators (Figures 5A-C), indicating that
astrocyte targeting by S1P receptor modulators may rescue
neurons from astrocyte-induced degeneration.

DISCUSSION

In this study, we provided in vitro evidence of neuroprotective
effects of BAF312 via the human astrocyte during inflammation.
In particular, we (i) generated human fibroblast-derived
astrocytes to measure pharmacological effects of SIP receptor
modulators; (ii) addressed the direct impact of BAF312 on
NFkB activation and glutamate transporters in astrocytes; (iii)
demonstrated the direct activation of Nrf2 by SI1P receptor
modulators; and (iv) performed side-by-side comparisons
between BAF312 and FT'Y720 in all in vitro assays. Importantly,
BAF312 action on the astrocyte was strong enough to inhibit
neurodegeneration triggered by glial mediators generated during
neuroinflammation.

The recent results about the efficacy of the S1P receptor
modulator BAF312 in the treatment of secondary progressive
MS indicate that the slowdown of disability progression is
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FIGURE 4 | S1P receptor modulators induces Nrf2 activation in glial cells.
(A) Representative immunofluorescence stainings for Nrf2 in human
iAstrocytes exposed for 1 hour to FTY720 or BAF312. (B) Frequency of Nrf2
positive nuclei in human iAstrocytes stimulated with drugs at different time
points. (C) Representative Nrf2 immunofluorescence stainings in iAstrocytes
exposed for 1 hour to S1P alone or after 1 hour pretreatment with drugs.
(D-F) Frequency of Nrf2 positive nuclei in human iAstrocytes treated with
drugs alone or in the presence of IL1 (D), IL17 (E) or S1P (F). Data are shown
as mean £ SD of a representative experiment out of 2-3 independent
experiments. In (A) and (C) white arrows highlight Nrf2 positive nuclei. Scale
bar: 30 pum. *p < 0.05, **p < 0.01, **p < 0.001.

associated with significant effects on lesion enlargement and
brain atrophy (18), thus on the neuropathological, degenerative
components of SP-MS due to oligodendrocyte injury and axonal
degeneration aggravated by dysregulated activity of CNS resident
cells (30). Astrocytes may contribute to these processes by several
mechanisms, including the release of inflammatory cytokines and
cytotoxic factors and the formation of a dense glial scar inhibiting
tissue repair (31, 32). In vivo findings from experimental
neuroinflammation support the hypothesis of protective effects
of BAF312 in the CNS (33). In fact, direct administration
of the drug into the CNS of animals with experimental MS
ameliorates disease expression, and reduces CNS inflammation
and loss of GABAergic signaling (33). This action is accompanied
by shrinkage of astrogliosis in vivo, suggesting an impact on
the inflammatory activation of the astrocyte (33). Astrocytes
upregulate SI1P receptors SIP1 and S1P3 in vitro and in vivo
under inflammatory conditions (7, 34), thus they may become
target of S1P signaling modulators. BAF312 may directly induce
in vitro glial Ca?* levels and ERK phosphorylation mainly via
S1P1 receptor (25). Our in vitro data corroborate the evidence
for BAF312 action on several distinct astrocyte functions, and
identify Nrf2 and NFkB as crucial transcription factors regulated
by BAF312 in astrocytes. Whilst glial Nrf2 induces in vivo
anti-oxidant, anti-inflammatory and neuroprotective responses
(35), astrocytic NFkB is primarily involved in pro-inflammatory
reactions, scar formation and neurodegeneration (36-39). Thus,
the balance between these two pathways is critical for regulation
of cellular responses to stress and inflammation. It is relevant
to underline that functional SI1P signaling is necessary for
cytokine-evoked astrocyte activation, as its targeting by FTY720
completely impairs glial NF«B translocation in response to IL1
and IL17 (7). Here we show for the first time that the SIP
modulator BAF312 rapidly induces Nrf2 nuclear translocation in
glia cells, and that this phenomenon is paralleled by the blockade
of NFkB activation under inflammatory conditions. Considering
that S1P concentration is high in blood (>100 nM) (40) and that
levels around 100 nM may be plausibly reached in the inflamed
CNS due to blood-brain barrier breakdown, to interfere with SIP
signaling we employed 100 nM BAF312 or active FTY720 in our
in vitro tests. No information is available about the concentration
reached by the two drugs in the human CNS, while it is known
that BAF312 and active FTY720 concentrations are, respectively,
around 60 and 5 nM in plasma of human treated subjects (41, 42).
Notably, evidences from mouse models indicate that drug levels
in the CNS exceed those in blood severalfold, and that FTY720
accumulates even more in the inflamed vs. healthy CNS (43, 44).
Here, we report that BAF312 and FT'Y720 display comparable
efficacy in parallel in vitro tests, confirming the crucial pathogenic
role of S1P signaling in astrocyte function and implying that the
drugs may result equally potent on glial cells, assuming that the
levels of active FTY720 are similar to those reached by BAF312.
Although S1P signaling in astrocytes can be triggered by
two (SIP1 and S1P3) receptors, S1P1 appears to play a major
role in glial functions. In fact, S1P1-selective agonism reduces
astrogliosis in experimental MS with similar efficacy to FTY720,
which targets several SIP receptors (45). Further, transgenic
mice with selective removal of S1P1 from GFAP-expressing cells
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FIGURE 5 | BAF312 blocks neurodegeneration induced by astrocyte responses to cytokines and S1P. (A) Representative immunofluorescence stainings for
B-tubulin and DAPI of spinal neurons after exposure to media generated from vehicle (SCTRL)-, FTY720- or BAF312- treated astrocytes (upper panels), IL1-, IL17- or
S1P-activated astrocytes (middle panels) or eventually from astrocytes treated with BAF312 (lower panels). (B,C) Quantification of cell number (B) and B -tubulin
signal (C) expressed as percentage respect to supernatants from control-treated cultures (SCTRL). Graphs show cumulative results from three independent
experiments. Data are represented as mean + SEM. Scale bars: 50 um. **p < 0.001.
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develop milder neuroinflammatory disease and do not respond
to FTY720 treatment (45). Here we show that, in our in vitro
human system, S1P signaling via S1P1 is necessary and sufficient
to modulate astrocyte behavior. In fact, glial responses to S1P are
efficiently and equally inhibited by BAF312 (which targets S1P1)
and FTY720 (which targets both S1P1 and S1P3). Moreover,
treatment with the potent and selective S1P1 antagonist NIBR-
0213 is sufficient to abolish NFkB activation.

Internalization of S1P1 receptor following ligand binding
has been observed in cells artificially overexpressing S1P1
(45, 46). This phenomenon has been visualized in primary
rodent astrocytes exposed to nanomolar doses of FTY720
or to micromolar BAF312 (24, 25), while no evidence was
available for human astrocytes. Here we show that FTY720
and BAF312 induce formation of intracellular S1P1 aggregates
with perinuclear distribution in our cells, thus demonstrating
internalization of physiological levels of SIP1 in human glia.
Notably, internalized S1P1 receptors may maintain signaling
activity following exposure to FTY720 and not S1P, suggesting
persistent agonism mediated by the drug (24, 46). On the
other hand, our studies indicate that S1P receptor modulators
are functional antagonists of SIP and cytokine signaling.
This action may thus result either from the loss of surface
S1P1 receptor or from the interference of internalized S1P1
activity with inflammatory signaling, an issue which deserves
further investigation.

A pathological consequence of neuroinflammation is the
dysfunction of glutamatergic transmission due to malfunctioning
of glutamate transport. Glutamate is the main excitatory
neurotransmitter in the CNS, but excessive glutamate
accumulation in the synaptic and extra-synaptic spaces leads
to neuronal death through a process called excitotoxicity (47).
Under physiological conditions glutamate clearance from the
extracellular milieu is primarily achieved by astrocytes via the
glutamate transporters GLAST and GLT1 (48), whose levels,
however, become low under inflammatory state (49, 50). The
beneficial effect of FIY720 in experimental MS has been
associated with restoration of glial glutamate transporters (51).
Our study proves that inflammatory cytokines and S1P indeed
downregulate GLAST and GLT1 proteins in astrocytes, and
that BAF312 or FTY720 directly support the maintenance of
these transporters. This implies that S1P signaling modulators
may restore proper glutamate buffering by astrocytes back to
physiological levels.

Astrocyte activation is crucial in driving inflammation-
induced neurodegeneration. In fact, SIP- or cytokine-activated
astrocytes release factors that trigger neuronal death, as nitric
oxide (7) or reactive oxygen species (52). Importantly, blockade
of SIP signaling in glia cells by FTY720 hampers NO release
in response to S1P and inflammatory cytokines, and prevents
from astrocyte-induced neuronal death (7). Similarly to what
shown for FTY720 (7), our experiments on primary cultures
of spinal neurons demonstrate that neurotoxicity mediated
by conditioned media from activated astrocytes is abolished

when astrocytes are exposed to BAF312. This final evidence
unequivocally confirms that the net result of the modulation of
S1P signaling in the astrocyte is indeed the blockade of astrocyte-
mediated neurodegeneration.

CONCLUSION

In  conclusion, our investigation highlights indirect
neuroprotective properties for BAF312 via targeting S1P-S1P1
axis in glia cells.
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Based on discoveries enabled by new technologies and analysis using novel
computational tools, neuroscience can be re-conceived in terms of information exchange
in dense networks of intercellular connections rather than in the context of individual
populations, such as glia or neurons. Cross-talk between neurons and microglia or
astrocytes has been addressed, however, the manner in which non-neuronal cells
communicate and interact remains less well-understood. We review this intriguing
crosstalk among CNS cells, focusing on astrocytes and microglia and how it
contributes to brain development and neurodegenerative diseases. The goal of studying
these intercellular communications is to promote our ability to combat incurable
neurological disorders.

Keywords: microglia, astrocytes, neurons, glia, CNS, neurological disorders, neurodegeneration

INTRODUCTION

Every organ possesses one cell type whose properties incarnate and define its function. For
the central nervous system (CNS), that cell is the neuron. Synaptic communication among
neurons is organized in neural circuits, which carry out humanity-defining tasks such as written
language, as well as brain function, ranging from breathing to motor behavior to perception.
Each of the populations of non-neuronal cells of the adult CNS are remarkably adapted to
support neuronal function: astrocytes maintain ionic and neurotransmitter homeostasis, refine
synaptic connections, and provide neuronal metabolic substrates; microglia monitor synaptic
elements and networks, responding to dyshomeostasis by inducing or removing synaptic elements
and by modulating neuronal activity; oligodendrocytes elaborate myelin sheaths, which protect
and nourish myelinated neuritic segments. Microglia and astrocytes respond to neuronal injury
with programs that include proliferation, morphological alterations, mediator production, and
engulfment of cells and subcellular elements. These changes represent the CNS tissue response
to damage or degeneration.

During development and early-adult life, forces crafted by evolution optimize the CNS structure
and function for reproductive fitness and survival. Given that human life-span now extends well-
beyond the end of reproductive capacity, it's axiomatic that, while CNS disorders of aging evoke
a tissue response, that reaction isn’t shaped by evolution to respond specifically to the challenges
posed either by aging or by the ongoing pathogenic process. Research into neuroinflammatory
glial biology involves characterizing this tissue response and defining its effects on the outcomes of
neurological disorders, as well as searching for therapies to ameliorate injurious glial reactions and
restore homeostasis.

As noted above, astrocytes and microglia exert their primary functions toward neurons, and
much research addresses the dyadic interactions: microglia-neuron and astrocyte-neuron. It is
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also timely to consider how microglia and astrocytes signal
to each other, to obtain a more-comprehensive account how
their behavior is regulated in the complex context of CNS
injury or disease. This review takes the approach of introducing
briefly each cell type in relation to its interactions with neurons,
followed by a series of “embryonic” illustrating how microglia
and astrocytes can communicate. Finally, these interactions
will be placed in the setting of varied CNS disorders. In
each circumstance, the relevant outcome of astrocyte-microglial
communication will be health of the individual neuron or
integrity of the neural circuit.

MICROGLIA

More than 100 years ago, in 1919 Pio del Rio-Hortega published
an article in which he introduced the term “microglia.” He used
an improved silver-staining method to delineate microglia and
to discriminate them from oligodendrocytes, the other cellular
component of the Third Element of the CNS (1). Today we can
enjoy the observation of microglia in 3D at nanometer-resolution
visualized by volumetric ultrastructural reconstruction using
serial block face scanning electron microscopy (SBEM) (2).

Microglial Are Myeloid Cells of the Brain

Distinct From Peripheral Macrophages

Microglia are myeloid cells of the CNS parenchyma (3). With
regard to ontogeny, microglia differ significantly from their
macrophage relatives in other tissues. Both populations come
from primitive macrophages, but at the germline level their
paths of development diverge. Microglia come from yolk
sac erythro-myeloid progenitors and settle the brain early in
brain development before the blood-brain-barrier (BBB) closure
(4). Migration of microglia progenitors to developing CNS
is followed by rapid multiplication and creation of a pool
of residual cells that are long-lived and have the ability to
renew independently of the hematopoietic system. By the end
of second postnatal week microglia become fully matured
and express adult gene signature (5). Microglia share some
genes with other mononuclear phagocytes, however, several
transcripts are highly enriched in microglia, including CX3CR1,
P2RY12,13, SOCS3, TREM2, TMEM119, GPR34, and SIGLEC
(6). TMEM119, P2RY12, and SALL1 are considered microglia
specific markers (5). When settled in the brain, peripheral
macrophages possess intrinsic ability to express microglia genes,
however the true identity of microglia is the function of both
the ontogeny and environment (7). Environmental cues not
only reassure microglial identity but also modulate enhancer
landscapes in microglia. A recent study by Bennet et al. using a
cell transplantation system in mice demonstrated environmental
influence on microglial identity and the stunning plasticity of
microglial cells (7), which has been further confirmed by Zhan
et al. showing that murine microglia have the internal memory
of their homeostatic signature, which allow returning to resting
state (8). Despite significant changes in gene expression, which
have been accompanied by morphological changes induced
by ex vivo manipulations, after transplantation to the CNS

microglia have quickly returned to their normal, homeostatic
characteristics. Interestingly, hematopoietic stem cell—microglia
like cells (HSC-MLC) that can, after transfer to CNS, imitate
microglia, have been found to be enriched in genes associated
with neurological diseases such as Alzheimer Disease (AD) (7).
Microglia display a broad spectrum of phenotypes depending
on environmental assemblage. Attempts to classify microglia as
M1 or M2 like in case of other macrophages occurred far too
simplistic and have failed, as evidenced by modern transcriptome
profiling (9).

Microglia Heterogeneity Is the Most

Diverse During the Early Development
Microglia development process is highly dynamic and is
characterized by changes in microglial states with unique sets
of genes, morphology, distribution, and most likely function
(10). Recent studies by Hammond et al. using single-cell
RNA sequencing identified several microglial states present
in mice brains throughout development, different ages, and
conditions including injury (11). In this study, it has been
found that the highest diversity of subpopulations of microglia
with unique molecularity persist during early development. It
has been proposed that unique gene patterns present during
development represent specific transcriptional programs rather
than the modulation of, already existing, one generic program.
Interestingly, one population of microglia has displayed highly
activated state despite the absence of any pathology and has
been restricted to short postnatal period. Another identified
microglial subpopulation has been present throughout life-
span with increased prevalence in old age and injury with
selective expression of the CCL4 chemokine. This population
has also been enriched by expression of other inflammatory
signals and has been proposed to be a specialized group
to produce inflammatory responses. In general, in early
development, microglial have been enriched in genes associated
with metabolism, growth, motility, and proliferation and some
of them became re-activated during injury and in aging brain.
As the brain matures, microglia become less heterogeneous until
aging and/or injury, which are characterized, as in development,
by a large diversity and immature state.

A recent study by Li et al. has reported exceptional findings
of spatiotemporal transcriptomic heterogeneity of microglia
and other brain myeloid cells in six different brain areas and
through three developmental stages in mice (12). Using deep
single-cell RNA-seq technique, which enabled the detection
of about three times as many genes per cell with higher
detection rates as compared to previous scRNA reports, the
study has demonstrated that regardless of the region of the
brain, the adult microglia displayed vastly similar transcriptomes.
This data has changed our perspective on microglial regional
heterogeneity in adult brains based on previously reported
findings. However, unlike adult cells, microglia in postnatal
brain have been characterized by developmental complexity,
with one subpopulation detected in the white matter unique in
terms of morphological features such as round and ameboid
shape. Interestingly, this newly identified white matter-associated
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microglia (WAM) have been found to be transiently present
in the first postnatal week and be involved in phagocytosis
of newborn oligodendrocytes and, most likely, astrocytes. It
has been found that WAMs activation is not dependent
on TREM-signaling.

In the Developing Brain Microglia Are
Involved in Neurogenesis and

Synaptic Pruning

During brain development, microglia development, and
maturation is synchronized with neurogenesis. Neural and
microglia cells exhibit extensive, dynamic physical interactions.
The development and maintenance of microglia critically
depends on the expression of Colony Stimulating Factor-1
Receptor (CSF-1R), which responds to its ligands CSF-1 and
IL-34, released in the developing brain by neurons (13). Blockage
of CSF-1R leads to microglia elimination and abnormal circuit
connectivity in adult mice (14). Further microglia differentiation
and maturation depend on TGF-f signaling. In a mouse model
of limited CNS TGF-B expression, microglial maturation is
altered (15). Microglia guide neuronal development mostly
by processes like phagocytosis and factors production such as
nerve growth factor (NGF) and tumor necrosis factor (TNF).
The brain environment changes constantly during development,
which elicits continual changes in microglial states. During late-
embryonic and early-postnatal brain development, microglia
are implicated in synaptic pruning, which eliminates excess and
weaker synaptic connections. In the context of refinement of
ipsilateral and contralateral retinogeniculate projections to the
dorsolateral geniculate nucleus (dLGN) during the first postnatal
week of life in mice, this process involves Complement Receptor
3 (CR3) (16). In this context, presynaptic elements destined
for removal are decorated with “eat me” signals in the form of
complement molecules C3 and Clq recognized by microglia,
the only CNS cells with CR3 expression. Besides complement
dependent pruning, mechanisms based on CX3CL1—CX3CR1
is also involved in synaptic elimination and maturation
(17, 18). In mice, interference in refining neural circuits
by eliminating complement-cascade or fractalkine-receptor
signaling leads to circuit or connectivity abnormalities (16, 17).
Some developmental processes based on complement dependent
phagocytosis by microglia may occur in a gender-specific
manner. This is the case in the process of refining dopaminergic
circuity during adolescence in the nucleus accumbens. In male
rats this process, based on the elimination of the dopamine
receptors D1rs, is mediated via microglia C3-phagocytic activity
(19). The mechanisms of dopamine receptor elimination in
females remain to be determined.

In the Adult Brain, Microglia Participate in
Neuromodulation, Synaptic Plasticity,
Learning and Memory Formation

In the adult brain, microglia perform many functions as
diverse as neuronal support, synaptic modulation, reorganization
of neuronal circuitry, and the production of significant
amounts of antimicrobial peptides. Microglia communicate with

neurons and neighboring cells via neurotransmitter receptors,
purinoreceptors and ion channels. ATP is a key communicator
of microglia with neurons and a key stimulator for microglial
movement toward ATP sources. Using the larval zebrafish model
Li et al. demonstrated a reciprocal cell-to-cell communication
between microglia and neurons in a neuronal activity dependent
manner based on purinergic receptor signaling (20). Activated
neurons send “find me” signals (eg., ATP) through pannexin
hemichannels to resting microglia. This is a signal for resting
microglia to move processes toward targets, surround highly
active neurons and consequently suppress neuronal activity.

It has been proposed that ATP signaling to purinergic
receptors signals for release of Brain Derived Neurotrophic
Factor (BDNF), which plays varied roles in neuronal
differentiation, synaptic development, and plasticity. BDNF
binds to neuronal TrkB, and regulates synaptic transmission and
plasticity in mice, including formation of new synapses during
learning (21). In one provocative experiment, deletion of BDNF
from microglia did not change overall brain BDNF levels, but
produced a phenotype showing deficits in a standard motor
learning task accompanied by lack of new synapse formation
in motor regions (21). In murine and human brain, microglial
processes contact neuronal somata at specialized junctions
regulated by purinergic signaling in microglia (22). These
junctions are perturbed by neuronal injury and are coupled to
neuronal mitochondrial activity (22).

An intriguing role is attributed to the neuron-microglia
communication based on fractalkine/CX3CL1 produced by
neurons and CX3CR1 expression limited to microglia (14).
In neurogenesis and spatial learning, this interaction is
particularly important because the lack of CX3CR1 reduces
neurogenesis and lessens the efficiency of task learning (13).
CX3CL1/CX3CRI1 signaling has been characterized almost
exclusively in mice, although there is an orthologous human
chemokine-receptor pair.

Microglia Rapidly Respond to Milieu
Changes via lon Channels, Cell Surface
Receptors, and Epigenetic
Reprogramming

The brain environment is highly dynamic, especially during
development but also during adulthood and requires rapid
responses from microglia. In a healthy adult brain in the optic
tectum of larval zebrafish, microglia remain branched and scan
the environment sensing neuronal activity and neurotransmitters
reassuring neuronal proper functioning (20). Using two-photon
imaging, a cluster of 100 genes called “sensome” has been
discovered, which microglia use to detect changes in the
environment. Two genes belonging to microglia sensome, a
triggering receptor expression on myeloid cells 2 (TREM2) and
CD33, are known risk factors for late-onset AD (14). Microglia
sense changes in the environment using the processes that extend
toward targets via differentially regulated non-directional as
well as directed motility. Microglia processes monitor release
of ATP, which is a main attractant and stimulus of microglia,
entry of pathogens and fibrinogen, synaptic function, and
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activation of neurons. Microglia rapid and reversible responses
to environmental changes are possible in part by activation
of ion channels and cell surface receptors (23). Activation of
ion channels leads to quick alteration of membrane potential
that effects ramification, morphology, motility, surveillance, and
other microglia functions. It has been found that microglia
resting potential, ceaseless surveillance, and interleukin-18
release in murine models is dependent on the tonic activity of
two-pore domain channel THIK-1, the main K+ channel, and
that this process is independent on purinergic receptor P2Y12
activation (24). In contrast, the direct motility and extending
processes toward tissue damage require activation of microglial
P2Y12 receptors by ATP, and this process is independent on
THIK-1 activity.

Dying neurons and non-functional synapses need fast
clearance by microglia to prevent pathology. Microglia clearance
phenotype is region specific and is tightly tuned by epigenetic
mechanisms. It has been found that in mouse adult brain,
striatal microglial phagocytic activity is epigenetically suppressed
by the Polycomb repressive complex 2 (PRC2) as compared
to the cerebellum (25). The latter requires higher clearance
activity and the cerebellar microglia phenotype mimics that
found during development and during certain neurodegenerative
diseases. Of note, the cerebellum exhibits a spectrum of primary
neurodegenerative processes, and recently has been implicated
in the pathophysiology of AD although the neuropathological
manifestations in cerebellum are less dramatic than those found
in the forebrain (26, 27).

Epigenetic signals control microglial function also during
the course of development and if altered might lead to
neurodegenerative and psychiatric diseases. In mice, prenatal
deletion of two class I histone deacetylases, Hdacl and
Hdac2, prominent regulators of epigenetic reprogramming and
macrophage inflammatory responses, compromised microglial
development. The deletion of these two genes in microglia in a
mouse model of AD resulted in reduced amyloid deposition and
improved cognitive function (28). It has been found in a mouse
model of Alzheimer’s disease that peripheral immune stimulation
that induces acute immune training and tolerance in the brain
might influence epigenetic reprogramming in microglia (29).

Variants of Some Microglia Genes Are Risk
Factors for Neurodegenerative Diseases

Microglia as part of the innate immunity respond to wide
array of stimuli, including p-amyloid (AP), a toxic protein
that accumulates in aging brains most likely as a consequence
of slowing down AP metabolism and microglia phagocytic
activity and is partially responsible for AD pathology. Microglia
react to injury through morphological changes, increased
proliferation, migration to the target, phagocytosis, activation
of the NLRP3 inflammasome, and consequently the release of
proinflammatory mediators (30). However, direct translations
of cytokine functions that are well-defined in periphery may
not operate in CNS context, with example of TNF-a displaying
neuroprotective properties or TGF-B1 that is upregulated in
aging and after CNS injury (6, 31).

All neurological diseases possess some inflammatory
component and microglia are important contributors to brain
pathology. Large-scale genome-wide association studies (GWAS)
in AD model mice allowed for identification of more than 20
loci in immune-related genes associated with risk factors for
neurodegenerative diseases with majority of them expressed by
microglia or myeloid cells (31). One of the most intensely studied
risk factors for neurodegenerative diseases is mutated TREM2,
an innate immune receptor expressed by myeloid cells including
microglia. During the early stages of brain development in
mice, TREM2 plays a key role in elimination of extra synapses
by regulation of microglia activity (32). TREM2 and Tyrobp
(DAP12) form a signaling pair that suppresses inflammatory
responses in mouse microglia in vitro, by reducing cytokine
production and increases phagocytic activity that might lead to
reduction of AP deposition and limitation of neurodegeneration.
Several studies in mouse models for neurodegenerative diseases
demonstrated opposing roles of TREM2 deficiency on AP
and tau pathologies (two pathological hallmarks of AD) with
amelioration of amyloid and exacerbation of tau pathology (33).
For example, TREM2 deficiency in mice plays a stage-dependent
role in contributing to amyloid deposition (34). TREM2 sustains
metabolic fitness, energy homeostasis, proliferation, and survival
in mouse microglia through mTOR signaling. TREM2 deficiency
in a mouse model of AD causes metabolic and energetic
imbalance followed by increased autophagy that resulted in a
dysfunctional microglial state (35). R47H variant of TREM2
is one of the strongest single allele genetic risk factor for AD
(36, 37). A mouse model of AD heterozygous for the TREM2
R47H allele showed loss of TREM2 function and enhanced
neuritic dystrophy around plaques (38). These findings agree
with other studies of mouse models and human subjects with
R47H TREM2 mutations, consistently finding that microglia
surround amyloid plaques, create a putative neuroprotective
barrier, and limit plaque-associated neuritic dystrophy (39).
This new role for “microglia barrier” in AD pathology has
been reviewed (40).

During an injury or disease, microglia display a variety of
phenotypes that can be detrimental or beneficial depending on
the context (5). Human gene expression profiling obtained from
frozen-post mortem AD specimens of superior frontal gyrus
using RNA-Seq, has not been found to resemble any disease
activation-related gene profile from animal models (41). Instead,
this new profile of human Alzheimer’s microglia/myeloid cells
(HAM) resembled an “enhanced human aging” transcriptomic
phenotype. The sole commonality between data obtained
from animal models and HAMs involved genes associated
with lipid metabolism and lysosomal biology. More data
from human subjects are awaited since presently available
animal models poorly reflect human pathophysiology. One of
many problems concerns the usefulness of young mice with
aggressive amyloid deposition phenotypes for studying age-
related neurodegenerative diseases such as AD (42).

Cellular therapies with microglia serving as vehicles carrying
genes or gene products to the CNS might be promising to confine
neurological diseases. Recently, new approaches including usage
of induced pluripotent stem cell (iPSC) microglia are potentially
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hopeful as therapeutic strategies (43). Microglia-like cells can
be efficiently generated and enriched from multiple human
embryonic stem and iPSC cells (44) although the in vitro context
does not support expression of a transcriptome mirroring that
seen in acutely isolated cells (45). Soluble cerebrospinal fluid
TREM2 shows considerable promise as a biomarker for ongoing
CNS pathology in AD (46). Interestingly, higher levels of CSF’s
TREM?2 in comparison to phosphorylated tau is associated with
attenuated cognitive decline in AD patients.

ASTROCYTES

Astrocytic Diversity Is Most Pronounced

in Humans

Astrocytes (from Greek astron means star) have gained this name
due to their characteristic star-like shape with long processes
connecting with almost all types of CNS cells. They represent
the largest group of glial cells with one astrocyte touching base
with nearly 2 million synapses in the human brain. Unlike
neurons, well-preserved among species, human astrocytes have
undergone amazing changes during evolution (47), which most
likely led to the development of unique human characteristics
such as logical thinking and cognition. It has been found that
human astrocytes extend 10 times more processes and are four
times larger than mouse astrocytes. This correlates with the
extreme expression of astrocytic PMP2, a fatty acid binding
protein important for the normal structure of membrane lipids.
Forced expression of PMP2 in the brains of neonatal mice
resulted in an increase in diameter and number of astrocytes
(47). Drawings by Ramon y Cajal at the beginning of the 20th
century have shown a very complex structure of astrocytes,
and current technologies confirm the extreme pleomorphism of
astrocytes, especially in the human brain (48). The astrocytic
phenotype is more defined by their mutual relations with
neurons and the vascular system, then the expression of surface
markers. Although glial fibrillary acidic protein (GFAP) is not
completely astrocyte specific, for decades this marker has been
used to identify astrocytes in the CNS (49). An attempt has
been made to characterize astrocyte classes in adult murine CNS
using dual staining of GFAP and a calcium-binding protein
B (S100b) and nine astrocyte groups have been defined with
the conclusion that the astrocytic phenotype is a function of
the local microenvironment and operating requirements (50).
Although they are highly heterogeneous, traditionally, astrocytes
are divided into two major groups based on their location and
structure. The first group includes protoplasmic astrocytes in the
gray matter with “bushy” appearance and direct contact with
blood vessels through their special anchorage at the end-foot.
The second group contains fibrous astrocytes present in the
white matter, contacting Ranvier nodes, and myelinated axonal
pathways, where they support myelination (51).

Astrocytic Ontogeny

Astrocytes are generated in the ventricular zone from the
same progenitor cells as neurons and oligodendrocytes, called
radial glial cells. Radial glial cells derive from neuroepithelial
stem cells. In addition to generating the main classes of brain

cells, they also serve as scaffold for localization of migrating
neurons within developing brain layers (51). Astrogenesis,
emergence of maturing astrocytes from radial glia, begins
during mid-embryogenesis and continues postnatally (48).
Locally astrocytes divide substantially throughout the first
month of life.

Astrocytes Contribute to Formation of

Neural Circuits

Synaptogenesis takes place across approximately the same
stages of development as does astrogenesis, beginning before
many astrocytes are present and continuing postnatally in the
presence of increasingly-numerous astrocytes (52). Synapses
are interconnecting elements between two neurons that allow
the transmission of signals in neuronal networks. It takes
commitment from both, the glial cells and neurons to create
a functional synapse in which immature neurons guided
by astrocytes find partners to make connections (53). The
recognition of astrocytes in the formation of synapses and
neural circuits have come from experiments with neuronal
cell culture showing the inability of isolated neurons to
survive and form synapses without the addition of astrocytes
or factors that they secrete (54). The astrocytic modulation
of synaptogenesis is mediated by contact between cells and
secreted factors. Cell-cell contact is particularly important for
embryonic neurons to form excitatory and inhibitory synapses
and is partially facilitated by cell adhesion molecules present
on both parties: astrocytes and neurons. For example, astrocytes
express neuroligin that binds to neuronal neurexin, which is
important not only for synaptic contact, but also for astrocyte
morphology and accurate synaptic function in the mouse
cortex (55). Additionally, astrocytes influence the growth and
development of synapses by secreting stimulatory and inhibitory
mediators associated with synaptogenesis. Astrocytes inhibit
synaptogenesis by producing two negative regulators: Brain
Derived Neurotrophic Factor (BDNF) and Secreted Protein
Acidic, Rich in Cysteine (SPARC). SPARC limits the levels
of AMPA receptors (postsynaptic glutamate receptors, whose
activation leads to strengthening of the synapse), ultimately
modulating the activity-dependent elimination of synapses in
mice (56). SPARC antagonizes presynaptic Hevin/SPARCLI,
which together with Thrombospondins (TSP1,2) plays an
important role in the formation of glutamatergic synapses and
provides synaptic stabilization and consolidation. Formation
of functionally active synapses is maintained by heparan
sulfate proteoglycans, glypican 4 and 6 (Gpc4,6) in mouse
models (57). Gpc4 secreted by murine astrocytes acts on
presynaptic accumulation of neuronal pentraxin 1 (NP1), which
further stimulates active synapse formation by clustering of
AMPA receptors rich in GluAl (58). The increase in AMPA
receptors and the reduction of gamma-aminobutyric acid
(GABA) receptors present in inhibitory synapses is regulated
by astrocytic TNF-a. The presynaptic activity and upregulation
of synaptic transmission is partially maintained by cholesterol,
lipid synthesized by astrocytes, which in combination with
ApoE is transported to neurons. Mice with astrocytes with
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interrupted lipid synthesis show impaired synaptic development
and plasticity (59).

During synaptogenesis but also in adult mouse brain, synapses
are removed in activity-dependent fashion to refine neural
circuits. This task is allocated to glia, including microglia
and astrocytes (60). In mice, astrocytes utilize Megfl0 and
Mertk to target synapses for removal by direct engulfment.
Astrocytes also contribute to refining neural networks through
production of soluble factors. As one example, astrocytes
release TGF-P, which increases complement Clq expression in
neurons and makes them visible for phagocytosis by microglia
(53). Synapse engulfment is also regulated by astrocytic IL-
33, a member of the IL-1 family, via ILIRL1 receptor on
phagocytic murine microglia (61). Interestingly, microglial
TREM2, implicated in risk for neurodegenerative diseases,
is required for microglia to signal to astrocytes to limit
their synapse uptake. Mice lacking TREM2 show reduced
synapses resulting from loss of this regulatory mechanism
during development. In TREM2-null mice, high-fat diet during
adulthood reignites astrocytic synapse removal (62), showing
that astrocyte engulfment of synapses is under active restraint in
adult mice.

Astrocytes Guard the Proper Functioning
of Synaptic Circuits

In the adult brain, astrocytes continue to guard proper
functioning of the brain and neurons. Astrocyte processes are
an inseparable part of synapses, and are well-positioned to
respond and/or control the concentration of neurotransmitters
via specific membrane receptors and/or their uptake by
membrane transporters like AMPA and N-methyl-D-aspartate
(NMDA) glutamate transporters (63). Glutamate, a major
neurotransmitter released by neurons is toxic in excess and
its proper synaptic concentration is maintained by astrocytes.
Astrocytes take in glutamate, convert it to glutamine and
in this form shuttle it back to neurons. Glutamine acts as
a precursor for glutamate and GABA. Uptake of glutamate
by neurons is partly facilitated by fractalkine, a chemokine
produced by neurons that promotes neuroprotection, and this
action requires astrocyte-microglia communication, because
only microglia express the receptor for fractalkine in CNS.
Astrocytes have receptors for neuronal mediators, including G-
protein-coupled receptors associated with intracellular calcium
Ca signaling (53). Astrocyte activity can be visualized by imaging
changes in intracellular Ca2+- levels and it is widely accepted that
the dynamic communication between astrocytes and neurons
studied in murine models is maintained by purinergic receptors
and is fortified by the calcium waves and oscillations (49).
This type of signaling is used by astrocytes to control many
vital function, such as neuronal synchronization, trophic factors
concentration and neurotransmitter uptake, modulation of K+
uptake, vascular size sensing and gene expression, and most likely
expression of disease-related molecules (63). Reducing astrocyte
calcium signaling in mouse striatum confirmed its functional
significance (64). In particular, mice demonstrated a marked
phenotype of increased repetitive self-grooming associated with

increased GABAergic signaling to astrocytes, and mediated by
striatal medium spiny neurons (64).

Elevation in astrocyte calcium levels affects production and
release of neuromodulators called gliotransmitters, such as
ATP, GABA, glutamate, d-serine, lactate, and TNF-o, which
affect the plasticity of neurons and their communication with
microglia and endothelial cells (49). TNF-a, at physiological
levels and produced predominantly by microglia, is needed for
astrocytic glutamate release. However, microglial TNF-a at high
concentrations causes excitotoxic effects by suppressing astrocyte
uptake of glutamate (65).

Astrocytes Display Wide Array of

Homeostatic Functions

Astrocytes are interconnecting units with end feet contacting
elements of the BBB, which provide nutrients and oxygen.
Astrocytes also interact physically with neurons, which rely on
this supply. Proper function of blood-and cerebral fluid-brain
barriers are supervised by astrocytes. Astrocytes regulate BBB
function in part by secretion of factors that modulate barrier
properties in context-dependent fashion (66). The structural
components of astrocytic endfeet also mediate interactions
with the BBB. In particular, astrocyte endfeet are typified by
orthogonal array particles, which contain the widely-expressed
potassium channel, Kir4.1, and astrocyte-restricted aquaporin-
4 water channels. These components support BBB functions
of controlling brain potassium ion and water balance. The
levels of reactive oxygen species within CNS are also under
astrocytic supervision. Astrocytes and neurons build a strong
metabolic connection. Astrocytes are major sources of brain
cholesterol, crucial for the composition of neural membranes,
and a precursor for signaling molecules. In addition, glucose
stored exclusively in astrocytes in the form of glycogen allows the
use of lactate as a source of energy not only for neurons, but also
for other brain cells (53).

Astrocytes Respond to Insult by
Upregulation of GFAP and Hypertrophy

The main role of astrocytes in the brain is to protect from
damage to the CNS and to repair the nervous tissue after the
injury, so it is not surprising that astrocytes are involved in wide
array of neurological disorders. The response of astrocytes in
neurological disorders such as trauma, neuroinflammation, and
neurodegeneration as a physiological defense response is called
astrogliosis. Activated astrocytes are characterized by a different
molecular pattern, morphology, and function as compared
to their normal counterparts. Extensive GFAP expression is
a hallmark of reactive astrocytes. Normal astrogliosis after
brain injury is associated with inositol 1,4,5-triphosphate (IP3)-
dependent signaling pathway and N-cadherin upregulation (67).
Reactive astrocytes are essential for scar formation, inhibition
of the spread of inflammatory cells, and repair of blood-brain
barrier insults. Recent findings show that scar formation may
stimulate axonal regrowth after severe spinal cord injury in adult
mice (68). In addition, during astrogliosis after invasive injury in
mice, the formation of new neurons and oligodendrocytes from
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FIGURE 1 | Schematic overview of some interactions among astrocytes, microglia and neurons. Molecules participating in cross-talk and their cellular sources are
shown in the same colors. Functions are results of these interactions are depicted in black capital letters next to the cell types where the particular process take place.
Purple color reflects multiple sources. AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; APOE, apolipoprotein E; BDNF, brain derived
neurotrophic factor; DAP12, DNAX activation protein of 12 kDa; FGF, fibroblast growth factor; GABA, y-aminobutyric acid; GFAP, glial fibrillary acidic protein; GMCSF,
granulocyte macrophage colony stimulating factor; lba-1, ionized calcium binding adaptor protein 1; IGF-1, insulin- like growth factor-1; MCSF, macrophage
colony-stimulating factor; NGF, nerve growth factor; PDGF, platelet-derived growth factor; RAGE, advanced glycation end products; SIGLEC, sialic acid-binding
immunoglobulin-type lectins; SIRPa, signal regulatory protein; SHP2, SH2-domain-containing protein tyrosine phosphatase 2; SPARC, secreted protein, acidic and
rich in Cysteine; TREM, triggering receptors expressed on myeloid Cells; Trk, neurotrophin receptor tyrosine kinase; TSP1,2, Thrombospondini,2; VEGF, vascular

stem-like reactive astrocytes has been observed (69). In a healthy
brain, astrocytes are organized in non-overlapping domains that
can play a role in neuropathology. Reactive astrocytes lost their
domain organization in experimental models of epilepsy, but are
preserved in the animal model of AD. So far the significance
of astrocytic domains in health and disease remains unclear.
The effect of reactive astrogliosis in disease is complex: reactive
astrocytes can be both beneficial and harmful to surrounding cells
and can solve or worsen initial CNS damage. This process has a
favorable outcome during acute stress or focal cerebral ischemia,
but can limit regeneration at a later stage. Reactive astrocytes
may be neurotoxic when producing reactive oxygen species or
certain inflammatory cytokines. Local elimination of activated
astrocytes improved axonal regeneration after injury in postnatal
mice (70). Many chronic neurological disorders are accompanied
by chronically stressed, degenerated, and atrophic astrocytes with
loss of function, which adds to the progression of the disease.
Reactive astrogliosis is a complicated phenomenon, however, it
is common in various CNS pathologies. Molecular changes in
astrocytes are highly context specific. Although there is a set of
genes that are consistently upregulated in various pathologies,
about 50% of altered gene expression varies depending on the
type of brain damage (67). Unfortunately, at this point, the lack
of specific markers for heterogeneous, region-specific astrocyte

subtypes significantly limit our understanding of the functional
consequence of reactive gliosis in different neurological diseases.
In addition, the disadvantage in astrocyte, but also microglial
research, is the use of rodent models and in vitro settings that
poorly reflect conditions prevailing in the human CNS.

ASTROCYTE-MICROGLIA
COMMUNICATION

Astrocytes are distributed in a complex network that is connected
by gap junctions and are found in all operational areas of the
brain and spinal cord and all neuronal layers, and thus bridge
and influence neural circuits that are not directly connected.
In addition, astrocytes form long processes with the end feet
structures that allow communication with blood vessels, another
dense multicellular network. Microglia, as revealed by live
imaging, are restless cells and constantly move their processes
through the brain environment (71, 72). Astrocytes-microglia
together with glutamatergic neurons constitute a unit called
the “quad-partite synapse,” which is necessary for the operation
of the circuit and is based on neuro-immune communication
(73). Some interactions between astrocytes and microglia in the
neuronal context are depicted in Figure 1.
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Different Ways of Communication Typify
Astrocyte-Microglial Cross-Talk

Cross-talk between astrocytes and microglia is maintained
in part via secreted mediators, such as growth factors,
neurotransmitters and gliotransmitters, cytokines, chemokines,
innate-immunity mediators and tissue damage molecules (e.g.,
ATP), mitogenic factors, NO, ROS, and metabolic mediators such
as glutamate, that can be used for cell metabolism and may
also mediate tissue changes. In addition, astrocytes, microglia,
and neurons communicate via releasing and responding to
extracellular vesicles. Extracellular vesicles function over long
distances and can contain active biomolecules, including
mRNA and miRNA, that are capable of modulating gene
expression in distant cells. A proteomic study showed that
the extracellular vesicle derived from in vitro ATP stimulated
microglia were able to induce a molecular reaction in
targeted astrocytes (74). Of note, extracellular vesicles may
participate in pathogenesis of neurodegenerative disorders
by transporting and transferring toxic aggregates, such as
tau and AP (75). Reduced levels of presynaptic proteins in
exosomes derived from neurons have been reported early
in disease, and their quantification in patient plasma may
carry prognostic and therapeutic value in neurodegenerative
diseases (76).

Another route for astrocyte-microglia was described in
mice: cross talk may proceed through the gut-brain axis
by which metabolites of dietary tryptophan controlled by
commensal flora act directly on CNS-resident microglia and their
production of Vascular Endothelial Growth Factor-p (VEGF-B)
and TGFa, which regulate astrocyte pathogenic activities during
inflammation and neurodegeneration (77).

Purinergic signaling though P2Y receptors, expressed
in astrocytes and microglia may play a major role in the
communication of microglia with astrocytes during the
inflammatory response. For example, ATP derived from
astrocytes, which binds P2Y12 and P2Y6 expressed by
microglia, promotes microglial phagocytosis, and processes
extension in rats (78). Binding of ATP by microglia and
astrocytes, contingent on which purinergic receptor is expressed,
may evoke calcium currents in both cell types, and the
production of inflammatory cytokines by cultured dorsal horn
microglia (79).

Cytokines Are Important Mediators

Between Astrocytes and Microglia

Reactive glia including astrocytes and microglia can express
and secrete canonical cytokines such as IL-1f8, IL-6, TNEF-
a, IL-18, TGF-B, and IL-10 after acute tissue injury
(80). Contingent on receptor expression, these cytokines
function in both autocrine and paracrine manner. They are
differentially produced by microglia, astrocytes, oligodendrocyte
progenitor/NG2+ cells, and neurons in context-dependent
fashion, being expressed when cells sense dyshomeostasis.
In the neurotypical context, these cytokines occasionally
also play a key roles in physiological processes (81). For
example, the IL-33 cytokine of the IL-1 family expressed in

developing astrocytes in the spinal cord and thalamus plays a
role in synaptic refinement, signaling to microglial IL-1RL1.
In gene-targeted mice, IL-33 deficiency results in a surplus
of excitatory synapses and a hyper-excitable intrathalamic
circuit (61).

In the context of brain injury in mice, cytokines, such
as IL-1B, TNF-a, and IL-6 released by microglia, regulate
astrocytic responses, and lower astrocyte P2Y1 receptor
to enable tissue remodeling and repair (82). By constrast,
another set of cytokines produced by activated mouse
microglia in vitro and composed of IL-la, TNF-a and
complement factor Cql, induces in mouse astrocytes a
putative neurotoxic state astrocytes “Al” (83). Investigation
of astrocytes in Huntington Disease (HD) cingulate gyrus
using snRNA-Seq, with extensive confirmatory steps for RNA
and protein expression, and comprehensive informatics,
disclosed three astrocytic states that mapped to transcriptomic
clusters (84). This study disclosed no evidence in favor of Al
(neurotoxic) or A2 (neuroprotective) astrocytic states in human
neurodegenerative disease.

TGF-f and IL-10 are antagonists to some TNF-a
and IL-1 activities and thus participate in regulating the
inflammatory response. TGF-p produced by astrocytes signals
to microglia among other cells, decreasing expression of some
inflammatory mediators. Microglial TGF-p reduces subacute
neuroinflammation after stroke in mice (85). Cytokine-activated
astrocytes can promote neurogenesis in adult mice in the
sub-ventricular zone (86).

Cross-Talk in Disease

As a result of their diverse and complex roles, microglia and
astrocytes contribute critically to brain homeostasis, and are now
accepted as important disease modifiers.

In the context of inflammatory neurological diseases, cross-
talk between astrocytes and microglia seems particularly
important. Both microglia and astrocytes are considered to
be part of the innate immune system based on their ability
to produce immunomodulators and expression of receptors
associated with innate immunity, such as complement receptors
or Toll-like Receptors (TLRs). For example, the response to LPS
requires TLR-4, which is present on innate immune cells and
microglia. Although murine Tlr4 is expressed only in microglia,
microglia and astrocytes acutely isolated from human brain both
express TLR4.

Appropriate astrocyte-microglia cross-talk in disease is
necessary for astrocytes to support neuronal survival and
function after acute injury. Modeling in mice suggests that
microglia constitute a first line of defense, demonstrating
activation, and fast recruitment to sites of damage to phagocytose
dead cells and debris (87). Secondary to microglial reaction is the
activation of astrocytes, which release inflammatory mediators
that signal to microglia and can recruit MIG infiltrating
hematogenous cells including monocyte-derived macrophages.
Reactive astrocytes upregulate GFAP and undergo morphological
changes leading to the formation of glial scars, which may limit
damage within the affected area (88).
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Response in Disease Is Context Dependent
Whether glial cells adopt a phenotype that aggravates tissue
injury or promotes brain repair, most likely depends on a basic set
of factors, such as the nature of the damaging element, severity
and time course of injury, and precise constellation of signals
from the environment. The response largely depends on the
disease context.

In obesity-induced hypothalamic inflammation of mice,
the responses are induced by inflammatory cytokines such
as TNF-a, CCL2, and IL-6, and involve canonical gliosis
markers (GFAP, Iba-1, and CD11b). This reaction results from
direct binding of astrocytic 4-1BB, a member of TNFRSF
to its ligand 4-1BBL expressed on microglia. This direct
conversation between glia cells promoted monocyte/macrophage
proliferation and migration (89). A three-party cross-talk among
microglia, astrocytes, and neurons has been identified in the
study of viral infection of CNS of mice, via the olfactory
route. Protection against the further spread of viral infection
has been maintained by an early innate barrier composed
mainly of microglia, whose response was regulated by strong
IFNAR signaling from neurons and weaker signaling from
astrocytes (90).

In summary, glial cells regulate and control each other’s
function, migration and reactions. A noticeable bi-directional
conversation between astrocytes and microglia is evident
in the context of neurological disorders. The astrocytes-
microglia interplay may determine the phenotype that astrocytes
and microglia express during disease. Current therapies for
the treatment of neurological disorders and clinical trials
based on blocking inflammatory reactions are manifestly
insufficient. It is useful to maintain awareness that the CNS
environment implicates astrocytes and microglia in programs
and functions that cannot be understood in the context of
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Alzheimer’s disease (AD) is the most prevalent form of late-onset dementia. AD affects
the health of millions of people in the United States and worldwide. Currently, there
are no approved therapies that can halt or reverse the clinical progression of AD.
Traditionally, AD is characterized first by the appearance of amyloid-g (AB) plagues
followed by the formation of intraneuronal neurofibrillary tangles (NFTs) composed of
hyperphosphorylated tau (p-tau). These lesions are linked to synapse loss and eventual
cognitive impairment. Additionally, microgliosis is consistently found in regions of the brain
with AD pathology. The role of microglia in AD onset and progression remains unclear.
Several recent reports indicate that the assembly of the multi-protein complex known
as the NOD, LRR, and pyrin-domain containing 3 (NIrp3) inflammasome by microglia
results in apoptosis spec-like protein containing a CARD (Asc) spec formation, which
then nucleates new A plaques, thus amplifying Ap-associated pathology. NFTs can also
activate the NIrp3 inflammasome leading to enhanced tau-associated pathology. Here,
we will review the role of microglia and the activation of the inflammasome in the innate
immune response to AD.

Keywords: Alzheimer’s disease, microglia, Nirp3 inflammasome, neuroinflammation, neurodegeneration

INTRODUCTION

Alzheimer’s disease is the most common form of dementia. AD results in neuronal death likely
caused by an accumulation of senile plaques primarily composed of amyloid-f (AB) peptides,
first observed by Alois Alzheimer (1). Plaques promote an environment conducive to forming
intraneuronal tau aggregates known as neuritic plaque tau, (NP) tau, and in more advanced stages
of AD, neurofibrillary tangles (NFTs) (2, 3). Recent evidence suggests that neuroinflammation,
mediated through increased levels of pro-inflammatory products released from innate immune
cells, e.g., microglia, contribute to AD, and precedes AP plaque deposition and AD onset (4, 5).
Microglial dysfunction caused by prolonged amyloid-induced microglial activation may also
contribute to AD (6). Microglia are also crucial for maintenance and upholding homeostasis
within the brain (7). Upon activation in numerous pathological conditions, including AD,
microglial function, and morphology change dramatically (7). Monomeric and oligomeric forms
of AP as well as tau aggregates such as NFTs activate microglia in AD (Figure 1). Additionally,
activation of pattern recognition receptors (PRRs) expressed by microglia can influence AD
pathology (8). Microglia and other innate immune cells express several toll-like receptors (TLRs),
which when activated, subsequently result in the activation of NF-kB and the production of
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pro-inflammatory cytokines (9). Additionally, microglia also
express several intracellular PRRs that are not membrane-bound
such as nucleotide-binding domain and leucine-rich repeat-
containing receptors (NLRs) family of receptors, absent in
melanoma 2 (AIM2)-like receptors (ALRs) family of receptors
and the tripartite motif-containing (TRIM) family member pyrin
are known to initiate the assembly of the multi-protein complex
inflammasome (10, 11). In most cases the inflammasome
complex contains apoptosis spec like protein containing a
caspase recruitment domain (Asc), and is also known as an Asc
spec (12).

In this review, we will primarily discuss the role of
inflammasome activation by microglia in Alzheimer’s disease
with a special focus on Nlrp3 inflammasome activation.

INNATE IMMUNE RESPONSE IN AD

Microglia originate from primitive macrophages that exit the
yolk sac and colonize the neuroepithelium and are the primary
immunocompetent cells found within the brain (13, 14). In
a normal physiological state, microglia play a critical role
in multiple developmental events within the central nervous
system (CNS) such as the establishment of neural circuits,
synaptic pruning and remodeling, and neurogenesis (15-21).
Microglia are also responsible for clearing cellular debris and
aggregate-prone proteins including AB as well as harmful
bacteria and viruses through phagocytosis in diseased states
(22). Microglia within a normal adult mouse brain are
highly dense in gray matter areas including the hippocampus,
basal ganglia, substantia nigra, and olfactory cortex (23).
Throughout these areas, the number and role of microglia
is highly regulated by the local microenvironment and their
interactions with surrounding cells such as neurons, astrocytes,
and oligodendrocytes (24).

Studying key Alzheimer’s risk genes has provided critical
insights into the function of microglia and how microglia
modulate pathology in AD. It is known that several genes,
expressed exclusively by microglia in the brain, such as CD33,
a sialic-acid-binding immunoglobulin-like lectin (SIGLECs),
and triggering receptor expressed on myeloid cells 2 (Trem2)
carry single nucleotide polymorphisms (SNPs) that influence
the risk for developing AD (7). CD33, a PRR on the cell’s
surface that recognizes sialylated glycoproteins and gangliosides,
promotes AP deposition and plaque formation (25). Griciuc
et al. (25) also found that CD33 expression impedes microglia’s
uptake and clearance of amyloid-p 42 (AB42), resulting in a
larger plaque burden. Inhibition of CD33 using a subtype-
selective sialic acid mimetic mitigates AR plaque-associated
pathology by increasing AB plaque phagocytosis (26). Trem2
is another microglial surface receptor, it binds phospholipids
and other polyanionic ligands and detects changes in the
lipid microenvironment (27). Studies have shown that Trem2-
deficient AD mouse models exhibit decreased clustering of
microglia around plaques and increased neuritic damage,
suggesting that this gene is crucial for containing early plaque
diffusion (28, 29). Conversely, Trem2 expression in response

to tau has been shown to enhance AD-like pathology (30, 31).
So although it appears that Trem2 is important in enhancing
microglial responses during AD-associated pathology it remains
controversial whether Trem?2 expression is overall beneficial
or pathogenic in AD (29, 31-34). It is also important to
note that many of these findings still require replication in
patient samples to confirm the roles of these molecules in
AD pathogenesis.

Microglia form a lattice throughout the brain and express an
array of PRRs, which sense changes in the brain’s environment
through the detection of danger-associated molecular patterns
(DAMPs) and pathogen-associated molecular patterns (PAMPs)
among other stimuli (10). When a shift in the microenvironment
is detected, these receptors send converging signals that
promote a spectrum of microglial responses from surveillance
to activation (35). As microglia survey their environment
they rapidly extend and retract their filopodia-like processes
within an area of the parenchyma, allowing them to survey
that microenvironment (35). When activated, microglia adopt
different morphologies, and produce various cytotoxic molecules
including pro-inflammatory cytokines and inflammatory
mediators consisting of nitric oxide (NO) and reactive oxygen
species (ROS) (22, 36, 37). In summary, elucidating the links
between innate immune activation and microglia’s inflammatory
responses concomitant with inflammasome activation, is
becoming a crucial research area to better understand AD
pathology and to find new therapeutic targets that could impede
or slow its progression.

NLRP3 INFLAMMASOME ACTIVATION

Several  inflammasomes have been  implicated in
neurodegenerative diseases, the NOD-, LRR-, and pyrin domain-
containing 3 (NLRP3) inflammasome in particular has been
shown to play a key role in the development and progression of
AB-plaque formation as well as tau-induced pathology, which
has been demonstrated in both post-mortem AD patient brain
tissue and in vivo/in vitro transgenic mouse studies (37-42).
The inflammasome is a multimeric protein complex that is
most commonly composed of a sensor, an adaptor, and the
downstream effector caspase-1 (12). Each inflammasome is
named according to the sensor molecule that initiates activation
and is activated through two signals that first prime and then
activate the complex (43) (Figure 1). Upon activation, Nlrp3, and
the majority of other structurally related receptors such as other
NLRs, AIM2, or pyrin can form homotypic PYD-PYD or CARD-
CARD interactions with the adaptor Asc (apoptosis-associated
spec-like protein containing a caspase activating and recruiting
domain) (44, 45). The interactions between these molecules are
composed of an N-terminal pyrin domain (PYD) and C-terminal
caspase-activation and recruitment domain (CARD) and result
in the formation of a ring-like perinuclear complex called an
Asc “spec,” a typical indicator of canonical inflammasome
activation (12, 46). Following inflammasome activation, Asc
recruits procaspase-1 through interactions with the CARD
domain of caspase-1 (47). Procaspase-1 is then converted into
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FIGURE 1 | Role of microglia and canonical NLRP3 inflammasome in Alzheimer’s disease. Cytokines, pathogen-associated molecular patterns (PAMPs), or
danger-associated molecular patterns (DAMPs) bind cell surface receptors [e.g., toll-like receptors (TLRs)] on the microglia, leading to activation of the nuclear
factor-kB (NF-kB) pathway (signal 1). The activation of the NF-kB pathway promotes a signaling cascade, resulting in the expression of cytokines such as pro-IL-18
and pro-IL-18 as well as NLR family pyrin domain containing 3 protein (NIrp3). Through the canonical activation pathway, NIrp3 oligomerizes in response to an
internalized, cytosolic danger signal (DAMP) (signal 2) then recruits Asc and procaspase-1, resulting in inflammasome assembly (Asc-spec assembly) and caspase-1
autoactivation. Activated caspase-1 then cleaves pro-IL-1p or pro-IL-18 and gasdermin (GSDMD). GSDMD cleavage is also induced by caspases 4/5/11 through a
non-canonical activation pathway that detects internalized, cytosolic LPS, and other PAMPs/DAMPs that bypass membrane-bound pattern recognition receptors
such as TLRs. Subsequently, GSDMD induces pyroptosis, presumably releasing Asc-specs that cross-seed extracellular amyloid beta (AB) plaques and creates
Asc-Ap composites that induce a feed-forward cycle amplifying the proinflammatory response. In turn, proinflammatory cytokines including IL-18 and IL-18 induce
neuronal damage and death, causing neurodegeneration. Degraded neurons can then trigger a feedback loop by activating microglia. IL-1R complexes are also
activated, creating a positive feedback loop that drives additional pro-IL-18 production and primes local microglia for inflammasome activation. AD, Alzheimer’s
disease; IL, interleukin; NFT, neurofibrillary tangles; ASC, apoptosis-associated spec-like protein containing a CARD; CARD, caspase-activation and recruitment
domain; LRR, leucine-rich repeat; NACHT, nucleotide-binding oligomerization domain; PYD, Pyrin domain; HMGB1, high mobility group box 1; LPS,
lipopolysaccharide; NF-kB, nuclear factor kappa light chain enhancer of activated B cells created with BioRender.

its bioactive form through proximity-induced autocatalysis,  triggers the cleavage of pore-forming Gasdermin D (GSDMD),
producing mature caspase-1 that cleaves pro-IL-1p and pro-IL- ~ which induces a lytic, pro-inflammatory form of cell death
18 into their respective secreted forms (10, 48). Caspase-1 also  called pyroptosis (49, 50). Generally, priming and activation of
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the inflammasome occurs in response to two different signals,
however, it is possible that one molecule can deliver both
signals. For example, LPS can initiate both the formation of the
canonical and non-canonical Nlrp3 inflammasome involving
human caspases 4/5 and mouse caspase-11 rather than caspase-1
(51-53). Non-canonical Nlrp3 inflammasome activation serves
as another layer of defense for pathogens that have evolved to
bypass membrane-bound PRRs such as TLR4 (54) (Figure 1).
This form of activation is prompted by caspases’ 4/5/11 detection
of cytosolic lipopolysaccharide (LPS), which induces pyroptotic
cell death through GSDMD cleavage (43). In AD, the Nlrp3
inflammasome is responsible for the maturation of caspase-1,
which is in turn responsible for the maturation and secretion of
pro-inflammatory cytokines such as IL-1p and IL-18 that can
activate signaling pathways resulting in neuroinflammation and
neuronal death (5, 12).

NLRP3 INFLAMMASOME IN NORMAL
AGING

The concept of “inflamm-aging” the low-grade chronic
inflammatory state that accompanies aging, is a recent topic of
interest (55). During aging, inflammasome activation can be
triggered by local microenvironment changes associated with
aging microglia (56). For example, aging microglia exhibit altered
cytokine production, making microglial cells more susceptible
to adopting a pro-inflammatory state that also primes the cells
for inflammasome activation (56, 57). Aging microglial cells
also have an increased accumulation of lipofuschin that has
been associated with increased oxidative stress, which may cause
microglia to lose their neuroprotective potential and contribute
to age-related pathology (58, 59). Additional evidence suggests
that components of the inflammasome including caspase-1,
caspase-11, Asc, and IL-1p are increased in the cytosolic
fraction of hippocampal lysates in aged mice, suggesting that
inflammasome formation contributes to inflammation in aging
(60). Consistent with the inflaimm-aging hypothesis, Youm
et al. found that reducing the Nlrp3 inflammasome-dependent
pro-inflammatory cascade alleviated age-associated degenerative
changes across multiple organs (61). This study also showed that
Nirp3 gene expression was lower in younger microglia compared
to their senile counterparts (61). Thus, the status of inflamm-
aging in the brain may be associated with changes in aging
microglia prompted by local microenvironment and systemic
environment states that induce inflammasome activation.

NLRP3 INFLAMMASOME AND THE
MICROBIOME

Emerging evidence has highlighted cross-talk interactions
between the gut microbiome and the brain (62, 63). In AD, the
composition of gut microbiota can influence the development
of or exacerbate the pathology associated with AD (64, 65).
The role inflammasomes play within the gut-brain crosstalk
is less clear. A newly published study that transplanted gut
microbiota from AD patients to either APP/PS1 mice, a double

transgenic mouse that carries chimeric mouse/human amyloid
precursor protein (APP) and human presenilin 1 (PS1) mutations
associated with familial AD, or wild type mice, demonstrated
that the transplantation of the gut microbiome of an AD patient
can influence AD pathology and Nlrp3 inflammasome activation.
This study found that APP/PS1 mice receiving a transplant
of the gut microbiome from an AD patient had increased
expression of Nlrp3 in their intestinal tract and increased
levels of inflammatory factors such as IL-1p and IL-6 in their
peripheral blood (62). These mice also exhibited more severe
cognitive impairment compared to those that did not receive
the transplant. When the gut microbiome from an AD patient
was transplanted into wild type mice, the intestinal expression
of Nlrp3 was also upregulated but their cognitive abilities were
not significantly altered (62). The microglia in the hippocampi
of these mice, however, were still activated and there was still an
up-regulated expression of inflammatory factors. Taken together,
these studies indicate that gut microbiota modulate inflammatory
responses through Nlrp3 inflammasome signaling.

NLRP3 INFLAMMASOME IN AD

Both the accumulation and deposition of AP as well as NFT
formation are detected by cytosolic PRRs, prompting Nlrp3
inflammasome activation in microglia (37, 38). The association
between microglial Nlrp3 inflammasome activation and fibrillar
AP was first demonstrated in vitro by Halle et al. (66). Their
study found that exposing AP fibrils to primary mouse microglia
induces IL-1B secretion in an Nlrp3-specific manner (66).
Recently, soluble AP oligomers and protofibrils have also been
shown to induce Asc spec formation in primary microglia cells
collected from wild type mice (67). Nlrp3 activation has also
been linked with tau aggregates in PS19 mice, a mouse model
that overexpresses the human tau protein carrying the P301S
mutation (39). The association between Nlrp3 inflammasome
activation and tau exacerbates and drives tau pathology in AD
mouse models (38, 39). Related work by Ising and colleagues
was the first to suggest that the Nlrp3 inflammasome forms
a link between AP plaques and NFTs (38). They showed that
Tau22 mice receiving an intracerebral injection of fibrillar AB-
containing APP/PS1 brain homogenates exhibited increased
levels of tau hyperphosphorylation, cleaved caspase-1, IL-18,
and Asc in cerebral samples as well as significantly higher
levels of extracellular Asc specs, which have been shown to
seed AP plaques (37, 38). However, when they injected the
same homogenate in Tau22/Asc ™/~ or Tau22/Nlrp3~/~ mice, tau
hyperphosphorylation did not occur and there were lower levels
of cleaved caspase-1, IL-1f, and reduced Asc spec formation and
release, further verifying that Nlrp3 activation is essential in the
AB-tau cascade (38). These findings demonstrate a link between
both tau and AP pathology and confirm Nlrp3 inflammasome
activation in Tau22 mice. Additionally, Heneka et al used
Nirp3-deficient and caspase-1-deficient APP/PS1 mice to show
that mice unable to activate the inflammasome were spared
from memory deficits and LTP suppression unlike the APP/PS1
mice that exhibited severe deficits in spatial memory formation
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(68). Their findings showed that Nlrp3 inflammasome activation
restricts beneficial microglial clearance functions while Nirp3-
or caspase-1-deficiency increases microglial plaque phagocytosis
(68). Interestingly, new findings support the notion that caspase-
1 activation and pro-inflammatory cytokine secretion precede
AD pathology, implying that Nlrp3 inflammasome activation
is an early pathogenic event in AD (4, 69). Overall, these
data indicate that targeting the Nlrp3 inflammasome in human
clinical trials are warranted to determine whether inhibition of
the inflammasome will hinder AB deposition and NFT formation
and correlate positively with cognitive outcome measures.

NLRP3 INHIBITION AS A THERAPEUTIC
INTERVENTION FOR AD

As Nlrp3 inflammasome activation through both canonical
and non-canonical pathways has been shown to play an
important role in the pathology of AD, the Nlrp3 inflammasome
has emerged as a possible target for future pharmacological
therapies (67, 70, 71). Since Nlrp3 inflammasome activation is
a multi-step process, inhibiting Nlrp3 inflammasome activation
can be accomplished through several different means including:
suppressing molecules that promote inflammasome activation
or formation, silencing upstream signals, or by directly or
indirectly inhibiting the inflammasome complex formation
depending on the molecule targeted (10, 72). Some of the
direct inhibitors, which specifically target Nlrp3-Nlrp3, Nlrp3-
Asc, or NEK7-NlIrp3 interactions, are ginsenoside Rg3, oridonin,
and tranilast (73-75). Ginsenoside Rg3, isolated from Panax
ginseng, specifically blocks IL-18 secretion and caspase-1
activation by inhibiting LPS priming and Nlrp3 inflammasome
assembly (73). In contrast, oridonin, derived from Rabdosia
rubescens, blocks inflammasome assembly and activation by
hindering the NEK7-Nlrp3 interaction, which is crucial for
NIrp3 oligomerization and Asc recruitment to Nlrp3 (74, 76).
Tranilast, a historical anti-allergic drug used in the clinic,
directly suppresses Nlrp3 inflammasome assembly by blocking
NIrp3 oligomerization (75). Examples of indirect inhibitors
include B-hydroxybutyrate (BHB), MCC950, glyburide, and
16673-43-0, a glyburide analog that has no effect on insulin
(77-80). BHB hinders inflammasome formation by inhibiting
K" efflux, which causes mitochondrial damage and exposure
to a mitochondrial-specific phospholipid, cardiolipin, that leads
to Nlrp3 activation (77, 81). MCC950, on the other hand,
selectively blocks both the canonical and non-canonical Nlrp3
inflammasome activation pathways by impeding the ATP
hydrolysis motif (80). Glyburide works by suppressing ATP-
sensitive Kt channels and caspase-1 activation while its analog,
16673-43-0, achieves inhibition by inducing conformational
changes in the inflammasome following Asc’s activation or
aggregation (79, 82).

Additional methods of inhibiting NIrp3 inflammasome
activation using autophagy-inducing treatments and microRNAs
have recently become possible. Some studies have shown that
autophagic proteins such as autophagy-related protein 7 (ATG7),
microtubule-associated protein 1 light chain 3B (LC3B), and

beclin-1 regulates Nlrp3 inflammasome activation by sustaining
mitochondrial integrity (83, 84). This data demonstrated that
deficiencies in autophagic proteins such as LC3B increases
caspase-1 cleavage, Asc spec formation, and IL-1p release
in macrophages (83, 84). Thus, by administering autophagy-
inducing agents including resveratrol and cannabinoid receptor
2 (CB2R) agonists such as HU-308, Nlrp3 inflammasome
activation can be inhibited (85, 86). MicroRNA based post-
transcriptional Nlrp3 regulation also prevents inflammasome
formation by reducing endogenous Nlrp3 protein levels (87, 88).
MicroRNAs are small, conserved single stranded noncoding
RNAs that post-transcriptionally regulate gene expression. They
bind untranslated regions (UTRs) of transcripts and modify
the stability and translation of the target mRNA, producing
an inhibitory effect (89). One such example is miR-223, which
targets a binding site in the Nlrp3 3’-UTR and was validated
in vitro in macrophages (87). This study found that miR-223
overexpression inhibits Nlrp3 protein accumulation and IL-
18 production from the inflammasome (87). Although each
inhibitor has its own mechanism, they all have a similar
effect resulting in decreased inflammasome formation, cytokine
release, and systemic inflammation.

Within the context of Alzheimer’s disease, some of these
inhibitors have already been shown to reduce AD-associated
pathology (Table 1). For instance, JC-124 and oridonin, two
direct Nlrp3 inflammasome inhibitors, have been shown to
reduce amyloid burden and microglial activation in AD
mouse models (71, 91). Oridonin treatment also showed
beneficial effects in attenuating disease pathology by decreasing
inflammatory cytokine release in the hippocampus (91). Another
study that elevated plasma ketone body levels through an oral
dose of medium-chain triglycerides to individuals with AD or
mild cognitive impairment reported a significant increase of
BHB in serum levels and some subjects exhibited cognitive
improvement (93).

TABLE 1 | Potential inhibitors of the Nirp3 inflammasome.

Type Nirp3-targeting Tested Neuroprotection Sources
Agent in AD Observed
Direct Inhibitors  Ginsenoside Rg3 N -2 (73, 90)
JC-124 Y Y (71)
Oridonin Y Y 91)
Tranilast N - (75)
Indirect Ketone bodies Y Y (92)
Inhibitors (i.e., BHB)
MCC950 N - (80)
Glyburide N - (82)
16673-43-0 N - (79)
Autophagy- Resveratrol N - (86)
inducing
HU-308 N - (85)
MicroRNAs miR-223 N . (87)
miR-9 N - (88)

aNeuroprotection observations were not applicable in these studies.
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While these findings seem promising, there are some
limitations to consider when employing these agents
as a potential therapeutic. For example, unintended
immunosuppressive effects may result from the use of inhibitors
that target IL-1P secretion or signaling (94, 95). Likewise,
inhibitors focused on reducing cytokine secretion alone does
not address Nlrp3-induced pyroptosis, which may contribute
to additional pathology (72). Finally, compounds that inhibit
cytokine secretion will not necessarily mitigate pathology driven
by Asc spec formation. Continued Asc spec formation will result
in further seeding of extracellular Af plaques, amplifying amyloid
pathology, and the pro-inflammatory response (37). Overall,
these studies suggest that hindering inflammasome assembly is a
potential intervention method for attenuating AD pathology with
the caveat that inhibition of the inflammasome can have severe
unintended results.

CONCLUDING REMARKS

Traditionally, the cognitive decline associated with AD was
attributed to the accumulation of amyloid and tau but
emerging evidence suggests that neuroinflammation driven
by and triggering additional Nlrp3 inflammasome activation
is another critical contributor to AD pathology. Additional
investigations are needed to gain insight into the contribution of
other inflammasome pathways in neurodegeneration. Additional
research is also needed to further clarify the complexity of
microglias signaling cascades and to determine how to modify
the microglial response as a potential method for managing or
treating AD.

While regulation of Nlrp3 inflammasome assembly and
activation may be a potential therapeutic approach, it is
currently unknown whether targeting inflammasome activation
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The proliferation and activation of microglia, the resident macrophages in the brain,
is a hallmark of many neurodegenerative diseases such as Alzheimer’s disease (AD)
and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved
in regulating microglial proliferation, and CSF1R blocking strategies have been recently
used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly
expressed by many cell types and the impact of its inhibition on the innate immune
system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and
interleukin 34 (IL-34). Recently, it has been reported that microglia development and
maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34
as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease.
Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in
healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic
compartment. However, we observed a reduction in microglial proliferation after IL-34
inhibition in prion-diseased mice, indicating that microglia could be more specifically
targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the
CSF1R/IL34 axis in the systemic and central compartments, important for framing any
therapeutic effort to tackle microglia/macrophage numbers during brain disease.

Keywords: CSF1R (colony-stimulating factor 1 receptor), prion disease, tissue-resident macrophage, chronic
neurodegeneration, proliferation
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INTRODUCTION

Neuroinflammation is a critical component of neurodegenerative
diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), or prion diseases. The neuroinflammatory process is
characterized by a robust activation of the innate immune
system, with an increase in the number of microglial cells
associated with an activated and phagocytic phenotype (1-
3). Experimental models of prion disease present several
shared features of neurodegenerative diseases including protein
misfolding, progressive synaptic degeneration followed by loss of
neurons, microglial activation, and production of inflammatory
cytokines and chemokines (4).

The contribution of local proliferation of microglia, regulated
by the activation of the colony stimulating factor 1 receptor
(CSF1R), has been shown as a disease-modifying mechanism
during the progression of the ME7 prion model of progressive
chronic neurodegeneration (5). Similarly, a prolonged inhibition
of the tyrosine kinase activity of CSF1R blocks microglial
proliferation and prevents synaptic degeneration, ameliorating
disease progression, in the APP/PS1 model (6), the 3xTg
model (7), and the 5xFAD model (8, 9) of AD-like pathology.
More recently, our group has validated this disease-modifying
mechanism in the P301S mouse of tauopathy, demonstrating
that inhibition of CSFIR is effective in repolarising microglia
to a homeostatic phenotype, preventing neuronal degeneration
(10). In recent years, the therapeutic potential of blocking
antibodies and small molecule CSF1R kinase inhibitors has been
demonstrated in inflammatory diseases, neurological disorders,
bone diseases, and cancer, with some candidates currently in
clinical phase testing (11-13). However, the broader impact of
this approach on the innate immune system remains unclear.
CSFIR is expressed by cells of the myeloid lineage (14) and
therefore it is anticipated that the inhibition of CSF1R would
not only affect microglia, but also have potential on-target
effects in circulating and tissue-resident myeloid populations,
with a possible downstream immunosuppressive effect. CSF1R
can be activated by two independent ligands with high affinity,
the colony stimulating factor 1 (CSE-1) (15) and the recently
identified interleukin 34 (IL-34) (16). A potential avenue to
block this pathway more selectively is the specific modulation
of the binding of its ligands, to increase tissue specificity and
reduce side effects. Both ligands have been shown to promote
microglial proliferation (5) but also show a differential temporal
and spatial pattern of expression. Whereas CSF-1 is broadly
expressed (spleen, lymph nodes, cortex, bone marrow, amongst
others), the expression of IL-34 is restricted to a few tissues,
predominantly produced in the skin and the brain, with minimal
overlap with the CSF-1 expression pattern (17, 18). Interestingly,
mice lacking IL-34 (1134'%?) displayed a marked reduction of
Langerhans cells in the skin and microglial cells in the brain,
whereas other tissue macrophages were unaffected, showing that
IL-34 specifically controls the development and maintenance of
these populations (19, 20).

Since IL-34 has been shown to be a tissue-restricted ligand of
CSFIR, and it is crucial for the differentiation and maintenance
of microglial cells in the brain, we aimed to investigate whether

IL-34 inhibition could be used as a selective approach to reduce
microglial proliferation during chronic neurodegeneration with
minimal effects on other tissue-resident myeloid populations.
Here, we first describe the effects of the selective inhibition of IL-
34, compared to CSFIR inhibition, on different tissue-resident
populations in healthy mice, supporting tissue-selectivity of IL-
34. We also demonstrate that IL-34 inhibition decreases the
proliferation of microglial cells in the ME7 prion model, showing
that IL-34 is involved in the regulation of microglial proliferation
and supporting that the inhibition of this cytokine could be used
as a more selective approach to modulate microglial proliferation
in neurodegenerative diseases.

METHODS

In vitro Assessment of CSF1R
Phosphorylation

The N13 murine microglia cell line (21) was cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher
Scientific), supplemented with 10% fetal bovine serum and
50 U/mL penicillin/ streptomycin (Thermo Fisher Scientific).
Cells were maintained in T75 flasks at 37°C in a 5% CO,
humidified atmosphere. Cells were plated at a density of 2
x 10° cells/cm? in 6-well-plates and cultured overnight to
allow adherence. Cells were plated at a density of 2 x 10°
cells/cm? in 6-well-plates and cultured overnight to allow
adherence. Cells were kept in serum-free medium for 4h prior
to stimulation and then incubated for the indicated time points
(5 or 10 min) with recombinant CSF-1 (50 or 100 ng/mL), IL-
34 (50 or 100 ng/mL) (R&D Systems) or LPS (1 pg/mL) as a
negative control for CSF1R pathway activation (22, 23), after
which cells were immediately lysed in RIPA buffer (Thermo
Fisher Scientific), supplemented with protease and phosphatase
inhibitor cocktails (Roche, Thermo Fisher Scientific). Protein
lysates were concentrated using Microcon-10kDa Centrifugal
Filter Units (Merck Millipore), according to manufacturer’s
instructions and protein concentration was determined using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Protein
lysates were subjected to SDS-PAGE and Western blot.

In vitro Assessment of IL-34 Neutralizing

Antibodies Using CellTiter Glo

Mouse myelogenous leukemia (M-NFS-60) cells were CSF-
1 (R&D systems, 216-MC/CF) starved for 24h. In white
clear bottom 96-well-plates 10 pnL IL-34 antibody (mouse
monoclonal IgG2A (v1.1 manufactured by Genscript, (24, 25)),
rat monoclonal IgG2A (MAB5195, R&D Systems) and sheep
polyclonal IgG (AF5195, R&D Systems) and 10 L IL-34 stimulus
(R&D systems, 5195-ML-CF) were incubated at 37°C for 30 min
before 80 wL M-NFS-60 cells (10% cells/well) were added.
After two days incubation at 37°C cell viability was assessed
using CellTiterGlo (Promega, G7570) following manufacturer’s
instructions. Hundred microliter reconstituted CellTiterGlo was
added per well, plates were shaken for 2min and incubated at
room temperature for 10 min before luminescence was read.
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Experimental Model of Prion Disease and

Pharmacological Treatments

C57BL/6] mice (Harlan laboratories) and ¢-fims-eGFP (macgreen)
mice (26), characterized by eGFP expression under the c-
fms (CSF1R) promoter, were bred and maintained in local
facilities. Mice were housed in groups of 4-10, under a 12h
light/12h dark cycle at 21°C, with food and water ad libitum.
To induce prion disease 6 weeks old C57BL/6] or macgreen
mice were anesthetized with a ketamine/xylazine mixture (85
and 13 mg/kg), and 1 pL of ME7-derived (ME7 group)
brain homogenate (10% w/v) was injected stereotaxically and
bilaterally at the dorsal hippocampus, coordinates from bregma:
anteroposterior, —2.0 mm; lateral, £1.7 mm; depth, —1.6 mm.
Naive animals were used as controls. All procedures were
performed in accordance with U.K. Home Office licensing.
Group sizes were defined after performing power calculations,
in order to achieve a significant difference of p < 0.05, in light
of a retrospective analysis of our previous published results,
to reach a power between 0.80 and 0.90, depending on the
specific experimental conditions. The effect size was calculated
taking into consideration the strength of association between
the variables, the sensitivity, and the variation of any dependent
variable. The calculations are the customary ones based on
normal distributions.

For chronic treatment of healthy mice, rat monoclonal
CSFI1R-blocking antibodies (BE0213, Bio X Cell) and rat
monoclonal IL-34 antibodies (MAB5195, R&D Systems) were
diluted in PBS, pH 7.4 and administered by intraperitoneal
injections 3 times a week for 3 weeks at a dose of 250
pg per injection. For chronic treatment in ME7 prion mice,
mouse monoclonal IL-34 IgG2A (24) was administered biweekly
for 4 weeks at a dose of 60 mg/kg, starting 12 weeks
after prion inoculation. For acute treatment in ME7 prion
mice, 1 pg of mouse or human-specific IL-34 neutralizing
antibody (sheep polyclonal IgG, AF5195, or AF5265, R&D
Systems) was stereotaxically and bilaterally injected into the
dorsal hippocampus, coordinates from bregma: anteroposterior,
22.0mm; lateral, +1.7mm; depth, ?1.6mm, 12 weeks after
induction of prion disease. Mice received daily intraperitoneal
BrdU injections (7.5 mg/mL, 0.1 mL/10 g weight in sterile saline;
Sigma-Aldrich) and were sacrificed 1 week after intracerebral
antibody administration. Weight of the mice was monitored
in all experiments, and no differences were observed between
treated and untreated groups. All the experimental groups
were randomized to avoid gender and cage effects, and all the
experiments were performed double-blinded.

Histology

Mice were terminally anesthetized with an overdose of sodium
pentobarbital and transcardially perfused with heparinised 0.9%
saline. Brain and peripheral organs (liver, kidney, and spleen)
were fixed in 4% paraformaldehyde overnight and immersed
in 30% sucrose in PBS for at least 24h. Tissue was cut in
serial sections (35 wm thick, coronal sections of the brain) with
a cryostat (Leica) and stored free-floating in cryoprotectant

solution [30% sucrose, 30% ethylene glycol, 1% Polyvinyl-
pyrrolidone (PVP-40) in 0.1M PB, pH 7.4] at —20°C. For
histological analysis of peripheral organs, 4-6 sections from
each organ were randomly selected. For analysis of cortex,
hippocampal CA1 and dentate gyrus, every 6th systematically
sampled section, spanning the entire area of the hippocampus
and totalling 6-9 sections were used for quantification. Tissue
sections taken from macgreen mice were directly mounted
on slides with Mowiol/DABCO (Sigma-Aldrich) mixture.
Immunohistochemistry of brain sections from C57BL/6] mice
was performed as previously described (5). Briefly, sections were
subjected to DNA denaturation with 2N HCI (30 min, 37°C),
followed by incubation with 5% normal serum and 5% BSA in
PBS to block non-specific binding. After rinses with PBS-0.1%
Tween 20 (PBST), sections were incubated overnight at 4°C
with rabbit anti-Ibal (Wako, 019-19741) and anti-BrdU (Biorad,
MCA2060). After washes with PBST, sections were incubated
with host-specific Alexa 488- and 568-conjugated secondary
antibodies (Invitrogen). Brain sections and sections of peripheral
organs from macgreen mice mounted with Mowiol/DABCO
were imaged with a Leica DM5000B microscope coupled to
a Leica DFC300FX camera. Ibal-positive, BrdU/Ibal double
positive and eGFP-positive cells in brain and organs of macgreen
mice were counted using the cell counter tool of the Image]
software and cell number was normalized to the quantified area.

Analysis of Skin-Resident Langerhans
Cells

Ears were fixed in 4% paraformaldehyde overnight and then
stored in PBS. The ears were split into dorsal and ventral halves
and each pair was mounted on slide under coverslip mounted
in Vectashield anti-fade mounting medium. For each half ear,
5 fields were chosen at random and 0.9-pum thick sections were
collected on a LSM700 confocal microscope (Zeiss) using settings
for eGFP fluorescence with a 40 x objective. For each field a
z-stack was taken to cover the full thickness of the Langerhans
cells layer-typically 5-100 images depending on the flatness of
the ear. Cell volume and number were measured using Volocity
software (Quorum Technologies). Cells were identified as those
with a GFP intensity >2SD from the mean image intensity. Non-
cellular objects <200 or >5,000 wm? were excluded. Objects with
a long axis >100 pm were also excluded-this eliminated most
auto-fluorescent hairs in the z stacks. Each image was checked
manually to remove cell doublets and unexcluded hair profiles.

Flow Cytometric Analysis of Brain and
Blood Samples

Mice were terminally anesthetized with an overdose of sodium
pentobarbital and transcardially perfused with heparinised 0.9%
saline. Brain hemispheres were harvested in PBS with 2% FCS
and 2mM EDTA (FACS buffer) and mechanically triturated and
enzymatically dissociated using the Neural Tissue Dissociation
Kit (P) (Miltenyi), according to manufacturer’s instructions.
Samples were passed through a cell strainer of 70 um mesh (BD2
Falcon) with FACS buffer, and centrifuged at 500 x g for 10 min
at 4°C. After the second wash, cells were re-suspended in 37%
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Percoll (GE Healthcare) and centrifuged at 500 x g for 30 min at
18°C. The supernatant and myelin layers were discarded, and the
cell pellet enriched with mononuclear cells was resuspended in
FACS buffer. Blood samples were harvested by cardiac puncture
and collected in EDTA-coated tubes. Brain cells and blood
samples were split in several tubes and immunostained. Primary
antibody labeling was performed for 1h at 4°C, using the
following antibodies: rat-anti-mouse CD11b (BD Biosciences,
clone M1/70), rat-anti-mouse CD45 (Biolegend, clone 30-F11)
and rat-anti-mouse Ly6C (BD Biosciences, clone AL-21) and
Fixable Viability Dye eFluor™ 450 (eBioscience). Moreover,
unstained cells and isotype-matched control samples were used
to control for autofluorescence and non-specific binding of
antibodies. After staining, erythrocytes in blood samples were
lysed in RBC lysis buffer (eBioscience). Cells were washed and
resuspended in FACS buffer. Samples were run on a BD FACS
Aria Flow cytometer, recording 100,000 events per sample. Data
was analyzed using Flow]Jo software.

SDS-PAGE and Western Blot

Frozen brain samples and peripheral organs were homogenized
in T-PER™ Tissue Protein Extraction Reagent (Thermo Fisher),
N13 cells were lysed in RIPA buffer (Thermo Scientific),
supplemented with protease inhibitors (EASYpack, Roche) and
phosphatase inhibitors (PhosSTOP, Roche). Homogenates were
centrifuged at 13,000 rpm and the supernatant was collected.
Protein was quantified using BCA assay (Thermo Fisher)
following the manufacturer’s instructions.

40 g protein of N13 cell lysates was loaded to 7.5% Mini-
PROTEAN® TGX Stain-Free™ Protein Gels (BioRad) and
transferred to nitrocellulose membrane using the Trans-Blot®
Turbo™ RTA Mini Transfer Kit (BioRad). After blocking with
5% BSA in TBS/0.1% Tween20, membranes were incubated with
a combination of rabbit polyclonal antibodies against phospho-
M-CSF receptor (Tyr546, Tyr708, Tyr723, and Tyr923, Cell
signaling), phospho-AKT (Ser473, Cell signaling), or phospho-
p44/42 MAPK (Erk1/2) (Thr202/Tyr204, Cell signaling) over
night at 4°C. Membranes were washed in TBS and further
incubated with an HRP-labeled anti-rabbit IgG (BioRad) for
2h at room temperature. Membranes were incubated with
the SuperSignal™ West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific) and signal was detected on the
ChemiDoc Imaging System (BioRad). Membranes were stripped
using the Restore™ Western Blot Stripping Buffer (Thermo
Fisher Scientific) and reprobed with mouse monoclonal CSF-
IR antibody (D-8, Santa Cruz Biotechnology), anti-AKT
(Cell signaling), or anti-ERK1/ERK2 antibody (9B3, abcam),
followed by HRP-labeled anti-mouse or anti-rabbit IgG antibody
(BioRad). Intensity of protein bands was quantified using
Adobe Photoshop.

Elisa

Nunc MaxiSorp™ flat-bottom 96-well-plates (Thermo Scientific)
were coated with F(ab’)2 fragment anti-rat or anti-mouse
IgG (H+L) (Jackson ImmunoResearch) overnight. Plates were
washed with PBS + 0.05% Tween20 and incubated with
blocking buffer (PBS containing 0.05% Tween20 and 1% BSA)

to block non-specific binding sites. Plasma samples or tissue
lysates diluted in blocking buffer were incubated for 2h or
overnight. A standard was generated using respective anti-
IL-34 or anti-CSFIR antibodies that were used for in vivo
treatment. After washing, plates were incubated with peroxidase-
conjugated anti-rat or anti-mouse Fcy subclass 2a-specific IgG
(Jackson ImmunoResearch) for 2 h, then washed and incubated
with 1-Step™ Ultra TMB-ELISA Substrate Solution (Thermo
Scientific). The reaction was stopped with 2N H;SO4 and the
signal was measured on a plate reader at 450 nm.

CSF-1 and IL-34 in plasma or brain were measured by
commercially available immunoassays (R&D systems), according
to manufacturer’s instructions.

Statistics

Data are shown as mean + SEM and were analyzed using
the GraphPad Prism 6 software package (GraphPad Software),
using two-way ANOVA with Tukey’s post-hoc test for multiple
comparisons, Student’s t-test or one-way ANOVA followed by
Tukey’s post-hoc test for multiple comparisons, as indicated.
Differences were considered significant at p < 0.05.

RESULTS

IL-34 Induces Activation of the CSF1R
Signaling Pathway and IL-34-Mediated Cell
Growth Can Be Inhibited Using

Neutralizing Antibodies

To investigate whether IL-34 activates the CSFIR pathway
in microglia, we stimulated a murine microglia cell line
(N13) with either IL-34 or with CSF-1 and analyzed tyrosine
phosphorylation of the receptor and downstream signaling
molecules ERK1/ERK2 and AKT. Stimulation with either IL-
34 or CSF-1 leads to increased phosphorylation of CSFIR
and downstream mediators, indicating that IL-34 binds to and
activates the CSFIR pathway, triggering downstream signaling
pathways related to survival and proliferation (Figure 1A). IL-
34-mediated growth of myelogenous leukemia cell line M-
NES-60 can be inhibited by three different IL-34 neutralizing
antibodies, which were further used in this study and showed
similar potencies [mouse monoclonal v1.1 (25): ICsg 0.43 nM, rat
monoclonal MAB5195: ICsy 0.53 nM, sheep polyclonal AF5195:
ICsp 2.05Nm] (Figure 1B), indicating that CSF1R-dependent
signaling can be modulated by IL-34 inhibition.

CSF1R- but Not IL-34 Antibody-Mediated
Inhibition Leads to a Reduction of

CSF1R*/Ly6C'° Blood Monocytes

To determine the effect of CSFI1R vs. IL-34 blockade on blood
immune cells, macgreen mice were treated by intraperitoneal
injections of CSFIR- or IL-34- neutralizing antibodies
(monoclonal rat IgG2a, 250 pg per injection, 3 injections
per week), vehicle (PBS), or rat IgG2a isotype for 3 weeks
(Figure 2A). The use of macgreen mice allows to monitor the
abundance of CSFIR™ cells based on the csflr-eGFP transgene
reporter expression. Measuring antibody titers in the plasma
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FIGURE 1 | Activation of the CSF1R signaling pathway by IL-34 and CSF-1 and inhibition of IL-34-mediated cell growth using IL-34 neutralizing antibodies. (A) N13
microglia cell line was stimulated with IL-34 (50 or 100 ng/mL), CSF-1 (50 or 100 ng/mL) or LPS (1 pg/mL) for 5 or 10 min. Cell lysates were subjected to Western
blotting which showed increased phosphorylation of CSF1R and downstream ERK1/2 and AKT after IL-34 and CSF-1 stimulation. (B) IL-34 neutralizing antibodies
used in this study (mouse monoclonal IgG2A [v1.1, (24)), rat monoclonal IgG2A (MAB5195, R&D Systems) and sheep polyclonal IgG (AF5195, R&D Systems)]
prevented IL-34-dependent cell growth of M-NFS-60 in a similar nanomolar range. n = 3, data shown represent mean + SEM, two-way ANOVA followed by Tukey’s
multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001, comparisons are stimulations vs. unstimulated control (C) for each time point.

following treatment using a rat IgG2a-specific ELISA showed  to be low in the plasma at baseline (~30 times lower than CSF-1
comparable levels of antibody in anti-IL-34 and anti-CSFIR  levels) and were increased after CSFIR antibody treatment
treated mice, while levels of isotype control were found to  similar to CSF-1 levels, while IL-34 was undetectable after IL-34
be significantly higher (Figure 2B). Administration of CSFIR  antibody treatment (Figure 2D). Flow cytometric analysis of
antibodies, but not IL-34 antibodies, increased CSF-1 levels  blood immune cells demonstrated a significant decrease in
in the plasma (Figure 2C), which has been described as an ~ CSFIRT monocytes after CSFIR antibody treatment, which,
indication of target engagement (27). Levels of IL-34 were found  although a slight trend toward a reduction in cell number can be

Frontiers in Immunology | www.frontiersin.org 51 October 2020 | Volume 11 | Article 579000


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Obst et al.

IL-34 in Chronic Neurodegeneration

250K

200K

150K

100K

50K

SSC-A

250K

200K

150K

100K

50K

250K

200K

150K

100K

SSC-A

250K

200K

150K

100K’

50K

sk

macgreen mice anti-IL-34/ anti-CSFAR (i.p.)

(6 weeks old)
| 13 4 4 4 1]
sample
collection
week 3
rat 19G2a c CSF-1 D
dkk *kk
L —
dkk o
| —|
500 — Sy 10000+ 1000+
= 8000 a4 950
£ 49 = E —_ = 90-
D o= |
= 300+ . g o000 5 6007
< -y & = 2
o 2004 ] A 3 4004
o - o 1000 = 3
& 1007 A g'w O 500 %o m_ * 7 = 200-
= nd. 7 BN
R ol &8 G A B 0
O £ & of S o & o
QQ? 0,$Q %((\ ] ,\\‘;3 QQ) (}A‘Q Q\ ;\Y\\/
@ \,O (§ B3 \}'O ’bo
’b(‘\\ q;o
total eGFP* eGFP"
100K
° °
*
o
+
['
[T
250K o
200K 10
] 10° w0t 10’ ' o 100 10t 10°
Csfir-eGFP
PBS isotype
eGFP* Ly6C"
150K 5
oo o 12000 ! 12000
p o 100004 F , 10000
0 100 10t 10° § 8000 @ 8000
anti-CSF1R anti-iL-34 % 0 em Y %, 6000
1 Q 4000 B @ 4000
250K _|> 2000 F i _J>‘ oo
100K % 0 Q. b‘
50K QQ OGQ %Q'\.\'\\{/b
" " TS
[ 10 10 10 ,b(\
LysC

eGFP™ cells

FIGURE 2 | Effect of CSF1R- and IL-34 antibody treatment on blood immune cell compartment. (A) Macgreen mice were treated with anti-CSF1R or anti-IL-34 (both
rat monoclonal IgG2A) by intraperitoneal injections of 250 g antibody 3x a week for 3 weeks. (B-D) Levels of rat IgG2a, CSF-1 and IL-34 were measured in blood
plasma after the treatment by ELISA, which showed increased IL-34 and CSF-1 levels after CSF1R- but not IL-34 blockade. (E) Flow cytometric analysis of CSF1R*
cells in the blood of anti-CSF1R- and anti-IL-34- treated mice demonstrated a significant reduction after CSF1R- but not IL-34 antibody treatment. Graphs indicate
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comparison test. *p < 0.05, *p < 0.01, **p < 0.001.

FIGURE 2 | respective cell numbers per 5 x 10* CD45" cells. (F) Flow cytometry of eGFP* Ly6CM and eGFP* LyBC"° subpopulations of CSF1R-expressing cells in
the blood shows a reduction in Ly6C cells after anti-CSF1R treatment, while Ly6C" cells were not affected. Graphs indicate respective cell numbers per 5 x 10*
CD45" cells. PBS n = 8, isotype n = 8, anti-CSF1R n = 8, anti-IL-34 n = 7, data shown represent mean 4+ SEM, two-way ANOVA followed by Tukey’s multiple

observed, was not significant after IL-34 antibody administration
(Figure 2E, for gating strategy see Supplementary Figure 1).
Further analysis of CSFIRT subpopulations showed that the
reduction in blood monocytes after CSFIR antibody treatment
is largely due to an effect on cells with high CSFIR expression
(eGFPM) as opposed to cells with intermediate CSF1R expression
(eGFP™, Figure 2E). The anti-CSF1R-sensitive eGFPM cells
have been previously identified as CD14* CD16™" human non-
classical monocytes, while the eGFP™™ population constitutes the
CD14™+ CD16%/~ intermediate and classical monocytes (28),
equivalent to the murine non-classical Ly6C!® monocytes and
the classical Ly6CP monocytes, respectively. In accordance with
an effect on eGFPM cells, the non-classical Ly6C!® monocytes
were predominantly reduced after anti-CSF1R treatment, while
classical Ly6C" were not affected (Figure 2F). Again, both
Ly6CM and Ly6C'® populations were not significantly reduced
after IL-34 antibody administration. In contrast to blood immune
cells, CSFIR™ cells in the bone marrow were not affected by
either CSFIR or IL-34 antibody treatment, indicating that CSF1R
is not required for the differentiation of myeloid progenitors
in the marrow (Supplementary Figures 2A,B). Taken together,
these results indicate that the number of CSF1IR™ monocytes in
the blood depends on CSF1R, and is less dependent on IL-34.

Systemic IL-34 Blockade Reduces
Epidermal Langerhans Cells, but Not
Macrophage Populations in Liver and

Kidney or Microglia in the Brain
We next aimed to determine the effect of IL-34 and CSFIR
antibody treatment on different populations of tissue-
resident macrophages. Measurement of rat IgG2a levels
in liver, kidney, spleen, and brain by ELISA showed equal
distribution of IL-34- and CSFIR- neutralizing antibodies
in each organ, with a distribution between different organs
from highest to lowest as follows: spleen > kidney > liver
> brain (Supplementary Figure 3). Administration of IL-34
neutralizing antibodies for 3 weeks did not change the number of
CSFIRY macrophages in the liver and in the kidney (Figure 3A).
In contrast treatment with a CSFIR blocking antibody lead
to a pronounced reduction of macrophages in both organs,
demonstrating a 41% reduction in liver-resident macrophages
and a 85% reduction of macrophages in the kidney (Figure 3A).
Skin-resident CSFIRT Langerhans cells, were significantly
decreased after treatment with either IL-34- or CSF1R blocking
antibodies (Figure 3A). This indicates that skin-resident
Langerhans cells depend on IL-34- mediated signaling through
CSF1R, while macrophages in liver and kidney are maintained
by IL-34- independent CSFIR signaling.

To find out whether IL-34 antibody treatment affects
microglia number in the brain we quantified the number

of CSFIRT cells in the cerebral cortex, hippocampal CAI,
and dentate gyrus. Peripheral administration of CSF1R or IL-
34 blocking antibodies for 3 weeks did not overtly affect
the number of microglia in the brain, with only a small
reduction in the CA1 region of the hippocampus observed after
anti-IL-34 administration (Figure 3B). Since previous reports
showed that CSF1R inhibition using small molecule inhibitors
leads to a reduction in microglia (5), it is likely that we
did not reach optimal antibody penetration into the brain
with the administered dose of antibody to achieve sufficient
target engagement.

Chronic Systemic Administration of IL-34
Blocking Antibody Lacks Sufficient Central
Target Engagement, Not Modifying the

Microglial Population in ME7 Prion Mice

We next aimed to investigate whether chronic systemic IL-
34 antibody treatment would affect microglia numbers in
the ME7 prion mice, a model of neurodegeneration which
is characterized by a pronounced expansion of the microglia
population (5). Based on our previous observation showing a
lack of effect in the brain with 250 pg antibody per injection
(~10 mg/kg, Figure 3B), we increased the administered dose to
60 mg/kg per injection (Figure 4A). After 4 weeks of biweekly
intraperitoneal injections of the antibody in prion diseased mice,
microglia populations were analyzed by flow cytometry and
histology. While ME7 prion mice showed increased numbers
of microglia compared to naive animals, as assessed by flow
cytometry (CD45™ CD11b™ cells) and histology (Csflr-eGFP*
cells), there was no difference in microglia numbers in brains
of anti-IL-34 treated animals compared to control-treatment
(Figures 4B,C). The proportion of CD45M CD11b* cells was
not affected by disease or treatment, indicating no effect on
infiltration of peripheral myeloid cells into the brain (Figure 4B).
Levels of isotype and anti-IL-34 antibody were detectable in
plasma and brain using a mouse-IgG2a specific ELISA, which
revealed higher levels of isotype compared to IL-34 antibody
in both compartments, with a brain/plasma ratio of 0.165
for the isotype and 0.141 for the IL-34 antibody (Figure 4D).
CSF-1 levels in the brain were significantly increased in prion
mice compared to naive mice, but unaffected by the anti-
IL34 treatment (Figure 4E). IL-34 levels were around 300 times
higher in the naive brain than CSF-1 levels, but not changed in
the context of prion disease or after IL-34 antibody treatment
(Figure 4E). In order to determine whether the absence of
an effect of IL-34 antibody treatment on microglia numbers
could be due to insufficient target engagement, we developed
an ELISA to capture mouse IgG2a from brain lysates, followed
by detection of IL-34 molecules bound to captured IgG2a.
Using this assay we detected bound IL-34 exclusively in brain
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FIGURE 4 | Peripheral IL-34 antibody injections in ME7 prion mice did not affect microglia numbers. (A) Macgreen mice infected with prion disease were treated with
anti-IL-34 (mouse monoclonal IgG2A) by intraperitoneal injections at a dose of 60 mg/kg twice a week for 4 weeks. (B) Flow cytometric analysis of CSF1R-positive
cells in the brain of anti-IL-34- treated mice showed no effect on number of CD45™ CD11b* or CD45" CD11b* cells. Graphs indicate respective cell numbers per
10° living cells. (C) Histological analysis of CSF1R-positive cells in the cortical brain shows unchanged microglial numbers after anti-IL-34 treatment. (D) Levels of
mouse IgG2a were measured in blood plasma and brain lysates by ELISA, which showed higher levels of isotype than anti-IL-34. Values for tissue/plasma ratio are

indicated above bars. (E) CSF-1 and IL-34 were measured in brain lysates, showing no alterations of IL-34 and CSF-1 levels after anti-IL-34 administration.
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test. "o < 0.05, *p < 0.01, **p < 0.001.

FIGURE 4 | (F) IL-34 bound to anti-IL34 in brain lysates were detected by ELISA, by coating plates with anti-mouse IgG2a to capture IL-34 antibodies present in
brain lysates and detecting IL-34 bound to IL-34 antibodies with an IL-34 specific detection antibody (R&D systems). Levels of IL-34 bound to IL-34 antibodies were
<15% from total IL-34 levels. Scale bar 100 wm. n = 8 per group, data shown represent mean + SEM, two-way ANOVA followed by Tukey’s multiple comparison

lysates of mice treated with IL-34 antibody, but not with isotype
or PBS (Figure 4F). The percentage of IL-34 bound to IL-34
antibody showed a dose dependent increase after 2 injections
in healthy mice, demonstrating increased target engagement
with increasing doses of IL-34 antibody (Figure 4F). However,
ME?7 prion mice treated for 4 weeks with biweekly injections
of 60 mg/kg showed that only ~13% of total IL-34 was bound
to the antibody, suggesting a low degree of target engagement
(Figure 4F).

Intracerebral Administration of IL-34
Blocking Antibodies Reduces Microglia

Proliferation in ME7 Prion Mice

Since we did not achieve a significant degree of target engagement
in the brain with peripheral antibody administration, we
aimed to determine whether administering the antibody
directly into the brain of prion mice could affect microglia
numbers. IL-34 antibodies were stereotactically injected into
the hippocampus 12 weeks after induction of prion disease,
a timepoint of pronounced microglia proliferation (5), and
brains were collected 1 week after injection (Figure5A).
Analysis of cells double-positive for the proliferation marker
BrdU and Ibal, a marker of microglia/macrophages, showed
increased microglial proliferation and increased total number
of Ibal-positive cells in the hippocampus of prion mice
compared to naive mice, while injection of a mouse-specific
IL-34 neutralizing antibody significantly reduced microglia
proliferation by about 50% (Figure 5B). Administration of
a human-specific IL-34 antibody did not have an effect on
microglia proliferation, possibly due to reduced homology
with mouse IL-34 [71% (16)]. Microglial proliferation was
higher in ME7 compared to ME7 mice treated with isotype,
probably due to the injection itself causing microgliosis
associated to the local injury, which naive and untreated
ME7 mice did not receive. The reduction of microglial
proliferation however did not result in a reduction of total
microglia numbers after IL-34 antibody administration at the
analyzed timepoint, probably due to the acute and transient
nature of the intervention, which merely affected the small
proliferating sub-population of the total microglial population
(Figure 5B). The finding that microglia proliferation was locally
reduced after direct intracerebral injection provides proof-
of-concept that IL-34 is involved in regulating microglia
proliferation in the context of chronic neurodegeneration and
that IL-34 blockade could be used as a strategy to reduce
microglia proliferation.

DISCUSSION

In this study we explored the effect of inhibition of IL-
34 on blood monocytes, systemic tissue macrophages, and
microglia in health and neurodegenerative disease, modeled
by a murine model of prion disease. IL-34 is a tissue-specific
ligand of the CSF-1 receptor predominantly expressed in the
brain and in the skin and has been shown to be crucial
for the development and survival of microglia and epidermal
Langerhans cells (19, 20). We showed here that inhibition of
IL-34 does not affect monocytes and macrophage populations
in many peripheral tissues, with an exception of skin-resident
Langerhans cells. Even though we did not achieve sufficient target
engagement in the brain after peripheral administration of IL-34
blocking antibodies, we observed a local reduction of microglia
proliferation when injecting IL-34 antibodies directly into the
brain of mice infected with prion disease, indicating that IL-34
is involved in driving proliferation of microglia in the context of
neurodegenerative disease.

IL-34 and CSF-1 were shown to activate the CSF1R signaling
cascade in a similar manner (29) and have an overall similar
effect on human monocyte differentiation in vitro as shown
by transcriptional profiling and pathway analysis (30). We
have also found that the activation pattern of CSFIR and
downstream pathway components AKT and ERK1/2 induced by
IL-34 resembles the one induced by CSF-1 in microglia. Although
IL-34 and CSF-1 seem to similarly affect CSFIR activation and
macrophage differentiation, they have distinct tissue expression
pattern with limited spatial overlap (29). A more recent report
confirms the distinct spatial distribution of IL-34 and CSF-
1 in the brain parenchyma, however describes differential
transcriptional signatures in microglia exposed to CSF-1 and
IL-34, suggesting divergent effects of the two CSFIR ligands
on microglia phenotype that might account for the observed
differences in regional microglial transcriptional profiles (31).
In accordance with previous reports which showed that IL-34
is more widely expressed in the brain than CSF-1 (17, 19, 20),
we observed that overall levels of IL-34 protein are ~300 times
higher than CSF-1, highlighting its predominant role in the brain.
However, we also observed that IL-34 levels did not further
increase in the brain of prion-diseased mice.

It was demonstrated previously that CSF1R inhibition using
tyrosine kinase inhibitors can be used as a strategy to decrease
microglia proliferation in neurodegenerative disease models,
which led to beneficial effects such as reduced neuronal loss
and behavioral deficits in mouse models of prion disease (5),
tau pathology (10), and A pathology (7, 9). Long-term CSF1R
inhibition could potentially increase risk of infections and lead to
disturbance of tissue homeostasis due to the reduction of CSF1R-
dependent macrophage populations in multiple organs. In a
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FIGURE 5 | Intracerebral IL-34 antibody administration resulted in reduced microglia proliferation in ME7 prion mice. (A) Mice infected with prion disease received a
single intracerebral injection of mouse- or human-specific anti-IL-34 (sheep polyclonal IgG) and brains were analyzed 1 week later. (B) Histological analysis of
BrdU/Iba1-positive microglial cells in the cortex showed a reduction after treatment with a mouse-, but not with a human-specific antibody. Scale bar 100 pm. Naive n
=6, ME7 n =12, ME7 + isotype n = 10, ME7 + anti-mIL-34 n = 8, ME7 + anti-hIL-34 n = 7, data shown represent mean + SEM, two-way ANOVA followed by
Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, **p < 0.001.

Listeria monocytogenes infection model, CSF-1/IL-34 blockade  susceptibility (32), indicating an immunosuppressive effect as
or treatment with anti-CSF-1 alone increased susceptibility to  observed with CSF-1 blockade can be prevented with anti-IL-34
bacterial infection, although to a lower degree than anti-TNF  treatment. CSF1R antagonism also lead to higher susceptibility
therapy (32). Interestingly, IL-34 blockade did not alter infection = of mice to lethal West Nile virus infection and lack of virologic
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control in both brain and periphery, highlighting the importance
of myeloid cells in restriction of viral replication and the
restimulation of antiviral T cells recruited to the CNS (33). On
the other hand, a CSFIR tyrosine kinase inhibitor showed a good
safety and tolerability profile in patients with rheumatoid arthritis
over a course of 3 months, causing only minor side effects
related to compromised Kupffer cell function (27), however the
long-term consequences of CSF1R pharmacological inhibition
are not well-understood. Other possible side-effects of long-term
CSFIR blockade might include disturbances of bone formation
and resorption as well as the function of pancreatic f cells (see
Martin-Estebane and Gomez-Nicola (34) for further discussion).

A potential way to circumvent affecting multiple macrophage
populations is to target IL-34, which is predominantly expressed
in the brain. We aimed to evaluate whether inhibition of this
more tissue-restricted ligand of CSFIR would cause a reduction
in microglia proliferation without having a major impact on
peripheral myeloid cell populations. In support of this strategy,
the administration of recombinant IL-34 into the brain caused
locally increased microglia proliferation similar to CSF-1 (5),
showing that IL-34 can induce proliferation of microglia in
the brain. In IL-341¢Z/12¢Z mice which lack IL-34, microglial
numbers are strongly reduced in many brain regions such
as cortex, hippocampus and striatum (19, 20), indicating that
IL-34 is at least partially responsible for maintenance of the
population. Targeting IL-34 using an antibody-based approach,
we showed that specific inhibition of IL-34 was sufficient to
reduce microglia proliferation present in prion pathology, at
least when IL-34 was inhibited over a short period of time by
administration of IL-34 antibodies directly into the brain. This
finding suggests that IL-34 is partially involved in regulating
microglia proliferation in neurodegenerative disease. However, it
proved to be challenging in our study to target brain-intrinsic
IL-34 using systemically administered neutralizing antibodies
probably due to their poor brain penetrance which prevented
sufficient antibody titers to efficiently neutralize biological
function of IL-34 in the brain. Although two recent reports
showed a reduction in microglial numbers after peripheral
administration of IL-34-specific monoclonal antibodies at high
doses (32, 35), we did not observe a modulation of microglial
numbers after chronic systemic antibody treatment in healthy
mice or mice infected with prion disease. We found IL-34
to be ~300 times higher in the brain than CSF-1, while
in the blood it was nearly absent. This high abundance of
IL-34 in the brain emphasizes the difficulty in efliciently
targeting this cytokine with neutralizing antibodies. Similarly,
peripheral administration of CSFIR blocking antibodies did
not lead to a reduction in microglia in cortex, dentate gyrus
and CAl. The fact that blocking CSF1R using small molecule
inhibitors resulted in pronounced depletion of microglia in
several mouse models (5, 7, 9, 10), further indicates that the
strategy applied in this study using blocking antibodies is not
favorable. Lin et al. and Easley-Neal et al. provide first proof
that manipulation of IL-34 can be used to modify the microglia
population in the gray matter of most brain regions (35)
and that this approach might be relevant in the context of

inflammatory diseases and cancer (32). We extend these findings
by showing that in a model of neurodegenerative disease, which
is characterized by a pronounced expansion of the microglia
population predominantly in the hippocampus, inhibition of
IL-34 leads to reduced microglial proliferation. In order to
provide further proof-of-concept that IL-34 inhibition can be
used to tackle neurodegenerative disease, it is inevitable to
apply other strategies which offer an improved brain penetrance
profile, ideally by using small molecule inhibitors, which to
date does not exist. By contrast, it was recently shown that
prion disease induced in IL-342%/12Z mice did not change the
number and activation of microglia and rather accelerated prion
disease progression (36). It is possible that in the genetically
modified mice with a constitutive loss of function of IL-
34, CSF-1 compensates for the absence of IL-34 and drives
proliferation through CSFIR to expand the microglial population
in prion disease. It is also possible that during long term
anti-IL34 treatment, CSF-1 will take over the function of IL-
34 in maintaining and expanding the microglial population
during neurodegeneration, given that it is also increased during
disease. This possibility needs to be investigated in the future
using more suitable pharmacological strategies than peripheral
antibody administration.

Chronic inhibition of IL-34 did not majorly affect the
abundance of blood monocytes or tissue-resident macrophage
populations in liver and kidney, which were sensitive to CSF1R
blockade, suggesting IL-34- independent mechanisms of survival,
most likely through CSF-1. In line with this, a natural mutation
in the Csf-1 gene (op/op) caused a reduction in macrophages
in most tissues of the body (12), and long-term treatment
with a CSF1R-blocking antibody lead to a complete depletion
of Kupffer cells in the liver and prevented the development
of non-classical Ly6Cl° monocytes in the blood (37), which
we likewise observed. It was previously shown, that genetic
deficiency of IL-34 resulted in decreased numbers of microglia
in most brain regions, while there was no effect on myeloid
cells in blood and bone marrow, Kupffer cells in the liver,
lung alveolar macrophages, and dendritic cells in the lung and
spleen (20). Similarly, a specific impact of IL-34 blockade on
Langerhans cell homeostasis, but not on liver, intestine and
kidney macrophages after IL-34 antibody administration has
been recently shown (32). We have also observed an effect
on Langerhans cells, which were reduced after both CSF1R-
and IL-34 antibody treatment, confirming a role of IL-34 in
regulating their survival as well as the efficacy of anti-IL-34
antibodies. Overall, sensitivity of macrophage populations to
IL-34 inhibition seems to be defined by the spatial expression
pattern of IL-34, which rarely overlaps with CSF-1 expression.
Thus, myeloid cells located in regions dominated by IL-34
expression can be targeted by inhibition of IL-34, which is
restricted to fewer organs, potentially reducing unwanted side
effects caused by therapeutic intervention targeting the CSF1R
pathway. We propose that IL-34 inhibition could be a viable
strategy to decrease proliferation of microglia in the context of
neurodegenerative disease, with restricted impact on peripheral
myeloid cells.
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Multiple Sclerosis (MS) is a neurodegenerative disease characterized by multiple focal
lesions, ongoing demyelination and, for most people, a lack of remyelination. MS lesions
are enriched with monocyte-derived macrophages and brain-resident microglia that,
together, are likely responsible for much of the immune-mediated neurotoxicity. However,
microglia and macrophage also have documented neuroprotective and regenerative
roles, suggesting a potential diversity in their functions. Linked with microglial functional
diversity, they take on diverse phenotypes developmentally, regionally and across disease
conditions. Advances in technologies such as single-cell RNA sequencing and mass
cytometry of immune cells has led to dramatic developments in understanding the
phenotypic changes of microglia and macrophages. This review highlights the origins of
microglia, their heterogeneity throughout normal ageing and their contribution to
pathology and repair, with a specific focus on autoimmunity and MS. As phenotype
dictates function, the emerging heterogeneity of microglia and macrophage populations in
MS offers new insights into the potential immune mechanisms that result in inflammation
and regeneration.

Keywords: microglia, macrophages, single-cell analysis, single-cell RNA sequencing, multiple sclerosis,
remyelination, ageing

INTRODUCTION

Microglia are a specialized population of myeloid cells in the brain and spinal cord, and depending
on the species and anatomical region, account for 0.5-16.6% of total central nervous system (CNS)
cells (1, 2). Under homeostatic conditions they are the primary macrophage-like cell in the CNS. To
maintain homeostasis microglia act as sentinels, continually surveying their environment by
extending and retracting their motile processes, ready to respond to the first signs of pathogenic
invasion or tissue damage (3). In the event of inflammation, microglia help orchestrate the immune
response, balancing the risk of potential harm to delicate CNS tissue and supporting tissue repair
and remodeling. The central role of microglia in the defense and maintenance of the brain and
spinal cord implicates them in nearly all brain pathologies (4).
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Microglia are derived from the embryonic yolk sac and take
residence in the CNS early in development (3). As the brain and
spinal cord mature, microglia respond to the changing
environment and, help shape CNS tissue development;
microglia contribute to the remodeling of postnatal neural
circuits and play a role in synaptic pruning during postnatal
development (5, 6). This bidirectional communication with the
CNS during development helps establish a unique microglial
identity. Once established, microglia density is sustained by
balancing microglia proliferation and cell death, without a
contribution from blood-derived cells (7).

In the last decade, advancements in technologies such as single-
cell RNA sequencing and lineage tracing has shed light on the way
microglia function under steady state conditions and during
disease. Lineage tracing and genetic fate mapping allow microglia
to be distinguished from other macrophage-like cells, which
becomes crucial during pathological conditions as monocyte-
derived cells enter the CNS parenchyma from the periphery and
the two cell types become virtually indistinguishable from one
another using classical markers (8). Techniques such as MARS-Seq
and Drop-Seq, among many others, allow gene expression to be
analyzed at the single-cell level. The ability to focus on microglia
explicitly, combined with single-cell sequencing has allowed greater
insight into cell trajectories, cell states, gene networks, and
receptor-ligand interactions. This information supplements what
is known about microglia across the lifespan, during development
and during disease, including autoimmune demyelinating
disorders such as multiple sclerosis (MS).

The pathological hallmark of MS is the formation of
demyelinating lesions in the brain and spinal cord (9). These
focal lesions are ubiquitously associated with the infiltration and
activation of immune cells. Microglia are among the first
responders and remain within lesions until the lesion resolves or
becomes inactive. The lesion microenvironment changes over time
and differs with anatomical location—i.e. white matter versus grey
matter. The presence or absence of remyelination further
complicates the lesion environment. Microglia are influenced by
these changing lesion environments and are tasked with responding
to the associated complex immune milieu. Understanding various
microglia functions in MS lesions may help develop therapeutic
interventions that tip the scale of the immune response towards
repair and regeneration and away from tissue damage.

In this review, we discuss what is known about microglia
origin and development; similarities and differences between
human and murine microglia; and microglia heterogeneity
throughout life, in the context of CNS autoimmunity and
during remyelination and ageing. The heterogeneity of
microglia during development, across the lifespan and in MS
offers new insights into the potential immune mechanisms
resulting in tissue inflammation or tissue regeneration.

MICROGLIA ESTABLISHMENT IN THE CNS

Microglia are CNS resident macrophages of the mononuclear
phagocyte system (10). Under steady-state conditions, they are

the primary resident myeloid population in the brain and spinal
cord. Microglia first appear in early development (~E9.5 days
post-conception) from a population of primitive macrophages
that mature from mesodermal erythromyeloid progenitors in the
embryonic yolk sac (11, 12). These primitive macrophages do not
require the transcription factor Myb for their development,
unlike monocyte-derived macrophages and those of the
hematopoietic stem cell lineage (13). Initially, the primitive
macrophages that give rise to microglia lack the classic
leukocyte marker (Cd45) and express the receptor tyrosine
kinase C-kit. They progressively lose C-kit expression while
gaining expression of Cd45 as they mature (12, 14). These cells
migrate through the developing vasculature to the brain
rudiment, where they differentiate into microglia (13, 15). This
migration starts around E9.5 in mice. Once inside the CNS,
microglia undergo extensive local proliferation and spread out to
populate the entire developing brain, ultimately acquiring their
unique identity in tandem with neural tissue development (16).

Murine microglia isolated from various life stages reveal a
progressive change in gene expression pattern that occurs in
parallel with the developing brain as they influence and adapt to
the changing CNS environment (17, 18). This reciprocal
interaction between the developing brain and the maturing
microglia population heavily influences the establishment of a
unique microglia identity. Microglia identity is driven, in large
part, by the activity of the critical lineage dependent transcription
factors, Pu.1 and C/ebp (19). Mice lacking Pu.1 do not develop a
microglia population (13). Other critical regulators of microglia
identity include signal-dependent transcription factors such as
Maf, Mef2c, Sallland Irf8 (15, 20-22).

Local CNS factors maintain a healthy microglia population.
Signalling through the colony-stimulating factor 1 receptor
(Csflr) is vital for microglial survival in mice, both
developmentally and throughout the lifespan (23). Csfl and Il-
34 are the two known ligands for Csfl1r that are both found in the
CNS. Interestingly, microglia in white matter, grey matter and
from distinct brain regions differ in their reliance on either I1-34
or Csfl (24, 25). In the mature mouse brain, Tgf-f is another key
regulator of microglia identity through the activity of Smad
transcription factors (26, 27). During embryonic and early
postnatal development, where there are high levels of microglia
proliferation, Tgf-f is also a crucial contributor (28). Following a
burst of postnatal proliferation, microglia self-renew slowly in a
stochastic manner where the processes of proliferation and
apoptosis are tightly coupled (7). While the exact rate of
turnover is yet to be agreed upon, it is apparent that there are
different rates of microglia turnover depending on brain location
(7, 29) where human microglia divide on an average of 4.2 years,
but some may not divide for over 20 years (30). Mouse microglia
turnover approximately every 15 months (31).

The CNS contains other immune cells that may regulate
microglia function. Outside the CNS parenchyma resides several
distinct myeloid cell populations including perivascular,
meningeal and choroid plexus macrophages. These populations
are collectively known as border associated macrophages
(BAM) (32, 33) or CNS-associated macrophages (CAM) (34).
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Heterogeneity between and even within BAM populations has
recently been uncovered and their roles in mediating immune
cell entry and activation of T-cells investigated (32, 35). BAMs
display heterogeneity with respect to the expression of antigen
presentation genes appearing postnatally, suggesting that BAM
diversity is primarily shaped after birth, in part under the
influence of microbiome-derived stimuli (36). The interactions
between BAM cells and parenchymal microglia remains to be
studied. Other immune cell populations reside in the
cerebrospinal fluid such as lymphocytes, dendritic cells,
neutrophils and monocyte-derived cells (32). These and
peripheral blood-associated immune cells infiltrate the
parenchyma during injury and under disease conditions to
affect microglia function (37). The extent to which these cells
exert a remote influence on microglia activity remains to be
fully understood.

MURINE MICROGLIA HETEROGENEITY
THROUGHOUT LIFE

The advent of new technologies has allowed the exploration of
cell biology at the single-cell resolution. Previous genomic
strategies such as bulk RNA sequencing were focused on
investigating global gene expression changes. These bulk
strategies measured the average gene expression across a
population of cells, which presented significant limitations in
cases where cell types are heterogenous or divided into several
populations with potentially different functions (38). To
overcome this, Tang and colleagues developed single-cell
sequencing technologies that used a combination of PCR
amplification and microarray tools (39). With the expansion of
new tools such as, MARS-Seq (38), Drop-Seq (40), Smart-Seq
(41), Smart-Seq2 (42), Cel-seq (43), CEL-Seq2 (44) and SCRB-
Seq (45)—that have been reviewed extensively by others (46,
47)—it is now possible to determine the transcriptome of cells or
nuclei at an individual cell level. The study of microglia with
single-cell resolution has allowed significant advances with
recent developments in bioinformatics (48), such as defining
cell trajectories (49), deciphering cell states, constructing gene
regulatory networks (50) and inferring receptor-ligand
interactions (51, 52).

One important discovery from single cell transcriptomic work
is the presence of different microglial populations that vary
phenotypically across development and lifespan. Embryonic
and postnatal development is characterized by several unique
microglia populations not present in adults (53, 54). For
example, at E14.5 there is a population of metabolically active
microglia enriched with lactate dehydrogenase (Ldha), an
enzyme involved in glycolysis that produces lactate (53). This
population is also enriched with migration inhibitory factor
(Mif), which is often associated with microglia during
inflammation (8). These observations suggest an overlap
between microglia populations in development with those
found during inflammation. During development, microglia

prune synapses, clear dead cells and regulate cell numbers (55),
which may account for this microglial inflammatory signature.

During the transition from embryonic development into the
early postnatal period, there is some phenotypic overlap in
microglia populations (53, 54). A population of proliferative
microglia are enriched during embryonic development and at
early stages postnatally (53). Proliferative microglia were
enriched with different cell cycle-related genes and were found
in equal magnitudes at E14.5 and P4/5, but not at P30 (53),
which parallels other work on the proliferation of microglia (7).
These proliferative microglia express genes related to the DNA
damage response (Anklel, Ligl), histone mRNA decay (Eril) and
epigenetic function such as histones and chromatin modifiers
(54), suggesting that proliferation is largely limited to the
embryonic and early postnatal time points when the microglia
population is established.

During the first three postnatal weeks another microglia
population arises in developing white matter axonal tracts.
This early postnatal period coincides with active myelination
of the corpus callosum and cerebellum in mice (56, 57). Three
independent groups have defined this interesting population
of microglia. Wlodarczyk and colleagues found a population of
microglia expressing Cdllc that are a significant source of
Insulin-like growth factor 1 (Igfl) (58), an important survival
factor that promotes myelin development (59). When Igfl was
conditionally removed from these Cd11c microglial cells, there
was reduced myelin gene expression (58), which is consistent
with the finding that microglia regulate myelin development
(60). Similarly, using single-cell RNA sequencing, Hammond
and colleagues identified a population of microglia enriched in
the developing axonal tracts they referred to as axonal tract
microglia (ATM) (53). These ATMs were characterized by the
distinct expression of genes related to lysosomal activation
(Lampl, Cd68) and possessed an amoeboid morphology (53).
Microglia prune myelin sheaths in development (61), which may
account for the amoeboid morphology and lysosomal activation
characterizing ATM. Li and colleagues independently identified
an equivalent population that they termed proliferative-region-
associated microglia (PAM) (54). These amoeboid PAMs
preferentially phagocytosed fluorescently labelled beads relative
to other microglia phenotypes (54). PAMs were found to engulf
newly formed oligodendrocytes, which incur significant cell
death upon the onset of CNS myelination (62). The emergence
of the PAM phenotype coincides with myelination onset and,
therefore, may play an essential role in clearing the overproduced
oligodendrocytes (63). PAMs also upregulated genes associated
with lipid metabolism, lipid transport and lysosomal
acidification, presumably necessitated by the phagocytosis of
lipid-rich oligodendrocytes (54). The CD11c (58), ATM (53)
and PAM (54) all contained common distinguishing genes such
as Sppl, Igfl and Gpnmb, suggesting these populations are the
same. Although, a comparison of these populations is needed to
confirm the extent of overlap (Figure 1).

Microglia diversity decreases after puberty, when microglia
become more homogenous with fewer distinct phenotypes but
with considerable variance in expression levels of homeostatic
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Cst7, Lpl, Clec7a, Itgax, Spp1,
1gf1, Apoe, Axl, Ank, Ch25h
(Keren-Shaul et al., 2017b)

Spp1, Igf1, Lyz2

Spp1, Lyz2, Cxcl, Ccl5, Gpnmb,
Ifit3, Apoc1, Ccl12, Rmi2, Cd74
(Plemel et al., 2020)

genes that are common to all five datasets (Spp7, Igf1, Lyz2).

FIGURE 1 | Overlap of upregulated genes between early postnatal microglia and microglia in diseased models. Subsets of early postnatal microglia (ATMs, PAMSs,
Cd11c+) with similar transcriptomic profiles were observed in three independent studies (53, 54, 58). The transcriptomic profile of an Alzheimer’s model (DAMs) (64)
and an acute demyelination model (8) also show overlap with these postnatal microglia. The top ten upregulated genes from each dataset are shown with three

Spp1, Gpnmb, Igf1,
Lgals3, Fabp5, Lpl,
Lgals1, Ctsl, Anxa5, Cd9
(Hammond et al., 2019)

Spp1, Gpnmb, Lpl, PId3,
Ctsl, Csf1, Igf1, Ctsb,
Slc23a2, Gpx3
(Li et al., 2019)

Dkk2, Saa3, Tslp, BC021767,
Trpc4, Fsd2, Gpnmb,
Pla2g2d, Gpr126, Atp6v0d2
(Wlodarczyk et al., 2017)

genes (Figure 2) (17, 53, 54). Adult homeostatic microglia are
characterized by genes such as Fcrls, Clqa, Selplg and Tmem119
(17, 27, 66, 67). Interestingly, the previously thought canonical
microglia markers (P2ry12, Cx3crl, Tmeml119) are not found to

be uniformly expressed across all homeostatic clusters and
therefore may not be a robust way to detect microglia in vivo
(53). The transition of microglia from the postnatal phenotype to
the adult is dependent upon the transcription factor Mafb,

=7
&

Mif, Fabp5 (Cell Growth,
Motility, Inflammation)

Ms4a7 (BAM-like)
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FIGURE 2 | Changing microglia heterogeneity throughout development. Peak microglial heterogeneity is seen during embryonic development, with a decrease in
adulthood, and a subsequent increase in the aged brain (65). Enriched genes and phenotypes significant to each microglial developmental stage are shown, with
genes that are unique to each stage in blue. Hammond et al. reported a subset of embryonic microglia uniquely expressing Ms4a7, suggesting a similarity to BAMs.
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without which microglia upregulate antiviral genes and lose their
homeostatic nature (17).

Regional differences in microglia phenotypes may reflect their
functional requirements (68). For example, the cerebellum has a
high neuronal turnover rate compared to the striatum and has
been found to house a microglia subset that appears to specialize
in debris clearance and apoptotic cell detection (Figure 3). This
subtype is characterized by the presence of the genes more
commonly associated with inflammation, such as Axl, Apoe,
Cd74, and MHC-I genes. As the striatum consists of a neuronal
population that is relatively stable throughout adulthood, it does
not require a phagocytic microglia phenotype and is therefore
accompanied by a homeostatic microglia phenotype lacking
expression of activation genes (69). The deep brain structures
also showcase a distinct variety of microglia. Microglia in the
basal ganglia nuclei differ in their densities, morphologies and
electrophysical properties (70). In the ventral tegmental area of
the basal ganglia, genes related to metabolism are depressed and
those required for growth factor release and phagocytosis
are upregulated.

Age-related changes to microglia populations occur and suggest
an overall heightened inflammatory response with regional
variability (68). While whole-brain analysis demonstrates a
significant overlap between microglia populations in young and
aged mice, there is an expansion of two microglia populations
enriched in the aged brain (53). These age-associated microglia
populations are either enriched in the chemokine Ccl4, lipoprotein
lipase (Lpl) or genes associated with interferon response such as
Ifitm4, Ifit3, and Irf7. With age, microglia accumulate myelin
fragments within lysosomal structures (71), which likely account
for new age-related microglial populations. The dominance of
inflammatory subpopulations may contribute to progressive
neurodegeneration, which is often age-dependent (53, 54, 72).

SIMILARITIES BETWEEN HUMAN
AND MURINE MICROGLIA

The similarities and differences between murine and human
microglia have been explored in more detail elsewhere (27, 65).
Here, we will briefly review recent work that has combined
single-cell RNA sequencing with multiplexed mass cytometry
and comprehensive histological analysis to explore species-
specific microglia heterogeneity (73-75). The study of human

microglia is challenging due to the relative scarcity of non-
pathological human brain tissue. However, recent studies have
taken advantage of microglia isolated from post-mortem brains
of donors without diagnosed neurological disease and from
tissue resected during the treatment of epilepsy, brain tumours
and acute ischemic stroke that is isolated from outside the area of
pathology and deemed histopathologically normal.

Human microglia have not been extensively studied at the
embryonic level; however, studies by Zhong et al. and Kracht
et al. corroborate mouse data, suggesting there is a higher level of
heterogeneity in the gestational period, which culminates in
microglia acquiring a more homeostatic phenotype (76, 77).
Like mice, human microglia can be differentiated based on
their developmental stage, suggesting there is a progressive
developmental program for human microglia development. At
early gestational weeks nine through eleven microglia are
enriched in genes such as ITGAX, CLEC7A, AXL, and PKM,
while the later gestational weeks, fifteen to seventeen, are
enriched with more canonical microglia genes (CX3CRI,
TMEM]119, P2RY12). Functions have yet to be ascribed to
these phenotypes, but initial steps have been taken to compare
microglia clusters to functions based on gene ontology
designations (77).

To compare and contrast microglia heterogeneity within and
between species, Masuda and colleagues sequenced 3,826
microglia from healthy and injured (facial nerve axotomy and
cuprizone) mouse brains in addition to 1,180 human cortical
microglia and 422 CD45+ cells from MS brain tissue (78). While
some of the homeostatic genes translated well between mouse
and human (Cst3, P2ry12, Tmeml119, Emrl), human microglia
were found to be more diverse and had clusters with higher
expression of chemokines (CCL2, CCL4) and distinct
transcription factor profiles (EGR2, EGR3) (78-80). This study
identified homeostatic human microglia clusters with distinct
profiles, but also profiles that partially overlap with those of
murine microglia. This same group further explored microglia
heterogeneity across 18 different species using an extensive
dataset that included 1,069 human microglia. They reported
significant microglial heterogeneity in humans compared to all
other mammals (75).

Using both single-cell RNA sequencing and mass
cytometry, Sankowski and colleagues observed both age
and spatial (white vs grey matter) heterogeneity in human
microglia (81). Enriched in humans is a microglia population
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FIGURE 3 | Regional differences in microglial phenotypes in the mouse brain. Regions showing similar microglial phenotypes are similarly coloured (cortex and
striatum = blue, cerebellum and hippocampus = yellow). Phenotypic characteristics and signature genes for each region are shown.
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expressing the gene SPPI that encodes for a proinflammatory
cytokine, osteopontin (78, 82, 83). In people under the age of 30,
the proportion of microglia expressing SPPI is negligible.
However, people over the age of 50 show a five to ten-fold
increase in microglia expressing SPPI, suggesting microglia
become more inflammatory as one ages. The human age-
associated proinflammatory microglia are synonymous with
inflammatory profiles identified in mice. In the same study,
comparisons between white and grey matter were also made,
highlighting the upregulation of the MHC-II antigen
presentation complex related genes, CD68 and HLA-DR in the
white but not the grey matter (81).

Regional variability in microglia signatures was further
explored using multiplexed mass cytometry of human
microglia (84). Bottcher and colleagues analyzed microglia
expression across five brain regions and found two prominent
patterns (84): microglia located in the temporal and frontal lobe
were defined by low levels of the mannose receptor CD206,
whereas those in the thalamus, subventricular zone and
cerebellum had no expression of CD206. These CD206 low
microglia were distinct from what are presumably perivascular
macrophages that expressed high levels of CD206. This study
also found that microglia express similar genes in the fresh and
post mortem isolates, albeit at slightly different levels, which
validates the use of post mortem tissue in the study of human
microglia signatures (84).

There are some common findings concerning microglia
density in both mice and humans, with higher microglia
density in the white matter than grey matter. Other similarities
include relatively lower densities in the cerebellar cortex
compared to regions of high density, such as in midbrain and
brainstem structures (2, 75, 85). Despite these commonalities,
overall microglial density varies markedly between the two
species. Reported differences include a higher microglial
density in the frontal cortex of mice compared to humans and
more microglia in the human cerebellum and hippocampus
compared to mice (75). Despite these differences in density,
the morphological features of microglia remain relatively similar,
including branch points, terminal points and dendrite length.
The functional importance of these species’ differences and the
effect that these differences might have on our understanding of
microglia during neurological diseases such as MS remains to be
fully elucidated.

MICROGLIA/MACROPHAGE
HETEROGENEITY IN THE CONTEXT OF
CNS AUTOIMMUNITY

In MS, microglia and macrophage likely serve diverse roles and
acquire distinct phenotypes given the variable nature of the
disease. MS is characterized by demyelinating lesions along with
progressive degeneration of white and grey matter (86, 87). In the
active stages of MS—with the presence of new lesions—there is a
dissemination of lesions in anatomical space and over time. At any
given moment, a person with MS is likely to have old and new

lesions in both the grey and white matter regions; these differences
affect the pattern of microglial gene expression (88). The potential
effects of lesion evolution on microglial/macrophage phenotypes
are compounded by the presence of myelin regeneration, or
remyelination. Microglia found in demyelinating and
remyelinating conditions possess different phenotypes (78), with
demyelination-associated microglia resembling patterns
found associated with neurodegenerative disease (64). In parallel
with lesion formation, MS is characterized by ongoing
neurodegeneration that is often measured by advancing brain
atrophy (89). Overall, the microglia and macrophage phenotypic
heterogeneity and their diverse responses are likely related to
temporal differences in lesion progression coupled with potential
ongoing remyelination or neurodegeneration and interactions
with other cell types. Regional variability in microglia
phenotypes in the non-diseased state is likely to add complexity
in the immune response during MS with disease characteristics
convolving onto regional disease heterogeneity (Figure 4) (88).
Animal models are designed to replicate different features of the
disease to understand various aspects of MS. In this section, we
focus on microglia and macrophage’s role during the autoimmune
attack in the CNS. Much of what we know about the mechanism
of lesion formation and evolution comes from the experimental
autoimmune encephalomyelitis (EAE) model.

TOXICITY OF MICROGLIA AND
MONOCYTES DURING EAE

In EAE, various myelin antigens are given to a mouse in
conjunction with an adjuvant to stimulate a myelin mediated
autoimmune response [reviewed by (90, 91)]. Although there is
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FIGURE 4 | Factors contributing to microglial heterogeneity in MS lesions. A
variety of factors likely contribute to the diversity of the microglial phenotype in MS.
These include: 1) temporal lesion evolution, 2) ongoing neurodegeneration and 3)
remyelination/demyelination in the surrounding environment, 4) location within the
lesion and 5) anatomical location within the brain.
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variability between models, therapeutics that prevent T-cell
activation or trafficking prevent EAE (92, 93). Despite T-cells’
critical role in initiating autoimmune injury, T-cells collaborate
with microglia and macrophages to induce toxicity (94). For
example, Heppner and colleagues used transgenic mice
expressing the suicide gene thymidine kinase under the
expression of the Itgam (cd11b) promoter to kill myeloid cells
and found that ablation in these mice considerably repressed
EAE (95). Similarly, the removal of Takl—an NF-xB cell
signalling mediator—from microglia and BAM almost
completely prevented autoimmune injury (96). Selective
removal of Takl prevented demyelination but also dramatically
suppressed T-cell infiltration into the CNS suggesting that
microglia or BAM regulate lymphocyte trafficking into the
CNS during EAE. Monocyte-derived macrophages are also
required for the autoimmune injury during EAE. Monocytes
are elevated in the blood before an increase in disability and
monocytes’ entry into the CNS triggers EAE progression (97, 98).
Preventing monocyte entry by removing the chemokine receptor
Ccr2 reduces clinical disability and toxicity in the CNS during
EAE, suggesting that monocyte-derived macrophages are toxic
(97, 99). Taken together, the combined efforts of microglia, BAM
and monocyte-derived macrophage are required in the
pathogenesis of EAE and likely contribute to lesion formation
and evolution in MS.

It is still unclear whether these cells induce direct toxicity, or
whether they act through indirect mechanisms. For example,
while both microglia and macrophage produce reactive oxygen
species (ROS) during EAE, a greater proportion of monocyte-
derived macrophages express ROS producing enzymes than
microglia (100). The production of ROS by phagocytes during
EAE produces injury to myelin and axons alike, and can be
diminished with ROS and reactive nitrogen species (RNS)
scavengers (101, 102). Other direct mechanisms of toxicity by
microglia and macrophage include the release of glutamate (103
105), or the expulsion of numerous potentially toxic cytokines
(100, 106, 107). The toxic properties of microglia or macrophage
may also be indirect. Microglia prevent the migration of
infiltrating macrophages into spared tissue (8), and may also
serve important “gate-keeping” functions for other leukocytes
that are toxic during EAE. The roles of microglia are likely to
evolve throughout the disease, as demonstrated by the finding
that microglia ablation with a Csfl inhibitor during EAE
progression accelerates clinical disability (108).

MICROGLIA HETEROGENEITY
DURING EAE

Despite the hundreds of receptor systems expressed by microglia
(109), their activation and response to damage does have
similarities across disease conditions. For example, microglia in
an environment of amyloid induced neurodegeneration form a
disease-associated microglia (DAM) (64), characterized by the
downregulation of canonical microglial genes (P2ryl2/13,
Cx3crl, Tmem119, Cst3) and upregulation of genes mapped to

lipid metabolism pathways and phagocytosis (Apoe, Lpl, Cst7,
Ctsd, Tyrobp, and Trem2). Certain genes, such as Hexb are stably
expressed in homoeostatic microglia, DAM, and other
neurological conditions (64, 110). Elements of this DAM
signature were later observed in microglia activated by diverse
conditions such as following white matter injury (8, 53), EAE
(35), MS (78, 82), amyloid lateral sclerosis (ALS) (64, 111),
ageing (53, 111), facial nerve injury (112) and cancer (81).
Krasemann and colleagues analyzed gene expression patterns
from microglia isolated during Alzheimer’s disease, EAE and
ALS mice models and identified a common microglia response
(111). The microglia response to neurodegeneration required
lipid receptor and trafficking elements Apoe and Trem2 under
diverse disease conditions, suggesting that some aspects of
microglia activation in murine disease models are conserved.
Critical aspects of this microglia signature were stimulated by the
injection of apoptotic neurons that were later engulfed by
microglia. The typical microglia response to diverse disease
conditions may be a consequence of clearing debris, dead cells
or other neurodegenerative molecular patterns (113).

Despite a common microglia response to disease, there is also
a diversity in the microglia response during EAE and MS (35,
78). Jordao and colleagues identified four different clusters of
disease-associated microglia in mice induced with EAE (35).
EAE microglia were enriched with a phenotype characterized by
markers of inflammation and proliferation Ly86, Ccll, Cxcl10,
Mki67, Ccl4, and Ccl5. The Ccl5 and Cxcl10 provide more of an
understanding of this phenotype as these chemokines aid in
leukocyte recruitment, which could be a potential future avenue
to explore (35). They also identified a heterogenous response by
other CNS resident macrophages such as those from the
leptomeninges, the perivascular space and choroid plexus (35),
suggesting a CNS-wide transcriptional change during
autoimmune-mediated CNS injury. Ajami and colleagues also
identified a population of CNS associated macrophages enriched
in expression of diverse cytokines that were not found in healthy
mice and peaked during symptomatic EAE (114).

Diverse populations of microglia were also found in the MS
brain (78). Three subsets of MS-specific microglia were identified.
Subsets were enriched for SPPI or CD74, which also defined
microglia from mice given the demyelinating agent cuprizone
and isolated under either demyelinating or remyelinating
conditions, respectively (78). The transcriptional signature of
microglia may one day be used to determine whether a lesion is
demyelinating or remyelinating. The MS lesion exhibits marked
diversity: Park and colleagues used imaging mass cytometry to
examine the heterogeneity of CNS-associated macrophages and
found that their diversity could be stratified based on their relative
location within the MS lesion with enriched lysosomal LAMP1 or
receptor tyrosine kinase MERTK expression on myeloid cells
located at the lesion rim (115, 116). Taken together, microglia
initiate certain conserved activation patterns in diseased conditions
but also, microglia exhibit several unique phenotypes likely
reflecting their local environment. Understanding the function
and ubiquity of disease-specific microglia phenotypes will provide
a greater understanding of neurological diseases.
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MONOCYTE HETEROGENEITY
DURING EAE

Monocyte diversity in the CNS similarly increases during
autoimmunity. Ajami and colleagues identified five subsets of
monocytes in the CNS that changed their expression profile
throughout EAE (114). Peak EAE is defined by the simultaneous
expression of three or four different cytokines in a given cell, not
found in homeostatic subsets. By comparing the surface markers of
blood-derived myeloid cells to the CNS-resident macrophage, Ajami
and colleagues identified a new cell surface marker, Cd49e—or o5
integrin—that is upregulated by infiltrating monocytes (114).
Treatment with antibodies that blocked Cd49e delay the onset and
reduced the severity of EAE. Using single-cell RNA sequencing,
Giladi also examined monocyte and monocyte-derived macrophage
diversity during EAE finding eight distinct populations (117). Using
antibodies against Ccr2 to ablate monocytes and reduce EAE
severity, Giladi and colleagues identified two distinct monocyte
populations that were selectively lost, and presumably are
pathogenic given their association with disease conditions (117).
Surprisingly, monocyte depletion resulted in minor changes to other
immune cells suggesting monocytes may be pathogenic due to direct
cytotoxicity. Given the toxic role of monocyte-derived macrophages,
understanding monocyte diversity—with particular focus on
pathogenic populations and how they traffic into the CNS—will
lead to new macrophage focused therapies.

MICROGLIA/MACROPHAGE
POPULATIONS DURING REMYELINATION

Mpyelin injury is a crucial attribute of demyelinating diseases such
as MS, but so is the regeneration of myelin, or remyelination. For
people with MS, remyelination occurs, but it is highly variable and
prone to failure (118-122). Remyelination can restore lost
behaviour due to myelin injury (123) and protects axons from
degeneration (124)—which causes irreversible harm that is
thought to contribute to ongoing progression. Indeed,
promoting remyelination spares axons and improves functional
recovery following EAE (125). For these reasons, finding
therapeutic agents that promote remyelination is an exciting
new avenue to treat MS. Several clinical trials are ongoing but
no therapies have been approved as of yet (122, 126).
Remyelination requires a favourable immune response from
macrophage/microglia to clear inhibitory myelin debris and
secrete growth factors and cytokines, such as Igfl and activin-A,
that regulate remyelination and the extracellular matrix (127-
129). Despite the many benefits of the immune response to
remyelination, there are only a few strategies that focus on
improving the immune response as a means to boost
remyelination (130-133). The paucity of immune-boosting
targets in MS likely reflects the challenges of promoting immune
activities because there are numerous immune-mediated
mechanisms of neurotoxicity that could potentially be triggered.

Pioneering work by Miron and colleagues demonstrate that
microglia/macrophages take on a proinflammatory signature

early after demyelination that promotes OPC proliferation
(134). These proinflammatory macrophage/microglia secrete
cytokines such as I11f and Tnf, which stimulate OPC survival
and proliferation (135, 136). The proinflammatory microglia/
macrophage then transition to an immunoregulatory phenotype
(134). Ablation of these immunoregulatory immune cells
contributes to remyelination failure suggesting that the transition
from the proinflammatory state to an immunoregulatory one is an
important step during remyelination. Unknown from this work is
whether microglia or macrophage express these proinflammatory
or immunoregulatory factors. Research from our group shows that
the classic proinflammatory (iNos) and immunoregulatory
markers (Arg-1) used by Miron and colleagues are not expressed
by microglia following LPC mediated demyelination of the spinal
cord (8). The proinflammatory and immunoregulatory phenotypes
described by Miron and colleagues may therefore be attributed to
blood-derived macrophages. Recently, Lloyd and colleagues
investigated how microglia/macrophage transition from a
proinflammatory to an immunoregulatory phenotype (127).
Surprisingly, this transition required necroptosis, a form of
programmed necrosis. Inhibiting necroptosis stalled remyelination
and maintained high levels of proinflammatory microglia/
macrophages, suggesting that necroptosis regulates the shift away
from the proinflammatory phenotype.

While microglia and macrophages can take on
proinflammatory and immunoregulatory phenotypes, new
deep phenotyping of immune cells suggests that there are more
diverse immune states after demyelination. We identified three
distinct microglia phenotypes by isolating microglia following
LPC-mediated demyelination of the spinal cord and conducting
single-cell RNA sequencing (8). Microglia were isolated five days
after LPC demyelination-a time point before remyelination
characterized by OPC recruitment (137-139). We found that
most activated microglia were enriched for SppI, or osteopontin,
Apoe, and Cd74 (8). These genes are commonly expressed in
microglia within the diseased, neurodegenerative CNS (64) and
may, therefore, reflect microglia that are responding to damage
or neurodegenerative molecular patterns (113). We also found a
population of microglia enriched in interferon associated genes
such as Ifit3, Irf7and Ifitm3 as well as a third population likely
reflecting proliferative microglia (8). At seven days after LPC
demyelination of the corpus callosum, Hammond and colleagues
similarly used single-cell RNA sequencing and identified similar
populations of microglia, suggesting the microglial response may
be consistent between these regions (53). Yet to date, none of the
deep sequencing studies to date have investigated how microglia
or macrophages change throughout the continuum of
remyelination. This work could identify yet more states of
immune cell activity.

The tools for differentiating microglia and macrophages are
relatively novel and understanding the regenerative and
neurotoxic aspects of these cell types is an area of research still
in its infancy. Remyelinating models are valuable tools to
understand the beneficial aspects of the immune response.
After all, remyelination is perhaps the clearest example of
regeneration in the CNS and likely resembles regenerative
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processes in other tissues that also depend on a tightly regulated
inflammatory response. Presumably, the immune cell phenotype
will inform its function; therefore, identifying remyelination
associated microglia and macrophage phenotypes are vital.
Identifying immune cell phenotypes may also provide new
biomarkers for remyelination. In MS, microglia/macrophages
make up the majority of immune cells within the lesion (140)
and MS lesions classification often relies on the presence and
location of activated microglia/macrophage (141). However,
activated microglia/macrophages are enriched during ongoing
CNS injury (142) and can present during remyelination (143,
144). The accumulation of microglia/macrophage is, therefore,
not a sensitive predictor of injury or regeneration. Given that
microglia and macrophage are highly plastic and take on a
unique cell state in response to diverse disease conditions,
these cell states may indicate the stage or relative toxicity of
the immune response. Indeed, the phenotype of microglia during
active demyelination is distinct from microglia during
remyelination (78).

AGE-ASSOCIATED REMYELINATION
DECLINE INVOLVES IMPAIRED
MICROGLIA/MACROPHAGE RESPONSE

It has been known for almost three decades that the efficiency of
remyelination declines with ageing (145, 146). Given that
remyelination protects axons from degeneration (124),
preventing remyelination decline due to ageing may slow MS
neurodegeneration. Mechanisms underlying this age-related
impairment have been attributed to both CNS-intrinsic and
extrinsic factors (147). For example, extrinsic factors such as
the inadequate clearance of myelin debris in aged mice are
restored by a more youthful peripheral immune response
(148). Interestingly, the ageing demyelinated lesion increases in
stiffness, potentially due to the extracellular matrix remodelling
functions of aged microglia/macrophage (149), which impairs
remyelination (150).

As activated microglia and infiltrating macrophages play an
essential role in remodelling the lesion microenvironment, the
changes these cell types undergo with ageing have a direct impact
on the age-related impairment in remyelination efficiency. One
of the first studies to document this link observed a delay in the
expression of several essential growth factors following
demyelination in ageing animals (151). This alteration in
Pdgfa, Tgf-B, and Igfl was associated with a delay in recruiting
macrophages and microglia to lesions in ageing rats (152). In
addition to this dysregulation in growth factor kinetics, lesions
from ageing rodents displayed an accumulation of inhibitory
myelin debris, suggesting that macrophages’ and microglia’s
phagocytic capacity becomes impaired with ageing (148).
Several studies have now highlighted a deficiency in the ability
of ageing microglia and macrophages to phagocytose myelin
debris (130, 133, 153). These alterations have been attributed to a

disruption in retinoid X receptor signalling and a decrease in the
expression of the scavenger receptor Cd36 (130, 133). In addition
to deficiencies in the initial engulfment of myelin debris, another
group identified disruptions in the lysosomal processing and
subsequent cholesterol efflux of ingested myelin (71, 131).
Accumulation of lysosomal inclusions and cholesterol crystals
in ageing microglia resulted in inflammasome signalling and
proinflammatory cytokine expression, resulting in a lesion
microenvironment not conducive to efficient regeneration.

Due to difficulties distinguishing microglia from monocyte-
derived macrophages within the lesion, no studies to date have
been able to assign intralesional functional differences between
these two cell populations with ageing. The advent of phenotypic
markers and genetic fate-mapping strategies to distinguish these
two populations opens up a promising new avenue of inquiry
(110, 154, 155). Circumstantially, it has been documented that
the ageing process manifests differently in microglia compared to
monocyte-derived macrophages. As microglia are self-renewing
cells within a CNS microenvironment that accumulate myelin
fragments and protein aggregates with advancing age, they
assume a senescent phenotype that is “primed” (71, 156).
Single-cell sequencing of microglia from the ageing brain
shows the expansion of two different clusters that upregulate
several inflammatory signals such as Ccl4, 111D, as well as several
interferon-response genes (53).

In contrast, ageing monocyte-derived macrophages display
an impairment in producing a functional proinflammatory
cytokine response when stimulated with potent activating
agents such as LPS (157). As the half-life of circulating
monocytes in humans is approximately 71 h, it is postulated
that the age-related changes in monocyte-derived macrophages
manifest at earlier stages in monocyte development, such as at
the level of the hematopoietic stem cell (158, 159). In addition to
differences in the manifestations of ageing between microglia and
monocyte-derived macrophages, it is now appreciated that
microglia from diverse regions within the CNS also age
differently (68). Future studies using single-cell sequencing and
genetic fate-mapping to dissect microglial and macrophage
transcriptional and functional heterogeneity within lesions and
in the context of ageing will be essential to establish better
how best to target these cells therapeutically and promote
myelin regeneration.

CONCLUSION

We are at the dawn of a new era in recognizing microglia
heterogeneity. Research is accelerating to identify microglial
phenotypes throughout development and disease. Work must
continue to expand upon our understanding of the gene and
protein expression of microglia during development, throughout
life, at different stages of disease and in different spatial locations
relative to damage as this research will advance our knowledge of
microglial functions and the interactions between microglia and
other cell types.
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Defining microglia will provide new cellular and phenotypic
markers that can be used to detect and manipulate microglia
phenotypes in MS and other neurological conditions. As the
primary innate immune cells of the brain and spinal cord,
microglia are uniquely positioned to both exacerbate the injury
and be neuroprotective or even reparative. Still, with only
recently available tools to target microglia directly, much work
remains to define microglia function in different conditions. In
the field of MS, we must still differentiate the contributions of
microglia, infiltrating macrophages and BAM during
remyelination, progression and throughout autoimmune
injury. The next frontier will be to resolve the functions of
these different microglia phenotypes.

Important questions remain: are there neuroprotective or
neurotoxic microglial phenotypes? If so, what factors promote
these phenotypes? Can they be targeted therapeutically? The
availability of serum-free cell culture models for murine (160)
and human cells (161-164) will support the functional analyses of
distinct microglial phenotypes. Newer single-cell sequencing
modalities such as IN-seq (165) or CITE-seq (166) allow protein
markers to be overlaid onto single-cell sequencing defined
immune cell phenotypes, permitting comparisons of cellular
signalling or state to immune phenotypes. Strategies such as
Tox-seq are also available to differentiate one function—ROS
production—and overlay this function onto immune cell
clusters. Bioinformatic tools such as NicheNet (51) and
CellPhoneDB (52) provide a way to identify new receptor-ligand
pairs from single-cell RNA sequencing data, which will serve as the
starting point to dissect intercellular communications between
CNS macrophages and their surrounding cellular niche that can
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Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune,
and neuroinflammatory diseases. During this process, microglia, which populate the
embryonic brain and become a permanent sentinel myeloid population, are inexorably
joined by peripherally derived monocytes, recruited by the central nervous system. These
cells can quickly adopt a morphology and immunophenotype similar to microglia. Both
microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining
immune-mediated pathology and thus disease progression in a number of
neuropathologies. For many years, experimental and analytical systems have failed to
differentiate resident microglia from peripherally derived myeloid cells accurately. This has
impeded our understanding of their precise functions in, and contributions to, these
diseases, and hampered the development of novel treatments that could target specific
cell subsets. Over the past decade, microglia have been investigated more intensively in the
context of neuroimmunological research, fostering the development of more precise
experimental systems. In light of our rapidly growing understanding of these cells, we
discuss the differential origins of microglia and peripherally derived myeloid cells in the
inflamed brain, with an analysis of the problems resolving these cell types phenotypically and
morphologically, and highlight recent developments enabling more precise identification.

Keywords: microglia, neuroinflammation, central nervous system infiltration, neuropathology, central nervous
system infection, monocyte-macrophage

INTRODUCTION

Like other organs of the body, it is now well established that the central nervous system (CNS) has its
own unique immune system that constantly maintains homeostasis and is rapidly engaged during
inflammatory insult. Arguably, microglia are the key regulators of the immune response in the healthy
brain. However, under certain conditions, such as those underlying neurodegenerative disease,
autoimmunity, infectious encephalitis, and ischemia, infiltration of bone marrow (BM)-derived
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monocytes act in concert with local microglia in the brain
parenchyma to initiate, enhance, or dampen immune activity.
Resident and infiltrating myeloid cells in the inflamed brain may
be developmentally distinct, but often adopt similar morphologies
and phenotypes, complicating accurate identification. More
nuanced tools have improved resolution, and through these we
can better define populations in the brain, allowing further
elucidation of the role of resident and peripherally infiltrating
myeloid cells in the inflamed brain. Given the fast-developing
field, and the evident importance of both microglia and BM-
derived monocytes to disease processes in a variety of CNS
pathologies, we review the current understanding of the origins
and functions of these cell types in homeostasis and highlight
new experimental tools, molecules, and drugs which may
overcome issues of differentiating between these populations
during neuroinflammation.

MICROGLIA ORIGINS AND RENEWAL

Historically, microglia were first believed to be of neuroepithelial
origin (1, 2), along with neurons and neuroglia. Subsequently,

they were thought to be of monocytic origin (3), derived from
hemopoietic stem cells (HSCs) in the fetal liver or BM. In 1999,
Alloit et al. proposed the yolk sac (YS) origin of microglia (4). A
decade later, this was confirmed using a fate-mapping model to
trace YS progenitors, replacing the view of a monocytic origin for
microglia (5). Microglia are now known to arise from
uncommitted KIT" erythromyeloid precursors (EMP) (6)
(Figure 1), which seed the brain from the YS at embryonic day
9.5 (E9.5) in the mouse (5), well before other glial cells and before
the formation of the blood-brain barrier (BBB) (6, 7). However,
other evidence suggests that microglia are not exclusively YS-
derived, and that a small population arise from Hoxb8"
progenitors in the E12.5 fetal liver (8) or from fetal HSC-
derived monocytes (9). Subsequent to the formation of the
brain, microglia are renewed in-situ throughout life,
independently of BM-derived HSCs (10-12). In the steady
state, microglia have region-specific renewal rates (13) with
their density maintained via the tight coupling of apoptosis
and proliferation (14). In the mouse brain, half the microglial
population persists throughout the entire lifespan of the animal
and thus remains a relic of the embryonic brain (11). In young
and adult mice, the median life span of microglia is 22 and 29
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FIGURE 1 | Origins and phenotypes of resident microglia and monocyte-derived cells in the periphery and inflamed brain.

Frontiers in Immunology | www.frontiersin.org

76

December 2020 | Volume 11 | Article 600822


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Spiteri et al.

Myeloid Cells in Neuroinflammation

months, respectively (11). In humans, microglia can survive for
more than twenty years, although unlike mice, their entire
population is renewed at a median rate of 28% per year (10).
The correlation of high differential renewal rates with microglial
function remain to be revealed.

The microglial phenotype is derived from the successive
development of uncommitted KIT" EMP into the macrophage
ancestor population A1 (CD45%, CX3CR1", F4/80°) and then into
the A2 progenitor population (CD45", CD115", CX3CR1", F4/
80™), which migrates to and populates the embryonic brain (6).
The development of microglia from precursor cells into
intermediate progenitors is a finely tuned process orchestrated
by external and internal stimuli. PU.1, RUNXI, and IRF8 are
indispensable transcription factors in the programming of EMP
into microglia during embryonic development (5, 6, 15, 16).
CD115 (also known as colony-stimulating factor-1 receptor,
CSF-1R, or macrophage colony-stimulating factor receptor, M-
CSFR) ligands, CSF-1, and interleukin (IL)-34, are important for
the maintenance of microglia in the adult brain, with IL-34 being
highly expressed by neurons in a region-specific manner in the
adult mouse brain (17, 18). CD115 signaling is more critical
during development, playing an important role in the
differentiation of EMP into microglia, but is also required for
replenishment of adult microglia and maintenance (18-20).
CD115-deficient mice have reduced microglial numbers, and
treatment with CDI115 inhibitors at high doses results in
significant microglial depletion (19, 21).

Remarkably, microglia rapidly renew their entire population
after chemical or genetic (conditional) depletion. Depending on
the depletion method, the presence of non-physiological
perturbations, and/or the experimental model, studies have
suggested this occurs through niche repopulation by
infiltrating monocytes, proliferation of a microglial progenitor
or proliferation of surviving microglia. In the absence of BBB
breakdown or lethal irradiation and BM transplant, it is believed
that there is little or no contribution of HSC-derived monocytes
to the microglial pool (12, 22) and that surviving microglia
repopulate via self -renewal (23-25). Experimental methods used
to deplete myeloid cells in the CNS and periphery are presented
in Table 1. In irradiated BM-reconstituted CD11b-herpes
simplex virus thymidine kinase (HSV-TK) mice injected
intracerebroventricularly (i.c.v.) with ganciclovir to deplete
microglia, engrafted “microglia” were of peripheral origin (45)
(Table 1). On the other hand, following treatment with
PLX3397, a small-molecule CD115 inhibitor, replacement
microglia arose from a resident microglial progenitor
population expressing nestin, a neural stem cell marker that
can also be expressed on macrophages (19) (Table 1). By
contrast, microglial depletion in either Cx3cr1CreER:iDTR
mice, in which long-lived CX3CR1" cells (microglia) are
depleted after tamoxifen and diphtheria toxin (DTx)
administration (Table 1) (25) or with the CDI115 inhibitor
PLX5622 (24, 46), showed little contribution of nestin®
progenitors or peripheral myeloid cells to the regenerating
microglial pool, supporting the innate capacity for microglial
self-renewal (Table 1). The specific attributes required for

microglial survival (and thus incomplete depletion) during
these depletion procedures are unclear, but there is an implied
refractoriness in the pathways involved in surviving microglia
reminiscent of a developmental stage difference or “stemness,”
with survivors clearly retaining the ability to proliferate for
population renewal.

The concept that microglia are capable of self-renewal
without input from peripheral myeloid cells, both in
homeostasis and disease, was established in “microfetti” mice
(Cx3cr1°FR mice crossed with R26RConfetti reporter mice) and
in a model of parabiosis. In microfetti mice, replenished
microglia are tagged with one of four reporter proteins of the
confetti labelling system, giving information on the distribution,
expansion, and clonality of repopulating microglia. After
unilateral facial nerve axotomy, microglia underwent rapid
self-renewal with no contribution from progenitors or external
myeloid populations (13). In the parabiosis model, a transgenic
mouse expressing green fluorescent protein (GFP) in
hemopoietic mononuclear cells and a wild type (WT) mouse
were surgically attached for several weeks to achieve 50% blood
chimerism (12). When the WT mice were subjected to facial
nerve axotomy or amyotrophic lateral sclerosis (ALS), the CNS
of the WT mice had no GFP" cells (partner-derived cells),
demonstrating in-situ microglial repopulation.

While the capacity of microglia to self-renew without
contribution from the periphery has emerged as the dogma,
these ideas were established using parabiotic mice and mild
inflammatory insults. During severe inflammatory insult and/or
perturbation of the BBB, it was speculated that microglia could
be derived from circulating peripheral monocytes (30). As the
circulating myeloid compartment serves as a reservoir of
immune cells that can rapidly be recruited to any tissue as
needed, whether to contain virus or assist in tissue repair after
traumatic injury, this may be an additional pragmatic solution to
replenishing microglia, either in the short or long term,
notwithstanding a likely differential genetic signature (47). It is
unclear if such BM precursors are sufficiently stem-like to
become “real” microglia once in the CNS, and if so, whether
they could become a completely self-renewing immigrant
population that can maintain a density and network
configuration similar to native microglia. Whether such
engrafted “microglia” would function similarly to YS-derived
microglia in both homeostasis and pathology over time, is of
considerable interest and still unresolved.

A DAY IN THE LIFE OF MICROGLIA:
FUNCTIONS IN THE EMBRYONIC AND
ADULT CNS

The importance of microglia to normal CNS development and
homeostasis has been historically underappreciated. While
microglia have long been recognized for their role as resident
tissue macrophages, this extends considerably further than their
innate immunological “first-line of defense” functions.
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TABLE 1 | Methods of myeloid cell blockade and depletion.

Depletion method

Cell type targeted by
method of depletion

Drawbacks

Mechanism of action

Intravenous administration
of clodronate-encapsulated
liposomes

Targeting chemokine
receptor CCR2

Intracerebroventricular
(i.c.v.) administration of
clodronate liposomes
Transgenic animals with
mutations in genes critical
for microglial development
and maintenance: PU.1,
CD115 (CSF1R) and TGF-B

CD11b-HSVTK mice

CX3CR1°*ERDTR
mice

Circulating monocytes
and phagocytic cells in
the bone marrow, liver
and spleen (26-28)

CCR2-expressing
monocytes in the bone
marrow

Microglia (33)

In CNS-TGFB1~~ mice
(ie. IL2TGF-pB1-Tg-
TGF-B17~: TGF-B1 is
thus limited to T
lymphocytes): Microglia
(29)

In CSF1R™": Microglia,
monocytes and tissue
resident macrophages
©)

In PU.17~ mice:
Microglia, mature
myeloid cells and B
cells (6)
Gamma-irradiation-
resistant CD11b* cells
(i.e. microglia)

Long lived CX3CR1*
cells (microglia, and
most likely BAMs)

Depletion is incomplete

Clodronate liposomes do not specifically
deplete one monocyte/macrophage

subset

Cells are not depleted but blocked from
entering the circulation and thus do not

reach inflamed tissue.

Using anti-CCL2 (CCR2 ligand)
monoclonal antibody (mAb) results in

incomplete blockade (30).

Invasive procedure which breaches the

BBB
Incomplete depletion

These mice rarely survive into adulthood
and develop defects in other organs

other than the brain (34).

Incomplete microglia depletion in CNS-
TGFB1~"~ mice and an increase in
peripherally derived cells into the CNS
(CD39°CD11b"Ly6C*) (25)

Incomplete bone marrow reconstitution
and prolonged ganciclovir (GCV)-
administration causes myelotoxicity and

can be fatal (35).

GCV administered orally or via an i.p.
injection results in incomplete microglia
depletion. Instead microglia proliferation
and activation is blocked (35).
Compromise of the BBB if GCV is
administered i.c.v. and also extended
application of GCV this way, causes
microhemorrhages and influx of
peripheral macrophages into the CNS

(36).

Repopulation in 5 days (23)

Incomplete depletion—20% of microglia
remained (23). Although Parkhurst et al.
(37) showed a 99% depletion rate.
Astrogliosis and “massive” production of
cytokine and chemokines (cytokine

storm) (23).

Mice showed impaired learning and
dendritic spine elimination (37)

If clodronate is administered via an intravenous injection,
clodronate liposomes in homeostatic animals cannot leave the
blood vessels unless through sinusoids, and are thus limited to the
circulation, bone marrow, liver, and spleen. In inflammatory
conditions where the endothelium allows extravasation of
molecules, liposomes can pass through.

Liposomes containing clodronate are engulfed by phagocytic cells.
Once in the cell, liposomes fuse with lysosomes causing the
disruption of liposome bilayers, which allows the intracellular
release of clodronate. Clodronate above a threshold concentration,
causes irreversible damage to the cell and subsequent apoptosis
(29).

Intravenous (i.v.) or intraperitoneal (i.p.) injection of anti-CCR2 or
CCL2 mAb (31) or by the use of transgenic CCR2™~ mice (32).
Monocytes are prevented from leaving the bone marrow via
blocking the CCL2-CCR2 signaling axis.

Clodronate liposomes are administered intracranially and engulfed
by phagocytic cells in the brain, causing their “suicide” via
apoptosis (26)

Genes required for development and maintenance of microglia
were genetically deleted, resulting in their depletion.

Host mice express herpes-simplex virus thymidine kinase (HSV-
TK) under the CD11b-promoter are lethally irradiated and
engrafted with WT BM (35). Only irradiation resistant CD11b" cells
express HSV-TK. GCV administered in-vivo is converted into a
monophosphorylated form via HSV-TK. Endogenous cellular
kinases then convert the monophosphorylated form of GCV into a
toxic triphosphate. GCV competes with thymine for DNA synthesis
and thus preferentially targets proliferating cells. Non-proliferating
cells have a reduced susceptibility to GCV. GCV administered
orally or via an i.p. injection does not result in complete microglia
depletion, but microglia “paralysis” whereby these cells are unable
to proliferate or become “activated” (35). However, administrating
GCV i.c.v. via an osmotic pump causes 90% depletion after two
weeks (36).

Mice expressing Cre-recombinase (Cre-ER) under the CX3CR1
promoter were crossed with iIDTR animals. Tamoxifen (TAM)
administration causes the nuclear translocation of the CreER
fusion protein resulting in cre-mediated recombination and the
expression of the diphtheria toxin receptor (DTR) on CX3CR1*
cells. Nuclear translocation of the CreER fusion protein is transient
and lost shortly after TAM treatment in short-lived CX3CR1* cells
that are readily renewed in the BM via HSC. Long-lived CX3CR1*
cells express DTR, thus after systemic administration of diphtheria
toxin (DTx), which can pass through the BBB, these cells are
ablated. This system does not require the generation of a BM
chimera and thus avoids the non-physiological effects observed

(Continued)
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TABLE 1 | Continued

Depletion method

sa”.'CreERCsf.’rﬂ/fl
mice

Pharmacological inhibition of
CD115 (CSF1R) using
PLX3397

Pharmacological inhibition of
CD115 (CSF1R) using
PLX5622

Cell type targeted by
method of depletion

Microglia

Microglia, HSC,
osteoclasts,
macrophages, and
mast cells

Microglia

Drawbacks

Incomplete microglia ablation. 70-90%
of microglia are deleted in various brain
regions (38).

Requires mouse breeding and
generation of transgenic animals.
Tamoxifen may result in an
immunomodulatory phenotype in mice
(34).

Inhibits three other kinases including
FLT3, PDGFR, and KIT (39-41).
Repopulation once the drug is
withdrawn

Broad myelosuppression and
astrogliosis (34).

Rapid repopulation after the drug is
withdrawn.

Incomplete microglia depletion (21)
Affects haemopoiesis and macrophage
phenotype and function in the spleen,

Mechanism of action

with whole body irradiation, including BBB disruption and
peripheral immune cell infiltration into the CNS.

TAM administration induces the nuclear translocation of the CreER
fusion protein in Sall1* cells. Cre-recombinase then drives the
deletion of floxed Csf7r, causing the ablation of microglia (38).
Sall1 is thought to be a microglia-specific marker, thus this
depletion method is very specific to microglia.

PLX3397 is a CD115 (CSFIR) inhibitor that is typically formulating
into a rodent chow and administered orally (19). CD115 signaling
is required for microglial development and maintenance, thus
inhibition of this receptor results in microglial ablation. Unlike all the
other depletion methods listed above, microglia can be targeted
without the breeding of transgenic animals, or the use of irradiation
to achieve chimerism or the use of an invasive procedure which
compromises the BBB. PLX3397, causes 50% microglia depletion
within 3 days, and >99% depletion after 21 days of treatment (at
290 ppm) (19). At 75 ppm PLX8357 causes CSF1R inhibition
without ablating microglia (21).

PLX5622, like PLX3397 is a CD115 (CSFIR) inhibitor which is also
typically formulated into a rodent chow to be administered orally.
Both PLX3397 and PLX5622 have the same potency for inhibiting
CD115. PLX5622, however, has a 20-fold selectivity for CD115
over other kinases (KIT and FLT3) and a ~15% increase in BBB

BM and blood (42-44)

penetrance (has a lower molecular weight, higher lipophilicity, and
better cell permeability), compared to PLX3397 (21) and can yield
90% microglia depletion within 5 days (at 1,200 ppm in chow).

Embryonic Brain
As microglia seed the brain during early embryogenesis, they
display an “activated,” ameboid morphology as they proliferate
and migrate throughout the CNS (48, 49). Upon CNS
maturation, microglia become more sessile and adopt a highly
ramified morphology (49). The importance of microglia to
embryonic development in the CNS has been shown in several
depletion models, with ablation of these cells causing long term
effects on normal brain functioning. For example, the absence of
embryonic microglial progenitors caused defects in dopamine
innervation and cortical networks (50), whilst neuronal survival
was reduced in CX3CR1-deficient and microglia-ablated CD11b-
DTR mice, arguably from the absence of CX3CRI-dependent
production of neurotrophic insulin-like growth factor-1 (IGF-1)
(51). Absence of microglia in mice homozygous for the null
mutation in the CSE-1 receptor (CsfIr ") revealed a disruption to
brain morphology and neuronal density, as well as significantly
affecting total astrocyte and oligodendrocyte numbers (52).
Further, depletion of microglia using PLX5622 resulted in sex-
specific behavior effects, with female mice developing long-term
hyperactivity and anxiolytic-like behavior (46).

In the developing brain, microglia shape neural circuitry by:
1) inducing neuronal cell death via the release of superoxide ions
(53, 54), 2) clearing viable (55) and apoptotic neural progenitors
(56), 3) promoting neurogenesis via the release of IL-1f3, IL-6,
TNF, and IFN-y (57-60), and 4) paring down supernumerary
synapses, whilst strengthening functional ones (61-63). A

number of mechanisms have been identified which contribute
to microglial-meditated synapse modulation. Complement
cascade components, Clq and C3, localized to neuronal
synapses, promote microglial synapse engulfment (60, 64),
while CD47 localized to neurons provides a “don’t eat me
signal” to microglia that express CD172a (SIRPa), thereby
preventing aberrant synaptic phagocytosis (65). Serotonin
signaling (66), triggering receptor expressed on myeloid cells 2
(TREM2)-dependent functions (67), the CX3CR1-CX3CLI axis
(62) and microglial interaction with neuronal-expressed major
histocompatibility complex (MHC) class I (68-71) are also
thought to be involved in microglial-mediated synapse
elimination. Microglia express CX3CR1 (62), TREM2 (67), and
a serotonin receptor (5-HT2B) (66), with the latter enabling their
movement towards serotonin. Knockout of these receptors
results in defects in synaptic refinement (CX3CR1 and
TREM2) or the organization of retinal projections (5-HT2B).
Although microglia can prune superfluous synapses, they can
also promote the formation of new ones (37, 72).

Beyond shaping neuronal circuitry, microglia are also
required for vascularization, myelination, and gliogenesis.
Microglia are recruited to growing vessels to promote vascular
network formation in the retina (73, 74) and this is via release of
angiogenic factors other than vascular endothelial growth factor-
A (74). CD11c" microglia, which expand in the postnatal brain,
express a neurosupportive gene signature and IGF-1 and are
required for myelinogenesis during development (75). More
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recently, a new role in gliogenesis has been identified for
microglia at the later embryonic stages of E15.5 and E17.5
(76). A subpopulation of amoeboid microglia lining the tuberal
hypothalamic third ventricle have been found to influence glial
precursors via chemokine signaling, namely, CCL2 and CXCL10,
which are required for the migration and maturation of
oligodendrocytes, but not astrocytes (76). An additional unique
microglial subset (i.e. proliferative-region associated microglia or
PAM) enriched in metabolic genes and found in the first post-
natal week in the corpus callosum and cerebellar white matter
were found to be specialized in the clearance of newly formed
oligodendrocytes (77).

Adult Brain

In the adult brain, microglia tile the parenchyma in a grid-like
fashion, displaying a ramified morphology with static somata
and “never-resting” cytoplasmic extensions (78). These
extensions survey the CNS microenvironment using their
“sensome” to identify and respond to perturbations that may
threaten homeostasis (79). The TWIK-related Halothane-
Inhibited K" channel, a tonically active potassium channel
expressed by microglia, regulates the ramification and
movement of microglial processes to support homeostatic
surveillance of CNS activity (80). The microglial “sensome”
comprises microglia-expressed genes encoding receptors and
signaling molecules that enable detection of pathogen invasion,
cytokines, pH alterations, metabolites, ATP, and adenosine.
These include toll-like receptors (TIr2 and TIr7), chemokine
receptors (Ccr5, Cx3crl, Cxcr4, and Cxcr2), Interferon-induced
transmembrane proteins (Ifitm2, Ifitm3, and Ifitm6), Fc receptors
(Fcerlg and Fcgr3), siglecs (SiglecH and Siglec3/Cd33), and
purinergic receptors (P2rx4, P2rx7, P2ry12, P2ry13, and P2ry6)
(79). P2RY12 and SiglecH are microglia-specific in the CNS, with
P2RY12 importantly involved in chemotaxis towards neuronal
and CNS damage via the detection of ATP or ADP (81, 82). In
the aging brain, 81% of these genes are downregulated, with
some genes, including Cxcr4, Cxcr2, Tlr2, Ifitm2, Ifitm3, Ifitme,
and P2rx4, being upregulated (79). This is thought to contribute
to age-related microglial neurotoxicity (79) and potentially
reduced microglial phagocytic activity that occurs with aging
(83). Microglia also display an increased expression of CD11b,
MHC-II, CD68, and CD86 proteins and expression of Tnf, II-6,
and II-1 RNA in the aging brain, collectively suggesting an
enhanced inflammatory profile and reduced homeostatic
function with age (84).

The maintenance of a surveillant microglial state under
physiological conditions is ultimately likely to be a vectorial
outcome of a number of signals, including neuronal and astrocyte-
derived factors, microglia-expressed CX3CR1, CD200 receptor
(CD200R), and CD172a, which dampen microglial activity
through binding their respective ligands, CX3CL1 (expressed by
neurons), CD200 (expressed by neurons, astrocytes, and
oligodendrocytes), and CD47 (expressed ubiquitously, including
on neurons) (85), as well as through increased expression of
microRNA-124 (86) and TGF- signaling (25).

Besides tissue surveillance, microglia are involved in synapse
formation and learning in the adult CNS via the secretion of

brain-derived neurotropic factor (37). Microglia are also required
for synaptic pruning, with the purine receptor P2RY12 important
for synaptic plasticity in the visual cortex of the adolescent CNS
(87). In contrast, the CX3CR1-CX3CL1 (62) and CR3/CD11b (60)
axis appear to be more critical during development for microglial-
mediated synaptic pruning. Microglia also support adult
neurogenesis, with a unique population of microglia expressing
low levels of purine receptors in the subventricular zone and
rostral migratory stream required for survival and migration of
newly generated neuroblasts (88).

The role of microglia as phagocytes also plays a major part in
homeostasis, enabling clearance of debris, apoptotic, and surplus
cells (89) to maintain optimal neural function. Microglial-
expressed TAM receptor kinases, MER Proto-Oncogene
Tyrosine Kinase (MerTK), and Axl have revealed an important
role for neuronal progenitor cell clearance (90), which may be
required for efficient neurogenesis, whereas CD11b, TREM2,
TIM-4, and BAII appear to be required for the phagocytosis of
apoptotic neurons (53, 91, 92). Microglia can recognize a number
of “eat-me” signals, including phosphatidylserine, components
of the complement system, thrombospondin and uridine 5'-
diphosphate (93), which stimulate phagocytosis (68, 76, 93).
Although microglia are the principle phagocytes in the CNS,
other glia, including oligodendrocytes and astrocytes, are also
thought to contribute to this function (94, 95).

MICROGLIAL “ACTIVATION”

Microglial “activation” refers to a reversible, transient state,
defined by a morphological and functional phenotype distinct
from homeostatic microglia. Before the advent of in vivo
imaging, microglia in steady state homeostasis were classified
as “resting.” However, it is now clear that although the cell soma
may remain in one site, the processes of each microglia
continuously explore the microenvironment in a highly
dynamic manner (78).

In the steady state, microglia have a small cell soma with long,
thin hyper-ramified cytoplasmic processes. On detection of a
noxious signal (toxins, pathogens, endogenous proteins) or
neuronal damage, microglia undergo a rapid morphological
transition, retracting their processes to become shorter and
thicker, acquiring a more ameboid morphology, and
undergoing hypertrophy, thus increasing their somatic surface
area. In addition to these morphological adaptations, often
referred to as microgliosis, microglia undergo transcriptional
and phenotypic changes in a context-dependent manner. This
reactive phenotype is associated with changes to motile,
proliferative, and phagocytic functions (96, 97) and invites
comparison with microglia that populate the early CNS.
Historically, alterations in microglial morphology and/or the
upregulation of CD45, Ibal, Griffonia simplicifolia-lectin, and
MHC-II were the first reliable indicators of microglial
“activation” that implicated microglia in CNS pathology.

Intermediate morphological activated states of microglia have
also been identified, which are described as “rod-like,” “hyper-
ramified,” “bi-polar,” and “bushy” (98). However, it is clear that
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microglial form and function do not necessarily correspond, as
microglia are observed to display both classic “resting” and
“activated” morphologies in human CNS inflammation and
neurological and psychiatric disease (99). Despite
morphological measurements (cell somatic area, dendrite
length and number, total cell area, and parenchymal cell
density) being the primary technique used to study these cells
for decades, there are no standard parameters that link these
forms to function and more detailed in situ molecular and
protein profiling techniques, paired with imaging will be
required to fill this gap. The Hyperion is an imaging mass
cytometer and one of the first multiplexed imaging
technologies developed which theoretically enables the
detection of >100 different metal-conjugated markers
(currently 49) to enable spatial resolution of protein expression
in tissue sections (100). Other competing high-dimensional
imaging systems include the CODEX, GeoMx DSP, and the
MACSima by Akoya Biosciences, Nanostring, and Miltenyi
Biotec, respectively. To fully recapitulate the dynamic nature of
these cells in tissues in real-time, in vivo imaging techniques,
such as intravital microscopy (IVM) can be employed. However,
with the limited number of fluorescent probes and mouse models
available for IVM, correlative imaging, combining data from
fluorescence, light and electron microscopic modalities provide
additional structure-function information (101, 102).

Advances in high-dimensional and single-cell molecular and
immune profiling technologies have effectively invalidated
classical microglial characterization approaches. The descriptive
“resting” versus “activated” and “M1” versus “M2” nomenclature
oversimplified microglial behavior, suggesting they exhibited
dichotomous “yin-yang”-like functions. These concepts have
been rejected by the field (103) and are being replaced by
multi-dimensional activation states, in which function is
programmed and then finely tuned according to the prevailing
microenvironment, in a context-, sex-, region-, developmental-,
disease-, and even disease stage-specific manner. It is still accepted
that microglia have pro-inflammatory (“M1”) and anti-
inflammatory (“M2”) functions, but these are now understood
to co-exist, with microglia capable of co-expressing M1-like and
M2-like markers in a context-dependent manner. Thus “disease-
associated” microglia (DAMs) in a mouse model of Alzheimer’s
disease (104), “microglial neurodegenerative” phenotype
(MGnD) in mouse models of AD and ALS (105) and disease-
associated microglia (daMG1-4) in experimental autoimmune
encephalomyelitis (EAE) (106) are superseding earlier and more
simplistic terms, to incorporate the idea that microglia can have
unique molecular and/or immunological profiles and/or functions
in different disease contexts.

ORIGIN AND CLASSIFICATION OF
MONOCYTES AND MONOCYTE-DERIVED
CELLS

During certain diseases and/or injuries involving breach of the
BBB, BM-derived monocytes infiltrate the CNS parenchyma and

intermingle with the resident microglial population. Despite
often close phenotypic similarities, these infiltrating myeloid
cells are developmentally distinct from microglia and give rise
to effector cells whose functions are presumably not fulfilled by
their resident counterparts. In contrast to the YS-origin of
microglia, monocytes are hematopoietic cells that originate in
the BM. In adulthood, these cells are derived from definitive HSC
and mature from monocyte-dendritic cell (MDP) precursors,
common monocyte progenitors (cMoP), and granulocyte and
macrophage progenitors (GMP) through a series of sequential
differentiation steps in the BM (107, 108). The fate of these
monocytes is specified by the expression of transcription factors
PU.1, IRFS8, Klf4, and GATA2 (3, 109-111), and their
differentiation, survival, and proliferation is regulated by the
growth factor receptor CD115 and its ligand M-CSF (112-114).
Following their generation in the BM, monocytes are released
into the peripheral circulation.

Circulating monocytes are composed of multiple subsets that
differ in their phenotype, size, transcriptional profiles, and
migratory properties. These distinct monocyte subsets are
characterized by their differential expression of CD14 and
CD16 in humans (115) and by the surface marker combination
Ly6C, CD62L, CD43, and the chemokine receptors CX3CRI1 and
C-C chemokine receptor 2 (CCR2) in mice (116) (Figure 1). In
humans, 80-90% of the monocyte pool is composed of
CD14'CD16  classical monocytes with the remaining 10-20%
shared by CD14"CD16" intermediate and CD14°CD16" non-
classical monocytes (115). The generation of a mouse strain in
which a GFP reporter was engineered into the CX3CRI locus
(CX3CRI®Y? mice) (117) enabled the discovery of two
corresponding monocyte subsets (116). In mice, “classical”
monocytes (also known as “inflammatory monocytes”) are
characterized by their expression of surface markers Ly6C",
CX3CRI™" CCR2", CD62L", and CD43", whereas “non-
classical” monocytes (also referred to as “patrolling
monocytes”) are defined as Ly6C'°, CX3CR1™, CCR2',
CD62L", and CD43" cells (116, 118, 119). Transcriptional
comparison between mouse and human monocyte subsets
correlated Ly6C™ monocytes with classical CD14"CD16°
monocytes and Ly6C'® monocytes with non-classical
CD14°CD16" monocytes (120).

As a component of the mononuclear phagocyte system,
circulating monocytes were historically considered to be the
definitive precursors of tissue-resident macrophages and
dendritic cells (DC) (121). However, recent studies have
demonstrated that most tissue-resident macrophages are of
embryonic origin (122, 123), although conventional DCs have
a distinct BM precursor (124). Today, monocytes are viewed as a
distinctive cell type with diverse functions. In the steady state,
Ly6C" monocytes can traffic to various tissues and maintain their
monocytic transcriptional profile (119), but they can also give
rise to a proportion of tissue-resident myeloid cells (123) or
transition into Ly6C'® monocytes (123, 125, 126). During
inflammation, monocytes can give rise to macrophages
(monocyte-derived macrophages or MDMs) and DCs
(monocyte-derived DC or moDCs) with non-redundant
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functions that often cannot be fulfilled by their resident
counterparts (126). Collectively, these distinctive cell types
have been classified according to their monocytic origin as
“monocyte-derived cells” (MDC) (127) (Flgure 1).

Under homeostatic conditions, Ly6C monocyte progeny are
present in almost all tissues, where they constitute a minor
fraction of the tissue-resident macrophage pool (119, 128-134).
The CNS parenchyma is a notable exception, where little to no
monocyte immigration is observed in the steady state (5, 12,
135), although a proportion of choroid plexus and dural
macrophages are evidently replenished by BM-derived
monocytes during homeostasis (15, 136).

ONTOGENY AND DIFFERENTIATION OF
MONOCYTE-DERIVED CELLS IN THE
INFLAMED CNS

In contrast to homeostasis, during inflammation Ly6C™
monocytes may rapidly infiltrate the diseased CNS, usually in a
CCR2-dependent manner. This may be facilitated by
compromise of the BBB, but not necessarily (30, 137).
Although monocyte recruitment and infiltration is well
described in the acutely diseased brain, the behavior of these
cells is more controversial in chronic, low grade inflammation
observed in aging and stress. Thus, despite increased BBB
permeability with age, monocyte infiltration does not
inevitably accompany healthy aging (138). On the other hand,
inflammation associated with psychosocial stress may promote
monocyte infiltration into the CNS (139, 140), although this has
been contested (141, 142).

Interactions between monocytes and CNS borders critically
affect their recruitment, infiltration, and differentiation during
neuroinflammation. The different ports of entry into the CNS
have been implicated in shaping either a protective or pathogenic
monocyte response. For instance, the differential expression of
CX3CR1 and CCR2 ligands may selectively recruit either “pro-
inflammatory” (Ly6C"'CCR2*) or “pro-resolution”
(Ly6C'°CX3CR1"™) monocyte-derived cells. This is supported
by experiments showing that Ly6C'°CX3CR1"™ monocytes,
which aid recovery from spinal cord injury, entered the CNS
via the choroid plexus and migrated to the injury site through the
central canal in an o4-integrin/vascular cell adhesion molecule-
1- and CD73-dependent manner. In contrast, Ly6C”CCR2" pro-
inflammatory monocytes entered the CNS via the parenchymal
blood vasculature in a CCL2-dependent manner and mediated
secondary injury (143). Although Ly6C™ and Ly6C'® monocytes
are thought to be independently recruited to the CNS, the
transition of Ly6Chi monocytes to Ly6Clo monocytes has been
observed during both homeostasis and inflammation, and the
recruitment of Ly6C'® monocytes is at least partially CCR2-
dependent (123, 125, 126). It is possible that the transition from
Ly6C" to Ly6C'® monocytes is influenced by different CNS entry
points, such that monocytes traversing through choroid plexus
and leptomeninges encounter stimuli driving their

differentiation into Ly6C'® monocytes, whereas those traversing
through the parenchymal vasculature remain undifferentiated
inflammatory monocytes. Alternatively, the endothelium may
better enable the emigration of Ly6C™ cells from the CNS
parenchymal vasculature (144). Future studies investigating
how endogenous macrophages and/or endothelium at various
CNS-entry points may shape the phenotypic and functional
profiles of CNS-infiltrating Ly6C™ monocytes in the mature
animal are needed to address these gaps. Furthermore, what
changes occur during development of the BBB that enable
differential diapedesis during maturation of the adaptive
immune system have yet to be fully elucidated.

Once in the CNS parenchyma, local microenvironmental cues
can shape MDMs to adopt a phenotype similar to those of CNS-
resident macrophages. Using CCR2-red fluorescent reporter
(RFP) mice, a recent study found CNS-infiltrating CCR2"CD206"
monocyte-derived cells localized beside CCR2'CD206" resident
macrophages in the leptomeninges and perivascular space,
demonstrating these cells can gain phenotypic markers
characteristic of CNS-resident myeloid cells (106). Similarly, CNS-
infiltrating monocytes adopt a phenotype indistinguishable from
microglia in the acute phase of EAE, although these cells do not
appear to integrate into the CNS-resident microglia population
following the resolution of inflammation (145, 146).

Emergency conditions may additionally generate

ontogenically distinct monocyte subsets whose presence is
restricted to inflammatory conditions. As severe inflammation
requires the constant generation and mobilization of monocytes
to the inflamed brain, emergency monopoiesis can generate
GMP-, MDP-, and cMoP-derived monocytes that appear
under inflammatory conditions (108) and may perhaps bypass
the canonical Ly6C" monocyte intermediate (147). In the
inflamed brain, such populations may include Cxcl10" and
Saa3" monocytes, the former having been identified in EAE
and possibly cerebral malaria (147, 148). Whether these
emergency monocyte populations are functionally distinct
from Ly6C™ monocyte-derived cells is unclear, although recent
evidence suggests these subsets may differentially contribute to
pathology (147). Further fate-mapping and functional studies
investigating emergency monocyte populations in the inflamed
CNS will be needed to assess whether these cells are
ontogenically and functionally distinct from those derived
from Ly6C™ monocytes during neuroinflammation. Taken
together, monocytes represent a particular unique, plastic cell
type equipped with a diverse differential program that enables
their context-dependent effector functions upon entry into
the CNS.

IDENTIFYING MICROGLIA IN THE
HOMOEOSTATIC AND INFLAMED BRAIN

Studying microglial behavior in the brain is difficult, even under
homeostatic conditions. Separating microglial functions from
other neuroglial or peripherally derived immune cell responses is
challenged firstly by the difficulty of culturing adult murine
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microglia (149) and secondly, by their tendency to alter their
transcriptome ex vivo. Human and mouse microglia lose their in
vivo transcriptional profile upon isolation, with significant
differences in mRNA signatures between recently isolated
microglia and in vitro-cultured microglia (25, 150), although
the in vivo profile may be restored when cells are put back into an
intact brain (151). This emphasizes the likely need for interaction
with other CNS cell types for “normalcy” and it is likely that loss
of environmental cues remodel the regulatory milieu in vitro,
inducing substantial changes in microglial gene expression (150).
Culturing mouse and human microglia for only 6 h induced
upregulation of genes related to acute inflammatory response
and stress and downregulation of genes associated with immune
functions, as well as blood vessel and brain development (150).
Although culturing conditions required to maintain the in vivo
microglial transcriptome are unknown, brain-specific signals are
almost certainly required, currently limiting the interpretation of
in vitro observations. Our growing understanding of the
inextricable importance of the brain microenvironment in
instructing microglial phenotype and behavior thus drives an
increasing emphasis on work in vivo.

In the homeostatic brain, microglia are easily identifiable
from other cells in the CNS (see Table 2 for a list of microglial
phenotypes identified in the adult murine brain in steady state).
Microglia comprise the largest myeloid population in the CNS
and can be identified using imaging or single-cell cytometry
systems with one or two of a wide range of phenotypic and/or
functional markers, e.g., CD45, CX3CR1, CD11b, F4/80, CDé64,
CD68, transmembrane protein 119 (TMEM119), purinergic
receptor P2Y, G-protein-coupled 12 (P2RY12), CDI115 (CSE-
1R), CD200R, CD172a (SIRPa), CD317, MerTK, 4D4,
lymphocyte antigen 86 (LY86), secreted protein acidic and rich
in cysteine (SPARC), CD162, and Fc receptor-like S (FCRLS)
(106, 136, 146, 153-157) (Figure 1 and Table 2). Using flow,
mass, and spectral cytometry, murine and human homeostatic
microglia are typically identified as CD45°CD11b* (30, 154,
158). Non-parenchymal brain macrophages, i.e., dural,
meningeal, perivascular, and choroid plexus macrophages,
collectively called CNS- or border-associated macrophages
(CAMS or BAMS) (159-161), have a higher expression of
CD45 (CD11b"CD45™) and/or do not express microglia-
specific markers, making these cells distinguishable from
microglia (136). By immunohistochemical techniques,
microglia are commonly recognized by their immunoreactivity
to Ibal, CD11b, CD68, and GS-lectin. Moreover, the highly
ramified morphology of microglia makes them readily
distinguishable from other myeloid cells in the brain, which
are more amoeboid in shape (162).

However, identification of microglia using
immunohistochemistry or cytometry becomes increasingly
complicated during neuroinflammation with the infiltration of
BM-derived monocytes that adopt a phenotype and morphology
similar to reactive microglia. Infiltration of MDMs into the CNS
is a hallmark of a number of acute and chronic neuropathologies,
including autoimmunity, neurodegeneration, stroke, traumatic
injury, and infection, with each disease context associated with a

TABLE 2 | Genes and proteins expressed by microglia in steady state.

Transcriptome Two microglia subsets, hMG1 and hMG2, both
expressing: Bhihe41, Gpr34, Hexb, Olfmi3, P2ry12,
P2ry13, Sall1, Serpine2, Siglech, Sparc, Cx3cr1, Ferl,
Csfr, Csf1, C1qc, C1gb, C1ga, Tmem119, Trem2, and
Slc2ab

(hMG11 express genes related to the ERK1 and ERK2
cascade as well as responses to IFN-v)

[Single-cell RNAseq, (106)]

Hexb, Cst3, Cx3cr1, Ctsd, Csflr, Ctss, Sparc, Tmsb4x,
P2ry12, C1ga, and C1gb

[Single-cell RNAseq, (104)]

Ferls, Trem2, Hexb, Olfmi3, Gpr34, Tmem119, P2ry12,
Siglech, Golm1, Sall1, Adgrg1, Slc2a5, Serpine2, Sparc,
Adamts1, ltgam, Aif1, Cx3cr1, Csf1r, Cd68, AdgreT,
Fegrt, and MerTK

[Single-cell RNAseq (136)]

CD45"CD11b"F4/80"CD64*"MerTK*CD24* CD172a*
[CyTOF (152)].

Two microglia subsets, A and B, both expressing:
CD45*CD11b*CD317*MHC-II
CD88"MHCI*MerTK*4D4*FCRLS*™

Unique expression profiles between the microglia
subsets:

Pop A: CD39°"CD86~

Pop B: CD39"CD86"

[CYTOF (146)]
CD162"P2RY12"TMEM119*Ly86"Iba-1* SPARC"
[IHC (1086)]

Three microglia subsets, 1-3, all expressing:
CD45°"CX3CR1*CD11b*F4/80°"/~

Unique expression profiles between the three
microglia subsets:

Subset 1: CD14*TCR-p*

Subset 2: CXCR4*CCR5"CD115*

(Could represent a more motile population)

Subset 3: MHCII*

(Could be of peripheral origin)

[CYyTOF (153)]a
CD45*CDB4"CD11¢P*MMRYMHCIPCD11b"CLECT 24
NRP1°%“CDB3°"[Flow cytometry (136)]

Proteome

varying degree of CNS infiltration, inflammation, as well as
differential MDM and microglial phenotype and function.
CNS-infiltrating MDMs express molecular markers common
to microglia, including CX3CR1, CD11b, F4/80, CD45, CD64,
CD115, and Ibal, to name a few (154). On the other hand, these
cells express higher amounts of Ly6C, CD44, CD45, CD49d,
CD11a, CXCR4, and CCR2 and have a lower expression of
CX3CRI1 (30, 153, 154, 163-165). These markers, however, can
be downregulated over the course of disease. Typically, MDMs
are identified as CD11b"CD45™. However, since BAMs are also
CD45™M and “activated” microglia upregulate CD45, this
gating system fails to accurately discriminate between these
cells. This is particularly true in severe inflammatory
conditions, such as West Nile virus (WNV) encephalitis, where
there is substantial and sustained infiltration of MDMs into the
CNS (30). Thus, the ability to resolve populations during
neuroinflammation has historically been impossible without
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recourse to adoptive transfers, parabiosis, or chimeric animals
made by lethal gamma-irradiation and BM reconstitution.
Although identification of resident and infiltrating cells
becomes clearer using such techniques, the non-physiological
conditions may confound the accurate interpretation of results.

TOOLS USED TO DISCRIMINATE
RESIDENT AND INFILTRATING MYELOID
CELLS IN THE INFLAMED BRAIN

Recent advances in single-cell sequencing technologies has shed
light on some uniquely expressed microglial genes including
Fcrls, P2ry12 (25), Spalt-like transcription factor 1 (SALLI) (38),
sialic acid-binding immunoglobulin-type lectin H (Siglec-H), and
Tmeml119 (166). The development of RNA primers and
antibodies against these “microglia-specific’ markers have
substantially aided in the resolution of myeloid populations in
the CNS, without the need for more complicated experimental
manipulation. Transgenic animals expressing fluorescent
reporters that identify microglia, or Cre-recombinase and/or
HSV-TK under “microglia-specific” promoters that can be
used to deplete microglia, have also been an important
advance on the use of CX3CRI1 or CD11b promoters, which
also act on myeloid cells in the periphery.

However, the discovery that microglia-specific markers
P2RY12 and TMEM119 are downregulated in
neurodegeneration and neuroinflammation (105, 106, 167), has
reduced their value for identification of microglia in such models.
Nonetheless, the expression of these markers appears to be
model-dependent and therefore more useful in specific
diseased-states. P2RY12 was upregulated in models of
pseudorabies virus encephalitis (168) and neuropathic pain
(169), whilst P2RY12 (170) and TMEM119 (163, 171) were
stably expressed during stroke. However, both markers have
been shown to be expressed by peripherally-derived myeloid cells
in the CNS (9, 163), with TMEM119 also expressed by other
non-CNS cell types (172). TMEM119, originally shown to be
expressed in mouse osteoblasts, is additionally expressed in
human bone tissue, DCs, osteosarcoma, and lymphoid tissue
(173, 174). FCRLS, also previously thought to be microglia-
specific, has been observed in all CNS-associated macrophage
subsets (106). Notwithstanding these limitations, these markers
are still specific for microglia in the homeostatic CNS and will
likely remain important tools for elucidating function.

Another major advance in microglial biology has been the
discovery of PLX5622 (Plexxikon Inc.) (21), a small molecule
CD115 inhibitor that penetrates the BBB and depletes microglia
in as little as three days (175, 176) (Table 1). Other studies have
reported near to complete microglial depletion within 7, 14, or 21
days. Not surprisingly, other cells dependent on CD115 signaling
are also modulated by PLX5622 treatment, including
lymphocytes and myeloid cells in the spleen, blood and BM
(42). Moreover, some microglia are resistant to depletion even
after prolonged treatment, making this approach unsuitable for

studying all microglia subtypes (21). Despite these limitations,
PLX5622 is a major improvement from previously used
depletion methods including i.c.v.-injected clodronate
liposomes, PLX3397 (also a CD115 inhibitor), CD11b-HSVTK,
and CX3CRI““*®DTR mice, all of which may non-specifically
target other leukocytes, with some methods taking longer for
microglial ablation to occur or associated with incomplete
microglial depletion and/or toxicity, off-target effects, or BBB
damage (34) (Table 1). Moreover, PLX5622, unlike PLX3397,
has a 20-fold greater selectivity for CD115 than for other kinases,
as well as increased BBB penetration (21).

Although PLX5622 has become the gold standard microglial
depletion method, CNS changes that subsequently occur in the
absence of microglia and/or in the presence of dead microglia,
limit the accurate interpretation of their cellular functions in
vivo. In vivo fate-mapping models used to track peripheral or
resident cells have largely overcome this limitation. The
development of site-specific recombinases and transgenic mice,
for instance, have provided tools to genetically mark cell lineages
and their descendants, enabling the mapping of cell interaction
and migration, lineage segregation and proliferation (177-179).
Thus, unlike the aforementioned methodologies used to study
microglial functions, fate-mapping provides a targeted and non-
invasive approach that can be used during development and
adulthood. Further, in contrast to conventional reporter strains
whereby mice express fluorescent reporters under specific
promoters (e.g. CX3CR1™™* or CCR2 “**/* or CX3CR1%F"%;
CCR2 “*"* mice), fate-mapping does not require markers to be
stably expressed by cells. Thus, enabling the identification of cells
following the downregulation of relevant genetic markers. Fate-
mapping approaches have been used in a number of
neuroinflammatory models to distinguish resident from
infiltrating myeloid cells (9, 163). For example, using
CoxcrdSreBRIWEG - RogCAGISIWT ice in a stroke model, HSC-
derived myeloid cells were traceable by tdTomato (tdT)
fluorescence (163). Moreover, the ubiquitously active CAG
promoter in R26“AS ST enabled MDMs to be traced,
despite their downregulation of CXCR4 in the CNS during
stroke. A similar approach was used in neonatal stroke and
development using bi-transgenic CCR2-CreER'®*; R26R-
EGFP'®* mice, where Ly6C™ and Ly6C" cells could be
mapped despite downregulation of CCR2 (9). Although fate-
mapping is a powerful approach that can be used to study
microglial functions in-vivo, these models can be time-
consuming and costly to generate, as well as requiring cell-
specific markers to target particular cell types.

The development of high-parameter cytometry systems,
including mass and spectral cytometry have further aided the
necessary discrimination of populations without genetic
manipulation. With a generally enhanced signal sensitivity,
spectral cytometers such as the Cytek® Aurora can enable
more accurate separation of cells which may differ in their
relative expression of single and/or dim markers. The ability to
measure a greater number of fluorescent signals in one assay and
the speed of acquisition gives spectral cytometry a significant
advantage over conventional fluorescence flow and mass
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cytometry (180). Nevertheless, high-dimensional immune
profiling by these modalities, in conjunction with
dimensionality-reduction algorithms, such as t-distributed
stochastic neighbor embedding (tSNE) and uniform manifold
approximation (UMAP), which enable the visualization of high-
dimensional data on a 2D plot, provides important tools for
more detailed population identification and separation (181-
184). The use of unbiased clustering and dimensionality-
reduction approaches assist in the identification of
subpopulations with a range of differentially expressed
markers. The development of novel gating strategies arising
from this separation further enable cell types to be sorted for
more detailed in vitro or in vivo functional or RNA analysis. In
EAE, for instance, three microglial subpopulations were
identified with mass cytometry by two independent groups
(106, 146), with one of these studies also identifying five MDM
subsets (146). Understanding the protective or pathogenic
functions of these cell types will inform targeted cell-specific
therapies in these diseases. Taken together, the development of
new tools to resolve myeloid populations in the CNS has
substantially enhanced our understanding of their functions
and heterogeneity in health and disease.

SHOES TOO BIG TO FILL? CAN
MONOCYTE-DERIVED MACROPHAGES
ACQUIRE A MICROGLIAL IDENTITY?

Considering microglia seed the brain during early embryogenesis,
where they participate in CNS development, support neuronal
networks, and adopt memory-like functions as they persist
throughout adulthood, is it possible for MDMs, with a different
origin, epigenome, and transcriptome, to acquire a “true” or even a
functional microglial identity? Similar to microglia, tissue-resident
Kupfter cells in the liver and alveolar cells in the lung are established
before birth and are subsequently renewed in situ independently of
BM-derived monocytes (7, 132). However, monocytes show
minimal transcriptomic differences with their embryonic
counterparts and can differentiate into both Kupffer cells and
alveolar macrophages (185-187), but evidently not into microglia.
Peripheral monocytes can populate the CNS, but they differ
phenotypically, have a non-redundant role and a different
molecular signature from embryonically seeded microglia (25,
188). Even after prolonged engraftment in the brain, MDM
responses to lipopolysaccharide challenge, chromatin landscapes
and ~2000 transcripts remained different from resident microglia
(189). Engrafted MDMs did, however, adopt other microglial
characteristics including self-renewal, resistance to 7y-irradiation
and a ramified morphology (190). In contrast, donor microglial
cells fully adopt the transcriptomic identity of embryonically derived
microglia in microglia-deficient CD115 knockout mice (191). Why
BM-derived myeloid cells only become “microglia-like” in the CNS
is currently unknown, but the EMP origin of microglia and the
unique CNS tissue microenvironment likely plays a critical role
(150, 191).

In contrast, a small population of microglia are reported to be
derived from BM-derived HSCs during embryogenesis,
suggesting a monocyte to microglia switch (9). This has also
been demonstrated during neonatal stroke using a fate-mapping
model, where invading monocytes became DCs or microglia-like
cells (9). Microglia-like cells were present 62 days post-stroke,
with many exhibiting a ramified morphology, P2RY12 and
TMEM119 immunopositivity and expression of Salll mRNA.
In another stroke model, MDMs ectopically placed in the peri
infarct region of Cxcr4 knockout mice became positive for
P2RY12 and TMEM119 (163). In WNV encephalitis models,
Ly6C" monocytes migrate from the BM to the CNS, where they
assume a phenotype indistinguishable from activated microglia,
with regard to CD45 and CD11b expression (30, 192). Contrary
to the view that microglia-like cells enter the brain only when the
BBB is perturbed, the BBB is only sporadically affected in this
model (30). Some of these peripherally derived monocytes also
became ramified in the parenchyma of the brain (30).

Further investigation is required to understand why infiltrating
MDMs express microglial molecules in the CNS de novo, and the
putative functions of these peripherally derived cells, relative to their
resident counterparts. It is possible that TMEM119 and P2RY12 are
not microglia-specific in the inflamed CNS, or that the
inflammatory milieu in stroke, coupled with the prolonged time
MDMs spend in the CNS, enables them to acquire a microglia-like
phenotype, particularly as the CNS microenvironment ordinarily
defines microglial phenotype and identity (150, 191). The degree of
inflammation may be important; WNV causes a fatal encephalitis
characterized by severe inflammatory monocyte infiltration that
involves the entire CNS (30), whereas models such as EAE or AD,
used to investigate microglial activity, are accompanied only by
localized foci of inflammation and/or much less severe
inflammation overall. As such, the response observed in WNV
may be in stark contrast to what has previously been described. It is
worth reflecting from an evolutionary point of view that the biggest
threat to survival is infection, against which the best defense is the
primed innate and adaptive immune systems. Long-lived animals
are subject to many infections over a lifetime, as well as having an
environmentally increased probability of being infected by the same
pathogen more than once. As such, it seems reasonable that myeloid
reservoirs in the BM compartment could be recruited to the brain to
perform microglial functions in the interim. Setting up novel
“microglial” networks during a first CNS infection in a high
prevalence environment, despite a possible functional cost, may
be a useful survival strategy for effective early CNS defense by the
innate immune response in the event of novel or recurring future
infections. Irrespective of whether MDMs can become microglia
physiologically, current approaches are being developed with the
intention of engineering these cells for therapeutic use in CNS
disease and will undoubtedly yield further insight into the
developmental plasticity and range of functions in this lineage, as
well as providing additional investigative tools for ongoing study.

Therapeutic ablation of microglia in AD and ALS, where
microglial activity has been shown to enhance disease severity,
has been proposed in conjunction with engraftment of
adoptively transferred myeloid cells (193). However, knowing
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whether transferred myeloid cells will contribute to undesirable
or unexpected adverse effects, due to their inability to mimic
microglial behavior and perhaps fulfil microglial homeostatic
roles, would be important to know. Other studies have attempted
to generate microglia from human induced pluripotent stem cells
in a defined media (194-197) to study human microglial behavior
as well as for therapeutic prospects. Methods used to generate
microglia are reviewed elsewhere (198). However, mRNA analysis
showed that microglia from human induced pluripotent stem cells
exhibited a phenotype similar to in vitro microglia rather than ex
vivo microglia (150). More complex culturing conditions may be
required to induce and maintain a microglial phenotype,
including the use of organoids and co-culturing with glial cells
(including astrocytes and oligodendrocytes). Understanding the
specific gene-environment interactions that shape microglial
phenotypes in different contexts will help inform ways to
generate “microglia” as well as revealing what influences their
phenotypic switch during disease. More recently, the development
of human pluripotent stem cell (hPSC)-based microglia chimeric
mouse brains, in which hPSC-derived cells are engrafted into
neonatal mice, has evidently overcome the limitations of using
cultured microglia to study these cells (199). Single-cell RNA
sequencing data showed that these xenografted microglial cells
resembled human microglia. Considering species-specific
differences between microglia in humans and mice (150), this
model provides a unique opportunity to study the role of human
microglia in the intact brain.

REFERENCES

1. de Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD. Determination of
the origin and nature of brain macrophages and microglial cells in mouse
central nervous system, using non-radioactive in situ hybridization and
immunoperoxidase techniques. Glia (1992) 6(4):301-9. doi: 10.1002/
glia. 440060408

2. Fedoroff S, Zhai R, Novak JP. Microglia and astroglia have a common
progenitor cell. J Neurosci Res (1997) 50(3):477-86. doi: 10.1002/(SICI)
1097-4547(19971101)50:3<477::AID-JNR14>3.0.CO;2-3

3. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H,
et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic
abnormalities. EMBO J (1996) 15(20):5647-58. doi: 10.1002/j.1460-
2075.1996.tb00949.x

4. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating
from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain
Res (1999) 117(2):145-52. doi: 10.1016/S0165-3806(99)00113-3

5. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan §, et al. Fate
mapping analysis reveals that adult microglia derive from primitive
macrophages. Science (2010) 330(6005):841-5. doi: 10.1126/
science.1194637

6. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al.
Microglia emerge from erythromyeloid precursors via Pu.l- and Irf8-
dependent pathways. Nat Neurosci (2013) 16(3):273-80. doi: 10.1038/
nn.3318

7. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L,
et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-
myeloid progenitors. Nature (2015) 518(7540):547-51. doi: 10.1038/
nature13989

8. De S, Van Deren D, Peden E, Hockin M, Boulet A, Titen S, et al. Two
distinct ontogenies confer heterogeneity to mouse brain microglia.
Development (2018) 145(13). doi: 10.1242/dev.152306

Microglia, once considered a bystander of CNS physiology
and pathology, are now in the spotlight of neuroimmune
research. Single-cell protein and RNA sequencing technologies,
in-vivo imaging and lineage-tracing techniques have
substantially improved the delineation of myeloid populations
in the CNS, as well as, our understanding of microglial
physiology, ontogeny, and heterogeneity. This will likely
elucidate their disease-related functions and inform
targeted therapeutics.

AUTHOR CONTRIBUTIONS

AS, CW, and NK all contributed to the writing and
conceptualization. CW was responsible for illustrating Figure 1.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by funding from the Merridew
Foundation and NH & MRC Project Grant 1088242 to NK. AS
is supported by the Australian Government Research Training
Stipend Scholarship and The University of Sydney Postgraduate
Merit Award.

Nel

. Chen H-R, Sun Y-Y, Chen C-W, Kuo Y-M, Kuan IS, Tiger Li Z-R, et al. Fate
mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in
development and neonatal stroke. Sci Adv (2020) 6(35):eabb2119. doi:
10.1126/sciadv.abb2119
Reu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The
Lifespan and Turnover of Microglia in the Human Brain. Cell Rep (2017) 20
(4):779-84. doi: 10.1016/j.celrep.2017.07.004
Fuger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C,
Obermuller U, et al. Microglia turnover with aging and in an Alzheimer’s
model via long-term in vivo single-cell imaging. Nat Neurosci (2017) 20
(10):1371-6. doi: 10.1038/nn.4631
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can
sustain CNS microglia maintenance and function throughout adult life. Nat
Neurosci (2007) 10(12):1538-43. doi: 10.1038/nn2014
Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar, et al. A new
fate mapping system reveals context-dependent random or clonal expansion
of microglia. Nat Neurosci (2017) 20(6):793-803. doi: 10.1038/nn.4547
Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P,
et al. Coupled proliferation and apoptosis maintain the rapid turnover of
microglia in the adult brain. Cell Rep (2017) 18(2):391-405. doi: 10.1016/
j.celrep.2016.12.041
Goldmann T, Wieghofer P, Jordao MJC, Prutek F, Hagemeyer N, Frenzel K,
et al. Origin, fate and dynamics of macrophages at central nervous system
interfaces. Nat Immunol (2016) 17(7):797. doi: 10.1038/ni.3423
Minten C, Terry R, Deftrasnes C, King NJC, Campbell IL. IEN Regulatory
Factor 8 Is a Key Constitutive Determinant of the Morphological and
Molecular Properties of Microglia in the CNS. PLoS One (2012) 7(11).
doi: 10.1371/journal.pone.0049851
Greter M, Lelios I, Pelczar P, Hoeffel G, Price ], Leboeuf M, et al. Stroma-
derived interleukin-34 controls the development and maintenance of
langerhans cells and the maintenance of microglia. Immunity (2012) 37
(6):1050-60. doi: 10.1016/j.immuni.2012.11.001

10.

11.

12.

13.

14.

15.

16.

17.

Frontiers in Immunology | www.frontiersin.org

86

December 2020 | Volume 11 | Article 600822


https://doi.org/10.1002/glia.440060408
https://doi.org/10.1002/glia.440060408
https://doi.org/10.1002/(SICI)1097-4547(19971101)50:33.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-4547(19971101)50:33.0.CO;2-3
https://doi.org/10.1002/j.1460-2075.1996.tb00949.x
https://doi.org/10.1002/j.1460-2075.1996.tb00949.x
https://doi.org/10.1016/S0165-3806(99)00113-3
https://doi.org/10.1126/science.1194637
https://doi.org/10.1126/science.1194637
https://doi.org/10.1038/nn.3318
https://doi.org/10.1038/nn.3318
https://doi.org/10.1038/nature13989
https://doi.org/10.1038/nature13989
https://doi.org/10.1242/dev.152306
https://doi.org/10.1126/sciadv.abb2119
https://doi.org/10.1016/j.celrep.2017.07.004
https://doi.org/10.1038/nn.4631
https://doi.org/10.1038/nn2014
https://doi.org/10.1038/nn.4547
https://doi.org/10.1016/j.celrep.2016.12.041
https://doi.org/10.1016/j.celrep.2016.12.041
https://doi.org/10.1038/ni.3423
https://doi.org/10.1371/journal.pone.0049851
https://doi.org/10.1016/j.immuni.2012.11.001
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Spiteri et al.

Myeloid Cells in Neuroinflammation

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Wang YM, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34
is a tissue-restricted ligand of CSF1R required for the development of
Langerhans cells and microglia. Nat Immunol (2012) 13(8):753—+. doi:
10.1038/ni.2360

Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA,
et al. Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for
Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult
Brain. Neuron (2014) 82(2):380-97. doi: 10.1016/j.neuron.2014.02.040
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E,
et al. CSF-1 controls cerebellar microglia and is required for motor function
and social interaction. ] Exp Med (2019) 216(10):2265-81. doi: 10.1084/
jem.20182037

Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA,
et al. Sustained microglial depletion with CSF1R inhibitor impairs
parenchymal plaque development in an Alzheimer’s disease model. Nat
Commun (2019) 10(1):3758. doi: 10.1038/s41467-019-11674-z

Mildner A, Mack M, Schmidt H, Briick W, Djukic M, Zabel MD, et al. CCR2
+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in
the central nervous system. Brain (2009) 132(9):2487-500. doi: 10.1093/
brain/awp144

Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, et al.
Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in
the Mammalian Central Nervous System. Immunity (2015) 43(1):92-106.
doi: 10.1016/j.immuni.2015.06.012

Zhan L, Krabbe G, Du F, Jones I, Reichert MC, Telpoukhovskaia M, et al.
Proximal recolonization by self-renewing microglia re-establishes microglial
homeostasis in the adult mouse brain. bioRxiv (2018) 378547. doi: 10.1101/
378547

Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G,
et al. Identification of a unique TGF-B-dependent molecular and functional
signature in microglia. Nat Neurosci (2014) 17(1):131-43. doi: 10.1038/
nn.3599

Van Rooijen N. The liposome-mediated macrophage ‘suicide’ technique.
J Immunol Methods (1989) 124(1):1-6. doi: 10.1016/0022-1759(89)
90178-6

Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages:
mechanism of action, preparation of liposomes and applications. ] Immunol
Methods (1994) 174(1-2):83-93. doi: 10.1016/0022-1759(94)90012-4

van Rooijen N, van Nieuwmegen R. Elimination of phagocytic cells in the
spleen after intravenous injection of liposome-encapsulated
dichloromethylene diphosphonate. An enzyme-histochemical study. Cell
Tissue Res (1984) 238(2):355-8. doi: 10.1007/BF00217308

van Rooijen N, Sanders A, van den Berg TK. Apoptosis of macrophages
induced by liposome-mediated intracellular delivery of clodronate and
propamidine. J Immunol Methods (1996) 193(1):93-9. doi: 10.1016/0022-
1759(96)00056-7

Getts DR, Terry RL, Getts MT, Miiller M, Rana S, Shrestha B, et al. Ly6c+
“inflammatory monocytes” are microglial precursors recruited in a
pathogenic manner in West Nile virus encephalitis. ] Exp Med (2008) 205
(10):2319-37. doi: 10.1084/jem.20080421

Mack M, Cihak ], Simonis C, Luckow B, Proudfoot AE, Plachy J, et al.
Expression and characterization of the chemokine receptors CCR2 and
CCRS5 in mice. J Immunol (2001) 166(7):4697-704. doi: 10.4049/
jimmunol.166.7.4697

Serbina NV, Pamer EG. Monocyte emigration from bone marrow during
bacterial infection requires signals mediated by chemokine receptor CCR2.
Nat Immunol (2006) 7(3):311-7. doi: 10.1038/ni1309

Lee JC, Seong J, Kim SH, Lee SJ, Cho YJ, An J, et al. Replacement of
microglial cells using Clodronate liposome and bone marrow
transplantation in the central nervous system of SOD1(G93A) transgenic
mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys
Res Commun (2012) 418(2):359-65. doi: 10.1016/j.bbrc.2012.01.026
Waisman A, Ginhoux F, Greter M, Bruttger J. Homeostasis of Microglia in
the Adult Brain: Review of Novel Microglia Depletion Systems. Trends
Immuno