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Editorial on the Research Topic 
From Physics to Econophysics and Back: Methods and Insights

The term “Econophysics” was coined by H. Eugene Stanley in 1995 during a statistical physics conference on the Dynamics of Complex Systems in Kolkata, India to refer to the then emerging interdisciplinary field of physicists working on problems in economics and finance [1]. An interdisciplinary area of research straddling computer science, economics, finance, mathematics, and physics, econophysics started out drawing heavily upon theories and methods developed in nuclear physics and statistical physics. From the use of Random Matrix Theory (RMT) to discriminate between signal and noise in financial time series data [2, 3], to the use of the Ising model and variants to explain stylized facts of stock markets in terms of the microscopic dynamics of traders [4–7], econophysicists have since gone on to develop methods and insights inspired by specific problems. These include the DebtRank measure of systemic risk in banking networks [8], and the discovery of unusual Brownian motion dynamics in order books [9–11], among many others.
Unfortunately, scientists and the public are generally unaware of these contributions. Even within the broader physics community, the fruits of econophysics remain relatively unknown. In fact, every now and then we will find physicists, mathematicians, electrical engineers, or computer scientists reinventing the wheel, and publish results that have been obtained by econophysicists 5–10 years ago. The main reason for this predicament, and also econophysics methods and insights not catching on in the broader physics community is that econophysicists tend to publish in a variety of journals with diverse audiences. As econophysics matures as a field—it is now more than 20 years old, we feel that it has progressed to a stage where we have derived new methods and results found nowhere else. We believe these have the potential to contribute towards deeper understanding in other areas of physics. This is our motivation for launching a Research Topic in Frontiers in Physics, read by serious physicists from different research fields, so that econophysics can give back to the broader physics community. Additionally, early econophysicists came from very different backgrounds, from those starting out in statistical physics, to those moving on from nuclear physics, to former string theorists and former condensed matter physicists. They have all benefitted greatly from cross fertilization amongst themselves, as well as with economists, mathematicians, and computer scientists. Having such a Research Topic appear in Frontiers in Physics will give the cross fertilization between physicists and scientists from other disciplines a renewed push.
In this Research Topic, which we called From Physics to Econophysics and Back: Methods and Insights, we now have a Research Topic of 30 articles. We organized them into six groups:
 1. Methods;
 2. Models;
 3. Financial times series;
 4. Financial time series cross sections;
 5. Banking and macroeconomics; and
 6. Urban complexity.
While Methods and Models are clearly about new and existing econophysics methods, new methods are also introduced in the next four groups of papers focused on developing insights.
To begin, we find many claims in finance. Some are based on rigorous statistical analysis, while others are based on anecdotal evidence. For example, financial time series are expected to be more complex during crisis periods than in calm periods. In the first group of three papers on methods, we find first the paper by Yadav et al. who used the block decomposition method [12–14] to probe the algorithmic complexity in financial time series cross section data. Doing this for the daily returns of [image: image] stocks in NASDAQ between 1972 and 2018, over a sequence of 4-years overlapping sliding time windows, Samal et al. found that the 2007–2009 Global Financial Crisis did not register on the results of the first two measures, which were linear, but was clearly present on the results of the last two measures, which were nonlinear. Another claim tested in this Research Topic is a recent one suggesting that cryptocurrencies, such as Bitcoin, might also serve as safe havens. A safe haven is an instrument or investment sector that guarantees the value of one’s capital during periods of financial turmoil. Of these, gold and other precious metals have been extensively tested [16–19], but the results for other safe havens have been largely inconclusive. Using the COVID-19 pandemic as the backdrop, Kristoufek used the method of quantile correlation to test the possibility of using Bitcoin as a safe haven for investors . In the method of quantile correlation, we can evaluate separately the correlations between small positive/negative deviations and those between large positive/negative deviations, and in so doing avoid diluting statistically significant signals coming from particular quantiles. Even with this care, Kristoufek found that gold continued to show promise as a safe haven during the COVID-19 pandemic, but neither Bitcoin nor the broader index of cryptocurrencies were able to do so. Finally, we find the paper by Wang et al., testing the impact of corporate culture (Confucianism) on firm performance. This is a claim that sounds plausible, but is very difficult to check. To perform this check, Wang et al. assume that Confucianist ideals and thinking become embedded into the fabric of local communities through the teachings of Confucianism schools after a long time, and the closer communities are to these schools, the stronger the influence. Therefore, as a proxy variable measuring the influence of Confucianism on firms, Wang et al. used the distance from the firms to schools known since the Qing Dynasty. They then measured the performance of a firm by its return on assets. For the 20,121 Chinese firms listed either on the Shanghai Stock Exchange or the Shenzhen Stock Exchange, they found that Confucianist influence does indeed improve firm performance, at the 1% level of statistical confidence.
In the second group on market models, we find four papers on models familiar to physicists, as well as those unfamiliar to the physics community. For the former, Maskawa and Kuroda wrote down a continuous random cascade model to investigate intermittency and multifractality in financial time series. Models on energy cascades are commonly used in the study of turbulent fluid flow. After estimating the parameters of the resulting Fokker-Planck equation for 111 component stocks of the FTSE 100 index on the London Stock Exchange between November 2007 and January 2009, Maskawa and Kuroda were able to reproduce from model simulations multifractal features seen in their earlier empirical study. The next paper by Sohn and Sornette extended rational expectation theory from economics, to explain why economic bubbles arise even when all agents have rational expectations . In economics, agents are treated as having independent beliefs. Sohn and Sornette showed that, when these beliefs are correlated, the time scale at which the market processes information can slow down dramatically, giving rise to a bubble. This is reminiscent of how the central limit theorem results in a normal distribution when a large number of statistically independent random variables with finite variance are combined [25, 26], but in distributions with fat tails when the random variables are correlated [27–31]. The remaining two papers in this group are on order book models. In the first, Yamada and Mizuno, reported an empirical study pointing to a linear correlation [image: image], where [image: image] is the return, [image: image] the executed order imbalance (number of bids–number of asks), [image: image] and [image: image] are stock-dependent constants. This empirical observation is important for building models of price impact of different trade volumes. In the second, Zhao et al. developed a multi-order book agent-based model, based on rules on asset design, investor design, price prediction by the agent, adaptive asset allocation, and order placing . Through simulations, Zhao et al. found that market liquidity decreases with increasing tick size.
Next, we find the group of seven papers on the analysis of single financial time series data. In the paper by Mahata and Nurujjaman, the authors first used empirical mode decomposition (EMD) to write the stock price time series as the sum of a set of intrinsic mode functions (IMF). The advantages of EMD over traditional spectral methods like Fourier transform or wavelet analysis are the far fewer basis functions (the IMFs) needed, these basis functions can be determined empirically from the data, and the basis functions represent the natural time scales found in the data. The Hilbert transform was then computed for each IMF, before R/S scaling was carried out to estimate its Hurst exponent [image: image]. Analyzing the stock indices of 12 different countries and the prices of six stocks from December 1995 to July 2018, Mahata and Nurujjaman found that indices and prices are mean-reverting at short time scales, but have long-range correlations at long time scales. In the paper by Liu and Chen, the authors applied the visibility graph method to discriminate between periods of concave price movements (accelerating price change) and periods of convex price movements (decelerating price change) in noisy time series data. Analyzing eight stock market indices from 28 June 1999, to 28 June 2019, they rediscovered the well-known asymmetry between accelerating price change and decelerating price change. In the next paper by Zhang et al., the authors explored machine learning methods to predict the movement of a stock index. Zhang et al. developed a feed-forward auto-encoder neural network with seven hidden layers using the daily closing prices between 1 January 2010 and 31 December 2018 (2,187 trading days) of the CSI 300 index and its constituent stocks. The model would first be trained on a four-month-window of the data, and then its index tracking performance tested on the 6 months following this time window. This performance was found to be better than conventional methods for stock selection and index tracking. Following this, we then find two papers on information flow in stock markets. Like most complex systems, the stock market is an open system. Economists argue that market crashes are exogenous events, i.e., they are triggered by information flowing in from outside of the stock market [37, 38], whereas econophysicists are open to endogenous explanations in terms of the interactions between stocks in the market [39–42]. In the first of these two, Zhang et al. analyzed the cross correlations between mass media news from 726 sources and new media news from 1,488 sources with the returns of 3,026 stocks, and found the existence of strong cross correlations both at equal times, as well as at various lags. In the second paper, Yao and Li used the transfer entropy method to investigate impacts on the stock market from economic policy uncertainties as well as investor sentiments. As far as the Chinese stock market is concerned, they found no information flow directly from economic policy to the stock market, nor indirectly from economic policy to investor sentiments to the stock market. Finally, the stock market is only one of many markets available to financial investors. Another popular market is the commodities market. In this Research Topic, we have two papers on the crude oil market. In the first paper Yang et al. investigated the lead-lag relationship between two important global crude oil indices between 20 May 1987 and 10 October 2017, and found the Western Texas Intermediate (WTI) leading the Brent slightly over the entire period. In the second paper Shao computed the Hurst exponent [image: image]. in 1-year, 2-years, and 4-years rolling windows of the WTI and Brent closing spot prices from 14 October 2011 to 6 March 2020. They found the WTI approaching [image: image], while Brent deviating from [image: image] after US lifted their export ban on 18 December 2015.
Another defining feature of complex systems is the large number of interacting variables. In a typical stock market like the New York Stock Exchange, investors can choose from more than 20,000 financial instruments, the majority of which are stocks. As we have just mentioned, interactions between stocks create endogenous forces affecting the prices of individual stocks. Therefore, instead of studying the time series of a single stock, or that of a stock index, econophysicists have also developed methods to investigate cross sections of time series. Because the stocks in these cross sections are interacting, they are often represented as networks. In this Research Topic, we have seven papers looking into various aspects of stocks as a network. In the first of these Kukreti et al. reviewed recent work on correlations-based networks of the stock market, and proposed the use of structural entropy and eigen-entropy for monitoring how these networks change over time. Then in the second of these Shi and Chen investigated the co-movement of asset returns over 120-days rolling windows advancing 1 day at a time, by first decomposing the daily log returns of 28 sector indices between 5 January 2000 and 29 March 2019 on the Chinese stock market using the French-Fama Five Factor Model into the value-weighted market portfolio return (MKT), the portfolio size (SMB), the portfolio value (HML), the portfolio probability (RMW), and the investment factor (CMA). Then, they constructed in each rolling window the minimum spanning tree (MST) based on the Spearman rank correlations between the 29 sector indices and the five factors. They found that the MST having a star-like structure over the entire period, with MKT as the hub, and this star-like structure changing over different parts of the market cycle. One common application of financial networks is to understand the market’s response to crises. Related to this we have three papers. In the third of these Samal et al. instead of focusing on a single stock market, Samal et al. computed the cross correlations between the daily closing prices of 69 global financial market indices between 2000 and 2014. They then compared the networks obtained by simple thresholding (keeping cross correlations above some threshold level) and the minimal spanning trees within growth periods as well as crisis periods and found that the discrete edge-based Ricci curvature can be used as an indicator of fragility in global financial markets. In the fourth of these Yang et al. probed whether the network of stocks became stable after a market crash. To do so, they constructed the planar maximally filtered graphs (PMFG) [51] of the constituent stocks of the Shanghai Stock Exchange 180 index within stable and crash periods and computed the entropies of their degree distributions. They found that the stock market did indeed stabilize after market crashes. In the fifth of these Yen and Cheong used the increasingly popular topological data analysis (TDA) method to investigate the persistent homology of the cross correlations between stocks in the Singapore and Taiwan stock exchanges, as well as how these evolve over time. Based on how the Betti numbers change from one time window to the next, they found hints of multiple stages in market crashes. Lastly, in this group of papers we find two on the identification of communities and principal components in stock markets. In the sixth paper Purqon and Jamaludin tested two hybrid methods for detecting communities in the threshold network of cross correlations. While the community structures discovered by the two methods are not the same, these communities were nevertheless meaningful to human experts. Finally, in the seventh paper Souma computed the cross correlations between 445 component stocks of the S&P 500 index over the period 2010 to 2019 and used two methods to extract the meaningful part of the cross correlations. In the first method, he assumed that the eigenvalues of a fully noisy correlation matrix would follow the Pastur-Marcenko distribution, and be bounded between [image: image] and [image: image]. In the second method, Souma generated a null model through random rotational shuffling of the cross correlations, using which he extracted the meaningful part of the correlation matrix. He then complexified the meaningful part of the correlation matrix using the Hilbert transform, before analyzing the leads and lags between stocks.
The next group of five papers in this Research Topic deals with the latest research problems in banking and macroeconomics. The paper by Wen et al. describes network structure properties for global remittance and found the key economics group using a community detection method. The impact that export has on domestic production is described by Saltarelli et al. using data from the World Input-Output Database. Recently, the interbank loan structure has been used to study the systemic risk in financial market. The paper by Xiao et al. focused on the connection between nighttime lights and GDP data, to probe regional economic convergence in China. Traditionally, properties of the banking system have been used to study a bank’s profit and risk in global financial market. However, it can also be used to investigate the systemic risk of financial system using networks constructed from interbank loan information. Using random matrix theory, Namaki et al. describe the evolution of global bank network to examine the roles of individual countries. Constructing credit and interbank networks using real-world data, Fan and Sheng investigated the systemic risk that might result from credit risk and contagion effect in the banking system. Finally, the paper by Oh and Park provided a quantitative relationship between properties of the interbank network and bank performances, using syndicated loan data from the United States.
Finally, in this Research Topic, we also have two papers dealing with urban complexity, and one paper on a new measure of inequality. In the first paper on urban complexity, Ishikawa et al. analyzed municipal population data for the United States, Italy, and Spain over a period of 10 years, and found that small initial urban populations tend to decrease, but the probability for cities to expand does not depend on the initial population. Over 100 years, however, the populations of some cities increase exponentially while those of other cities decrease exponentially. In fact, large cities can also stop growing exponentially. Recognizing the heterogeneous spatial distribution of urban population in the second paper on urban complexity, Ito and Ohnishi used multifractal analysis to compare the spatial distributions of population, stores, and facilities, to find that stores and facilities are far more concentrated (within commercial districts) than human population. Finally, the paper Banerjee et al. surveyed the development of the Kolkata index for measuring social inequality, before comparing it against other measures of inequality like the Gini coefficient and the Pietra index.
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Remittance, one money flow between immigrants and their relatives, is a major source of foreign exchange revenue for economies. Consisting of economies linked by the money flows, global remittance constitutes a network. In this paper, we use bilateral remittances of 210 economies for the time period 2010–2016 to construct a global remittance network (GRN) and then investigate the network's structural properties. We study the degree distribution of the network and find that it is of heterogeneity. Analyses of centrality measures reveal that some key economies, such as the United States, France, India and China, are always ranked the highest. We also detect 6 communities in the network, where economies in the same regional economy cooperative organizations tend to be classified in the same community. Intra-community flows account for 66.07% of total remittances, indicating that economies present the characteristic of regionalization. In addition, the results of the topological stability test show that GRN is fragile to node removal, particular the selective removal based on betweenness centrality.

Keywords: remittance flow, complex network, degree distribution, key economies, community structure


1. INTRODUCTION

With the intensifying globalization, human migration is an increasing social phenomenon over the world. It leads to a huge transfer in the flow of capital, labor, and knowledge across international boundaries [1]. From a capital view, one special money flow associated with migration is well known as remittance. According to the World Bank, global remittances reach $613 billion in 2017 and involve more than 258 million migrants all over the world [2]. Since the remittance flows among numerous suppliers and recipients present complicated relationships, as far as global remittances are concerned, it is rather natural to count as a complex system.

Complex networks have proven to be a very powerful approach to characterize and analyze a broad array of different complex systems [3–7], such as human migration [8–10], biological mathematics [11, 12], technological [13–17] and finance systems [18–24]. These highly inter-coupled systems have been the focus of a great number of researches, which have investigated influential nodes of the systems. The analysis of key nodes for complex systems is of crucial importance, as it can help in ensuring the more efficient spread of information for technological system [13, 14], hindering crisis propagation for finance systems, and so on [19, 25–27]. In addition to the above discussed complex systems, recently, the global remittance has been incipiently investigated from a complex network perspective [28, 29].

Existing studies on remittance network mainly focused on node degree and strength, degree distribution and circular pattern [28, 29]. These complex network analysis tools can well identify influential remittance suppliers and recipients as well as collaboration pattern between two economies. However, some economies may also play important roles as bridge in the network [30]. The ability of an economy to transfer the remittance from one economy to another has not been studied yet. On the other hand, in addition to the circular pattern between economy pair, community has been regarded as another important topology structure in networks [8, 30]. Yet little attention has been paid so far to uncover the community structure of global remittance and it still remains as a challenging open problem. Such research not only allows a deep and clear understanding of local properties of the remittance network itself, but also provides good guidance for the remittance management of policy makers and ensures greater regional cooperation.

Motivated by the above discussion, in this paper, by employing bilateral remittance of 210 economies over the period from 2010 to 2016, we construct a global remittance network (GRN). Moreover, we present a detailed study of the key economies for GRN, including degree, degree distribution, node strength, betweenness centrality, community structure, topological stability and so on. The main contributions of this paper can be summarized as follows: (1) Differing somewhat from previous studies that identify influential remittance suppliers and recipients, we also evaluate the importance of economies by taking fully into consideration of the intermediary roles of economies. (2) Literature dealing with the collaboration mechanism of economies in GRN mainly focuses on circular pattern between economy pairs; analysis of economies in community appears to be scarce. Our research intends to fill the existing gap in the literature. (3) This paper originally investigates the effect of key node removal on the topological stability of GRN, and finds that the network is fragile to node removal, particular the selective removal based on betweenness centrality.

The remainder of the paper is arranged as follows. In section 2, the employed methodology related to the empirical investigation is proposed. Section 3 provides details about the bilateral remittance data. Section 4 presents the empirical results and relates them to economic theory. Finally, conclusions are drawn in section 5.



2. METHODOLOGY

This section first proposes a network modeling approach to characterize the global remittance. Then, it introduces a variety of complex network analysis tools, such as degree, degree distribution, node strength, betweenness centrality, community structure and so on.


2.1. Construction of GRN

The global remittance network is represented by a set G = (V, E), where economies V = (v1, v2, ···, vn) are denoted as the network nodes and remittance flows set E as the network edges [31]:

[image: image]

where eij is accumulated remittance from economy i to economy j (i ≠ j) during a certain period, while self-loops (i = j) are not permitted. Therefore, an adjacency matrix E is constructed to characterize the directed weighted network.



2.2. Topological Properties of Networks
 
2.2.1. Degree, Degree Distribution and Node Strength

Degree ki of a node is the number of edges that the node is connected to. In directed networks, the notion of degree can be further extended to the in-degree [image: image] and out-degree [image: image], which are defined as follows [20]:

[image: image]

where aij denotes the indicator function that yields 1 if there is a directed edge from node i to j, and 0, otherwise. While N is the total number of nodes in the network. Moreover, the identity [image: image] holds.

Since different nodes have various degrees, the degree distribution is used to describe the probability distribution of these degrees over the network. The degree distribution is given by:

[image: image]

where nk is the number of nodes with degree k.

In weighted networks, the edges between nodes are no longer treated as binary interactions, but are measured by their magnitudes. Thus, node strength si is proposed to measure the sum of edge weights of i toward its neighbors. Likewise the degree, the notion of node strength can be decomposed into the in-strength [image: image] and out-strength [image: image]. The in-strength and out-strength in (4) below are extended from (2), respectively [20]:

[image: image]

where [image: image] represents the sum of edge weights inbound to node i, while [image: image] computes the sum of edge weights outbound from node i.



2.2.2. Betweenness Centrality

Intuitively, a node will be critical if a large number of shortest paths pass through the node. Therefore, betweenness Bi is proposed to measure the intermediality or bridge property of a node—the ability to transfer flows from one node to another [32]. The formulas in directed network are as follows:

[image: image]

where Njl is the number of shortest paths from node j to l; Njl(i) is the number of these shortest paths that pass through node i. CB(vi) is normalized to a range from 0 to 1.



2.2.3. Community Structure

Numerous real-world networks take the form of community structures, within which the connections between nodes are stronger than connections between nodes of different communities. In order to detect reasonable communities, Louvain algorithm is utilized [8, 33], which is based on modularity optimization. The notion of modularity evaluates the density of connections inside communities compared to connections between communities. In the case of weighted directed network, the modularity Q is defined as [8]:

[image: image]

where [image: image]. The function δ(σi, σj) only yields 1 in case σi = σj, and 0 otherwise.

The procedure of Louvain algorithm is described as follows [33]:

Step 1, all nodes are assigned a different community. For each node i, we calculate the gain of modularity ΔQ when i is placed in its neighbors' communities. By comparing the ΔQ, one can detect the optimal community for node i. If ΔQ is maximum and positive, then node i is placed in the new community. Otherwise, i stays in its original community. The formula of ΔQ is as follows:

[image: image]

where [image: image] stands for the sum of the weights of the links inside the new community, [image: image] denotes the sum of weights of the links incident to all nodes in the new community, [image: image], si,in is the sum of the weights of the links from i to nodes in the new community.

Step 2, a new network is constructed whose nodes are now the communities found during the Step 1. In the new network, the weights of the links between nodes are given by the sum of the weights of the links between nodes in the corresponding two communities. We reapply Step 1 to the resulting weighted network.

Step 3, the above steps are iterated until the maximum Q is obtained.





3. DATA

The global remittance matrices are available from the World Bank1, containing 210 countries or regions of the world over the period from 2010 to 2016. The calculation of bilateral remittance is based on International Monetary Fund (IMF) Balance and Payments Statistics database as well as data released from central banks, national statistical agencies, and World Bank country desks [2].



4. EMPIRICAL RESULTS


4.1. Global Remittance Network

The global remittance consists of 210 economies and their bilateral remittance flows. As far as the economies with low remittances are concerned, it is natural to categorize them as either low population countries or isolated regions, because they take low levels of participation in remittance system. The zero-value remittances of these economies make few contributions to the total remittance flow [28]. Thus, specific thresholds are set to filter out zero-value flows and ensure enormous remittance flows in the network. In order to identify a reasonable threshold, we analyze the magnitudes of all accumulated remittance flows.

Figure 1 shows the cumulative distribution of all accumulated remittance flows. One should focus on the significant changes of slope below and above 95th percentile of cumulative distribution [30], implying that sum of the top 1,200 edges plays an important role in the global remittance system. In order to highlight the significant remittance relationships among economies, we filter the original network with 210 nodes and 12,687 edges into a core network with 172 nodes and 1,200 edges by setting the 95th percentile as a threshold. Figure 2 shows the GRN before and after the filtering procedure. Note that some low population countries and isolated regions are removed from the GRN, including American Samoa, Aruba, Channel Islands and so on.


[image: Figure 1]
FIGURE 1. The cumulative distribution of remittance.



[image: Figure 2]
FIGURE 2. Global remittance network. (A) Before filtering. (B) After filtering.




4.2. Complex Network Analysis
 
4.2.1. Degree Distribution

Figure 3 displays the cumulative distribution of degree on log-log axes in the GRN. Intuitively, there exists a large number of low-degree nodes and a small number of high-degree nodes. Thus, the degree distribution is of asymmetry. To further identify the degree distribution, the method of maximum-likelihood and Kolmogorov-Smirnov (KS) test are applied.


[image: Figure 3]
FIGURE 3. The cumulative distribution of degree on log-log axes.


Table 1 presents the results of goodness-of-fit for three common statistical distributions [34], i.e., exponential, log-normal and power law distribution. Note that P = 0.00 in the case of exponential distribution. Thus, the exponential distribution is ruled out. However, the P-values of log-normal and power law are equal to 0.23 and 0.38, respectively, indicating that the log-normal and power law distribution are not ruled out. Both log-normal and power law distribution are likely fits since they can exhibit a large number of low-degree nodes and few high-degree nodes [35]. It implies that a small number of core nodes play important roles in the GRN. This also provides a theoretical basis for our subsequent analysis of key nodes in section 4.2.2.


Table 1. The results of goodness-of-fit for degree distribution.

[image: Table 1]



4.2.2. Centrality Measures

In order to identify key economies, centrality measures are employed to evaluate the importance of economies. Figure 4 shows top 15 key economies in terms of degree, node strength and betweenness centrality measures, respectively. Note that the rankings based on different network centrality measures are distinct from one another, indicating that various economies tend to play distinct roles in GRN. However, a number of key economies, such as the United States, France, the United Kingdom, Germany, Spain, Italy, China, Russian Federation and India, are always at the forefront of the top 15 key economies, highlighting their importance in the remittance system.


[image: Figure 4]
FIGURE 4. Top 15 important economies based on centrality measures.


For the out-degree and out-strength centrality case, the higher the economy's centrality is, the larger influence it possesses in the network. Note that the United States ranks first in both out-degree and out-strength centrality due to its economic power and immigration history. Further calculations show that US alone reimburses around 24.60% of total remittances to the rest of the world as payment, indicating that the country plays a significant role as a remittance supplier in GRN. In addition, affluent democracies and major oil and gas producing countries, such as Canada, the United Kingdom, Germany, France, Hong Kong (China), Japan, Saudi Arabia, United Arab Emirates and Kuwait, also become primary remittances suppliers.

In terms of in-degree and in-strength centrality, economies with high centrality are major remittance recipient countries, mainly including developing countries with considerable labor force like India, China, Philippines etc. A possible interpretation is that most of labor abundant countries reap up remittances by strategically converting abundant labor into capital [36]. In addition, developed countries like France, Germany, Belgium also obtain high rank of the centralities. The results do not come as surprises given that European Union (EU) citizens are allowed to move freely within the EU labor market. This leads to the fact that labor mobility in common market promotes the movement of remittances [37]. Thus, developed countries also become remittance recipient countries.

In addition to degree and node strength centrality, an economy's importance in the GRN can be evaluated by betweenness centrality, which measures the ability to transfer remittance flows from one economy to another. As shown in Figure 4, whether weighted or not, the betweenness centralities of the United States and France are significantly larger than those of other economies. Therefore, the United States and France play critical roles as bridge in the remittance system. There could be two possible explanations on the intermediary roles of the United States and France. On one hand, the United States is a nation of migrants, which has close cooperations with other economies in terms of remittance. On the other hand, there are many major corridors in remittance between France and its neighbor countries due to the geographical proximity2.



4.2.3. Regional Community

The detection of communities is very important as community structures often correspond to functional organizations [14, 33, 38]. In terms of the remittance network, communities not only uncover its regional structure features, but also provide insights for understanding the collaboration mechanism among economies in the same community. Figure 5 visualizes the regional community structure in GRN.


[image: Figure 5]
FIGURE 5. The regional community structure in GRN. Notes: The coloring of nodes and their linkages are the same for each community, i.e., red for C1, purple for C2, blue for C3, orange for C4, green for C5 and pink for C6. The size of a linkage corresponds to the magnitude of remittance flow.


As shown in Figure 5, the GRN is obviously divided into 6 communities where economies in the same community are labeled by a specific color. For each community, we present their major members and intra-remittances:

• C1 - The largest community, dominated by most of the economies in EU and South America, generates $ 6.35E+05 million intra-community remittances.

• C2 - The second-largest community, mainly consisting of Australia, the United Kingdom, the Nordic countries and Africa, contributes to $ 1.54E+05 million intra-community remittances.

• C3 - The third-largest community, led by the United States as well as Central America, transfers $ 4.46E+05 million intra-community remittances.

• C4 - The fourth-largest community, represented by the Middle East, possesses the largest intra-community remittances that is $ 6.47E+05 million.

• C5 - The fifth-largest community, locating in East Asia and Southeast Asia, holds $ 3.15E+05 million intra-community remittances.

• C6 - The smallest community, dominated by Eastern Europe, has $ 1.51E+05 million intra-community remittances.

It is interesting to note that economies in the same regional economy cooperative organizations tend to be included in the same community, such as EU and Latin American Integration Association (LAIA) in C1, Economic Community of West African States (ECOWAS) in C2, members of Central American Free-Trade Agreement(CAFTA) in C3, Gulf Cooperation Council Countries (GCC) in C4, Association of Southeast Asian Nations(ASEAN) in C5 and Eurasian Economic Union (EAEU) in C6. Thus, the community structure of the GRN appears to have significant correlations with geographical and economic factors. A possible interpretation is that labor mobility in regional cooperative organizations promotes the movement of remittances. Additionally, further calculations show that the intra-community remittances of C1–C6 account for 66.07% of total remittances in GRN, highlighting the regional integration of the GRN.

Figure 6 describes the intra-community and inter-community remittance flows. As Figure 6 shows, the economies belonging to the same community form sub-units with close remittance relationships. However, economies not only participate in remitting within the same community, but also engage themselves into the inter-community transfers, which account for 33.93 % of total remittances.


[image: Figure 6]
FIGURE 6. Remittance matrix before and after permutation based on community structure.




4.2.4. Topological Stability Test of GRN

Remittance system may have some extreme risks such as migration or remittance restriction, to which corresponds node and edge removal in GRN. Such removal will affect the stability of GRN and the normal operation of the system. The approaches employed in robustness test of networks are usually node attack method, which removes some nodes and all edges connected to them from the network [39]. There are two kinds of node attack method: one is stochastic removal method and the other is selective removal method. The former removes some nodes from the network in a random manner, while the latter removes the nodes in a special order. If the structural properties, such as connectivity, have no significant difference after the attack, it is natural to define that the network is robust. Since the maximum strongly connected component(maximum SCC) size measures the connectivity of a directed network, we evaluate topological stability by calculating the ratio w of the maximum SCC size of the new network to that of the original network.

Figure 7 displays the topological stability test of the GRN. As shown in Figure 7, no matter for the selective removal or stochastic removal, when the first nodes are removed, w < 0.64, implying that network connectivity drops rapidly under these two kinds of node attack methods. However, the impact of selective removal on connectivity is larger than that of stochastic removal. The same phenomenon can also be found at the aggregate level. Note that after a number of nodes removal, the impact of selective removal on the network is significantly larger than that of stochastic removal. Furthermore, in comparing the stochastic removal methods, the connectivity of the network under betweenness (weighted betweenness) centrality-based attack is lower than that under out-degree(out-strength)-based attack. This indicates that selective attacks on the nodes with high betweenness (weighted betweenness) centrality are much more effective in the GRN. Therefore, in order to avoid the connectivity collapse of the remittance system, policy makers should pay more attention to major transshipment nodes.


[image: Figure 7]
FIGURE 7. The maximum SCC size of the GRN. Notes: f is the number of removal nodes. The selective removal removes nodes in decreasing order of their centrality.






5. CONCLUSION

To a large extent, the existing literature on the analysis of key economies for global remittance predominantly focuses on the influential remittance suppliers and recipients as well as circular patterns between economy pair. Literature dealing with the intermediary roles of the key economies, community structure and topological stability of remittance network seems to be scarce; such studies are however significant for us to understand the local properties as well as the global properties of the remittance network.

In this paper, by employing complex network approach, we present a detailed discussion of key economies for global remittance, and the findings can be summarized as follows: (i) the degree distribution is of heterogeneity, suggesting that GRN is a heterogeneous network; (ii) some key economies, such as the United States, France, India and China, are always at the forefront of centrality measures; (iii) 6 communities are detected, where economies in the same regional economy cooperative organizations tend to be classified in the same community; (iv) 66.07% of total remittances belongs to intra-community flows, indicating that economies present the characteristic of regionalization; (v) GRN is fragile to node removal, particular the selective removal based on betweenness centrality.

Although this paper builds a global remittance network and investigates its key economies, there are still some topics worth further studying. For example, economies play different roles in the network due to its heterogeneity. The positions of economies in the network might have an impact on remittance flows. Thus, it is worth further studying the relationship between remittance flows and economies' positions. This will be our future study.
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Based on daily returns, we comprehensively characterize the lead-lag relationship between Brent and WTI crude oil spot markets from 1987 to 2017 with the non-parametric symmetric thermal optimal path (TOPS) method. The empirical results indicate that WTI spot price leads Brent spot price slightly, which provides support to the price leadership of WTI over Brent. However, the lead-lag relationship is volatile and sensitive to extreme events like geopolitical conflict and policy shift. Due to the concerns about future oil supply triggered by the two Gulf wars, both WTI and Brent experienced extreme uncertainty and co-moved closely during wartime. Notably, the TOPS method captures the structural break in the WTI-Brent price spread in 2011 which is influenced by the U.S. oil export ban and transportation bottleneck. After the lift of the ban, the two benchmark prices have reconnected. The lead-lag signals basically coincide with major influential changes in the oil markets, which suggests that the TOPS method provides a viable approach to reflecting the impact of extreme events on the crude oil prices motion.

Keywords: oil prices, spot market, lead-lag relationship, symmetric thermal optimal path, WTI, Brent, extreme events


1. INTRODUCTION

Brent and Western Texas Intermediate (WTI) are the two predominant benchmarks for crude oil in global markets. Their price relationship has been changeable all the time. Research on properties of their movements have been continually growing. Using copulas, Reboredo [1] reports evidence of symmetric upper and lower tail dependence structure between crude oil prices. Adopting a rolling estimation, Kao and Wang [2] trace the changing path of WTI information share from 1991 to 2009. Their results demonstrate that WTI has lost the status of leading price to Brent since 2004. While Liu et al. [3] utilize high-frequency data from 2008 to 2011 and show that WTI is more important than Brent for price discovery process when they are co-integrated. Elder et al. [4] also find WTI maintains a dominant role over Brent in price discovery from 2007 to 2012. Coronado et al. [5] apply a one-tailed non-parametric Granger causality test to study the co-movements for oil prices and alert a bi-directional feedback pattern between Brent and WTI from 2013 to 2015.

Moreover, the price spread between WTI and Brent is also essential to reflect the competitiveness among the two benchmarks. Chen et al. [6] verify the structural change of WTI-Brent spread process (December 2010). Scheitrum et al. [7] identify a breakpoint in January 2011. Caporin et al. [8] document two structural breaks in February 2011 and October 2014. Ye and Karali [9] detect three structural breaks in February 2005, the second is in December 2010 and the third is in April 2013.

Additionally, crude oil market is strongly associated to global economy, energy policy and financial market [10–12]. Correspondingly, crude oil price is fragile and subject to sudden incidents and shocks, such as political events, economic events (the Asian financial crisis in 1997), energy policies (the lift of U.S. crude oil export ban) and military conflicts (the Gulf War in 1990, the Iraq War in 2003, etc.). Thus, extensive interest has been devoted to the evident impacts of extreme and irregular events on crude oil markets. Zhang et al. [13] apply an empirical mode decomposition (EMD) based event analysis to evaluate the effects of the Persian Gulf War and the Iraq War on WTI and Brent. They find that impact of extreme events between the two prices exhibits no significant difference. Charles and Darné [14] discern that particular events have a bearing on large shocks in the crude oil prices based on the generalized autoregressive conditional heteroskedasticity (GARCH) models. Similarly, Basistha and Kurov [15] examine the impact of monetary policy shocks on energy prices and find different response patterns. Luong et al. [16] document that WTI and Brent have reintegrated since the lift of the U.S. crude oil export ban.

Though numerous researchers have investigated the crude oil markets and their interaction, the interlinkages and dynamics between WTI and Brent during extreme events is still a substantial point of discussion. In this paper, we investigate the time-dependent lead-lag relationship between the Brent and WTI crude oil spot price during 1987–2017 via the symmetric thermal optimal path (TOPS) method developed by Meng et al. [17]. The two non-parametric approaches can effectively identify the time-dependent lead-lag correlation between two time series, which have been applied to financial market [12, 18–23]. The TOPS method is an improved version of the novel thermal optimal path (TOP) method [24–26] with smaller biases and higher accuracy.

The TOP/TOPS method does not confirm the genuine causality but provides information on the time lag between two series [17, 24]. Moreover, crude oil price is highly sensitive to a variety of factors like policy changes and geopolitical events. Therefore, one should be careful when examining the price discovery of crude oil market via TOPS method. Further information is needed to determine the price leadership relationship. In this manuscript, we mainly focus on the time dependent lead-lag relationship between the two markets. Inspired by Jiang et al. [27], we separate the whole sample into four time periods by the outbreak of the Gulf War, the Iraq War and the lift of U.S. crude oil export ban to examine the lead-lag relationship during different periods. To test the significance of the lead-lag structure, we implement the self-consistency test introduced by Meng et al. [17].

The paper is organized as follows. In section 2, data and summary statistics are presented. Section 3 depicts the methodology. Section 4 provides the empirical results, and section 5 concludes the paper.



2. DATA DESCRIPTION

This study uses daily data collected from the US Energy Information Administration (EIA) website. The data is given in the U.S. dollar per barrel spanning from 20 May 1987 to 10 October 2017 and illustrated in Figure 1. Note that the three vertical solid lines in Figure 1A divide the whole period into four segments: before the Gulf War, before the Iraq War, after the Iraq War and after the lift of export ban.


[image: Figure 1]
FIGURE 1. Spot price, returns, and lead-lag path 〈x(t)〉 from 20 May 1987 to 10 October 2017, respectively labeled by (A–C). The vertical lines mark the outbreaks of the Gulf War and the Iraq War as well as the lift of export ban. (A) Brent and WTI spot price. (B) Returns. (C) Lead-lag path 〈x(t)〉. The gray shades represent the periods when the consistency test is significant at the 5% level.


We use logarithmic returns for the analysis. The logarithmic returns of the spot price are defined as follows:

[image: image]

where p(t) represents the crude oil spot price at time t. The logarithm returns are in illustrated in Figure 1B.

Table 1 summarizes the statistics for the two return series. The descriptive statistics are quite similar across the two markets. The ADF test shows the stationarity of daily Brent and WTI crude oil spot returns. In comparison with Brent spot returns, WTI spot returns offer slightly higher volatility levels. Both of the returns are left-skewed and leptokurtic. The high values for the kurtosis statistic suggest that the distribution of returns has larger, thicker tails than normal distribution. The Jarque–Bera test results also suggest that both returns are not normally distributed.


Table 1. Descriptive statistics for Brent and WTI spot returns.

[image: Table 1]

Specifically, the Pearson correlation coefficient between spot returns of Brent and WTI is 0.60047, which indicates that Brent spot returns are slightly positive correlated to WTI spot returns.



3. METHODOLOGY

Meng et al. [17] improve the TOP method [24–26] and propose the TOPS method. The TOPS method is briefly described as below.

Consider two standardized time series X(t1) : t1 = 1, 2, ⋯ , N − 1 and Y(t2) : t1 = 1, 2, ⋯ , N − 1, the distance matrix between X(t1) and Y(t2), denoted by EX,Y, is defined as

[image: image]

The lead–lag structure between two time series is detected by searching for the one-to-one mapping t1 → t2 = ϕ(t1) that satisfies

[image: image]

which is a global minimization with continuity constraint
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And rotate the coordinate system (t1, t2) to (t, x)

[image: image]

Denote the probability for a path through (x, t) as W(t, x)/W(t), where W(t, x) is the partition function of x at fixed t and

[image: image]

Notice that, the partition function W(t, x) obeys the following recursion relation:

[image: image]

Then implement a time-reversed invariant node weight process by averaging the weights determined along the time-forward and time-backward directions:

[image: image]

where the arrow → represents the recursive weight process in a time-forward direction, and the arrow ← refers to the recursive weight process in a time-backward direction. Therefore, one can obtain the optimal thermal averaged path trajectory 〈x(t)〉.



4. RESULTS

This section presents analysis results for the lead-lag features between Brent and WTI from 20 May 1987 to 10 October 2017. Based on the empirical experiment [17], we implement the TOPS analysis with temperature T = 2, which is the optimal parameter.

To examine the lead-lag structure during extreme events, we divide the full-sample period into four sub-samples by the outbreaks of the Gulf War (2 August 1990), the Iraq War (20 March 2003), and the lift of export ban (18 December 2015). We further carry out self-consistency tests in a moving window with size of 10 days to assess whether the lead-lag path is significant, and illustrate the result in Figure 1C. Periods that pass the test are marked in gray shades. Basically the consistency test is significant. Explanatorily, the four different subsamples are denoted as Sub 1, Sub 2, Sub 3, and Sub 4 based on their chronological orders, respectively. Table 2 shows the summary of 〈x(t)〉 during the sample period and Figure 2 shows the boxplots and probability density curves of 〈x(t)〉.


Table 2. Summary of the 〈x(t)〉 during whole period and the four sub-periods.

[image: Table 2]
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FIGURE 2. Boxplots and probability density curve based on kernel density estimation of the 〈x(t)〉. (A) Boxplots of 4 subsamples. The box plots illustrate the 25 and 75% quartiles, the median and outliers. (B–E) Probability density curve of four subsamples. (F) Probability density curve of the whole sample period.


As illustrated by the boxplots in Figure 2A, the 4 subsamples paths are highly similar except the outliers. See in Figures 2B–F, the probability density curve of the whole sample period TOPS path is almost symmetrical around 0. More accurately, positive 〈x(t)〉 takes more percentage of the whole paths (64.06%). The positive lead-lag paths reveal that WTI spot price is ahead of Brent spot price slightly with certain time lags, which means the price changes in WTI preceded the price changes in Brent. This is in accord with the fact that WTI holds the predominant position in the crude oil market except several episodes [3, 4, 7].

During the Sub 1 period from 20 May 1987 to 2 August 1990, the TOPS paths 〈x(t)〉 have 71.29% positive values, which indicates that Brent spot returns lag behind WTI spot returns over this period. The Iraq's invasion of Kuwait on 2 August, 1990 caused immediate disruption of the oil supply and triggered the oil price shock. The price of oil almost doubled in 2 months. WTI price peaked above $40 per barrel in October, while Brent price has risen to $41.45 per barrel on 27 September (see in Figure 1A). The alternate lead-lag dependence in September and October also suggests that the crude oil prices of WTI and Brent co-moved closely during periods of extreme market uncertainty [13].

As the situation gradually became clear, the uncertainty was eased and the market calmed down. From 1991 to the second half of 1992, Brent leads WTI (see in Figure 1C). Whereas, Brent is still lagged behind WTI in most cases during the Sub 2 period (with 66.42% positive 〈x(t)〉). Remarkably, the 〈x(t)〉 has two vibrations around the financial crises in 1995 and 1998, which coincides with the 1995 Russian crisis and the 1997 Asian financial crisis. Most intriguingly, we could observe a sharp vibration on 20 March 2003 in Figure 1C. The vibration is strong and temporal, which reflects the nervousness in the crude oil market triggered by the war. The weak alternate lead-lag relationship after the vibration implies that, the two markets react similarly under stress [13]. As concerns about long-term supply shortages eased and prices began to fall, a positive lead-lag path is observed in 2004.

In the Sub 3 period, the percentage that WTI spot leads Brent spot is 66.42%. The positive paths imply that WTI plays a leading role in most times while occasionally Brent takes the lead. For instance, the lead-lag relation reversion in 2007 might be associated with the financial crisis. Until 2011, WTI is more important than Brent for price discovery process [3, 4]. However, starting in 2011 the spread in the U.S. and international crude prices was enlarging, even reached -$29 per barrel (see in Figure 1A). WTI was trading at a large discount to Brent. Though several pipeline projects from Cushing to the Gulf Coast were built to expand transportation capacity after 2012 [16, 28], the U.S. crude oil could not be exported to the global marketplace to arbitrage away the spread due to the export ban [7] and transportation bottleneck [29]. Subsequently WTI was actually more a localized market than a globalized market. Then Energy Information Administration (EIA) replaced WTI with the North Sea Brent contract as the reference oil price [7]. The dramatic fluctuation of lead-lag path in 2011 (see in Figure 1C) supports the structural break that occurred in the WTI-Brent price spread around 2000–2011 [6–9]. At this time, WTI is “viewed as a broken benchmark” [7]. Since 2013 the lead-lag paths switch to an upward oscillation, which implies Brent changes are lagging behind WTI changes with increasing time lag. However, WTI was disconnected from the global market due to the export ban and transportation bottlenecks, it might not be reasonable to claim that WTI serves as a price discovery center during this time.

However, things have changed in 2015. The significant Brent-WTI spread, the sharp drop in oil prices and a Congressional budget deal led to the U.S. policy shift on oil export [30]. On 18 December of this year, the forty-decades-old crude oil export ban was finally lifted. Since then US oil could be transported abroad. Also, trade and efficiency in the oil market increased [31]. Consequently, sustainable increases in pipeline capacity together with the lift helped WTI reconnect with international crude oil prices [16]. After the lift of export ban, WTI spot almost evolves simultaneously with Brent (see in Figure 1A). The WTI and Brent crude oil returns display a bi-directional lead-lag structure (see in Figure 1C) with 48.24% positive 〈x(t)〉 in the Sub 4 period, which is consistent with the fact that WTI and Brent have reconnected ever since the lift of the ban [16].

Basically, WTI leads Brent during the whole sample period except the last sub-period, when the two benchmark prices align closely and exhibit an alternate lead-lag structure. Percent of positive 〈x(t)〉 is highest during Sub 1 period, then decreases in the following periods, which might suggest that WTI and Brent are more and more connected.



5. CONCLUSION

This paper comprehensively investigates the lead-lag relationship between Brent and WTI crude oil spot prices from 20 May 1987 to 10 October 2017 based on the TOPS method. To examine the lead-lag structure at different periods, we divide the whole series into four sub-series by the outbreaks of the Gulf War, the Iraq War, and the lift of the U.S. export ban.

The results show that the WTI spot market is leading the Brent spot market slightly during the whole period, which is in line with the fact that WTI oil price plays the dominant role in the international oil market [3, 4, 7]. However, the lead-lag relationship is volatile and subject to economic events, geopolitical events and policy shifts. The percentage of positive 〈x(t)〉 during different sub-periods increases successively, which may indicate that WTI and Brent prices are reintegrating gradually.

Additionally, extreme events affected the path in varying degrees. Political events like the two Gulf wars triggered concerns about future oil supply. Both of the two benchmark prices experienced extreme uncertainty [13], which is reflected in the sharp but temporary increase of oil price. During wartime WTI and Brent co-move closely. A violent fluctuation of the 〈x(t)〉 is observed on the outbreak of the Iraq war, which might be related to the Iraq's oil output collapse at that time. The U.S. export ban also affected the WTI-Brent lead-lag relationship. The ban [7] together with transportation bottleneck [29] have long influenced the WTI-Brent spread. The turning point of the WTI-Brent spread structure [6–9] in 2011 accords with the upheaval of the 〈x(t)〉. The shift of energy policy, i.e., the lift of the export ban in 2015, has reconnected WTI to Brent [16]. The alternate lead-lag relationship lasts until the end of the sample.

These results are in line with other related studies, which reveal that The TOPS method has the potential to investigate the impact of extreme events on correlations between two time series. However, oil market is extremely fragile and affected by numerous factors. There still needs further exploration and stronger support to make the TOPS method a more active and convincing approach to event analysis. Given this, we will focus on these issues in future research.
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This study investigated the dynamics between tick size and market quality using an agent-based multiple-order-book stock-market model. Given the multiple-order-book setting, we integrated the model with small-, medium-, and large-cap stocks and conducted the analysis from both a tick-size-series and cross-sectional perspective. The simulation results showed that small-cap stocks were of the lowest quality. Furthermore, quality was generally weakened as tick-size value increased, with expanded bid-ask spreads, elevated market volatility, and reduced market efficiency.

Keywords: tick size, market quality, agent-based modeling, multiple order books, market capitalization


1. INTRODUCTION

As one of the fundamental transaction requirements, tick size (i.e., the minimum movement of stock price) has received considerable research attention with regard to its powerful effects on market quality [1–19]. In light of the newly introduced tick-size policy change by the Chicago Mercantile Exchange, Martinez and Tse [9] investigated the relationship between tick-size reduction and market quality in the foreign currency futures market. They found that reduced tick size powerfully promoted the market quality of the Mexican peso, dramatically dropping pricing errors, greatly improving pricing discovery capacity, and considerably reducing informed trading. Similarly, in consideration of the 2016 US SEC tick-size pilot program, Griffith and Roseman [15] studied the market-liquidity reaction to the rising movement of tick size. They found that market liquidity would be severely weakened by an increase in tick size. Lepone and Wong [18] examined market-quality evolution with tick-size changes in the Singapore stock market. They found significant drops in the bid-ask spread and order depth following the reduction of tick size, and lower-priced stocks were favored through disguised market markers with higher returns. However, most of these prior studies were based on policy changes made by regulating authorities, which are extremely rare.

To avoid the quantity deficiencies of tick-size changes, this study used an agent-based multiple-order-book model, adopting six gradually increasing tick sizes to investigate the dynamics between tick size and market quality. Many studies have investigated the feasibility of agent-based modeling as an effective vehicle for stock-market simulation [20–34]. However, most of those studies were oriented using one stock, which limited the credibility of the models. Thus, to be more in line with market reality, we followed Wei et al. [35] and constructed an agent-based stock-market model with three stocks as representatives of large, medium, and small stocks. We found that as tick size rises, the bid-ask spread generally increases, which is consistent with findings for liquidity indexes, showing a decreasing trend in market liquidity. We also found that small-cap stocks have the worst liquidity with the highest bid-ask spreads and lowest liquidity index values at cross-sectional levels. We also took the return standard deviation as the measurement of market volatility. We found that market volatility increased dramatically with the rise in tick size, and the small-cap stocks were of the highest volatility with the largest values. Furthermore, we investigated market efficiency with three types of stocks. We found that the market efficiency demonstrates monotone increasing character with the expansion of tick size interval, and mid- and small-cap stocks had the highest and lowest market efficiency, respectively. Finally, we checked investor wealth evolution using tick-size changes and found that the wealth changes demonstrated a concave shape.

This study contributes to the literature in three ways. First, our agent-based stock-market model originates from a multiple-order-book perspective. Using the model, our study investigated the dynamics between tick size and market quality with small-, medium-, and large-cap stocks, which improves upon the limitations of prior one-stock models [27, 28]. Second, compared to previous tick-size studies [9, 18], our study covers six tick sizes, providing more detailed insights into the dynamics of tick size. Third, this study was based on the largest emerging Chinese stocks; thus, it can provide valuable risk-management suggestions for both international investors and regulatory authorities.

The rest of this paper is organized as follows. Section 2 illustrates the method. Section 3 describes the simulation results, and section 4 concludes the paper.



2. METHODS

2.1. Agent-Based Multiple-Order-Book Model

We introduced three types of stocks with variations in capitalization to construct an agent-based multiple-order-book model. In the model, investors adopt mixed heterogeneous beliefs and adaptive asset allocations in stock-price prediction and cash distribution, respectively.


2.1.1. Market Design

(1) Asset Design

In the Chinese stock market, there are three types of boards: the main board, the SME board (small and medium enterprise board), and the ChiNext board (growth enterprise market board). These three boards represent completely different types of stocks. The main board is constituted by large-cap stocks, while the SME and ChiNext boards consisted of medium- and small-sized stocks, respectively. Also, Xiong et al. [36] found that the average shares of the main board stocks, the Shenzhen 100 Index, SME Index, and ChiNext Index, are 1,975, 912, and 637 million shares, respectively. However, the average prices of the three boards are 20, 19, and 19 CNYs. In consideration of the actual market structure with three board indices, we set three stocks—one large-cap stock, one mid-cap stock, and one small-cap stock as well as a risk-free asset—in the agent-based multiple-order-book model. The shares of large-, mid-, and small-cap stocks are set as 2,000,000, 1,000,000, and 500,000, respectively, which are close to the one thousandths of real numbers, and the initial prices of the three stocks were 20 CNYs, as shown in Table 1. Also, we assumed there was no fundamental value correlation among the three stocks and that the interest rate of cash was zero.


Table 1. Asset setting in the agent-based multiple-order-book model.

[image: Table 1]

(2) Investor design

Considering the calculation capacity limits of the simulation platform, we set the number of total investors as N = 5,000. When investors engage in the market the first time, they are allocated a certain amount of initial stocks and cash. The initial position of investor i of stock j, [image: image], is

[image: image]

where [image: image] is the average position of stock j allocated to each investor as the total shares of stock j over total investors. φ refers to the uniform distribution with the boundary limit, [0.1, 1.9], complying with the heterogeneity of investors. Also, we assumed the initial cash of the investors was equal to the capitalization of stocks at the beginning of the simulation. In this view, the initial cash of investor i, [image: image], is

[image: image]

where [image: image] is the initial price of stock j. In addition, when the investor's wealth is too low, we recognize the investor as bankrupt. Meanwhile, a new investor will be enrolled in the simulation market to ensure the normal operation of the agent-based model.



2.1.2. Investor Price Prediction

Following Chiarella et al. [37], we adopted three types of investorsfundamental investor, technical investor, and a noise investor—which is in accordance with the market-participator reality in the Chinese stock market. In this view, in our model, the investor makes a price prediction based on a mixed-heterogeneity belief. The return prediction of investor i of stock j is

[image: image]

where ε is responsible for the investor's noise belief, and [image: image] denotes the predicted return by investor i of stock j based on fundamental belief. Incorporated with investor trading horizon τi, [image: image] is calculated as the natural log value of the fundamental value of stock j, denoted as [image: image], over price [image: image], as shown in Equation (4). Also, [image: image] refers to the predicted return by investor i of stock j based on technical belief, calculated as the natural log value of short-term average price [image: image] over long-term average price [image: image], as shown in Equation (5).

[image: image]

[image: image]

In addition, xi, yi, and zi represent the weight of technical, fundamental, and noise belief, following the constraints as xi = x*θ, yi = (1−x* − z*)θ, and zi = z*θ, where θ is of uniform distribution with [0, 1] as the boundary limit. x*, y*, and z* are the given exogenous technical, fundamental, and noise parameters, respectively, in the agent-based model, and the sum of the three parameters is equal to one, as shown in Equation (6):

[image: image]

The trading horizon of investor i, τi, is determined by the relation between technical belief weight xi and fundamental belief weight yi. If the technical belief weight xi grows, the trading horizon begins to be narrowed. Meanwhile, the larger the fundamental belief weight yi, the longer the trading horizon, as shown in Equation (7). We set the initial trading horizon τ* = 5days = 1200t. The possibility of investor arrival at the market is inverse to trading horizon τi and follows Poisson distribution with the parameter of λi = ω /τi.

[image: image]

In the end, the investor makes a stock-return prediction with regard to mixed fundamental, technical, and noise beliefs. The predicted price of stock j at time t, [image: image], is derived from the price of stock j at time t, [image: image], as shown in Equation (8):

[image: image]



2.1.3. Investor-Adaptive Asset-Allocation Model

Asset allocation is the most important procedure in the investor-trading decision-making process. In the 1950s, Markowitz [38] introduced the well-known “mean-variance” model as the first scientific calculation of optimal portfolio weights upon equities risks. However, based on the survey results of the Shanghai Stock Exchange Market Quality Report 2016, we found that, in the Chinese stock market, most individual investors show intensely irrational compulsions when making asset-allocation decisions. In fact, most Chinese investors favor stocks with better performances or that have been extensively covered by the media in recent weeks, indicating a hot-topic-chasing preference in investors' adaptive asset-allocation processes. Follow Brock and Hommes [39], we integrated the adaptive belief-transfer mechanism to investors' asset-allocation decision-making processes and constructed an investor-adaptive asset-allocation model.

In our model, when investors come to the stock market, they spread their wealth into the positions of four assets based on the predicted returns1. The distributed wealth ratio of asset j by investor i, [image: image], is

[image: image]

where [image: image] is the predicted return of asset j by investor i, and β is the adaptive transfer degree.

With the wealth ratio allocated to each asset, we can get the cash balance of investor i in asset j at time t, [image: image], as

[image: image]

where [image: image] is the total balance of investor i at time t.



2.1.4. Investor Order-Placing Rule

In the model, the investors decide the order direction, order type, and order size based on the analysis of the predicted return and temporal status of the order book. Following Gil-Bazo et al. [40], we assume that investors reserve part of their return, μ, as compensation for the transaction cost2. The reserved return is

[image: image]

where [image: image] is the midpoint of the optimal bid and ask spread.

Table 2 shows the detailed order-placing rules of the investors. We follow this mechanism design proposed by Gil-Bazo et al. [40]. As shown in the table, investor i decides the order type by comparing the distance between asset predicted price, [image: image], and reserved return, μ. For example, when both the bid and ask orders exist in the order book (scenario 1), if the difference between the predicted price, [image: image], and reserved return, μ, is higher than the optimal ask price, the investor places a market bid order with a price of [image: image]. If the predicted price, [image: image], is not larger than the optimal ask price, [image: image], plus the reserved return, μ; not smaller than the optimal bid price, [image: image], minus the reserved return, μ; and larger than the midpoint of the optimal bid-ask spread, [image: image], the investor would place a limit bid order with a price of [image: image].


Table 2. Order-placing rules of investors.

[image: Table 2]

In the end, the model determines the order size of the investor. When the investor decides to buy a stock, he or she will place all cash allocated to the stock into the bid order, and the size of the bid order is [image: image]. Meanwhile, when the investor decides to sell a stock, he or she will leave no positions left.





3. SIMULATION RESULTS

3.1. Price Pattern

Figure 1 shows the dynamics of the price series of the large-cap stock with small and large ticker sizes (0.001 and 0.1, respectively). We can found that under a ticker size of 0.001, the price pattern shows powerful evidence for stock-liquidity sufficiency with a smooth and continuous line. Also, the price pattern of the small ticker size, 0.001, presents mild fluctuation with a narrow range, gradually increasing and descending from 20.5 to 21. Meanwhile, the price line with regard to the large ticker size, 0.1, is of adequate liquidity with a jagged shape, indicating a low degree of participation in the placement of bid-ask orders. In addition, we found that the price range of the large ticker size varies from 0 to 21, which is much larger than that of the small ticker size, indicating a higher degree of volatility.


[image: Figure 1]
FIGURE 1. Price-evolution pattern of the large-cap stock.


Figure 2 shows the price-evolution series of the mid-cap stock with small and large ticker sizes. We can see that, similarly to Figure 1, the price pattern of the small ticker size shows more liquidity than the large ticker size with a flatter line. Also consistent with Figure 1, the price pattern of the small ticker size shows higher stability with a limited price range of 20.5–19.5 compared to the large ticker's wild range of 18–23. However, the price trends of the mid-cap stock show few differences from those of the large-cap stock. We can see in Figure 2 that, unlike the rising trends at the beginning of the large-cap stock simulation, the price evolutions of the small and large ticker sizes of the mid-cap stock are of a declining character at the beginning of the simulation and gradually bounce back later in the simulation.


[image: Figure 2]
FIGURE 2. Price-evolution pattern of the mid-cap stock.


Figure 3 shows the price pattern of the small-cap stock under the circumstances of small and large ticker sizes. We can found that, different from Figures 1, 2, the price evolution of the small ticker size with the small-cap stock shows no noticeable curves, indicating a higher degree of stability. Consistent with Figures 1, 2, the price pattern of the large ticker size shows more volatility with vast price changes from 0 to 80 in contrast to the near-zero price change of the small ticker. Also, we can see that the maximum price of the small-cap stock with a large ticker size is roughly four times that of the large- and mid-cap stocks, and the price pattern exhibits more peaks with those in Figures 1, 2, indicating a further lower level of stability.


[image: Figure 3]
FIGURE 3. Price-evolution pattern of the small-cap stock.




3.2. Market Liquidity

For market liquidity, we adopted three primary measurements. The first one lies in the bid-ask spread, which is widely used in prior research. Also, to obtain more comprehensive insight, we introduced a second measurement, order depth, which is calculated as the average of the sum of the bid-ask order volumes. The construction process is as follows

[image: image]

where Volume_askj,t is the j-th ask-order volume at time t, Volume_bidj,t is the j-th bid-order volume at time t, and Deptht is the order depth at time t, k=5.

The third is the liquidity index, LSSE, proposed by the Shanghai Stock Exchange, one of the two leading exchanges in China. The index measures the elasticity of the trading CNY change upon the variation in stock price, Δ3. The more CNY initiated in the stock-price change, the greater the index, indicating a higher degree of liquidity. The specific calculation process is as follows

[image: image]

where Bj and Aj are the j-th bid and ask quotations. Dj is the order depth with the j-th quotation.

Table 3 reports the bid-ask spreads of the large-, mid-, and small-cap stocks with escalating levels of tick sizes from 0.001 to 0.1. We found clear variations in the spread traces at the cross-sectional and tick-size-series levels. From the cross-sectional perspective, we find that within each tick size, the small-cap stock has the lowest liquidity and the largest bid-ask spread value. Meanwhile, in view of the tick-size series, we found that market liquidity shows the greatest favor with a tick size of 0.001 by the minimum average bid-ask spread value. We could also see that the average bid-ask spread value shows a noticeable growing trend with increasing bid-ask spread values, indicating a lower level of market liquidity.


Table 3. Bid-ask spreads of large-, mid-, and small-cap stocks.

[image: Table 3]

Table 4 shows the results of the second market-liquidity measuring instrument, the order depth, with the integration of trading volume, across the three types of stocks. Consistent with Table 3, we conducted the analysis from both tick-size-series and cross-sectional perspectives. We found that, within the tick-size series, the order depths generally show continuous growth, with the exception of tick size 0.05, which is in line with findings of Lepone and Wong [18] by the large. From the cross-sectional perspective, we found that at each tick-size level, the large-cap stock has the largest order depth, which is roughly 1.67 and 3.29 times those of the mid- and small-cap stocks, respectively.


Table 4. Order depths of large-, mid-, and small-cap stocks.

[image: Table 4]

Table 5 shows the results of the third market liquidity indicator, the liquidity indices, through large-, mid-, and small-cap stocks. Consistent with Tables 3, 4, we initiated tick-size-series and cross-sectional checks of the dynamics of the liquidity indices. The average and large cap market-liquidity indices show apparent falls with increasing tick-size values from 0.005 to 0.1, indicating an impairing trend in market liquidity. We can also found that the large-cap stocks have the largest liquidity index values, showing a considerable edge in market liquidity at each tick-size level.


Table 5. Liquidity indices of large-, mid-, and small-cap stocks.

[image: Table 5]



3.3. Volatility

For market volatility, we took the traditional standard deviation in stock price as the indicator. Table 6 shows that the average market volatilities grew following the expansion of tick sizes, with the exception of tick size 0.02, which is generally consistent with findings of Griffith and Roseman [15]. Also, within each tick size, we can find that large-cap stocks usually have the least volatility and the smallest numbers. Meanwhile, mid- and small-cap stocks had the second- and first-highest volatilities with the second-largest and largest deviations, respectively.


Table 6. Volatilities of large-, mid-, and small-cap stocks.

[image: Table 6]



3.4. Market-Pricing Efficiency

For market-pricing efficiency, we took two indicators, MAE and MRE, as the measuring instruments. MAE refers to the absolute distance between stock price, pt, and stock fundamental value, ft. Similarly, MRE is the relative distance between stock price, pt, and stock fundamental value, ft. The smaller the indicator number, the higher the pricing efficiency of the market. The detailed constructions of both indicators are as follows

[image: image]

[image: image]

Tables 7, 8 show the results for the market-pricing-efficiency indicators, MAE and MRE, with large-, mid-, and small-cap stocks. We found that, if expanded intervals are taken, such as 10 times, the average MAEs and MREs of 0.1 (0.01) are much larger than those of 0.01 (0.001), respectively. In this view, we believe that the market efficiency generally falls with the increase of tick sizes, especially when the size intervals are of huge differences4. We can also find that in most cases, mid- and small-cap stocks have the best and worst market-pricing efficiencies, respectively, with smallest and largest MAE and MRE values for each tick size.


Table 7. MAEs of large-, mid-, and small-cap stocks.

[image: Table 7]


Table 8. MREs of large-, mid-, and small-cap stocks.

[image: Table 8]



3.5. Investor Wealth

Table 9 shows the results for the investor wealth dynamics with each distinct tick size. We found that the dynamic pattern of investor wealth has a concave character, and the maximum value of investor wealth corresponds to a tick size of 0.001. Also, with increasing tick-size value, investor wealth shows a falling trend with reduced values, reaching the lowest point at tick size 0.01. After that, investor wealth starts to rebound with growing values from tick sizes 0.02 to 0.1.


Table 9. Investor wealth and ticker sizes.

[image: Table 9]




4. CONCLUSION

This study used an agent-based multiple-order-book stock-market model to investigate the relationship between tick size and market quality. We set six tick sizes from 0.001 to 0.1. With a gradual increase in tick size, market liquidity showed a significant drop with amplified bid-ask spreads and shrunken liquidity index values. Also, for market volatility, we found noticeable volatility decreases with declining tick sizes. In addition, we investigated market efficiency, which is a major element of market quality. We found that market efficiency would be weakened upon the increase of tick size, especially when the interval is of large distance. Furthermore, from a cross-sectional perspective, we found that small-cap stocks had the worst market quality with the least satisfactory indicator values.
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FOOTNOTES

1The predicted return of cash is zero.

2We do not implement a specific check of the size of reserved return. However, with the simulation tests, we find that a limited variation of reserved return presents no impact to the final results.

3We set the price change magnitude, Δ, as 1%.

4The original evolutions of average MAEs and MREs in Tables 7, 8 demonstrate faulty monotonicity, with certain breaks at 0.02 and 0.05. We attribute this phenomenon as the result of narrowed interval setting from 0.005 to [image: image]. Each interval from 0.005 to [image: image] is 2 or 2.5 times, much smaller than that between 0.1 (0.01) and 0.01 (0.001). Also, if we designate the 0.001 and 0.005, 0.01 and 0.02, and 0.05 and 0.1, as hypothetical low, medium and high tick size subgroups, it is evident to see that the averages of MAE and MRE grow with the escalation of subgroup sizes. In this view, the monotone increasing characters of MAEs and MREs are perfectly presented with the expansion of size intervals.
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In this paper, we examine the dynamic correlations between mass-media news and new-media news as well as their reprints in the Chinese stock market. We mainly find that: (1) there is a significant positive correlation between the four types of news and the correlation between reprints and their congener media news is stronger; (2) both the mass-media news and new-media news have significant positive autocorrelation. The new-media news and the reprints rely more on mass-media news. (3) both mass-media news and new-media news will make a positive response to the corporate events, but the reaction of new-media news including the new-media reprints is stronger than mass-media; (4) the results of dynamic correlation analysis indicate that there is a significant correlation between the four types of news over time. The correlation between mass-media news and new-media news is stronger when the stock market performs well. We attribute these results to the symbiotic relationship between mass media and new media in the Chinese stock market, where mass media devotes to provide original news with high quality and new media transfers these numbers of news to more readers to attract more attention and discussion.

Keywords: mass-media news, new-media news, contemporaneous correlation, mutual information, PVAR, dynamic correlation


INTRODUCTION

To figure out how the investors obtain the information will help us to understand the financial market [1]. Media, as the information intermediary, plays an important role in the process of information transmission in the stock market. With the development of the Internet, new media becomes one of the main platforms for investors to get financial information. Unlike traditional media, the large portals collect and provide a large number of, even all, news from the various news source for the investors. Investors need not subscribe to the newspaper or watch the TV to get information like before and they can get the information from the internet easily and quickly. On the other hand, the reprints on the internet could disseminate financial information to broad investors. So the internet brings a great challenge for mass media. Although the internet provides these advantages for the new media, the mass media still co-exist with media and provides information for investors. The existing literature indicates that how investors obtain information is important to understand the financial market [1]. Facing the status quo of the co-exist of mass media and new media in such an internet age, to study the correlation between mass media and new media is of importance to figure out the role of media played in the process of the information transmission and will help us to furtherly understand the financial market.

A strand of literature has examined the role of the media in the financial market [1–3]. But they are all concentrated on one specific media, either mass media or new media [4–6]. However, the correlation between mass media and new media as well as the different roles they played in the finical market is not studied. How they co-exist and what impact on the process of information transmission that they have in the financial market are not clear, especially considering the reprints. In this paper, we examine the correlation between mass-media news and new-media news considering the reprints simultaneously. We find that mass media and new media exhibit a symbiotic relationship in the stock market, where mass media devotes to provide original news with high quality and new media transfers these numbers of news to more readers to attract more attention and discussion. And we also find that mass-media news and new-media news maintain a positive correlation over time and the correlation becomes stronger when the stock market performs well. These results will help us to comprehend the role of the information intermediary of media. Therefore, we add to the literature on the role of the media in the financial market. On the other hand, there are some studies about the correlation between mass media and new media [7–12]. But fewer of them are about the financial market and take reprint into account. Hence, we also add to the literature on the correlation between mass media and new media for the financial market. The closest research is our previous work [11, 12], which we used the sample data of stocks of CSI 300 and SSE index, respectively, to explore the correlation between mass-media news and new-media news. Comparing their work, the contributions of this paper are 3-fold. Firstly, we consider the reprint when we studying the correlation between mass-media news and new-media news. Secondly, we improve the classification criteria for mass-media news and new-media news and provide a more objective and reasonable classification criterion. Thirdly, The larger samples, the stocks of the full Chinese stock market, and the new methodology used in this paper could provide more comprehensive and effective results.

The remainder of this paper is organized as follows. Section Literature review gives the literature review of the role of the media in the financial market and the correlation between mass media and new media. Section Data and sample describes the sample data using in this paper and its' statistical properties. Section Result and discussions reports the empirical results and section conclusions provides the conclusions.



LITERATURE REVIEW

The Role of Media in the Financial Market

Our paper related to the literature about the role of media played in the stock market and this research problem has attracted a lot of attention from the researchers. In the earlier literature, researchers have concentrated the role of either mass media [2, 13–16] or new media [4, 6, 17–22] play in the financial market.

For the mass media, Klibanoff et al. [23] investigate the effect of the country-specific news appearing on the front page of The New York Times on the reaction of closed-end country fund prices to the asset value. They found that the prices react more when there is news on the front page of the New York Times. Chan [15] used the data of news headlines to study the reaction of stock price to news and no-news and they found different patterns of reversal and momentum for stocks accompanied by or unaccompanied by the news. Tetlock [2] explored the interaction between the media and the stock market by analyzing the content of the column of the Wall Street Journal. By constructing the pessimistic factor as the measure of media content, they found the predictability of the media content for market prices and market trading volume. Tetlock et al. [24] quantified the language used in all Wall Street Journal and Dow Jones News Service stories of finance and found that the quantifying language provides the firms' fundamental information. Fang and Peress [3] used the number of the newspaper as the measure of media coverage to explore the effect of media coverage on stock returns and found that there will be higher returns for the stocks with no media coverage than the stocks with high media coverage. Peress [1] investigate the national newspaper strikes to study the influence of media and diffusion of information on trading and price formation. They found that the media could improve the dissemination of information in the stock market.

For the new media, Tumarkin and Whitelaw [17] explored the effect of postings on the stock prices and indicated that the number of postings could not predict the return and trading volume of the stocks. Antweiler and Frank [6] studied the effect of the postings from Yahoo! Finance and Raging Bull on the stocks and found that the stock messages could help to predict the market volatility. Das and Chen [18] build the sentiment index by exacting the text of the postings on Yahoo's message board and found it is related to the stock index levels, volume and volatility. Zhang et al. [25] found that the number of Baidu News could explain the volatility persistence of SME PRICE INDEX in China. Shen et al. [26] used the number of Baidu News as the proxy for internet information flow to provide the evidence for the Mixture of Distribution Hypothesis.



The Correlation Between Mass Media and New Media

Our study is also related to the literature about the relationship between mass media and new media. The argument of the relationship between mass media and new media has existed since the birth of new media. There are some studies support the competitive relationship between the two types of media [7, 27–29]. Dimmick et al. [7] used the survey data of telephone to explore the relationship between mass media and new media and found that the new media has a competitive displacement effect on the mass media. Lee and Leung [27] study the “medium-centric” and “user-centric” approaches by using a random sample and the result indicated that the internet could displace the use of traditional media. Ha and Fang [28] explores the displacement effect of new media on mass media using the survey data of consumer time spent on media. They found that the new media indeed has a replacement effect on the mass media. On the other hand, some researchers argue that there is a complementary relationship between mass media and new media [8, 10]. Chyi and Lasorsa [10] used a random-sample telephone survey of the public's response to the print and online newspaper to study the substantial overlap between online and print readerships and found a complementary relationship between them. Nguyen and Western [8] also found that mass media exist to complement new media to meet the needs of people to get information. Furthermore, Jang and Park [9] indicated there the substitutability and complementary relationship between mass media and new media exist simultaneously and the magnitudes of these relationships exhibit different for the different purposes of users.




DATA AND SAMPLE

News Classification Criteria

We classified the news into two types of news according to the data field of news sources provided by Wisers. And we called the two types of news as the mass-media news and new-media news. In prior researches, the news has been classified into mass-media news and new-media news according to the news' sources of the communication media [7–9, 11, 12]. They referred the news transferred on the internet as the new-media news and the news transferred through traditional channels, such as the newspaper, is regarded as the mass-media news. But the traditional media is also seeking the new developmental pattern in the internet era. They provided their news on the internet for the readers. And they can provide high-quality news relied on their professional interviewing and editing team. The prior literature found that the news category, reader gender and interest in a particular topic have greater influences on the readers' news consumption than whether the news appears in print or online after studying the news consumption of readers of the news presented in online and print versions of newspapers [30].

On the other hand, the relationship between print and Internet media is symbiotic in China [31]. Hassid and Repnikova indicated that Internet portal sites in China are enormously powerful to attract the attention or discussion of readers, but they couldn't provide their own news for the barrier of legal rights to interview and edit. And the portal sites have to rely on reprints from newspapers and wire services [31]. So Hassid and Repnikova argued that “portals need newspapers to provide content, and the newspapers, in turn, need portals to publicize their articles, attract readership, and pay subscription fees in China.”

Considering these facts, we argue that the online news provided by the traditional media plays a similar role to the news in print. So we improve the methodology introduced by Zhang et al. [11] to categorize the news coming from the online traditional media into the mass-media news. There are two reasons for our classification criteria. Firstly, the online news provided by the traditional media shares the same interviewing and editing team with the news in print. So the online news and the news in print of traditional news are homogeneous. Secondly, for the legal rights to interview and edit, the traditional media and the new media play different positions during the transfer of information, even for the online news provided by the traditional media and the new media. According to this classification criteria, we classified our news data into two types of news, i.e., the mass-media news and new-media news. And the detailed definitions of mass-media news and new-media news are as follows:

(1) We regard the news provided by mass-media including the online news of them as the mass-media news. Such as the news provided by the newspapers, the TV, the radio, and the magazine.

(2) The new-media news is the news that is only provided by the Internet. Such as the news provided by the portal, the blog, and social media.

Furthermore, there is a large number of reprints with the development of the internet. Generally, there is a statement of the copyright for the original news on the website. So the website is not allowed to modify the content of news even for the headlines when it reprints one news. Based on this, we defined the directed reprint news as the news with the same headlines. For one news, we chose the first one appeared in the Wisers as the original news and the number of directed reprint news equal to the number of the news with the same headline minus one. Then we classified the reprint news into mass-media news and new-media news based on the classification criteria introduced in this paper.



Sample Select

The news data used in this paper comes from the database of Wisers which is provided by the Wisers Information Limited. Wisers is one of the largest databases of Chinese media including all the Chinese news of the Chinese stock market. We focus on the news sample of all A-share in the Chinese stock market dropping the stocks in special treatment. According to the illustration of the Wisers database, the news is crawled from the Internet based on keywords such as the names of the company, the names of the companies in the financial sector are often mentioned in the financial reports. These reports are not the news of these companies, but the Wisers may crawl them from the Internet. Therefore, the news of financial stocks may contain noise. And we drop the financial stocks in our sample. Our sample period spans from 1 January 2015 to 31 December 2018 with daily observations, and we get a sample including 3,067 stocks. Based on the classification criteria introduced in this paper, we get 726 types of mass-media sources and 1,488 types of new-media sources in our sample period. In this paper, we also used the trading data and financial data, such as the close price, the market value, the announcement and so on. And we get these data from the database of CSMAR and Wind, which are both the professional financial database in China.

Figure 1 illustrates the weekly number of four types of news. From top to bottom in Figure 1, the line represents the number of new-media news, new-media reprints, mass-media news, and mass-media reprints. As we can see from Figure 1, the number of new-media news, no matter for the total news or the reprints, is significantly larger than the mass-media news and the trend of the four types of news is similar. This implies that the new-media news provides a richer information environment for us and there is a strong correlation between the mass-media news and new-media news. Table 1 reports the summary statistics for the mean daily number of the four types of news for our sample. We calculate the statistical property of the news' number for every stock, and then, report the mean of these statistical properties in Table 1. From Table 1, we can find that the standard deviation of the new-media news is larger than the mass-media news, which implies that the new-media news is more likely to be influenced by the shocks.


[image: Figure 1]
FIGURE 1. The mean weekly number of four types of news.



Table 1. Summary statistics for four types of news.
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RESULT AND DISCUSSIONS

In this section, we investigate the relationship between the four types of news defined in this paper. Firstly, we investigate the contemporaneous correlation between the four types of news. Secondly, we compare the reaction of the four types of news to different corporate events. Third, we conduct the Panel Var Model to explore the lead-lag relationship between the four types of news.


The Contemporaneous Correlation Between the Four Types of News

In this section, we calculate the Pearson correlation coefficient, Kendall correlation coefficient, and the Spearman correlation coefficient to investigate the contemporaneous correlation among the four types of news for every stock in our sample. And then we get the mean of these correlations for all stocks. Table 2 reports the results of the correlation matrix for the four types of news. Panel A of Table 2 shows the mean Pearson correlation coefficient among the four types of news. We can find that the correlation coefficients are all larger than 0.6 with a significant level of 0.01. These results indicate that there is a significant correlation among the four types of news defined in this paper and imply that the mass media and new media may pay attention to the same event every day although there is a big difference in the quantity of news that their provide. For these mean correlation coefficients, the correlation coefficient between the new-media reprints and new-media news is the largest which is larger than 0.9 with a significant level of 0.01 and the correlation coefficient between the mass-media news and the mass-media news reprints is also larger than 0.9 at a significant level of 0.01. On the other hand, the correlation coefficient between mass-media news and new-media reprints as well as the one between new-media news and mass-media reprints are around 0.7. The difference between these results shows that the two media both pay more attention to their congener media when they reprint news from other media. The larger correlation coefficient between mass-media news and new-media reprints than the one between new-media news and mass-media reprints implies that the mass media is paid more attention to when one media reprint news from other media. And we get similar conclusions from the results of Kendall correlation and Spearman correlation in Panel B and C in Table 2. We attribute these results that the mass media provides a large number of original news because of their advantage of interviewing and editing team. So the new media depend more on the mass media to some extent.


Table 2. The correlation matrix for the four types of news.
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Then we calculate the Mutual Information to further study the relationship between the four types of news. In probability and information theory, the Mutual Information is a useful measure of interdependence between two variables. Table 3 reports the result of Mutual Information among four news and we report the mean of Mutual Information for all stock. As we can see from Table 3, the Mutual Information is all larger than 0.3 with a significant level of 0.01 implying a significant positive correlation among the four types of news. Similarly, the Mutual Information between mass-media news and mass-media reprints (0.431) is larger than the one between new-media news and mass-media reprints (0.368) as well as the Mutual Information between new-media news and new-media reprints (0.915) is larger than the one between mass-media news and new-media reprints (0.427), which indicate that the two media both pay more attention to their congener media when they reprint news from other media. Also, the Mutual Information between new-media reprints and mass-media news (0.427) is larger than the one between mass-media reprints and new-media news (0.368) implying that mass-media news is paid more attention when the media choose which news to reprint.


Table 3. The mutual information matrix for the four types of news.
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The Lead-Lag Relation for the Four Types of News

In this section, we investigate the lead-lag relation among the mass-media news, new-media news, mass-media reprints, and new-media reprints with the following Panel Vector Autoregression (VAR) Model with one-period delay.
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where [image: image] and [image: image] are the vector of endogenous variables for the model (1) and model (2), respectively.

Table 4 reports the coefficients of the PVAR model. Panel A shows the result of the model (1). We can see that the coefficient of the lagged number of mass-media news is positive and statistically significant, while the coefficient of the lagged number of new-media news is negative and statistically significant in column 1 of panel A. This indicates that the daily number of mass-media news has a significant auto-correlation and relies on less on the lagged number of new-media news. In column 2 of panel A, the coefficients of the lagged number of mass-media news and new-media news are both positive and statistically significant, implying that there is an auto-correlation for the daily number of new-media news and the number of mass-media news could lead the number of new-media news. Considering the reprints in panel B of Table 4, the coefficients of the lagged number of mass-media news are all positive and statistically significant when we use the current daily number of mass-media news, new-media news, mass-media reprints, and new-media reprints as the dependent variables. This implies that the number of mass-media news keeps the significant auto-correlation and could lead the number of new-media news, mass-reprints as well as new-media reprints when considering the reprints. At the same time, the coefficients of the lagged number of new-media news are also positive and statistically significant, which indicating that the lagged number of new-media news could lead the all the current number of all four types of media news including itself. Panel B of Table 4 shows that the coefficients of the lagged number of mass-media news are all larger than the corresponding coefficient for the lagged number of new-media news. We can conclude that the number of four types of news relies more on the mass-media news including the mass media itself. We attribute this result to the different role that the mass media and new media play when they transfer the information. As we discussed above, the mass media is engaged to provide original news with high quality while the new media devotes to transfer to the readers. So the number of new-media news will increase when there is more mass-media news that could be chosen and transferred by the new media. At the same time, the journalists will seek “inspiration of creation” on the internet. So the number of new-media news may lead the mass-media news to some extent.


Table 4. Results of panel vector autoregression (PVAR) model for four types of news.
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The last two columns of Panel B show that there is no autocorrelation for the mass-media reprints and new-media reprints. And the significant positive coefficients of lagged number mass-media news and new-media indicate that they rely more on the mass-media news and new-media news. The coefficients of the number of lagged mass-media reprints and new-media news are all negative and statistically significant. When the number of reprints is large, there may be a hot event in the stock market and the media will pay more attention to this event even overreact to it. So the negative coefficients are more likely due to mean-reversion.



Factors Drive the Coverage of News

In this section, we investigate the different reactions for the four types of news defined in this paper to the different shocks. We analyze the influence of corporate events on the coverage and reprints of the mass media and new media.

Following the work introduced by Drake et al. [32], we defined 5 corporate event indicator variables to investigate the reactions of the mass media and new media to these events. The first indicator, EARN is the indicator of the earnings announcement. When there is earning announcement for stock in one day, the value of the day, as well as the following day, is set to one for this stock and to zero otherwise. The second indicator, DIVEQ, is about the dividend- and equity-related event. When one firm issue a dividend- or equity-related announcement, the value of the DIVIEQ of the day, as well as the following day, is set to one and to zero otherwise. The third indicator, M&A, is the mergers and acquisitions-related events. The value of M&A on the day, as well as the following day, of the mergers or acquisition-related announcement, is set to one, and to zero otherwise. The fourth indicator, Emerg, represents the emergencies defined by the database of CSMAR. Similarly, on the days 0 and +1 of this events, the value of Emerg equal to one, and to zero otherwise. Our last indicator, Other, denotes the other corporate events included in the database of CSMAR In addition to the above four types of events.

Then we conducted the panel regression with a fixed effect to explore the reaction of the mass media and new media to these corporate events. Our model is as follows:

[image: image]

where MCOVit is the news number of firm i in day t which include mass-media news, new-media news, mass-media reprints, and new-media reprints. And the other variables are defined above.

Table 5 reports the results of Model (3). From Table 4, we can see that the coefficients of all the events for the four types of news are significantly positive. This indicates that both the mass media and new media will increase the number of coverage to the firm when there appears a corporate event. And the coefficient of the Emerg is larger than the other coefficients of the event indicator implied that the emergences are more likely to attract the media to cover. The coefficients for new-media news are larger than the ones for mass-media news and the coefficients for new-media reprints are also larger than mass-media reprints, even larger than the one for mass-media news, which indicates that the reactions to corporate events of new media are stronger than the mass media. When there appears an event, there will be a large number of new-media news to cover it. It could make more investors aware of this event. So this result could provide a piece of evidence that the new media could improve the information environment for investors.


Table 5. Events that drive the coverage of news.
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Dynamic Correlation for the Four Types of News

To investigate the dynamic correlation between the four types of news, the rolling window analysis is conducted in this section. We choose 240 business days (~1 year) as the length of the rolling windows selected in this paper. Figures (1) and (4) in Figure 2 shows the dynamic correlation between mass-media news and new-media news, mass-media news and mass-media reprints, new-media news and new-media reprints, as well as mass-media reprints and new-media reprints, respectively. Figure (5) in Figure 2 shows the varieties of the Chinese stock market in the corresponding time. And we choose the index price of the CSI A-share index as the indicator of the performance of the Chinese stock market. The CSI A-share index is compiled by the CSI company and could reflect the performance of Chinese performance well. As we can see in Figure 2, there are significant positive correlations between the four types of news over time and there is a decreasing trend for all four types of dynamic correlation in this paper. There is also a decreasing trend for the Chinese stock market in the corresponding time, which can be seen in (5) of Figure 2. We attribute the decreasing trend of the dynamic correlation to the decreasing media attention when there is a poor performance of the market, especially for the new-media news. And we provide further evidence of this by conducting the quantile regression of the dynamic correlation on the index price of the CSI A-share index as well as the number of news on the CSI A-share index:

[image: image]

where correlation(τ)t is the correlation of the four types of news in time t at τ, Indext is the index price of the CSI A-share index in time t, α(τ) is the constant of the quantile regression. β(τ) denotes the coefficient of four types of dynamic correlations. And τ represents the different quantile.


[image: Figure 2]
FIGURE 2. The dynamic correlation for four types of news and stock market.


Table 6 reports the results of the quantile regression of the dynamic correlation for the four types of news on the index price of the CSI A-share index and we report the coefficients only. To ensure the readability of the table, all coefficients in Table 6 are multiplied 1000. For the dynamic correlation between mass-media news and new-media news, the coefficients in the first column in Table 6 are all significant positive for all quantile levels. And there is an increasing trend with the increase of the quantile level. This result indicates that there is a stronger correlation between mass-media news and new-media news when the stock market performs well. From the other three columns in Table 6, we can also see the similar increasing trend of the coefficients of different quantile levels except for the 0.8 and 0.9 percentile. For the model of dynamic correlation between mass-media news and mass-media reprints as well as the model of dynamic correlation between new-media news and new-media reprints, the coefficients of 0.8 and 0.9 percentile are negative. Besides, the coefficients of the corresponding quantile levels are smaller than the other quantile levels. These results imply that the correlations between reprints and their corresponding media news become weak when the stock market performs well. We attribute these results to that the bullish market attracts more attention of the media, especially for new media. According to the results above, we can see that the number of new-media news has larger volatility, which has a larger standard deviation, than the mass-media news and the new media makes larger reactions to the shocks. Considering the purpose of mass media, which provides objective and balanced information for the investors, and the ability to interview and editing, the mass media are more likely to provide a more stable quantity of news for the investors than new media every day. So when the market performs well, the new media will provide more news to the investors and shows a stronger correlation with mass-media news. On the other hand, both the mass media and new media are attracted by the extremely good performance of the stock market, they will both provide a larger quantity of news for the investors. So when the stock market performs extremely well, the reprinted media will have more news to choose from and reprint. In this condition, the reprinted media will choose the essence new to reprint. Therefore, the correlation between the reprints and the media-news becomes smaller when the stock market performs extremely well.


Table 6. The results of the quantile regression of the dynamic correlation on the stock market.
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Robust Test

In this section, we conduct robust tests of the results above. Firstly, we add financial stocks into our sample to repeat the analysis discussed above. Secondly, we choose the main media source of mass-media news and new-media news instead of all media sources to conduct the robust test. We choose the media sources as well as sub-sources of them that provide eighty percent of the number of news for mass media and new media, respectively, as the main media. We get similar results for the two robust tests, so we report the results of the main media only in this section.

Table 7 reports the correlation matrix for the four types of news of the main media. Although the value of the correlation coefficients is not the same, we can also find a significantly positive contemporaneous correlation between the four types of news. The correlation between mass-media news and mass-reprints as well as the one between new-media news and new-media reprints are larger than others. And the correlation between mass-media news and new-media reprints is larger than the one between new-media news and mass-media reprints. These results are consistent with the analysis for the sample of all news sources. Table 8 reports the Mutual Information between the four types of news for main media. Also, the significant positive Mutual Information indicates the positive correlation between the four types of news. The Mutual Information about the reprints also indicates that the two media both pay more attention to their congener media when they reprint news from other media and mass-media news is paid more attention when the media choose which news to reprint. These results are all consistent with the ones of all media samples.


Table 7. The correlation matrix of main-media news.
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Table 8. The mutual information matrix for the four types of main-media news.
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Table 9 shows the results of lead-lag correlation analysis for the main-media news. We also could find that the number of mass-media news could lead to the number of new-media news, new-media reprints, as well as mass-media reprints. The number of new-media news could lead the mass-media news, mass-media reprints, and new-media reprints, but the coefficients of the lagged number of new-media news are all smaller than the corresponding coefficients of the lagged number of mass-media news. Also, the coefficients of the number of lagged mass-media reprints and new-media reprints indicate a mean-reversion of the news coverage. Table 10 reports the results of the panel regressions of main media news numbers on the different events about the firms for main-media news. From Table 10, we can see that there are significantly positive reactions to the corporate events and the new media has a more significantly positive response to these shocks, which are consistent with the results of the sample of all news sources.


Table 9. Results of panel vector autoregression (VAR) model for main-media news.
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Table 10. Events that drive the coverage of main-media news.
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For the analysis of the dynamic correlation between the four types of news for the main media, there is also a positive correlation over time. Table 11 reports the results of the quantile regression of the dynamic correlation on the index price for the CSI A-share Index for main-media news. Also, the results indicate that the correlation between mass-media news and new-media news becomes stronger and the coefficients related to the reprints are also weak when the market performs well. And these are consistent with the above.


Table 11. The results of the quantile regression of the dynamic correlation on the stock market for main-media news.
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CONCLUSIONS

In this paper, we investigated the roles of mass media and new media play in the process of information transmission in the Chinese stock market. Firstly, we conducted the contemporaneous correlation analysis among the mass-media news, new-media news, mass-media reprints, and new-media reprints. We found that there are significant positive correlations among these four types of news and the reprints have a stronger correlation with the same type of media news. The results also show that the correlation between mass-media news and new-media reprints is larger than the one between new-media news and mass-media reprints. Secondly, we studied the lead-lag relationship between mass-media news and new-media news. We found that mass-media news and new-media news exhibit high positive autocorrelation, but the results of mass-media reprints and new-media reprints are reverses. The mass-media reprints and new-media reprints rely more on the mass-media news and new-media news. The lagged number of mass-media news could lead the number of new-media news, mass-media reprints, as well as new-media reprints and the lagged number of new-media news, could also lead the number of mass-media news, mass-media reprints, as well as new-media reprints. But the coefficients of the lagged number of new-media news are smaller than the corresponding ones of the number of lagged mass-media news, which implies that new media relies more on mass media and mass media relying more on themselves may seek inspiration on the internet to some extent. Thirdly, we explored the reactions of mass-media news and new-media news to corporate events. We found that all four types of news positively react to these shocks, but the new media exhibits a stronger positive reaction to these shocks. Finally, we studied the dynamic correlation between the four types of news. We found that there are significant positive correlations between the four types of news over time. And the correlation between mass-media and new-media news becomes stronger when the stock market performs well. The correlation between the reprints and the corresponding media news becomes smaller when the stock market performs extremely well.

We attribute these results to the different roles that the mass media and new media play in the process of information transmission in the Chinese stock market. The mass media has the advantages of the interviewing and editing ability and the legal rights of interviewing and editing. While the new media, especially for the larger portals could attract more attention and discussion of readers. So mass media and new media exhibit a symbiotic relationship, where mass media devotes to provide original news with high quality and new media transfers these numbers of news to more readers to attract more attention and discussion. So the number of new-media news relies on more mass-media news. On the other hand, the higher autocorrelation for these four types of news as well as the higher contemporaneous correlation between reprints and the same type of news indicates that the competition relation also exists between mass media and new media.

Admittedly, we only focus on the number of news in this paper. And this paper didn't combine with the stock market completely. It is promising to further investigate the roles of mass media and new media in the content of news and to compare the different effects on the stock market of the two types of media based on their different roles. We leave these for future research.
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Systemic risk is not only related to the contagious risk of interbank market risk exposure, but also to the credit risk exposure. At the same time, the dynamic characteristics of banking system also affect the systemic risk. A large number of studies have revealed the contagious risk of interbank market risk exposure, but the systematic risk research that considers these factors at the same time is still rare. Therefore, the present paper constructs dynamically evolving banking systemic risk assessment model under double risk exposures in the same framework that includes two parts: one is the assessment of credit risk; the other is the contagious risk. On the assessment of credit risk, we use Geometric Brownian Motion in physics and Monte Carlo simulation calculation method based on the big data of the stock market. On the assessment of contagious risk, we use the method of Geometric Brownian Motion in physics and minimum density method. Then we use data of 205 Banks and 3,017 listed companies in 18 industries in Chinese to study the dynamic evolution law of the Chinese banking systemic risk. The results show that the evolution characteristics of credit risk of 18 real industries can be divided into 4 types which are stability after decline, increase in fluctuation, decrease in fluctuation, and fluctuation. The systemic risk of Chinese banking system with the double risk exposures gradually increased with the evolution of time, and then stabilized at a certain degree. Among them, the initial increase of contagious risk is fast, and then stable; the credit risk starts small, slowly increases, and eventually stabilizes. The evolution degree of contagious risk is higher than that of credit risk. Large banks have the strongest ability to withstand the impact of double risk exposures, while foreign banks have the weakest.

Keywords: systemic risk, geometric Brownian motion, credit risk exposure, interbank market risk exposure, dynamic evolution


INTRODUCTION

After the international financial crisis in 2008 and the European debt crisis in 2010, countries have paid enough attention to strengthening financial supervision, maintaining financial stability, and preventing and controlling systemic risks. In October 2017, the report of the 19th National Congress of the Communist Party of China clearly pointed out that it is necessary to “improve the financial supervision system, keep the bottom line of no systemic financial risks,” and raised the prevention of systemic risk to the height of national security. However, due to the complexity of systemic risk itself, the definition of systemic risk has not been unified in academia. But, some studies have clearly pointed out that systemic risk is a global and systematic risk, which is not limited to the financial system. It is worth noting that the real industry plays a more and more important role in the process of economic development, and the relationship between the real industry and the financial industry is increasingly close. These correlations not only constitute the channel of risk transmission, but also further expand the negative impact on the entire economic system. When the important real industries encounter difficulties, the contagion risk brought by the recession makes our economy face great risks.

In financial system, the banking industry plays an important role. To prevent the systemic risk of the banking industry has become the core of maintaining financial stability. At present, the systemic risk is mainly studied on the contagious risk of interbank market risk exposure, while there are few studies on the double risk exposures of basic failure caused by credit risk exposure and contagious risk caused by interbank market risk exposure.

Since Allen and Gale [1] used the network model to study the impact of the interbank network structure on the banking systemic risk, the research on the banking systemic risk has been emerging. The mutual loan relationship between banks can solve the short-term liquidity shortage of banks and increase investment opportunities, but it can also improve the contagion risk between banks. Most researches show that the risk exposure of interbank market is the main channel of systemic risk. Allen and Gale [1] found that the fully connected network structure is more robust than the incomplete network structure, and the contagion risk is significantly smaller. Freixas et al. [2] found the probability of contagion risk depends on the setting of network model parameters by comparing the fully connected network structure with the ring network structure. Using the data of 27 Mexican banks in 2007, Martínez-Jaramillo [3] found that the vulnerability of the banking system is determined by the probability of banks default, the connectivity between banks, and the banks that are over exposed to the network. Mistrulli [4] found that the fully connected interbank market is more susceptible to contagion than the incompletely connected interbank market. Ladley [5] found that there is no interbank market structure that can maximize the stability under any conditions. Sui et al. [6] studied the problem of contagion risk in scale-free networks with different scale parameters and found that the higher the concentration, the more the number of banks in the network with contagion failure. Bao and Sun [7] studied financial structure and contagion risk by establishing a multi-agent simulation model and found that the hierarchical structure of center edge will increase the degree and scope of contagion risk compared with the fully connected structure.

Although the interbank market risk exposure is the core of the study of banking systemic risk, the impact of credit risk exposure on the systemic risk of banks cannot be ignored. At present, there are few studies on credit risk exposure based on VaR-based method, while those researches did not consider the effect of the interbank market risk exposure on systemic risk. In the existing literature, Adrian and Brunnermeier [8] proposed a CoVaR to measure the contribution of financial institution to the systemic risk. Huang et al. [9] measured the systemic risk as the marginal contribution of a financial firm to the distress insurance premium of the financial sector. A large number of contributions on VaR-based systemic risk measurement associate the systemic risk with the degree of interdependence among financial firms as in Billio et al. [10], Ang and Longstaff [11], and Diebold and Yilmaz [12]. In China, Li et al. [13] used 11 industry VaR indexes to build the systemic risk spillover network among industries in China from 2002 to 2017 to find that the financial industry is not the only systemic risk source and the systemic importance of information technology, materials, industry, and other real economic industries is increasing day by day. Zhai [14] established GARCH-Copula-CoVaR model based on industry indexes to empirically analyze the two-way risk spillover effect between each real industry and banking industry. Zhu and Ma [15] used the method of eigenvector centrality to measure the systemic risk of China's industry and found that the systemic risk of the financial industry is generally on the decline, while the systemic risk of the non-financial industry is at a relatively high level. Sun et al. [16] used the real estate industry index to measure the systemic risk spillover intensity of China's real estate industry to the financial industry based on the CoVaR model and quantile regression method.

Based on the perspective of complex network, few studies consider credit risk exposure and interbank market risk exposure at the same time; most of them are theoretical studies and lack of empirical data support. In addition, the systemic risk of those studies is mainly based on the static model without considering the evolution of the systemic risk over time. Lu and Wang [17] used the maximum entropy method to estimate the complete interbank network and set up a common loan network of banks based on the covariance of industry indexes, but they did not consider the credit risk of industry default and the evolution of the systemic risk over time. In their study, they found that the impact of different loan industry shocks on the degree of contagion risk is different. The crisis in the industry with more loan funds is more serious for the financial system. Wu et al. [18] studied theoretically the impact of the price fluctuation of common assets on the systemic risk and found that the indirect linked contagion of the sale of common assets is far greater than the direct linked contagion. Although this study involves credit risk exposure, the systematic risk in this study is based on the assumption of the model, not supported by the actual data, and the model of the credit risk exposure is static. Zhai and Bian [19] used the maximum entropy estimation method to construct the interbank network structure and the bipartite network structure between banks and real industries to identify the systemic important bank and the systemic important industry, but they did not study the effect of credit risk on the systemic risk. Caccioli et al. [20] found theoretically that interbank market risk exposure magnified the chain reaction of bank portfolio risk exposure. Glasserman and Young [21] also found theoretically that the probability of bank default caused by the direct impact of external asset loss is higher than that of bank contagion default, and the interconnected financial network can increase the expected loss and default degree. Chiu et al. [22] found that there is a relationship between creditor's rights and debts between the real industry and the banking industry and the risk will circulate among different departments. In addition, the systemic risk should be discussed from the perspective of the whole industry. The banking industry and the real industry are closely linked through credit. Wang and Li [23] established an extended matrix model based on the credit market between the banking and real estate industry. They found that the financial system composed of the real estate industry and the banking industry is more vulnerable than the separate banking system and the risk transmission speed is significantly faster. Li et al. [24] studied the joint impact of Chinese Banks' internal lending market and real estate industry's credit risk exposure on the systemic risk of the banking system and found that the two had a great joint resonance effect on contagion risk. The study only considered real estate credit risk exposure, instead of all the industries.

To sum up, at present, most of the researches on credit risk exposure use VaR-based method to study the impact of credit risk spillover on systemic risk without considering the interbank market risk exposure, and these studies only qualitatively point out the importance of credit risk exposure of the real industry for the assessment of systemic risk and do not quantitatively analyze the default probability of the real industry and the quantitative effect of credit risk on systemic risk. Few studies consider both credit risk exposure and the interbank market risk exposure; however, most of them are theoretical studies and lack of empirical data support; in addition, the systematic risk of those studies is mainly based on the static model without considering the evolution of systemic risk over time. Therefore, the present paper studies the dynamical evolution of systemic risk in the same framework of both the credit risk exposure of the real industry and the contagion risk exposure of the interbank market. In order to construct the dynamical evolution of the systemic risk, the present paper uses the Geometric Brownian Motion to simulate the movement of assets of the real industry and banks, which is often used to estimate the dynamic motion of assets in economics [25, 26]. In Lehar [25], Lehar first used the Geometric Brownian Motion to simulate the movement of assets of banks and studied the systemic risk based on the correlation of assets of banks, but the study did not consider the interbank market and the real industry that banks loan to. After constructing the dynamic evolution of assets and liabilities, the present paper uses the simulation methods, complex network methods, and empirical data to build a dynamic evolution model of banking systemic risk assessment to analyze the impact of the direct shock of credit risk exposure of the real industry and the indirect shock of interbank market exposure on the systemic risk of China's banking system.

The innovation of this paper is mainly in three aspects. First, inspired by the research of Caccioli et al. [20] and Lehar [25], the present paper is the first to combine the credit risk exposure of the real industry and the risk exposure of the interbank lending market in the same framework to conduct the dynamic evolution study of systemic risk by using Geometric Brownian Motion in physics. Second, consider that most of studies used the maximum entropy method to estimate the interbank network and lacked real data support, the present paper uses real data of listed companies in the real industry to estimate the dynamic credit risk exposure of real industry, then uses the minimum density method and real banking data to estimate the more realistic dynamic interbank market risk exposure. Third, in the existing literature, the method of stress test for banks is to let one or one type of bank assets lose, while in this paper, the listed companies in the real industry are shocked, which causes those companies bankruptcy, thus the credit risk of the real industry is formed.

This paper is organized as follows. In section Model, we describe the dynamic evolution model of banking systemic risk assessment under double risk exposures. In section The Calculation of Banking Systemic Risk Under Double Risk Exposures, we propose how to calculate the systemic risk of the banking system. In section Data, we explain the source of data. In section Results, we discuss the assessment of dynamically evolving banking systemic risk under double risk exposures which include two parts: one is the assessment of credit risk of the real industry in section The Assessment of Credit Risk of the Real Industry; the other is the contagious risk section The Assessment of Systemic Risk under Double Risk Exposures. In section Discussion and Conclusions, we give conclusions.



MODEL

In this section, we first build a dynamic evolution model of banking systemic risk assessment under double risk exposures, as shown in Figure 1. We assume that there are a set N = {1, ⋯N} of banks in the system, each bank has a dynamically evolved bank balance sheet structure as shown in Figure 1A. Each bank's assets include interbank lending assets Ai(t) and external assets Vi(t). Each bank's liabilities include interbank borrowing liabilities Li(t) and external liabilities Di(t). Each bank's assets minus liabilities is owner's equity ei(t). The double risk exposures faced by banks refer to the credit risk exposure of the real industry shown in Figure 1B and the interbank market risk exposure shown in Figure 1C (The payment matrix of the interbank market risk exposure can be described as Equation (16), which shows the interbank loan assets Ai(t)and the interbank loan liabilitiesLi(t).). At time step T, the dynamic evolution of the credit risk exposure of the real industry (see Figure 1B) results in dynamic external asset losses for the banks (see the dashed boxes Lossi(t) and Lossj(t) in Figure 1A). The interbank loan assets Ai(t) and interbank loan liabilities Li(t) are dynamic, so the interbank market risk exposure is also dynamically evolving. As shown in Figure 1D, the dynamic interbank market network structure evolved from time step t1 to time step t150. At each time step, we use the clearing payment vector to conduct asset and liability liquidation on the banking system under double risk exposures and to calculate the systemic risk of the banking system at each time step.


[image: Figure 1]
FIGURE 1. A dynamic evolution model of bank systemic risk assessment under double risk exposures. (A) Represents dynamic evolution of bank balance sheet structure of bank i and j. (B) Plots the dynamic evolution curve of credit loss of banks caused by credit risk of the real industry. (C) Represents interbank market risk exposure. (D) Shows dynamic evolution of interbank market network structure from time step t1 to time step t150.


Next, this paper constructs a dynamic evolution of credit risk exposure of the real industry corresponding to Figure 1B in section Dynamic Evolution of Credit Risk Exposure of the Real Industry and Estimation of the Interbank Market Risk Exposure constructs an interbank market risk exposure estimation model corresponding to Figure 1C. Section Default Algorithms Based on the Dynamic Evolution of Bank Balance Sheet Structure explains the default algorithms based on dynamic evolution of bank balance sheet structure corresponding to Figure 1A. Section The Dynamic Evolution of Interbank Market Network discusses the dynamic evolution of interbank market network corresponding to Figure 1D.


Dynamic Evolution of Credit Risk Exposure of the Real Industry

The credit relationship between banks and the real industry constitutes a bank-real industry credit network. When credit default occurs in the real industry, it will cause loss of external assets of the related banks. Therefore, credit risk exposure of the real industry faced by banks includes three parts that are credit network between banks and the real industry, the distribution of credit default probability in the real industry, and loss of banks' external assets caused by credit risk exposure.


Credit Network Between Banks and Real Industry

Assuming that there is m real industries in China, the loan that bank i provide to the real industry are expressed as Lik, the assets of bank i is Vi, the proportion of loans Lik provided by bank i to the real industry k in the assets Vi of bank i is called loan proportion, expressed as Rik.

[image: image]

Considering that the distribution data of loan that a bank provides to the real industry is not disclosed in the annual report, it is impossible to calculate the loan proportion of all banks. Therefore, Rikindicates the loan proportion provided by the banks that can obtain the data to the real industry.

In order to determine the loan proportion of all banks, we have divided N banks into a types, with Z banks under each type. Assuming that banks of the same type have the same loan proportion, Nbanks all provide loans to m real industries. Rbik is used to represent the proportion of loans provided by bank i under type b to real industry k. The calculation formula is as follows.

[image: image]

∑Rik is the sum of Equation (1) and Zb indicates the number of banks under type b. In the end, we calculate the proportion of loans R provided by N banks to m industries is a matrix of N × m.

[image: image]

This paper assumes that every bank provides loans to every industry, then credit network Z between banks and real industry can be expressed as a matrix of N × m.

[image: image]
 

Probability Distribution of Credit Default in Real Industry
 
Estimation of dynamic evolution of assets and liabilities of listed company in the real industry

Supposing the asset value Vg of the Listed Company in the real industryg obeys Geometric Brownian Motion in physics [25], its drift rate is μgand volatility is σg.

[image: image]

The owner's equity Eg(t) of Listed Company g is regarded as call option, whose value is equal to the nominal value of liabilities Dg(t) of Listed Company g in mature period T. Based on Black Scholes Model [26], we can obtain the relationship between owner's equity and asset value of Listed Company as Equation (6).
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Where T is the maturity andT = 365; t is the day before maturity. Eg(t) is the daily equity value of Listed Company g, which can be obtained from the stock market. Dg(0) is the initial liability value of Listed Company g, which can be obtained from the balance sheet. This paper assumes that the liabilities of all listed companies increase according to the risk-free rate of return r.

In this paper, we first set the initial drift rate μg(0) and volatility σg(0) as any value, then get the initial asset value Vg(0) from the balance sheet of the Listed Company and the owner's equity value of each day can be expressed as Eg(0), Eg(1), ⋯ , Eg(T). According to Equation (8), the liability can be expressed as Dg(0), Dg(1), ⋯ , Dg(T), then we estimate the asset value of each day as [image: image] according to Equations (6–8). Using the maximum likelihood function proposed by Duan J-C [27] to calculate the parameter of drift rate μg and volatility σg.
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In Equation (9), [image: image], [image: image].

Finally, the drift rate μg and volatility σg estimated by Equation (9) are substituted into Equation (10) to estimate the assets of listed companies Vg(t).

[image: image]

In Equation (10), zg(t)obeys the standard distribution of N(0, 1), h = 1/T.



Calculation of basic bankruptcy status of listed companies in real industry

Basic bankruptcy occurs when assets of listed companies in various industries are less than liabilities, which can be expressed by Equation (11).

[image: image]

In Equation (11), the assets Vg(t) and liabilities Dg(t) of listed companies have estimated in section Estimation of Dynamic Evolution of Assets and Liabilities of Listed Company in the Real Industry.

In this paper, the basic failure state variable is defined as integer of 0 or 1, which can be expressed by Equation (12):

[image: image]
 

Calculation of probability distribution of default in real industry

The number of listed companies in the industry k can be expressed as nk.By using Monte Carlo simulation method, we calculate Sg(t) according to Equation (12), then we calculate the default probability of industry k at time step t. This paper defines the default probability of industry as Equation (13).

[image: image]

In Equation (13), Pk(t) is the default probability of industry k at time step t, ∑Sg(t) is the sum of the number of all the failed listed companies in the industry k at time step t. In this paper, Pk(t) that is the default probability curve with time changes is used to measure the evolution of credit default probability of the real industry.




Loss of Bank's External Assets Caused by Credit Risk Exposure

When listed companies in the real industry are unable to repay banks' loans in case of insolvency, the banks will suffer external asset losses due to the credit default of real industry. The loss of external assets of a bank can be calculated by combining Equation (1) and (13), which is expressed by Equation (14).

[image: image]

In Equation (14), Lossik(t) is the loss of external asset loans from bank i provides to the real industry k at time step t, Vi(t) is the asset value of bank i at time step t.

Finally, we combine the credit network between banks and real industry, the evolution sequence of bank's assets Vi, and the distribution of bank's loss of external assets Lossik(t) to calculate the dynamic evolution of credit risk exposure between banks and the real industry, which can be expressed by Equation (15).

[image: image]
 


Estimation of the Interbank Market Risk Exposure

Considering an interbank lending network formed by N banks, this network can be expressed in N × N matrix form by Equation (16).

[image: image]

In the interbank lending market, xij refers to the loans borrowed by bankj from bank i; the sum of each row in the matrix Ai represents the total lending assets of bank i; the sum of each column in the matrix Lj represents the total lending liabilities of bank i. Since a bank itself has no lending relationship, the matrix in Equation (16) is modified to a new interbank lending network matrix with diagonal 0, which is expressed as X* by Equation (17).

[image: image]

In this paper, we use the minimum density method proposed by Anand et al. [28] to estimate the interbank market risk exposure matrix X*.

In the minimum density method, parameter c is introduced, which represents the fixed cost of establishing connection between banks, that is, if there is a connection between banks, there will be a connection cost of c, then the minimum density method can be expressed as a constraint optimization problem for matrix X such as Equation (18):

[image: image]

The integer 1 is 1 only when there is a loan relationship between bank i and bank j, otherwise it is 0. Because in the real interbank system, there is a service charge for lending between two banks, so the significance of the objective equation is to reduce the cost as much as possible, so as to make the interbank network “less dense.” The constraint equation is to meet the constraints of the total amount of interbank lending and interbank borrowing of each bank. After estimating the interbank network, we add this network to the time step evolution process to obtain the dynamically evolving interbank market risk exposure, see section The Dynamic Evolution of Interbank Market Network.



Default Algorithms Based on the Dynamic Evolution of Bank Balance Sheet Structure

Combining with the dynamically evolving balance sheet in the evolution process of time step t in Figure 1A, the owner's equity ei(t) of bank i at t time step can be calculated by Equation (19).

[image: image]

In Equation (19), we use the method proposed by Fan et al. [29] to estimate the asset sequence of bank i Vi(t) and liability sequence Di(t); the borrowing asset sequence Ai(t) and liability sequence Li(t) will be discussed in section The Dynamic Evolution of Interbank Market Network; Lossi(t) indicates the external asset loss of bank i caused by the impact of the credit risk exposure, which can be found in Equation (15).

If Equation (20) is satisfied, bank i will suffer the basic failure under the impact of the credit risk exposure of the real industry. We mark the basic failure state variable as TagFRi(t) = 1.

[image: image]

If Equation (20) does not hold, we first standardize the interbank market risk exposure X*(t) to obtain a new matrix ∏(t), as shown in Equation (21). [image: image] represents the borrowing liabilities of bank i. Then, the clearing vector mechanism proposed by Eisenberg and Noe [30] is cited to clear all the banks through the clearing payment vector C*(t), as shown in Equation (22).
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The following Equation (23) is used to calculate the banks with contagious failure. Among them, [image: image] refers to the interbank lending assets of bank i; Li(t) refers to the interbank borrowing liabilities of bank i; [image: image] refers to the owner's equity of interbank lending; [image: image] refers to the owner's equity outside the interbank lending market.

[image: image]

Equation (23) indicates that the total owner's equity of bank i is <0 due to the impact of the interbank market risk exposure and Equation (20) does not hold at this time. Because of the failure of other banks, bank i can not recover all the interbank loans. Finally, bank i suffers contagious failure. We mark the contagious failure state variable as TagCRi(t) = 1.

The next step is to clean up all the failed banks in the banking system, then the banking network changes accordingly. We update the lending matrix X*(t + 1), interbank lending assets Ai(t + 1), and interbank lending liabilities Li(t + 1) at the next time step in section The Dynamic Evolution of Interbank Market Network. We cycle through the above operations at each time step until the end of the time step T.



The Dynamic Evolution of Interbank Market Network

After calculating the clearing payment vector C*(t) under the time step t, next we update the interbank borrowing assets Ai(t + 1) and borrowing liabilities Lj(t + 1). Combined with the minimum density method in section Default Algorithms Based on the Dynamic Evolution of Bank Balance Sheet Structure, we update the total interbank borrowing assets and total liabilities constraints to get a new borrowing matrix X*(t + 1). We can see Figure 2 for the specific evolution flow chart.


[image: Figure 2]
FIGURE 2. Flow chart of dynamic evolution of interbank market network.





THE CALCULATION OF BANKING SYSTEMIC RISK UNDER DOUBLE RISK EXPOSURES

This paper defines a basic risk when the total assets of bank i are less than the total liabilities due to the loss of external assets under the impact of credit risk exposure of the real industry. When the total assets of bank j are less than the total liabilities due to the failure of bank i and the inability to recover all the interbank loans (the impact of the interbank market risk exposure), a contagious risk occurs. In the system, under the impact of double risk exposures, a bank's total assets are less than its total liabilities (including basic risk and contagious risk), the bank defaults. In this paper, the basic risk is represented by the basic failure probability FR(t), the contagious risk is represented by the contagious failure probability CR(t), and the systemic risk is represented by the system failure probability SR(t), SR(t) = FR(t) + CR(t).

[image: image]

[image: image]

[image: image]



DATA

This paper uses the balance sheet of Chinese banks in 2016 and the China Securities Regulatory Commission's 2012 version of industry classification Listed Company information in the CSMAR economic and financial database, as well as the data of the 2016 annual report publicly disclosed on the official website. China has a large number of banks, which are mainly divided into six types according to the definition of the CBRC annual report: policy banks, large commercial banks, joint-stock banks, urban commercial banks, rural commercial banks, and foreign banks. By analyzing the collected data, we have found that the same type of banks has the same order of magnitude of assets and liabilities. Moreover, assets and liabilities of policy banks and large commercial banks belong to the same order of magnitude. Consider that the nature and function of banks are irrelevant factors in this study, so policy banks and large commercial banks can be simplified into one type and named large banks. Finally, this paper has divided Chinese banks into five types: large banks, joint-stock banks, urban commercial banks, rural commercial banks, and foreign banks. Due to the limitation of data availability, this paper finally selects 205 banks, which are large banks (8 Banks), joint-stock banks (13 banks), urban commercial banks (102 banks), rural commercial banks (63 banks), and foreign banks (19 banks). It selects individual stock transaction amount in 244 days and balance sheet of 3,017 listed companies in 18 industries that are classified according to the China securities regulatory commission 2012 edition of industry classification guidelines, and then selects loan industry concentration data of 104 banks. For convenience of presentation, the chart in this article indicates 205 banks with numbers 1–205 (see Appendix Table 1 for bank names) and 18 industries with numbers 1–18 (see Appendix Table 2 for industry names). In addition, the descriptive statistics of data can be seen in Appendix Tables 3–6.



RESULTS


The Assessment of Credit Risk of the Real Industry


The Evolution Curve of Credit Risk of the Real Industry

In this paper, the stress test is carried out for the listed companies in 18 real industries to make each Listed Company lose 30% of its assets in the same real industry, so that some listed companies have credit default and the dynamic evolution chart of credit risk in each industry is obtained (see Figure 1B). According to the evolution characteristics of default probabilities in various industries, credit risks in 18 industries can be divided into 4 types that are stability after decline (see Figure 3A), increase in fluctuation (see Figure 3B), decrease in fluctuation (see Figure 3C), fluctuation (see Figure 3D).


[image: Figure 3]
FIGURE 3. Credit default probability curve of the real industry. (A) Curve of stability after decline. (B) Curve of increasing in fluctuation. (C) Curve of decreasing in fluctuation. (D) Curve of fluctuation.


The evolution of credit risk is characterized by the first decline and then stability in eight industries: finance industry, education industry, water conservancy, environment and public facilities management industry, leasing and business services industry, agriculture, forestry, animal husbandry and fishery industry, electricity, heat, gas and water production and supply industry, comprehensive industry, and accommodation and catering industry. The credit risk of the eight industries decreased within 100 time steps and then stabilized, among which the credit risk of the financial industry stabilized at 0.2, the credit risk of the accommodation and catering industry stabilized at 0.1, and the credit risk of the other six industries stabilized at 0.

The evolution of credit risk is characterized by increase in fluctuation in five industries: scientific research and technology services industry, mining industry, information transmission software and information technology services industry, manufacturing industry, culture, and sports and entertainment industry. Among them, the risk fluctuation range of scientific research and technical services industry is the largest, while the risk fluctuation range of culture, sports and entertainment industry is the smallest. The credit risk of information transmission software and information technology service industry and manufacturing industry showed an evolutionary trend of increasing continuously, while the credit risk of scientific research and technology service industry, mining industry, and culture, sports and entertainment industry showed an evolutionary trend of stabilizing.

The evolution of credit risk is characterized by decrease in fluctuation in four industries: transportation, warehousing and postal industry, construction industry, real estate industry, and wholesale and retail industry. The risk characteristics of these four industries are similar. The failure probability of the industry falls to a certain value within the first 100 time steps, and then fluctuates slightly within the probability range of 0 to 0.05.

The evolution of credit risk in the health and social work industry is characterized by fluctuation, which fluctuates around 0.



Stability of Credit Risk of the Real Industry

From Figure 3 in The Evolution Curve of Credit Risk of the Real Industry, we can see that the credit risk of 18 real industries has different volatility, indicating that the credit risk of these industries is unstable. Therefore, this section further evaluates the stability of credit risk of the real industry by calculating the variance of credit risk. Table 1 is the result of ranking the variance of credit risk of 18 real industries in descending order. It can be seen that the top three real industries with the largest variance are financial industry, education industry, and real estate industry, that is to say, the credit risk of these three real industries is the most unstable. The real industry with the least variance is health and social work industry, which has the most stable credit risk.


Table 1. Statistical table of variance of credit risk of each real industry.

[image: Table 1]



Mean Credit Risk of the Real Industry

From Figure 3 in section Default Algorithms Based on the Dynamic Evolution of Bank Balance Sheet Structure and Table 1 in section Stability of Credit Risk of the Real Industry, we can see that the dynamic evolution credit risk of real industries presents a fluctuating state, most industries are unstable. It is impossible to accurately assess the value of credit risk of different real industries. Therefore, the next step of this paper is to carry out Monte Carlo simulation in 1000 time steps on the basis of pressure test. In order to eliminate the simulation error as much as possible, this paper adopts the mean value for comparative analysis. We use Sg(t) in Equation (12) and AVG(Sg(t)) is taken as the mean value of the number of enterprise failures in the real industry during 1000 simulations. If the industry credit risk is expressed as PK in 1,000 simulations, the calculation formula is: [image: image], k = 1, 2, …, 18 indicates 18 industries, T is the dynamic evolution time step 1,000, nk is number of listed companies in the k industry.

Figure 4 is the result of Monte Carlo simulation of mean credit risk of various industries under 1,000 times. From Figure 4, it can be analyzed that the top four real industries with the highest mean credit risk are: finance, accommodation and catering, scientific research and technical services, and information transmission, and software and information technology services. It is suggested to strengthen the credit risk management of enterprises in the fields of finance, science and technology, and national life. Two real industries with the lowest mean credit risk are: water conservancy environment and public facilities management, and health and social work, while the other 12 real industries have medium mean credit risk.


[image: Figure 4]
FIGURE 4. The mean credit risk of the credit industry under the simulation of 1,000 times.


Combined with the industry stability analysis results in section Stability of Credit Risk of the Real Industry, it can be found that the mean credit risk of the financial industry is the highest and the most unstable. The mean credit risk of accommodation and catering industry is high but stable. The mean credit risk and stability of scientific research and technical services, information transmission software and information technology services are relatively high. However, two real industries: water conservancy environment and public facilities management, health and social work, have the lowest mean credit risk and the highest stability.



Default State Analysis of Listed Companies in the Real Industry

The credit risk of the real industry is directly proportional to the number of default listed companies in the industry. In the process of dynamic evolution, the listed companies with higher probability of bankruptcy are more unstable. It can be considered that the enterprises with higher probability of bankruptcy contribute more to the credit risk of the industry.

Table 2 shows the top five listed companies in the default probability of 18 industries after stress test. These companies have the largest contribution to the credit risk of their industries, and the default status of listed companies in different industries is significantly different. A total of 17 listed companies in 18 real industries have a default probability of 1 during 1,000 times of dynamic evolution, which belongs to the state of extremely easy default. Among them, 14 listed companies belong to the financial industry. Combined with the mean credit risk results of the real industry in section Mean Credit Risk of the Real Industry, it can be seen that 20% of listed companies in the financial industry are very vulnerable to bankruptcy, and these companies contribute the most to credit risk of financial industry.


Table 2. Listed companies with the top five bankruptcy frequency in the real industry.

[image: Table 2]

There are no more than three listed companies in five real industries: accommodation and catering industry, water conservancy environment and public facilities management industry, education industry, culture, sports and entertainment industry, and comprehensive industry. In the dynamic evolution process, only two listed companies have the default probability of more than 0.8, and other listed companies have the default probability of <0.1. There are 11 listed companies in the accommodation and catering industry, among which one is very vulnerable to bankruptcy and contributes the most to the credit risk of the accommodation and catering industry.

The top five listed companies in manufacturing, information transmission software and information technology services have a high default probability, which are all over 0.7. However, due to the large number of listed companies in the manufacturing industry, the mean credit risk is not high. The number of listed companies in the information transmission software and information technology services industry is close to one ninth of the manufacturing industry, so the mean credit risk is higher.




The Assessment of Systemic Risk Under Double Risk Exposures


Analysis of the Network Structure With Double Risk Exposures
 
Credit network structure between banks and the real industry

According to the model of credit network between banks and real industry in section Credit Network Between Banks and Real Industry and the data in section Data, the credit network structure diagrams between 5 types of banks and 18 real industries are constructed, as shown in Figure 5. Among them, 18 white circles marked with numbers represent the 18 real industries in which banks provide loans. The circle size reflects the number of listed companies in the real industry. The larger the circle, the more listed companies in the real industry. For example, the number of listed companies in the manufacturing industry is the largest and the circle is the largest. Five gray circles marked with letters indicate five types of banks, which are A (large bank), B (joint-stock bank), C (urban commercial bank), D (rural commercial bank), and E (foreign bank). The circle size indicates the number of banks under this type. The larger the circle, the more banks under this type. The connection between the five types of banks and the real industry means that banks provide loans to the real industry. This paper assumes that each type of banks provides loans to 18 real industries. The line thickness indicates the proportion of loans. Industries with large proportion of loans are concentrated in the center of the map, while industries with small proportion of loans are scattered around.


[image: Figure 5]
FIGURE 5. Credit network between banks and real industry.


As can be seen from the thickness of the connection line in Figure 5, the top four real industries with the highest proportion of loans provided by the five types of banks to the real industry are 3 (manufacturing), 6 (wholesale and retail), 11 (real estate), and 12 (leasing and business services), while the lowest industry is 13 (scientific research and technical services). There are differences in the concentration of loans by industries among different types of banks. Table 3 lists the industries with the highest concentration of loans among the five types of banks.


Table 3. Top three real industries with the most loans from banks (the figure in the table is the industry number).

[image: Table 3]



Dynamic evolution of interbank market network structure

We use the minimum density method in section Estimation of the Interbank Market Risk Exposure, interbank market network in section The Dynamic Evolution of Interbank Market Network, and data in section Data to obtain the dynamic evolution of interbank market network structure diagram, as shown in Figures 6A,B, which corresponds to Figure 1D in section Model. Figure 6A shows the network structure diagram of the interbank market at time step t1. In the Figure 6A, network nodes marked with numbers represent 205 banks, the size of the node indicates the connection degree between banks. The larger the connection degree is, the larger the node is. The directed line between nodes indicates the interbank lending relationship, and the line thickness indicates the lending amount. From Figure 6A, it can be found that there are 8 nodes with relatively large connection degree at time step t1, which are 190 (industrial and commercial bank of China), 193 (agricultural bank of China), 191 (China construction bank), 194 (bank of China), 82 (bank of communications), 118 (Shanghai Pudong Development Bank), 192 (China Minsheng bank), and 184 (China merchants bank). The connection between these eight nodes is relatively thick, of which the connection from 190 to 193 is the thickest, which indicates that Industrial and Commercial Bank of China lends the largest amount of funds to Agricultural Bank of China. In Figure 6B, the network structure of the interbank market at time step t150 has changed compared with time step t1. The number of network nodes has been reduced to 120 (due to the removal of some default banks from the network), the node size and the connections between nodes have also changed (the interbank lending relationship has changed).


[image: Figure 6]
FIGURE 6. Network structure of interbank market. (A) Represents Chinese interbank market network structure at time step t1. (B) Represents Chinese interbank market network structure at time step t150.





Dynamic Evolution of Systemic Risk in Chinese Banking System


Basic Default, Contagious, and Systemic Risk of Chinese Banks

Figure 7 represents the dynamic evolution law of basic default, contagious, and systemic risk under double risk exposures. It can be seen from the Figure 7 that during the evolution of 365 time steps, the systemic risk has the characteristic of stabilizing after increasing and reaching a stable state at 250 steps. The degree of evolution of contagious risk is higher than that of basic default and the dynamic evolution characteristics of basic default and contagious risk are different. Contagious risk tends to stabilize after increasing and reaching a stable state at 200 steps. The probability of basic default is low and stable in the first 100 time steps, then jumping growth in 101 to 250 time steps, and finally slowing down and stabilizing in 250 steps.


[image: Figure 7]
FIGURE 7. Dynamic evolution curve of basic default, contagious, and systemic risk of Chinese banking system.





Basic Risk, Contagious Risk, and Systemic Risk Characteristics of Different Types of Banks

On the basis of section Basic Default, Contagious, and Systemic Risk of Chinese Banks, this paper further analyzes whether there are differences in basic risk, contagious risk, and systemic risk characteristics of different types of banks under the impact of double risk exposures. Figure 8A represents the basic risk curve of five types of banks, Figure 8B represents the contagious risk curve of five types of banks, and Figure 8C represents the systemic risk curve of five types of banks. On the whole, the dynamic evolution trend of basic risk, contagious risk, and systemic risk in the five types of banks are stable after growth. However, the dynamic characteristics of basic risk, contagious risk, and systemic risk in the five types of banks are different.


[image: Figure 8]
FIGURE 8. Basic risk, contagious risk, and systemic risk evolution curve of different types of Chinese banks.


In Figure 8A, we can see five types of banks reach a stable state with different time and basic risk finally. The order of basic risk from high to low is: rural commercial bank, joint-stock bank, urban commercial bank, foreign bank, and large bank. The order of time to reach stability from fast to slow is: large bank, foreign bank, rural commercial bank, joint-stock bank, and urban commercial bank.

In Figure 8B, we also can see five types of banks reach a stable state with different time and contagious risk finally. The order of contagious risk from high to low is: foreign bank, urban commercial bank, large bank, joint-stock bank, and rural commercial bank. The order of time to reach stability from fast to slow is: large bank, joint-stock bank, rural commercial bank, urban commercial bank, and foreign bank.

In Figure 8C, the systemic risk of large bank reaches a stable state at the earliest with the lowest risk, while the other four types of banks reach a stable state later with high systemic risk, of which the mean systemic risk of foreign bank is the highest. This reflects that large banks are stronger than the other four types of banks in resisting the impact of double risk exposures, while foreign bank are the weakest.





DISCUSSION AND CONCLUSIONS

This paper first used Geometric Brownian Motion in physics, Monte Carlo simulation, and real data of the real industry to estimate the dynamic evolution credit risk exposure of the real industry. Then, it used the minimum density method and Chinese real banking data to estimate the more realistic dynamic interbank market risk exposure. So far, we have successfully built up the double risk exposure. Finally, based on the double risk exposure, we use the data of assets, liabilities, and industry loans of 205 Chinese banks, as well as the data of 3017 listed companies' stock market to study the dynamic evolution law of the systemic risk of Chinese banking system. The important conclusions are as follows:

First, our dynamic evolution model highlighted the impact of credit risk exposure and enables to assess which real industries are more/less risky. In addition, we also assessed listed companies with top five bankruptcy frequency of the real industry. Therefore, this information can assist financial regulators to weigh credit loans by credit risk of the real industry/Listed Company. Financial industry, accommodation and catering industry, scientific research and technology service industry, and information transmission software, and technology service industry have higher credit risk, while financial industry, scientific research and technology service industry, and information transmission software and technology service industry have lower stability. It is suggested that financial regulators should pay special attention to the credit risk management of these four real industries when serving the development of the real economy. It is expected that this methodology would engender a reduction in credit loans to risky real industry/Listed Company, leading to a decrease in the systemic risk of Chinese banking system.

Second, the uniqueness of the dataset of Chinese banks and real industries not only permit us to construct credit network and interbank network, but also enables us to broaden other contagion channels apart from classical interbank market. Under the impact of double risk exposures, the systemic risk gradually rises and then reaches a stable state in the evolution process; the contagious risk initially grows faster and then stabilizes; however, the basic default is very small at first, then slowly rises, and finally stabilizes. Further results showed that the dynamic characteristics of the systemic risk in different types of banks are shown as growth first and then stabilization, among which the ability of large banks to resist the impact of double risk exposures is stronger than the other four types of banks, while the ability of foreign bank to resist is the weakest.

The present paper focused on the Chinese system market, however, in the future, the methods proposed can be extended to other global markets or a mature market in other countries. In addition, due to the use of different system risk measurement methods, the results will be different. In the future, we will use other methods to compare with the proposed method, so as to compare the robustness of the proposed method in the present paper.
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This paper studies the stability of stock networks after crashes based on the entropy method. By measuring network stability using the entropy calculated with the degree distribution, we find that the entropy of a stock network is close to that of the Erdös-Rényi and Watts-Strogatz networks. We further introduce government rescue policies as a natural experiment and use the entropy measurement to study the influence of rescue policies after crashes on the network stability, finding that rescue policies only have short-term effects. Analysis of the relation between stock degrees and government purchasing behavior further confirms the effects of rescue policies on stock network stability.

Keywords: stock network, crashes, rescue policies, network stability, entropy, econophysics


1. INTRODUCTION

The stability of networks after random failures or attacks is a central issue in the study of complex networks [1–7]. A large amount of research has been devoted to this issue for various complex networks, such as biological, physical, social and financial networks, and has successfully revealed the relationship between network structure and stability after external attacks [8–11].

Stock markets are complex systems, which can be well-abstracted and described by complex networks. In research on stock networks, the network stability after stock market crashes has attracted much attention [11, 12]. Studies on network stability elucidate the topological reconfigurations of stock networks after crashes and help to improve our understanding of financial crises. However, these studies cannot be directly used to guide the government in stabilizing the market after crashes.

In recent years, an increasing body of work has concentrated on the question of how rescue policies, which are government policies aimed at stabilizing the stock market at times of crises, influence market stability after crashes [13, 14]. This question has been studied by measuring the market stability in terms of volatility, and it has been found that rescue policies can improve the stability of the stock market after crashes. The complex network method can reduce the immense complexity of financial markets to facilitate investigation while retaining the market's core information, and some researchers have studied market stability after crashes by using the network method [11, 12, 15]. Motivated by the studies mentioned above, we investigate the influence of rescue policies on the stability of stock markets after crashes from the perspective of complex networks.

In network research, most researchers measure the network stability based on network robustness with respect to random node removal or targeted attacks [11, 16, 17]. In this paper, we introduce the network entropy to measure the stability of complex networks. The network entropy calculated with the degree distribution can provide an average measure of network heterogeneity, which is a simple but essential characteristic of complex networks and has a direct relationship with the network's resilience to both random failures and attacks [18–21]. To the best of our knowledge, this work is the first attempt to examine the influence of government rescue policies on stock market stability after crashes from the perspective of network stability.



2. DATASETS

The first dataset records the closing prices of all constituent stocks of the SSE 180 index, a benchmark index for the Shanghai market, at the end of every minute between 9:30 and 11:30 a.m. and between 1:00 and 3:00 p.m. on 717 consecutive trading days from 16 December 2013 to 22 November 2016. The dataset was obtained from Wind Information (http://www.wind.com.cn/) and contains ~43,440 records per day on average, with a total size of 31,146,480.

The second dataset records closing prices of the Hang Seng Index (HSI) and all its constituent stocks trading in the Hong Kong Exchange at the end of every minute between 9:30 a.m. and 12:00 p.m. and between 1:00 and 4:00 p.m. on 422 consecutive trading days from 20 October 2014 to 5 July 2016, also from Wind Information. This dataset contains approximately 23,240 records per day on average, and the total size is 9,807,280.

The third dataset, from SinaFinance (http://finance.sina.com.cn/), records 45 news items on rescue policies for the stock market released by the Chinese government for the period from 16 December 2013 to 22 November 2016, with 34 of these news items released in the 2 months after 19 June 2016 during which more than 1,000 A-shares in the Chinese stock market hit the daily downward price fluctuation limit. To take into account the specific government rescue measures for stock market crashes, this dataset also includes information from Eastmoney (http://eastmoney.com/) on the list of stocks purchased by the government between 30 June 2015 and 30 September 2015.



3. METHODOLOGY


3.1. Crashes and Identification of Sub-periods

In this paper, crashes are identified by looking for large price changes within different time windows [22–24]. On 19 June 2015, more than 1,000 A-shares in the Chinese stock market hit the daily downward price fluctuation limit, and the SSE 180 index fell by 4.61%. On 7 January 2016, the circuit breakers mechanism was suspended, and the SSE 180 index dropped by more than 5%. By calculating the price changes in the SSE 180 index, we find that during the sampling period the price changes on these 2 days are the largest. Therefore, we identify these two large price changes in the Shanghai stock market as crashes. For the universality test, we also identify one crash occurring on 10 March 2015 in the Hong Kong stock market in a similar way.

Next, for the purpose of analyzing network stability during periods with and without rescue policies, we divide the sampling periods for the Shanghai and Hong Kong stock markets into different sub-periods. For the Shanghai stock market, sub-periods are determined by using the news of rescue policies recorded by SinaFinance. First, after the crash on 19 June 2015, most rescue policies were enacted by the government within the subsequent 2 months. These include: on 27 June, China's central bank, People's Bank of China, cut interest rates by 0.25%; and on 6 July, China Financial Futures Exchange (CFFEX) restricted index futures trading. In contrast, no rescue policies were put in place for months after the crash on 7 January 2016. To compare the stability of the stock network in the period after a crash and in a period when the market is stable, we also identify sub-periods of stable states. We find that the volatility of the SSE 180 index was low and stable from mid-June to early October of 2014 and over the second half of the year 2016. Therefore, for the Shanghai stock market, we divide the sampling period into four sub-periods: a sub-period with government rescue policies after a crash, a sub-period without government rescue policies after a crash, and two stable-state sub-periods. Considering that the impact of a crash would not be obvious when the sub-period is too short, and there may be external noise when the sub-period is too long, we choose the sub-period length to be 60 trading days. Note that sub-period lengths of 50 or 70 trading days give similar results.

For the Hong Kong stock market, for which there had been no rescue policies, we separate the sampling period into three sub-periods. The 60-day period following the crash on 10 March 2015 is the sub-period without government rescue policies. In analogy to the stable-state periods in the Shanghai stock market, we identify the 60-day periods following 22 December 2014 and 5 March 2016 as stable-state sub-periods in the Hong Kong stock market.



3.2. Construction of the Stock Network

The most common method of constructing a stock network is based on correlations of the stock price return. This method calculates the correlation coefficient of the stock price return and converts the coefficient matrix into a distance matrix [25].

Let Pi(t) be the closing price of stock i at time t, and let Ri(t) be the return of stock i at time t, given by

[image: image]

Then the Pearson correlation coefficient ρi,j between stocks i and j can be calculated as

[image: image]

where 〈·〉 refers to the time average over the period analyzed. Following the idea behind the construction of a complex network, we next transform the correlation matrix into a distance matrix D with elements di,j, where the distance between the two stocks i and j is defined as Mantegna [26]

[image: image]

Treating stocks as network nodes, we now construct the stock network with the planar maximally filtered graph (PMFG) method [27, 28], in which network links are added according to the distance between nodes. The PMFG method is used to construct planar graphs and has the algorithmic advantage that planarity tests are relatively simple to perform; planar graphs also provide more information than minimum spanning tree graphs on the internal structure of a stock market. The PMFG procedure is carried out as follows. First, rank the distance elements between all pairs of nodes in ascending order. Second, add a link between the two nearest nodes, i.e., the pair with the smallest distance, if and only if the resulting graph after such a link insertion can still be embedded in a plane without crossing any links. Third, repeat the previous step until no more links can be added. The resulting PMFG contains 3N − 6 links, where N is the number of nodes. The average degree is 〈k〉 = 2(3N − 6)/N, which is roughly equal to 6 when N is large enough.



3.3. Network Entropy

Based on the theory of large deviations, Demetrius et al. [29] derived a fluctuation theorem, which states that network entropy and stability, as measured by the fluctuation decay rate after random perturbations, are positively correlated. By invoking this theorem, Demetrius and Manke [30] showed that the network entropy can quantitatively describe the homeostatic network properties under perturbations, a generic term for robustness. Meanwhile, Wang et al. [20] showed that the network heterogeneity, a simple but essential characteristic of a complex network, is in direct relationship with the network's resilience to both random failures and attacks, and that the heterogeneity can be measured by network entropy. This implies that the greater the entropy, the more stable and heterogeneous the network is. We therefore introduce the network entropy to study the stability of stock networks.

Following the definition of entropy introduced in Wang et al. [20], we define the stock network entropy as the entropy of the degree distribution, which is given by

[image: image]

where N is the total number of nodes in the network and P(k) is the degree distribution, which gives the probability of having a node with k links.




4. RESULTS AND DISCUSSION


4.1. Entropy of the Stock Network

To find out which kind of network structure the stock network is close to, we compare the entropy of the stock network to the entropies of several classes of networks, including the Erdös-Rényi (ER) random, Barabási-Albert (BA) scale-free and Watts-Strogatz (WS) small-world networks. Note that the average degree of the network of 180 stocks constructed by the PMFG method is approximately 6. Therefore, to make the entropies of the stock network and of the ER, BA and WS networks comparable, we calculate the entropy of the latter three networks with the same number of nodes, N = 180, and present the statistical characteristics of these networks in Table 1.


Table 1. Statistical description of the ER random, BA scale-free, and WS small-world networks and the stock network.

[image: Table 1]

First, we calculate the entropy of the ER random network as follows. For the ER network with N nodes and link probability p between each pair of nodes, the degree distribution P(k) is given by the Poisson distribution [32],

[image: image]

and the average degree 〈k〉 is Np. The entropy of the ER network with average degree 〈k〉 = 6 for various N from 20 to 180 is plotted in Figure 1A.


[image: Figure 1]
FIGURE 1. Entropy of (A) the ER random network with Np = 6 for various N; (B) the BA scale-free network for N = 180, m = 1 and various α; (C) the WS small-world network for K = 6, N = 180 and various p; and (D) the stock network for the sampling period from 16 December 2013 to 22 November 2016 in the Shanghai stock market.


Next, for the BA scale-free network with N nodes, minimal connectivity m, and scaling exponent α of the degree distribution, the entropy of the network can be expressed as Wang et al. [20]

[image: image]

and the average degree of the network is given by [image: image]. The entropy of the BA network with N = 180 and m = 1 for various α from 1.5 to 2.5 is shown in Figure 1B.

For the WS small-world network first proposed in Watts and Strogatz [33], which starts with a ring lattice of N nodes where every node is connected to its first K neighbors and then has each edge of the lattice randomly rewired with probability p such that self-connections and duplicate edges are excluded, the degree distribution is given by Albert and Barabási [34]

[image: image]

and the average degree of the network is 〈k〉 = K. We plot the entropy of the WS small-world network with average degree 〈k〉 = K = 6 and N = 180 for various p from 0 to 1 in Figure 1C.

Using the network construction method and the definition of network entropy proposed in this paper, we present in Figure 1D the entropy of the stock network during the sampling period from 16 December 2013 to 22 November 2016. Note that the stock network is constructed with the intraday stock returns for every trading day. We next compare the entropy of the stock network to that of the ER random, BA scale-free and WS small-world networks with the same average degree and number of nodes.

For the ER network with average degree 〈k〉 = 6, the entropy is approximately 3.2 when N = 180, as shown in Figure 1A. For the BA network with 〈k〉 = 6 and N = 180, the entropy is approximately 2 when α ≈ 1.9484, as shown in Figure 1B. As can be observed in Figure 1C, the entropy of the WS network with 〈k〉 = 6 and N = 180 is always smaller than 2.7 for different values of p. From Figure 1D, one can see that the entropy H of the stock network satisfies 2.7 < H < 3.2 during the sampling period, which is much larger than the entropy of the BA network but smaller than that of the ER network and a little bigger than that of the WS small-world network. This suggests that the topological structure of the stock network is closer to that of the ER and WS networks.

To reveal the influence of crashes on the stability of the stock network, we next analyze the network entropy in the four sub-periods, i.e., the two stable-state sub-periods and the sub-periods with and without rescue policies after a crash. First, the mean values of the entropy for the sub-periods with and without rescue policies after a crash are 2.9203 and 2.8992, respectively, and the mean values of the entropy for the sub-periods of stable states I and II are 3.0602 and 3.0487, respectively. This result suggests that in the periods after a crash the stock network is less stable and heterogeneous than during the stable-state periods, since the entropy measures the network stability and heterogeneity. We also conduct a t-test for the significance of the difference between the entropies of the stock network for different sub-periods, as shown in Table 2; the test finds no significant difference between the mean entropies of the sub-periods with and without rescue policies.


Table 2. Results of t-test for testing the significance of the difference between the entropies of the stock network for different sub-periods in the Shanghai stock market.

[image: Table 2]



4.2. Entropy Evolution of the Stock Network

To examine how the effects of rescue policies on stock network stability change over time, we now analyze the evolution of the entropy of the stock network after a shock during sub-periods with and without rescue policies. One might imagine that these shocks are similar to after shocks following an earthquake.

A shock is defined here as a time at which the volatility V(t) = |R(t)| exceeds a given threshold value Rth = Sδ, where R(t) is the logarithmic price return, δ is the mean volatility over the stable-state period, and the threshold S is positive [35]. Using the same method of shock identification, 43 and 30 shocks are identified with the threshold S = 2 during the sub-periods in the Shanghai stock market with and without rescue policies, respectively. Then, the entropy evolution is defined as the change in the entropy averaged over the shock after its occurrence in the sub-period. We present the entropy evolution of the stock network for these two sub-periods in Figure 2.


[image: Figure 2]
FIGURE 2. Entropy evolution of the stock network during sub-periods with and without rescue policies after crashes in the Shanghai stock market.


Figure 2 shows that the entropy evolution of the stock network for the sub-period with rescue policies after a crash increases rapidly at the early stage, then decreases and rises again slowly at later times. For the sub-period without rescue policies, the entropy increases slowly throughout the whole period. These results suggest that rescue policies can improve the heterogeneity and stability of the network only for a short time at the initial stage, whereas the heterogeneity and stability of the network will increase slowly over the period after a crash even without rescue policies.



4.3. Further Analysis of Stock Degree

In this section, we study the degrees of all stocks in the stock network over different sub-periods, with the aim of identifying the cause of the effect of rescue policies on the stock network entropy.

In Table 3 we present the average degree of all stocks of conventional industries in the SSE 180 index during the four sub-periods, i.e., the two stable-state sub-periods and the sub-periods with and without rescue policies. Table 4 presents industry information on constituent stocks in the SSE 180 index, including the industry codes, industry names, and number of stocks belonging to each industry.


Table 3. Average degrees of constituent stocks in the SSE 180 index for each industry during two stable-state sub-periods and sub-periods with and without rescue policies.

[image: Table 3]


Table 4. Industry information on constituent stocks in the SSE 180 index.

[image: Table 4]

As seen in Table 2, the average degree of stocks in the Finance & Insurance industry is large during the two stable-state sub-periods and the sub-period without rescue policies, but relatively small during the sub-period with rescue policies. On the other hand, the average degree of stocks in the Construction industry is large during the sub-period with rescue policies, and relatively small during the stable-state sub-periods and the sub-period without rescue policies. This suggests that the degrees of both the Finance & Insurance and the Construction industries are greatly influenced by government rescue policies, which ultimately lead to the change in network entropy during the sub-period with rescue policies.

To elucidate the relation between rescue policies and the degrees of stocks, we compare stocks purchased by the government and stocks with large degrees in the stock network.

Table 5 lists the top 10 stocks purchased by the government during the period from 30 June 2015 to 30 September 2015, which closely coincides with the period in which rescue policies were enacted. Table 5 shows that the top stocks purchased by the government belong to the Construction industry during the sub-period with rescue policies, which is consistent with the results in Table 3. In Table 6 we present the top 10 stocks with the highest mean value of stock degrees in the stock network for the two stable-state sub-periods (I and II) and the sub-periods with and without rescue policies.


Table 5. Top 10 stocks purchased by the government from 30 June 2015 to 30 September 2015 in the Shanghai stock market.

[image: Table 5]


Table 6. Top 10 stocks with the highest mean value of degrees in the stock network for the two stable-state sub-periods and the sub-periods with and without rescue policies in the Shanghai stock market.

[image: Table 6]

From Table 6 one observes that during the stable-state sub-periods, more than half of the top 10 stocks with the highest mean degree belong to the Finance & Insurance industry, which is consistent with the results in Table 3. Furthermore, no stock belongs to the Finance & Insurance industry in the sub-period with rescue policies, whereas more than half of the top 10 stocks belong to the Finance & Insurance industry in the sub-period without rescue policies; this is also consistent with the results in Table 3.

Finally, from Table 6, more than half of the top 10 stocks purchased by the government have large degrees in the sub-period with rescue policies, while only a few stocks purchased by the government have large degrees in the sub-period without rescue policies. All these observations imply that government purchasing behavior greatly affects the degrees of individual stocks and thus changes the entropy of the stock network during the sub-period with rescue policies.



4.4. Universality and Robustness Tests
 
4.4.1. Universality Test

To test the universality of the empirical results for the Shanghai stock market, we calculate the entropy evolution for the stock network constructed with constituent stocks of the HSI index during the period following the crash on 10 March 2015 in the Hong Kong stock market, for which no government rescue policies existed.

In Figure 3, the entropy evolution of the stock network for the Hong Kong stock market increases slowly throughout the whole period, with a trend similar to the entropy evolution during the period without government rescue policies post-crash in the Shanghai stock market. This implies that the network stability also increases slowly in the Hong Kong stock market, where there were no government rescue policies.


[image: Figure 3]
FIGURE 3. Entropy evolution of the stock network during the 60-day period following the crash on 10 March 2015 in the Hong Kong stock market.


In analogy to the analysis of stock degrees in the Shanghai stock market, we present in Table 7 the top 10 stocks with the highest mean value of degrees in the stock network for the two stable-state sub-periods and the sub-period without rescue polices in the Hong Kong stock market.


Table 7. Top 10 stocks with the highest mean value of degrees in the stock network for the two stable-state sub-periods and the sub-period without rescue policies in the Hong Kong stock market.

[image: Table 7]

In Table 7, more than half of the stocks belong to the Financials industry during the stable-state sub-periods and the sub-period without rescue policies following the crash that occurred on 10 March 2015 in the Hong Kong stock market, which is consistent with the results on stock degrees during the stable-state sub-periods and the sub-period without rescue policies in the Shanghai stock market.



4.4.2. Robustness Test

To ensure that the previous findings are robust for the network stability measured by entropy calculated with the node degree distribution, here we use another quantity, the relative entropy, to examine the relation between government rescue policies and network stability.

The relative entropy, which is also called the Kullback-Leibler (KL) divergence, is a measure of how a probability distribution differs from another probability distribution [36]. This is useful when we want to compare the degree distributions of, for example, the stable periods and the periods with and without rescue policies after crashes. For complex networks, the relative entropy between two node degree distributions can be defined as

[image: image]

where Q(k) is the node degree distribution during the stable-state period.

Figure 4 presents the relative entropy of the stock network during the sampling period from 16 December 2013 to 22 November 2016 in the Shanghai stock market.


[image: Figure 4]
FIGURE 4. Relative entropy of the stock network for the sampling period from 16 December 2013 to 22 November 2016 in the Shanghai stock market.


As in the analysis of the entropy of the stock network, we find that the mean values of the relative entropy for the sub-periods with and without rescue policies after a crash are 0.0176 and 0.0178, respectively, larger than the mean values of the relative entropy for the stable states I and II (0.0068 and 0.0065, respectively). We also give, in Table 8, the results of a t-test for the significance of the differences between the relative entropies of the stock network during the four sub-periods.


Table 8. Results of t-test for testing the significance of the difference between the entropies of the stock network for different sub-periods in the Shanghai stock market.

[image: Table 8]

Table 8 shows no significant difference between the relative entropies of the stock network for the stable-state sub-periods and the sub-periods with and without rescue policies. These results indicate that the stock network is less heterogeneous and stable during the sub-periods with and without rescue policies, which is consistent with the results obtained from the entropy of the stock network presented above.

Finally, we show in Figure 5 the relative entropy evolution of the stock network for the sub-periods with and without rescue policies. Consistent with the entropy evolution results in Figure 2, the relative entropy evolution of the stock network for the sub-period with rescue policies decreases rapidly at first and much more slowly at later times. For the sub-period without rescue policies, the relative entropy evolution decreases slowly over the whole period. This implies that the rescue policies have only short-term influences on the stock market, and can only increase the heterogeneity and stability of the stock network for a short time. For the sub-period without rescue policies, the heterogeneity and stability of the stock network can also increase slowly.


[image: Figure 5]
FIGURE 5. Relative entropy evolution of the stock network during sub-periods with and without rescue policies after crashes in the Shanghai stock market.






5. CONCLUSION

In this paper, we have studied the influence of government rescue policies on the stability of stock networks after crashes in the Shanghai and Hong Kong stock markets based on the entropy method.

By analyzing the entropy of the stock network in different sub-periods, i.e., stable-state sub-periods and sub-periods with and without rescue policies after a crash, we find that rescue policies have only a short-term influence on the stability of the stock network after a crash, and can improve the network stability for only a short time. Over a longer time, the network stability during a sub-period with rescue policies could increase even more slowly than a sub-period without rescue policies. Further analysis of the relation between stock degrees and government purchasing behavior indicates that government purchasing can lead to significant changes in the degrees of specific stocks during the sub-period with rescue policies, and thus ultimately improve the stability of the stock network.

Our study focuses on the influence of government interventions on network stability measured using entropy. It is of theoretical interest for understanding the relation between external interventions and network topological structure, and further has practical significance for regulators and policymakers who are attempting to stabilize stock markets after crashes.

One can extend the present study to a microscopic analysis by looking at the effects of individual node strengths and link weights on the stability of the stock network after a crash. This can be done by using methods similar to that of Bellingeri et al. [37], for example, and is a topic for future research.
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In contrast to the traditional view that economic policy affects investor sentiment and eventually causes stock price fluctuations, we reveal that investor sentiment is a reflection of both economic policy and stock market information. This article first proposes an improved ETE method with a sliding window. We verify that this new method can capture the dynamic orders effectively by validating this method with the linear TE method. Furthermore, using the improved method, we investigate the strength and direction of information flow among economic policy uncertainty (EPU), investor sentiment and stock market by the novel concept of dynamic effective transfer entropy. The EPU and investor sentiment results show that EPU influenced investor sentiment mainly from August 2015 to June 2016. Among different policies, China's exchange rate reform policy and “circuit-breaker” policy in the stock market played an important role. Moreover, the analysis of sentiment and stock price returns shows that investor sentiment is more a reflection of changes in stock price returns with a 1-month lag order and that the stock market has a significant bargainer effect and a weaker bandwagon effect. Finally, there is no significant information flow transmission relationship between EPU and stock market volatility, indicating that stock market fluctuations are essentially not affected by national policy fluctuations. Although investor sentiment is affected by changes, such as exchange rate reform and stock market policies, many investors do not form consensus expectations.

Keywords: EPU, investor sentiment, stock market, information flow, transfer entropy


INTRODUCTION

Transfer entropy arises from the formulation of conditional mutual information. When conditioning on past values of variables, it quantifies the reduction in uncertainty provided by these past values in predicting the dependent variable, which presents a natural way to model statistical causality between variables in multivariate distributions. In the general formulation, transfer entropy is a model-free statistic that is able to measure the time-directed transfer of information between stochastic variables and therefore provides an asymmetric method to measure information transfer.

The information transfer method has been widely used in the finance field. Kwon & Yang [1] employed it to measure the relationship between equities indices, showing that the information transfer was greatest from the US and toward the Asia Pacific region. In particular, the S&P 500 was shown to be the strongest driver of other stock indices. In earlier and somewhat related work, Marschinski and Kantz [2] defined and used effective transfer entropy to quantify contagion in financial markets. Kyrtsou et al. [3] proposed a Granger causality method based on partial transfer entropy to explore the complex relationships among the S&P 500, VIX and volume. Dimpfl and Peter [4] proposed an appropriate bootstrap to derive confidence bounds and showed in a simulation study that standard linear approaches in economics and finance, such as vector autoregressions and Granger causality tests, are not well-suited to detect information transfer. Garcia-Medina et al. [5] used random matrix theory and information theory to analyze the correlations and flow of information between 64,939 news items from The New York Times and 40 world financial indices over 10 months during the 2015–2016 period. Their results suggested a deep relationship between news and world indices and showed that the news drives world market movement. Sensoy et al. [6] explored the strength of information flow between exchange rates and stock prices by the effective transfer entropy with symbolic encoding methodology. Yang et al. [7] proposed an effective phase transfer entropy method based on the transfer entropy method. These scholars also analyzed the relationship among 9 stock indices from the U.S., Europe and China by using transfer entropy, effective transfer entropy, Rényi transfer entropy, and effective Rényi transfer entropy [8].

The vast influential literature focuses on the correlation between EPU and its impact of investment [9–21]. Many new studies investigated the fluctuation characteristics of China's uncertainty index and its impact on the economy [22–24].

Additionally, many other studies focused on the impact of investor sentiment on stock prices. A study investigating the correlation between investor sentiment and the equity market was conducted following De long's research [25]. Baker and Wurgler [26] investigated investor sentiment using a principal component method. Subsequently, a large number of studies emerged, suggesting that investor sentiment has a significant impact on stock returns [27–40]. In addition, some studies reveal a complex correlation between online investor sentiment and stock market volatility [35, 36, 41, 42].

Although there are many studies on the correlation between EPU and financial or economic indices, there are few studies on the influence of EPU on investor sentiment. There is also a lack of research on the transmission pathways of the EPU, investor sentiment and stock market.

It is widely considered that national economic policies will pass relevant information to influence investor sentiment, affect investment decisions, and ultimately cause stock price fluctuations. However, the real situation may be more complicated especially in China. Motivated by previous studies, we follow the theorizing on information flow to reveal the transmission path of information among these three variables and to provide more references for macro policy makers.

The rest of this paper is organized as follows. In section Data Description, we describe the time series data used in the models. In section Methodology, we introduce the effective transfer entropy (ETE) method. In section An Improved Effective Transfer Entropy Method Based on a Sliding Window, we propose an improved ETE method based on sliding windows. In section Empirical Results, we present the empirical results of EPU, trade and the exchange rate obtained using the improved ETE model. Finally, we provide the conclusion of this paper.



DATA DESCRIPTION

The economic uncertainty index used in this article is an index compiled by Paul Luk's research team [43] from Hong Kong Baptist University. These authors construct the index using words from 10 Hong Kong newspapers, including Wen Wei Po, Sing Pao, etc. For each newspaper, the research group counts articles containing Chinese words related to economics, uncertainty and policy to formulate the economic policy uncertainty index. The latest data of the index and related papers can be downloaded from the web: https://economicpolicyuncertaintyinchina.weebly.com/.

The investment sentiment index is constructed with the principal component method based on four underlying proxie, i.e., the relative strength index, the psychological line index, the trading volume and the adjusted turnover rate [40]. The Shanghai Composite Index mostly reflects the performance of the Chinese stock market. The data of this index are from the China Stock Market & Accounting Research Database. The data period for all three time series is from February 2005 to May 2019 (Figure 1).


[image: Figure 1]
FIGURE 1. Time series of the CN EPU index, Investor sentiment and Return of the Shanghai Composite Index's closing price.




METHODOLOGY

We calculate the statistical causality between time series using two different approaches. The first assumes linearity and employs vector autoregressive techniques to estimate the extent to which knowing the driving time series can help predict the dependent series. The second technique compares the difference in mutual information between the independent case and the joint case to describe the success of predicting the dependent series. When predictability is increased by considering the past values of the driving variable, statistical causality is observed.


Linear Causality

We model a time series as autoregressive by expressing its value Yt at time t as a sum of the contributions over m distinct lagged series using the following linear equation:

[image: image]

Where [image: image] is a general coefficient term and εt is the residual. Linear regression estimates coefficient parameters [image: image], which minimize the sum of squared residuals.

To detect whether the values of some second time series X anticipate the future values of Y, we can compare Equation (1) with

[image: image]

We determine that distribution Y is Granger caused by X if the residual in the second regression is significantly smaller than the residual in the first regression. When this distribution holds, then there must be some information transfer from X to Y. Following Geweke [44], we can represent the information transfer by

[image: image]

where we adopt the transfer entropy notation (TE) following Barnett et al. [45], whose result shows Granger causality to be equivalent to transfer entropy for multivariate normal distributions.



Non-linear Causality

To detect non-linear causality, we apply an information-theoretic approach. Equation (3) measures the extent to which the additional information in the lagged variable reduces the variance in the model residuals. Transfer entropy extends this concept by considering the uncertainty instead of the variance. Adopting Shannon's measure of information [46], we can express the uncertainty associated with random variable X by

[image: image]

where H(x) is the Shannon entropy of the distribution, and p(x) represents the probability of X = x, which can be conditioned on a second variable to give the conditional entropy:

[image: image]

When two random variables share information, the mutual information is given by

[image: image]

The entropy of Y conditioned on two variables is

[image: image]

and the conditional mutual information is therefore

[image: image]

Now, for each lag k, we can describe the information transfer from Xt−k to Yt in terms of the following conditional mutual information:

[image: image]

This equation represents the resolution of uncertainty in predicting Y when considering the past values of both Y and X compared with considering the past values of Y alone.

Considering Equations (5) and (7), we can therefore represent the transfer entropy for a single lag k, which is shown in Equation (9), in terms of four separate joint entropy terms. Following equation (4), these terms may be estimated from the data using a non-parametric density estimation of the probability distributions. For multivariate normal statistics, Equations (9) and (3) coincide [45].



Effective Transfer Entropy (ETE)

It is a feature of the non-parametric estimation of entropy that the absolute scale of the transfer entropy measure has only limited meaning; to detect causality, a relative position must be considered. A simple technique proposed by Marschinski and Kantz [2] is the ETE, derived by subtracting from the observed transfer entropy an average transfer entropy figure calculated over independently shuffled time series, which destroys the temporal order and hence any possible causality. We adopt a shuffling approach producing 50 null-hypothesis transfer entropy values from independently shuffled time series over the same domain containing no causality. By calculating the mean and standard deviation of the shuffled transfer entropy figures, we estimate the significance of a causal result as the distance between the result and the average shuffled result standardized by the shuffled standard deviation:

[image: image]

where [image: image] is the mean of the shuffled values, and σshuffle is the standard deviation. The shuffling of the time series destroys temporality and should ensure that the mean is approximately zero; therefore, the spread of the data dictates the significance of the result. Assuming that the distribution is close to Gaussian, we can say that a result with Z > 3 is roughly in the top 1% of results and hence is comparable to a p-value of 0.01. The nature of the method typically enables clearer significance to be observed with fewer shuffles, even without a strict Gaussian distribution; thus, this method is computationally more attractive than the p-value.

This expression corresponds to the degree to which the result lies in the right tail of the distribution of the zero-causality shuffled samples and hence how unlikely the result is due to chance. Therefore, the Z-score figure represents the significance of the excess transfer entropy in the unshuffled case. We compute the Z-score in Equation (10) for both linear and non-linear results.




AN IMPROVED EFFECTIVE TRANSFER ENTROPY METHOD BASED ON A SLIDING WINDOW


Improved Method Based on a Sliding Window and Comparison With a Traditional Linear Method

Keskin and Aste [47] validated that the non-linear TE method would be useful for detecting a non-linear process. However, the lag order they found was global and unique and thus was unsuitable for capturing the accurate order between two non-stationary series. For non-stationary time series, the data structure changes over time, which means that the causal relationships also evolve dynamically. In addition, due to policy or unexpected events, the causal structure of real financial sequences tends to change over time. Therefore, it would be inaccurate to use a single k to measure global causality.

Considering that the locality of non-stationary data may be stationary or approximately stationary, this paper proposes an improved transfer entropy method based on a sliding window to solve the influence of a non-stationary data structure on traditional transfer entropy. The improved method calculates the transfer entropy as described in section Non-linear Causality but is limited to a certain time segment. Through forward scrolling, the transfer entropy at each time point is obtained, and the causal relationship between the two times series can be revealed. In addition to its ability to capture the structural changes between two time series, the improved method can help us trace the specific time period of the structural change, which cannot be achieved using the traditional linear TE method. We next verify the validity of the algorithm.

First, we generate a time series X following the geometric Brownian motion according to Equation (11) as follows:

[image: image]

where ηt is a noise obeying the standard normal distribution, ηt ~ N(0, 1), and μ and σ represent the drift coefficient and the diffusion coefficient, respectively. Y depends on X, and the equation is constructed as follows (Equation 12):

[image: image]

where [image: image] is another time series generated according to Equation (11). k is the given lag order, and α ∈ (0, 1) determines the dependence strength between the series Y and X, i.e., the values of the transfer entropy.

Assuming k = 2, α = 0.5;k = 4, α = 0.5; and k = 5, α = 0.5, we can obtain three time series with a length of 200, i.e., [image: image] and [image: image] according to Equations (11) and (12).

As shown in Figure 2, for a correlation series with a single lag structure, both the traditional transfer entropy, i.e., the linear TE, and the improved TE method can capture the lag order accurately. However, according to the Z-score significance test, we can observe that when the temporal order is destroyed, the linear TE does not show significance in the relevant order; thus, the linear TE method depends on time evolution. As shown in Figure 3, the linear TE could only identify the order k = 4, which is the highest corresponding transfer entropy value (Z-score indicates that the value is above a significant level). However, the improved TE could detect both k = 4 and k = 5. Moreover, as shown in Figure 4, we can also track the specific time period during which the lead-lag order fluctuates with the improved method.


[image: Figure 2]
FIGURE 2. Demonstration that both methods identify the true lag values with maximal transfer entropy. Non-linear transfer entropy is calculated using a quantile-binned histogram, of 6 classes per dimension over 2,500 points. The Z-score for each result is also plotted for both methods. According to the z > 3 principle, it can be concluded that for two time series with a single lag order, the two methods can both identify the lag orders accurately. (A) k = 2, α = 0.5. (B) k = 4, α = 0.5. (C) k = 5, α = 0.5.



[image: Figure 3]
FIGURE 3. Demonstration that both methods identify the true lag values with maximal transfer entropy. The linear TE could only capture k = 2, corresponding to the highest transfer entropy value (Z-score indicates that the value is above a significant level), while the improved TE method could detect k = 2, 4, and 5.



[image: Figure 4]
FIGURE 4. Order identification by the two transfer entropy methods. The dashed line k = 2 corresponds to the lag order when the transfer entropy value is the largest in the linear TE method in Figure 3.


We reshape [image: image] and [image: image] into two new time series [image: image], where [image: image] and [image: image]. These new series show obvious structure fluctuations, and the features are more consistent with the characteristics of real financial data.

Due to the shortcomings of traditional linear methods in revealing dynamic orders, in the empirical analysis in section Empirical Results, we apply the improved transfer entropy to explore the information flow between all sequences. The sliding window length of all structures is 36 months with a forward step size of 1 month.



Comparison With the Granger Causality Test

The Granger causality test is essentially a test used to determine whether a lagging variable can be introduced into an equation containing other variables. If a variable is affected by the lag of other variables, the variables are considered to have Granger causality. For the sequences X and Y, using different lag orders, we obtain the causality test results of the two sequences (Table 1).


Table 1. Granger causality test results.

[image: Table 1]

Granger causality is a regression-based interpretation of Wiener's causality definition [48]. In this section, the Granger causality test is employed as a comparison with the improved TE to detect the true lag orders. Following Granger's work [49], we model the Granger causality test with the following two regression equations:

[image: image]

[image: image]

where X denotes the object needed to find the Granger cause, Y denotes the object needed to determine whether it can Granger cause X, and residuals ut and vt are assumed to be mutually independent and individually distributed with a zero mean and constant variance. These equations were tested using the following hypothesis:

H0 : Y does not Granger cause X(c1 = c2 = … = cp = 0).

The F − test can be expressed as follows:

[image: image]

where RSS0 is the residual sum of squares of Equation (13), RSS1 is the residual sum of squares of Equation (14), n is the number of observations, and p is a lag value. We reject the hypothesis H0 and accept that Y is a Granger cause of X if and only if F > F(p, n − 2p − 1). The model order p can be determined by minimizing the AIC [50], which is defined as follows:

[image: image]

where σ is the estimated noise covariance, m is the dimension of the stochastic process and [image: image] is the length of the data window used to estimate the model. For example, to detect the causal relationship from exports to US EPU, Y should be set to the exports sequence, while X should be set to the US EPU sequence. In contrast, Y should be set to the US EPU before detecting the causal relationship between US EPU and the exports.

The Granger causality test based on the sliding window method can also obtain the order and significance of two series' correlation. Using Y and X as an example, we elaborate upon the processes of the Granger model estimation within a fixed window as follows:

(a) The maximum of the lag value p is set to a fixed number, such as 10.

(b) By calculating the total AIC of Equations (13) and (14) by traversing the p value from 1 to 10, we obtain the corresponding p of the minimum AIC. The experimental results show that the optimal p is 5.

(c) Equations (13) and (14) are estimated by OLS with p = 5.

(d) F and F(p, n − 2p − 1) are calculated according to Equation (15). The results show that F = 4.0635 and F(p, n − 2p − 1) = 3.8549 (at the 99% confidence level).

(e) If F > F(p,n–2p − 1), we conclude that Y can significantly Granger cause X.

(f) The window is moved forward by a 1-month step, and steps (a–e) are repeated.

Using the process described above, we obtained the Granger causality test results based on a window length W = 36 (Figure 5A). As shown in Figure 5A, although the Granger causality test can identify k = 2, it cannot effectively capture the two orders of 4 and 5. Using k = 4 cannot pass the significance test; although using k = 5 can pass the significance test, there may be other orders, such as k = 8. The improved TE method can accurately identify three different orders (Figure 5B). In addition, the stage during which the order jumps cannot pass the significance test.


[image: Figure 5]
FIGURE 5. Comparison of the Granger causality method based on a sliding window and the improved TE method. The widow length in both methods is W = 36, and the significant level is 1%. The Granger method can clearly identify k = 2 but cannot identify k = 4, and there is considerable noise interference when identifying k = 5. The improved TE method can clearly identify the three orders 2, 4, and 5. (A) Granger causality test based on the sliding window method. The gray part indicates that the p-value of the F statistic is <1%, indicating that the causal relationship is significant in this area. (B) The result based on the improved TE method. The gray part indicates that the Z-score is higher than 3, which is equivalent to a significance level of p_val < 0.01 [section Effective Transfer Entropy (ETE)].





EMPIRICAL RESULTS

Since traditional linear methods cannot identify dynamic orders between time series or track specific lead-lag orders when structural fluctuations occur, we apply the improved transfer entropy to explore the information flow among EPU, investor sentiment and the stock market.


EPU and Investor Sentiment

Based on the dynamic TE method, we analyze the causal relationship between EPU and investor sentiment. As shown in Figure 6A, there is an obvious dynamic order in the correlation between EPU and investor sentiment.


[image: Figure 6]
FIGURE 6. Dynamic Entropy results between EPU and investor sentiment. (A) Lag structure. (B) TE fluctuation. (C) Z-score.


As shown in Figure 6C, a Z-score > 3 is mainly located in August 2015–June 2016. This means that during this time period, EPU had a significant impact on investor sentiment, and uncertain information about national economic policies significantly affected investor sentiment. From Figure 6B, it can also be seen that in this stage, the EPU's transfer entropy to investor sentiment was significantly higher than the impact of investor sentiment on EPU.

The impact on investor sentiment is related to the nature of the policy, i.e., whether the policy is a domestic policy or a foreign policy. During this period, China's economic policy involved the following two important measures: a change in the CNY fixing mechanism and the launch of the “circuit-breaker” mechanism.

On August 11, 2015, the central bank made more reference to the closing price of the previous day in the daily CNY-USD mid-price quotation formation mechanism. This change makes the method of forming the middle price more market-oriented, which more closely reflects the actual supply-demand relationship of the market compared to the previous method.

The circuit-breaker benchmark index is the CSI 300 Index, which uses two thresholds of 5 and 7%. When the CSI 300 Index triggers a 5% breaking threshold, the three exchanges suspend trading for 15 min, and if the 5% is triggered late in the day or 7% is triggered at any time throughout the day, trading is suspended until the market closes. From January 4th to January 7th, the breaking mechanism was implemented for only 3 days, and it became the shortest-lived stock market policy in the history of Chinese securities. This policy uncertainty had a great impact on investor sentiment.

Before August 2015, there were incidents such as the bankruptcy of Lehman Brothers (September 2008), the downgrade of the US sovereign credit rating (August 2011), and the European debt crisis (January 2011–January 2014). However, probably because these events did not occur in China, their impact on consumer sentiment was not significant.



Investment Sentiment Index and the Stock Market

The correlation between sentiment and stock price returns is illustrated in Figure 7. As shown in Figure 7C, the impact of sentiment on stock returns is non-significant; in contrast, the fluctuation in stock price returns has a significant impact on investor sentiment throughout the time period. This shows that in the Chinese stock market, using emotions to predict changes in stock prices is useless, and investor sentiment is more a lagging reflection of stock price returns. Figure 7A shows that the lag time is approximately 1 month. Our results further verify the long-term correlation characteristics suggesting that investor sentiment is mainly affected by fluctuation in the market, which may be related to the existence of cyclical fluctuations in the market and futures arbitrage [40].


[image: Figure 7]
FIGURE 7. Entropy between investor sentiment and stock market. (A) Lag structure. (B) TE fluctuation. (C) Z-score.


The study conducted by Brown and Cliff [29, 51] revealed that the bandwagon effect and bargain shopper effect can offset each other, reducing the predictability of stock returns. The bandwagon effect indicates that higher investor sentiment could increase the stock price, which is reflected in the positive correlation between stock prices and sentiment during the same period; in contrast, the bargain shopper effect indicates that investors optimistically believe the shares at a relatively low price represent a purchase opportunity; therefore, their sentiment negatively changes the returns.

The bargain shopper and bandwagon effect make it difficult to explore the causality between investor sentiment and stock returns. In our analysis results, the bandwagon effect is weaker, and the bargain shopper effect is more significant. The bandwagon effect reflects the herd effect of investors. This effect makes the stock market prone to sudden rises and falls in the short term; it cannot reflect the true value of a company and is not conducive to the healthy and stable development of the stock market.



EPU and Stock Market

If investor sentiment has a significant impact on the stock price, then according to our expectations, national policy information will be transmitted to the stock price through investors' expectations and eventually cause stock price fluctuations; in other words, EPU also has some kind of information transmission relationship with the stock price. However, the results now show that both stock price fluctuations and EPU have an effect on investor sentiment and are not affected by investor sentiment. Therefore, either the stock price fluctuations and EPU have a weak information transmission effect or there is a mutually offsetting effect.

To further verify our assumptions, we explore the information transfer relationship between EPU and stock price returns (Figure 8). As shown from the results of Figure 8C, there are only a few discontinuous time points with a Z-score > 3 in the entire event period. Overall, the information transmitted by the EPU to the stock market is non-significant; in other words, the EPU has no obvious information transmission relationship with the stock market.


[image: Figure 8]
FIGURE 8. Entropy between EPU and stock market. (A) Lag structure. (B) TE fluctuation. (C) Z-score.


A considerable number of related studies showed that the stock market and EPU are significantly negatively correlated [11, 12, 21, 52]. Regarding the relationship between China's EPU and the stock market, Chen and Chiang [21] also verified that the stock returns in China are negatively correlated with EPU. Notably, the main correlation revealed by Chen and Chiang based on the GARCH method is the overall correlation between sequences. However, we reveal a time-varying relationship between sequences based on non-linear methods. As shown in Figure 8C, it can be concluded that in the short term, China's EPU also significantly impacts the stock market during the period from 2011 to 2012 and in 2016, but in the long run, this effect is generally not significant.




DISCUSSION

According to the efficient market hypothesis theory, an efficient market (Figure 9A) should reflect all changes in information, including regular investor sentiment changes and shocking policy fluctuations. Therefore, the information flow should flow from the EPU and investor sentiment to the stock market. In addition, since policy shocks often affect sentiment in the short term, information flow should flow from policy to sentiment, but this is uncertain.


[image: Figure 9]
FIGURE 9. The correlation among CN EPU, investor sentiment and the stock market. (A) The efficient market hypothesis. The stock market may be able to effectively reflect information regarding conventional investment and policy shocks. (B) China's stock market is an inefficient market, and stock market volatility is an important factor affecting emotional volatility.


The results show that the Shanghai Stock market is not yet an efficient market (Figure 9B) and cannot reflect information from regular investment and low-frequency policy shocks. Therefore, investors can reap potential excess profits through operations. Furthermore, the stock market cannot form an effective path to reflect investor sentiment information; thus, in the long run, EPU cannot affect the stock market.

Compared with the market and policy factors, investor sentiment has a certain lag (Figure 9B), reflecting the volatility information of the two. Therefore, we should consider policy factors when studying the construction of investor sentiment indicators, which is rarely investigated in research concerning the factors affecting investor sentiment.



CONCLUSION

A widely accepted fact is that economic policy affects investor sentiment and will be ultimately reflected in the stock market through investment decisions, causing stock price volatility. Therefore, is this really the case?

Since traditional linear methods cannot identify the dynamic orders between time series and are unable to track specific lead-lag orders when structural fluctuations occur, we proposed an improved transfer entropy method based on a sliding window. By comparing with the linear ETE method and Granger causality method, we verify the effectiveness of the improved method. The main advantages of this methodology are the easy implementation-interpretation by non-parametricity to capture the non-linear dynamics and the point in time when the structure changes. Therefore, this method is considered a nice and promising alternative to the standard measures. We further employ this improved method to examine the information flow among EPU, investor sentiment and stock market.

The results of the information flow analysis of EPU and investment sentiment show that EPU influenced investor sentiment mainly from August 2015 to June 2016. Among different policies, China's exchange rate reform policy and “circuit-breaker” policy have played an important role. For other time periods, there are also points in time when policies were highly uncertain, such as the bankruptcy of Lehman Brothers (September 2008), the downgrade of the US sovereign credit rating (August 2011), and the European debt crisis (January 2011–January 2014). However, likely because these events did not occur in China, their impact on consumer sentiment was non-significant.

The analysis of the information flow between sentiment and stock price returns shows that the impact of sentiment on returns is non-significant, while the fluctuation in stock price returns has a significant impact on investor sentiment. Therefore, using emotions to predict changes in stock prices is valueless. Investor sentiment is more a reflection of changes in stock price returns with a 1-month lag order. The results show that in the Chinese stock market, the bargainer effect is more significant and the bandwagon effect is weaker.

There is no direct information flow from EPU to stock market, and according to our previous analysis, there is no indirect information flow through which EPU transmits information to the stock market through investor sentiment. Therefore, stock market fluctuations are basically not affected by national policy fluctuations. Although investor sentiment is affected by changes such as exchange rate reform and stock market policies, this effect is reflected only at the emotional level. Many investors can digest and neutralize extreme emotions. Therefore, a final consensus is not easy to form.
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Recent works leverage export data to assess country production structure and ultimately country relative competitiveness. These works mostly rely only on the exported part of the total country output for reasons of data availability, homogeneity, and quality. Here we use the World Input-Output Database (WIOD), which offers cross-country harmonized data that accounts both for domestic production and export, to investigate to what extent export is a proxy for domestic production. We find that export mirrors remarkably well domestic production for manufacturing sectors or sectors related to physical goods. Conversely, this relation fades away for service related sectors. We found those relations consistently across most of the 40 countries for which data are available.
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1. INTRODUCTION

The last decades have witnessed the building up of the awareness that economic thinking must embrace new paradigms in order to properly tackle the challenges set by the complex and adaptable nature of economic systems [1–3]. This shift has acted as a breeding ground for cross-disciplinary economics and finance theories and has led to a number of flourishing works bridging several fields ranging from network domain to complexity science. To illustrate a small fraction of these approaches we refer for instance to the complex linkage between micro and macro economic fluctuations [4], the non-trivial topology of World Trade Web [5–7], modeling of the inter-bank network [8] to assess financial systemic risk [9, 10], technological and scientific progress modeling [11, 12], and complex firm diversification trajectories [13, 14].

In this work we focus our attention on one of these novel branches, typically known under the name Economic Complexity [15–25], which discusses the determinants of country development and growth [26–35] in a radically new way. Most of the empirical economic literature has tried to explain development pattern differences directly acting and measuring the underlying drivers [35, 36]: the countries' endowments or capabilities which range from expected factors as investments, education, etc., to very exotic ones including genetic diversity factors [37, 38].

However, the design of these studies and their general setups often reflect the general vision of economies as complicated rather than complex (adaptive) systems. This means that these empirical analyses tend to look at very limited channels of interaction suggesting direct and simple cause-effects (or in-out effects) [1]. This general frame for the empirical search of development determinants faces critical issues when the systems are increasingly complex and adaptive because internal feedback tends to break in-out schemes and lead to the emergence of collective and evolutionary behavior.

Economic Complexity reverses this perspective and starts from the final outputs in order to explain the root of country competitiveness and consequent growth trajectories. It indeed wants to infer country competitiveness from economic outputs, specifically from cross country output differences as they reflect cross country endowment differences which encode relative country strength [16, 18, 19, 39–42]. Conceptually speaking, these approaches are close to PageRank methodology: extracting information from network topology in order to measure nodes' features.

The economic output which is typically leveraged to measure differences of production across countries is countries' export basket, which is a subset of the total output of an economic system. Domestic production represents the remaining part of the economic output of a country. Exports are the preferred output in order to evaluate cross-country differences in terms of productive capabilities as they occur mainly on a competitive basis. A country exporting a product is likely signaling a competitive advantage and proving that country owns the capabilities required to produce that specific product. In addition, exports also offer a number of auxiliary features which make them an ideal candidate for these analyses:

• Export datasets are harmonized across countries, being the result of data collection from customs offices. This means that all countries identify and define in the same way a specific product, making export baskets, once suitably normalized, comparable across countries;

• The value of the flows is often doubly reported, by the exporter and by the importer, allowing to correct many errors and to de-bias inaccurate reporters;

• They are available continuously since the sixties [43, 44];

• They are available up to a very disaggregated level. Considering Harmonized System, products are hierarchically organized using different levels of aggregation identified by the number of digits used for the product code. For instance, 2 digits codes refer to about one hundred aggregated sectors, while 4 digits codes identify more than one thousand different products. Exports are available up to 6 digits. As a reference, 8–10 digits levels specify the level at which single firms compete (i.e., at those levels if two firms produce the same product, they are likely direct competitors). Exports are then available, consistently for all countries, just one level of aggregation higher than the level setting firm competition [44].

In this work we want to address the relationship that exists between export and domestic production of countries. In particular we want to understand to what extent export flows are mirroring production and therefore they can be used as a good proxy to decode the complexity of domestic production. In particular, we want to understand if there exist sector-wise patterns of variability of the probing power of export flows.

Unfortunately, from an operational point of view, we do not have direct, reliable, highly disaggregated, consistent cross-country datasets tracing the structure of internal production, differently from what is available in the bilateral trade network. However, we are still able to test the relation at a more aggregate level. In order to test the validity of this assumption, we leverage a type of data made recently available by a number of scholars. The dataset we will refer in this work is the so-called WIOD [45, 46]. This dataset extends the original Leontief input-output approach, which is usually provided for internal intra-sector flows, at a global scale (further details are provided in the next section). In WIOD we have access to the input and the output flows for 34 sectors, due to both domestic and import/export contribution, for a limited but significant set of 40 countries covering more than 85% of the world GDP in 2008. Additionally, the trades due to the remaining non-covered part of the world are estimated and included in an additional “country” called “Rest of the World” (RoW). We design a number of tests to statistically assess the probing power of export flows along the two possible cross-sections we can explore: first fixing sectors and then fixing countries.

Our results can be summarized as follows:

i) At an aggregate level, exports are a good proxy for internal production for manufacturing sectors and sectors delivering physical goods.

ii) The relationship between internal production and export fades away for service related sectors. This highlights differences between products and services and shows that services exports might not have the same meaning of tangible good related exports. This questions approaches aiming to achieve a straightforward extension to the service domain of cross country export differences by treating these class of activities as an extra set of products [47, 48].

We found those relationships consistently for the countries considered and discuss the exceptions in the remainder of the paper.

The paper is structured as follows: in section 2 we present the results of our research. Particularly, section 2.1 describes how we calculate the internal production and the export for each sector of each country considered. We then analyze those data in sections 2.2 and 2.3, respectively, sector by sector and country by country. We conclude in section 3 discussing our findings and presenting an outlook for our work. Finally, section 4 provides technical details on the statistical methods used. In the Supplementary Information, we provide further results and analyses supporting the main findings of the paper.



2. RESULTS


2.1. Assessing Domestic Production and Export

The Input-Output analysis, formalized by Leontief [49], provides a picture of the inter-industrial relationships. This kind of analysis gives a matrix representation of the interactions between industrial sectors of a country. The model considers an exchange economy divided into a certain number of industrial sectors in which the output from a sector becomes an input for another. In this way, it is possible to see how much each sector depends upon the others. The idea of Dietzenbacher et al. [45, 46] was to expand the Leontief's approach to world trades so they created the World Input-Output Database (WIOD), in which there are flows, quantified in current US dollars, exchanged between industrial sectors relative to several countries of the world. The WIOD contains annual time-series of WIOT, collected for a period of 17 years ranging from 1995 to 2011.

From each one of the WIOT we created a network (whose properties have been studied in [50]) as in Figure 1. We distinguish three different types of links: (i) self-link, representing the inputs that an industry takes from itself (colored dashed lines in the figure); (ii) link between the same industrial sector in two different countries (gray dotted line in the figure); (iii) link between different industrial sectors in the same country (colored solid line) and among countries (gray solid line). Self-links are mainly due to aggregated industry classification [50] and often represent a large amount of the total sector input/output. We neglect this data together with any link connecting the same industrial sector across countries. Therefore, we keep only links represented by solid lines in Figure 1. For each industrial sector s of the country c we define the internal flow Isc as the sum of the output flows toward industrial sectors of the same country. Similarly, we define the export flow Esc as the sum of the output flows toward industrial sectors belonging to other countries. The sum of Isc and Esc gives the total output flow of country c, industrial sector s.


[image: Figure 1]
FIGURE 1. Schematic of the world input-output tables. The WIOT contain data for the domestic production and the export of 34 industrial sectors in 40 countries, plus a model for the remaining countries (named Rest of the World—RoW). In this Figure, for simplicity, we show two countries Italy (ITA) and USA with some industrial sectors. Gray lines represent import/export flows, colored lines trades internal to a country, dashed lines self-consumption of a sector, and dotted lines trades between the same industrial sector of two different countries.


Internal and export flows show high variability in terms of volume from country to country. A better parameter to estimate the importance of an industrial sector is the share with respect to the country's overall internal production or export. Hence, for each industrial sector of each country, we define an internal share isc and an export share esc. The former reflects the importance of that sector relative to the country's internal economy while the latter reflects its importance relative to the country's export. Shares are defined as:

[image: image]

[image: image]

where s′ runs over all the 34 industrial sectors.

The main goal of this work is to measure the similarity and the similarity's statistical significance of domestic and export shares sector-wise and country-wise.



2.2. Sector-Wise Analysis

Let us first consider the sector-wise similarity. We thus want to measure sector-by-sector whether domestic shares mirror export shares for the available countries. Being n the number of countries, we define [image: image] the vector specifying the domestic shares of a product across countries and [image: image] the vector of the corresponding export shares. We measure the per sector similarity as the sample Pearson correlation of the vectors ds and exs. The limited number of countries (n = 41) and the consequent limited statistics make a robust statistical validation of the measured correlation essential. We then require strategies in order to exclude that the sample correlation we observe is associated with a vanishing correlation for the underlying population, i.e., ρ = 0: where ρ is the population correlation coefficient. We will denote population correlation with Greek letters while sample correlation by Roman letters. The statistical validation of correlation can be achieved using different strategies; we will perform the most common ones and discuss the similarities of results witnessing the robustness of our basket of analyses. In detail:

• Mitigation of outliers' role (analysis I): to study the typical range of variability of the observed sample correlation coefficient between the domestic and the export shares, we develop a bootstrapping procedure. Unfortunately domestic and export shares occasionally show a broad distribution and therefore we may occasionally fall into an outlier-type regime for some sectors. We then devise a procedure to mitigate the effect of outliers to test the robustness of our findings. The procedure combines a modified bootstrap with a permutation test and it is easily described by means of a concrete example. In Figure 2A, we show the scatter plot of the internal shares and export shares, i.e., ds and exs, for two sectors (namely Electrical and Optical Equipment and Inland Transport). Each point in the graph represents a country. The sample correlation coefficient of these data is calculated through a modified bootstrapping to mitigate the possible effects of outliers. We essentially re-sample many subsets of the original pairs (further details are provided in Methods section). This permits to evaluate the typical range of variability of the correlation coefficients as shown by the histogram in Figure 2B. We define the sample correlation coefficient r for this sector as the average of the data in this histogram (pointed out by the vertical dotted black line in the same figure panel). To assess the significance of the obtained r we develop a p-value analysis: for each data subset extracted during the bootstrap we calculate the p-value as the results of a permutation test (see section Methods for further details). We then construct the cumulative distribution function of the obtained p-values, shown in Figure 2C. A significant correlation is usually attested by a low p-value. This translates in a p-values' cumulative distribution approaching 1 for small p-values. In the examples shown in Figure 2 this is the case for the “Electrical and Optical equipment” industrial sector, while it is not the case for “Inland transport.” We set a threshold T = 0.15 to define a sector correlated or not. If the 70th percentile of the p-values distribution is below T then the sector is said to be correlated otherwise it is not. We marked in panel (c) of the same figure the 70th percentile of the data by a dotted black line and the 0.15 threshold by a dashed red line. We see that for the “Electrical and Optical Equipment” sector the 70th percentile of the data is well below the threshold. This means that the internal share ds and exs of this sector are significantly correlated as measured by our definition of statistical significance. Vice versa for “Inland Transport” the 70th percentile of the data is greater than the threshold meaning a lack of a significant correlation.

• Confidence level assessment via simple bootstrapping (analysis II): to visualize the comparison of the sample correlation confidence level, we also performed a standard bootstapping procedure. We perform a sampling with replacement of n pairs from the original pairs defining our sample and, by repeating several times this procedure, we can estimate the distribution characterizing the sample correlation variability.

• Permutation test (analysis III): to compare the sample's correlation information with a null model we perform a permutation test shuffling ds (or alternatively exs) and subsequently measuring the correlation and repeat several times this procedure in order to build the ensemble corresponding to the null case we want to exclude, i.e., the zero correlation scenario. A slightly different way to estimate the sample correlation distribution is to generate n pairs of uncorrelated (normal) random numbers, measure the correlation and repeat the procedure several times. Both procedures allow to define a p-value for the observed sample correlation under the null hypothesis ρ = 0. In this work we will provide both approaches.

• Fisher transformation (analysis III): a different approach consists in characterizing the statistics of the sample correlation provided the value of the population correlation ρ. Unfortunately this statistics is Gaussian only for zero population correlation preventing the use of t-statistics. However, it has been shown that the statistics of a non-linear transformation of the sample correlation r- the Fisher transformation - is approximately Gaussian. In detail the variable F(r) = 1/2[ln((1 + r)/(1 − r))] approximately follows a Gaussian distribution with mean μρ = F(ρ) and variance [image: image] where n is the sample size. It follows that the p-value of the sample correlation r under the null hypothesis ρ = 0 can be retrieved from the z-score [image: image].


[image: Figure 2]
FIGURE 2. Correlation assessment. The first row refers to a sector where output shares toward export and toward internal production are highly correlated; the second row, a sector for which the correlation is weak. For each row, we present: (A) the scatter plot of countries' export share vs. countries' internal-production share; (B) the histogram of the bootstrap replications and (C) the cumulative distribution of the p-values relative to the bootstrap replications in (B), obtained through data reshuffling. The red dashed line represents the threshold we use to define correlations.



2.2.1. Sector Analysis I: Outlier Mitigation

In Figure 3, we present the 70th percentile p-value for all the sectors in the years from 1996 to 2011. They are sorted by the p-value in 2011 and the sector names belonging to the services [51] are in bold text. We identify sectors for which the correlation is validated and sectors for which is not. Visually, we see that the service sectors are mostly at the bottom of the figure and they present a large p-value for most of the years analyzed. This reflects the fact that for those factor there is not a statistically significant correlation between the domestic production and the export. The three analyses underline the same trend in terms of validated and non-validated sectors (see Supplementary Information for detailed graphs).


[image: Figure 3]
FIGURE 3. Industrial sectors' correlation. Bars represent the p-values' 70th percentile. Data are sorted according to 2011 p-values. A clear clustering is present: service-related sectors (in bold) do not present a statistically validated correlation between the domestic output and the export. Sectors belonging to the manufacturing and raw material industries have a low p-value hence a robust correlation. Vertical black dashed lines represent the threshold (T = 0.15) to define correlated sectors. with red edges have a p-value larger than T. Sectors are sorted according to their 2011 p-value.


In general, a clear clustering is present between two categories of sectors:

• Sectors showing a statistically significant correlation: “Wood and Products of Wood and Cork,” “Agriculture, Hunting, Forestry and Fishing,” “Textiles and Textile Products,” “Mining and Quarrying,” “Leather, Leather and Footwear,” “Pulp, Paper, Printing and Publishing,” “Basic Metals and Fabricated Metal,” “Electrical and Optical Equipment,” “Post and Telecommunication.” We note that, with the only exception of “Post and Telecommunication,” all these sectors belong to the manufacturing and raw materials industries.

• Sectors not showing a significant correlation: “Inland Transport,” “Health and Social Work,” “Public Admin and Defense; Compulsory Social Security,” “Air Transport,” “Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies,” “Electricity, Gas, and Water Supply,” “Hotels and Restaurants,” “Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel,” “Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods,” “Water Transport,” “Real Estate Activities,” “Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles,” “Financial Intermediation.” Those sectors, all belonging to services, present a p-value higher than T for most of the years considered in this analysis.

The general ordering of the sectors in terms of the significance of the measured correlation and in particular the different behavior for manufacturing and service sectors is robust across all the years available and not specific of a limited time period. However, few exceptions and trends can be spotted. A more explicit visualization of the evolution of significance in time is provided in Figure S3 where we show the time evolution of the 70th percentile p-value from 1996 to 2011 for each sector. We identify a temporal trend for some industrial sectors. In particular “Food, Beverages and Tobacco,” “Coke, Refined Petroleum and Nuclear Fuel,” “Chemicals and Chemical Products,” “Machinery, Nec,” and “Transport Equipment” show an increase in the correlation significance between internal share and export share in the period considered. On the contrary, the industrial sectors “Other Non-Metallic Mineral,” “Manufacturing, Nec; Recycling,” “Electricity, Gas and Water Supply,” “Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel” and “Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods” show a clear worsening of the correlation significance between the two quantities with time. Several factors may share a role in shaping the similarity between internal and export production. As a general consideration, an increasing correlation may be a signature for an increasing globalization and a reduction of trade barriers. However, underpinning the origin of the forces underlying these trends is beyond the scope of this work.

The general ordering of sectors by statistical significance induced by the different tests proposed exhibits minor differences. However, two common features are shared by all analyses:

1. Statistical significance of domestic and export shares similarity tends to increase in time. We argue this may due to increasing trade liberalization and openness together with more integrated global value chain;

2. Two groups of sectors emerge in a consistent way in the period under investigation. One group, composed of sectors related to the manufacturing and raw material industries, present a significant correlation between the domestic output and the export. This correlation is instead not significant for another group of sectors composed of service-related sectors.



2.2.2. Sector Analysis II: Simple Bootstrap Results

The correlation coefficient between domestic and export shares of the statistically validated sectors are typically observed in the range 0.2−0.9 as shown in Figure S2 and tend to increase over time. Interestingly negative coefficients are usually never statistically validated.



2.2.3. Sector Analysis III: Permutation Test and Fisher Transformation Results

In Figure S1, we show two Yes-No grids summarizing the statistical validation of the sample correlations we measure for the 34 sectors available, respectively, for the two permutation tests we propose and the Fisher transformation. Sectors are ordered according to decreasing p-value in 2011. Ordering is similar but few differences apply. A green plain dot corresponds to p ≤ 0.05, empty red squares to non-validated sectors. As a first result, both strategies provide essentially the same results and, more interestingly, we observe that non-validated sectors tend to be service-related sectors. Detailed p-value tables are provided in the Supplementary Information.




2.3. Country-Wise Analysis

So far we have seen that industrial sectors can be approximately classified into two groups on the basis of the statistical significance of the correlation between domestic and export shares. On average, export is a good proxy for domestic production for manufacturing sectors. Let us now consider the second cross-section analysis we are interested in: the country-wise analysis. Specifically, we want to investigate whether there exist country-specific patterns for the relationship between export and domestic production. In this section we will deal directly with flows (Isc and Esc) instead of shares since we do not have scaling issues between flows from different countries, as in the previous section.

We estimate the statistical robustness of per country correlations with the same methods we used for sector-wise analyses, namely permutation tests, Fisher transformation, bootstrap and the test with mitigation of outliers' effects. Referring to Figure 2 again, the general framework is similar: we still consider scatter plots as in panel (a) but now they have log(Isc) and log(Esc) on the horizontal and vertical axis, respectively, i.e., the internal flows of sectors and the export flow of the same sectors for a specified country.

In this section, we will run all the statistical tests proposed with two setups: excluding and keeping those sectors which are discarded by the outlier mitigated test discussed in the previous section. Discarded sectors can be retrieved year-by-year from Figure 3 (they are identified by a red dashed edge).


2.3.1. Country Analysis I: Outlier Mitigation

We define as [image: image] and pc, yr the 70th percentile p-value calculated with all sectors and with only the validated sectors, respectively. We present the results of this analysis in Figure 4 for the years ranging from 1996 to 2011. Solid black lines represent [image: image] while colored bars represent pc, yr. The color of the bar is:

• Light green if [image: image] and pc, yr < T, i.e., the correlation is statistically significant only excluding the discarded sectors in the sector-wise analysis;

• Dark green if [image: image] and pc, yr < T, i.e., in both cases the correlation is statistically significant. However, we note that [image: image] tends to be always larger than pc, yr, therefore the case excluding services tends to be more significant from a statistical point of view;

• Dark red if [image: image] and pc, yr > T, i.e., the correlation is not statistically significant in both cases;

• And light red if [image: image] and pc, yr > T, i.e., excluding the discarded sectors decrease the statistical significance of the correlation between internal flows and export flows.


[image: Figure 4]
FIGURE 4. Internal output and export correlation on countries. Bars represent the 70th percentile p-values calculated on countries. These are calculated considering all the sectors (solid black lines) and excluding non-correlated industrial sectors (colored bars). We refer to the text for bar color scheme.


A visual inspection of Figure 4—countries are ordered with respect to pc, yr in 2011—reveals that the vast majority of countries show a notable increase in the significance and of the correlation itself after the removal of the non-validated sectors in the sector-wise analysis. This visually corresponds to the fact that empty bars are larger than colored ones for almost all countries. For instance, in year 2011 only 24 countries out of 41 have validated correlation coefficients including all sectors, after removing not-validated sectors, only 3 countries (i.e., France, Romania, and Taiwan) are not validated as statistically correlated in the country-wise analysis.

The second main observation revealed by the visual inspection of Figure 4 is the presence of a well-defined temporal trend which sees the growth of the number of validated correlation coefficients between export and internal production during the considered period. We have already identified this trend in the sectors' analysis (Figure 3) considering that the 70th percentile of the p-value is overall lower in the last years compared to the previous. However, in this perspective the country-wise analysis is a more suitable playground to look at structural changes of trades (Figure 4). We observe that there is a clear increase of green bars over time. Light red bars completely disappear after 2008 and as mentioned in the last year available the correlation is validated for 37 countries out of 40.

This implies that country's specific patterns are disappearing and export is a good probe for internal output for the majority of the countries we can test. A tentative explanation of this behavior can be rooted in the evolution and the rise of world trades due to the globalization process and to the reduction of trade barriers in the period studied. In particular starting from 2008 a very high correlation between export and internal production is present for the vast majority of countries taken under exam.

Interestingly, most of the countries for which the correlation fails to be validated can be easily interpreted. Starting with persistent red light bars which are, in the perspective of the previous section, the most surprising cases, we find for instance Luxembourg which is indeed an economy traditionally dominated by services. We also find Italy but, as argued in Di Clemente et al. [13], Italy's economic system has evolutionary features which are peculiar and may affect the internal output. We do not have instead obvious interpretation of Brazil's behavior in the late nineties and Japan's one in the early 00s. Turkey and India trends toward an increasing correlation underpin their rising economic trajectories which is leading both countries to be pivotal nodes in the trade network.

A persistent anomaly with respect to the observed positive trend is represented by Romania where not only the correlation is lacking for all the years considered but also removing the non-correlated sectors worsens the situation. Regarding France and Taiwan, in some years the correlation is missing but still we find an improvement by removing the selected sectors. France's trade network appear to have specific features since also in [18] some anomalies have been detected.



2.3.2. Country Analysis II: Simple Bootstrap Results

The correlation coefficient between domestic ad export shares of the statistically validated countries are typically observed in the range 0.0−0.8 as shown in Figure S5. The red bands correspond to the case with all sectors while blue bands to the case with validated sectors only.



2.3.3. Country Analysis III: Permutation Test and Fisher Transformation Results

In Figure S4, we show two Yes-No grids summarizing the statistical validation of the sample correlations we measure for the 41 countries available, respectively, for the two permutation tests we propose and the Fisher transformation. In all cases we provide the results keeping and discarding non-validated sectors. Countries are ordered according to decreasing p-value in 2011. As for sectors, a green plain dot corresponds to p ≤ 0.05, empty red squares to non-validated countries. As a first result, both strategies provide essentially the same results, a country validated by the permutation tests is also validated by Fisher test. However, major differences apply when we discard non-validated sectors (the small symbols aside larger ones represent the results in this latter case). Discarding non-validated sectors we observe that an increasing trend of validated countries occur and the majority of countries is validated in 2011. Detailed p-value tables are provided in the Supplementary Information.





3. DISCUSSION

World Input-Output tables allow us to investigate, at an aggregate level, the relationship between the two parts of the economic output of a country: export and domestic production. The former part can be leveraged as a proxy for cross country production differences in order to assess country competitiveness. So a natural question arises, namely to what extent the fully competition-driven part of a country output, the export, is mirroring the domestic production network features and whether significant differences apply between the two parts. Input-Output tables allow making a substantial direct comparison as they provide sector output flows broken down into domestic and foreign contributions. The relation holds country-wise, even if few exceptions exist, as in the case of Romania.

The main finding is instead the existence of a sector-wise pattern of validity of statistical equivalence between domestic and export-destined production. While export mirrors domestic production structure for manufacturing sectors, the relationship fades away for services sectors. This implies that services export cannot be interpreted as in the case of manufacturing or physical goods: on the contrary, services are economic products characterized by an elusive and subtle nature, which shares features of both products and endowments/capabilities.

We point out, however, that this result does not necessarily question a straightforward extension of country competitiveness measures to services [47, 48], by simply making use of data on international trade. Indeed, services are very different in nature from manufacturing, and are far less tradable; this shows up in the results of the present work. However, the economic complexity framework tries to track the hidden capabilities of countries, and these could emerge in a clearer way by looking to exports than to internal production, given the fact that the international competition plays a major role in the former.

In any case, this analysis is setting constraints and caveats on the general meaning of services export on a competitive basis. Services are economic activities for which geographical localization is often hard. For some of these activities the concept of localization is likely ill-defined, as in the case, for instance, of strategic consulting firms whose teams and project operate worldwide.

The results also provide a perspective to reconcile manufacturing and services sectors in order to join the two dimensions. Starting from those few countries for which export and domestic services are correlated one should first understand at an aggregate level how these two parts are mutually linked. Then, by segmenting countries on the basis of the domestic services diversity similarity, we can try to extend the mapping provided for those countries where the relationship holds to the countries belonging to the same cluster but for which there is a missing correlation between domestic services and services export. Provided in this way a scheme to estimate how to reconcile export and domestic services diversity and a re-scaling profile for each country, this mapping can be eventually extended at a disaggregate level.



4. METHODS


4.1. Datasets

We used data extracted from World Input Output Tables (WIOT) [45, 46]; they consist in 17 different tables, one for each year from 1995 to 2011. The structure of the table is a matrix that lists economic sectors associated to countries, in the same sequence, both vertically and horizontally. Values on the column represent inputs for the industrial sector and the country at the beginning of the column, expressed in monetary value; while the values on the row represent outputs from the sector and the country at the beginning of the row. Thus, any sector can be analyzed in terms of the direction and amount of its inputs and outputs. We used only the information relative to the fluxes exchanged between industrial sectors of all the countries considered in the database, which covers 27 European countries and 13 other major countries in the world. The 40 countries considered cover more than 85% of world gross domestic product (GDP) in 2008. A model for the Rest of the World (RoW), which accounts for the remaining 15% of world GDP, is used to predict the remaining trades. Each table contains fluxes in current US dollars between 35 industrial sectors. Fluxes both inside the same economy and toward foreign economies are reported. We use only data for 34 sectors since ‘Private Households with Employed Persons’ has often null input or output. WIOT also provides data for the final demand, government expenditures, depreciation of capital, taxes, etc. However, we do not use these data for a two-fold reason. On one hand, we are interested in the inter-industrial trades. On the other hand, by performing an analysis of competitiveness for countries as in Tacchella et al. [19] using export flows derived from WIOD dataset, we obverse that correlation with the results of the same analysis run on bilateral trade flows is higher when we remove final consumption, especially when services are included in the analysis. This again points in the direction of a non-trivial relationship between domestically-consumed and exported services.



4.2. Sector Names

Throughout the paper we used shortened versions of the WIOT sectors' names. In Supplementary Information, we provide the mapping of those shortened names with WIOD ones.



4.3. Correlation Significance Assessment for Sectors: Outlier Mitigation (Analysis I)

Our aim is to study the correlation between the internal production of a country and its export. We define these quantities correlated if the p-value of the correlation coefficients' distribution is lower then T = 0.15. We can in this way exclude having an accidental correlation between internal production and export. As a first step, we need a method that allows eliminating outliers from our data set in a systematic way, so that they do not influence the value of the correlation coefficient. For this reason, we perform a bootstrap using only 80% of data, randomly drawn, and we calculate the correlation coefficient only on these data. We repeat this operation 2, 500 times, in this way it is possible to build an empirical distribution measuring the typical range of the correlation coefficients (as shown in Figure 3). In order to assess the statistical robustness of the correlation coefficients, for each bootstrapped subsets we calculated the p-value (this means we now have 2,500 p-values). Each p-value is estimated by reshuffling bootstrapped subset data 5,000 times and by calculating the percentile corresponding to the correlation coefficient of the bootstrapped subset with respect to the correlation distribution obtained from this random ensemble. If the 70th percentile of the p-values distribution is below T then the sector is said to be correlated, otherwise it is not.

It is worth noticing that this approach is robust against noise thanks to the bootstrapping and the calculation of p-values on the bootstrapped data. This is a necessity when dealing with this kind of data, which naturally present outliers and a component of noise.



4.4. Correlation Significance Assessment for Countries: Outlier Mitigation (Analysis I)

When we study the correlation between internal production and export relative to each country we deal directly with fluxes instead of shares. Indeed, in this case, we do not mix up data from different countries. Eventually the values that we take for the comparison are the log of the internal flux log(Isc) and the log of the export flux log(Esc).

The procedure we adopted to establish the correlation is exactly the same used for products. We obtain the p-value relative to the 70th percentile of the distribution if its lower than T for that country export is a good probe of internal production otherwise it is not.
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Bitcoin being a safe-haven asset is one of the traditional stories in the cryptocurrency community. However, during its existence and relevant presence, i.e., approximately since 2013, there has been no severe situation on the financial markets globally to prove or disprove this story until the COVID-19 pandemic. We study the quantile correlations of Bitcoin and two benchmarks—the S&P 500 and VIX—and make comparison with gold as the traditional safe-haven asset. The Bitcoin safe haven story is shown and discussed to be unsubstantiated and far-fetched, while gold comes out as a clear winner in this contest even when a broader cryptocurrency index (CRIX) is considered.
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1. INTRODUCTION

The history of Bitcoin is tightly connected to its detachment and independence from the standard financial markets and the proclaimed properties that should make it serve as “digital gold” [1]. An important implication of such status is Bitcoin potentially being a safe-haven asset either in addition to or as a replacement of gold itself, which has served as such for decades [2]. A safe-haven asset is an asset in which capital can take refuge when other assets are in distress. The distress situation of the other assets is a clear distinction from being a good diversifier, which traditionally leads to a low or even negative correlation with other assets in the Markowitz portfolio construction logic [3]. An asset might be considered a safe haven if its correlation with other assets during turbulent periods is lower (or at least not higher) than during calm periods [4–7].

The safe-haven status of Bitcoin is one of its cornerstones and narratives in the financial part of the crypto-community, and lately, it has been a popular topic in the scientific literature as well [8–12]. However, its validity had been, by definition, very difficult to properly discuss and test, as empirical tests had lacked the essential part of the safe-haven definition—financial markets in distress. As Bitcoin was developed in 2008 and 2009 [13], its first legendary pizza transaction took place in March 2010, and it gained larger public attention only by 2013, still mostly due to its controversial aspects (such as the Mt. Gox collapse, the darknet, and the Silk Road), it avoided the most turbulent times of the global financial crisis. Further, it took until the middle of 2016 for the Bitcoin markets to reach a stable daily traded volume of more than $100 million. To illustrate the historical perspective, Figure 1 shows the S&P 500 standardized daily logarithmic returns back to the beginning of 1946 where we find critical historical events with episodes of numerous negative returns of more than five historical standard deviations (the series is demeaned and standardized by the historical mean and standard deviation of the dataset between January 1, 1946, and April 17, 2020). To put the extreme events into a better perspective, the right panel of Figure 1 shows a number of extreme events above three and five standard deviations on a sliding window of two trading years (500 trading days). There, we see that since 1987, there have been only a few periods of time without these 5-SD critical events. Yet, one of these periods has taken place between 2013 and 2020, i.e., the period of Bitcoin's existence with some palpable trading volume and usage. Only in the days of March 2020 did the financial markets experience severe losses due to fear and uncertainty connected with the COVID-19 (coronavirus disease 2019, caused by the SARS-CoV-2 virus) pandemic, which rapidly spread globally.


[image: Figure 1]
FIGURE 1. Historical extreme events of the S&P 500. (Left) Logarithmic returns of the S&P 500 between January 1, 1946, and April 17, 2020, demeaned and standardized by the historical mean and standard deviation over the whole examination period. (Right) Number of extreme returns over 3 or 5 standard deviations. Cumulative count on a rolling window of 500 days is shown.


Even though the spread of the virus had been assumed possibly to be locally contained, its unprecedented spread caused pervasive panic in global society, which quickly translated to sell-outs and havoc on the financial markets. Purely statistically (and perhaps cynically) speaking, this creates a unique opportunity to test the safe-haven properties of Bitcoin and compare it with gold as the traditional safe haven of choice.



2. RESULTS

We study the interconnection between Bitcoin (BTC) and two benchmarks—the Standard & Poor's 500 (S&P 500) index as a representative of the global financial markets and the CBOE Volatility Index (VIX) as a measure of market uncertainty. We use publicly available data from Yahoo Finance, and we also utilize the Bitcoin prices provided there (these reflect CoinMarkepCap.com data), which restricts the analysis to start from September 16, 2014. The ending is April 17, 2020. As Bitcoin is traded on a 24/7 basis and stocks are not, we use the close-close logarithmic returns1 (rather than open-close) to include the weekend movements of Bitcoin. This gives us 1,405 daily observations.

As the safe-haven property is similar to being a diversifier, i.e., having a low correlation with other assets, but only during critical times, we approach it from a simple perspective of examining correlations between Bitcoin and the other two assets—the S&P 500 and VIX—during critical events. We treat the critical events as rarely occurring, negative events, i.e., events in the (very) low quantiles of the distribution of the baseline asset. For this purpose, we utilize the quantile correlation [14]. For statistical validity, we estimate the quantile correlation coefficient on 1,000 bootstrapped samples (resampling the time index with a replacement) so that we can present not only a point estimate but also confidence intervals.

In Figure 2, we see the quantile correlations between BTC and the S&P 500 (left) and between BTC and the VIX (right). The quantile here represents the conditional quantile of the latter asset in the pair, i.e., either the S&P 500 or the VIX. We find that BTC is a good diversifier with respect to the S&P 500 in calm and bullish times, i.e., in the bulk of the distribution and more generally from quantile 0.2 upwards, with correlations very close to zero and the 90 % confidence intervals including the zero correlation. For the very low quantiles below 0.1, the correlation increases up to more than 0.1, precisely to 0.13 for the lowest analyzed quantile of 0.01. The combination of low quantiles of the S&P 500 and a positive correlation signals that BTC drops together with the stock market if the situation is critical. Note that the size of the correlation is still quite low but is well above the levels during the calmer periods and significantly different from zero for the lowest quantiles. For the VIX, which represents the overall mood on the market and expected future uncertainty, we need to look at the high quantiles, as it holds that the higher the VIX is, the higher the uncertainty. For a safe-haven asset, we would expect a low or positive correlation, at least in these high quantiles, or ideally positive correlations for all quantiles. We observe a similar picture as for the S&P 500 case, as the correlation is very close to zero for most situations, but it drops markedly for the times of high uncertainty, which is not a desirable sign for a safe haven.


[image: Figure 2]
FIGURE 2. Quantile correlations for Bitcoin. (Left) Quantile correlations between Bitcoin and the S&P 500 index. The quantiles on the x-axis are with respect to the S&P 500 index. The low quantiles show the extreme negative events. Black bold curve shows the mean value of 1,000 bootstrapped estimates. The dashed curves show the 90 % confidence intervals based on the bootstrapped estimates. (Right) Quantile correlations between Bitcoin and the VIX index. The quantiles on the x-axis are with respect to the VIX index. The high quantiles show the periods of high uncertainty. The other notation holds.


Comparing the results to the traditional safe haven of gold (Figure 3), we see a different picture. In the bulk of the distribution, gold is negatively correlated with the S&P 500, and even though its correlation increases during extreme negative events, its estimate still remains below the zero correlation (statistically speaking not different from zero). With respect to the VIX, gold is positively correlated with it in the bulk of the distribution, and even though its correlation decreases for the most uncertain periods, it still remains above zero. Both of these attributes are the ones we would expect for a safe haven asset, albeit ideally in a more pronounced manner.


[image: Figure 3]
FIGURE 3. Quantile correlations for gold. (Left) Quantile correlations between gold and the S&P 500 index. (Right) Quantile correlations between gold and the VIX index. The notation from Figure 2 holds.




3. DISCUSSION AND CONCLUSIONS

The COVID-19 pandemic is the first global economic and financial earthquake that has taken place during the existence and actual use and wider knowledge of Bitcoin, which made it possible to put the claims of Bitcoin being a safe-haven asset to an actual empirical examination. We study the quantile correlations between Bitcoin and a pair of global financial benchmarks—the S&P 500 index as the stock market benchmark and the VIX index as a measure of uncertainty and future expectations. What we find is that Bitcoin can easily be considered as a good diversifier, as its correlation with the S&P 500 is close to zero for most of the quantiles. However, its correlation increases markedly during turbulent periods of the S&P 500. The mirror result is observed for its relationship with the VIX index, as the correlation remains close to zero for most quantiles again but drops for the most uncertain times. However, even the extreme-quantile correlations between Bitcoin and either the S&P 500 or the VIX still remain rather low (in absolute terms), and one needs a comparison to fairly comment on its safe-haven properties.

The first comparison is at hand—to gold. This has been presented in the main Results section, but it needs to be stressed that gold shows favorable properties with respect to portfolio diversification utility compared to Bitcoin. It shows negative correlations with the S&P 500 for the bulk of the distribution. The correlations grow for higher quantiles (even though they do not cross to positive ones), i.e., more bullish periods, which is again beneficial. And even though the correlation increases for the lowest quantiles, i.e., the most extreme negative cases, it still collapses to zero, not higher. In addition, we have the connection to the VIX, where gold is again favored in most portfolio-related aspects. We see positive correlations for the bulk of the distribution, i.e., if uncertainty increases, the price of gold increases as well, and for extreme cases, even though the correlation drops, it still remains positive. Therefore, even if we forget about other issues connected to Bitcoin (such as low liquidity, exchange risk, and various legal and accounting/tax issues [15–19]), it does not outperform gold in any important aspect as a safe-haven asset.

The second comparison is to other stock indices, mostly to get the correct grasp of the scale of the correlations presented above. In Figure 4, we show the quantile correlations of the S&P 500 with the VIX and three other stock indices- the Dow Jones Industrial Average (DJI), Footsie 100 (FTSE), and NIKKEI 225 (NIKKEI)—for the same period of time. There are several interesting observations. First, even for the pair of the S&P 500 and the DJI, the two main US stock indices (in addition to the NASDAQ), the tails correlations are not as strong as one might expect—around 0.5 for both sides of the extreme cases. Second, not surprisingly, the S&P 500 is strongly connected to the VIX. But again, its connection weakens for the extreme cases, more markedly for the calmer periods. Third, the markets are not very correlated during the extremely positive movements of the S&P 500 index, where we find the quantile correlations fall to very low values for both the FTSE and the NIKKEI. And fourth, BTC shows similar properties to the NIKKEI, showing mild correlations for the whole spectrum of quantiles, with slightly higher correlations for the extreme negative movements and practically zero correlation for the extremely positive movements. To be fair, BTC still shows more favorable low-quantile correlations than the NIKKEI does, but not by much.


[image: Figure 4]
FIGURE 4. Quantile correlations of the S&P 500 with other assets. The notation from Figure 2 holds.


The last perspective and comparison we provide is to a more general cryptocurrency index. Here, we utilize the CRIX index2, which is constructed as a capitalization-weighted price index [20]. Currently (mid-2020), it contains around 70% Bitcoin, 10% Ethereum, 5% Ripple, 2.5% Bitcoin Cash and Tether, between 1 and 2% Bitcoin SV, Litecoin, Binance Coin, and EOS, and below 1% OKB (OKEx exchange coin). The quantile correlations between the logarithmic returns of the CRIX index and the two baseline series—the S&P 500 and VIX—are shown in Figure 5. Even though the index is majorly formed by Bitcoin, the connection to the stock markets is quite distinct. For the S&P 500 index, we find quantile correlations of practically zero ranging from the lowest quantiles up to around quantile 0.7, where the correlation starts decreasing, and it reaches around −0.1 for the highest quantiles. The diversified cryptocurrency index thus does not follow the stock market index in negative events, which is a good sign for the identification as a safe haven (even though it actually goes against the stock market in the extreme positive events). These results are mostly confirmed for the dynamics between the CRIX and VIX indices, where we observe mildly positive correlations for the lowest quantiles of the VIX (calm periods) that decrease with increasing quantile. Above quantile 0.7, the quantile correlations are of a similar level (around −0.05) as for the relationship between Bitcoin and the VIX index. However, for the most extreme cases, the quantile correlation between CRIX and VIX grows to zero, whereas for Bitcoin, we found a rather sharp drop to negative correlations. The results for the CRIX index are thus more favorable for the safe-haven label when compared to Bitcoin alone. A diversified portfolio of cryptocurrencies has more desirable properties, both as a diversifier (generally lower correlations for all quantiles compared to Bitcoin alone) and as a safe haven (lower correlations with the stock index in the lowest quantiles and correlations closer to zero for the turbulent periods measured by the VIX index). Nevertheless, both of these features are more profoundly represented by gold even compared to the CRIX index.


[image: Figure 5]
FIGURE 5. Quantile correlations for CRIX with the S&P 500 (left) and the VIX (right). The notation from Figure 2 holds.


Overall, we argue that the claim of Bitcoin being a safe haven and an alternative to gold or even being the “digital gold” seems unsubstantiated and far-fetched. This is true even if a broader cryptocurrency index is considered. We do not, however, want to discredit Bitcoin in this aspect completely, as the COVID-19 pandemic and the financial market turmoil induced by it are only the first real tests to its status. In addition, the potential safe-haven properties of Bitcoin and cryptocurrencies in general are certainly not the only factor making cryptocurrencies attractive and sought after. Nevertheless, at this point and with respect to the safe haven contest, gold emerges as a clear winner.
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FOOTNOTES

1It is certainly up for discussion whether to use returns for the VIX as well. We considered this possible issue and performed the analysis on both the levels and returns of the VIX index. The results are qualitatively the same. Note that the distinction between logarithmic and original series plays no role here, as we apply a quantile-based method (and logarithm is a monotonous transformation).

2The index is described in detail at http://thecrix.de. The volatility CRIX index (VCRIX), in a way parallel to the VIX index, is also available there.
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The spatial distribution of a population is not homogeneous—some areas attract many residents, while others do not. The spatial distribution of stores and facilities that have been coevolving with that of the population is also heterogeneous. Previous studies have shown that multifractality is a characteristic of the spatial distribution of a population, as well as other quantities associated with the urban system. We found that stores/facilities belonging to some categories also exhibit multifractality in spatial distribution. We quantified the spatial distributions of the population and stores/facilities in each category by multifractal analysis and compared their multifractal properties. Multifractal measures that reflect the heterogeneity of the densities in each location were able to capture additional features that cannot be seen when only the box-counting dimension was observed. Further, high concentrations of stores/facilities in categories relating to professional or commercial businesses were observed, consistent with previous studies on the scaling law, another pattern observed in urban morphology. We discuss the implications of the multifractal properties on the arrangement of locations where stores/facilities are concentrated. We believe that multifractal analysis is a powerful tool for the quantification of spatial distributions and expect that our interpretation of multifractal measures will stimulate further investigations into urban morphology.

Keywords: multifractal analysis, spatial distribution, population, stores/facilities, agglomeration


1. INTRODUCTION

Fractality has been observed in various spatial distributions relating to the morphology of cities, e.g., population, buildings, land price, and street networks [1–10]. Fractality is represented by the nature where the mass (e.g., the population) in a region exhibits power law dependence on the size of the region. The power-law exponent is called the fractal dimension [11]. The abovementioned spatial distributions also exhibit heterogeneity in fractality in the sense that the locally measured fractal dimension around each spot diverges in the structure, known as multifractality [4, 12, 13].

The location of stores/facilities should depend on and, in turn, affect the spatial distribution of the population. People may choose the location of their settlement based on the availability and variety of stores/facilities. On the other hand, companies may invest in the construction of stores/facilities to secure employers and customers [14]. It is known that the nature of agglomeration of stores/facilities depends on their type. For example, previous studies showed that facilities relating to businesses offering professional services tend to concentrate in areas with a large population [14–16]. One of these studies evaluated the concentration by investigating the scaling law between the population and densities of facilities, showing that the number of facilities in a city increases with a power of the population in the city [16]. The scaling law is a universal pattern observed in urban morphology, e.g., accessibility, road surface, and crime [16–21]. It should be interesting to see whether the agglomeration of stores/facilities exhibits multifractality, another urban-related feature.

If the spatial distribution of stores/facilities exhibits multifractality, multifractal analysis can be performed on the structure and is a strong tool to quantify the feature of it. In multifractal analysis, the resulted curve exhibits the correspondence between the locally measured fractal dimension, called singularity strength α, and the fractal dimension of the arrangement of spots that exhibit the singularity strength α, called spectrum f(α) [4, 13].

Besides multifractal analysis, various methods have been applied to evaluate spatial distributions including that of the population and stores/facilities. Average nearest neighbor (ANN), which is the averaged distance to the nearest point, is an indicator of the spatial clustering [22–24]. The distribution of nearest neighbor distance is also used to evaluate the qualitative feature of spatial structure [24, 25]. On the other hand, when grid lines are drawn on the space, probability of finding neighboring cells both of which are occupied is often calculated to assess the degree of clustering [26, 27]. Regarding the industrial coagglomeration between two industries, the extent to which the facilities of these industries are in the same region is evaluated [14, 28]. Compared to these methods, an advantage of multifractal analysis should be that it can demonstrate both local and global features of the spatial distribution [9]. By multifractal analysis, the strength of local concentration can be captured by the singularity strength. The global view of the arrangement of spots with each level of concentration, on the other hand, is incorporated into the spectrum.

In this study, we aim to (1) determine if the spatial distributions of stores/facilities in various categories exhibit multifractality, and if so, (2) determine the characteristics captured by the multifractal properties of each spatial distribution.

We chose the largest metropolitan area in Japan, the Kantō area, as the object of our analysis. We investigated the multifractal properties of the spatial distributions of the population and stores/facilities in Kantō. Our analysis showed that the spatial distribution of stores/facilities in some categories exhibit multifractality, as does that of the population. Though these spatial distributions are on the same geographical substrate, their multifractal properties are significantly different from each other.

This paper is organized as follows. The principles of fractal geometry, multifractality, and the generalized dimension, as well as the methods of our analysis are presented in section 2. We show the results of multifractal analysis of the spatial distributions in section 3. We also compare the multifractal properties of these spatial distributions and highlight the information extractable from the multifractal measures of the spatial distributions. We discuss the results in section 4.



2. MATERIALS AND METHODS


2.1. Data

Data for the spatial distributions of the population and stores/facilities were extracted from the Japanese 100-Meter Estimated Mesh Data of the 2015 National Censuses (Zenrin Marketing Solutions Co., Ltd.) and the Corporate Telephone Directory Database Telepoint with Coordinates (Telepoint Pack! provided by ZENRIN Co., Ltd.) of 2017, respectively. The former dataset contains data on the estimated population in each mesh. The length of each side of a mesh is ~100 m, while the exact size is 3 s in the latitude direction and 4.5 s in the longitude direction. The latter dataset contains the geospatial information of each store/facility. Stores/facilities are categorized hierarchically. In the largest classification, which we adopted, there are 39 categories as shown in Table 1.


Table 1. Data summary. For each category, the ID and the name of the category are shown in the first and second columns, respectively.

[image: Table 1]

The analyzed area is a part of Kantō in Japan, that includes the capital, Tokyo, and a major industrial area, the Keihin industrial area. The range of the latitude is from 35°29′54″ to 35°55′30″ and that of the longitude is from 139°16′52.5″ to 139°55′16.5″ (Figure 1). There are 29 × 29 (= 262,144) meshes inside this region.


[image: Figure 1]
FIGURE 1. Map of the analyzed area (1:1,000,000 INTERNATIONAL MAP, Geospatial Information Authority of Japan).


Table 1 shows a summary of the data analyzed in this study. The total population (the total number of stores/facilities) in the analyzed area and the number of non-empty meshes are shown in the third and fourth columns, respectively. Here, the meshes/boxes with non-zero populations (stores/facilities) are called support. The maximum and the mean population (number of stores/facilities) in a mesh on the support are shown from the fifth to the sixth columns.

Figure 2A shows the spatial distribution of the population in the analyzed area. The logarithm of the proportion of the population in each mesh to the total population is represented by the heatmap. The other panels (B–L) show the spatial distributions of stores/facilities in 11 categories.


[image: Figure 2]
FIGURE 2. Spatial distributions of the population and stores/facilities in the analyzed area. (A) The spatial distribution of the population. (B–L) The spatial distributions of stores/facilities in 11 categories: (B) 3CC (Construction and Civil); (C) 13MP (Metal Products); (D) 20FIN (Financing Business); (E) 21RE (Real Estate); (F) 25WH (Warehousing and Harbor Transportation); (G) 29SF (Sports Facilities); (H) 31AED (Amusement, Eating, and Drinking); (I) 32RES (Resort); (J) 33HW (Hospitals and Welfare); (K) 35LS (Living-related Services); (L) 37SE (School Education). For the other categories, the spatial distributions are shown in Figures S1, S2. The color stands for the value of log10[(the population in the mesh)/(the total population)] for each mesh in (A). The number of stores/facilities is used instead of the population in (B–L). Each mesh is a 100-m mesh as described in section 2.




2.2. Multifractality

We briefly introduce the concepts of fractal geometry and multifractality. There are several ways of defining fractals and multifractals; we present one of them here [9, 11–13, 29]. Additionally, we limit our explanation to structures embedded in ℝ2, while higher dimensions of fractal and multifractal structures can be generally defined.

When a mass (m(ε)) composing a structure within a region of size ε increases with ε according to m(ε) ~ εD, the structure is regarded as having fractal characteristics. Here, the “size” is, for example, the length of a side if the region is a square. The exponent D is the fractal dimension of the structure. A more precise definition of the fractal dimension of a structure X is the one by the following box-counting method [11]. Let us assume that a structure X is covered with boxes of size ε. Let N(ε) be the minimum number of such boxes required to cover the structure. Then the box-counting dimension D is defined as:

[image: image]

We introduce multifractality. We again consider a set X and a function μ on X that gives a quantity, such as the density, at each point x ∈ X. Let us assume that X is divided by square boxes that have the same size ε. For the i-th box of size ε, Ci, ε, the value Pi, ε is called the probability measure on the box:

[image: image]

If Pi, ε and ε have the following power-law relationship for any i:

[image: image]

then fractality can be seen around each point of X. Here we assume that the exponent α diverges in X and let N(ε, α) be the number of boxes that satisfy [image: image] where [image: image]. If N(ε, α) decreases with ε as

[image: image]

the set X can be regarded as having a multifractal structure. Exponent α, which can be regarded as the local fractal dimension, is called the singularity strength. On the other hand, exponent f(α) stands for the box-counting dimension of the set of points with the singularity strength α. This dimension f(α) is called the spectrum. In this paper, the curve of (α, f(α)) is called the multifractal curve. Figure 3 is an example of the relationship between α and f(α) in the spatial distribution of the population (Figure 2A). Each panel in Figure 3 shows the units that exhibit the singularity strength α within the range shown on each panel. We derived the singularity strength of each unit by estimating the exponent in the following relationship [image: image] (see Equation 3). The box-counting dimension of the arrangement of units with the singularity strength α, f(α), was also derived based on Equation (4) when the power-law relationship in the equation holds. For example, units with the singularity strength α within [1.85, 1.90) are rare. Also, the arrangement of such units is curve-like (i.e., a one-dimensional shape) and exhibits a low box-counting dimension f(α) ~ 1.60. On the other hand, the arrangement of units with the singularity strength α within [2.05, 2.10) spans a two dimensional region and exhibits a high box-counting dimension that is about 2.


[image: Figure 3]
FIGURE 3. Example of the singularity strength α and the spectrum f(α). In each panel, units that have the singularity strength α within the range mentioned at the top of the panel are shown. Here the size of each unit is 23/29 on one side, and α is derived based on Equation (3). Also, the spectrum f(α) is derived based on Equation (4), only when the power-law relationship in Equation (4) holds.




2.3. Generalized Dimension

We introduce the generalized dimension and explain the relationship between the singularity strength, the spectrum, and the generalized dimension [29, 30]. The q-th generalized dimension Dq is defined as follows. First, we define τq as

[image: image]

Then the generalized dimension Dq for q ≠ 1 is defined as

[image: image]

In the case of q = 1,

[image: image]

In the summation on the right-hand side of each of Equations (5), (7), let the i-th term be summed when the i-th box is not empty, i.e., Pi, ε ≠ 0. Here, the generalized dimension is equal to the box-counting dimension of the support D when q is zero.

It is known that the following values of αq and f(αq) give the approximation of the pair of α and f(α) for each q:

[image: image]
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2.4. Method of Analysis

In this study, we are concerned with finite morphologies that do not contain infinitesimal structures as the smallest unit of our data is a 100-m mesh. Therefore, we cannot rigorously calculate the generalized dimension, singularity strength, and spectrum. Instead, we consider the range of q and ε in which the structure can be regarded as exhibiting (multi)fractality, by evaluating the range of q and ε in which the following relationship holds:

[image: image]

Thus, we examine the linearity of the relationship between [image: image] and logε by the frequently used method [3, 4, 7, 8, 31–34]. Then we regard d as τq by Equation (5) when [image: image].

In our analysis, we assign the size of one side of a 100-m mesh to ε = 1/29. Grid lines are drawn on the analyzed area so that it is covered by non-overlapping boxes with the same size [3, 7]. As the size of boxes, we consider ε = 1/29, 2/29, 22/29, ..., 1. We define the probability measure Pi, ε on the i-th box with the size ε as the proportion of the population (the number of stores/facilities) in the i-th box to the total population (the total number of stores/facilities).

Subsequently, for the population, we evaluate the linearity of the relationship between [image: image] and logε for various ranges of ε and q as shown in Figure 4. Regarding the criterion for this linearity, we examined whether or not the coefficient of determination of the linear regression, R2, exceeds 0.99. A linear relationship was not observed when q takes a negative value and when the range of ε includes values <23/29. Consequently, we considered the range of ε from 23/29 to 29/29, and the range of q from 0 to 20. We performed a multifractal analysis on these ranges of ε and q for the spatial distribution of the population. Furthermore, for the spatial distribution of stores/facilities in each category, we examined multifractality on the same ranges of ε and q as that for the population. Plots of [image: image] against logε for all categories of stores/facilities are shown in Figures S3, S4. The star marker was added beside the ID in the first column of Table 1 if the category showed multifractality in the spatial distribution. Also, the spatial distribution of such categories are shown in Figures 2B–L. In this figure and in the following discussion, abbreviations are used for these categories—the abbreviation of each category is enclosed by brackets after the name of the category in the second column of Table 1.


[image: Figure 4]
FIGURE 4. [image: image] vs. logε for each q. The color of the plots correspond to the value of q in the legend.


We obtained τq as the slope of the linear regression of [image: image] by logε, and derived Dq from Equations (6, 7). To derive the singularity strength αq and the spectrum f(αq), we used the following formulae:

[image: image]

[image: image]

where [image: image]. These formulae can be directly derived from Equation (5), (8), and (9) [12, 35, 36]. We obtained αq by the linear regression between [image: image] and logε, and obtained f(αq) by the linear regression between [image: image] and logε.




3. RESULTS


3.1. Density of Units and Multifractality

As we briefly mentioned in section 2.4, multifractality could not be observed for the spatial distribution of the population when the value of q is negative. Knowledge of the relationship between the densities in a unit, the value of q, and the multifractal measures is helpful for interpreting the results of the multifractal analysis. In Equation (5) for τq, a larger value of q corresponds to a greater contribution of the boxes with large probability measures Pi, ε to the sum. Therefore, the boxes with high densities are significantly incorporated into the calculation of the q-th generalized dimension Dq when the value of q is large, see Equation (6). Note that no differences in density is considered when q = 0. The pair of the singularity strength and the spectrum also has a relationship with q by Equations (8), (9). Therefore, the multifractal measures of Dq, αq, and f(αq) for a large q, significantly reflect those units with high densities. The fact that multifractality was only observed in the spatial distribution of the population with positive q values, indicates that multifractality cannot be observed in sparsely populated areas.



3.2. Generalized Dimension

Figure 5 shows the q-th generalized dimension vs. q for the population and stores/facilities in four categories: 20FIN, 25WH, 31AED, and 33HW. The generalized dimension for stores/facilities in the other categories is shown in Figure S5. As mentioned before, the generalized dimension for q = 0, D0, is equal to the box-counting dimension of the support. For each category, the value of D0 is close to 2, which is the dimension of ℝ2 to which each spatial distribution is embedded. The rate of decline in the generalized dimension with q significantly varies between the categories. The generalized dimension for 20FIN drops dramatically with q, while that of the population decreases minimally with q. In the cases of 25WH and 33HW, the decline of the generalized dimension is milder than that of 20FIN and 31AED. Considering the relationship between the value of q and the densities in the boxes, |ΔD20|: = |D20 − D0| can be one of the indicators for the strength of the heterogeneity in spatial density distribution, and 20FIN and 31AED can be regarded as having strong heterogeneity in spatial distributions.


[image: Figure 5]
FIGURE 5. q-th generalized dimension vs. q for the population and stores/facilities in four categories: 20FIN, 25WH, 31AED, and 33HW. The generalized dimension for stores/facilities in the other categories are shown in Figure S5.




3.3. Multifractal Curve

The multifractal curves are shown in Figure 6A. Before we investigate each multifractal curve, let us revisit the relationship between the densities in a unit and the value of q, and the singularity strength αq [9]. Recall that each point on the multifractal curve can be derived for each q (Equations 11, 12). Generally speaking, in each multifractal curve, the greater is the value of q, the lower is the value of αq, i.e., the plot of a multifractal curve proceeds to the left as the value of q increases. Therefore, by the relationship between the value of q and the densities in the units, a unit with a high density tends to have a small singularity strength—we can observe this by comparing Figure 2A with Figure 3. An interpretation is that around a unit with a density significantly higher than the surroundings, the probability measure Pi, ε does not increase rapidly by expanding the area, and vice versa (see Equation 3). Figure 7 explains this interpretation. Let us assume that each of the gray units has a constant density. Only the i-th unit is filled in the case of panel (A), while all the units are filled in the case of panel (B). The singularity strength of the i-th unit in panel (A) is 0, since the probability measure of the square boxes emphasized by the thick line, that expands around the i-th unit, does not increase with the size ε of the box and remains at the same value. On the other hand, the probability measure on these boxes changes according to the square of ε, and the singularity strength of the i-th unit is 2, in panel (B). Though panels (A) and (B) are extreme examples, these diagrams suggest that a unit with a density significantly higher than the surrounding units can have a low singularity strength.


[image: Figure 6]
FIGURE 6. (A) Multifractal curve. The pair of the singularity strength (abscissa) and the spectrum (ordinate), (αq, f(αq)), for each q of the population and stores/facilities. Each multifractal curve is also separately shown in Figure S6. (B) Δf(αq) vs. αq, where Δf(αq): = f(αq) − f(α0). (C) Δf(αq) vs. Δαq, where Δαq: = αq − α0.



[image: Figure 7]
FIGURE 7. Schematic image of the singularity strength and the densities in a unit. Each of the gray-colored units has the same density, i.e., has the same probability measure ρ. (A) Only the i-th unit has non-zero density and the other units are empty. The probability measure of the box remains ρ, even when the size of the box ε increases as emphasized by the thick line. Therefore, the singularity strength of the i-th unit is 0. (B) All units are filled. The probability measure of the box is ρ, 9ρ, and 25ρ, for the smallest, the second smallest and the largest boxes (emphasized by the thick line), respectively. Thus, the singularity strength of the i-th unit is 2.


Therefore, in Figure 6A, multifractal curves with a significantly low singularity strength αq, such as 20FIN and 31AED, indicate the existence of units with a density much higher than the surroundings. Also, the spectrum f(αq) is quite low for small singularity strengths αq in the cases of 20FIN and 31AED. Recall that the spectrum f(αq) represents the box-counting dimension of the arrangement of units with the singularity strength αq. The pair of small αq and f(αq), thus, is an indication that there are a few isolated units, each with an extremely high density.

Multifractal curves contain information not only at small singularity strengths but also across the entire range. The multifractal curve of 13MP has similar αq and f(αq) values with that of 25WH, 29SF, 35LS, and 37SE when αq is quite small. However, in the mid-range of αq, the value of f(αq) for 13MP is significantly greater than that of the others. Therefore, in the case of 13MP, units with a mid-range density (compared to the surroundings) remain concentrated compared to the case of the other categories. This may correspond to the yellowish units gathered on the right of panel (C) in Figure 2. On the other hand, a feature of the multifractal curve of the population is that neither αq nor f(αq) declines rapidly with q. This corresponds to the following features of the spatial distribution of the population: The densities in the units does not widely diverge and the arrangement of the units with each density does not change dramatically with the density (Figure 2A).

Figure 6B shows the plots of Δf(αq): = f(αq) − f(α0) against αq. Recall that f(α0) is the box-counting dimension of the support. In the value of f(α0), the differences in the densities in the units is not incorporated. Thus, the vertical axis Δf(αq) represents the degree of decline in the spectrum from the box-counting dimension of the support when the differences in the densities in the units is gradually emphasized. Another intuitive meaning of Δf(αq) is the nature of the difference in arrangement between the panels in Figure 3. In the case of 31AED, in which the pair of a small αq and f(αq) exists, we observe that the value of Δf(αq) is also small for small αq. This indicates that the arrangement of units with small αq is quite sparse compared to the support. Therefore, we can infer the following characteristics of the spatial distribution of 31AED: There are a few isolated locations where stores/facilities in 31AED are extremely concentrated, while covering a vast region.

Figure 6C shows plots of Δf(αq) against Δαq: = αq − α0. The horizontal axis shows that how the singularity strength declines as q increases from the one calculated under the situation where differences in the densities in the units were not taken into account. The decline of both Δαq and Δf(αq) with q of 29SF is milder than the other categories excepting the population, suggesting that the spatial distribution of stores/facilities is homogeneous in 29SF. Specifically, by comparing with Figure 6A, the value of αq is small across the range of q including q = 0, in the case of 29SF. This may represent the sparsely but relatively uniform scattering of stores/facilities in 29SF (Figure 2G). Additionally, though the difference in the multifractal curves of 21RE and 32RES is ambiguous for large q in Figure 6A, we can observe that the singularity strength of 21RE has a wider range than 32RES (Figure 6C). When we restrict our observation to the concentrated units, the arrangement of the units in 21RE has a similar box-counting dimension to that of 32RES. On the other hand, in 21RE, we should be able to observe local regions where the density increases mildly with the size of the region, that may not be observed in 32RES.

Finally, Figure 8 shows a summary of the multifractal properties of the spatial distributions of the population and stores/facilities for all categories that have multifractality in the ranges of ε and q tested in this study. In both panels, the horizontal axis shows f(α0), i.e., the box-counting dimension of the support. In f(α0), the differences in the densities in the units is not incorporated—only whether or not each unit is empty is taken into account. The box-counting dimension of the support, of course, can capture a feature of each spatial distribution. The value of f(α0) for each category is near two, that is the dimension of ℝ2, but it diverges a little. We can see that f(α0) tends to be small when the spatial distribution is sparse, e.g., 20FIN and 29SF, in (Figures 2D,G, 8).


[image: Figure 8]
FIGURE 8. Summary of multifractal properties. (A) The difference between the largest singularity strength α0 and the smallest one α20, |Δα20|, against the box-counting dimension of the support f(α0). (B) The difference between the largest spectrum f(α0) and the smallest one f(α20), |Δf(α20)|, against the box-counting dimension of the support f(α0). In both panels, the number beside each plot shows the category. The color of each plot represents the value of |ΔD20|. The brighter color corresponds to the larger |ΔD20|.


On the other hand, the vertical axes in Figure 8 show the values that incorporate the differences in the densities in the units. In Figure 8A, the vertical axis shows the difference between the largest and the smallest singularity strength |Δα20|. The color of each marker represents the value of |ΔD20|, for each category. The brighter marker color corresponds to the larger value of |ΔD20|. In Figure 8B, the vertical axis shows the difference between the largest and the smallest spectrum |Δf(α20)|. The color of each marker again represents the value of ΔD20.

The values of |Δα20| and |Δf(α20)| for some categories can diverge even when f(α0) takes almost the same value. For example, |Δα20| of 29SF is much smaller than that of 20FIN, while f(α0) of both of these categories are around 1.86. This result indicates that both 29SF and 20FIN have sparse spatial distributions, but the heterogeneity of the densities in the units for 20FIN is stronger than that of 29SF—this can be observed in Figures 2D,G. In Figure 8A, the plots of 3CC and 33HW are nearer that of the population than the others. This suggests that the nature of the spatial distribution in these categories is similar to that of the population when we consider the large region covered by stores/facilities and the small differences in the relative densities in the units.




4. DISCUSSION

In this study, we evaluated whether the spatial distributions of the population and stores/facilities exhibit multifractality. Multifractality in the spatial distribution of the population has been demonstrated in previous studies [3, 5, 10]; we also demonstrated this result in the Kantō area, Japan. However, we were not able to observe multifractality in the population distribution for negative values of q. In the previous studies that evaluated multifractality in city morphologies, the authors carefully examined the range of q in which multifractality was observed [4, 7, 8]. These studies showed that multifractality can be observed at both positive and negative values of q. As we mentioned above, positive (the negative) values of q corresponds to boxes with high (low) densities. Therefore, previous studies observed multifractality in both densely and sparsely distributed regions. However, they also showed asymmetry in the positive and negative ranges of q and discussed the structural differences in dense/sparse regions. In our case, the range of q for multifractality suggests that the sparsely populated region does not have a structure characterized by multifractals, attributable to the geographical characteristics of the examined region in this study. The examined region includes the mountainous areas in the upper and left sides of each panel in Figure 2 as it represents the general feature of the Japanese terrain. It also contains Tokyo bay in the lower-right corner of each panel (Figure 2). Along Tokyo bay, there are rich residential areas as well as plenty of facilities in various industries and numerous stores. This examined region should be an interesting object to investigate considering these geographical features. However, complex substrates may restrict the range in which multifractality appears.

We also investigated which category of stores/facilities shows multifractality for the same ranges of q and ε as that for the population. Stores/facilities in some categories also exhibit multifractality in the spatial distribution, but the determined multifractal measures significantly depend on the category. Diverging multifractal properties can reflect qualitative differences in the spatial distributions—stores/facilities are sparsely and uniformly scattered in some categories, while others are centralized, e.g., the stations in some categories. Importantly, our analysis showed that the box-counting dimension performs poorly in capturing qualitative diversities in the spatial distributions of these categories. The box-counting dimension captures the arrangement of the units that are not empty. On the other hand, multifractal measures can represent the arrangement of units with a certain density. Multifractal curves can indicate, for example, the existence of units with comparably high densities by evaluating the range of the singularity strength α, and the spatial distribution of such units by the spectrum f(α).

The spatial distribution of the population can be characterized by the high box-counting dimension of the support and the homogeneity measured by the generalized dimension and the multifractal curve. The population is distributed across all the regions examined in this study, while the densities in a unit do not vary significantly. In addition, we will observe a similar spatial distribution, even when we change the filter on units according to these densities. Considering its high box-counting dimension and the homogeneity seen in the range of the singularity strength, the spatial distribution of stores/facilities in 33HW exhibits similar features with that of the population. These stores/facilities cover a large area and the heterogeneity of the densities in the units is low. On the other hand, in the cases of 20FIN and 31AED, the singularity strength and the spectrum sharply decline with q. This shape of the multifractal curves indicates a strong centralization of stores/facilities to a few locations. Some of these concentrated locations presumably correspond to large stations in the capital.

In addition to multifractality of the spatial distribution, the scaling law is also a universal pattern observed in city morphology [16–21, 37, 38]. For example, the population X and a quantity Y related to the city morphology have the relationship of Y ~ Xβ. The large scaling exponent β in this relationship, i.e., the super-linear increase of Y with X, indicates a strong concentration of these urban-related objects to locations with a large population. Previous studies also found the scaling law in (industrial) agglomerations and showed that facilities, outputs, and jobs concentrated stronger in cities with a large population when these objects are in a category associated with professional and complex skills or with commercial facilities than when the type is relatively primitive or public-related [16, 19–21]. Many of our results are consistent with these previous studies. Our multifractal analysis indicates the centralization of facilities in 20FIN, which is a category related to services requiring professional skills and frequent communication with customers [14]. Also, 31AED, a category related to commercial activities, showed a strong concentration. The concentration of objects related to construction and healthcare was shown to be mild in previous studies, which is also consistent with the mild decline of the singularity strength with q in our results (3CC and 33HW).

While consistency between multifractality and the scaling law exists, an advantage of multifractal analysis should be the richness of information in the result. As we discussed so far, we can quantify the nature of the divergence of the densities in each location and the spatial distribution of each density, by multifractal analysis. For example, for the centralization of stores/facilities in 20FIN and 31AED, multifractal properties further explain the following difference. Considering the large range in the singularity strength and the high box-counting dimension, we can expect to see stores/facilities in 31AED everywhere, with some centralized locations. On the other hand, facilities in 20FIN are encountered only in concentrated locations, which is represented by the overall small singularity strength. Therefore, the results in our analysis exhibit not only the existence of concentrated areas but also the various state of concentration. In this study, we attempted to interpret the multifractal curves that correspond to qualitatively diverging spatial distributions. We hope that our discussion will contribute to future investigations on spatial distributions by multifractal analysis. Additionally, the characteristic of concentration of stores/facilities in each category, which was revealed in this study, should be considered in the actual urban design. For example, the stores/facilities in 31AED is expected to have a tendency to concentrate strongly. Such a tendency of agglomeration should be taken into account in advance when it is required to avoid an extreme concentration of buildings in a landscape.

The temporal development of various urban morphologies, e.g., the spatial distributions of streets and buildings, have been discussed in previous studies [2, 4, 7–9]. Some of them revealed that the spatial distribution was developed to the packed state and to exhibit features close to monofractals [2, 4]. We are also interested in how these developments depend on the category in which the stores/facilities belong. As a future perspective, the comparison of such developments is possible by quantification with multifractal analysis. Furthermore, we expect that the classification of cities is possible by comparing such developments between cities.
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We propose an extension of the class of rational expectations bubbles (REBs) to the more general rational beliefs setting of [1, 2]. In a potentially non-stationary but stationarizable environment, among a heterogenous population of agents, it is possible to hold more than one “rational” expectation. When rational but diverse beliefs converge (“correlated beliefs”), they do not cancel each other out in aggregate anymore. This can make them an object of rational speculation. Accounting for the fact that market efficiency has an intrinsic time-dimension, we show that diverse but correlated beliefs can thus account for speculative bubbles, without the need for irrational agents or limits to arbitrage. Many of the shortcomings of REBs that make rational bubbles implausible can be overcome once we relax the ergodicity requirement. In particular, we argue that the hitherto unexplained “bubble component” of REBs corresponds to the extension of the state space in [3].
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1. INTRODUCTION

In the following, we provide some addenda and modifications to the work of Kurz and Motolese [3]. We show that their asset pricing model encompasses asset price bubbles, even though they did not intend for it. The significance of this lies in that theirs is an equilibrium model with perfectly rational agents in a frictionless competitive market—the economic equivalent of Euclidean geometry with perfect circles. The only other Euclidean account of bubbles we are aware of is the class of Rational Expectations bubbles (REBs) [4–6]. All other bubble theories rely on either irrational agents or frictions of some sort [see e.g., [7–9] for surveys of the bubble literature].

Just as lines and circles are useful abstractions even though they do not exist in the real world [10, 11], the “purity” of the setting in which bubbles are theorized is of practical import: If frictions are a necessary condition of bubbles, then the policy implication is that the regulator should focus on perfecting markets, pushing ever further the “financialization” of the economy [but see 12, 13]. If it is irrational behavior that causes them, then bubbles may only push the system to more efficient capital allocations [14, 15] or to new learning experiences [16, 17]. Either way, we should then expect to see bubbles never more than once in a generation (but see [18, 19]).

If, by contrast, bubbles can arise even in a perfectly rational, friction-free world, then they should be seen as an inherent feature of market economies, not as temporary aberrations. The regulatory imperative would be to guard, not to “lean,” against them—the difference between building dykes and trying to suppress the tides. The problem is that REBs as the only such account thus far are unexplained sunspot equilibria with strict conditions. For example, they must be present from the beginning of time1, cannot be negative, and, due to explosive conditional expectations, eventually dominate the economy [20–22]. Hence the preference in the literature for irrational or frictional explanations, which are more plausible at the cost of being less general (see however [9]).

The reduced form of Kurz and Motolese's [3] model corresponds to that of a noisy rational expectations equilibrium [23–25] but the model is derived under rational beliefs [1, 2, 26]. The rational beliefs framework widens the scope of expectational “rationality”2 from ergodic to non-ergodic, possibly non-stationary economic environments. As a consequence, rational beliefs are diverse—that is, diverse as a feature, not as a bug3. The persistent diversity of expectations adds a strategic element to the decision calculi of agents, enlarging the state space of the model by an endogenous variable called “market belief.” We contend that this endogenous state variable, which arises from the diversity of beliefs, corresponds to the unexplained “bubble component” in REBs.

There are two classical views on diverse beliefs. One is encapsulated by [28, 29], whose report from a weight-judging competition is the classic example of the “wisdom of crowds”4. The opposite view was set forth by [30, ch. 12] who said that, if agents disagreed too much about the future, speculation—betting on others's beliefs—would drive a wedge between price and value. The former leads to Hayek and the efficient market hypothesis (EMH); the latter underpins Minsky's financial instability hypothesis (FIH), and thereby most of the literature on bubbles outside of REBs5.

What makes the EMH and FIH seem so irreconcilable is that something is missing from the classical accounts, namely the dependence structure of beliefs. It is interesting to note therefore that both noisy rational expectations and the rational beliefs framework do take it into account but in opposite ways. Grossman [32], Hellwig [24], and Diamond and Verrecchia [25] all require independence between private signals (which implies independent beliefs) lest the aggregate signal lose its sufficiency6 and prices lose their informativeness. By contrast, Kurz and Motolese [3] require dependence between beliefs in order for the endogenous state variable to appear in the equilibrium price. One might say there is really only one model once we move up a level of abstraction: In the corner cases, when individual beliefs are either independent or comonotonic, the equilibrium price conforms to rational expectations; when they are (imperfectly) dependent, the market extends its state space through the endogenous market belief variable.

Accepting diverse beliefs as not the exception but the rule, and shifting the focus to their dependence structure instead, also changes our view of the role they play in the bubble literature thus far. The generic argument is that the broader the range of expectations, the more “confused” or “fantastical” about the future investors are, the more opportunity for speculation, and the bigger the bubble7. Historically, though, bubbles seem to have been associated with a reduction in diversity rather than an expansion of it [33]. People are literally “buying into” a, necessarily common, bubble narrative (see also [34]). It is interesting to note therefore that “correlated beliefs” in [3] actually refers to correlated innovations to individual beliefs. This means that, as the market belief variable appears, belief states converge, lending additional support to our contention that the endogenous state variable is the hitherto unexplained “bubble component” of rational bubbles.

Our approach is different from the idea of chaotic equilibrium cycles (see e.g., [35]). In the later works based on equilibrium cycles theory, the existence of a chaotic equilibrium growth may be derived, and “equilibrium bubbles” associated with transient excursions with nonlinear reversal (crashes) can be observed [36]. In contrast to the small number of “degrees of freedom” involved in the chaotic equilibrium growth models, our framework is based on a social graph representing a large number of individual agents with different but correlated beliefs.

Before we can re-interpret Kurz and Motolese's [3] market belief variable in this way, we need to add some detail. First, section 2 exemplifies the role of correlated beliefs and thus prepares for the subsequent developments. Then, we clarify what we mean when we speak of a bubble. After a quick summary of [3] in section 3, section 4 shows how their model relates to the definition we propose in [37]. Next, for market belief to explain the dynamic appearance of bubbles, we would like to be able to switch it “on” and “off” at will8. Kurz and Motolese [3] basically assume that it is always “on,” hence have little to say about the dependence structure that gives rise to it, other than that “due to correlation across agents, the law of large numbers is not operative.” But not only are there different variants of the law of large numbers (LLN), some LLNs can operate on correlated variates. We need more specificity about how much (or what kind of) dependence is necessary for market belief to emerge. Ideally, we would find a precise threshold in the parameter space fixing the dependence structure.

Section 5 introduces a simple graph model for the dependence of beliefs. This not only reduces the dimensionality of the problem but also creates a partition in the parameter space. The phase transition between small and giant components in the graph then effectively serves as the on/off switch for the market belief variable. The idea is to “rotate” the problem from one of identically distributed but correlated belief innovations to an independent but not identically distributed setting. This makes the problem accessible to LLNs of differently-sized variables [38, 39] via the eigenvalue distribution of the correlation matrix. In section 6, we then use linear aggregation [40, 41] to change the endogenous state variable from short- to long-memory. This “dramatizes” the emergence of bubbles. Section 7 concludes with a few suggestions regarding policy implications and empirical applications.



2. THE ROLE OF CORRELATED BELIEFS: AN EXAMPLE

We begin with a re-examination of the introductory example of [42]. The chief distinction between rational belief bubbles and other heterogeneous belief bubbles [43] is our focus on the dependence structure, or correlation, of beliefs rather than their diversity. Lest the main idea get lost in technical details later, the simpler, stylized setting serves to highlight this distinction and provides some intuition about it before we embark on the main argument.

There is an asset that pays dividends d, which are iid with d ~ N(y, 1/a). Disregarding learning effects over time, each agent receives a signal xi = d + εi composed of a public element d and a private element εi ~ N(0, 1/b). Expectations are heterogeneous because agents mix the common prior with the signals they receive individually:

[image: image]

Aggregated over the set of investors I, these private expectations yield an average expectation of
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Let agent i form a second-order belief

[image: image]
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Aggregating again and comparing to Equation (3) now shows that the average expectations operator is not a “normal” expectations operator. It violates the law of iterated expectations:

[image: image]

This violation in turn leads to systematic pricing errors in the market. Insofar as the relevant expectations operator is furnished by “the average investor,” one can see this heuristically by expanding the basic asset pricing equation
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where mt is the stochastic discount factor. A failure of the law of iterated expectations thus also means a breakdown of the basic asset price equation. Allen et al. [42] essentially blame the disagreement induced by the private signals for this failure: “if there is differential information between investors so that there is some role for the average expectations about payoffs, the folding back of future outcomes to the present cannot easily be achieved.” This is akin to Keynes's position.

Indeed, if one eliminates the private signals from the model [which amounts to taking the limit 1/a → 0 in expression (1)], the law of iterated expectations starts to work again: [image: image]. It thus appears that investor disagreement introduced some sort of noise that prevented the law from operating. In reality, though, it was not the disagreement that induced the failure. If we go to the other extreme and eliminate the public signal instead: xi = y + εi, the information agents receive is still differential and still induces diversity of beliefs [image: image]. Yet aggregating over the set I of agents now yields [image: image]. Suddenly, we find ourselves in Galton's world!

The reason the law of iterated expectations for the average expectations operator failed is that the expectations were not only diverse or differential but also correlated. And the reason for this is that the signals xi were coordinated by the public element d:
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To summarize, the (potential) wedge between price and value associated with the failure of basic asset pricing relations and identified by the failure of the law of iterated expectations was caused not by the diversity of beliefs but by the correlation between them.



3. ASSET PRICING UNDER RATIONAL BELIEFS

Kurz and Motolese [3] present an infinite-horizon, discrete-time equilibrium asset pricing model. In order to be self-contained, we provide a brief summary9.

Let [image: image] be an exogenous random sequence of payoffs of a risky asset. This random sequence has a true probability which is possibly non-stationary, unknown, and unknowable but assumed to be weak asymptotic mean stationary (WAMS). The agents have a large sample of historical data dt, t = −1, −2, … at their disposal from which they infer a unique empirical probability measure. This empirical measure generates data according to
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This is the common reference point for all agents i ∈ I = {1, 2, …, n}, where n is the number of agents in the system. The law of motion (16) fixes the set of rational beliefs.

Subjective beliefs [image: image] about the fundamentals dt are formed by augmenting the stationary measure with an individual belief state [image: image]:
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The individual beliefs are assumed to be rational, which means that [image: image] fluctuates around 0:
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The innovations [image: image] to the individual belief states are coupled by a correlation matrix Σg.

As diverse expectations are readily ascertained by agents, the state space is “expanded” by the average state of belief, dubbed “market belief” Zt:
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This is basically a measure of market sentiment, with Zt > 0 indicating that agents on average expect temporarily higher than normal payoffs (and vice versa). Market belief or sentiment Zt evolves according to
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Since Σg may be time-varying, Zt may be non-stationary. It is, however, also assumed to be WAMS, yielding a stationary representation with
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By assumption,
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Given this setup, there exists a unique equilibrium map d × Z → p from the state space to prices.

 Proposition 3.1. Under the conditions described above, there exists a unique equilibrium price map

[image: image]

from the state space of fundamentals dt and market belief Zt to prices pt.

Proof: See [3, theorem 2].

□
Our main interest lies in this map. Can we use market belief or sentiment Zt to explain bubbles?

We examine the origin as well as nature of correlations between individual beliefs that can lead to a natural explanation of bubbles in this rational belief framework. We use a formalism in terms of processes, which is coarse-grained compared with the field of strategic noncooperative games, for which it has been proved that there exists two classes of correlated equilibria, exogenous, and endogenous [44, 45]. Our derivation of correlated equilibria performed in section 6 does not require the game theoretical mathematics and can proceed more intuitively and transparently.



4. BUBBLES VS. EFFICIENT MARKETS

In contrast to topics of similar standing, bubbles are remarkably contentious even on an existential level. This is because even after centuries the term is still not well-defined. The problem stems from the use of “fundamental value” in many definitions—a highly contingent concept of its own. In our view, it is fine to construct a theory of value; it is a stretch to build definitions on top of it. This is why we proposed, in [37], to re-define bubbles not in “money-space” where value lives but in the time-domain where the efficient market lives. Before presenting the idea, we provide a brief review of various bubble definitions that have been proposed in the literature to contrast with our present approach.


4.1. Bubble Definitions in the Literature
 
4.1.1. Statistical Definitions

As a first group of bubble definitions, there are those that focus on the price trajectory or other observables such as trading volume, without reference to theoretical notions like fundamental value. For example, Kindleberger and Aliber [46] regard as bubbles “any upward price movement over an extended period of 15 to 40 months that then implodes.” Exchanging the specification of the time-horizon for a size requirement, as it were, Goetzmann [47] defines bubbles as a doubling in the market price followed by a 50% fall10. Presumably, then, bubbles cannot occur in fixed income or other markets where there is a natural upper bound on the market price! The fund manager GMO proposes that bubbles occur “when prices rise two standard deviations above their norm” [49, 50]. This is more flexible than an absolute size requirement but, alas, opens a whole other can of worms, like estimation issues, ergodicity assumptions, or the question if the second moment even exists for a given asset.

Brock, as cited in [51], defines bubbles as “a monotonically increasing sequence of prices.” Hüsler et al. [52] and Leiss et al. [53] cite super-exponential growth rates11 as the hallmark of a bubble. This chimes with [46] in that it also implies an unsustainable price path but differs in that it does not require an “implosion” or market crash.

What the definitions in this category have in common is that they neither imply nor necessitate a mispricing per se. They focus on the observable (the price series) and do not mix theoretical concepts into the definition. In particular, there is no notion of value here. This is an appealing feature for a definition, as explanandum and explanans then are clearly separated from each other. Bubbles, defined like this, can be tested without the problem of the joint hypothesis. On the downside, insofar as a definition depends on the full path, including a crash at the end, it can be guilty of post hoc ergo propter hoc in practice. Insofar as the theoretical underpinning is lacking, the definitions in this category can also be too broad in scope: Empirically, too many price series can fit a statistical bubble definition without necessarily corresponding to our intuition of what a bubble “should” be. For example, an interest rate sensitive stock might follow a rate cycle up “over an extended period of fifteen to forty months” only to then “implode” upon the revelation of a criminal investigation. Few would characterize this as a bubble. Context, as it were, is important.



4.1.2. Comparative Definitions

As a second category, there are bubble definitions based on comparisons, usually between price and some notion of value. For instance, the New Palgrave Dictionary of Economics defines bubbles as “asset prices that exceed an asset's fundamental value” [54]. Bland as it may appear, this excludes the possibility of negative bubbles, a significant restriction to make by definition, as it were. Temin and Voth [55] by contrast identify bubbles as “periods of substantial mispricing” which allows for undervaluations as well as overvaluations but adds a size requirement (“substantial”). Levine et al. [56] define bubbles as simply a “misfit between the market price and the true value of an asset” with no such qualification. This lack of specificity makes it hard to see where the line between excess volatility and bubbles should be drawn. The point is not to niggle or read too much into what may have been intended as merely passing remarks in a much longer work. It is to show that just because a definition is done casually does not mean it has no consequences—especially when we have to relate different studies to each other.

Apart from direct appeals to value, comparisons can also refer, more obliquely, to the information sets on which “true value” is presumably based. For instance, Blanchard and Watson [5] define bubbles as price movements which are “unjustified by information available at the time.” More emphatically, Asness [57] demands that the term should apply only when “no reasonable future outcome can justify” the price. This seems to posit a range of admissible price paths, defining bubbles negatively, or by exclusion.

For all their differences, comparative definitions always require a theory of asset pricing, if only implicitly, for a notion of what the correct price is supposed to be. This is their Achilles' heel and the chief criticism of efficient market proponents. For example, Santos and Woodford [58] compare the market price of an asset to the state-price weighted sum of its real payoffs, while [59] uses the realized return on an asset over a sufficiently long time after trading. Different studies can thus agree, in general terms, to define bubbles as a divergence of price from value and still disagree over whether a particular price series is a bubble or not. This can make it all seem a bit arbitrary.



4.1.3. Detailed Definitions

A third group of definitions goes beyond the perceived gap between price and value by tying it to specific explanations. For example, Kirman and Teyssière [60] require that the gap between price and value be “endogenous, i.e., not directly produced by exogenous shocks.” In other words, the mispricing must arise in a certain way in order for it to count as a bubble. Brunnermeier and Oehmke [31] concur that “not every temporary mispricing can be called a bubble.” In particular, it has to arise “because investors believe they can sell the asset at an even higher price to some other investor in the future,” so for them the speculative motive is essential. Roubini [61] even introduces a policy dimension by distinguishing between “endogenous” and “exogenous” bubbles, where the former are bubbles whose “probability and size can be affected by monetary policy” while the latter cannot12. As an extreme example of the involute nature of the definitions in this category, let us quote from [63]:

I would say that a speculative bubble is a peculiar kind of fad or social epidemic that is regularly seen in speculative markets; not a wild orgy of delusions but a natural consequence of the principles of social psychology coupled with imperfect news media and information channels. […] I offered a definition of bubble that I think represents the term's best use: A situation in which news of price increases spurs investor enthusiasm which spreads by psychological contagion from person to person, in the process amplifying stories that might justify the price increases and bringing in a larger and larger class of investors, who, despite doubts about the real value of an investment, are drawn to it partly through envy of others' successes and partly through a gambler's excitement.

Basically the obverse to our first category, it is not surprising then to find that detailed definitions tend to be too narrow in scope. Would a bubble that arose by a different mechanism, or in a market in which the proposed mechanism does not apply, also be a “bubble”? For example, would a “political bubble” [64] not count as a bubble to [31]? Or if it did, doesn't this mean that there must exist a less restrictive superset of bubbles, of which the two variants (political vs. speculative) are but particular cases? And if not, how are we to relate the results and policy implications of different studies to each other? Would a bubble indicator constructed for, say, speculative bubbles still be expected to detect politically driven ones?

The above quote also illustrates that the more detailed a definition, the more likely it is to mesh the notion of bubbles with behavioral assumptions or market frictions. Arguably it is this that makes bubbles such a loaded term. With respect to recessions, inflation or unemployment, the debates may be vigorous but at least their subjects are accepted. By contrast, bubbles remain “existentially controversial.” Perhaps this is because the more detailed a definition, the more it acts as a Trojan horse: the mere use of the term may already admit of assumptions one does not wish to make. It is thus that the rejection of behavioral hypotheses or doubt about the effectiveness of monetary policy may lead one to reject the concept of bubbles, almost as an unintended side effect. For the sake of discussion, we should therefore move away from such evocative definitions toward greater formalism and pithiness. In the words of Brock [65], “for the quality of a theory to improve over time, definitions must become more rigorous and less ambiguous.”




4.2. Market Efficiency and Time-Dependence of Market Efficiency

It remains commonly overlooked that the concept of market efficiency has a time-dimension. Markets essentially transform informational inputs, modeled by a filtration [image: image], into price signals [image: image]. Markets thus act as a map [image: image] from news to price changes. Market attributes are naturally defined in terms of these primitives. Eliding the discount factor for simplicity, the efficiency of markets has been characterized by the martingale property (cf. [66–68]), where

[image: image]

A market is efficient relative to the news process [image: image] iff the map [image: image] produces a martingale. This means that price is an unbiased predictor and that an efficient market does not allow trading profits based on the current information set [69].

But just as efficiency can only be defined relative to an information set, it also requires a time-scale. It is implicitly understood in Equation (27) that the time step 1 from t to t + 1 is the relevant time-scale. That is, if we take t0 to be the present, Equation (27) can be written like

[image: image]

with n = 1 and the understanding that the martingale condition holds for n ∈ ℕ. But any given discrete-time price process can be seen as merely a sampling from an underlying continuous-time process, which could have been sampled at a different rate or frequency, say τ or T with 0 < τ < t < T. That a process is a martingale on one time-scale neither necessitates nor implies that it is one on another13. This opens the possibility that a market is efficient on one time-scale but inefficient on another.

Such a disjunction between time-scales can be supported empirically14 as well as theoretically, from reading [72] “in reverse”: To recap his argument, as long as liquidity is not infinite and there is a strictly positive bid-ask spread s > 0 in the market, successive price changes Δp will exhibit serial dependence and the martingale property will not hold. Adapting his notation, let those price changes be measured at the time-scale τ < t, i.e., Δp2τ = p2τ − pτ, to make the connection to our discussion clearer. The bid-ask spread induces an asymmetry in the price path at the scale τ (see Figure 1): If the last transaction was conducted at the bid, then the next move can only be up (by the spread s) or 0. If the last transaction was conducted at the ask, then the next move can only be down (by s) or 0. One time-step further, the situation is reversed. If the last move was up or 0 (down or 0), then the next move can only be down or 0 (up or 0). The bid-ask spread thus introduces a serial dependence into successive price movements that is not compatible with the martingale condition of an efficient market.


[image: Figure 1]
FIGURE 1. Table of transition probabilities, conditional on the last transaction having been conducted at the bid or at the ask price, adapted from [72, p. 1129].


At the same time, over a sufficient number n of time-steps τ, the transition probabilities converge to a (symmetric) steady state. This means that for t ≥ nτ, with n sufficiently large, the effect of the bid-ask spread (or, by extension, other microstructural factors) “washes out”: Measured on the micro-scale τ, the process exhibits serial dependence; measured on the macro-scale t ≥ nτ, the price process can conform to the martingale property again.

Let us illustrate this phenomenon analytically with a toy model, the two-step random walk in [73], a special case of the class of persistent random walks [cf. [74], section 5.2]. Let Δp ∈ {U, D} for up = +1, down = -1. Define πUU as the joint probability that the price goes up twice in a row; πUD as the probability that an up move is followed by a down move; and πDD, πDU as the probabilities of down-down and down-up moves. Let πUU = 1/6, πDU = πUD = 1/3, πDD = 1/6. Suppose the last move was up and start at time t0 with pt0 = 100. Then

[image: image]

[image: image]

[image: image]

[image: image]

where πU|U, πD|U are the corresponding conditional probabilities. That is, one time-step forward, this two-step random walk is not a martingale. However, if we perform the same calculation two time-steps forward,
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The reason is that the memory gets lost at the time-scale t = 2τ,
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As a result, even though the same price process exhibits serial correlation at the scale τ, it conforms to the martingale property at the scale t = 2τ.



4.3. Bubbles as Elongations of Characteristic Time-Scales of Markets

We call the time-scale at which the martingale property holds the characteristic time-scale of a market. It is inversely proportional to the speed with which a market can “digest” information. Not only do different markets process information at different speeds, the same market can slow down or speed up over time. Projected onto the time-line, bubbles appear as regimes in which the speed of a market slows down significantly from normal.

Definition 4.1. Given a market that is efficient relative to [image: image] at the time-scale t, a t-bubble occurs when the price process changes such that the martingale condition [image: image] now only holds at time-scales T > t. As a boundary case, we include regimes where T = ∞ or the condition never holds.

Colloquially, we may call t-bubbles simply “bubbles” so long as it is clear that the notion only makes sense when set in relation to the characteristic time-scale t of the market. Conversely, a bubble is a slowdown in the map [image: image] from the “normal speed” ~1/t of the market to ~1/T—a sort of “informational constipation” if you will, as the “digestion” of news becomes slower15.

Our re-definition of bubbles is sufficiently general so as to be compatible with most of the existing definitions in the literature. The lengthening of the time-scale only serves to create space for a variety of bubble dynamics “in-between” the points at which the martingale property is restored. The general principle is to eliminate (the conditions for) the bubble from a model and inspect the time-scale t at which the market in the model is efficient. If the bubble component has a finite survival time, this can be taken as a lower bound for T. For example, under the limited arbitrage argument of [78], the duration of the bubble is finite with a survival time of [image: image] (in their notation). Without the bubble, the market's characteristic time-scale is t; with a bubble, it slows down to [image: image].

To sum up, market efficiency has a time-dimension. It is therefore not enough to speak of a market as efficient. In addition to the news process [image: image] relative to which efficiency is defined, one also needs to state at which time-scale efficiency is supposed to hold. The time it takes a market to fully absorb an information increment [image: image] can be random but has a characteristic scale, in the sense that it fluctuates within certain bounds or that its mean is defined. In the following, we will take this characteristic time-scale of a market as a given16.


4.3.1. Application to REBs

Blanchard [4] constitutes an interesting example because even under a bubble the price path still follows a martingale. In equilibrium, the probability of a crash is supposed to exactly balance the added growth factor of the bubble component [image: image], where [image: image] is the fundamental value, or

[image: image]

if we elide the discount factor for simplicity. That is, the price would simply incorporate the bubble component via

[image: image]

Note however that [image: image] is generated by fundamental variables as well as the bubble component [image: image]. But definition 4.1 relies on an efficient market as a benchmark. Therefore, the bubble according to 4.1 cannot be defined relative to [image: image]. Instead, we must introduce a “copy” of the market, a hypothetical market in which all the elements are the same (agents and their preferences, assets, institutions, etc.) except the information process, which must exclude the bubble component bt. Denoting this filtration [image: image],
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That is, relative to the efficient market, the bubble component introduces an estimation or valuation error which survives with probability π and collapses with probability 1 − π in [4]. It thus has an expected length of π/(1 − π) time-steps, or T ≥ π/(1−π) time steps. For example, if π =.95, then T ≥ 19 time steps. As the probability (1 − π) of a crash approaches zero, T → ∞ in the limit.



4.3.2. Application to [3]

In accordance with definition 4.1, we must first specify an efficient benchmark against which a bubble can be defined. In [3], the natural benchmark is a market driven exclusively by the fundamentals (dt), or the price map pt = P0 + addt (see theorem 3.1). This relationship holds when the correlation of beliefs is sufficiently low for the law of large numbers to apply and market belief to vanish. Since the stable distribution of the dividend process is persistent (cf. Equation 16), we have

[image: image]

This means that any dividend shock will wash out exponentially fast, or that the market is (approximately) efficient at a time-scale T, where [image: image] for any chosen tolerance ε > 0. For the sake of argument, let us fix λd = 1/4 and ε = 1/100. Then the market is efficient at the time-scale of 4 time steps.

If market belief Zt enters the equation because “due to correlation across agents, the law of large numbers is not operative,” ([3], p. 301) there are two scenarios. One, it has the same, or lower, persistence with 0 < λZ ≤ 1/4 in Equation (23). Then market belief increases the variance of the process but does not change the efficient time-scale. This was the original focus of [3]. Two, λZ > λd. Suppose, for instance, that λZ = 3/4. Now the innovations [image: image] to market belief Zt affect the expected price (under the stable distribution) for T = 17 periods.

So far, we haven't done anything yet. It is simply an observation that if λZ > λd, market belief Zt potentially slows down the market or “interferes” with the fundamentals dt in the equilibrium price equation. This conforms to our re-definition of bubbles in terms of time-scales rather than price-value divergences but there is nothing in the original work of Kurz and Motolese [3] that would motivate a particular parameterization.

In the following, we now propose two extensions or modifications to the model: First, to find an “on/off” switch for market belief Zt in the parameter space of the dependence structure of beliefs, we propose to generate Σg from a “social graph.” This reduces the dimensionality of the problem and at the same time provides a natural partition of the parameter space. Then, to emphasize or perhaps motivate λZ > λd, we use linear aggregation [40, 41] to move the model beyond a simple parametrization. The aggregation of short-memory correlated belief transitions can lead to a long-memory series. The resulting divide between fast-moving fundamentals dt and slow-moving market belief Zt magnifies the bubble effect outlined above.





5. HOW MUCH DEPENDENCE IS ENOUGH?

This section discusses the first modification to the model of [3], which consists in introducing a “social graph” to motivate the existence of a non-trivial correlation matrix Σg of the innovations [image: image] to the individual belief states defined in Equation (19). In other words, we propose to generate Σg from a “social graph,” which represents the investor population. For simplicity, we use the Erdős-Renyi random graph model G(n, p), where n is the number of agents (or vertices) in the system and p ∈ [0, 1] is the probability with which a random pair of agents i, j is linked by an edge {i, j}. The edge is represented by a set as opposed to a tuple as we take the graph to be undirected. To keep things tractable, we also do not assign weights to links or distinguish between different degrees of correlation.

Whenever agents (or their nodes) are connected in the graph, we take their beliefs to be correlated17. Moreover, we let their beliefs be correlated by a constant [image: image], thereby abstracting not only from directions of influence (by the undirectedness of the graph) but also from variations in the degree of influence18. In our model, the pertinent fact is that (or whether) there exists some level of mutual influence or communication, regardless of its direction or strength. Formally, Σg is constructed via the rule ∀i ≠ j ∈ {1, …, n},

[image: image]

where [image: image] is the (i, j)-th component of Σg. Since the social graph of the agents is random, so is Σg.

A group of agents that is connected to each other, or whose beliefs are correlated, is called a clique or “component” of the graph. One can distinguish between two kinds of cliques or components. If the size of a clique does not scale with the total number of agents in the system, or is independent of n, then we call it a “small component.” If a clique is such that it becomes larger the larger becomes n, it is called a “giant component.” This difference in the scaling behavior of cliques has an important consequence for Σg.

By construction, the correlation of beliefs is transitive: if agents i, j have correlated beliefs and agents j, k also have correlated beliefs, then so do agents i, k. Graphically, this means that every clique of agents can, after appropriate reshuffling of the indices, be represented by a block matrix in Σg. The size of a clique is the number of nodes or agents contained in it. If a clique of correlated agents has size m, say, then the corresponding block matrix in Σg is of m × m dimension. Obviously, if we pick any off-diagonal entry [image: image] from such a block, its value is [image: image]; if we pick an entry of Σg that is not part of a clique, then its value is zero. But what about a random pick from Σg, i.e., the unconditional expectation [image: image]) or average correlation in the system as a whole?

The average correlation of beliefs depends on whether the agents are organized into many small separate components or into a giant connected component. The intuition is that components or cliques of correlated agents in the original space act like “composite agents” when transposed into eigenspace19. The law of large numbers then acts, or not, on these “composite agents,” which are independent but differently-sized, instead of the actual agents, which are equally-sized but correlated. A system with 1,000 isolated agents behaves essentially the same as a system with 2,000 agents who are organized into cliques of 2.

Small components do not scale with n. As the graph increases from, say, 100 to 1,000 agents, there are more cliques but of the same size (or size distribution) as before. A giant component, by contrast, scales with the system size n. Its size is a constant fraction S ∈ [0, 1] of n. As a giant connected component arises in the social graph of agents (or their beliefs), the weight of the non-zero correlations in Σg remains a constant fraction of the total, and the average correlation of beliefs in the system becomes positive.

Formally, the question is how the average correlation of beliefs behaves as the system becomes large, or

[image: image]

as n → ∞. Let c = (n − 1)p be the mean degree of the graph20. The average size of the small components is

[image: image]

The fraction S of the n agents or vertices contained in a giant connected component depends on c and is the solution or fixed point of

[image: image]

When c < 1, S = 0 or there is no giant component in the graph. This yields an average correlation coefficient of

[image: image]

As the system size n increases, the average correlation tends to 0, and in the limit, we can take [image: image].

When c ≥ 1, a giant component emerges in the graph and the system behaves differently. The reason is that unlike the small components, the giant component scales with the system size n. Then the average correlation of beliefs is

[image: image]

as n → ∞ which is strictly positive.

Our use of the Erdős-Renyi random graph theory has been made for the sake of simplicity and tractability. It will be interesting in the future to extend our treatment to the case of Barabasi-Albert networks and other random geometric graphs. However, our main point on the emergence of a non-zero average correlation of beliefs will not be changed. What will be modified are the specific control parameters and conditions under which a non-zero average correlation of beliefs emerges. Furthermore, the application to real-world social networks is reported to a future work.



6. THE EMERGENCE OF BUBBLES

We now make the following modification to [3]:

Axiom 6.1. Let the agents have coefficients λig in (19). In particular, we assume that the coefficients λig are drawn from a family of absolutely continuous distributions with support [0, 1) with density

[image: image]

with parameters −1/2 < b < 0 and 0 < cb < ∞.

The density in the axiom is only specified for values close to 1, so this is a flexible semiparametric specification. The only hard requirement is that the coefficients cannot be bounded away from 1 (although they can never attain it). Agents now differ from each other w.r.t. the persistence of their belief states [image: image]. This means that agents differ in their trading horizons: Short-term day traders form subjective expectations that flit around much faster than long-term investors who form expectations over multi-year, even decade-long horizons.

As a result of this positive average correlation in the system, market belief Zt will assume long-memory and a price bubble develops, as we now show.

 Proposition 6.1. Suppose that [image: image] or that the average correlation of beliefs in Σg is positive. Then there exists a common component or “representative belief" πt ~ N(0, ϑ) iid in the innovations and the transition functions (19) of agent states of belief can be rewritten in terms of this representative belief to

[image: image]

As a consequence, the aggregate market belief Zt assumes long memory persistence.

Proof: Since Σg is symmetric and positive definite, we can perform a spectral decomposition

[image: image]

where S is the matrix of eigenvectors, Θ is the n-dimensional matrix with the eigenvalues ϑi, i = 1, …, n on the diagonal, [image: image], the n-dimensional identity matrix, [image: image], and ϑi ≠ ϑj, ∀i ≠ j.

According to [81], if [image: image], which we have shown above to be the case when a giant connected component arises in the social graph of the agents, then the biggest eigenvalue, ϑ1, is distributed according to

[image: image]

For correlation matrices, one needs to ensure positive definiteness of Σg and [82] show that the result remains valid under suitable restrictions on the support of the off-diagonal entries for large sample correlation matrices.

Given that [image: image], all other eigenvalues ϑi> 1 are therefore constrained to be of the order [image: image]. That is, the larger the system, the greater the dominance of the largest eigenvalue, ϑ1, over all others, ϑi> 1. Furthermore, as the variance, unlike the mean, in (54) does not scale with n, this dominance also becomes more certain as n grows large.

We exploit this by rewriting the innovations in individual states of belief in terms of a factor model

[image: image]

where [image: image] is the first principal component

[image: image]

and “factor loading" si1 is the (i, 1)-th component of eigenvector matrix S or the i-th component of the first eigenvector S1. Since [image: image] is simply a linear combination of (multivariate) Gaussians with mean 0 and variance [image: image], it is itself ~ N(0, ϑ1). The belief transitions (19) now take the form

[image: image]

[image: image]

where L is the lag operator.

Hidden in the [image: image] is the variation of all the other principal components in eigenspace. Since the system is orthogonal, all the summands are independent from each other. Again, each principal component [image: image] is nothing but a different linear combination of the original innovations [image: image] (Equation 56), hence [image: image]. [image: image] because the total variance is finite. Therefore, the series [image: image] converges to zero as n → ∞ [83, thm. 22.6].

It follows that we can neglect the idiosyncratic terms and rewrite individual beliefs solely in terms of the common component

[image: image]

Accordingly, market belief (21) now takes the form

[image: image]

If we expand this expression,

[image: image]

[image: image]

[image: image]

A stochastic process has long memory if its spectral density is of the form L(ω)|ω|−2d, for some slowly varying function L at zero and [image: image] [84]. Zaffaroni [41] shows that, for coefficients λig distributed according to expression (51) with b > −1/2, the coefficients in (63) converge

[image: image]

with

[image: image]

for some constant a as k → ∞, and that the limit process

[image: image]

has a spectral density ~ cω−2d if b < 0, for some constant c and d = −b.

□
For example, what is the probability that the equilibrium price will lie at least one standard deviation of Zt above P0 for a period of 100 days? To isolate the effect of long memory on the bubble probability, we normalize the variance of Zt to a constant 1 for all t and calculate [image: image]. Recalling that Zt is a Gaussian process, we note that

[image: image]

where 1 is the 100 × 1 vector of ones, ·′ indicates the transpose, and Σ100 is the 100 × 100-dimensional covariance matrix of (Z1, …, Z100) with (i, j)-entries [image: image].

Case 1: Independence. Under time independence, i.e., if Zt were iid, the entries [image: image] in Σ100 are equal to 0 for i ≠ j and 1 for i = j. Then

[image: image]

and the probability [image: image].

Case 2: Short memory. Under the setup of [3], we have exponentially decaying autocorrelations and the (i, j)-th entry of Σ100 is

[image: image]

This corresponds to the yellow line in Figure 2. For comparison purposes, we choose a value of λZ ≃ .77, which yields

[image: image]

and the probability [image: image] or less than 1 in 8,500.


[image: Figure 2]
FIGURE 2. First 100 autocorrelations of the original, short-memory (yellow) and the modified, long-memory (blue) processes, where the parameters are chosen such that the first-order autocorrelation is equal.


Case 3: Long memory. By contrast with the previous cases, we see a significant probability of bubbles arising under the long memory specification of the previous section, with coefficients as in Equation (65). The (i, j)-th entry of Σ100 is now

[image: image]

[image: image]

Figure 2 plots the first 100 autocorrelations for a parametrization of b = −1/4 or λZ ≃ .77 (both yielding the same first-order autocorrelations).

The slowly decaying off-diagonal entries of Σ100 lead to a much higher dispersion of the sum,

[image: image]

and the probability [image: image] or about 1 in 27. Ceteris paribus, introducing long memory increased the chances of a bubble by two orders of magnitude.



7. CONCLUSION

We mentioned in the introduction that the theoretical setting in which bubbles are conceived has practical implications. If bubbles can arise, as we have argued, even under idealized circumstances—in a world of perfectly rational agents acting in markets with no frictions or “limits of arbitrage”—then they should be recognized as a general and system-immanent feature of market economies. Continuing to view them as aberrations, due to specific faults or circumstances, implies that one can “lean against” or eradicate them by addressing said faults or circumstances. This strikes us as an attempt to suppress the tides. We favor building dykes instead, guarding against their inevitable recurrence by increasing the robustness of the system.

It is also not clear that bubbles are necessarily “bad.” Indeed, another way to look at them is as the free-market alternative of industrial policy, i.e. as a spontaneous and decentralized way to achieve coordination, instead of the controlled and centralized approach favored in statist economies. This would be another argument against efforts to suppress bubbles. Alas, it is undeniable that bubbles can have bad consequences, particularly if they end in “crashes” or sudden ruptures which can destabilize the system at large.

To make a rational policy tradeoff, we therefore need two further elements, apart from the bubble itself: One, a model of what might be termed “rational belief crashes,” noting that there is no violent ending inherent in rational belief bubbles themselves. This conforms to the view explored here that bubbles and crashes are separate events and require separate theories. A bubble does not have to end in a crash (it can deflate gently), just as an asset price can crash without a bubble (adverse news, e.g., in the form of a lawsuit, may arrive). The second element that is needed is a welfare analytical model of how rational belief bubbles and crashes fit into an economy with a production and a banking sector.

In terms of empirical applications, we would like to see an augmentation of current sentiment indicators with cross-sectional quantities [recall 32, lemma 1]. This could lead to a “real-time” bubble indicator based on disaggregated, contemporaneous expectations. As far as we are aware, current bubble indicators, which are used to monitor financial markets and systemic risk, are based on historical data and/or estimates of fundamental value.
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FOOTNOTES

1If a REB exists at any time t > 0, then it must also exist at t − 1.

2To be distinguished from choice-theoretic rationality. See [27] for a critique of the terminology.

3One way to think about it is that a non-stationary environment underdetermines the set of admissible, or rational, expectations (an expectation is inadmissible, or irrational, if it leads to systematic mistakes). If rational expectations are the fixed-point solution of a function, rational beliefs are the fixed-set solution of a correspondence.

4Asked to guess the weight of an ox, none of the 787 individual estimates from the attending crowd were correct but the “middlemost” (presumably the median in today's terminology; the OED defines the word as “That […] in the very middle, or nearest the middle.”) came within less than one percent of the correct value (1,207 vs. 1,198 lbs.), beating all but a handful of presumably lucky individuals.

5As Brunnermeier and Oehmke [31] point out, “much of the theoretical literature on bubbles can be seen as an attempt to formalize this [Minsky's] narrative.”

6[32, lemma 1].

7We identified the general mechanism behind this way of thinking as a form of explicit symmetry breaking, a notion borrowed from theoretical physics, in [8]. Breaking the symmetry inherent in a diverse set of beliefs explicitly (as opposed to spontaneously) also explains the need for frictions in these models.

8Recall that REBs, by contrast, cannot be restarted once they are deflated.

9For a quick overview of rational belief theory, we refer to its entry in Wikipedia which one of us (HS) contributed. For a survey, see [26].

10One may recall here that [48] defined efficient markets as ones “in which price is within a factor of 2 of value. […] The factor of 2 is arbitrary, of course.”

11faster than exponential growth, or growth rates that themselves grow.

12A similar but more general argument, less focused on monetary policy, has been put forth in [62].

13In [37], we use so-called n-step or persistent random walks as an example. Another way to see this is by letting the expectation cycle through a periodic function, e.g. a sine-curve: xt = sin(t) + ϵt with ϵ ~ N(0, σ2). Then Et(xt+2πn) = xt. As long as we sample at the frequency of (2π)−1, the series looks like a martingale but at any other frequency, it is not.

14See for example [70] or, more plastically, the case study of [71]. The point being that a market, no matter how efficient, always needs some time to digest information.

15An incarnation of this is provided by the Hawkes self-excited conditional Poisson process, which has been used to characterize the level of endogeneity or reflexivity of financial markets [75–77]. As the “branching ratio” approaches 1, the market becomes more and more endogenous and the response time to shocks diverges, so that news have a longer and longer lived impact.

16It is also possible, though, to conceive of financial markets in which the mean time to digest news diverges. This could occur, for instance, when the absorption time is distributed according to a power law in the tail with tail exponent <1. As many response functions are power laws in the time domain with small exponent, this is indeed an interesting possibility. In this case, the market would never be efficient even at arbitrarily large time-scales.

17For those unfamiliar with the terminology of graphs, note that there is a difference between two agents being “linked” by an edge and being “connected” by a path. Vertices i, j in the graph are said to be linked if the graph contains an edge {i, j} between them. For vertices to be connected, it suffices that there exist a path between them. Agents that are linked are also connected but agents may be connected without being linked. For example, if agents i and j are linked by {i, j} and agents j and k are linked by {j, k} but there is no edge between agents i and k, agents i and k are still considered connected via the path {{i, j}, {j, k}}.

18That [image: image] is chosen positive stems from the fact that sufficiently large groups of agents cannot be all negatively correlated. Suppose, for example, that there are three agents i, j, k all perfectly negatively correlated. If i becomes more optimistic, j must become more pessimistic, which means k must become more optimistic. But this belies the negative correlation between i and k. The same principle holds with less-than-perfect (negative) dependence in larger groups.

19This is the basic idea of principal component analysis [79].

20We skip calculations that do not add to the main point and refer interested readers to [80] instead.
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This paper examines the impact of Confucianism on firm performance, taking Chinese listed companies from 2000 to 2018 as the research object. The results show that (1) Confucianism provides legitimacy for a company's profit-seeking behavior and therefore helps to improve firm performance; and (2) Confucianism can effectively improve the efficiency of supervision mechanisms but weaken the marginal contribution of incentive mechanisms to financial performance. This paper provides empirical evidence for the influence of Confucianism on firm performance, broadening the understanding of the role of informal institutions in company finance and enriching the theory of “culture and finance.”
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INTRODUCTION

In recent years, some studies have shown that in addition to economic factors affecting firm performance, non-economic factors such as culture also play an important role in firm performance [1, 2]. For China, a transition economy with imperfect institutions and still less efficient law enforcement, informal systems such as culture may play a more important role in firm performance. For the Chinese society, Confucianism is the most far-reaching informal system; it shapes the spirit of Chinese enterprises and may provide important spiritual support in the process of China's modernization. Confucianism is now once again faced with the possibility of rejuvenation in China even after having gone through a century of obstruction, which will absolutely have an effect on all aspects of China's economy [3]. Therefore, by examining the impact of Confucianism on firm performance, this paper attempts to discover how the informal system affects microenterprises and thus boosts China's economy.

It is not common to see empirical research on these issues because there are a series of difficulties and controversies that arise in measuring the impact of culture on economic behavior. Currently, the general methods used to measure culture's effect mainly include the Hofstede index [4], which focuses on the influence of cultures from different countries on individual behavior. This index excludes “benevolence,” a main concept of Confucianism, so it is difficult to use the index to objectively reflect the influence of Confucianism on management behavior. In recent years, many scholars have started to use historical data to explain the impact of culture and institutions on financial performance [5, 6]. Confucianism, a mainstream ideology of ancient China, has accumulated for a long time and has gradually become the criterion the public uses to think about and judge individual behavior. Therefore, it is basically feasible to use historical data to measure Confucianism. After a comprehensive consideration of the above factors, we chose the local records of the Qing Dynasty as the basic data source and found proxy variables that indirectly measure Confucianism. Then, the financial data from A-share listed companies from 2000 to 2012 were selected as the sample for the research.

First, this paper studies the impact of Confucianism on firm performance, showing that the greater the impact of Confucianism on a company, the higher its profitability. This statement implies that Confucianism not only legalizes a company's profit-seeking behavior but also contributes to its capital appreciation and wealth creation. Second, the supervision and incentive measures adopted by a company for the purpose of improving profitability are all affected by Confucianism. The empirical results show that Confucianism is conducive to improving the efficiency of supervision while weakening the marginal contribution of the incentive mechanisms to corporate performance.

This paper has two main research contributions. First, it attempts to combine empirical scientific methods with Confucianism and establish a research framework, striving to find a feasible path for empirical research on Confucianism. Second, this paper studies the impact of Confucianism on corporate performance by considering the combination of the reality of Confucianism and corporate governance. The research conclusions are of great theoretical significance not only for academic circles seeking to rediscover Confucianism but also for listed companies in the Chinese cultural context seeking to choose appropriate governance mechanisms and government departments to improve their supervision system.

This paper is arranged as follows: the second part is a literature review and provides the research hypothesis; the third part describes the measurement of variables and sample selection; the fourth part provides the empirical research results; the fifth part presents the robustness test; and the last part provides the conclusion.



LITERATURE REVIEW AND RESEARCH HYPOTHESIS


Literature Review

As shown in the literature on corporate finance, culture is defined as the concept and related values of stabilizing intergeneration inheritance through ethnic, religion, and social groups [7]. Byod and Richerson [8] defined culture as “the knowledge, values and other factors that are passed down from generation to generation through education and imitation, and can influence behavior,” and claimed that culture has the following functions: (1) culture provides language-based information processing methods; and (2) the ethics derived from a culture help to reduce the cost of contract implementation and can effectively reduce the externality caused by the free rider problem. Guiso et al. [6] claimed that the intergenerational culture would affect the level of trust an individual has with other partners, thus affecting that individual's behavior and financial performance. As a long-term and stable informal institutional arrangement in a specific region, culture may affect the quality of information disclosure [9–11], tax behavior [12], business decision-making [6, 13], and investment behavior [14, 15]. Similarly, firm performance is also affected by external cultural factors.

Franke et al. [16] conducted an empirical study on cultural and financial performance in 18 countries from 1965 to 1987. The results show that power distance is positively correlated with firm performance, while individualism is negatively correlated with firm performance. Gorodnichenko and Roland [17] used per capita GDP to measure financial performance. The empirical results show that individualism is positively correlated with corporate performance. The above empirical results imply that it is difficult to use the Hofstadter index. In other words, the regression results depend on indicators to measure corporate performance, which makes the results unstable. Doney et al. [18] studied the Hofstadter index and trust level and found that the individualism orientation means that the trust process involves rational calculations, and collectivism means that trust is more predictable. Therefore, from the perspective of trust and firm performance, both individualistic orientation and collectivistic orientation may produce trust and affect corporate performance. Furthermore, the empirical results of Fidrmuc and Marcus [9] show that there is a significant positive correlation between the individualism orientation and corporate performance.

In Chinese history, Confucianism was put forward by Confucius in the Spring and Autumn period and then inherited and developed by Mencius and others in the Warring States period. After Emperor Wu of the Han Dynasty “ousted hundreds of schools and respected Confucianism alone,” the combination of Confucianism and feudal monarchy established a set of social ethics and moral norms and became a tool for governors. For a long time, Confucianism has been deeply rooted in Chinese society and become the common people's inadvertently held ethics. Although the relationship between culture and corporate performance has been discussed, there are few studies on Confucianism and corporate performance.



Research Hypothesis

Traditional Chinese culture, for which Confucianism is the core, has a long history of thousands of years, and it has gradually become an indispensable component of the Chinese humanistic environment. Companies operating in this environment may be affected by Confucianism. Confucianism does not reject wealth and even has positive significance for building wealth. Therefore, the Confucian concept of wealth and the method used for wealth building may affect the company's management behavior and decision-making, so they have a positive significance for improving firm performance. Therefore, the following research hypotheses are proposed:

Hypothesis 1: With all other conditions unchanged, the greater the influence of Confucianism, the higher the profitability of the company.

Prior studies show that formal and informal institutions both impact corporate financial behavior [14]. Jebran et al. [19] examined the monitoring role of institutional ownership in the relationship between social trust and corporate financial behavior. They found that institutional ownership, as a formal governance system, weakens the influence of social trust (informal institution) on corporate financial behavior. In addition, [20] showed that foreign qualified institutional investors can effectively monitor firms.

We conjecture that the influence of Confucianism on firm performance will be weaker when a firm's internal governance mechanism is stronger. We argue that institutional ownership, an internal governance system, can moderate the relationship between Confucianism and firm performance. We assume that greater institutional ownership indicates the use of effective internal governance mechanism and thus informal institutions, such as Confucianism, are less likely to influence corporate decisions. Thus, the following research hypotheses are proposed:

Hypothesis 2: With all other conditions unchanged, the negative association between Confucianism and firm performance is attenuated by institutional ownership.




VARIABLE MEASUREMENT AND SAMPLE SELECTION


Independent Variable Measurement

As we all know, the most important feature of Confucianism is that it seeks to improve human behavior through ethical education. Confucian education in the Ming and Qing Dynasties gradually shifted to secularization and popularization. The academy was an important place for Confucian education in the Ming Dynasty. During the Qing Dynasty, official schools and academies laid the foundation for the popularization and spread of Confucian education. In addition to the above historical factors, the choice of attending a Confucian school as a proxy variable was made in light of the following considerations. First, North [21] generalized theory of the system into theory of property rights, theory of the state, and theory of ideology and believed that the role of education was to “instill a set of values repeatedly.” Weber [22] claimed that the level of Confucian education was closely related to the quality of education and pointed out that the difference in the distribution of educational institutions represents the strength of Confucian influence.

As mentioned above, Confucian schools are an important source of Confucianism and have gradually developed a common understanding with officials and intellectuals over a long period of time. Therefore, it is impossible to directly measure the influence of Confucianism; however, by using school choice as a proxy variable it is possible to measure the influence of Confucianism. Kwok and Tadesse [23] summarized institutional theory as ownership theory, state theory and ideology theory and believed that the social function of the education system is connected with the inculcation of values. In other words, consistent with the basic theory of institutional economies, we choose Confucian schools as the proxy variable of Confucian influence. Specifically, we choose the local chronicles of the Qing Dynasty as the data source and record the number of official schools (prefectural, state, and county) and academies within the jurisdiction of the provinces, counties, and counties according to the provincial administrative regions of the Qing Dynasty and compare them with those in the jurisdiction of the People's Republic from 1796 to 1840 AD. The statistical results are shown in Figure 1. During this timeframe, 3,284 Confucian educational institutions operated within the scope of the Qing government.


[image: Figure 1]
FIGURE 1. Number of Confucian schools in the provinces of the Qing Dynasty. This figure plots the number of Confucian schools in the provinces of the Qing Dynasty. The horizontal axis represents the provinces, and the vertical axis represents the number of Confucian schools.


When measuring the influence of culture on a region, usually, two models are used. One is a regional model, and the other is a distance model. Currently, the widely used model is the distance model [24–27]. The greatest advantage of the distance model is that it can use company-level data to determine whether the explanatory variables represent the research object itself, eliminating the influence of other factors. Wines and Napier [28] claimed that the distance model has more advantages than the regional model when considering the company or individual level. John et al. [29] used this model to study investment decisions and dividend policies. After a comprehensive consideration of the above factors, we chose the distance model to measure the proxy variable.

The main calculation steps are as follows: First, the longitude and latitude of the listed company are determined by using through the Google Map icon; second, the longitude and latitude of ancient schools (including official schools and colleges) are determined. Finally, we calculate the distance between every listed company and every ancient school according to their respective longitudes and latitudes, following Equations (1–3) shown below.

(i) We define the longitude and latitude of ancient schools (listed companies) as ωS and φS (ωF and φF), respectively. The central angle (θ) is calculated via the following Equation (1):

[image: image]

(ii) We calculate the arc length per radian using the following Equation (2):

[image: image]

(iii) Note that the distance between two points equals the length of the minor arc across the surface of the earth. Therefore, we calculate the distance between the location of every ancient school and listed company using Equation (3), which is a well-known equation used for GIS, as shown below:

[image: image]

Finally, 100, 200, and 300 km are utilized as the distance criteria or upper limits to calculate the number of ancient schools and then define the variables School_100, School_200, and School_300, respectively.



Control Variables

In this paper, the explained variate is firm performance, which is measured by ROA (return on assets). ROA is calculated by dividing EBIT by average total assets and reflects the economic surplus contributed by the company to stakeholders such as shareholders, creditors, and the government.

Based on the studies of Chen et al. [30] and Jebran et al. [19], we add the following control variables to the regression model: board size, board independence, management shareholding, leverage, firm size, liquidity, fixed assets, CEO duality, GDP, and the number of universities. GDP per capita is used to control for the economic development level of the place (province) where the company is registered and is calculated as the logarithm of GDP per capita (lnGDP). Second, the higher education level of Puritans has a larger direct impact on financial performance than ideology [31]. This paper controls for the influence of local higher education by using the number of 211 project universities in the company's registered place (province). Finally, the influence of industry and time also need to be considered [13, 14]; thus, industry and year control variates are added to the regression. Financial data related to corporate performance and governance are all extracted from the CSMAR database. The data sources and calculation methods are shown in Table 1.


Table 1. Definitions and calculations of the variables.

[image: Table 1]



Sample Selection

The sample selected for this empirical study is companies that issued shares and were listed on the Shanghai or Shenzhen Stock Exchanges from 2000 to 2018. After downloading information from the CSMAR database, 22,111 primary samples were obtained, among which were 342 financial industry samples in total, 676 samples with operating incomes less than or equal to 0 or insolvent (leverage >100%), and 972 samples with missing data. After eliminating the above 1990 samples, 20,121 valid samples were obtained, accounting for more than 91% of the primary samples. See Table 2 for the descriptive statistics of the research variates.


Table 2. Descriptive statistics.
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Model

To test our hypothesis, we consider that firm performance is a function of Confucianism and other control variables. The regression equation is given as follows:

[image: image]

where School_num represents the number of schools within 100 kilometers, 200 kilometers, and 300 kilometers of the registered address of firm i at time t. We use control variables, mainly including the shareholding ratio of the institutional shareholders (INST), board size (Board_size), board independence (Board_ind), management shareholding ratio (Man_share), debt-to-asset ratio (Lev), firm size (Firm size), liquidity (Liquidity), fixed assets (Fixed assets), CEO duality (Duality), GDP (lnGDP), and the number of universities (University). ε is the regression residual.

To test Hypothesis 2, the following regression equation is used in this paper:

[image: image]

where INSTit denotes institutional ownership; the interaction term, School_numit*INSTit captures the moderating effect of institutional ownership; and ControlVariableit denotes a set of control variables.




THE EMPIRICAL RESEARCH RESULTS

Table 3 reports the regression results. The explanatory variable in the first column is School_100, which is the number of schools within 100 kilometers of the registered address of the firm. The regression results show that the coefficient of this variable is 0.0232, and it is significant at the 1% confidence level. The explanatory variables in the second and third columns are School_200 and School_300, and the regression coefficients are 0.0132 and 0.0123, respectively; these are significant at the 1% confidence level. The above regression results indicate that as Confucian influence increases, firm performance is enhanced. The empirical results support Hypothesis 1.


Table 3. The impact of Confucianism on firm performance.

[image: Table 3]

Table 4 reports the regression results. In the first column, the regression coefficient of the explanatory variable INST is 0.0316 (t = 8.59), and the regression coefficient of the cross-multiplying term of School_100 and INST is 0.0489 (t = 2.62). The above results imply that as the shareholding ratio of the institutional shareholder increases, firm performance increases, which means that the supervision of the institutional shareholder can effectively improve firm performance. The significant positive correlation between the cross-multiplying term of School_100 and INST and the explanatory variable shows that as Confucian influence increases, institutional shareholder supervision's marginal contribution to financial performance is enhanced. In conclusion, the regression results provided in Table 4 show that the supervision measures taken by the firm's institutional shareholder to improve financial performance are justified according to Confucianism, and Confucianism can effectively improve the efficiency of supervision.


Table 4. Moderating effect of institutional ownership.
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ROBUSTNESS TEST


Alternative Proxy of Confucianism

To ensure the robustness of the regression results, we conducted the following robustness test; that is, we selected the number of Confucian schools in the provincial administrative areas to replace the corresponding explanatory variables mentioned above and performed another regression. In addition, referring to the studies of Du [32], Chen et al. [30], Jebran et al. [19], and Chen et al. [30], we measured Confucianism by the distance between a firm's registered address and 7 Confucian centers in China. We calculated the geographical-proximity-based Confucianism, CONFN

[image: image]

where N denotes 7 Confucianism centers; DISN denotes the distance between the firm and Confucianism center N; MaxDISN and MinDISN represent the maximum and minimum values, respectively, of DISN for all firms by year. The regression results are shown in Table 5.


Table 5. Robustness test: independent variables School_pro and CONF.

[image: Table 5]

The explanatory variable in columns (1) and (2) of Table 5 is the total number of schools in the provincial administrative areas. By observing the regression results, it is not difficult to find that the number of schools in the provincial administrative areas School_pro is significantly positively correlated with the dependent variable and passes the significance test at the 1% confidence level. Similarly, the cross-product terms of School_pro and supervision mechanism are significantly positively correlated with the explained variables, and both pass the significance test the 1% confidence level. In addition, we measure Confucianism by the distance between the registered address of the company and the seven Confucian centers in China. The regression results are shown in columns (3) and (4) of Table 5 and are similar to the previous regression results. CONFN is significantly positively correlated with the dependent variable. Similarly, the cross-product terms of CONFN and INST are significantly positively correlated with the dependent variable.



Alternative Proxy of Firm Performance

To ensure the robustness of the model, we use Tobin Q as a substitute of ROA and repeat the above regression to measure the influence of Confucianism on firm performance. The regression results are shown in Table 6.


Table 6. Robustness test: dependent variable Tobin Q.

[image: Table 6]

The regression results showed that the coefficients of the independent variables (school_100, shool_200, and school_300) are all significant at the 1% confidence level, indicating that firm performance increases with the increasing influence of Confucianism; this result is similar to the results shown in Table 3.

We also carried out additional robustness tests by (1) replacing the explained variable ROA with the industry-adjusted ROA, that is, considering the influence of industry factors; and (2) considering the impact of the financial crisis; that is, the timeframe of the study was divided into two periods, 2000–2007 and 2008–2012. The results of these tests are very similar to the previous regression results. Due to space limitations, we do not report the results of these tests.




CONCLUSION

This paper examines the impact of Confucianism on firm performance, taking Chinese listed companies from 2000 to 2018 as the research object. The following conclusions are obtained. (1) Confucianism provides legitimacy for the company's profit-seeking behavior and therefore helps to improve firm performance. (2) Confucianism can effectively improve the efficiency of supervision mechanisms but weakens the marginal contribution of incentive mechanisms to financial performance. This paper provides empirical evidence on the influence of Confucianism on firm performance, broadening the understanding of the role of informal institutions in company finance and enriching theory on “culture and finance.”
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In this mini-review, we critically examine the recent work done on correlation-based networks in financial systems. The structure of empirical correlation matrices constructed from the financial market data changes as the individual stock prices fluctuate with time, showing interesting evolutionary patterns, especially during critical events such as market crashes, bubbles, etc. We show that the study of correlation-based networks and their evolution with time is useful for extracting important information of the underlying market dynamics. Also, we present our perspective on the use of recently-developed entropy measures, such as structural entropy and eigen-entropy, for continuous monitoring of correlation-based networks.

Keywords: econophysics, random matrix theory, correlation, networks, minimum spanning trees, clustering, financial networks


1. INTRODUCTION

Network science [1–4] has emerged as an important tool for studying different complex phenomena– spread of infectious diseases [5, 6], economic production [7], construction of robust sustainable infrastructure and technological networks [8], processing human information [9], innovation diffusion [10], detection of financial crashes [11–13], etc. In this mini-review, we focus on the role of network science in understanding complex financial markets. Our aims are two-fold: (i) To uncover the structure of the complex interactions among stocks at a particular period of time (static picture) through correlation-based networks, where the nodes represent the stocks in the financial market, and the links represent the interaction strengths of co-movements of stocks (as measured by correlations). For this purpose, one starts with computing the cross-correlations among stock price returns and then constructs any of the correlation-based networks– Minimum Spanning Tree (MST) [14, 15], Threshold Network [16], Planar Maximally Filtered Graph (PMFG) [17], etc. Using these networks, one can identify stocks (or sectors) that are in the “core” or “periphery” [18], as well as study their hierarchy/importance of the different stocks driving the market fluctuations. The correlations among stocks change with time, and the underlying dynamics of the market produces very intriguing and correlation structures. Temporal networks are those networks in which links are time dependent [19] and are useful for studying systems in which connections change or evolve with time. Correlation-based networks in the stock market are therefore temporal networks, because their links (constructed from correlation values) change or evolve with time. The understanding of the stock market dynamics can be very important for practical applications like portfolio optimization, risk management, etc. (ii) To continuously monitor (dynamic picture) the health and fragility of the financial market. The market index, which is a weighted arithmetic mean of the prices of selected stocks in the market, reflects the performance of the market and assists agents in comparing the current price levels relative to past prices. The daily index return is the difference of the logarithmic values of the index (at market closure) over a period of 1 day. Thus, for the purpose of continuous monitoring of the financial market, we study the temporal evolution of the market index returns along with two entropy measures, structural entropy [20] and eigen-entropy [21]. This becomes very useful and necessary for measuring the systemic risk, market regulation and predicting downturns or crashes [22], since there often exist sizable fluctuations during crashes and bubbles.



2. CORRELATION-BASED NETWORKS

Mantegna first studied the hierarchical structures of correlation-based networks in financial markets [14, 15]. Later, similar studies of correlation-based networks were made (see, e.g., [23–25]). These correlation-based networks provided easy visual representations of multivariate time series and extracted meaningful information about the complex market dynamics. The analysis of evolution of correlation-based networks provides an understanding of the underlying market trends, especially during periods of crisis [16]. For the construction of a correlation-based network to represent N stocks in a financial market in a time-epoch ending on date τ, one begins with the correlation matrix, C(τ), and uses a transformation to construct a distance matrix, [image: image] (for mathematical details, see Supplementary Material).


2.1. Minimum Spanning Tree

MST is constructed by using the distances dij's, which represent the interaction strengths (correlations) between pairs of stocks i, j = 1, …, N in a market for a specific time window, such that all N nodes (stocks) are connected with exactly N − 1 edges under the constraint that total distance is minimum [25–27]. Algorithms due to Kruskal or Prim are generally utilized to obtain MST from a distance matrix. For a non-degenerate distance matrix, the MST is uniquely determined. Two of the main advantages of MST are that: (i) it produces a network structure without putting any arbitrary threshold, and (ii) it has property of inherent hierarchical clustering. There have been many papers with applications of MST in equity markets [16, 18], currency exchange rates [28], global foreign exchange dynamics [29]. MST is useful for studying the taxonomy or the sector classification [30], with potential applications in portfolio optimization. Researchers have also carried out analysis of dynamical correlations using MST [24]. Among disadvantages, there is the fact that the order and classification of nodes in a cluster of MST is not robust, and often sensitive to minor changes in correlations or spurious correlations. Therefore, for improvement of results, either noise suppression techniques like Random Matrix Theory (RMT) [31] and power mapping [13] have been used, or alternative algorithms such as PMFG, Triangulated Maximally Filtered Graph, Average Linkage Minimum Spanning Tree, Directed Bubble Hierarchical Tree [17, 32–35] have been proposed. Instead of using pair-wise Pearson correlations, partial correlations and mutual information have also been explored in some studies [36, 37].



2.2. Threshold Networks

In this approach, an adjacency matrix is constructed by applying a threshold value in the correlation (Cij) or distance (dij) of the network. It filters out the strongest correlations (or shortest distances) by putting a certain value of threshold and discard the remaining correlations/distances. A high threshold value in the distance gives rise to a completely connected graph (one extreme), while decreasing value of threshold makes the connections less and less, until one gets a null network (at the other extreme). Thus, one can tune the threshold in order to get the desired strength of correlations. For a particular value of threshold, as correlation matrices change with time, the threshold networks also change (see Supplementary Material). One drawback of the threshold networks is that we do not get a spanning graph, and therefore, there is a “loss of information”; when we put a threshold value we discard some nodes and edges. Also, threshold networks are found to be very sensitive to the noise (random fluctuations).



2.3. Planar Maximally Filtered Graph

PMFG is a network drawn in a plane, such that there are no intersecting links [17, 38]. If N is total number of stocks, then it contains 3(N − 2) links. The PMFG has the advantage that it retains the structure of MST (which contains N − 1 links) and provides additional information about the connections [17, 32]. However, PMFG has a disadvantage that there exists a certain arbitrariness in its results, as there is an embedding of data from higher dimension to lower dimension with a zero genus [39]. Recently, PMFG and threshold network have been combined to produce PMFG-based threshold networks [40]. Threshold networks of the financial market are constructed over multi-scale and at multi-threshold [41].




3. ENTROPY MEASURES

As in other domains, entropy has also been used to understand the financial hazards as well as to construct an early warning indicator for predicting systematic risks [42, 43]. Maasoumi and Racine examined the predictability of the market returns using entropy measure and found that it is capable to detect the non-linear dependence within the time series of market returns as well as between returns and other prediction variables obtained from other models [44]. Recently, Ricci curvature and entropy have been used to construct an economic indicator for market fragility and systemic risk [45]. Very recently, Almog et al. presented a perspective on the use of entropy measures such as structural entropy [20], which is computed from the communities in correlation-based networks. Chakraborti et al. computed the eigen-entropy from the eigen-vector centrality of the stocks in the correlation-based network [21]. Below, we discuss the structural entropy [20] and eigen-entropy [21], and compare the two measures.


3.1. Structural Entropy

The concept of structural entropy has resolved the problem of choosing different period of crisis and extracting substantial information from the large network of stock market. The structural entropy measures the amount of heterogeneity of the network nodes with an assumption that more connected nodes share common attributes than others. The authors assume the nature of clusters to be independent sub-units of the network. The process of calculating the structural entropy involves two steps: (i) Calculation of an optimal partition function which places every node in a certain cluster using a community detection algorithm. (ii) Analysing the partition function and extracting the representative value of the diversity level (for mathematical details and schematic diagram, see Supplementary Material). The formula for Shannon's entropy is applied: [image: image], in terms of probability vector [image: image], where M is the number of communities and ci is the size of community i (proportional size of the community in the network).

Structural entropy S of the network provides a way to continuously monitor the state of the network. However, it is sensitive to the choice of community detection algorithm employed in detecting communities. This arbitrariness makes the calculation of entropy dependent on the choice of the user and hence is not unique.



3.2. Eigen-Entropy

Very recently, the concept of eigen-entropy was used in studying financial markets [21]. It is computed from eigen-centrality of the network obtained from the short time series correlation matrices [21, 46]. In order to capture the global feature of the network, every node is ranked by its eigen-centrality (for mathematical details and schematic diagram, see Supplementary Material). The similarity of the eigen-centralities (ranks) of the stocks is uniquely measured by eigen-entropy, defined as [image: image], where pi is the eigen-centrality of the i-th node (stock). Higher the similarity of the stock centralities, higher the eigen-entropy.

Empirical correlation matrix of the market may be decomposed in multiple ways. In many papers, it was decomposed into three separated modes, market mode CM, the group mode CG and the random mode CR. However, it is difficult (and somewhat arbitrary) to choose the range of eigenvalues corresponding to the group mode CG and the random mode CR, as the boundary is not often distinct. Another way to decompose is to consider the market mode CM (corresponding to the maximum eigenvalue) and the group-random modes CGR (rest of the eigenvalues), hence without any arbitrariness. CM&CGR is the preferable decomposition and corresponding eigen-entropy HM and HGR could be calculated as [image: image] (matrix element-wise) and [image: image] (matrix element-wise), respectively. The eigen-entropy computed using above method gives a simple yet robust measure to quantify the randomness of the financial market without using any arbitrary thresholds. Further, Chakraborti et al. [21] used the variables H − HM and H − HGR to construct a phase space, where the market epochs show phase separation and order-disorder transitions. These results are certainly of deep significance for the understanding of financial market behavior and designing strategies for risk management.




4. EMPIRICAL ANALYSES AND RESULTS

We have analyzed stock prices of the S&P500 USA market for the period of 1985-2016 (for details of data and methodology, see Supplementary Material), and made some plots of correlation-based networks as well as entropy measures, as presented below as well as in the Supplementary Material. In order to illustrate the usage and concepts of correlation-based networks and entropy measures, we have compared three correlation frames chosen arbitrarily from crash, bubble and normal periods of the market. It may be mentioned that during a market crash there is a sharp fall in the index return and all the stocks start behaving similarly; the whole market begins to act like a single huge cluster or community. During a bubble period, a particular sector gets overpriced or over-performs, causing accentuation of disparities among the various sectors or communities. In both the crash and bubble periods, there are sizable fluctuations (as mentioned earlier in the introduction) and consequently market volatility (see Supplementary Material for definition) is higher than the normal period. In the normal or business-as-usual period, there are several distinct sectors performing well, but the market volatility is low.

Figure 1 shows the analysis for three time-epoch of 40 days ending at: (first column) 23/07/1985, (second column) 08/01/2007, and (third column) 17/06/2010. Figures 1A–C show the heat-map of correlation matrices at three different periods. It shows the amount of correlation between N = 194 stocks of S&P 500 at different time periods: (Figure 1A) normal period (23/07/1985), when market behaves normally with low mean correlation between the stocks, (Figure 1B) bubble period (08/01/2007), when market experienced an upward drift in price in some sectors only and (Figure 1C) crash period (17/06/2010), when the market experienced huge recession. The corresponding MST's are shown in Figures 1D–F, which have been generated using the Prim's algorithm. Different colors in MST's correspond to different sectors in the market. The different market structures reflected in the correlation matrix are also visible in the correlation based Threshold Networks Figures 1G–I with threshold (dij ≤ 1) and PMFG's Figures 1J–L.


[image: Figure 1]
FIGURE 1. Static correlation-based networks: Analysis of S&P 500 market with 194 stocks (epoch of 40 days) for three different periods: first, second, and third columns are corresponding to 23/07/1985 (normal period), 08/01/2007 (bubble period), and 17/06/2010 (crash period), respectively. (A–C) are heat maps of correlation matrices of different periods. Minimum Spanning Trees are shown in (D–F). From (G–I), Threshold Networks at a particular value of threshold. Planar Maximally Filtered Graphs (J–L) for three different periods.


During the normal phase (Figures 1A,D,G,J) the market interactions are well-distributed across the stocks and the mean market correlations are not very high and the volatility is low (see Supplementary Material). During the bubble period (Figures 1B,E,H,K) certain sectors of stocks are more correlated with each other than the rest of stocks in the market. As visible in Figure 1H, few of the stocks are bunched together. This property is pronounced during times when a particular sector experiences a surge, e.g., during the dot-com bubble period, where the IT sector saw a boost but not the entire market. During the crashes (for the list, see Supplementary Material), the entire S&P market react in a similar way, which made the stocks in the market extremely correlated with each other (Figures 1C,F,I,L).

Figure 2 shows how the entropy measures may be used for continuous monitoring of the financial markets. Figures 2A–C show the evolution of S&P 500 market over a period of 1985 − 2016 for index returns r(τ), eigen-entropies H(τ), and structural entropy S(τ), respectively. Three vertical dashed line are corresponding to epochs ending at 23/07/1985, 08/01/2007, and 17/06/2010. We find that the Pearson correlation among the two measures S(τ) and H(τ) is −0.22, which indicates that the two measures are anti-correlated. The two entropy measures actually capture different aspects of the financial market.


[image: Figure 2]
FIGURE 2. Continuous monitoring of S&P 500 market with 194 stocks and for a rolling time-epoch of 40 days and shift of 20 days over a period of 1985 − 2016: The logarithmic returns of S&P 500 index is shown in (A). (B) Shows the temporal evolution of a new measurement “eigen-entropy” H(τ), calculated from eigen-vector centralities of correlation matrices. Evolution of structural entropy S(τ) calculated by using community detection algorithm is shown in (C). The dashed vertical lines are corresponding to different periods (normal, bubble, and crash) whose static results are shown in Figure 1.


The structural entropy is based on the idea of “structural diversity” in a network, and it was proposed to utilize the number of communities in a system and their corresponding sizes. In a way, the structural entropy tries to capture the amount of heterogeneity of the nodes in the network, with the assumption that nodes which share common attributes belong to the same community [39, 47]. The structural entropy reaches maximum (ln N), when the community structure is heterogeneous– there are N communities of equal size (unity), i.e., each node is assigned to a different community; it reaches minimum (zero), when all the N nodes are assigned to a single community. During a market crash, the market is extremely correlated and all stocks behave in a similar way as if belonging to a single community. Hence, the structural entropy decreases significantly (see also figure in Supplementary Material).

The eigen-entropy measures how similar the eigen-centrality ranks of the stocks are. The eigen-entropy reaches its maximum value (ln N), when all the centralities are of similar value, i.e., all the individual nodes have similar rank/importance, such that the variance of the eigen-centralities becomes low. From the return time series point of view, this occurs when all of stock prices are entirely uncorrelated such that the market is totally disordered (or random)—indicative of the lack of any group or sectoral structures, or when the market is extremely correlated such that all the stocks behave in a similar way. During a market crash, the market is extremely correlated and all stocks behave in a similar way and so the eigen-entropy increases significantly.



5. DISCUSSIONS AND CONCLUDING REMARKS

In this review, we have discussed different methods for analysis of static and dynamic correlation-based networks of financial markets, and also studied how entropy measures can be used to identify normal, bubble, and crash periods. Specifically, we have compared the recently developed concepts of structural entropy and eigen-entropy.

It is noteworthy that financial networks are naturally “weighted,” as each link bears a numeric value representing the correlation between the nodes (stocks). In a recent paper [48], it has been shown how real weighted network with large link weights heterogeneity may lower robustness in case of nodes/links failure. It would be interesting to see how these methods could be used to increase the robustness in context of financial networks.

We have also seen that many of the correlation-based networks have shown clustering with communities of stocks. Thus, community detection in network science serves as an important technique for extraction of the clustering information from empirical correlation matrix of a multivariate time series. Several community detection algorithms have been proposed [39, 47, 49]. The problem is that different community detection algorithms yield different results for the same empirical correlation matrix. So, often domain knowledge is required to determine what is a sensible or meaningful community.

Further, we have seen that many of the networks are sensitive to noise or spurious correlations. Properties of random matrices [50] have turned out to be useful in reducing noise and thus understanding dynamics of complex systems [51]. An ensemble of random matrices, also known as stationary or standard random (Gaussian) matrix ensemble [50], introduced by Wigner [52, 53], have been applied to many studies in physics, biology, finance, etc. (see [54] and references therein). The probability distribution of eigenvalues of Wishart orthogonal ensemble (WOE) follows Marcenko-Pastur distribution [55]. The empirical correlation matrix of a complex system is normally compared with WOE [24, 31, 56]. It has been observed from eigenvalues statistics of empirical correlation matrices that the few largest eigenvalues show deviations from the Wishart ensemble. Note that Pearson cross-correlation assumes that the time series are stationary, which are valid for shorter lengths of time series. However, if the number of time series are greater than the lengths of time series, then corresponding empirical correlation matrices are noisy and highly singular. For such short time series, there is a great need of noise suppression in correlation matrix to extract actual correlations. There are different techniques for suppressing the noise in correlation matrix [57–59]. Notably, any empirical correlation matrix of financial market can be decomposed into partial correlations, consisting of market CM, group CG and random CR modes, respectively [60]. It enables us to identify the dominant stocks, sectors and inherent structures of the market. Recently, detailed analyses of the empirical correlation matrices using these approaches have been carried out to understand the complexity in dynamics of stock market [13, 51, 61]. It has been found that during the crisis, the eigenvalue spectrum behaves very differently from one corresponding to a normal period.

Finally, we must mention that the prediction of collapses of financial markets using traditional economic theories has been a disastrous failure. These new and alternate methods have the potential use of continuous monitoring and understanding of the complex structures and dynamics of financial markets. These are a few of the attempts physicists have made for generation of early warning signals for crisis, and these methods can be used for timely intervention.
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Deep learning algorithms' powerful capabilities for extracting useful latent information give them the potential to outperform traditional financial models in solving problems of the stock market which is a complex system. In this paper, we explore the use of advanced deep learning algorithms for stock-index tracking. We partially replicate the CSI 300 Index by optimizing with respect to the difference between the returns of the tracking portfolio and the target index. We extract the complex non-linear relationship between index constituents and select a subset of constituents to construct a dynamic tracking portfolio by six well-known auto-encoders (single-hidden-layer undercomplete, sparse, contractive, stacked, denoising, and variational auto-encoders) that have been widely used in contexts other than stock-index tracking. Empirical results show that the auto-encoder-based strategies perform better than conventional ones when the tracking portfolio is constructed with a small number of stocks. Furthermore, strategies based on auto-encoders capable of learning high-capacity encodings of the input, such as sparse and denoising auto-encoders, have even better tracking performance. Our findings offer evidence that deep learning algorithms with explicitly designed hierarchical architectures are suitable for index tracking problems.

Keywords: stock-index tracking, complex system, deep learning, auto-encoders, non-linear relationship


INTRODUCTION

The market index system has evolved with the development of the securities market. Financial products such as index funds, index futures, and index options emerge endlessly, indicating that indexing investment has won the favor of investors, especially institutional investors. Traditional investment based on the analysis of timing and stock fundamentals is an actively managed strategy, whereas indexing investment is passively managed. By constructing a portfolio to track a market index, investors expect to obtain the same return and volatility as the target index, with relatively lower risk and management cost, as well as better liquidity. The choice of how to construct a tracking portfolio (i.e., of an index tracking method) is crucial for the management of index funds, for hedging or arbitrage through index financial derivatives such as index futures, and for maximizing the performance of index investment generally. At the present time, the tracking methods utilized with stock index funds are fairly homogeneous but the tracking errors differ significantly. Therefore, there is great value in attempting to improve index tracking technology. In recent years, the rapid development of computer technologies and the discipline of quantitative finance especially make it possible to propose more effective index tracking methods.

The many index tracking strategies that have been put forward in theory and practice can be divided into full replication strategies and optimization strategies [1]. In the full replication method, all the constituent securities of the target index are purchased and allocated the same weights that they have in the index. Although full replication is easy to manage and operate and is highly consistent with the target index, it has many unavoidable defects. Its large portfolio size brings high transaction costs and large tracking errors [2]; some of the constituent securities may not be traded due to liquidity problems; the adverse effects of individual securities cannot be avoided; etc. In the optimization method, the historical data of the components are analyzed and a suitable number of assets for inclusion in the tracking portfolio are selected with the help of advanced algorithms. Thus, fewer securities are required to achieve the purpose of indexing investment [3]. Compared with full replication, the optimization method can significantly reduce management costs and increase tracking efficiency, advantages which have made it the focus of much current academic research.

Among the most widely applied approaches for selecting a subset of constituent stocks are market-value ranking, weight ranking, liquidity ranking [4], correlation coefficient ranking, random sampling, stratified sampling [5], and genetic algorithms [6]. However, these established stock selection approaches fail to collect and utilize adequately historical information about constituent stocks, target indexes, and the correlations between them. Therefore, it is necessary to develop new techniques.

The goal of index tracking is to make the return of the tracking portfolio as close as possible to the return of the target index. There are two main indicators used to evaluate the performance of index tracking: the standard deviation of the difference between the return of the tracking portfolio and that of the benchmark index [7] and the square root of the second-order moment of the difference [8]. There are also other, less common metrics for measuring tracking errors, such as Mean Absolute Deviation (MAD), Maximum Absolute Deviation (Max), Mean Absolute Downside Deviation (MADD), and Downside Maximum Absolute Deviation (DMax) [8]. The objective function can be constructed by minimizing one of the tracking errors defined above; the weight allocations of the tracking portfolio can then be obtained. When the tracking error is defined as the square root of second-order moment of the return difference, minimizing it requires a quadric programming model, and therefore its optimal solution can be found by best linear unbiased estimation (BLUE) [9], a standard econometric method. We will use this model to construct a tracking portfolio.

Since Markowitz [10] first proposed the mean-variance model, the measurement of index tracking errors and optimal replication methods have generated an extensive literature. For example, Roll [11] studies partial replication of the index by optimizing with respect to the volatility of the tracking error based on Markowitz's mean-variance model. Ammann and Tobler [12] present four suitable decompositions of tracking error variance. Dunis and Ho [13] introduce the concept of co-integration into the problem of index tracking optimization and obtain good tracking performance. Chiam et al. [14] build a multi-objective evolutionary system that can simultaneously optimize tracking performance and transaction cost to track the index. Filippi et al. [15] focuses on the problem of index tracking with consideration of the expected excess return, using a bi-objective approach.

Machine learning algorithms have made dramatic progress over the past four decades, and applications for them have been found in various disciplines, including financial asset management. The tools of machine learning have notable advantages in solving asset management problems. Asset managers can use machine learning techniques to identify underlying assets by discovering new patterns in a complex system and immediately make investment decisions based these insights. Further, machine learning algorithms enable new forms of data, such as data in graphic and sound formats, to be used as input to models, helping investment managers better analyze the market trend. In addition, machine learning algorithms may also reduce the negative impact of human subjective biases on investment decisions. Consequently, a growing body of research takes advantage of machine learning algorithms to study asset management or index tracking. Focardi and Fabozzi [16] propose to use clustering for constructing index tracking portfolios. They cluster co-integrated stocks based on Euclidean distances between stock price series and select one stock from each cluster to include in the tracking portfolio. Yang et al. [17] study the index-tracking problem by applying a support-vector machine model. Their empirical results show the model performs robustly on tracking the Hang Seng Index (HSI). Jeurissen and Berg [18] use a hybrid genetic algorithm, where each chromosome represents a subset of the stocks, to address the problem of stock index tracking by partial replication. A backpropagation-based neural network has been built by Zorin and Borisov [19] to form full replication of the stock index (although the tracking performance is not as good as expected). Fernández and Gómez [20] propose a heuristic solution for the portfolio selection problem based on the Hopfield network, but their results demonstrate no superiority over other heuristic models. By analyzing data from the Brazilian stock market, Freitas et al. [21] find a neural network model that outperforms the Markowitz's mean-variance model in portfolio optimization. Chen et al. [22] propose a flexible neural tree ensemble model to predict the NASDAQ-100 and S&P CNX NIFTY stock indexes, achieving reliable forecast performance. Wu et al. [23] use the non-negative-lasso method to fit and predict the CSI 300 Index with short-selling constraints; the results indicate that non-negative lasso can achieve a small tracking error.

Recently, with the rapid development of deep-learning technology, methods based on artificial intelligence have enjoyed unprecedented popularity [24]. One approach involves applying deep learning algorithms to the problem of index replication since the stock market is a complex system. A portfolio construction approach based on deep learning is first proposed in academia by Heaton et al. [25]. Ouyang et al. [26] have subsequently expanded this framework by including a dynamic asset-weight calculation method and implemented this model to track the HSI. However, their optimized asset weights may become negative, contrary to traditional asset allocation implementations. In order to accomplish partial replication, both Heaton et al. [25] and Ouyang et al. [26] select stocks by measuring the Euclidean distance between the original returns and the reconstructed returns of the index components using auto-encoders, which are the core elements of their frameworks.

Kim and Kim [27] argue that such an asset selection criterion is artificial. They modify it by constructing an auto-encoder in such a way that the deepest hidden layer has only one node (a proxy for the market index) and measuring the similarity of this latent representation to individual asset returns. We disagree with this approach. If an auto-encoder uses non-linear activation functions, then the deepest latent representations are non-linear combinations of the input original asset returns and capture some complex abstract features of the market index. Although these features can represent the market index, it is generally difficult to find their corresponding economic meanings. The candidate asset returns' similarities to these abstract features are not equal or even related to their similarities to the target index returns. A selection criterion based on this measure would therefore seem to be meaningless. Moreover, the extremely contractive structure of the auto-encoder with a single-node deepest latent layer may result in excessive loss of input information. None of the above three papers [25–27] suggests that the index tracking approach based on deep learning algorithms can outperform traditional index tracking techniques. Evidence is needed that deep learning is sufficiently advanced to handle index tracking problems. Moreover, various auto-encoders with more complex structures and better properties have been developed; it is reasonable to ask whether they can improve the performance of stock selection.

Based on the framework proposed by Heaton et al. [25], this paper investigates the applications of various auto-encoder deep-learning architectures in selecting representative stocks from the index constituents. The stocks are also selected by measuring the Euclidean distance between the original returns and the reconstructed ones. We then build dynamic tracking portfolios with the selected stocks to partially replicate the return of the index and evaluate their tracking performances. This article differs from Heaton et al. [25] and other related papers in several respects. First, we examine the effectiveness not only of the single-hidden-layer undercomplete auto-encoder but also of five other auto-encoders widely used in academe and industry, including the stacked auto-encoder and the denoising auto-encoder. Second, we propose a method for constructing dynamic tracking portfolios. The weights of the stocks in the tracking portfolio are calculated and adjusted periodically. This is more feasible and appropriate for practical indexing investment than what is done in other deep-learning methods. Third, we introduce two conventional stock selection strategies (weight ranking and market-value ranking) in addition to the strategies implemented by auto-encoders. The tracking performances of all these strategies in selecting various numbers of stocks are contrasted to confirm the advantages of applying auto-encoders.

The rest of the paper is organized as follows: section Methodology outlines the related algorithms and how they will be implemented. Section Empirical Analysis details our experimental setups for index tracking and presents the empirical results and discussion. Section Conclusions concludes the paper.



METHODOLOGY


Stock Selection Using Auto-Encoders

Auto-encoders are a special case of feedforward neural networks [28]. They are generally used for dimensionality reduction and feature extraction. Recently, they have also been employed as generative models to produce, for example, pictures. Unlike other feedforward neural networks, auto-encoders use unsupervised learning; their task is to copy the input to the output. An auto-encoder is composed of an encoder and a decoder. In Figure 1, x represents the input data; f(x) represents the encoder, forming a hidden layer h that discovers some latent state representation of the input; and g(h) = g(f(x)) represents the decoder, which produces a reconstruction x′. In general, the learning process of an auto-encoder can be described as minimizing the reconstruction error [image: image], which is defined as the difference between x and x′. The output of an auto-encoder is worthless if it is simply a copy of the input. Auto-encoders are prevented from replicating the input completely by imposing constraints on the hidden layers, such as limiting the number of hidden units and adding regularizers, so that latent attributes of the input data can be learned and described.


[image: Figure 1]
FIGURE 1. General processing flow of an auto-encoder.


A common way to obtain useful features from an auto-encoder is to require the dimension of h to be smaller than x. An auto-encoder with this bottleneck structure is called an undercomplete auto-encoder. Consider first a single-hidden-layer undercomplete auto-encoder that contains one hidden layer with five neurons, consistent with Heaton et al. [25]. Its architecture is shown in Figure 2. Given a training batch D = {x(1), x(2), …, x(m)} containing m samples, the input of a single-hidden-layer undercomplete auto-encoder is [image: image], a vector representing n index component stock returns on a certain trading day. Similarly, the output is [image: image]. The input x is mapped to h which is a vector of hidden units through the encoder. The subsequent decoder maps h to the output vector x′ to reconstruct x. The two steps can be written

[image: image]

[image: image]

where W1, W2 represent the weights of a linear transformation; b1, b2 are the biases; and f(·) is an activation function. Frequently used activation functions are sigmoid (1/(1 + e−x)) [29, 30], hyperbolic tangent (tanh(x)) [31], or rectified linear units (ReLU) (max{0, x}) [32–34]. In this paper, f(·) is set to be a ReLU function, because ReLU solves the gradient vanishing problem (in the positive interval) with a high speed of convergence and calculation compared to other activation functions. When the activation functions are linear and the loss function is the mean squared error, the action of the single-hidden-layer undercomplete auto-encoder is equivalent to Principal Component Analysis (PCA) [35]. In addition, we do linear transformation other than use non-linear activation functions on the output layer to make the output zero-centered. The characteristics of the output are thereby kept consistent with the input data.


[image: Figure 2]
FIGURE 2. Architecture of the single-hidden-layer undercomplete auto-encoder.


The network of the single-hidden-layer undercomplete auto-encoder is trained by minimize the reconstruction error [image: image], i.e., the two-norm difference between the input vector and the output vector:

[image: image]

Back-propagation is used for the solution of Equation (3), with the popular gradient descent optimization algorithm called Adaptive Moment Estimation (Adam) [36]. (Unless otherwise stated, in the constructions of other auto-encoder models in this paper, the designs of the input and output vectors, the activation functions of the hidden layers, the loss functions, and the parameter-optimization algorithms are consistent with those of the single-hidden-layer undercomplete auto-encoder).

We already know that undercomplete auto-encoders can learn the most significant features of data distribution. However, if these auto-encoders are given too much capacity, they cannot learn any useful information. Regularized auto-encoders can solve this problem by imposing particular forms of regularization on the networks in order to encourage the models to have better generalization abilities rather than limiting their capacity. Sparse auto-encoders [37, 38] are a common kind of regularized auto-encoders. A sparse auto-encoder suppresses the activation of most neurons in the hidden layer by adding a sparsity penalty in the loss function, thereby providing another method of knowledge compression without reducing the number of nodes in the hidden layer. The architecture of the sparse auto-encoder applied in this paper is shown in Figure 3. The hidden layer has the same dimension as the input and output layers. The light-colored circles in the hidden layer represent suppressed neurons, while the dark-colored circles represent activated neurons. Since the activation of neurons is data-driven, the sparse auto-encoder can obtain specific feature representations for different input data. The network's capacity is limited to prevent excessive memorizing of input data, while the capacity to extract data features is not limited. There are two common ways of constructing the sparsity penalty: L1 regularization [39] and Kullback–Leibler (KL) divergence [40]. In this paper, we use L1 regularization. The loss function for training our sparse auto-encoder is given by

[image: image]

where the second term penalizes the output value of the hidden layer, scaled by a tuning parameter λ.


[image: Figure 3]
FIGURE 3. Architecture of the sparse auto-encoder.


We also consider another regularized auto-encoder, the contractive auto-encoder [41], which is designed to make the learned feature representation insensitive to small changes around the training examples. This is accomplished by penalizing instances where a small change in the input results in a large change in the encoding space. Thus, the loss function is

[image: image]

where the penalty term is the squared Frobenius norm (sum of squared elements) of the Jacobian matrix for the hidden layer outputs with respect to the input observations. Although the contractive auto-encoder regularization criterion is trivial to calculate in the case of a single hidden layer auto-encoder, it becomes much more difficult in the case of deeper auto-encoders. Therefore, the contractive auto-encoder used in this paper adopts the same structure as the single-hidden-layer undercomplete auto-encoder mentioned above. Since we employ ReLU as the activation function on the hidden layer, the regularization criterion can be given the following analytical form:

[image: image]

[image: image]

Auto-encoders are not required to be composed of a single-layer encoder and a single-layer decoder. In fact, deep auto-encoders yield much better compression than corresponding shallow auto-encoders [42]. The general method for training a deep auto-encoder consists of training a stack of shallow auto-encoders so as to pretrain the deep architecture. For this reason, deep autoencoders are also called stacked auto-encoders. The stacked auto-encoder employed in this paper is built with the structure shown in Figure 4, where the numbers of hidden layers and neurons in each layer are set by trial and error.


[image: Figure 4]
FIGURE 4. Architecture of the stacked auto-encoder.


Till now, the input and output of the auto-encoders we have introduced are identical. Such models may not perform well on a testing set where the testing and training data do not exhibit the same distribution. The denoising auto-encoder [43] provides remedies for this deficiency. Denoising auto-encoders receive as input data that have been corrupted by some form of noise, and are trained to reconstruct the uncorrupted data as their output. After denoising training, the network is forced to learn more robust invariant features and obtain more effective representations of the input. This is very similar to a contractive auto-encoder in the sense that the noise is considered a series of small perturbations to the input. The difference is that contractive auto-encoders make the feature extraction function resist small perturbations of the input, while denoising auto-encoders make the reconstruction function resist them [44]. The initial input can be corrupted by adding Gaussian noise or stochastically discarding certain features. The denoising auto-encoder employed in this paper is constructed with the same architecture as the stacked auto-encoder. The only difference is that the input is the corrupted data [image: image], as shown in Figure 5, and given by

[image: image]

where [image: image] represents a multivariate standard normal distribution with a diagonal covariance structure, and η denotes noise intensity. The loss function for the denoising auto-encoder still computes the two-norm difference between the output vector x′, and the original data x.


[image: Figure 5]
FIGURE 5. Architecture of the denoising auto-encoder.


The decoder networks built by the auto-encoders we have introduced above output a single value to describe each latent attribute. However, sometimes we hope to learn a probability distribution for each latent attribute to produce a better generalization and ensure that the latent space has properties that enable the generative process. This goal can be achieved by applying a well-known generative model, the variational auto-encoder [45, 46]. The special structure of the variational auto-encoder designed for the purpose of this paper is shown in Figure 6. Its encoder outputs parameters describing a distribution for each dimension in the latent space. Here we assume that the prior distribution p(h) of the latent representation obeys a standard normal distribution, and the encoder therefore outputs two vectors describing the mean μ and variance σ2 of the latent state distribution. The decoder will then generate a latent vector h by sampling from a multivariate Gaussian model with a diagonal covariance matrix and reconstruct the original input. It is worth noting that a simple trick, reparametrization, is used when sampling. It can be expressed as

[image: image]


[image: Figure 6]
FIGURE 6. Architecture of the variational auto-encoder.


This allows us to sample from a unit Gaussian [image: image] rather than sampling from the distribution [image: image], so as to ensure that the results of sampling are derivable and the error can be backpropagated through the network. The loss function for the variational auto-encoder is defined as

[image: image]

where

[image: image]

The first term in Equation (10) penalizes reconstruction errors (a feature also found in other auto-encoders). The second term encourages the learned latent-state distribution q(h|x) to be similar to the prior distribution p(h), which minimizes the KL divergence between these two distributions. The relative weights of these two items are controlled by a hyperparameter λ.

After the auto-encoders have been trained, their encoders output an n-dimensional vector that contains n different latent factors. These latent factors are obtained by the process of dimensionality reduction or compression and can be used to represent n independent implied abstract features of the stock index market. This technique is of great significance in finance. Traditional financial pricing models with shallow architectures (at most two layers) typically describe market information based on linear portfolios. For example, the capital asset pricing model (CAPM) proposed by Sharpe [47] assumes that the market return is expressed by a linear combination of asset returns. In the arbitrage pricing theory (APT) proposed by Rosenberg and McKibbon [48] and Ross [49], a layer of linear factors is used to perform pricing. These traditional financial theories also apply the idea of dimensionality reduction, as they reduce a dataset of n observations (returns or factors) to one parameter. However, while the implied market prices capture linear features of the input asset returns or factors, they ignore a large amount of latent information and the non-linear relationship between the assets in a complex system with fractality properties. For this reason, we use the auto-encoder model with a hierarchical structure of univariate activation functions of portfolios to make up for the shortcomings of traditional financial models.

The decoders then proceed to reconstruct the input individual stock-returns from the latent representations of the stock index market. However, this process involves compression encoding, and therefore will inevitably bring information loss. Following Heaton et al. [25], we calculate the information loss of each stock during the encoding-decoding process by using Equation (12) below to measure the similarity of the j-th stock with the stock index market (i.e., the total two-norm difference between every original stock return and the corresponding reconstructed one on the training batch):

[image: image]

The smaller [image: image] is, the less information the j-th stock loses, and therefore the more similar it is to the stock index market. We rank the stocks by their communal information content, i.e., the amount of information that they share with the stock index market. Since it is not beneficial for improving index tracking performance to include too many stocks contributing the same information, we select a fixed number of the most-communal stocks plus a variable number of the least-communal stocks to construct a tracking portfolio.

In addition, in order to investigate the superiorities of auto-encoder-based stock selection strategies, we also adopt for comparison two conventional index-tracking stock-selection strategies: weight ranking and market-value ranking. We evaluate the tracking performance of these strategies under the same conditions.



Index Tracking Model

After selecting the representative stocks by the strategies above, we use an index tracking model to determine the investment weight allocated to each stock in the tracking portfolio, with the objective of minimizing tracking error and other constraints. The index tracking model established in this paper can be expressed as the following quadric programming problem:

[image: image]

where [image: image] is a vector of the index return time series; [image: image] denotes the return matrix of the selected stocks; and [image: image] is a vector of stock weights. The objective function is complemented with a regularization term, [image: image], to avoid overfitting. In addition, the stock weights are kept non-negative, considering the short-selling restrictions in China's stock market.




EMPIRICAL ANALYSIS


Data Description and Processing

We investigate partial replication of the CSI 300 Index with the index tracking strategies we have proposed. The CSI 300 Index is a barometer of China's stock market. Its main income accounts for more than seventy percent of the Chinese market, and it well-represents emerging markets throughout the world. We use the daily closing prices of the CSI 300 Index and its constituent stocks from the sample period January 1, 2010 through December 31, 2018 (comprising 2,187 trading days). Because the constituents of the CSI 300 Index are adjusted semi-annually, generally in early January and early July, we obtain the daily closing prices of all the stocks that have been included in the constituents during the sample period. We also record the mid-year and end-year market values of the constituents and their weights from 2010 to 2018, for use in weight ranking and market-value ranking.

To ensure the analysis results are accurate and reliable, we first clean the original pricing data by the following steps:

(i) Exclude the stocks if more than 20% of the pricing data is missing in the training set (defined in the next sub-section).

(ii) Exclude the stocks if all pricing data for the first 5 days and the last 5 days is missing in the training set.

(iii) Exclude the stocks if they have been ejected from the constituents of the CSI 300 Index during the training set and the following testing set (defined in the next sub-section).

(iv) Perform linear interpolation to fill the missing prices of the retained stocks.

We obtain the daily return time series ri, t for each stock or the index by calculating ri, t = (Pi, t − Pi, t−1)/Pi, t−1, where Pi, t denotes the daily closing price of stock (index) i on day t. Then all daily returns are standardized using z-score normalization as follows:

[image: image]

where [image: image] and σi denote the mean and standard deviation of ri, t, respectively.



Design of Tracking Strategy

In order to construct a dynamically adjusted out-of-sample portfolio to track the index, the data sample is divided into training and testing sets by the rolling-window approach [50]. The rolling-window approach keeps the features of time series in the data, making it match the investment decision-making process in practice. The training set is used to train the stock selection model to select a subset of constituents. The index tracking model which takes the returns of the selected stocks as input is then also trained on the training set to obtain the stock weights. Afterwards, we construct a tracking portfolio with the selected stocks and corresponding weights obtained from the training set, and compute its portfolio return as well as the index tracking error on the testing set. We use the past four years' data as a training set. The dataset for the following 6 months is regarded as a testing set, in line with the adjustment frequency of the index constituents. This process continues for 5 years on each half-year from Jan. 2014 to Dec. 2018. For each stock selection model, there are in all 10 periods and 5 yearly index tracking results. The tracking procedure is illustrated in Figure 7.


[image: Figure 7]
FIGURE 7. Arrangement for training and testing sets during the whole sample period.




Performance Measurement

We select stocks for each training set by employing eight selection approaches: six auto-encoder-based models, weight ranking, and market-value ranking. The auto-encoders are used to measure the degree of communal information between the stock index market and the constituent stocks. We then sort the constituents accordingly and select a subset of constituents that satisfy our requirements. As an example, Figures 8, 9 illustrate the stock 601618.SH, which shares the most communal information with the stock index market in the first period of the training sets (adopting the signal-hidden-layer undercomplete auto-encoder), and the stock 600015.SH, which shares the least. Obviously, stock 600015.SH loses much more information than stock 601618.SH during the encoding-decoding process. We already know that it is not necessary to add too much communal information to a portfolio. Following Heaton et al. [25], we select the 10 most communal stocks plus the n − 10 least communal stocks to construct a tracking portfolio, where n increases from 15 to 80 in steps of five. The weight (market value) ranking method is to select the n stocks with the largest half-yearly average weights (market values) for inclusion in a tracking portfolio.


[image: Figure 8]
FIGURE 8. Stock (601618.SH) with the most communal information: the prices of the actual and auto-encoded stocks are nearly the same across the period shown.



[image: Figure 9]
FIGURE 9. Stock (600015.SH) with the least communal information: the prices of the actual and auto-encoded stocks differ significantly across the period shown.


After determining the stocks required for inclusion in the tracking portfolio, we apply the index tracking model introduced in section Index Tracking Model to determine the stock weights and construct a tracking portfolio to partially replicate the CSI 300 Index. We evaluate the tracking errors on portfolios with the same number of stocks selected by different strategies. A smaller tracking error indicates better tracking performance of the stock selection strategy. The equation for calculating the average tracking error ATE is

[image: image]

where the T represents the total number of out-of-sample trading days (which spans from January 1, 2014 to December 31, 2018 and covers 10 adjustment periods as the tracking portfolio is adjusted every half-year); RIt and Rpt are the returns of the index and of the tracking portfolio at time t.

Table 1 shows the out-of-sample tracking error values for the CSI 300 Index. Figure 10 plots how the tracking error values change as a function of the number of stocks for all stock selection strategies. The tracking errors of all strategies decrease as the number of stocks in the tracking portfolio increases. In particular, the tracking error falls quickly when < 40 stocks are included in the portfolio. Furthermore, when the number of stocks included is < 30, the tracking errors of the six auto-encoder-based strategies are significantly smaller than those of the weight ranking and market-value ranking strategies. However, the falling rate of the tracking error slows down when over 40 stocks are required for inclusion. Moreover, the tracking errors of the six auto-encoder-based strategies exceed those of the weight ranking and the market-value ranking strategies when over 40 and 55 stocks are required for inclusion, respectively. We suggest the following explanations for the above results. When the tracking portfolio is constructed with many stocks selected by the weight ranking and market-value ranking strategies, the cumulative origin weight in the index of the selected stocks is larger, making the performance of the tracking portfolio closer to that of the index. While as the number of stocks in the tracking portfolio increases, the auto-encoder-based strategies append more stocks with medium communal information to the portfolio. The portfolios containing the most- and least-communal stocks are well able to reflect the market information. Thus, there is no benefit in having more medium-communal stocks.


Table 1. Out-of-sample tracking error values (×10−3) for all strategies covered by this study.

[image: Table 1]


[image: Figure 10]
FIGURE 10. Tracking error curves for all strategies covered by this study.


Comparing the auto-encoder-based strategies to one another, the tracking errors of the strategies based on sparse, contractive, stacked, and denoising auto-encoders are almost always < that of the strategy based on single-hidden-layer undercomplete auto-encoder regardless of the number of stocks, although the difference is not sizeable. The explanation is that some of these four types of auto-encoders have a deeper structure that can learn more complex coding and deeper market information, while others are regularized to encourage the model to learn other features (except copying the input to the output) without limiting the model capacity by keeping the encoder and decoder shallow and the code size small. In either case, these auto-encoders can create more information-efficient representations of the market than the single-hidden-layer undercomplete auto-encoder, so that the stocks selected by the strategies based on them better represent the entire market.

However, the strategy based on the variational auto-encoder does not perform better than that based on single-hidden-layer undercomplete auto-encoder. This can also be explained. The purpose of an auto-encoder in the present work is to replicate the original input stock information from the latent space representing the compressed market information. However, a variational auto-encoder (mentioned in section Stock Selection Using Auto-Encoders, and normally used as a generative model) is meant to generate variations on an input vector from a continuous latent space: that is, its encoder only outputs a range of possible representations of the market, and these do not necessarily describe the market's current state. Therefore, the output reconstructed by the decoder is far from being a copy of the original input stock information. From this perspective, it is not surprising that the strategy based on the variational auto-encoder does not yield the desired result.

Although increasing the number of stocks in the tracking portfolio will reduce the tracking error, it will not significantly improve the tracking performance, while it will create additional transaction cost when the number of stocks included reaches a certain value. According to the previous analysis, the tracking error decreases rapidly as the number of stocks increases and the corresponding transaction cost is acceptable if a tracking portfolio is constructed with < 40 stocks. Therefore, the number of stocks in the tracking portfolio should be kept under 40 when balancing the tracking error and the transaction cost.

Considering the absolute tracking error values and the slope of the curves for the auto-encoder-based strategies in Figure 10, we find the tracking performance of auto-encoder-based strategies greatly surpasses that of conventional strategies for a 25-stock tracking portfolio. Figure 11 shows the out-of-sample cumulative return curves of the CSI 300 Index and the 25-stock tracking portfolios constructed by our proposed strategies. The relative advantages of auto-encoder-based stock selection strategies can be seen clearly. In particular, the tracking error of the market-value ranking strategy is 5.940 × 10-3, and that of the weight ranking strategy is 5.224 × 10-3. Among the six auto-encoder-based strategies, the tracking error of the denoising auto-encoder-based strategy is the smallest at 3.940 × 10-3, which is 33.67% lower than that of market-value ranking and 24.58% lower than that of weight ranking. The other five auto-encoder-based strategies also track better than the conventional strategies to varying degrees. Even the worst-performing auto-encoder-based strategy (the variational auto-encoder) has reductions of 25.88 and 15.72% compared to market-value ranking and weight ranking strategies, respectively. In conclusion, auto-encoder-based strategies outperform conventional strategies, provided that only a small number of stocks are required for inclusion in a tracking portfolio.


[image: Figure 11]
FIGURE 11. Out-of-sample cumulative return curves of the CSI 300 Index and the 25-stock tracking portfolios constructed by all strategies covered by this study.




Robust Test

To evaluate the sensitivity of these empirical results to changes in the data sample, we perform various robustness checks.

First, variations in length of the training set may have an impact on the results. As a robustness check, we analyze the tracking performance when each training set length is changed to 3 or 5 years, respectively. Keeping each testing set length at 6 months, the length of the out-of-sample period accordingly changes to 6 and 4 years, respectively. Figures 12, 13 illustrate how the curves of the tracking error vary with the number of stocks when each training set has a length of 3 and 5 years, respectively. The results reveal that the auto-encoder-based strategies tracks the index better than the conventional strategies when < 30 stocks are included in a tracking portfolio. In particular, the sparse auto-encoder-based strategy gets the lowest tracking error among all the auto-encoder-based strategies with 3-year training sets, whereas the denoising auto-encoder-based strategy performs best with 5-year training sets. In addition, the tracking error values change little in response to variations in the length of the training set. Thus, our base case results hold for these alternative training-set lengths.


[image: Figure 12]
FIGURE 12. Tracking error curves for all strategies with 3-year training sets.



[image: Figure 13]
FIGURE 13. Tracking error curves for all strategies with 5-year training sets.


Second, the rebalancing frequency, which is the reciprocal of the length of each testing set, will affect the performance of dynamic portfolio management. We compute quarterly and yearly rebalanced portfolios while keeping the training-set length unchanged to investigate the sensitivity of our results to alternative rebalancing frequencies. The results in Figures 14, 15 verify that our base case results are robust to these changes. In particular, with quarterly rebalancing, the sparse auto-encoder-based strategy tracks the index best among all auto-encoder-based strategies and brings greater improvement on conventional strategies' tracking performance compared to the base case results. In the case of a 25-stock portfolio, the tracking error of the sparse auto-encoder-based strategy is 3.861 × 10-3, which is 34.91% lower than the market-value ranking and 25.86% lower than the weight ranking. In contrast, with yearly rebalancing, the denoising auto-encoder-based strategy gets the best tracking performance. This proves that the sparse and denoising auto-encoder-based strategies are better at index tracking than the other four auto-encoder-based strategies.


[image: Figure 14]
FIGURE 14. Tracking error curves for all strategies with quarterly rebalancing.



[image: Figure 15]
FIGURE 15. Tracking error curves for all strategies with yearly rebalancing.





CONCLUSIONS

We investigate the index tracking performance of deep learning-based tracking approaches. In particular, we use a variety of advanced auto-encoders: single-hidden-layer undercomplete, sparse, contractive, stacked, denoising, and variational auto-encoders to extract the complex non-linear relationship between stocks in a complex stock market system and construct dynamic tracking portfolios with subsets of stocks. Only one or two of these auto-encoders has previously been examined in the context of stock selection. Moreover, we evaluate for the first time whether auto-encoder-based strategies improve the tracking performance over the conventional strategies of weight ranking and market-value ranking.

In general, we find that whether auto-encoder-based strategies outperform conventional ones depends upon the number of stocks included in the tracking portfolio. When only a small number of stocks (probably < 30) are needed to construct a tracking portfolio, the auto-encoder-based strategies are generally superior to conventional strategies in terms of tracking performance. Furthermore, auto-encoders with particular architectures that can learn high-capacity, overcomplete encodings of the input, e.g., sparse and denoising auto-encoders, are better even than other auto-encoders at capturing complex latent representations of the market. The portfolios with stocks selected by these auto-encoders better replicate the index. However, if more than 40 stocks are required for inclusion, the conventional strategies still have the advantage.

Our findings suggest that deep learning algorithms are suitable for index tracking problems if the hierarchical architectures are explicitly designed. We expect these findings to be helpful in making asset-allocation decisions, especially, for indexing investment. Nonetheless, there are some limitations to the study: our analysis concerns a specific dataset; the impact of transaction costs on index tracking performance is not quantified; and hyper-parameter optimization is not well performed when constructing the models. Therefore, additional work with a more extensive dataset, optimized model settings, and greater practical realism would help to confirm our findings. This research can easily be extended to test other deep learning frameworks for index tracking in the future.
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On 18 December 2015, the 40-years old U.S. crude oil export ban was repealed. Since then U.S. crude and oil producers were allowed to reach the global market. In this paper, we study if the crude oil market efficiency increases after the lift of the export ban via the Centered Detrending Moving average Analysis (CDMA) and the Detrended Fluctuation Analysis (DFA). We examine the time-varying market inefficiency from 2011 to 2020 with different rolling windows. The results indicate that WTI becomes inefficient after the lift in medium-term. Though in short and long-term, there is evidence for the improvement of the degree of market efficiency. Generally, the WTI market presents mixed efficiency behavior at different time horizons. In 1-year window, the degree of efficiency on Brent decreased while there isn't enough evidence to conclude that Brent market efficiency increased or decreased in medium and long term. In this sense, the lift of the ban might have significant impact on WTI but not on Brent.
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1. INTRODUCTION

Crude oil is one of the most important commodity in global economy. And crude oil market is increasingly connected to other financial markets. The market efficiency on crude oil market is crucial to price discovery, forecasting and investment management. There is a large number of literature on crude oil market weak-form efficiency.

The presence of long-range dependence in asset returns implies potential predictability, which contradicts the weak form of efficient market [1]. Hurst exponent is a popular measure of long range memory and has been widely applied to the test of weak form efficiency on crude oil market. Alvarez-Ramirez et al. [2] impose Rescaled Range (R/S) analysis on WTI from 1981 to 2002 and report the long-run memory. Serletis and Andreadis [3] get a similar conclusion with data from 1990 to 2001. Jiang et al. [4] verify the weak-form efficiency of the crude oil futures market from 1983 to 2012 with the Detrended Fluctuation Analysis (DFA) and Detrending Moving average Analysis (DMA).

One can conclude that the crude oil market is weak-form efficient in the long run, though over short time horizons the market might need a certain time to digest the information [4]. Tabak and Cajueiro [5] document that WTI and Brent become more efficient from 1983 to 2004. Via DFA, Alvarez-Ramirez et al. [6] find mixed scaling behavior in crude oil markets. The prices exhibit short-term predictability, while for large time horizons reflect non-correlated behavior. Wang and Liu [7] report that short-term, medium-term and long-term behaviors of WTI crude oil market were generally turning into efficient behavior over time. Mensi et al. [8] find efficiency degree of WTI and Brent varies through time. Jiang et al. [4] uncover that the market is inefficient during turbulent events, including the oil price crash in 1985 and the Gulf war. Gu and Zhang [9] verify the non-linear relationship between multifractality and inefficiency in crude oil market. Kristoufek [10] reports that the WTI remains efficient except several periods, while Brent crude oil shows more inefficiency.

Notice that the crude oil market is affected by economic conditions [11], political events [12], policy changes [13, 14] and other factors, dynamics of the efficiency on crude oil market during events and crisis is of cardinal significance to investors as it indicates possible abnormal returns. This study focuses on the time-varying efficiency on crude oil market before and after the policy shift.

In 1970s the United States government enacted prohibitions on the export of crude oil to handle concerns on possible energy shortage [15]. The ban restricted most crude oil exports from U.S. to other countries. On 18 December 2015, President Obama signed a provision that lifted the 40-years old oil export ban. After the lift, the lead-lag relationship between WTI and Brent has changed [14] and the two benchmarks reconnected closely [13, 14]. However, the impact of this policy shift on crude oil market efficiency is still open to question.

In this paper we explore whether the crude oil market efficiency changes after the lift using WTI Brent daily price. We assess the time-varying market efficiency via the Centered Detrending Moving average Analysis (CDMA) and DFA. To compare the difference of market efficiency before and after the lift, we separate the whole sample into two time periods by the lift, then implement the Wilcoxon signed-rank test. We investigate the time-varying long range dependence over rolling windows. For the sake of consistency, we carry out the whole procedure with three rolling window sizes.

The paper is organized as follows. Section 2 presents the Data. Section 3 describes the Methodology. Section 4 shows the Results, and section 5 Concludes and Discusses.



2. DATA

We investigate the daily closing spot prices from the U.S. Energy Information Administration (EIA) website. The data spans from 14 October 2011 to 6 March 2020 with 2098 observations, which is plotted in Figure 1. Note that the vertical black line marks the date of 18 December 2015 when the lift was officially announced. Thereby the whole period is divided into two segments before and after the lift with the same 1049 sample sizes. The Brent and WTI price showed an impressive decrease of 60% from July 2014 to March 2015. Since 2016 until 2018 the price has steadily increased.


[image: Figure 1]
FIGURE 1. The daily spot prices and returns for WTI and Brent. The vertical line marks the lift of the export ban. (A) WTI prices. (B) WTI returns. (C) Brent prices. (D) Brent returns.


We employ daily returns for the analysis which are defined as the log difference in price:

[image: image]

where p(t) is the spot price at time t. The logarithm returns are illustrated in Figure 1. In 2014 and 2016 the process exhibits volatility clustering.



3. METHODOLOGY


3.1. Hurst Exponent Estimation Methods

We examine the market efficiency via the centered detrended moving average analysis (CDMA) and DFA. The two methodologies show comparable performance for the detection of long range correlation in time series [16–18], and have been widely used to determine the Hurst exponent in financial markets [19, 20].


3.1.1. The Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis is a popular method to determine the long-range dependence in time series [21].

For a given time series x(t), t = 1, 2, ⋯ , N, compute the cumulative sum sequence

[image: image]

Detrend the integrated profile X(t) by subtracting the local trend [image: image] in each box of length s and get the residual series ϵ(t):

[image: image]

where [image: image] is the polynomial fit of X(t). Then separate the residual series ϵ(t) into Ns non-overlapped subseries with size s, where Ns = ⌊N/s−1⌋. Obtain the fluctuation function via

[image: image]

Repeat the procedure above with different box size s. Thus, one can determine the power-law relationship between F(s) and box size s for long-range correlated time series

[image: image]

where H is an estimation of Hurst exponent. If H>0.5, the time series x(t) displays long-range dependent structure. When H < 0.5, x(t) has long-range dependent structure. While H = 0.5 implies non-correlated behavior, which corresponds to weak-form efficiency in financial market.



3.1.2. The Detrending Moving Average Analysis

The DMA algorithm [22] is similar to DFA. Recently the understanding of DMA has been deepened and improved [23–27]. With DMA, one constructs the moving average function [image: image] within a moving window with size s [28],

[image: image]

where s = s1+s2+1, s1 = ⌈(s−1)(1−θ)⌉, s2 = ⌊(s−1)(1−θ)⌋ and θ is the position parameter with range of 0 to 1 (forward, centered, and backward moving average analysis for θ = 0, θ = 0.5, and θ = 1, respectively).

We apply θ = 0.5 (CDMA) in this study.




3.2. The Rolling Window Technique

The rolling window technique has been successfully used to assess time dependent efficiency in financial markets [7, 8, 29–33], predict crash in stock market [34], and evaluate the level of stability of financial firms [35].

The length of the subsample analyzed at each time is defined as the rolling window size. This technique works as follows [34]: (i) compute the Hurst exponent of the first subsample with a certain rolling window size. Thus, one can probe the local long range correlation at time t = 1. (ii) Move the time window with a specific number of observations, namely the step size. (iii) Repeat the process until end of whole sample. Thereby one can calculate the local Hurst exponent. Time series before a given time t contributes to the local Hurst exponent at time t [34].




4. RESULTS

We use CDMA and DFA to observe the long memory feature and time-varying inefficiency in WTI and Brent spot markets with rolling window technique. Rolling window size of DMA/DFA methods should be large enough to guarantee statistical significance and small enough to maintain the sensitivity to local changes [34–36]. Rolling window size under one trading year is recommended in case of possible seasonal periodicity and business cycles [34]. Another regular choice is 4-years window size [5, 7, 8, 10, 29], which corresponds to the political cycles in most countries [29]. Some studies apply an in-between size (2 years) [37, 38].

For the sake of consistency, we study market efficiency at different time horizons. We estimate the local Hurst exponent using three window sizes with a step size of one point: 250 datapoints (almost within 1 year), 500 datapoints (almost within 2 years), and 1,000 datapoints (almost within 4 years).

The choice of box size s is also essential for the detrending procedure. A too small or too big box size s can result in inaccurate estimate of local trend and curvature of the fluctuation function [16]. While box size s≧5, the slope of log-log fluctuation plot can be almost approximated by a linear curve [25, 34]. Accordingly we set the range as [5, L/10]. Figure 2 shows the fluctuation function F vs. s on 18 December 2015 with different rolling window sizes. Generally the CDMA curves seems quite straight. The DFA curves exhibit mild curvature.


[image: Figure 2]
FIGURE 2. Fluctuation function F with different rolling windows on 18 December 2015. (A–C) Depict the fluctuation function of WTI. (D–F) Illustrate the fluctuation function of Brent. From left to right, each column corresponds to 1, 2, and 4 years window.


There are various methods used to study market efficiency. Traditionally variance ratio test, unit root test as well as long memory estimation by the Hurst exponent are popular procedures [39]. Except those methods, researchers have developed different measurements based on fractality measures [40]. Kristoufek and Vosvrda introduced Efficiency Index to measure capital market efficiency [41], then extended and applied to commodity futures [42], gold, currencies [43], and cryptocurrencies [44]. Gu et al. [45] use δH = |H−0.5| to quantify the degree of market inefficiency, while H is the Hurst exponent. Smaller δH implies a more efficient market. In this paper, we apply δH to estimate market inefficiency, which is a simple and effective measurement.

The dynamics of local Hurst exponents and market inefficiency δH are shown in Figure 3. The black vertical line represents the lift of the U.S. crude oil export ban on 18 December 2015. The corresponding histograms are illustrated in Figure 4. Then we report the statistics of Hurst exponent and δH Table 1.


[image: Figure 3]
FIGURE 3. Time-varying Hurst exponent and δH of WTI (left panel) and Brent (right panel). The black line marks the lift of the ban. (A,B) 1 year rolling window. (C,D) 2 years rolling window. (E,F) 4 years rolling window.
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FIGURE 4. Histograms of δH. The first and second columns correspond to results of WTI via CDMA and DFA respectively. The third and fourth columns correspond to the results of Brent via CDMA and DFA respectively. (A–D) Corresponds to a rolling window size of 1 year. (E–H) 2 years rolling window. (I–L) 4 years rolling windows.



Table 1. Statistics for Hurst exponent and δH before and after the lift.
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The local Hurst exponent moves around 0.5 and δH is generally < 0.15. Both the mean and median of local δH is extremely close to 0. All these indicate that the crude oil markets are almost efficient with different degrees [2–5, 10].


4.1. Long Memory of WTI and Brent Within Rolling Windows

Here we give a quick look at the time-varying market efficiency of WTI and Brent. With rolling window of 1 year, the market displays higher fluctuation compared with longer time horizons (see in Figures 3A,B). The WTI returns shows short range correlation between 2012 and 2013 as well as 2014 and 2017. The Hurst exponent of Brent moves above 0.5. Both WTI and Brent display mixed behavior which reveals inefficiency of market at short time horizon.

In the case of 2-years rolling window, WTI demonstrates a mixed pattern of long and short-term correlation (see in Figure 3C). Local Hurst exponent is in the range of 0.35 to 0.55. It decrease substantially from 2014 and gravitates around 0.55 since 2018. Obviously Brent returns display long-range memory (see in Figure 3D). The market is not weak-form efficient since it possesses long memory features.

With rolling window of 4 years, WTI exhibits extremely weak short range correlation until 2012 (see in Figure 3E), which is similar to Kristoufek's [10] work with longer step of 5 days. Since then our findings are slightly distinct. The cause might be the different step size. Basically the local Hurst exponent of WTI oscillates around 0.5, while Brent presents apparent long-range memory property (see in Figure 3F).

As is shown in Table 1 and Figure 4, value of Hurst exponent and δH is more and more concentrated with window size enlarging. The inefficient behavior on crude oil markets at short time horizon are not surprising. The oil market is extremely fragile to economic and political factors as well as policy shift, which might cause the short time inefficiency. The smoother curve for the larger rolling window sizes implies the existence of weak-form efficiency in the crude oil market at longer time horizon. Over a long enough time, market participants could absorb the new information, resulting a weak-efficient market. Our findings is in line with work of Jiang et al. [4], Tabak and Cajueiro [5], Alvarez-Ramirez et al. [6], Wang and Liu [7], Gu and Zhang [9], and Kristoufek [10].



4.2. The Effects of the Lift

To investigate if the market efficiency dynamics change after the policy shift, we compare market inefficiency δH before and after the lift of export ban. Results in Table 1 and Figure 4 show a mild difference of δH between the two sub-periods.

Prior to hypothesis testing, we examine the distribution of local δH. Noticed that the histograms (see in Figure 4) show that the data are not normally distributed. Conducting the Lilliefors test for normality, we also reject the null hypothesis of normality at the 1% significance level. Hence commonly used paired t test isn't appropriate for the analysis of the data.

Here we implement the right-tailed Wilcoxon signed-rank test on δH to check if the market efficiency increased after the lift. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test to analyze differences between two samples. Different from the paired t test, it does not require normal distribution of the data. The null hypothesis and alternative hypothesis are formulated as

H0: The market inefficiency δH median is no greater than that after the lift.

H1: δH median before the lift is greater than that after the lift.

If H0 is rejected, we conclude that the market efficiency increased after the lift.

As is shown in Table 1, in the case of WTI for 1 year window the p value = 0 indicates a rejection of the null hypothesis at 5% significance level. There is enough statistical evidence to conclude that for 1-year rolling window size, the median market inefficiency δH before the lift is greater than that after the lift, which implies the increase of market efficiency. For 2-years window the result suggests that the null hypothesis cannot be rejected at 5% significance level, which means that the market efficiency of WTI didn't increase after the lift. However, at large time window the result is interesting. The result of DFA provides evidence that the market efficiency improved. For the result of CDMA, the p−value = 0.0804 indicates that the null hypothesis cannot be rejected at 5% significance level though 10% significance level leads to opposite conclusion.

For Brent at the smallest time window, both CDMA and DFA results show that the null hypothesis cannot be rejected, which means that the market efficiency of Brent didn't improve after the lift. At larger time windows, via CDMA one concludes that the market efficiency increased after the policy shift while via DFA one obtains totally different results.




5. CONCLUSION

We studied whether or not the crude oil market moved toward efficiency after the lift of the U.S. export ban. We comprehensively examine the time-varying long-range dependence of WTI and Brent crude oil spot prices from 2011 to 2020 based on CDMA and DFA methods. Then we split the whole sample into two sub periods with the same sample sizes and carry out Wilcoxon signed rank test. To increase the reliability of the result, we estimate the time-varying Hurst exponents and market inefficiency with different rolling windows.

Our findings indicate that over long horizons the crude oil markets are close to weak form efficient with time-varying short-time inefficiency, which is consistent with other earlier studies [5–8, 10]. We also find a slightly lower degree of efficiency on Brent, which means a higher level of predictability.

The result of Wilcoxon signed rank test suggests that after the lift, degree of market efficiency of WTI increased in short term, while Brent market efficiency decreased. For the result of medium term, WTI efficiency declined after the lift. And within largest time windows, degree of efficiency of WTI is highly possible to improve after the lift. Consider that, investors with different or multiple time horizons (asset holding period) are suggested to adjust investment strategies accordingly. For arbitragers, there might exist arbitrage opportunity after the lift in medium time horizon.

However, CDMA and DFA get totally different results on Brent crude oil market in medium and long term. This might be caused by the difference between the two methods. Another possible explanation is that the change of Brent market efficiency after the lift is too small to be detected. From results of the two methods, we can hardly determine whether the market efficiency on Brent increased or not. The lift of the ban might only affect WTI in medium and long term.

In addition to the U.S. energy policy, the supply and demand situation and infrastructure issues also count for the WTI crude oil price and market efficiency [15, 46, 47]. With the hydraulic fracturing and horizontal drilling techniques, oil production from shale region in U.S. rose dramatically and led to the shale boom, while inadequate transportation infrastructures restricted the U.S. crude supply to the refining centers. Since mid-2013, new pipelines and rail transport eased this issue [48]. The effects of export ban, shale boom and transportation bottleneck on WTI market efficiency should be fully explored in future studies.
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This paper uses census municipal population data for the United States, Italy, and Spain to analyze the statistical properties of their 10-year growth (short-term property). As a result, it was confirmed that the smaller the initial urban population is, the greater the probability that the urban population will decrease and that the probability that the urban population will increase does not depend on the initial urban population. We also observed the statistical properties of long-term growth of urban populations in each country over 100 years. Specifically, we identified the following properties by observing the geometric mean of logarithmically equal sized bins of the oldest urban population in the data used in the analysis. (1) The average urban population increases or decreases exponentially with time. (2) The smaller the initial average urban population, the smaller the exponent, which can be negative in Italy and Spain. (3) When the average urban population is large, exponential growth may stop. We showed that these long-term properties are derived from the short-term property by random sampling simulations from real data.

Keywords: urban population, city size distribution, growth-rate distribution, Gibrat's law, non-Gibrat's property, short-term growth, long-term growth


1. INTRODUCTION

There are various universal structures in nature. In physics, various universal structures have been extracted from nature and described logically and mathematically, such as Newtonian mechanics in the seventeenth century, electromagnetism, relativity, and thermodynamics in the nineteenth century, and quantum mechanics in the twentieth century. We have deepened our understanding of nature by combining these. Interestingly, society also has a universal structure. Economics, of which we were able to collect data at a relatively early stage, paved the way for research in this area. The study of economics using methodology in physics (now called econophysics [1]) started with Pareto's discovery that the income distribution in the UK follows a power law [2–4]. The power-law distribution is also called Pareto distribution (so named after the discoverer). Later, as the accumulation of data progressed, it was found that power laws were observed for various economic sizes [5, 6]. Typical examples are sales, profits, the number of employees (they are referred as firm sizes), and the size of cities. Here, the city size mainly refers to the population of the city. In addition, the word city means all units, including municipalities.

A number of studies have shown that the size of these firms and cities also has a power law and that the distribution is restricted to the large-scale range. It is commonly recognized that the mid-scale range of firms and cities follows the lognormal (LN) distribution. Furthermore, it has been reported that a small-scale range of firm size distribution is described by Weibull distribution [7, 8]. For urban size distribution, various functions have been studied using statistical indicators such as LN, the double Pareto-lognormal distribution (dPLN), log-logistic, the threshold double Pareto Singh-Maddala, lognormal-upper Pareto, Pareto tails - lognormal, three log-normal (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2). Relevant references to this research includes [9–24].

At the same time, studies on the growth rate of firms and cities have been carried out, and various data have confirmed that Gibrat's law is valid in large-scale ranges. Gibrat's law states that the size growth rate for two consecutive years is independent of the initial value [25, 26]. In [27], a simple unified model is proposed to explain the growth dynamics of cities and scaling laws, where the model predicts that the size of cities grows linearly regardless of its current size.

In a previous study, Ishikawa et al. found that the size growth-rate distribution of firms in a mid-scale range changes regularly depending on the initial value, and they called this non-Gibrat's property [28]. Specifically, in the case of firm sales, for example, the negative growth rate does not depend on the initial value, as in the case of Gibrat's law, but the positive growth rate increases as the initial value decreases [29]. Our previous studies have also shown that short-term properties of firm size lead to the long-term properties. In particular, we show that the size of newly established firms grows rapidly over time, according to the non-Gibrat property, and then shifts to a gradual exponential growth according to the Gibrat law using numerical simulations. Furthermore, this was confirmed by the observation of geometric mean of firm sales and number of employees [30, 31].

As mentioned earlier, there are many similarities between the study of firm size distribution and the study of urban size distribution. In this paper, we discuss the relationship between the short- and long-term properties of urban size based on our previous research on the short- and long-term properties of firm size.

The structure of this paper is as follows. First, in section 2, we describe the urban population data of the United States, Italy, and Spain that we analyzed in this paper. We also describe the firms' data that we used to review our previous work in section 3. In section 3, we briefly review the properties that we previously found regarding the initial dependence of a firm's sales growth rate and the long-term growth properties derived from them. In section 4, employing the data described in section 2, we describe the initial dependence of growth rate distributions on urban populations in the United States, Italy, and Spain and the properties observed in long-term growth. In section 5, the process of growth of cities with different population sizes is simulated using the growth rate distribution of urban populations sampled from real data, and it is confirmed that the properties observed in the long-term growth observed in section 4 are reproduced. Finally, section 6 summarizes this study through the interpretation of the simulation results in section 5 and describes the future prospects.



2. DATA

This paper uses census data for the United States, Italy, and Spain. Data for the United States are population data for cities, towns, villages, and Census-designed Places (CDP) from 1900 to 2010 at 10-year intervals. The number of cities, the number of people living in them, and the proportion of the population included in the data to the total population of the United States are shown in Table 1. In this paper, we will collectively refer to municipalities and the CDP as cities. The data for Italy are municipal population data from 1901 to 2011 at intervals of approximately 10 years (Table 2). The data for Spain are population data of municipalities from 1900 to 2010 at intervals of approximately 10 years (Table 3). Census data for Italy and Spain include nearly all citizens. Census data in the United States, on the other hand, have gradually increased in coverage from 47.0% in 1900 to 71.6% in 2010. In addition, the population of Italy and Spain is classified into one of the administrative divisions, while that of the United States is classified into CDP in addition to the municipality. There is therefore a significant difference in the completeness of data aggregation between Italy/Spain and the United States, which may be attributed to the fact that the United States is a relatively young country.


Table 1. Summary of U.S. population data.
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Table 2. Summary of population data for Italy.
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Table 3. Summary of population data for Spain.
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In addition, in order to compare the initial value dependence of the growth rate distribution of the urban population, which is the main focus of this paper, we introduce the initial value dependence of the growth rate distribution of firms' sales, which is our previous study, in section 3. The analysis will use data from the Orbis 2016 edition, the world's largest corporate information database, provided by Bureau van Dijk. Specifically, we use the sales and establishment year data of 944,116 Japanese firms for which both 2013 and 2014 sales data exist. The most recent data in the 2016 edition of Orbis is from 2015, but since the database was in the process of being collected at the time it was available, and so was scarce (343, 473 firms), we used the largest data pair, 2014 (1, 029, 179 firms) and 2013 (1, 133, 993 firms), for our analysis. There were approximately 3.82 million firms in Japan in 2014, of which approximately 11, 000 were reported to be large firms, approximately 557, 000 to be medium-sized firms, and approximately 3, 252, 000 to be small-sized firms, according to the Small and Medium Business Administration of Japan. In Japan, small firms are defined by the number of employees under the Small and Medium-sized Enterprise Basic Law, which refers to firms with five employees or fewer in the retail, service, and wholesale industries and 20 or fewer in the manufacturing and other industries. Orbis is a comprehensive database of large and medium-sized Japanese firms, including small-sized firms whose sales are identifiable.



3. SHORT- AND LONG-TERM PROPERTIES OF FIRMS

In this section, we briefly review our previous study of the initial dependence of the firms' sales growth rate distribution [29] and its long-term growth properties [30, 31] using new data we have. As mentioned in the previous section, our database contains sales data for 2013 and 2014 for 944, 116 Japanese firms. The minimum sales for 2013 was 1, 000 USD, and the maximum was 249, 799, 825 USD. To observe the initial value dependence of the growth rate (R = x2014/x2013) from 2013 sales (x2013) to 2014 sales (x2014), the initial values are divided into logarithmically equally sized bins as follows [image: image] (n = 1, 2, ⋯ , 10). The number of firms in these 10 bins (n = 1, 2, ⋯ , 10) is 4, 355, 6, 426, 18, 354, 65, 866, 163, 052, 266, 023, 221, 607, 114, 967, 50, 459, and 20, 498, respectively. The number of firms greater than n = 10 is 12, 509. Although there are arbitrary ways to divide these bins, if a somewhat smooth growth-rate distribution is observed, the data are divided as finely as possible. When the bin is divided more finely than this way, a smooth growth-rate distribution is not observed, and when the bin is divided more roughly, the properties described below are hardly observed. However, it is confirmed by considering the case where the division of the bins is slightly changed from that described above, that the properties described below do not depend on the manner in which the bins are divided.

Figures 1, 2 are their conditional probability density functions. The horizontal axis represents the logarithmic growth rate r = log10R, and the vertical axis represents the probability density function (PDF) q(r|n). Figure 1 shows that the smaller the initial value x2013 (the smaller n) is, the larger the positive growth rate, and that the negative growth rate is almost independent of the initial value. Figure 2 also shows that when the initial value x2013 is 102.5 thousand dollars or more (n is greater than or equal to 6), both the positive and negative growth-rate distributions are almost independent of the initial value. This property is called Gibrat's law [25, 26] and is observed in the large-scale range (Now x2013 is over 102.5 thousand dollars). On the other hand, our previous studies have shown that the non-Gibrat's property in Figure 1 is observed in the mid-scale range [28, 32, 33].


[image: Figure 1]
FIGURE 1. Distributions of sales growth rate of Japanese firms. The horizontal axis shows the logarithmic growth rate: [image: image]. The vertical axis shows its conditional probability density function: q(r|n). The initial sales value of x2013 for 2013 is divided into logarithmically equal sized bins: [image: image] (n = 1, 2, ⋯ , 5).



[image: Figure 2]
FIGURE 2. Distributions of sales growth rate of Japanese firms. The horizontal axis shows the logarithmic growth rate: [image: image]. The vertical axis shows its conditional probability density function: q(r|n). The initial sales value of x2013 for 2013 is divided into logarithmically equal sized bins: [image: image] (n = 6, 7, ⋯ , 10).


In our previous study, we also reported that there is a long-term growth property in the dependence of the geometric mean of firms' sales regarding their age [30, 31]. Figure 3 depicts the firm age (t) dependency of the geometric mean sales (〈xt〉) in 2014. Here, the firm age is defined as the year of establishment of the firm, e.g., t = 1. Figure 3, drawn on a semilogarithmic axis, shows that for the first 10 years, 〈xt〉 rapidly grows following a power-law function:

[image: image]

with αsales = 0.53 ± 0.02 (the dotted line). Then, 〈xt〉 gradually grows following an exponential function:

[image: image]

with βsales = 0.014 ± 0.001 (the solid line). These values are measured by applying t = 1, 2, ⋯ , 10 for power-law growth (1) and t = 11, 12, ⋯ , 60 for exponential growth (2).


[image: Figure 3]
FIGURE 3. Dependence of geometric mean of Japanese firms' sales 〈xt〉 in 2014 on firm age t.


Similar properties were confirmed not only in sales of Japanese firms but also in the number of employees of Japanese firms and sales and number of employees of French firms in previous studies [31]. Furthermore, we show by numerical simulation that these long-term growth properties are derived from the short-term growth properties mentioned above. The initial fast growth following the power-law function (1) is derived from the non-Gibrat's property, and the slow growth following the exponential function (2) is derived from Gibrat's law, using a stochastic process with numerical samples from real data.



4. SHORT- AND LONG-TERM PROPERTIES OF URBAN POPULATION

The purpose of this study is to confirm whether the properties of short-term and long-term growth in firms' sales and the number of employees in our previous study are observed in an urban population. Tables 1–3 show that the number of cities in the United States is around 10, 000 to 25, 000, and those of Italy and Spain number around 8, 000. As in the previous section, if these initial values are placed in logarithmically equal-sized bins and a somewhat smooth growth-rate distribution is to be observed, there will be only a few bins, and it will be difficult to observe the properties of the previous section. In the United States, we have increased the number of pairs of data by overlaying all 11 pairs of data, such as 1900 − 1910, 1910 − 1920, and ⋯ , 2000 − 2010, and conducted the same analysis as in the previous section. This approach ignores changes in history over 110 years but has the advantage of being able to observe a macroscopic nature that is not influenced by the flow of history.

Using this method, pairs of 187,378 cities are created, each city's initial population is expressed as xi, and the city's population 10 years later is expressed as xi+10. The minimum value of xi is 1 and the maximum value is 8, 008, 278. In the case of the United States, this small figure is recorded because it includes population data from Census-designed Places (CDP). To observe the dependence of the urban growth rate (R = xi+10/xi) on the initial value (xi), we divide the initial value into logarithmically equidistant bins, as in the previous section, such as [image: image] (n = 1, 2, ⋯ , 7). The 7 bins contain the following cities: 34, 158 (n = 1), 56, 216 (n = 2), 41, 353 (n = 3), 22, 942 (n = 4), 10, 794 (n = 5), 3, 997 (n = 6), and 950 (n = 7). Number of cities less than n = 1 is 6, 278, and number of cities greater than n = 7 is 361. The same discussion as in the previous section applies to the arbitrariness of division into bins. Figure 4 shows the conditional PDF. The horizontal and vertical axes are the same as in the previous section. Figure 4 shows that the smaller the initial value xi is (The smaller n is), the larger the negative growth rate is, and the positive growth rate is almost independent of the initial value. Surprisingly, this property is symmetrical with that observed in Figure 1. This property is explicitly confirmed in Figure 5, which shows the n-dependence of positive standard deviation ([image: image]) and negative one ([image: image]). Figure 5 shows that σ+ is almost n independent, but σ− decreases depending on n, as approximated by

[image: image]

with γUS = 0.25 ± 0.03.


[image: Figure 4]
FIGURE 4. Distributions of urban population growth rates in the United States. The horizontal axis shows the logarithmic growth rate: [image: image]. The vertical axis shows its conditional probability density function: q(r|n). The initial population xi is divided into logarithmically equal sized bins: [image: image] (n = 1, 2, ⋯ , 7).



[image: Figure 5]
FIGURE 5. The n dependence of the positive and negative standard deviations σ± of the conditional PDFs in the United States (Figure 4).


In the previous section, we observed the long-term property of the growth of the geometric mean of firms' sales depending on the firm age. With a slightly different perspective on urban population data, we observe the long-term property of the growth of the geometric mean of the urban population over the observable years by size of the initial population. Figure 6 shows the observed results for the urban population in the United States. The horizontal axis represents 1900, 1910, ⋯ , 2010 expressed as T = 1, 2, ⋯ , 12, respectively, and the vertical axis represents the geometric mean of the urban population in each year (〈xT〉). In Figure 6, the original population of x1 in 1900 (T = 1) is divided into logarithmically equally sized bins: [image: image] (m = 1, 2, 3), [image: image] (m = 4). The number of cities in each bin is 4, 593 (m = 1), 2, 482 (m = 2), 317 (m = 3), and 28 (m = 4). The number of cities less than m = 1 is 46. These totals are fewer than the 10,597 cities in 1900 because of the high frequency of urban renewal in the United States and the large number of cities that existed in 1900 but did not exist 110 years later. In Figure 6, which is the semilogarithmic axis, the optimum line is drawn by the least squares method for T = 1, 2, 3, 4. Figure 6 shows that for m = 1, 2 the whole period is approximated by an exponential function:

[image: image]


[image: Figure 6]
FIGURE 6. Geometric mean growth of the urban population in the United States from 1900 to 2010 (T = 1, 2, ⋯ , 12). The original population of x1 in 1900 (T = 1) is divided into logarithmically equally sized bins: [image: image] (m = 1, 2, 3), [image: image] (m = 4). In the figure, ◦, •, △, and ▲each represent m = 1, 2, 3, and 4, respectively.


where βcity(m) is the index of urban growth corresponding to βsales in Equation (2). Here, βcity(m) has a factor m because it varies depending on the bin containing the initial value x1. On the other hand, at m = 3, 4, the exponential function is followed up to T = 4, after which the growth is negligible. Here, the exponents in U.S. [image: image] of the four straight lines (4) for m = 1, 2, 3, 4 in Figure 6 are evaluated as [image: image], [image: image], [image: image], and [image: image], respectively. These values are measured by applying T = 1, 2, 3, 4 for exponential growth (4). These indicate that [image: image] is an increasing function of m. In other words, the geometric mean growth of the urban population will be faster as the initial urban population size increases.

Similar analyses were conducted on urban population data in Italy and Spain. As with the initial value dependence of the urban population growth-rate distribution in the United States, the negative growth rate increases as the initial value xi decreases, and the positive growth rate hardly depends on the initial value. These properties are expressed as positive and negative standard deviations σ± in Figures 7, 8. In Figures 7, 8, as in the U.S., σ+ is almost independent of n, and σ− has the same n dependency as in Equation (3). The parameters for Italy and Spain are evaluated as γIT = 0.26 ± 0.01 and γES = 0.30 ± 0.06, respectively. In Italy, the number of (xi, xi+10) pair is 88, 303, and the seven bins contain the following cities: 2, 008 (n = 1), 14, 721 (n = 2), 36, 913 (n = 3), 26, 002 (n = 4), 6, 781 (n = 5), 1, 453 (n = 6), and 241 (n = 7). Number of cities less than n = 1 is 948, number of cities greater than n = 7 is 0. In Spain, the number of (xi, xi+10) pair is 87, 141, and the seven bins contain the following cities: 13, 979 (n = 1), 30, 333 (n = 2), 23, 407 (n = 3), 11, 980 (n = 4), 3, 496 (n = 5), 720 (n = 6), and 244 (n = 7). Number of cities less than n = 1 is 2, 924, number of cities greater than n = 7 is 302.


[image: Figure 7]
FIGURE 7. The n dependence of the positive and negative standard deviations σ± of the conditional PDFs in Italy.



[image: Figure 8]
FIGURE 8. The n dependence of the positive and negative standard deviations σ± of the conditional PDFs in Spain.


As in the United States, Figures 9, 10 shows the long-term properties of the geometric mean of the urban population growing with the passage of observable years by size of the original population in Italy and Spain. For Italy, each bin contains 1, 200 (m = 1), 6, 031 (m = 2), 467 (m = 3), and 11 (m = 4) cities. For Spain, each bin contains 4, 202 (m = 1), 3, 375 (m = 2), 211 (m = 3), and 6 (m = 4) cities. The number of cities less than m = 1 is 2 in Italy and 6 in Spain. In Figures 9, 10 on the semilogarithmic axis, the optimum line is drawn by the least squares method for T = 1, 2, ⋯ , 8. From these optimal straight lines, we confirm that the geometric mean of urban population grows approximately exponentially over almost all periods for the case of m = 1, 2, 3, and 4. Here, the exponents in Italy [image: image] of the four straight lines (4) for m = 1, 2, 3, 4 in the Italian long-term growth Figure 9 are evaluated as [image: image], [image: image], [image: image], and [image: image], respectively. The exponents in Spain [image: image] of the four straight lines (4) for m = 1, 2, 3, 4 in the Spanish long-term growth Figure 10 are evaluated as [image: image], [image: image], [image: image], and [image: image], respectively. These values are measured by applying T = 1, 2, ⋯ , 8 for exponential growth (4). As in the U.S., [image: image] and [image: image] are also increasing functions of m. Significantly different from the U.S. is that the index βcity(1) for m = 1 becomes negative, i.e., for m = 1, the geometric mean of the urban population 〈xT〉 decreases depending on T in Italy and Spain.


[image: Figure 9]
FIGURE 9. Geometric mean growth of the urban population in Italy from 1901 to 2001 (T = 1, 2, ⋯ , 11). The original population of x1 in 1901 (T = 1) is divided into logarithmically equally sized bins: [image: image] (m = 1, 2, 3), [image: image] (m = 4). In the figure, ◦, •, △, and ▲each represent m = 1, 2, 3, and 4, respectively.



[image: Figure 10]
FIGURE 10. Geometric mean growth of the urban population in Spain from 1900 to 2001 (T = 1, 2, ⋯ , 11). The original population of x1 in 1900 (T = 1) is divided into logarithmically equally sized bins: [image: image] (m = 1, 2, 3), [image: image] (m = 4). In the figure, ◦, •, △, and ▲each represent m = 1, 2, 3, and 4, respectively.




5. SIMULATION OF LONG-TERM GROWTH PROPERTY

In the previous section, we observed the dependence of the short-term growth-rate distribution on the initial value and observed the properties of long-term growth. With respect to the initial value dependence of the short-term growth rate, it was observed that the probability of a decrease in the urban population increases as the initial population decreases, and that the probability of an increase in the urban population does not depend on the initial population in any of the countries in which the urban population data were analyzed. As for long-term growth, it was confirmed that the geometric mean of the urban population 〈xT〉 grew exponentially [image: image] as in Equation (4), depending on the year T = (1, 2, ⋯ ). In Italy and Spain, an exponential decline ([image: image]) was also observed for small (m = 1) original (T = 1) urban populations ([image: image]). Collectively, we observed that the larger the original urban population x1 (the larger the m), the larger the exponent of the exponential function βcity(m), which indicates the rate of growth. It was also observed that as large cities grew, their growth slowed and stopped.

This section uses simulations to show how these short- and long-term growth properties are related. Specifically, we use data sampled from the short-term growth-rate distribution to grow cities with different initial values and confirm whether the long-term growth has the properties observed in the real data.

Since it is important to adopt a non-Gibrat's property that the growth-rate distribution differs depending on the initial value, the simulation was designed as follows. First, we divided the initial city population xT into eight bins: [image: image], [image: image] (n = 1, 2, ⋯ , 6), and [image: image]. The first and last bins differ from those in the previous section for the initial dependence of the growth-rate distribution. The first bin is needed if the city population is smaller than 102 in the simulation. The last bin removes the upper limit 105.5 in the empirical data analysis to increase the number of data items in the bin. A bin corresponding to an initial value xT is selected from these eight bins, and a growth rate R is extracted at random from the bin, and each urban population is grown by xT+1 = RxT to grow each urban population. In the simulation, this step is repeated 10 times to obtain x1, x2, ⋯ , x11.

We confirm that this growth depends on the original urban population size x1 as follows. From the 1900 urban population, for seven cases with different original values, we randomly extracted the population of 10, 000 with repetition: [image: image] (m = 1, 2, ⋯ , 7). The 10-step growth of the geometric mean of the urban population classified by the seven different original values is depicted in Figure 11 for the United States and Figure 12 for Italy. The results for Spain are so similar to those for Italy that they have been omitted. In Figures 11, 12, as in Equation (4), it is confirmed that the geometric mean of the urban population 〈xT〉 grows as an exponential function of step T: [image: image]. In the following, the exponent of exponential growth observed in the simulation is expressed as βsim(m). The exponent βsim(m) increases with increasing m initially but decreases with increasing m.


[image: Figure 11]
FIGURE 11. Results of simulation of the growth of the geometric mean of the urban population using values randomly sampled from real data in the United States. Original (T = 1) populations x1 are divided into logarithmically equally sized bins: [image: image] (m = 1, 2, ⋯ , 7). Points in the figure indicate m = 1, 2, ⋯ , 7 in order from the bottom.



[image: Figure 12]
FIGURE 12. Results of simulation of the growth of the geometric mean of the urban population using values randomly sampled from real data in Italy. Original (T = 1) populations x1 are divided into logarithmically equally sized bins: [image: image] (m = 1, 2, ⋯ , 7). Points in the figure indicate m = 1, 2, ⋯ , 7 in order from the bottom.


Figures 13–15 show the correlation of this index βsim(m) and m in the U.S., Italy, and Spain, respectively. In these countries, βsim(m) initially increased linearly with m. The exponents are approximated by [image: image] in the U.S., [image: image] in Italy, and [image: image] in Spain. Here we consider the optimal line for the first 3 n in Figure 13 and the first 5 n in Figures 14, 15. In Italy and Spain, the intercept of these linear relationships is negative, so βsim(m) becomes negative when m is small. The value of the index βsim obtained from the simulation results is closer to the value of βcity(m) measured from the actual city growth. However, they are not exactly the same and do not have to be because they are simulated over different time periods. Importantly, the m dependency of β results from the non-Gibrat's property. Because, it can be confirmed that the m dependency of βsim does not occur by simulation without the procedure of selecting the growth rate R from eight n bins divided by the initial value xT.


[image: Figure 13]
FIGURE 13. The m dependence of the exponent βUS(m) when the T dependence of the geometric mean 〈xT〉 is approximated by an exponential function eβUS(m)T in a US simulation (Figure 11). The errors are so small that they do not appear in the figure, and they are therefore omitted.



[image: Figure 14]
FIGURE 14. The m dependence of the exponent βIT(m) when the T dependence of the geometric mean 〈xT〉 is approximated by an exponential function eβIT(m)T in a Italy simulation (Figure 12). The errors are so small that they do not appear in the figure, and they are therefore omitted.



[image: Figure 15]
FIGURE 15. The m dependence of the exponent βES(m) when the T dependence of the geometric mean 〈xT〉 is approximated by an exponential function eβES(m)T in a Spain simulation. The errors are so small that they do not appear in the figure, and they are therefore omitted.




6. CONCLUSION

This paper uses census municipal population data (these are collectively called urban populations in this paper) for the United States, Italy, and Spain to analyze the statistical properties of their 10-year growth (short-term growth). As a result, it was confirmed that the smaller the initial urban population is, the greater the probability that the urban population will decrease, and that the probability that the urban population will increase does not depend on the initial urban population. We call this the non-Gibrat's property of the urban population. We also observed the statistical properties of long-term growth of urban populations in each country over 100 years. Specifically, we identified the following properties by observing the geometric mean of logarithmically equal sized bins of the oldest urban population in the data used in the analysis.

1. The average urban population increases or decreases exponentially with time.

2. The smaller the initial average urban population, the smaller the exponent, which can be negative in Italy and Spain.

3. When the average urban population is large, exponential growth may stop.

We conducted the following simulations to clarify the relationship between these short- and long-term properties. First, the original urban population was randomly extracted from the oldest urban population in the analysis, and using short-term growth data, they were grown by 10 steps. What is important here is that the growth rate varies according to the size of the initial urban population according to the non-Gibrat's property. As a result, it was confirmed that almost all of the above properties observed in real data for 100 years were reproduced. Specifically, the following long-term properties were confirmed.

4. The geometric mean of the urban population grows or declines exponentially over time.

5. The index increases with the size of the original urban population.

6. However, when the original urban population is very large, the index turns to decline.

The property 6. is considered to be the property 3. smoothed by simulation.

Finally, we consider how the short-term properties leads to the long-term properties 1. and 2. First, we assume that the definition of the growth rate approximately holds for the geometric mean. Furthermore, the growth rate does not change approximately over a period of around 100 years. In this case, it is easy to derive that the geometric mean of the urban population grows exponentially, and that the index is the geometric mean of the growth rate minus one. From the non-Gibrat's property observed in the short-term growth rate, it can be concluded that the smaller the urban population size, the smaller the geometric mean of the growth rate, and therefore the smaller the index of exponential growth. In this way, the non-Gibrat's property of short-term growth can be interpreted as being linked to the long-term growth property. In the case of firm sales, the non-Gibrat's property observed in the initial value dependence of the distribution of short-term growth rates produced the firms' initial rapid exponential growth. In the case of urban populations, on the other hand, the non-Gibrat's property controls the rate of long-term slow exponential growth through the mechanisms described above. It is very interesting that the different non-Gibrat's properties of firm sales and urban population lead to different long-term growths.

It was predictable that the distribution of the short-term growth rate in the mid-size range was dependent on the initial value, because the power-law distribution in the large-size range was collapsed in the mid-size range in both firm sales and urban population. In this study, we found that the urban population has a property that is completely opposite to the initial value dependence of the distribution of the short-term growth rate of firm sales, as described in 1. to 3. above. The decline in the urban population will be a policy issue. In the macro view of this paper, the solution is to merge cities with smaller populations. In Italy and Spain, cities with populations generally below tens of thousands tend to decline. This figure may serve as an indicator for policymaking. However, it is necessary to carefully examine the causal relationship between such figures and the results of the merger policy. This is a future issue.

In this paper, we derive these results from three data analyses, the U.S., Italy, and Spain Census. The remaining challenge is to clarify the relationship between the short-term growth parameter γ and the long-term growth parameter β. Since γ in the three countries matches within the margin of error, this may be a universal nature. It is also possible that γ is involved in the correlation between β and m. We are looking to solve this problem in the near future by analyzing the urban population data we are trying to obtain in France and Germany.

This paper discusses the macro-statistical properties of urban population. This discussion does not take into account the microscopic nature of individuals at all, and it is thus not possible to answer why the non-Gibrat's property occurs. In order to develop the results of this paper and better understand the nature of urban population, we need to take into account the microscopic perspective of human movement between cities. On an individual level, it is a likely scenario that people tend to move away from less populated cities because they are inconvenient and difficult to live in. It is also conceivable that the population of cities with too many people will not increase further because they are difficult to live in. In order to construct a theory incorporating such properties, a microscopic view of the network structure will be important [34, 35]. This is an important issue that should be addressed in the future.
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The stock market is a canonical example of a complex system, in which a large number of interacting agents lead to joint evolution of stock returns and the collective market behavior exhibits emergent properties. However, quantifying complexity in stock market data is a challenging task. In this report, we explore four different measures for characterizing the intrinsic complexity by evaluating the structural relationships between stock returns. The first two measures are based on linear and non-linear co-movement structures (accounting for contemporaneous and Granger causal relationships), the third is based on algorithmic complexity, and the fourth is based on spectral analysis of interacting dynamical systems. Our analysis of a dataset comprising daily prices of a large number of stocks in the complete historical data of NASDAQ (1972–2018) shows that the third and fourth measures are able to identify the greatest global economic downturn in 2007–09 and associated spillovers substantially more accurately than the first two measures. We conclude this report with a discussion of the implications of such quantification methods for risk management in complex systems.
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1. INTRODUCTION

How can complexity in financial markets be measured? Although financial markets are routinely thought of as complex systems, exact characterization of their embedded complexity seems non-existent, as pointed out in Brunnermeier and Oehmke [1]. In various contexts, different characterizations and underlying mechanisms have been proposed; explanations include the emergence of macroscopic properties from microscopic interactions [2, 3], the presence of power laws and/or long memory in fluctuations [4], and scaling behavior in growth rates of economic and financial entities [5], to name a few.

In this brief research report we investigate the following question: Given the realized dynamical behavior of a system, can we find the degree of complexity embedded in the system? We note that in the case of financial markets, while interactions between economic agents can be non-linear in nature (due to heterogeneity in behavioral aspects, institutional properties, or information processing abilities), a complete enumeration of all such non-linearities is almost impossible. In this work we do not attempt to find a microfoundation of complexity based on traders' behavior; instead, we aim to quantify complexity in terms of a summary statistic inferred from observed behavior that potentially evolves over time.

We consider four main candidate measures of complexity in multivariate financial asset return data. The dataset we analyze is extracted from complete historical data between 1972 and 2018 of NASDAQ (National Association of Securities Dealers Automated Quotations), which is one of the largest stock markets in the world in terms of trading volume. We divide the whole time evolution into overlapping windows of 4 years long. To fix ideas, let N be the number of stocks in the stock market and T the number of return data points within each time window, where N ≪ T (in the actual implementation for each window of data, N = 300 and T ≥ 1, 000, which corresponds to 4 years of trading in NASDAQ; we elaborate on the data structure and sample selection in section 2.1). The first measure is based on mutual information across stocks. Mutual information is an entropy-based measure that generalizes the linear co-movement structure to non-linear co-movements. The second measure is based on dispersion in systemic risk captured via Granger causal relationships across stocks; Granger causality captures lagged co-movement structure in the data. The third measure is based on algorithmic complexity evaluated on the projection of the N-dimensional data onto a two-dimensional space. The fourth measure is based on a vector autoregression estimation of N-dimensional data. This measure is motivated by the famous May-Wigner result that characterizes the instability of many-dimensional heterogeneous interacting systems. We compute each of these measures on 4-years windows and study how the measure evolves when we move the windows by 1 year (from 1972 to 2018 there are 44 such windows).

We assess the usefulness of the measures by seeing whether they can identify the only major financial crisis in the time period under consideration (1972–2018), which occurred during 2007–09 (for an overview of the economic and financial impacts and the implications of the crisis, readers can consult [6, 7] and references therein). During this crisis, the housing market meltdown in the USA led to an avalanche of collapse in the global financial market. Therefore, if any of the four measures of complexity show an increase in magnitude during this time period (or around it), we will take this as a sign of increased instability and hence embedded complexity.

To summarize the results, we find that the first two measures do not exhibit any unusual behavior during or around 2007–09. However, the third and fourth measures (based on algorithmic complexity and heterogeneity of interactions, respectively) do show a substantial increase in magnitude during the crisis period.

Our work is related to several strands of the existing literature. First, it is related to an early attempt of Bonanno et al. to characterize levels of complexity in financial data [8]. They graded complexity in three levels: the lowest level has time series properties (such as volatility clustering); level two contains cross-correlations; and level three is characterized by extreme movements in the collective dynamics, signifying the highest level of complexity. The present work is an attempt toward numerically quantifying the third level, i.e., the highest level of complexity as described in Bonanno et al. [8]. Second, we note that the goal of finding complexity measures for financial data based on techniques from physics, economics, evolutionary biology, etc. has often been discussed, for example in Johnson and Lux [9] and references therein; however, to the best of our knowledge, currently there is still no measure available (apart from sudden changes in volatility) that can accurately identify periods of large-scale financial distress from only asset return data. We note that this goal is different from that of seeking statistical precursors to financial crises (or even identifying mechanisms correlated with financial crises), toward which some work has already been done (see e.g., [10, 11]).

There is large volume of work on construction and inference of network structures from multivariate stock return data (see [12–14] and references therein). Our first measure is based on non-linear relationships between stock returns, for which we adopt an entropy-based measure of mutual information (previously used in the context of financial time series, such as in Fiedor [15]), and we compare the dynamics of the corresponding eigenspectrum with that obtained from linear correlation matrices [16]. We see that there is an overall increase in the degree of correlation over time between what can be inferred from non-linear and from linear relationships, along with a cyclic oscillation in explanatory power. This indicates that a non-linear relationship between assets does not necessarily convey more information than a linear relationship.

Next, we quantify the behavior of a directional Granger causal network over time. The spread in centralities of the nodes in the directional lagged co-movement network (captured by Granger causation) remains fairly stable over time. This analysis is motivated by two influential papers in which the systemic risks of assets were constructed from return data (see [17, 18]). There is a related literature on characterizing shock spillover in a multi-dimensional return network. However, here we do not consider those constructions, since they do not directly relate to instability of the financial system.

We then implement a non-parametric, information-theoretic measure of complexity that is based on algebraic complexity [19–24]. Zenil et al. [25] applied an algorithmic measure of complexity to financial data. We adapt their measure to many-dimensional data by transforming the data through multi-dimensional scaling. This dimension-reduction technique makes the method very generally applicable to time series data, and the measure is able to accurately identify times of crisis.

Finally, the fourth measure is based on the ecology-inspired dynamical systems theory proposed by Robert May [26]. In reference [27] an adaptation of the original May-Wigner result is proposed in the context of a discrete-time vector autoregression model and applied to a limited set of data from the New York Stock Exchange. We adopt the same approach and construct the implied heterogeneity index of stock interactions, which exhibits sharp transitions during the crisis and also in the post-crisis period, indicating lagged effects.



2. MATERIALS AND METHODS

In this section we describe the data and the methods. All background material and a step-by-step description of the computational procedure are given in the Supplementary Material.


2.1. Data Description

We collected daily NASDAQ stock return data over a period of 47 years, from 1972 to 2018 [obtained from the Center for Research in Security Prices (CRSP) database, http://www.crsp.org/, accessed through Wharton Research Data Services (WRDS), https://wrds-www.wharton.upenn.edu/]. Let 𝕋 denote the length of the entire data series in years, so 𝕋 = 47. We considered moving windows of width equal to 4 years, i.e., 1972–75, 1973–76, and so on until 2015–18, with the windows indexed by k = 1, 2, …, 441. For each window, we calculated the market capitalization of all stocks at the end of the period and selected the top N = 300, with the restriction that the data for chosen stocks cannot have more than 5% missing values within a window (which we fill with zeros). This dataset covers pre-crisis, crisis, and post-crisis periods (the crisis period was 2007–09).

We denote each price series by [image: image], where i is the stock, t is the time period within a window, and k is the window. A 4-years window has ~1,000 days (each year has slightly more than 250 trading days) and is denoted by Tk. All our analyses were conducted on the log-return data, defined as

[image: image]

Next, we normalize the log-return data as follows:

[image: image]

where 〈·〉 denotes the sample average and [image: image] is the sample standard deviation of Gi.



2.2. Quantification of Linear and Non-linear Relationships

In this subsection we compare the information content in linear and non-linear relationships.


2.2.1. Correlation Matrix

We construct the cross-correlation matrix Ck as

[image: image]

for all i, j ≤ N for the kth window, where k = 1, …, 𝕋. For the {i, j}th pair we construct a distance measure in the form of (this form is widely used; see e.g., [13]).

[image: image]
 

2.2.2. Entropy and Mutual Information Matrix

First we need to define entropy. For the probability distribution p(x) of a discrete variable X defined over a domain [x1, x2, …, xN], the Shannon entropy is given by [23]

[image: image]

For two discrete variables X and Y with probability distributions p(x) and p(y), the joint entropy is given by [23]

[image: image]

where p(xi, yj) denotes joint probability. Mutual information is an entropy-based measure that is defined for two variables X and Y having probability distributions p(x) and p(y) [23]:

[image: image]

which is always guaranteed to be non-negative and symmetric. We construct the mutual information matrix Mk for each window k, where the element [image: image] of the matrix is defined as

[image: image]

By construction, M has all non-negative elements and is symmetric. We have used the Freedman-Diaconis rule here [28] to discretize the data. Further details are available in the Supplementary Material.



2.2.3. Comparison of Linear and Non-linear Relationships

We conduct an eigendecomposition of both the distance and the mutual information matrices for every window k = 1, 2, …, 𝕋. First we carry out eigendecompositions of the distance matrix D (from Equation 4) and the mutual information matrix M (from Equation 8):

[image: image]

where λi is the ith eigenvalue, vi is the corresponding eigenvector, and a prime represents transpose. Since the dominant eigenvector represents the contribution of each asset to the aggregate interaction matrix, we extract the dominant eigenvectors from both the distance and the mutual information matrices for every window and regress the eigenvector obtained from the kth mutual information matrix (vmi, k) on that obtained from the corresponding kth distance matrix (vD, k):

[image: image]

where α and β are constants and ϵj is an error term. The explained variation (i.e., the R2 of the regression) over 47 windows is plotted in Figure 1. High explanatory power would indicate that the information content is similar in the two measures. Two features stand out from the results. First, there is substantial time variation and an almost cyclic oscillation in the explanatory power. Second, there seems to be a general increase over time in the degree of relationship, indicating that the information content is becoming more similar, at least for pairwise relationships. The mutual information estimates were computed by discretizing the data, with each series converted into an ordinal categorical series with b classes, where b = 8, 12, and 16, utilizing the useful property that mutual information is a probability-based measure. Upon varying number of bins, the results are similar in all cases [29]. Therefore, the information content seems to be captured well by linear correlation matrices, which are much less computationally intensive.


[image: Figure 1]
FIGURE 1. Evolution of the dominant eigenvalues of the distance matrices (λD) and the mutual information matrices ([image: image] with b = 8, 12, 16) over the time period 1972–2018. The dominant eigenvalues of the mutual information matrices (for three bin choices) show variation over time in the semi-log plot. Due to scaling, the variation in the dominant eigenvalue of the distance matrix is subdued. Inset: Time series of R2 obtained from regressing the dominant eigenvector of the mutual information matrix on the dominant eigenvector of the distance matrix over the period 1972–2018 comprising 44 time windows. The choice of the number of bins b seems to have a negligible effect (results are shown for b = 8, 12, and 16). The dominant eigenvectors representing market modes in the distance matrices D and the mutual information matrices M became strongly correlated after the year 2000.





2.3. Complexity Through Dispersion in Systemic Risk

The spread in systemic risk across different stocks may indicate the degree of complexity. A high spread would imply that some assets are extremely risky while other assets are safe; a low spread would indicate a similar risk profile for all stocks. We quantify systemic risk following the method proposed in Yun et al. [17], which uses the Granger causal network as the fundamental building block.

We construct the Granger causal network (GCN) for each window of data (excluding the first window as its network size was not comparable with that of the rest). Each network is constructed as follows. If the jth asset's return Granger causes the ith asset's return, then there exists an edge from j to i:

[image: image]

where α is a constant, βij is the parameter of interest, and ϵit is an error term. In the estimated model, if βij is significantly different from zero (evaluated at the standard 5% level of significance, with estimation done using the lmtest package in R), we connect i and j. We do the same for all i, j = 1, …, N and create a full Granger causal matrix GN×N. A visual example is shown in Figure 2A. High dispersion in the degree connectivity is evident.


[image: Figure 2]
FIGURE 2. (A) Illustrative example of a Granger causal network of 100 firms (nodes) with greatest market capitalization in the last window of data (2015–2018) from NASDAQ; an edge represents Granger causality between a pair of return time series. (B) Evolution of the spread in systemic risk as measured by PageRank computed on Granger causality: the top panel shows the evolution of the standard deviation of PageRank for the nodes; the bottom panel shows the evolution of the differential entropy (Jaynes' method). The spread in centrality of assets remained stable over time, with a large spike occurring around 2013 in the standard deviation, while the entropy remains quite stable.


Once the network is created, we find the PageRank [30] of the matrix as a measure of the systemic risk [17, 18]. The interpretation is that a high PageRank would imply a higher propensity of lagged movement with respect to other assets and, therefore, higher risk of spillover from other stocks (see the Supplementary Material).

We study the evolution of the influence of assets in the GCN by calculating the dispersion in PageRank. High dispersion would indicate high inequality in influence. We present the evolution of the standard deviation and the differential entropy, two well-known measures of dispersion, in Figure 2B. Both series seem to be quite stable, indicating low spread in the influence of assets in the predictive GCN, except for the high inequality around 2013 shown by the first series (the estimate for 2013 represents data from the window 2012–15).



2.4. Algorithmic Measures Based on Information Theory

In this subsection we treat the problem of defining complexity in the financial network from the point of view of replicability of the emergent pattern. Although the present approach is different, we note that in Zenil and Delahaye [25] it was proposed to apply an algorithmic complexity measure to financial price data. The authors analyzed deviation of financial markets from log-normal behavior in a parametric setup under distributional assumptions. Here we use a non-parametric formulation and study the time series behavior of the implied complexity measure.

Our main idea is as follows. Given financial time series data for a certain window, we first create a correlation matrix (as in Equation 3), and from that we construct a distance matrix in the form of an identity matrix minus the correlation matrix. Then, based on a clustering technique (multi-dimensional scaling, a non-linear dimension-reduction technique for information visualization that creates a pattern of the relative positions of a number of objects in a dataset; we employed Euclidean distance for the present implementation [31] using the sklearn.manifold package in Python), we project the distance matrix onto a two-dimensional plane. This step generates a data cloud on the two-dimensional plane.

By defining a fine grid on the plane, we convert the data cloud into a binary matrix, where each cell is evaluated according to whether or not it contains an asset's projection. Thus, we get a pattern on a two-dimensional grid. Given this binary matrix pattern, we can construct a complexity measure [21, 22, 32] based on how complex the pattern is that emerges on the matrix. Our main object of study is the evolution of this complexity measure (see the Supplementary Material).

Given this binary representation, one way to construct a complexity measure would be to employ a lossless compression method that captures statistical regularities related to information-theoretic measures, such as Shannon entropy, instead of algorithmic measures [22, 33]. A key limitation of such approaches is that they are not invariant with respect to different descriptions of the same object, while methods in algorithmic complexity, such as the “invariance theorem,” can overcome this difficulty [32]. In the following we adopt an algorithm (the block decomposition method, BDM for short) developed in Zenil et al. [21, 22, 32] to construct a complexity measure which in our view is a potential candidate.

The algorithmic complexity of a string can be defined in terms of the shortest algorithm that generates that string [34–36]. The algorithmic complexity K(s) of a string s is the length of the shortest program p that generates s when executed on a universal Turing machine U (prefix-free; for details see [37, 38]), which can be formally expressed as

[image: image]

In the following we apply BDM estimation of the complexity of the projection of the data on a two-dimensional grid. For a complete discussion of the methodology of complexity calculations and the background, which is a vast literature in itself, one can consult [34, 35, 39, 40, 40–43].



2.5. Interactive Dynamics: Complexity Through Heterogeneity

Next, we explore an ecology-inspired [9] characterization of economic complexity in terms of the stability of interlinked dynamical systems [44], which comes from the work of Robert May. The result (which goes by the name of the May-Wigner result) is based on prior theoretical work done by E. Wigner on random matrices. The key idea is that as a first-order dynamical system defined on a vector of variables XN×1 with random heterogeneous connections becomes larger (i.e., N increases), the system tends to be become unstable [26]. Formally, if Γ is an N × N interaction matrix with elements γij such that Prob(γij = 0) = c and [image: image] for all other elements, where f is some distribution with mean zero and variance σ2, then in the limit N → ∞, the probability that the linear system

[image: image]

is stable tends to 1 if Ncσ2 < 1 and tends to 0 if Ncσ2 > 1 [44]. Importantly, for us σ represents the heterogeneity in the strengths of connections of the interaction matrix Γ. In Rai et al. [27] this idea was applied to the stock market with a discrete-time formulation in the form of a vector autoregression ([image: image], where one allows for a constant vector c in the vector autoregression estimation; see the Supplementary Material). It is shown that during times of crisis the estimated heterogeneity parameter (σ obtained from the estimated [image: image] matrix) increases substantially. However, the data considered in Rai et al. [27] was limited (spanning the 16 years 2002–17), the time windows were non-overlapping, and the analysis was done only on data from the New York Stock Exchange. In the present paper, we perform a complementary analysis with the same technique, using NASDAQ data from 1972 to 2018 with overlapping windows. We fit the vector autoregression model to the data and estimate the [image: image] matrix for each window; then we compute the standard deviation of the estimated parameters in the [image: image] matrix, which represents the degree of heterogeneity in the interaction strengths.



2.6. Decomposability of Complexity Measures

We also explore whether a feature that we find at the level of raw data can be decomposed in terms of slices of data obtained via eigendecomposition. For this purpose, we consider singular value decomposition,

[image: image]

where the return matrix g (of size T × N) is expressed as a product of three matrices, namely a T × T matrix U, an N × N orthonormal matrix V, such that V = V*, and a T × N rectangular diagonal matrix Σ which contains non-negative numbers on the diagonal. In the present context, T > N.

After de-meaning the data matrix g, we consider the matrix Σ′ which contains only a subset of entries on the diagonal while the rest of the entries are replaced by zeros. The original matrix Σ would have N entries on the diagonal. For Σ′, we take the subsets to be the first to fourth singular values and the fifth to fifteenth singular values, implying that we can reconstruct the return series associated with the first four and the next eleven values by simply constructing

[image: image]

We implement the complexity measures on these reconstructed data matrices as well, to see whether a complexity measure calculated from the whole data can be decomposed into complexity measures pertaining to the dominant eigenmodes in the data. We note that for the vector autoregression model estimation, the estimated interaction matrices would have only k non-trivial columns if we select k eigenmodes to construct the data slices.




3. RESULTS

In Figure 3 we plot the complexity measure for rolling windows using the BDM for the whole data. The results were obtained by employing the multi-dimensional scaling method for fixed axes using the scikit library in Python [45]. Fixing the axes is required because the multi-dimensional scaling algorithm does not always compute the projection in the same way since the technique is invariant under rotation in the two-dimensional plane, whereas the complexity measure is not invariant under rotation. The BDM results were obtained using the Python module developed by the AlgoDyn Development team (publicly available at https://pybdm-docs.readthedocs.io/en/latest/index.html). For the present purposes, we used the 2D implementation and two symbols. For the heterogeneity estimates following the May-Wigner theory, in Figure 4 we plot the evolution of the heterogeneity in the interaction matrix. The analysis was done using the VARS package in the R programming language. Both of the above analyses were complemented by computing the evolution of the same measures on the first four and the next eleven eigenmodes using the singular value decomposition (implemented using quantmod in R), as shown in the insets of Figures 3, 4.


[image: Figure 3]
FIGURE 3. Evolution of the complexity of financial linkages among the stocks over the period 1972–2018 obtained from the BDM. The dimension of the financial linkage data was reduced by mapping the dissimilarity matrices (constructed from the cross-correlation matrix ρN×N as IN×N − ρN×N) onto two-dimensional grids using a multi-dimensional scaling technique, and the complexity measure was then evaluated on these. The measured value peaks around the crisis period. Inset: Result of the same procedure applied to data slices corresponding to the first four eigenmodes (black dashed line) and the next eleven eigenmodes (red circles).



[image: Figure 4]
FIGURE 4. Evolution of the heterogeneity in interaction strengths among the stocks over the period 1972–2018 obtained from the vector autoregression model. Each point estimate corresponds to a 4-years data slice. The x-axis plots the midpoints of the windows. Inset: Result of the same procedure applied to data slices corresponding to the first four eigenmodes (black dashed line) and the next eleven eigenmodes (red circles). No particular pattern emerges from the decomposition, but at the aggregate level heterogeneity increases substantially during the time of the crisis and rises further in the post-crisis period.


The main takeaway from these results is that both of the complexity measures correctly indicate the time of crisis. The BDM-based measure computes an analog of the dispersion in the clustering of data (even with normalized return data), whereas the vector autoregression-based measure captures the dispersion in terms of the strength of interactions. Interestingly, when we apply the same techniques to slices of data corresponding to different eigenmodes, similar features are absent. Therefore, these complexity measures, while reasonably correct at the aggregate level, do not seem to be decomposable.



4. SUMMARY AND DISCUSSION

The goal of this work was to extract statistical features from time-varying data that indicate evolution of complexity. Financial systems are thought of as canonical examples of complex systems in terms of interaction, emergence, evolution, and non-stationarity. Here we have analyzed historical financial data on a comprehensive set of stocks from NASDAQ, which is one of the three most followed indices of the US stock market and consists mostly of non-financial tech-oriented firms.

We have estimated four indices of complexity: a measure based on the information content of non-linear co-movements, a systemic risk-based measure constructed from Granger causal networks, an algorithmic complexity measure based on multi-dimensional scaling, and a heterogeneity-based measure motivated by dynamical systems theory. To summarize, the first two measures do not seem to indicate the crisis period (2007–09) clearly, whereas the third and fourth measures perform substantially better and are more accurate. However, neither of the latter two measures is decomposable, in the sense that for each of them the sum of the complexities of decomposed data is not the same as the complexity of the original data.

Some caveats and future directions for research are as follows. First, the results indicate that the information content of the mutual information matrix and that of the correlation matrix become quite similar after the year 2000, so a non-linear measure, such as mutual information is not very useful. There are, however, some new measures of association, with different asymptotic theory (e.g., [46]), that could be explored in future work. Second, an open problem relating to the construction of the Granger causal matrix from pairwise regression is that it does not test for joint significance and there can be type I error due to multiple testing, leading to false discovery of edges [47]. In future work we intend to explore this issue in more detail. Third, for the BDM-based measure of complexity, implementation with more symbols may yield better results, although this would be computationally quite costly. Fourth, following Rai et al. [27] we have shown that the heterogeneity of interaction strengths among the stocks significantly increases during the crisis period and attains an even higher level in the post-crisis period. Two major differences between our results and those of Rai et al. [27] are that (i) in the present work, the spike in heterogeneity has a much larger magnitude than that found in Rai et al. [27]; and (ii) in our results the greatest spike in heterogeneity occurs shortly after the crisis (rather than during the crisis as in the analysis of NYSE data in Rai et al. [27]) and seems to continue for a long time without tapering off.

Management of risk in complex systems, such as financial markets requires clear quantification of the complexity. The measures proposed in this paper complement the existing statistical finance literature on describing evolution of markets during crisis and non-crisis periods [11, 48–51]. In this work we have used the word complexity to mean emergent instability, similar to Kuyyamudi et al. [11]. It would be interesting to see whether similar ideas can be applied to other complex systems [12]. In the context of financial markets, such quantification of complexity brings us closer to answering the question of what factors (economic or financial) drive the evolution of complexity. A causal explanation of the mechanisms can inform policy-making with regard to complex financial systems.
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FOOTNOTES
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Investors adopt varied investment strategies depending on the time scales (τ) of short-term and long-term investment time horizons (ITH). The nature of the market is very different in various investment τ. Empirical mode decomposition (EMD) based Hurst exponents (H) and normalized variance (NV) techniques have been applied to identify the τ and characteristics of the market in different time horizons. The values of H and NV have been estimated for the decomposed intrinsic mode functions (IMF) of the stock price. We obtained [image: image] and [image: image] for the IMFs with τ ranging from a few days to 3 months and [image: image] 5 months, respectively. Based on the value of [image: image], two time series have been reconstructed from the [image: image]: a) short-term time series [[image: image]] with [image: image] and τ from a few days to 3 months; b) long-term time series [image: image] with [image: image] and [image: image] 5 months. The [image: image] and [image: image] show that market dynamics is random in short-term [image: image] and correlated in long-term [image: image]. We have also found that the [image: image] is very small in the short-term ITH and gradually increases for long-term [image: image]. The results further show that the stock prices are correlated with the fundamental variables of the company in the long-term [image: image]. The finding may help the investors to design investment and trading strategies in both short-term and long-term investment horizons.
Keywords: empirical mode decomposition, Hurst exponent, short-term investment time horizon, long-term investment time horizon, time scale, normalized variance
1. INTRODUCTION
The stock market is a complex dynamical system where the evolution of the dynamics depends on the participation of different types of investors or traders [1–3]. Investors/traders participate in the stock market to gain profit implementing different investment and trading strategies depending on investment time horizons (ITH) [45]. The participation of diversified investors, reaction to the information, and short-term and long-term investment approaches play crucial roles in the movement of stock prices [4].
In the stock markets, there are mainly two types of investors: short-term investors who invest for short-term gain and long-term investors who invest for long-term gain [67]. Studies show that the [image: image] for short-term investors ranges from a single day to a few months, and for long-term investors, it usually ranges from a few months to several years [89]. The fund managers and foreign exchange dealers of various countries use technical analysis for the short-term [image: image] and fundamental analysis for the long-term [image: image] [810]. The time scales (τ) of short-term and long-term [image: image] by the investors are generally chosen in an arbitrary manner based on the investment experience [810]. So the identification of τ from stock price time series using a well defined technique may be helpful for both the short-term and long-term investors.
As the market is mean reversing in short-term [image: image] [9], traders fail to generate significant returns using technical analysis [11]. On the other hand, in the long-term [image: image], an investor can generate significant return or help in making decision whether to exit from that particular stock to avoid loss by determining the financial health of a company by using fundamental variables [12–14]. Fundamental analysis is an essential tool to find out the relation between stock price and fundamental variables such as book to market (B/M), sales to price, debt to equity, earnings to price, and cash flow of a stock [12–14]. The stock price is found to be positively correlated with the essential fundamental variables [14–20]. The study of the correlation in the short-term [image: image] and long-term [image: image] is essential to take a fruitful investment decision.
In the short-term [image: image], the market is generally considered to be governed by psychological behavior of the investors. However, the fundamental variables are the main determining crucial factors in the long-term [image: image]. Usually, investors choose the τ of short-term and long-term investment horizon in an arbitrary manner [89]. Recently, we used structural break study to show that the τ for the short-term is usually less than a few months [9]. The separation of the short- and long-term dynamics in terms of τ plays a vital role in the prediction of future price movement. Hence, detailed studies are required to find the correlation of the stock price with fundamental variables and to identify the τ of market dynamics in the short-term [image: image] and long-term [image: image].
In this article, we estimated the τ of the stock price in the short-term and long-term [image: image] for twelve leading global stock indices and the stock price of some companies using empirical mode decomposition ([image: image]) based Hurst exponent (H) analysis. We have reconstructed short-term and long-term time series based on the H. Finally, we estimated the correlation coefficient between long-term time series and fundamental variables. Herein we establish that short-term [image: image] is normally less than 3 months and long-term [image: image] is more than 5 months. Correlation analysis shows that the long-term stock price is positively correlated with the fundamental variables.
The remaining part of this paper is organized as follows: In Section 2, we introduce the method of analysis, while Section 3 presents the data analyzed. Results and discussion and conclusion are delineated in Sections 4 and 5, respectively.
2. METHOD OF ANALYSIS
A nonlinear two-step technique—EMD followed by Hilbert–Huang Transform ([image: image])—has been applied to analyze the stock data as it is nonlinear and nonstationary. Nonlinearity in the stock market appears due to the presence of market frictions and transaction costs, existence of bid-ask spread, and short selling, whereas nonstationarity appears due to different time scales present in the stock market [2122]. This approach helps us to identify the characteristic τ and the important trends and components present in the data [3].
The [image: image] method decomposes the stock index and stock price into the intrinsic oscillatory modes of different τ by preserving the nonstationarity and nonlinearity of the data. These oscillatory modes are termed intrinsic mode functions ([image: image]). The [image: image] can be both amplitude and frequency modulated as well as nonstationary [2324]. The τ of each [image: image] has been identified by [image: image] The [image: image] eliminates the spurious harmonic components generated due to the nonlinearity and nonstationarity of the data [2324].
The [image: image] satisfy the following two conditions; i) the number of extrema and the number of zero crossing must be equal or differ by one; and [image: image]) mean values of the envelope, defined by the local maxima and local minima, for each point are zero. The [image: image] is calculated in the following way [2325]:
a. Lower envelope [image: image] and upper envelope [image: image] are drawn by connecting minima and maxima of the data, respectively, using spline fitting.
b. Mean value of the envelope [image: image] is subtracted from the original time series to get new data set [image: image]
c. Repeat the processes (a) and (b) by considering h as a new data set until the [image: image] conditions (i and [image: image]) are satisfied.
Once the conditions are satisfied, the process terminates, and h is stored as the first [image: image]. The second [image: image] is calculated repeating the above steps (a)–(c) from the data set [image: image]. When the final residual is monotonic in nature, the steps (a)–(c) are terminated and the original time series can be written as a set of [image: image] plus residue,
[image: image]
where [image: image] represents the ith [image: image], and residue represents the trend of the stock data.
[image: image] are the signal with different τ. The [image: image] is a signal with the smallest τ, the [image: image] is the signal with the second smallest τ, and so on. Hence, [image: image] technique is useful to extract different τ from the signal. The characteristic τ of each [image: image] can be estimated from the frequency (ω) by using Hilbert Transform, which is defined as
[image: image]
where P is the Cauchy principle value, and [image: image] where [image: image], and [image: image] [23]. Identification of important [image: image] is essential to differentiate the market dynamics in short-term from long-term [image: image], and the differentiation can be done by evaluating the H.
Rescaled-range (R/S) analysis is a technique to estimate the correlation present in a time series by calculating H [26–28]. Details of the R/S technique are described below. Let us consider a time series of length L and divided into p subseries of length l. Each subseries is denoted as [image: image], where t = 1, 2, 3, …, p. Mean and standard deviation of the subseries [image: image] are defined as
[image: image]
and
[image: image]
respectively. Mean adjusted series is calculated as
[image: image]
for j = 1, 2, 3, …, l. Cumulative time series is given by
[image: image]
for j = 1, 2, 3, …, l.
Range of the series has been calculated as
[image: image]
Individual subseries range can be rescaled or normalized by dividing the standard deviation. So, R/S is written as
[image: image]
The ratio of each subseries of length l is expressed as [image: image], where H is the Hurst exponent. H can be estimated from the slope of ln(R/S) vs. ln(l). For a random time series, H is around 0.5, and for correlated and anticorrelated time series, H is greater than 0.5 and less than 0.5, respectively.
Normalized variance ([image: image]) is another important statistical tool to identify the important [image: image] based on the energy of the signal. The higher the [image: image] value is, more significant the signal is. The technique estimates the energy of the ith [image: image] by calculating variance [2930], and [image: image] of ith [image: image] is defined as
[image: image]
where q is the total number of [image: image].
3. DATA ANALYZED
We have analyzed the stock indices and stock prices of a few companies of different countries from December 1995 to July 2018, namely, 1) S&P 500 (USA), 2) Nikkei 225 (Japan), 3) CAC 40 (France), 4) IBEX 35 (Spain) 5) HSI (Hong Kong), 6) SSE (China), 7) BSE SENSEX (India), 8) IBOVESPA (Brazil), 9) BEL 20 (Euro-Next Brussels), 10) IPC (Mexico), 11) Russell 2000 (USA), and 12) TA125 (Israel), and stock prices of the companies 1) IBM (USA), 2) Microsoft (USA), 3) Tata Motors (India), 4) Reliance Communication (RCOM) (India), 5) Apple Inc. (USA), and 6) Reliance Industries Limited (RIL) (India). Stock indices and price data were downloaded from yahoo finance, and the analysis was carried out using MATLAB software.
4. RESULTS AND DISCUSSIONS
The stock market shows different behavior in different investment horizon. [image: image] based H and [image: image] techniques have been applied to analyze the market dynamics as discussed below.
Figures 1A–J show the [image: image] to [image: image] and the residue of the S&P 500 index calculated using [image: image] technique as described in detail in Section 2. [image: image] in Figure 1A represents the mode with the lowest τ, and it gradually increases with the increase in [image: image] numbers. Figure 1J represents the residue of the signal, which indicates the overall trend of the index. Similarly, we have calculated all [image: image] for all the indices and companies to analyze the market.
[image: Figure 1]FIGURE 1 | The plots (A)–(I) represent the [image: image] to [image: image], respectively, and (J) represents residue of the S&P 500 index.
4.1. [image: image] Based H and [image: image] Analysis
H has been calculated for all the [image: image]. Figure 2A shows the typical plot of H versus τ of all the indices and companies. We obtained single H from [image: image] and it is indicated as [image: image]. Higher-order [image: image] shows two H, namely, [image: image] and [image: image]. We obtained [image: image] for [image: image] to [image: image] with τ ranging from a few days (D) to 3 months (M). The value of [image: image] jumps to [image: image] for [image: image] with [image: image]M. It gradually increases for [image: image] to [image: image] with a τ ranging from 1 year (Y) to 12 Y. [image: image] for [image: image] to [image: image] indicates that the nature of the first five [image: image] is random. [image: image] to [image: image] show a long-range correlation up to one period [image: image]. τ of [image: image], [image: image], [image: image], [image: image], and [image: image] of all the indices and companies stock data analyzed here are in the range of 3–4 D, 7–10 D, 15–18 D, 1–1.5 M, and 2.5–3 M, respectively.
[image: Figure 2]FIGURE 2 | (A) shows the Hurst exponents ([image: image] and [image: image]) vs. τ of all the [image: image] of all the indices and companies with [image: image] error bar. The first point represents the average value of [image: image] of all the first [image: image] of all stock data, the second point represents the average value of [image: image] of all the second [image: image] of all stock data, and so on. For [image: image] to [image: image] of all indices and companies [image: image] with a maximum τ of around 3 M. The value of [image: image] jumps to [image: image] for [image: image] (with a [image: image]) and gradually increases for [image: image] to [image: image]. [image: image] value shows that nature of [image: image] to [image: image] is random and [image: image] to [image: image] have a long-range correlation. (D), (M), and (Y) in the x-axis represent the day, month, and year, respectively. (B)–(D) represent the normalized variance [image: image] of [image: image]s of all the indices and company, respectively.
To further validate the robustness of the proposed method, analysis of the decomposed time series has been carried out using [image: image] technique. Figures 2B–D represent [image: image] of all the [image: image] of all the indices and companies, where plots have been arranged according to the order of higher [image: image] of [image: image]. Figures 2B–D show that the value of [image: image] is very low for all the indices and companies up to [image: image], and [image: image] increases significantly for [image: image] to [image: image]. Hence, based on the value of [image: image] the time series can also be decomposed into two time series with two distinct time horizons: short-term time series by adding [image: image] to [image: image] and long-term time series by adding [image: image] to [image: image] plus residue as described in Section 4.2. Further, [image: image] technique can be used to find a time series with important time scale in the form of [image: image]Figures 2B–D show that the value of [image: image] is higher for [image: image] with [image: image], [image: image] with [image: image], and [image: image] with [image: image], respectively, for the companies mentioned in the plots. The decomposed time series with higher value of [image: image] may play important role to predict long-term behavior of the market [29]. More such studies in detail can be pursued in future.
4.2. Reconstruction of Short-Term and Long-Term Time Series
In order to analyze the market dynamics in short-term [image: image] and long-term [image: image], we have reconstructed two time series from the decomposed [image: image] as discussed below.
We have reconstructed a time series [image: image] by adding the [image: image] to [image: image] whose [image: image], that is, [image: image]. The time scale of [image: image] ranges in [image: image]. Figure 3B shows the reconstructed time series [image: image] obtained by decomposing the original time series of Apple Inc. which is shown in Figure 3A. [image: image] shows that the stock market is random when τ ranging from a few days to 3 months. Hence, [image: image] represents the short-term time series in [image: image]. The above analysis shows that the market behavior is random in the short-term [image: image] when τ is in the range of a few days to 3 months.
[image: Figure 3]FIGURE 3 | (A) represents the daily price movement of Apple Inc. from April 2007 to March 2018. (B),(C) represent the reconstructed short-term time series [image: image] and long-term time series [image: image], respectively.
Higher-order [image: image] shows two Hurst exponents ([image: image] and [image: image]). We have reconstructed another time series [image: image] by adding [image: image] to [image: image] whose [image: image] and residue, that is, [image: image] residue to understand the market dynamics in long-term [image: image]. The time scales of [image: image] are [image: image]. Figure 3C shows the reconstructed long-term time series [image: image] obtained by decomposing the original time series of Apple Inc., which is shown in Figure 3A. The present analysis yielded a [image: image] value of [image: image], which shows that the stock market has a long-range correlation with [image: image]. Hence, [image: image] represents the long-term time series with [image: image]. From the above analysis, it can be concluded that the market has a long-range correlation in the long-term [image: image] with [image: image] and hence may be used to predict a future price. Further, it has been observed that the future price of a stock is actually much more dependent on the fundamental variables of a company. In order to understand such dependence, we have studied the correlation between [image: image] and the fundamental variables of the companies.
Table 1 shows that the correlation coefficient (J) between [image: image] and three fundamental variables: sale, net profit (NP), and cash from operating activity (COA) for some Indian and American companies which are listed in NSE, NYSE, and NASDAQ, from March 2007 to March 2018 in the annual price level. Fundamental variables data have been downloaded from screener and macrotrends. We obtained a positive correlation between [image: image] and sale, NP, and COA for all the years. It implies that stock price is correlated with the sale, NP, and COA. We have obtained a small J for a few stocks. These stocks show a small J for the following two possible reasons: a) the stock price of a company with strong growth prospect increases even though sale or NP decreases temporarily; b) the stock price of a company with weak growth prospect decreases even though sale or NP increases temporarily. Hence, for long-term investment, the fundamental variables are the most crucial variables for the prediction of the future price. In the future, we would like to study the correlation between stock price and other fundamental variables of companies.
TABLE 1 | Correlation coefficient [image: image] between reconstructed long-term time series [image: image] and three fundamental variables of some Indian and American companies.
[image: Table 1]5. CONCLUSION
In this paper, we have studied the stock market using the empirical mode decomposition ([image: image]) based Hurst exponent (H) analysis and normalized variance ([image: image]) technique. [image: image] technique has been applied to decompose the time series in the form of [image: image]. H and [image: image] have been calculated for all the [image: image] to understand the nature of the market dynamics.
The analysis yielded a value of [image: image] for [image: image] to [image: image]. A short-term time series [image: image] is reconstructed by adding [image: image] to [image: image]. The time scale of [image: image] ranges from a few days to 3 months. The estimated value of [image: image] which shows that the stock market is random in the short-term [image: image]. We have estimated the value of [image: image], [image: image], [image: image], and [image: image] for [image: image], [image: image], [image: image], and [image: image], respectively, for all the data. [image: image] shows that the [image: image] to [image: image] have long-range correlation, and hence a long-term time series [image: image] is reconstructed by adding [image: image] to [image: image] and residue. The time scale of [image: image] is greater than 5 months. The results show that the market is random with [image: image] and having a long-range correlation with [image: image]. The study of the correlation between [image: image] and sale, net profit, and cash from operating activity of different companies shows that the market is positively correlated with the fundamental variables of a company in long-term [image: image]. Hence, the dynamics of the market may be predicted in long-term [image: image] using fundamental variables.
A detailed study of the market in the long-term [image: image] in terms of fundamental variables of a company is necessary to predict the future price. We believe that the outcome of the present study may help in making investment decisions in both short-term [image: image] and long-term [image: image].
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We analyzed the Tokyo Stock Exchange (TSE) for a 29-month period from August 2014 to December 2016, including every transaction and order book snapshot, and confirmed through a simple statistical test that the market impact depends on each stock. Based on a correlation analysis, we found that the market impact slowly changes over time. From an order book analysis, negative correlations were found between the market impact and the averaged limit order volumes in the order book. We also clarified that one of the factors of market impact is the volume of limit orders in the order book.
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1. INTRODUCTION

Many previous studies have addressed market impact from theoretical [1–8] and empirical [9–13] viewpoints since it is related to market efficiency and trading costs, especially for trading large volumes.

The analyses of market impact using order book data has since the 2000s gradually become popular [14–18] thanks to the provision of datasets of the order book from stock exchange markets such as the London Stock Exchange (LSE), New York Stock Exchange (NYSE), and Tokyo Stock Exchange (TSE) and developments of computer technology that enable us to analyze huge size of order book data.

These studies mainly focused on short time scale market impact such as a single transaction, a few seconds, or a few minutes. It is useful to discuss how large volume order affects the market price over a long time scale. However long time scale of it, such as daily market impact, has not been studied enough compared to the short time scale. In order to estimate transaction costs, daily market impact analysis is important for asset management companies that manage their position daily.

In a previous study of a historical dataset of the Tokyo Stock Exchange (TSE) for a 17-month period from August 2014 to December 2015 [19], we identified the following two relationships: (i) a proportional relationship between the return of the market price and the order imbalance of the executed volume and (ii) an inverse proportional relationship between the market impact and the averaged order book volume. We also introduced a transaction cost model by calculating the spread cost and applying the relationship between the return and the order imbalance of execution.

We focused on the TOPIX Core 30 where the issues have very high market capitalization and liquidity, such as Toyota and Sony. However, in this study, we analyzed not only the TOPIX Core 30 but also such smaller stocks as the TOPIX Large 70 and Mid 400 and identified the following results about market impact: (i) it depends on issues; (ii) it slowly changes over time; and (iii) one of its factors is order book volume. These findings are useful to estimate transaction costs.

Our paper is organized as follows. In section 2, we present the empirical analysis results of the execution and order book data. Section 3 is our conclusion.



2. EMPIRICAL ANALYSIS

We analyzed the Tokyo Stock Exchange data for a 29-month period from August 2014 to December 2016, which recorded every transaction and every order book from the best price (0-th level) to the 7-th level for the TOPIX Core 30, the Large 70, and the Mid 400. The datasets can be purchased from Japan Exchange Group (https://www.jpx.co.jp/english/markets/paid-info-equities/historical/01.html).

In this section, the dataset is analyzed, and we show the market impact depends on each stock by a simple statistical test. We clarify the market impact slowly changes over time based on a correlation analysis of it. Additionally, dependencies of market impact on order book volume are investigated.

Figure 1 shows an example of Sony's market price (stock code: 6758) in the upper figure and the cumulative transaction volume of deal-ask (a market order hits the best-ask price) and deal-bid (a market order hits the best-bid price) in the lower figure from 1 second past 9 a.m. to 1 second before 3 p.m. on June 21, 2016. Execution of the opening and closing transactions usually tends to have very large volume. We focused on continuous sessions in this study, removed the opening and closing transactions, and defined the return of the market price for 1 day:

[image: image]

where Ps and Pe are the prices at 9:00:01 and 14:59:59. The executed order imbalance (ΔV) is calculated as the cumulative deal-ask minus deal-bid 1 s before 3 p.m.


[image: Figure 1]
FIGURE 1. Time series of market price and cumulative transaction volume of Sony (stock code: 6758) from 1 second past 9 a.m. to 1 second before 3 p.m. on June 21, 2016.


Figure 2 shows a scatter plot of the return (r) and the executed order imbalance (ΔV) of the Sony Corporation (stock code: 6758) in the Core 30 and Nippon Paper Industries Co., Ltd. (stock code : 3863) in the Mid 400 from October 1 to 31, 2016. Each point is calculated by the data of a single day. We found a clear linear correlation between return (r) and executed order imbalance (ΔV):

[image: image]

where gradient α is a measurement of market impact. In the case of Sony Corporation (stock code: 6758), [image: image], standard error of αl is 4.07 × 10−9, and p-value for αl is 4.49 × 10−5. In the case of Nippon Paper Industries Co., Ltd. (stock code: 3863), [image: image], standard error is 2.59 × 10−8, and p-value is 3.78 × 10−6.


[image: Figure 2]
FIGURE 2. Scatter plots between return (r) and executed order imbalance (ΔV) from October 1 to 31, 2016. (A) Sony corporation (stock code: 6758) in Core 30, (B) Nippon Paper Industries Co., Ltd. (stock code: 3863).


To statistically check the existence of the differences of the market impact among stocks, we define the market impact for one yen as follows:

[image: image]

where αl,i describes the market impact for unit volume, Pi is the last price in a month, and i is the index of the stock. We show examples of monthly time series of [image: image] during 29-month period for three companies in Figure 3. We compare the monthly market impact, [image: image], of companies A and B, and execute the a binomial test. A null hypothesis is the market impacts between company A and B is the same. In other words the probability where the market impact of company A is larger than B is half. If company A has a larger market impact nA times than B, on the other hand company B has a larger market impact nB times than A, a p-value is calculated:

[image: image]

where two times describes a two-tailed test and [image: image].


[image: Figure 3]
FIGURE 3. Monthly time series of [image: image] during 29-month period for three companies: Toyota Motor Corp. (7203), Mitsubishi UFJ Financial Group, Inc. (8306), and Sumitomo Mitsui Financial Group, Inc. (8316).


We applied a statistical test for all the combinations of Core 30, Large 70, and Mid 400. We are interested in small p-values and show a cumulative distribution of the p-values in a log-log scale (Figure 4) and found the actual data have a much bigger proportion of small p-values than a random case. For example, in the actual case, about 68% of the p-values are <0.05, implying the market impact depends on the issues.


[image: Figure 4]
FIGURE 4. Cumulative distributions of p-values for Core 30, Large 70, and Mid 400.


To check the robustness of the market impact size, we show a scatter plot of the log10 α* at the M-th and M+1-th months in Figure 5. We added a median as well as 25 and 75% percentiles in each box and identified a clear correlation. The correlation coefficients have large values (0.67) in the Pearson product-moment correlation case and 0.71 in the Spearman rank-order correlation case.


[image: Figure 5]
FIGURE 5. Scatter plot of log α* at M-th and M + 1-th months.


We also checked the ΔM dependencies for the correlation shown in Figure 6. The correlation decreases until ΔM = 12 (1 year) and saturates. For the Spearman rank-order correlation, it is approximately 0.64 when ΔM = 18. The market impact, which does not change drastically, can be estimated using past market impact values.


[image: Figure 6]
FIGURE 6. Pearson product-moment correlation and Spearman rank-order correlation for [image: image] at M and ΔM months.


Next we focused on the relationships between the market impact characterized by [image: image] and the order book volume. We defined the i-th best-ask and bid-side volumes at t as Va,i(t) and Vb,i(t). For example, the 0th (best) ask-side volume at t is written as Va, 0(t). and the average of both the bid- and ask-sides order book volumes from the 0-th to the 7-th levels at t = ts are given:

[image: image]

where 𝔼 represents the expectation value over the samples. We then defined the daily averaged order book volume:

[image: image]

Here we ignore the opening (9 a.m.), closing (3 p.m.), and lunch (11:30 a.m.–0:30 p.m.) times (Figure 7) and finally calculate the monthly averaged order book volume:

[image: image]

where Td represents trading days of TSE market in 1 month (excluding weekends and holidays).


[image: Figure 7]
FIGURE 7. Illustration of Ts.


The upper time series in Figure 8 shows the monthly [image: image] of the Mizuho Financial Group, Inc. (stock code: 8411), and the lower time series shows the monthly averaged order book volume defined in Equation (7). We observed a negative correlation between these two values.


[image: Figure 8]
FIGURE 8. Time series of monthly gradient ([image: image]) of Mizuho Financial Group, Inc. (stock code: 8411) and averaged order book volume (Vmean, monthly) for a 29-month period from August 2014 to December 2016.


One reason for the dependencies is the order book volume; if we normalized the market impact by order book volume, the cumulative distribution of the p-values shifted more to random cases than to unnormalized cases (Figure 9). Here, we focused on order book volumes; if we normalized the market impact by such other effects as order flow and the configuration of the stock holders, the p-value distribution would probably shift more to the random case.


[image: Figure 9]
FIGURE 9. Comparison cumulative distributions of p-values among actual, random, and normalized by order book volume.




3. CONCLUSION

We showed that the daily market impact depends on stocks by executing a binomial test for the Tokyo Stock Exchange (TSE) during a 29-month period from August 2014 to December 2016. We focused on a longer time scale (such as 1 day) than previous studies that used a single transaction or 5 min. We verified the market impact's robustness and found it does not change drastically and realized that we can estimate it using past market impact values. However, we need to pay attention to big news, such as the Lehman shock, that change market conditions drastically, causing sudden variation in terms of market impact. We also investigated the dependencies of the market impact on order book volume and concluded that if a stock has a larger order book volume, the market impact tends to be smaller. We expect our findings to be useful for discussions about controlling transaction costs.
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This article presents a continuous cascade model of volatility formulated as a stochastic differential equation. Two independent Brownian motions are introduced as random sources triggering the volatility cascade: one multiplicatively combines with volatility; the other does so additively. Assuming that the latter acts perturbatively on the system, the model parameters are estimated by the application to an actual stock price time series. Numerical calculation of the Fokker–Planck equation derived from the stochastic differential equation is conducted using the estimated values of parameters. The results reproduce the probability density function of the empirical volatility, the multifractality of the time series, and other empirical facts.
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INTRODUCTION
In financial time series, past coarse-grained measures of volatility correlate better to future fine-scale volatility than the reverse process. Such a causal structure of financial time series was first reported by Müller et al. [1]. Since then, the causal structure between time scales, the flow of information from a long-term to a short-term scale, was investigated empirically in financial markets; it has been supported by multiple studies [2, 3] as a stylized fact of financial time series [4]. The asymmetric flow of information resembles an energy cascade found in conditions of turbulence. In a developed turbulent flow, the energy injected from the outside at macroscopic spatial scales is transferred to smaller scales and finally dissipated as heat at microscopic spatial scales [5–9]. Gashghaie et al. investigated details of the self-similar transformation rule of the probability density function of price fluctuations and the nonlinear scaling law of the structure function (nth moment of fluctuations), signifying the multifractality of the time series, in their study of the time series of foreign exchange. They pointed out the similarity of price changes in the financial time series to the velocity difference between two spatial points in turbulence [10, 11]. The intermittency in turbulence is a phenomenon characterized by the sudden temporal change of the statistical feature of fluctuations and the spatial coexistence of large and small fluctuations. Such intermittency, which is frequently encountered in heterogeneous complex systems, is well known in financial markets as volatility clustering [4, 12]. Intermittency at each time scale produces a characteristic hierarchical structure designated as multifractality [8, 9].
In the developed turbulence, the process by which mechanically generated vortices on a macroscale deform and destabilize according to the Navier–Stokes equation and then split into smaller vortices is regarded as an energy cascade. A similar idea of modeling multifractal time series by a recursive random multiplication process from a coarse-grained scale to a microscopic scale has offered an attractive means of describing financial time series [13, 14]. Chen et al. verified the statistics of multiplier factors in the random multiplication process of turbulent flow by empirical studies using measured data and numerical experiments of Navier–Stokes equations [15]. Results show that the multiplier factors connecting two adjacent layers follow a Cauchy distribution in which all moments diverge and show that they are not independent. They show strongly negative correlation between the multiplier factors of adjacent layers. The authors verified the statistics of multipliers calculated backward from actual stock price fluctuations, finding a Cauchy distribution of multiplier factors and also the strongly negative correlation between the multiplier factors in financial markets. Results show that the discrete cascade model using the random multiplication process did not reproduce the statistical property of the multiplier factors. Therefore, as an alternative model, a discrete random multiplicative cascade process with additional additive stochastic processes [16–18], or a model formulated as the Fokker–Planck equation considering the cascade process as a continuous Markov process [19–23] was proposed. Those models have been applied to stock market or foreign exchange market data, yielding empirical results including the statistics of multipliers.
This study examines a continuous cascade model of volatility formulated as a stochastic differential equation including two independent modes of Brownian motion: one has multiplicative coupling with volatility; the other has additive coupling as in the discrete random multiplicative cascade process with additional additive stochastic processes described above. The model parameters are estimated by its application to the stock price time series. Numerical calculation of the Fokker–Planck equation derived from the stochastic differential equation is conducted using the estimated values of parameters resulting in successful reproduction of the pdf of the empirical volatility and the multifractality of the time series.
MATERIALS AND METHODS
Continuous Random Cascade Model
Stochastic Differential Equation
These analyses examine the following wavelet transform of the variation of the logarithmic stock price denoted by [image: image]:
[image: image]
where the function ψ is designated as the analyzing wavelet. When using the delta function [image: image] as the analyzing wavelet, the wavelet transform [image: image] is exactly the logarithmic return of the period s. Here, we use the second derivative of the Gaussian functions as
[image: image]
In general, by using the nth derivative of the function having asymptotic fast decay as the analyzing wavelet, one can remove the local trend of mth order [image: image] because the function is orthogonal to mth-order polynomials. For the second derivative of the Gaussian functions, the linear trends of [image: image] with scale s have been eliminated in the wavelet transform [image: image].
In actual financial market, the price fluctuation is nonstationary and the volatility is not observable. The quantity used herein is the absolute value of the wavelet transform [image: image] for arbitrary [image: image] as a volatility proxy, where we use the variable [image: image]. The quantity [image: image] is thought to be a generalization of empirical volatility, whereas the wavelet transform [image: image] is exactly the absolute value of logarithmic return when we use [image: image].
The following stochastic equation is used to start.
[image: image]
In that equation, [image: image] represents the Brownian motion. Equation 3 expresses that the value of the quantity [image: image] at scale [image: image] is obtained stochastically from [image: image] at just a slightly larger scale λ by multiplying the stochastic variable [image: image]. The stochastic multiplier [image: image] follows a logarithmic normal distribution [image: image] because [image: image]. One can derive the following stochastic differential equation using [image: image] as
[image: image]
The solution is obtained easily using Ito’s formula as [24].
[image: image]
The power law behavior of the qth moment [image: image] (qth structure function) as a function of scale s is proved by the solution of Eq. 5 as follows:
[image: image]
The multifractality of signal [image: image] for which the wavelet transform follows the stochastic Eq. 4 is verified because the scaling exponent [image: image] is a convex upward nonlinear function. However, in this model, the stochastic multiplier [image: image] linking two scales follows the logarithmic normal distribution [image: image]. It is independent of the multiplier [image: image] linking two adjacent scales. That result is contrary to the empirical results described in Introduction.
We introduce an additional additive stochastic process as we have done in the discrete cascade model. We first consider the following stochastic differential equation.
[image: image]
The equation is produced on the assumption that Brownian motions [image: image] and [image: image] are mutually independent. The first two terms correspond to Eq. 4. The origin of those random sources triggering volatility cascade in financial markets remains unclear.
To solve the stochastic differential Eq. 7, we consider the following stochastic differential equation:
[image: image]
which is the same as Eq. 4. Using the solution of Eq. 8
[image: image]
the solution of Eq. 7 is expressed as shown below:
[image: image]
Statistics of Multipliers
We have mentioned the statistics of multipliers in Introduction:
(1) The stochastic multiplier [image: image] linking two different scales follows a Cauchy distribution.
(2) When considering the three scales [image: image], the adjacent multipliers [image: image] and [image: image] show strongly negative correlation.
Here, we show property (1) and infer the existence of correlation between adjacent multipliers under some reasonable approximations. The parameter [image: image] is an important model parameter for the signal to have multifractality. As presented in a later section, in spite of the importance, the value of the parameter [image: image] is small, about [image: image] in stock markets, irrespective of the stock issue. To specifically examine the role of additional stochastic processes, we investigate the 0th-order approximation of small [image: image]. When setting [image: image], the solution of Eq. 10 becomes
[image: image]
Therefore, the difference [image: image] follows a normal distribution.
[image: image]. If one simply assumes that [image: image] follows a normal distribution, then the ratio [image: image] of two independent stochastic variables following normal distributions follows a Cauchy distribution. So, [image: image] is the same.
By defining the differences [image: image] and [image: image] for the three scales [image: image], it is readily apparent that [image: image] and [image: image] show correlation. In this framework, it was difficult to show that they have strongly negative correlation. Those statistics of multipliers have also been considered in earlier work by Siefert and Peinke [22]. The same result can be shown using a Fokker–Planck equation under some approximations. In a later section, we show a similar Fokker–Planck equation derived from the stochastic differential Eq. 7.
Relation to Discrete Random Cascade Model
Assuming that [image: image] is sufficiently small, then when we use the following approximation of Ito’s stochastic integration [24] as
[image: image]
we obtain the discrete random cascade equation as
[image: image]
where [image: image]. The conditional expectation value of the square of [image: image], as the function of [image: image],
[image: image]
shows that deviation of the quadratic curve from the origin results from the parameter [image: image], as demonstrated from an empirical study in [18].
Constraint Condition From the pdf of [image: image].
A remarkable feature of the probability density function (pdf) of the quantity [image: image] is the coincidence of the expected value [image: image] with standard deviation [image: image], as shown in Figure 1 for the data examined in this study (see also Figure 10 for the pdf of [image: image]). It indicates the constraint condition as
[image: image]
Derivation of the constraint condition Eq. 15 is given in Appendix 1.
[image: Figure 1]FIGURE 1 | Scaling properties of [image: image] and [image: image]. The expected value almost perfectly coincides with the standard deviation at all scales. The solid line represents the least-squares fit to the power law function, [image: image].
[image: Figure 2]FIGURE 2 | Results of multifractal analysis. (A)[image: image]. (B)[image: image] for [image: image] ([image: image]) and regression lines. (C) Scaling exponent [image: image] (solid line). The dashed blue line is the least-squares fit to the quadratic function [image: image]. The dotted red line [image: image] corresponds to Brownian motion. (D) Singular spectrum [image: image].
The additional additive stochastic process in model Eq. 7 is expected to be a small perturbation to basic model Eq. 4 to avoid violating multifractality. We also impose the following condition for all scales s:
[image: image]
The power law scaling shown in Figure 1,
[image: image]
and condition Eq. 16 show the following constraint condition:
[image: image]
Inserting Eq. 18 into Eq. 15, we also have the equation:
[image: image]
Fokker–Planck Equation
We can derive the Fokker–Planck equation for the stochastic process [image: image] expressed by the stochastic differential Eq. 7 as the following [24], which is the master equation that the density of the transition probability [image: image] follows:
[image: image]
Therein, the functions [image: image] and [image: image] are defined as
[image: image]
The kth moment of the change [image: image] induced by the infinitesimal scale transformation [image: image] is derived as shown below:
[image: image]
Therein, we used the identity [image: image]. Coefficients [image: image] and [image: image] show a relation to the first and second moments of [image: image] in the following way:
[image: image]
Coefficients [image: image] are designated as Kramers–Moyal coefficients [24, 25]. We use Eq. 23 to estimate the function [image: image] and [image: image] and parameters [image: image] and [image: image]. To validate model Eq. 7, it is necessary to confirm vanishing of the kth moments for [image: image] in the limit of [image: image]. Renner et al. proposed almost identical equations (Eq. 20) within the literature [20, 21], in which they deal with the price change itself as an analogy of the velocity difference in turbulence [19]. They derived a Fokker–Planck equation as a result of their empirical studies using Kramers–Moyal expansion of the Chapman–Kolmogorov equation, regarding the process as a Markovian process.
Empirical Study
Data
We analyze the normalized average of the logarithmic stock prices of the constituent issues of the FTSE 100 Index listed on the London Stock Exchange for November 2007 through January 2009, which includes the Lehman shock of September 15, 2008 and the market crash of October 8, 2008.
Data Processing
First, we calculate the average deseasonalized return of each issue [image: image], which describes the average change of the portfolio as follows:
[image: image]
where [image: image] and [image: image], respectively, denote the average and the standard deviation of [image: image] and where [image: image] represents the number of constituent stock issues (stocks). The constituents of the FTSE 100 Index are updated frequently. We selected [image: image] stocks that remained listed on the London Stock Exchange throughout the period. Here, we set [image: image] and examine the 1-min log return. We excluded the overnight price change and specifically examine the intraday evolutions of returns. To remove the effect of intraday U-shaped patterns of market activity from the time series, the return was divided by the standard deviation of the corresponding time of the day for each issue i. Then, we cumulate [image: image] to obtain the path of process [image: image] (Figure 2A) as follows:
[image: image]
The data size L is [image: image].
[image: Figure 3]FIGURE 3 | Regression of [image: image]. (A) The standard errors are denoted by an error bar. (B) Fitting is applied to various [image: image] and [image: image] combinations.
RESULTS
Multifractal Analysis
First, we analyze the multifractal properties of the path [image: image] using an approach with wavelet-based multifractal formalism proposed by Muzy, Bacry, and Arneodo [26, 27]. Initially, we define two mathematical terms. The Hölder exponent [image: image] of a function [image: image] at [image: image] is defined as the largest exponent such that there exist an nth-order polynomial [image: image] and constant C that satisfy
[image: image]
where x in a neighborhood of [image: image], characterizing the regularity of the function [image: image] at [image: image]. The singular spectrum [image: image] is the Hausdorff dimension of the set where the Hölder exponent is equal to α, as follows:
[image: image]
For multifractal paths, the Hölder exponent α is distributed in a range; for paths of the Brownian motion, which are fractal, [image: image] and [image: image] for [image: image].
Muzy, Bacry, and Arneodo proposed the wavelet transform modulus maxima (WTMM) method based on continuous wavelet transform of function to calculate the singular spectrum [image: image]. We briefly sketch the WTMM method in Appendix 2. We calculate the partition function [image: image] of the qth moment of wavelet coefficients using Eq. 37 for the path of our data. Results are presented in Figure 2B. The partition function [image: image] for each order q shows power law behavior in the range of scales [image: image]. Exponents [image: image] are derived by Eq. 38. Figure 2C shows that it is a convex function of q. Those results underscore the multifractality of the data path. The singular spectrum [image: image] derived as the Legendre transformation of the function [image: image] by Eq. 39 is a convex function that has compact support [image: image] taking the peak at [image: image], as shown in Figure 3D.
Parameter Estimations
aA and γM
Parameters [image: image] and [image: image] are estimated by taking the limit [image: image] of the first moment [image: image]. The first moment [image: image] is fitted by a linear function as follows:
[image: image]
where [image: image]. As shown in Figure 3A, the first moment is well fitted by a linear function. Fitting of this kind is applied to various [image: image] and [image: image] combinations (Figure 3B). Taking the limit [image: image], one obtains, [image: image] ([image: image]) and [image: image] ([image: image]). Figure 4A presents examples of [image: image] and nonlinear fittings by the function [image: image]. We estimate [image: image] by [image: image] for each line. The result is presented in Figure 4B. The solid line is the least-squares fit [image: image] to a power law function as follows:
[image: image]
where the standard errors are in parentheses. The estimated exponent [image: image] is consistent with the constraint condition (Eq. 18) within the standard error. By a similar extrapolation [image: image], we estimate [image: image]. Figure 5A presents examples of [image: image] and nonlinear fittings. We estimate [image: image] by [image: image] for each line. The result is presented in Figure 5B. We estimate the parameter [image: image] by the average value weighted by the reciprocals of the standard errors as follows:
[image: image]
where the standard error is the value in the parenthesis.
[image: Figure 4]FIGURE 4 | Estimation of the parameter [image: image]. (A) The parameter [image: image] obtained by the regressions shown in Figure 3 and nonlinear fitting [image: image]. The standard errors of regression Eq. 28 are denoted by an error bar. (B)[image: image] (see the text). The standard errors of nonlinear fittings are denoted by an error bar. The solid line shows the least-squares fit of [image: image] to the power law function.
[image: Figure 5]FIGURE 5 | Estimation of the parameter [image: image]. (A) The parameter [image: image] obtained by the regressions shown in Figure 3 and nonlinear fitting [image: image]. The standard errors of regression Eq. 28 are denoted by an error bar. (B)[image: image] (see the text). Standard errors of nonlinear fittings are denoted by an error bar.
[image: Figure 6]FIGURE 6 | Regression of [image: image] against [image: image]. (A) Standard errors are denoted by an error bar. (B) Fitting is applied to various [image: image] and [image: image] combinations.
bA and σM
Similarly, we estimate parameters [image: image] and [image: image] by taking the limit [image: image] of the second moment [image: image]. The second moment [image: image] is fitted by a quadratic function (a regression against [image: image]) as follows:
[image: image]
As shown in Figure 6A, the second moment is well fitted by a quadratic function. Fitting of this kind is applied to various [image: image] and [image: image] combinations (Figure 6B). Taking the limit [image: image], one obtains [image: image] and [image: image]. Figure 7A presents examples of [image: image] and nonlinear fitting by the function [image: image]. We estimate [image: image] for each line by [image: image]. The result is presented in Figure 7B. The solid line is the least-squares fit [image: image] to a power law function as follows:
[image: image]
where the standard errors are in parentheses. The estimated exponent [image: image] is slightly higher than the constraint condition (Eq 18) [image: image]). However, it is acceptable with accuracy. By a similar extrapolation [image: image], we estimate [image: image]. Figure 8A presents an example of [image: image]. and an estimate [image: image] by [image: image] for each line. The result is shown in Figure 8B. We estimate parameter [image: image] by the average value weighted by the reciprocals of the standard errors.
[image: image]
Therein, the standard error is in the parenthesis.
[image: Figure 7]FIGURE 7 | Estimation of the parameter [image: image]. (A) The parameter [image: image] obtained by the regressions shown in Figure 6 and nonlinear fitting [image: image]. The standard errors of the regression Eq. 31 are denoted by an error bar. (B)[image: image] (see the text). Standard errors of nonlinear fittings are denoted by an error bar. The solid line shows the least-squares fit of [image: image] to the power law function.
[image: Figure 8]FIGURE 8 | Estimation of the parameter [image: image]. (A) The parameter [image: image] obtained by the regressions shown in Figure 6 and nonlinear fitting [image: image]. The standard errors of regression (Eq. 31 against [image: image] are denoted by an error bar. (B)[image: image] (see the text). Standard errors of nonlinear fittings are denoted by an error bar.
[image: Figure 9]FIGURE 9 | Fitting of [image: image] by a quartic function. (A) Standard errors are denoted by the error bar. (B) Fitting is applied to various [image: image] and [image: image] combinations.
Higher Moments
Similarly, it is possible to show the kth ([image: image]) moment [image: image] of the transition probability density [image: image] vanishes in the limit [image: image]. As portrayed in Figure 9A, the fourth moment is well fitted by a quartic function. Applying the fitting to various [image: image] and [image: image] combinations (Figure 9B), we have convinced that the fourth moment vanishes in the limit [image: image]. The Pawula theorem states that all higher Kramers–Moyal coefficients [image: image] vanish if [image: image] vanishes [25]. Therefore, we verified Eq 23.
[image: Figure 10]FIGURE 10 | Pdf of measured [image: image] and numerical calculation of the Fokker–Planck equation. The result of numerical calculation is represented by the solid lines. Marks are measured values. The scale is attached to each line.
Numerical Calculation of the Fokker–Planck Equation
We confirmed that estimation of the parameter [image: image] and [image: image] by the [image: image] is consistent with the constraint condition (Eq. 18) with accuracy. If one imposes the other constraint (Eq. 19, then the parameters take the following functional form:
[image: image]
[image: image]
where ϵ is a small parameter. The consistent range of ϵ found by estimation of Eq 29 and Eq 32 is [image: image]. To fix parameters [image: image] and [image: image], we use the empirical value of the scaling exponent [image: image], which is fitted by the quadratic function [image: image] (see Figure 2C). One can derive [image: image] for the basic model (Eq. 4 without additional stochastic processes. Again using the assumption of slight perturbation, then from the coefficients of the quadratic function, the parameters [image: image] and [image: image] are expected to exist respectively in the neighborhood of [image: image] and [image: image]. Next, we try the value of the parameters [image: image], [image: image], and [image: image] for numerical calculation of the Fokker–Planck equation. Results are presented in Figure 10. The initial pdf of the numerical calculation represented by the dashed line was based on the measured pdf on scale [image: image]. In the initial values, the fine fluctuation was smoothed using a spline function with the rationale that small fluctuations in the measured pdf are attributable to the finiteness of the number of observations. The tails are extrapolated using a power function with index [image: image] which is obtained empirically. For time evolution, the fourth-order explicit Runge–Kutta method was used. The solid line is the calculation result obtained using the estimated value of the parameters [image: image], [image: image], and [image: image]. The dotted line is the result obtained when [image: image]. The difference between the two was very small. The results closely matched the actual pdf. In the data and the numerical calculation, the probability density function does not converge to zero at the origin because of the finite size of the bin. Although the details around the origin [image: image] cannot be empirically discussed due to the finiteness of the observed data, the probability density function must converge to zero at the origin if the negative qth moment of the fluctuation is requested to converge.
Using results of the numerical calculation of the pdf obtained at each scale, we calculate the scaling exponent [image: image] as shown follows:
[image: image]
The result is presented in Figure 11. No difference exists between the two numerical calculation results. Both curves are convex upward, indicating multifractal properties. Comparison with measured values is also good. These results, when combined with consideration of the statistics of multipliers given in 2.1.2, underscore the effectiveness of the continuous cascade model Eq. 7 with additive stochastic processes proposed.
[image: Figure 11]FIGURE 11 | Scaling exponent [image: image]. A representation of each line is shown in the legend.
DISCUSSION
The random cascade model has evolved as a model of developed turbulence. The original model, in which the stochastic process that connects each layer of the spatial scale is an independent random multiplication process, contradicts results obtained through empirical research. Therefore, an improved discrete random multiplicative cascade model with additional additive stochastic processes was proposed along with a model formulated as a Fokker–Planck equation by considering cascade processes as a continuous Markov process. Moreover, those models have been applied to data analysis of the stock market and the foreign exchange market, where they have been successful. Herein, we propose a continuous cascade model formulated as a stochastic differential equation of volatility including two independent modes of Brownian motion: one has multiplicative coupling with volatility; the other has additive coupling, as in an improved discrete cascade model for the stock market, with effectiveness clarified by results of earlier research [18]. The model parameters were estimated by application to a stock price time series. The Fokker–Planck equation was derived from the stochastic differential equation as a master equation with the transition probability density function of volatility. Furthermore, the model parameters were estimated by its application to the average stock price time series made from FTSE 100 constituents listed on the London Stock Exchange. At that time, as an alternative variable of volatility, the wavelet transform coefficient with the second derivative of the Gaussian function as an analyzing wavelet was used. Numerical calculation of the Fokker–Planck equation was conducted using the estimated parameter values. The results reported herein faithfully reproduce the results of an earlier empirical study. This model includes information about neither the time axis nor the sign of the price fluctuation, which is necessary for a model of price fluctuations. The actual stock market exhibits well-known properties that break symmetry with respect to the time axis, such as the causal structure from long-term to short-term scale volatility described first in Introduction and price–volatility correlation (leverage effect) [4, 12]. Therefore, the extension of the random cascade model to encompass these phenomena remains as a subject for future work.
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APPENDIX 1
Derivation of Eq 15
We introduce some notation for simplification of the description:
[image: image]
From Eq. 13, we have
[image: image]
[image: image]
We also have
[image: image]
Because of the coincidence of the expected value and the standard deviation, we have [image: image] and [image: image]. Inserting those equalities and using approximation [image: image], we have the constraint condition 15.
APPENDIX 2
WTMM Method
The WTMM method builds a partition function from the modulus maxima of the wavelet transform defined at each scale s as the local maxima of [image: image] regarded as a function of x. Those maxima mutually connect across scales and form ridge lines designated as maxima lines. The set [image: image] is the set of all the maxima lines l which satisfy
[image: image]
The partition function is defined by the maxima lines as
[image: image]
Assuming power law behavior of the partition function
[image: image]
one can define the exponents [image: image]. The singular spectrum [image: image] can be computed using the Legendre transform of [image: image]:
[image: image]
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This paper is the first to differentiate between concave and convex price motion trajectories by applying visibility-graph and invisibility-graph algorithms to the analyses of stock indices. Concave and convex indicators for price increase and decrease motions are introduced to characterize accelerated and decelerated stock index increases and decreases. Upon comparing the distributions of these indicators, it is found that asymmetry exists in price motion trajectories and that the degree of asymmetry, which is characterized by the Kullback-Leibler divergence between the distributions of rise and fall indictors, fluctuates after a change in time scope. Moreover, asymmetry in price motion speeds is demonstrated by comparing conditional expected rise and fall returns on the node degrees of visibility and invisibility graphs.
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1 INTRODUCTION
The use of network science to perform time series analysis has emerged in recent decades. Of the numerous approaches to rendering a time series into a complex network, three major categories of approaches have most attracted researchers’ attention [1–11]. The first approach uses recurrence networks and was introduced by Donner and Zou et al. in 2009 [5–8]. This approach analyzes phase space recurrence of a time series from a geometric point of view by interpreting the recurrence matrix of a time series as the adjacency matrix of a complex network. Transition networks represent the second major approach to transform a time series into a complex network. These networks are constructed by partitioning the phase space of a dynamic system and were introduced by Nicolis et al. in 2005 [9]. Hence, a node in a transition network represents a certain discrete state or pattern that describes the dynamic system. Direct links are established if one of the nodes is followed by another with nonzero probability along the time series [10]. The third category is the algorithmic group of visibility graphs (VG) [11]. In 2008, Lacasa et al. proposed an effective method called the visibility-graph algorithm (VGA) for converting a time series into a graph network by analyzing the mutual visibility relationships between points and cutting points in a computational geometry landscape [12, 13]. This concept has attracted great interest and numerous extensions of the standard VGA have been proposed. Luque et al. [14] came up with a simplified VGA called a horizontal visibility graph (HVG) to transform a time series into a complex network. Specifically, two observations are connected in an HVG if and only if there are no obstacles in between [15]. Based on the concepts of the VG and HVG, parametric VGs introduce a viewing angle [image: image] and allow one to study the dependence of network structural measures on [image: image] [16]. Limited penetrable VG (LPVG) is a less restricted HVG in which two observations are connected if either one has a larger value than the obstacles in between [17, 18].
Analyses of financial time series via a VG approach have been studied intensively [19–29]. For example, Long Yu discovered small-world characteristics in visibility-graph networks converted from the time series of the price of gold and its returns [24]. Moreover, Yao et al. found that exchange-rate networks converted from the currency-rate time series of the US dollar, euro, yen, and sterling against the Chinese yuan share consistent topological characteristics with hierarchical structures and mixed small-world and scale-free properties. They also discovered that network communities are actually composed of large numbers of trending points and small numbers of discrete peaks and trough points [25]. Furthermore, a novel method that combined VGA with link prediction was proposed by Zhang et al. to forecast the time series. Using fuzzy logic, better predictability can be achieved by fusing the direct and indirect effects of historical data [26].
Asymmetry in financial time series has generally been explored via statistical analysis [30–42]. Typically, it is found that the distribution of time horizons over which a detrended stock index moves from an arbitrary initial return to a predetermined positive level deviates to a symmetrically predetermined negative level [37–40]. This property is known as the gain-loss asymmetry and has been regarded as a characteristic of financial time series [30, 34, 36, 37]. Another well-known asymmetry, which describes the negative correlation between volatility and the direction of price motion, is the leverage effect [41]. Recently, Jiang et al. investigated asymmetry in large-scale price fluctuations. Analyses reveal that dynamic relaxation before and after large fluctuations is characterized by a power law with exponents [image: image] and [image: image]. On minute time scales, large-fluctuation dynamics are time-reversely symmetric with [image: image]. On daily time scales, however, large price fluctuations that approach financial crashes are asymmetric with [image: image] [42]. We shall point out that the results of these studies are rather generic in the sense that only the price increases and decreases are considered. In fact, price motions can be classified in more detail into accelerated or decelerated rise (AR; DR) and fall (AF; DF), depending upon the convexity or concavity of the price motion trajectories. Symmetry analysis should also be performed by taking these four types of price motion trajectories into account. However, since different price motion modes can form different convoluted temporal structures, it would be quite difficult to decompose these price movements via statistical approaches.
In this paper, we propose to study the financial time series asymmetry via visibility-graph networks based on the intuition that network approaches may be more effective in identifying different price motion trajectories. Hence the terminology of symmetry in this study specifically refers to the topological symmetry of the price motion trajectories. In particular, in a stock price series, we are concerned with whether concave and convex price motions can form a time-reversed symmetry. The research question reads as follows: whether those accelerated/decelerated price rises are statistically symmetric with those decelerated/accelerated falls. It is worth mentioning that conventional VGA analysis cannot be applied directly to investigation of the topologically asymmetric properties of financial series because the method is incapable of distinguishing different stock price rise and fall trajectories by mapping the time series as a whole onto an undirected network. To solve this problem, an idea from Yan et al. (2012) [43] is borrowed to address discrimination between price movements via visibility and invisibility-graph (IVG) networks. Using these graph networks, asymmetry in stock index motion can be measured using concave or convex indicator distributions or expected returns that are conditional on node degrees, instead of the conventional waiting-time statistics.
Recently, fruitful results have been achieved in the investigation of time series time reversibility using the HVG method [44–51]. In a study on how crises affect the motions of US stock prices, different market price behaviors are identified by examining the series irreversibility evolved over the time [50, 51]. Based on the notion that the reversed and original processes are statistically distinguishable if a stationary process is time-reversible, we may postulate that a topological symmetric time series must be a time-reversible one, and vice versa. A quantitative analysis of this postulation is also conducted.
The whole paper consists of four sections. Following the introduction of the study in Section 1, the methodology is detailed in Section 2. Asymmetry in price motion trajectories and speeds is analyzed using graph networks in Section 3 and 4, respectively. Finally, conclusions are described in Section 5.
2 METHODOLOGY
2.1 Basic Algorithms
Graph networks for AR and DF motions of a stock index can be constructed by mapping a time series of length [image: image], [image: image] onto a graph network using VGA. To start, two arbitrary data points [image: image] and [image: image], where [image: image] are specified. Two vertical lines are drawn exactly at [image: image] and [image: image], with heights equal to the values of [image: image] and [image: image], [image: image]Next, the endpoints of the two vertical lines are connected via a straight line whenever vertical lines from any other data points within the range ([image: image][image: image] do not cut off the connection. That is, if any intermediate data point [image: image] fulfills the condition
[image: image]
the two data points [image: image] and [image: image] are visible to each other.
The invisibility-graph algorithm (IVGA) [43] can be used to build up the networks that describe DR and AF motions of a stock index. In contrast to the VGA, here, the data points [image: image] and [image: image] are connected only if the point [image: image] intersects the connecting line. Hence, the relationship between these three data points is transformed into the following:
[image: image]
Based on Yan’s study [43], three conditions are further applied to distinguish AR and DF in VG as well as DR and AF in IVG. These conditions are stated as follows:
1. Any data point in the time series can be linked only to data points located on its left-hand side.
2. The link between [image: image] and [image: image] ([image: image]) is connected only if [image: image] when constructing the graph network for price increases, and vice versa when constructing the graph network for price decreases.
3. A moving time scope [image: image] is used to construct a graph network throughout the entire time series; therefore, there is no link between [image: image] and [image: image] if [image: image].
With these three additional conditions, VGA and IVGA can capture rise and fall trends by eliminating links converted from the short-term disturbing price motions. We demonstrate the capture of time series topological symmetry in Figures 1 and 2. The networks in Figures 1 and 2 are built from an artificial time series that combines the original Hang Seng Index sample data with its mirror-symmetric counterpart. Figure 1 shows that VGA can distinguish the concave trajectory of the price rise from other price motions. For those data points located on the concave upward trend (from node 11 to node 14 in the original HSI section and from node 24 to node 26 in the reversed HSI section), the degree numbers of AR nodes are higher. For other data points, in contrast, the degree numbers are lower. VGA can also distinguish concave decreasing price motions as well (from node 3 to node 5 in the original HSI section and from node 15 to node 19 in the reversed HSI section). In Figure 2, however, the convex trajectories of price motions are captured effectively by IVGA based on the degree distributions for price rise (from node 10 to node 12 in the original HSI section and from node 26 to node 28 in the reversed HSI section) and price fall (from node 1 to node 3 in the original HSI section and node 17 to node 19 in the reversed HSI section). Obviously, the artificial time series has perfectly symmetric price motion trajectories since the concave (convex) rise in the original HSI section has a corresponding convex (concave) fall in the reversed HSI section. The identical rising and falling degree distributions of VGs and IVGs in Figures 1 and 2 reveal that this artificial time series does have a perfect topological symmetry. Given the definition of time reversibility, a topologically symmetrical time series must be a time-reversible one. The reason lies in that if a time series is topologically symmetrical, the reversed and original processes should be statistically indistinguishable with regard to the degree distributions of nodes.
[image: Figure 1]FIGURE 1 | Application of VGA to the daily Hang Seng Index from August 13, 2013, to September 2, 2013, and its time-reversely mirrored data set. Note that the perfect reflection symmetry between AR [nodes 10–14] and DF [nodes 1–5] is demonstrated via identically distributed degrees in the two networks.
[image: Figure 2]FIGURE 2 | Application of the modified IVGA to the daily Hang Seng Index from August 13, 2013, to September 2, 2013, and its time-reversely mirrored data. Note that perfect reflectional symmetry between DR [nodes 5–8 in (A)] and AF [nodes 6–10 in (B)] is demonstrated via identically distributed degrees in the two networks.
2.2 Concave and Convex Motion Indicators
To formalize the algorithms shown above, we specify a node [image: image] in a time series of length [image: image] and set a time scope [image: image]. Based on Eq. 1, node [image: image] which has a link to node [image: image] in the visibility-graph network, should belong to the following set:
[image: image]
Employing the three additional conditions described in Section 2.1, the subsets of nodes that connect to node [image: image] in the price rise and price fall trajectories are defined as follows:
[image: image]
Hence, the degree of node [image: image] in the visibility-graph rise and fall networks reads as
[image: image]
By definition, [image: image]. The concave motion indicator for a node [image: image] is proposed to be the following:
[image: image]
Note that, for an ideal concave trajectory consisting of [image: image] data points, the concave indicators along the time axis can be sketched as in Figure 3. For a realistic time series, the distribution of this indicator measures how perfectly a concave curve could fit the ideal AR or DF price motion trajectory.
[image: Figure 3]FIGURE 3 | The distribution of concave indicators [image: image] in an ideal concave trajectory of length [image: image] with time scope [image: image].
Hence, the mean value of [image: image] can be a measure of the smoothness of AR or DF price motions. The higher the [image: image], the less the zigzag price variation, and vice versa.
In the same manner, the mathematical set that describes the invisibility-graph network can be written as
[image: image]
Subsets of the rise and fall trend read, respectively, as follows:
[image: image]
The degree of node [image: image] in the invisibility rise and fall networks is
[image: image]
Convex motion indicators can thus be defined via
[image: image]
the distribution of which measures how perfectly a convex curve can fit an ideal DR or AF motion price trajectories. Likewise, [image: image] measures the smoothness of the price motion trajectory.
A quantitative measure of the topological asymmetry in price motion trajectory can be done via the distinguishability between distributions of the concave and convex rise/fall indicators defined above. Specifically, denoting the distribution of rise indicators as [image: image] and the distribution of fall indicators as [image: image], a topologically symmetric time series should have [image: image].
On the other hand, the degree of topological asymmetry is measured by calculating the Kullback-Leibler divergence (KLD) of [image: image] and [image: image]. Stemming from information theory, KLD is employed as a measure of the distance between two probability distributions [52, 53]. KLD of concave/convex rise and fall indicators distributions can be calculated as follows:
[image: image]
which equals 0 if and only if [image: image] and exceeds 0 otherwise.
3 ASYMMETRY IN TRAJECTORIES OF PRICE MOTION
Analyses that include the application of VGA and IVGA to the stock indices of various countries and regions are presented in this section. Eight data sets from international stock market indices that span from June 28, 1999, to June 28, 2019, were selected. These include the Hong Kong Hang Seng, Dow Jones Industrial Average, Japanese Nikkei 225, London FTSE 100, German DAX, French CAC 40, Shanghai SSE Composite, and Indian BSE. Here, we set the time scope as S = 262 since the number can be interpreted as the trading days in a year.
Networks converted from the Hang Seng Index are used to demonstrate how the concave and convex motion indicators [Eqs 6 and 10] change along with the time evolution of price.
In the upper panel of Figure 4, the long-lasting bubble right before the subprime mortgage crisis in 2008 is characterized by clusters of large concave rise indicators. The large concave fall indicators in the lower panel of Figure 4, however, characterize the decelerated fall of the index over 3 years after it reaches 18,000 points on March 27, 2000. The large convex rise indicators in the upper panel of Figure 5 show that the Hang Seng Index exhibits a decelerated rise from 2009 to 2011 after the subprime mortgage crisis. The notorious 2008–2009 crisis is represented by the extraordinarily large values of convex fall indicators in the lower panel of Figure 5. Both figures show that the concave rise indicator changes asynchronously with its fall counterpart, just as the convex fall indicator changes asynchronously with its rise counterpart.
[image: Figure 4]FIGURE 4 | Price motion indicators measure AR and DF in the Hang Seng Index from June 28, 1999, to June 28, 2019. Concave rise and fall indicators are shown in the upper and lower panels, respectively. The Hang Seng Index is plotted using blue lines, while the indicators use red bars. The time scope is set to S = 262, which is equal to the number of trading days per year.
[image: Figure 5]FIGURE 5 | Price motion indicators measure DR and AF in the Hang Seng Index from June 28, 1999, to June 28, 2019. Convex rise and fall indicators are shown in the upper and lower panels, respectively. The Hang Seng Index is plotted using blue lines and indicators are represented using red bars. Here, the time scope is set to S = 262, which is equal to the number of trading days per year.
To illustrate asymmetry in the price motion trajectories for these eight financial time series, distributions of [image: image] and [image: image] are obtained from the statistics of VG and IVG networks, respectively. Distributions of rise and fall [image: image] for the eight stock indices are shown in Figures 6A–H. As in the small [image: image] regime, the rise distributions are similar to the fall distributions in all cases. However, as [image: image] becomes larger than [image: image], the rise distributions start to deviate from the fall distributions. This suggests that the AR and DF motions of stock indices are essentially asymmetric. Similarly, distributions of rise and fall [image: image] are displayed in Figures 7A–H. Again, deviation in rise and fall distributions can be found in the range [image: image], indicating that DR and AF motions of stock indices are essentially asymmetric, too.
[image: Figure 6]FIGURE 6 | Rise and fall [image: image] distributions for eight stock indices: (A) Hong Kong Hang Seng; (B) Dow Jones Industrial Average; and (C) Japanese Nikkei 225, London FTSE 100, German DAX, French CAC40, Shanghai SSE Composite, and Indian BSE.
[image: Figure 7]FIGURE 7 | Distributions of rise and fall [image: image] values for the eight stock indices: (A) Hong Kong Hang Seng; (B) Dow Jones Industrial Average; and (C) Japanese Nikkei 225, London FTSE 100, German DAX, French CAC40, Shanghai SSE Composite, and Indian BSE.
Average values of rise and fall indicators are also calculated for the eight stock indices. The rise and fall [image: image] and [image: image] values are listed in Tables 1 and 2, respectively. The SSEC AR and DF motions are smoothest since its [image: image] and [image: image] rank first in magnitude among the others in the table. With regard to the DR motions of stock indices, the Indian market behaves in the smoothest manner because the [image: image] of the BSESN is larger than those of any other indices. On the other hand, the zigzag AF appears less frequently in the Chinese stock market than in other markets, as suggested by the fact that the SSEC has the largest [image: image] in Table 2. These observations are consistent with empirical evidence that emerging financial markets are less efficient than developed markets. The presence of fewer price oscillation in emerging markets implies that investors are more likely to form a herd.
TABLE 1 | Rise and fall [image: image] values of eight stock indices.
[image: Table 1]TABLE 2 | Rise and fall [image: image] values of eight stock indices.
[image: Table 2]As the time scale can be an important factor that influences the topological asymmetry in stock price motion, we measure the KLD between the rise and fall distributions of [image: image] and [image: image] with different time scopes as [image: image]. Values of KLD between the rise and fall [image: image] distributions are shown in Figure 8 as functions of the time scope for the eight stock indices, as well as for a purely random time series. Compared with the KLD of the random series depicted in blue line dots, the DJIA and BSESN have an impressively higher value than any other stock indices. This indicates higher degrees of asymmetry between AR and DF price motions for these two indices. On the other hand, the dependence of KLD on the time scope is rather weak outside of the DJIA, SSEC, and BSESN.
[image: Figure 8]FIGURE 8 | KL divergence between [image: image] rise and fall distributions as functions of time scopes for eight stock indices and a random series.
The KL-divergence values between rise and fall [image: image] distributions are shown as functions of time scopes in Figure 9 for the eight stock indices, as well as for the purely random series. Except in the case of BSESN data, the overall degree of asymmetry between DR and AF price motions is weaker than that in Figure 8. However, the dependence of the KL divergence on the time scope strengthens in all cases except for the FCHI, FTSE, and Nikkei 225.
[image: Figure 9]FIGURE 9 | KL divergences between [image: image] rise and fall distributions as functions of the time scope for eight stock indices and a pure random series.
[image: Figure 10]FIGURE 10 | Conditional expected index returns for the degree of rise and fall price motions within VG networks for the eight stock indices. Red indicates a rise and black indicates a fall.
In Figures 8 and 9, we note that the KLDs for random series are close to 0 and vary little as the parameter [image: image] changes. This is in agreement with the postulation that time-reversible time series are topologically symmetrical. On the other hand, the bigger KLDs for stock indices shown in the same figures are consistent with the finding in the previous study on time irreversibility in stock indices via the HVG method [45], which states that a chaotic time series results in a bigger KLD between in- and out-distributions than a Gaussian time series does.
In addition, KLDs of the BSESN are found to be dramatically higher than those of other stock markets in Figures 8 and 9. In particular, the observation that the BSESN KLD follows an increasing trend in Figure 9 indicates that the Indian stock market index exhibits a long-term, low-speed rise. This is in line with observations that the Indian stock market was in a bull market for over 20 years until the coronavirus outbreak. The KLD results in Figure 8 also show that the DJIA has relatively large topological asymmetry between AR and DF price motions during the period from 1999 to 2019, which indicates that the price is pushed upwards mostly by AF motions in the USA bull markets. As Yan et al. [43] published, the AR price motion implies a superexponential growth typically caused by investors’ herding behavior. Over the past decade, there have been several reports on herd buying behavior of AAPL and MSFT [54, 55]. A report published on December 4, 2019 [56], said “The Dow Jones Industrial Average owes Apple and Microsoft corporation a big thanks.” These reports may explain why AR motions dominate the movement of DJIA index.
4 ASYMMETRY IN SPEEDS OF PRICE MOTION
Yan et al. argued that a higher degree number [image: image] indicates a higher possibility that the time series is growing at a superexponential rate at time tick [image: image]; hence, the degree number of VG/IVG could be a good indicator for the proximity to the point of a bubble-and-crash regime shift [43]. However, we should point out that such an argument may not be accurate because the high VG degree number can also be a result of a relatively low-speed and smooth growth as long as the time scope is large enough. As the price approaches the critical point in stock markets, the magnitude of fluctuations becomes dramatically large. Therefore, the correlation between degree number [image: image] and price return [image: image] should be a more appropriate indicator showing the possibility for the stock index to grow/drop at the exponential rate (for AR and DF motions) or at the logarithmic rate (for DR and AF motions). Comparisons of these indicators may reveal the asymmetry in the speeds of price growth and drop.
In order to measure the asymmetry in the speeds of price motion, the expected price return [image: image] over a unit time span is calculated conditionally on the node degree [image: image] in VG and IVG networks. The conditional expected index return is defined as follows:
[image: image]
where [image: image]. [image: image] is the stock index, [image: image] is the node degree at time tick [image: image], and [image: image] is the Kronecker delta function. The conditional expected price rise and fall returns on the node degree in VG and IVG networks are defined as follows in order to illustrate the asymmetry in the speeds of price growth and price drop for the eight aforementioned financial time series:
[image: image]
[image: image]
where [image: image] is a Heaviside step function [12].
The expected rise and fall returns that are conditioned on the VG node degree for eight stock indices are plotted in Figure 10, while those conditioned on the IVG node degree are in Figure 11. Expected return data points are fitted linearly and shown as black lines for rise motions and pink lines for fall motions, respectively, in Figures 10 and 11. The slopes of the fitting lines show the correlated relationships between expected returns and degree regardless of whether the trajectories are concave or convex. The larger the absolute slope, the more significantly a stock index exhibits a superexponential or a logarithmic motion.
[image: Figure 11]FIGURE 11 | Conditional expected index returns based on the degree of rise and fall price motions in IVG networks for the eight stock indices. Red indicates a rise and black indicates a fall.
For concave price trajectories in Figure 10, stock indices can be classified into four categories. For category I, which includes the DAX and FCHI, the rise in absolute slope is almost the same as the fall in absolute slope, and both the rise and fall slopes are quite small. This implies that AR and DF are not the main forms in which these two stock markets exhibit bubbles and crashes. For category II, which includes the DJIA and FTSE, the absolute rise slope is far smaller than the fall slope. This suggests that it is possible for the price to decrease at a logarithmic fall rate after stock crashes in these two markets. For case III, which includes the HSI, SSEC, and BSESN, the absolute rise slope is larger than the fall slope. Obviously, these markets are likely to increase via a superexponential growth rate within bubble regimes. For case IV, which includes the Nikkei 225, the absolute rise slope and absolute fall slope are almost the same. However, their values are bigger than those noted in case I. This means that the Nikkei 225 rise and fall trajectories contain many concave motions in the bubble-and-crash regime. For the convex trajectories in Figure 11, the absolute fall slopes exceed the rise slopes for all of the stock indices. This implies that all of the markets crash at logarithmic rates. We also note that the FTSE and FCHI have rather large absolute rise slopes, which means that the price approaches the critical point in the DR way within the bubble regimes.
Overall, the findings in this section agree with the previous studies of gain-loss asymmetry [37–40]. In particular, stock market prices fall faster than they rise in developed countries. The analysis in this study provides a clearer picture regarding the conclusion made in Ref. [40] that the rise speed overtakes the fall speed in developing country stock markets, such as those of India and China. Indeed, the speed of AR price motion is larger than that of DF motion, while the speed of AF price motion exceeds that of DR motion, just as in mature markets.
5 CONCLUSION
In this paper, we developed a new concept of financial time series asymmetry based on the topological distinguishability of price motion trajectories. A new application of VGA and IVGA was developed to capture different types of price motion trajectories. Measures based on VGA and IVGA were employed to analyze asymmetry in price motion trajectories as well as in price motion speeds. To analyze topological asymmetry in price motion trajectories, we compared the distributions of concave and convex indicators for both rise and fall price motions. Deviations in rise and fall indicator distributions among VG and IVG networks showed that AR-DF and DR-AF stock index motions are asymmetric with each other. To investigate the influences of time scopes, the relation between KLD and time scope was also illustrated. Unlike with the random series, the KLD of stock index rise and fall indicator distributions is significant and the dependence of KLD on time scopes is strong. This is especially true for Indian and American stock indices.
Furthermore, we calculated the conditional expected index return on node degree to show asymmetry in price motion speeds. The rise and fall conditional expected index returns on VG or IVG network node degrees were distributed in an asymmetric manner, which indicates that asymmetry is embedded in AR-DF and DR-AF price motion speeds when the stock index approaches a bubble-and-crash regime shift. Our result was in line with gain-loss asymmetry overall. However, it offered details regarding why AF motions in emerging markets (e.g., China and India) contribute to faster rises and slower falls.
As a byproduct of this study, we also get some knowledge of the relationship between the topological symmetry and the time reversibility of a time series. By the definition of time reversibility, we proved, with an artificially combined piece of HSI time series, that the topologically symmetrical time series must be time-reversible. On the other hand, by checking the topological symmetry of a random series, the numerical evidence, which supports the postulation that a time-irreversible series must be topologically asymmetric, has also been found.
Future research will include exploration of topological asymmetry in other empirical data that exhibits chaotic behaviors, such as sunspots, heartbeats, and earthquake waves. The relation between topological symmetry and time reversibility is also to be investigated theoretically. Finally, the most important task is to explore how topological symmetry among financial time series affects the time reversibility. In this sense, we must study the network properties of VG and IVG networks and identify network characteristics right before large-scale price changes.
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We provide a survey of the Kolkata index of social inequality, focusing in particular on income inequality. Based on the observation that inequality functions (such as the Lorenz function), giving the measures of income or wealth against that of the population, to be generally nonlinear, we show that the fixed point (like Kolkata index k) of such a nonlinear function (or related, like the complementary Lorenz function) offer better measure of inequality than the average quantities (like Gini index). Indeed the Kolkata index can be viewed as a generalized Hirsch index for a normalized inequality function and gives the fraction k of the total wealth possessed by the rich [image: image] fraction of the population. We analyze the structures of the inequality indices for both continuous and discrete income distributions. We also compare the Kolkata index to some other measures like the Gini coefficient and the Pietra index. Lastly, we provide some empirical studies which illustrate the differences between the Kolkata index and the Gini coefficient.
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1. INTRODUCTION
Inequality in a society can broadly be categorized as inequality of condition or inequality of opportunity. The former refers to disparities in the current status of individuals, whether this be income, wealth or their ownership of different goods and services. The latter refers to disparities in the future potential of individuals. Typically, inequality of opportunity is inferred indirectly through its effects like education level and quality, health status and treatment by the justice system. Though the two types of inequality are interrelated, we are interested in the former type only in this survey. Therefore, in what follows, the term “inequality” will refer exclusively to inequality of condition.
We focus here on one aspect of inequality, viz., the measurement of inequality. Measuring inequality is important for answering a wide range of questions. For instance: is the income distribution more equal than what it was in the past? Are underdeveloped countries characterized by greater inequality than developed countries? Do taxes or other kinds of policy interventions lead to greater equality in the distribution of income or wealth? Since the way inequality is measured also determines how the above questions (among others) are answered, a rigorous discussion of the measurement of inequality is necessary (see, e.g., Refs. 1–5).
A tool that is indispensable in measuring income and wealth inequality is the Lorenz function and its graphical representation, the Lorenz curve (see Ref. 6). The Lorenz curve plots the percentage of total income earned by various portions of the population when the population is ordered by the size of their incomes. The Lorenz curve is typically depicted as a curve in the unit square with end points at [image: image] and [image: image] (see Figure 1).1 The 45° line is the line of perfect equality representing a situation where all individuals have the same income.
[image: Figure 1]FIGURE 1 | The Lorenz and the complementary Lorenz curves. Q is the k-index of the Lorenz curve. [image: image] represents the maximum distance between the perfect equality line and the Lorenz curve.
The Lorenz curve can be used, in a limited way, as a measure of inequality. Since the 45° line is the line of perfect equality, we can say that the “closer” a Lorenz curve is to the 45° line, the more equal is the income distribution. Unfortunately, this does not get us very far because Lorenz curves can intersect and hence, the Lorenz curves cannot be ranked unambiguously using the above criterion (see Ref. 7). We have more to say on this point in Section 2.
The existing literature sees two approaches to deal with the problem of intersecting Lorenz curves. The first is to consider ranking criterion that are “weaker” than this dominance criterion meaningful only for non-intersecting Lorenz curves (see Refs. 7–11). The pioneering work in this approach is Ref. 12 which suggested that there is an underlying notion of social welfare associated with any measure of income inequality. It is this concept with which we should be concerned. Furthermore, we should approach the question by considering directly the form of the social welfare function to be employed (see Ref. 13). This is a normative approach and is meaningful when we want to obtain a ranking of income distributions in order to infer something from the social welfare angle like whether “post-tax income is more equally distributed than pre-tax income”.
The second approach is to develop summary measures of inequality using the Lorenz functions (see Ref. 7 for details). Here, each Lorenz function is associated with a real number and these numbers are used to compare inequality across different income distributions. This is a descriptive approach where we quantify the difference in inequality between pairs of distributions (see Ref. 13).
An index of income inequality is therefore a scalar measure of interpersonal income differences within a given population. High income inequality means concentration of high incomes in the hands of few and is likely to compress the size of the middle class. A large and rich middle class contributes significantly to the well-being of a society in many ways. In particular, a large and rich middle class contributes in terms of high economic growth, better health status, higher education level, a sizable contribution to the country’s tax revenue and a better infrastructure, and more social cohesion resulting from fellow feeling. A society characterized with a small middle class and more persons away from the middle income group may lead to a strained relationship between the subgroups on the two sides of the middle class which can generate unrest (see Ref. 4). Hence, the need for identifying the magnitude of income inequality through different indices is of prime importance.
Except for the unique case of equality, where the Lorenz curve is trivially linear, the Lorenz function is typically nonlinear and it accommodates the essential features of the inequalities involved. However, most of the common inequality indices formulated and used so far studies some of the “average” properties of the Lorenz function. On the other hand, the established observations in statistical physics, for example in developing the Renormalization Group theory of phase transitions (see, e.g., Ref. 14) or the chaos theory (see, e.g., Ref. 15), strongly indicated the richness of the (nontrivial) fixed point structure (and also of the eigen vectors and eigen values for the linearized function near that fixed point) of such non-linear functions to comprehend the physical and mathematical process represented by such nonlinear functions. We noted earlier (see Ref. 1) that, while the Lorenz function has got trivial fixed points, a complementary Lorenz function has a non-trivial point corresponding to an inequality index called the Kolkata index, having several intriguing and useful properties.
Our primary focus in this survey will be on the Kolkata index as a measure of inequality. The Kolkata index, first introduced by Ref. 1 and later analyzed in Ref. 2 and in Ref. 3, is that proportion k of the population such that the proportion of income that we can associate with k is [image: image]. Since no single summary statistic can reflect all aspects of inequality exhibited by the Lorenz curve, the importance of using alternative measures of inequality is universally acknowledged (see Ref. 7). We would also discuss two popular indices namely, the Gini coefficient or index (see Ref. 16) and the Pietra index (see Ref. 17). The Gini index is the ratio of the area between the 45° line and the Lorenz curve to the total area under the 45° line. Equivalently, the Gini index is twice the area between the Lorenz curve and the line of perfect equality. The Pietra index is the maximum value of the gap between the 45° line and the Lorenz curve (also see Ref. 18).
In Section 2, we discuss the fundamentals of Lorenz and complementary Lorenz functions, along with some examples extending from continuous to discrete wealth distributions. In Section 3, we define the Kolkata index (k-index) and show some example calculation of the k-index for continuous wealth distributions. We also demonstrate an algorithm for calculating the k-index for discrete wealth distribution. We conclude the section by comparing the k-index with various other indices. In Sections 4 and 5, we continue this comparison based on rich-poor disparity. In Section 6, we measure the k-index from real society data. Section 7 summarizes and concludes this work.
2. LORENZ FUNCTION AND THE COMPLEMENTARY LORENZ FUNCTION
Let F be the distribution function of a non-negative random variable X which represents the income distribution in a society. The left-inverse of F is defined as [image: image]. As long as the mean income [image: image] is finite, we obtain an alternative representation of the mean: [image: image]. The function associated with the Lorenz curve is the Lorenz function, defined as [image: image]. The Lorenz function gives the proportion of total income earned by the bottom [image: image] of the population for every given [image: image]. The advantage of this definition of Lorenz function due to Ref. 19 is that it can be applied to income distributions with both discrete and continuous random variables. The Lorenz function thus defined has the following properties: i) [image: image] is continuous, non-decreasing and convex in [image: image] and, ii) [image: image], [image: image] and [image: image] for all [image: image]. Moreover, if there exists [image: image] such that [image: image], then for all [image: image], [image: image]. If the Lorenz function [image: image] is differentiable in the open interval [image: image], then the slope of the Lorenz function at any [image: image] is given by [image: image]. Let [image: image] be the median as a percentage of the mean. Then [image: image] is given by the slope of the Lorenz curve at [image: image], that is, [image: image]. Since many real life distributions of incomes are skewed to the right, the mean often exceeds the median so that [image: image]. The complementary Lorenz function is defined as [image: image]. It measures the proportion of the total income earned by the top [image: image] of the population. Therefore,
[image: image]
It easily follows that [image: image], and [image: image] for [image: image]. Furthermore, [image: image] is continuous, non-increasing and concave for [image: image].
Consider any egalitarian income distribution [image: image] where all agents earn a common positive income so that the associated Lorenz function is [image: image] for all [image: image]. Thus, we have a case of perfect equality where every p% of the population enjoys p% of the total income and the Lorenz curve coincides with the diagonal line of perfect equality. In reality, we do not find any society where all individuals have equal income. For all other income distributions the Lorenz curve will lie below the egalitarian line, that is below the Lorenz curve associated with the Lorenz function [image: image] for the egalitarian income distribution [image: image]. Similarly, we also do not find a society where one person has all the income, that is, an income distribution [image: image] such that [image: image] for all [image: image]. Specifically, with complete inequality associated with the income distribution [image: image], which is characterized by the situation where only one agent has positive income and all other persons have zero income, the Lorenz curve will run through the horizontal axis until we reach the richest person and then it rises perpendicularly (see Figure 1). Hence, for any realistic income distribution of a society, Lorenz curve always lie in between the perfect equality line and the perfect inequality line. The Lorenz curve is quite useful because it shows graphically how the actual distribution of incomes differs not only from the perfect equality line associated with the egalitarian income distribution [image: image] but also from the perfect inequality line associated with the income distribution [image: image]. The Lorenz curve, complimentary Lorenz curve, perfect equality and perfect inequality lines are shown in Figure 1 below, where we plot the fraction of population from poorest to richest on the horizontal axis and the fraction of associated income on the vertical axis.
We provide some simple examples of Lorenz functions for which the associated income distribution is a continuous random variable.
• Uniform distribution: Consider a society where the income distribution is uniform on some compact interval [image: image] with [image: image] so that the probability density function is [image: image] and the distribution function is [image: image] for every [image: image]. Since [image: image] and [image: image], we get
[image: image]
Observe that if [image: image], then we have [image: image].
• Exponential distribution: Suppose the income distribution is exponential so that the probability density function is given by [image: image] with [image: image] and the distribution function is [image: image] for any [image: image]. In this case [image: image] and [image: image] implying
[image: image]
• Pareto distribution: Consider a society where the income distribution is Pareto so that the density function is [image: image] and the distribution function is [image: image] where [image: image] is the minimum income, [image: image] and the density and distribution functions are defined for all [image: image]. In this case [image: image] and [image: image] implying
[image: image]
Hence, if the income distribution is a continuous random variable F, one can calculate the Lorenz function [image: image] and, using [image: image], we can easily calculate the associated complementary Lorenz function as well.
Example 1. Discrete random variable. To understand the procedure for getting the Lorenz function for income distribution given by discrete random variables, consider an economy with G groups of people where each group [image: image] has a total of [image: image] people with each person within this group having the same income of [image: image] and also assume that [image: image]. Define the total population as [image: image] and the total income of the economy as [image: image] so that the mean income for this society is [image: image]. This income distribution is a discrete random variable [image: image] such that the probability mass function is given by [image: image] for all [image: image] and the distribution function is given by
[image: image]
For each [image: image], define [image: image], [image: image], [image: image] and [image: image]. For any given [image: image] and any [image: image], one can easily verify that [image: image]. Hence, using the Lorenz function formula we have the following: For any given [image: image] and any [image: image],
[image: image]
The following observations are helpful in this context.
(1) The Lorenz function [image: image] is piecewise linear and, for each [image: image], the point [image: image] on the coordinate plane of the graph of the Lorenz curve is a kink point.
(2) If [image: image] so that [image: image], [image: image], then from Eq. 3 we get [image: image] for all [image: image], that is, Lorenz curve is associated with the egalitarian distribution and we have [image: image] for all [image: image].
2.1. The Lorenz Function as a Measure of Inequality
The Lorenz curve allows us to rank distributions according to inequality and say that the country with Lorenz curve closer to the perfect equality line has less inequality than the country with Lorenz curve further away. Consider two societies with income distributions given by the distribution functions [image: image] and [image: image]. If it so happens that [image: image] for all [image: image], then clearly, the society with income distribution [image: image] is more unequal compared to the society having the income distribution [image: image] since for every [image: image] the bottom 100 p% population has a weakly lower percentage share of income under [image: image] than under [image: image]. Formally, for any two income distributions [image: image] and [image: image], we say that [image: image] Lorenz dominates [image: image] if the Lorenz curve [image: image] associated with the income distribution [image: image] lies nowhere below that of Lorenz curve [image: image] associated with the income distribution [image: image] and at some places (at least) lies above. Thus, we can think of domination relation across pairs of Lorenz curves to infer about inequality and, in particular, in a pairwise Lorenz curve comparison, higher of the Lorenz curves are preferable. However, if the Lorenz curves of the two distributions cross, then such an unambiguous conclusion about inequality ordering cannot be drawn. The next example provides such an instance of intersecting Lorenz curves.
Example 2. Consider a society with four people and consider the following income distribution. Person 1 and Person 2 has an income of 20, Person 3 has an income of 30 and Person 4 has an income of 50. We first try to think of a meaningful representation of such an income distribution. Observe that if we draw a person at random, then with 1/2 probability we will draw a person having an income of 20, with 1/4 probability we will draw a person having an income of 30 and with 1/4 probability we will draw a person having an income of 50. Therefore, we have a probability mass function of a random variable of three possible incomes [image: image] and the probability mass function is given by [image: image], [image: image] and [image: image]. Using Eq. 3, the Lorenz function is given by
[image: image]
Similarly, consider a society with four people and consider the following income distribution. Person 1 and Person 2 has an income of 15, Person 3 has an income of 42 and Person 4 has an income of 48. We have a probability mass function of a random variable [image: image] and the probability mass function is given by [image: image], [image: image] and [image: image]. Again, using Eq. 3, the Lorenz function is given by
[image: image]
Now consider the income distribution [image: image] and compare it with the income distribution [image: image]. Note that at [image: image], [image: image] and at [image: image], [image: image]. Hence, given both [image: image] and [image: image] are continuous in [image: image], the two Lorenz curves overlap and, in particular, these two Lorenz curve intersects at [image: image], that is, at [image: image] we have [image: image].
3. INEQUALITY INDICES IN DETAIL
3.1. The Kolkata Index
The k-index for any income distribution F is defined by the solution to the equation [image: image]. It has been proposed as a measure of income inequality (see Refs. 2 and 3, and Ref. 1, for more details). We can rewrite [image: image] as [image: image] implying that the k-index is a fixed point of the complementary Lorenz function. Since the complementary Lorenz function maps [image: image] to [image: image] and is continuous, it has a fixed point. Furthermore, since complementary Lorenz function [image: image] is non-increasing, the fixed point is unique. Since for any F, [image: image] with the equality holding only if we have an egalitarian income distribution, the unique fixed point of [image: image] lies in the interval [image: image] implying that for any distribution F, [image: image]. Therefore, [image: image] lies between 50% population proportion and the population proportion [image: image] that we associate with 50% income given the income distribution F. Observe that if [image: image], then [image: image] and for any other income distribution, [image: image]. Also note that while the Lorenz curve typically has only two trivial fixed points, that is, [image: image] and [image: image], the complementary Lorenz function [image: image] has a unique non-trivial fixed point [image: image].
The Pareto principle is based on Pareto’s observation (in the year 1906) that approximately 80% of the land in Italy was owned by 20% of the population. The evidence, though, suggests that the income distribution of many countries fails to satisfy the 80/20 rule (see Ref. 1). The k-index can be thought of as a generalization of the Pareto principle. Note that [image: image]; hence, the top [image: image] of the population has [image: image] of the income. Hence, the “Pareto ratio” for the k-index is [image: image]. Observe, however, that this ratio is obtained endogenously from the income distribution and in general, there is no reason to expect that this ratio will coincide with the Pareto principle. The fact that the k-index generalizes Pareto’s 80/20 rule was first pointed out in Ref. 1 and later also in Refs. 20> and 21.
• Uniform distribution. If we have the uniform distribution [image: image] defined on [image: image] where [image: image]. Then
[image: image]
• Exponential distribution. For the exponential distribution [image: image], the complementary Lorenz function is given by [image: image]. One can show that [image: image] and hence [image: image].
• Pareto distribution. For the Pareto distribution [image: image], the complementary Lorenz function is given [image: image]. The k-index is therefore a solution to (I) [image: image]. It is difficult to provide a general solution to (I). However, we an interesting observation in this context.
• If [image: image], then [image: image] and we get the Pareto principle or the [image: image] rule. Also note that [image: image]
3.1.1. Discrete Random Variable
Consider any discrete random variable with distribution function [image: image] discussed in Example 1 for which the Lorenz function is given by Eq. 3. To obtain the explicit form of the k-index one can first apply a simple algorithm to identify the interval of the form [image: image] defined for [image: image] in which the k-index can lie.
Algorithm-A:
Step 1: Consider the smallest [image: image] such that [image: image] and consider the sum [image: image]. If [image: image], then stop and [image: image] and, in particular, [image: image] if and only if [image: image]. Instead, if [image: image], then go to Step 2 and consider the group [image: image] and repeat the process.
[image: image]
Step t. We have reached Step t means that in Step [image: image] we had [image: image]. Therefore, consider the sum [image: image]. If [image: image], the stop and [image: image] and, in particular, [image: image] if and only if [image: image]. If [image: image], then go to Step [image: image].
Observe that since [image: image], if we have [image: image] in some step, then, in the next step, this algorithm has to end since [image: image].
Suppose for any discrete random variable with distribution function [image: image] discussed in Example 1, Algorithm-A identifies [image: image] such that [image: image]. If [image: image], then [image: image] and if [image: image], the [image: image] is the solution to the following equation:
[image: image]
Thus, to derive the k-index of any discrete random variable with distribution function [image: image] discussed in Example 1, we first identifying the group [image: image] such that [image: image] (using Algorithm-A) and then, using [image: image], we get the following value of [image: image]:
[image: image]
Remark 1. Consider the income distributions [image: image] and [image: image] defined in Example 2. Recall that the Lorenz functions and [image: image] are such that [image: image] for all [image: image] and [image: image] for all [image: image]. However, one can work out that the k-indices for these distributions. Specifically, note that for [image: image], [image: image] and [image: image] implying that [image: image] and [image: image] and [image: image] implying that [image: image]. Hence, by Algorithm-A, [image: image] and it is a solution to the equation [image: image] implying that [image: image] and hence the normalized value is [image: image]. Similarly, for [image: image], [image: image] and [image: image] implying that [image: image] and [image: image] and [image: image] implying that [image: image]. Hence, by Algorithm-A, [image: image] and it is a solution to the equation [image: image] implying that [image: image] and hence the normalized value is [image: image]. Observe that [image: image] and hence [image: image] implying that according to k-index as a measure of income inequality, the income distribution [image: image] is less unequal than income distribution [image: image].
3.1.2. The Hirsch Index
The physicist Jorge E. Hirsch suggested this index to measure the citation impact of the publications of a research scientist (see Ref. 22). Let [image: image] be the set of research papers of a scientist. Let [image: image] be the citation function of the scientist. The citation function simply gives the number of citations for each publication. Let [image: image] be a reordering of the elements in the set X such that [image: image]. The Hirsch index, or the h-index, is the largest number [image: image] such that [image: image]. Note that if [image: image], then [image: image], and, if [image: image], then [image: image] and for all other cases [image: image].
If neither [image: image] nor [image: image] holds, then how do we identify the h-index? To see this, suppose that we plot a graph where on the x-axis we plot the ordered set of publications of a research scientist in non-increasing order of citations and on the y-axis we plot the number of citations for each publication. Moreover, if we join the consecutive plotted points like [image: image] and [image: image] by a straight line for each [image: image], then we get a curve representing a function [image: image], defined on the domain [image: image] with co-domain [image: image], which we call the generated citation curve. The generated citation curve is continuous, piecewise linear and has a non-positive slope whenever the slope exists. The generated citation curve resembles a lot like the complementary Lorenz curve that we can associate with any income distribution. Consider the fixed point of the generated citation curve [image: image] on the interval [image: image], that is, consider [image: image] such that [image: image]. As long as there is at least one citation and as long as all papers are not cited more than [image: image]-times, such a fixed point [image: image] exists and is unique with the added property that [image: image]. Given this fixed point, we can identify the relevant value of the h-index, that is, [image: image] for f by the following procedure: If the fixed point [image: image] is an integer, then it is the [image: image] that we are looking for, that is, [image: image]. If, however, [image: image] is not an integer, then there exists an integer [image: image] such that [image: image] and [image: image] and then, the relevant value of the h-index is [image: image]. Therefore, graphically, the procedure of obtaining the h-index of any research scientist using the generated citation curve is the same as identifying the fixed point of the complementary Lorenz function of any income distribution that yields the k index.
3.2. The Gini Index
The Gini index is the ratio of the area that lies between the line of perfect equality and the Lorenz curve over the total area under the line of perfect equality. If we plot cumulative share of population from lowest income to highest income on the horizontal axis and cumulative share of income on the Vertical axis (as shown in Figure 1 above), then the Gini index [image: image] of any income distribution F is given by [image: image]. If all people have non-negative income (or wealth, as the case may be), the Gini index can theoretically range from 0 (complete equality) to 1 (complete inequality); it is sometimes expressed as a percentage ranging between 0 and 100. In practice, both extreme values are not quite reached. The Gini index is given by the following formula:
[image: image]
It is obvious that if [image: image] for all [image: image], then [image: image]. If the income distribution for a society with n people follows a Power Law distribution, then [image: image]. The Gini index is then given by [image: image]. Hence, as [image: image], we have [image: image]. Gini index of some standard continuous random variable are provided below.
• Uniform distribution: Consider uniform distribution on some compact interval [image: image] with [image: image]. The Gini index is given by
[image: image]
• Exponential distribution: Consider the exponential distribution with distribution function given by [image: image] for any [image: image] with [image: image]. The Gini index is given by
[image: image]
• Pareto distribution: For Pareto distribution given by the distribution function is [image: image] with [image: image] as the minimum income and [image: image], the Gini index is given by
[image: image]
If we plot the Gini index for different values of [image: image], then note that as α increases the Gini index decreases, and, as [image: image] we have [image: image]. Also note that if [image: image], then [image: image].
3.2.1. Discrete Random Variable
Consider the discrete random variable [image: image] discussed in Example 1 for which the Lorenz function is given by Eq. 3. As show in Appendix A, we have the following explicit form of the Gini index.
[image: image]
Note that if [image: image] for all [image: image] so that [image: image] and [image: image], then from Eq. 5 it follows that
[image: image]
Remark 2. Consider the income distributions [image: image] and [image: image] defined in Example 2. One can work out that the Gini indices are [image: image] and [image: image]. Hence, like the normalized k-index, according Gini index the income distribution [image: image] is less unequal than income distribution [image: image].
3.3. The Pietra Index
An interesting index of inequality is the Pietra index (see Pietra [17]) that tries to identify that proportion of total income that needs to be reallocated across the population in order to achieve perfect equality. Given any income distribution F, this proportion is given by the maximum value of [image: image]. Therefore, the Pietra index is [image: image]. It is immediate that if [image: image] for all [image: image], then [image: image]. For any other income distribution F, the maximum distance between the perfect equality line and the Lorenz curve is the distance OP in Figure 1 above. Note that for any random variable X with distribution function F, [image: image]. Therefore, maximizing [image: image] by selecting [image: image] is equivalent to maximizing the area [image: image] by selecting [image: image]. Since the Lorenz curve plots the percentage of total income earned by various portions of the population when the population is ordered by the size of their incomes, it is obvious that [image: image] for all [image: image], [image: image] for all [image: image] and [image: image] at [image: image]. Thus, it follows that the maximum value of the integral [image: image] is attained at [image: image]. Hence, the Pietra index for any random variable with distribution function F is
[image: image]
• Uniform distribution: For the uniform distribution on some compact interval [image: image] with [image: image], we have [image: image] for all [image: image]. Moreover, [image: image] and as a result [image: image]. Hence, the Pietra index is given by
[image: image]
Given [image: image], we have [image: image]. Moreover, one can easily check that [image: image].
• Exponential distribution: For the exponential distribution [image: image] defined for any [image: image] with [image: image], we have [image: image] for all [image: image]. We also have [image: image] and hence [image: image]. The Pietra index is given by
[image: image]
Observe that [image: image].
• Pareto distribution: For Pareto distribution given by the distribution function is [image: image] with [image: image] as the minimum income and [image: image], we have [image: image] for all [image: image], [image: image] and [image: image]. The Pietra index is given by
[image: image]
One can verify that [image: image] for all [image: image]. Also note that if [image: image], then [image: image].
As shown in Appendix B(i), there is an alternative representation of the Pietra index as the ratio of the mean absolute deviation of the income distribution and twice its mean, that is, [image: image].
3.3.1 Discrete Random Variable
Consider the discrete random variable [image: image] discussed in Example 1 for which the Lorenz function is given by Eq. 3. It is shown in Appendix B(ii) that the Pietra index has the following representations:
[image: image]
where [image: image] is such that [image: image] implying that [image: image].
Remark 3. Consider the income distributions [image: image] and [image: image] defined in Example 2. Observe that for both [image: image] and [image: image] the mean is the same and, in particular [image: image]. Therefore, [image: image] and [image: image] implying [image: image], and, we also have [image: image] and [image: image] implying [image: image]. Thus, [image: image] and hence, like the ordering with the k-index as well as the Gini index, according to the Pietra index, the income distribution [image: image] is less unequal than income distribution.
4. COMPARING THE MEASURES
4.1. Rich-Poor Disparity
The Gini index, as is well-known, measures inequality by the area between the Lorenz curve and the line of perfect equality. For any [image: image], one can decompose the Gini index into three parts: two representing the within-group inequality and one representing the across-group inequality. In Figure 2 below, the unshaded area bounded by the Lorenz curve and the line from [image: image] to [image: image] is the within-group inequality of the poor. It represents the extent to which inequality can be reduced by redistributing incomes among the poor. Similarly, the area bounded by the Lorenz curve and the line segment from [image: image] to [image: image] represents the within-group inequality of the rich. The shaded area represents the across-group inequality. Easy computation shows that the extent of across-group inequality between the bottom [image: image] and top is the (across-group) disparity function [image: image]. One can ask for what value of p is the across-group inequality maximized? The answer is that this is maximized at the proportion associated with the Pietra index given by [image: image]. Hence, [image: image] is the proportion where the disparity is maximized. Therefore, the Pietra index is that fraction which splits the society into two groups in a way such that inter-group inequality is maximized.
[image: Figure 2]FIGURE 2 | Rich-poor disparity assuming that the poor are p% of the population. The blue-shaded area is the disparity among the poor, the green-shaded area is the disparity among the rich, and the grey-shaded area is the disparity between the rich and the poor.
The discussion to follow shows that interpretation of the k-index is different from that of the Pietra index. Let us divide society into two groups, the “poorest” who constitute a fraction p of the population and the “richest” who constitute a fraction [image: image] of the population. Given the Lorenz curve [image: image], we look at the distance of the “boundary person” from the poorest person on the one hand and the distance of this person from the richest person on the other hand. These distances are given by [image: image] and [image: image], respectively. Then, the k-index divides society into two groups in a manner such that the Euclidean distance of the boundary person from the poorest person is equal to the distance from the richest person.
The value of the disparity function at the k-index is [image: image]. It measures the gap between the proportion [image: image] of the poor from the [image: image] population split. As long as we do not have a completely egalitarian society, [image: image] and hence it is one way of highlighting the rich-poor disparity with [image: image] defining the income proportion of the top [image: image] proportion of the rich population. In terms of disparity, the Gini index and Pietra index do not have as nice an interpretation.
4.2. Comparison of Magnitudes
To compare the k-index with other measures of inequality we will use the normalized k-index which is given by [image: image]. The normalized k-index was first introduced in Ref. 20 and was called the “perpendicular-diameter index” (see Refs. 20, 21, 23). For all income distributions used till the previous section we found that given any F, the value of the normalized k index is no more than the value of the Pietra index and the value of the Pietra index is no more than the value of the Gini index. This is not just a coincidence. It was established in Ref. 3 that for any income distribution F, we have [image: image]. It is obvious that since the Pietra index maximizes [image: image], it is obvious that [image: image]. Moreover, in Ref. 3, it was also established that for any given distribution F and any [image: image], [image: image] and hence, using this result, it follows that [image: image] and hence we get [image: image].
We first provide an example where the normalized k-index coincides with the Pietra index. This example is taken from Ref. 3. Let us consider an arc of a unit circle ODB as a Lorenz curve where OB is one of the diagonal (egalitarian line) of the unit square ABCO (as shown in Figure 3) where CD represents the unit radius of the circle, CA is the other diagonal of the unit square ABCO = [image: image]. In this case the Lorenz curve is, [image: image] where [image: image] is the relevant income distribution. One can verify that [image: image]. Hence, the Gini index is larger than the Pietra index and the normalized k-index. Also in this case the maximum distance between perfect equality line and the Lorenz curve is at [image: image], hence Pietra index coincides with the normalized k-index.
[image: Figure 3]FIGURE 3 | The Lorenz curve as an arc of a unit circle. Here, the normalized k-index and Pietra index are equal but different from the Gini index: [image: image].
The Lorenz function [image: image] is symmetric if for all [image: image], [image: image] or equivalently [image: image], where [image: image]. The idea of symmetry is explained in Figure 4. One can verify that the Lorenz function [image: image] is symmetric. It was proved in Banerjee, Chakrabarti, Mitra, and Mutuswami [3] that, in general, if the Lorenz function is symmetric and differentiable, then the proportion [image: image] associated with the Pietra index coincides with the proportion [image: image] of the k-index. Hence, we also have [image: image].
[image: Figure 4]FIGURE 4 | Lorenz curve for which Pietra index and normalized k-index are equal. The similarity holds only when for all [image: image], [image: image], where [image: image] and [image: image].
The next example is one where the Pietra index coincides with the Gini index. This example is taken from Eliazar and Sokolov [18]. Fix any fraction [image: image] and consider the following Lorenz function:
[image: image]
Figure 5 depicts this Lorenz function [image: image] and in particular the curve OBA represents this Lorenz curve. One can show that [image: image]. Hence, the Gini index coincides with Pietra and the normalized k-index has a lower value. Therefore, from this example we can say that k-index has different features relative to both the Gini index and the Pietra index.
[image: Figure 5]FIGURE 5 | A Lorenz curve depicting two groups, one with no income and the other where all agents have the same income. The Gini index and the Pietra index are equal but different from the normalized k-index: [image: image].
Finally, when does all the three indices coincide? It was established in Ref. 3 that all three measures will coincide if and only if the Lorenz function has the following form defined for any given [image: image]:
[image: image]
In Figure 6, the straight lines OQ and QB taken together represents the Lorenz curve for [image: image]. One can verify that
[image: image]
Observe that, if [image: image], then we have [image: image] for all [image: image] and in that case the three indices also coincide since [image: image].
[image: Figure 6]FIGURE 6 | A Lorenz curve depicting two groups with equally distributed incomes but differing average incomes. The Gini, Pietra and normalized k indices are all equal here: [image: image].
It is clear that the Lorenz functions of the form [image: image] with [image: image] is valid for any society having two income groups. Therefore, a natural question in this context is the following: What does the coincidence of the three measures mean in terms of discrete random variables? For any discrete random variable [image: image] such that [image: image], we have [image: image], [image: image] with [image: image] and the associated Lorenz function has the following form:
[image: image]
For the coincidence of all the three indices we first require that [image: image] and [image: image] implying that [image: image]. Moreover, for the coincidence we also require [image: image], that is, [image: image] which yields [image: image]. Thus, from the above discussion we have the following result.
• Consider any discrete random variable [image: image] discussed in Example 1 for which the Lorenz function is given by Eq. 3. The normalized k-index coincides with the Gini index and the Pietra index if and only if any one of the following conditions holds:
(C1) The society has all agents having the same income [image: image] so that [image: image] for all [image: image]. For this case we have, [image: image].
(C2) The society has two groups of agents with one group of [image: image] agents having an income of [image: image] and another group of [image: image] agents having an income of [image: image] such that [image: image]. Moreover, the Lorenz function is [image: image] given in Eq. 12 with the added restrictions that [image: image], [image: image] and hence [image: image]. For this case we have, [image: image].
5. RANKING LORENZ FUNCTIONS
Consider the uniform income distribution [image: image] defined on any compact interval [image: image] with [image: image]. The Lorenz function is given by [image: image] for all [image: image] (see Figure 7). Here [image: image] is the reciprocal of the Golden ratio, that is, [image: image] where [image: image] is the Golden ratio. Moreover, [image: image]. Similarly, one can derive that the Gini index is [image: image] and the Pietra index is [image: image] with [image: image]. Hence, we have [image: image]. Similarly, consider the Pareto distribution [image: image] with parameter value [image: image]. The Lorenz function is given by [image: image] so that [image: image] and the k-index is again the reciprocal of the Golden ratio, that is, [image: image] and [image: image] (see Figure 7). Thus, according to the normalized k-index, a society with an income distribution [image: image] is equivalent to a society with an income distribution of [image: image] in terms of inequality. One can verify that this equivalence between [image: image] and [image: image] is also preserved under the Gini index and the Pietra index. Specifically, we have [image: image] and [image: image] though [image: image]. Hence, we have
[image: image]
Consider the income distributions [image: image] and [image: image] defined in Example 2. From Remark 1 it follows that [image: image], from Remark 2 it follows that [image: image] and from Remark 3 it also follows that [image: image]. Therefore, all the three measures unambiguously assures that the society with income distribution [image: image] is less unequal that the society with income distribution [image: image].
[image: Figure 7]FIGURE 7 | Two Lorenz curves with identical Gini, Pietra and normalized k-indices. The blue curve is [image: image] and the red curve is [image: image].
Given the above examples of this section, one may be tempted to think that ranking Lorenz functions using these three measures always gives the same order, that is, if one measure shows that the income distribution F is equivalent to another income distribution [image: image] in terms of inequality, then the other two measures will also give the same result, and, if one measure shows that the income distribution F is less unequal than the income distribution [image: image], then also the other two measures will establish the same order. However, as argued in Ref. 3, this is not the case. To establish this point [3] provided the following two examples.
In the first example the following Lorenz functions were considered to establish that the normalized k-index yields a different ranking from the Pietra index.
[image: image]
[image: image]
One can show that [image: image], that is, according to the normalized k-index, the society with income distribution [image: image] is equivalent to the society with income distribution [image: image] in terms of inequality. However, according to the Pietra index, the society with income distribution [image: image] is less unequal than the society with income distribution [image: image].
In the second example, two Lorenz functions were considered of which the first one is the standard uniform distribution defined on any compact interval of the form [image: image] with [image: image], that is, [image: image] for all [image: image]. The other Lorenz function has the following form:
[image: image]
[image: image]. This example demonstrates an important difference between [image: image] and [image: image]. The Gini index is affected by transfers within a group. In particular, the poor are unaffected but the rich (lying in the interval [image: image]) have become more egalitarian while moving from [image: image] to [image: image]. The normalized k-index on the other hand is unaffected with such intra-group transfers. Therefore, if we are interested in reducing inequality between groups, then the normalized k-index is a better indicator than the Gini index.
6. NUMERICAL OBSERVATIONS
For the purpose of comparison between different inequality indices, we present in Table 1, the estimated values of the Gini and k-indices for the income distributions in some countries for the period 1963–1983. Tables 2 and 3 give the estimated values of these indices along with the Pietra index for citations, for different institutions and universities across the world observed in different years. Table 4 also shows the comparison between Gini, Pietra and k for inequalities in paper citations for various science journals. All the tables are taken from Ref. 1.
TABLE 1 | The Gini and k-indices for the income distributions of various countries, 1963-1983.
[image: Table 1]TABLE 2 | The Gini coefficient, Pietra and k-indices for citations (up to December 2013) of the papers published from different universities as obtained from ISI web of science.
[image: Table 2]TABLE 3 | The Gini, Pietra and k-indices for citations (up to December 2013) of the papers published from different Indian universities, as obtained from ISI web of science [Adapted from Ref. 1].
[image: Table 3]TABLE 4 | The Gini, Pietra and k-indices for citations (up to December 2013) of the papers published from different journals, as obtained from ISI web of science [Adapted from Ref. 1].
[image: Table 4]In Ref. 1 it was observed that Eq. 11 is an approximate result and can differ for large values of G and k. Furthermore, the value of k corresponds to an upper limit beyond which the distribution follows a power law pattern, similar to the celebrated Pareto law [24]. For the inequality in citation data, if n is the fraction of papers and w is the cumulative fraction of citations, then for [image: image], [image: image] with [image: image] which implies [image: image] for [image: image] and c is a proportionality constant. This is illustrated in Figures 8 and 9.
[image: Figure 8]FIGURE 8 | Illustration of the power law in the citation distributions for Cambridge and MIT. Here, [image: image] for [image: image], with [image: image] [Adapted from Ref. 1].
[image: Figure 9]FIGURE 9 | Illustration of the power law in the citation distributions for Nature and Science. Here, [image: image] for [image: image], with [image: image] [Adapted from Ref. 1].
7. SUMMARY AND DISCUSSION
For the nonlinear Lorenz function [image: image], the traditional measures like Gini index measures some “average property”, while the Kolkata index (k) identifies the non-trivial fixed point of the complementary Lorenz function ([image: image] = [image: image]; note that [image: image] has trivial fixed points at [image: image] and 1, while [image: image] has a nontrivial fixed point at [image: image]). This k-index apart from capturing the essential character of the nonlinear Lorenz function (as inspired by the major developments of renormalization group theory in statistical physics [14] or in identifying the universal characters corresponding to the onset of chaos in nonlinear systems [15]), also gives us a very tangible one, giving that [image: image] fraction of the population possess k fraction of the total wealth in the society. In Ref. 25 the k-index is used to define a generalized Gini index. In a recent study, the k-index has been used to quantify the inequality for spreading of the Covid-19 infection in urban neighbourhoods and slums in a society (see Ref. 26).
After a general introduction in Section 1, we discuss in Section 2, some structural features of the Lorenz function and introduce the Complementary Lorenz function, which has a nontrivial fixed point (namely the Kolkata index) as mentioned above. In Sections 3 and 4, we try to demonstrate the uniqueness of the k-index, compared to Gini and Pietra indices in ranking the rich-poor disparity, assuming some typical income distributions. we have argued (in Section 3) that the procedure of obtaining the h-index of any research scientist using the generated citation curve is the same as identifying the fixed point of the complementary Lorenz function of any income distribution that yields the k index. While comparing the normalized k-index with the Pietra index and with the Gini index, one can show that for any given distribution the normalized k-index is no more than the Pietra index and the Pietra index is no more than the Gini index. We have also argued (in Section 4.2) that for any given distribution the normalized k-index, the Pietra index and the Gini index coincide only if either the society is such that all agents have equal income or there are only two income groups in a society with some added restrictions (see condition C2 in this subsection). We have also argued (in Section 5) that if we are interested in reducing inequality between the rich and poor groups of the society, then the normalized k-index is a better indicator than the Gini index. In Section 6, we can see that while the Gini index value typically ranges from 0.30 to 0.62, the Kolkata index value ranges from 0.60 to 0.73 at any particular time or year for income or wealth data across the countries of the world. It may be mentioned here that income inequality data are not easily available from reliable sources. On the other hand, the (paper) citations may be considered as a measure of the wealth created by the respective University or Institution and the resulting inequality data are abundantly available in accurate digital formats (say from the ISI Web of Science). We estimated the Gini, Pietra, and Kolkata index values for the citations earned by the yearly publications of various academic institutions from such data sources. We find that while Gini and Pietra index values range from 0.65 to 0.75 and 0.50 to 0.60, respectively, the Kolkata index remains around [image: image] value for Institutions or Universities across the world. As mentioned already, k-index is the social equivalent to the h-index for an individual researcher or academician. Also we find that the value for k-index gives an estimate of the crossover point beyond which the growth of income (or citations) with the fraction of population (or publications) enters a power law (Pareto) region (see Figures 8 and 9).
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8. APPENDICES
8.1. Appendix A
We formally show that for the discrete random variable [image: image] with the Lorenz function is given by Eq. 3, the Gini index has the following explicit form:
[image: image]
Observe first that
[image: image]
Thus, using [image: image] and using Eq. A1 we get
[image: image]
Hence, from the last inequality in Eq. A2 the result follows.
8.2. Appendix B
8.2.1. Appendix B (i)
The following derivation shows why [image: image] this is true.
[image: image]
8.2.2. Appendix B (ii)
We formally show that for the discrete random variable [image: image] with the Lorenz function is given by Eq. 3, the Pietra index has the following explicit form:
[image: image]
where [image: image] is such that [image: image] implying that [image: image].
For the first equality, observe that there exists [image: image] such that [image: image] implying that [image: image]. Thus, using [image: image] and using [image: image] we get
[image: image]
Given Eq. B2 it follows that the Pietra index of the distribution [image: image] with [image: image] is
[image: image]
Given Eq. B3, we can also derive second equality by using [image: image] and by using [image: image]. Specifically,
[image: image]
FOOTNOTES
1The end points are clear since none of the population possesses none of the income while the entire population possesses all the income.
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We investigate the effects of syndicated loan network centrality on bank performance. Syndicated loan network centrality measures the similarity and influence of the other banks within a given banks network. The network centrality constructed by syndicated loans can allow banks to gather and transfer valuable information and can thus facilitate profit-making acquisition in loan investment decisions. We use a planar maximally filtered graph to construct an interbank network using syndicated loan portfolios at the industry level. We show that the syndicated loan portfolios of high-centrality banks exhibit a higher level of portfolio diversification than those of low-centrality banks. We also document that our composite centrality measure of the bank network showed statistical significance in terms of bank performance even after controlling for the financial variables of market size, loan allocation, total asset, and loan diversification. Our findings suggest that the performance of a bank in a syndicated loan hierarchy is related to its position in this hierarchy.
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1. INTRODUCTION
The connectivity between banks demonstrates the ways in which the contagious nature of high levels of risk among financial institutions can cause financial crizes and affect future economic conditions [1–4]. The network structure of the interbank market created by the syndicated loan market suggests that connections between banks should be an important channel of contagion among financial institutions [5–7]. Information contagions between banks represent a significant channel that might explain how information travels through financial systems. Recently, the application of complex networks to solve this challenging problem has become increasingly widespread in diverse areas [8–10].
In this paper, we study interbank networks in the form of common exposures among financial institutions to analyze bank performance based on banks’ exposure to large syndicated loans. Syndicated loans represent one of the crucial sources of external financing for many firms and provide an ideal experimental setting for studying the interconnectedness of banks. In this study, the network between banks is constructed from data sets that contain information regarding both the borrowers and lenders of syndicated loans. The common exposures of banks are able to measure bank’s investment strategies in this market in terms of loan portfolio diversification.
Prior research provides evidence that interconnectedness has a considerable impact on the economy from the perspective of risk exposure. Interconnection between companies or industries amplifies and propagates shock within an economy [11]. Negative shock and financial distress contribute to asset fire sales [12]. Consistent with these concepts, credit concentration tends to lead to a cascade effect of shock in an economy [13]. [5] defined market connectedness using banks’ loan specializations in a syndicated loan market that reflected systemic risk. Furthermore, prior studies that have examined the role of diversification have focused on performance. For example, banks with a greater number of geographically-concentrated mortgage loans performed better than others with fewer of these loans [14]. In terms of mergers and acquisitions, diversification is correlated with fluctuations in external market friction [15].
Based on the social exchange theory as proposed by [16]; we present different perspectives to understand the banking industry in the United States; these perspectives recognize the complex and rich social relationships that define interbank network. When the economy is growing, banks actually benefit from promoting the sharing of information with network members for business expansion; as a result of this sharing, they are able increase their profits. Nonetheless, during periods of economic contraction, banks cannot force network members to restructure because they may be subject to strict constraints due to their obligations. Banks are expected to expend effort monitoring and screening their borrowers to mitigate risk exposure. Additionally, bank performance is negatively affected within a contracting economy.
To assess the level of connectedness between the banks of syndicated loan portfolios, we establish a measure of interconnectedness that utilizes the similarity between bank’s syndicated loan portfolios at the industry level as proposed by [5]. An advantage provided by the use of loan portfolios is the ability to investigate the response of banking systems via direct connections. To extract meaningful information from all-to-all connected networks, we employ the planar maximally filtered graph (PMFG) [17]. We utilize centrality measures to drive an important component that may affect whether a bank’s centrality in the interbank network created in the financial sector is related to its performance. In this paper, the centrality is measured by the principal component analysis (PCA) method based on four common measures of centrality in the context of networks: degree, eigenvector, closeness, and betweenness.
To date, only the lending relationship between banks and firms has been studied through analyzing the characteristics of individual banks or firms using corporate loan data. The aim of this paper is to study an interbank network, namely, the syndicated loan market. We investigate the evolution of several types of syndicated loans over time using a Dealscan database, with a special emphasis on the amount of syndicated loans that have been extended. More interestingly, the syndicated loan data used in this study allows us to investigate the effect of the centrality of interbank networks on bank performance.
We show that banks with a higher level of network centrality are more likely to pursue diversification and that this diversification is more likely to increase during market instability. To extend our examination of the relationship between interbank networks and bank performance, we move beyond bank-to-firm lending by studying interbank networks in the context of the syndicated loan market. We further find that banks with a high level of centrality have higher returns than do banks with a low level of centrality. Since a bank’s centrality within the network plays an important role in its loan portfolio strategy, it also plays a significant role for lending market participants. We also found that in the core group, there was a negative correlation between diversification and centrality; however, a positive relation was observed in the peripheral group.
The paper is organized as follows. Section 2 explains the methodology that we employed. Section 3 presents a description of the database used, and Section 4 contains an empirical analysis. Section 5 concludes this paper.
2. METHODOLOGY
In this section, we explain the network construction and regression variables. For each month, we define an interconnectedness based on the similarities between syndicated loan portfolios. The results are not qualitatively sensitive to bank performance measures, e.g., we obtain essentially the same results even if we use different financial variables to measure bank performance.
2.1. Network Construction
In this subsection, we explain the way in which we estimate the distance between two banks based on their loan portfolios. We then describe the way in which we construct an interbank network. To map our interbank network, we obtain information on the relationships between banks and firms between 1990 and 2017 from the DealScan database.
First, we investigate bank syndicated loans in the United.States. lending industry classified using two-digit SIC industry codes. This measure was developed by [5] and uses the Euclidean distance between two banks. For each month, we calculate the distance between bank i and bank k by quantifying the similarity of these two banks in a n-dimensional space as follows.
[image: image]
where [image: image], with syndicated loan of bank i invested in industry j, [image: image], within the 12 months prior to month t. The distance is normalized between 0 and 1; 0 refers to perfectly matched portfolios and one refers to portfolios that do not overlap at all. We then construct a filtered network that connects all the banks so that a planar maximally filtered graph (PMFG) can be used [17]. The most common method of forming a stock network is based on the correlation of stock returns using threshold [18, 19]. This method has a problem in which correlation coefficient only assumes a linear relationship and lead to neglect some information. In addition, the minimum spanning tree (MST), a tree formed by a subset of edges of a given undirected graph, is also a common method in complex network analysis [20]. However, this method reflects hierarchical clustering with information loss to generate a efficient network. To address these issues, we use PMFG measure to construct a network based on the syndicated loans.
2.2. Main Dependent and Independent Variables
We investigate how network structure affects bank performance using the banks in the United.States. between January 1, 1990 and December 31, 2017. We use the Return on asset (ROA) variable as the dependent variable to measure bank’s performance and employ several financial variables, such as the bank size, an amount of syndicated loan, etc. as control variables to examine network effect on bank’s performance.
2.2.1. Diversification
In information theory, following [21]; the entropy of a discrete random variable X is denoted as
[image: image]
where [image: image] is the probability distribution of outcome X and [image: image] is defined by [image: image]. [image: image] is the proportion of the total loan amount of industry i held by a bank and n is the number of industries invested by the bank. It is well known that entropy is viewed as a measure of the uncertainty of a random variable. Entropy have manifested useful across a wide range of fields, so it is remarkable they have begun to make noticeable effect into economics and finance. It has also been a popular diversity index in previous literature. In this paper, we use the concept of diversification that corresponds to the above measure within the range of zero to one. When H is zero, the bank has concentration of loan portfolio. Otherwise, when H is one, the bank has perfect diversification of loan portfolio.
2.2.2. Network Centrality
The effect of bank network centrality on bank performance is due to the importance of bank-firm lending structure in the context of information asymmetry. A bank’s network created by bank-to-firm loan information should affect the profit of lending banks. Generally, centrality refers to a bank’s location in a network compared to that of others. The four indices of centrality are frequently discussed in the social network literature [22]. These four indices are degree centrality, eigenvector centrality, closeness centrality, and betweenness centrality. These indices represent different dimensions of connectedness that affect information sharing via a network. Degree centrality is the sum of the first-degree connections of an entity in a network. The raw score is divided by the total number of nodes in the network minus 1, because the size of the interbank network changes each month [23]. Eigenvector centrality measures an individual bank’s ability to obtain or influence information within the network. This measure increases as connections with other highly connected neighbors are added. The raw score is divided by the total number of nodes in the network minus one because the size of the interbank network changes each month. Closeness centrality is the inverse of the mean of the shortest path length between an individual bank and all the other reachable banks in the network. The raw score is multiplied by the total number of nodes in the network minus one because the size of the interbank network changes each month. Betweenness centrality describes the extent to which an individual bank is connected to the other banks in the network. When the shortest path of all bank pairs passes through a bank, the betweenness centrality of that bank is high; this is the reason why it is important to control the flow of the entire network. The raw score is divided by the total number of the connected nodes because the size of the interbank network changes each month.
To generate our composite centrality index (CCI) in Table 1, we standardize the centrality indices to a mean of 0 and a standard deviation of 1. Consistent with [24–26]; we use the factor score to aggregate CCI using the first principal component for each bank with four centrality indices in the PMFG network.
TABLE 1 | The effect of diversification and network centrality on bank performance.
[image: Table 1]2.2.3. Bank Performance Measure
Return on assets (ROA) is an indicator of how well a company generates profit from its total assets. We calculated ROA by dividing firms’ profit or loss before taxes by their total assets in month t and converted this figure to a percentage. The previous studies related to the current research area show that ROA is the best measure of performance when comparing similar companies with the same industry.
3. DATA DESCRIPTION
To test the hypotheses outlined in Section 1, we construct a sample of syndicated loans matched according to firm and bank characteristics. Below, we describe the sample construction and summarize the sample characteristics.
3.1. Data Source
We build our datasets from a comprehensive sample of syndicated loans and the associated lender and borrower information by merging data derived from Standard & Poor’s Compustat and from Thomson Reuters’ LPC Dealscan from 1990 to 2017. The Compustat database is free of survival bias, as it contains the monthly historical accounting data of borrowing companies, and data regarding syndicated loans are included in the Dealscan database. Our starting points are the DealScan-Compustat Link [27] and the Lender link [28].a
Syndicated loans play a crucial role in the American corporate loan market. These loans are typically offered by a group of lenders. The lenders in a syndicate are large banks that fall into two categories of lenders: lead arrangers and participants. In this study, following the work of [5]; we classify lenders as lender-to-lead arrangers and participants. We designate a lender as a lead arranger if lead arranger credit of it is yes or lender role of it is administrative agent, agent, arranger, book runner, coordinating arranger, lead bank, lead manager, mandated arranger, or mandated lead arranger. We designate a lender as a participant if it is not the lead arranger. We refer to lead arrangers as banks from now on, but we do not refer to participants in this way. Following the literature, we exclude loans made to financial companies (i.e., SIC codes between 6,000 and 6,999) as well as classified companies belonging to the Fama-French 12th industrial classification (i.e., others).b
The use of syndicated loan data allows us to explore the activities of the financial intermediaries in the loan market. Our loan data, with 52,685 facilities and 35,632 packages, comprises a complex structure. After excluding banks with negative total assets, the study sample is composed of banks listed in the United States during the period 1990–2017.
3.2. Sample Characteristics
Table 2 summarizes the composition of the sample in terms of diversification, centrality indices, and the control variables described in Section 2.2. The correlation coefficients of the variables are reported at the lead-arranger level. Our sample is consisted of 33,386 matched lead arranger-month sets drawn from U.S. institutions heavily invested in the U.S. syndicated loan market. Diversification (DIV) is highly correlated with the composite centrality index (CCI) (0.62) in Table 2 and Figure 1. In terms of multicollinearity, we control the effect of dummy variables related to 2008–2009 financial crisis in the centrality variables.
TABLE 2 | Pearson correlation of regression variables.
[image: Table 2][image: Figure 1]FIGURE 1 | This figure is related to the syndicated loan market in the United States from 1990 to 2017. (A) describes market size and the number of loans extended by lead arrangers to borrowers every quarter. Market size is defined as the sum of the loan amounts extended by each bank. The number of loans is defined as the total number of loans extended during each quarter. (B) represents the average loan size, which is the market size divided by the number of loans during each quarter. Gray shadows represent recessions as measured as the subprime morgage crisis periods during 2008-2009.
4. EMPIRICAL RESULTS
In this section, we first empirically explore the degree distribution of the PMFG network in the U.S. syndicated loan market. We then examine the ways in which network topology and investment characteristics impact bank performance. We investigate the effect of bank network centrality on bank performance because of the importance of the bank-firm lending structure in terms of information asymmetry. The structure of an interbank network should affect bank performance. Interbank networks, which are created by the degree of information asymmetry during the bank-firm lending process, should affect the performance of lending banks. A bank with a higher level of information asymmetry might mimic the loan portfolio structure of a bank with a lower level of information asymmetry to reduce this asymmetry and generate profits. The systemic risk research has identified network connectivity and centrality as channels that transmit contagions related to negative events [1, 2, 5, 29]. This implies that a highly interconnected structure can increase systemic risk. Ultimately, increased connectivity and rapid propagation in bank-to-bank networks can allow high-centrality banks to address market instability. In summary, we expect that well-connected banks should experience lower levels of information asymmetry than do poorly connected banks and that they should also experience higher levels of market performance.
4.1. The Analysis of Interbank Network
Since the amount of syndicated loans is related to exposure to assets, a decline in asset prices should affect the stability of the banking system. We analyze syndicated loans issued during each quarter from 1990 to 2017. A visual inspection of the amount of syndicated loans over time suggests that this figure reflects the state of the financial market. Figure 1A shows the amount of syndicated loans as a measure of overall banking loans and the number of syndicated loans. We measure the total amount of syndicated loans in each quarter. First, we find that both the overall amount and the number of syndicated loans follow a similar pattern. The total amount of syndicated loans started to increase in 2003 and continued to rise until Q4 of 2007, finally decreasing in 2009. After the subprime crisis, these loans rapidly increased until 2012. Second, the mean amount of syndicated loans is calculated as follows: Mean (Loan) = Market size/number of loans. Figure 1A shows a pattern similar to that of the results in Figure 1A.
[image: Figure 2]FIGURE 2 | PMFG network (A) 2002 (B) 2006 (C) 2008 (D) 2010. The nodes represent each bank, and the node size is determined by the corresponding bank's degree centrality. A node with a higher degree centrality is colored pink and one with a lower degree centrality is colored light green.
The main goal of this paper is to conduct more rigorous tests on the relationship between the interconnectivity of banks and bank performance. To test the validity of our hypothesis, we construct an interbank network using the PMFG method developed by [17] based on loan portfolio data in Figure 2. In January 2002 (2006), this interbank network for the normal market status consisted of 513 (428) connections and 105 (88) nodes. The interbank network during and after the financial market crisis consisted of 423 (328) connections and 87 (68) nodes in January 2008 (2010). If the loan portfolio of each bank tended to have a distinct and unique investment strategy, then the interbank network would be disconnected, and each bank would correspond to a random network. We construct interbank networks for normal and abnormal periods based on the banks’ loan portfolio structures to test whether the characteristics of the network are related to the market status. The obtained interbank network, shown in Figure 2 A–D, displays the banks with higher connections between banks, regardless of market status, suggesting that the syndicated loan portfolios of banks are shared with other banks.
[image: Figure 3]FIGURE 3 | The CDF for the degree of the interbank network is plotted with a double logarithmic scale. The cumulative distribution function for the degree of network during four years (A) from 2006 to 2009 and (B) from 2010 to 2013, the Gaussian distribution, and the fitted line are denoted using dotted blue lines, a black line, and dashed red lines, respectively.
The degree (k) distribution of the interbank network indicates that most of the banks are linked to a few other banks, whereas a few banks with a large amount of capital are connected to many individual banks. As shown in Figure 3, the degree distribution in 2006 (2010) follows the power-law distribution with an exponent of 4.09 (4.1). Consistent with [30, 31]; Table 3 compiles the results of the likelihood ratio test and includes judgments supported by statistical methods for the power-law hypothesis for each distribution over four years. We find that the degree distributions follow a power-law when comparing to exponential, stretched exponential, power law with cutoff, and log normal distributions. The power-law exponents of degree distributions of PMFG network are in the range 3.49 and 4.43. As a result, we think that there are the influential banks with a lot of connections in the interbank network.
[image: Figure 4]FIGURE 4 | This figure shows the correlation between diversification (DIV) and the degree of the PMFG network during the sample period of six months. Gray shadows represent recessions as measured as the subprime mortgage crisis periods during 2008-2009.
TABLE 3 | Comparisons of the fitted power-law behavior to alternatives.
[image: Table 3]The diversification of loan portfolios has important implications of the role that banks’ investment strategies play in the syndicated loan market. Is this loan portfolio strategy, i.e., the diversification of syndicated loans at the industry level, related to the interbank network? We estimate the correlation between the diversification of portfolios and network structure to test whether the investment strategy of a bank is related to the other banks in the network. Figure 4 shows the correlation between diversification and the degree of network centrality for each year. Overall, there is a positive correlation between diversification and degree of centrality, regardless of the subperiod observed. In particular, the correlation value starts to increase in 2002 and continues to rise until 2007 before the subprime crisis; after this, it decreases in 2011, suggesting that the correlation between the loan portfolio strategies of banks and the centrality of the network connectivity among banks should be understood as indicators of the financial crisis.
To observe the relationship between the degree of network centrality and portfolio strategies, we divided the whole sample into three groups according to centrality: G (high), G (middle), and G (low). Figure 5 displays the distribution function of these three groups using box plots and calculates the similarity of each distribution function using the Kolmogorov-Smirnov test (K-S test) [32]. The results are reported in Table 3. In addition, we calculate the average diversification of the three groups over time. Figure 6 shows the time evolution of the average diversification of these three groups defined according to their degrees of network centrality from January 1990 to December 2017. The diversification of the three groups is calculated based on the loan portfolios using the entropy method. The red circles, blue diamonds, and black triangles indicate the high-, middle-, and low-centrality groups, respectively. As shown in Figure 6, we find that since 2004, the diversification levels of low-centrality groups have moved more volatile than high-centrality groups.
[image: Figure 5]FIGURE 5 | We divide banks into three groups: high, middle, and low-centrality. The banks corresponding to the highest (lowest) 10% in terms of degree centrality are designated as the core (peripheral) of banks in this paper. The core banks have higher levels of diversification than middle and low-centrality groups.
[image: Figure 6]FIGURE 6 | Time series of diversification of three groups according to their degree centrality. This figure shows the time series of the monthly diversification of syndicated loan portfolios from January 1990 to December 2017. The diversification of the three groups is computed by using the entropy method based on their loan portfolios. We divided sample into three groups. The red circles, blue diamonds, and black triangles indicate the high, middle, and low-centrality groups, respectively.
4.2. The Effect of Centrality and Diversification on Bank Performance
To the extent that interbank networks in the United States have heterogeneous characteristics, we suggest that the strategic behaviors of banks and the central characteristics of banks have impacts on performance. We focus on two properties of banks: structural properties and strategic properties. We use the four measures of centrality as structural properties in the PMFG network. The relationships between lenders and borrowers are likely to mitigate the problem of information asymmetry because lending banks collect a considerable amount of information about the corporate management of their borrowers and have stable and long-term relationships with the managers of these organizations [33]. Sometimes, banks place their directors on borrower’s boards of directors to improve the quantity and quality of information regarding operations that they receive [25]. We found that capitalized banks tend to centralize their networks. Therefore, we assume that banks with a high level of centrality in their networks have the unique abilities of quickly obtaining resources through the members of their network and of reducing the level of information asymmetry between lenders and borrowers.
Based on our assumption, centralized banks would feel more secure when expanding their business. In this context, we would expect to see that these banks hold portfolios that are more diverse. Diversification in the syndicated loan market creates the potential advantage of reducing credit risk exposure [5]. Banks become more resilient to common shocks such as exposure to risk when holding diversified portfolios. We estimate the following regression with pooled data:
[image: image]
where the dependent variable [image: image] is a financial indicator of profitability during month t [image: image] measures the diversification of bank i based on its syndicated loan portfolio during the twelve months prior to month t and dummy as an indicator variable as follow: Dummy is one if the observation is from financial crisis period, otherwise 0. As a proxy for structural importance in the PMFG network, [image: image] is replaced by four representative types of centrality: degree centrality, eigenvector centrality, closeness centrality, and betweennes centrality.
By including the variables market size, market share, and bank size in this regression, we control for the systematic and idiosyncratic effects that we cannot directly observe. Market share is measured by the natural logarithm of the amount of outstanding loans held by each bank [34]. use that as a proxy for a lead arranger’s reputation in terms of market participants’ perceptions of its screening and monitoring of borrowers. We control for market share to identify the effects of banks’ reputations. Market size is calculated as the natural logarithm of the sum of the loan amounts of newly originated syndicated loans in billions of United States. dollars. Controlling high performance of bank with higher asset, bank size is estimated by the natural logarithm of total assets of each bank. In all regressions, we include market size and year fixed effects to remove the time characteristics.
We report the results related to diversification and four centrality measures of the interbank networks. In all models, the regression coefficients of the measures of diversification are statistically highly significant, and they indicate a positive relationship [image: image] in Table 4. These findings are in line with the results of the descriptive studies by [35]; which report that product-diversified firms have high levels of performance and innovation. There are simply too many results and perspectives about the agency theory of diversification to include them in this paper. Our results support the existing evidence regarding diversification and profitability in terms of lead arrangers’ loan portfolios. Each type of centrality represents a different aspect of a bank’s structural position in the network. These findings allow us to determine whether each type of centrality is able to represent a factor of composite centrality index (CCI) in Table 1. Overall, our results suggest that higher levels of the individual dimensions of centrality based on loan portfolio similarities are related to increases in the profitability of banks.
TABLE 4 | Dimensions of connectedness and likelihood of performance.
[image: Table 4]Next, we estabilish dummy variable with centrality indices to exclude the financial crisis effect in 2008–2009. They are statistically significant with negative coefficients of [image: image][image: image] in Table 4. As shown in columns 1–4 of Table 4, although the dummy variable has a negative sign, the main effect for the dimension of centrality and diversification is positive and significant. It means that the impact of network centrality on performance is negative during 2008–2009 financial crisis and positive during the normal period. We then show the results of the regression using our composite centrality index (CCI) through principal component analysis, including degree centrality, eigenvector centrality, closeness centrality, and betweenness centrality based on the results shown in Table 4. The results of the regression including CCI are reported in Table 1 using equation model 3. Consistent with the preceding regressions, we use the dummy variable with CCI to remove the recession trends. We find a negative and significant coefficient for the [image: image], whereas the coefficients of CCI and DIV are positive and significant [image: image], consistent with the results in Table 1. Together, these results suggest that overall centrality consistently moderates the increase in a bank’s profitability when it holds a diversified portfolio.
4.3. The Effect of Diversification on Bank Performance According to the Level of Centrality
In this section, we examine the different ways in which the structural importance of the PMFG network affects bank’s strategic actions. We also consider the way in which the relationship between strategic actions and relative profitability identified in the full sample may vary based on banks’ degree of centrality. Several papers have highlighted the likelihood that board interlocking between banks has more power and information in the market when they reduce financial risk [22, 34, 36, 37]. Because the importance of each bank in the network is not homogeneous, we group the banks by their degrees centrality into groups consisting of core banks and of peripheral banks. We designated the upper (lower) 10% of banks in terms of degree centrality as high (low) groups to define the cores and peripheral in the PMFG network. Table 5 represents the Pearson correlation of diversification between each subset of banks. The high- and middle-centrality groups have positive correlations (0.7906), and the low-centrality groups also have positive correlations with the other groups [image: image]. Additionally, we investigate a two-sample Kolmogorov-Smirnov test to assess the distribution of the two samples in brackets. This test implies a heterogeneous distribution of diversification among the three groups of banks. As a result, we conclude that the three groups classified by degree centrality could have investment strategies with differing characteristics. Our interpretation is consistent with the results in Figure 5 and Figure 6. Specifically, we run the following regression on two sets of banks; core and peripheral.
[image: image]
TABLE 5 | The relation of the diversification of the subsets of banks to degree centrality.
[image: Table 5]Table 6 shows the results of the linear regressions regarding bank diversification using the same explanatory variables we used for the subset of banks. These results indicate that core banks could obtain better private information than peripheral banks. This result is consistent with the study of [14]; who insist that concentrated lenders had higher profits than diversified lenders during the financial crisis. Additionally [38], find that the diversification of bank assets is not guaranteed to produce superior return performances or greater safety for banks. These findings are different from the comprehensive perspectives of the market power view and the resource view in terms of profit maximization. Note, however, that these studies do not control for network centrality. Consistent with the systemic risk literature [5], we consider core banks to have high levels of risk exposure, and concentrated lenders have high levels of performance during our sample periods [image: image]. As shown in column 2 of Table 6, the group composed of peripheral banks has a statistically significant positive effect on performance [image: image]. This means that the subsets of banks in the interbank network reflect the different risk cultures among banks.
TABLE 6 | The effect of diversification on the bank performance of core and peripheral banks.
[image: Table 6]5. CONCLUSION
Banks that are centrally located in a syndicated loan network have access to better information and more influence in the syndicated loan market. Adding to the previous studies on the role of network centrality among banks, we employ a network centrality measure to test the connection between bank performance and network structure. In terms of the diversification of loan portfolios, we show that banks with higher levels of network centrality are more likely to pursue diversification, and that this diversification is more likely to increase during periods of market instability. The evidence shows that sample banks’ lending strategies exhibited a significant relationship with these banks’ degrees of network centrality, regardless of the market status. We further find that banks with a high level of centrality have higher returns than banks with a low level of centrality. We then test whether the diversification of the syndicated loan portfolios of individual banks is related to the performance of these banks according to their centrality position in the interbank network. Since a bank’s centrality in the network plays an important role in its loan portfolio strategy, this centrality also plays a significant role for lending market participants. We found that in the core group, diversification showed a negative correlation with centrality; however, a positive relation was observed in the peripheral group.
We contribute to the literature on the bank-firm lending process in the field of finance by introducing the interbank network based on the syndicated loan market. Our findings extend the existing literature on the lending mechanisms between banks and firms and show that banks’ centrality within the interbank network influences their portfolios in the syndicated loan market. Future studies can help to shed light on bank performance and lending mechanisms.
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FOOTNOTES
aThe lenders in our sample have at least [image: image] billion in outstanding loans or at least 50 outstanding loans, following [28].
bWe downloaded the 12 classification data at Fama-French website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html).
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Since the financial crisis of 2008, the network analysis of financial systems has attracted a lot of attention. In this paper, we analyze the global banking network via the method of Random Matrix Theory. By applying that method on a cross border lending network, it is shown that while the connectivity between different parts of the network has risen and the profile of transactions has diversified, the role of hubs remains important in the weighted perspective. The largest eigenvalue of the transaction matrix as the leading mode of the system shows sharp growth since 2002. As well, it is observed that its growth has diminished since 2008. This indicates that the crisis of 2008 has left a long-lasting footprint on the financial system. Analyzing the mean value of the participation ratio reveals the fact that the role of countries in forming small modes, has increased since 2002. In our final analysis, we provide snapshots of the hubs in the network over time. We observe that the share of countries in total transactions is not equal to their share in shaping the eigenvector of the largest eigenvalue. In 2018 for example, while the United Kingdom leads the share of transactions, it is the United States that has the largest value in the leading eigenvector. The proposed technique in the paper can be useful for analyzing different types of interaction networks between countries.
Keywords: global banking network, complex systems, random matrix theory, financial contagion, collective behavior
1 INTRODUCTION
Since the recent global financial crisis, cross-border lending and financial contagions have gained in importance. The propagated effects [1, 2] of financial crises on political and economic systems [3, 4] are not to be underestimated. Those developments have prompted a lot of research on the systemic dependence of the international banking sector [5–13].
The field of complexity can aid in understanding better such systemic dependence [5, 14–22]. Complex networks are useful instruments for describing a large number of financial systems [23–31].
Most of the networks have different topological properties such as small-world and scale-free characteristics [24–26, 32–39].
The purpose of complexity science in finance focusses on the analysis of the structure and the dynamics of entangled systems.
Many scholars have applied complexity techniques for the analysis of financial contagion [6, 9, 10, 40–42].
Their findings suggested that the connectivity of financial institutions is the source of potential contagions.
For example, Glasserman and Young [40] reviewed the extensive literature on the network’s structures and their interactions with other key variables such as leverage, size, and short-term funding. They emphasized that the network connections expand the firms’ risk exposures, and through different routes, the shocks can be proliferated via contagion.
Random Matrix Theory is one of the useful methods for analyzing the behavior of complex systems [16, 43–54].
This theory was developed to describe the energy levels of quantum systems [55, 56].
It is the universality regime of the eigenvalue statistics which provides for the success factor of Random Matrix Theory [57–59]. Based on previous studies, it is shown that when the size of the matrix is very large, the eigenvalue distribution tends toward a specific distribution [59].
Random Matrix Theory has been applied to analyze the behavior of coupling matrices [16]. This technique divides the contents of the coupling matrix into noise and information parts. The noise part of the coupling matrix conforms to the Random Matrix Theory findings, and the information part deviates from them. This concept stems from the idea of solving the problem of non-stationary cross-correlation and measurement noise which result from market conditions and the finite length of time series [57, 59].
A system which can be analyzed by the complexity approach is the global banking network [60].
Minoiu and Reyes [60] have analyzed the global banking network from 1978 to 2009. They have applied network metrics such as centrality, connectivity, and clustering for analyzing financial interconnectedness. They have shown that during and after systemic banking crises (and sovereign debt crises), the connectivity drops. Also, it was shown that the 2008–2009 financial crisis provided for an unusually large perturbation to the global banking network. For more research on this, please see [61–69].
In this paper, by applying Random Matrix Theory on bilateral locational statistics data provided by the Bank for International Settlements (BIS) [70] from 1978 until 2019, we aim to analyze the global banking network. This data includes all ‘core’ countries (the qualifier ‘core’ is used by many researchers such as [60], for countries which regularly report their financial data to BIS).
Our paper is organized as follows. In Section 2 we present our methods and, in Section 3 we apply Random Matrix Theory on the global banking network and present our findings. Then, in Section 4 we conclude.
2 METHODS
Random Matrix Theory has been presented by some scholars in nuclear physics such as Mehta [55, 56], for analyzing the energy levels of complex quantum systems. Subsequently, the method has helped to address specific issues in other fields, such as finance [45, 57–59, 71, 72].
From random matrix theory, we know that the eigenvalues–in the real matrix–which deviate from the range of the eigenvalues–in the random matrix–possess relatively more complete information from the system [51, 58, 59]. It can be shown that the majority of the eigenvalues of coupling matrices, agree with the random matrix predictions, but the largest eigenvalue has deviations from those estimations [50, 57, 58, 73]. In essence, this eigenvalue develops an energy gap that separates it from the other eigenvalues [45]. The largest eigenvalue is related to a strongly delocalized eigenvector that represents the collective evolution of the system. This is called market mode. From this perspective, the largest eigenvalue’s magnitude reflects the coupling strength of the system [45].
In Random Matrix Theory, there is a parameter named Inverse Participation Ratio IPR [74]. Its inverse provides a measure for the number of components which significantly participate in each eigenvector. This notion shows the effect of components of each eigenvector and specifically indicates how the largest eigenvalues deviate from the bulk region which is densely occupied by eigenvalues of the random matrix. Based on previous papers [45, 75], IPR can be applied as an indicator for measuring the collective behavior of the networks. The formula of this concept is as follows:
[image: image]
where [image: image] and [image: image] is the [image: image] element of the [image: image] eigenvector ([image: image]). To further clarify the concept, one may consider examples below:
i. In case all elements of a certain eigenvector are equal to [image: image], IPR will be equal to [image: image]. This implies that whole elements are significantly influential on the systems’ behavior.
ii. On the other hand, if just a single element is equal to one and the others are equal to 0, IPR would be equal to 1. This implies that only this component is effective in the corresponding eigenvector. Hence, one can perceive that [image: image] clarifies the number of influential elements in a certain eigenvector.
3 ANALYSIS OF GLOBAL BANKING NETWORK BY RANDOM MATRIX THEORY
The banking industry is one of the most important sectors in finance. Given this importance, it is not surprising that a significant aspect of financial contagion shows that the banking network is the conduit, through which the emergence and transmission of crises occurs. In this paper, we create a weighted and directed financial transaction network corresponding to each quarter from 1978 until 2018. Each link corresponds to a loan given by a certain country to another one. Previous studies have shed light on a country’s dependency network and they showed an increase, over time, of the dependency structure of the network [7, 60].
In Figure 1, the evolution of the global banking network in three snapshots (1978-Q3, 1998-Q3, and 2018-Q3) has been depicted. The left panel in Figure 1 shows the dendrogram structure of communities for trading weighted matrices. Furthermore, the right panel shows the evolution, over time, of the network topology and the size of nodes stands for the degree. As depicted, not only the size of the network has grown but also transactions have become more diversified. It is obvious that, over time, the degree of all countries has grown and has become more homogeneous. If the size of degrees is considered, a few countries can be distinguished as hubs, and this will be discussed later in the paper. For the continuous monitoring of networks during the period of study, Figure 2 is plotted. The results show the same outcomes as Figure 1. The left panel of Figure 2 represents the evolution of the degree for each country over time. As can be seen at the beginning of the period, only a small portion of countries has a high degree. But over time, both the degree across more countries and the average degree rise. It means that the sparseness has declined and connectivity has risen. The right panel of Figure 2 shows this fact, i.e., that only a small number of countries are in charge of a big portion of transactions.
[image: Figure 1]FIGURE 1 | The evolution of the global banking network is demonstrated for three snapshots of 1978-Q3, 1998-Q3, and 2018-Q3. Left) shows the dendrogram structure of communities for trading weighted matrices. Right) the network topology is graphed. The size of each node represents the degree.
[image: Figure 2]FIGURE 2 | Temporal evolution of: (Left) the degree, and (Right) the volume of each country over time. The sorting order of countries is based on the average of the last 10-year period.
To move further into our analysis, we now apply random matrix techniques. The global banking network possesses an adjacency matrix. In random matrix theory, we have learned that the largest eigenvalue is important and addresses the global trend of a system [45, 57, 58, 76]. In Figure 3 we have depicted the evolution of the largest eigenvalue ([image: image]) overtime. As can be seen, [image: image] has grown significantly before the financial crisis of 2008. To figure out whether the growth of the eigenvalue is a mere consequence of either the growth of the transaction or the change of the structure of the network, we have compared the growth of the [image: image] of the original matrix with [image: image] of the shuffled network. If the growth of the largest eigenvalue is a consequence of the growth of transactions, then we expect that its value will be close to its counterpart in the shuffled network. In the shuffling technique, we rewire the network. We do so as follows. Pairs of links are chosen randomly and their values are exchanged. Over the course of such a process, the information concerning the structure of the network is lost. All remains are the size of the network and the profile of transactions.
[image: Figure 3]FIGURE 3 | The evolution of the largest eigenvalue, [image: image], of the global banking network and its shuffled, [image: image], are depicted.
The difference between [image: image] of the network itself and its shuffled counterpart, implies the existence of information content which is embedded in the largest eigenvalue of the banking interaction matrix. This will be discussed further below. The fast growth of the [image: image] of the shuffled network from 2002 to 2004, is the consequence of the fast pace of transaction volumes.
The fact that the largest eigenvalues of both the banking network and the shuffled network, have lost their growth trends after 2008, means that the financial crisis has left a long-lasting footprint on the network. Since the obtained eigenvalue does not describe all the details and properties of the collective behavior, one should investigate other quantities in the network.
As already discussed in the method section, one should keep in mind that the IPR possesses the ability of information extraction from the collective the behavior of systems. Figure 4 represents the evolution of the [image: image] and [image: image]. In this context, by focusing on the mean inverse participation ratio of all eigenvectors, [image: image], and also, the inverse participation ratio of the largest eigenvalue corresponding to the largest eigenvector, we investigate banking behaviors of countries and their influences on the network structure and the market trend.
[image: Figure 4]FIGURE 4 | The average of the Inverse participation ratio of all eigenvectors [image: image] and [image: image] has been depicted. The decline of the [image: image] implies that the contribution of countries in all modes has been increased which can be a consequence of the growth of the connectivity in the banking network.
In a network of size N, IPR could have a value within [image: image]. Values close to the lower end will imply that almost all nodes play a role in the leading mode. Values close to one, indicate that a few nodes play an important role in shaping the eigenvector. As can be seen, for the largest eigenvalue, IPR has kept a value much higher than its possible minimum, i.e., [image: image]. This means that a few countries lead the network. Disparities have been even stronger in small modes in the early years of the studied period. However, from 2002 to 2004, following the fast growth of global transactions, the average of IPR of all modes, has tended to the IPR of the largest mode. This means that the participation of countries in shaping the small modes has grown.
The sustainability of the relatively high rate of IPR in the largest eigenvalue leads us to investigate the share of countries in shaping its eigenvector. We expect the countries which have a higher share of transactions, to play a more important role in shaping the trend of the system embedded in this eigenvector. Figure 5 visualizes the contribution of countries in the structure of the leading mode vs. their contribution to trading volume in five snapshots since 1978. A couple of interesting results can be inferred from the figure.
[image: Figure 5]FIGURE 5 | The percentage of the participation of each country in the eigenvector of [image: image] vs. the percentage of the transaction of each country from the total transaction [image: image]. (Note: Countries possessing more than 5% of total volume are annotated by name.)
In all snapshots, the share of hubs in the leading mode has been higher than their share in transactions. For example, in 1978 while the share of the United Kingdom in total transactions has been 21.5 percent, its share in the leading eigenvector has been 31.73 percent. Hence, this means that the role of the United Kingdom in shaping the leading eigenvalue has been larger than its share in total transactions. The same scenario works for other hubs such as France and the United States.
The interesting observation of 1988 is that, while the United Kingdom holds the lead in the share of transactions, Japan has the largest component of the leading eigenvector. On the eve of the economic downturn, Japan has not repeated its leading role in any other snapshots.
Within the last 2 decades, the United States has become closer to the United Kingdom in shaping the eigenvector of the largest eigenvalue. However, for both countries, their share in the largest eigenvalue is bigger than their share in the total transactions. Such an effect could be a matter of the country’s role in the structure of the leading mode in the network.
4 CONCLUSION
In this paper, by applying Random Matrix Theory, the global banking network is analyzed. For this purpose, we consider the matrix of the interaction of the banking sectors of BIS countries. We first focus on the largest eigenvalue which defines the leading mode in a system. We observe that the largest eigenvalue grows over time. By making a comparison with the largest eigenvalue of the network itself and the shuffled network, we conclude that the growth of the largest eigenvalue originates from two sources. The first source is the growth of the transaction volume and the other source is the network structure. We observe that the growth of the largest eigenvalue has vanished after 2008.
By focusing on the temporal behavior of the IPR of the largest eigenvalue, we observe that it has kept a sustainable value far above its possible minimum. This emphasizes the role of a few countries as hubs in the system. In comparison, the mean value of the IPR of all eigenvectors has declined sharply after 2002. This leads us to conclude, that the contribution of countries to shape small modes and possibly local structures, has grown. This phenomenon has occurred in tandem with the fast growth of transactions from 2002 to 2004. In comparing the share of countries in total transactions with their share in the leading mode, we observe that usually the share of the leading countries in shaping the market mode, is larger than their share in total transactions.
In this work, we analyzed the network of the international banking system. Our work sheds light on some features of this network. We suggest future research where financial networks are studied along with other variables such as commercial interactions in a multi-layer scheme.
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A stock market represents a large number of interacting elements, leading to complex hidden interactions. It is very challenging to find a useful method to detect the detailed dynamical complex networks involved in the interactions. For this reason, we propose two hybrid methods called RMT-CN-LPAm+ and RMT-BDM-SA (RMT, random matrix theory; CN, complex network; LPAm+, advanced label propagation algorithm; BDM, block diagonal matrix; SA, simulated annealing). In this study, we investigated group mapping in the S&P 500 stock market using these two hybrid methods. Our results showed the good performance of the proposed methods, with both the methods demonstrating their own benefits and strong points. For example, RMT-CN-LPAm+ successfully identified six groups comprising 485 involved nodes and 17 isolated nodes, with a maximum modularity of 0.62 (identified more groups and displayed more maximum modularity). Meanwhile, RMT-BDM-SA provided useful detailed information through the decomposition of matrix C into [image: image] (market-wide), [image: image] (group), and [image: image] (noise). Both hybrid methods successfully performed very detailed community detection of dynamic complex networks in the stock market.
Keywords: random matrix theory, complex networks, advanced label propagation algorithm, block diagonal matrix, simulated annealing, hybrid methods
1. INTRODUCTION
Physics is the study of the structure and dynamics of various systems that exist in nature. In its current form, the scope of the subject encompasses not only physical systems, but all complex systems. A complex system is one that comprises parts or agents interacting with each other to produce a new macroscopic collective behavior without a central control [1]. Such systems are easily observed in econophysics and social physics (sociophysics).
An example of a complex system in the field of econophysics is the financial market, especially the stock market. It has numerous investors and companies interacting with each other, exchanging assets in their possession to determine the best price for each of them. In general, there are several scientific reasons for physicists to be interested in learning the dynamics that underlie the stock market system [1].
In physical systems, the basis for each agents interactions with another in the system is known; for example, the electrostatic system, where the interaction between charges is based on Coulomb forces. However, in the stock market, the mechanisms underlying the interactions between each agent are not yet clearly known [2]. A starting point for the study of stock markets can be the analysis of the correlation between stocks. A review of the relations between agents in the system is the easiest way to determine the linearity of such relationships in the system without the need to know their underlying cause. From this efficient market hypothesis, it follows that all agents in the stock market get information simultaneously, and every time the information enters the stock market, the stocks respond with changes in the price of the shares so that the share prices reflect the current market conditions. Therefore, the correlation between the stocks can be seen from fluctuations in the share prices.
Recently, a few excellent studies have been published on community detection based on local information and dynamic expansion [3]; the application of random matrix theories, and graphs or networks [4, 5]. Because each method has its strong points and weaknesses, we propose to combine the strong points and reduce the limitations or the weak points and use a combination of these methods for finding the correlations between agents in the stock market system. For example, group mapping involves two different approaches: advanced label propagation algorithm (LPAm+) and simulated annealing (SA). Both methods have limitations, as shown in a few studies. Our objective was to combine LPAm+ with a complex network (CN) and SA with a block diagonal matrix (BDM) for improved effectiveness. LPAm+ with CN determines the group of each node based on the most frequent label of their neighbor. Meanwhile, SA with BDM provides the dual benefit of constructing a block diagonal matrix and finding a global minimum, showing an annealing concept similar to that seen while constructing a crystal. However, the correlations still contain noise and need to be preprocessed using an efficient method. One of the eligible candidates to clean the stock data and remove noise is the random matrix theory (RMT).
As stock market conditions change all the time, the correlations among shares also change. Therefore, the correlations contained in the stock market do not fully describe the relationship between actual stocks. This implies the possibility of noise in the correlation between stocks [6]. In this study, we investigated a method for separating noise from data that contain real information using RMT. The main concept behind RMT is a comparison of the distribution of eigenvalues and eigenvectors in the correlation matrix data owned by a random correlation matrix. Any part of the data that does not display the characteristics of a random correlation matrix is the part that actually contains the real information (non-noise) of the stock market system; vice versa, if any part of the data displays characteristics similar to a random correlation matrix, it is noise.
An analysis of the eigenvalues and eigenvectors of the stock matrix correlation structure has shown that a few of the largest eigenvector components are localized; for example, components with the greatest contribution to each eigenvector are found in the same sector [2]. However, these results are not sufficiently significant to be adopted as a method for analyzing groups in the stock market because each eigenvector is not independent of each other (a few sectors overlap in one eigenvector). Moreover, during the analysis of eigenvector components, only a few vector components were observed to have the greatest contribution [7]. Therefore, in this study, another approach was used to analyze the stock market groups and a few candidates were found. We used a CN as the first approach and a BDM as the second.
In the CN approach, each share in the stock market is seen as a node, and the correlation between the shares is analogous to the connecting side between the nodes. To form a stock market network, the LPAm+ method is used, which determines the group (community) label of a node based on the majority of its neighbor labels; nodes with the same label are considered to be in the same group or community. Conversely, in the BDM approach, the stock correlation matrix is converted to a BDM, where each block represents a group in the stock market; the method is chosen to create the BDM as an SA algorithm, which mimics the annealing process in crystal formation. The data used in the study were the daily closing price of the shares listed on the S&P 500 from January 1, 2007 to October 28, 2016.
Our purpose was to: 1) generate a correlation filtering data filtering program using the RMT method; 2) develop a program for mapping the groups in the stock market using the LPAm+ and SA algorithms, and 3) compare the results of the mapped groups in the stock market by employing the CN approach using LPAm+ (namely RMT-CN-LPAm+) and the BDM approach using the SA algorithm (namely RMT-BDM-SA).
2. METHODS
2.1. Random Matrix Theory
The application of RMT assumes a matrix whose elements are random or not bound to one another. A random matrix has zero average value and one variance [8]. RMT was first introduced by Wigner to explain energy-level statistics in complex quantum systems. Wigner created a matrix model with random elements to explain the Hamiltonian mechanics of a heavy nucleus that fit the experimental results [9]. In complex quantum systems, RMT predictions can explain all the possibilities that can occur in system [10]; in subsequent developments, it was concluded that parts incompatible with RMT predictions can provide clues about the interactions that underlie the system [8].
In the late 1990s, Laloux et al. and Pelrou et al. applied RMT to correlation data based on changes in stock prices on the American stock markets [6]. Subsequently, several physicists tried to apply RMT to different stock markets. The results showed similarity to the extent that RMT could identify the noise part contained in the correlation data between stocks, and proved that most of the stock data followed the random correlation matrix pattern [2, 7, 10–12]. RMT can distinguish between noise and the real information part by comparing the data held in a random correlation matrix. When a part of the data does not follow the properties or characteristics of a random correlation matrix, it is ensured that the particular part contains real information from the stock market system; and if a part of data has the same characteristics as a random correlation matrix, then that part is noise.
There are several characteristics of a random correlation matrix used in RMT. For example, if A is a random matrix with dimensions [image: image][image: image], the average value of the element is zero and the variance is one. Then, the random correlation matrix R is calculated using the following equation:
[image: image]
When the values [image: image] are chosen and qualify [image: image], the distribution of eigenvalues from the R matrix follows the Marchenko– Pastur distribution:
[image: image]
Here, [image: image] and [image: image] are the minimum and maximum values of the eigenvalues of matrix R. Then, the distribution of the matrix eigenvector component [image: image] follows the Gaussian distribution given in the following equation:
[image: image]
2.2. Complex Network
A network can be defined as a set of objects called vertices (nodes or vertices); the relationships between vertices are called lines or sides (edges or links) [13]. Suppose a network [image: image] consists of two sets of N and L, where N is a set of network nodes [image: image] and L are the network side sets [image: image], which are non-sequential pairs of N elements. A network can be represented as a matrix, usually called an adjacency matrix A. An adjacency matrix informs if there are sides (connected or unconnected) between each two nodes in a network.
The degree of a network is defined as the number of sides passing through a node. The degree of node i can be calculated using the following equation:
[image: image]
Then, the total degree of a network can be calculated as follows:
[image: image]
The shortest path that connects two vertices is commonly called the geodesic path. Take for example, a matrix D whose elements are geodesic distances between vertices i and j or [image: image]. From the shortest distance parameter, we obtain another parameter, that is the diameter of the network, which is defined as the maximum value of the matrix D. Then, other network characteristics geodesic distance is the average between vertices obtained from the following equation:
[image: image]
The node betweenness parameter measures the effect of a node in a network by counting the several geodesic paths through that node. Mathematically, it is expressed as
[image: image]
Here, [image: image] is the number of geodesic paths connecting vertices j and k; [image: image] is the number of geodesic paths through node i.
The cluster coefficient parameter measures the tendency of n from node i to become a group or cluster in a network. The cluster coefficient of node i is calculated by the ratio between the number of sides ([image: image]) in the subgraph [image: image] to the maximum number of sides that might form on [image: image] as follows:
[image: image]
Then, the average cluster coefficient of each node, also called the network cluster coefficient, is calculated as follows:
[image: image]
The quality of the grouping of communities in a network can be measured from the relationship between the intra-community and inter-community nodes. When the relationships between the intra-community nodes are dense and those between the inter-community nodes are rare, then the grouping of networks, as well as the parameters that measure the relationships, are considered good. This is called modularity; a term first introduced by Newman [14]. The extent of modularity in a network can be calculated using the following equation:
[image: image]
Here, [image: image] and [image: image] are the degrees of nodes i and j, [image: image] is the community label of node i, and [image: image] is the community label of node j. Practically, a modularity value above 0.3 is considered a good grouping.
Based on their degree distribution, networks can be classified into two most common types: exponential and scale-free. In exponential networks, the degree distribution follows the Poisson distribution, which means that most of the nodes in the network have the same degree (they are homogeneous). In scale-free networks, the distribution of degrees in heterogeneous networks follows the power-law distribution, that is, most vertices have a small degree; a few or a small proportion of them have a large degree. Examples of exponential and scale-free networks can be seen in Ref. [15] and their distribution in Ref. [16].
2.3. Block Diagonal Matrix
Noh proposed a diagonal block matrix model and demonstrated that for stocks that belong to one group, the diagonals of the formed correlation matrix have a value of one and the remaining entries have the value zero [image: image], where [image: image] denotes the group where shares i are Ref. [17].
Here, [image: image] is a matrix with [image: image] dimensions ([image: image] is the number of shares incorporated in group i). More than one diagonal matrix array can be formed in a single correlation matrix. Therefore, an optimal arrangement of stocks is needed to produce a good BDM.
Kim and Jeong proposed an optimization of the BDM by analyzing the correlation between stocks as a force that binds to particles (in this case, stocks) [7]. Because of the binding force between the shares, there is total energy in the system. The equation that calculates the system energy is given in Eq. 11, and the most stable BDM form is obtained when the energy in the system is the minimum. An example of the BDM calculated by Kim and Jeong using the New York Stock Exchange (NYSE) stock data for the 1993–2003 period can be found in Ref. [7].
[image: image]
Here, [image: image] is the correlation matrix filtered by RMT, [image: image] is the location where stock i is in stock order, and [image: image] is a cutoff that eliminates the remaining noise in [image: image] (usually [image: image]) [7].
2.4. Matrix Decomposition
To separate noise from the information in the correlation data through several stages, namely, during the distribution comparison between the correlation matrix C and the random correlation matrix R to calculate the correlation of each share, the return for each stock is calculated as [image: image] within a certain period [image: image].
[image: image]
Here, [image: image] and [image: image] are the price and stock return i at time [image: image], respectively. Because each stock has a different volatility value, a normalized return is defined by
[image: image]
where [image: image] is the standard deviation of [image: image]. Then, the correlation matrix C is calculated by
[image: image]
In matrix representations, it is expressed by
[image: image]
where G is a matrix [image: image], with the element [image: image] and [image: image] are the transpose matrices of G.
To compare the eigenvalue distribution of the correlation matrix C and the random correlation matrix R, the eigenvector interpretation of the correlation matrix C that is outside the predicted RMT tests the stability of each eigenvector of the correlation matrix C. First, we divide the stock price data (matrix S) into two parts (the first half [image: image] and the other half [image: image]; each of them is calculated using the correlation matrices [image: image] and [image: image]. Then, the overlap matrix is calculated as follows:
[image: image]
A matrix can be decomposed into a linear combination of from a collection of matrices. To find a noise-free correlation matrix, the decomposition is expressed by
[image: image]
where N is the number of shares and λ is the eigenvalue of the C matrix sorted.
2.5. Percolation Theory
In the CN approach, the C correlation matrix (which is noise free) can be treated as an adjacency matrix [_Jeong_and_Kim_2005] demonstrated that to find a clear definition for each group (community) in the network, a weighted network needs to be chosen for the group analysis in the stock market [7]. Because the value of the elements in the [image: image] matrix is not binary (1 or 0), the percolation theory is used to set it as the adjacency matrix. The basic idea of percolation theory is to use a threshold value to determine whether two nodes are connected in the network. If the correlation coefficient is greater than the boundary value, the adjacency coefficient is 1, and if it is below the boundary value, then the coefficient is 0.
2.6. Advanced Label Propagation Algorithm
LPAm+ is a method for developing the label propagation algorithm (LPA) method. The main idea of the LPA method is to determine the community label of a node based on the majority of labels from its neighbors; the nodes that have the same label are grouped into one community (group) [18]. At the beginning of the algorithm, different (unique) labels are given for each node; then, during propagation, a node changes its label to follow the majority of its neighboring labels, and in case of a tie (there is more than one label with the same number), the label is determined randomly. The iteration stops if there is no longer a label propagation process in the network. In mathematical form, the label update process can be written according to the following equation:
[image: image]
Because there is a random aspect to the labeling during series conditions as described previously, this LPA method does not produce a unique solution for each run. As a result, more than one community structure can exist even if they originate from the same initial conditions. Therefore, the LPA method is generally performed several times and a community structure that has the greatest modularity value is taken. The main advantage of the LPA method is its very high speed compared with other methods [18].
Barber and Clark modified the LPA method by increasing the monotonous value of the rising modularity in each iteration [19]. The modularity equation can be rearranged as follows:
[image: image]
[image: image]
The aforementioned equation denotes the separation of the terms containing the label of node x from the previous modularity equation. To maximize the modularity value, the writer must maximize the [image: image] term of Eq. 19. Therefore, the equation for label updates becomes
[image: image]
However, the LPAm method still has a shortcoming of possibly getting trapped in the local maximum in the modularity space; thus, Liu and Murata modified the LPAm method by applying agglomeration techniques to combine each of the two groups (communities) and avoid any changes in values. The modularity then chooses which results in the largest change in modularity value. The combination of these methods is called LPAm+ [20].
Regardless of the first local maximum value, the LPAm steps are repeated to reach the next local maximum value. The aforementioned two methods (LPAm and agglomeration) are repeated until there are no more modularity changes.
2.7. Simulated Annealing Algorithm
To find the stock arrangement that provides the most system energy, the SA algorithm is used in Monte Carlo simulations to avoid brute force. The SA algorithm was first introduced by Metropolis. Furthermore, SA was first applied to the optimization issue by Kirkpatrick et al. to avoid local drinking conditions [21]. This algorithm is analogous to the annealing (cooling) process that is applied while producing glassy materials (comprising crystalline grains).
The annealing process can be defined as a regular or constant temperature drop on a previously heated solid object until it reaches the ground state or freezing point. The temperature is reduced continuously and carefully so that a thermal balance is attained at each level. If the temperature is not reduced stepwise, the solid object acquires structural defects due to the formation of only optimal local structures. This type of process that produces only an optimal local structure is called rapid quenching. The search for a solution with SA is similar to the hill-climbing concept where the solution tends to change continuously until the final temperature is reached.
In the SA algorithm, we introduce the concept of annealing to the formation of crystals in optimization problems. The objective function, that is to search for the minimum value in the optimization problem, is compared with the energy of the material in the case of the annealing process. Then, a control parameter, which is the temperature, is used for each iteration.
The SA algorithm uses the concept of a neighborhood search or local search in each iteration to find conditions that provide the lowest objective function. For each iteration, if the surrounding conditions (in the case of a BDM, the composition of shares) provides an objective function value smaller than the original objective function, then the initial condition is updated (the condition of the neighbor is set as the new initial condition). However, when the condition of the neighbor outputs a value greater than the original objective function, the result can still be accepted (the initial condition is enhanced by the condition of the neighbor) with certain conditions of probability.
Classical particle probability is used in this case, which follows Maxwell-Boltzmann statistics [image: image], where [image: image] is an objective function and T is the temperature control parameter. The iteration is performed until the objective function no longer changes or has reached its ground state [22]. Here, [image: image] is the first arrangement guess , [image: image] is the second arrangement guess, T is temperature, [image: image] and [image: image] are the system energies for [image: image] and [image: image], [image: image], respectively, and [image: image] are classical particle probabilities that follow Maxwell–Boltzmann statistics. In this study, we performed the calculations using the flowchart shown in Figure 1.
[image: Figure 1]FIGURE 1 | Flowchart of the simulated annealing (SA) algorithm to form a block diagonal matrix (BDM). The most stable BDM is obtained when the energy in the system is of the minimum value. To find the most stable BDM and avoid the local minimum, we propose to combine it with simulated annealing, bringing the concept of annealing to the formation of crystals in optimization problems.
3. RESULTS AND DISCUSSION
3.1. Random Matrix Theory
3.1.1. Distribution of Correlation Matrix C and Random Correlation Matrix R
As mentioned in the previous section, the correlation value between shares has no fixed over time, and a plot was drawn for three different conditions of the stock correlation data. The first is the correlation matrix extracted from the 2007 to 2016 data (black line), the second is the correlation matrix for the data from 2007 to 2012 (green line), and the third is or the data from 2012 to 2016 (red line) using Eq. 12 through Eq. 15. The results are shown in Figure 2. According to the figure, there is an increase in the correlation coefficient between the stocks. The average correlation coefficient between the shares in the data for the periods 2007‒2012 and 2012‒ 2016 is 0.3832 and 0.2642, respectively. Then, for the whole period (2007‒2016), the average correlation coefficient is 0.3451.
[image: Figure 2]FIGURE 2 | Distribution of correlation coefficients of matrix C at three different times in the S&P 500 daily stock price data for the period of January 1, 2007 until October 28, 2016. The black color is for the total period 2012‒2016 and it is decomposed into the green one for the period 2007‒2012 and the red one for the period 2012‒2016. It shows how the black one contributes to the different distribution of the green and red ones.
Next, the distribution of the C correlational matrix was compared with that of the R random correlation matrix. The results in Figure 3 show that the distribution of the R matrix follows a Gaussian trend, whereas the C matrix has a positive leaning distribution, indicating that the relationship between the stocks on the S&P 500 dominant correlates with each other compared to those who have anti-correlation relationships.
[image: Figure 3]FIGURE 3 | The Probability Density Function (PDF) of the correlation coefficient C matrix and the R matrix. The red color shows the distribution of the C matrix, and the blue one indicates the distribution of the R matrix on the S&P 500 daily stock price data for the period of January 1, 2007 until October 28, 2016. It clearly shows the different distribution groups separately for the correlation coefficient C matrix and R.
3.1.2. Eigenvalue Distribution of Correlation Matrix C and Random Correlation Matrix R
Figure 4 shows the eigenvalue distributions of the C matrix and the random correlation R matrix following Eq. 1. It can be seen that most (97%) eigenvalues of the C matrix are in the vulnerable boundary of the random R matrix, which indicates that most of the stock data are noise. Only 3% eigenvalues of the C matrix are outside the boundary of the random matrix R, and represent the real information from the stock market. The largest eigenvalue produced is 185.38, which is more than 90 times the upper limit of the eigenvalue matrix R ([image: image]= 2.075).
[image: Figure 4]FIGURE 4 | The distribution of eigenvalues from the C matrix and the R matrix. The blue color represents the distribution of the eigenvalues of the matrix C, and the red one shows the distribution of the eigenvalues of the matrix R on the S&P 500 daily stock price data for the period of January 1, 2007 until October 28, 2016. (A) eigenvalue in the scale for λ of 1‒200 and (B) The eigenvalue in the zoomed scale for λ of 1-20.
3.1.3. Distribution of Eigenvector Components in Correlation Matrix C and Random Correlation Matrix R
Apart from looking at the distribution of eigenvalues from the C correlation matrix, we also tested for the presence of noise in the data by looking at the distribution of the eigenvector components. Figure 5 shows the different distributions of eigenvector components outside and within the boundary of a random matrix (using RMT ). The eigenvector component within the boundary of the random matrix in Figure 5C follows the Gaussian distribution as given in Eq. 3. This shows that this part is noise, whereas the distribution of the eigenvector component outside the boundary of the random matrix in Figures 5A,B is heavy or leaning toward one side.
[image: Figure 5]FIGURE 5 | Comparison among the distribution of eigenvector components. For example, (A) is the largest [image: image], (B) is the third largest [image: image], and (C) is the hundredth largest [image: image]. The blue color represents the distribution of the C matrix, and the red one represents the distribution of the R matrix in the S&P 500 daily share price data for the period of January 1, 2007 until October 28, 2016.
3.1.4. Interpretation of the Largest Eigenvalue and Eigenvector ([image: image])
After successfully distinguishing between noise and data containing real information, we then identified each C eigenvalue that was outside the boundary of the random matrix. The uniqueness of the largest eigenvalue can be observed easily when compared with other eigenvalues because of its greater value than others, as seen in Figures 4, 5A, which shows that all the components of the eigenvector are positive. This demonstrates that the largest eigenvalue has a very significant influence on the dynamics of the stock market, commonly referred to as the market-wide effect [2].
To test the assumption that the largest eigenvalue has a market-wide effect, a comparison between the projections of the eigenvector components was calculated using Eq. 22 with an S&P 500 index value. Figure 6 shows that the projections of the largest eigenvector components and S&P 500 have the same movement patterns. These results reinforce that the largest eigenvalue is a representation of the movement of the stock market itself. The equation is as follows:
[image: image]
[image: Figure 6]FIGURE 6 | To validate how good the Eigen vectors, we can perform a comparison of projections of the largest eigenvector component (blue) from matrix C with the S&P 500 index (red) on the S&P 500 daily share price data for the period of January 1, 2007 until October 28, 2016. This indicates that the method mainly follows the patterns successfully.
3.1.5. Interpretation of Eigenvalues and Other Eigenvectors That Are Still Outside Random Matrix Theory Predictions
After successfully identifying the largest eigenvalue, we also performed identification on other eigenvalues that are still outside the boundary of the random matrix. However, before doing that, the largest eigenvalue must be removed first owing to its market-wide effects. As the results in the previous section have shown, the largest eigenvalue is a representation of the market movement itself and has a very significant effect on the components of other eigenvectors and constrains the other eigenvectors [2]. To eliminate the market-wide effects, an ordinary least square is expressed as follows:
[image: image]
where [image: image] is similar to Eq. 22, which is [image: image] dan [image: image] are constants. Then, the correlation matrix C is re-created using [image: image]; then each eigenvector component can be seen.
The greater the value of an eigenvector component in its eigenvector, the greater is its contribution to the eigenvector. Figure 7 shows the values of each component of the eigenvectors [image: image] through [image: image]. It can be seen that a few eigenvectors are localized to the largest components. For example, in eigenvectors [image: image] and [image: image], the largest components are dominated by utilities in [image: image] and [image: image] by the financial sector, and in [image: image] by the information technology sector. However, there is no dominant sector in [image: image]. In the last eigenvector [image: image], the largest component is dominated by the consumer discretionary sector.
[image: Figure 7]FIGURE 7 | There are many information for each Eigen vectors. Some sectors overlap in several Eigen vectors. This indicates that we require a method to reveal community detection. The vector component of [image: image]–[image: image] from the matrix of C, the arrangement of the stock based on the sectors, 1: consumer discretionary; 2: consumer staples; 3: energy; 4: financials; 5: health care; 6: industrial; 7: information technology; 8: materials; dan 9:utilities; from the daily stocks of S&P 500 for the period of January 1, 2007 until October 28, 2016.
After an analysis of the eigenvector components, it can be concluded that the groups identified are not yet comprehensive owing to the absence of sectors such as energy, materials, industrials, or consumer staples. This is because during the analysis of the eigenvectors, only the components with the greatest value are noted. Therefore, we cannot use only this method for group identification in the stock market. For the next analysis, we used a CN approach and BDM to identify groups in the stock market.
3.1.6. Eigenvector Stability of Correlation Matrix C
The results of mapping the stability of the eigenvectors of the C matrix can be seen in Figure 8. The results not only show that only the largest eigenvectors are stable over time but also reinforce previous results that eigenvector analysis cannot be used to determine groups in the stock market because only stable eigenvectors can be interpreted [23].
[image: Figure 8]FIGURE 8 | Stability of the eigenvectors from the largest eigenvectors ([image: image]) to [image: image] of C in the S&P 500 daily stock price data for the period of January 1, 2007 until October 28, 2016. White blocks indicate stable areas, and black blocks indicate unstable regions.
3.2. Matrix Decomposition
From the results of the RMT method, it is evident that the stock market data contains not only noise but market-wide effects also; therefore, before analyzing the stock correlation data with CNs and the BDM, it must be cleaned from noise and market-wide effects. Matrix decomposition is used for cleaning, where matrix C is decomposed into three parts, namely market-wide (Cm), group (Cg), and noise (Cr), using Eq. 24. To be used as an adjacency A matrix in CNs and BDM analysis, only (Cg) is used. The equation is as follows:
[image: image]
Here, [image: image] is the sequence of the last eigenvalue, which is still beyond RMT prediction [image: image]. Our results show the distribution of Cm (black), Cg (blue), and Cr (red) on the S&P 500 daily share price data for the period between January 1, 2007 and October 28, 2016, as shown in Figure 9.
[image: Figure 9]FIGURE 9 | Matrix decomposition shows successfully decompose the group into three different parts. Distribution of Cm (black), Cg (blue), and Cr (red) on the S&P 500 daily share price data for the period of January 1, 2007 until October 28, 2016. This indicates that the method successfully shows the decomposition and contribution from each part.
3.3. Determining the Threshold Value
In a non-weighted network, the determination of the boundary value is very important because each different boundary value forms a different group structure. If the selected boundary value is too small, all the nodes are connected, which means there is only one large group, and if the chosen boundary value is too large, only a small number of nodes are still connected in the network; most of them are isolated.
Therefore, to determine the boundary value in this study, four parameters were considered: the number of groups formed, number of vertices, number of sides, and average cluster coefficient [5, 11]. Figure 10 shows that the optimal boundary value is 0.05.
[image: Figure 10]FIGURE 10 | The value (A) number of clusters formed, (B) number of vertices, (C) cluster coefficients and (D) number of sides when boundary values vary from [image: image] to 0.4. The method successfully shows the threshold value. This value is important for analyzing the group effectively.
3.4. Group Mapping Results With Advanced Label Propagation Algorithm
The LPAm+ program on the S&P 500 network successfully identified the groups on the network. As many as six groups were observed, with the number of involved nodes reaching up to 485 out of a total 502 nodes (17 nodes were isolated from the network) and the maximum modularity value obtained was 0.6164.
The results obtained with LPAm+ show that the shares that belong to the same group are dominated by certain sectors (according to the results of the eigenvector analysis with RMT). Group mapping with LPAm+ can be visualized using Gephi software. The results obtained using the Gephi software are slightly different than those after using the LPAm+ method. In Gephi, there are six large clusters (groups) of the stock market network with a total of 483 (96%) nodes out of the total, 5579 sides, and a modular value of 0.619 (there is a difference of 0.003 with the LPAm+ results). Figure 11 shows the results of the animation using Gephi.
[image: Figure 11]FIGURE 11 | The method successfully performs community detection. The S&P 500 stock market network using Gephi software, there are six main clusters, cluster 1 (black) is dominated by the financial sector, cluster 2 (pink) is dominated by the information technology sector, cluster 3 (orange) is dominated by the energy sector, industrial and materials, cluster 4 (green) is dominated by the consumer staples, utilities, and industry sectors; cluster 5 (blue) is dominated by the consumer discretionary sector, and finally cluster 6 (purple) is dominated by the health care sector.
3.5. Group Mapping Results With Simulated Annealing Algorithm
The results obtained using the SA algorithm and the Cg correlation matrix data show accordance with the concept of the BDM, namely the condition of the stock arrangement that provides the minimum system energy from group blocks in the correlation matrix.
In the SA algorithm, if the initial arrangement of the selected [image: image] stock is random, the results obtained are far different from the ideal conditions (never reaching minimum energy when using the initial order that was sorted). For example, in Figure 12, a sorted initial arrangement provides a minimum energy of [image: image], whereas for a randomly selected initial arrangement guess, the minimum energy achieved at the minimum temperature is equal to [image: image].
[image: Figure 12]FIGURE 12 | How energy decrease by iteration in Simulated annealing method results, for example with the initial guess set [image: image] is random with [image: image] and the maximum random step is 20.
Figure 13 shows the result obtained when the initial stock layout guess [image: image] follows the order given in the eigenvector analysis, the initial temperature [image: image] is 10, [image: image] is 0.01, and the maximum random step used is 10. However, if Cg is replaced with Cg + Cm, the detected group blocks are less than those using Cg only, although the parameters used are the same as in Figure 14. These results show that it is very important to perform filtering for Cm in addition to Cr in group analysis [7].
[image: Figure 13]FIGURE 13 | The community detection results from the Cg correlation matrix mapping using the stock structure generated by the Simulated Annealing (SA) algorithm with parameters [image: image] and [image: image] and the maximum randomstep is 10. Group 1 is the consumer discretionary sector; group 2, namely the consumer staples sector; group 3, the energy sector; group 4, the financial sector; group 5, namely the healthcare sector; group 6, the industrial sector; group 7, namely the information technology sector; group 8, the materials sector; and finally group 9, the utilities sector.
[image: Figure 14]FIGURE 14 | Community detection results from the Cg + Cm correlation matrix mapping with the same stock structure as in Figure 13. The sectors are group 1 consumer, 2 energy, 3 financials, 4 industrials, and 5 utilities.
4. CONCLUDING REMARKS
We investigated complex networks in the S&P 500 stock market using two approaches, namely, a CN approach using an LPAm+ algorithm and a BDM approach using an SA algorithm. Before applying the two approaches, the data of the C stock correlation matrix were filtered using the RMT. RMT succeeded in separating the noise from non-noise data and showed that most of the data contained in the correlation matrix C were noise; an analysis of the distribution of eigenvector components in the RMT indicated that stock movements were driven by groups where each group was dominated by a particular sector. We called this analysis as simply RMT-CN-LPAm+ and RMT-BDM-SA.
In the first approach, the noise-free correlation matrix and market-wide(Cg) effects were analyzed using the CN approach with a threshold value of 0.05 and an LPAm+ network structure comprising six main groups with 485 out of a total 502 nodes involved (17 nodes were isolated from the network) and an obtained modularity value of 0.62. Then, in the second approach, which is a BDM with the same data, namely Cg using a simulated annealing algorithm, the stock structure provided a minimum energy system, and from this arrangement, nine groups of shares were produced. The decomposition of matrix C into Cm (market-wide), Cg (group), and Cr (noise) was also accomplished. The combination provides useful information to identify group classifications.
The difference between RMT-CN-LPAm+ and RMT-BDM-SA results is that in RMT-CN-LPAm+, a group contains not only the shares of the same sector but also of other minority sectors, whereas in RMT-BDM-SA, a group contains shares of the same sector. The second difference is that in MT-CN-LPAm+, a few shares still remain that have not joined any group, whereas in RMT-BDM-SA, not all shares have a group. In general, both hybrid methods successfully show good performance to reveal detailed community detections.
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Over the last 2 decades, financial systems have been studied and analyzed from the perspective of complex networks, where the nodes and edges in the network represent the various financial components and the strengths of correlations between them. Here, we adopt a similar network-based approach to analyze the daily closing prices of 69 global financial market indices across 65 countries over a period of 2000–2014. We study the correlations among the indices by constructing threshold networks superimposed over minimum spanning trees at different time frames. We investigate the effect of critical events in financial markets (crashes and bubbles) on the interactions among the indices by performing both static and dynamic analyses of the correlations. We compare and contrast the structures of these networks during periods of crashes and bubbles, with respect to the normal periods in the market. In addition, we study the temporal evolution of traditional market indicators, various global network measures, and the recently developed edge-based curvature measures. We show that network-centric measures can be extremely useful in monitoring the fragility in the global financial market indices.
Keywords: econophysics, correlation, networks, minimum spanning tree, market index
1 INTRODUCTION
It is possible to describe a financial market using the framework of complex networks such that the nodes in a network represent the financial components and an edge between any two components indicates an interaction between them. A correlation matrix constructed using the cross-correlations of fluctuations in prices can be utilized to identify such interactions. However, a network resulting from the correlation matrix contains densely connected structures. A growing amount of research is focused on methods devised to extract relevant correlations from the correlation matrix and study the topological, hierarchical, and clustering properties of the resulting networks. Mantegna et al. [1, 2] introduced the minimum spanning tree (MST) to extract networks from the correlation matrices computed from the asset returns. Dynamic asset trees, introduced by Onnela et al. [3, 4], were analyzed to monitor the evolution of financial stock markets using the hierarchical clustering properties of such trees. Boginski et al. [5] constructed threshold networks by extracting the edges with correlation values exceeding a chosen threshold and analyzed degree distribution, cliques, and independent sets on the threshold network. Tumminello et al. [6] introduced planar maximally filtered graph (PMFG) as a tool to extract important edges from the correlation matrix, which contains more information than the MST, while also preserving the hierarchical structure induced by MST. Triangular loops and four-element cliques in PMFG could provide considerable insights into the structure of financial markets.
Network-based analysis has been widely used to study not only particular stock market structures but also the complex networks of correlations among different financial market indices across the globe. For example, MST has been used on stock markets to detect underlying hierarchical organization [7–9]. Bonanno et al. [10] studied the correlations of 51 global financial indices and showed that the corresponding MST was clustered according to the geographical locations of the indices. In addition, the changes in the topological structure of MST could help understand the evolution of financial systems [11–13]. MST and threshold networks have been used to analyze the indices during the global financial crisis of 2008 [14–16]. It has also been shown that geography is one of the major factors which govern the hierarchy of the global market [17, 18]. Also, Eryǧit and Eryǧit [19] had investigated the temporal evolution of clustering networks (MST and PMFG) of 143 financial indices corresponding to 59 countries across the world from the period 1995–2008 and once again found that the clustering in the networks of financial indices was according to their geographical locations. From the time-dependent network and centrality measures, they showed that the integration of the global financial indices has increased with time. Further, Chen et al. [20] analyzed dynamics of threshold networks of regional and global financial markets from the period 2012–2018, proposed a model for the measurement of systemic risk based on network topology, and then concluded that network-based methods provide a more accurate measurement of systemic risk compared to the traditional absorption technique. Silva et al. [21] studied the average criticality of countries during different periods in the crisis and found that the United States is the most critical country, followed by European countries, Oceanian and Asian countries, and finally Latin American countries and Canada. They also found a decrease in the network fragility after the global financial crisis. It has been also shown that financial crises can be captured using networks of volatility spillovers [22, 23]. Wang et al. [24] constructed and analyzed the dynamical structure of MSTs and hierarchical trees computed from the Pearson correlations as well as partial correlations, among 57 global financial markets from the period 2005–2014, and concluded that MST based on partial correlations provided more information when compared to MST based on the Pearson correlations. The market indices from different stock markets across the globe comprise assets that are very different; apart from stocks of the big multinational companies that are traded across markets, the stock markets would have little in common and hence would be expected to behave independently, in contrary to the previously reported empirical observations.
In this brief research report, we study the evolution of correlation structures among 69 global financial indices through the years 2000–2014. To ensure that we consider only the most relevant correlations, we construct the network by creating an MST (which connects all the nodes) and then add extra edges from the correlation matrix exceeding a certain threshold, which gives modular structures. Our findings corroborate the earlier results of geographical clustering [17, 25]. We then study the changes occurring in the market by analyzing the fluctuations in various global network measures and the recently developed edge-based geometric measures. Since there are complex interactions that occur among groups of three or more nodes, which cannot be described simply by pairwise interactions, the higher-order architecture of complex financial systems captured by the geometrical measures can help us in the betterment of systemic risk estimation and give us an indication of the global market efficiency. To the best of our knowledge, the present work is the first investigation of discrete Ricci curvatures in networks of global market indices. Thus, we find that this approach along with all these network measures can be used to monitor the fragility of the global financial network and as indicators of crashes and bubbles occurring in the markets. This could in turn relate the health of the financial markets to the development or downturn of the global economy, as well as gauging the impact of certain market crises on the multilevel financial-economic phenomena.
2 METHODS
2.1 Data Description
This study is based on a dataset collected from Bloomberg which comprises the daily closing prices of 69 global financial market indices from 65 countries, and this information was compiled for a period of T = 3,513 days over 14 years from January 11, 2000, to June 24, 2014. Note that the working days for different markets are not the same due to differences in holidays across countries. To overcome any inconsistencies due to this difference in working days, we filtered the data by removing days on which [image: image] of the markets were not operative. Conversely, if [image: image] of the markets were not operative on a day, we used the closing price of such markets on the previous day to complete the dataset. Supplementary Table S1 lists the 69 global market indices considered here, along with their countries and geographical regions.
2.2 Cross-correlation Matrix and Market Indicators
Given the daily closing price gj(t) for market index j on day t, wherein [image: image] with [image: image] indices, we construct a time series of logarithmic returns as [image: image]. Then, we construct the equal time Pearson cross-correlation matrix as
[image: image]
where the mean and standard deviation are computed over a period of τ = 80 days with end date as t. We also construct the ultrametric distance matrix with elements [image: image] that take values between 0 and 2. To study the temporal dynamics of the global market indices, we computed the correlation matrices for overlapping windows of τ = 80 days with a rolling shift of ∆τ = 20 days. Thence, we obtained 172 correlation frames between January 11, 2000, to June 24, 2014.
We have computed three market indicators from these correlation matrices. Firstly, the mean correlation gives the average of the correlations in the matrix Cτ(t). Secondly, we have computed the eigenentropy [26] which involves the calculation of the Shannon entropy using the eigenvector centralities of the correlation matrix Cτ(t) of market indices. Both mean correlation and eigenentropy have been shown to detect critical events in financial markets [26–28]. Thirdly, we have computed the risk corresponding to the Markowitz portfolio of the market indices, which is a proxy for the fragility or systemic risk of the global financial network [29]. A detailed description of the Markowitz portfolio optimization is given in the Supplementary Material.
2.3 Threshold Network Construction and Characteristics
The distance matrix for the time frame ending on t can be viewed as a complete, undirected, and weighted graph Dτ(t), where the element [image: image] is the weight of the edge between market indices i and j. To extract the important edges from Dτ(t), we first construct its minimum spanning tree (MST) Mτ(t) using Prim’s algorithm [30]. As MST is an oversimplified network without cycles, it may lose crucial information on clusters or cliques. To overcome this, we add edges with correlation [image: image] in Dτ(t) to Mτ(t) and obtain the threshold graph Sτ(t). Thereafter, we study the temporal evolution of different network measures in Sτ(t).
Firstly, we have computed standard global network measures such as the number of edges, edge density, average degree, average weighted degree [31], average shortest path length, diameter, average clustering coefficient [32], modularity [33, 34], communication efficiency [35], global reaching centrality (GRC) [36], network entropy [37], global assortativity [38, 39], and clique number. Note that the chosen set of global network measures studied here are by no means exhaustive and also depend very much on the specific questions of interest; see, for example, Wang et al. [40] for several gravitational centrality measures. Secondly, we have also computed four edge-centric curvature measures, namely, Ollivier-Ricci (OR) curvature [29, 41, 42], Forman-Ricci (FR) curvature [42–45], Menger-Ricci (MR) curvature [46, 47], and Haantjes-Ricci (HR) curvature [46, 47]. A detailed description of these network measures along with the appropriate natural weight, strength, or distance to use in each case is included in the Supplementary Material.
2.4 Multidimensional Scaling Map
The multidimensional scaling (MDS) technique tries to embed N objects in high-dimensional space into a low-dimensional space (typically, 2 or 3 dimensions), while preserving the relative distance between pairs of objects [48]. Here, we construct the (average) correlation matrix [image: image] between the 69 market indices for the complete period of T = 3,513 days between January 11, 2000, and June 24, 2014, using Eq. 1. Then, we compute the distance matrix [image: image] from [image: image] for the complete period. Thereafter, we use MDS to map the 69 market indices into a 2-dimensional space such that the distances between pairs of indices in [image: image] are preserved. To create the MDS plot, we used the in-built function cmdscale.m in MATLAB. Moreover, we also construct the MST [image: image] starting from the distance matrix [image: image] and then the threshold network [image: image] for the complete period from 2000 to 2014 by adding edges with [image: image] to [image: image].
3 RESULTS AND DISCUSSION
The primary goal of this investigation is to evaluate different network measures for their potential to serve as indicators of fragility or systemic risk and monitor the health of the global financial system. For this purpose, we compiled a dataset of the daily closing prices of 69 global financial market indices from 65 different countries for a 14-year period from 2000 to 2014 (Section 2). Thereafter, we use the time series of the logarithmic returns of the daily closing prices for 69 global market indices to compute the Pearson cross-correlation matrices Cτ(t) with a window size of τ = 80 days with an overlapping shift of ∆τ = 20 days, and ending on trading days t (Section 2). Subsequently, we employ a minimum spanning tree (MST) based approach to construct 172 threshold networks Sτ (t) corresponding to the cross-correlation matrices [image: image](t) spanning the 14-year period (Section 2). Here, we study the temporal evolution of the structure of these correlation-based threshold networks Sτ(t) of global market indices using several network measures and moreover contrast the evolution of network properties with generic market indicators such as mean correlation and minimum risk obtained using the Markowitz framework.
We reiterate that the threshold networks Sτ(t) are constructed by computing the MST of the cross-correlation matrices Cτ(t) followed by the addition of edges with correlation [image: image] (Section 2). Intuitively, this network construction procedure ensures that each threshold network is a connected graph and captures the most relevant edges (correlations) between market indices. Since the obtained results may depend on the choice of the threshold (0.65) used for network construction, we present the temporal evolution of properties in networks constructed using 0.65 as threshold in the main text and in networks constructed using 0.75 or 0.85 as threshold in Supplementary Material. In the sequel, we will show that the qualitative nature of the obtained results is not very sensitive to the choice of 0.65, 0.75, or 0.85 as thresholds to construct the networks of global market indices.
In Figures 1, 2 and Supplementary Figure S1, we show the temporal evolution of generic indicators and network measures in the threshold networks of global market indices over the 14-year period (2000–2014). Moreover, the four shaded regions in Figure 1 highlight four periods of the financial crisis, namely, US housing bubble, Lehman brothers crash, Dow Jones flash crash, and August 2011 stock markets fall. From Figure 1, it is seen that the mean correlation between market indices increases during periods of the financial crisis. Also, the eigenentropy which is directly computed from the correlation matrix Cτ(t) increases during the crisis. Earlier works have shown that mean correlation and eigenentropy are indicators of instabilities in the stock market network [26, 28], and we show here that these measures can also serve as indicators of crisis in the network of global financial indices. In Figure 1, we also show the temporal evolution of the minimum risk corresponding to the portfolio comprising the market indices using the Markowitz framework. Moving on to widely used network properties, it is seen that the number of edges, edge density, average degree, average weighted degree, clustering coefficient, communication efficiency, and network entropy increase while diameter, average shortest path length, and modularity decrease during periods of the financial crisis (Figure 1; Supplementary Figure S1). In Figure 1, we also show the evolution of two other network measures, global reaching centrality (GRC) and global assortativity. In Figure 2, we also visualize the threshold network at three distinct time windows of τ = 80 days ending on trading days t corresponding to August 4, 2005 (normal period), August 14, 2006 (US housing bubble crisis), and June 4, 2010 (Dow Jones flash crash), where the node colors are based on geographical regions of the market indices and edge colors are based on modules determined by Louvain method [34] for community detection. The identified communities in the three networks corresponding to the normal period, the US housing bubble, and the Dow Jones flash crash typically reflect the geographical proximity of financial market indices. For example, the indices of the United States, Canada, Mexico, Argentina, Brazil, and Chile form a single community in the threshold network for the normal period (Figure 2). It is evident that the number of edges in threshold networks corresponding to the US housing bubble (246 edges) or Dow Jones flash crash (390 edges) is much higher in comparison to that for the normal period (109 edges). In contrast, the modularity of threshold networks corresponding to the crisis periods, US housing bubble (0.418), or Dow Jones flash crash (0.232) is lower in comparison to that for normal period (0.508). In Figure 2, it is clearly seen that the clique number or size of the largest clique in threshold networks increases during financial crisis, and this is also evident from the network visualizations for normal period, US housing bubble, and Dow Jones flash crash. Note that bubbles are not easy to detect. In fact, our proposition is that holistic approaches with network measures, both node- and edge-based measures, including geometric curvatures, may help us to better detect and distinguish the bubbles from market crashes, as also pointed out in recent contributions [26, 49]. In sum, we find that during a normal period the network of global market indices is less connected, very modular, and heterogeneous, whereas, during a fragile period, the network is highly connected, less modular, and more homogeneous.
[image: Figure 1]FIGURE 1 | Evolution of generic indicators and network characteristics for the global market indices networks Sτ(t), constructed from the correlation matrices Cτ (t) of window size τ = 80 days and an overlapping shift of ∆τ = 20 days over a period of 14 years (2000–2014). The threshold networks Sτ(t) were constructed by adding edges with correlation [image: image] to the minimum spanning trees (MST). From top to bottom, we compare the plots of mean correlation among market indices, minimum risk corresponding to the Markowitz portfolio optimization, eigenentropy, number of edges, average weighted degree, diameter, clustering coefficient, modularity, communication efficiency, global reaching centrality (GRC), network entropy, and global assortativity. The four shaded regions correspond to the epochs around the four important market events, namely, US housing bubble, Lehman brothers crash, Dow Jones flash crash, and August 2011 stock markets fall.
[image: Figure 2]FIGURE 2 | Evolution of network characteristics and visualization of the threshold networks Sτ (t) of market indices with a window size of τ = 80 days and an overlapping shift of ∆τ = 20 days, constructed by adding edges with correlation [image: image] to the MST. (Lower panel) Comparison of the plots of mean correlation among market indices, clique number, average of Ollivier-Ricci (OR), Forman-Ricci (FR), Menger-Ricci (MR), and Haantjes-Ricci (HR) curvature of edges in threshold networks over the 14-year period. (Upper panel) Visualization of the threshold networks at three distinct epochs of τ = 80 days ending on trading days t equal to August 4, 2005 (normal), August 14, 2006 (US housing bubble), and June 4, 2010 (Dow Jones flash crash). Threshold networks show a higher number of edges and a lower number of communities during the crisis. Correspondingly, there is an increase in mean correlation, clique number, average OR, MR, and HR curvature, and a decrease in average FR curvature of threshold networks during the financial crisis. Node colors and labels are based on geographical region and country, respectively, of the indices and edge colors are based on the communities determined by the Louvain method. The four United States market indices, NASDAQ, NYSE, RUSSELL1000, and SPX, are labeled as USA1, USA2, USA3, and USA4, respectively, while the two Indian indices, namely, NIFTY and SENSEX30, are labeled as IND1 and IND2, respectively.
In addition to the node-centric global network measures described in the preceding paragraph, we have also studied edge-centric network measures, specifically, four discrete Ricci curvatures [Olivier-Ricci (OR), Forman-Ricci (FR), Menger-Ricci (MR), and Haantjes-Ricci (HR)] in threshold networks of global market indices. From Figure 2, it is seen that the average OR, MR, or HR curvature of edges increases during crisis periods in comparison to normal periods. In contrast, the average FR curvature of edges decreases during crisis periods in comparison to the normal periods. Notably, Sandhu et al. [29] have shown that OR curvature can serve as an indicator of fragility in stock market networks. However, to our knowledge, the present work is the first investigation of discrete Ricci curvatures in networks of global market indices. Note that different discretizations of Ricci curvature do not capture the entire features of the classical definition for continuous spaces, and thus, the four discrete Ricci curvatures studied here can capture different aspects of analyzed networks [42]. Overall, our results suggest that discrete Ricci curvatures can serve as indicators of fragility and monitor the health of the global financial system.
In Figure 3, we show the correlation between generic market indicators and different characteristics of the threshold networks Sτ(t) of global market indices computed across the 14-year period from 2000 to 2014. From this figure, it is seen that eigenentropy and several network measures have a very high (absolute) Pearson correlation [image: image] with generic indicator, mean correlation of market indices. Such network measures include the number of edges, average weighted degree (strength), clustering coefficient, communication efficiency, clique number, FR curvature, and MR curvature. In contrast to mean correlation of market indices, there is moderate to no correlation between minimum risk corresponding to the portfolio comprising the market indices and eigenentropy or network measures (Figure 3). In sum, these results indicate that network measures including edge-centric FR curvature can be used to forecast crisis and monitor the health of the global financial system. To the best of our knowledge, our work is the largest survey of network measures to identify potential network-centric indicators of fragility in global financial market indices.
[image: Figure 3]FIGURE 3 | Correlations between generic indicators and network characteristics of the global market indices networks Sτ(t), constructed from the correlation matrices Cτ(t) of window size τ = 80 days and an overlapping shift of ∆τ = 20 days over a period of 14 years (2000–2014). The threshold networks Sτ(t) were constructed by adding edges with correlation [image: image] to the minimum spanning tree (MST).
We must mention that though in the preceding paragraphs we have described only the results obtained from networks constructed using a threshold of 0.65, we have shown in Supplementary Figures S2–S9 that the qualitative conclusions remain unchanged even when networks with a threshold of 0.75 and 0.85 are considered. In other words, our results are robust to the choice of the threshold used to construct the networks of global market indices.
In previous works, the econophysics community has employed either minimum spanning tree (MST) [7, 9–13, 15, 19] or planar maximally filtered graph (PMFG) [12, 19] or threshold networks [11, 14, 20] to study the correlation structure between global financial market indices. As far as we know, this work is the first to use threshold networks of MST plus edges with a correlation higher than a specified threshold, to study the temporal evolution of relationships between global financial market indices. In contrast, such threshold networks based on MST have been used earlier to study the structure of stock market networks [29, 49]. While MST has a tree structure without loops or cycles, PMFG or threshold network permits loops or cycles. In Supplementary Text and Supplementary Figures S10–S13, we also display the temporal evolution and correlation between generic market indicators and network measures in PMFG of global market indices constructed from cross-correlation matrices Cτ(t). While the construction of PMFG unlike threshold networks is independent of any specific choice of the threshold, the number of edges (thus, edge density and average degree) is fixed in case of PMFG (Supplementary Figures S10, S11). Due to this reason, we find that most of the network measures studied here are not correlated with the generic market indicator, mean correlation of market indices, in the PMFG case (Supplementary Figure S13). Still, we find that average weighted degree (strength), clustering coefficient, and communication efficiency have a very high correlation with the mean correlation of market indices in PMFG-based networks (Supplementary Figure S13). Based on these results, the threshold network construction based on MST plus edges with high correlation seems to be a better framework to monitor the state of the global financial system.
Finally, we have also studied the average correlation structure between global market indices over the 14-year period by computing the correlation matrix CT between the 69 market indices by taking window size as the complete period of T days between 2000 and 2014 (Section 2). Subsequently, we have constructed a threshold network ST corresponding to CT by combining MST plus edges with a correlation above the chosen threshold of 0.65 (Section 2). In Figure 4A, we visualize this overall threshold network ST of market indices for the complete 14-year period of T days. In this figure, the node colors are based on geographical regions of the market indices and edge colors are based on communities obtained from the Louvain method. In Figure 4B, we have separated the communities in this overall threshold network ST of market indices by removing the intermodule edges in the visualization. From Figures 4A,B, it is clear that the market indices form communities in this overall threshold network based on their geographical proximity. Moreover, we have also employed multidimensional scaling (MDS) technique to map the 69 market indices into a 2-dimensional space such that the distances between pairs of indices are preserved (Figure 4C; Section 2). It can be seen that the MDS map is able to partition the 69 market indices into groups based on their geographical proximity, and further, the structure in the MDS map has a close resemblance to the community structure of the overall threshold network (Figure 4). For example, the grouping of indices from the United States, Canada, Mexico, Argentina, Brazil, and Chile can be seen in both the threshold network and MDS map (Figure 4). Interestingly, when we plotted in Supplementary Figure S14 the evolution of the eigenvector centralities of the nodes (market indices), as well as their OR and FR curvature, we found that there exist certain periods of time when some of the countries in close geographical proximity display high (absolute) values and others display low values, indicative of the changes in the complex interactions and community structures.
[image: Figure 4]FIGURE 4 | The average correlation structure between 69 market indices over the 14-year period is visualized based on the correlation matrix CT for the complete period of T = 3513 days between 2000 to 2014. (a) Visualization of the overall threshold network ST corresponding to CT obtained by combining MST plus edges with correlation ≥0.65. The node colours are based on geographical regions of the market indices and edge colours are based on communities obtained from Louvain method. (b) Visualization of the communities in the overall threshold network ST after removing the inter-module edges. It is evident that the market indices form communities in this network based on their geographical proximity. (c) Multidimensional scaling (MDS) map in 2-dimensions of the 69 market indices. In this figure, the indices are labelled in different colours based on their geographical region and country, respectively. The four USA market indices, NASDAQ, NYSE, RUSSELL1000 and SPX, are labelled as USA1, USA2, USA3 and USA4, respectively, while the two Indian indices, NIFTY and SENSEX30, are labelled as IND1 and IND2, respectively.
4 SUMMARY AND CONCLUDING REMARKS
In summary, we have investigated the daily closing prices of 69 global financial indices over a 14-year period using various techniques of cross-correlations based network analysis. We have been able to continuously monitor the complex interactions among the global market indices by using a variety of network-centric measures, including recently developed edge-centric discrete Ricci curvatures. In the present study of the global market indices, the novelty lies in the following: i) Construction of the threshold network Sτ(t), as superposition of the MST of the cross-correlation matrix and the network of edges with correlations [image: image], which ensures that each threshold network is a connected graph and captures the most relevant edges (correlations) between market indices. In Supplementary Material, we have also reported the results for networks constructed using MST and two other threshold values, i.e., [image: image] and [image: image]. Besides, we have also reported results for networks constructed using PMFG method. ii) The usage of discrete Ricci curvatures in networks of global market indices, which capture the higher-order architecture of the complex financial system. To the best of our knowledge, this is the first study employing edge-based discrete Ricci curvatures to networks of global financial indices. Our recent work underscores the utility of edge-based curvature measures in the analysis of networks of stocks [49] or global financial indices. In future, curvature measures may also find application in other financial networks including Banking networks [50]. iii) The largest yet by no means exhaustive survey of network measures to identify potential network-centric indicators of fragility and systemic risk in the system of global financial market indices.
The global financial system has become increasingly complex and interdependent and thus prone to sudden unpredictable changes like market crises. Our results, compared to the traditional market indicators, do provide a deeper understanding of the system of global financial markets. Specially, we find that the four discrete Ricci curvatures can be effectively used as indicators of fragility in global financial markets. We reiterate that the methods used in this work can detect instabilities in the market and can be used as early warning signals so that policies can be made in order to prevent the occurrence of such events in the future.
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In recent years, persistent homology (PH) and topological data analysis (TDA) have gained increasing attention in the fields of shape recognition, image analysis, data analysis, machine learning, computer vision, computational biology, brain functional networks, financial networks, haze detection, etc. In this article, we will focus on stock markets and demonstrate how TDA can be useful in this regard. We first explain signatures that can be detected using TDA, for three toy models of topological changes. We then showed how to go beyond network concepts like nodes (0-simplex) and links (1-simplex), and the standard minimal spanning tree or planar maximally filtered graph picture of the cross correlations in stock markets, to work with faces (2-simplex) or any k-dim simplex in TDA. By scanning through a full range of correlation thresholds in a procedure called filtration, we were able to examine robust topological features (i.e. less susceptible to random noise) in higher dimensions. To demonstrate the advantages of TDA, we collected time-series data from the Straits Times Index and Taiwan Capitalization Weighted Stock Index (TAIEX), and then computed barcodes, persistence diagrams, persistent entropy, the bottleneck distance, Betti numbers, and Euler characteristic. We found that during the periods of market crashes, the homology groups become less persistent as we vary the characteristic correlation. For both markets, we found consistent signatures associated with market crashes in the Betti numbers, Euler characteristics, and persistent entropy, in agreement with our theoretical expectations.
Keywords: topological data analysis, econophysics, applied topology, financial market, STI, TAIEX
INTRODUCTION
The earliest success of econophysics is the application of random matrix theory (RMT, which is a theory combining nuclear physics and statistical mechanics) to the stock market [1–4]. In RMT, one treats noise as a kind of symmetry, and thus information represents some form of symmetry breaking. RMT thus allows physicists to discriminate between noise and signal. The next significant milestone in econophysics is the realization that stock returns follow heavy-tailed Levy distributions [5] instead of a normal distribution. Also, their dynamical properties can be described in terms of fractals (in terms for example, of the Hurst exponent) and multifractals [6, 7] instead of the random walk proposed by Bachelier to model price movements in the stock market. Physicists also love to strip problems down to their simplest essence, using information filtering approaches such as the minimal spanning tree (MST) [8], planar maximally filtered graph (PMFG) [9], triangular maximally filtered graph (TMFG) [10], etc. These represent some of the methodological contributions by econophysicists.
In the PMFG method, important correlations are projected onto a sphere, which has genus g = 0. This is a good starting point for understanding the correlated price movements between different stocks. However, it is possible that the pattern of dynamic correlations may be explainable more naturally in terms of some nontrivial geometrical structure with g > 0. Therefore, the determination of the optimum genus represents a gap in our understanding of correlations in the stock market. This best genus can change with time for the same window length. It can change with window length over the same period, and it can also depend on which market we are looking at. There is also a second gap in our understanding of these dynamic correlations, and that is the problem of overlapping communities. Information filtering methods like the MST and PMFG are not clustering algorithms, but there are clustering algorithms based off them. There are also standard clustering algorithms like k-means and hierarchical clustering that can be used to study the correlation structure in a market. However, all clustering algorithms assume that a stock can be a member-only of one cluster. Ultimately, classifying stocks into clusters help us better imagine the geometry of the correlations, but we do not claim that clusters are independent of each other. We know that within clusters, the interactions are stronger, and between clusters, the interactions are weaker. Recently, researchers started to realize that in many cases, nodes can belong to more than one cluster, giving rise to the problem of overlapping clusters. Currently, the identification of the correct overlapping structures without sacrificing accuracy and speed remains a daunting challenge. These hinder a deeper understanding of co-authorship networks, protein-protein yeast networks, and word association networks. Topological data analysis (TDA) is a method that will kill both birds with one stone. It is ideally suited to 1) identify geometrical structures that are like clusters, and 2) elucidate the weak connections between them.
So how do TDA concepts like simplicial complexes and persistent homology help in filling these gaps? First, once the size of the sliding window is decided, TDA can be quite robust in deciding which topological space or genus to use for projecting the correlation matrices. Indeed, TDA lets the data speak for itself on choosing the optimal topological space and the value of the genus. Second, by appealing to persistency, we do not presuppose which correlation threshold value to use. Instead, we scan through a full range of correlation threshold values, to determine which range the topological structure is most persistent. Third, TDA homologies are very robust to random noises, and as a result, we can avoid technical nuisances such as ‘accumulation of noises’ or ‘overfitting the data’ when clustering data in higher dimensions. Lastly, persistent homology can be presented in the form of persistence barcodes, persistence diagrams, persistence landscapes.
In this paper, our research problem is to use TDA to understand topological changes accompanying crashes in the Singapore and Taiwan stock markets in terms of simplicial complexes, persistent homology, and other metrics. Our hypothesis is that in different market states, different topological features emerge, and TDA can be effective in elucidating these changes. This paper is organized as follows: In Data Section, we briefly introduce how to collect data on the daily returns of the Straits Times Index (STI), the Taiwan Capitalization Weighted Stock Index (TAIEX), and how to preprocess them. In Topology, and Persistent Homology Section we introduce the mathematical background of simplicial complexes, persistent homology, and filtration. In TDA Toolkits Section, we introduce TDA toolkits like barcodes, persistent diagrams, Betti numbers, and Euler characteristics. In TDA of Toy Models and Hypothesis on Real Markets Section, we introduce toy models of TDA and the hypothesis on real markets. In Results and Discussion Section, we show our numerical results computed by TDA and discuss how they confirm our hypothesis. Finally, in Conclusion Section, we give concluding remarks and perspectives.
MATERIALS AND METHODS
Data
Data Collection
First, we show how to collect price data from stocks in the Singapore Exchange (SGX) [Taiwan Stock Exchange (TWSE)] using Python pandas, and its function web. DataReader, and use the Yahoo Finance API option. Second, to use this option, we need to prepare all the tickers symbols in SGX (TWSE). The procedure is as follows: 1) we go to the ‘My Screeners’ tab in https://sg.finance.yahoo.com/, and choose ‘Singapore’ in the ‘Saved Screeners/Region’ tab, before choosing ‘Find Stocks’ to see a list of ticker symbols. For SGX, there are 672 ticker symbols; 2) copy and save all of them into a file, and 3) using this file of ticker symbols and pandas. web.DataReader’s Yahoo API to fetch historical data between January 1, 2017 and April 30, 2019 from the Yahoo Finance database and save as a CSV file. The Python code to do so is shown in Code 1, and this code can be modified to the TWSE (January 1, 2017 to March 31, 2020) or other markets.
[image: Code 1.]CODE 1. | A Python code that implements the data collection procedure.
Data Cleaning and Preprocessing
After we collected the raw data, the data needed to be cleaned. First, some ticker symbols are duplicated, so we keep only one copy. Second, for some ticker symbols, the Yahoo Finance API gave an error and caused the program to halt, so we needed to identify these and removed them from the ticker symbol list. Finally, some of the data may include ‘NaN’s and we needed to replace them with ‘0’s. However, if the time series contains more than 50% ‘0’s, we also remove this ticker symbol from the list. After cleaning, we ended up with the times series data for 560 distinct stocks.
Before we computed the cross correlations between stocks from the time-series data to obtain the correlation matrices, three procedures are necessary. First, we standardized the daily prices, which is [image: image], where [image: image] is the raw stock price for the ith stock, [image: image] is the average stock price for the ith stock, t = 120 is the number of trading days over a six-month period. Second, we smoothed the time series by averaging over a sliding time window of 15 days (for a detailed explanation on why we choose a 15-days window, please see Supplementary Figure S1). Lastly, we converted the daily stock prices to their derivatives, i.e. [image: image]. In Figure 1A we show the stock price derivatives within a 6-month period after pre-processing, and in Figure 1B, we show the correlation matrix generated from the derivative data. We converted the correlation matrix to a distance matrix using the formula [image: image]. Finally, we generated distance matrices for successive 6-month periods that are one month apart, to use as input data for subsequent TDA calculations. Other data formats acceptable for TDA include point clouds, networks, or digital images. To be more clear, the procedures are shown in a flowchart (Figure 2).
[image: Figure 1]FIGURE 1 | (A) The derivative data of a 6-month period collected from STI. (B) The cross correlation matrix is generated from the derivative data in (A). For the time series and correlation matrices in this work, we will not show error bars to not distract the readers from the overall features.
[image: Figure 2]FIGURE 2 | Flowchart of the procedure implemented. There are two parts; the first part involves data collection and pre-processing. The second part regards TDA-related computations.
Topology, and Persistent Homology
TDA is a mathematical apparatus developed by Herbert Edelsbrunner, Afra Zomorodian, Gunnar Carlsson, and his graduate student Gurjeet Singh [11–13]; it was popularized by Carlsson’s paper [14] that later turned TDA into a hot field in applied mathematics, and also found many applications in data analytics. The foundations of TDA had been laid years before by others in the fields of topology [15–19], group theory [20, 21], linear algebra [22, 23], and graph theory [24–26].
To explain the concept of persistent homology, imagine we have collected a bunch of data points that we refer to as a data cloud. Next, imagine that there is a control parameter called the proximity parameter [image: image], which defines the radius of an imaginary ball centered at each of these data points. When we gradually increase [image: image], the balls will grow outwards and eventually touch other balls. The overlapping of these balls form a unique topological characteristic that is unique to this dataset, and hence we can use this unique topological characteristic to differentiate nuances in the topologies of different point clouds. This filtration process can be demonstrated and visualized in Figure 3.
[image: Figure 3]FIGURE 3 | A schematic diagram showing a data cloud, and how the filtration process results in outcomes of various overlapping of balls from different proximity parameters [image: image] (shown in the upper column). The bottom column is barcodes scanning through a full-range of proximity parameter [image: image] values. β0 and β1 denote the 0-dim and 1-dim Betti numbers, which can be deduced from the subfigures to be roughly [image: image], and [image: image], respectively.
Through this encoding process, we can convert a point cloud that is made from brain functional signals, or a correlation matrix from financial time series data, to filtration diagrams. From these filtration diagrams, we can calculate barcodes, persistence diagrams, and other TDA metrics for further applications.
Simplicial Complexes
A simplicial complex is an abstract collection of entities, which consists of nodes [image: image], or sets of nodes [image: image]. These collections of nodes or sets can then be used to construct links, surfaces, and higher-dimensional objects. For example, we can decompose an arbitrary simplicial complex into its 0-simplexes (nodes), 1-simplexes (links), 2-simplexes (faces), 3-simplexes (tetrahedrons) components. In other words, simplexes are generalizations of a triangle in arbitrary dimensions, and a simplicial complex is an outcome of performing triangulation in arbitrary dimensions of the raw data. The simplicial complex is a unique signature that characterizes the topological structure of the data. Some of the common simplicial complexes include Vietoris-Rips (VR) complexes [27], Čech complexes [16, 18], Delaunay complexes [28], Alpha complexes [29], witness complexes [30], as well as others. In this work, we used the VR complex for our TDA calculations. VR is appealing because it approximates the more exact Čech complexes but is more efficient to calculate [31].
Suppose we collected two sets of time-series data of the same duration from a stock market. After we encode them into simplicial complexes, these may be different in terms of their local and global topologies. We then can use TDA metrics such as Betti numbers, Euler characteristics, barcodes, persistence diagrams, persistence landscapes, and Wasserstein distance as topological descriptors to quantify these differences. In the following subsections, we introduce some of these terminologies, their respective definitions, and elaborate on them.
Filtration
Here let us formalize the definition of the filtration procedure, which is commonly done to obtain barcodes. By changing the proximity parameter [image: image], we control the size of the balls and thus their overlaps. At a specific [image: image] value, some balls overlap while others do not, and therefore we have a collection of 0-simplexes (isolated nodes), 1-simplexes (pairs of linked nodes), 2-simplexes (triangles), 3-simplexes (tetrahedrons), and so on. Such a collection is called a sub-complex. If we increase [image: image] further, the sub-complex (and its topological features) may or may not change. This procedure resembles what we see in physics: by changing the external fields, e.g. temperature, or magnetic fields, the system changes from one symmetry group to another. We call this symmetry breaking. A filtration is conceptually similar to varying the external fields, and observe how they result in different symmetry groups. The difference is that in performing filtrations, we look at how the topological features evolve. Mathematically, a filtration can be described as a sequence
[image: image]
where [image: image] is the simplicial complex, [image: image] is the empty set, and [image: image] indicates that the kth sub-complex is included in the (k+1)th sub-complex. In performing the filtration, we witness at that at [image: image], there is a topological transition from [image: image] to [image: image]. By tracking all these [image: image], we know how the simplicial complex’s topology changes. We can then characterize these topological changes in terms of Betti numbers, Euler characteristics, barcodes, persistence diagrams, and persistence landscapes.
TDA Toolkits
Homology Group
In a filtration process, one can imagine that for smaller [image: image], the data points will have lesser overlaps; while we increase [image: image] further, balls start to grow in size and eventually touch other balls, resulting in more overlaps; this continues until [image: image] become so large that all the balls overlap with each other, leaving no space for holes to persist. Thus, for an intermediate [image: image], we expect to see balls making some overlaps but not too much, and the extents of these overlaps constitute different topological characteristics in terms of ‘n-dimensional holes’. Homology is a mathematical theory for studying these n-dimensional holes that exist in simplicial complexes by identifying which entities constitute these n-holes, and how many there are.
As mentioned before, SCs are obtained from performing a triangulation in arbitrary dimensions of the input data, or a way to represent the data in terms of ‘sets’. But looking at sets is sometimes hard to develop an overall, comprehensive picture of the data, and also less convenient for executing mathematical operations on them. For this reason, mathematicians convert SCs, and other topological sets into groups, rings, or fields, so that in these constructs, they not only can discern between different sets, but also can impose structures like associative binary operations, the identity element, and the inverse element on them. See Figure 4 for the procedures of encoding the raw data into sets, TDA metrics, allowing for further applications.
[image: Figure 4]FIGURE 4 | A pyramid illustrating sequential procedures of how we make use of the original data and convert them into different forms of sets, i.e. simplicial complexes, and to groups, fields, and rings. At the topmost stage, we can use them for various applications, such as ML, and statistical learning, etc.
Unlike manifolds, which are continuous sets of points, SCs comprise discrete points instead. Although both can describe topological features in the data space, there is one advantage in using SCs, and that is one uses a triangulated (coarse-grained) surface instead of a continuous one. Practically, we are interested only in the n-holes and their numbers, and we only have limited data. In this sense, SCs and their homology are adequate to fulfill these goals.
Betti Numbers and Euler Characteristics
An Euler characteristic is used to classify different polyhedrons, it reads:
[image: image]
where χ is the Euler characteristic of a polyhedron, V, E, and F are the numbers of nodes, links, and surfaces, respectively. In this formula, g is the genus of the polyhedron. χ can also be calculated as a sum of Betti numbers,
[image: image]
where the nth dimensional Betti number βn is the dimension of the nth homology group [image: image] of the SC [image: image]. These are important metrics that characterize the topology of the data.
Barcodes and Persistence Diagrams
Barcodes help us visualize the n-dimensional homology group [image: image] in terms of its generators. We understand that each bar represents a generator of the persistent homology group [image: image]. This representation tell us that the number of bars that are born at or before the pth filtration stage that are still alive at the qth filtration stage is precisely the rank of [image: image], which includes the essential classes that do not die with filtration [32].
The rank of the homology group in nth dimensions equals the nth Betti numbers, which we use to calculate the Euler characteristics [image: image]. For more persistent bars, their topological features are more important, whereas the topological features of those that are less persistent can be treated as noises. Here, we convert the barcodes into persistence diagrams in Figure 5. Persistence diagrams carry similar topological information as barcodes. It is more useful in constructing statistical topological models that can be used to design weighted kernels.
[image: Figure 5]FIGURE 5 | (A) Barcodes in 0, 1, and 2 dimensions. Each bar represent a generator of the homology group, i.e. [image: image], where {p, q} marks a lifetime, the rank of [image: image] equals Betti number of homology groups in the nth dimension, the length of {p, q} signifies the persistence of the nth Betti number. (B) The barcodes can be converted into persistence diagrams, where one of the bars in (A) is equivalent to one point in the persistence diagram. The lifetime of each bar in (A) can be transformed into a perpendicular distance concerning the diagonal lines in (B). If A point that is farther away from the diagonal line implies a more persistent topological feature, whereas a point that is closer to the diagonal line represents a less persistent feature. We found that the barcodes are rather robust and do not show fluctuations once the dataset is fixed, thus we do not include error bars in all barcodes appearing in this paper.
Computational Methods
TDA Toolkits
Numerically, we used two softwares to perform the TDA calculations. The first software is called Ripser [33], which is included inside the Python package TDA [34]. Another is a Java program called Javaplex [35], which we used to calculate Betti numbers and Euler characteristics. Javaplex supports parallel computation in MPI and OpenMP, shortening the computing time for calculating persistent homology in higher dimensions. We installed Javaplex on Nanyang Technological University High-Performance Computing Centre’s NYA2, equipped with Sandy-Bridge Processors-cores (Intel(R) Xeon(R) CPU E5-2680 @ 2.70 GHz), and 64 GB RAM per Node. NYA2 runs Red Hat Enterprise Linux Server release 6.3 (Santiago) and manages job queues using the Load Sharing Facility (LSF).
For some of the time windows, the Javaplex calculations failed with the error message “OutOfMemoryError: Java heap space” and “OutOfMemoryError: GC overhead limit exceeded”. Here we offer two solutions. The first is to utilize more than 100 GB of memory on client computers, which can be switched on by adding a line “#BSUB -q MEM128G-S” in the LSF script. This option allows the submitted jobs to access up to 128 GB of memory. If the first solution fails, a second solution is to reduce the upper limit of the filtration value, say a value near 1.0. These two options can in general solve the problem of the memory shortage issue. On average, a job submitted to NYA2 accessing 16 CPU cores requires 1–3 days to finish. For each of the calculations, we saved barcodes figures, n-dimensional Betti numbers, Euler characteristics in separate folders for further analysis.
TDA OF TOY MODELS AND HYPOTHESIS ON REAL MARKETS
Before we analyze the SGX and TWSE data, and discuss their results, as a proof-of-concept we first digress to demonstrate the main idea behind our work by applying TDA to three toy models with definite topological changes. In these three cases, we randomly sampled data points on the surfaces or in the volumes and then saved these data points in separate files. Then, we use the Javaplex software to read in the files and calculate the persistent homology and respective Betti numbers up to dim 2. Finally, we use [image: image] to calculate the Euler characteristic. These results are shown in Figure 6.
[image: Figure 6]FIGURE 6 | The toy models illustrating three different sequences of topological changes. (A) We start with two spherical shells of radius one and move them closer until their surfaces touch, overlap, and finally merged into a larger single spherical shell. (B) We generate a sequence of surfaces of revolution that starts with a torus, then one with a smaller hole, then a horn torus, a spindle torus, and finally a spherical shell. We also show a solid sphere. (C) We start with a spherical shell and then deform it into ellipsoids, whose semi-axis we increase from [image: image].
In the first case (Figure 6A), we started with two spherical shells of radius one that do not overlap. We then moved the two shells closer until their surfaces touch, before we moved them even closer that they overlap. For this sequence of configurations, we saved the data points and thereafter invoked the Javaplex software. In the third, overlapping configuration, we manually deleted those data points that lie inside the spherical shells. Finally, we compared this sequence of configurations against a larger spherical shell. We found that χ went from [image: image], which was consistent with the analytical results. The sequences of Betti numbers provided even more information. As we went through the sequence of configurations, β0 changed from [image: image], which agrees with what we expected, since β0 tells us how many connected components there are in the configuration. We also found β1 = 0 throughout the sequence, since it is the number of irreducible closed loops, and in all configurations, we can always shrink a closed loop to a point. Finally, we found β2 changing from [image: image], since it is the number of voids enclosed within the different surfaces, so this becomes 1 after the two spherical shells overlap.
For the second case (Figure 6B), we went through a sequence of surfaces of revolution of two circles at increasing closer distances. When the two generating circles were far apart, we obtained a torus with a big hole, and when the two generating circles were closer but still non-overlapping, we obtained a torus with a small hole. When the two generating circles touched each other, we ended up with a horn torus, which is a critical surface with no holes but is pinched at a point. When the two generating circles overlapped each other, we obtained a spindle torus, which has an inner as well as an outer surface. Finally, when the two generating circles overlapped completely, we obtained a spherical surface. This last configuration is then compared against a solid sphere. For this sequence, we found χ going from [image: image], which is the result of an interesting interplay between the Betti numbers. Going through the sequence, we found β0 = 1 throughout, because there is only one connected object. In contrast, β1 went from [image: image] and β2 = 1 for all configurations, except for the spindle torus (β2 = 2), and the solid sphere (β2 = 0). Since β2 is the number of voids enclosed, we understand why β2 = 1 for the spherical shell configurations, and why β2 = 2 for the spindle torus. In this sequence, the most interesting change occurred in β1.
For the final case (Figure 6C), we started with a spherical shell and increased its eccentricity to get longer ellipsoids, with semi-axis a going from [image: image]. For all these different ellipsoids, we found that χ = 2, confirming the fact that deformation alone cannot change the topology or the Euler characteristic. We also found β0 = 1, β1 = 0, and β2 = 1 for all these surfaces, as expected.
For all cases, we also computed the corresponding barcodes and persistent diagrams for better insights into how they evolve with topological deformations. These are shown in Supplementary Figure S2.
Generally speaking, the cross correlations in a stock market will be in the form of a high-dimension topological space, with more complicated features than those shown above. Nevertheless, we believe the insights derived from the toy models can help us grasp the topological changes that occur during a stock market crash (shown schematically in Figure 7). Just before the market crash (Figure 7A), we show the cross correlations of the stock market as a single giant cluster with four holes, which tells us that β0 = 1 and β2 = 4, while β1 will depend on the detail shape of the topological surface. This strongly interconnected situation is typically generated by a bubble in the market and can be viewed as the starting point of a market crash [36, 37]. When the market crash starts (Figure 7B), parts of the surface will break (red circles in Figure 7B) but overall the giant cluster remains. The breaking of these two handles results in β2 going from 4 to 2, while β0 remains 1. For every handle broken, β1 also decreases by 2. As the market crash progresses, the giant cluster starts to crumble, giving rise to additional small clusters like the ones shown in Figure 7C. When the number of connected components increases, β0 goes from 1 to 5, and β2 decreases further to 1, because there is only one hole remaining. The small clusters do not contribute to β2 if they are homomorphic to spheres. Finally, at the end of the market crash, many small clusters are produced by the dissociation of the giant cluster, so β0 increases dramatically, but β1 and β2 become small. Such a cluster fusion-fission scenario has been proposed previously [38, 39], but we suspect TDA will provide additional information regarding subtle topological changes that these models cannot provide.
[image: Figure 7]FIGURE 7 | A schematic diagram illustrating different states in the stock market across a market crash. (A) All stock components are interconnected and form a single giant cluster with holes. (B) As the market starts to crash, some of the connections are broken, but the single giant cluster remains as in case (A). (C) As the market crash progresses, the giant cluster remains, but part of it has fragmented into four smaller clusters. (D) At the end of the market crash, the stocks are now organized into many small and disjoint clusters.
Armed with these insights, we proceed next to the research question, that is to use TDA to examine the topological changes associated with market crashes in the SGX and TWSE, to see how well our hypothesis holds out.
RESULTS AND DISCUSSION
In this work, we examined two stock markets, i.e. the Singapore Stock Market (STI), and the Taiwan Stock Exchange (TAIEX). Both markets consist of roughly 600 stock components, and the economic scales of Taiwan and Singapore are comparable. The time durations that we collect data are from Jan 2017 to Apr 2019 for STI, and from Jan 2017 to March 2020 for TAIEX. For TAIEX, there is a small market crash from Sep 2018 to Jan 2019, and a major crash in Mar 2020 that is caused by the COVID-19 pandemic, whereas no market crash was found for the STI.
Correlation Matrices
We visualize the complex dynamics in the two stock markets by computing correlation matrices over six-month periods that are one month apart. We used a heat map color scheme, where the highest correlation value of 1 is red, and the most negative correlation of −0.1 is blue. These are shown in Figures 8 and 9 for STI, and TAIEX.
[image: Figure 8]FIGURE 8 | The correlation matrices of STI from Jan 2017 to Apr 2019.
[image: Figure 9]FIGURE 9 | The correlation matrices of TAIEX from Jan 2018 to Mar 2020.
In Figure 8 for STI, it is clear that the average correlation is low over most periods. The exceptions are the periods (Sep 2017, Feb 2018), (Oct 2017, Mar 2018), (Nov 2017, Apr 2018), and (Dec 2017, May 2018). In Figure 9 for TAIEX, however, we observe more drastic changes. The correlation matrix first becomes reddish for the (May 2018, Oct 2018) period, and remains reddish until the (Oct 2018, Mar 2019). It then became reddish again in the (Oct 2019, Mar 2020) period because of the COVID-19 pandemic. Particularly, the few correlation matrices preceding the COVID-19 crash were blue, making the reddening very sudden.
In the literature, spectral reddening can be used as early warning signals to inform critical transitions [40–43]. Before market crashes, the co-movement among stocks becomes stronger, variations become increasingly concentrated at low wavenumbers, and result in a reddish color in the spectral density. Although inspecting different properties, both show early warning signals by turning into red colors when approaching these critical transition points.
Barcodes and Persistence Diagrams
The barcodes and their corresponding persistence diagrams for TWSE data between Apr 2019 and Sep 2019 are shown in Figure 10. In Figure 10, the left three figures are the barcodes in 0-dim, 1-dim, and 2-dim, respectively, whereas the right three figures are the corresponding persistence diagrams. In the right three figures, the x-axis refers to the time of birth, while the y-axis refers to the time of death for each homology group, represented by a dot on the figures. We also use red arrows to indicate which bar in the left figures corresponds to which dot in the right ones. When the period is varied, the shape of these figures also changes, revealing the dynamics of the topological structures.
[image: Figure 10]FIGURE 10 | The barcodes, and corresponding persistence diagrams for data collected from Apr 01, 2019 to Sep 30, 2019 in TAIEX.
For the persistence diagrams, the dots in the 0-dim figure only move vertically in time, whereas for those in 1-dim, and 2-dim, the data points can cluster together forming a small bump, flatten out along the diagonal line, or translate toward or away from the origin along the diagonal line. During market crashes, intriguing dynamical properties can be seen in these figures. To make a clearer comparison, we show in Figure 11 the aggregated STI and TAIEX 5-years historical data and discuss the features seen in Supplementary Appendix Figure A1 and Supplementary Appendix Figure A2, where we show all the barcodes and persistence diagrams for the data collected from SGX and TWSE.
[image: Figure 11]FIGURE 11 | The (A) TAIEX and (B) STI index for the past five years, which include the period we collected our data. For TAIEX, the period is from Jan 01, 2017 to Mar 31, 2020. For STI, the period is from Jan 01, 2017 to Apr 30, 2019. In this figure, the gray bands are periods seen from Figure 14 where the Euler characteristic is positive.
In Figure 11A, we find a local market minimum from Sep 2018 to Jan 2019, spanning roughly five months following a small crash in Sep 2018. From the barcodes and persistence diagrams in Supplementary Appendix Figure A1, we discover an interesting feature related to this small crash. When we compare the 1-dim and 2-dim persistence diagrams for the (Mar 2018, Aug 2018) period (not including the crash) against those of the (Apr 2018, Sep 2018) (including the crash) in Supplementary Appendix Figure A1, the data points flatten out along the diagonal line, suggesting that in these two dimensions, the persistence of the homology groups weakens. However, the 0-dim result shows no signs of change when we compare these two subfigures. This episode of a persistence-weakening in 1-dim and 2-dim continued until the (Oct 2018, Mar 2019) period in Supplementary Appendix Figure A1 when the flattening-out phenomenon disappears. Looking at the barcodes in the same period, we witnessed that the 1-dim and 2-dim bars, which are generally wider before the (Mar 2018, Aug 2018) period, becoming visibly shorter in the period (Apr 2018, Sep 2018) to (Oct 2018, Mar 2019). To aid visualization, we used red-shaded windows in Supplementary Appendix Figure A1 to identify those barcodes manifesting persistence weakening. In the Supplementary Figure S4, we also show schematically how bars in the barcodes become dots in the persistent diagram during a normal market phase and a market crash phase.
We observed an even stronger persistence weakening for the (Oct 2019, Mar 2020) period than for the small crash. Going back to the barcodes, we found the widths of the bars becoming smaller as the distribution of data points flatten in the persistence diagram. We also found a large gap of [image: image] between the death of one bar, and the birth of the next bar in the 2-dim barcode. To unravel how this persistence-weakening phenomenon occurs, we reduced the time windows’ sizes to 2, 3, 4, and 5 months, and show the results in Figure 12.
[image: Figure 12]FIGURE 12 | The barcodes and persistence diagrams covering the pandemic COVID-19 crash in March 2020. The first column is a two-month window result, and the subsequent columns correspond to 3, 4, 5, and 6-months time windows, respectively.
In Figure 12, we witness some interesting features. First, in the 0-dim persistence diagram, the dots seem to be lower compared to those periods without market crashes. This corresponds to a shorter life expectancy for the homology groups, which can also be observed in the barcodes. In the 1-dim and 2-dim barcodes, we find the barcodes falling off rapidly between [image: image] and [image: image], and more slowly thereafter. This suggests that [image: image] is a characteristic scale that emerged only during the COVID-19 crash. To quantify the persistence-weakening phenomena in TWSE, we selected three periods and analyzed the H1 and H2 persistence diagrams (see Supplementary Figure S3). In the normal market state during the six periods (Jan 2017, Jun 2017) to (Jun 2017 to Nov 2017), the two principal variances were found to be [image: image], and [image: image] for H1. For H2, we found that [image: image], and [image: image]. For the period (Sep 2018, Feb 2019), which covers the mini-crash, we measured [image: image], and [image: image] for H1; for H2, we measured [image: image], and [image: image]. Finally, for the period (Oct 2019, Mar 2020), we obtained [image: image] and [image: image] in H1; for H2, [image: image] increased to 0.931, while [image: image] become 0.020. To conclude, during the two market crashes in TWSE, the second principal variance was reduced, implying a shortened persistence lifetime, a manifestation of the persistence-weakening phenomena that come along with crashes.
Another way to quantify the persistence weakening is through the persistent entropy, [image: image] where F is the distribution of lifetimes [image: image] (xi, yi are the birth time and the death time of homology group i in the barcode with n segments), [image: image] is the sum of all lifetimes, and [image: image] can be thought of as the ‘weight’ of homology group i in the barcode [44, 45]. The persistent entropy E(F) is maximum when all homology groups have the same lifetimes, and is minimum when the lifetimes of homology groups are all different. E(F) thus allows us to distinguish between narrow and broad distributions of lifetimes, as well as smoothly varying and multimodal distributions of lifetimes. We chose to compute E(F) for the same three periods used to calculate the covariance matrix and principal variances. For the normal market state during the six periods (Jan 2017, Jun 2017) to (Jun 2017 to Nov 2017), we found that [image: image] in 0–2 dim respectively; for the period (Sep 2018, Feb 2019), E(F) remained roughly the same at 2.80 for 0-dim, but decrease to 2.55 for 1-dim, and more significantly to 2.1 for 2-dim. For the COVID-19 crash, E(F) for 0-dim remained at 2.80, while for the other two dims, they became 2.40 and 1.94. This suggests that E(F) for 2-dim changes most dramatically across market crashes.
For SGX (Supplementary Appendix Figure A2), the persistence-weakening phenomena are less significant, except for (Sep 2017, Feb 2018), (Nov 2017, Apr 2018), and (Dec 2017, May 2018). In these periods, persistence-weakening only occurs in the 2-dim persistence diagrams but not in their 1-dim counterparts. This is rather different from those observed in the two TAIEX crashes. We believe this is because over the period Jan 2017 to Apr 2019, the largest downward movement of the STI is still smaller than the smaller TAIEX crash, as such the persistence weakening is less prominent. Referring to Figure 11B, we believe these downward movements were market corrections in the STI, and the analysis we introduced thus far cannot help to classify them. Consequently, we introduce the Betti numbers and Euler characteristics in the next subsection to resolve this issue.
Other Works Addressing Persistence
In 2015, Teh and Cheong [38] studied dynamics in the SGX during the Global Financial Crisis using a cluster fusion-fission approach. They found that before the crisis, a giant cluster of stocks emerged in the SGX. This later broke up into small clusters after Lehman Brothers went bankrupt. Also, they found that the probability that a pair of stock remain in the same cluster decays exponentially with two time scales i.e. 3 weeks, and 7 weeks. They called these temporal correlations the ‘persistence’ of stocks. In our work, since our sliding window size is one month, we can also measure the persistence in both time scales, in terms of n-holes that emerge in the two-time windows.
We show the mean value of bottleneck distance D (we pick three points in Jan 2017 as origins, and calculated D with subsequent n = 11 months for the origin), and its standard deviation in SGX over the whole of 2017 in Figure 13. We discovered that D increased steadily over the next four windows for H0, and then saturated around 0.25, whereas for H1 and H2, D also increased but less significantly over the n-windows. A larger D implies that the homology groups are less persistent, whereas the converse means the persistence is stronger. As for the case of TWSE, we investigated two periods. The first period is (Jan 2017, Dec 2017), the same as the first period studied for the SGX, and the second is (Sep 2017, Aug 2018), which is in the middle of the mini-crash. For these two periods, we observe dissimilar features for H0. In the first period, D grew from an initial value of 0.05, and saturated around 0.2, before dropping steeply to 0.07. For the second period, H0 stayed between 0.13 and 0.15, before jumping to a larger value of roughly 0.22 seven months later. As expected, the bottleneck distance increases and then decreases over the course of a market crash.
[image: Figure 13]FIGURE 13 | Bottleneck distances D calculated for (A)H0, (B)H1, and (C)H2 for the origin month (we pick three points in Jan 2017 as origins, and calculated D with subsequent n = 1 months). The solid lines are the mean values, and the vertical bars are the standard deviation for each data point. (D–F) are the same as (A–C) but for normal market states of TAIEX, and (G–I) we select three points in Sep 2018 as origins, and calculated D with subsequent n = 11 months, covering the mini market crash of TAIEX.
kth Betti Numbers and Euler Characteristics
In the literature, econophysicists use cross correlations to distinguish between different market states, like the bull and bear market states, as well as the market correction state. In a market correction state, the market condition resembles a random walk process, and thus the cross correlations between stocks are random matrix-like, and the distribution of their eigenvalues resembles a Marčenku–Pastur distribution (MPD). Following Reimann et al. and Santos et al. [46, 47], we can also use the kth Betti numbers and Euler characteristics as fingerprints to classify market states in the STI and TAIEX. According to Reimann et al. and Santos et al., different correlation matrices can have higher similar fingerprints and thus represent the same topologies.
In [46, 48], the authors also proposed to use the Euler entropy [image: image] as an alternative entropy construct, instead of the conventional Boltzmann entropy. They used the Euler entropy to inform whether there are topological phase transitions at any specific time or correlation values. According to their findings, a negative χ can be geometrically connected to a sheet of hyperboloid with negative curvature, at χ = 0 the hyperboloid become cone-like, on the edge of breaking into two hyperboloids, and finally a positive χ, where the hyperboloid breaks into two hyperboloids. Hence, when χ changes from a positive value to a negative one, we can identify a critical point. At these points, the Euler entropy explodes [image: image] and become singular. In statistical mechanics, when the system approaches a critical point, we expect to see the susceptibility function become non-analytic. In view of this, we can also use the Euler entropy to analyze and classify different market states.
Here, we show the kth Betti number and Euler characteristics for different periods in the SGX (TWSE) in Table 1. For TWSE, we chose two periods of time, i.e. (Jun 2017, Dec 2018), and (May 2019, Oct 2019), to calculate χ. These periods correspond to the two TAIEX crashes. Also, we calculated up to 2-dim Betti numbers, because for TWSE, we were not always able to compute the 3-dim Betti numbers. From July 2018 to Nov 2018, we found that χ was positive, and become negative in Dec 2018. From June 2019 to Sep 2019, χ stayed close to zero, and then suddenly jumped to 98 in Oct 2019, whose time window included the COVID-19 crash in Mar 2020. Based on our results, both crashes seem to be associated with large positive χ values instead of negative ones. We can understand a positive χ as the result of many isolated hyperspheres, while a negative χ comes from averaging the curvature over hyperbolic bridges after some hyperspheres merged. This conclusion is also supported by the behavior of β0, whose average values over the two periods are 31.6 and 98 respectively, suggesting that the stock components are fragmented rather than agglomerated. On the other hand, while χ is 23 and 27 respectively for (June 2018, Nov 2018) and (Jul 2018, Dec 2018), the values for β0, β1, and β2 are different, implying that their topologies are dissimilar. Our findings agree with our hypothesis that during crashes, stock components tend to break up into fragments, even though the overall cross correlations are high.
TABLE 1 | (A) Euler characteristics, and kth Betti numbers for [image: image]. Data collected in STI from Jan 2017 to Nov 2018. (B) Euler characteristics, and kth Betti numbers for [image: image]. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019. Two periods cover the two crashes. We have calculated βk specifically for the period in TAIEX (Jan 2017 to Jun 2017) 10 times to test if βk fluctuates; our results confirmed that all arrived at the same βk and χ. We therefore will not include the error bars for the Betti numbers and Euler characteristics.
[image: Table 1]Going on to the SGX, where the Euler characteristic was computed up to the 3-dim Betti numbers, we see from Figure 14B four topological transitions (marked by brown arrows). These imply that from Jan 2017 to Apr 2019, even though the signatures were weak in the cross correlations, SGX switched between different topological phases. We classified the market period from Jan 2017 to July 2017 as the first market state, where χ has an average value of around 20. The second market state was from Aug 2017 to Jan 2018, when χ became negative. The third market state was from Feb 2018 to Jun 2018, where χ became positive again. Finally, the fourth market state started from Jul 2018 and ended in Sep 2018, during which χ turned negative a second time. Thereafter, χ was positive for the last two months. The Betti numbers in Table 1 show more subtle behaviors that the χ alone cannot reveal. For example, in the first period, we see that [image: image] and [image: image], whereas β1 was separated into two groups, one averaging 5.5, while the other averaging 18.6. β3 was also separated into two groups, one having an average of 41, while the other averaging 17.6. These are in line with the insights we developed in TDA of Toy Models and Hypothesis on Real Markets Section, that we cannot deduce the topology of the data by simply looking at χ, but must also check the details of βn. We found similar situations for other periods (Aug 2017 to Jan 2018, Jul 2018 to Sep 2018) in SGX.
[image: Figure 14]FIGURE 14 | The Euler characteristic χ in (A) TAIEX and (B) STI against dates. Each date represents a six-month period in which the correlation matrix was constructed. Besides, different dates are associated with different values of [image: image]. The gray bands are over the same periods shown in Figure 11 and cover Euler characteristics that are positive.
To show that we indeed observe in the real market data topological changes described in our hypothesis in TDA of Toy Models and Hypothesis on Real Markets Section, we investigated specifically the mini-crash of TAIEX over four time periods. One is just before the crash (Jun 2018 to Nov 2018), two is during the crash (Sep 2018 to Feb 2019) and (Oct 2018 to Mar 2019), and the last is just after the crash (Dec 2018 to May 2019). Here let us point out an important limitation of the Betti numbers, i.e. they do not tell us how big the clusters are. For example, the same set of Betti numbers can describe a collection of clusters that are roughly the same size, some with holes, some without; this market is not close to a crash. Or it can describe a collection of clusters, one of which is a giant cluster containing most of the holes; a market like this is close to a crash. This means that βn must be supplemented by traditional clustering analysis, where it is easier to see giant clusters, but difficult to understand topological changes.
To this end, we show in Figure 15 the results of average-linkage hierarchical clustering based on the cross-correlation matrices of the four periods. In the first period, we found one giant cluster co-existing with two small clusters. β0 = 2 for this period is close to the number of clusters we found, confirming our hypothesis that before the crash, we have a growing giant cluster. By tracking which clusters the 671 stocks belong to, we found that in the second period, one of the smaller clusters was absorbed by the giant cluster. In the third period, this membership information revealed the initial stages of the giant cluster breaking up, as it ejected two smaller clusters. For the last period, we now found 12 different clusters, suggesting that we were near the end of the market crash. This fusion and fission phenomenon is in line with the hypothesis we made (see Figure 7D). To tease out subtle topological changes to the giant cluster as the market crash progressed, we looked to changes in the Betti numbers. This is possible because, unlike the use of a single criterion to group stocks in hierarchical clustering, TDA uses multiple criteria to accomplish this task. For example, it is possible for the giant cluster to continue absorbing stocks while it is ejecting others. The overall change in the number of clusters is reflected in β0, however with β0 alone we cannot distinguish between [image: image] and [image: image]. These two scenarios may be differentiated by the other Betti numbers. Specifically, we found that β2 changed from [image: image] starting from the period (Jun 2018 to Nov 2018) to the period (Dec 2018 to May 2019), implying an initial decrease in the number of 2D holes just before the crash (Figure 7A), becoming 1 in the middle of the crash (Figure 7B), before increasing again just after the crash (Figure 7D).
[image: Figure 15]FIGURE 15 | The hierarchical clustering dendrogram for four periods in TAIEX, i.e. (A) from Jun 2018 to Nov 2018, (B) Sep 2018 to Feb 2019, (C) Oct 2018 to Mar 2019, and (D) Dec 2018 to May 2019.
We also wanted to check if there are any handle-breaking events during real market crashes. For example, if we start with a torus, the Betti numbers would be [image: image] and [image: image]. If the handle of the torus breaks, the object remaining would be homomorphic to a sphere, which has [image: image] and [image: image], indicating that handle breaking is a topological change whose signature is [image: image]. To track these topological changes, we kept only the giant cluster in each of the period, and recomputed the Betti numbers within these components. During the TAIEX mini-crash, we found the sequence [image: image] for β0, which tells us that the giant cluster for the second period is the least homogeneous. Going beyond β0, we found the sequence [image: image] for β1. This tells us that the initial giant cluster already contained many irreducible loops, and this number of irreducible loops increased further in the second period as the giant cluster increased in size. By the third period, most of these irreducible loops have disappeared, and by the fourth period, the giant cluster remaining has a simple topological structure. Finally, for β2, we found the sequence [image: image]. Specifically, β2 (the number of enclosed volumes) and β1 (the number of irreducible loops) can together tell us more about the topology of the simplicial complex. For example, [image: image] for a spherical shell, whereas for a torus, [image: image]. In the first period, we found that [image: image]. This tells us that the giant cluster contains many enclosed volumes that are not holes (because every hole in the simplicial complex must be accompanied by irreducible loops). In the second period, we found instead that [image: image], and in fact [image: image], suggesting that all the enclosed volumes have become holes. The number of handles thus increased from the first period to the second period (although we cannot exclude the possibility that a few of them might have broken, although it is unlikely for many to have broken). From Table 1, we see that the giant cluster broke up most vigorously during the second and third period. Here we see that beyond this fragmentation, the topological changes associated with the second and third periods are very different: in the second period, enclosed volumes became holes, whereas in the third period, the handles of these holes broke and more enclosed volumes emerged. Furthermore, because β2 was large in the fourth period, the fragmentation products are closer to being spherical shells than they are to solid spheres.
MST, PMFG, and TMFG
In the econophysics literature, we celebrate insights on stock markets obtained using correlation filtering methods. From Mantegna's work [8], we learned to project an arbitrary correlation matrix onto a minimal spanning tree, requiring only N − 1 links when there are N nodes, to visualize the correlational structure of stock markets. However, there is no reason why we should admit only N − 1 links. According to Tumminello et al. [9], the number of non-intersecting links in a graph G with genus g is at most [image: image], and therefore we may project the correlation matrix onto manifolds with different genus g to keep more links or fewer links. The simplest such projection is onto a sphere (g = 0), or other manifolds with a small genus. The graph that results from projection onto a sphere is planar and is therefore called a planar maximally filtered graph (PMFG). A related method, the triangular maximally filtered graph (TMFG) [10], that checks local planarity but not globally that the genus is zero. This is computationally more efficient and can be parallelized for very large datasets. However, there is no reason to believe that g = 0 is the optimum genus for all correlation matrices computed from stock markets. We believe that genus g implied in Table 1 is optimum because they are computed in an unbiased fashion through the TDA filtration procedure. We can use this optimum genus to systematically improve the efficacy of such information filtering methods.
MST methods have been used to track topological changes during market crashes. To name a few, Onnela et al. [49, 50] investigated the US stocks during the 1987 Black Monday and found that the diameter of the MST decreased during the market crash, so this feature can be used as a universal indicator of market crashes. We ourselves also used the MST of the 10 US Dow Jones economic sectors [51] and the 36 Nikkei industry indices [52] in conjunction with time-series segmentation, to find a core-fringe structure during crizes. In the same spirit, Wilinski et al. [53] and Sienkiewicz et al. [54] investigated market crashes in the Frankfurt Stock exchange (FSE), and the Warsaw Stock Exchange (WSE), and concluded that a two-transition process characterizes market crashes universally. The first transition is from a hierarchical scale-free MST to a superstar-like MST, followed by a second transition to a power-law MST decorated with star-like trees or hubs. In using the MST, they have assumed that loops (β1) in the networks can be ignored. In this sense, the present is a natural extension to what they have done, where we take a more detailed look into the topological transitions.
Ultimately, informational filtering methods such as MST or PMFG are designed to produce connected graphs and are thus not the best choice for identifying fragmented clusters. To identify these, we can of course use the minimal spanning forest (MSF) [55] or the directed bubble hierarchical tree (DBHT) [56, 57] methods modified from the MST or PMFG. Here, we would like to stress that most clustering approaches are limited to β0 and β1, and cannot differentiate topological changes beyond β1. TDA is promising because it is an elegant extension beyond 0-simplices and 1-simplices, allowing us to unravel subtle topological changes during market crashes.
Outlook and Perspective
Several future directions are possible based on this work. First, in MST, PMFG, and TMFG Section, we mention that the upper bound of the number of links for information filtering methods involving projection to manifolds with genus g is given by [image: image]. The Euler characteristic listed in Tables 1(A, B) can be also be used to calculate the genus g via [image: image]. With this we are not required to assume a priori that the optimal manifold to project has g = 0 or close to 0. Second, Bubenik [58] had proposed to use persistence landscapes, which is a Banach space that can be converted from persistence diagrams. We then can do statistical averaging of the persistence landscapes, and use the result to design persistence weighted kernels, see for example this very recent work [59]. Persistence weighted kernels can fully maximize the strength of ML algorithms in making stock price predictions. Third, we identified two market crashes in TWSE and several topological phase transitions in SGX.
A pearl of common wisdom that can be gleaned from [47] is that the number of simplices (kth Betti numbers), in general, will peak at k = 6 to k = 8, before dropping to zero at k = 11. More computing resources are required to carry out future works in this direction to test at which k the number of simplices actually peak, and at which k it finally dropped to zero. Also, in Reimann’s work, they investigated directed simplices instead of undirected ones. The former finds applications in educational science, for example [60]. Also, a recent work that applied persistent homology in investigating co-occurrence networks had shown promising results [61].
CONCLUSION
In this work, we collected daily price data from SGX and TWSE and analyzed them using persistent homology and TDA toolkits. We then made a case for TDA to be employed alongside the other state-of-the-art network embedding techniques including the MST, PMFG, TMFG, in analyzing the topological structures. We were drawn to the application of Persistent Homology (PH) and TDA in complex systems for three reasons: ) PH and TDA are unbiased; ) they scan through a full range of correlation values instead of using only one or two specific values; and ) it is less susceptible to random noises.
We then utilize three toy models to illustrate our hypothesis in Introduction Section, that is “in different market states, their topological features are also changing accordingly, and TDA can be effective in scrutinizing these changes.” We showed in these toy models, including spheres, toruses, and ellipsoids, how χ, the Betti numbers, the barcodes, and persistence diagrams change with topological changes. Also, we use schematic diagrams to illustrate different market states, what the topologies could be like, and argue what their possible Betti numbers and χ’s could be.
Our results revealed unexpected and promising findings in the stock markets. In TWSE, we found a small crash from Sep 2018 to Jan 2019, followed by a larger crash in March 2020, which is due to the COVID-19 pandemic. For these two crashes, we performed three tests using TDA methods. The first test was to quantify a persistence-weakening phenomenon in the barcodes and persistence diagrams. This persistence-weakening phenomenon was also discovered in the SGX, suggesting that it might be universal. However, there were no reported crashes in the SGX for the period studied. To understand this apparent inconsistency, in the second test we calculated the Betti numbers and the Euler characteristic of different 6-months windows in both markets. Our results suggest that market crashes in TAIEX and STI are associated with χ > 0, but the market crash signatures are stronger and have cleaner interpretations in β0. When we scrutinized the changes to β0, β1, and β2 of the giant cluster over four time periods before, during, and after the TAIEX mini-crash, we found that at the beginning of the crash, the giant cluster has many holes and many more enclosed volumes. As the market crash progressed, these enclosed volumes first became holes, before the handles of these holes broke, to give rise to fragmentation products that were closer to spherical shells than they are to solid spheres. Finally, in the last test, we found the dim-2 persistent entropy decreasing significantly across market crashes. To conclude we found that TDA confirmed most parts of our hypothesis, but also suggested that the topological changes surrounding a market crash are more complex than what we had imagined.
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The following methods are used to analyze correlations among stock returns. 1) The meaningful part of the correlation is obtained by applying random matrix theory to the equal-time cross-correlation matrix of assets returns. 2) Null-model randomness is implemented via rotational random shuffling. 3) Principal component analysis and Helmholtz-Hodge decomposition are used to extract leading and lagging relationships among assets from the complex correlation matrix constructed from the Hilbert-transformed data set of asset returns. These methods are applied to price data for 445 assets from the S&P 500 from 2010 to 2019 (2,510 business days). Additional analysis and discussion clarify key aspects of leading and lagging relationships among business sectors in the market. Numerical investigation of these dataset reveals the possibility that leading and lagging relationships among business sectors may depend on gross market conditions.
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1 INTRODUCTION
The analysis of big data can reveal novel aspects of nature and society. However, data often contain noise, making it necessary to distinguish the signal from the noise. Principal component analysis (PCA), independent component analysis, machine learning, and other techniques have been applied to extract the meaningful components of various datasets. About 20 years ago, random matrix theory (RMT) was introduced to distinguish the components of a dataset from the noise. [1, 2] developed a “null-hypothesis” test based on RMT. In paticular, they compared the properties of empirical equal-time cross-correlation matrix to those of a random matrix and considered deviations from the random matrix case to suggest the presence of meaningful information. They compared the distribution of eigenvalues of this empirical cross-correlation matrix with the Marčenko-Pastur distribution [3], which is theoretically derived from so-called random Wishart matrices. They considered the eigenvector corresponding to the largest eigenvalue to represent the “market” itself. They also compared the distributions of the components of eigenvectors with the Porter-Thomas distribution [4], finding that the eigenvector corresponding to the largest eigenvalue differed remarkably from the Porter-Thomas distribution.
[5] confirmed the findings by [1, 2]; the meaningful part represents a market mode and group structures, such as industry categories and stocks with large market capitalization. [6] applied RMT to the equal-time cross-correlation matrix of assets listed on the first division of the Tokyo Stock Exchange (TSE). [7] clarified the structure of the meaningful part of the equal-time cross-correlation matrix of assets listed on the New York Stock Exchange (NYSE). [8] investigated the empirical equal-time cross-correlation matrix of stock price fluctuations on the National Stock Exchange of India, finding that this emerging market exhibited strong correlations in the movements of stock prices compared to developed markets such as the NYSE. [9] analyzed the empirical equal-time cross-correlation matrix of stock price fluctuations on the Tehran stock exchange and in the Dow Jones Industrial Average (DJIA), showing that the DJIA is more sensitive to global perturbations. [10] investigated the structures of networks constructed from principal components of the empirical equal-time cross-correlation matrices of stock price fluctuations on the Tehran stock exchange and in the DJIA. [11] constructed an autocorrelation matrix of a time series and analyzed it based on the random-matrix theory approach and fractional Gaussian noises.
[5] constructed a “filtered” cross-correlation matrix, from eigenvalues and eigenvectors outside the random matrix bound and applied this cross-correlation matrix to portfolio optimization [12]. The result they obtained shows that predicted risk was much closer to the realized risk than the traditional portofolio optimaization. [13] applied the portfolio optimization method to the stocks listed on the first division of the TSE and showed that the performance of the portfolio constructed by this method was usually better than that of market index such as TOPIX. [14] extended this portfolio optimization method to a case involving a short sale of stocks.
RMT is a powerful method for distinguishing meaningful components and noise in financial time-series data. The null hypothesis of randomness in this method assumes randomness in cross-correlation and autocorrelation. However, the autocorrelation of stock returns cannot be considered random (for example, see [15]. Thus, a new method is needed that preserves autocorrelation but randomizes cross-correlation. [16, 17] developed a method referred to as rotational random shuffling (RRS). In RRS, empirical time-series data are shuffled rotationally in the time direction with a periodic boundary condition imposed. Therefore, equal-time cross-correlation matrices constructed from RRS time series preserve almost all the autocorrelation information of each time series while randomizing cross-correlation. By comparing the distribution of eigenvalues of this RSS cross-correlation matrix with that of the empirical cross-correlation matrix, meaningful components and noise can be successfully distinguished.
It is natural to consider the application of RMT to different-time cross-correlation matrix. [18] introduced so-called complex Hilbert principal component analysis (CHPCA), in which the cross-correlation matrix is defined in the complex space. The components of eigenvectors of the complex cross-correlation matrix distribute in the complex plane, allowing the recognition of lead-lag relationships between components based on the difference in angle between them. [19] applied CHPCA to time-series data set for 483 assets representing the S&P 500 from 2008 to 2011 (1,009 business days) and constructed a correlation network in which pairs of assets with phase differences below a certain threshold were weighted based on correlation strength. [20] explored data from 1990 to 2012 for foreign exchanges and stock markets in 48 countries using CHPCA and extracted a significant lead-lag relationship between the markets. [21] applied CHPCA to a time-series data for assets listed on the NYSE from 2005 to 2014 and clarified lead-lag relationships among stocks, investment trusts, real estate investment trusts (REITs), and exchange traded funds (ETFs). [22, 23] applied CHPCA to the early warning indicators of financial crizes proposed by the Bank of Japan and explored changes in lead-lag relationships between indices before and after financial crizes.
When applying CHPCA to time series data, we need to explicitly extract the lead-lag relationship between the time series. [24, 25]; and [26] applied the Helmholtz-Hodge decomposition (HHD) to extract circular and gradient flows in a complex network. [27] applied CHPCA and HHD to monthly time series of 57 US macroeconomic indicators and five trade/money indexes, confirming statistically significant co-movements among these time series and identifying noteworthy economic events. [28] summarized CHPCA, RRS, and HHD and applied these methods to economic time-series data.
The purpose of the present paper is twofold. The first is to introduce a recently developed method to analyze stock return correlations. The second is to highlight a novel aspect of leading and lagging relations of business sectors in the market. In Section 2, log returns of stock prices are defined, and an empirical equal-time cross-correlation matrix is constructed for 445 assets from the S&P 500 from 2010 to 2019 (2,510 business days). A method is also presented for calculating the eigenvalues and eigenvectors of this cross-correlation matrix and applies RMT and RRS to distinguish the meaningful part from the noise. Furthermore, it is shown that the eigenvector corresponding to the largest eigenvalue represents the market mode and meaning components without the principal component represent group mode. In Section 3, the dataset is investigated using CHPCA, RRS, and HHD and lead-lag relationships among assets are discussed. In Section 4, an application of CHPCA to portfolio theory is sketched. Section 5 is devoted to summary and discussion.
2 APPLICATION OF RMT AND RRS
In this section, the equal-time cross-correlation matrix is defined. RMT is then applied to distinguish the meaningful components from the noise components. After that, RRS is introduced to distinguish the meaning components from the noise components.
2.1 Equal-Time Cross-Correlation Matrix
This paper investigates data for 445 assets from the S&P 500 for dates obtained 2010–2019 (2,510 business days). By denoting an opening price of stock n on day t as [image: image] and a closing price of stock n on day t as [image: image], the daily log return of stock n on day t is defined as
[image: image]
where [image: image] represents the natural logarithm. Here, [image: image], and [image: image]. For each stock n, the time-average of [image: image] is denoted as [image: image], and the standard deviation of [image: image] is denoted as [image: image]. These are defined by
[image: image]
A normalized log return of asset n is denoted as [image: image], and define it by
[image: image]
Thus, a component of equal-time cross-correlation matrix is defined by
[image: image]
The left panel of Figure 1 depicts an equal-time cross-correlation matrix. In this figure, shade indicates the strength of the positive correlation. White color corresponds to [image: image], with darker shades representing weaker correlations, and yet darker shades representing negative correlations. The darkest shade corresponds to [image: image]. Because the stocks are arranged in industry codes orders, the block pattern seen in the figure roughly corresponds to a grouping by industry. The right panel of Figure 1 shows the distribution of components of the equal time cross-correlation matrix. This figure shows that nearly all correlations are positive. Furthermore, the right tail of the distribution is thicker than the left tail.
[image: Figure 1]FIGURE 1 | (Left) Visualization of the equal-time cross-correlation matrix for the data for 445 assets from S&P 500 from 2010 to 2019 (2,510 business days). The shade is proportional to correlation strength, with white color corresponding to [image: image] and the color becoming dark as the correlation becomes large-magnitude negative. (Right) The distribution [image: image] of components of the equal-time cross-correlation matrix. The components are almost all positive. The right tail of the distribution is thicker than the left tail.
2.2 Application of RMT
Calculation of eigenvalues [image: image] for this cross-correlation matrix produces Figure 2. Here, subscript R represents the eigenvalue rankings. The left panel of Figure 2 shows the distribution of eigenvalues. The largest eigenvalue is [image: image], and the smallest eigenvalue is [image: image]. The right panel of Figure 2 shows the distribution in the range of small eigenvalues. The solid line is the probability distribution function of the so-called Marčenko-Pastur distribution, which is derived from RMT in the limit [image: image] and [image: image] by fixing [image: image]:
[image: image]
where [image: image]; [image: image] denotes Dirac’s delta function; and [image: image] is defined by
[image: image]
[image: Figure 2]FIGURE 2 | (Left) Distribution [image: image] of eigenvalues λ of the empirical equal-time cross-correlation matrix. (Right) Empirically obtained distribution [image: image] of eigenvalues λ in the range of small eigenvalues. The solid line is the Marčenko-Pastur distribution under RMT as the theoretical curve given by Eq. 5.
In this paper, [image: image] denotes the upper bound of eigenvalue λ, and [image: image] denotes the lower bound of λ.
In RMT extraction of the meaningful part of the correlation structure, empirical eigenvalues larger than [image: image] signify the meaningful part. In particular, in the cross-correlation matrix of stock returns, the largest eigenvalue corresponds to the market mode, and the remaining meaningful part correspond to group modes, such as, industry sectors. In this analysis, it was found that [image: image], so, 17 meaningful components were retained.
In traditional PCA, Monte Carlo simulations and so-called scree graphs are used to extract meaningful components. In the present method, the time series of each stock is randomly shuffled to generate an equal-time cross-correlation matrix. This manipulation breaks both the autocorrelation and the cross-correlation. It is derived from a similar concept as the application of RMT. If we construct the equal-time cross-correlation matrix from those randomly shuffled time series, we can obtain the histogram shown in the left panel of Figure 3. The solid line in this figure corresponds to the Marčenko-Pastur distribution given by Eq. 5. From this figure, we can recognize the equivalence between the traditional PCA and the application of RMT.
[image: Figure 3]FIGURE 3 | (Left) Distribution [image: image] of eigenvalues λ of the equal-time cross-correlation matrix constructed from randomly shuffled time series. The solid line represents the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5. (Right) Scree graph of eigenvalues. The abscissa represents eigenvalue rankings R, and the ordinate represents empirically obtained eigenvalues [image: image]. The curve with error bars depicts the simulated distribution of eigenvalues using random shuffling (RS). To obtain this curve, we repeated this manipulation 20 times and calculated the mean value and standard deviation. Each error bar represents three times the standard deviation. The thin line with filled circles depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. The meaningful part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the randomly shuffled cross-correlation matrix is denoted as [image: image], then [image: image]. Hence, 19 meaningful components should be retained for this data set.
The right panel of Figure 3 shows the scree graph. In this figure, the abscissa corresponds to the eigenvalue rankings and the ordinate corresponds to the magnitude of eigenvalues. The curve with error bars in this figure depicts the eigenvalue distribution of the randomly shuffled cross-correlation matrix. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. If we denote the upper bound of eigenvalue derived from the randomly shuffled cross-correlation matrix as [image: image], we obtain [image: image]. Hence, there are 19 meaningful components in the dataset.
2.3 Application of the RRS
As stated above, when we make a randomly shuffled cross-correlation matrix, we break both the autocorrelation and the cross-correlation conditions. However, it has been reported that the stock price has an autocorrelation tendency. Thus, we need to develop a method that preserves autocorrelation but randomizes the crosscorrelation. [16, 17] developed a method referred to as RRS. In RRS, we shuffle the empirical time-series data rotationally in the time direction and impose the periodic boundary condition:
[image: image]
Here, [image: image] is a (pseudo-) random integer that is different for each n. For example, if [image: image] for stock 1, [image: image] for stock 2, [image: image], [image: image] for stock N, the time series of normalized log returns is given by
[image: image]
Such a rotationally randomly shuffled time series allows the cross-correlation matrix to be constructed and eigenvalues to be calculated. An example is shown in the histogram in the left panel of Figure 4. The solid line in this figure corresponds to the Marčenko-Pastur distribution given by Eq. 5. This figure shows that the distribution of eigenvalues is almost the same as the Marčenko-Pastur distribution based on RMT except for the large eigenvalue range.
[image: Figure 4]FIGURE 4 | (Left) Distribution [image: image] of eigenvalues λ of the equal-time cross-correlation matrix constructed by rotational random shuffling (RRS). The solid line represents the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5. (Right) Scree graph of eigenvalues. The abscissa represents eigenvalue rankings R, and the ordinate represents empirically obtained eigenvalues [image: image]. The thin line with filled circles depicts the empirically obtained distribution of eigenvalues of the empirical equal-time cross-correlation matrix. The curve with error bars depicts the simulated distribution of eigenvalues using RRS. To obtain this curve, this manipulation was repeated 20 times, after which the mean value and standard deviation were calculated. Each error bar represents three times the standard deviation. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. The meaningful part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the RRS cross-correlation matrix is denoted as [image: image], then [image: image]. Hence, 19 meaningful components should be retained for this data set.
The right panel of Figure 4 shows the scree graph. In this figure, the abscissa corresponds to eigenvalue rankings, and the ordinate corresponds to eigenvalue magnitude. The curve with error bars in this figure depicts the eigenvalue distribution of the RRS cross-correlation matrix. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. Again, if the upper bound of eigenvalues derived from the RRS cross-correlation matrix is denoted as [image: image], then [image: image] is obtained. Hence, 19 meaningful components are retained. Although the numbers of meaningful components in RMT and RRS are equal, this result is a coincidence specific to the data set at hand.
Figure 5 shows the distribution of components of the top 20 eigenvectors, [image: image]. The thin vertical lines in these figures separate business sectors. RMT suggests that the distribution of the components of each eigenvector is given by the Poter-Thomas distribution:
[image: image]
[image: Figure 5]FIGURE 5 | Distribution of components of the top 20 eigenvectors, [image: image]. The abscissa represents n, and the ordinate represents to the components [image: image] of eigenvector [image: image]. Here, R is the eigenvalue rankings. The thin vertical lines in these figures separate business sectors.
The first eigenvector [image: image] consists of components of similar magnitude and is referred to as the market mode. In the second eigenvector, there is a negative peak in the rightmost sector, which corresponds to the utility sector. In the third eigenvector, there is a negative peak in the left sector, which corresponds to the bank sector. In the fourth eigenvector, there is a positive peak in the middle sector, which corresponds to the oil and gas equipment and service sector. In the fifth eigenvector, there is a negative peak in the right middle sector, which corresponds to the REIT sector. The panels from the sixth eigenvector to the 20th eigenvector have peaks in some sectors containing a small number of assets. However, sometimes it is difficult to extract the meaning of each principal component. Thus, the correlation matrix was split into three parts:
[image: image]
It is important to understand why the largest eigenvalue and the corresponding eigenvector are referred to as representing the market mode. The market index on day t is denoted as [image: image] and defines it by the scalar product of [image: image] and the first eigenvector [image: image]:
[image: image]
i.e., weighting the average return with the weight given by the first eigenvector. On the other hand, the S&P 500 is used to characterize the entire market. The normalized log return on day t from open to close of the S&P 500 is denoted as [image: image]. Figure 6 shows the scatter plot of [image: image] vs. [image: image]. This figure shows that [image: image] and [image: image] exhibit a strong, positive correlation. The dashed line in this figure shows a linear function with the slope given by Pearson’s correlation index [image: image] and with the intercept equal to 0. This correlation coefficient is almost the same as that obtained by [5].
[image: Figure 6]FIGURE 6 | Scatter plot of the normalized S&P 500 index [image: image] and the normalized market index [image: image]. The dashed line is linear function with slope ρ, which is Pearson’s correlation index, equal to 0.852, and intercept equal to 0.
3 APPLICATION OF CHPCA AND HHD
In this section, the complex correlation matrix is defined. RRT is then applied to distinguish the meaning components from the noise components, and CHPCA is introduced. After that, HHD is presented in order to clarify the lead-lag relationships among assets.
3.1 Complex Correlation Matrix
A simple definition of different-time correlation is given by [image: image]. However, if N and T are extremely large, a huge number of combinations must be investigated. Therefore, a complex correlation matrix is introduced to overcome this problem.
We consider the Fourier transform of the daily log returns of asset n as represented by
[image: image]
where [image: image]. The Hilbert transform of [image: image] is given by
[image: image]
We define a complex log return [image: image] as
[image: image]
where i denotes an imaginary unit defined by [image: image]. For each asset n, we define a time average [image: image] and a standard deviation [image: image] as follows.
[image: image]
We define the normalized complex log return [image: image] as
[image: image]
Thus, the time-average of [image: image] is zero, and its standard deviation is one. Each component of the complex correlation matrix is defined by
[image: image]
Herein, [image: image] represents the transposed complex conjugate.
The elements of the complex correlation matrix distribute on the complex plane, as shown in the upper left panel of Figure 7. The lower left panel of Figure 7 shows the distribution of the real parts of the elements of the complex correlation matrix. This distribution is almost the same as for the case of the equal-time cross-correlation matrix shown in the right panel of Figure 1. The upper right panel of Figure 7 shows the distribution of the imaginary parts of the elements of the complex correlation matrix. This panel shows a symmetrical distribution.
[image: Figure 7]FIGURE 7 | (Upper left) Distribution of the elements [image: image] of the complex correlation matrix [image: image] in the complex plane [image: image]. (Upper right) Distribution [image: image] of the elements of the imaginal part [image: image] of the complex correlation matrix. (Lower left) Distribution [image: image] of the elements of the real part [image: image] of the complex correlation matrix.
3.2 Complex Hilbert Principal Component Analysis
Figure 8 is obtained by calculating the eigenvalues [image: image] for the cross-correlation matrix. As in Section 2.2, here the subscript R again represents the eigenvalue rankings. The left panel of Figure 8 shows the distribution of the logarithms of eigenvalues. The largest eigenvalue is [image: image], and the smallest eigenvalue is [image: image]. The right panel of Figure 8 shows the distribution in the small eigenvalue region. The solid line is the Marčenko-Pastur distribution given by Eq. 5 with [image: image].
[image: Figure 8]FIGURE 8 | (Left) Distribution [image: image] of eigenvalues λ of the empirical equal-time cross-correlation matrix. (Right) Empirically obtained distribution [image: image] of eigenvalues λ in the range of small eigenvalues. The solid line is the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5 with [image: image].
Figure 9 shows the scree graph. In this figure, the abscissa corresponds to the eigenvalue rankings and the ordinate corresponds to eigenvalue magnitudes. The curve with error bars in this figure shows the eigenvalue distribution of the RRS complex correlation matrix. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical complex cross-correlation matrix. If we again denote the upper bound for eigenvalues derived from the RRS cross-correlation matrix as [image: image] we again obtain [image: image]. Hence, 16 meaningful components are retained for this dataset.
[image: Figure 9]FIGURE 9 | Scree graph of eigenvalues. The abscissa represents eigenvalue rankings R, while the ordinate represents empirically obtained eigenvalues [image: image]. The curve with error bars in this figure shows the eigenvalue distribution of the RRS complex correlation matrix. To obtain this curve, this manipulation was repeated 20 times, after which the mean value and standard deviation were calculated. Each error bar represents three times the standard deviation. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. The meaningful part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the RRS cross-correlation matrix is denoted as [image: image], then [image: image]. Hence, 16 meaningful components should be retained for this data.
Figure 10 shows the distribution of each component for the top 16 eigenvectors [image: image] in the complex plane. In this case, the Poter-Thomas distribution, which is the null hypothesis of randomness, is given by
[image: image]
[image: Figure 10]FIGURE 10 | Distribution of components of the top 16 eigenvectors, [image: image]. In each figure, the abscissa represents [image: image], and the ordinate represents [image: image]. Here, R is the eigenvalue rankings.
In the complex plane, we regard the clockwise direction from the positive real axis as corresponding to leading components, whereas the counterclockwise direction from the positive real axis corresponds to the lagging components. Components of the first eigenvector [image: image] distribute along the positive real axis. This means that the phase difference, i.e., the difference between leading and lagging, is small for the first eigenvector. Thus, we refer to the first eigenmode as the market mode. On the other hand, components of the 2nd to 16th eigenvectors distribute over a wide region in the complex plane. This behavior suggests group structure.
3.3 Helmholtz-Hodge Decomposition
We decompose the complex correlation matrix into the meaningful part and the noise part as
[image: image]
where [image: image] represents taking the complex conjugate of a vector. The left panel of Figure 11 shows the meaningful part of the complex correlation matrix. The introduction of a lower bound for the magnitudes of elements of the principal part of the complex correlation matrix produces, the right panel of Figure 11. The components of the real matrix [image: image] are the absolute values of the components of this constrained meaningful correlation matrix. Here, [image: image] is considered the weighted adjacency matrix. The components of this matrix can then be written as
[image: image]
where [image: image] corresponds to the circular flow in the network defined by
[image: image]
[image: Figure 11]FIGURE 11 | (Left) Distribution of the components of the meaningful part of the complex correlation matrix. (Right) Distribution of the components of the constrained meaningful part of the complex correlation matrix.
On the other hand, [image: image] corresponds to the gradient flow in the network defined by
[image: image]
Here, [image: image] is the Helmholtz-Hodge potential. By using Eqs 16, 17 can be rewritten as
[image: image]
By solving Eq. 18, we obtain the Helmholtz-Hodge potential shown in Figure 12. In this figure, the leading components show a small value of the Helmholtz-Hodge potential, while the lagging components show a large value.
[image: Figure 12]FIGURE 12 | Distribution of Helmholtz-Hodge potential for each asset. The abscissa represents n, while the ordinate represents Helmholtz-Hodge potential [image: image]. The thin vertical lines in this figure separate business sectors.
The average values [image: image] of the Helmholtz-Hodge potential for some major sectors are shown in Table 1. This table shows that the semiconductors industry is the most strongly leading, while the drug manufacturing industry is the most strongly lagging. On the other hand, [28] explored 483 assets from the S&P 500 for 4-years from 2008 to 2011 (1,009 business days). He obtained the result that the financial sector is the most strongly leading, while the telecommunications and service sector is the most strongly lagging. Therefore, we suspect that the lead-lag structure depends on the gross market conditions of the period investigated. However, clarifying this suspicion is a problem for future study.
TABLE 1 | Helmholtz-Hodge potentials [image: image] for some major business sectors.
[image: Table 1]4 APPLICATION OF CHPCA TO THE PORTFOLIO THEORY: A SKETCH
As a problem for future study, we consider the application of CHPCA to construct a portfolio by following Markowitz’s portfolio theory [12]. We represent the fraction of wealth invested in asset n as [image: image]. If we denote the number of assets as K, [image: image] is normalized by
[image: image]
By using the complex log return of each asset [image: image] defined by Eq. 9, we define the complex log return of the portfolio [image: image] as
[image: image]
However, the portfolio return must be a real number, so we need to impose the following constraint:
[image: image]
The risk of the portfolio is defined by the variance:
[image: image]
Here again, the risk must be a real number, so we need to impose the following constraint:
[image: image]
Therefore, under the conditions given in Eqs 19, 21, 23, a portfolio can be created that minimizes risk under the assumed returns.
5 CONCLUSION
An analysis of price data for 445 assets from the S&P 500 from 2010 to 2019 (2,510 business days) provided the basis for an exploration of recent developments in distinguishing the meaningful part from the noise part in correlation structures in big data. Application of RMT to the equal-time cross-correlation matrix was found to be a useful method for obtaining the meaningful components of the correlation structure. However, the null hypothesis of randomness underlying RMT destroyed both real autocorrelation and real cross-correlation in the data. In order to preserve autocorrelation, we introduce RRS. In the case of this paper, the number of meaningful components for RMT and for RRS happened to be. We also introduced CHPCA for investigating the various different-time cross-correlations. By using both CHPCA and HHD, we clarified the lead-lag relationships for some major business sectors.
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Nighttime lights (NTLs) have been used as a proxy for economic growth in recent years. To verify the effectiveness of NTL in measuring regional economies, this article studies the regional economic convergence phenomenon in China’s provinces by a comparative analysis of NTL data and GDP data from 1992 to 2013. It is found that there is a significant difference between the results of club convergence between NTL and GDP; GDP high-growth clubs are mainly concentrated in the east and central areas, while NTL’s high-growth clubs are mostly concentrated in the central and west areas. Besides, the growth rate gaps between GDP clubs are relatively flat, while the growth rate gaps between NTL clubs are large. From the perspective of influencing, factors of the regional convergence, technological innovation, and industrial structure have a significant impact on GDP and NTL, and industrial structure has opposite effects on GDP clubs and NTL clubs. Besides the above factors, for NTL convergence clubs, population growth rate, economic openness, and resource consumption are also significant.
Keywords: nighttime lights, GDP, regional economies, club convergence, log t test
1 INTRODUCTION
1.1 Outlining the Problem
The nighttime lights (this study is referred to as NTLs) data released by the National Oceanic and Atmospheric Administration (NOAA) show that NTL is a unique surface landscape phenomenon; it is representing the laws of human activities on the surface of the Earth and closely related to the socio-economic development of human beings. The advancement of technology and the development of NTL data resources have led to the more widespread use of NTL data for characterizing levels of economic growth and exploring the temporal and spatial characteristics and heterogeneity of economic development. This has become a trend in several related fields, and China is one of the most commonly researched regions in the literature on applying NTL to economic and social issues [1]. On the one hand, China’s high-speed economic growth over the past 40 years has been met with great interest by global economists; on the other hand, although China’s economy has maintained rapid growth as a whole, large gaps still exist in regional economic development. As China faces a period of critical strategic opportunity for development and potential social tensions, more attention has been given to balancing economic development between different regions. Also, China’s official GDP statistics have received a question for statistical difficulties, structural incomparable, and human manipulation [2].
For the above reasons, the practice of measuring economic development with the easily obtainable and more objective NTL data has been widely adopted in China, especially in the investigation of regional economic development issues. However, these studies have not thoroughly investigated the reliability of using NTL as an indicator of regional economic gaps. Questions remain over the difference between NTL data and traditional GDP statistics in measuring regional economic disparities, the difference between the two in reflecting objective economic facts and laws, and what kind of GDP economic information can and cannot be characterized by NTL. At the same time, previous studies also ignore China’s economy’s characteristics in a transition period, including the balanced growth of multiple regional economies and the heterogeneity of economic convergence, both of which directly affect the establishment of research perspectives and selection of research methods.
Given the above problems, as well as in consideration of the regional heterogeneity of development in China and the time-varying convergence rate, this article takes China’s provincial NTL data and GDP data as the research object, breaks the traditional eastern, central, and western division of economic zones, first using the [image: image] test method based on the nonlinear time-varying factor model to find the convergence clubs of both types of data, analyze the club convergence characteristics of the two, and then use ordered logit model to explore the influencing factors of club membership. The two types of data are then compared and discussed in terms of club membership, regional distribution of members, differences in growth rate between clubs, and club membership factors. The two types of data are also differentiated according to their characteristics as economic indicators. It is hoped that these comparisons and discussions can answer the reliability of using NTL data to measure the regional economic disparities.
This work contributes to the literature in three aspects. First, the [image: image] test method based on the nonlinear time-varying factor model is introduced into the regional economic convergence study of NTL and GDP, enriching the research perspective of spatial correlation analysis between the two kinds of data. Second, using the ordered logit model to explore the factors affecting convergence is a process that clarifies the similarities and differences between the NTL and GDP data in characterizing regional economic development. It also verifies the advantages and disadvantages of analysis of economic growth performed with NTL data. Third, this study will broaden the source channels of economic growth substitution variables, and is of great significance for exploring the characteristics and reliability of NTL data as economic indicators. It will also help to promote a better coordinated and higher quality development of China’s different regions.
1.2 Literature Review
Since NTL has been shown to have a significantly high correlation with regional economic activities (GDP, GRP, etc.) and social activities (population, energy, etc.) [3–9] and NTL can be used as a proxy variable for social and economic activities. An increasing number of studies have begun to use this data to characterize the economy and study the spatial and temporal patterns of regional economies and industries [10–14], urban development [15–21], human activities and their effects [22–24], and energy consumption [22, 25]. Of special interest is the research conducted in Refs. [26–29]. These studies propose a model, based on the proof of the correlation between NTL and GDP that can use the NTL data to correct GDP. This model provides estimates of economic growth for countries whose statistical agencies lack reliability and carry great significance for studying the economics of NTL. The above research enriches the surrogate indicators of economic variables, expands the research methods available for analyzing economic and social problems, opens up research areas in other related issues, and illustrates the great potential of using NTL data in economics [30].
Before introducing NTL, many scholars used GDP as the primary source of economic research data despite some skepticism toward China’s GDP. With the widespread use of NTL in economics research, many scholars have begun using NTL data to investigate China’s economic and social problems, particularly in research related to the correlation between NTL and economic and social indicators [31–33], and in studies that use NTL data to estimate economic and social indicators [34–37]. In a study on regional differences in economic development, Liu et al. conducted an empirical investigation on the spatial differences and spillover effects of urban economic growth in China and found that the economic development of urban agglomerations shows significant spatial nonequilibrium characteristics [38]. Liu and Du use NTL data to re-examine the regional disparity and stochastic convergence characteristics of China’s economic development and helping identify further the economic development of convergence clubs in China’s various regions [39]. Based on the convergence analysis framework of the growth theory, Wang et al. utilize a dynamic panel data model to assess the dynamic trend of China’s regional economic gap and find that between 1992 and 2012, China’s initial nighttime light intensity, whether at the provincial level or the prefecture-city level, regions that initially have lower nighttime light brightness levels exhibit faster growth rates [40]. This level of growth deviates somewhat from per capita GDP trends. Ding and Zhou found that the high concentration of regional NTL on the southeast coast is consistently stable from 1992 to 2013 and is self-reinforcing. They also discovered that population growth, regional surface area, and distance from the coastline are all negatively correlated with NTL [41]. Each of these studies either directly investigates the overall convergence trend of NTL or uses NTL to characterize economic development and investigate spatial differences, convergence characteristics, and development trends of China’s regional economies, and help to shed light on the nature and heterogeneity of China’s regional economic growth model.
We believe that there are still some shortcomings in the perspectives and methods that use NTL to characterize regional economic development in research. From a research perspective, they ignore the similarities and differences between the economy represented by NTL and the economy as defined by GDP. Most studies are based on a positive correlation between NTL and the economy, directly using NTL data as a substitute for GDP data, without giving proper attention to the information that is provided by GDP but absent in NTL data, and the new information provided by NTL data but absent in GDP data. Although a few scholars have mentioned this concern, none have carried out an in-depth investigation or argumentation on the topic. In terms of research methodology, the current mainstream convergence research methods are combing with statistical indicators such as the δ convergence index, using the conditional β convergence or club convergence methods to examine the regional convergence phenomenon, and to look for the influencing factors for the regional convergence. However, these methods ignore the fact that China is in a “transition period.” When the economy must converge, and there is heterogeneity in the rate of convergence, if the income level and convergence rate of the underdeveloped regions are lower than the developed regions, there is a period in which developed regions grow faster than underdeveloped regions, but this does not affect their ultimate convergence. This period is called the “transition period.” In 1986, Deng Xiaoping put forward the Reform and Opening Up strategy of “Let a part of the population get rich first, they will carry more people into wealth, and eventually everyone will enjoy common prosperity.” Since then, China has been in the transitional period of economic transformation. Compared with the traditional tools for measuring and analyzing economic trends, the nonlinear time-varying factor model proposed by Phillips and Sul based on the convergence club division method can more accurately evaluate the transitional period of the Chinese economy [42]. This method came to be widely used in the economic convergence analysis worldwide after its proposal [43–49].
2 DATA AND METHOD
2.1 Data Sets
The most widely used NTL in the academic community is acquired by the Optical Imaging Linear Scanning Service sensor of the United States Digital Defense Meteorological Satellite Program (DMSP/OLS). The device effectively monitors radiation information such as city lights, fishing fires, and forest fires. It provides the world’s most extended time series (1992–2013) of nighttime light-to-earth observation data provided by the NOAA’s National Geophysical Data Center, including average visible lights, stable lights, and cloud-free coverage. In the stable lights images, unstable light sources such as aurora and wildfire and the interference of moonlight and clouds have been removed. The final data value is the annual average gray value of cloudless stable light, which provides a unique research perspective for human activity detection. Although the data has a low resolution (approximately l km) and lacks calibration and urban center saturation [50], the corrected DMSP/OLS data have become the most commonly used data source for NTL remote sensing research.
This article uses DMSP/OLS stable lights data from 34 provincial-level administrative regions in China from 1992 to 2013. It combines the NTL data with the GDP data to explore differences between the use of NTL and GDP in regional economic convergence research. The NTL data have been prepared and corrected by Cao et al. [51], based on well-established methods [25, 52, 53].
The average growth rates of NTL and GDP are then taken as research variables. The NTL growth rate of each region is calculated from the average value of the NTL from 1992 to 2013, so the growth rate data for a total of 21 years from 1993 to 2013. In order to remove the inflation effect, the real GDP growth rates from 1993 to 2013 are adopted in our analysis. The real GDP growth rates are retrieved from the National Bureau of Statistics and the Compilation of 60 Years of Statistics of the People’s Republic of China. The descriptive statistics for each variable can be found in Table 1.
TABLE 1 | Descriptive statistics of variables.
[image: Table 1]Between 1993 and 2013, both GDP and NTL growth rates experienced several fluctuations, and the magnitude and extent of the changes did not show significant consistency. The regions with high GDP growth rates are Inner Mongolia, Guangdong, and Tianjin. The high-growth areas with NTL are Tibet, Yunnan, and Xinjiang. Whether it is GDP or NTL, the regions with lower growth rates are concentrated in Macao, Hong Kong, and Taiwan.
2.2 Club Convergence Test
The convergence club division method proposed by Phillips and Sul is to judge the convergence of economic growth and price index changes in a transitional economy at a given level of significance and to identify and divide the convergence clubs 42. The advantage of using this method lies in that it can fully consider the heterogeneity of observed entities without the need for more stringent economic assumptions about model parameters or convergence clubs, enabling the analytic framework to be applied to a broader range of complete data that characterizes economic development.
The club convergence test method is for a nonlinear time-varying factor model:
[image: image]
where [image: image] is a time series, [image: image] is a single common component, and [image: image] is a time-varying parameter containing the perturbation term, expressing change in individual heterogeneity over time. First, the relative transfer coefficient is defined to eliminate the common factors between individuals. Only the heterogeneous time-varying features of the individual are retained, which is called the relative transition path:
[image: image]
A semiparametric model is then constructed as follows:
[image: image]
where [image: image] is a slowlychanging function that increases and diverges at infinity and [image: image] is weakly dependent upon t but is [image: image] over i. This article uses [image: image] and through regression of the equation:
[image: image]
which verifies the original hypothesis of convergence:
[image: image]
In Eq. 4, [image: image], [image: image], and T is the original length of the time series, where [image: image] represents the integer part of [image: image]. During the regression process, a small portion of r of the time series needs to be discarded, which will help focus the test’s attention on the later trend of the time series. In addition, [image: image] where [image: image] is the relative transition path in Eq. 2 and [image: image] where [image: image] is the least squares estimate of α in [image: image]. The one-sided t test is used to test [image: image] in the original null hypothesis, specifically, at the 5% significance level, if the t statistic of [image: image] is less than [image: image], then the original hypothesis of convergence is rejected.
The above test method is called the [image: image] test, which is the essential condition for judging whether there is a convergence club. The specific convergence club division is determined by sorting the sample area, selecting the core group, and adding the group member. The [image: image] test is used in both the core group selection, and the addition of group members, whereby identifying club convergence is completed.
2.3 The Ordered Logit Regression
In order to search out the various factors affecting club membership and evaluate their importance in determining club membership, this article employs the ordered logit model, based on the club convergence results, to identify the influencing factors [45]. This method can estimate how the explanatory variable variation changes the probability that a given region belongs to the affiliated club while fixing all other variables to its sample mean. In addition to the indicators of population growth rate, technological innovation covered by the neoclassical growth theory model, and human capital emphasized by the endogenous growth model, other factors that are mainly involved in the convergence of regional economic growth include the degree of opening up, marketization, employment rate, geographical factors, policy factors, and industries structures [54–60]. Considering the characteristics of China’s economic development and the results of club convergence, combined with factors that may affect economic activity and NTL, this article examines the influencing factors of club formation from six dimensions: capital investment, technological innovation, industrial structure, market vitality, economic openness, and resource consumption. Capital investment is divided into physical capital and human capital, where the physical capital is measured by fixed capital investment and the human capital is divided into the number of employees and population growth rate. The technological innovation is measured by the number of patents granted. The industrial structure is divided into industrial proportion and service industry proportion, which are respectively measured by the secondary industry output and the tertiary industry output for GDP proportion. Market vitality is measured by the total retail sales of social consumer goods. Economic openness is measured by the amount of foreign direct investment. Resource consumption is measured by the consumption of coal. In order to eliminate inflation, all nominal data are deflated based on 1993. We use the fixed asset investment price index to deflate fixed capital investment, the consumer price index to deflate consumer goods’ total retail sales, and the U.S. GDP deflation index to deflate foreign direct investment.
Considering that the club is divided according to the growth rate, all variables with the exceptions of population growth rate, industrial proportion, and service industry proportion use the increment data.
The data comes from the China Statistical Yearbook, the regional statistical yearbooks, and the China Energy Statistics Yearbook. Due to the lack of relevant data in Hong Kong, Macao, and Taiwan, convergence factor testing excludes these three regions, and only uses relevant data from the mainland’s 31 areas for the impact factor analysis.
3 RESULTS
3.1 Club Convergence in GDP Growth Rates
According to Phillips and Sul’s recommendation 42, this article takes a value of [image: image] for the [image: image] test of the GDP growth rate of China’s provinces. First, the estimation equation for the [image: image] test for China’s 34 regions is as follows:
[image: image]
It can be seen that [image: image] and [image: image]. The regression result accepts the null hypothesis of convergence, which shows that the GDP growth rates of Chinese provinces reflect a nationwide convergence trend.
Next, clubs are divided among Chinese provinces to identify economic convergence in the country. In accordance with the recommendations of Phillips and Sul, during the initial sorting process, the last [image: image] data of the entire time span of the observation values were selected 42, the top-ranking region (Inner Mongolia) was used as the reference region, and Tianjin, Chongqing, were then added to perform [image: image] regression and calculate the t statistic until the t statistic is less than [image: image]. We found that for [image: image] or [image: image] and [image: image] or [image: image]; when Chongqing was added, [image: image]. At this point the adding of regions was paused. For the group [image: image], the value of [image: image] was the largest, so the core group was confirmed as Inner Mongolia and Tianjin. Then, one region was added at a time to the core group, with 50% as the significance level, 0 was used as the critical value to check the size of the t statistic; when [image: image], it was classified as a club member. It was ultimately determined that the Club 1 members are Inner Mongolia, Tianjin, Macao, and Guangdong.
After excluding Inner Mongolia, Tianjin, Macao, and Guangdong, the [image: image] test was continued as described above. The members of the second convergence club (Chongqing, Shaanxi, Jiangsu, Shandong, Qinghai, Guizhou, Fujian, Hubei, Anhui, Tibet, Henan, Zhejiang, Hebei, and Shanghai), the third convergence club (Jilin, Sichuan, Guangxi, Jiangxi, Hunan, Liaoning, Shanxi, Ningxia, Hainan, Gansu, Yunnan, Heilongjiang, Xinjiang, and Beijing) and the fourth convergence club (Hong Kong and Taiwan) were identified. See Tables 2,3 for details. All clubs have a whole group [image: image] greater than 2, indicating that these clubs are stronger clubs. The speed of convergence [image: image] is not the same among the four clubs. Club 4 has the fastest convergence rate of 110.3%, Club 1’s convergence speed is 100.4%, and the Club 2 and 3’s convergence speed is 84.1% and 30.4%, respectively.
TABLE 2 | GDP convergence clubs.
[image: Table 2]TABLE 3 | GDP club identification process.
[image: Table 3]The trend of each region’s transition path is shown in the top panel of Figure 1. The club members have prominent convergence characteristics. In the first few years, Club 1 members’ transition paths are quite different, but in the subsequent years, it shows a characteristic of convergence. Club 2 members’ transition paths gradually narrowed in 2004 and 2005, and then the gap gradually widened, but it still converged to one club. The transition paths of Club 3 members are relatively consistent. The transition paths of Hong Kong and Taiwan included in Club 4 show a significant trend of convergence. The initial level of their transition paths is low, and the level of transition paths in 2013 is also low, which is significantly lower than the previous three clubs. It is worth noting that Macao, which has the lowest initial level, surpassed the transition paths of most regions and became a member of Club 1, reflecting the rapid growth of Macao’s GDP.
[image: Figure 1]FIGURE 1 | Top: transition path of GDP growth rate. Bottom: GDP convergence club average transition path.
At the same time, the club convergence results also showed obvious geographic effects. Both Club 1 and Club 2 are mainly concentrated in central and eastern China, except Tibet and Qinghai. While Club 3 is mostly concentrated in the western and northeast areas of China, the convergence result of the [image: image] test captures the spatial effects of GDP growth.
Each club’s transition paths were averaged, and the transition trend of each club’s overall transition path is shown in the bottom panel of Figure 1. It can be seen from the figure that in the initial years of the time series, the transition paths of Club 1 and Club 3 is relatively concentrated, but then the gap gradually widened. Club 2’s transition path was the highest at first, but eventually lags behind Club 1, especially in 2001; it was a key point in reversing the transition paths of Club 1 and 2. Overall, clubs 1, 3, and 4’s transition paths show an upward trend, while the transition path of Club 2 shows a downward trend. That is to say, the GDP transition paths of the northeast and part of the central and western regions have an upward trend. Although the eastern region took the lead at first, it has subsequently shown a downward trend. One reason for the existence of this catching-up effect may be the “Western Development” and the “Rise of the Central China” strategies introduced by the Chinese government in the early 20th century; as investment in the central and western regions continued to increase, the economic growth rate also continued to grow and even surpassed that of the eastern area.
The transition path of Club 4 has continued to decline since 1992. It also markedly differs from the other three clubs and is the club with the lowest growth rate; this is due to the social system of Hong Kong and Taiwan differing from the mainland and can be regarded as exceptional cases.
In summary, there is evidence that the GDP growth rates of China’s 34 regions exhibited club convergence from 1992 to 2013. The club identification results reflect significant geographical features and are consistent with China’s regional economic development characteristics.
3.2 Club Convergence in Nighttime Light Growth Rates
In the convergence test of nighttime lights growth rate, we also take [image: image]. First, the overall estimation equation for the [image: image] test for China’s 34 regions is:
[image: image]
It can be seen that [image: image] and [image: image], rejecting the null hypothesis of convergence. It indicates that the NTL growth rate of the Chinese provinces does not converge as a whole. The clubs were then divided into regions to identify NTL convergence in China.
For the initial sorting process, the last 2/3 of the entire period’s data was selected for ranking. Based on this ranking, Tibet ranked first and was used as the reference region. Tibet, Jiangxi, Chongqing, Qinghai, Inner Mongolia, Sichuan, Guizhou, Gansu, Ningxia, Shaanxi, Hunan, and Yunnan were then added to carry out the [image: image] regression and calculate the t statistic until the t statistic is less than [image: image]. We found that when Yunnan was added, [image: image]. Hence, the addition of regions was paused. For group [image: image], the value of [image: image] was the largest, confirming the core group as comprising Tibet, Jiangxi, and Chongqing. Each area was then added one by one into the core group. According to the t statistic, the members of the first club were finally determined to be Tibet, Jiangxi, Chongqing, Qinghai, Inner Mongolia, Sichuan, Guizhou, Gansu, Ningxia, Shaanxi, Hunan, Yunnan, Anhui, and Xinjiang.
After excluding the members of the first club, the above test method was repeated to determine the second convergence club (Zhejiang, Jiangsu, Guangxi, Hainan, Heilongjiang, Hubei, Jilin, Fujian, Henan, Shandong, Liaoning, and Tianjin), the third convergence club (Shanxi, Guangdong, and Shanghai), the fourth convergence club (Hong Kong and Macao) and separate regions not belonging to any convergence clubs (Hebei, Beijing, and Taiwan). See Tables 4,5 for details. The [image: image] value of the entire group of Clubs 1 and 3 is greater than Club 2, indicating that the convergence is relatively strong. The [image: image] value for the whole group of Clubs 2 and 4 is less than 0, indicating that their convergence is relatively weak. In terms of convergence speed, Clubs 1 and 3 have a faster convergence rate of 15.4% and 15.2%. The convergence speeds of Clubs 2 and 4 are not statistically significant.
TABLE 4 | Nighttime light convergence clubs.
[image: Table 4]TABLE 5 | NTL club identification process.
[image: Table 5]The trend of each region’s transition path is shown in the top panel of Figure 2. Except for Tibet, the growth rate of nighttime lights in all regions began to stabilize. From 2004, the growth rate gap between them has gradually opened, but there are still four clubs that are converging. Geographical effects still exist. Club 1 is mainly concentrated in the central and western China. Club 2 is mainly concentrated in the eastern and northeast areas, indicating that the convergence result also captures the spatial effect of NTL growth to a certain extent.
[image: Figure 2]FIGURE 2 | Top: NTL transition path. Bottom: NTL convergence club average transition path.
The average transition path of each club is averaged, and the transition trend of each club’s overall transition path is shown in the bottom panel of Figure 2. It can be seen from the graph that in the initial years of the time series, the transition paths of Clubs 1, 2, and 3 are relatively concentrated, and the initial growth rate of Club 4 (Hong Kongand Macao) is the lowest, even lower than the areas that do not converge. Subsequently, the transition path of Club 1 gradually increased, Club 2 had a slight downward trend, and Clubs 3 and 4 had significant downward trends. The difference in NTL growth rates between clubs has gradually increased.
In summary, there is evidence that the NTL growth rates of China’s 34 regions did not have an overall convergence during 1992–2013 but exhibited club convergence. The growth rates gap between different clubs increases with the year.
3.3 Robustness
In order to avoid the influence of the slow change function [image: image] on the results, this article uses three different situations [image: image], [image: image], and [image: image], respectively, in the robustness tests, mainly examining the robustness of club size and club member [43]. The test results of GDP growth rates are shown in Table 6. The club size and members are exactly the same for [image: image], [image: image], and [image: image], with only a slight difference in the t-values. The robustness results show that the effect of the slow-changing function on the convergence of China’s GDP club is ignorable and the GDP club convergence results are very robust.
TABLE 6 | Robustness test of GDP convergence.
[image: Table 6]The robustness tests for nighttime lights are shown in Table 7. The club size and members are exactly the same for [image: image] and [image: image], with only a slight difference in the t-values. When [image: image], the club size and members are different from the first two cases, but the club members still have a remarkable overlap with the first two cases. The robustness results show that the effect of the slow-changing function on the convergence of China’s nighttime lights club is minor and the NTL club convergence results are relatively robust.
TABLE 7 | Robustness test of NTL convergence.
[image: Table 7]3.4 Convergence Factor Testing
Due to the lack of relevant data in Hong Kong, Macao, and Taiwan, Club 4 is not included in discussing the club convergence factors for GDP and NTL. According to the principles of club classification, as the club group rank increases, the growth rate of clubs in the corresponding region is lower; on the contrary, the lower the club group ranking, the higher the growth rate of clubs in the corresponding region. The overall fit of the GDP clubs gives [image: image] with [image: image] and [image: image], indicating that the equation is relatively significant. In terms of the direction of the parameter estimation results, all variables have a negative impact on club grading, that is, as a region’s mean of these explanatory variables increases by one unit, the probability that the region will move toward a club with a higher economic growth rate will increase.
Excluding Hong Kong, Macao, Taiwan and nonconvergent regions, the overall fitting result of the NTL club gives [image: image] with [image: image] and [image: image]. The equation is relatively significant, and the direction of the parameter estimation results is different from the GDP estimation results. Fixed asset investment increment, population growth rate, patents increment, foreign direct investment increment, and coal consumption increment have a negative impact on club grading, that is, as a region’s mean of these explanatory variables increases, the probability that the region will move toward a club with a higher NTL growth rate will increase. Laborer increment, industrial share, service industry share, and total retail sales of social consumer goods increment have a positive impact on club grading, that is, as a region’s mean of these explanatory variables increases, the probability that the region will move toward a club with a lower NTL growth rate will increase.
We further calculated the marginal effects of explanatory variables on GDP club division. The results are shown in columns 2, 3, and 4 of Table 8. Clubs 1 and 2 have the same direction for each variable, which is precisely the opposite of Club 3. Among these variables, the coefficients of patents increment, secondary industry proportion, and tertiary industry proportion are significant. If the patents increment increases by a mean of 1%, the likelihood that the region belongs to Clubs 1 and 2 will increase 0.046% and 0.077%, respectively, while the likelihood of belonging to Club 3 will decrease 0.124%. If the secondary industry proportion increases by a mean of 1%, the likelihood that the region belongs to Clubs 1 and 2 will increase 0.007% and 0.012%, respectively, while the likelihood of belonging to Club 3 will decrease 0.019%. If the mean tertiary industry proportion increases by 1%, the likelihood of the region belonging to Clubs 1 and 2 will increase 0.003% and 0.004%, respectively, while the likelihood of belonging to Club 3 will decrease 0.007%. These results indicate that technological innovation and industrial structure played an essential role in promoting economic growth. In fact, the results of marginal effects are consistent with the realities of economic development. The high GDP growth clubs are mainly concentrated in the eastern regions, which have an economic development level faster than the western regions. High-tech industries are mainly concentrated in the east developed areas, and the industrial and service industries have developed rapidly since China’s economic transformation, which was initially put forward in 2001. This is an important reason why the eastern regions’ economic growth is higher than that of the central and western regions.
TABLE 8 | Marginal effect of GDP convergence clubs and NTL convergence clubs.
[image: Table 8]The marginal effect of explanatory variables on NTL club division can be seen in Table 8. Clubs 2 and 3 have the same direction of change for each variable, which is precisely the opposite of Club 1. When these data are combined with the NTL transition paths (bottom panel of Figure 2), it can be found that the transition path of Club 1 is gradually increasing, that is, the NTL growth rates increase with time and regarded as a high growth rates club. The transition paths of Clubs 2 and 3 have a downward trend, that is, the NTL growth rates decline with time and regarded as a low growth rates clubs. From the results presented in Table 8, it can be found that, with the increase of fixed capital investment, population growth rate, patents increment, foreign direct investment, and coal consumption increment, the probability that a region has a high growth rate of NTL will increase. Increases in employee increment, the secondary industrial proportion, the tertiary industrial proportion, and retail sales of social consumer goods will increase the probability that a region will have a low growth rate of NTL. The marginal effect of the population growth rate, patents increment, secondary industrial proportion, tertiary industrial proportion, foreign direct investment, and coal consumption increment is significant. If the population growth rate mean increases by 1%, the probability of region belonging to Club 1 will increase 0.023%, while the probability of belonging to Clubs 2 and 3 will decrease 0.014% and 0.009%, respectively. If the patent increment mean increases by 1%, the probability of belonging to Club 1 will increase 0.185%, while the probability of belonging to Clubs 2 and 3 will decrease 0.109% and 0.076%, respectively. If the secondary industrial proportion mean increases by 1%, the probability of belonging to Club 1 will decrease 0.017%, while the probability of belonging to Clubs 2 and 3 will increase 0.01% and 0.007%. If the mean tertiary industrial proportion is increased by 1%, the probability of belonging to Club 1 will decrease 0.017%, while the probability of belonging to Clubs 2 and 3 will increase by 0.01% and 0.007%, respectively. The influence of foreign direct investment and coal consumption increment can also be observed from Table 8.
3.5 Comparison of GDP and NTL Growth Rate Convergence Characteristics
From the perspective of club membership, we identified the common regions where the club divisions’ results coexist. We refer to these common areas as groups. Group A includes six regions (Tibet, Chongqing, Qinghai, Guizhou, Shaanxi, and Anhui), Group B contains seven regions (Jiangxi, Sichuan, Gansu, Ningxia, Hunan, Yunnan, and Xinjiang), Group C includes six regions (Jiangsu, Shandong, Fujian, Hubei, Henan, and Zhejiang), and Group D includes five regions (Guangxi, Hainan, Heilongjiang, Jilin, and Liaoning). These four groups and their corresponding clubs all appear in the two different club division results, as shown in Table 9. It can be clearly seen that in terms of the order of regional growth rate, the results of the two clubs show certain degree of difference.
TABLE 9 | Comparison of GDP and NTL club members
[image: Table 9]From the perspective of regional distribution, the maps in Figure 3 show that in GDP convergence clubs, the regions in higher ranked clubs are mainly concentrated in the central and eastern areas, that is, these regions have higher GDP growth rates. The western and northeast regions belong to clubs with a relatively low ranking and these regions have relatively low GDP growth rates. Simultaneously, Tibet and Qinghai are located in the west but are divided into the same club as the eastern coastal areas, indicating that Tibet and Qinghai’s GDP growth rates are higher than those of other western regions. In the NTL convergence clubs, the regions in higher ranked clubs are mainly concentrated in the west and central areas, which means these regions have higher NTL growth rates. The eastern and northeast regions belong to clubs with a relatively low ranking, which means these regions have relatively low NTL growth rates.
[image: Figure 3]FIGURE 3 | Club division maps.
Judging from the gap in transition paths between clubs, the difference between the two types of data is significant. Due to the particularity of the data in Hong Kong, Macao, and Taiwan, only the 31 regions in the mainland are considered. The transition paths of GDP Clubs 1, 2, and 3 show a catching-up effect. The transition paths between clubs first converge, then diverge, with a relatively flat path of divergence. The transition paths of each club are in line with the patterns of linear development. The transition paths of Clubs 1 and 3 are on rise, while Club 2 is on decline. The transition paths of NTL Clubs 1, 2, and 3 do not show a catching-up effect. With the annual increase, the transition path of each club grew intenser, showing a nonlinear development pattern. The transition path of Club 1 is on the rise, and the transition paths of Clubs 2, 3, and 4 show a downward trend.
From the perspective of influencing factors of club division, fixed capital investment increment, population growth rate, patents increment, foreign direct investment increment, and coal consumption increment have the same direction of influence on the GDP growth rate and NTL growth rate, but there are subtle differences in the significance. For the GDP growth rate, the most significant factor is patents increment, followed by industrial proportion and industrial proportion. For the NTL growth rate, in addition to the above three variables, population growth rate, foreign direct investment increment, and coal consumption increment are also significant.
4 CONCLUSION
With the development of science and technology, the easily accessible and more objective NTL data is increasingly valued and used as a surrogate variable for economic growth. Besides, China is undergoing a transitional period characterized by strategic developmental opportunities and social tensions. The consideration of regional economic convergence where convergence speed is heterogeneous is crucial for the coordinated development of regional economies. To explore the reliability of economic variables in NTL data, from the perspective of regional economic convergence, the [image: image] test based on the nonlinear time-varying factor model was used for club convergence analysis on the inter-provincial DMSP/OLS NTL data and GDP data from 1992 to 2013. It was found that between 1992 and 2013, China’s provincial NTL and GDP growth rates exhibited club convergence. The high-GDP-growth clubs are mainly concentrated in the eastern and central regions, while the high-NTL-growth clubs are mainly concentrated in the central and west regions. The GDP club’s catching-up effect between areas is consistent with the neoclassical growth model’s general conclusion. Also, the growth rate gap among clubs differs between the two data types. The growth rate gap among GDP clubs is relatively flat, while the growth rate gap among NTL clubs is large. Therefore, there is a significant difference between NTL and GDP club convergence.
This article further explored the club convergence mechanisms. We have found that patents increment, industrial proportion, and service industry proportion have a significant impact on both GDP and NTL. Among them, the increase in the proportion of industry and service industry has opposite effects on GDP clubs and NTL clubs, while the increase in patent increment has the same impact on GDP clubs and NTL clubs. This confirms that the industrial structure of eastern coastal areas has been upgraded faster than central and western regions. In addition, we found that, for NTL clubs, population growth rate, foreign direct investment, and coal consumption are also significant factors. An increase in population growth rate, foreign direct investment, and coal consumption will increase the probability that a region belongs to a high-growth club. It explains that there are also certain differences between GDP clubs and NTL clubs in terms of influencing factors.
On the whole, from 1992 to 2013, there were certain differences in the results of club convergence between China’s provincial NTL and GDP growth. The difference between NTL and GDP growth is mainly reflected in regions and influencing factors. High GDP growth regions correspond to low NTL growth regions, while low GDP growth regions correspond to high NTL growth regions. GDP growth is mainly influenced by technological innovation and industrial structure, while NTL growth is mainly affected by the population growth rate, technological innovation, industrial structure, opening to the international world, and resource consumption. The impact of industrial structure on GDP and NTL is the opposite. At present, when GDP statistics are difficult to obtain or are of low quality, a large number of studies use NTL brightness as a representative of the level of economic development. But judging from the results of this work, NTL is not a good substitute for GDP. Our results suggest that by distinguishing the connotations and differences between GDP and NTL and combining the characteristics of the two, a more reasonable alternative indicator of economic development can be constructed to make it more in line with the specific facts and laws of economic activities.
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This article focuses on the detailed network structure of the co-movement for asset returns. Based on the Chinese sector indices and Fama-French five factors, we conducted return decomposition and constructed a minimum spanning tree (MST) in terms of the rank correlation among raw return, idiosyncratic return, and factor premium. With the adoption of a rolling window analysis, we examined the static and time-varying characteristics associated with the MST(s). We obtained the following findings: 1) A star-like structure is presented for the whole sample period, in which market factor MKT acts as the hub node; 2) the star-like structure changes during the periods for major market cycles. The idiosyncratic returns for some sector indices would be disjointed from MKT and connected with their counterparts and other pricing factors; and 3) the effectiveness of pricing factors are time-varying, and investment factor CMA seems redundant in the Chinese market. Our work provides a new perspective for the research of asset co-movement, and the test of the effectiveness of empirical pricing factors.
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1 INTRODUCTION
Co-movement refers to the correlated or similar movement of two or more entities. In finance, the co-movement of asset returns is crucial to the cross-sectional diversification and management of systematic risk. It also affects the way shocks are transmitted and thus the level of systemic risk [1]. Understanding the co-movement for asset returns is essential and beneficial in the academic field and practical investment. According to the seminal work by Ref. [2], asset co-movement could be decomposed into two parts. One part is “reasonable” co-movement, which is related to the fundamentals of assets. And the other part is “excess” co-movement, or “friction-based” co-movement, which is linked to investor sentiment and is beyond the explanation of fundamental change with respect to the assets. Motivated by Ref. [2], a strand of ensuing studies have been carried out in the literature, with the adoption of the indicators in terms of R2 or its variants derived from the regression on the market performance [1, 3–5].
However, most literature has concentrated more on the co-movement between individual assets and market performance rather than that among the assets themselves. In practice, people may be more concerned with the co-dependency or cross-correlation for various assets. It was virtually realized via the indirect evaluation of the co-movement between each asset and market performance [6], because of computational complexity in early years. The overall market performance serves as the “intermediary” during the process.
Along with the sharp drop in computing costs, an increasing number of researchers have turned their attention to more direct and accurate metrics of the co-movement among the assets. In particular, based upon the network theory, a surge of literature is coming out to unveil the co-movement structures within or across asset classes. The network-based approach typically consists of the following two steps: 1) constructing the matrix in terms of cross-correlation coefficients for given assets, and thereby 2) mapping it to a graph, in which the nodes refer to the assets with links or edges connecting them.1 Therefore, the topological properties associated with the graph or network can be further obtained to describe the structure of the co-movement.
For the first step, Pearson correlation is one of the most popular methods, especially in the early literature, in which it is simple to capture the linear correlations between the assets. Some similar alternatives include partial correlation [7], co-integration [8], and lead–lag relation [9–11]. Although these approaches function well in featuring the linear correlation among assets, they fail to capture the non-linear correlation that is more prevalent in financial markets. In response, more approaches have been employed, such as copula [12], mutual information [13], and rank correlation [14]. For the second step, it is easy to build a complete graph or network based on the raw correlation matrix, containing rich and even redundant information. An information filter is necessary, and a number of network-based methods have been developed to this end. For instance, minimum spanning tree (MST, hereafter) is one of the most popular methods [15–17]. Assuming that there are a total of N nodes in the original network, N − 1 most important edges would be retained in the MST. Planar maximally filtered graph (PMFG, hereafter) has also been frequently adopted in the literature [18]. The PMFG retains more information and exhibits more robustness than the MST. It is mainly realized by the fact that the nodes have no cross-linkage on the planar. In comparison, the most intuitive way is to conduct the threshold method [19, 20], which is able to filter out all the nodes with linkage weights greater than a specific critical value.
In this work, we concentrate on the detailed co-movement of the assets proxied by industrial sector indices in China. China has witnessed rapid development in its financial market in recent decades, while some phenomena still characterize the Chinese market, including the less transparent information environment at the market and firm levels, and a more significant proportion of irrational individual investors [21]. These result in remarkably distinct performance in the stock market from other mature markets [22], which necessitates further study. Furthermore, despite rich research on the co-movement for the assets in China, insufficient attention has been paid to a more detailed co-movement structure, which plays an increasingly important role in portfolio selection and risk management. On the other hand, with the rapid development of “factor zoo” [23], the performance of assets can be attributed to the compensation for various kinds of risks or the premium for investing styles. In this vein, it pays to perform an anatomy of the co-movement structure for the asset, which is the focus of our work.
Given that the network-based approach is more informative about detailed co-movement structures than those traditional methods with respect to the linear regression model (i.e., R2 and its variants), we constructed the MST with layered structures in terms of correlations among systematic, idiosyncratic, and raw returns of assets. Based on the network theory, topological properties associated with the MST can be derived to describe the co-movement structure. For the whole sample period, we found that the MST presented a star-like connection, with the hub node being market factor MKT, and all sector nodes were connected to market factor MKT. Size factor SMB was directly linked to the sector composite (Cps), while the other three factors were connected through SMB. Our plot of the MST also implied the effectiveness of Fama-French pricing factors in China: market factor MKT played an important role, while investment factor CMA seemed redundant. These findings are consistent with the prior literature [24, 25].
With the adoption of the rolling window analysis, we observed that the topological properties associated with the network structure are time-varying. In particular, in major market cycles, the star-like structure would be accordingly changing. This is featured by the fact that a few idiosyncratic returns for sector indices would be disjointed from market factor MKT and then connected to their counterparts, which is consistent with the findings from Ref. [14]. Meanwhile, pricing factors would generally exhibit more favorable pricing efficacy.
The contributions of our work are as follows:
Our first contribution is to probe into the detailed co-movement structures of asset returns in China, to which scarce attention has been paid. In fact, to the best of our knowledge, our work is the first which is aimed for this purpose. A mounting of the literature has focused on the individual stock co-movement in China as well as the driving factors of change in the co-movement structure [11, 26], while another strand of the literature has examined the co-movement structure across the asset classes, such as that for the individual stocks in the Chinese market and other mature markets [27], and that between global oil prices and China’s commodity sectors [28]. In comparison, our focus on detailed co-movement structures of asset returns differentiates our work from the literature mentioned previously. Specifically, we conduct the return decomposition based on the Fama-French five-factor model for China and further construct the MST with layered structures. Based on this, we probe into the inter-structure for the co-movement between asset raw return and price premium, and the intra-structures for the factor premiums and idiosyncratic returns.
Our second contribution is to extend Ref. [14] by considering the weighted schemes for the co-movement structure in asset returns. The authors of Ref. [14] adopt the network-based approach to examine the asset returns’ co-movement in the US market. Based on the Fama-French three-factor model, they decompose the returns of industrial sector indices into systematic and idiosyncratic parts. They further examine the properties associated with time-varying MSTs with unweighted edges between the returns. Their results suggest that unexpected industries connect idiosyncratically through the dot-com bust. Different from their work, we focus on unweighted as well as weighted schemes in our work. Our results based on weighted schemes reveal more explicit and remarkable fluctuations in the measures for the co-movement structure for the period of major cycles in China than the results based on unweighted schemes, including the period around 2007, 2015, and 2018, corresponding to three major bursts of stock bubbles in China. In comparison, the results based on unweighted schemes convey less information, especially highlighted by our results for the intra-structure of returns’ co-movement.2
Last but more importantly, our work adds to the literature on empirical asset pricing by providing evidence of the time-varying effectiveness of pricing factors in the Chinese stock market. By conducting the rolling window analysis, our work lends support to the importance of market factor MKT but the redundancy of the investment factor CMA, which is also consistent with empirical findings in previous literature. In fact, the majority of research works focusing on asset co-movement are conducted based on cross-sectional and time-series regressions. In contrast, we employ the network-based approaches to fulfill the goal. In this regard, our research also provides a new perspective on the effectiveness evaluation of empirical pricing factors.
The article proceeds as follows: Section 2 and Section 3 introduce the method and data employed in the study; Section 4 presents empirical findings; Section 5 introduces the results of robustness check; and Section 6 concludes.
2 METHODOLOGY
2.1 Decomposition of Asset Return
Our interest is on the detailed co-movement structures for asset prices. We examine it by focusing on the inter- and intra-structures of the co-movement among raw, systematic, and idiosyncratic asset returns. Therefore, our first step is to conduct the decomposition of raw asset returns. According to the theoretical backgrounds of the macro-economy and empirical asset pricing, asset return can be explained by several common risk factors regarding fundamentals, plus the compensation for the idiosyncratic shocks whose expected value is zero [29]. In light of this, we can base on a specific popular pricing model to do the return decomposition [21, 30]. We resort to one of the most popular pricing models, that is, Fama-French five-factor model (FF5, hereafter) for the Chinese stock market [31]. More importantly, five factors from FF5 can function more favorably to describe the systematic risks and deliver better explanation power to the performance regarding individual assets and asset portfolios than Fama-French three-factor [32] and CAPM models [33–35] for China [24, 25]. Specifically, we regress the return time-series for each of the 28 sector indices against the Fama-French five factors. In this way, the idiosyncratic return for each sector indices can be captured by the residuals plus the intercept.3 The process mentioned previously can be described as follows:
[image: image]
where ERt denotes daily log return for stock index i, and RMKT denotes value-weighted market portfolio returns, both in excess of the risk-free rate; RSMB, RHML, RRMW, and RCMA constructed following Refs. [31, 36, 37] represent size, value, profitability, and investment factors, respectively. ɛi denotes the idiosyncratic return of asset i. Accordingly, the raw asset return can be split into systematic component that is captured by βMKT,iRMKT + βSMB,iRSMB + βHML,iRHML + βRMW,iRRMW + βCMA,iRCMA, and the idiosyncratic return that is captured by αi + ɛi.
2.2 Measurement of Co-Movement
As alternatives, we gauge the co-movement between each pair of return series with rank correlation, namely, Spearman’s ρ and Kendall’s τ, which are able to describe the non-linear relationship among various components based on return decomposition.4
Spearman’s ρ is equivalent to Pearson’s linear correlation applied to the rankings of each return series. Assume two return series [image: image] and [image: image], if all the ranks are distinct; then the equation could be simplified to
[image: image]
where di = rg (Ai) − rg (Bi) is the difference between the two ranks of each observation in A and B, and n is the length of each series [38].
Kendall’s τ coefficient can be defined as
[image: image]
where [image: image], and
[image: image]
According to Eq. 4, the Kendall correlation between two variables will be high when observations have similar ranks and low when observations have dissimilar ranks. Specifically, the value of τ ranges from −1 to +1. A value of −1 indicates that one’s ranking is the reverse of the other, while a value of +1 indicates that the two rankings are the same. A value of 0 indicates no relationship between them [39].
Both of the aforementioned correlation coefficients measure monotonicity relationships. Strictly speaking, the Kendall correlation is preferred over the Spearman correlation because of a smaller gross error sensitivity and a smaller asymptotic variance [40], which nevertheless makes no difference in our study. Unless noted otherwise, Spearman’s ρ is adopted as the measurement of correlation, and we leave out the superscript Spearman in the left hand of Eq. 2 in the remainder of the article.
In light of Ref. [14], we introduce a special correlation structure for the purpose of this work. In particular, we set the correlation coefficient between raw and idiosyncratic returns as one. In other words, raw return Y and its idiosyncratic component I is perfectly correlated, and together, they can be further viewed as a new type of node labeled as Z. The correlation coefficient of special nodes pair Z ∼ Z is, in fact, the correlation coefficient of their idiosyncratic components I ∼ I, and the correlation coefficient of special node and factor premium Z ∼ F equals that of its raw return and factor premium Y ∼ F. Assuming there are a total of N assets and M risk factors, that is, the size of the network is N + M, we thus obtain the correlation matrix C as follows:
[image: image]
2.3 Construction of the Network
We can construct an undirected network as follows: First, correlation matrix C formed according to Eq. 5 needs to be transformed to a distance matrix before constructing the network. We follow Ref. [41] to construct the distance measurement for nodes pair (A, B) in the network:
[image: image]
which is also proven to satisfy the properties of distance norm: 1) [image: image] if and only if A = B, 2) [image: image], and 3) [image: image].5
Second, distance matrix D constructed previously still contains rich information regarding co-movement structures. It can map to a complete graph, in which each pair of vertices is connected by an edge. However, our purpose is to conduct the study based on a more concise structure containing the most important links or edges. Accordingly, the MST is employed to filter the original network. We follow the process similar to that under Kruskal’s algorithm [42]. Specifically, the lower-diagonal elements of C are sorted in order. We then rely on the sorted values to screen out the most significant links, so as to construct an MST. The links with lower values are preferred, and all nodes are connected sequentially through the shortest distance. As a result, N + M − 1 links are retained, through which all of the N + M nodes are connected in the network, compared to a total of [image: image] edges in its complete graph.
2.4 Topological Properties of the Network
We investigate both static and dynamic co-movement structures by examining the network’s topological properties. In order to capture the detailed structure of the co-movement, the properties are required to characterize the tightness as well as the shape of the network structure. It is stressed that the results of all metrics based on both unweighted and distance-weighted (see Eq. 6) networks are presented in our work, and the comparison of the results would be conducive to detecting the effectiveness of pricing factors.
For the tightness of the entire network, we consider node distance as a proxy, disA,B, for node pair (A, B) [43–45], which acts as an intuitive but favorable measurement for the level of co-movement.6 The unweighted distance between A and B is defined as the shortest path length between them. According to Eq. 6, the weighted distance between A and B can be defined as the length of the shortest D-weighted path between them. It is noted that the weighted node distance functions better in capturing the dynamics of network tightness, given that the unweighted node distance may remain unchanged over time. To gauge the tightness of the network more accurately, we employ the indicator in terms of nodes’ distance, which is similar with network efficiency [46]:
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where disA,B represents the unweighted or weighted distance between A and B, and N + M denotes the network size. Specifically, the network structure is tight (loose), when NT is larger (smaller), thus indicating the higher (lower) level of co-movement.
In addition, we attempt to devote more attention to the sub-networks, or detailed structures of co-movement, including the inter-structure of co-movement across raw return and factor premium, and the intra-structures for idiosyncratic returns and factor premiums. As for the sub-network based on given node types, NT fails to measure the network tightness, since the nodes may be connected by other nodes outside the sub-network of our interest. We thus consider the average link size of a given sub-network as an alternative. It is defined by the following:
[image: image]
where le represents the length of link e in the network. S refers to the sub-network of our interest, while the entire network is denoted as G. It is noted that the change of link size for the entire network is controlled for in Eq. 8. By doing so, we can obtain more accurate results for the co-movement structure.7 In the case of an unweighted network, the length of link e equals one, if it exists in network S, and zero otherwise. In this regard, ∑e∈Sle is given by the total link size for all the links of network S, and ∑e∈Gle equals N + M − 1. In this vein, a larger (smaller) value of [image: image] implies the higher (lower) level of tightness, and thereby the lower (higher) level of co-movement for a given network S. In the case of a weighted network, le refers to distance measurement d depicted by Eq. 6. Thus, ∑e∈Sle and ∑e∈Gle equal the sum of d in the network S and G, respectively. When the absolute link size is fixed, a larger (smaller) value of [image: image] implies the lower (higher) level of the co-movement across the returns in given network S.
As for the shape of the network structure, we consider the node degree, node strength, and their variants as the major measurements. Node degree is defined as the number of links connecting a given node to the rest of the network. Its weighted version, or node strength, is defined as the sum of weights (or distances) of links connected to the node. Here we focus on the maximum and the standard deviation of the node degree (strength). The maximum degree of the network is defined as the degree of the node with the greatest number of edges incident to it. We define the maximum strength of the network as the strength of the node with the greatest weight of edges incident to it. Intuitively, the evolution of maximum degree (strength) indicates a time-varying network shape. The standard deviation of node degree (strength) measures the amount of dispersion of nodes’ degree (strength), which plays a more critical role in characterizing the shape of the network. Specifically, a larger (smaller) standard deviation of degree (strength) implies that the shape of the network is more inclined to be the star-like (chain-like) connection.
3 DATA
Obviously, individual stocks within the same industry or sector, or more broadly, some style of “portfolio,” share the co-movement to a large extent [2]. Therefore, we adopt the sector indices as our data sample, instead of individual stocks. By doing this, the industry effects are controlled for in our work so that a more precise co-movement structure can be further evaluated. Specifically, our work is conducted based on 28 sector indices, issued by Shenyin and Wanguo Securities Co., Ltd (http://www.swsresearch.com), and the period spans from 5 January, 2000 to 29 March, 2019. With the closing price of sector indices on a daily basis, we can further obtain their daily log returns, that is, rt = log (pt) − log (pt−1). Summary statistics associated with daily log returns for different indices are reported in Panel A of Table 1. It is noted that price limit trading rules implemented currently in China became effective since December 1996, requiring that the maximum daily price fluctuation in terms of the last closing price is ±10% for risk stocks, as highlighted by the results in the columns of Max and Min. It is also evident that each sector produces a time-series average positive profit, and the most outperformed is F&D with the return of 0.05% per day, or around 12.6% [image: image] per year. The standard deviation (std) of daily returns ranges from 1.7% to 2.3%; thus, the annualized standard deviation ranges from about 27% to 37%, which is remarkably higher than those of major assets around the world.8 In addition to these, we can observe that a majority of sector returns are negatively skewed, indicating the relatively higher possibility of a flash crash. The kurtosis is beyond five for all sector indices, accompanied with the evidence of negatively skewed distribution, which suggests that the sector indices are not normally distributed. Accordingly, this can be further confirmed by the significant statistics of Jarbe–Barque tests at the 1% level.
TABLE 1 | Descriptive statistics of log returns for 28 sector indices and the premiums for Fama-French five factors.
[image: Table 1]Additionally, for the decomposition of the asset return, we also retrieve a risk-free interest rate as well as Fama-French five factors for China on a daily basis from the China Stock Market and Accounting Research (CSMAR) database, which is the comprehensive database for Chinese business research, covering data on the Chinese stock market.9 Specifically, the risk-free interest rate is proxied by the 3 month fixed deposit benchmark interest rate published by the China Central Bank. Pricing factors are constructed strictly following Ref. [31]. Summary statistics associated with Fama-French pricing factors are also presented in Panel B of Table 1. Apparently, the market factor, MKT, outperforms other four factors and even 28 sector indices, with an annual return of 15% [image: image]. MKT has larger magnitudes of maximum (11%) and minimum (9%), thus implying the higher volatility, which can also be confirmed by its daily standard deviation of 1.7%, or around 27% per year, at least twice than those for other four factors. It is noted that although MKT is the most volatile among the factors, it is still located within the lower range of the standard deviation for sector indices. Accompanied with its highest profits, MKT produces the highest Sharpe ratio and acts as the best “asset” within the framework of portfolio theory [47]. Except for MKT, the maximum and minimum magnitudes for the other four factors are lower than 5% and 7% per day, respectively. Relatively speaking, SMB and HML are more profitable than the others, with the annual return of 10% [image: image] and 2.5% ([image: image]), respectively, while RMW and CMA produce the profits approaching zero per day. SMB and HML are more volatile, with the annual standard deviation of 12.7% and 9.5%, respectively, than 6.3% for CMA. Similarly, five factors are not normally distributed, as suggested by the results of their skewness, kurtosis, and the statistics under the Jarbe–Barque test.
4 EMPIRICAL RESULTS
4.1 Network Connectedness Over the Whole Sample Period
To begin with, we examine the results over the whole sample period. With a daily log return for 28 stock indices, we first retrieve their idiosyncratic returns by performing the regression of their raw returns on Fama-French five-factor premiums, as described by Eq. 1. Factor premium, raw return, and its corresponding idiosyncratic return are employed to calculate the correlation matrix C in terms of Spearman’s ρ. With the adoption of the distance measurement in Eq. 6, C is transformed to D, and its MST can further be obtained, as presented in Figure 1. The network comprises 33 nodes with 32 most significant linkages connecting them. The white circles in the figure represent different sector indices, while the gray ones represent pricing factors. The width of edges between nodes denotes the reciprocal of the distance between them. The edges in bold imply that the shorter the distance the closer the relationship between the connecting nodes.
[image: Figure 1]FIGURE 1 | MST for the whole sample period from 1 July 2000 to 29 March 2019. White circles denote 28 sector indices, while gray circles denote five pricing factors.
It is evident that all sector indices are connected to factor MKT, as shown in the plot of the MST, which suggests that sector indices exhibit a high degree of co-movement with market factor MKT compared to other risk factors. Apparently, market factor MKT has the maximum degree, while the other four factors are connected with other sector nodes through sector Cps. Specifically, size factor SMB is directly linked to sector Cps, while the other three factors are connected through SMB. In comparison, investment factor CMA lies in the most periphery of the MST structure.
We also notice that it is more distant between pricing factors than that between MKT and sector indices. That is, the links connecting MKT with sector indices are more preferred during the construction of the MST. In some sense, the results aforementioned also unveil the relative strength of the pricing effectiveness of risk factors in the Chinese stock market, which are in accordance with empirical findings from the literature on asset pricing. As documented in previous research works, Fama-French five factors in emerging markets behave differently from other mature markets. It is widely acknowledged that market factor MKT is not enough to capture the common risks associated with assets, and thus, “factor zoo” has been developed to fulfill this end [23]. Furthermore, new pricing factors that have been proven in mature markets are applied to emerging markets, including China. As for the Chinese market, size factor SMB and profitability factor RMW are found to function well [24], while investment factor CMA seems redundant [24, 25], and the results regarding value factor HML are mixed [24, 48, 49], which is consistent with our findings in Figure 1.
4.2 Dynamics of Network Connectedness
In order to probe into the dynamics for the co-movement among raw returns, factor premiums, and their idiosyncratic returns, rolling or moving window analysis is conducted [50–53]. It is noted that the rolling window analysis has been frequently adopted in the literature. Researchers record the behavior regarding the variable of interest in each moving window, thereby obtaining its dynamics over time. In the fields of finance, the authors of Ref. [54] put forward the famous Fama-MacBeth regression to process the panel data by evaluating the time-series estimates of slopes based on cross-sectional regression in each moving window, which has been widely employed in financial studies; recent research works include Refs. [55–58] among others. The authors of Ref. [59] propose variance decomposition based on the VAR model to detect the spillover effect of variables of interest, whose dynamics are also obtained by re-estimating the model for each moving window [60, 61]. There is a body of literature proposing the econophysics-based methods to process financial data, with the adoption of the rolling window analysis as well [62]. It is noted that the rolling window analysis has also been applied to other fields, including particle-in-cell simulation [63], recurrence plot-based complexity measurement [64], mutual information estimation [65], and the study of the dynamical response of a population [66].
As for our work, the most intuitive and efficient way is to evaluate the properties associated with the MST in each moving window and further examine their dynamic behaviors. The observations in each time window should be sufficient to guarantee a precise estimation. Following Ref. [14], the sizes of the rolling window and the step are set as 120 trading days and 1 day, respectively. As such, we follow the process similar to what is illustrated in the previous subsection, except that at each trading day t during the sample period, we construct the MST based on the data derived from the decomposition of the index return over the past period from t − 1 to t − 120. To capture the changing structure of co-movement, we examine the evolution of the topological properties of the MSTs.
We also wonder whether the topological characteristics of the network are related to market performance. To this end, we perform a rough division in terms of market performance proxied by the Shanghai Component Index (SHCI, hereafter). As shown in Figure 2, market trends over the period from January 2000 to March 2019 are roughly divided into five market cycles, which are typically composed of the phases of accumulation, mark-up, distribution, and mark-down. In the figure, the red curve represents the rising phase of the market, while the black curve represents the downward or adjusting phase. We focus on the network structures over three time periods corresponding to the three most important market cycles, namely, the periods around 2007, 2015, and 2018.
[image: Figure 2]FIGURE 2 | (Color line) Rough partition of market cycles in terms of the daily closing price of the SHCI.
The results are presented in Figures 3, 4. On the whole, our results unveil the strong correlation between the evolution of topological properties of the network structure and market cycles, regardless of which topological properties are considered.
[image: Figure 3]FIGURE 3 | (Color line) Evolution of network tightness indicator NT and weighted link size for the entire network, presented in the top and bottom panels, respectively. The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in each plot correspond to the three major market cycles.
[image: Figure 4]FIGURE 4 | (Color line) Evolution of maximum and standard deviation of node degree (strength), presented in the top and bottom panels, respectively. The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in each plot correspond to the three major market cycles.
According to Eq. 7, NT plays an important role in characterizing the level of network tightness. In the top panel of Figure 3, we can readily observe that both unweighted and weighted results vary over time and are closely related to the major market cycles, represented by the shaded parts in the plot. NT experiences a sharp decrease during all three major periods, thus indicating the lower level of co-movement. It is more pronounced in the unweighted case, since NT remains relatively stable with slight fluctuations most of the time, except for the three periods of our interest. It is also worth noting that the evolution of the average distance is not exactly coherent with the market trend. The Chinese market has witnessed the most significant bubble formation and bursting during the period around 2007, while the market cycle around 2018 is relatively insignificant. However, Figure 3 presents a seemingly more pronounced increase of the average distance realized for the period around 2018, rather than 2007. This finding can also be observed in the following results with respect to other properties. In addition, we also measure the network tightness by the link size for the entire network, as described by ∑e∈Gle according to Eq. 8. Here we focus on the results for the weighted case, as shown in the bottom panel of Figure 3. It is noted that the unweighted link size for the entire network remains the value of 32 all the time, while the result for the weighted case is obviously time-varying. Also, consistent with findings based upon the results of NT, link size exhibits a significant increase during three major periods, indicating the lower level of co-movement.
On the other hand, the node degree (strength) of the network can be employed to depict the shape of the network. The results for maximum and standard deviation of the node degree (strength) are presented in the top and bottom panels of Figure 4, respectively. The maximum degree (strength) shows the importance of the most connected node in the network, while the standard deviation of the node degree (strength) denotes the dispersion of node degree (strength) across the network. As shown in the figure, node strength is more volatile over time, while node degree remains stable, with the value being around 28 at most times.10 This implies that the degree of the remaining nodes fluctuates within a small range; accompanied with the results in the previous section, market factor MKT is supposed to be the hub node over the rolling time windows, which needs further validation. In addition, we can observe that maximum degree experiences a sharp decrease in all three market cycles, which indicates that some edges of the hub node are disjointed. Meanwhile, a pronounced increase in node strength suggests that the level of co-movement between the hub node and its connected nodes is weakening. As for the standard deviation of degree (strength), the results are basically the same as that for the maximum degree (strength). The results above imply a star-like connection in the network structure, which is also time-varying, especially over the period corresponding to major market cycles.
In order to provide more evidence about the existence of star-like connection, we further resort to the assortativity coefficient [14], and the results are shown in Figure 5. Obviously, the assortativity coefficient is changing over time and exhibits more significant fluctuations in three major cycles. It is noted that all results over the rolling windows are negative, which confirms that nodes with an extremely high degree tend to connect with nodes with very low degrees. This is also consistent with our previous findings as well as those from the prior literature [14].
[image: Figure 5]FIGURE 5 | Evolution of assortativity coefficient in terms of node strength. The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in each plot correspond to the three major market cycles.
It is noted that our results are similar to those from Ref. [14] that adopts a network-based approach to examine the asset returns’ co-movement in the US market. Based on the Fama-French three-factor model, the authors decompose the returns of industrial sector indices into systematic and idiosyncratic parts. Their results also suggest the time-varying co-movement structures over the period from 1970 to 2015 (see Figures 2, 3 from Ref. [14]). However, they observe large fluctuations of measures for co-movement structures over the period around the dot-com bubble only. It is somewhat out of surprise that no large fluctuations are observed for the period around 2008, corresponding to the Global Financial Crisis (GFC). This is partly due to their adoption of unweighted schemes, which may be insensitive to small changes in co-movement structures. Our results in the following text would further highlight this.
In addition, to further understand the MST structures in the three market cycles of our interest, we plot the MSTs for three moments that are randomly chosen out in each of the periods for three market cycles. The results are shown in Supplementary Figure S1 through Supplementary Figure S3. It is evident that compared with the results for the whole sample period in Figure 1, Supplementary Figure S1 presents a perfect star-like network, though some sector indices are disjointed from market factor MKT, and instead, they are connected to their counterparts. A similar finding is obtained by Ref. [14]. The authors also observe that MKT acts as a hub node that connects the majority of idiosyncratic returns most of the time, implying the critical role in pricing the assets, while some of the industrial sectors would be disjointed from MKT and connect with themselves through the risky periods (see Figure 6 from Ref. [14]).
The structure for pricing factors is also slightly different. Among them, value factor HML is connected with sector Steel, through which it is connected with market factor MKT. The other three factors are connected in sequence and connected with market factor MKT through sector Bank. In comparison, in the plots for 2015 and 2018, as shown in Supplementary Figures S2,3, respectively, the MST structures are remarkably different from what is suggested in Figure 1, and the nodes of sector indices are more inclined to connect with their counterparts and also with other pricing factors. Additionally, we observe that value factor HML and profitability factor RMW take up more important positions in the MST, and size factor SMB acts as the bridge for other factors. However, investment factor CMA seems less important than the other factors in the plots.
4.3 Detailed Structure of Co-Movement
With the rolling window analysis, we further attempt to acquire more information regarding the detailed structure for different node pairs. In doing so, we divide the entire network structure into three parts, that is, intra-structures for both factor premiums and idiosyncratic returns, and the inter-structure for raw return and factor premium. We will evaluate the characteristics with respect to each sub-network. Here, we employ the average link size as the main measurement of the network structure, as described in Eq. 8, instead of average distance that only captures the characteristics associated with the entire network structure.
4.3.1 Inter-Structure for Raw Return and Factor Premium
Figure 6 presents the results with respect to the inter-structure of co-movement between raw return and factor premium. Similar to previous results, the unweighted result of the link size is less volatile. Specifically, in the result of the unweighted case, its fluctuation is around 0.95 over most periods, which suggests that about 95% of connected edges in the network exist between the sector indices and pricing factors. In comparison, the weighted results fluctuate more frequently and range between 0.7 and 0.96. As to the results for the three market cycles, we can observe much more pronounced fluctuations in both cases, indicating a sudden change in the MST structure.
[image: Figure 6]FIGURE 6 | (Color line) Evolution of the average link size of intra-structure for idiosyncratic returns of sector indices. The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in each plot correspond to the three major market cycles.
It is noted that the results for three major market cycles are mixed. For the periods around 2007 and 2018, both unweighted and weighted values exhibited a sharp decline with wild fluctuation, implying a loose network structure. In comparison, the results over the period around 2015 were different. The unweighted value remains stable, while the weighted value peaks instead of slumping down, suggesting the lower level of co-movement.
4.3.2 Intra-Structure for Idiosyncratic Returns
The results in Figure 7 reveal important changes in the network structures for major market cycles. The average link size in the figure remains zero most of the time, which indicates no connection exists between idiosyncratic returns in the network. We have already obtained the results for the whole sample period in Figure 1 that sector indices are all connected through market factor MKT. However, in some time windows, such as three major cycles, the connectivity for idiosyncratic returns is significantly enhanced, regardless of whether it is in the weighted or unweighted case. This may be caused by the characteristics embedded in the MST. As the correlation between sector nodes and common risk factors is weakened, they have to connect to other nodes instead. On the other hand, this also implies the possibility of potential pricing factors hiding in idiosyncratic returns, which requires further investigation.
[image: Figure 7]FIGURE 7 | (Color line) Evolution of the average link size of intra-structure for the idiosyncratic returns of sector indices. The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in each plot correspond to the three major market cycles.
4.3.3 Intra-Structure for Factor Premiums
Finally, we move to the results for intra-structures of co-movement for factor premiums. The results are presented in Figure 8. Unweighted results fluctuate slightly, ranging from 0% to 10%, while weighted results fluctuate frequently, but they are all within a range from 0% to 20%, and weighted average link size has a downward trend in fluctuations over time. For three major market cycles, both the weighted and unweighted results exhibit different decrease degrees. In fact, the link size for pricing factors is expected to be as small as possible. This is in line with the intention of asset pricing theory, which is to explore irrelevant but economically meaningful risk factors. As such, the co-movement between factors and assets is expected to be as strong as possible, demonstrating factor pricing effectiveness. Our results provide evidence that Fama-French five factors are not suitable for the Chinese stock market on the ground that some risk factors play their roles only in major market cycles, which is consistent with our previous finding.
[image: Figure 8]FIGURE 8 | (Color line) Evolution of the average link size of intra-structure for factor premiums and the node degree (strength) of market factor MKT, presented in top and bottom plots, respectively. The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in each plot correspond to the three major market cycles.
We attempt to explore further how Fama-French five factors are connected. We examine the evolution of node degree (strength) for each factor. Here, we report the results on the market factor MKT only, whose degree remains at a high level for most time windows. As shown in the bottom panel of Figure 8, node degree of MKT only fluctuates slightly, with the value being around 28 in the plot. This also provides evidence of a close relationship between the MKT and other sector indices. The dynamic changes of node strength over time seem to be irregular. However, for major market cycles, node strength of MKT factor would be increasing, which implies the weakening of the relationship with its connected nodes. In comparison, node degree (strength) for the other four factors fluctuates more frequently and exhibited a significant upward trend only in the major cycle around 2018, as shown in Supplementary Figure S4 through Supplementary Figure S7.
5 ROBUSTNESS CHECK
We employ alternative correlation metrics to conduct the robustness check, including Pearson’s ρ and Kendall’s τ. It is noted that similar results are obtained based on different measurements, and our main findings still hold. In addition, we also examine the sensitivity of the results when the size of the rolling step and window varies. The results also indicate that our findings are not sensitive to the settings associated with the rolling window analysis.11
6 DISCUSSION AND SUMMARY
In this work, we probe into the detailed structure of co-movement for the asset price. Specifically, using the data of Chinese sector indices and Fama-French five factors, we perform the return decomposition and construct a minimum spanning tree (MST) in terms of the rank correlation coefficients among raw return, idiosyncratic return, and factor premium.
For the whole sample period, the MST presents a star-like connection with the hub node being market factor MKT, and all sector nodes are connected to market factor MKT. We find that the topological properties associated with the network structure are time-varying in the rolling window analysis. In particular, in major market cycles, the star-like structure would be changing. This is featured by the fact that a few idiosyncratic returns for sector indices would be disjointed from market factor MKT and then connected to their counterparts. Also, pricing factors will generally exhibit more favorable effectiveness of pricing assets.
Our results imply the importance of monitoring assets’ co-movement in practice. Regulators should be alert to the structural changes in assets’ co-movement and take measures to avoid further risk spillovers. Specifically, given that strengthened co-movement of idiosyncratic returns may lead to continued amplification of risk, much more attention should be paid to industrial sectors that are disjointed from crucial risk factors. In addition, our work also provides a new perspective for the research on the co-movement structure for the asset price. The effectiveness of new pricing factors can also be evaluated within this framework. It is also noted that this work’s focus is to describe characteristics associated with the time-varying co-movement structure, whose driving forces will be left in our future work.
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FOOTNOTES
1The edge exists between the nodes for assets if they have a higher pairwise correlation, which will be detailed in the following sections. Note that “edge” and “link” are interchangeable in our work.
2Similarly, results from Ref. [14] suggest that large fluctuations of measures of co-movement structures coincide with the burst of the dot-com bubble, while they remain relatively stable for other periods with major risk events (from Figure 4 through Figure 5 in Ref. [14]). We argue that this may be, to a large extent, due to the unweighted scheme adopted by the authors.
3The efficacy of the Fama-French five-factor models for the Chinese stock market is not our focus in this work. We consider pricing factors possibly regarding fundamentals in the study to serve more favorably for our purpose of return decomposition.
4It is noted that although we report main results based on rank correlation, our findings still hold and are even more significant when Pearson’s ρ is adopted.
5It is noted that conventional method of mapping the correlation to the distance relies on [image: image] [15, 16]. In this vein, positive (negative) correlation gives rise to the short (long) distance. However, this is not what is required in our work. High magnitudes of pairwise correlations, irrespective of their directions, would imply the close relationship between the assets, on which the high level of co-movement is based. Thus, Eq. 6 serves the purposes of our work better.
6Thanks for the comment offered by one of the anonymous reviewers, and we notice that tightness of the network in our study is similar to the conception of network robustness [46]. Despite this, our work concentrates on evaluating network connectivity for assets and pricing factors. Therefore, we adopt “tightness” rather than “robustness” to highlight this focus.
7We argue that it is necessary to consider the weight changes for the edges in the network. For the inter-structure for raw return and factor premium, we observe a significant increase in the weighted link size, but a decrease in the unweighted link size. This is mainly due to the increase in distance measurement for the entire network. Unsurprisingly, the results are consistent after allowing for weight changes.
8For the recent decade, global commodities have achieved the highest annualized standard deviation of about 17%, which is obviously lower than those for sector indices in China. In the Chinese market, the majority of investors are retail investors, causing larger irrational and speculative behaviors and thereby higher volatility [22]. For more information regarding the historical volatility of worldwide assets, refer to https://advisor.visualcapitalist.com/asset-class-risk-and-return/.
9As for the detailed construction of Fama-French five factors, we refer interested readers to Ref. [31] as well as the documents by the CSMAR (https://www.gtadata.com/), which is not the focus in our study.
10It is noted that the theoretical maximum is 32, which is the number of edges in the network.
11The results mentioned previously could be provided upon the requests.
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5.35
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9.54
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JB-Stats

2,232*
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3474
2,388"
2,508
1998™
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1,687
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3,389™
2,388™
1,177
1,661*
1718™
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4,912*
10,000"
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statistical signiicance at 5% and 1%, respactively.
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Year

1900
1910
1920
1930
1940
1950
1960
1970
1981
1991
2001
2010

Number of cities

8,077
8,077
8,077
8,077
8,077
8,077
8,077
8,077
8,077
8,077
8,077
8,074

Urban population

17,802,721
19,140,404
20,482,448
22,775,879
25,114,397
27,494,367
30,071,627
33,741,276
37,771,008
39,434,102
40,703,018
46,853,613

Rate

95.7%
96.1%
96.1%
96.6%
97.0%
97.9%
98.9%
99.8%
99.4%
100.0%
99.8%
100.0%

Cities includes municipalities. Number of Cities is the number. Urban Population is the
number of people living there. Rate is the ratio of the population in the data to the total
population of Spain at the time.
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8,100
8,100
8,100
8,100
8,100
8,100
8,100
8,100
8,100
8,100
8,081

Urban population

32,963,316
36,841,563
39,396,757
41,043,489
42,398,489
47,515,537
50,623,569
54,136,547
56,666,911
56,778,031
56,871,757
60,429,103

Rate

100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%

Cities includes municipalities. Number of Cities is the number. Urban Population is the
number of people living there. Rate is the ratio of the population in the data to the total
population of ltaly at the time.





OPS/images/fphy-08-00302/fphy-08-00302-t001.jpg
Year

1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010

Number of cities

10,697
14,130
15,630
16,721
17,313
18,921
20,002
20,948
22,262
23,434
25375
24,685

Urban population

35,811,876
50,631,562
62,153,226
77,233,423
84,252,429
101,062,173
125,867,952
144,768,910
164,029,093
182,532,293
208,735,266
221,886,645

Rate

47.0%
54.9%
58.6%
62.3%
63.8%
66.8%
702%
712%
72.4%
73.4%
74.2%
716%

Cities includes municipaliies and Census-designed Plece (CDP). Number of Cities is the
number. Urban Population is the number of people living there. Rate is the ratio of the
population in the data to the total U.S. population at the time.
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T CorMN CorMrM, CorNriNy CorMrN;

0.4 ~0014 0,005 0025 0015
(~14.05) (13.13) 81.19) (12.00)

02 —0.14" 0,029 0027 0019
(-8.49) (23.92) (25.55) (11.13)

03 0003 0030 0033 0026
(1.75) (25.44) (15.06) (16.48)

0.4 0.015"* 0.039"* 0.038"* 0.032"*
©87) (13.68) (7.92) (13.58)

05 0021 0,050 0075 0,039
(15.61) (23.70) (13.47) (21.80)

06 0023 0,053 0078 0,042
(12.30) (@5.51) (16.37) (15.88)

o7 0026 0,053+ 0077+ 0.046"*
(12.68) (11.10) (23.18) (25.62)

0.8 0.030"** —0.030"" —0.011*** 0.047+*
(23.82) (~11.60) (~14.20) (14.78)

0.9 0039 ~0.006" —0015"* 0.040*
©:82) (-220) (-2.75) (11.34)

This table reports the resuils of the quantie regressions of the dynamic correlation for
four types of main-media news on the stock market. cortelation = «(xy + Blndex:

The symbols CorMNNy, CorMrivt, CorNriNy, and CoriiV; denote the dynamic correlation
between mass-media news and new-media news, mass-media news and mass-media
reprints, new-media news and new-media reprints, as well as mass-meda reprints and
new-reprints, respectively. Quantie is the quanties we used in this paper incluing 10,
20, 30, 40, 50, 60, 70, 80, and 90%. e s the constant of the quantie regression.

Bie) denotes the coeficient of four types of dynamic correlations. And t represents the
diferent quantie.

“Denotes t-test statistically significant at the 10% level.

‘Denotes t-test statisticaly significant at the 5% level.

“Denotes t-test statistically significant at the 1% level.
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This table reports the results of the panel regressions of the main media news number
on the different events about the fims for main-media news. MCOVy = B1EARN; +
oDIVEQ; + PMS&A + BaEmergi + POthery. The MmN, NNy, RMmNy, andl RNmiN,
denote the mass-media, new-media, mass-media reprints, and new-media reprints,
respectively. EARN denotes the earnings announcement. DIVEQ; denotes the dividend-
or equiy-releted event. Ms:Ay represents the mergers and acquisitions-related events.
Emergy are the emergencies that are defined in the CSMAR. Other; denotes the other

vents which are announced by the firms.
“Denotes t-test statistically significant at the 1% level.
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This table reports the results of the Panel Vector Autoregression (VAR) Model for the
main-media news. Agxt = fi + Yy Aie-1 + it + pig (model 1) and Aoz =
fi+ Sy Azit-1 + i + it (model 2). The MmNy, NNy, RMmINy, and RNmN; denote
the mass-media, new-meda, the reproduction of mass-media, and the reproduction
of new-meda, respectively. MmN, NmNi_, RMmN_,and RNmN._; denote the
news number of mass-media, new-media, the reproduction of mass-meda, and the
reprodiuction of new-medialagged 1 day, respectively. Panel A and Panelreport the results
of model (1) and model (2) respectively.

‘Denotes t-test statisticall significant at the 5% level.

“Denotes t-test statistically significant at the 1% level.
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This table reports the mutual information matrix for the deily number of the four types
of main-media news at the firn-day level. MmNy, NmNe, RMmNi, and RNmNy denote
the mass-medla, new-media, the reproduction of mass-media, and the reproduction of

new-meda, respectively.

*Denotes t-test statistically significant at the 1% level.





OPS/images/fphy-08-00179/fphy-08-00179-t007.jpg
MmN NmNy RMmN, RNmN,

PANEL A: PEARSON CORRELATION

MmN, 1

NmN, 0.704*** 1
359.9)

AMmN, 0918 0,633 1
©168) (299.7)

ANmN, 0719 0.908"** 0674 1
(@91.6) (835.4) (834.3)

PANEL B: KENDALL CORRELATION

MmN, 1

NmN 0.469"* 1
@28.9)

RMmN; 0.737*** 0.404** 1
(639.7) (295.1)

RNmN; 0.550" 0.682"* 0.501"* 1
(389.1) (639.6) (870.4)

PANEL C: SPEARMAN CORRELATION

MmN, 1

NmiN, 0532 1
(310.1)

AMImN 0.756™ 0457 1
(6520.4) (275.0)

ANmN; 0502 0.749" 0536 1
(386.3) (4753) (858.7)

This table reports the correlation matrix for the daily number of the main-media news at the
firm-dlay level. MmN, NmN,, RMmN,, and RNmN; denote the mass-media, new-media,
the reproduction of mass-media, and the reproduction of new-media, respectively.
‘Denotes t-test statistically significant at the 5% level.

“Denotes t-test statistically significant at the 1%.
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This table reports the results of the quantie regressions of the dynamic comelation
for four types of news on the stock market. correlationgy = a) + Byindex.. The
symbols CorMN,, CorMrM;, CorNrN, and CorMrN; denote the dynamic correlation
between mass-media news and new-media news, mass-media news and mass-media
reprints, new-media news and new-media reprints, as well as mass-media reprints and
new-reprints, respectively. Quantie is the quantiles we used in this paper including 10,
20, 30, 40, 50, 60, 70, 80, and 90%. a is the constant of the quantie regression.
Bie) denotes the coeffcient of four types of dynamic correlations. And © represents the
different quantile.

“Denotes t-test statistically significant at the 1% level.
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This table reports the resuts of the panel regressions of news numbers on the dfferent
events about the firns. MCOVy = pyEARNj + PaDIVEQy + BaMichy + faEmergy +
$sOther. The MmiN;, NmiNe, RMmii, and RNmN denote the mass-media, new-media,
mass-media reprints, and new-media reprints, respectively. EARN; denotes the eamings
announcement. DIVEQy denotes the dvidend- or equity-related event. M&A represents
the mergers and acquisitions-related events. Emergy are the emergencies that are defined
the CSMAR,. Other; denotes the other events which are announced by the firms.
“Denotes t-test statistically significant at the 1% level.
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PANEL B RESULTS OF MODEL (2)
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This table reports the results of the Panel Vector Autoregression (PVAR) Model for the
four types of news. Aoxe = fi + Sf Ajie—1 + dig + piy (model 1) and Aoz =
i+ St Azt + Ot + ¢ (model 2). The MmN, NNy, MmN, and RNmN, denote
the mass-media, new-meda, the reproduction of mass-media, and the reproduction
of new-media, respectively. MmNi_1, NmiNe_1, RMmN;_1,and RNmN,_; denote the
news number of mass-media, new-meda, the reproduction of mass-media, and the
reproduction of new-media lagged 1 day, respectively. Panel Aand Panel report the results
f model (1) and model (2) respectively.

“Denotes t-test statistically significant at the 1% level,
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This table reports the mutual information matrix for the daily number of the four types
of news at the firn-day level. MmNy, NmNi, RMmN;, and RNmN; denote the mass-
media, new-media, the reproduction of mass-media, and the reproduction of new-

edia, respectively.

“Denotes t-test statistically significant at the 1% level.
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This table reports the correlation matrix for the daily number of the four types of news at the
firm-dlay level. MmNy, NmN,, RMmN,, and RNmN; denote the mass-media, new-media,
the reproduction of mass-media, and the reproduction of new-media, respectively.
‘Denotes t-test statistically significant at the 5% level.

“Denotes t-test statistically significant at the 1% level.
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This table presents summary statistcs of the number of the four types of news at the
firn-clay level. MmN, NN, RMmN, and RMmN denote the mass-media, new-medi, the
reproduction of mass-media, and the reproduction of new-meia, respectively. Q1 and
Q3 represent the 25th percentile and 75th percentile, respectively.

“Denotes t-test statistically significant at the 1% level,
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0941 Telecommunications 0700 Information Technology 0857 Energy
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0700 Information Technology 6030 Financials 3968 Financials

1336 Financials 0388 Financials 0005 Financials

6837 Financials 2601 Financials 1088 Energy

2601 Financials 1299 Financials 0386 Energy

The stocks in this table are arranged from top to bottom in order of decreasing value of stock degree. The conventional industries are based on the Hang Seng Industry Classification
system (HSICS).
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Without rescue policies

Code

600118
600895
601211
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601099

Industry

Information Technology
Comprehensive

Finance & Insurance
Machinery

Wholesale & Retail Trade
Finance & Insurance
Finance & Insurance
Finance & Insurance
Finance & Insurance
Finance & Insurance

The stocks in this teble are amanged from top to bottom in order of decreasing value of
stock degree. The boldfaced stock codes in this table are also i the list of top 10 stocks
purchased by the government during the sub-period with rescue policies.
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B Mining 14 F Transportaton 9
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The conventional industries are grouped based on the China Securities Regulatory
Commission (CSRC) industry code. The basic information inclucies the indlustry code, the
full name of the industry, and the number of chosen stocks belonging to each industry.
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5.8956
4.6738
3.7333
4.6833
6.2574
5.0133
7.1628
5.0265
5.2250
3.7905
4.7222

Stable
state Il

46167
4.8030
5.7750
5.1167
$5.3000
4.9479
5.4549
5.0063
3.9033
6.5021
4.8375
7.4639
5.2521
7.1635
5.3250
5.4600
5.0500
4.8875

With rescue
policies

4.6083
5.0698
4.6000
5.2833
4.5667
5.8924
6.9706
4.6000
4.3938
8.3833
$5.2800
6.3600
3.1583
5.1672
4.7606
3.7750
4.9643
7.3542

Without rescue
policies

4.6917
3.8398
3.3000
5.4567
5.0111
4.6700
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4.9537
4.4050
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Stable  Stable  Withrescue  Without rescue

statel  statell policies policies
Stable state | 0.0000
Stablestatell 09159  0.0000
With rescue 9.4892** 8.4878" 0.0000
policies
Without rescue 12,3273 110788 —1.3552 0.0000
policies

This table reports t-statistics from the t-test. The symbols *** denote significance at the 1,
5, and 10% levels, respectively.
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ERrandom  BAscale-free WS small-world  Stock network

N 180 180 180 180
E 537 531 540 534
c 008 0.10 0.17 073
0 3 280 350 358
*® 6 3 6 593
s 6 6 6 1.63
(Ea) 1 1 1 028

N represents the number of nodes, E the number of links, C the clustering coefficient,
Iy the average shortest path length, (k) the average node degree, (s) the average node
strength, and (E,) the average link weight. The weights for the links in the ER random,
BA scalo-free and WS small-world networks are equal to 1. In the stock network, each
link weight is defined as the correlation coefficient p; for stocks i andj [31].
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Stable state | 0.0000

Stable statell  0.5183  0.0000
With rescue  —12.8112" ~12.9207""
policies
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This table reports t-statistics from the t-test. The symbols *** denote significance at the 1,

5, and 10% levels, respectively.
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The number of papers and citations give an idea of the data size involvedin the analysis
IAdapted from Refs. 1 and 2].





OPS/images/fphy-08-00135/inline_24.gif





OPS/images/fphy-08-562182/fphy-08-562182-t003.jpg
Inst./
Univ

SINP

ISC

TIFR

Calcutta

Delhi

Madras

Year

1980
1990
2000
2010
1980
1990
2000
2010
1980
1990
2000
2010
1980
1990
2000
2010
1980
1990
2000
2010
1980
1990
2000
2010

Total
papers

32

91

148
238
450
573
874

1,624

167
303
439
573
162
217
173
432
426
247
301
914
193
158
188
348

Citations

170
666
2225
1896
4,728
8410
19,167
11,497
2024
4,961
11,275
9,988
749
1511
2073
2470
2614
2,262
3,791
6,896
1317
1,044
2,177
29268

Gini
index

072
0.66
0.77
071
0.73
0.70
0.67
0.62
0.70
0.73
0.74
0.78
0.74
0.64
0.68
0.61
0.67
0.68
0.68
0.66
0.69
0.68
0.64
0.78

Pietra
index

0.49
0.47
0.57
0.52
0.56
0.53
0.50
0.45
0.52
0.54
0.55
0.59
0.56
0.48
0.50
0.45
0.49
0.52
0.51
0.49
0.53
0.52
0.47
0.58

k-index

074
0.73
0.79
0.76
0.78
0.76
0.75
0.73
0.76
077
077
079
0.78
074
074
0.73
0.75
0.76
0.76
074
0.76
0.76
073
0.79





OPS/images/fphy-08-00135/inline_25.gif
o





OPS/images/fphy-08-562182/fphy-08-562182-g009.gif
s






OPS/images/fphy-08-00135/inline_26.gif





OPS/images/fphy-08-562182/fphy-08-562182-t001.jpg
Country

Brazil
Denmark
India

Japan
Malaysia
New Zealand
Panama
Sweden
Tunisia
Uruguay
Columbia
Finland
Indonesia
Kenya
Netherlands
Norway

Sri Lanka
Tanzania
United Kingdom
Australia
Canada
Netherlands
Norway
Sweden
Switzerland
Germany
United Kingdom
United States

Gini index

0.62
0.36
0.45
0.31
0.50
0.37
0.44
0.38
0.50
0.49
0.55
047
0.44
0.61
0.44
0.36
0.40
053
0.36
0.34
034
0.31
0.31
0.29
0.38
031
034
0.36

k-index

0.73
0.63
0.66
0.61
0.68
0.63
0.66
0.64
0.69
0.68
0.70
0.67
0.65
073
0.66
0.63
0.65
0.70
0.63
0.62
062
061
0.61
0.60
0.63
0.61
062
0.63

The maximum error bar in estimated Gini and k values is =0.01 [Adapted from Ref. 1],
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The upper part of the table reports the exponential, log-normal and power law distribution,
respectively. The parameters in each distribution is computed by the method of maximum-
likeliood fitting. Furthermore, KS test is applied to examine the distribution. If P-value is
reasonably large (say, P > 0.1) [34], then the corresponding distribution is not ruled out.
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Lag 1 2 3 4 5 6 7 8 9 10

F_test 0.6664 4.0797 2.9568 2.2896 6.6669 5.8331 4.9915 5.0310 4.4082 3.9662
P_val 0.4520 0.0174 0.0319 0.0586 4.76E-06" 6.48E-06" 1.68E-05* 4.75E-06" 1.38E-05" 3E-05"

‘p_val < 0.01 indicates that the test result significantly rejects the null hypothesis and that at least one lag variable X Granger causes Y. Therefore, the orders in which X Granger
causes Y are 6, 7, 8, 9, and 10.
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Oil and Coal Products
Rubber Products
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Non-ferrous Metals

Metal Products (MP)
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Electric Appliances
Transportation Equipment
Precision Instruments.
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Commercial Services
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Real Estate (RE)

Land Transportation

Marine Transportation

Air Transportation

Warehousing and Harbor Transportation (WH)

Information and Communication
Electric Power and Gas
Professional Services

Sports Facilies (SF)
Sporting-goods Stores

Amusement, Eating, and Drinking (AED)

Resort (RES)
Hospitals and Welfare (HW)
Supermarkets.
Living-related services (LS)
Automobiles
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Public Agencies

Others

Total
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10,934
10,111
3,659
5374
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1970
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1,193
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12,171
22,311
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30,734
5,863
2,387
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13,699
185,824
24,422
35,977
15,481
14,815

# Support
175,255
830
147
43284
6,806
6,380
2,654
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3,240
1573
2,032
1,757
2,760
7,182
15,694
6,250
1,082
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15,107
12,662
7,116
17,850
654
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223
8,180
9,408
1883
13,707
4,326
1,761
30,891
8709
34918
7,641
53,808
13,824
20,200
6,378
7,953

139
210
42
16
84
91
28
28
135
51
91
60
27
19
49
55
570
7%
64
15
19
29
68
92
16
64
18
14
213
24
40
232
215
49
87
347
61

Mean
126.323
1.234
1.408
2.341
1.607
1.685
1.341
1.647
1.351
1.262
1537
1.344
1.324
2.609
1.577
1.409
1.316
1.648
1.834
1.862
1.782
2182
1.281
1.969
1.964
1.488
2371
1.275
2.242
1.355
1.327
3.366
1.539
2.155
1.793
3.453
1.767
1.781
2.427
1.863

The star beside the ID indicates that the spatial distribution of that category exhibits multifractality: The star-marked categories also have their abbreviation enclosed in brackets. The total
population (the total number of stores/facillties) in the analyzed areais shown in the third column. The number of meshes that is not empty is shown in the fourth column. These non-empty
areas are called support. The maximum and the mean population (number of stores/facilities) in a mesh on the support are shown in the fifth and the sixth columns, respectively.
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High 1 0.7906"" 05488
(7.826°") (7.826°°")
Middle 1 0.7072"
(7.70E2)

Low 1

The table represents the Pearson correlation among the three groups of banks. We

construct two groups from the sample bank. One is the core as designated by High with
the highest 10% degree centralty and another is the peripheral as designated by Low
with the lowest 10% degree centrality. The other group of banks is the Middle in table. A
two-sample Kolmogorov-Smimov test asymptotic significance value (2-tailed) is shown
in the bracket. (P <0.01) rejects the null hypothesis of the other population distributions.
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Intercept
DEGREE
DEGREE x Dummy
EIGEN

EIGEN x Dummy
CLOSE

CLOSE x Dummy
BTWN

BTWN x Dummy
DIV

Market size
Market share
Bank size
Obsenvations
Year FEs

Adj.R?

)

-7.2x10"
0.3970"
-1.1628*

0.0339*
0.0920*
-0.0193"*
-0.0622**
33,289
Yes
0.2256

(-0.1475)
(9.3934)
(-9.1987)

(4.9161)
(4.8797)

(-7.8407)

(-29.1980)

@

-1.85x10"

22.2780**
-50.1001**

0.0196™*
0.0979*
-0.0193**
-0.0628"*
33,289
Yes
0.2263

(-0.3832)

(10.6610)
(-10.2535)

2.7594)
(5.1879)
(7.9123)

(-295153)

@®)

-1.1x10"

0.3078"*
-0.8945*

0.0094
0.0927**
-0.0167"*
-0.0623"**
33,289
Yes
0.2244

(-02178)

(9.8139)
(-10.9380)

(1.2389)
(4.9039)

(-6.9458)

(-29.3096)

-6.7x10'

0.0853**
-0.1878"*
0.0338*
0.085"*
-0.0180"*
-0.0623"*
33,289
Yes
0.2266

@
(-0.1377)

(8.7560)
(-5.1339)
(49143)
(45681)
(-7.3890)
(-20.2473)

This table reports the regressions of four dimension of comnectedhess and diversifcation on ROA: degree centrality (DEGREE), eigenvector centralty (EIGEN), closeness centrality (CLOSE),
and betweenness centralty (BTWN). ROA s defined as the netincome divided by total assets. Consistent with Section 2.2, the centralty indices of the banks aremeasured for each month.

Diversification (DIV) is measured by the Shannon entropy of bank portfolo cakculated as the amount of the loans extendedto ten industries by each bank. Merket sizeis defined as thelog of
the sum of alloutstanding loans. Merket shareis defined as thelog of the amount of oans extended by each bank. Bank size is defined by log of total assets of each bank. Year fixed effects are

included to account for time characteristics. The t-statistic is reported in brackets. The symbols *,

and

indicaie statistical significance at 10%, 5%, and, 1%, respectively.
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Year

1990
1994
1998
2002
2006
2010
2014

Power law p

0.43
0.34
0.10
0.02
0.41
0.30
022

Est. a

4.23
4.43
3.76
357
4.10
an
3.49

Exponential Stretched exp Power law + Log-normal
cutoff

LR p LR p LR p LR P

232 002 1.03 030 4.44 000 -0.14 089
274 001 122 022 585 000 -047 064
429 000 087 0.06 860 000 -0.02 099
241 002 174 0.08 577 000 029 0.77
327 000 213 0.03 594 000 075 0.45
1.86 006 1.36 017 485 000 -031 0.76
1.50 0.13 117 024 4.49 000 005 096

We checked the power law test proposed by [30, 31] for the degree distribution of PMFG networks during four years. Statistically significant values are given in bold. Estimated a s the
power-law exponent of the degree distribution.
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ROA

Market size
Market share
Bank size
DIV

cCl
DEGREE
EIGEN
BTWN
CLOSE

ROA

1.00

Market size

-0.05
1.00

Market share

-0.12
037
1.00

Bank size

-0.27
0.57
0.38
1.00

DIV

-0.04
0.15
0.08
0.16
1.00

ccl

0.02
0.00
057
003
0.62
1.00

DEGREE

-0.09
-0.07
045
0.08
0.44
0.84
1.00

EIGEN

-0.09
-0.06
0.57
0.1
0.62
0.88
0.82
1.00

BTWN

0.02
-0.02
0.36
0.02
0.36
0.88
0.78
0.70
1.0

CLOSE

-0.13
0.03
0.63
0.18
0.69
0.76
0.67
0.86
0.56

1.0

This table presents correlation coeflicient of two variables. The value in Table 2 has statistical significance (o < 0.01). ROAIs defined as the net income divided by totalassets. Market sizes
defined as the natural logarithm of the sum of all outstanding loans. Market share is defined as the natural logarithm of the amount of loans extended by each bank. Bank size is defined by
natural logarithm of total assefs of each bank. Diversification (DIV) is measured by the Shannon entropy of bank portfolio calculated as the amount of loans extended to ten indlustries by
each bank. Composite centralty index (CC) is calculated by using principal component analysis of four centrality measures pertaining to the PMFG network, namely, degree centralty

(DEGREE), eigenvector centrality (EIGEN), betweenness centrality (BTWN), and closeness centrality (CLOSE.





OPS/images/fphy-08-565372/inline_146.gif
>





OPS/images/fphy-08-581994/fphy-08-581994-t001.jpg
Variables Coefficient t-value Coefficient t-value

Intercept -2.1x10'° (-0.4797) ~1.3x10"° (-0.2783)
el 0.0084"** (10.5008)
CClxDummy -0.0170"* (-6.6791)
DV 00344 (6.0023) 00216 3.0677)
Market size 0.0820"* (4.3706) 0.0850""" (4.5429)
Marketshare  -00140""  (-58422)  -0.0197** (-8.0319)
Bank size 00623 (-202561)  -00626™  (-29.3747)
Observations 33,280 33,289

Year FEs Yes Yes

Adj. R® 02224 02255

This table reports the regressions of diversification and centralty on ROA. ROAIs defined
as the net income divided by total assets. DEGREE is the degree centralty. Diversification
(DIV)is measured by the Shannon entropy of bank portfolio calculated as the amount of
joans extended to ten industries by each bank. Composite centraity index (CC) is
calculated by using principal componentanalysis of four centrality measures pertaining to
the PMFG network, namely, degree centrality (DEGREE), eigenvector centrality (EIGEN),
betweenness centraity (BTWN), and closeness centralty (CLOSE). Market size s defined
as the log of the sum of all outstanding loans. Market share is defined as the log of the
amount of loans extended by each bank. Bank size is defined by log of total assets of
each bank. Year fixed effects are included to account for time characteritics. The
t-statistc i reportediin brackets. The symbols *, , and ***indicate statistical significance
at 10%, 5%, and, 1%, respectively.
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Variables

Intercept

DV

Market size
Market share
Bank size
Observations
Year FEs

Adj. R°

-1.1x10'?
-0.0635"
00735
00372
-0.1200*
4241
Yes
02315

(-0.5748)
(-1.7079)
(13409)
(37565)
(-15.6491)

-2.1x10"
00,651**
01548
-0.0380"
-0.0650"""
7,330
Yes
02427

Peripheral

(01175)
(52336)
(40456)
(-8.1899)
(-14.8352)

We investigate the effect of diversification on ROA for (1) the core of banks and (2) perioheral of banks. ROAIis defined as net income divided by totalassets. Diversification (DIV) is measured
by the Shannon entropy of bank portfolio calculated as the amount of loans extended to ten industries by each bank. The control variable is consistent with Eq. 3. Year fixed effects are

included to account for time characteristics. The t-statistic is reported in brackets. The symbols

indicate statistical significance at 10%, 5%, and, 1%, respectively.
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Indlustry Control Control Control Control
Year Control Control Control Control
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F statistic 83.79" 8115 74217 81,59

This table shows the results of the robustness test. The dependent variable is ROA, and
the main independent variables are School_pro and CONF. The variable definitions are
presented in Table 1. We control for industry effects and year effects. The figures in
parentheses are t-statistics. *, *, *** indlcate significance at the 10, 5, and 1% confidence
levels, respectively.
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This table reports the moderating effect of institutional ownership on the relation between
Confucianism and firm performance. The variable definitions are presentedin Table 1. We

trol for industry effects and year effects. The figures in parentheses are t-statistics. *,
indicate significance at the 10, 5, and 1% confidence levels, respectively.





OPS/images/fphy-08-00319/fphy-08-00319-t003.jpg
Schoo_100
School_200
School_300
INST
Board_size
Board_ind
Man_share
Lev

Firm size
Liquidity
Fixed assets
Duality
InGDP
University
Constant
Industry
Year

R’ (%)

Sample capacity
F statistic

0.0232"**
(3.98)

00854
(13.15)

00135
(7.23)

0.0131*
(1.97)
0.0306"**
(©.67)
~0.0882""*
(-2752)
02313
(@29
0.0081
0:33)
0.1543
(1.34)
0.0213
©87)
0.0056"*
(5.28)
—0.0003"**
(-4.43)
-00010
(-0.10)
Control
Control
11.89
20,121
81.97"

00132
3.43)

0,038
(13.09)
00135
(7.22)
0.0146"
2.06)
0.0312
(10.02)

~0.0665"
(-27.03)
0.2412*
33
00103
0.41)
0.1632
(1.43)
0.0204
(0.86)
00055
(6.59)
—-0.0003"*
(-4.34)
~0.0040
(-038)
Control
Control
11.98
20,121
82.94"

0.0128"
8.32)
0.0851"**
(13.05)
0.0135™"
(7:22)
00162
(2.05)
0.0318"*
(10.03)
—0.0698""*
(-27.35)
0.2431"**
(4.54)
00114
(0.42)
0.1521
(1.25)
0.0254
0.91)
0.0052"**
(6.25)
~0.0003"**
(-4.76)
—0.0011
(=0.11)
Control
Control
1187
20,121
82,96

This table shows the impact of Confucianism on firm performance. The dependent
variable is ROA, and the main independent variable is School_num (including School 100,
School_200, and School_300). The variable definitions are presented in Table 1. We

trol for industry effects and year effects. The figures in parentheses are t-statistics.
indicate significance at the 5, and 1% confidence levels, respectively.





OPS/images/fphy-08-00319/fphy-08-00319-t002.jpg
Variable name

School_100
School_200
School 800
ROA

Tobin @
INST
Board_size
Board_ind
Man_share
Lev

Firm size
Liqidity
Fixed assets
Dualty
InGDP
University

Sample observation

20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121
20,121

Mean

0.122
0.229
0.224
0.053
3.231

0.352
2.008
0.324
0.053
0.423
21.234
22219
16.324
0.145
10.122
5.656

0.049

0.103

0.096

0.052

2.478

0.167

0.196

0.103

0.145

0.187
25.673
7.234

17.342
0.327

0.758

5.764

Minimum

0
0
0
-0.363
0.435
0.013
1.056
0
0
0
19.231
0.122
13.326
0
0.767
5.456

Median

0.132
0.242
0.243
0.027
3.125
0.345
2132
0.232
0
0.422
21.537
1.343
16.568
0
9.967
3.879

Maximum

0.223
0.505
0.501

0.831

23.742
0.865
2677
0.600
0.687
0.978
24.435
65.443
19.763

1

10.345
21.994

This table shows the descriptive statistics of the variables. The first column is the variable name, and the second column is the sample observation.
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Variable name

ROA

Tobin Q
INST
Board_size
Board_ind
Man_share
Lev

Firm size
Liquidity
Fixed assets

Duality

School_100
School 200
School 300
InGDP

University

Variable definition
Return on assets of the company

The ratio of market value to replacement value
Holding proportion of institutional shareholder

Broad size

Broad independence

Holding proportion of management

Debt to asset ratio

Firm size, measured by natural log of total assets
The average daily retum to volume in the past month

Fixed assets that are held for the production of goods or services and have a useful
life of more than one fiscal year

An indicator variable that is equal to 1 if the GEO and the chairman of the board are
the same person, and O otherwise

Number of schools within 100km from the registered address of the company
Number of schools within 200km from the registered address of the company
Number of schools within 300 km from the registered address of the company
The logarithm of the per capita GDP in the registered province

Numbers of Project 211 universities i the registered province

Description

Earnings before interest and taxes/average total
assets

Market value/total assets

Data from CSMAR database

Logarithm of the number of directors

The ratio of independent directors to all directors
Data from CSMAR database

Data from CSMAR database

Data from CSMAR database

Data from CSMAR database

Data from CSMAR database

Data from CSMAR database

Measure according to local chronicle

Statistics yearbook (Website of National Bureau of
Statistics) hitp://www.stats. gov.cn/

Website of Ministry of Education http://www.moe.
goven/

This table provides the definitions and calculations used for the variables. The first column is the variable name, the second column is the variable definition, and the third column is the

variable description.
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(051)
0.0422**
5.21)
~0.0010*
(-3.06)
-0.0312
(-021)
Control
Control
13.67
20,121
85.45"

This table shows the results of robustness test. The dependent variable is Tobin O, and the
main independent variable is the School_num (including School_100, School_200, and
School_300). Variable definitions are presented in Table 1. We also control the industry
effect and the year effect. Figures in parentheses are t-statistics. *** are significant at 1%

confidence level.
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