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Editorial on the Research Topic

From Physics to Econophysics and Back: Methods and Insights

The term “Econophysics” was coined by H. Eugene Stanley in 1995 during a statistical physics
conference on the Dynamics of Complex Systems in Kolkata, India to refer to the then emerging
interdisciplinary field of physicists working on problems in economics and finance [1]. An
interdisciplinary area of research straddling computer science, economics, finance, mathematics,
and physics, econophysics started out drawing heavily upon theories and methods developed in
nuclear physics and statistical physics. From the use of Random Matrix Theory (RMT) to
discriminate between signal and noise in financial time series data [2, 3], to the use of the Ising
model and variants to explain stylized facts of stock markets in terms of the microscopic dynamics of
traders [4–7], econophysicists have since gone on to develop methods and insights inspired by
specific problems. These include the DebtRank measure of systemic risk in banking networks [8],
and the discovery of unusual Brownianmotion dynamics in order books [9–11], amongmany others.

Unfortunately, scientists and the public are generally unaware of these contributions. Even within
the broader physics community, the fruits of econophysics remain relatively unknown. In fact, every
now and then we will find physicists, mathematicians, electrical engineers, or computer scientists
reinventing the wheel, and publish results that have been obtained by econophysicists 5–10 years ago.
The main reason for this predicament, and also econophysics methods and insights not catching on
in the broader physics community is that econophysicists tend to publish in a variety of journals with
diverse audiences. As econophysics matures as a field—it is now more than 20 years old, we feel that
it has progressed to a stage where we have derived new methods and results found nowhere else. We
believe these have the potential to contribute towards deeper understanding in other areas of physics.
This is our motivation for launching a Research Topic in Frontiers in Physics, read by serious
physicists from different research fields, so that econophysics can give back to the broader physics
community. Additionally, early econophysicists came from very different backgrounds, from those
starting out in statistical physics, to those moving on from nuclear physics, to former string theorists
and former condensed matter physicists. They have all benefitted greatly from cross fertilization
amongst themselves, as well as with economists, mathematicians, and computer scientists. Having
such a Research Topic appear in Frontiers in Physics will give the cross fertilization between
physicists and scientists from other disciplines a renewed push.
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In this Research Topic, which we called From Physics to
Econophysics and Back: Methods and Insights, we now have a
Research Topic of 30 articles. We organized them into six groups:

1. Methods;
2. Models;
3. Financial times series;
4. Financial time series cross sections;
5. Banking and macroeconomics; and
6. Urban complexity.

While Methods and Models are clearly about new and existing
econophysics methods, new methods are also introduced in the
next four groups of papers focused on developing insights.

To begin, we find many claims in finance. Some are based on
rigorous statistical analysis, while others are based on anecdotal
evidence. For example, financial time series are expected to be
more complex during crisis periods than in calm periods. In the
first group of three papers on methods, we find first the paper by
Yadav et al. who used the block decomposition method [12–14]
to probe the algorithmic complexity in financial time series cross
section data. Doing this for the daily returns ofN � 300 stocks in
NASDAQ between 1972 and 2018, over a sequence of 4-years
overlapping sliding time windows, Samal et al. found that the
2007–2009 Global Financial Crisis did not register on the results
of the first two measures, which were linear, but was clearly
present on the results of the last two measures, which were
nonlinear. Another claim tested in this Research Topic is a
recent one suggesting that cryptocurrencies, such as Bitcoin,
might also serve as safe havens. A safe haven is an instrument
or investment sector that guarantees the value of one’s capital
during periods of financial turmoil. Of these, gold and other
precious metals have been extensively tested [16–19], but the
results for other safe havens have been largely inconclusive. Using
the COVID-19 pandemic as the backdrop, Kristoufek used the
method of quantile correlation to test the possibility of using
Bitcoin as a safe haven for investors . In the method of quantile
correlation, we can evaluate separately the correlations between
small positive/negative deviations and those between large
positive/negative deviations, and in so doing avoid diluting
statistically significant signals coming from particular
quantiles. Even with this care, Kristoufek found that gold
continued to show promise as a safe haven during the
COVID-19 pandemic, but neither Bitcoin nor the broader
index of cryptocurrencies were able to do so. Finally, we find
the paper by Wang et al., testing the impact of corporate culture
(Confucianism) on firm performance. This is a claim that sounds
plausible, but is very difficult to check. To perform this check,
Wang et al. assume that Confucianist ideals and thinking become
embedded into the fabric of local communities through the
teachings of Confucianism schools after a long time, and the
closer communities are to these schools, the stronger the
influence. Therefore, as a proxy variable measuring the
influence of Confucianism on firms, Wang et al. used the
distance from the firms to schools known since the Qing
Dynasty. They then measured the performance of a firm by its
return on assets. For the 20,121 Chinese firms listed either on the

Shanghai Stock Exchange or the Shenzhen Stock Exchange, they
found that Confucianist influence does indeed improve firm
performance, at the 1% level of statistical confidence.

In the second group on market models, we find four papers
on models familiar to physicists, as well as those unfamiliar to
the physics community. For the former, Maskawa and Kuroda
wrote down a continuous random cascade model to investigate
intermittency and multifractality in financial time series.
Models on energy cascades are commonly used in the study
of turbulent fluid flow. After estimating the parameters of the
resulting Fokker-Planck equation for 111 component stocks of
the FTSE 100 index on the London Stock Exchange between
November 2007 and January 2009, Maskawa and Kuroda were
able to reproduce from model simulations multifractal features
seen in their earlier empirical study. The next paper by Sohn and
Sornette extended rational expectation theory from economics,
to explain why economic bubbles arise even when all agents
have rational expectations . In economics, agents are treated as
having independent beliefs. Sohn and Sornette showed that,
when these beliefs are correlated, the time scale at which the
market processes information can slow down dramatically,
giving rise to a bubble. This is reminiscent of how the central
limit theorem results in a normal distribution when a large
number of statistically independent random variables with finite
variance are combined [25, 26], but in distributions with fat tails
when the random variables are correlated [27–31]. The
remaining two papers in this group are on order book
models. In the first, Yamada and Mizuno, reported an
empirical study pointing to a linear correlation r � αΔV + β,
where r is the return, ΔV the executed order imbalance (number
of bids–number of asks), α and β are stock-dependent constants.
This empirical observation is important for building models of
price impact of different trade volumes. In the second, Zhao
et al. developed a multi-order book agent-based model, based on
rules on asset design, investor design, price prediction by the
agent, adaptive asset allocation, and order placing . Through
simulations, Zhao et al. found that market liquidity decreases
with increasing tick size.

Next, we find the group of seven papers on the analysis of
single financial time series data. In the paper by Mahata and
Nurujjaman, the authors first used empirical mode
decomposition (EMD) to write the stock price time series as
the sum of a set of intrinsic mode functions (IMF). The
advantages of EMD over traditional spectral methods like
Fourier transform or wavelet analysis are the far fewer basis
functions (the IMFs) needed, these basis functions can be
determined empirically from the data, and the basis functions
represent the natural time scales found in the data. The Hilbert
transform was then computed for each IMF, before R/S scaling
was carried out to estimate its Hurst exponent H. Analyzing the
stock indices of 12 different countries and the prices of six stocks
from December 1995 to July 2018, Mahata and Nurujjaman
found that indices and prices are mean-reverting at short time
scales, but have long-range correlations at long time scales. In the
paper by Liu and Chen, the authors applied the visibility graph
method to discriminate between periods of concave price
movements (accelerating price change) and periods of convex
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price movements (decelerating price change) in noisy time series
data. Analyzing eight stock market indices from 28 June 1999, to
28 June 2019, they rediscovered the well-known asymmetry
between accelerating price change and decelerating price
change. In the next paper by Zhang et al., the authors
explored machine learning methods to predict the movement
of a stock index. Zhang et al. developed a feed-forward auto-
encoder neural network with seven hidden layers using the daily
closing prices between 1 January 2010 and 31 December 2018
(2,187 trading days) of the CSI 300 index and its constituent
stocks. The model would first be trained on a four-month-
window of the data, and then its index tracking performance
tested on the 6 months following this time window. This
performance was found to be better than conventional
methods for stock selection and index tracking. Following this,
we then find two papers on information flow in stock markets.
Like most complex systems, the stock market is an open system.
Economists argue that market crashes are exogenous events,
i.e., they are triggered by information flowing in from outside
of the stock market [37, 38], whereas econophysicists are open to
endogenous explanations in terms of the interactions between
stocks in the market [39–42]. In the first of these two, Zhang et al.
analyzed the cross correlations between mass media news from
726 sources and new media news from 1,488 sources with the
returns of 3,026 stocks, and found the existence of strong cross
correlations both at equal times, as well as at various lags. In the
second paper, Yao and Li used the transfer entropy method to
investigate impacts on the stock market from economic policy
uncertainties as well as investor sentiments. As far as the Chinese
stock market is concerned, they found no information flow
directly from economic policy to the stock market, nor
indirectly from economic policy to investor sentiments to the
stock market. Finally, the stock market is only one of many
markets available to financial investors. Another popular market
is the commodities market. In this Research Topic, we have two
papers on the crude oil market. In the first paper Yang et al.
investigated the lead-lag relationship between two important
global crude oil indices between 20 May 1987 and 10 October
2017, and found the Western Texas Intermediate (WTI) leading
the Brent slightly over the entire period. In the second paper Shao
computed the Hurst exponent H. in 1-year, 2-years, and 4-years
rolling windows of the WTI and Brent closing spot prices from
14 October 2011 to 6 March 2020. They found the WTI
approaching H � 0.5, while Brent deviating from H � 0.5 after
US lifted their export ban on 18 December 2015.

Another defining feature of complex systems is the large
number of interacting variables. In a typical stock market like
the New York Stock Exchange, investors can choose from more
than 20,000 financial instruments, the majority of which are stocks.
As we have just mentioned, interactions between stocks create
endogenous forces affecting the prices of individual stocks.
Therefore, instead of studying the time series of a single stock,
or that of a stock index, econophysicists have also developed
methods to investigate cross sections of time series. Because the
stocks in these cross sections are interacting, they are often
represented as networks. In this Research Topic, we have seven
papers looking into various aspects of stocks as a network. In the

first of these Kukreti et al. reviewed recent work on correlations-
based networks of the stock market, and proposed the use of
structural entropy and eigen-entropy for monitoring how these
networks change over time. Then in the second of these Shi and
Chen investigated the co-movement of asset returns over 120-days
rolling windows advancing 1 day at a time, by first decomposing
the daily log returns of 28 sector indices between 5 January
2000 and 29 March 2019 on the Chinese stock market using
the French-Fama Five Factor Model into the value-weighted
market portfolio return (MKT), the portfolio size (SMB), the
portfolio value (HML), the portfolio probability (RMW), and
the investment factor (CMA). Then, they constructed in each
rolling window the minimum spanning tree (MST) based on
the Spearman rank correlations between the 29 sector indices
and the five factors. They found that the MST having a star-like
structure over the entire period, with MKT as the hub, and this
star-like structure changing over different parts of themarket cycle.
One common application of financial networks is to understand
the market’s response to crises. Related to this we have three
papers. In the third of these Samal et al. instead of focusing on a
single stock market, Samal et al. computed the cross correlations
between the daily closing prices of 69 global financial market
indices between 2000 and 2014. They then compared the networks
obtained by simple thresholding (keeping cross correlations above
some threshold level) and the minimal spanning trees within
growth periods as well as crisis periods and found that the
discrete edge-based Ricci curvature can be used as an indicator
of fragility in global financial markets. In the fourth of these Yang
et al. probed whether the network of stocks became stable after a
market crash. To do so, they constructed the planar maximally
filtered graphs (PMFG) [51] of the constituent stocks of the
Shanghai Stock Exchange 180 index within stable and crash
periods and computed the entropies of their degree
distributions. They found that the stock market did indeed
stabilize after market crashes. In the fifth of these Yen and
Cheong used the increasingly popular topological data analysis
(TDA) method to investigate the persistent homology of the cross
correlations between stocks in the Singapore and Taiwan stock
exchanges, as well as how these evolve over time. Based on how the
Betti numbers change from one time window to the next, they
found hints of multiple stages in market crashes. Lastly, in this
group of papers we find two on the identification of communities
and principal components in stock markets. In the sixth paper
Purqon and Jamaludin tested two hybrid methods for detecting
communities in the threshold network of cross correlations. While
the community structures discovered by the two methods are not
the same, these communities were nevertheless meaningful to
human experts. Finally, in the seventh paper Souma computed
the cross correlations between 445 component stocks of the S&P
500 index over the period 2010 to 2019 and used two methods to
extract the meaningful part of the cross correlations. In the first
method, he assumed that the eigenvalues of a fully noisy correlation
matrix would follow the Pastur-Marcenko distribution, and be
bounded between λmin and λmax. In the second method, Souma
generated a null model through random rotational shuffling of the
cross correlations, using which he extracted the meaningful part of
the correlation matrix. He then complexified the meaningful part
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of the correlation matrix using the Hilbert transform, before
analyzing the leads and lags between stocks.

The next group of five papers in this Research Topic deals with
the latest research problems in banking and macroeconomics.
The paper by Wen et al. describes network structure properties
for global remittance and found the key economics group using a
community detection method. The impact that export has on
domestic production is described by Saltarelli et al. using data
from the World Input-Output Database. Recently, the interbank
loan structure has been used to study the systemic risk in financial
market. The paper by Xiao et al. focused on the connection
between nighttime lights and GDP data, to probe regional
economic convergence in China. Traditionally, properties of
the banking system have been used to study a bank’s profit
and risk in global financial market. However, it can also be
used to investigate the systemic risk of financial system using
networks constructed from interbank loan information. Using
random matrix theory, Namaki et al. describe the evolution of
global bank network to examine the roles of individual countries.
Constructing credit and interbank networks using real-world
data, Fan and Sheng investigated the systemic risk that might
result from credit risk and contagion effect in the banking system.
Finally, the paper by Oh and Park provided a quantitative
relationship between properties of the interbank network and
bank performances, using syndicated loan data from the
United States.

Finally, in this Research Topic, we also have two papers
dealing with urban complexity, and one paper on a new
measure of inequality. In the first paper on urban complexity,
Ishikawa et al. analyzed municipal population data for the
United States, Italy, and Spain over a period of 10 years, and
found that small initial urban populations tend to decrease, but
the probability for cities to expand does not depend on the initial
population. Over 100 years, however, the populations of some
cities increase exponentially while those of other cities decrease
exponentially. In fact, large cities can also stop growing
exponentially. Recognizing the heterogeneous spatial
distribution of urban population in the second paper on urban
complexity, Ito and Ohnishi used multifractal analysis to
compare the spatial distributions of population, stores, and
facilities, to find that stores and facilities are far more
concentrated (within commercial districts) than human
population. Finally, the paper Banerjee et al. surveyed the
development of the Kolkata index for measuring social
inequality, before comparing it against other measures of
inequality like the Gini coefficient and the Pietra index.
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Remittance, one money flow between immigrants and their relatives, is a major source of

foreign exchange revenue for economies. Consisting of economies linked by the money

flows, global remittance constitutes a network. In this paper, we use bilateral remittances

of 210 economies for the time period 2010–2016 to construct a global remittance

network (GRN) and then investigate the network’s structural properties. We study the

degree distribution of the network and find that it is of heterogeneity. Analyses of centrality

measures reveal that some key economies, such as the United States, France, India and

China, are always ranked the highest. We also detect 6 communities in the network,

where economies in the same regional economy cooperative organizations tend to be

classified in the same community. Intra-community flows account for 66.07% of total

remittances, indicating that economies present the characteristic of regionalization. In

addition, the results of the topological stability test show that GRN is fragile to node

removal, particular the selective removal based on betweenness centrality.

Keywords: remittance flow, complex network, degree distribution, key economies, community structure

1. INTRODUCTION

With the intensifying globalization, human migration is an increasing social phenomenon over the
world. It leads to a huge transfer in the flow of capital, labor, and knowledge across international
boundaries [1]. From a capital view, one special money flow associated with migration is well
known as remittance. According to the World Bank, global remittances reach $613 billion in
2017 and involve more than 258 million migrants all over the world [2]. Since the remittance
flows among numerous suppliers and recipients present complicated relationships, as far as global
remittances are concerned, it is rather natural to count as a complex system.

Complex networks have proven to be a very powerful approach to characterize and
analyze a broad array of different complex systems [3–7], such as human migration [8–10],
biological mathematics [11, 12], technological [13–17] and finance systems [18–24]. These highly
inter-coupled systems have been the focus of a great number of researches, which have investigated
influential nodes of the systems. The analysis of key nodes for complex systems is of crucial
importance, as it can help in ensuring the more efficient spread of information for technological
system [13, 14], hindering crisis propagation for finance systems, and so on [19, 25–27]. In addition
to the above discussed complex systems, recently, the global remittance has been incipiently
investigated from a complex network perspective [28, 29].

Existing studies on remittance network mainly focused on node degree and strength, degree
distribution and circular pattern [28, 29]. These complex network analysis tools can well identify
influential remittance suppliers and recipients as well as collaboration pattern between two
economies. However, some economies may also play important roles as bridge in the network
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[30]. The ability of an economy to transfer the remittance from
one economy to another has not been studied yet. On the other
hand, in addition to the circular pattern between economy pair,
community has been regarded as another important topology
structure in networks [8, 30]. Yet little attention has been paid so
far to uncover the community structure of global remittance and
it still remains as a challenging open problem. Such research not
only allows a deep and clear understanding of local properties of
the remittance network itself, but also provides good guidance for
the remittance management of policy makers and ensures greater
regional cooperation.

Motivated by the above discussion, in this paper, by employing
bilateral remittance of 210 economies over the period from
2010 to 2016, we construct a global remittance network
(GRN). Moreover, we present a detailed study of the key
economies for GRN, including degree, degree distribution,
node strength, betweenness centrality, community structure,
topological stability and so on. The main contributions of this
paper can be summarized as follows: (1) Differing somewhat
from previous studies that identify influential remittance
suppliers and recipients, we also evaluate the importance of
economies by taking fully into consideration of the intermediary
roles of economies. (2) Literature dealing with the collaboration
mechanism of economies in GRN mainly focuses on circular
pattern between economy pairs; analysis of economies in
community appears to be scarce. Our research intends to fill the
existing gap in the literature. (3) This paper originally investigates
the effect of key node removal on the topological stability of GRN,
and finds that the network is fragile to node removal, particular
the selective removal based on betweenness centrality.

The remainder of the paper is arranged as follows. In
section 2, the employed methodology related to the empirical
investigation is proposed. Section 3 provides details about the
bilateral remittance data. Section 4 presents the empirical results
and relates them to economic theory. Finally, conclusions are
drawn in section 5.

2. METHODOLOGY

This section first proposes a network modeling approach to
characterize the global remittance. Then, it introduces a variety
of complex network analysis tools, such as degree, degree
distribution, node strength, betweenness centrality, community
structure and so on.

2.1. Construction of GRN
The global remittance network is represented by a set G =
(V ,E), where economies V = (v1, v2, · · · , vn) are denoted as
the network nodes and remittance flows set E as the network
edges [31]:

E = eij, (1)

where eij is accumulated remittance from economy i to economy
j (i 6= j) during a certain period, while self-loops (i = j) are
not permitted. Therefore, an adjacency matrix E is constructed
to characterize the directed weighted network.

2.2. Topological Properties of Networks
2.2.1. Degree, Degree Distribution and Node Strength
Degree ki of a node is the number of edges that the node is
connected to. In directed networks, the notion of degree can be
further extended to the in-degree kini and out-degree kouti , which
are defined as follows [20]:

kini =
N

∑

j=1

aji, kouti =
N

∑

j=1

aij, (2)

where aij denotes the indicator function that yields 1 if there is
a directed edge from node i to j, and 0, otherwise. While N is
the total number of nodes in the network. Moreover, the identity
ki = kini + kouti holds.

Since different nodes have various degrees, the degree
distribution is used to describe the probability distribution of
these degrees over the network. The degree distribution is
given by:

P(k) =
nk

N
, (3)

where nk is the number of nodes with degree k.
In weighted networks, the edges between nodes are no

longer treated as binary interactions, but are measured by their
magnitudes. Thus, node strength si is proposed to measure the
sum of edge weights of i toward its neighbors. Likewise the
degree, the notion of node strength can be decomposed into
the in-strength sini and out-strength souti . The in-strength and
out-strength in (4) below are extended from (2), respectively [20]:

sini =
N

∑

j=1

eji, souti =
N

∑

j=1

eij, (4)

where sini represents the sum of edge weights inbound to node
i, while souti computes the sum of edge weights outbound from
node i.

2.2.2. Betweenness Centrality
Intuitively, a node will be critical if a large number of shortest
paths pass through the node. Therefore, betweenness Bi is
proposed to measure the intermediality or bridge property of a
node—the ability to transfer flows from one node to another [32].
The formulas in directed network are as follows:

Bi =
∑

j,l
j 6=l 6=i

Njl(i)

Njl
, CB(vi) =

Bi

(N − 2)(N − 1)
, (5)

where Njl is the number of shortest paths from node j to l; Njl(i)
is the number of these shortest paths that pass through node i.
CB(vi) is normalized to a range from 0 to 1.

2.2.3. Community Structure
Numerous real-world networks take the form of community
structures, within which the connections between nodes
are stronger than connections between nodes of different
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communities. In order to detect reasonable communities,
Louvain algorithm is utilized [8, 33], which is based on
modularity optimization. The notion of modularity evaluates
the density of connections inside communities compared to
connections between communities. In the case of weighted
directed network, the modularity Q is defined as [8]:

Q =
1

M

∑

i,j

[eij −
sini s

out
j

M
δ(σi, σj)], (6)

where M =
∑

ij eij. The function δ(σi, σj) only yields 1 in case
σi = σj, and 0 otherwise.

The procedure of Louvain algorithm is described as
follows [33]:

Step 1, all nodes are assigned a different community. For each
node i, we calculate the gain of modularity1Qwhen i is placed
in its neighbors’ communities. By comparing the 1Q, one can
detect the optimal community for node i. If 1Q is maximum
and positive, then node i is placed in the new community.
Otherwise, i stays in its original community. The formula of
1Q is as follows:

1Q =
[

∑

in+2si,in
2M

− (

∑

tot +si

2M
)2

]

−
[

∑

in

2M
− (

∑

tot

2M
)2 − (

si

2M
)2

]

, (7)

where
∑

in stands for the sum of the weights of the links
inside the new community,

∑

tot denotes the sum of weights
of the links incident to all nodes in the new community, si =
sini + souti , si,in is the sum of the weights of the links from i to
nodes in the new community.
Step 2, a new network is constructed whose nodes are
now the communities found during the Step 1. In the new
network, the weights of the links between nodes are given
by the sum of the weights of the links between nodes in the
corresponding two communities. We reapply Step 1 to the
resulting weighted network.
Step 3, the above steps are iterated until the maximum Q
is obtained.

3. DATA

The global remittance matrices are available from the World
Bank1, containing 210 countries or regions of the world over the
period from 2010 to 2016. The calculation of bilateral remittance
is based on International Monetary Fund (IMF) Balance and
Payments Statistics database as well as data released from central
banks, national statistical agencies, and World Bank country
desks [2].

1Bilateral remittance flows worldwide associated with this paper can be found at
https://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/
migration-remittances-data.

FIGURE 1 | The cumulative distribution of remittance.

4. EMPIRICAL RESULTS

4.1. Global Remittance Network
The global remittance consists of 210 economies and their
bilateral remittance flows. As far as the economies with low
remittances are concerned, it is natural to categorize them as
either low population countries or isolated regions, because they
take low levels of participation in remittance system. The zero-
value remittances of these economies make few contributions to
the total remittance flow [28]. Thus, specific thresholds are set to
filter out zero-value flows and ensure enormous remittance flows
in the network. In order to identify a reasonable threshold, we
analyze the magnitudes of all accumulated remittance flows.

Figure 1 shows the cumulative distribution of all accumulated
remittance flows. One should focus on the significant changes of
slope below and above 95th percentile of cumulative distribution
[30], implying that sum of the top 1,200 edges plays an important
role in the global remittance system. In order to highlight the
significant remittance relationships among economies, we filter
the original network with 210 nodes and 12,687 edges into a
core network with 172 nodes and 1,200 edges by setting the
95th percentile as a threshold. Figure 2 shows the GRN before
and after the filtering procedure. Note that some low population
countries and isolated regions are removed from the GRN,
including American Samoa, Aruba, Channel Islands and so on.

4.2. Complex Network Analysis
4.2.1. Degree Distribution
Figure 3 displays the cumulative distribution of degree on log-
log axes in the GRN. Intuitively, there exists a large number
of low-degree nodes and a small number of high-degree nodes.
Thus, the degree distribution is of asymmetry. To further identify
the degree distribution, the method of maximum-likelihood and
Kolmogorov-Smirnov (KS) test are applied.
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FIGURE 2 | Global remittance network. (A) Before filtering. (B) After filtering.

FIGURE 3 | The cumulative distribution of degree on log-log axes.

Table 1 presents the results of goodness-of-fit for three
common statistical distributions [34], i.e., exponential, log-
normal and power law distribution. Note that P = 0.00
in the case of exponential distribution. Thus, the exponential
distribution is ruled out. However, the P-values of log-normal
and power law are equal to 0.23 and 0.38, respectively, indicating
that the log-normal and power law distribution are not ruled
out. Both log-normal and power law distribution are likely fits
since they can exhibit a large number of low-degree nodes and

TABLE 1 | The results of goodness-of-fit for degree distribution.

Exponential Log-normal Power law

Distribution e−λx 1

xσ
√
2π
e−(lnx−µ)2/2σ2

x−α

Parameter λ = 13.95 µ = 1.93, σ = 1.22 α = 2.79

P-value 0.00 0.23 0.38

The upper part of the table reports the exponential, log-normal and power law distribution,

respectively. The parameters in each distribution is computed by the method of maximum-

likelihood fitting. Furthermore, KS test is applied to examine the distribution. If P-value is

reasonably large (say, P > 0.1) [34], then the corresponding distribution is not ruled out.

few high-degree nodes [35]. It implies that a small number of
core nodes play important roles in the GRN. This also provides
a theoretical basis for our subsequent analysis of key nodes in
section 4.2.2.

4.2.2. Centrality Measures
In order to identify key economies, centrality measures are
employed to evaluate the importance of economies. Figure 4
shows top 15 key economies in terms of degree, node
strength and betweenness centrality measures, respectively.
Note that the rankings based on different network centrality
measures are distinct from one another, indicating that various
economies tend to play distinct roles in GRN. However, a
number of key economies, such as the United States, France,
the United Kingdom, Germany, Spain, Italy, China, Russian
Federation and India, are always at the forefront of the
top 15 key economies, highlighting their importance in the
remittance system.

For the out-degree and out-strength centrality case, the higher
the economy’s centrality is, the larger influence it possesses in
the network. Note that the United States ranks first in both out-
degree and out-strength centrality due to its economic power
and immigration history. Further calculations show that US alone
reimburses around 24.60% of total remittances to the rest of the
world as payment, indicating that the country plays a significant
role as a remittance supplier in GRN. In addition, affluent
democracies and major oil and gas producing countries, such
as Canada, the United Kingdom, Germany, France, Hong Kong
(China), Japan, Saudi Arabia, United Arab Emirates and Kuwait,
also become primary remittances suppliers.

In terms of in-degree and in-strength centrality, economies
with high centrality are major remittance recipient countries,
mainly including developing countries with considerable labor
force like India, China, Philippines etc. A possible interpretation
is that most of labor abundant countries reap up remittances
by strategically converting abundant labor into capital [36]. In
addition, developed countries like France, Germany, Belgium
also obtain high rank of the centralities. The results do not
come as surprises given that European Union (EU) citizens are
allowed to move freely within the EU labor market. This leads
to the fact that labor mobility in common market promotes the
movement of remittances [37]. Thus, developed countries also
become remittance recipient countries.

In addition to degree and node strength centrality, an
economy’s importance in the GRN can be evaluated by
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FIGURE 4 | Top 15 important economies based on centrality measures.

betweenness centrality, which measures the ability to transfer
remittance flows from one economy to another. As shown in
Figure 4, whether weighted or not, the betweenness centralities
of the United States and France are significantly larger than
those of other economies. Therefore, the United States and
France play critical roles as bridge in the remittance system.
There could be two possible explanations on the intermediary
roles of the United States and France. On one hand, the
United States is a nation of migrants, which has close
cooperations with other economies in terms of remittance.
On the other hand, there are many major corridors in

remittance between France and its neighbor countries due to the
geographical proximity2.

4.2.3. Regional Community
The detection of communities is very important as community
structures often correspond to functional organizations [14,
33, 38]. In terms of the remittance network, communities not

2It is supported by Eurostat statistics explained, which can be
found at http://ec.europa.eu/eurostat/statistics-explained/index.php/
Personal_remittances_statistics.
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only uncover its regional structure features, but also provide
insights for understanding the collaboration mechanism among
economies in the same community. Figure 5 visualizes the
regional community structure in GRN.

As shown in Figure 5, the GRN is obviously divided into
6 communities where economies in the same community are
labeled by a specific color. For each community, we present their
major members and intra-remittances:

• C1 - The largest community, dominated by most of the
economies in EU and South America, generates $ 6.35E+05
million intra-community remittances.

• C2 - The second-largest community, mainly consisting
of Australia, the United Kingdom, the Nordic
countries and Africa, contributes to $ 1.54E+05 million
intra-community remittances.

• C3 - The third-largest community, led by the United States as
well as Central America, transfers $ 4.46E+05 million intra-
community remittances.

• C4 - The fourth-largest community, represented by theMiddle
East, possesses the largest intra-community remittances that is
$ 6.47E+05 million.

• C5 - The fifth-largest community, locating in East
Asia and Southeast Asia, holds $ 3.15E+05 million
intra-community remittances.

• C6 - The smallest community, dominated by Eastern Europe,
has $ 1.51E+05 million intra-community remittances.

It is interesting to note that economies in the same regional
economy cooperative organizations tend to be included in
the same community, such as EU and Latin American

Integration Association (LAIA) in C1, Economic Community
of West African States (ECOWAS) in C2, members of
Central American Free-Trade Agreement(CAFTA) in C3, Gulf
Cooperation Council Countries (GCC) in C4, Association of
Southeast Asian Nations(ASEAN) in C5 and Eurasian Economic
Union (EAEU) in C6. Thus, the community structure of the GRN
appears to have significant correlations with geographical and
economic factors. A possible interpretation is that labor mobility
in regional cooperative organizations promotes the movement
of remittances. Additionally, further calculations show that the
intra-community remittances of C1–C6 account for 66.07% of
total remittances in GRN, highlighting the regional integration
of the GRN.

Figure 6 describes the intra-community and inter-community
remittance flows. As Figure 6 shows, the economies belonging
to the same community form sub-units with close remittance
relationships. However, economies not only participate in
remitting within the same community, but also engage
themselves into the inter-community transfers, which account
for 33.93 % of total remittances.

4.2.4. Topological Stability Test of GRN
Remittance system may have some extreme risks such as
migration or remittance restriction, to which corresponds node
and edge removal in GRN. Such removal will affect the stability
of GRN and the normal operation of the system. The approaches
employed in robustness test of networks are usually node attack
method, which removes some nodes and all edges connected
to them from the network [39]. There are two kinds of node
attack method: one is stochastic removal method and the other

FIGURE 5 | The regional community structure in GRN. Notes: The coloring of nodes and their linkages are the same for each community, i.e., red for C1, purple for

C2, blue for C3, orange for C4, green for C5 and pink for C6. The size of a linkage corresponds to the magnitude of remittance flow.
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FIGURE 6 | Remittance matrix before and after permutation based on community structure.

FIGURE 7 | The maximum SCC size of the GRN. Notes: f is the number of removal nodes. The selective removal removes nodes in decreasing order of their centrality.

is selective removal method. The former removes some nodes
from the network in a random manner, while the latter removes
the nodes in a special order. If the structural properties, such as
connectivity, have no significant difference after the attack, it is
natural to define that the network is robust. Since the maximum
strongly connected component(maximum SCC) size measures
the connectivity of a directed network, we evaluate topological
stability by calculating the ratio w of the maximum SCC size of
the new network to that of the original network.

Figure 7 displays the topological stability test of the GRN.
As shown in Figure 7, no matter for the selective removal or

stochastic removal, when the first nodes are removed, w <

0.64, implying that network connectivity drops rapidly under
these two kinds of node attack methods. However, the impact of
selective removal on connectivity is larger than that of stochastic
removal. The same phenomenon can also be found at the
aggregate level. Note that after a number of nodes removal, the
impact of selective removal on the network is significantly larger
than that of stochastic removal. Furthermore, in comparing the
stochastic removal methods, the connectivity of the network
under betweenness (weighted betweenness) centrality-based
attack is lower than that under out-degree(out-strength)-based

Frontiers in Physics | www.frontiersin.org 7 April 2020 | Volume 8 | Article 8516

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wen et al. Global Remittance Network

attack. This indicates that selective attacks on the nodes with high
betweenness (weighted betweenness) centrality are much more
effective in the GRN. Therefore, in order to avoid the connectivity
collapse of the remittance system, policy makers should pay more
attention to major transshipment nodes.

5. CONCLUSION

To a large extent, the existing literature on the analysis of key
economies for global remittance predominantly focuses on the
influential remittance suppliers and recipients as well as circular
patterns between economy pair. Literature dealing with the
intermediary roles of the key economies, community structure
and topological stability of remittance network seems to be
scarce; such studies are however significant for us to understand
the local properties as well as the global properties of the
remittance network.

In this paper, by employing complex network approach,
we present a detailed discussion of key economies for global
remittance, and the findings can be summarized as follows: (i)
the degree distribution is of heterogeneity, suggesting that GRN
is a heterogeneous network; (ii) some key economies, such as
the United States, France, India and China, are always at the
forefront of centrality measures; (iii) 6 communities are detected,
where economies in the same regional economy cooperative
organizations tend to be classified in the same community;
(iv) 66.07% of total remittances belongs to intra-community
flows, indicating that economies present the characteristic of
regionalization; (v) GRN is fragile to node removal, particular the
selective removal based on betweenness centrality.

Although this paper builds a global remittance network and
investigates its key economies, there are still some topics worth
further studying. For example, economies play different roles in
the network due to its heterogeneity. The positions of economies

in the network might have an impact on remittance flows. Thus,
it is worth further studying the relationship between remittance
flows and economies’ positions. This will be our future study.
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Based on daily returns, we comprehensively characterize the lead-lag relationship

between Brent and WTI crude oil spot markets from 1987 to 2017 with the

non-parametric symmetric thermal optimal path (TOPS) method. The empirical results

indicate that WTI spot price leads Brent spot price slightly, which provides support to

the price leadership of WTI over Brent. However, the lead-lag relationship is volatile and

sensitive to extreme events like geopolitical conflict and policy shift. Due to the concerns

about future oil supply triggered by the two Gulf wars, both WTI and Brent experienced

extreme uncertainty and co-moved closely during wartime. Notably, the TOPS method

captures the structural break in the WTI-Brent price spread in 2011 which is influenced

by the U.S. oil export ban and transportation bottleneck. After the lift of the ban, the two

benchmark prices have reconnected. The lead-lag signals basically coincide with major

influential changes in the oil markets, which suggests that the TOPS method provides a

viable approach to reflecting the impact of extreme events on the crude oil prices motion.

Keywords: oil prices, spot market, lead-lag relationship, symmetric thermal optimal path, WTI, Brent, extreme

events

1. INTRODUCTION

Brent andWestern Texas Intermediate (WTI) are the two predominant benchmarks for crude oil in
global markets. Their price relationship has been changeable all the time. Research on properties of
their movements have been continually growing. Using copulas, Reboredo [1] reports evidence of
symmetric upper and lower tail dependence structure between crude oil prices. Adopting a rolling
estimation, Kao andWang [2] trace the changing path ofWTI information share from 1991 to 2009.
Their results demonstrate that WTI has lost the status of leading price to Brent since 2004. While
Liu et al. [3] utilize high-frequency data from 2008 to 2011 and show that WTI is more important
than Brent for price discovery process when they are co-integrated. Elder et al. [4] also find WTI
maintains a dominant role over Brent in price discovery from 2007 to 2012. Coronado et al. [5]
apply a one-tailed non-parametric Granger causality test to study the co-movements for oil prices
and alert a bi-directional feedback pattern between Brent and WTI from 2013 to 2015.

Moreover, the price spread betweenWTI and Brent is also essential to reflect the competitiveness
among the two benchmarks. Chen et al. [6] verify the structural change of WTI-Brent spread
process (December 2010). Scheitrum et al. [7] identify a breakpoint in January 2011. Caporin
et al. [8] document two structural breaks in February 2011 and October 2014. Ye and Karali [9]
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detect three structural breaks in February 2005, the second is in
December 2010 and the third is in April 2013.

Additionally, crude oil market is strongly associated to
global economy, energy policy and financial market [10–12].
Correspondingly, crude oil price is fragile and subject to sudden
incidents and shocks, such as political events, economic events
(the Asian financial crisis in 1997), energy policies (the lift of
U.S. crude oil export ban) and military conflicts (the Gulf War in
1990, the IraqWar in 2003, etc.). Thus, extensive interest has been
devoted to the evident impacts of extreme and irregular events
on crude oil markets. Zhang et al. [13] apply an empirical mode
decomposition (EMD) based event analysis to evaluate the effects
of the Persian Gulf War and the Iraq War on WTI and Brent.
They find that impact of extreme events between the two prices
exhibits no significant difference. Charles and Darné [14] discern
that particular events have a bearing on large shocks in the crude
oil prices based on the generalized autoregressive conditional
heteroskedasticity (GARCH) models. Similarly, Basistha and

FIGURE 1 | Spot price, returns, and lead-lag path
〈

x(t)
〉

from 20 May 1987 to

10 October 2017, respectively labeled by (A–C). The vertical lines mark the

outbreaks of the Gulf War and the Iraq War as well as the lift of export ban. (A)

Brent and WTI spot price. (B) Returns. (C) Lead-lag path
〈

x(t)
〉

. The gray

shades represent the periods when the consistency test is significant at the

5% level.

Kurov [15] examine the impact of monetary policy shocks on
energy prices and find different response patterns. Luong et al.
[16] document that WTI and Brent have reintegrated since the
lift of the U.S. crude oil export ban.

Though numerous researchers have investigated the crude oil
markets and their interaction, the interlinkages and dynamics
between WTI and Brent during extreme events is still a
substantial point of discussion. In this paper, we investigate the
time-dependent lead-lag relationship between the Brent andWTI
crude oil spot price during 1987–2017 via the symmetric thermal
optimal path (TOPS) method developed by Meng et al. [17]. The
two non-parametric approaches can effectively identify the time-
dependent lead-lag correlation between two time series, which
have been applied to financial market [12, 18–23]. The TOPS
method is an improved version of the novel thermal optimal path
(TOP) method [24–26] with smaller biases and higher accuracy.

The TOP/TOPS method does not confirm the genuine
causality but provides information on the time lag between two
series [17, 24]. Moreover, crude oil price is highly sensitive
to a variety of factors like policy changes and geopolitical
events. Therefore, one should be careful when examining
the price discovery of crude oil market via TOPS method.
Further information is needed to determine the price leadership
relationship. In this manuscript, we mainly focus on the
time dependent lead-lag relationship between the two markets.
Inspired by Jiang et al. [27], we separate the whole sample into
four time periods by the outbreak of the Gulf War, the Iraq War
and the lift of U.S. crude oil export ban to examine the lead-
lag relationship during different periods. To test the significance
of the lead-lag structure, we implement the self-consistency test
introduced by Meng et al. [17].

The paper is organized as follows. In section 2, data
and summary statistics are presented. Section 3 depicts the
methodology. Section 4 provides the empirical results, and
section 5 concludes the paper.

2. DATA DESCRIPTION

This study uses daily data collected from the US Energy
Information Administration (EIA) website. The data is given in
the U.S. dollar per barrel spanning from 20 May 1987 to 10
October 2017 and illustrated in Figure 1. Note that the three
vertical solid lines in Figure 1A divide the whole period into four
segments: before the Gulf War, before the IraqWar, after the Iraq
War and after the lift of export ban.

We use logarithmic returns for the analysis. The logarithmic
returns of the spot price are defined as follows:

r(t) = ln p(t)− ln p(t − 1), (1)

where p(t) represents the crude oil spot price at time t. The
logarithm returns are in illustrated in Figure 1B.

Table 1 summarizes the statistics for the two return series. The
descriptive statistics are quite similar across the twomarkets. The
ADF test shows the stationarity of daily Brent and WTI crude oil
spot returns. In comparison with Brent spot returns, WTI spot
returns offer slightly higher volatility levels. Both of the returns
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TABLE 1 | Descriptive statistics for Brent and WTI spot returns.

ADF
Mean ×102 Max Min Std Skew Kurtosis

JB

p-value p-value

Brent 0.001 0.015 0.1813 −0.3612 0.0230 −0.5538 16.6006 0.001

WTI 0.001 0.013 0.1887 −0.4064 0.0247 −0.6879 17.4420 0.001

are left-skewed and leptokurtic. The high values for the kurtosis
statistic suggest that the distribution of returns has larger, thicker
tails than normal distribution. The Jarque–Bera test results also
suggest that both returns are not normally distributed.

Specifically, the Pearson correlation coefficient between spot
returns of Brent and WTI is 0.60047, which indicates that Brent
spot returns are slightly positive correlated to WTI spot returns.

3. METHODOLOGY

Meng et al. [17] improve the TOP method [24–26] and propose
the TOPS method. The TOPS method is briefly described
as below.

Consider two standardized time series X(t1) : t1 =
1, 2, · · · ,N − 1 and Y(t2) : t1 = 1, 2, · · · ,N − 1, the distance
matrix between X(t1) and Y(t2), denoted by EX,Y , is defined as

ǫ(t1, t2) = |X(t1)− Y(t2)|. (2)

The lead–lag structure between two time series is detected by
searching for the one-to-one mapping t1 → t2 = φ(t1) that
satisfies

min
{φ(t1),t1=0,1,...,N−1}

E:=
N−1
∑

t1=0
|X(t1)− Y(φ(t1))|, (3)

which is a global minimization with continuity constraint

0 ≤ φ(t1 + 1)− φ(t1) ≤ 1 . (4)

And rotate the coordinate system (t1, t2) to (t, x)

{

t = t2 + t1
x = t2 − t1.

(5)

Denote the probability for a path through (x, t) asW(t, x)/W(t),
whereW(t, x) is the partition function of x at fixed t and

W(t) =
∑

x

W(t, x). (6)

Notice that, the partition function W(t, x) obeys the following
recursion relation:

W(t, x) = [W(t−1, x−1)+W(t−1, x+1)+W(t−2, x)]e−ǫ(t,x)/T .
(7)

Then implement a time-reversed invariant node weight process
by averaging the weights determined along the time-forward and
time-backward directions:

〈x(t)〉 =
∑

x

x

−→
W (t, x)/

−→
W (t)+←−W (t, x)/

←−
W (t)

2
, (8)

where the arrow→ represents the recursive weight process in a
time-forward direction, and the arrow← refers to the recursive
weight process in a time-backward direction. Therefore, one can
obtain the optimal thermal averaged path trajectory

〈

x(t)
〉

.

4. RESULTS

This section presents analysis results for the lead-lag features
between Brent and WTI from 20 May 1987 to 10 October 2017.
Based on the empirical experiment [17], we implement the TOPS
analysis with temperature T = 2, which is the optimal parameter.

To examine the lead-lag structure during extreme events,
we divide the full-sample period into four sub-samples by the
outbreaks of the Gulf War (2 August 1990), the Iraq War (20
March 2003), and the lift of export ban (18 December 2015). We
further carry out self-consistency tests in a moving window with
size of 10 days to assess whether the lead-lag path is significant,
and illustrate the result in Figure 1C. Periods that pass the test are
marked in gray shades. Basically the consistency test is significant.
Explanatorily, the four different subsamples are denoted as Sub
1, Sub 2, Sub 3, and Sub 4 based on their chronological orders,
respectively. Table 2 shows the summary of

〈

x(t)
〉

during the
sample period and Figure 2 shows the boxplots and probability
density curves of

〈

x(t)
〉

.
As illustrated by the boxplots in Figure 2A, the 4 subsamples

paths are highly similar except the outliers. See in Figures 2B–F,
the probability density curve of the whole sample period TOPS
path is almost symmetrical around 0. More accurately, positive
〈

x(t)
〉

takes more percentage of the whole paths (64.06%). The
positive lead-lag paths reveal that WTI spot price is ahead of
Brent spot price slightly with certain time lags, which means the
price changes inWTI preceded the price changes in Brent. This is
in accord with the fact that WTI holds the predominant position
in the crude oil market except several episodes [3, 4, 7].

During the Sub 1 period from 20 May 1987 to 2 August
1990, the TOPS paths

〈

x(t)
〉

have 71.29% positive values, which
indicates that Brent spot returns lag behind WTI spot returns
over this period. The Iraq’s invasion of Kuwait on 2 August, 1990
caused immediate disruption of the oil supply and triggered the
oil price shock. The price of oil almost doubled in 2 months. WTI
price peaked above $40 per barrel in October, while Brent price
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TABLE 2 | Summary of the
〈

x(t)
〉

during whole period and the four sub-periods.

Period Length Mean Median Max Min Positive values % Negative values %

Whole 7,520 0.33 0.35 13.02 −21.03 64.06 35.93

Sub 1 808 0.34 0.41 8.07 −9.64 71.29 28.59

Sub 2 3,100 0.44 0.44 9.44 −20.97 66.42 33.58

Sub 3 3,158 0.28 0.31 13.02 −21.03 62.16 37.84

Sub 4 454 −0.08 −0.03 2.94 −3.03 48.24 51.76

FIGURE 2 | Boxplots and probability density curve based on kernel density estimation of the
〈

x(t)
〉

. (A) Boxplots of 4 subsamples. The box plots illustrate the 25 and

75% quartiles, the median and outliers. (B–E) Probability density curve of four subsamples. (F) Probability density curve of the whole sample period.

has risen to $41.45 per barrel on 27 September (see in Figure 1A).
The alternate lead-lag dependence in September andOctober also
suggests that the crude oil prices of WTI and Brent co-moved
closely during periods of extreme market uncertainty [13].

As the situation gradually became clear, the uncertainty was
eased and the market calmed down. From 1991 to the second
half of 1992, Brent leads WTI (see in Figure 1C). Whereas,
Brent is still lagged behind WTI in most cases during the Sub 2
period (with 66.42% positive

〈

x(t)
〉

). Remarkably, the
〈

x(t)
〉

has
two vibrations around the financial crises in 1995 and 1998,
which coincides with the 1995 Russian crisis and the 1997 Asian
financial crisis. Most intriguingly, we could observe a sharp
vibration on 20 March 2003 in Figure 1C. The vibration is
strong and temporal, which reflects the nervousness in the crude
oil market triggered by the war. The weak alternate lead-lag
relationship after the vibration implies that, the twomarkets react
similarly under stress [13]. As concerns about long-term supply
shortages eased and prices began to fall, a positive lead-lag path
is observed in 2004.

In the Sub 3 period, the percentage that WTI spot leads
Brent spot is 66.42%. The positive paths imply that WTI plays
a leading role in most times while occasionally Brent takes
the lead. For instance, the lead-lag relation reversion in 2007
might be associated with the financial crisis. Until 2011, WTI
is more important than Brent for price discovery process [3, 4].
However, starting in 2011 the spread in the U.S. and international
crude prices was enlarging, even reached -$29 per barrel (see in
Figure 1A).WTIwas trading at a large discount to Brent. Though
several pipeline projects from Cushing to the Gulf Coast were
built to expand transportation capacity after 2012 [16, 28], the
U.S. crude oil could not be exported to the global marketplace
to arbitrage away the spread due to the export ban [7] and
transportation bottleneck [29]. Subsequently WTI was actually
more a localized market than a globalized market. Then Energy
Information Administration (EIA) replaced WTI with the North
Sea Brent contract as the reference oil price [7]. The dramatic
fluctuation of lead-lag path in 2011 (see in Figure 1C) supports
the structural break that occurred in the WTI-Brent price spread
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around 2000–2011 [6–9]. At this time, WTI is “viewed as a
broken benchmark” [7]. Since 2013 the lead-lag paths switch to
an upward oscillation, which implies Brent changes are lagging
behindWTI changes with increasing time lag. However,WTI was
disconnected from the global market due to the export ban and
transportation bottlenecks, it might not be reasonable to claim
that WTI serves as a price discovery center during this time.

However, things have changed in 2015. The significant Brent-
WTI spread, the sharp drop in oil prices and a Congressional
budget deal led to the U.S. policy shift on oil export [30]. On
18 December of this year, the forty-decades-old crude oil export
ban was finally lifted. Since then US oil could be transported
abroad. Also, trade and efficiency in the oil market increased
[31]. Consequently, sustainable increases in pipeline capacity
together with the lift helped WTI reconnect with international
crude oil prices [16]. After the lift of export ban, WTI spot
almost evolves simultaneously with Brent (see in Figure 1A). The
WTI and Brent crude oil returns display a bi-directional lead-lag
structure (see in Figure 1C) with 48.24% positive

〈

x(t)
〉

in the Sub
4 period, which is consistent with the fact that WTI and Brent
have reconnected ever since the lift of the ban [16].

Basically, WTI leads Brent during the whole sample period
except the last sub-period, when the two benchmark prices align
closely and exhibit an alternate lead-lag structure. Percent of
positive

〈

x(t)
〉

is highest during Sub 1 period, then decreases in
the following periods, which might suggest that WTI and Brent
are more and more connected.

5. CONCLUSION

This paper comprehensively investigates the lead-lag relationship
between Brent and WTI crude oil spot prices from 20 May 1987
to 10 October 2017 based on the TOPS method. To examine the
lead-lag structure at different periods, we divide the whole series
into four sub-series by the outbreaks of the Gulf War, the Iraq
War, and the lift of the U.S. export ban.

The results show that the WTI spot market is leading
the Brent spot market slightly during the whole period,
which is in line with the fact that WTI oil price plays
the dominant role in the international oil market [3, 4,
7]. However, the lead-lag relationship is volatile and subject
to economic events, geopolitical events and policy shifts.
The percentage of positive

〈

x(t)
〉

during different sub-periods
increases successively, which may indicate that WTI and Brent
prices are reintegrating gradually.

Additionally, extreme events affected the path in varying
degrees. Political events like the two Gulf wars triggered concerns

about future oil supply. Both of the two benchmark prices
experienced extreme uncertainty [13], which is reflected in the
sharp but temporary increase of oil price. During wartime WTI
and Brent co-move closely. A violent fluctuation of the

〈

x(t)
〉

is observed on the outbreak of the Iraq war, which might be
related to the Iraq’s oil output collapse at that time. The U.S.
export ban also affected theWTI-Brent lead-lag relationship. The
ban [7] together with transportation bottleneck [29] have long
influenced theWTI-Brent spread. The turning point of theWTI-
Brent spread structure [6–9] in 2011 accords with the upheaval
of the

〈

x(t)
〉

. The shift of energy policy, i.e., the lift of the export
ban in 2015, has reconnected WTI to Brent [16]. The alternate
lead-lag relationship lasts until the end of the sample.

These results are in line with other related studies,
which reveal that The TOPS method has the potential to
investigate the impact of extreme events on correlations
between two time series. However, oil market is extremely
fragile and affected by numerous factors. There still needs
further exploration and stronger support to make the
TOPS method a more active and convincing approach to
event analysis. Given this, we will focus on these issues in
future research.
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This study investigated the dynamics between tick size and market quality using an

agent-based multiple-order-book stock-market model. Given the multiple-order-book

setting, we integrated the model with small-, medium-, and large-cap stocks and

conducted the analysis from both a tick-size-series and cross-sectional perspective. The

simulation results showed that small-cap stocks were of the lowest quality. Furthermore,

quality was generally weakened as tick-size value increased, with expanded bid-ask

spreads, elevated market volatility, and reduced market efficiency.

Keywords: tick size, market quality, agent-based modeling, multiple order books, market capitalization

1. INTRODUCTION

As one of the fundamental transaction requirements, tick size (i.e., the minimum movement
of stock price) has received considerable research attention with regard to its powerful effects
on market quality [1–19]. In light of the newly introduced tick-size policy change by the
Chicago Mercantile Exchange, Martinez and Tse [9] investigated the relationship between tick-size
reduction and market quality in the foreign currency futures market. They found that reduced tick
size powerfully promoted the market quality of the Mexican peso, dramatically dropping pricing
errors, greatly improving pricing discovery capacity, and considerably reducing informed trading.
Similarly, in consideration of the 2016 US SEC tick-size pilot program, Griffith and Roseman
[15] studied the market-liquidity reaction to the rising movement of tick size. They found that
market liquidity would be severely weakened by an increase in tick size. Lepone and Wong [18]
examined market-quality evolution with tick-size changes in the Singapore stock market. They
found significant drops in the bid-ask spread and order depth following the reduction of tick
size, and lower-priced stocks were favored through disguised market markers with higher returns.
However, most of these prior studies were based on policy changes made by regulating authorities,
which are extremely rare.

To avoid the quantity deficiencies of tick-size changes, this study used an agent-based multiple-
order-book model, adopting six gradually increasing tick sizes to investigate the dynamics between
tick size and market quality. Many studies have investigated the feasibility of agent-based modeling
as an effective vehicle for stock-market simulation [20–34]. However, most of those studies were
oriented using one stock, which limited the credibility of the models. Thus, to be more in line with
market reality, we followed Wei et al. [35] and constructed an agent-based stock-market model
with three stocks as representatives of large, medium, and small stocks. We found that as tick size
rises, the bid-ask spread generally increases, which is consistent with findings for liquidity indexes,
showing a decreasing trend in market liquidity. We also found that small-cap stocks have the worst
liquidity with the highest bid-ask spreads and lowest liquidity index values at cross-sectional levels.
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We also took the return standard deviation as the measurement
of market volatility. We found that market volatility increased
dramatically with the rise in tick size, and the small-cap stocks
were of the highest volatility with the largest values. Furthermore,
we investigated market efficiency with three types of stocks.
We found that the market efficiency demonstrates monotone
increasing character with the expansion of tick size interval,
and mid- and small-cap stocks had the highest and lowest
market efficiency, respectively. Finally, we checked investor
wealth evolution using tick-size changes and found that the
wealth changes demonstrated a concave shape.

This study contributes to the literature in three ways.
First, our agent-based stock-market model originates from a
multiple-order-book perspective. Using the model, our study
investigated the dynamics between tick size and market quality
with small-, medium-, and large-cap stocks, which improves
upon the limitations of prior one-stock models [27, 28]. Second,
compared to previous tick-size studies [9, 18], our study
covers six tick sizes, providing more detailed insights into the
dynamics of tick size. Third, this study was based on the largest
emerging Chinese stocks; thus, it can provide valuable risk-
management suggestions for both international investors and
regulatory authorities.

The rest of this paper is organized as follows. Section 2
illustrates the method. Section 3 describes the simulation results,
and section 4 concludes the paper.

2. METHODS

2.1. Agent-Based Multiple-Order-Book
Model
We introduced three types of stocks with variations in
capitalization to construct an agent-based multiple-order-book
model. In themodel, investors adoptmixed heterogeneous beliefs
and adaptive asset allocations in stock-price prediction and cash
distribution, respectively.

2.1.1. Market Design
(1) Asset Design

In the Chinese stock market, there are three types of boards:
the main board, the SME board (small and medium enterprise
board), and the ChiNext board (growth enterprisemarket board).
These three boards represent completely different types of stocks.
The main board is constituted by large-cap stocks, while the
SME and ChiNext boards consisted of medium- and small-sized
stocks, respectively. Also, Xiong et al. [36] found that the average
shares of the main board stocks, the Shenzhen 100 Index, SME
Index, and ChiNext Index, are 1,975, 912, and 637 million shares,
respectively. However, the average prices of the three boards
are 20, 19, and 19 CNYs. In consideration of the actual market
structure with three board indices, we set three stocks—one
large-cap stock, one mid-cap stock, and one small-cap stock as
well as a risk-free asset—in the agent-based multiple-order-book
model. The shares of large-, mid-, and small-cap stocks are set as
2,000,000, 1,000,000, and 500,000, respectively, which are close
to the one thousandths of real numbers, and the initial prices
of the three stocks were 20 CNYs, as shown in Table 1. Also, we

TABLE 1 | Asset setting in the agent-based multiple-order-book model.

Asset Shares Initial

price

(CNY)

Average price fluctuation per

minute (basis point)

Large-cap stock 2,000,000 20 3

Mid-cap stock 1,000,000 20 3

Small-cap stock 500,000 20 3

assumed there was no fundamental value correlation among the
three stocks and that the interest rate of cash was zero.
(2) Investor design

Considering the calculation capacity limits of the simulation
platform, we set the number of total investors asN = 5,000.When
investors engage in the market the first time, they are allocated a
certain amount of initial stocks and cash. The initial position of

investor i of stock j, s
i,j
0 , is

s
i,j
0 = s

j
Meanϕ (1)

where s
j
Mean is the average position of stock j allocated to each

investor as the total shares of stock j over total investors. ϕ refers
to the uniform distribution with the boundary limit, [0.1, 1.9],
complying with the heterogeneity of investors. Also, we assumed
the initial cash of the investors was equal to the capitalization of
stocks at the beginning of the simulation. In this view, the initial
cash of investor i, αi

0, is

αi
0 =

∑

j=L,M,S

p
j
0s
i,j
0 (2)

where p
j
0 is the initial price of stock j. In addition, when

the investor’s wealth is too low, we recognize the investor as
bankrupt. Meanwhile, a new investor will be enrolled in the
simulation market to ensure the normal operation of the agent-
based model.

2.1.2. Investor Price Prediction
Following Chiarella et al. [37], we adopted three types of
investorsfundamental investor, technical investor, and a noise
investor—which is in accordance with the market-participator
reality in the Chinese stockmarket. In this view, in ourmodel, the
investormakes a price prediction based on amixed-heterogeneity
belief. The return prediction of investor i of stock j is

r
i,j
t+τ =

(

xir
i,j
c + yir

i,j
f
+ ziε

)

/
(

xi + yi + zi
)

(3)

where ε is responsible for the investor’s noise belief, and r
i,j
f

denotes the predicted return by investor i of stock j based on
fundamental belief. Incorporated with investor trading horizon

τi, r
i,j
f

is calculated as the natural log value of the fundamental

value of stock j, denoted as f
j
t , over price p

j
t , as shown in Equation

(4). Also, r
i,j
c refers to the predicted return by investor i of stock
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j based on technical belief, calculated as the natural log value of

short-term average price p̄
j
τi/4

over long-term average price p̄
j
τi , as

shown in Equation (5).

r
i,j
f
= (ln

f
j
t

p
j
t

)/τi (4)

r
i,j
c = ln

p̄
j
τi/4

p̄
j
τi

(5)

In addition, xi, yi, and zi represent the weight of technical,
fundamental, and noise belief, following the constraints as xi =
x∗θ , yi = (1 − x∗ − z∗)θ , and zi = z∗θ , where θ is of
uniform distribution with [0, 1] as the boundary limit. x∗, y∗,
and z∗ are the given exogenous technical, fundamental, and noise
parameters, respectively, in the agent-based model, and the sum
of the three parameters is equal to one, as shown in Equation (6):

x∗ + y∗ + z∗ = 1 (6)

The trading horizon of investor i, τ i, is determined by the relation
between technical belief weight xi and fundamental belief weight
yi. If the technical belief weight xi grows, the trading horizon
begins to be narrowed. Meanwhile, the larger the fundamental
belief weight yi, the longer the trading horizon, as shown in
Equation (7). We set the initial trading horizon τ ∗ = 5days =
1200t. The possibility of investor arrival at the market is inverse
to trading horizon τ i and follows Poisson distribution with the
parameter of λi = ω /τ i.

τ i = τ ∗
1+ yi

1+ xi
(7)

In the end, the investor makes a stock-return prediction with
regard to mixed fundamental, technical, and noise beliefs. The

predicted price of stock j at time t, p
j
t , is derived from the price of

stock j at time t, p
i,j
f ,t , as shown in Equation (8):

p
i,j
f ,t = p

j
te
r
i,j
t+τ τ i (8)

2.1.3. Investor-Adaptive Asset-Allocation Model
Asset allocation is the most important procedure in the investor-
trading decision-making process. In the 1950s, Markowitz [38]
introduced the well-known “mean-variance” model as the first
scientific calculation of optimal portfolio weights upon equities
risks. However, based on the survey results of the Shanghai
Stock Exchange Market Quality Report 2016, we found that,
in the Chinese stock market, most individual investors show
intensely irrational compulsions when making asset-allocation
decisions. In fact, most Chinese investors favor stocks with
better performances or that have been extensively covered
by the media in recent weeks, indicating a hot-topic-chasing
preference in investors’ adaptive asset-allocation processes.

Follow Brock and Hommes [39], we integrated the adaptive
belief-transfer mechanism to investors’ asset-allocation decision-
making processes and constructed an investor-adaptive asset-
allocation model.

In our model, when investors come to the stock market, they
spread their wealth into the positions of four assets based on
the predicted returns1. The distributed wealth ratio of asset j by

investor i, h
i,j
t , is

h
i,j
t =

eβπ
i,j
t+τ

4
∑

j=1
eβπ

i,j
t+τ

(9)

where π
i,j
t+τ = r

i,j
t+τ is the predicted return of asset j by investor i,

and β is the adaptive transfer degree.
With the wealth ratio allocated to each asset, we can get the

cash balance of investor i in asset j at time t, α
i,j
t , as

α
i,j
t = h

j
iα

i
t (10)

where αi
t is the total balance of investor i at time t.

2.1.4. Investor Order-Placing Rule
In the model, the investors decide the order direction, order
type, and order size based on the analysis of the predicted return
and temporal status of the order book. Following Gil-Bazo et al.
[40], we assume that investors reserve part of their return, µ, as
compensation for the transaction cost2. The reserved return is

µ = 1%p
m,j
t (11)

where p
m,j
t is the midpoint of the optimal bid and ask spread.

Table 2 shows the detailed order-placing rules of the investors.
We follow this mechanism design proposed by Gil-Bazo et al.
[40]. As shown in the table, investor i decides the order type

by comparing the distance between asset predicted price, p
i,j
f ,t ,

and reserved return, µ. For example, when both the bid and
ask orders exist in the order book (scenario 1), if the difference

between the predicted price, p
i,j
f ,t , and reserved return,µ, is higher

than the optimal ask price, the investor places a market bid order

with a price of p
i,j
mb

< p
i,j
f ,t − µ. If the predicted price, p

i,j
f ,t , is not

larger than the optimal ask price, a
j
t , plus the reserved return, µ;

not smaller than the optimal bid price, b
j
t , minus the reserved

return, µ; and larger than the midpoint of the optimal bid-ask

spread, p
m,j
t , the investor would place a limit bid order with a price

of p
i,j
lb
= p

i,j
f ,t − µ.

In the end, themodel determines the order size of the investor.
When the investor decides to buy a stock, he or she will place all

1The predicted return of cash is zero.
2We do not implement a specific check of the size of reserved return. However,
with the simulation tests, we find that a limited variation of reserved return
presents no impact to the final results.

Frontiers in Physics | www.frontiersin.org 3 May 2020 | Volume 8 | Article 13527

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Zhao et al. Tick Size and Market Quality

TABLE 2 | Order-placing rules of investors.

Scenarios Order direction and type Order price

Scenario 1: Both bid and ask orders exist in the order book

p
i,j
f ,t − u > a

j
t Market buy p

i,j
mb < p

i,j
f ,t − u

[p
i,j
f ,t ≥ p

m,j
t ]&[a

j
t + u ≥ p

i,j
f ,t ≥ b

j
t − u] Limit buy p

i,j
lb = p

i,j
f ,t − u

[p
i,j
f ,t < p

m,j
t ]&[a

j
t + u ≥ p

i,j
f ,t ≥ b

j
t − u] Limit sell p

i,j
ls = p

i,j
f ,t + u

p
i,j
f ,t+u < b

j
t Market sell p

i,j
ms > p

i,j
f ,t + u

Scenario 2: No bid orders in the order book

p
i,j
f ,t − u > a

j
t Market buy p

i,j
mb < p

i,j
f ,t − u

p
i,j
f ,t − u ≤ a

j
t Limit buy p

i,j
lb = p

i,j
f ,t − u

Scenario 3: No ask orders in the order book

p
i,j
f ,t+u < b

j
t Market sell p

i,j
ms > p

i,j
f ,t + u

p
i,j
f ,t+u ≥ b

j
t Limit sell p

i,j
ls = p

i,j
f ,t + u

Scenario 4: No bid and ask orders in the order book

50% probability Limit buy p
i,j
lb = p

i,j
f ,t − u

50% probability Limit sell p
i,j
ls = p

i,j
f ,t + u

cash allocated to the stock into the bid order, and the size of the
bid order is b

i,j
t = α

i,j
t /(p

i,j
f ,t − µ). Meanwhile, when the investor

decides to sell a stock, he or she will leave no positions left.

3. SIMULATION RESULTS

3.1. Price Pattern
Figure 1 shows the dynamics of the price series of the large-
cap stock with small and large ticker sizes (0.001 and 0.1,
respectively). We can found that under a ticker size of 0.001,
the price pattern shows powerful evidence for stock-liquidity
sufficiency with a smooth and continuous line. Also, the price
pattern of the small ticker size, 0.001, presents mild fluctuation
with a narrow range, gradually increasing and descending from
20.5 to 21. Meanwhile, the price line with regard to the large
ticker size, 0.1, is of adequate liquidity with a jagged shape,
indicating a low degree of participation in the placement of bid-
ask orders. In addition, we found that the price range of the large
ticker size varies from 0 to 21, which is much larger than that of
the small ticker size, indicating a higher degree of volatility.

Figure 2 shows the price-evolution series of the mid-cap stock
with small and large ticker sizes. We can see that, similarly
to Figure 1, the price pattern of the small ticker size shows
more liquidity than the large ticker size with a flatter line. Also
consistent with Figure 1, the price pattern of the small ticker
size shows higher stability with a limited price range of 20.5–19.5
compared to the large ticker’s wild range of 18–23. However, the
price trends of themid-cap stock show few differences from those
of the large-cap stock. We can see in Figure 2 that, unlike the
rising trends at the beginning of the large-cap stock simulation,
the price evolutions of the small and large ticker sizes of the mid-
cap stock are of a declining character at the beginning of the
simulation and gradually bounce back later in the simulation.

Figure 3 shows the price pattern of the small-cap stock under
the circumstances of small and large ticker sizes. We can found
that, different from Figures 1, 2, the price evolution of the

FIGURE 1 | Price-evolution pattern of the large-cap stock.

FIGURE 2 | Price-evolution pattern of the mid-cap stock.

small ticker size with the small-cap stock shows no noticeable
curves, indicating a higher degree of stability. Consistent with
Figures 1, 2, the price pattern of the large ticker size shows more
volatility with vast price changes from 0 to 80 in contrast to the
near-zero price change of the small ticker. Also, we can see that
the maximum price of the small-cap stock with a large ticker size
is roughly four times that of the large- and mid-cap stocks, and
the price pattern exhibits more peaks with those in Figures 1, 2,
indicating a further lower level of stability.

3.2. Market Liquidity
For market liquidity, we adopted three primary measurements.
The first one lies in the bid-ask spread, which is widely used
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FIGURE 3 | Price-evolution pattern of the small-cap stock.

in prior research. Also, to obtain more comprehensive insight,
we introduced a second measurement, order depth, which is
calculated as the average of the sum of the bid-ask order volumes.
The construction process is as follows

DepthAsk =
k

∑

j=1
Volume_askj,t

DepthBid =
k

∑

j=1
Volume_bidj,t

Deptht = 1
2 (DepthAsk + DepthBid)

(12)

where Volume_askj,t is the j-th ask-order volume at time t,
Volume_bidj,t is the j-th bid-order volume at time t, and Deptht
is the order depth at time t, k=5.

The third is the liquidity index, LSSE, proposed by the
Shanghai Stock Exchange, one of the two leading exchanges
in China. The index measures the elasticity of the trading
CNY change upon the variation in stock price, 13. The more
CNY initiated in the stock-price change, the greater the index,
indicating a higher degree of liquidity. The specific calculation
process is as follows

LAsk =
k−1
∑

j=1
DjAj + Ak, where k = {min(m)| |Am−A1|

A1
≥ 1}

LBid =
k−1
∑

j=1
DjBj + Bk, where k = {min(m)| |Bm−B1|

B1
≥ 1}

LSSE = 1
2 (LAsk + LBid)

(13)
where Bj andAj are the j-th bid and ask quotations.Dj is the order
depth with the j-th quotation.

3We set the price change magnitude, 1, as 1%.

TABLE 3 | Bid-ask spreads of large-, mid-, and small-cap stocks.

Tick size Large-cap stock Mid-cap stock Small-cap stock Mean

0.001 0.0270 0.0261 0.0401 0.0311

0.005 0.0300 0.0264 0.0598 0.0387

0.01 0.0292 0.0267 0.0637 0.0399

0.02 0.0332 0.0352 0.0535 0.0406

0.05 0.0542 0.0641 0.0987 0.0723

0.1 0.1095 0.1102 0.2529 0.1575

TABLE 4 | Order depths of large-, mid-, and small-cap stocks.

Tick size Large-cap stock Mid-cap stock Small-cap stock Mean

0.001 577 443 360 460

0.005 1,899 1,485 970 1,451

0.01 4,098 3,034 2,113 3,082

0.02 10,077 6,791 4,334 7,067

0.05 22,155 1,1397 6,551 13,368

0.1 14,641 8,814 1,921 8,459

Table 3 reports the bid-ask spreads of the large-, mid-, and
small-cap stocks with escalating levels of tick sizes from 0.001 to
0.1. We found clear variations in the spread traces at the cross-
sectional and tick-size-series levels. From the cross-sectional
perspective, we find that within each tick size, the small-cap stock
has the lowest liquidity and the largest bid-ask spread value.
Meanwhile, in view of the tick-size series, we found that market
liquidity shows the greatest favor with a tick size of 0.001 by
the minimum average bid-ask spread value. We could also see
that the average bid-ask spread value shows a noticeable growing
trend with increasing bid-ask spread values, indicating a lower
level of market liquidity.

Table 4 shows the results of the second market-liquidity
measuring instrument, the order depth, with the integration of
trading volume, across the three types of stocks. Consistent with
Table 3, we conducted the analysis from both tick-size-series and
cross-sectional perspectives. We found that, within the tick-size
series, the order depths generally show continuous growth, with
the exception of tick size 0.05, which is in line with findings of
Lepone and Wong [18] by the large. From the cross-sectional
perspective, we found that at each tick-size level, the large-cap
stock has the largest order depth, which is roughly 1.67 and 3.29
times those of the mid- and small-cap stocks, respectively.

Table 5 shows the results of the third market liquidity
indicator, the liquidity indices, through large-, mid-, and small-
cap stocks. Consistent with Tables 3, 4, we initiated tick-size-
series and cross-sectional checks of the dynamics of the liquidity
indices. The average and large cap market-liquidity indices show
apparent falls with increasing tick-size values from 0.005 to 0.1,
indicating an impairing trend in market liquidity. We can also
found that the large-cap stocks have the largest liquidity index
values, showing a considerable edge in market liquidity at each
tick-size level.
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TABLE 5 | Liquidity indices of large-, mid-, and small-cap stocks.

Tick size Large-cap stock Mid-cap stock Small-cap stock Mean

0.001 571,711 416,259 318,596 435,522

0.005 3,102,311 1,820,927 770,116 1,897,785

0.01 2,622,049 1,945,937 933,257 1,833,748

0.02 2,832,469 1,736,470 698,103 1,755,681

0.05 2,252,589 1,123,120 886,983 1,420,897

0.1 752,019 407,532 52,052 403,868

TABLE 6 | Volatilities of large-, mid-, and small-cap stocks.

Tick size Large-cap stock Mid-cap stock Small-cap stock Mean

0.001 23 29 29 27

0.005 23 25 61 36

0.01 22 26 74 41

0.02 22 26 39 29

0.05 26 31 76 44

0.1 37 36 376 150

3.3. Volatility
For market volatility, we took the traditional standard deviation
in stock price as the indicator. Table 6 shows that the average
market volatilities grew following the expansion of tick sizes,
with the exception of tick size 0.02, which is generally consistent
with findings of Griffith and Roseman [15]. Also, within each
tick size, we can find that large-cap stocks usually have the least
volatility and the smallest numbers. Meanwhile, mid- and small-
cap stocks had the second- and first-highest volatilities with the
second-largest and largest deviations, respectively.

3.4. Market-Pricing Efficiency
For market-pricing efficiency, we took two indicators, MAE and
MRE, as the measuring instruments. MAE refers to the absolute
distance between stock price, pt , and stock fundamental value,
ft . Similarly, MRE is the relative distance between stock price,
pt , and stock fundamental value, ft . The smaller the indicator
number, the higher the pricing efficiency of the market. The
detailed constructions of both indicators are as follows

MAE =
1

T

T
∑

t=1

|pt − ft| (14)

MRE =
1

T

T
∑

t=1

|pt − ft|
ft

(15)

Tables 7, 8 show the results for the market-pricing-efficiency
indicators, MAE and MRE, with large-, mid-, and small-cap
stocks. We found that, if expanded intervals are taken, such as 10
times, the average MAEs and MREs of 0.1 (0.01) are much larger
than those of 0.01 (0.001), respectively. In this view, we believe
that the market efficiency generally falls with the increase of tick

TABLE 7 | MAEs of large-, mid-, and small-cap stocks.

Tick size Large-cap stock Mid-cap stock Small-cap stock Mean

0.001 0.1981 0.1937 0.2204 0.2041

0.005 0.1766 0.1597 0.4808 0.2724

0.01 0.2035 0.1850 0.5038 0.2974

0.02 0.1821 0.1711 0.3382 0.2305

0.05 0.1880 0.2058 0.2973 0.2304

0.1 0.2890 0.2741 1.52014 0.6944

TABLE 8 | MREs of large-, mid-, and small-cap stocks.

Tick size Large-cap stock

(%)

Mid-cap stock

(%)

Small-cap stock

(%)

Mean

(%)

0.001 0.95 0.97 1.14 1.02

0.005 0.85 0.80 2.49 1.38

0.01 0.98 0.92 2.60 1.50

0.02 0.87 0.85 1.75 1.16

0.05 0.90 1.03 1.54 1.16

0.1 1.39 1.36 7.89 3.55

TABLE 9 | Investor wealth and ticker sizes.

Ticker size Investor wealth

0.001 28,519

0.005 28,323

0.01 28,267

0.02 28,288

0.05 28,378

0.1 28,439

sizes, especially when the size intervals are of huge differences4.
We can also find that in most cases, mid- and small-cap stocks
have the best and worst market-pricing efficiencies, respectively,
with smallest and largest MAE and MRE values for each tick size.

3.5. Investor Wealth
Table 9 shows the results for the investor wealth dynamics with
each distinct tick size. We found that the dynamic pattern of
investor wealth has a concave character, and the maximum value
of investor wealth corresponds to a tick size of 0.001. Also, with
increasing tick-size value, investor wealth shows a falling trend
with reduced values, reaching the lowest point at tick size 0.01.
After that, investor wealth starts to rebound with growing values
from tick sizes 0.02 to 0.1.

4The original evolutions of average MAEs and MREs in Tables 7, 8 demonstrate
faulty monotonicity, with certain breaks at 0.02 and 0.05. We attribute this
phenomenon as the result of narrowed interval setting from 0.005 to 0.05. Each
interval from 0.005 to 0.05 is 2 or 2.5 times, much smaller than that between 0.1
(0.01) and 0.01 (0.001). Also, if we designate the 0.001 and 0.005, 0.01 and 0.02, and
0.05 and 0.1, as hypothetical low,medium and high tick size subgroups, it is evident
to see that the averages of MAE and MRE grow with the escalation of subgroup
sizes. In this view, the monotone increasing characters of MAEs and MREs are
perfectly presented with the expansion of size intervals.
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4. CONCLUSION

This study used an agent-based multiple-order-book
stock-market model to investigate the relationship
between tick size and market quality. We set six tick
sizes from 0.001 to 0.1. With a gradual increase in tick
size, market liquidity showed a significant drop with
amplified bid-ask spreads and shrunken liquidity index
values. Also, for market volatility, we found noticeable
volatility decreases with declining tick sizes. In addition,
we investigated market efficiency, which is a major element
of market quality. We found that market efficiency would
be weakened upon the increase of tick size, especially
when the interval is of large distance. Furthermore, from a
cross-sectional perspective, we found that small-cap stocks
had the worst market quality with the least satisfactory
indicator values.
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In this paper, we examine the dynamic correlations between mass-media news and new-

media news as well as their reprints in the Chinese stock market. We mainly find that:

(1) there is a significant positive correlation between the four types of news and the

correlation between reprints and their congener media news is stronger; (2) both the

mass-media news and new-media news have significant positive autocorrelation. The

new-media news and the reprints rely more on mass-media news. (3) both mass-media

news and new-media news will make a positive response to the corporate events,

but the reaction of new-media news including the new-media reprints is stronger than

mass-media; (4) the results of dynamic correlation analysis indicate that there is a

significant correlation between the four types of news over time. The correlation between

mass-media news and new-media news is stronger when the stock market performs

well. We attribute these results to the symbiotic relationship between mass media and

new media in the Chinese stock market, where mass media devotes to provide original

news with high quality and new media transfers these numbers of news to more readers

to attract more attention and discussion.

Keywords: mass-media news, new-media news, contemporaneous correlation, mutual information, PVAR,

dynamic correlation

INTRODUCTION

To figure out how the investors obtain the information will help us to understand the financial
market [1]. Media, as the information intermediary, plays an important role in the process of
information transmission in the stock market. With the development of the Internet, new media
becomes one of the main platforms for investors to get financial information. Unlike traditional
media, the large portals collect and provide a large number of, even all, news from the various
news source for the investors. Investors need not subscribe to the newspaper or watch the TV
to get information like before and they can get the information from the internet easily and
quickly. On the other hand, the reprints on the internet could disseminate financial information
to broad investors. So the internet brings a great challenge for mass media. Although the internet
provides these advantages for the newmedia, the mass media still co-exist with media and provides
information for investors. The existing literature indicates that how investors obtain information
is important to understand the financial market [1]. Facing the status quo of the co-exist of mass
media and new media in such an internet age, to study the correlation between mass media and
new media is of importance to figure out the role of media played in the process of the information
transmission and will help us to furtherly understand the financial market.
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A strand of literature has examined the role of the media in
the financial market [1–3]. But they are all concentrated on one
specific media, either mass media or new media [4–6]. However,
the correlation between mass media and new media as well as
the different roles they played in the finical market is not studied.
How they co-exist and what impact on the process of information
transmission that they have in the financial market are not clear,
especially considering the reprints. In this paper, we examine
the correlation between mass-media news and new-media news
considering the reprints simultaneously.We find thatmassmedia
and new media exhibit a symbiotic relationship in the stock
market, where mass media devotes to provide original news with
high quality and new media transfers these numbers of news to
more readers to attract more attention and discussion. And we
also find that mass-media news and new-media news maintain
a positive correlation over time and the correlation becomes
stronger when the stock market performs well. These results will
help us to comprehend the role of the information intermediary
of media. Therefore, we add to the literature on the role of the
media in the financial market. On the other hand, there are some
studies about the correlation betweenmass media and newmedia
[7–12]. But fewer of them are about the financial market and take
reprint into account. Hence, we also add to the literature on the
correlation between mass media and new media for the financial
market. The closest research is our previous work [11, 12], which
we used the sample data of stocks of CSI 300 and SSE index,
respectively, to explore the correlation betweenmass-media news
and new-media news. Comparing their work, the contributions
of this paper are 3-fold. Firstly, we consider the reprint when
we studying the correlation between mass-media news and new-
media news. Secondly, we improve the classification criteria for
mass-media news and new-media news and provide a more
objective and reasonable classification criterion. Thirdly, The
larger samples, the stocks of the full Chinese stock market, and
the new methodology used in this paper could provide more
comprehensive and effective results.

The remainder of this paper is organized as follows. Section
Literature review gives the literature review of the role of the
media in the financial market and the correlation between mass
media and new media. Section Data and sample describes the
sample data using in this paper and its’ statistical properties.
Section Result and discussions reports the empirical results and
section conclusions provides the conclusions.

LITERATURE REVIEW

The Role of Media in the Financial Market
Our paper related to the literature about the role of media played
in the stock market and this research problem has attracted a
lot of attention from the researchers. In the earlier literature,
researchers have concentrated the role of either mass media
[2, 13–16] or newmedia [4, 6, 17–22] play in the financial market.

For the mass media, Klibanoff et al. [23] investigate the effect
of the country-specific news appearing on the front page of The
New York Times on the reaction of closed-end country fund
prices to the asset value. They found that the prices react more
when there is news on the front page of the New York Times.

Chan [15] used the data of news headlines to study the reaction
of stock price to news and no-news and they found different
patterns of reversal andmomentum for stocks accompanied by or
unaccompanied by the news. Tetlock [2] explored the interaction
between the media and the stock market by analyzing the content
of the column of the Wall Street Journal. By constructing the
pessimistic factor as themeasure ofmedia content, they found the
predictability of the media content for market prices and market
trading volume. Tetlock et al. [24] quantified the language used
in all Wall Street Journal and Dow Jones News Service stories
of finance and found that the quantifying language provides the
firms’ fundamental information. Fang and Peress [3] used the
number of the newspaper as the measure of media coverage
to explore the effect of media coverage on stock returns and
found that there will be higher returns for the stocks with
no media coverage than the stocks with high media coverage.
Peress [1] investigate the national newspaper strikes to study the
influence of media and diffusion of information on trading and
price formation. They found that the media could improve the
dissemination of information in the stock market.

For the new media, Tumarkin and Whitelaw [17] explored
the effect of postings on the stock prices and indicated that the
number of postings could not predict the return and trading
volume of the stocks. Antweiler and Frank [6] studied the effect
of the postings from Yahoo! Finance and Raging Bull on the
stocks and found that the stockmessages could help to predict the
market volatility. Das and Chen [18] build the sentiment index by
exacting the text of the postings on Yahoo’s message board and
found it is related to the stock index levels, volume and volatility.
Zhang et al. [25] found that the number of Baidu News could
explain the volatility persistence of SME PRICE INDEX in China.
Shen et al. [26] used the number of Baidu News as the proxy for
internet information flow to provide the evidence for theMixture
of Distribution Hypothesis.

The Correlation Between Mass Media and
New Media
Our study is also related to the literature about the relationship
between mass media and new media. The argument of the
relationship between mass media and new media has existed
since the birth of new media. There are some studies support the
competitive relationship between the two types of media [7, 27–
29]. Dimmick et al. [7] used the survey data of telephone to
explore the relationship between mass media and new media and
found that the new media has a competitive displacement effect
on the mass media. Lee and Leung [27] study the “medium-
centric” and “user-centric” approaches by using a random sample
and the result indicated that the internet could displace the use of
traditional media. Ha and Fang [28] explores the displacement
effect of new media on mass media using the survey data
of consumer time spent on media. They found that the new
media indeed has a replacement effect on the mass media.
On the other hand, some researchers argue that there is a
complementary relationship betweenmass media and newmedia
[8, 10]. Chyi and Lasorsa [10] used a random-sample telephone
survey of the public’s response to the print and online newspaper
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to study the substantial overlap between online and print
readerships and found a complementary relationship between
them. Nguyen and Western [8] also found that mass media exist
to complement new media to meet the needs of people to get
information. Furthermore, Jang and Park [9] indicated there the
substitutability and complementary relationship between mass
media and new media exist simultaneously and the magnitudes
of these relationships exhibit different for the different purposes
of users.

DATA AND SAMPLE

News Classification Criteria
We classified the news into two types of news according to the
data field of news sources provided by Wisers. And we called the
two types of news as the mass-media news and new-media news.
In prior researches, the news has been classified into mass-media
news and new-media news according to the news’ sources of
the communication media [7–9, 11, 12]. They referred the news
transferred on the internet as the new-media news and the news
transferred through traditional channels, such as the newspaper,
is regarded as the mass-media news. But the traditional media is
also seeking the new developmental pattern in the internet era.
They provided their news on the internet for the readers. And
they can provide high-quality news relied on their professional
interviewing and editing team. The prior literature found that the
news category, reader gender and interest in a particular topic
have greater influences on the readers’ news consumption than
whether the news appears in print or online after studying the
news consumption of readers of the news presented in online and
print versions of newspapers [30].

On the other hand, the relationship between print and
Internet media is symbiotic in China [31]. Hassid and Repnikova
indicated that Internet portal sites in China are enormously
powerful to attract the attention or discussion of readers, but
they couldn’t provide their own news for the barrier of legal
rights to interview and edit. And the portal sites have to
rely on reprints from newspapers and wire services [31]. So
Hassid and Repnikova argued that “portals need newspapers to
provide content, and the newspapers, in turn, need portals to
publicize their articles, attract readership, and pay subscription
fees in China.”

Considering these facts, we argue that the online news
provided by the traditional media plays a similar role to the
news in print. So we improve the methodology introduced by
Zhang et al. [11] to categorize the news coming from the online
traditional media into the mass-media news. There are two
reasons for our classification criteria. Firstly, the online news
provided by the traditional media shares the same interviewing
and editing team with the news in print. So the online news
and the news in print of traditional news are homogeneous.
Secondly, for the legal rights to interview and edit, the traditional
media and the new media play different positions during the
transfer of information, even for the online news provided by
the traditional media and the new media. According to this
classification criteria, we classified our news data into two types
of news, i.e., the mass-media news and new-media news. And the

detailed definitions of mass-media news and new-media news are
as follows:

(1) We regard the news provided by mass-media including the
online news of them as the mass-media news. Such as the
news provided by the newspapers, the TV, the radio, and
the magazine.

(2) The new-media news is the news that is only provided by the
Internet. Such as the news provided by the portal, the blog,
and social media.

Furthermore, there is a large number of reprints with the
development of the internet. Generally, there is a statement of the
copyright for the original news on the website. So the website is
not allowed to modify the content of news even for the headlines
when it reprints one news. Based on this, we defined the directed
reprint news as the news with the same headlines. For one news,
we chose the first one appeared in theWisers as the original news
and the number of directed reprint news equal to the number of
the news with the same headline minus one. Then we classified
the reprint news into mass-media news and new-media news
based on the classification criteria introduced in this paper.

Sample Select
The news data used in this paper comes from the database of
Wisers which is provided by the Wisers Information Limited.
Wisers is one of the largest databases of Chinese media including
all the Chinese news of the Chinese stockmarket.We focus on the
news sample of all A-share in the Chinese stock market dropping
the stocks in special treatment. According to the illustration of
the Wisers database, the news is crawled from the Internet based
on keywords such as the names of the company, the names of
the companies in the financial sector are often mentioned in
the financial reports. These reports are not the news of these
companies, but the Wisers may crawl them from the Internet.
Therefore, the news of financial stocks may contain noise. And
we drop the financial stocks in our sample. Our sample period
spans from 1 January 2015 to 31 December 2018 with daily
observations, and we get a sample including 3,067 stocks. Based
on the classification criteria introduced in this paper, we get
726 types of mass-media sources and 1,488 types of new-media
sources in our sample period. In this paper, we also used the
trading data and financial data, such as the close price, the market
value, the announcement and so on. And we get these data
from the database of CSMAR and Wind, which are both the
professional financial database in China.

Figure 1 illustrates the weekly number of four types of news.
From top to bottom in Figure 1, the line represents the number
of new-media news, new-media reprints, mass-media news, and
mass-media reprints. As we can see from Figure 1, the number
of new-media news, no matter for the total news or the reprints,
is significantly larger than the mass-media news and the trend of
the four types of news is similar. This implies that the new-media
news provides a richer information environment for us and there
is a strong correlation between the mass-media news and new-
media news. Table 1 reports the summary statistics for the mean
daily number of the four types of news for our sample. We
calculate the statistical property of the news’ number for every
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FIGURE 1 | The mean weekly number of four types of news.

TABLE 1 | Summary statistics for four types of news.

MmN NmN RMmN RNmN

Observations 3,067 3,067 3,067 3,067

Mean 1.54*** 8.86*** 0.72*** 4.07***

(19.24) (24.31) (17.70) (20.86)

SD 3.80*** 18.34*** 2.38*** 10.51***

(36.99) (37.76) (38.17) (36.01)

Q1 0.10*** 1.07*** 0.03*** 0.27***

(5.12) (7.99) (3.55) (4.63)

Median 0.42*** 3.73*** 0.12*** 1.12***

(7.04) (13.48) (4.52) (8.22)

Q3 1.49*** 9.24*** 0.44*** 3.50***

(13.26) (19.26) (8.06) (13.64)

Max 60.18*** 278.85*** 40.87*** 164.32***

(37.82) (31.40) (40.69) (29.98)

Min 0 0 0 0

This table presents summary statistics of the number of the four types of news at the

firm-day level. MmN, NmN, RMmN, and RMmN denote the mass-media, new-media, the

reproduction of mass-media, and the reproduction of new-media, respectively. Q1 and

Q3 represent the 25th percentile and 75th percentile, respectively.

***Denotes t-test statistically significant at the 1% level.

stock, and then, report the mean of these statistical properties in
Table 1. From Table 1, we can find that the standard deviation of
the new-media news is larger than the mass-media news, which
implies that the new-media news is more likely to be influenced
by the shocks.

RESULT AND DISCUSSIONS

In this section, we investigate the relationship between the four
types of news defined in this paper. Firstly, we investigate the
contemporaneous correlation between the four types of news.

Secondly, we compare the reaction of the four types of news
to different corporate events. Third, we conduct the Panel Var
Model to explore the lead-lag relationship between the four types
of news.

The Contemporaneous Correlation
Between the Four Types of News
In this section, we calculate the Pearson correlation coefficient,
Kendall correlation coefficient, and the Spearman correlation
coefficient to investigate the contemporaneous correlation
among the four types of news for every stock in our sample.
And then we get the mean of these correlations for all stocks.
Table 2 reports the results of the correlation matrix for the four
types of news. Panel A of Table 2 shows the mean Pearson
correlation coefficient among the four types of news. We can
find that the correlation coefficients are all larger than 0.6 with
a significant level of 0.01. These results indicate that there is
a significant correlation among the four types of news defined
in this paper and imply that the mass media and new media
may pay attention to the same event every day although there
is a big difference in the quantity of news that their provide.
For thesemean correlation coefficients, the correlation coefficient
between the new-media reprints and new-media news is the
largest which is larger than 0.9 with a significant level of 0.01 and
the correlation coefficient between the mass-media news and the
mass-media news reprints is also larger than 0.9 at a significant
level of 0.01. On the other hand, the correlation coefficient
between mass-media news and new-media reprints as well as
the one between new-media news and mass-media reprints are
around 0.7. The difference between these results shows that the
two media both pay more attention to their congener media
when they reprint news from other media. The larger correlation
coefficient between mass-media news and new-media reprints
than the one between new-media news and mass-media reprints
implies that the mass media is paid more attention to when
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TABLE 2 | The correlation matrix for the four types of news.

MmNt NmNt RMmNt RNmNt

PANEL A: PEARSON CORRELATION

MmNt 1

NmNt 0.745*** 1

(397.1)

RMmNt 0.923*** 0.678*** 1

(996.7) (325.8)

RNmNt 0.751*** 0.932*** 0.714*** 1

(411) (1051.2) (354.7)

PANEL B: KENDALL CORRELATION

MmNt 1

NmNt 0.486*** 1

(325.4)

RMmNt 0.701*** 0.418*** 1

(524.4) (285.6)

RNmNt 0.544*** 0.705*** 0.501*** 1

(374.6) (577.5) (353.3)

PANEL C: SPEARMAN CORRELATION

MmNt 1

NmNt 0.560*** 1

(300.8)

RMmNt 0.728** 0.478*** 1

(491.2) (261.9)

RNmNt 0.596*** 0.779*** 0.542*** 1

(356.0) (510.5) (331.3)

This table reports the correlation matrix for the daily number of the four types of news at the

firm-day level. MmNt, NmNt, RMmNt, and RNmNt denote the mass-media, new-media,

the reproduction of mass-media, and the reproduction of new-media, respectively.

**Denotes t-test statistically significant at the 5% level.

***Denotes t-test statistically significant at the 1% level.

one media reprint news from other media. And we get similar
conclusions from the results of Kendall correlation and Spearman
correlation in Panel B and C in Table 2. We attribute these results
that the mass media provides a large number of original news
because of their advantage of interviewing and editing team. So
the new media depend more on the mass media to some extent.

Then we calculate theMutual Information to further study the
relationship between the four types of news. In probability and
information theory, the Mutual Information is a useful measure
of interdependence between two variables. Table 3 reports the
result of Mutual Information among four news and we report
the mean of Mutual Information for all stock. As we can see
from Table 3, the Mutual Information is all larger than 0.3 with a
significant level of 0.01 implying a significant positive correlation
among the four types of news. Similarly, the Mutual Information
between mass-media news and mass-media reprints (0.431) is
larger than the one between new-media news and mass-media
reprints (0.368) as well as the Mutual Information between new-
media news and new-media reprints (0.915) is larger than the
one between mass-media news and new-media reprints (0.427),
which indicate that the two media both pay more attention to
their congener media when they reprint news from other media.

TABLE 3 | The mutual information matrix for the four types of news.

MmNt NmNt RMmNt RNmNt

MmNt 1

NmNt 0.492*** 1

(60.59)

RMmNt 0.431*** 0.368*** 1

(73.42) (55.53)

RNmNt 0.427*** 0.915*** 0.334*** 1

(60.08) (90.39) (56.90)

This table reports the mutual information matrix for the daily number of the four types

of news at the firm-day level. MmNt, NmNt, RMmNt, and RNmNt denote the mass-

media, new-media, the reproduction of mass-media, and the reproduction of new-

media, respectively.

***Denotes t-test statistically significant at the 1% level.

Also, the Mutual Information between new-media reprints and
mass-media news (0.427) is larger than the one between mass-
media reprints and new-media news (0.368) implying that mass-
media news is paid more attention when the media choose which
news to reprint.

The Lead-Lag Relation for the Four Types
of News
In this section, we investigate the lead-lag relation among
the mass-media news, new-media news, mass-media reprints,
and new-media reprints with the following Panel Vector
Autoregression (VAR) Model with one-period delay.

A0xt = fi +
2

∑

j=1

Ajxi,t−1 + di,t + µi,t (1)

A0zt = fi +
4

∑

j=1

Ajzi,t−1 + di,t + µi,t (2)

where xi,t
′ = (MmNi,t ,NmNi,t) and zi,t

′ =
(MmNi,t ,NmNi,t ,RMmNi,t ,RNmNi,t) are the vector of
endogenous variables for the model (1) and model
(2), respectively.

Table 4 reports the coefficients of the PVAR model. Panel A
shows the result of the model (1). We can see that the coefficient
of the lagged number of mass-media news is positive and
statistically significant, while the coefficient of the lagged number
of new-media news is negative and statistically significant in
column 1 of panel A. This indicates that the daily number of
mass-media news has a significant auto-correlation and relies on
less on the lagged number of new-media news. In column 2 of
panel A, the coefficients of the lagged number of mass-media
news and new-media news are both positive and statistically
significant, implying that there is an auto-correlation for the
daily number of new-media news and the number of mass-media
news could lead the number of new-media news. Considering
the reprints in panel B of Table 4, the coefficients of the lagged
number of mass-media news are all positive and statistically
significant when we use the current daily number of mass-media
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TABLE 4 | Results of panel vector autoregression (PVAR) model for four types of

news.

MmNt NmNt

PANEL A RESULTS OF MODEL (1)

MmNt−1 0.056*** 0.114***

(0.001) (0.004)

NmNt−1 −0.004*** 0.003***

(0.000) (0.001)

MmNt NmNt RMmNt RNmNt

PANEL B RESULTS OF MODEL (2)

MmNt−1 0.182*** 0.438*** 0.072*** 0.231***

(0.002) (0.001) (0.001) (0.005)

NmNt−1 0.002*** 0.028*** 0.002*** 0.010***

(0.000) (0.002) (0.000) (0.001)

RMmNt−1 −0.210*** −0.528*** −0.076*** −0.277***

(0.003) (0.01) (0.002) (0.007)

RNmNt−1 −0.0136*** −0.055*** −0.007*** −0.021***

(0.001) (0.003) (0.000) (0.002)

This table reports the results of the Panel Vector Autoregression (PVAR) Model for the

four types of news. A0xt = fi +
∑2

j=1 Ajxi,t−1 + di,t + µi,t (model 1) and A0zt =
fi +

∑4
j=1 Ajzi,t−1 + di,t + µi,t (model 2). The MmNt,NmNt,RMmNt, and RNmNt denote

the mass-media, new-media, the reproduction of mass-media, and the reproduction

of new-media, respectively. MmNt−1, NmNt−1, RMmNt−1, and RNmNt−1 denote the

news number of mass-media, new-media, the reproduction of mass-media, and the

reproduction of new-media lagged 1 day, respectively. Panel A and Panel report the results

of model (1) and model (2) respectively.

***Denotes t-test statistically significant at the 1% level.

news, new-media news, mass-media reprints, and new-media
reprints as the dependent variables. This implies that the number
of mass-media news keeps the significant auto-correlation and
could lead the number of new-media news, mass-reprints as
well as new-media reprints when considering the reprints. At
the same time, the coefficients of the lagged number of new-
media news are also positive and statistically significant, which
indicating that the lagged number of new-media news could
lead the all the current number of all four types of media news
including itself. Panel B of Table 4 shows that the coefficients of
the lagged number of mass-media news are all larger than the
corresponding coefficient for the lagged number of new-media
news. We can conclude that the number of four types of news
relies more on the mass-media news including the mass media
itself. We attribute this result to the different role that the mass
media and new media play when they transfer the information.
As we discussed above, the mass media is engaged to provide
original news with high quality while the new media devotes
to transfer to the readers. So the number of new-media news
will increase when there is more mass-media news that could be
chosen and transferred by the new media. At the same time, the
journalists will seek “inspiration of creation” on the internet. So
the number of new-media news may lead the mass-media news
to some extent.

The last two columns of Panel B show that there is no
autocorrelation for the mass-media reprints and new-media

reprints. And the significant positive coefficients of lagged
number mass-media news and new-media indicate that they
rely more on the mass-media news and new-media news. The
coefficients of the number of lagged mass-media reprints and
new-media news are all negative and statistically significant.
When the number of reprints is large, there may be a hot event
in the stock market and the media will pay more attention to this
event even overreact to it. So the negative coefficients are more
likely due to mean-reversion.

Factors Drive the Coverage of News
In this section, we investigate the different reactions for the four
types of news defined in this paper to the different shocks. We
analyze the influence of corporate events on the coverage and
reprints of the mass media and new media.

Following the work introduced by Drake et al. [32], we defined
5 corporate event indicator variables to investigate the reactions
of the mass media and new media to these events. The first
indicator, EARN is the indicator of the earnings announcement.
When there is earning announcement for stock in one day, the
value of the day, as well as the following day, is set to one for
this stock and to zero otherwise. The second indicator, DIVEQ,
is about the dividend- and equity-related event. When one firm
issue a dividend- or equity-related announcement, the value of
the DIVIEQ of the day, as well as the following day, is set to
one and to zero otherwise. The third indicator, M&A, is the
mergers and acquisitions-related events. The value of M&A on
the day, as well as the following day, of themergers or acquisition-
related announcement, is set to one, and to zero otherwise. The
fourth indicator, Emerg, represents the emergencies defined by
the database of CSMAR. Similarly, on the days 0 and +1 of this
events, the value of Emerg equal to one, and to zero otherwise.
Our last indicator, Other, denotes the other corporate events
included in the database of CSMAR In addition to the above four
types of events.

Then we conducted the panel regression with a fixed effect to
explore the reaction of the mass media and new media to these
corporate events. Our model is as follows:

MCOVit = β1EARNit + β2DIVEQit + β3M&Ait + β4Emergit

+ β5Otherit (3)

where MCOVit is the news number of firm i in day t
which include mass-media news, new-media news, mass-media
reprints, and new-media reprints. And the other variables are
defined above.

Table 5 reports the results of Model (3). From Table 4, we can
see that the coefficients of all the events for the four types of
news are significantly positive. This indicates that both the mass
media and newmedia will increase the number of coverage to the
firm when there appears a corporate event. And the coefficient
of the Emerg is larger than the other coefficients of the event
indicator implied that the emergences are more likely to attract
the media to cover. The coefficients for new-media news are
larger than the ones for mass-media news and the coefficients
for new-media reprints are also larger than mass-media reprints,
even larger than the one for mass-media news, which indicates
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TABLE 5 | Events that drive the coverage of news.

MmNt NmNt RMmNt RNmNt

EARNt 0.45*** 6.22*** 0.05*** 2.40***

(26.85) (70.26) (4.64) (47.87)

DIVEQ t 0.79*** 4.69*** 0.44*** 2.29***

(59.69) (66.80) (47.14) (57.64)

M&At 1.21*** 6.23*** 0.64*** 2.94***

(72.04) (70.21) (54.82) (58.49)

EMergt 1.74*** 10.28*** 1.04*** 6.11***

(9.03) (10.09) (7.70) (10.59)

Othert 1.23*** 6.27*** 0.69*** 3.01***

(201.37) (194.05) (160.47) (164.5)

Adj. R-Squared 0.013 0.015 0.008 0.010

This table reports the results of the panel regressions of news numbers on the different

events about the firms. MCOVit = β1EARNit + β2DIVEQit + β3M&Ait + β4Emergit +
β5Otherit. The MmNt,NmNt,RMmNt, and RNmNt denote the mass-media, new-media,

mass-media reprints, and new-media reprints, respectively. EARNt denotes the earnings

announcement. DIVEQt denotes the dividend- or equity-related event. M&At represents

the mergers and acquisitions-related events. Emergt are the emergencies that are defined

in the CSMAR. Othert denotes the other events which are announced by the firms.

***Denotes t-test statistically significant at the 1% level.

that the reactions to corporate events of new media are stronger
than themass media.When there appears an event, there will be a
large number of new-media news to cover it. It could make more
investors aware of this event. So this result could provide a piece
of evidence that the new media could improve the information
environment for investors.

Dynamic Correlation for the Four Types of
News
To investigate the dynamic correlation between the four types of
news, the rolling window analysis is conducted in this section.We
choose 240 business days (∼1 year) as the length of the rolling
windows selected in this paper. Figures (1) and (4) in Figure 2

shows the dynamic correlation between mass-media news and
new-media news, mass-media news and mass-media reprints,
new-media news and new-media reprints, as well as mass-
media reprints and new-media reprints, respectively. Figure (5)
in Figure 2 shows the varieties of the Chinese stock market in
the corresponding time. And we choose the index price of the
CSI A-share index as the indicator of the performance of the
Chinese stock market. The CSI A-share index is compiled by
the CSI company and could reflect the performance of Chinese
performance well. As we can see in Figure 2, there are significant
positive correlations between the four types of news over time
and there is a decreasing trend for all four types of dynamic
correlation in this paper. There is also a decreasing trend for
the Chinese stock market in the corresponding time, which can
be seen in (5) of Figure 2. We attribute the decreasing trend of
the dynamic correlation to the decreasing media attention when
there is a poor performance of the market, especially for the
new-media news. And we provide further evidence of this by
conducting the quantile regression of the dynamic correlation on
the index price of the CSI A-share index as well as the number of

FIGURE 2 | The dynamic correlation for four types of news and stock market.

news on the CSI A-share index:

correlation(τ )t = α(τ ) + β(τ )Indext (4)
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TABLE 6 | The results of the quantile regression of the dynamic correlation on the

stock market.

τ CorMNt CorMrMt CorNrNt CorMrNt

0.1 0.025*** 0.023*** 0.016*** 0.036***

(23.56) (43.29) (27.46) (41.21)

0.2 0.024*** 0.025*** 0.020*** 0.036***

(36.54) (22.31) (17.86) (23.65)

0.3 0.024*** 0.027*** 0.031*** 0.039***

(30.93) (25.08) (27.74) (21.50)

0.4 0.024*** 0.041*** 0.038*** 0.054***

(30.03) (16.19) (21.94) (19.47)

0.5 0.026*** 0.041*** 0.042*** 0.056***

(18.14) (23.15) (28.57) (31.61)

0.6 0.029*** 0.041*** 0.042*** 0.057***

(23.62) (20.81) (17.76) (37.22)

0.7 0.031*** 0.036*** 0.046*** 0.052***

(30.43) (11.89) (17.76) (19.54)

0.8 0.033*** −0.021*** −0.011*** 0.044***

(25.12) (−11.42) (−11.03) (12.11)

0.9 0.041*** −0.015*** −0.008*** 0.010***

(18.84) (−3.75) (−2.78) (8.40)

This table reports the results of the quantile regressions of the dynamic correlation

for four types of news on the stock market. correlation(τ )t = α(τ ) + β(τ ) Indext. The

symbols CorMNt, CorMrMt, CorNrNt, and CorMrNt denote the dynamic correlation

between mass-media news and new-media news, mass-media news and mass-media

reprints, new-media news and new-media reprints, as well as mass-media reprints and

new-reprints, respectively. Quantile is the quantiles we used in this paper including 10,

20, 30, 40, 50, 60, 70, 80, and 90%. α(τ ) is the constant of the quantile regression.

β(τ ) denotes the coefficient of four types of dynamic correlations. And τ represents the

different quantile.

***Denotes t-test statistically significant at the 1% level.

where correlation(τ )t is the correlation of the four types of news
in time t at τ , Indext is the index price of the CSI A-share
index in time t, α(τ ) is the constant of the quantile regression.
β(τ ) denotes the coefficient of four types of dynamic correlations.
And τ represents the different quantile.

Table 6 reports the results of the quantile regression of the
dynamic correlation for the four types of news on the index
price of the CSI A-share index and we report the coefficients
only. To ensure the readability of the table, all coefficients in
Table 6 are multiplied 1000. For the dynamic correlation between
mass-media news and new-media news, the coefficients in the
first column in Table 6 are all significant positive for all quantile
levels. And there is an increasing trend with the increase of
the quantile level. This result indicates that there is a stronger
correlation between mass-media news and new-media news
when the stock market performs well. From the other three
columns in Table 6, we can also see the similar increasing trend
of the coefficients of different quantile levels except for the 0.8
and 0.9 percentile. For the model of dynamic correlation between
mass-media news and mass-media reprints as well as the model
of dynamic correlation between new-media news and new-media
reprints, the coefficients of 0.8 and 0.9 percentile are negative.
Besides, the coefficients of the corresponding quantile levels are
smaller than the other quantile levels. These results imply that

the correlations between reprints and their corresponding media
news become weak when the stock market performs well. We
attribute these results to that the bullish market attracts more
attention of the media, especially for new media. According to
the results above, we can see that the number of new-media news
has larger volatility, which has a larger standard deviation, than
the mass-media news and the new media makes larger reactions
to the shocks. Considering the purpose of mass media, which
provides objective and balanced information for the investors,
and the ability to interview and editing, the mass media are more
likely to provide a more stable quantity of news for the investors
than new media every day. So when the market performs well,
the new media will provide more news to the investors and
shows a stronger correlation with mass-media news. On the
other hand, both the mass media and new media are attracted
by the extremely good performance of the stock market, they
will both provide a larger quantity of news for the investors. So
when the stock market performs extremely well, the reprinted
media will have more news to choose from and reprint. In this
condition, the reprinted media will choose the essence new to
reprint. Therefore, the correlation between the reprints and the
media-news becomes smaller when the stock market performs
extremely well.

Robust Test
In this section, we conduct robust tests of the results above.
Firstly, we add financial stocks into our sample to repeat the
analysis discussed above. Secondly, we choose the main media
source of mass-media news and new-media news instead of
all media sources to conduct the robust test. We choose the
media sources as well as sub-sources of them that provide eighty
percent of the number of news for mass media and new media,
respectively, as the main media. We get similar results for the two
robust tests, so we report the results of the main media only in
this section.

Table 7 reports the correlation matrix for the four types of
news of the main media. Although the value of the correlation
coefficients is not the same, we can also find a significantly
positive contemporaneous correlation between the four types
of news. The correlation between mass-media news and mass-
reprints as well as the one between new-media news and new-
media reprints are larger than others. And the correlation
between mass-media news and new-media reprints is larger than
the one between new-media news and mass-media reprints.
These results are consistent with the analysis for the sample of all
news sources. Table 8 reports the Mutual Information between
the four types of news for main media. Also, the significant
positive Mutual Information indicates the positive correlation
between the four types of news. The Mutual Information about
the reprints also indicates that the two media both pay more
attention to their congener media when they reprint news from
other media and mass-media news is paid more attention when
the media choose which news to reprint. These results are all
consistent with the ones of all media samples.

Table 9 shows the results of lead-lag correlation analysis for
the main-media news. We also could find that the number of
mass-media news could lead to the number of new-media news,
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TABLE 7 | The correlation matrix of main-media news.

MmNt NmNt RMmNt RNmNt

PANEL A: PEARSON CORRELATION

MmNt 1

NmNt 0.704*** 1

(359.9)

RMmNt 0.918*** 0.633*** 1

(916.8) (299.7)

RNmNt 0.719*** 0.908*** 0.674*** 1

(391.6) (835.4) (334.3)

PANEL B: KENDALL CORRELATION

MmNt 1

NmNt 0.469*** 1

(328.9)

RMmNt 0.737*** 0.404*** 1

(539.7) (295.1)

RNmNt 0.550*** 0.682*** 0.501*** 1

(389.1) (539.6) (370.4)

PANEL C: SPEARMAN CORRELATION

MmNt 1

NmNt 0.532*** 1

(310.1)

RMmNt 0.756** 0.457*** 1

(520.4) (275.0)

RNmNt 0.592*** 0.749*** 0.536*** 1

(386.3) (475.3) (358.7)

This table reports the correlation matrix for the daily number of the main-media news at the

firm-day level. MmNt, NmNt, RMmNt, and RNmNt denote the mass-media, new-media,

the reproduction of mass-media, and the reproduction of new-media, respectively.

**Denotes t-test statistically significant at the 5% level.

***Denotes t-test statistically significant at the 1%.

TABLE 8 | The mutual information matrix for the four types of main-media news.

MmNt NmNt RMmNt RNmNt

MmNt 1

NmNt 0.387*** 1

(68.53)

RMmNt 0.378*** 0.295*** 1

(81.14) (60.50)

RNmNt 0.340*** 0.763*** 0.269*** 1

(69.99) (90.03) (64.34)

This table reports the mutual information matrix for the daily number of the four types

of main-media news at the firm-day level. MmNt, NmNt, RMmNt, and RNmNt denote

the mass-media, new-media, the reproduction of mass-media, and the reproduction of

new-media, respectively.

***Denotes t-test statistically significant at the 1% level.

new-media reprints, as well as mass-media reprints. The number
of new-media news could lead the mass-media news, mass-
media reprints, and new-media reprints, but the coefficients of
the lagged number of new-media news are all smaller than the
corresponding coefficients of the lagged number of mass-media

TABLE 9 | Results of panel vector autoregression (VAR) model for main-media

news.

MmNt NmNt

PANEL A RESULTS OF MODEL (1)

MmNt−1 0.026*** 0.0549***

(0.001) (0.004)

NmNt−1 0.000*** 0.010***

(0.000) (0.001)

MmNt NmNt RMmNt RNmNt

PANEL B RESULTS OF MODEL (2)

MmNt−1 0.055*** 0.209** 0.027*** 0.099***

(0.002) (0.01) (0.001) (0.006)

NmNt−1 0.004*** 0.030*** 0.002*** 0.010***

(0.000) (0.001) (0.000) (0.001)

RMmNt−1 −0.038*** −0.197** −0.010*** −0.089***

(0.003) (0.015) (0.002) (0.008)

RNmNt−1 −0.007** −0.045*** −0.005*** −0.015***

(0.000) (0.002) (0.000) (0.001)

This table reports the results of the Panel Vector Autoregression (VAR) Model for the

main-media news. A0xt = fi +
∑2

j=1 Ajxi,t−1 + di,t + µi,t (model 1) and A0zt =
fi +

∑4
j=1 Ajzi,t−1 + di,t + µi,t (model 2). The MmNt,NmNt,RMmNt, and RNmNt denote

the mass-media, new-media, the reproduction of mass-media, and the reproduction

of new-media, respectively. MmNt−1, NmNt−1, RMmNt−1, and RNmNt−1 denote the

news number of mass-media, new-media, the reproduction of mass-media, and the

reproduction of new-media lagged 1 day, respectively. Panel A and Panel report the results

of model (1) and model (2) respectively.

**Denotes t-test statistically significant at the 5% level.

***Denotes t-test statistically significant at the 1% level.

news. Also, the coefficients of the number of lagged mass-media
reprints and new-media reprints indicate a mean-reversion of
the news coverage. Table 10 reports the results of the panel
regressions of main media news numbers on the different events
about the firms for main-media news. From Table 10, we can
see that there are significantly positive reactions to the corporate
events and the new media has a more significantly positive
response to these shocks, which are consistent with the results
of the sample of all news sources.

For the analysis of the dynamic correlation between the
four types of news for the main media, there is also a positive
correlation over time. Table 11 reports the results of the quantile
regression of the dynamic correlation on the index price for
the CSI A-share Index for main-media news. Also, the results
indicate that the correlation between mass-media news and new-
media news becomes stronger and the coefficients related to the
reprints are also weak when the market performs well. And these
are consistent with the above.

CONCLUSIONS

In this paper, we investigated the roles of mass media and
new media play in the process of information transmission
in the Chinese stock market. Firstly, we conducted the
contemporaneous correlation analysis among the mass-media
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TABLE 10 | Events that drive the coverage of main-media news.

MmN NmN RMmN RNmN

EARNt 0.45*** 6.22*** 0.05*** 2.40***

(26.85) (70.26) (4.64) (47.87)

DIVEQt 0.79*** 4.69*** 0.44*** 2.29***

(59.69) (66.80) (47.14) (57.64)

M&At 1.21*** 6.23*** 0.64*** 2.94***

(72.04) (70.21) (54.82) (58.49)

EMergt 1.74*** 10.28*** 1.04*** 6.11***

(9.03) (10.09) (7.70) (10.59)

Othert 1.23*** 6.27*** 0.69*** 3.01***

(201.37) (194.05) (160.47) (164.5)

Adj. R-Squared 0.013 0.015 0.008 0.010

This table reports the results of the panel regressions of the main media news number

on the different events about the firms for main-media news. MCOVit = β1EARNit +
β2DIVEQit + β3M&Ait + β4Emergit + β5Otherit. The MmNt,NmNt,RMmNt, and RNmNt

denote the mass-media, new-media, mass-media reprints, and new-media reprints,

respectively. EARNt denotes the earnings announcement. DIVEQt denotes the dividend-

or equity-related event. M&At represents the mergers and acquisitions-related events.

Emergt are the emergencies that are defined in the CSMAR. Othert denotes the other

events which are announced by the firms.

***Denotes t-test statistically significant at the 1% level.

news, new-media news, mass-media reprints, and new-media
reprints. We found that there are significant positive correlations
among these four types of news and the reprints have a stronger
correlation with the same type of media news. The results also
show that the correlation between mass-media news and new-
media reprints is larger than the one between new-media news
and mass-media reprints. Secondly, we studied the lead-lag
relationship betweenmass-media news and new-media news.We
found that mass-media news and new-media news exhibit high
positive autocorrelation, but the results of mass-media reprints
and new-media reprints are reverses. The mass-media reprints
and new-media reprints rely more on the mass-media news and
new-media news. The lagged number of mass-media news could
lead the number of new-media news, mass-media reprints, as
well as new-media reprints and the lagged number of new-media
news, could also lead the number of mass-media news, mass-
media reprints, as well as new-media reprints. But the coefficients
of the lagged number of new-media news are smaller than the
corresponding ones of the number of lagged mass-media news,
which implies that new media relies more on mass media and
mass media relying more on themselves may seek inspiration on
the internet to some extent. Thirdly, we explored the reactions of
mass-media news and new-media news to corporate events. We
found that all four types of news positively react to these shocks,
but the new media exhibits a stronger positive reaction to these
shocks. Finally, we studied the dynamic correlation between the
four types of news. We found that there are significant positive
correlations between the four types of news over time. And the
correlation between mass-media and new-media news becomes
stronger when the stock market performs well. The correlation
between the reprints and the correspondingmedia news becomes
smaller when the stock market performs extremely well.

TABLE 11 | The results of the quantile regression of the dynamic correlation on

the stock market for main-media news.

τ CorMNt CorMrMt CorNrNt CorMrNt

0.1 −0.014*** 0.025*** 0.025*** 0.015***

(−14.05) (13.13) (31.13) (12.00)

0.2 −0.11*** 0.029*** 0.027*** 0.019***

(−8.49) (23.92) (25.55) (11.13)

0.3 0.003* 0.030*** 0.033*** 0.026***

(1.75) (25.44) (15.06) (16.48)

0.4 0.015*** 0.039*** 0.038*** 0.032***

(6.87) (13.63) (7.92) (13.58)

0.5 0.021*** 0.050*** 0.075*** 0.039***

(15.61) (23.70) (13.47) (21.80)

0.6 0.023*** 0.053*** 0.078*** 0.042***

(12.30) (25.51) (16.37) (15.88)

0.7 0.026*** 0.053*** 0.077*** 0.046***

(12.68) (11.10) (23.18) (25.62)

0.8 0.030*** −0.030*** −0.011*** 0.047***

(23.82) (−11.60) (−14.20) (14.78)

0.9 0.039*** −0.006** −0.015*** 0.040***

(8.82) (−2.20) (−2.75) (11.34)

This table reports the results of the quantile regressions of the dynamic correlation for

four types of main-media news on the stock market. correlation(τ )t = α(τ ) + β(τ ) Indext.

The symbols CorMNt, CorMrMt, CorNrNt, and CorMrNt denote the dynamic correlation

between mass-media news and new-media news, mass-media news and mass-media

reprints, new-media news and new-media reprints, as well as mass-media reprints and

new-reprints, respectively. Quantile is the quantiles we used in this paper including 10,

20, 30, 40, 50, 60, 70, 80, and 90%. α(τ ) is the constant of the quantile regression.

β(τ ) denotes the coefficient of four types of dynamic correlations. And τ represents the

different quantile.

*Denotes t-test statistically significant at the 10% level.

**Denotes t-test statistically significant at the 5% level.

***Denotes t-test statistically significant at the 1% level.

We attribute these results to the different roles that the
mass media and new media play in the process of information
transmission in the Chinese stock market. The mass media has
the advantages of the interviewing and editing ability and the
legal rights of interviewing and editing. While the new media,
especially for the larger portals could attract more attention
and discussion of readers. So mass media and new media
exhibit a symbiotic relationship, where mass media devotes
to provide original news with high quality and new media
transfers these numbers of news to more readers to attract more
attention and discussion. So the number of new-media news
relies on more mass-media news. On the other hand, the higher
autocorrelation for these four types of news as well as the higher
contemporaneous correlation between reprints and the same
type of news indicates that the competition relation also exists
between mass media and new media.

Admittedly, we only focus on the number of news in this
paper. And this paper didn’t combine with the stock market
completely. It is promising to further investigate the roles of mass
media and new media in the content of news and to compare the
different effects on the stock market of the two types of media
based on their different roles. We leave these for future research.
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Systemic risk is not only related to the contagious risk of interbank market risk exposure,

but also to the credit risk exposure. At the same time, the dynamic characteristics of

banking system also affect the systemic risk. A large number of studies have revealed

the contagious risk of interbank market risk exposure, but the systematic risk research

that considers these factors at the same time is still rare. Therefore, the present paper

constructs dynamically evolving banking systemic risk assessment model under double

risk exposures in the same framework that includes two parts: one is the assessment

of credit risk; the other is the contagious risk. On the assessment of credit risk, we use

Geometric Brownian Motion in physics and Monte Carlo simulation calculation method

based on the big data of the stock market. On the assessment of contagious risk, we

use the method of Geometric Brownian Motion in physics and minimum density method.

Then we use data of 205 Banks and 3,017 listed companies in 18 industries in Chinese to

study the dynamic evolution law of the Chinese banking systemic risk. The results show

that the evolution characteristics of credit risk of 18 real industries can be divided into 4

types which are stability after decline, increase in fluctuation, decrease in fluctuation, and

fluctuation. The systemic risk of Chinese banking system with the double risk exposures

gradually increased with the evolution of time, and then stabilized at a certain degree.

Among them, the initial increase of contagious risk is fast, and then stable; the credit

risk starts small, slowly increases, and eventually stabilizes. The evolution degree of

contagious risk is higher than that of credit risk. Large banks have the strongest ability to

withstand the impact of double risk exposures, while foreign banks have the weakest.

Keywords: systemic risk, geometric Brownian motion, credit risk exposure, interbank market risk exposure,

dynamic evolution

INTRODUCTION

After the international financial crisis in 2008 and the European debt crisis in 2010, countries
have paid enough attention to strengthening financial supervision, maintaining financial stability,
and preventing and controlling systemic risks. In October 2017, the report of the 19th National
Congress of the Communist Party of China clearly pointed out that it is necessary to “improve
the financial supervision system, keep the bottom line of no systemic financial risks,” and raised
the prevention of systemic risk to the height of national security. However, due to the complexity
of systemic risk itself, the definition of systemic risk has not been unified in academia. But, some
studies have clearly pointed out that systemic risk is a global and systematic risk, which is not
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limited to the financial system. It is worth noting that the real
industry plays a more and more important role in the process
of economic development, and the relationship between the real
industry and the financial industry is increasingly close. These
correlations not only constitute the channel of risk transmission,
but also further expand the negative impact on the entire
economic system. When the important real industries encounter
difficulties, the contagion risk brought by the recessionmakes our
economy face great risks.

In financial system, the banking industry plays an important
role. To prevent the systemic risk of the banking industry has
become the core of maintaining financial stability. At present,
the systemic risk is mainly studied on the contagious risk of
interbank market risk exposure, while there are few studies
on the double risk exposures of basic failure caused by credit
risk exposure and contagious risk caused by interbank market
risk exposure.

Since Allen and Gale [1] used the network model to study
the impact of the interbank network structure on the banking
systemic risk, the research on the banking systemic risk has
been emerging. The mutual loan relationship between banks can
solve the short-term liquidity shortage of banks and increase
investment opportunities, but it can also improve the contagion
risk between banks. Most researches show that the risk exposure
of interbank market is the main channel of systemic risk. Allen
and Gale [1] found that the fully connected network structure
is more robust than the incomplete network structure, and the
contagion risk is significantly smaller. Freixas et al. [2] found
the probability of contagion risk depends on the setting of
network model parameters by comparing the fully connected
network structure with the ring network structure. Using the
data of 27 Mexican banks in 2007, Martínez-Jaramillo [3] found
that the vulnerability of the banking system is determined
by the probability of banks default, the connectivity between
banks, and the banks that are over exposed to the network.
Mistrulli [4] found that the fully connected interbank market is
more susceptible to contagion than the incompletely connected
interbank market. Ladley [5] found that there is no interbank
market structure that can maximize the stability under any
conditions. Sui et al. [6] studied the problem of contagion risk
in scale-free networks with different scale parameters and found
that the higher the concentration, the more the number of banks
in the network with contagion failure. Bao and Sun [7] studied
financial structure and contagion risk by establishing a multi-
agent simulation model and found that the hierarchical structure
of center edge will increase the degree and scope of contagion risk
compared with the fully connected structure.

Although the interbank market risk exposure is the core of
the study of banking systemic risk, the impact of credit risk
exposure on the systemic risk of banks cannot be ignored. At
present, there are few studies on credit risk exposure based on
VaR-based method, while those researches did not consider the
effect of the interbank market risk exposure on systemic risk. In
the existing literature, Adrian and Brunnermeier [8] proposed
a CoVaR to measure the contribution of financial institution to
the systemic risk. Huang et al. [9] measured the systemic risk
as the marginal contribution of a financial firm to the distress

insurance premium of the financial sector. A large number of
contributions on VaR-based systemic risk measurement associate
the systemic risk with the degree of interdependence among
financial firms as in Billio et al. [10], Ang and Longstaff [11], and
Diebold and Yilmaz [12]. In China, Li et al. [13] used 11 industry
VaR indexes to build the systemic risk spillover network among
industries in China from 2002 to 2017 to find that the financial
industry is not the only systemic risk source and the systemic
importance of information technology, materials, industry, and
other real economic industries is increasing day by day. Zhai [14]
established GARCH-Copula-CoVaR model based on industry
indexes to empirically analyze the two-way risk spillover effect
between each real industry and banking industry. Zhu and Ma
[15] used the method of eigenvector centrality to measure the
systemic risk of China’s industry and found that the systemic risk
of the financial industry is generally on the decline, while the
systemic risk of the non-financial industry is at a relatively high
level. Sun et al. [16] used the real estate industry index to measure
the systemic risk spillover intensity of China’s real estate industry
to the financial industry based on the CoVaR model and quantile
regression method.

Based on the perspective of complex network, few studies
consider credit risk exposure and interbank market risk exposure
at the same time; most of them are theoretical studies and lack
of empirical data support. In addition, the systemic risk of those
studies is mainly based on the static model without considering
the evolution of the systemic risk over time. Lu and Wang [17]
used the maximum entropy method to estimate the complete
interbank network and set up a common loan network of banks
based on the covariance of industry indexes, but they did not
consider the credit risk of industry default and the evolution
of the systemic risk over time. In their study, they found that
the impact of different loan industry shocks on the degree of
contagion risk is different. The crisis in the industry with more
loan funds is more serious for the financial system. Wu et al.
[18] studied theoretically the impact of the price fluctuation
of common assets on the systemic risk and found that the
indirect linked contagion of the sale of common assets is far
greater than the direct linked contagion. Although this study
involves credit risk exposure, the systematic risk in this study
is based on the assumption of the model, not supported by
the actual data, and the model of the credit risk exposure is
static. Zhai and Bian [19] used the maximum entropy estimation
method to construct the interbank network structure and the
bipartite network structure between banks and real industries to
identify the systemic important bank and the systemic important
industry, but they did not study the effect of credit risk on
the systemic risk. Caccioli et al. [20] found theoretically that
interbank market risk exposure magnified the chain reaction of
bank portfolio risk exposure. Glasserman and Young [21] also
found theoretically that the probability of bank default caused
by the direct impact of external asset loss is higher than that of
bank contagion default, and the interconnected financial network
can increase the expected loss and default degree. Chiu et al. [22]
found that there is a relationship between creditor’s rights and
debts between the real industry and the banking industry and
the risk will circulate among different departments. In addition,
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the systemic risk should be discussed from the perspective of the
whole industry. The banking industry and the real industry are
closely linked through credit. Wang and Li [23] established an
extended matrix model based on the credit market between the
banking and real estate industry. They found that the financial
system composed of the real estate industry and the banking
industry is more vulnerable than the separate banking system
and the risk transmission speed is significantly faster. Li et al.
[24] studied the joint impact of Chinese Banks’ internal lending
market and real estate industry’s credit risk exposure on the
systemic risk of the banking system and found that the two
had a great joint resonance effect on contagion risk. The study
only considered real estate credit risk exposure, instead of all
the industries.

To sum up, at present, most of the researches on credit risk
exposure use VaR-based method to study the impact of credit
risk spillover on systemic risk without considering the interbank
market risk exposure, and these studies only qualitatively point
out the importance of credit risk exposure of the real industry
for the assessment of systemic risk and do not quantitatively
analyze the default probability of the real industry and the
quantitative effect of credit risk on systemic risk. Few studies
consider both credit risk exposure and the interbank market
risk exposure; however, most of them are theoretical studies and
lack of empirical data support; in addition, the systematic risk
of those studies is mainly based on the static model without
considering the evolution of systemic risk over time. Therefore,
the present paper studies the dynamical evolution of systemic risk
in the same framework of both the credit risk exposure of the
real industry and the contagion risk exposure of the interbank
market. In order to construct the dynamical evolution of the
systemic risk, the present paper uses the Geometric Brownian
Motion to simulate the movement of assets of the real industry
and banks, which is often used to estimate the dynamic motion
of assets in economics [25, 26]. In Lehar [25], Lehar first used
the Geometric Brownian Motion to simulate the movement
of assets of banks and studied the systemic risk based on the
correlation of assets of banks, but the study did not consider
the interbank market and the real industry that banks loan to.
After constructing the dynamic evolution of assets and liabilities,
the present paper uses the simulation methods, complex network
methods, and empirical data to build a dynamic evolution model
of banking systemic risk assessment to analyze the impact of the
direct shock of credit risk exposure of the real industry and the
indirect shock of interbank market exposure on the systemic risk
of China’s banking system.

The innovation of this paper is mainly in three aspects. First,
inspired by the research of Caccioli et al. [20] and Lehar [25], the
present paper is the first to combine the credit risk exposure of
the real industry and the risk exposure of the interbank lending
market in the same framework to conduct the dynamic evolution
study of systemic risk by using Geometric Brownian Motion in
physics. Second, consider that most of studies used the maximum
entropy method to estimate the interbank network and lacked
real data support, the present paper uses real data of listed
companies in the real industry to estimate the dynamic credit
risk exposure of real industry, then uses the minimum density

method and real banking data to estimate the more realistic
dynamic interbank market risk exposure. Third, in the existing
literature, the method of stress test for banks is to let one or one
type of bank assets lose, while in this paper, the listed companies
in the real industry are shocked, which causes those companies
bankruptcy, thus the credit risk of the real industry is formed.

This paper is organized as follows. In section Model, we
describe the dynamic evolution model of banking systemic
risk assessment under double risk exposures. In section The
Calculation of Banking Systemic Risk Under Double Risk
Exposures, we propose how to calculate the systemic risk of
the banking system. In section Data, we explain the source of
data. In section Results, we discuss the assessment of dynamically
evolving banking systemic risk under double risk exposures
which include two parts: one is the assessment of credit risk of
the real industry in section The Assessment of Credit Risk of
the Real Industry; the other is the contagious risk section The
Assessment of Systemic Risk under Double Risk Exposures. In
section Discussion and Conclusions, we give conclusions.

MODEL

In this section, we first build a dynamic evolution model of
banking systemic risk assessment under double risk exposures, as
shown in Figure 1. We assume that there are a set N = {1, · · ·N}
of banks in the system, each bank has a dynamically evolved bank
balance sheet structure as shown in Figure 1A. Each bank’s assets
include interbank lending assets Ai(t) and external assets Vi(t).
Each bank’s liabilities include interbank borrowing liabilities Li(t)
and external liabilitiesDi(t). Each bank’s assets minus liabilities is
owner’s equity ei(t). The double risk exposures faced by banks
refer to the credit risk exposure of the real industry shown in
Figure 1B and the interbank market risk exposure shown in
Figure 1C (The payment matrix of the interbank market risk
exposure can be described as Equation (16), which shows the
interbank loan assetsAi(t)and the interbank loan liabilitiesLi(t).).
At time step T, the dynamic evolution of the credit risk exposure
of the real industry (see Figure 1B) results in dynamic external
asset losses for the banks (see the dashed boxes Lossi(t) and
Lossj(t) in Figure 1A). The interbank loan assets Ai(t) and
interbank loan liabilities Li(t) are dynamic, so the interbank
market risk exposure is also dynamically evolving. As shown
in Figure 1D, the dynamic interbank market network structure
evolved from time step t1 to time step t150. At each time step,
we use the clearing payment vector to conduct asset and liability
liquidation on the banking system under double risk exposures
and to calculate the systemic risk of the banking system at each
time step.

Next, this paper constructs a dynamic evolution of credit
risk exposure of the real industry corresponding to Figure 1B in
section Dynamic Evolution of Credit Risk Exposure of the Real
Industry and Estimation of the Interbank Market Risk Exposure
constructs an interbank market risk exposure estimation model
corresponding to Figure 1C. Section Default Algorithms Based
on the Dynamic Evolution of Bank Balance Sheet Structure
explains the default algorithms based on dynamic evolution
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FIGURE 1 | A dynamic evolution model of bank systemic risk assessment under double risk exposures. (A) Represents dynamic evolution of bank balance sheet

structure of bank i and j. (B) Plots the dynamic evolution curve of credit loss of banks caused by credit risk of the real industry. (C) Represents interbank market risk

exposure. (D) Shows dynamic evolution of interbank market network structure from time step t1 to time step t150.

of bank balance sheet structure corresponding to Figure 1A.

Section The Dynamic Evolution of Interbank Market Network
discusses the dynamic evolution of interbank market network
corresponding to Figure 1D.

Dynamic Evolution of Credit Risk Exposure
of the Real Industry
The credit relationship between banks and the real industry
constitutes a bank-real industry credit network. When credit
default occurs in the real industry, it will cause loss of external
assets of the related banks. Therefore, credit risk exposure of the
real industry faced by banks includes three parts that are credit
network between banks and the real industry, the distribution of
credit default probability in the real industry, and loss of banks’
external assets caused by credit risk exposure.

Credit Network Between Banks and Real Industry
Assuming that there is m real industries in China, the loan that
bank i provide to the real industry are expressed as Lik, the assets
of bank i is Vi, the proportion of loans Lik provided by bank i
to the real industry k in the assets Vi of bank i is called loan
proportion, expressed as Rik.

Rik =
Lik

Vi
i = 1, 2, · · · ,N, k = 1, 2, · · · ,m (1)

Considering that the distribution data of loan that a bank
provides to the real industry is not disclosed in the annual

report, it is impossible to calculate the loan proportion of all
banks. Therefore, Rikindicates the loan proportion provided by
the banks that can obtain the data to the real industry.

In order to determine the loan proportion of all banks, we
have divided N banks into a types, with Z banks under each
type. Assuming that banks of the same type have the same loan
proportion, Nbanks all provide loans to m real industries. Rbik
is used to represent the proportion of loans provided by bank
i under type b to real industry k. The calculation formula is
as follows.

Rbik =
∑

Rik

Zb
b = 1, 2, · · · , a (2)

∑

Rik is the sum of Equation (1) and Zb indicates the number
of banks under type b. In the end, we calculate the proportion of
loans R provided byN banks tom industries is a matrix ofN×m.

R =

















R111 · · · R11k · · · R11m
...

. . .
...

...
Rbi1 · · · Rbik · · · Rbim
...

...
. . .

...
RaN1 · · · RaNk · · · RaNm

















(3)

This paper assumes that every bank provides loans to every
industry, then credit network Z between banks and real industry

Frontiers in Physics | www.frontiersin.org 4 June 2020 | Volume 8 | Article 19947

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Fan and Sheng Dynamic Evolution of Systemic Risk

can be expressed as a matrix of N ×m.

Z =

















V1R111 · · · V1R11k · · · V1R11m
...

. . .
...

...
ViRbi1 · · · ViRbik · · · ViRbim

...
...

. . .
...

VNRaN1 · · · VNRaNk · · · VNRaNm

















(4)

Probability Distribution of Credit Default in Real

Industry

Estimation of dynamic evolution of assets and liabilities of

listed company in the real industry
Supposing the asset value Vg of the Listed Company in the real
industryg obeys Geometric Brownian Motion in physics [25], its
drift rate is µgand volatility is σg .

dVg = µgVgdt + σgVgdz (5)

The owner’s equity Eg(t) of Listed Company g is regarded as call
option, whose value is equal to the nominal value of liabilities
Dg(t) of Listed Company g in mature period T. Based on Black
Scholes Model [26], we can obtain the relationship between
owner’s equity and asset value of Listed Company as Equation (6).

Eg(t) = Vg(t)N(dt)− Dg(t)N(dt − σg
√
T) (6)

dt =
ln

(

Vg(t)/Dg(t)
)

+
(

σ 2
g /2

)

T

σg
√
T

(7)

Dg(t) = Dg(0)e
rt (8)

Where T is the maturity andT=365; t is the day before maturity.
Eg(t) is the daily equity value of Listed Company g, which can
be obtained from the stock market. Dg(0) is the initial liability
value of Listed Company g, which can be obtained from the
balance sheet. This paper assumes that the liabilities of all listed
companies increase according to the risk-free rate of return r.

In this paper, we first set the initial drift rate µg(0) and
volatility σg(0) as any value, then get the initial asset value
Vg(0) from the balance sheet of the Listed Company and
the owner’s equity value of each day can be expressed as
Eg(0),Eg(1), · · · ,Eg(T). According to Equation (8), the liability
can be expressed as Dg(0),Dg(1), · · · ,Dg(T), then we estimate

the asset value of each day as
∧
Vg (0),

∧
Vg (1), · · · ,

∧
Vg (T) according

to Equations (6–8). Using the maximum likelihood function
proposed by Duan J-C [27] to calculate the parameter of drift rate
µg and volatility σg .

L

(

µg , σg;
∧
Vg (0),

∧
Vg (1), · · · ,

∧
Vg (T)

)

= −
T

2
ln(2πσ 2

g h)

−
T

2

T
∑

k=1

(

R∗g(k∗)− (µg −
σ 2
g

2 )h

)2

σ 2
g h

−
T

∑

k=1

ln
∧
V t (9)

In Equation (9), R∗g(k∗) = ln

(

∧
V g(t)/

∧
V g(t − 1)

)

, h = 1
365 .

Finally, the drift rate µg and volatility σg estimated by
Equation (9) are substituted into Equation (10) to estimate the
assets of listed companies Vg(t).

Vg(t) = Vg(0)e
µg−

(

σ 2
g /2

)

th+σg
√

th∗zg (t) (10)

In Equation (10), zg(t)obeys the standard distribution of
N (0, 1), h = 1/T.

Calculation of basic bankruptcy status of listed companies in

real industry
Basic bankruptcy occurs when assets of listed companies in
various industries are less than liabilities, which can be expressed
by Equation (11).

Vg(t)− Dg(t) < 0 (11)

In Equation (11), the assets Vg(t) and liabilities Dg(t) of listed
companies have estimated in section Estimation of Dynamic
Evolution of Assets and Liabilities of Listed Company in the
Real Industry.

In this paper, the basic failure state variable is defined as
integer of 0 or 1, which can be expressed by Equation (12):

Sg(t) =
{

1
0
if Vg(t)− Dg(t) < 0

otherwise
(12)

Calculation of probability distribution of default in real

industry
The number of listed companies in the industry k can be
expressed as nk.By using Monte Carlo simulation method, we
calculate Sg(t) according to Equation (12), then we calculate the
default probability of industry k at time step t. This paper defines
the default probability of industry as Equation (13).

Pk(t) =
∑

Sg(t)

nk
, k = 1, 2, . . . ,m (13)

In Equation (13), Pk(t) is the default probability of industry k at
time step t,

∑

Sg(t) is the sum of the number of all the failed
listed companies in the industry k at time step t. In this paper,
Pk(t) that is the default probability curve with time changes is
used to measure the evolution of credit default probability of the
real industry.

Loss of Bank’s External Assets Caused by Credit

Risk Exposure
When listed companies in the real industry are unable to repay
banks’ loans in case of insolvency, the banks will suffer external
asset losses due to the credit default of real industry. The loss of
external assets of a bank can be calculated by combining Equation
(1) and (13), which is expressed by Equation (14).

Lossik(t) = Rbik × Vi(t)× Pk(t) (14)

In Equation (14), Lossik(t) is the loss of external asset loans from
bank i provides to the real industry k at time step t, Vi(t) is the
asset value of bank i at time step t.
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Finally, we combine the credit network between banks and
real industry, the evolution sequence of bank’s assets Vi, and the
distribution of bank’s loss of external assets Lossik(t) to calculate
the dynamic evolution of credit risk exposure between banks and
the real industry, which can be expressed by Equation (15).

Loss(t) =



















V1(t)R111 · · · V1(t)R11k · · · V1(t)R11m
...

. . .
...

...
Vi(t)Rbi1 · · · Vi(t)Rbik · · · Vi(t)Rbim

...
...

. . .
...

VN (t)RaN1 · · · VN (t)RaNk · · · VN (t)RaNm



















×



















P1(t)
...

Pk(t)
...

PN (t)



















(15)

Estimation of the Interbank Market Risk
Exposure
Considering an interbank lending network formed by N banks, this
network can be expressed in N × N matrix form by Equation (16).

X =



















x11 · · · x1j · · · x1N
...

. . .
...

...
xi1 · · · xij · · · xiN
...

...
. . .

...
xN1 · · · xNj · · · xNN



















A1

...
Ai

...
AN

L1 · · · Lj · · · LN (16)

In the interbank lending market, xij refers to the loans borrowed by
bankj from bank i; the sum of each row in the matrix Ai represents the
total lending assets of bank i; the sum of each column in the matrix Lj
represents the total lending liabilities of bank i. Since a bank itself has no
lending relationship, the matrix in Equation (16) is modified to a new
interbank lending network matrix with diagonal 0, which is expressed
as X∗ by Equation (17).

X∗ =



















0 · · · x1j · · · x1N
...

. . .
...

...
xi1 · · · 0 · · · xiN
...

...
. . .

...
xN1 · · · xNj · · · 0



















A1

...
Ai

...
AN

L1 · · · Lj · · · LN (17)

In this paper, we use the minimum density method proposed by Anand
et al. [28] to estimate the interbank market risk exposure matrix X∗ .

In the minimum density method, parameter c is introduced, which
represents the fixed cost of establishing connection between banks, that
is, if there is a connection between banks, there will be a connection cost
of c, then the minimum density method can be expressed as a constraint
optimization problem for matrix X such as Equation (18):

min
X

c
N
∑

i=1

N
∑

j=1
1[xij>0] st.

N
∑

j=1
xij = Ai∀i = 1, 2, . . . ,N

N
∑

i=1
xij = Lj∀j = 1, 2, . . . ,N

xij ≥ 0∀i, j

(18)

The integer 1 is 1 only when there is a loan relationship between bank i
and bank j, otherwise it is 0. Because in the real interbank system, there
is a service charge for lending between two banks, so the significance of
the objective equation is to reduce the cost as much as possible, so as
to make the interbank network “less dense.” The constraint equation
is to meet the constraints of the total amount of interbank lending
and interbank borrowing of each bank. After estimating the interbank
network, we add this network to the time step evolution process to
obtain the dynamically evolving interbank market risk exposure, see
section The Dynamic Evolution of Interbank Market Network.

Default Algorithms Based on the Dynamic
Evolution of Bank Balance Sheet Structure
Combining with the dynamically evolving balance sheet in the evolution
process of time step t in Figure 1A, the owner’s equity ei(t) of bank i at t
time step can be calculated by Equation (19).

ei(t) =
(

Vi(t)− Lossi(t)
)

+Ai(t)− Di(t)− Li(t) (19)

In Equation (19), we use the method proposed by Fan et al. [29] to
estimate the asset sequence of bank i Vi(t) and liability sequence Di(t);
the borrowing asset sequence Ai(t) and liability sequence Li(t) will
be discussed in section The Dynamic Evolution of Interbank Market
Network; Lossi(t) indicates the external asset loss of bank i caused by the
impact of the credit risk exposure, which can be found in Equation (15).

If Equation (20) is satisfied, bank i will suffer the basic failure under
the impact of the credit risk exposure of the real industry. We mark the
basic failure state variable as TagFRi(t)=1.

ei(t) =
(

Vi(t)− Lossi(t)
)

+Ai(t)− Di(t)− Li(t) < 0 (20)

If Equation (20) does not hold, we first standardize the interbankmarket
risk exposure X∗(t) to obtain a new matrix

∏

(t), as shown in Equation

(21). Li(t)=
N
∑

j=1
xji(t) represents the borrowing liabilities of bank i. Then,

the clearing vector mechanism proposed by Eisenberg and Noe [30] is
cited to clear all the banks through the clearing payment vector C∗(t), as
shown in Equation (22).

∏

ij

(t) =

{

xij(t)
Li(t)

Li(t) > 0

0 Li(t) = 0
(21)

C∗(t) =



































Li(t) if
N
∑

j=1

∏

ji
C∗
j (t)+ e∗i (t) ≥ Li(t)

N
∑

j=1

∏

ji
C∗
j (t)+ e∗i (t) if 0 ≤

N
∑

j=1

∏

ji
C∗
j (t)+ e∗i (t) < Li(t)

0 if
N
∑

j=1

∏

ji
C∗
j (t)+ e∗i (t) < 0

(22)

The following Equation (23) is used to calculate the banks with

contagious failure. Among them,
N
∑

j=1

∏

ji
C∗
j (t) refers to the interbank

lending assets of bank i; Li(t) refers to the interbank borrowing liabilities

of bank i;
N
∑

j=1

∏

ji
C∗
j (t) − Li(t) refers to the owner’s equity of interbank

lending; e∗i (t)=
(

Vi(t)− Lossi(t)
)

− Di(t) refers to the owner’s equity
outside the interbank lending market.

N
∑

j=1

∏

ji

C∗
j (t)+ e∗i (t)− Li(t) < 0 (23)
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Equation (23) indicates that the total owner’s equity of bank i is <0 due
to the impact of the interbank market risk exposure and Equation (20)
does not hold at this time. Because of the failure of other banks, bank i

can not recover all the interbank loans. Finally, bank i suffers contagious
failure. We mark the contagious failure state variable as TagCRi(t)=1.

The next step is to clean up all the failed banks in the banking system,
then the banking network changes accordingly. We update the lending
matrix X∗(t + 1), interbank lending assets Ai(t + 1), and interbank
lending liabilities Li(t+ 1) at the next time step in section The Dynamic
Evolution of Interbank Market Network. We cycle through the above
operations at each time step until the end of the time step T.

The Dynamic Evolution of Interbank
Market Network
After calculating the clearing payment vector C∗ (t) under the time
step t, next we update the interbank borrowing assets Ai (t + 1) and
borrowing liabilities Lj (t + 1). Combined with the minimum density
method in section Default Algorithms Based on the Dynamic Evolution
of Bank Balance Sheet Structure, we update the total interbank
borrowing assets and total liabilities constraints to get a new borrowing
matrix X∗ (t + 1). We can see Figure 2 for the specific evolution
flow chart.

THE CALCULATION OF BANKING
SYSTEMIC RISK UNDER DOUBLE RISK
EXPOSURES

This paper defines a basic risk when the total assets of bank i are less than
the total liabilities due to the loss of external assets under the impact of
credit risk exposure of the real industry. When the total assets of bank
j are less than the total liabilities due to the failure of bank i and the
inability to recover all the interbank loans (the impact of the interbank
market risk exposure), a contagious risk occurs. In the system, under
the impact of double risk exposures, a bank’s total assets are less than
its total liabilities (including basic risk and contagious risk), the bank
defaults. In this paper, the basic risk is represented by the basic failure
probability FR(t), the contagious risk is represented by the contagious
failure probability CR(t), and the systemic risk is represented by the
system failure probability SR(t), SR(t) = FR(t)+ CR(t).

FR (t)=

N
∑

i=1
TagFRi (t)

N
(24)

CR (t)=

N
∑

j=1
TagCRj (t)

N
(25)

SR (t)=

N
∑

i=1
TagFRi (t) +

N
∑

j=1
TagCRj (t)

N
(26)

DATA

This paper uses the balance sheet of Chinese banks in 2016 and the
China Securities Regulatory Commission’s 2012 version of industry
classification Listed Company information in the CSMAR economic
and financial database, as well as the data of the 2016 annual report
publicly disclosed on the official website. China has a large number
of banks, which are mainly divided into six types according to the

definition of the CBRC annual report: policy banks, large commercial
banks, joint-stock banks, urban commercial banks, rural commercial
banks, and foreign banks. By analyzing the collected data, we have found
that the same type of banks has the same order of magnitude of assets
and liabilities. Moreover, assets and liabilities of policy banks and large
commercial banks belong to the same order of magnitude. Consider that
the nature and function of banks are irrelevant factors in this study, so
policy banks and large commercial banks can be simplified into one
type and named large banks. Finally, this paper has divided Chinese
banks into five types: large banks, joint-stock banks, urban commercial
banks, rural commercial banks, and foreign banks. Due to the limitation
of data availability, this paper finally selects 205 banks, which are
large banks (8 Banks), joint-stock banks (13 banks), urban commercial
banks (102 banks), rural commercial banks (63 banks), and foreign
banks (19 banks). It selects individual stock transaction amount in 244
days and balance sheet of 3,017 listed companies in 18 industries that
are classified according to the China securities regulatory commission
2012 edition of industry classification guidelines, and then selects
loan industry concentration data of 104 banks. For convenience of
presentation, the chart in this article indicates 205 banks with numbers
1–205 (see Appendix Table 1 for bank names) and 18 industries with
numbers 1–18 (see Appendix Table 2 for industry names). In addition,
the descriptive statistics of data can be seen in Appendix Tables 3–6.

RESULTS

The Assessment of Credit Risk of the Real
Industry
The Evolution Curve of Credit Risk of the Real

Industry
In this paper, the stress test is carried out for the listed companies in
18 real industries to make each Listed Company lose 30% of its assets
in the same real industry, so that some listed companies have credit
default and the dynamic evolution chart of credit risk in each industry
is obtained (see Figure 1B). According to the evolution characteristics
of default probabilities in various industries, credit risks in 18 industries
can be divided into 4 types that are stability after decline (see Figure 3A),
increase in fluctuation (see Figure 3B), decrease in fluctuation (see
Figure 3C), fluctuation (see Figure 3D).

The evolution of credit risk is characterized by the first decline and
then stability in eight industries: finance industry, education industry,
water conservancy, environment and public facilities management
industry, leasing and business services industry, agriculture, forestry,
animal husbandry and fishery industry, electricity, heat, gas and
water production and supply industry, comprehensive industry, and
accommodation and catering industry. The credit risk of the eight
industries decreased within 100 time steps and then stabilized,
among which the credit risk of the financial industry stabilized at
0.2, the credit risk of the accommodation and catering industry
stabilized at 0.1, and the credit risk of the other six industries
stabilized at 0.

The evolution of credit risk is characterized by increase in
fluctuation in five industries: scientific research and technology services
industry, mining industry, information transmission software and
information technology services industry, manufacturing industry,
culture, and sports and entertainment industry. Among them, the
risk fluctuation range of scientific research and technical services
industry is the largest, while the risk fluctuation range of culture,
sports and entertainment industry is the smallest. The credit risk
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FIGURE 2 | Flow chart of dynamic evolution of interbank market network.

of information transmission software and information technology
service industry and manufacturing industry showed an evolutionary
trend of increasing continuously, while the credit risk of scientific

research and technology service industry, mining industry, and culture,
sports and entertainment industry showed an evolutionary trend
of stabilizing.
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FIGURE 3 | Credit default probability curve of the real industry. (A) Curve of stability after decline. (B) Curve of increasing in fluctuation. (C) Curve of decreasing in

fluctuation. (D) Curve of fluctuation.

The evolution of credit risk is characterized by decrease in
fluctuation in four industries: transportation, warehousing and
postal industry, construction industry, real estate industry,
and wholesale and retail industry. The risk characteristics of
these four industries are similar. The failure probability of
the industry falls to a certain value within the first 100 time
steps, and then fluctuates slightly within the probability range
of 0 to 0.05.

The evolution of credit risk in the health and social work industry is
characterized by fluctuation, which fluctuates around 0.

Stability of Credit Risk of the Real Industry
From Figure 3 in The Evolution Curve of Credit Risk of the Real
Industry, we can see that the credit risk of 18 real industries has different
volatility, indicating that the credit risk of these industries is unstable.
Therefore, this section further evaluates the stability of credit risk of
the real industry by calculating the variance of credit risk. Table 1 is
the result of ranking the variance of credit risk of 18 real industries
in descending order. It can be seen that the top three real industries
with the largest variance are financial industry, education industry,
and real estate industry, that is to say, the credit risk of these three
real industries is the most unstable. The real industry with the least

variance is health and social work industry, which has the most stable
credit risk.

Mean Credit Risk of the Real Industry
From Figure 3 in section Default Algorithms Based on the Dynamic
Evolution of Bank Balance Sheet Structure and Table 1 in section
Stability of Credit Risk of the Real Industry, we can see that the dynamic
evolution credit risk of real industries presents a fluctuating state, most
industries are unstable. It is impossible to accurately assess the value of
credit risk of different real industries. Therefore, the next step of this
paper is to carry out Monte Carlo simulation in 1000 time steps on
the basis of pressure test. In order to eliminate the simulation error as
much as possible, this paper adopts the mean value for comparative
analysis. We use Sg (t) in Equation (12) and AVG

(

Sg (t)
)

is taken as
the mean value of the number of enterprise failures in the real industry
during 1000 simulations. If the industry credit risk is expressed as PK

in 1,000 simulations, the calculation formula is: PK=
∑

AVG(Sg (t))
T×nk

, k =
1, 2, . . . , 18 indicates 18 industries, T is the dynamic evolution time step
1,000, nk is number of listed companies in the k industry.

Figure 4 is the result of Monte Carlo simulation of mean credit
risk of various industries under 1,000 times. From Figure 4, it
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TABLE 1 | Statistical table of variance of credit risk of each real industry.

Industry number Variance of credit risk

10 0.043942

15 0.041845

11 0.028669

13 0.028387

9 0.025056

5 0.023641

2 0.021085

6 0.020388

18 0.016346

1 0.014896

4 0.011940

3 0.011907

12 0.009350

17 0.008601

7 0.006394

8 0.002875

16 0.001452

14 0.001242

FIGURE 4 | The mean credit risk of the credit industry under the simulation of

1,000 times.

can be analyzed that the top four real industries with the highest
mean credit risk are: finance, accommodation and catering, scientific
research and technical services, and information transmission, and
software and information technology services. It is suggested to
strengthen the credit risk management of enterprises in the fields
of finance, science and technology, and national life. Two real
industries with the lowest mean credit risk are: water conservancy
environment and public facilities management, and health and
social work, while the other 12 real industries have medium mean
credit risk.

Combined with the industry stability analysis results in section
Stability of Credit Risk of the Real Industry, it can be found that
the mean credit risk of the financial industry is the highest and the
most unstable. The mean credit risk of accommodation and catering
industry is high but stable. Themean credit risk and stability of scientific
research and technical services, information transmission software
and information technology services are relatively high. However, two
real industries: water conservancy environment and public facilities

management, health and social work, have the lowest mean credit risk
and the highest stability.

Default State Analysis of Listed Companies in the

Real Industry
The credit risk of the real industry is directly proportional to the
number of default listed companies in the industry. In the process
of dynamic evolution, the listed companies with higher probability of
bankruptcy are more unstable. It can be considered that the enterprises
with higher probability of bankruptcy contribute more to the credit risk
of the industry.

Table 2 shows the top five listed companies in the default probability
of 18 industries after stress test. These companies have the largest
contribution to the credit risk of their industries, and the default status
of listed companies in different industries is significantly different.
A total of 17 listed companies in 18 real industries have a default
probability of 1 during 1,000 times of dynamic evolution, which belongs
to the state of extremely easy default. Among them, 14 listed companies
belong to the financial industry. Combined with the mean credit risk
results of the real industry in section Mean Credit Risk of the Real
Industry, it can be seen that 20% of listed companies in the financial
industry are very vulnerable to bankruptcy, and these companies
contribute the most to credit risk of financial industry.

There are no more than three listed companies in five real industries:
accommodation and catering industry, water conservancy environment
and public facilities management industry, education industry, culture,
sports and entertainment industry, and comprehensive industry. In
the dynamic evolution process, only two listed companies have the
default probability of more than 0.8, and other listed companies have
the default probability of <0.1. There are 11 listed companies in
the accommodation and catering industry, among which one is very
vulnerable to bankruptcy and contributes the most to the credit risk of
the accommodation and catering industry.

The top five listed companies in manufacturing, information
transmission software and information technology services have a
high default probability, which are all over 0.7. However, due to the
large number of listed companies in the manufacturing industry, the
mean credit risk is not high. The number of listed companies in the
information transmission software and information technology services
industry is close to one ninth of themanufacturing industry, so themean
credit risk is higher.

The Assessment of Systemic Risk Under
Double Risk Exposures
Analysis of the Network Structure With Double Risk

Exposures

Credit network structure between banks and the real industry
According to the model of credit network between banks and real
industry in section Credit Network Between Banks and Real Industry
and the data in section Data, the credit network structure diagrams
between 5 types of banks and 18 real industries are constructed, as
shown in Figure 5. Among them, 18 white circles marked with numbers
represent the 18 real industries in which banks provide loans. The
circle size reflects the number of listed companies in the real industry.
The larger the circle, the more listed companies in the real industry.
For example, the number of listed companies in the manufacturing
industry is the largest and the circle is the largest. Five gray circles
marked with letters indicate five types of banks, which are A (large
bank), B (joint-stock bank), C (urban commercial bank), D (rural
commercial bank), and E (foreign bank). The circle size indicates the
number of banks under this type. The larger the circle, the more
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TABLE 2 | Listed companies with the top five bankruptcy frequency in the real

industry.

1 Bankrupt enterprise A26 A29 A6 A33 A8

Default probability 0.094 0.03 0.01 0.007 0.003

2 Bankrupt enterprise B18 B9 B26 B51 B52

Default probability 0.793 0.679 0.625 0.56 0.017

3 Bankrupt enterprise C1572 C138 C1799 C769 C783

Default probability 1 0.995 0.885 0.881 0.826

4 Bankrupt enterprise D22 D25 D68 D64,

D48

D20

Default probability 0.026 0.012 0.009 0.007 0.006

5 Bankrupt enterprise E64 E53 E44 E17 E72

Default probability 0.861 0.83 0.274 0.038 0.027

6 Bankrupt enterprise F63 F74 F75 F118 F60

Default probability 0.097 0.056 0.031 0.03 0.026

7 Bankrupt enterprise G7 G27 G84,

G39,

G45

G61 G48

Default probability 0.993 0.332 0.006 0.004 0.003

8 Bankrupt enterprise H6 H1

Default probability 1 0.001

9 Bankrupt enterprise I182 I17 I108 I3 I84

Default probability 0.977 0.762 0.756 0.754 0.746

10 Bankrupt enterprise J1, J24,

J26, J28,

J54, J59,

J60, J61,

J64, J67,

J70, J72,

J73, J75

J3 J5,

J22

J45 J25

Default probability 1 0.352 0.022 0.021 0.018

11 Bankrupt enterprise K3 K110 K38 K33 K53

Default probability 0.514 0.465 0.215 0.102 0.029

12 Bankrupt enterprise L15 L17 L22,

L25

L4 L36

Default probability 0.011 0.01 0.008 0.007 0.002

13 Bankrupt enterprise M1 M12 M27 M2 M20

Default probability 1 0.382 0.343 0.032 0.03

14 Bankrupt enterprise N12

Default probability 0.002

15 Bankrupt enterprise P1

Default probability 0.016

16 Bankrupt enterprise O14

Default probability 0.002

17 Bankrupt enterprise R44

Default probability 0.827

18 Bankrupt enterprise S2 S6 S12

Default probability 0.048 0.009 0.008

banks under this type. The connection between the five types of banks
and the real industry means that banks provide loans to the real
industry. This paper assumes that each type of banks provides loans
to 18 real industries. The line thickness indicates the proportion of
loans. Industries with large proportion of loans are concentrated in the
center of the map, while industries with small proportion of loans are
scattered around.

FIGURE 5 | Credit network between banks and real industry.

TABLE 3 | Top three real industries with the most loans from banks (the figure in

the table is the industry number).

The type of bank Top 1 industry Top 2 industry Top 3 industry

Large bank 3 7 12

Joint stock bank 3 6 11

Urban commercial bank 3 6 11

Rural commercial bank 3 6 12

Foreign bank 3 11 6

As can be seen from the thickness of the connection line in Figure 5,
the top four real industries with the highest proportion of loans provided
by the five types of banks to the real industry are 3 (manufacturing),
6 (wholesale and retail), 11 (real estate), and 12 (leasing and business
services), while the lowest industry is 13 (scientific research and
technical services). There are differences in the concentration of
loans by industries among different types of banks. Table 3 lists the
industries with the highest concentration of loans among the five types
of banks.

Dynamic evolution of interbank market network structure
We use the minimum density method in section Estimation of
the Interbank Market Risk Exposure, interbank market network in
section The Dynamic Evolution of Interbank Market Network, and
data in section Data to obtain the dynamic evolution of interbank
market network structure diagram, as shown in Figures 6A,B, which
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FIGURE 6 | Network structure of interbank market. (A) Represents Chinese

interbank market network structure at time step t1. (B) Represents Chinese

interbank market network structure at time step t150.

corresponds to Figure 1D in section Model. Figure 6A shows the
network structure diagram of the interbankmarket at time step t1. In the
Figure 6A, network nodes marked with numbers represent 205 banks,
the size of the node indicates the connection degree between banks.
The larger the connection degree is, the larger the node is. The directed
line between nodes indicates the interbank lending relationship, and the
line thickness indicates the lending amount. From Figure 6A, it can be
found that there are 8 nodes with relatively large connection degree at

FIGURE 7 | Dynamic evolution curve of basic default, contagious, and

systemic risk of Chinese banking system.

time step t1, which are 190 (industrial and commercial bank of China),
193 (agricultural bank of China), 191 (China construction bank),
194 (bank of China), 82 (bank of communications), 118 (Shanghai
Pudong Development Bank), 192 (China Minsheng bank), and 184
(China merchants bank). The connection between these eight nodes
is relatively thick, of which the connection from 190 to 193 is the
thickest, which indicates that Industrial and Commercial Bank of China
lends the largest amount of funds to Agricultural Bank of China.
In Figure 6B, the network structure of the interbank market at time
step t150 has changed compared with time step t1. The number of
network nodes has been reduced to 120 (due to the removal of some
default banks from the network), the node size and the connections
between nodes have also changed (the interbank lending relationship
has changed).

Dynamic Evolution of Systemic Risk in
Chinese Banking System
Basic Default, Contagious, and Systemic Risk of

Chinese Banks
Figure 7 represents the dynamic evolution law of basic default,
contagious, and systemic risk under double risk exposures. It can
be seen from the Figure 7 that during the evolution of 365 time
steps, the systemic risk has the characteristic of stabilizing after
increasing and reaching a stable state at 250 steps. The degree of
evolution of contagious risk is higher than that of basic default and
the dynamic evolution characteristics of basic default and contagious
risk are different. Contagious risk tends to stabilize after increasing and
reaching a stable state at 200 steps. The probability of basic default
is low and stable in the first 100 time steps, then jumping growth
in 101 to 250 time steps, and finally slowing down and stabilizing in
250 steps.

Basic Risk, Contagious Risk, and Systemic Risk

Characteristics of Different Types of Banks
On the basis of section Basic Default, Contagious, and Systemic Risk of
Chinese Banks, this paper further analyzes whether there are differences
in basic risk, contagious risk, and systemic risk characteristics of
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FIGURE 8 | Basic risk, contagious risk, and systemic risk evolution curve of different types of Chinese banks.

different types of banks under the impact of double risk exposures.
Figure 8A represents the basic risk curve of five types of banks,
Figure 8B represents the contagious risk curve of five types of banks,
and Figure 8C represents the systemic risk curve of five types of banks.
On the whole, the dynamic evolution trend of basic risk, contagious
risk, and systemic risk in the five types of banks are stable after growth.
However, the dynamic characteristics of basic risk, contagious risk, and
systemic risk in the five types of banks are different.

In Figure 8A, we can see five types of banks reach a stable state with
different time and basic risk finally. The order of basic risk from high
to low is: rural commercial bank, joint-stock bank, urban commercial
bank, foreign bank, and large bank. The order of time to reach stability
from fast to slow is: large bank, foreign bank, rural commercial bank,
joint-stock bank, and urban commercial bank.

In Figure 8B, we also can see five types of banks reach a stable state
with different time and contagious risk finally. The order of contagious
risk from high to low is: foreign bank, urban commercial bank, large
bank, joint-stock bank, and rural commercial bank. The order of time
to reach stability from fast to slow is: large bank, joint-stock bank, rural
commercial bank, urban commercial bank, and foreign bank.

In Figure 8C, the systemic risk of large bank reaches a stable state
at the earliest with the lowest risk, while the other four types of banks
reach a stable state later with high systemic risk, of which the mean
systemic risk of foreign bank is the highest. This reflects that large banks
are stronger than the other four types of banks in resisting the impact of
double risk exposures, while foreign bank are the weakest.

DISCUSSION AND CONCLUSIONS

This paper first used Geometric Brownian Motion in physics, Monte
Carlo simulation, and real data of the real industry to estimate the
dynamic evolution credit risk exposure of the real industry. Then, it used
theminimum density method and Chinese real banking data to estimate
the more realistic dynamic interbank market risk exposure. So far, we
have successfully built up the double risk exposure. Finally, based on the
double risk exposure, we use the data of assets, liabilities, and industry
loans of 205 Chinese banks, as well as the data of 3017 listed companies’
stock market to study the dynamic evolution law of the systemic risk of
Chinese banking system. The important conclusions are as follows:
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First, our dynamic evolution model highlighted the impact of credit
risk exposure and enables to assess which real industries are more/less
risky. In addition, we also assessed listed companies with top five
bankruptcy frequency of the real industry. Therefore, this information
can assist financial regulators to weigh credit loans by credit risk of the
real industry/Listed Company. Financial industry, accommodation and
catering industry, scientific research and technology service industry,
and information transmission software, and technology service industry
have higher credit risk, while financial industry, scientific research and
technology service industry, and information transmission software
and technology service industry have lower stability. It is suggested
that financial regulators should pay special attention to the credit risk
management of these four real industries when serving the development
of the real economy. It is expected that this methodology would
engender a reduction in credit loans to risky real industry/Listed
Company, leading to a decrease in the systemic risk of Chinese
banking system.

Second, the uniqueness of the dataset of Chinese banks and real
industries not only permit us to construct credit network and interbank
network, but also enables us to broaden other contagion channels
apart from classical interbank market. Under the impact of double risk
exposures, the systemic risk gradually rises and then reaches a stable
state in the evolution process; the contagious risk initially grows faster
and then stabilizes; however, the basic default is very small at first,
then slowly rises, and finally stabilizes. Further results showed that the
dynamic characteristics of the systemic risk in different types of banks
are shown as growth first and then stabilization, among which the ability
of large banks to resist the impact of double risk exposures is stronger
than the other four types of banks, while the ability of foreign bank to
resist is the weakest.

The present paper focused on the Chinese system market, however,
in the future, the methods proposed can be extended to other global
markets or a mature market in other countries. In addition, due to the
use of different system risk measurement methods, the results will be
different. In the future, we will use other methods to compare with
the proposed method, so as to compare the robustness of the proposed
method in the present paper.
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This paper studies the stability of stock networks after crashes based on the entropy

method. By measuring network stability using the entropy calculated with the degree

distribution, we find that the entropy of a stock network is close to that of the

Erdös-Rényi and Watts-Strogatz networks. We further introduce government rescue

policies as a natural experiment and use the entropy measurement to study the influence

of rescue policies after crashes on the network stability, finding that rescue policies

only have short-term effects. Analysis of the relation between stock degrees and

government purchasing behavior further confirms the effects of rescue policies on stock

network stability.

Keywords: stock network, crashes, rescue policies, network stability, entropy, econophysics

1. INTRODUCTION

The stability of networks after random failures or attacks is a central issue in the study of complex
networks [1–7]. A large amount of research has been devoted to this issue for various complex
networks, such as biological, physical, social and financial networks, and has successfully revealed
the relationship between network structure and stability after external attacks [8–11].

Stock markets are complex systems, which can be well-abstracted and described by complex
networks. In research on stock networks, the network stability after stock market crashes
has attracted much attention [11, 12]. Studies on network stability elucidate the topological
reconfigurations of stock networks after crashes and help to improve our understanding of financial
crises. However, these studies cannot be directly used to guide the government in stabilizing the
market after crashes.

In recent years, an increasing body of work has concentrated on the question of how rescue
policies, which are government policies aimed at stabilizing the stock market at times of crises,
influence market stability after crashes [13, 14]. This question has been studied by measuring the
market stability in terms of volatility, and it has been found that rescue policies can improve
the stability of the stock market after crashes. The complex network method can reduce the
immense complexity of financial markets to facilitate investigation while retaining the market’s
core information, and some researchers have studied market stability after crashes by using the
network method [11, 12, 15]. Motivated by the studies mentioned above, we investigate the
influence of rescue policies on the stability of stock markets after crashes from the perspective of
complex networks.

In network research, most researchers measure the network stability based on network
robustness with respect to random node removal or targeted attacks [11, 16, 17]. In this paper, we
introduce the network entropy to measure the stability of complex networks. The network entropy
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calculated with the degree distribution can provide an average
measure of network heterogeneity, which is a simple but essential
characteristic of complex networks and has a direct relationship
with the network’s resilience to both random failures and attacks
[18–21]. To the best of our knowledge, this work is the first
attempt to examine the influence of government rescue policies
on stock market stability after crashes from the perspective of
network stability.

2. DATASETS

The first dataset records the closing prices of all constituent
stocks of the SSE 180 index, a benchmark index for the Shanghai
market, at the end of every minute between 9:30 and 11:30 a.m.
and between 1:00 and 3:00 p.m. on 717 consecutive trading days
from 16 December 2013 to 22 November 2016. The dataset
was obtained from Wind Information (http://www.wind.com.
cn/) and contains ∼43,440 records per day on average, with a
total size of 31,146,480.

The second dataset records closing prices of the Hang
Seng Index (HSI) and all its constituent stocks trading in the
Hong Kong Exchange at the end of every minute between
9:30 a.m. and 12:00 p.m. and between 1:00 and 4:00 p.m. on
422 consecutive trading days from 20 October 2014 to 5
July 2016, also from Wind Information. This dataset contains
approximately 23,240 records per day on average, and the total
size is 9,807,280.

The third dataset, from SinaFinance (http://finance.sina.com.
cn/), records 45 news items on rescue policies for the stock
market released by the Chinese government for the period from
16 December 2013 to 22 November 2016, with 34 of these news
items released in the 2 months after 19 June 2016 during which
more than 1,000 A-shares in the Chinese stock market hit the
daily downward price fluctuation limit. To take into account
the specific government rescue measures for stock market
crashes, this dataset also includes information from Eastmoney
(http://eastmoney.com/) on the list of stocks purchased by the
government between 30 June 2015 and 30 September 2015.

3. METHODOLOGY

3.1. Crashes and Identification of
Sub-periods
In this paper, crashes are identified by looking for large price
changes within different time windows [22–24]. On 19 June 2015,
more than 1,000 A-shares in the Chinese stock market hit the
daily downward price fluctuation limit, and the SSE 180 index fell
by 4.61%. On 7 January 2016, the circuit breakers mechanismwas
suspended, and the SSE 180 index dropped by more than 5%. By
calculating the price changes in the SSE 180 index, we find that
during the sampling period the price changes on these 2 days are
the largest. Therefore, we identify these two large price changes
in the Shanghai stock market as crashes. For the universality test,
we also identify one crash occurring on 10 March 2015 in the
Hong Kong stock market in a similar way.

Next, for the purpose of analyzing network stability during
periods with and without rescue policies, we divide the sampling
periods for the Shanghai and Hong Kong stock markets into
different sub-periods. For the Shanghai stock market, sub-
periods are determined by using the news of rescue policies
recorded by SinaFinance. First, after the crash on 19 June 2015,
most rescue policies were enacted by the government within the
subsequent 2 months. These include: on 27 June, China’s central
bank, People’s Bank of China, cut interest rates by 0.25%; and on 6
July, China Financial Futures Exchange (CFFEX) restricted index
futures trading. In contrast, no rescue policies were put in place
for months after the crash on 7 January 2016. To compare the
stability of the stock network in the period after a crash and in a
period when the market is stable, we also identify sub-periods of
stable states. We find that the volatility of the SSE 180 index was
low and stable from mid-June to early October of 2014 and over
the second half of the year 2016. Therefore, for the Shanghai stock
market, we divide the sampling period into four sub-periods: a
sub-period with government rescue policies after a crash, a sub-
period without government rescue policies after a crash, and two
stable-state sub-periods. Considering that the impact of a crash
would not be obvious when the sub-period is too short, and there
may be external noise when the sub-period is too long, we choose
the sub-period length to be 60 trading days. Note that sub-period
lengths of 50 or 70 trading days give similar results.

For the Hong Kong stock market, for which there had been
no rescue policies, we separate the sampling period into three
sub-periods. The 60-day period following the crash on 10 March
2015 is the sub-period without government rescue policies. In
analogy to the stable-state periods in the Shanghai stock market,
we identify the 60-day periods following 22 December 2014 and
5 March 2016 as stable-state sub-periods in the Hong Kong
stock market.

3.2. Construction of the Stock Network
The most common method of constructing a stock network is
based on correlations of the stock price return. This method
calculates the correlation coefficient of the stock price return and
converts the coefficient matrix into a distance matrix [25].

Let Pi(t) be the closing price of stock i at time t, and let Ri(t)
be the return of stock i at time t, given by

Ri(t) = lnPi(t)− ln Pi(t − 1). (1)

Then the Pearson correlation coefficient ρi,j between stocks i and
j can be calculated as

ρi,j =
〈RiRj〉 − 〈Ri〉〈Rj〉

√

〈R2i − 〈Ri〉2〉〈R2j − 〈Rj〉2〉
, (2)

where 〈 · 〉 refers to the time average over the period analyzed.
Following the idea behind the construction of a complex
network, we next transform the correlationmatrix into a distance
matrix D with elements di,j, where the distance between the two
stocks i and j is defined as Mantegna [26]

di,j =
√

2(1− ρi,j). (3)
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Treating stocks as network nodes, we now construct the stock
network with the planar maximally filtered graph (PMFG)
method [27, 28], in which network links are added according
to the distance between nodes. The PMFG method is used to
construct planar graphs and has the algorithmic advantage that
planarity tests are relatively simple to perform; planar graphs also
provide more information than minimum spanning tree graphs
on the internal structure of a stock market. The PMFG procedure
is carried out as follows. First, rank the distance elements between
all pairs of nodes in ascending order. Second, add a link between
the two nearest nodes, i.e., the pair with the smallest distance, if
and only if the resulting graph after such a link insertion can still
be embedded in a plane without crossing any links. Third, repeat
the previous step until no more links can be added. The resulting
PMFG contains 3N − 6 links, where N is the number of nodes.
The average degree is 〈k〉 = 2(3N− 6)/N, which is roughly equal
to 6 when N is large enough.

3.3. Network Entropy
Based on the theory of large deviations, Demetrius et al. [29]
derived a fluctuation theorem, which states that network entropy
and stability, as measured by the fluctuation decay rate after
random perturbations, are positively correlated. By invoking
this theorem, Demetrius and Manke [30] showed that the
network entropy can quantitatively describe the homeostatic
network properties under perturbations, a generic term for
robustness. Meanwhile, Wang et al. [20] showed that the network
heterogeneity, a simple but essential characteristic of a complex
network, is in direct relationship with the network’s resilience to
both random failures and attacks, and that the heterogeneity can
bemeasured by network entropy. This implies that the greater the
entropy, the more stable and heterogeneous the network is. We
therefore introduce the network entropy to study the stability of
stock networks.

Following the definition of entropy introduced in Wang et al.
[20], we define the stock network entropy as the entropy of the
degree distribution, which is given by

H = −
N−1
∑

k=1

P(k) log P(k), (4)

where N is the total number of nodes in the network and P(k)
is the degree distribution, which gives the probability of having a
node with k links.

4. RESULTS AND DISCUSSION

4.1. Entropy of the Stock Network
To find out which kind of network structure the stock network
is close to, we compare the entropy of the stock network to the
entropies of several classes of networks, including the Erdös-
Rényi (ER) random, Barabási-Albert (BA) scale-free and Watts-
Strogatz (WS) small-world networks. Note that the average
degree of the network of 180 stocks constructed by the PMFG
method is approximately 6. Therefore, to make the entropies
of the stock network and of the ER, BA and WS networks
comparable, we calculate the entropy of the latter three networks

TABLE 1 | Statistical description of the ER random, BA scale-free, and WS

small-world networks and the stock network.

ER random BA scale-free WS small-world Stock network

N 180 180 180 180

E 537 531 540 534

C 0.03 0.10 0.17 0.73

〈l〉 3 2.80 3.50 3.58

〈k〉 6 6 6 5.93

〈s〉 6 6 6 1.63

〈Ew〉 1 1 1 0.28

N represents the number of nodes, E the number of links, C the clustering coefficient,

〈l〉 the average shortest path length, 〈k〉 the average node degree, 〈s〉 the average node
strength, and 〈Ew〉 the average link weight. The weights for the links in the ER random,

BA scale-free and WS small-world networks are equal to 1. In the stock network, each

link weight is defined as the correlation coefficient ρi,j for stocks i and j [31].

with the same number of nodes, N = 180, and present the
statistical characteristics of these networks in Table 1.

First, we calculate the entropy of the ER random network as
follows. For the ER network with N nodes and link probability p
between each pair of nodes, the degree distribution P(k) is given
by the Poisson distribution [32],

P(k) =
e−Np(Np)k

k!
, (5)

and the average degree 〈k〉 is Np. The entropy of the ER network
with average degree 〈k〉 = 6 for various N from 20 to 180 is
plotted in Figure 1A.

Next, for the BA scale-free network with N nodes, minimal
connectivitym, and scaling exponent α of the degree distribution,
the entropy of the network can be expressed as Wang et al. [20]

H =
(

log(α − 1)+
α

1− α

)

1− N

N
+

α

1− α

logN

N
, (6)

and the average degree of the network is given by 〈k〉 =
(α−1)
(2−α)m(N(2−α)/(α−1) − 1). The entropy of the BA network with

N = 180 and m = 1 for various α from 1.5 to 2.5 is shown
in Figure 1B.

For the WS small-world network first proposed in Watts and
Strogatz [33], which starts with a ring lattice of N nodes where
every node is connected to its first K neighbors and then has
each edge of the lattice randomly rewired with probability p such
that self-connections and duplicate edges are excluded, the degree
distribution is given by Albert and Barabási [34]

P(k) =
∑

Cn
K/2(1− p)np

K
2 −n ( pK2 )k−

K
2 −n

(k− K
2 − n)!

e−pK/2, (7)

and the average degree of the network is 〈k〉 = K. We plot
the entropy of the WS small-world network with average degree
〈k〉 = K = 6 andN = 180 for various p from 0 to 1 in Figure 1C.

Using the network construction method and the definition of
network entropy proposed in this paper, we present in Figure 1D
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FIGURE 1 | Entropy of (A) the ER random network with Np = 6 for various N; (B) the BA scale-free network for N = 180, m = 1 and various α; (C) the WS

small-world network for K = 6, N = 180 and various p; and (D) the stock network for the sampling period from 16 December 2013 to 22 November 2016 in the

Shanghai stock market.

the entropy of the stock network during the sampling period
from 16 December 2013 to 22 November 2016. Note that the
stock network is constructed with the intraday stock returns
for every trading day. We next compare the entropy of the
stock network to that of the ER random, BA scale-free and WS
small-world networks with the same average degree and number
of nodes.

For the ER network with average degree 〈k〉 = 6, the entropy
is approximately 3.2 when N = 180, as shown in Figure 1A.
For the BA network with 〈k〉 = 6 and N = 180, the entropy
is approximately 2 when α ≈ 1.9484, as shown in Figure 1B. As
can be observed in Figure 1C, the entropy of the WS network
with 〈k〉 = 6 and N = 180 is always smaller than 2.7 for different
values of p. From Figure 1D, one can see that the entropy H of
the stock network satisfies 2.7 < H < 3.2 during the sampling
period, which is much larger than the entropy of the BA network
but smaller than that of the ER network and a little bigger
than that of the WS small-world network. This suggests that the
topological structure of the stock network is closer to that of the
ER and WS networks.

To reveal the influence of crashes on the stability of the stock
network, we next analyze the network entropy in the four sub-
periods, i.e., the two stable-state sub-periods and the sub-periods
with and without rescue policies after a crash. First, the mean
values of the entropy for the sub-periods with and without rescue
policies after a crash are 2.9203 and 2.8992, respectively, and the
mean values of the entropy for the sub-periods of stable states
I and II are 3.0602 and 3.0487, respectively. This result suggests
that in the periods after a crash the stock network is less stable
and heterogeneous than during the stable-state periods, since the

TABLE 2 | Results of t-test for testing the significance of the difference between

the entropies of the stock network for different sub-periods in the Shanghai stock

market.

Stable

state I

Stable

state II

With rescue

policies

Without rescue

policies

Stable state I 0.0000

Stable state II −0.9159 0.0000

With rescue

policies

9.4892*** 8.4878*** 0.0000

Without rescue

policies

12.3273*** 11.0788*** −1.3552 0.0000

This table reports t-statistics from the t-test. The symbols *** denote significance at the 1,

5, and 10% levels, respectively.

entropy measures the network stability and heterogeneity. We
also conduct a t-test for the significance of the difference between
the entropies of the stock network for different sub-periods,
as shown in Table 2; the test finds no significant difference
between the mean entropies of the sub-periods with and without
rescue policies.

4.2. Entropy Evolution of the Stock
Network
To examine how the effects of rescue policies on stock network
stability change over time, we now analyze the evolution of the
entropy of the stock network after a shock during sub-periods
with and without rescue policies. One might imagine that these
shocks are similar to after shocks following an earthquake.
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FIGURE 2 | Entropy evolution of the stock network during sub-periods with

and without rescue policies after crashes in the Shanghai stock market.

A shock is defined here as a time at which the volatility V(t) =
|R(t)| exceeds a given threshold value Rth = Sδ, where R(t) is the
logarithmic price return, δ is the mean volatility over the stable-
state period, and the threshold S is positive [35]. Using the same
method of shock identification, 43 and 30 shocks are identified
with the threshold S = 2 during the sub-periods in the Shanghai
stockmarket with andwithout rescue policies, respectively. Then,
the entropy evolution is defined as the change in the entropy
averaged over the shock after its occurrence in the sub-period.
We present the entropy evolution of the stock network for these
two sub-periods in Figure 2.

Figure 2 shows that the entropy evolution of the stock
network for the sub-period with rescue policies after a crash
increases rapidly at the early stage, then decreases and rises again
slowly at later times. For the sub-period without rescue policies,
the entropy increases slowly throughout the whole period. These
results suggest that rescue policies can improve the heterogeneity
and stability of the network only for a short time at the initial
stage, whereas the heterogeneity and stability of the network
will increase slowly over the period after a crash even without
rescue policies.

4.3. Further Analysis of Stock Degree
In this section, we study the degrees of all stocks in the
stock network over different sub-periods, with the aim of
identifying the cause of the effect of rescue policies on the stock
network entropy.

In Table 3 we present the average degree of all stocks of
conventional industries in the SSE 180 index during the four sub-
periods, i.e., the two stable-state sub-periods and the sub-periods
with and without rescue policies. Table 4 presents industry
information on constituent stocks in the SSE 180 index, including
the industry codes, industry names, and number of stocks
belonging to each industry.

As seen in Table 2, the average degree of stocks in the Finance
& Insurance industry is large during the two stable-state sub-
periods and the sub-period without rescue policies, but relatively
small during the sub-period with rescue policies. On the other
hand, the average degree of stocks in the Construction industry is

TABLE 3 | Average degrees of constituent stocks in the SSE180 index for each

industry during two stable-state sub-periods and sub-periods with and without

rescue policies.

Industry code Stable

state I

Stable

state II

With rescue

policies

Without rescue

policies

A 5.5000 4.6167 4.6083 4.6917

B 5.7904 4.8030 5.0698 3.8398

C0 6.0500 5.7750 4.6000 3.3000

C4 5.4833 5.1167 5.2833 5.4567

C5 5.6278 5.3000 4.5667 5.0111

C6 6.9296 4.9479 5.8924 4.5700

C7 5.9214 5.4549 6.9706 6.8395

C8 5.8955 5.0963 4.6000 4.9537

D 4.6738 3.9033 4.3938 4.4050

E 3.7333 6.5021 8.3833 5.5519

F 4.6833 4.8375 5.2800 4.1530

G 6.2574 7.4639 6.3600 6.9667

H 5.0133 5.2521 3.1583 4.9528

I 7.1528 7.1635 5.1672 7.0186

J 5.0265 5.3250 4.7605 4.8358

K 5.2250 5.4600 3.7750 5.7583

L 3.7905 5.0500 4.9643 5.7167

M 4.7222 4.8875 7.3542 10.596

TABLE 4 | Industry information on constituent stocks in the SSE180 index.

Industry

code

Industry Number

of stocks

Industry

code

Industry Number

of stocks

A Agriculture 5 E Construction 9

B Mining 14 F Transportation 9

C0 Food &

Beverage

6 G Information

Technology

8

C4 Pharmaceuticals 8 H Wholesale

& Retail

Trade

8

C5 Electronics 4 I Finance &

Insurance

31

C6 Metals &

Non-metals

11 J Real Estate 19

C7 Machinery 24 K Social

Services

3

C8 Pharmaceuticals 10 L Communication

& Cultural

4

D Utilities 8 M Comprehensive 3

The conventional industries are grouped based on the China Securities Regulatory

Commission (CSRC) industry code. The basic information includes the industry code, the

full name of the industry, and the number of chosen stocks belonging to each industry.

large during the sub-period with rescue policies, and relatively
small during the stable-state sub-periods and the sub-period
without rescue policies. This suggests that the degrees of both the
Finance & Insurance and the Construction industries are greatly
influenced by government rescue policies, which ultimately lead
to the change in network entropy during the sub-period with
rescue policies.
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TABLE 5 | Top 10 stocks purchased by the government from 30 June 2015 to 30

September 2015 in the Shanghai stock market.

Code Industry Code Industry

601669 Construction 600765 Machinery

600958 Finance & Insurance 600111 Metals & Non-metals

600023 Utilities 600118 Information Technology

600418 Machinery 600068 Construction

600518 Pharmaceuticals 600415 Comprehensive

To elucidate the relation between rescue policies and
the degrees of stocks, we compare stocks purchased by the
government and stocks with large degrees in the stock network.

Table 5 lists the top 10 stocks purchased by the government
during the period from 30 June 2015 to 30 September 2015,
which closely coincides with the period in which rescue policies
were enacted. Table 5 shows that the top stocks purchased by the
government belong to the Construction industry during the sub-
period with rescue policies, which is consistent with the results in
Table 3. In Table 6 we present the top 10 stocks with the highest
mean value of stock degrees in the stock network for the two
stable-state sub-periods (I and II) and the sub-periods with and
without rescue policies.

From Table 6 one observes that during the stable-state sub-
periods, more than half of the top 10 stocks with the highest
mean degree belong to the Finance & Insurance industry, which
is consistent with the results in Table 3. Furthermore, no stock
belongs to the Finance & Insurance industry in the sub-period
with rescue policies, whereas more than half of the top 10 stocks
belong to the Finance & Insurance industry in the sub-period
without rescue policies; this is also consistent with the results
in Table 3.

Finally, from Table 6, more than half of the top 10 stocks
purchased by the government have large degrees in the sub-
period with rescue policies, while only a few stocks purchased
by the government have large degrees in the sub-period without
rescue policies. All these observations imply that government
purchasing behavior greatly affects the degrees of individual
stocks and thus changes the entropy of the stock network during
the sub-period with rescue policies.

4.4. Universality and Robustness Tests
4.4.1. Universality Test
To test the universality of the empirical results for the Shanghai
stock market, we calculate the entropy evolution for the stock
network constructed with constituent stocks of the HSI index
during the period following the crash on 10 March 2015 in
the Hong Kong stock market, for which no government rescue
policies existed.

In Figure 3, the entropy evolution of the stock network for the
Hong Kong stock market increases slowly throughout the whole
period, with a trend similar to the entropy evolution during
the period without government rescue policies post-crash in the
Shanghai stock market. This implies that the network stability

TABLE 6 | Top 10 stocks with the highest mean value of degrees in the stock

network for the two stable-state sub-periods and the sub-periods with and

without rescue policies in the Shanghai stock market.

Stable state I Stable state II

Code Industry Code Industry

600109 Finance & Insurance 601198 Finance & Insurance

601318 Finance & Insurance 600485 Information Technology

600030 Finance & Insurance 601555 Finance & Insurance

600111 Metals & Non-metals 600570 Information Technology

600999 Finance & Insurance 600061 Finance & Insurance

600837 Finance & Insurance 600150 Machinery

601088 Mining 600446 Information Technology

601601 Finance & Insurance 600030 Finance & Insurance

600036 Finance & Insurance 601688 Finance & Insurance

600739 Wholesale & Retail Trade 600109 Finance & Insurance

With rescue policies Without rescue policies

Code Industry Code Industry

601727 Machinery 600118 Information Technology

600118 Information Technology 600895 Comprehensive

600031 Machinery 601211 Finance & Insurance

600150 Machinery 600150 Machinery

600111 Metals & non-metals 600739 Wholesale & Retail Trade

601669 Construction 601198 Finance & Insurance

600068 Construction 600958 Finance & Insurance

601390 Construction 601788 Finance & Insurance

600415 Comprehensive 600109 Finance & Insurance

600804 Information Technology 601099 Finance & Insurance

The stocks in this table are arranged from top to bottom in order of decreasing value of

stock degree. The boldfaced stock codes in this table are also in the list of top 10 stocks

purchased by the government during the sub-period with rescue policies.

FIGURE 3 | Entropy evolution of the stock network during the 60-day period

following the crash on 10 March 2015 in the Hong Kong stock market.

also increases slowly in the Hong Kong stock market, where there
were no government rescue policies.

In analogy to the analysis of stock degrees in the Shanghai
stock market, we present in Table 7 the top 10 stocks with the
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TABLE 7 | Top 10 stocks with the highest mean value of degrees in the stock network for the two stable-state sub-periods and the sub-period without rescue policies in

the Hong Kong stock market.

Stable state I Stable state II Without rescue policies

Code Industry Code Industry Code Industry

2318 Financials 0883 Energy 0883 Energy

0857 Energy 0941 Telecommunications 0941 Telecommunications

3968 Financials 2318 Financials 2628 Financials

0005 Financials 0005 Financials 2318 Financials

0941 Telecommunications 0700 Information Technology 0857 Energy

2628 Financials 2328 Financials 0388 Financials

0700 Information Technology 6030 Financials 3968 Financials

1336 Financials 0388 Financials 0005 Financials

6837 Financials 2601 Financials 1088 Energy

2601 Financials 1299 Financials 0386 Energy

The stocks in this table are arranged from top to bottom in order of decreasing value of stock degree. The conventional industries are based on the Hang Seng Industry Classification

system (HSICS).

FIGURE 4 | Relative entropy of the stock network for the sampling period from 16 December 2013 to 22 November 2016 in the Shanghai stock market.

highest mean value of degrees in the stock network for the
two stable-state sub-periods and the sub-period without rescue
polices in the Hong Kong stock market.

In Table 7, more than half of the stocks belong to the
Financials industry during the stable-state sub-periods and the
sub-period without rescue policies following the crash that
occurred on 10 March 2015 in the Hong Kong stock market,
which is consistent with the results on stock degrees during
the stable-state sub-periods and the sub-period without rescue
policies in the Shanghai stock market.

4.4.2. Robustness Test
To ensure that the previous findings are robust for the network
stability measured by entropy calculated with the node degree
distribution, here we use another quantity, the relative entropy,
to examine the relation between government rescue policies and
network stability.

The relative entropy, which is also called the Kullback-Leibler
(KL) divergence, is a measure of how a probability distribution
differs from another probability distribution [36]. This is useful
when we want to compare the degree distributions of, for
example, the stable periods and the periods with and without

rescue policies after crashes. For complex networks, the relative
entropy between two node degree distributions can be defined as

Hr = −
N−1
∑

k=1

P(k) log
P(k)

Q(k)
, (8)

where Q(k) is the node degree distribution during the stable-
state period.

Figure 4 presents the relative entropy of the stock network
during the sampling period from 16 December 2013 to 22
November 2016 in the Shanghai stock market.

As in the analysis of the entropy of the stock network,
we find that the mean values of the relative entropy for the
sub-periods with and without rescue policies after a crash
are 0.0176 and 0.0178, respectively, larger than the mean
values of the relative entropy for the stable states I and II
(0.0068 and 0.0065, respectively). We also give, in Table 8,
the results of a t-test for the significance of the differences
between the relative entropies of the stock network during the
four sub-periods.
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TABLE 8 | Results of t-test for testing the significance of the difference between

the entropies of the stock network for different sub-periods in the Shanghai stock

market.

Stable state

I

Stable state

II

With rescue

policies

Without rescue

policies

Stable state I 0.0000

Stable state II 0.5183 0.0000

With rescue

policies

−12.8112*** −12.9207*** 0.0000

Without

rescue

policies

−14.0500*** −14.2572*** 0.2393 0.0000

This table reports t-statistics from the t-test. The symbols *** denote significance at the 1,

5, and 10% levels, respectively.

FIGURE 5 | Relative entropy evolution of the stock network during sub-periods

with and without rescue policies after crashes in the Shanghai stock market.

Table 8 shows no significant difference between the relative
entropies of the stock network for the stable-state sub-periods
and the sub-periods with and without rescue policies. These
results indicate that the stock network is less heterogeneous and
stable during the sub-periods with and without rescue policies,
which is consistent with the results obtained from the entropy of
the stock network presented above.

Finally, we show in Figure 5 the relative entropy evolution
of the stock network for the sub-periods with and without
rescue policies. Consistent with the entropy evolution results
in Figure 2, the relative entropy evolution of the stock
network for the sub-period with rescue policies decreases
rapidly at first and much more slowly at later times.
For the sub-period without rescue policies, the relative
entropy evolution decreases slowly over the whole period.
This implies that the rescue policies have only short-term
influences on the stock market, and can only increase
the heterogeneity and stability of the stock network for a
short time. For the sub-period without rescue policies, the
heterogeneity and stability of the stock network can also
increase slowly.

5. CONCLUSION

In this paper, we have studied the influence of government
rescue policies on the stability of stock networks after crashes
in the Shanghai and Hong Kong stock markets based on the
entropy method.

By analyzing the entropy of the stock network in different
sub-periods, i.e., stable-state sub-periods and sub-periods with
and without rescue policies after a crash, we find that rescue
policies have only a short-term influence on the stability
of the stock network after a crash, and can improve the
network stability for only a short time. Over a longer time,
the network stability during a sub-period with rescue policies
could increase even more slowly than a sub-period without
rescue policies. Further analysis of the relation between stock
degrees and government purchasing behavior indicates that
government purchasing can lead to significant changes in the
degrees of specific stocks during the sub-period with rescue
policies, and thus ultimately improve the stability of the
stock network.

Our study focuses on the influence of government
interventions on network stability measured using entropy.
It is of theoretical interest for understanding the relation
between external interventions and network topological
structure, and further has practical significance for regulators
and policymakers who are attempting to stabilize stock markets
after crashes.

One can extend the present study to a microscopic analysis
by looking at the effects of individual node strengths and link
weights on the stability of the stock network after a crash. This
can be done by using methods similar to that of Bellingeri et al.
[37], for example, and is a topic for future research.
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In contrast to the traditional view that economic policy affects investor sentiment and

eventually causes stock price fluctuations, we reveal that investor sentiment is a reflection

of both economic policy and stock market information. This article first proposes an

improved ETE method with a sliding window. We verify that this new method can capture

the dynamic orders effectively by validating this method with the linear TE method.

Furthermore, using the improved method, we investigate the strength and direction

of information flow among economic policy uncertainty (EPU), investor sentiment and

stock market by the novel concept of dynamic effective transfer entropy. The EPU and

investor sentiment results show that EPU influenced investor sentiment mainly from

August 2015 to June 2016. Among different policies, China’s exchange rate reform policy

and “circuit-breaker” policy in the stock market played an important role. Moreover, the

analysis of sentiment and stock price returns shows that investor sentiment is more

a reflection of changes in stock price returns with a 1-month lag order and that the

stock market has a significant bargainer effect and a weaker bandwagon effect. Finally,

there is no significant information flow transmission relationship between EPU and stock

market volatility, indicating that stock market fluctuations are essentially not affected

by national policy fluctuations. Although investor sentiment is affected by changes,

such as exchange rate reform and stock market policies, many investors do not form

consensus expectations.

Keywords: EPU, investor sentiment, stock market, information flow, transfer entropy

INTRODUCTION

Transfer entropy arises from the formulation of conditional mutual information. When
conditioning on past values of variables, it quantifies the reduction in uncertainty provided by
these past values in predicting the dependent variable, which presents a natural way to model
statistical causality between variables in multivariate distributions. In the general formulation,
transfer entropy is a model-free statistic that is able to measure the time-directed transfer of
information between stochastic variables and therefore provides an asymmetric method tomeasure
information transfer.

The information transfer method has been widely used in the finance field. Kwon & Yang [1]
employed it to measure the relationship between equities indices, showing that the information
transfer was greatest from the US and toward the Asia Pacific region. In particular, the S&P 500
was shown to be the strongest driver of other stock indices. In earlier and somewhat related
work, Marschinski and Kantz [2] defined and used effective transfer entropy to quantify contagion
in financial markets. Kyrtsou et al. [3] proposed a Granger causality method based on partial
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transfer entropy to explore the complex relationships among
the S&P 500, VIX and volume. Dimpfl and Peter [4] proposed
an appropriate bootstrap to derive confidence bounds and
showed in a simulation study that standard linear approaches
in economics and finance, such as vector autoregressions and
Granger causality tests, are not well-suited to detect information
transfer. Garcia-Medina et al. [5] used random matrix theory
and information theory to analyze the correlations and flow of
information between 64,939 news items from The New York
Times and 40 world financial indices over 10 months during the
2015–2016 period. Their results suggested a deep relationship
between news and world indices and showed that the news
drives world market movement. Sensoy et al. [6] explored the
strength of information flow between exchange rates and stock
prices by the effective transfer entropy with symbolic encoding
methodology. Yang et al. [7] proposed an effective phase transfer
entropy method based on the transfer entropy method. These
scholars also analyzed the relationship among 9 stock indices
from the U.S., Europe and China by using transfer entropy,
effective transfer entropy, Rényi transfer entropy, and effective
Rényi transfer entropy [8].

The vast influential literature focuses on the correlation
between EPU and its impact of investment [9–21]. Many new
studies investigated the fluctuation characteristics of China’s
uncertainty index and its impact on the economy [22–24].

Additionally, many other studies focused on the impact of
investor sentiment on stock prices. A study investigating the
correlation between investor sentiment and the equity market
was conducted following De long’s research [25]. Baker and
Wurgler [26] investigated investor sentiment using a principal
component method. Subsequently, a large number of studies
emerged, suggesting that investor sentiment has a significant
impact on stock returns [27–40]. In addition, some studies reveal
a complex correlation between online investor sentiment and
stock market volatility [35, 36, 41, 42].

Although there are many studies on the correlation between
EPU and financial or economic indices, there are few studies on
the influence of EPU on investor sentiment. There is also a lack
of research on the transmission pathways of the EPU, investor
sentiment and stock market.

It is widely considered that national economic policies will
pass relevant information to influence investor sentiment,
affect investment decisions, and ultimately cause stock
price fluctuations. However, the real situation may be more
complicated especially in China. Motivated by previous studies,
we follow the theorizing on information flow to reveal the
transmission path of information among these three variables
and to provide more references for macro policy makers.

The rest of this paper is organized as follows. In section
Data Description, we describe the time series data used in
the models. In section Methodology, we introduce the effective
transfer entropy (ETE)method. In section An Improved Effective
Transfer Entropy Method Based on a Sliding Window, we
propose an improved ETE method based on sliding windows.
In section Empirical Results, we present the empirical results of
EPU, trade and the exchange rate obtained using the improved
ETE model. Finally, we provide the conclusion of this paper.

DATA DESCRIPTION

The economic uncertainty index used in this article is an
index compiled by Paul Luk’s research team [43] from
Hong Kong Baptist University. These authors construct the
index using words from 10 Hong Kong newspapers, including
Wen Wei Po, Sing Pao, etc. For each newspaper, the research
group counts articles containing Chinese words related to
economics, uncertainty and policy to formulate the economic
policy uncertainty index. The latest data of the index and
related papers can be downloaded from the web: https://
economicpolicyuncertaintyinchina.weebly.com/.

The investment sentiment index is constructed with the
principal component method based on four underlying proxie,
i.e., the relative strength index, the psychological line index, the
trading volume and the adjusted turnover rate [40]. The Shanghai
Composite Index mostly reflects the performance of the Chinese
stock market. The data of this index are from the China Stock
Market & Accounting Research Database. The data period for all
three time series is from February 2005 to May 2019 (Figure 1).

METHODOLOGY

We calculate the statistical causality between time series using
two different approaches. The first assumes linearity and employs
vector autoregressive techniques to estimate the extent to which
knowing the driving time series can help predict the dependent
series. The second technique compares the difference in mutual
information between the independent case and the joint case to
describe the success of predicting the dependent series. When
predictability is increased by considering the past values of the
driving variable, statistical causality is observed.

Linear Causality
We model a time series as autoregressive by expressing its value
Yt at time t as a sum of the contributions over m distinct lagged
series using the following linear equation:

Yt =
m

∑

k = 1

β
(Y)
k

Yt−k + εt (1)

Where β
(Y)
k

is a general coefficient term and εt is the residual.

Linear regression estimates coefficient parameters β
(Y)
k

, which
minimize the sum of squared residuals.

To detect whether the values of some second time series
X anticipate the future values of Y, we can compare Equation
(1) with

Yt =
m

∑

k = 1

β
′(Y)
k

Yt−k +
m

∑

k = 1

β
′(X)
k

Xt−k + ε′t (2)

We determine that distribution Y is Granger caused by X if the
residual in the second regression is significantly smaller than the
residual in the first regression. When this distribution holds, then
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FIGURE 1 | Time series of the CN EPU index, Investor sentiment and Return

of the Shanghai Composite Index’s closing price.

there must be some information transfer from X to Y. Following
Geweke [44], we can represent the information transfer by

TEX→Y =
1

2
log

(

var(εt)

var(ε′t)

)

(3)

where we adopt the transfer entropy notation (TE) following
Barnett et al. [45], whose result shows Granger causality
to be equivalent to transfer entropy for multivariate
normal distributions.

Non-linear Causality
To detect non-linear causality, we apply an information-theoretic
approach. Equation (3) measures the extent to which the
additional information in the lagged variable reduces the variance

in the model residuals. Transfer entropy extends this concept by
considering the uncertainty instead of the variance. Adopting
Shannon’s measure of information [46], we can express the
uncertainty associated with random variable X by

H(X) = −
∑

x

p (x) . log p (x) (4)

where H(x) is the Shannon entropy of the distribution, and p(x)
represents the probability of X = x, which can be conditioned on
a second variable to give the conditional entropy:

H(Y|X) = H(X,Y)−H(X) (5)

When two random variables share information, the mutual
information is given by

I(X;Y) = H(Y)−H(Y|X) = H(X)−H(X|Y) (6)

The entropy of Y conditioned on two variables is

H(Y|X,Z) = H(X,Y ,Z)−H(X,Z) (7)

and the conditional mutual information is therefore

I (X;Y|Z) = H (Y|Z) −H (Y|X,Z) (8)

Now, for each lag k, we can describe the information transfer
from Xt−k to Yt in terms of the following conditional
mutual information:

TE
(k)
X→Y = I

(

Yt;Xt−k|Yt−k

)

= H
(

Yt|Yt−k

)

− H
(

Yt|Xt−k,Yt−k

)

(9)

This equation represents the resolution of uncertainty in
predicting Y when considering the past values of both Y and X
compared with considering the past values of Y alone.

Considering Equations (5) and (7), we can therefore represent
the transfer entropy for a single lag k, which is shown in
Equation (9), in terms of four separate joint entropy terms.
Following equation (4), these terms may be estimated from the
data using a non-parametric density estimation of the probability
distributions. For multivariate normal statistics, Equations (9)
and (3) coincide [45].

Effective Transfer Entropy (ETE)
It is a feature of the non-parametric estimation of entropy that
the absolute scale of the transfer entropy measure has only
limited meaning; to detect causality, a relative position must be
considered. A simple technique proposed by Marschinski and
Kantz [2] is the ETE, derived by subtracting from the observed
transfer entropy an average transfer entropy figure calculated
over independently shuffled time series, which destroys the
temporal order and hence any possible causality. We adopt
a shuffling approach producing 50 null-hypothesis transfer
entropy values from independently shuffled time series over the
same domain containing no causality. By calculating the mean
and standard deviation of the shuffled transfer entropy figures,
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we estimate the significance of a causal result as the distance
between the result and the average shuffled result standardized
by the shuffled standard deviation:

ETE = TE− TEshuffle (10)

Z : =
TE− TEshuffle

σshuffle

where TEshuffle is the mean of the shuffled values, and σshuffle is
the standard deviation. The shuffling of the time series destroys
temporality and should ensure that the mean is approximately
zero; therefore, the spread of the data dictates the significance of
the result. Assuming that the distribution is close to Gaussian,
we can say that a result with Z > 3 is roughly in the top 1% of
results and hence is comparable to a p-value of 0.01. The nature of
the method typically enables clearer significance to be observed
with fewer shuffles, even without a strict Gaussian distribution;
thus, this method is computationally more attractive than
the p-value.

This expression corresponds to the degree to which the
result lies in the right tail of the distribution of the zero-
causality shuffled samples and hence how unlikely the result
is due to chance. Therefore, the Z-score figure represents the
significance of the excess transfer entropy in the unshuffled case.
We compute the Z-score in Equation (10) for both linear and
non-linear results.

AN IMPROVED EFFECTIVE TRANSFER
ENTROPY METHOD BASED ON A SLIDING
WINDOW

Improved Method Based on a Sliding
Window and Comparison With a Traditional
Linear Method
Keskin and Aste [47] validated that the non-linear TE method
would be useful for detecting a non-linear process. However,
the lag order they found was global and unique and thus
was unsuitable for capturing the accurate order between two
non-stationary series. For non-stationary time series, the data
structure changes over time, which means that the causal
relationships also evolve dynamically. In addition, due to policy
or unexpected events, the causal structure of real financial
sequences tends to change over time. Therefore, it would be
inaccurate to use a single k to measure global causality.

Considering that the locality of non-stationary data may
be stationary or approximately stationary, this paper proposes
an improved transfer entropy method based on a sliding
window to solve the influence of a non-stationary data
structure on traditional transfer entropy. The improved method
calculates the transfer entropy as described in section Non-
linear Causality but is limited to a certain time segment.
Through forward scrolling, the transfer entropy at each time
point is obtained, and the causal relationship between the
two times series can be revealed. In addition to its ability to
capture the structural changes between two time series, the
improved method can help us trace the specific time period

of the structural change, which cannot be achieved using the
traditional linear TE method. We next verify the validity of
the algorithm.

First, we generate a time series X following the geometric
Brownian motion according to Equation (11) as follows:

Xt+1 = (1+ µ)Xt + σXtηt (11)

where ηt is a noise obeying the standard normal
distribution, ηt ∼ N(0, 1), and µ and σ represent the
drift coefficient and the diffusion coefficient, respectively. Y
depends on X, and the equation is constructed as follows
(Equation 12):

Yt = (1− α)Xt−k + αX′
t−k (12)

where X′
t−k

is another time series generated according to
Equation (11). k is the given lag order, and α ∈ (0, 1) determines
the dependence strength between the series Y and X, i.e., the
values of the transfer entropy.

Assuming k = 2,α = 0.5; k = 4,α = 0.5; and k = 5,α =
0.5, we can obtain three time series with a length of 200, i.e.,
Xt ,Y

k = 2
t ;Xt ,Y

k = 4
t and Xt ,Y

k = 5
t according to Equations (11)

and (12).
As shown in Figure 2, for a correlation series with a single

lag structure, both the traditional transfer entropy, i.e., the linear
TE, and the improved TE method can capture the lag order
accurately. However, according to the Z-score significance test,
we can observe that when the temporal order is destroyed, the
linear TE does not show significance in the relevant order; thus,
the linear TE method depends on time evolution. As shown
in Figure 3, the linear TE could only identify the order k =
4, which is the highest corresponding transfer entropy value
(Z-score indicates that the value is above a significant level).
However, the improved TE could detect both k = 4 and k = 5.
Moreover, as shown in Figure 4, we can also track the specific
time period during which the lead-lag order fluctuates with the
improved method.

We reshape Xt ,Y
k = 2
t ;Xt ,Y

k = 4
t and Xt ,Y

k = 5
t into

two new time series X′
t ,Y

′
t , where X′

t = [Xt ,Xt ,Xt]

and Y ′
t =

[

Yk = 2
t ,Yk = 4

t ,Yk = 5
t

]

. These new series

show obvious structure fluctuations, and the features
are more consistent with the characteristics of real
financial data.

Due to the shortcomings of traditional linear methods in
revealing dynamic orders, in the empirical analysis in section
Empirical Results, we apply the improved transfer entropy to
explore the information flow between all sequences. The sliding
window length of all structures is 36 months with a forward step
size of 1 month.

Comparison With the Granger Causality
Test
The Granger causality test is essentially a test used to determine
whether a lagging variable can be introduced into an equation
containing other variables. If a variable is affected by the
lag of other variables, the variables are considered to have
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FIGURE 2 | Demonstration that both methods identify the true lag values with maximal transfer entropy. Non-linear transfer entropy is calculated using a

quantile-binned histogram, of 6 classes per dimension over 2,500 points. The Z-score for each result is also plotted for both methods. According to the z > 3

principle, it can be concluded that for two time series with a single lag order, the two methods can both identify the lag orders accurately. (A) k = 2,α = 0.5. (B)

k = 4,α = 0.5. (C) k = 5,α = 0.5.
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FIGURE 3 | Demonstration that both methods identify the true lag values with maximal transfer entropy. The linear TE could only capture k = 2, corresponding to the

highest transfer entropy value (Z-score indicates that the value is above a significant level), while the improved TE method could detect k = 2, 4, and 5.

FIGURE 4 | Order identification by the two transfer entropy methods. The

dashed line k = 2 corresponds to the lag order when the transfer entropy

value is the largest in the linear TE method in Figure 3.

Granger causality. For the sequences X and Y, using different lag
orders, we obtain the causality test results of the two sequences
(Table 1).

Granger causality is a regression-based interpretation of
Wiener’s causality definition [48]. In this section, the Granger
causality test is employed as a comparison with the improved
TE to detect the true lag orders. Following Granger’s work [49],
we model the Granger causality test with the following two
regression equations:

Xt =
p

∑

i = 1

αiXt−i + ui (13)

Xt =
p

∑

i = 1

biXt−i +
p

∑

i = 1

ciYt−i + vt (14)

where X denotes the object needed to find the Granger cause, Y
denotes the object needed to determine whether it can Granger
cause X, and residuals ut and vt are assumed to be mutually
independent and individually distributed with a zero mean
and constant variance. These equations were tested using the
following hypothesis:
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TABLE 1 | Granger causality test results.

Lag 1 2 3 4 5 6 7 8 9 10

F_test 0.5664 4.0797 2.9568 2.2895 6.6669 5.8331 4.9915 5.0310 4.4082 3.9662

P_val 0.4520 0.0174 0.0319 0.0586 4.76E-06* 6.48E-06* 1.68E-05* 4.75E-06* 1.38E-05* 3E-05*

*p_val < 0.01 indicates that the test result significantly rejects the null hypothesis and that at least one lag variable X Granger causes Y. Therefore, the orders in which X Granger

causes Y are 6, 7, 8, 9, and 10.

FIGURE 5 | Comparison of the Granger causality method based on a sliding window and the improved TE method. The widow length in both methods is W = 36,

and the significant level is 1%. The Granger method can clearly identify k = 2 but cannot identify k = 4, and there is considerable noise interference when identifying

k = 5. The improved TE method can clearly identify the three orders 2, 4, and 5. (A) Granger causality test based on the sliding window method. The gray part

indicates that the p-value of the F statistic is <1%, indicating that the causal relationship is significant in this area. (B) The result based on the improved TE method.

The gray part indicates that the Z-score is higher than 3, which is equivalent to a significance level of p_val < 0.01 [section Effective Transfer Entropy (ETE)].

H0 :Y does not Granger cause X(c1 = c2 = ... = cp = 0).
The F − test can be expressed as follows:

F =
(RSS0 − RSS1) /p

RSS1/
(

n− 2p− 1
) ∼ F

(

p, n− 2p− 1
)

(15)

where RSS0 is the residual sum of squares of Equation (13),
RSS1 is the residual sum of squares of Equation (14), n is the
number of observations, and p is a lag value. We reject the
hypothesis H0 and accept that Y is a Granger cause of X if
and only if F > F(p, n − 2p − 1). The model order p can
be determined by minimizing the AIC [50], which is defined
as follows:

AIC(p) = 2 log (|σ |) +
2m2p

n̂
(16)

where σ is the estimated noise covariance, m is the dimension
of the stochastic process and n̂ is the length of the data
window used to estimate the model. For example, to detect
the causal relationship from exports to US EPU, Y should be
set to the exports sequence, while X should be set to the US
EPU sequence. In contrast, Y should be set to the US EPU
before detecting the causal relationship between US EPU and
the exports.

The Granger causality test based on the sliding window
method can also obtain the order and significance of two series’
correlation. Using Y and X as an example, we elaborate upon the
processes of the Granger model estimation within a fixed window
as follows:

(a) Themaximum of the lag value p is set to a fixed number, such
as 10.

(b) By calculating the total AIC of Equations (13) and (14)
by traversing the p value from 1 to 10, we obtain the
corresponding p of the minimum AIC. The experimental
results show that the optimal p is 5.

(c) Equations (13) and (14) are estimated by OLS with p= 5.
(d) F and F(p, n − 2p − 1) are calculated according to Equation

(15). The results show that F = 4.0635 and F(p, n−2p−1) =
3.8549 (at the 99% confidence level).

(e) If F>F(p,n–2p−1), we conclude that Y can significantly
Granger cause X.

(f) The window is moved forward by a 1-month step, and steps
(a–e) are repeated.

Using the process described above, we obtained the Granger
causality test results based on a window length W = 36
(Figure 5A). As shown in Figure 5A, although the Granger
causality test can identify k = 2, it cannot effectively capture the
two orders of 4 and 5. Using k = 4 cannot pass the significance
test; although using k = 5 can pass the significance test, there
may be other orders, such as k = 8. The improved TE method
can accurately identify three different orders (Figure 5B). In
addition, the stage during which the order jumps cannot pass the
significance test.

EMPIRICAL RESULTS

Since traditional linear methods cannot identify dynamic orders
between time series or track specific lead-lag orders when
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structural fluctuations occur, we apply the improved transfer
entropy to explore the information flow among EPU, investor
sentiment and the stock market.

EPU and Investor Sentiment
Based on the dynamic TE method, we analyze the causal
relationship between EPU and investor sentiment. As shown in

FIGURE 6 | Dynamic Entropy results between EPU and investor sentiment. (A) Lag structure. (B) TE fluctuation. (C) Z-score.
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Figure 6A, there is an obvious dynamic order in the correlation
between EPU and investor sentiment.

As shown in Figure 6C, a Z-score > 3 is mainly located
in August 2015–June 2016. This means that during this time
period, EPU had a significant impact on investor sentiment,
and uncertain information about national economic policies
significantly affected investor sentiment. From Figure 6B, it can
also be seen that in this stage, the EPU’s transfer entropy to
investor sentiment was significantly higher than the impact of
investor sentiment on EPU.

The impact on investor sentiment is related to the nature of
the policy, i.e., whether the policy is a domestic policy or a foreign
policy. During this period, China’s economic policy involved the
following two important measures: a change in the CNY fixing
mechanism and the launch of the “circuit-breaker” mechanism.

On August 11, 2015, the central bank made more reference
to the closing price of the previous day in the daily CNY-
USD mid-price quotation formation mechanism. This change
makes the method of forming the middle price more market-
oriented, which more closely reflects the actual supply-demand
relationship of the market compared to the previous method.

The circuit-breaker benchmark index is the CSI 300 Index,
which uses two thresholds of 5 and 7%. When the CSI 300 Index
triggers a 5% breaking threshold, the three exchanges suspend
trading for 15min, and if the 5% is triggered late in the day or 7%
is triggered at any time throughout the day, trading is suspended
until the market closes. From January 4th to January 7th, the
breaking mechanism was implemented for only 3 days, and it
became the shortest-lived stock market policy in the history of
Chinese securities. This policy uncertainty had a great impact on
investor sentiment.

Before August 2015, there were incidents such as the
bankruptcy of Lehman Brothers (September 2008), the
downgrade of the US sovereign credit rating (August 2011), and
the European debt crisis (January 2011–January 2014). However,
probably because these events did not occur in China, their
impact on consumer sentiment was not significant.

Investment Sentiment Index and the Stock
Market
The correlation between sentiment and stock price returns is
illustrated in Figure 7. As shown in Figure 7C, the impact of
sentiment on stock returns is non-significant; in contrast, the
fluctuation in stock price returns has a significant impact on
investor sentiment throughout the time period. This shows that
in the Chinese stock market, using emotions to predict changes
in stock prices is useless, and investor sentiment is more a
lagging reflection of stock price returns. Figure 7A shows that
the lag time is approximately 1 month. Our results further verify
the long-term correlation characteristics suggesting that investor
sentiment is mainly affected by fluctuation in the market, which
may be related to the existence of cyclical fluctuations in the
market and futures arbitrage [40].

The study conducted by Brown and Cliff [29, 51] revealed
that the bandwagon effect and bargain shopper effect can offset
each other, reducing the predictability of stock returns. The

bandwagon effect indicates that higher investor sentiment could
increase the stock price, which is reflected in the positive
correlation between stock prices and sentiment during the same
period; in contrast, the bargain shopper effect indicates that
investors optimistically believe the shares at a relatively low
price represent a purchase opportunity; therefore, their sentiment
negatively changes the returns.

The bargain shopper and bandwagon effect make it difficult
to explore the causality between investor sentiment and stock
returns. In our analysis results, the bandwagon effect is
weaker, and the bargain shopper effect is more significant. The
bandwagon effect reflects the herd effect of investors. This effect
makes the stock market prone to sudden rises and falls in the
short term; it cannot reflect the true value of a company and
is not conducive to the healthy and stable development of the
stock market.

EPU and Stock Market
If investor sentiment has a significant impact on the stock price,
then according to our expectations, national policy information
will be transmitted to the stock price through investors’
expectations and eventually cause stock price fluctuations;
in other words, EPU also has some kind of information
transmission relationship with the stock price. However, the
results now show that both stock price fluctuations and EPU have
an effect on investor sentiment and are not affected by investor
sentiment. Therefore, either the stock price fluctuations and EPU
have a weak information transmission effect or there is amutually
offsetting effect.

To further verify our assumptions, we explore the information
transfer relationship between EPU and stock price returns
(Figure 8). As shown from the results of Figure 8C, there are only
a few discontinuous time points with a Z-score > 3 in the entire
event period. Overall, the information transmitted by the EPU
to the stock market is non-significant; in other words, the EPU
has no obvious information transmission relationship with the
stock market.

A considerable number of related studies showed that the
stock market and EPU are significantly negatively correlated
[11, 12, 21, 52]. Regarding the relationship between China’s EPU
and the stock market, Chen and Chiang [21] also verified that
the stock returns in China are negatively correlated with EPU.
Notably, the main correlation revealed by Chen and Chiang
based on the GARCH method is the overall correlation between
sequences. However, we reveal a time-varying relationship
between sequences based on non-linear methods. As shown in
Figure 8C, it can be concluded that in the short term, China’s
EPU also significantly impacts the stockmarket during the period
from 2011 to 2012 and in 2016, but in the long run, this effect is
generally not significant.

DISCUSSION

According to the efficient market hypothesis theory, an efficient
market (Figure 9A) should reflect all changes in information,
including regular investor sentiment changes and shocking policy
fluctuations. Therefore, the information flow should flow from
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FIGURE 7 | Entropy between investor sentiment and stock market. (A) Lag structure. (B) TE fluctuation. (C) Z-score.

the EPU and investor sentiment to the stock market. In addition,
since policy shocks often affect sentiment in the short term,
information flow should flow from policy to sentiment, but this
is uncertain.

The results show that the Shanghai Stock market is not
yet an efficient market (Figure 9B) and cannot reflect
information from regular investment and low-frequency
policy shocks. Therefore, investors can reap potential excess
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FIGURE 8 | Entropy between EPU and stock market. (A) Lag structure. (B) TE fluctuation. (C) Z-score.

profits through operations. Furthermore, the stock market
cannot form an effective path to reflect investor sentiment
information; thus, in the long run, EPU cannot affect the
stock market.

Compared with the market and policy factors, investor
sentiment has a certain lag (Figure 9B), reflecting the volatility
information of the two. Therefore, we should consider policy
factors when studying the construction of investor sentiment
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FIGURE 9 | The correlation among CN EPU, investor sentiment and the stock market. (A) The efficient market hypothesis. The stock market may be able to

effectively reflect information regarding conventional investment and policy shocks. (B) China’s stock market is an inefficient market, and stock market volatility is an

important factor affecting emotional volatility.

indicators, which is rarely investigated in research concerning the
factors affecting investor sentiment.

CONCLUSION

A widely accepted fact is that economic policy affects investor
sentiment and will be ultimately reflected in the stock market
through investment decisions, causing stock price volatility.
Therefore, is this really the case?

Since traditional linear methods cannot identify the dynamic
orders between time series and are unable to track specific
lead-lag orders when structural fluctuations occur, we proposed
an improved transfer entropy method based on a sliding
window. By comparing with the linear ETE method and Granger
causality method, we verify the effectiveness of the improved
method. The main advantages of this methodology are the
easy implementation-interpretation by non-parametricity to
capture the non-linear dynamics and the point in time when
the structure changes. Therefore, this method is considered
a nice and promising alternative to the standard measures.
We further employ this improved method to examine
the information flow among EPU, investor sentiment and
stock market.

The results of the information flow analysis of EPU
and investment sentiment show that EPU influenced
investor sentiment mainly from August 2015 to June
2016. Among different policies, China’s exchange rate
reform policy and “circuit-breaker” policy have played
an important role. For other time periods, there are
also points in time when policies were highly uncertain,
such as the bankruptcy of Lehman Brothers (September
2008), the downgrade of the US sovereign credit rating
(August 2011), and the European debt crisis (January 2011–
January 2014). However, likely because these events did
not occur in China, their impact on consumer sentiment
was non-significant.

The analysis of the information flow between sentiment
and stock price returns shows that the impact of sentiment
on returns is non-significant, while the fluctuation in stock
price returns has a significant impact on investor sentiment.
Therefore, using emotions to predict changes in stock prices
is valueless. Investor sentiment is more a reflection of

changes in stock price returns with a 1-month lag order.
The results show that in the Chinese stock market, the
bargainer effect is more significant and the bandwagon effect
is weaker.

There is no direct information flow from EPU to stock
market, and according to our previous analysis, there is
no indirect information flow through which EPU transmits
information to the stock market through investor sentiment.
Therefore, stock market fluctuations are basically not affected
by national policy fluctuations. Although investor sentiment
is affected by changes such as exchange rate reform and
stock market policies, this effect is reflected only at the
emotional level. Many investors can digest and neutralize
extreme emotions. Therefore, a final consensus is not easy
to form.
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Recent works leverage export data to assess country production structure and ultimately

country relative competitiveness. These works mostly rely only on the exported part of the

total country output for reasons of data availability, homogeneity, and quality. Here we use

the World Input-Output Database (WIOD), which offers cross-country harmonized data

that accounts both for domestic production and export, to investigate to what extent

export is a proxy for domestic production. We find that export mirrors remarkably well

domestic production for manufacturing sectors or sectors related to physical goods.

Conversely, this relation fades away for service related sectors. We found those relations

consistently across most of the 40 countries for which data are available.

Keywords: economic complexity, services, industrial production, WIOD, economic fitness

1. INTRODUCTION

The last decades have witnessed the building up of the awareness that economic thinking must
embrace new paradigms in order to properly tackle the challenges set by the complex and adaptable
nature of economic systems [1–3]. This shift has acted as a breeding ground for cross-disciplinary
economics and finance theories and has led to a number of flourishing works bridging several
fields ranging from network domain to complexity science. To illustrate a small fraction of these
approaches we refer for instance to the complex linkage between micro and macro economic
fluctuations [4], the non-trivial topology of World Trade Web [5–7], modeling of the inter-bank
network [8] to assess financial systemic risk [9, 10], technological and scientific progress modeling
[11, 12], and complex firm diversification trajectories [13, 14].

In this work we focus our attention on one of these novel branches, typically known under the
name Economic Complexity [15–25], which discusses the determinants of country development
and growth [26–35] in a radically new way. Most of the empirical economic literature has
tried to explain development pattern differences directly acting and measuring the underlying
drivers [35, 36]: the countries’ endowments or capabilities which range from expected factors as
investments, education, etc., to very exotic ones including genetic diversity factors [37, 38].

However, the design of these studies and their general setups often reflect the general vision
of economies as complicated rather than complex (adaptive) systems. This means that these
empirical analyses tend to look at very limited channels of interaction suggesting direct and simple
cause-effects (or in-out effects) [1]. This general frame for the empirical search of development
determinants faces critical issues when the systems are increasingly complex and adaptive because
internal feedback tends to break in-out schemes and lead to the emergence of collective and
evolutionary behavior.
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Economic Complexity reverses this perspective and starts
from the final outputs in order to explain the root of country
competitiveness and consequent growth trajectories. It indeed
wants to infer country competitiveness from economic outputs,
specifically from cross country output differences as they reflect
cross country endowment differences which encode relative
country strength [16, 18, 19, 39–42]. Conceptually speaking,
these approaches are close to PageRank methodology: extracting
information from network topology in order to measure
nodes’ features.

The economic output which is typically leveraged to measure
differences of production across countries is countries’ export
basket, which is a subset of the total output of an economic
system. Domestic production represents the remaining part of
the economic output of a country. Exports are the preferred
output in order to evaluate cross-country differences in terms
of productive capabilities as they occur mainly on a competitive
basis. A country exporting a product is likely signaling a
competitive advantage and proving that country owns the
capabilities required to produce that specific product. In addition,
exports also offer a number of auxiliary features which make
them an ideal candidate for these analyses:

• Export datasets are harmonized across countries, being the
result of data collection from customs offices. This means that
all countries identify and define in the same way a specific
product, making export baskets, once suitably normalized,
comparable across countries;

• The value of the flows is often doubly reported, by the exporter
and by the importer, allowing to correct many errors and to
de-bias inaccurate reporters;

• They are available continuously since the sixties [43, 44];
• They are available up to a very disaggregated level. Considering

Harmonized System, products are hierarchically organized
using different levels of aggregation identified by the number
of digits used for the product code. For instance, 2 digits codes
refer to about one hundred aggregated sectors, while 4 digits
codes identify more than one thousand different products.
Exports are available up to 6 digits. As a reference, 8–10
digits levels specify the level at which single firms compete
(i.e., at those levels if two firms produce the same product,
they are likely direct competitors). Exports are then available,
consistently for all countries, just one level of aggregation
higher than the level setting firm competition [44].

In this work we want to address the relationship that exists
between export and domestic production of countries. In
particular we want to understand to what extent export flows
are mirroring production and therefore they can be used as a
good proxy to decode the complexity of domestic production.
In particular, we want to understand if there exist sector-wise
patterns of variability of the probing power of export flows.

Unfortunately, from an operational point of view, we do
not have direct, reliable, highly disaggregated, consistent cross-
country datasets tracing the structure of internal production,
differently from what is available in the bilateral trade network.
However, we are still able to test the relation at a more aggregate
level. In order to test the validity of this assumption, we leverage

a type of data made recently available by a number of scholars.
The dataset we will refer in this work is the so-called WIOD
[45, 46]. This dataset extends the original Leontief input-output
approach, which is usually provided for internal intra-sector
flows, at a global scale (further details are provided in the next
section). In WIOD we have access to the input and the output
flows for 34 sectors, due to both domestic and import/export
contribution, for a limited but significant set of 40 countries
covering more than 85% of the world GDP in 2008. Additionally,
the trades due to the remaining non-covered part of the world
are estimated and included in an additional “country” called
“Rest of the World” (RoW). We design a number of tests to
statistically assess the probing power of export flows along the
two possible cross-sections we can explore: first fixing sectors and
then fixing countries.

Our results can be summarized as follows:

i) At an aggregate level, exports are a good proxy for internal
production for manufacturing sectors and sectors delivering
physical goods.

ii) The relationship between internal production and export
fades away for service related sectors. This highlights
differences between products and services and shows that
services exports might not have the same meaning of tangible
good related exports. This questions approaches aiming to
achieve a straightforward extension to the service domain
of cross country export differences by treating these class of
activities as an extra set of products [47, 48].

We found those relationships consistently for the countries
considered and discuss the exceptions in the remainder of
the paper.

The paper is structured as follows: in section 2 we present
the results of our research. Particularly, section 2.1 describes
how we calculate the internal production and the export for
each sector of each country considered. We then analyze those
data in sections 2.2 and 2.3, respectively, sector by sector and
country by country. We conclude in section 3 discussing our
findings and presenting an outlook for our work. Finally, section
4 provides technical details on the statistical methods used. In
the Supplementary Information, we provide further results and
analyses supporting the main findings of the paper.

2. RESULTS

2.1. Assessing Domestic Production and
Export
The Input-Output analysis, formalized by Leontief [49], provides
a picture of the inter-industrial relationships. This kind of
analysis gives a matrix representation of the interactions between
industrial sectors of a country. The model considers an exchange
economy divided into a certain number of industrial sectors in
which the output from a sector becomes an input for another. In
this way, it is possible to see howmuch each sector depends upon
the others. The idea of Dietzenbacher et al. [45, 46] was to expand
the Leontief ’s approach to world trades so they created the
World Input-Output Database (WIOD), in which there are flows,
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quantified in current US dollars, exchanged between industrial
sectors relative to several countries of the world. The WIOD
contains annual time-series of WIOT, collected for a period of
17 years ranging from 1995 to 2011.

From each one of the WIOT we created a network (whose
properties have been studied in [50]) as in Figure 1. We
distinguish three different types of links: (i) self-link, representing
the inputs that an industry takes from itself (colored dashed lines
in the figure); (ii) link between the same industrial sector in
two different countries (gray dotted line in the figure); (iii) link
between different industrial sectors in the same country (colored
solid line) and among countries (gray solid line). Self-links are
mainly due to aggregated industry classification [50] and often
represent a large amount of the total sector input/output. We
neglect this data together with any link connecting the same
industrial sector across countries. Therefore, we keep only links
represented by solid lines in Figure 1. For each industrial sector
s of the country c we define the internal flow Isc as the sum of
the output flows toward industrial sectors of the same country.
Similarly, we define the export flow Esc as the sum of the output
flows toward industrial sectors belonging to other countries. The
sum of Isc and Esc gives the total output flow of country c,
industrial sector s.

Internal and export flows show high variability in terms of
volume from country to country. A better parameter to estimate
the importance of an industrial sector is the share with respect
to the country’s overall internal production or export. Hence, for
each industrial sector of each country, we define an internal share
isc and an export share esc. The former reflects the importance
of that sector relative to the country’s internal economy while
the latter reflects its importance relative to the country’s export.
Shares are defined as:

isc =
Isc

∑

s′ Is′c

esc =
Esc

∑

s′ Es′c

where s′ runs over all the 34 industrial sectors.
The main goal of this work is to measure the similarity and the

similarity’s statistical significance of domestic and export shares
sector-wise and country-wise.

2.2. Sector-Wise Analysis
Let us first consider the sector-wise similarity. We thus want
to measure sector-by-sector whether domestic shares mirror
export shares for the available countries. Being n the number of
countries, we define ds = {isc1 , isc2 , ..., iscn} the vector specifying
the domestic shares of a product across countries and exs =
{esc1 , esc2 , ..., escn} the vector of the corresponding export shares.
We measure the per sector similarity as the sample Pearson
correlation of the vectors ds and exs. The limited number of
countries (n = 41) and the consequent limited statistics make a
robust statistical validation of the measured correlation essential.
We then require strategies in order to exclude that the sample

correlation we observe is associated with a vanishing correlation
for the underlying population, i.e., ρ = 0: where ρ is the
population correlation coefficient. We will denote population
correlation with Greek letters while sample correlation by Roman
letters. The statistical validation of correlation can be achieved
using different strategies; we will perform themost common ones
and discuss the similarities of results witnessing the robustness of
our basket of analyses. In detail:

• Mitigation of outliers’ role (analysis I): to study the typical
range of variability of the observed sample correlation
coefficient between the domestic and the export shares, we
develop a bootstrapping procedure. Unfortunately domestic
and export shares occasionally show a broad distribution
and therefore we may occasionally fall into an outlier-type
regime for some sectors. We then devise a procedure to
mitigate the effect of outliers to test the robustness of our
findings. The procedure combines a modified bootstrap with
a permutation test and it is easily described by means of
a concrete example. In Figure 2A, we show the scatter plot
of the internal shares and export shares, i.e., ds and exs,
for two sectors (namely Electrical and Optical Equipment
and Inland Transport). Each point in the graph represents a
country. The sample correlation coefficient of these data is
calculated through a modified bootstrapping to mitigate the
possible effects of outliers. We essentially re-sample many
subsets of the original pairs (further details are provided in
Methods section). This permits to evaluate the typical range
of variability of the correlation coefficients as shown by the
histogram in Figure 2B. We define the sample correlation
coefficient r for this sector as the average of the data in
this histogram (pointed out by the vertical dotted black line
in the same figure panel). To assess the significance of the
obtained r we develop a p-value analysis: for each data subset
extracted during the bootstrap we calculate the p-value as
the results of a permutation test (see section Methods for
further details). We then construct the cumulative distribution
function of the obtained p-values, shown in Figure 2C. A
significant correlation is usually attested by a low p-value. This
translates in a p-values’ cumulative distribution approaching 1
for small p-values. In the examples shown in Figure 2 this is
the case for the “Electrical and Optical equipment” industrial
sector, while it is not the case for “Inland transport.” We set
a threshold T = 0.15 to define a sector correlated or not.
If the 70th percentile of the p-values distribution is below T
then the sector is said to be correlated otherwise it is not. We
marked in panel (c) of the same figure the 70th percentile of
the data by a dotted black line and the 0.15 threshold by a
dashed red line. We see that for the “Electrical and Optical
Equipment” sector the 70th percentile of the data is well below
the threshold. This means that the internal share ds and exs
of this sector are significantly correlated as measured by our
definition of statistical significance. Vice versa for “Inland
Transport” the 70th percentile of the data is greater than the
threshold meaning a lack of a significant correlation.

• Confidence level assessment via simple bootstrapping

(analysis II): to visualize the comparison of the sample
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FIGURE 1 | Schematic of the world input-output tables. The WIOT contain data for the domestic production and the export of 34 industrial sectors in 40 countries,

plus a model for the remaining countries (named Rest of the World—RoW). In this Figure, for simplicity, we show two countries Italy (ITA) and USA with some industrial

sectors. Gray lines represent import/export flows, colored lines trades internal to a country, dashed lines self-consumption of a sector, and dotted lines trades

between the same industrial sector of two different countries.

correlation confidence level, we also performed a standard
bootstapping procedure. We perform a sampling with
replacement of n pairs from the original pairs defining
our sample and, by repeating several times this procedure,
we can estimate the distribution characterizing the sample
correlation variability.

• Permutation test (analysis III): to compare the sample’s
correlation information with a null model we perform
a permutation test shuffling ds (or alternatively exs) and
subsequently measuring the correlation and repeat several
times this procedure in order to build the ensemble
corresponding to the null case we want to exclude,
i.e., the zero correlation scenario. A slightly different
way to estimate the sample correlation distribution is
to generate n pairs of uncorrelated (normal) random
numbers, measure the correlation and repeat the procedure
several times. Both procedures allow to define a p-
value for the observed sample correlation under the
null hypothesis ρ = 0. In this work we will provide
both approaches.

• Fisher transformation (analysis III): a different approach
consists in characterizing the statistics of the sample
correlation provided the value of the population correlation
ρ. Unfortunately this statistics is Gaussian only for zero
population correlation preventing the use of t-statistics.
However, it has been shown that the statistics of a non-
linear transformation of the sample correlation r - the Fisher
transformation - is approximately Gaussian. In detail the
variable F(r) = 1/2[ln((1+ r)/(1− r))] approximately follows
a Gaussian distribution with mean µρ = F(ρ) and variance
σ 2

ρ = 1/(n − 3) where n is the sample size. It follows that the
p-value of the sample correlation r under the null hypothesis

ρ = 0 can be retrieved from the z-score z = (F(r)−µρ)/σρ =
F(r)

√
n− 3.

2.2.1. Sector Analysis I: Outlier Mitigation
In Figure 3, we present the 70th percentile p-value for all the
sectors in the years from 1996 to 2011. They are sorted by the p-
value in 2011 and the sector names belonging to the services [51]
are in bold text. We identify sectors for which the correlation is
validated and sectors for which is not. Visually, we see that the
service sectors are mostly at the bottom of the figure and they
present a large p-value formost of the years analyzed. This reflects
the fact that for those factor there is not a statistically significant
correlation between the domestic production and the export. The
three analyses underline the same trend in terms of validated
and non-validated sectors (see Supplementary Information for
detailed graphs).

In general, a clear clustering is present between two categories
of sectors:

• Sectors showing a statistically significant correlation: “Wood
and Products of Wood and Cork,” “Agriculture, Hunting,
Forestry and Fishing,” “Textiles and Textile Products,”
“Mining and Quarrying,” “Leather, Leather and Footwear,”
“Pulp, Paper, Printing and Publishing,” “Basic Metals and
Fabricated Metal,” “Electrical and Optical Equipment,” “Post
and Telecommunication.” We note that, with the only
exception of “Post and Telecommunication,” all these sectors
belong to the manufacturing and raw materials industries.

• Sectors not showing a significant correlation: “Inland
Transport,” “Health and Social Work,” “Public Admin
and Defense; Compulsory Social Security,” “Air Transport,”
“Other Supporting and Auxiliary Transport Activities;
Activities of Travel Agencies,” “Electricity, Gas, and Water
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FIGURE 2 | Correlation assessment. The first row refers to a sector where output shares toward export and toward internal production are highly correlated; the

second row, a sector for which the correlation is weak. For each row, we present: (A) the scatter plot of countries’ export share vs. countries’ internal-production

share; (B) the histogram of the bootstrap replications and (C) the cumulative distribution of the p-values relative to the bootstrap replications in (B), obtained through

data reshuffling. The red dashed line represents the threshold we use to define correlations.

Supply,” “Hotels and Restaurants,” “Sale, Maintenance and
Repair of Motor Vehicles andMotorcycles; Retail Sale of Fuel,”
“Retail Trade, Except of Motor Vehicles and Motorcycles;
Repair of Household Goods,” “Water Transport,” “Real
Estate Activities,” “Wholesale Trade and Commission Trade,
Except of Motor Vehicles and Motorcycles,” “Financial
Intermediation.” Those sectors, all belonging to services,
present a p-value higher than T for most of the years
considered in this analysis.

The general ordering of the sectors in terms of the significance of
the measured correlation and in particular the different behavior
for manufacturing and service sectors is robust across all the
years available and not specific of a limited time period. However,
few exceptions and trends can be spotted. A more explicit
visualization of the evolution of significance in time is provided
in Figure S3 where we show the time evolution of the 70th
percentile p-value from 1996 to 2011 for each sector. We identify
a temporal trend for some industrial sectors. In particular “Food,
Beverages and Tobacco,” “Coke, Refined Petroleum and Nuclear
Fuel,” “Chemicals and Chemical Products,” “Machinery, Nec,”
and “Transport Equipment” show an increase in the correlation
significance between internal share and export share in the period
considered. On the contrary, the industrial sectors “Other Non-
Metallic Mineral,” “Manufacturing, Nec; Recycling,” “Electricity,
Gas and Water Supply,” “Sale, Maintenance and Repair of Motor
Vehicles and Motorcycles; Retail Sale of Fuel” and “Retail Trade,

Except of Motor Vehicles and Motorcycles; Repair of Household
Goods” show a clear worsening of the correlation significance
between the two quantities with time. Several factors may share
a role in shaping the similarity between internal and export
production. As a general consideration, an increasing correlation
may be a signature for an increasing globalization and a reduction
of trade barriers. However, underpinning the origin of the forces
underlying these trends is beyond the scope of this work.

The general ordering of sectors by statistical significance
induced by the different tests proposed exhibits minor
differences. However, two common features are shared by
all analyses:

1. Statistical significance of domestic and export shares similarity
tends to increase in time. We argue this may due to
increasing trade liberalization and openness together with
more integrated global value chain;

2. Two groups of sectors emerge in a consistent way in the period
under investigation. One group, composed of sectors related
to the manufacturing and raw material industries, present a
significant correlation between the domestic output and the
export. This correlation is instead not significant for another
group of sectors composed of service-related sectors.

2.2.2. Sector Analysis II: Simple Bootstrap Results
The correlation coefficient between domestic and export shares
of the statistically validated sectors are typically observed in the
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FIGURE 3 | Industrial sectors’ correlation. Bars represent the p-values’ 70th percentile. Data are sorted according to 2011 p-values. A clear clustering is present:

service-related sectors (in bold) do not present a statistically validated correlation between the domestic output and the export. Sectors belonging to the

manufacturing and raw material industries have a low p-value hence a robust correlation. Vertical black dashed lines represent the threshold (T = 0.15) to define

correlated sectors. with red edges have a p-value larger than T. Sectors are sorted according to their 2011 p-value.
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range 0.2 − 0.9 as shown in Figure S2 and tend to increase
over time. Interestingly negative coefficients are usually never
statistically validated.

2.2.3. Sector Analysis III: Permutation Test and Fisher

Transformation Results
In Figure S1, we show two Yes-No grids summarizing the
statistical validation of the sample correlations we measure for
the 34 sectors available, respectively, for the two permutation
tests we propose and the Fisher transformation. Sectors are
ordered according to decreasing p-value in 2011. Ordering is
similar but few differences apply. A green plain dot corresponds
to p≤ 0.05, empty red squares to non-validated sectors. As a first
result, both strategies provide essentially the same results and,
more interestingly, we observe that non-validated sectors tend to
be service-related sectors. Detailed p-value tables are provided in
the Supplementary Information.

2.3. Country-Wise Analysis
So far we have seen that industrial sectors can be approximately
classified into two groups on the basis of the statistical
significance of the correlation between domestic and export
shares. On average, export is a good proxy for domestic
production for manufacturing sectors. Let us now consider the
second cross-section analysis we are interested in: the country-
wise analysis. Specifically, we want to investigate whether there
exist country-specific patterns for the relationship between
export and domestic production. In this section we will deal
directly with flows (Isc and Esc) instead of shares since we do not
have scaling issues between flows from different countries, as in
the previous section.

We estimate the statistical robustness of per country
correlations with the same methods we used for sector-
wise analyses, namely permutation tests, Fisher transformation,
bootstrap and the test with mitigation of outliers’ effects.
Referring to Figure 2 again, the general framework is similar:
we still consider scatter plots as in panel (a) but now they
have log(Isc) and log(Esc) on the horizontal and vertical axis,
respectively, i.e., the internal flows of sectors and the export flow
of the same sectors for a specified country.

In this section, we will run all the statistical tests proposed
with two setups: excluding and keeping those sectors which are
discarded by the outlier mitigated test discussed in the previous
section. Discarded sectors can be retrieved year-by-year from
Figure 3 (they are identified by a red dashed edge).

2.3.1. Country Analysis I: Outlier Mitigation
We define as pallc,yr and pc,yr the 70th percentile p-value calculated
with all sectors and with only the validated sectors, respectively.
We present the results of this analysis in Figure 4 for the years
ranging from 1996 to 2011. Solid black lines represent pallc,yr while
colored bars represent pc,yr . The color of the bar is:

• Light green if pallc,yr > T and pc,yr < T, i.e., the correlation is
statistically significant only excluding the discarded sectors in
the sector-wise analysis;

• Dark green if pallc,yr < T and pc,yr < T, i.e., in both cases
the correlation is statistically significant. However, we note

that pallc,yr tends to be always larger than pc,yr , therefore the
case excluding services tends to be more significant from a
statistical point of view;

• Dark red if pallc,yr > T and pc,yr > T, i.e., the correlation is not
statistically significant in both cases;

• And light red if pallc,yr < T and pc,yr > T, i.e., excluding the
discarded sectors decrease the statistical significance of the
correlation between internal flows and export flows.

A visual inspection of Figure 4—countries are ordered with
respect to pc,yr in 2011—reveals that the vast majority of countries
show a notable increase in the significance and of the correlation
itself after the removal of the non-validated sectors in the sector-
wise analysis. This visually corresponds to the fact that empty
bars are larger than colored ones for almost all countries. For
instance, in year 2011 only 24 countries out of 41 have validated
correlation coefficients including all sectors, after removing
not-validated sectors, only 3 countries (i.e., France, Romania,
and Taiwan) are not validated as statistically correlated in the
country-wise analysis.

The secondmain observation revealed by the visual inspection
of Figure 4 is the presence of a well-defined temporal trend
which sees the growth of the number of validated correlation
coefficients between export and internal production during the
considered period. We have already identified this trend in the
sectors’ analysis (Figure 3) considering that the 70th percentile
of the p-value is overall lower in the last years compared to the
previous. However, in this perspective the country-wise analysis
is a more suitable playground to look at structural changes of
trades (Figure 4). We observe that there is a clear increase of
green bars over time. Light red bars completely disappear after
2008 and as mentioned in the last year available the correlation is
validated for 37 countries out of 40.

This implies that country’s specific patterns are disappearing
and export is a good probe for internal output for the majority of
the countries we can test. A tentative explanation of this behavior
can be rooted in the evolution and the rise of world trades due to
the globalization process and to the reduction of trade barriers in
the period studied. In particular starting from 2008 a very high
correlation between export and internal production is present for
the vast majority of countries taken under exam.

Interestingly, most of the countries for which the correlation
fails to be validated can be easily interpreted. Starting with
persistent red light bars which are, in the perspective of
the previous section, the most surprising cases, we find for
instance Luxembourg which is indeed an economy traditionally
dominated by services. We also find Italy but, as argued in
Di Clemente et al. [13], Italy’s economic system has evolutionary
features which are peculiar and may affect the internal output.
We do not have instead obvious interpretation of Brazil’s
behavior in the late nineties and Japan’s one in the early
00s. Turkey and India trends toward an increasing correlation
underpin their rising economic trajectories which is leading both
countries to be pivotal nodes in the trade network.

A persistent anomaly with respect to the observed positive
trend is represented by Romania where not only the correlation
is lacking for all the years considered but also removing the
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FIGURE 4 | Internal output and export correlation on countries. Bars represent the 70th percentile p-values calculated on countries. These are calculated considering

all the sectors (solid black lines) and excluding non-correlated industrial sectors (colored bars). We refer to the text for bar color scheme.

non-correlated sectors worsens the situation. Regarding France
and Taiwan, in some years the correlation is missing but still we
find an improvement by removing the selected sectors. France’s
trade network appear to have specific features since also in [18]
some anomalies have been detected.

2.3.2. Country Analysis II: Simple Bootstrap Results
The correlation coefficient between domestic ad export shares of
the statistically validated countries are typically observed in the
range 0.0− 0.8 as shown in Figure S5. The red bands correspond
to the case with all sectors while blue bands to the case with
validated sectors only.

2.3.3. Country Analysis III: Permutation Test and

Fisher Transformation Results
In Figure S4, we show two Yes-No grids summarizing the
statistical validation of the sample correlations we measure for
the 41 countries available, respectively, for the two permutation
tests we propose and the Fisher transformation. In all cases we
provide the results keeping and discarding non-validated sectors.
Countries are ordered according to decreasing p-value in 2011.
As for sectors, a green plain dot corresponds to p ≤ 0.05, empty
red squares to non-validated countries. As a first result, both
strategies provide essentially the same results, a country validated
by the permutation tests is also validated by Fisher test. However,
major differences apply when we discard non-validated sectors
(the small symbols aside larger ones represent the results in this
latter case). Discarding non-validated sectors we observe that an
increasing trend of validated countries occur and the majority
of countries is validated in 2011. Detailed p-value tables are
provided in the Supplementary Information.

3. DISCUSSION

World Input-Output tables allow us to investigate, at an
aggregate level, the relationship between the two parts of
the economic output of a country: export and domestic
production. The former part can be leveraged as a proxy for
cross country production differences in order to assess country
competitiveness. So a natural question arises, namely to what
extent the fully competition-driven part of a country output, the
export, is mirroring the domestic production network features
and whether significant differences apply between the two
parts. Input-Output tables allow making a substantial direct
comparison as they provide sector output flows broken down into
domestic and foreign contributions. The relation holds country-
wise, even if few exceptions exist, as in the case of Romania.

The main finding is instead the existence of a sector-wise
pattern of validity of statistical equivalence between domestic
and export-destined production. While export mirrors domestic
production structure for manufacturing sectors, the relationship
fades away for services sectors. This implies that services export
cannot be interpreted as in the case of manufacturing or
physical goods: on the contrary, services are economic products
characterized by an elusive and subtle nature, which shares
features of both products and endowments/capabilities.

We point out, however, that this result does not necessarily
question a straightforward extension of country competitiveness
measures to services [47, 48], by simply making use of data
on international trade. Indeed, services are very different in
nature from manufacturing, and are far less tradable; this shows
up in the results of the present work. However, the economic
complexity framework tries to track the hidden capabilities of
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countries, and these could emerge in a clearer way by looking
to exports than to internal production, given the fact that the
international competition plays a major role in the former.

In any case, this analysis is setting constraints and caveats
on the general meaning of services export on a competitive
basis. Services are economic activities for which geographical
localization is often hard. For some of these activities the
concept of localization is likely ill-defined, as in the case, for
instance, of strategic consulting firms whose teams and project
operate worldwide.

The results also provide a perspective to reconcile
manufacturing and services sectors in order to join the two
dimensions. Starting from those few countries for which export
and domestic services are correlated one should first understand
at an aggregate level how these two parts are mutually linked.
Then, by segmenting countries on the basis of the domestic
services diversity similarity, we can try to extend the mapping
provided for those countries where the relationship holds to the
countries belonging to the same cluster but for which there is
a missing correlation between domestic services and services
export. Provided in this way a scheme to estimate how to
reconcile export and domestic services diversity and a re-scaling
profile for each country, this mapping can be eventually extended
at a disaggregate level.

4. METHODS

4.1. Datasets
Weused data extracted fromWorld Input Output Tables (WIOT)
[45, 46]; they consist in 17 different tables, one for each year
from 1995 to 2011. The structure of the table is a matrix that lists
economic sectors associated to countries, in the same sequence,
both vertically and horizontally. Values on the column represent
inputs for the industrial sector and the country at the beginning
of the column, expressed in monetary value; while the values
on the row represent outputs from the sector and the country
at the beginning of the row. Thus, any sector can be analyzed
in terms of the direction and amount of its inputs and outputs.
We used only the information relative to the fluxes exchanged
between industrial sectors of all the countries considered in the
database, which covers 27 European countries and 13 othermajor
countries in the world. The 40 countries considered cover more
than 85% of world gross domestic product (GDP) in 2008. A
model for the Rest of the World (RoW), which accounts for the
remaining 15% of world GDP, is used to predict the remaining
trades. Each table contains fluxes in current US dollars between
35 industrial sectors. Fluxes both inside the same economy and
toward foreign economies are reported. We use only data for 34
sectors since ‘Private Households with Employed Persons’ has
often null input or output. WIOT also provides data for the final
demand, government expenditures, depreciation of capital, taxes,
etc. However, we do not use these data for a two-fold reason.
On one hand, we are interested in the inter-industrial trades. On
the other hand, by performing an analysis of competitiveness for
countries as in Tacchella et al. [19] using export flows derived
from WIOD dataset, we obverse that correlation with the results
of the same analysis run on bilateral trade flows is higher
when we remove final consumption, especially when services are

included in the analysis. This again points in the direction of
a non-trivial relationship between domestically-consumed and
exported services.

4.2. Sector Names
Throughout the paper we used shortened versions of the WIOT
sectors’ names. In Supplementary Information, we provide the
mapping of those shortened names with WIOD ones.

4.3. Correlation Significance Assessment
for Sectors: Outlier Mitigation (Analysis I)
Our aim is to study the correlation between the internal
production of a country and its export. We define these
quantities correlated if the p-value of the correlation coefficients’
distribution is lower then T = 0.15. We can in this way exclude
having an accidental correlation between internal production and
export. As a first step, we need a method that allows eliminating
outliers from our data set in a systematic way, so that they do not
influence the value of the correlation coefficient. For this reason,
we perform a bootstrap using only 80% of data, randomly drawn,
and we calculate the correlation coefficient only on these data.
We repeat this operation 2, 500 times, in this way it is possible to
build an empirical distribution measuring the typical range of the
correlation coefficients (as shown in Figure 3). In order to assess
the statistical robustness of the correlation coefficients, for each
bootstrapped subsets we calculated the p-value (this means we
now have 2,500 p-values). Each p-value is estimated by reshuffling
bootstrapped subset data 5,000 times and by calculating the
percentile corresponding to the correlation coefficient of the
bootstrapped subset with respect to the correlation distribution
obtained from this random ensemble. If the 70th percentile of
the p-values distribution is below T then the sector is said to be
correlated, otherwise it is not.

It is worth noticing that this approach is robust against noise
thanks to the bootstrapping and the calculation of p-values on
the bootstrapped data. This is a necessity when dealing with this
kind of data, which naturally present outliers and a component
of noise.

4.4. Correlation Significance Assessment
for Countries: Outlier Mitigation (Analysis I)
When we study the correlation between internal production and
export relative to each country we deal directly with fluxes instead
of shares. Indeed, in this case, we do not mix up data from
different countries. Eventually the values that we take for the
comparison are the log of the internal flux log(Isc) and the log
of the export flux log(Esc).

The procedure we adopted to establish the correlation is
exactly the same used for products.We obtain the p-value relative
to the 70th percentile of the distribution if its lower than T
for that country export is a good probe of internal production
otherwise it is not.
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Bitcoin being a safe-haven asset is one of the traditional stories in the cryptocurrency

community. However, during its existence and relevant presence, i.e., approximately

since 2013, there has been no severe situation on the financial markets globally to prove

or disprove this story until the COVID-19 pandemic. We study the quantile correlations of

Bitcoin and two benchmarks—the S&P 500 and VIX—and make comparison with gold

as the traditional safe-haven asset. The Bitcoin safe haven story is shown and discussed

to be unsubstantiated and far-fetched, while gold comes out as a clear winner in this

contest even when a broader cryptocurrency index (CRIX) is considered.

Keywords: Bitcoin, safe haven, extreme events, COVID-19, coronavirus

1. INTRODUCTION

The history of Bitcoin is tightly connected to its detachment and independence from the standard
financial markets and the proclaimed properties that should make it serve as “digital gold” [1]. An
important implication of such status is Bitcoin potentially being a safe-haven asset either in addition
to or as a replacement of gold itself, which has served as such for decades [2]. A safe-haven asset is
an asset in which capital can take refuge when other assets are in distress. The distress situation of
the other assets is a clear distinction from being a good diversifier, which traditionally leads to a low
or even negative correlation with other assets in the Markowitz portfolio construction logic [3]. An
asset might be considered a safe haven if its correlation with other assets during turbulent periods
is lower (or at least not higher) than during calm periods [4–7].

The safe-haven status of Bitcoin is one of its cornerstones and narratives in the financial part
of the crypto-community, and lately, it has been a popular topic in the scientific literature as well
[8–12]. However, its validity had been, by definition, very difficult to properly discuss and test,
as empirical tests had lacked the essential part of the safe-haven definition—financial markets in
distress. As Bitcoin was developed in 2008 and 2009 [13], its first legendary pizza transaction took
place in March 2010, and it gained larger public attention only by 2013, still mostly due to its
controversial aspects (such as the Mt. Gox collapse, the darknet, and the Silk Road), it avoided
the most turbulent times of the global financial crisis. Further, it took until the middle of 2016 for
the Bitcoin markets to reach a stable daily traded volume of more than $100 million. To illustrate
the historical perspective, Figure 1 shows the S&P 500 standardized daily logarithmic returns back
to the beginning of 1946 where we find critical historical events with episodes of numerous negative
returns of more than five historical standard deviations (the series is demeaned and standardized
by the historical mean and standard deviation of the dataset between January 1, 1946, and April

93
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FIGURE 1 | Historical extreme events of the S&P 500. (Left) Logarithmic returns of the S&P 500 between January 1, 1946, and April 17, 2020, demeaned and

standardized by the historical mean and standard deviation over the whole examination period. (Right) Number of extreme returns over 3 or 5 standard deviations.

Cumulative count on a rolling window of 500 days is shown.

17, 2020). To put the extreme events into a better perspective, the
right panel of Figure 1 shows a number of extreme events above
three and five standard deviations on a sliding window of two
trading years (500 trading days). There, we see that since 1987,
there have been only a few periods of time without these 5-SD
critical events. Yet, one of these periods has taken place between
2013 and 2020, i.e., the period of Bitcoin’s existence with some
palpable trading volume and usage. Only in the days of March
2020 did the financial markets experience severe losses due to
fear and uncertainty connected with the COVID-19 (coronavirus
disease 2019, caused by the SARS-CoV-2 virus) pandemic, which
rapidly spread globally.

Even though the spread of the virus had been assumed
possibly to be locally contained, its unprecedented spread caused
pervasive panic in global society, which quickly translated to sell-
outs and havoc on the financial markets. Purely statistically (and
perhaps cynically) speaking, this creates a unique opportunity to
test the safe-haven properties of Bitcoin and compare it with gold
as the traditional safe haven of choice.

2. RESULTS

We study the interconnection between Bitcoin (BTC) and two
benchmarks—the Standard & Poor’s 500 (S&P 500) index as
a representative of the global financial markets and the CBOE
Volatility Index (VIX) as a measure of market uncertainty.
We use publicly available data from Yahoo Finance, and we
also utilize the Bitcoin prices provided there (these reflect
CoinMarkepCap.com data), which restricts the analysis to start
from September 16, 2014. The ending is April 17, 2020. As
Bitcoin is traded on a 24/7 basis and stocks are not, we use
the close-close logarithmic returns1 (rather than open-close) to

1It is certainly up for discussion whether to use returns for the VIX as well. We
considered this possible issue and performed the analysis on both the levels and

include the weekend movements of Bitcoin. This gives us 1,405
daily observations.

As the safe-haven property is similar to being a diversifier, i.e.,
having a low correlation with other assets, but only during critical
times, we approach it from a simple perspective of examining
correlations between Bitcoin and the other two assets—the
S&P 500 and VIX—during critical events. We treat the critical
events as rarely occurring, negative events, i.e., events in the
(very) low quantiles of the distribution of the baseline asset.
For this purpose, we utilize the quantile correlation [14]. For
statistical validity, we estimate the quantile correlation coefficient
on 1,000 bootstrapped samples (resampling the time index with
a replacement) so that we can present not only a point estimate
but also confidence intervals.

In Figure 2, we see the quantile correlations between BTC
and the S&P 500 (left) and between BTC and the VIX (right).
The quantile here represents the conditional quantile of the latter
asset in the pair, i.e., either the S&P 500 or the VIX. We find
that BTC is a good diversifier with respect to the S&P 500 in
calm and bullish times, i.e., in the bulk of the distribution and
more generally from quantile 0.2 upwards, with correlations
very close to zero and the 90 % confidence intervals including
the zero correlation. For the very low quantiles below 0.1, the
correlation increases up to more than 0.1, precisely to 0.13 for
the lowest analyzed quantile of 0.01. The combination of low
quantiles of the S&P 500 and a positive correlation signals that
BTC drops together with the stock market if the situation is
critical. Note that the size of the correlation is still quite low but is
well above the levels during the calmer periods and significantly
different from zero for the lowest quantiles. For the VIX, which
represents the overall mood on the market and expected future

returns of the VIX index. The results are qualitatively the same. Note that the
distinction between logarithmic and original series plays no role here, as we apply
a quantile-based method (and logarithm is a monotonous transformation).
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FIGURE 2 | Quantile correlations for Bitcoin. (Left) Quantile correlations between Bitcoin and the S&P 500 index. The quantiles on the x-axis are with respect to the

S&P 500 index. The low quantiles show the extreme negative events. Black bold curve shows the mean value of 1,000 bootstrapped estimates. The dashed curves

show the 90 % confidence intervals based on the bootstrapped estimates. (Right) Quantile correlations between Bitcoin and the VIX index. The quantiles on the x-axis

are with respect to the VIX index. The high quantiles show the periods of high uncertainty. The other notation holds.

FIGURE 3 | Quantile correlations for gold. (Left) Quantile correlations between gold and the S&P 500 index. (Right) Quantile correlations between gold and the VIX

index. The notation from Figure 2 holds.

uncertainty, we need to look at the high quantiles, as it holds
that the higher the VIX is, the higher the uncertainty. For a safe-
haven asset, we would expect a low or positive correlation, at
least in these high quantiles, or ideally positive correlations for all
quantiles. We observe a similar picture as for the S&P 500 case,
as the correlation is very close to zero for most situations, but it
drops markedly for the times of high uncertainty, which is not a
desirable sign for a safe haven.

Comparing the results to the traditional safe haven of gold
(Figure 3), we see a different picture. In the bulk of the
distribution, gold is negatively correlated with the S&P 500, and
even though its correlation increases during extreme negative
events, its estimate still remains below the zero correlation

(statistically speaking not different from zero). With respect to
the VIX, gold is positively correlated with it in the bulk of the
distribution, and even though its correlation decreases for the
most uncertain periods, it still remains above zero. Both of these
attributes are the ones we would expect for a safe haven asset,
albeit ideally in a more pronounced manner.

3. DISCUSSION AND CONCLUSIONS

The COVID-19 pandemic is the first global economic and
financial earthquake that has taken place during the existence
and actual use and wider knowledge of Bitcoin, which made it
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FIGURE 4 | Quantile correlations of the S&P 500 with other assets. The notation from Figure 2 holds.

possible to put the claims of Bitcoin being a safe-haven asset to an
actual empirical examination. We study the quantile correlations
between Bitcoin and a pair of global financial benchmarks—
the S&P 500 index as the stock market benchmark and the
VIX index as a measure of uncertainty and future expectations.
What we find is that Bitcoin can easily be considered as a good
diversifier, as its correlation with the S&P 500 is close to zero
for most of the quantiles. However, its correlation increases
markedly during turbulent periods of the S&P 500. The mirror
result is observed for its relationship with the VIX index, as
the correlation remains close to zero for most quantiles again
but drops for the most uncertain times. However, even the
extreme-quantile correlations between Bitcoin and either the
S&P 500 or the VIX still remain rather low (in absolute terms),
and one needs a comparison to fairly comment on its safe-
haven properties.

The first comparison is at hand—to gold. This has been
presented in the main Results section, but it needs to be

stressed that gold shows favorable properties with respect to
portfolio diversification utility compared to Bitcoin. It shows
negative correlations with the S&P 500 for the bulk of the
distribution. The correlations grow for higher quantiles (even
though they do not cross to positive ones), i.e., more bullish
periods, which is again beneficial. And even though the
correlation increases for the lowest quantiles, i.e., the most
extreme negative cases, it still collapses to zero, not higher.
In addition, we have the connection to the VIX, where gold
is again favored in most portfolio-related aspects. We see
positive correlations for the bulk of the distribution, i.e., if
uncertainty increases, the price of gold increases as well, and
for extreme cases, even though the correlation drops, it still
remains positive. Therefore, even if we forget about other
issues connected to Bitcoin (such as low liquidity, exchange
risk, and various legal and accounting/tax issues [15–19]), it
does not outperform gold in any important aspect as a safe-
haven asset.
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FIGURE 5 | Quantile correlations for CRIX with the S&P 500 (left) and the VIX (right). The notation from Figure 2 holds.

The second comparison is to other stock indices, mostly to
get the correct grasp of the scale of the correlations presented
above. In Figure 4, we show the quantile correlations of the
S&P 500 with the VIX and three other stock indices- the
Dow Jones Industrial Average (DJI), Footsie 100 (FTSE), and
NIKKEI 225 (NIKKEI)—for the same period of time. There
are several interesting observations. First, even for the pair
of the S&P 500 and the DJI, the two main US stock indices
(in addition to the NASDAQ), the tails correlations are not
as strong as one might expect—around 0.5 for both sides of
the extreme cases. Second, not surprisingly, the S&P 500 is
strongly connected to the VIX. But again, its connection weakens
for the extreme cases, more markedly for the calmer periods.
Third, the markets are not very correlated during the extremely
positive movements of the S&P 500 index, where we find the
quantile correlations fall to very low values for both the FTSE
and the NIKKEI. And fourth, BTC shows similar properties to
the NIKKEI, showing mild correlations for the whole spectrum
of quantiles, with slightly higher correlations for the extreme
negative movements and practically zero correlation for the
extremely positive movements. To be fair, BTC still shows more
favorable low-quantile correlations than the NIKKEI does, but
not by much.

The last perspective and comparison we provide is to a
more general cryptocurrency index. Here, we utilize the CRIX
index2, which is constructed as a capitalization-weighted price
index [20]. Currently (mid-2020), it contains around 70%
Bitcoin, 10% Ethereum, 5% Ripple, 2.5% Bitcoin Cash and
Tether, between 1 and 2% Bitcoin SV, Litecoin, Binance Coin,
and EOS, and below 1% OKB (OKEx exchange coin). The
quantile correlations between the logarithmic returns of the
CRIX index and the two baseline series—the S&P 500 and
VIX—are shown in Figure 5. Even though the index is majorly

2The index is described in detail at http://thecrix.de. The volatility CRIX index
(VCRIX), in a way parallel to the VIX index, is also available there.

formed by Bitcoin, the connection to the stock markets is quite
distinct. For the S&P 500 index, we find quantile correlations
of practically zero ranging from the lowest quantiles up to
around quantile 0.7, where the correlation starts decreasing,
and it reaches around −0.1 for the highest quantiles. The
diversified cryptocurrency index thus does not follow the stock
market index in negative events, which is a good sign for
the identification as a safe haven (even though it actually
goes against the stock market in the extreme positive events).
These results are mostly confirmed for the dynamics between
the CRIX and VIX indices, where we observe mildly positive
correlations for the lowest quantiles of the VIX (calm periods)
that decrease with increasing quantile. Above quantile 0.7, the
quantile correlations are of a similar level (around −0.05)
as for the relationship between Bitcoin and the VIX index.
However, for the most extreme cases, the quantile correlation
between CRIX and VIX grows to zero, whereas for Bitcoin,
we found a rather sharp drop to negative correlations. The
results for the CRIX index are thus more favorable for the
safe-haven label when compared to Bitcoin alone. A diversified
portfolio of cryptocurrencies has more desirable properties, both
as a diversifier (generally lower correlations for all quantiles
compared to Bitcoin alone) and as a safe haven (lower
correlations with the stock index in the lowest quantiles and
correlations closer to zero for the turbulent periods measured
by the VIX index). Nevertheless, both of these features are
more profoundly represented by gold even compared to the
CRIX index.

Overall, we argue that the claim of Bitcoin being a safe haven
and an alternative to gold or even being the “digital gold” seems
unsubstantiated and far-fetched. This is true even if a broader
cryptocurrency index is considered. We do not, however, want
to discredit Bitcoin in this aspect completely, as the COVID-
19 pandemic and the financial market turmoil induced by it are
only the first real tests to its status. In addition, the potential
safe-haven properties of Bitcoin and cryptocurrencies in general
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are certainly not the only factor making cryptocurrencies
attractive and sought after. Nevertheless, at this point and
with respect to the safe haven contest, gold emerges as a
clear winner.
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The spatial distribution of a population is not homogeneous—some areas attract many

residents, while others do not. The spatial distribution of stores and facilities that

have been coevolving with that of the population is also heterogeneous. Previous

studies have shown that multifractality is a characteristic of the spatial distribution of

a population, as well as other quantities associated with the urban system. We found

that stores/facilities belonging to some categories also exhibit multifractality in spatial

distribution. We quantified the spatial distributions of the population and stores/facilities

in each category by multifractal analysis and compared their multifractal properties.

Multifractal measures that reflect the heterogeneity of the densities in each location were

able to capture additional features that cannot be seen when only the box-counting

dimension was observed. Further, high concentrations of stores/facilities in categories

relating to professional or commercial businesses were observed, consistent with

previous studies on the scaling law, another pattern observed in urban morphology. We

discuss the implications of the multifractal properties on the arrangement of locations

where stores/facilities are concentrated. We believe that multifractal analysis is a powerful

tool for the quantification of spatial distributions and expect that our interpretation of

multifractal measures will stimulate further investigations into urban morphology.

Keywords: multifractal analysis, spatial distribution, population, stores/facilities, agglomeration

1. INTRODUCTION

Fractality has been observed in various spatial distributions relating to the morphology of cities,
e.g., population, buildings, land price, and street networks [1–10]. Fractality is represented by the
nature where the mass (e.g., the population) in a region exhibits power law dependence on the size
of the region. The power-law exponent is called the fractal dimension [11]. The abovementioned
spatial distributions also exhibit heterogeneity in fractality in the sense that the locally measured
fractal dimension around each spot diverges in the structure, known as multifractality [4, 12, 13].

The location of stores/facilities should depend on and, in turn, affect the spatial distribution
of the population. People may choose the location of their settlement based on the availability
and variety of stores/facilities. On the other hand, companies may invest in the construction
of stores/facilities to secure employers and customers [14]. It is known that the nature of
agglomeration of stores/facilities depends on their type. For example, previous studies showed that
facilities relating to businesses offering professional services tend to concentrate in areas with a
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large population [14–16]. One of these studies evaluated the
concentration by investigating the scaling law between the
population and densities of facilities, showing that the number
of facilities in a city increases with a power of the population
in the city [16]. The scaling law is a universal pattern observed
in urban morphology, e.g., accessibility, road surface, and
crime [16–21]. It should be interesting to see whether the
agglomeration of stores/facilities exhibits multifractality, another
urban-related feature.

If the spatial distribution of stores/facilities exhibits
multifractality, multifractal analysis can be performed on
the structure and is a strong tool to quantify the feature of
it. In multifractal analysis, the resulted curve exhibits the
correspondence between the locally measured fractal dimension,
called singularity strength α, and the fractal dimension of the
arrangement of spots that exhibit the singularity strength α,
called spectrum f (α) [4, 13].

Besides multifractal analysis, various methods have been
applied to evaluate spatial distributions including that of
the population and stores/facilities. Average nearest neighbor
(ANN), which is the averaged distance to the nearest point, is
an indicator of the spatial clustering [22–24]. The distribution of
nearest neighbor distance is also used to evaluate the qualitative
feature of spatial structure [24, 25]. On the other hand, when grid
lines are drawn on the space, probability of finding neighboring
cells both of which are occupied is often calculated to assess
the degree of clustering [26, 27]. Regarding the industrial
coagglomeration between two industries, the extent to which
the facilities of these industries are in the same region is
evaluated [14, 28]. Compared to these methods, an advantage of
multifractal analysis should be that it can demonstrate both local
and global features of the spatial distribution [9]. By multifractal
analysis, the strength of local concentration can be captured by
the singularity strength. The global view of the arrangement of
spots with each level of concentration, on the other hand, is
incorporated into the spectrum.

In this study, we aim to (1) determine if the spatial
distributions of stores/facilities in various categories exhibit
multifractality, and if so, (2) determine the characteristics
captured by the multifractal properties of each spatial
distribution.

We chose the largest metropolitan area in Japan,
the Kantō area, as the object of our analysis. We
investigated the multifractal properties of the spatial
distributions of the population and stores/facilities in
Kantō. Our analysis showed that the spatial distribution of
stores/facilities in some categories exhibit multifractality,
as does that of the population. Though these spatial
distributions are on the same geographical substrate,
their multifractal properties are significantly different from
each other.

This paper is organized as follows. The principles of fractal
geometry, multifractality, and the generalized dimension, as
well as the methods of our analysis are presented in section 2.
We show the results of multifractal analysis of the spatial
distributions in section 3. We also compare the multifractal
properties of these spatial distributions and highlight the

information extractable from the multifractal measures of the
spatial distributions. We discuss the results in section 4.

2. MATERIALS AND METHODS

2.1. Data
Data for the spatial distributions of the population and
stores/facilities were extracted from the Japanese 100-Meter
Estimated Mesh Data of the 2015 National Censuses (Zenrin
Marketing Solutions Co., Ltd.) and the Corporate Telephone
Directory Database Telepoint with Coordinates (Telepoint Pack!
provided by ZENRIN Co., Ltd.) of 2017, respectively. The
former dataset contains data on the estimated population in
each mesh. The length of each side of a mesh is ∼100 m, while
the exact size is 3 s in the latitude direction and 4.5 s in the
longitude direction. The latter dataset contains the geospatial
information of each store/facility. Stores/facilities are categorized
hierarchically. In the largest classification, which we adopted,
there are 39 categories as shown in Table 1.

The analyzed area is a part of Kantō in Japan, that includes
the capital, Tokyo, and a major industrial area, the Keihin
industrial area. The range of the latitude is from 35◦29′54′′ to
35◦55′30′′ and that of the longitude is from 139◦16′52.5′′ to
139◦55′16.5′′ (Figure 1). There are 29 × 29 (= 262,144) meshes
inside this region.

Table 1 shows a summary of the data analyzed in this study.
The total population (the total number of stores/facilities) in
the analyzed area and the number of non-empty meshes are
shown in the third and fourth columns, respectively. Here, the
meshes/boxes with non-zero populations (stores/facilities) are
called support. The maximum and the mean population (number
of stores/facilities) in a mesh on the support are shown from the
fifth to the sixth columns.

Figure 2A shows the spatial distribution of the population
in the analyzed area. The logarithm of the proportion of the
population in each mesh to the total population is represented
by the heatmap. The other panels (B–L) show the spatial
distributions of stores/facilities in 11 categories.

2.2. Multifractality
We briefly introduce the concepts of fractal geometry and
multifractality. There are several ways of defining fractals and
multifractals; we present one of them here [9, 11–13, 29].
Additionally, we limit our explanation to structures embedded in
R
2, while higher dimensions of fractal and multifractal structures

can be generally defined.
When a mass (m(ε)) composing a structure within a region

of size ε increases with ε according to m(ε) ∼ εD, the structure
is regarded as having fractal characteristics. Here, the “size” is,
for example, the length of a side if the region is a square. The
exponent D is the fractal dimension of the structure. A more
precise definition of the fractal dimension of a structure X is the
one by the following box-counting method [11]. Let us assume
that a structure X is covered with boxes of size ε. Let N(ε) be the
minimum number of such boxes required to cover the structure.
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TABLE 1 | Data summary. For each category, the ID and the name of the category are shown in the first and second columns, respectively.

ID Category Total # Support Max Mean

0* Population (POP) 21,963,431 175,255 5,884 125.323

1 Fisheries, Agriculture, and Forestry 1,024 830 4 1.234

2 Mining 207 147 18 1.408

3* Construction and Civil (CC) 101,349 43,284 139 2.341

4 Foods 10,934 6,806 210 1.607

5 Textiles and Apparels 10,111 6,380 42 1.585

6 Pulp and Paper 3,559 2,654 16 1.341

7 Chemicals and Pharmaceutical 5,374 3,262 84 1.647

8 Oil and Coal Products 4,376 3,240 91 1.351

9 Rubber Products 1,970 1,573 28 1.252

10 Glass and Ceramics Products 3,124 2,032 28 1.537

11 Iron and Steel 2,362 1,757 135 1.344

12 Non-ferrous Metals 3,654 2,760 51 1.324

13* Metal Products (MP) 18,606 7,132 91 2.609

14 Machinery 24,745 15,694 60 1.577

15 Electric Appliances 8,806 6,250 27 1.409

16 Transportation Equipment 1,424 1,082 19 1.316

17 Precision Instruments 10,332 6,676 49 1.548

18 Other Products 27,707 15,107 55 1.834

19 Commercial Services 23,574 12,662 570 1.862

20* Financing Business (FIN) 12,684 7,116 76 1.782

21* Real Estate (RE) 38,051 17,850 64 2.132

22 Land Transportation 838 654 15 1.281

23 Marine Transportation 1,193 606 19 1.969

24 Air Transportation 438 223 29 1.964

25* Warehousing and Harbor Transportation (WH) 12,171 8,180 68 1.488

26 Information and Communication 22,311 9,408 92 2.371

27 Electric Power and Gas 2,401 1,883 16 1.275

28 Professional Services 30,734 13,707 64 2.242

29* Sports Facilities (SF) 5,863 4,326 18 1.355

30 Sporting-goods Stores 2,337 1,761 14 1.327

31* Amusement, Eating, and Drinking (AED) 103,993 30,891 213 3.366

32* Resort (RES) 13,401 8,709 24 1.539

33* Hospitals and Welfare (HW) 75,265 34,918 40 2.155

34 Supermarkets 13,699 7,641 232 1.793

35* Living-related services (LS) 185,824 53,808 215 3.453

36 Automobiles 24,422 13,824 49 1.767

37* School Education (SE) 35,977 20,200 87 1.781

38 Public Agencies 15,481 6,378 347 2.427

39 Others 14,815 7,953 61 1.863

The star beside the ID indicates that the spatial distribution of that category exhibits multifractality. The star-marked categories also have their abbreviation enclosed in brackets. The total

population (the total number of stores/facilities) in the analyzed area is shown in the third column. The number of meshes that is not empty is shown in the fourth column. These non-empty

areas are called support. The maximum and the mean population (number of stores/facilities) in a mesh on the support are shown in the fifth and the sixth columns, respectively.

Then the box-counting dimension D is defined as:

D = − lim
ε→0

logN(ε)

log ε
. (1)

We introduce multifractality. We again consider a set X and a
function µ on X that gives a quantity, such as the density, at each
point x ∈ X. Let us assume that X is divided by square boxes that

have the same size ε. For the i-th box of size ε, Ci,ε , the value Pi,ε
is called the probability measure on the box:

Pi,ε =

∫

Ci,ε
µ(x)dx

∫

X µ(x)dx
. (2)

If Pi,ε and ε have the following power-law relationship for any i:

Pi,ε ∼ εα , as ε → 0, (3)
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FIGURE 1 | Map of the analyzed area (1:1,000,000 INTERNATIONAL MAP, Geospatial Information Authority of Japan).

then fractality can be seen around each point of X. Here we
assume that the exponent α diverges in X and let N(ε,α) be the
number of boxes that satisfy Pi,ε ∼ εα̃ where α̃ ∈ [α,α + 1α]. If
N(ε,α) decreases with ε as

N(ε,α) ∼ ρ(α)ε−f (α)1α, (4)

the set X can be regarded as having a multifractal structure.
Exponent α, which can be regarded as the local fractal dimension,
is called the singularity strength. On the other hand, exponent
f (α) stands for the box-counting dimension of the set of points
with the singularity strength α. This dimension f (α) is called
the spectrum. In this paper, the curve of (α, f (α)) is called the
multifractal curve. Figure 3 is an example of the relationship
between α and f (α) in the spatial distribution of the population
(Figure 2A). Each panel in Figure 3 shows the units that exhibit
the singularity strength α within the range shown on each panel.
We derived the singularity strength of each unit by estimating
the exponent in the following relationship Pi,ε ∼ εα (see
Equation 3). The box-counting dimension of the arrangement
of units with the singularity strength α, f (α), was also derived
based on Equation (4) when the power-law relationship in the

equation holds. For example, units with the singularity strength
α within [1.85, 1.90) are rare. Also, the arrangement of such
units is curve-like (i.e., a one-dimensional shape) and exhibits a
low box-counting dimension f (α) ∼ 1.60. On the other hand,
the arrangement of units with the singularity strength α within
[2.05, 2.10) spans a two dimensional region and exhibits a high
box-counting dimension that is about 2.

2.3. Generalized Dimension
We introduce the generalized dimension and explain the
relationship between the singularity strength, the spectrum,
and the generalized dimension [29, 30]. The q-th generalized
dimension Dq is defined as follows. First, we define τq as

τq = lim
ε→0

log
∑

i P
q
i,ε

log ε
. (5)

Then the generalized dimension Dq for q 6= 1 is defined as

Dq =
1

q− 1
τq. (6)
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FIGURE 2 | Spatial distributions of the population and stores/facilities in the analyzed area. (A) The spatial distribution of the population. (B–L) The spatial distributions

of stores/facilities in 11 categories: (B) 3CC (Construction and Civil); (C) 13MP (Metal Products); (D) 20FIN (Financing Business); (E) 21RE (Real Estate); (F) 25WH

(Warehousing and Harbor Transportation); (G) 29SF (Sports Facilities); (H) 31AED (Amusement, Eating, and Drinking); (I) 32RES (Resort); (J) 33HW (Hospitals and

Welfare); (K) 35LS (Living-related Services); (L) 37SE (School Education). For the other categories, the spatial distributions are shown in Figures S1, S2. The color

stands for the value of log10
[(

the population in the mesh)/(the total population
)]

for each mesh in (A). The number of stores/facilities is used instead of the population

in (B–L). Each mesh is a 100-m mesh as described in section 2.

In the case of q = 1,

D1 = lim
ε→0

∑

i Pi,ε log Pi,ε
log ε

. (7)

In the summation on the right-hand side of each of Equations (5),
(7), let the i-th term be summed when the i-th box is not empty,
i.e., Pi,ε 6= 0. Here, the generalized dimension is equal to the
box-counting dimension of the support D when q is zero.

It is known that the following values of αq and f (αq) give the
approximation of the pair of α and f (α) for each q:

αq =
dτq

dq
, (8)

f (αq) = αqq− τq. (9)

2.4. Method of Analysis
In this study, we are concerned with finite morphologies that do
not contain infinitesimal structures as the smallest unit of our
data is a 100-m mesh. Therefore, we cannot rigorously calculate
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FIGURE 3 | Example of the singularity strength α and the spectrum f (α). In each panel, units that have the singularity strength α within the range mentioned at the top

of the panel are shown. Here the size of each unit is 23/29 on one side, and α is derived based on Equation (3). Also, the spectrum f (α) is derived based on

Equation (4), only when the power-law relationship in Equation (4) holds.

the generalized dimension, singularity strength, and spectrum.
Instead, we consider the range of q and ε in which the structure
can be regarded as exhibiting (multi)fractality, by evaluating the
range of q and ε in which the following relationship holds:

∑

i

P
q
i,ε ∼ εd. (10)

Thus, we examine the linearity of the relationship between
log

∑

i P
q
i,ε and log ε by the frequently usedmethod [3, 4, 7, 8, 31–

34]. Then we regard d as τq by Equation (5) when log
∑

i P
q
i,ε ∼

d log ε + (const.).
In our analysis, we assign the size of one side of a 100-m mesh

to ε = 1/29. Grid lines are drawn on the analyzed area so that it
is covered by non-overlapping boxes with the same size [3, 7].
As the size of boxes, we consider ε = 1/29, 2/29, 22/29, ..., 1.
We define the probability measure Pi,ε on the i-th box with
the size ε as the proportion of the population (the number of
stores/facilities) in the i-th box to the total population (the total
number of stores/facilities).

Subsequently, for the population, we evaluate the linearity of
the relationship between log

∑

i P
q
i,ε and log ε for various ranges

of ε and q as shown in Figure 4. Regarding the criterion for
this linearity, we examined whether or not the coefficient of
determination of the linear regression, R2, exceeds 0.99. A linear
relationship was not observed when q takes a negative value and
when the range of ε includes values < 23/29. Consequently, we
considered the range of ε from 23/29 to 29/29, and the range of
q from 0 to 20. We performed a multifractal analysis on these
ranges of ε and q for the spatial distribution of the population.
Furthermore, for the spatial distribution of stores/facilities in
each category, we examined multifractality on the same ranges of
ε and q as that for the population. Plots of log

∑

i P
q
i,ε against log ε

for all categories of stores/facilities are shown in Figures S3, S4.
The star marker was added beside the ID in the first column
of Table 1 if the category showed multifractality in the spatial
distribution. Also, the spatial distribution of such categories
are shown in Figures 2B–L. In this figure and in the following
discussion, abbreviations are used for these categories—the
abbreviation of each category is enclosed by brackets after the
name of the category in the second column of Table 1.

FIGURE 4 | log
∑

i P
q
i,ε vs. log ε for each q. The color of the plots correspond

to the value of q in the legend.

We obtained τq as the slope of the linear regression of

log
∑

i P
q
i,ε by log ε, and derived Dq from Equations (6, 7). To

derive the singularity strength αq and the spectrum f (αq), we
used the following formulae:

αq = lim
ε→0

∑

i µi,ε,q log Pi,ε
log ε

(11)

f (αq) = lim
ε→0

∑

i µi,ε,q logµi,ε,q

log ε
, (12)

where µi,ε,q = P
q
i,ε/

∑

j P
q
j,ε . These formulae can be directly

derived from Equation (5), (8), and (9) [12, 35, 36]. We
obtained αq by the linear regression between

∑

i µi,ε,q log Pi,ε
and log ε, and obtained f (αq) by the linear regression between
∑

i µi,ε,q logµi,ε,q and log ε.
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3. RESULTS

3.1. Density of Units and Multifractality
As we briefly mentioned in section 2.4, multifractality could
not be observed for the spatial distribution of the population
when the value of q is negative. Knowledge of the relationship
between the densities in a unit, the value of q, and the
multifractal measures is helpful for interpreting the results
of the multifractal analysis. In Equation (5) for τq, a larger
value of q corresponds to a greater contribution of the boxes
with large probability measures Pi,ε to the sum. Therefore, the
boxes with high densities are significantly incorporated into
the calculation of the q-th generalized dimension Dq when the
value of q is large, see Equation (6). Note that no differences in
density is considered when q = 0. The pair of the singularity
strength and the spectrum also has a relationship with q by
Equations (8), (9). Therefore, the multifractal measures of Dq,
αq, and f (αq) for a large q, significantly reflect those units with
high densities. The fact that multifractality was only observed in
the spatial distribution of the population with positive q values,
indicates that multifractality cannot be observed in sparsely
populated areas.

3.2. Generalized Dimension
Figure 5 shows the q-th generalized dimension vs. q for
the population and stores/facilities in four categories: 20FIN,
25WH, 31AED, and 33HW. The generalized dimension for
stores/facilities in the other categories is shown in Figure S5. As
mentioned before, the generalized dimension for q = 0, D0, is
equal to the box-counting dimension of the support. For each
category, the value of D0 is close to 2, which is the dimension
of R2 to which each spatial distribution is embedded. The rate
of decline in the generalized dimension with q significantly
varies between the categories. The generalized dimension for
20FIN drops dramatically with q, while that of the population
decreases minimally with q. In the cases of 25WH and 33HW,
the decline of the generalized dimension is milder than that
of 20FIN and 31AED. Considering the relationship between
the value of q and the densities in the boxes, |1D20| : =
|D20 − D0| can be one of the indicators for the strength of
the heterogeneity in spatial density distribution, and 20FIN
and 31AED can be regarded as having strong heterogeneity in
spatial distributions.

3.3. Multifractal Curve
The multifractal curves are shown in Figure 6A. Before we
investigate each multifractal curve, let us revisit the relationship
between the densities in a unit and the value of q, and the
singularity strength αq [9]. Recall that each point on the
multifractal curve can be derived for each q (Equations 11,
12). Generally speaking, in each multifractal curve, the greater
is the value of q, the lower is the value of αq, i.e., the plot
of a multifractal curve proceeds to the left as the value of q
increases. Therefore, by the relationship between the value of
q and the densities in the units, a unit with a high density
tends to have a small singularity strength—we can observe this
by comparing Figure 2A with Figure 3. An interpretation is

FIGURE 5 | q-th generalized dimension vs. q for the population and

stores/facilities in four categories: 20FIN, 25WH, 31AED, and 33HW. The

generalized dimension for stores/facilities in the other categories are shown in

Figure S5.

that around a unit with a density significantly higher than the
surroundings, the probability measure Pi,ε does not increase
rapidly by expanding the area, and vice versa (see Equation 3).
Figure 7 explains this interpretation. Let us assume that each
of the gray units has a constant density. Only the i-th unit
is filled in the case of panel (A), while all the units are
filled in the case of panel (B). The singularity strength of the
i-th unit in panel (A) is 0, since the probability measure of
the square boxes emphasized by the thick line, that expands
around the i-th unit, does not increase with the size ε of
the box and remains at the same value. On the other hand,
the probability measure on these boxes changes according to
the square of ε, and the singularity strength of the i-th unit
is 2, in panel (B). Though panels (A) and (B) are extreme
examples, these diagrams suggest that a unit with a density
significantly higher than the surrounding units can have a low
singularity strength.

Therefore, in Figure 6A, multifractal curves with a
significantly low singularity strength αq, such as 20FIN
and 31AED, indicate the existence of units with a density
much higher than the surroundings. Also, the spectrum
f (αq) is quite low for small singularity strengths αq in
the cases of 20FIN and 31AED. Recall that the spectrum
f (αq) represents the box-counting dimension of the
arrangement of units with the singularity strength αq.
The pair of small αq and f (αq), thus, is an indication
that there are a few isolated units, each with an extremely
high density.

Multifractal curves contain information not only at small
singularity strengths but also across the entire range. The
multifractal curve of 13MP has similar αq and f (αq) values with
that of 25WH, 29SF, 35LS, and 37SE when αq is quite small.
However, in the mid-range of αq, the value of f (αq) for 13MP
is significantly greater than that of the others. Therefore, in
the case of 13MP, units with a mid-range density (compared to
the surroundings) remain concentrated compared to the case
of the other categories. This may correspond to the yellowish
units gathered on the right of panel (C) in Figure 2. On
the other hand, a feature of the multifractal curve of the
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FIGURE 6 | (A) Multifractal curve. The pair of the singularity strength

(abscissa) and the spectrum (ordinate), (αq, f (αq)), for each q of the population

and stores/facilities. Each multifractal curve is also separately shown in

Figure S6. (B) 1f (αq) vs. αq, where 1f (αq) : = f (αq)− f (α0). (C) 1f (αq) vs. 1αq,

where 1αq : = αq − α0.

population is that neither αq nor f (αq) declines rapidly with
q. This corresponds to the following features of the spatial
distribution of the population: The densities in the units does
not widely diverge and the arrangement of the units with

FIGURE 7 | Schematic image of the singularity strength and the densities in a

unit. Each of the gray-colored units has the same density, i.e., has the same

probability measure ρ. (A) Only the i-th unit has non-zero density and the other

units are empty. The probability measure of the box remains ρ, even when the

size of the box ε increases as emphasized by the thick line. Therefore, the

singularity strength of the i-th unit is 0. (B) All units are filled. The probability

measure of the box is ρ, 9ρ, and 25ρ, for the smallest, the second smallest

and the largest boxes (emphasized by the thick line), respectively. Thus, the

singularity strength of the i-th unit is 2.

each density does not change dramatically with the density
(Figure 2A).

Figure 6B shows the plots of 1f (αq) : = f (αq) − f (α0)
against αq. Recall that f (α0) is the box-counting dimension
of the support. In the value of f (α0), the differences in the
densities in the units is not incorporated. Thus, the vertical
axis 1f (αq) represents the degree of decline in the spectrum
from the box-counting dimension of the support when the
differences in the densities in the units is gradually emphasized.
Another intuitive meaning of 1f (αq) is the nature of the
difference in arrangement between the panels in Figure 3. In
the case of 31AED, in which the pair of a small αq and
f (αq) exists, we observe that the value of 1f (αq) is also
small for small αq. This indicates that the arrangement of
units with small αq is quite sparse compared to the support.
Therefore, we can infer the following characteristics of the spatial
distribution of 31AED: There are a few isolated locations where
stores/facilities in 31AED are extremely concentrated, while
covering a vast region.

Figure 6C shows plots of 1f (αq) against 1αq : = αq − α0.
The horizontal axis shows that how the singularity strength
declines as q increases from the one calculated under the
situation where differences in the densities in the units
were not taken into account. The decline of both 1αq and
1f (αq) with q of 29SF is milder than the other categories
excepting the population, suggesting that the spatial distribution
of stores/facilities is homogeneous in 29SF. Specifically, by
comparing with Figure 6A, the value of αq is small across
the range of q including q = 0, in the case of 29SF. This
may represent the sparsely but relatively uniform scattering
of stores/facilities in 29SF (Figure 2G). Additionally, though
the difference in the multifractal curves of 21RE and 32RES
is ambiguous for large q in Figure 6A, we can observe that
the singularity strength of 21RE has a wider range than
32RES (Figure 6C). When we restrict our observation to the
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concentrated units, the arrangement of the units in 21RE has a
similar box-counting dimension to that of 32RES. On the other
hand, in 21RE, we should be able to observe local regions where
the density increases mildly with the size of the region, that may
not be observed in 32RES.

Finally, Figure 8 shows a summary of the multifractal
properties of the spatial distributions of the population and
stores/facilities for all categories that have multifractality in the
ranges of ε and q tested in this study. In both panels, the
horizontal axis shows f (α0), i.e., the box-counting dimension of
the support. In f (α0), the differences in the densities in the units
is not incorporated—only whether or not each unit is empty is
taken into account. The box-counting dimension of the support,
of course, can capture a feature of each spatial distribution. The
value of f (α0) for each category is near two, that is the dimension
of R2, but it diverges a little. We can see that f (α0) tends to be
small when the spatial distribution is sparse, e.g., 20FIN and 29SF,
in (Figures 2D,G, 8).

On the other hand, the vertical axes in Figure 8 show
the values that incorporate the differences in the densities in
the units. In Figure 8A, the vertical axis shows the difference
between the largest and the smallest singularity strength |1α20|.
The color of each marker represents the value of |1D20|, for
each category. The brighter marker color corresponds to the
larger value of |1D20|. In Figure 8B, the vertical axis shows
the difference between the largest and the smallest spectrum
|1f (α20)|. The color of each marker again represents the value
of 1 D20.

The values of |1α20| and |1f (α20)| for some categories
can diverge even when f (α0) takes almost the same value.
For example, |1α20| of 29SF is much smaller than that of
20FIN, while f (α0) of both of these categories are around
1.86. This result indicates that both 29SF and 20FIN have
sparse spatial distributions, but the heterogeneity of the densities
in the units for 20FIN is stronger than that of 29SF—
this can be observed in Figures 2D,G. In Figure 8A, the
plots of 3CC and 33HW are nearer that of the population
than the others. This suggests that the nature of the spatial
distribution in these categories is similar to that of the
population when we consider the large region covered by
stores/facilities and the small differences in the relative densities
in the units.

4. DISCUSSION

In this study, we evaluated whether the spatial distributions
of the population and stores/facilities exhibit multifractality.
Multifractality in the spatial distribution of the population
has been demonstrated in previous studies [3, 5, 10]; we
also demonstrated this result in the Kantō area, Japan.
However, we were not able to observe multifractality in the
population distribution for negative values of q. In the previous
studies that evaluated multifractality in city morphologies,
the authors carefully examined the range of q in which
multifractality was observed [4, 7, 8]. These studies showed

that multifractality can be observed at both positive and
negative values of q. As we mentioned above, positive (the
negative) values of q corresponds to boxes with high (low)
densities. Therefore, previous studies observed multifractality in
both densely and sparsely distributed regions. However, they
also showed asymmetry in the positive and negative ranges
of q and discussed the structural differences in dense/sparse
regions. In our case, the range of q for multifractality
suggests that the sparsely populated region does not have
a structure characterized by multifractals, attributable to the
geographical characteristics of the examined region in this
study. The examined region includes the mountainous areas
in the upper and left sides of each panel in Figure 2 as
it represents the general feature of the Japanese terrain. It
also contains Tokyo bay in the lower-right corner of each
panel (Figure 2). Along Tokyo bay, there are rich residential
areas as well as plenty of facilities in various industries and
numerous stores. This examined region should be an interesting
object to investigate considering these geographical features.
However, complex substrates may restrict the range in which
multifractality appears.

We also investigated which category of stores/facilities
shows multifractality for the same ranges of q and ε as
that for the population. Stores/facilities in some categories
also exhibit multifractality in the spatial distribution, but the
determined multifractal measures significantly depend on the
category. Diverging multifractal properties can reflect qualitative
differences in the spatial distributions—stores/facilities are
sparsely and uniformly scattered in some categories, while others
are centralized, e.g., the stations in some categories. Importantly,
our analysis showed that the box-counting dimension performs
poorly in capturing qualitative diversities in the spatial
distributions of these categories. The box-counting dimension
captures the arrangement of the units that are not empty.
On the other hand, multifractal measures can represent the
arrangement of units with a certain density. Multifractal curves
can indicate, for example, the existence of units with comparably
high densities by evaluating the range of the singularity
strength α, and the spatial distribution of such units by the
spectrum f (α).

The spatial distribution of the population can be characterized
by the high box-counting dimension of the support and the
homogeneity measured by the generalized dimension and the
multifractal curve. The population is distributed across all the
regions examined in this study, while the densities in a unit do not
vary significantly. In addition, we will observe a similar spatial
distribution, even when we change the filter on units according
to these densities. Considering its high box-counting dimension
and the homogeneity seen in the range of the singularity strength,
the spatial distribution of stores/facilities in 33HW exhibits
similar features with that of the population. These stores/facilities
cover a large area and the heterogeneity of the densities in the
units is low. On the other hand, in the cases of 20FIN and
31AED, the singularity strength and the spectrum sharply decline
with q. This shape of the multifractal curves indicates a strong
centralization of stores/facilities to a few locations. Some of these
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FIGURE 8 | Summary of multifractal properties. (A) The difference between the largest singularity strength α0 and the smallest one α20, |1α20|, against the
box-counting dimension of the support f (α0). (B) The difference between the largest spectrum f (α0) and the smallest one f (α20), |1f (α20)|, against the box-counting

dimension of the support f (α0). In both panels, the number beside each plot shows the category. The color of each plot represents the value of |1D20|. The brighter

color corresponds to the larger |1D20|.

concentrated locations presumably correspond to large stations
in the capital.

In addition to multifractality of the spatial distribution,
the scaling law is also a universal pattern observed in city
morphology [16–21, 37, 38]. For example, the population X
and a quantity Y related to the city morphology have the
relationship of Y ∼ Xβ . The large scaling exponent β in this
relationship, i.e., the super-linear increase of Y with X, indicates
a strong concentration of these urban-related objects to locations
with a large population. Previous studies also found the scaling
law in (industrial) agglomerations and showed that facilities,
outputs, and jobs concentrated stronger in cities with a large
population when these objects are in a category associated with
professional and complex skills or with commercial facilities than
when the type is relatively primitive or public-related [16, 19–
21]. Many of our results are consistent with these previous
studies. Our multifractal analysis indicates the centralization
of facilities in 20FIN, which is a category related to services
requiring professional skills and frequent communication with
customers [14]. Also, 31AED, a category related to commercial
activities, showed a strong concentration. The concentration of
objects related to construction and healthcare was shown to be
mild in previous studies, which is also consistent with the mild
decline of the singularity strength with q in our results (3CC and
33HW).

While consistency between multifractality and the scaling
law exists, an advantage of multifractal analysis should be the
richness of information in the result. As we discussed so far,
we can quantify the nature of the divergence of the densities
in each location and the spatial distribution of each density,
by multifractal analysis. For example, for the centralization of
stores/facilities in 20FIN and 31AED, multifractal properties
further explain the following difference. Considering the large
range in the singularity strength and the high box-counting
dimension, we can expect to see stores/facilities in 31AED
everywhere, with some centralized locations. On the other
hand, facilities in 20FIN are encountered only in concentrated

locations, which is represented by the overall small singularity
strength. Therefore, the results in our analysis exhibit not only
the existence of concentrated areas but also the various state
of concentration. In this study, we attempted to interpret the
multifractal curves that correspond to qualitatively diverging
spatial distributions. We hope that our discussion will contribute
to future investigations on spatial distributions by multifractal
analysis. Additionally, the characteristic of concentration of
stores/facilities in each category, which was revealed in this study,
should be considered in the actual urban design. For example,
the stores/facilities in 31AED is expected to have a tendency to
concentrate strongly. Such a tendency of agglomeration should
be taken into account in advance when it is required to avoid an
extreme concentration of buildings in a landscape.

The temporal development of various urban morphologies,
e.g., the spatial distributions of streets and buildings, have
been discussed in previous studies [2, 4, 7–9]. Some of them
revealed that the spatial distribution was developed to the
packed state and to exhibit features close to monofractals [2, 4].
We are also interested in how these developments depend on
the category in which the stores/facilities belong. As a future
perspective, the comparison of such developments is possible by
quantification with multifractal analysis. Furthermore, we expect
that the classification of cities is possible by comparing such
developments between cities.
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We propose an extension of the class of rational expectations bubbles (REBs) to themore

general rational beliefs setting of [1, 2]. In a potentially non-stationary but stationarizable

environment, among a heterogenous population of agents, it is possible to hold more

than one “rational” expectation. When rational but diverse beliefs converge (“correlated

beliefs”), they do not cancel each other out in aggregate anymore. This can make them

an object of rational speculation. Accounting for the fact that market efficiency has an

intrinsic time-dimension, we show that diverse but correlated beliefs can thus account for

speculative bubbles, without the need for irrational agents or limits to arbitrage. Many of

the shortcomings of REBs that make rational bubbles implausible can be overcome once

we relax the ergodicity requirement. In particular, we argue that the hitherto unexplained

“bubble component” of REBs corresponds to the extension of the state space in [3].

Keywords: asset pricing, bubbles, efficient markets, rational expectations, rational beliefs, aggregation,

heterogeneous expectations, correlated beliefs

JEL Classification: B20, D53, D58, D81, D83, D84, D85, E13, G00

1. INTRODUCTION

In the following, we provide some addenda and modifications to the work of Kurz and Motolese
[3]. We show that their asset pricing model encompasses asset price bubbles, even though
they did not intend for it. The significance of this lies in that theirs is an equilibrium model
with perfectly rational agents in a frictionless competitive market—the economic equivalent of
Euclidean geometry with perfect circles. The only other Euclidean account of bubbles we are aware
of is the class of Rational Expectations bubbles (REBs) [4–6]. All other bubble theories rely on either
irrational agents or frictions of some sort [see e.g., [7–9] for surveys of the bubble literature].

Just as lines and circles are useful abstractions even though they do not exist in the real world
[10, 11], the “purity” of the setting in which bubbles are theorized is of practical import: If frictions
are a necessary condition of bubbles, then the policy implication is that the regulator should focus
on perfectingmarkets, pushing ever further the “financialization” of the economy [but see 12, 13]. If
it is irrational behavior that causes them, then bubbles may only push the system to more efficient
capital allocations [14, 15] or to new learning experiences [16, 17]. Either way, we should then
expect to see bubbles never more than once in a generation (but see [18, 19]).

If, by contrast, bubbles can arise even in a perfectly rational, friction-free world, then they
should be seen as an inherent feature of market economies, not as temporary aberrations.
The regulatory imperative would be to guard, not to “lean,” against them—the difference
between building dykes and trying to suppress the tides. The problem is that REBs as
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the only such account thus far are unexplained sunspot equilibria
with strict conditions. For example, they must be present from
the beginning of time1, cannot be negative, and, due to explosive
conditional expectations, eventually dominate the economy [20–
22]. Hence the preference in the literature for irrational or
frictional explanations, which are more plausible at the cost of
being less general (see however [9]).

The reduced form of Kurz and Motolese’s [3] model
corresponds to that of a noisy rational expectations equilibrium
[23–25] but the model is derived under rational beliefs [1, 2, 26].
The rational beliefs framework widens the scope of expectational
“rationality”2 from ergodic to non-ergodic, possibly non-
stationary economic environments. As a consequence, rational
beliefs are diverse—that is, diverse as a feature, not as a bug3.
The persistent diversity of expectations adds a strategic element
to the decision calculi of agents, enlarging the state space of
the model by an endogenous variable called “market belief.” We
contend that this endogenous state variable, which arises from
the diversity of beliefs, corresponds to the unexplained “bubble
component” in REBs.

There are two classical views on diverse beliefs. One is
encapsulated by [28, 29], whose report from a weight-judging
competition is the classic example of the “wisdom of crowds”4.
The opposite view was set forth by [30, ch. 12] who said that,
if agents disagreed too much about the future, speculation—
betting on others’s beliefs—would drive a wedge between price
and value. The former leads to Hayek and the efficient market
hypothesis (EMH); the latter underpins Minsky’s financial
instability hypothesis (FIH), and thereby most of the literature
on bubbles outside of REBs5.

What makes the EMH and FIH seem so irreconcilable is
that something is missing from the classical accounts, namely
the dependence structure of beliefs. It is interesting to note
therefore that both noisy rational expectations and the rational
beliefs framework do take it into account but in opposite ways.
Grossman [32], Hellwig [24], and Diamond and Verrecchia [25]
all require independence between private signals (which implies
independent beliefs) lest the aggregate signal lose its sufficiency6

and prices lose their informativeness. By contrast, Kurz and
Motolese [3] require dependence between beliefs in order for the
endogenous state variable to appear in the equilibrium price. One

1If a REB exists at any time t > 0, then it must also exist at t − 1.
2To be distinguished from choice-theoretic rationality. See [27] for a critique of the
terminology.
3One way to think about it is that a non-stationary environment underdetermines
the set of admissible, or rational, expectations (an expectation is inadmissible,
or irrational, if it leads to systematic mistakes). If rational expectations are the
fixed-point solution of a function, rational beliefs are the fixed-set solution of a
correspondence.
4Asked to guess the weight of an ox, none of the 787 individual estimates from the
attending crowd were correct but the “middlemost” (presumably the median in
today’s terminology; the OED defines the word as “That [. . . ] in the very middle,
or nearest the middle.”) came within less than one percent of the correct value
(1,207 vs. 1,198 lbs.), beating all but a handful of presumably lucky individuals.
5As Brunnermeier and Oehmke [31] point out, “much of the theoretical literature
on bubbles can be seen as an attempt to formalize this [Minsky’s] narrative.”
6[32, lemma 1].

might say there is really only one model once we move up a
level of abstraction: In the corner cases, when individual beliefs
are either independent or comonotonic, the equilibrium price
conforms to rational expectations; when they are (imperfectly)
dependent, the market extends its state space through the
endogenous market belief variable.

Accepting diverse beliefs as not the exception but the rule,
and shifting the focus to their dependence structure instead,
also changes our view of the role they play in the bubble
literature thus far. The generic argument is that the broader the
range of expectations, the more “confused” or “fantastical” about
the future investors are, the more opportunity for speculation,
and the bigger the bubble7. Historically, though, bubbles seem
to have been associated with a reduction in diversity rather
than an expansion of it [33]. People are literally “buying into”
a, necessarily common, bubble narrative (see also [34]). It is
interesting to note therefore that “correlated beliefs” in [3]
actually refers to correlated innovations to individual beliefs. This
means that, as the market belief variable appears, belief states
converge, lending additional support to our contention that the
endogenous state variable is the hitherto unexplained “bubble
component” of rational bubbles.

Our approach is different from the idea of chaotic equilibrium
cycles (see e.g., [35]). In the later works based on equilibrium
cycles theory, the existence of a chaotic equilibrium growth
may be derived, and “equilibrium bubbles” associated with
transient excursions with nonlinear reversal (crashes) can be
observed [36]. In contrast to the small number of “degrees of
freedom” involved in the chaotic equilibrium growthmodels, our
framework is based on a social graph representing a large number
of individual agents with different but correlated beliefs.

Before we can re-interpret Kurz and Motolese’s [3] market
belief variable in this way, we need to add some detail. First,
section 2 exemplifies the role of correlated beliefs and thus
prepares for the subsequent developments. Then, we clarify what
we mean when we speak of a bubble. After a quick summary of
[3] in section 3, section 4 shows how their model relates to the
definition we propose in [37]. Next, for market belief to explain
the dynamic appearance of bubbles, we would like to be able to
switch it “on” and “off” at will8. Kurz and Motolese [3] basically
assume that it is always “on,” hence have little to say about the
dependence structure that gives rise to it, other than that “due
to correlation across agents, the law of large numbers is not
operative.” But not only are there different variants of the law
of large numbers (LLN), some LLNs can operate on correlated
variates.We needmore specificity about howmuch (or what kind
of) dependence is necessary for market belief to emerge. Ideally,
we would find a precise threshold in the parameter space fixing
the dependence structure.

7We identified the general mechanism behind this way of thinking as a form of
explicit symmetry breaking, a notion borrowed from theoretical physics, in [8].
Breaking the symmetry inherent in a diverse set of beliefs explicitly (as opposed to
spontaneously) also explains the need for frictions in these models.
8Recall that REBs, by contrast, cannot be restarted once they are deflated.
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Section 5 introduces a simple graph model for the dependence
of beliefs. This not only reduces the dimensionality of the
problem but also creates a partition in the parameter space. The
phase transition between small and giant components in the
graph then effectively serves as the on/off switch for the market
belief variable. The idea is to “rotate” the problem from one
of identically distributed but correlated belief innovations to an
independent but not identically distributed setting. This makes
the problem accessible to LLNs of differently-sized variables
[38, 39] via the eigenvalue distribution of the correlation
matrix. In section 6, we then use linear aggregation [40, 41]
to change the endogenous state variable from short- to long-
memory. This “dramatizes” the emergence of bubbles. Section 7
concludes with a few suggestions regarding policy implications
and empirical applications.

2. THE ROLE OF CORRELATED BELIEFS:
AN EXAMPLE

We begin with a re-examination of the introductory example
of [42]. The chief distinction between rational belief bubbles
and other heterogeneous belief bubbles [43] is our focus on the
dependence structure, or correlation, of beliefs rather than their
diversity. Lest the main idea get lost in technical details later,
the simpler, stylized setting serves to highlight this distinction
and provides some intuition about it before we embark on the
main argument.

There is an asset that pays dividends d, which are iid with
d ∼ N(y, 1/a). Disregarding learning effects over time, each
agent receives a signal xi = d + εi composed of a public
element d and a private element εi ∼ N(0, 1/b). Expectations are
heterogeneous because agents mix the common prior with the
signals they receive individually:

E
i(d) =

ay+ bxi

a+ b
(1)

Aggregated over the set of investors I, these private expectations
yield an average expectation of

Ē(d) =
∫

I
E
i (2)

=
ay+ bd

a+ b
(3)

Let agent i form a second-order belief

E
i(Ē(d)) =

ay+ bEi(d)

a+ b
(4)

=
ay+ b

(

ay+bxi
a+b

)

a+ b
(5)

=

(

1−
(

b

a+ b

)2
)

y+
(

b

a+ b

)2

xi (6)

Aggregating again and comparing to Equation (3) now shows
that the average expectations operator is not a “normal”
expectations operator. It violates the law of iterated expectations:

Ē(Ē(d)) =

(

1−
(

b

a+ b

)2
)

y+
(

b

a+ b

)2

d 6= Ē(d) (7)

This violation in turn leads to systematic pricing errors in the
market. Insofar as the relevant expectations operator is furnished
by “the average investor,” one can see this heuristically by
expanding the basic asset pricing equation

pt = Ēt(mt+1(pt+1 + dt+1)) (8)

= Ēt(mt+1)
[

Ēt(Ēt+1(mt+2xt+2))+ Ēt(dt + 1)
]

(9)

= etc. (10)

where mt is the stochastic discount factor. A failure of the law
of iterated expectations thus also means a breakdown of the
basic asset price equation. Allen et al. [42] essentially blame the
disagreement induced by the private signals for this failure: “if
there is differential information between investors so that there is
some role for the average expectations about payoffs, the folding
back of future outcomes to the present cannot easily be achieved.”
This is akin to Keynes’s position.

Indeed, if one eliminates the private signals from the model
[which amounts to taking the limit 1/a → 0 in expression (1)],
the law of iterated expectations starts to work again: E

i(d) =
Ē(d) = Ē(Ē(d)) = y. It thus appears that investor disagreement
introduced some sort of noise that prevented the law from
operating. In reality, though, it was not the disagreement that
induced the failure. If we go to the other extreme and eliminate
the public signal instead: xi = y + εi, the information agents
receive is still differential and still induces diversity of beliefs
E
i(d) = xi. Yet aggregating over the set I of agents now yields

Ē(d) =
∫

I xi = y = E
i(Ē(d)) = Ē(Ē(d)). Suddenly, we find

ourselves in Galton’s world!
The reason the law of iterated expectations for the average

expectations operator failed is that the expectations were not only
diverse or differential but also correlated. And the reason for this
is that the signals xi were coordinated by the public element d:

Cov(Ei(d),Ej(d)) = E((xi − y)(xj − y)) (11)

= E((d − y+ εi)(d − y+ εj)) (12)

= E((d − y)2 + (d − y)εi + (d − y)εj + εiεj)
(13)

=
1

a
(14)

> 0 (15)

To summarize, the (potential) wedge between price and value
associated with the failure of basic asset pricing relations and
identified by the failure of the law of iterated expectations was
caused not by the diversity of beliefs but by the correlation
between them.

Frontiers in Physics | www.frontiersin.org 3 August 2020 | Volume 8 | Article 230113

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sohn and Sornette Rational Belief Bubbles

3. ASSET PRICING UNDER RATIONAL
BELIEFS

Kurz and Motolese [3] present an infinite-horizon, discrete-time
equilibrium asset pricing model. In order to be self-contained, we
provide a brief summary9.

Let (dt)∞t be an exogenous random sequence of payoffs of a
risky asset. This random sequence has a true probability which is
possibly non-stationary, unknown, and unknowable but assumed
to be weak asymptotic mean stationary (WAMS). The agents
have a large sample of historical data dt , t = −1,−2, . . . at their
disposal from which they infer a unique empirical probability
measure. This empirical measure generates data according to

dt+1 = λddt + ρd
t+1 (16)

ρd
t+1 ∼ N(0, σ 2

d ) (17)

This is the common reference point for all agents i ∈ I =
{1, 2, . . . , n}, where n is the number of agents in the system. The
law of motion (16) fixes the set of rational beliefs.

Subjective beliefs dit about the fundamentals dt are formed
by augmenting the stationary measure with an individual belief
state git :

dit+1 = λddt + λ
g

d
git + ρid

t+1 (18)

The individual beliefs are assumed to be rational, which means
that git fluctuates around 0:

git+1 = λZg
i
t + ρ

ig
t+1 (19)

ρ
ig
t+1 ∼ N(0, σ 2

g ) (20)

The innovations ρ
ig
t+1 to the individual belief states are coupled

by a correlation matrix 6
g .

As diverse expectations are readily ascertained by agents, the
state space is “expanded” by the average state of belief, dubbed
“market belief” Zt :

Zt =
1

n

n
∑

i

git (21)

This is basically a measure of market sentiment, with Zt > 0
indicating that agents on average expect temporarily higher than
normal payoffs (and vice versa). Market belief or sentiment Zt
evolves according to

Zt+1 =
1

n

∑

i

λZg
i
t +

1

n

∑

i

ρ
ig
t+1 (22)

= λZZt + ρZ
t+1 (23)

Since 6
g may be time-varying, Zt may be non-stationary. It

is, however, also assumed to be WAMS, yielding a stationary
representation with

ρZ
t+1 ∼ N(0, σ 2

Z) (24)

9For a quick overview of rational belief theory, we refer to its entry in Wikipedia
which one of us (HS) contributed. For a survey, see [26].

By assumption,

(

ρd
t+1

ρZ
t+1

)

∼ N

(

0
0
,

[

σ 2
d

0
0 σ 2

Z

]

= 6̃

)

, iid (25)

Given this setup, there exists a unique equilibrium map d× Z →
p from the state space to prices.

Proposition 3.1. Under the conditions described above, there
exists a unique equilibrium price map

pt = addt + aZZt + P0 (26)

from the state space of fundamentals dt and market belief Zt to
prices pt .

Proof: See [3, theorem 2].

Our main interest lies in this map. Can we use market belief or
sentiment Zt to explain bubbles?

We examine the origin as well as nature of correlations
between individual beliefs that can lead to a natural explanation
of bubbles in this rational belief framework. We use a formalism
in terms of processes, which is coarse-grained compared with
the field of strategic noncooperative games, for which it
has been proved that there exists two classes of correlated
equilibria, exogenous, and endogenous [44, 45]. Our derivation
of correlated equilibria performed in section 6 does not require
the game theoretical mathematics and can proceed more
intuitively and transparently.

4. BUBBLES VS. EFFICIENT MARKETS

In contrast to topics of similar standing, bubbles are remarkably
contentious even on an existential level. This is because even
after centuries the term is still not well-defined. The problem
stems from the use of “fundamental value” in many definitions—
a highly contingent concept of its own. In our view, it is fine to
construct a theory of value; it is a stretch to build definitions on
top of it. This is why we proposed, in [37], to re-define bubbles
not in “money-space” where value lives but in the time-domain
where the efficient market lives. Before presenting the idea, we
provide a brief review of various bubble definitions that have been
proposed in the literature to contrast with our present approach.

4.1. Bubble Definitions in the Literature
4.1.1. Statistical Definitions
As a first group of bubble definitions, there are those that focus on
the price trajectory or other observables such as trading volume,
without reference to theoretical notions like fundamental value.
For example, Kindleberger and Aliber [46] regard as bubbles “any
upward price movement over an extended period of 15 to 40
months that then implodes.” Exchanging the specification of the
time-horizon for a size requirement, as it were, Goetzmann [47]
defines bubbles as a doubling in the market price followed by
a 50% fall10. Presumably, then, bubbles cannot occur in fixed

10One may recall here that [48] defined efficient markets as ones “in which price is
within a factor of 2 of value. [. . . ] The factor of 2 is arbitrary, of course.”
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income or other markets where there is a natural upper bound
on the market price! The fund manager GMO proposes that
bubbles occur “when prices rise two standard deviations above
their norm” [49, 50]. This is more flexible than an absolute size
requirement but, alas, opens a whole other can of worms, like
estimation issues, ergodicity assumptions, or the question if the
second moment even exists for a given asset.

Brock, as cited in [51], defines bubbles as “a monotonically
increasing sequence of prices.” Hüsler et al. [52] and Leiss et
al. [53] cite super-exponential growth rates11 as the hallmark
of a bubble. This chimes with [46] in that it also implies an
unsustainable price path but differs in that it does not require an
“implosion” or market crash.

What the definitions in this category have in common is that
they neither imply nor necessitate a mispricing per se. They focus
on the observable (the price series) and do not mix theoretical
concepts into the definition. In particular, there is no notion
of value here. This is an appealing feature for a definition, as
explanandum and explanans then are clearly separated from
each other. Bubbles, defined like this, can be tested without the
problem of the joint hypothesis. On the downside, insofar as
a definition depends on the full path, including a crash at the
end, it can be guilty of post hoc ergo propter hoc in practice.
Insofar as the theoretical underpinning is lacking, the definitions
in this category can also be too broad in scope: Empirically, too
many price series can fit a statistical bubble definition without
necessarily corresponding to our intuition of what a bubble
“should” be. For example, an interest rate sensitive stock might
follow a rate cycle up “over an extended period of fifteen to forty
months” only to then “implode” upon the revelation of a criminal
investigation. Fewwould characterize this as a bubble. Context, as
it were, is important.

4.1.2. Comparative Definitions
As a second category, there are bubble definitions based on
comparisons, usually between price and some notion of value.
For instance, the New Palgrave Dictionary of Economics defines
bubbles as “asset prices that exceed an asset’s fundamental
value” [54]. Bland as it may appear, this excludes the possibility
of negative bubbles, a significant restriction to make by
definition, as it were. Temin and Voth [55] by contrast identify
bubbles as “periods of substantial mispricing” which allows
for undervaluations as well as overvaluations but adds a size
requirement (“substantial”). Levine et al. [56] define bubbles as
simply a “misfit between the market price and the true value of an
asset” with no such qualification. This lack of specificity makes it
hard to see where the line between excess volatility and bubbles
should be drawn. The point is not to niggle or read too much
into what may have been intended as merely passing remarks in
a much longer work. It is to show that just because a definition is
done casually does not mean it has no consequences—especially
when we have to relate different studies to each other.

Apart from direct appeals to value, comparisons can also refer,
more obliquely, to the information sets on which “true value”
is presumably based. For instance, Blanchard and Watson [5]

11faster than exponential growth, or growth rates that themselves grow.

define bubbles as price movements which are “unjustified by
information available at the time.” More emphatically, Asness
[57] demands that the term should apply only when “no
reasonable future outcome can justify” the price. This seems
to posit a range of admissible price paths, defining bubbles
negatively, or by exclusion.

For all their differences, comparative definitions always
require a theory of asset pricing, if only implicitly, for a notion
of what the correct price is supposed to be. This is their Achilles’
heel and the chief criticism of efficient market proponents. For
example, Santos andWoodford [58] compare the market price of
an asset to the state-price weighted sum of its real payoffs, while
[59] uses the realized return on an asset over a sufficiently long
time after trading. Different studies can thus agree, in general
terms, to define bubbles as a divergence of price from value and
still disagree over whether a particular price series is a bubble or
not. This can make it all seem a bit arbitrary.

4.1.3. Detailed Definitions
A third group of definitions goes beyond the perceived gap
between price and value by tying it to specific explanations. For
example, Kirman and Teyssière [60] require that the gap between
price and value be “endogenous, i.e., not directly produced by
exogenous shocks.” In other words, the mispricingmust arise in a
certain way in order for it to count as a bubble. Brunnermeier and
Oehmke [31] concur that “not every temporarymispricing can be
called a bubble.” In particular, it has to arise “because investors
believe they can sell the asset at an even higher price to some
other investor in the future,” so for them the speculative motive
is essential. Roubini [61] even introduces a policy dimension by
distinguishing between “endogenous” and “exogenous” bubbles,
where the former are bubbles whose “probability and size can
be affected by monetary policy” while the latter cannot12. As an
extreme example of the involute nature of the definitions in this
category, let us quote from [63]:

I would say that a speculative bubble is a peculiar kind of fad
or social epidemic that is regularly seen in speculative markets;
not a wild orgy of delusions but a natural consequence of the
principles of social psychology coupled with imperfect news
media and information channels. [. . . ] I offered a definition of
bubble that I think represents the term’s best use: A situation in
which news of price increases spurs investor enthusiasm which
spreads by psychological contagion from person to person, in the
process amplifying stories that might justify the price increases
and bringing in a larger and larger class of investors, who, despite
doubts about the real value of an investment, are drawn to it
partly through envy of others’ successes and partly through a
gambler’s excitement.

Basically the obverse to our first category, it is not surprising then
to find that detailed definitions tend to be too narrow in scope.
Would a bubble that arose by a different mechanism, or in a
market in which the proposed mechanism does not apply, also
be a “bubble”? For example, would a “political bubble” [64] not

12A similar but more general argument, less focused on monetary policy, has been
put forth in [62].
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count as a bubble to [31]? Or if it did, doesn’t this mean that there
must exist a less restrictive superset of bubbles, of which the two
variants (political vs. speculative) are but particular cases? And
if not, how are we to relate the results and policy implications
of different studies to each other? Would a bubble indicator
constructed for, say, speculative bubbles still be expected to detect
politically driven ones?

The above quote also illustrates that the more detailed a
definition, the more likely it is to mesh the notion of bubbles
with behavioral assumptions or market frictions. Arguably it
is this that makes bubbles such a loaded term. With respect
to recessions, inflation or unemployment, the debates may be
vigorous but at least their subjects are accepted. By contrast,
bubbles remain “existentially controversial.” Perhaps this is
because themore detailed a definition, themore it acts as a Trojan
horse: themere use of the termmay already admit of assumptions
one does not wish to make. It is thus that the rejection
of behavioral hypotheses or doubt about the effectiveness of
monetary policy may lead one to reject the concept of bubbles,
almost as an unintended side effect. For the sake of discussion,
we should therefore move away from such evocative definitions
toward greater formalism and pithiness. In the words of Brock
[65], “for the quality of a theory to improve over time, definitions
must become more rigorous and less ambiguous.”

4.2. Market Efficiency and
Time-Dependence of Market Efficiency
It remains commonly overlooked that the concept of market
efficiency has a time-dimension. Markets essentially transform
informational inputs, modeled by a filtration (Ft)∞t=0, into price
signals (pt)∞t=0. Markets thus act as a map 1F → 1p from news
to price changes. Market attributes are naturally defined in terms
of these primitives. Eliding the discount factor for simplicity, the
efficiency of markets has been characterized by the martingale
property (cf. [66–68]), where

Et(pt+1|Ft) = pt (27)

A market is efficient relative to the news process (Ft)∞t=t0
iff the

map 1F → 1p produces a martingale. This means that price is
an unbiased predictor and that an efficient market does not allow
trading profits based on the current information set [69].

But just as efficiency can only be defined relative to an
information set, it also requires a time-scale. It is implicitly
understood in Equation (27) that the time step 1 from t to t + 1
is the relevant time-scale. That is, if we take t0 to be the present,
Equation (27) can be written like

Et0 (pt0+nt|Ft0 ) = pt0 (28)

with n = 1 and the understanding that the martingale condition
holds for n ∈ N. But any given discrete-time price process can
be seen as merely a sampling from an underlying continuous-
time process, which could have been sampled at a different rate
or frequency, say τ or T with 0 < τ < t < T. That a process is a
martingale on one time-scale neither necessitates nor implies that

it is one on another13. This opens the possibility that a market is
efficient on one time-scale but inefficient on another.

Such a disjunction between time-scales can be supported
empirically14 as well as theoretically, from reading [72] “in
reverse”: To recap his argument, as long as liquidity is not infinite
and there is a strictly positive bid-ask spread s > 0 in the market,
successive price changes 1p will exhibit serial dependence and
the martingale property will not hold. Adapting his notation,
let those price changes be measured at the time-scale τ < t,
i.e., 1p2τ = p2τ − pτ , to make the connection to our discussion
clearer. The bid-ask spread induces an asymmetry in the price
path at the scale τ (see Figure 1): If the last transaction was
conducted at the bid, then the next move can only be up (by
the spread s) or 0. If the last transaction was conducted at the
ask, then the next move can only be down (by s) or 0. One time-
step further, the situation is reversed. If the last move was up or
0 (down or 0), then the next move can only be down or 0 (up
or 0). The bid-ask spread thus introduces a serial dependence
into successive price movements that is not compatible with the
martingale condition of an efficient market.

At the same time, over a sufficient number n of time-
steps τ , the transition probabilities converge to a (symmetric)
steady state. This means that for t ≥ nτ , with n sufficiently
large, the effect of the bid-ask spread (or, by extension, other
microstructural factors) “washes out”: Measured on the micro-
scale τ , the process exhibits serial dependence; measured on
the macro-scale t ≥ nτ , the price process can conform to the
martingale property again.

Let us illustrate this phenomenon analytically with a toy
model, the two-step random walk in [73], a special case of the
class of persistent random walks [cf. [74], section 5.2]. Let 1p ∈
{U,D} for up = +1, down = -1. Define πUU as the joint probability
that the price goes up twice in a row; πUD as the probability that
an up move is followed by a down move; and πDD,πDU as the
probabilities of down-down and down-up moves. Let πUU =
1/6,πDU = πUD = 1/3,πDD = 1/6. Suppose the last move was
up and start at time t0 with pt0 = 100. Then

E(pt0+τ |Ft0 ) = E(pt0+τ |up) (29)

= 100+ πU|U × 1+ πD|U × (−1) (30)

= 100+
1

3
−

2

3
(31)

6= 100 (32)

where πU|U ,πD|U are the corresponding conditional
probabilities. That is, one time-step forward, this two-step
random walk is not a martingale. However, if we perform the

13In [37], we use so-called n-step or persistent random walks as an example.
Another way to see this is by letting the expectation cycle through a periodic
function, e.g. a sine-curve: xt = sin(t)+ ǫt with ǫ ∼ N(0, σ 2). Then Et(xt+2πn) =
xt . As long as we sample at the frequency of (2π)−1, the series looks like a
martingale but at any other frequency, it is not.
14See for example [70] or, more plastically, the case study of [71]. The point
being that a market, no matter how efficient, always needs some time to
digest information.
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FIGURE 1 | Table of transition probabilities, conditional on the last transaction having been conducted at the bid or at the ask price, adapted from [72, p. 1129].

same calculation two time-steps forward,

E(pt0+2τ |Ft0 ) = E(pt0+2τ |up) (33)

= 100+ πUU|U × 2+ πDD|U × (−2) (34)

= 100+
1

3
−

1

3
(35)

= 100 (36)

The reason is that the memory gets lost at the time-scale t = 2τ ,

πUU|U =
πUU∧U

πU
(37)

=
πUU × πU

πU
(38)

= πUU (39)

As a result, even though the same price process exhibits serial
correlation at the scale τ , it conforms to the martingale property
at the scale t = 2τ .

4.3. Bubbles as Elongations of
Characteristic Time-Scales of Markets
We call the time-scale at which the martingale property holds the
characteristic time-scale of a market. It is inversely proportional
to the speed with which a market can “digest” information. Not
only do different markets process information at different speeds,
the same market can slow down or speed up over time. Projected
onto the time-line, bubbles appear as regimes in which the speed
of a market slows down significantly from normal.

Definition 4.1. Given amarket that is efficient relative toF at the
time-scale t, a t-bubble occurs when the price process changes
such that the martingale condition Et0 (pt0+T |Ft0 ) = pt0 now
only holds at time-scales T > t. As a boundary case, we include
regimes where T = ∞ or the condition never holds.

Colloquially, we may call t-bubbles simply “bubbles” so long as
it is clear that the notion only makes sense when set in relation
to the characteristic time-scale t of the market. Conversely, a
bubble is a slowdown in the map 1F → 1p from the “nor-
mal speed” ∼ 1/t of the market to ∼ 1/T—a sort of
“informational constipation” if you will, as the “digestion”
of news becomes slower15.

15An incarnation of this is provided by theHawkes self-excited conditional Poisson
process, which has been used to characterize the level of endogeneity or reflexivity

Our re-definition of bubbles is sufficiently general so as to be
compatible with most of the existing definitions in the literature.
The lengthening of the time-scale only serves to create space for
a variety of bubble dynamics “in-between” the points at which
the martingale property is restored. The general principle is to
eliminate (the conditions for) the bubble from a model and
inspect the time-scale t at which the market in the model is
efficient. If the bubble component has a finite survival time, this
can be taken as a lower bound for T. For example, under the
limited arbitrage argument of [78], the duration of the bubble is
finite with a survival time of τ̄ (in their notation). Without the
bubble, the market’s characteristic time-scale is t; with a bubble,
it slows down to 1/τ̄ .

To sum up, market efficiency has a time-dimension. It is
therefore not enough to speak of a market as efficient. In addition
to the news process (Ft)∞t=0 relative to which efficiency is defined,
one also needs to state at which time-scale efficiency is supposed
to hold. The time it takes a market to fully absorb an information
increment 1F can be random but has a characteristic scale,
in the sense that it fluctuates within certain bounds or that its
mean is defined. In the following, we will take this characteristic
time-scale of a market as a given16.

4.3.1. Application to REBs
Blanchard [4] constitutes an interesting example because even
under a bubble the price path still follows a martingale. In
equilibrium, the probability of a crash is supposed to exactly
balance the added growth factor of the bubble component bt =
pt − p̄, where p̄ is the fundamental value, or

Et(bt+1|bt > 0) = bt (40)

if we elide the discount factor for simplicity. That is, the price
would simply incorporate the bubble component via

E(pt+1|Gt) = p̄+ bt (41)

of financial markets [75–77]. As the “branching ratio” approaches 1, the market
becomes more and more endogenous and the response time to shocks diverges, so
that news have a longer and longer lived impact.
16It is also possible, though, to conceive of financial markets in which the mean
time to digest news diverges. This could occur, for instance, when the absorption
time is distributed according to a power law in the tail with tail exponent <1. As
many response functions are power laws in the time domain with small exponent,
this is indeed an interesting possibility. In this case, the market would never be
efficient even at arbitrarily large time-scales.
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Note however that G = (Gt)∞t=0 is generated by fundamental
variables as well as the bubble component b = (bt)∞t=0. But
definition 4.1 relies on an efficient market as a benchmark.
Therefore, the bubble according to 4.1 cannot be defined relative
to G. Instead, we must introduce a “copy” of the market, a
hypothetical market in which all the elements are the same
(agents and their preferences, assets, institutions, etc.) except the
information process, which must exclude the bubble component
bt . Denoting this filtration F = (Ft)∞t=0,

E(pt+1|Ft) = p̄ (42)

6= p̄+ bt (43)

That is, relative to the efficient market, the bubble component
introduces an estimation or valuation error which survives with
probability π and collapses with probability 1 − π in [4]. It thus
has an expected length of π/(1−π) time-steps, or T ≥ π/(1−π)
time steps. For example, if π = .95, then T ≥ 19 time steps. As
the probability (1 − π) of a crash approaches zero, T → ∞ in
the limit.

4.3.2. Application to [3]
In accordance with definition 4.1, we must first specify an
efficient benchmark against which a bubble can be defined. In
[3], the natural benchmark is a market driven exclusively by the
fundamentals (dt), or the price map pt = P0 + addt (see theorem
3.1). This relationship holds when the correlation of beliefs is
sufficiently low for the law of large numbers to apply and market
belief to vanish. Since the stable distribution of the dividend
process is persistent (cf. Equation 16), we have

Et(pt+n|dt) = P0 + adλ
n
ddt (44)

This means that any dividend shock will wash out exponentially
fast, or that the market is (approximately) efficient at a time-scale
T, where T = {n ∈ N : λn

d
< ε} for any chosen tolerance ε > 0.

For the sake of argument, let us fix λd = 1/4 and ε = 1/100.
Then the market is efficient at the time-scale of 4 time steps.

If market belief Zt enters the equation because “due to
correlation across agents, the law of large numbers is not
operative,” ([3], p. 301) there are two scenarios. One, it has the
same, or lower, persistence with 0 < λZ ≤ 1/4 in Equation (23).
Then market belief increases the variance of the process but does
not change the efficient time-scale. This was the original focus of
[3]. Two, λZ > λd. Suppose, for instance, that λZ = 3/4. Now
the innovations ρZ

t+1 to market belief Zt affect the expected price
(under the stable distribution) for T = 17 periods.

So far, we haven’t done anything yet. It is simply an observation
that if λZ > λd, market belief Zt potentially slows down
the market or “interferes” with the fundamentals dt in the
equilibrium price equation. This conforms to our re-definition
of bubbles in terms of time-scales rather than price-value
divergences but there is nothing in the original work of Kurz and
Motolese [3] that would motivate a particular parameterization.

In the following, we now propose two extensions or
modifications to the model: First, to find an “on/off” switch

for market belief Zt in the parameter space of the dependence
structure of beliefs, we propose to generate 6

g from a “social
graph.” This reduces the dimensionality of the problem and at
the same time provides a natural partition of the parameter
space. Then, to emphasize or perhaps motivate λZ > λd, we use
linear aggregation [40, 41] to move the model beyond a simple
parametrization. The aggregation of short-memory correlated
belief transitions can lead to a long-memory series. The resulting
divide between fast-moving fundamentals dt and slow-moving
market belief Zt magnifies the bubble effect outlined above.

5. HOW MUCH DEPENDENCE IS
ENOUGH?

This section discusses the first modification to the model of
[3], which consists in introducing a “social graph” to motivate
the existence of a non-trivial correlation matrix 6

g of the
innovations ρ

ig
t+1 to the individual belief states defined in

Equation (19). In other words, we propose to generate 6
g from

a “social graph,” which represents the investor population. For
simplicity, we use the Erdős-Renyi random graph model G(n, p),
where n is the number of agents (or vertices) in the system and
p ∈ [0, 1] is the probability with which a random pair of agents
i, j is linked by an edge {i, j}. The edge is represented by a set as
opposed to a tuple as we take the graph to be undirected. To
keep things tractable, we also do not assign weights to links or
distinguish between different degrees of correlation.

Whenever agents (or their nodes) are connected in the graph,
we take their beliefs to be correlated17. Moreover, we let their
beliefs be correlated by a constant ρ̄ ∈ (0, 1], thereby abstracting
not only from directions of influence (by the undirectedness of
the graph) but also from variations in the degree of influence18.
In our model, the pertinent fact is that (or whether) there exists
some level of mutual influence or communication, regardless of
its direction or strength. Formally, 6g is constructed via the rule
∀i 6= j ∈ {1, . . . , n},

σ
g
ij = σ

g
ji =

{

ρ̄, if i, j are connected;

0, otherwise
(45)

where σ
g
ij is the (i, j)-th component of 6

g . Since the social graph

of the agents is random, so is 6
g .

A group of agents that is connected to each other, or whose
beliefs are correlated, is called a clique or “component” of the

17For those unfamiliar with the terminology of graphs, note that there is a
difference between two agents being “linked” by an edge and being “connected”
by a path. Vertices i, j in the graph are said to be linked if the graph contains an
edge {i, j} between them. For vertices to be connected, it suffices that there exist a
path between them. Agents that are linked are also connected but agents may be
connected without being linked. For example, if agents i and j are linked by {i, j}
and agents j and k are linked by {j, k} but there is no edge between agents i and k,
agents i and k are still considered connected via the path {{i, j}, {j, k}}.
18That ρ̄ is chosen positive stems from the fact that sufficiently large groups of
agents cannot be all negatively correlated. Suppose, for example, that there are
three agents i, j, k all perfectly negatively correlated. If i becomes more optimistic, j
must become more pessimistic, which means kmust become more optimistic. But
this belies the negative correlation between i and k. The same principle holds with
less-than-perfect (negative) dependence in larger groups.
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graph. One can distinguish between two kinds of cliques or
components. If the size of a clique does not scale with the total
number of agents in the system, or is independent of n, then we
call it a “small component.” If a clique is such that it becomes
larger the larger becomes n, it is called a “giant component.” This
difference in the scaling behavior of cliques has an important
consequence for 6

g .
By construction, the correlation of beliefs is transitive: if agents

i, j have correlated beliefs and agents j, k also have correlated
beliefs, then so do agents i, k. Graphically, this means that every
clique of agents can, after appropriate reshuffling of the indices,
be represented by a block matrix in 6

g . The size of a clique is the
number of nodes or agents contained in it. If a clique of correlated
agents has sizem, say, then the corresponding block matrix in6

g

is of m × m dimension. Obviously, if we pick any off-diagonal
entry σ

g
ij from such a block, its value is ρ̄; if we pick an entry of

6
g that is not part of a clique, then its value is zero. But what

about a random pick from6
g , i.e., the unconditional expectation

E(σ
g
ij ) or average correlation in the system as a whole?

The average correlation of beliefs depends on whether the
agents are organized into many small separate components
or into a giant connected component. The intuition is that
components or cliques of correlated agents in the original space
act like “composite agents” when transposed into eigenspace19.
The law of large numbers then acts, or not, on these “composite
agents,” which are independent but differently-sized, instead
of the actual agents, which are equally-sized but correlated. A
system with 1,000 isolated agents behaves essentially the same as
a system with 2,000 agents who are organized into cliques of 2.

Small components do not scale with n. As the graph increases
from, say, 100 to 1,000 agents, there are more cliques but of the
same size (or size distribution) as before. A giant component,
by contrast, scales with the system size n. Its size is a constant
fraction S ∈ [0, 1] of n. As a giant connected component arises
in the social graph of agents (or their beliefs), the weight of
the non-zero correlations in 6

g remains a constant fraction of
the total, and the average correlation of beliefs in the system
becomes positive.

Formally, the question is how the average correlation of beliefs
behaves as the system becomes large, or

∑

i

∑

j 6=i σ
g
ij

n(n− 1)
→ E(σ

g
ij ) (46)

as n → ∞. Let c = (n − 1)p be the mean degree of the graph20.
The average size of the small components is

R =
2

2− c− cS
(47)

The fraction S of the n agents or vertices contained in a giant
connected component depends on c and is the solution or fixed
point of

S = 1− exp{−cS} (48)

19This is the basic idea of principal component analysis [79].
20We skip calculations that do not add to the main point and refer interested
readers to [80] instead.

When c < 1, S = 0 or there is no giant component in the graph.
This yields an average correlation coefficient of

2(n− 1)× ρ̄ + (n− 2)(n− 1)× 0

n(n− 1)
=

2ρ̄

n
(49)

As the system size n increases, the average correlation tends to 0,
and in the limit, we can take E(σ

g
ij ) = 0.

When c ≥ 1, a giant component emerges in the graph and
the system behaves differently. The reason is that unlike the small
components, the giant component scales with the system size n.
Then the average correlation of beliefs is

(S× n)(S× n− 1)ρ̄

n(n− 1)
→ S2ρ̄ (50)

as n → ∞ which is strictly positive.
Our use of the Erdős-Renyi random graph theory has been

made for the sake of simplicity and tractability. It will be
interesting in the future to extend our treatment to the case of
Barabasi-Albert networks and other random geometric graphs.
However, our main point on the emergence of a non-zero average
correlation of beliefs will not be changed. What will be modified
are the specific control parameters and conditions under which
a non-zero average correlation of beliefs emerges. Furthermore,
the application to real-world social networks is reported to a
future work.

6. THE EMERGENCE OF BUBBLES

We now make the following modification to [3]:

Axiom 6.1. Let the agents have coefficients λig in (19). In
particular, we assume that the coefficients λig are drawn from a
family of absolutely continuous distributions with support [0, 1)
with density

f (λig; b) ∼ cb(1− λig)b as λig → 1 from below (51)

with parameters−1/2 < b < 0 and 0 < cb < ∞.

The density in the axiom is only specified for values close to 1,
so this is a flexible semiparametric specification. The only hard
requirement is that the coefficients cannot be bounded away from
1 (although they can never attain it). Agents now differ from each
other w.r.t. the persistence of their belief states git . This means that
agents differ in their trading horizons: Short-term day traders
form subjective expectations that flit around much faster than
long-term investors who form expectations over multi-year, even
decade-long horizons.

As a result of this positive average correlation in the system,
market belief Zt will assume long-memory and a price bubble
develops, as we now show.

Proposition 6.1. Suppose that E(σ
g
ij ) > 0 or that the average

correlation of beliefs in 6
g is positive. Then there exists a common

component or “representative belief " πt ∼ N(0,ϑ) iid in the
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innovations and the transition functions (19) of agent states of
belief can be rewritten in terms of this representative belief to

git+1 = λiggit + siπt+1 + εi,t+1 (52)

As a consequence, the aggregate market belief Zt assumes long
memory persistence.

Proof: Since 6
g is symmetric and positive definite, we can

perform a spectral decomposition

6
g = S2S′ (53)

where S is the matrix of eigenvectors, 2 is the n-dimensional
matrix with the eigenvalues ϑi, i = 1, . . . , n on the diagonal,
SS′ = In, the n-dimensional identity matrix, ϑi ∈ R

+, and
ϑi 6= ϑj,∀i 6= j.

According to [81], if E(σ
g
ij ) > 0, which we have shown above

to be the case when a giant connected component arises in the
social graph of the agents, then the biggest eigenvalue, ϑ1, is
distributed according to

ϑ1 ∼ N

(

(n− 1)E(σ
g
ij )+ 1+

Var(σ
g
ij )

E(σ
g
ij )

, 2Var(σ
g
ij )

)

(54)

For correlation matrices, one needs to ensure positive
definiteness of 6

g and [82] show that the result remains valid
under suitable restrictions on the support of the off-diagonal
entries for large sample correlation matrices.

Given that
∑

i ϑi = trace(6g) = n, all other eigenvalues ϑi>1

are therefore constrained to be of the order (1 − E(σ
g
ij )). That

is, the larger the system, the greater the dominance of the largest
eigenvalue, ϑ1, over all others, ϑi>1. Furthermore, as the variance,
unlike the mean, in (54) does not scale with n, this dominance
also becomes more certain as n grows large.

We exploit this by rewriting the innovations in individual
states of belief in terms of a factor model

ρ
ig
t = si1π

1
t + εit (55)

where π1
t is the first principal component

π1
t = S′1ρ

g
t (56)

and “factor loading" si1 is the (i, 1)-th component of eigenvector
matrix S or the i-th component of the first eigenvector S1. Since
π1
t is simply a linear combination of (multivariate) Gaussians

with mean 0 and variance σ 2
g , it is itself ∼ N(0,ϑ1). The belief

transitions (19) now take the form

git+1 = λiggit + siπt+1 + εi,t+1 (57)

=
si

1− λigL
πt+1 +

1

1− λigL
εi,t+1 (58)

where L is the lag operator.
Hidden in the εit = (si2, si3, . . . , sin) · (π2

t ,π
3
t , . . . ,π

n
t )

′

is the variation of all the other principal components in

eigenspace. Since the system is orthogonal, all the summands are
independent from each other. Again, each principal component
πk
t , k = 2, . . . , n is nothing but a different linear combination

of the original innovations ρ
g
t (Equation 56), hence E(πk

t ) = 0.
∑n

k=2 s
2
ik

Var(πk
t ) =

∑n
k=2 s

2
ik
ϑk < ∞ because the total variance

is finite. Therefore, the series εit converges to zero as n → ∞ [83,
thm. 22.6].

It follows that we can neglect the idiosyncratic terms and
rewrite individual beliefs solely in terms of the common
component

git+1 =
si

1− λigL
πt+1 (59)

Accordingly, market belief (21) now takes the form

Zn,t =
1

n

∑

i

si

1− λigL
πt (60)

If we expand this expression,

Zn,t =
1

n

n
∑

i

λiggit−1 +
1

n

n
∑

i

siπt (61)

=
1

n

n
∑

i

λig(λiggit−2 + siπt−1)+
1

n

n
∑

i

siπt (62)

=
∞
∑

k=0

(

1

n

n
∑

i=1

si(λ
ig)k
)

πt−k (63)

A stochastic process has long memory if its spectral density is of
the form L(ω)|ω|−2d, for some slowly varying function L at zero
and d ∈ (0, 12 ) [84]. Zaffaroni [41] shows that, for coefficients
λig distributed according to expression (51) with b > −1/2, the
coefficients in (63) converge

µk = lim
n→∞

1

n

n
∑

i=1

si(λ
ig)k (64)

with

µk ∼ ak−(b+1) (65)

for some constant a as k → ∞, and that the limit process

Zt =
∞
∑

k=0

µkπt−k (66)

has a spectral density ∼ cω−2d if b < 0, for some constant c and
d = −b.

For example, what is the probability that the equilibrium price
will lie at least one standard deviation of Zt above P0 for a period
of 100 days? To isolate the effect of long memory on the bubble
probability, we normalize the variance of Zt to a constant 1 for
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all t and calculate P(
∑100

t=1 Zt > 100) = 1 − P(
∑100

t=1 Zt ≤ 100).
Recalling that Zt is a Gaussian process, we note that

100
∑

t=1

Zt ∼ N
(

0, 1′61001
)

(67)

where 1 is the 100 × 1 vector of ones, ·′ indicates the transpose,
and 6100 is the 100 × 100-dimensional covariance matrix of
(Z1, . . . ,Z100) with (i, j)-entries σZ

ij .

Case 1: Independence. Under time independence, i.e., if Zt were
iid, the entries σZ

ij in 6100 are equal to 0 for i 6= j and 1 for i = j.

Then

100
∑

t=1

Zt ∼ N (0, 100) (68)

and the probability P(
∑100

t=1 Zt > 100) ≃ 0.
Case 2: Short memory. Under the setup of [3], we have
exponentially decaying autocorrelations and the (i, j)-th entry of
6100 is

σZ
ij = λ

|i−j|
Z (69)

This corresponds to the yellow line in Figure 2. For comparison
purposes, we choose a value of λZ ≃ .77, which yields

100
∑

t=1

Zt ∼ N (0, 739) (70)

and the probability P(
∑100

t=1 Zt > 100) ≃ 0.0001173 or less than
1 in 8,500.

Case 3: Long memory. By contrast with the previous cases, we
see a significant probability of bubbles arising under the long
memory specification of the previous section, with coefficients as
in Equation (65). The (i, j)-th entry of 6100 is now

σZ
ij =

∞
∑

t=0

µtµt+|i−j| (71)

=
∞
∑

t=0

ct−(b+1)c(t + |i− j|)−(b+1) (72)

Figure 2 plots the first 100 autocorrelations for a parametrization
of b = −1/4 or λZ ≃ .77 (both yielding the same first-order
autocorrelations).

The slowly decaying off-diagonal entries of 6100 lead to a
much higher dispersion of the sum,

100
∑

t=1

Zt ∼ N (0, 3133) (73)

and the probability P(
∑100

t=1 Zt > 100) ≃ 0.037 or about 1 in 27.
Ceteris paribus, introducing long memory increased the chances
of a bubble by two orders of magnitude.

7. CONCLUSION

We mentioned in the introduction that the theoretical setting
in which bubbles are conceived has practical implications. If
bubbles can arise, as we have argued, even under idealized
circumstances—in a world of perfectly rational agents acting

FIGURE 2 | First 100 autocorrelations of the original, short-memory (yellow) and the modified, long-memory (blue) processes, where the parameters are chosen such

that the first-order autocorrelation is equal.
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in markets with no frictions or “limits of arbitrage”—then
they should be recognized as a general and system-immanent
feature of market economies. Continuing to view them as
aberrations, due to specific faults or circumstances, implies
that one can “lean against” or eradicate them by addressing
said faults or circumstances. This strikes us as an attempt to
suppress the tides. We favor building dykes instead, guarding
against their inevitable recurrence by increasing the robustness of
the system.

It is also not clear that bubbles are necessarily “bad.” Indeed,
another way to look at them is as the free-market alternative
of industrial policy, i.e. as a spontaneous and decentralized
way to achieve coordination, instead of the controlled and
centralized approach favored in statist economies. This would be
another argument against efforts to suppress bubbles. Alas, it is
undeniable that bubbles can have bad consequences, particularly
if they end in “crashes” or sudden ruptures which can destabilize
the system at large.

To make a rational policy tradeoff, we therefore need two
further elements, apart from the bubble itself: One, a model
of what might be termed “rational belief crashes,” noting that
there is no violent ending inherent in rational belief bubbles
themselves. This conforms to the view explored here that bubbles
and crashes are separate events and require separate theories. A
bubble does not have to end in a crash (it can deflate gently),
just as an asset price can crash without a bubble (adverse news,
e.g., in the form of a lawsuit, may arrive). The second element
that is needed is a welfare analytical model of how rational belief
bubbles and crashes fit into an economy with a production and a
banking sector.

In terms of empirical applications, we would like to see
an augmentation of current sentiment indicators with cross-
sectional quantities [recall 32, lemma 1]. This could lead

to a “real-time” bubble indicator based on disaggregated,
contemporaneous expectations. As far as we are aware, current
bubble indicators, which are used to monitor financial markets
and systemic risk, are based on historical data and/or estimates
of fundamental value.
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This paper examines the impact of Confucianism on firm performance, taking Chinese

listed companies from 2000 to 2018 as the research object. The results show that (1)

Confucianism provides legitimacy for a company’s profit-seeking behavior and therefore

helps to improve firm performance; and (2) Confucianism can effectively improve the

efficiency of supervision mechanisms but weaken the marginal contribution of incentive

mechanisms to financial performance. This paper provides empirical evidence for the

influence of Confucianism on firm performance, broadening the understanding of the

role of informal institutions in company finance and enriching the theory of “culture

and finance.”

Keywords: confucianism, firm performance, corporate governance, culture, supervision mechanisms

INTRODUCTION

In recent years, some studies have shown that in addition to economic factors affecting firm
performance, non-economic factors such as culture also play an important role in firm performance
[1, 2]. For China, a transition economy with imperfect institutions and still less efficient law
enforcement, informal systems such as culturemay play amore important role in firm performance.
For the Chinese society, Confucianism is the most far-reaching informal system; it shapes the
spirit of Chinese enterprises and may provide important spiritual support in the process of China’s
modernization. Confucianism is now once again faced with the possibility of rejuvenation in China
even after having gone through a century of obstruction, which will absolutely have an effect on
all aspects of China’s economy [3]. Therefore, by examining the impact of Confucianism on firm
performance, this paper attempts to discover how the informal system affects microenterprises and
thus boosts China’s economy.

It is not common to see empirical research on these issues because there are a series
of difficulties and controversies that arise in measuring the impact of culture on economic
behavior. Currently, the general methods used to measure culture’s effect mainly include the
Hofstede index [4], which focuses on the influence of cultures from different countries on
individual behavior. This index excludes “benevolence,” a main concept of Confucianism,
so it is difficult to use the index to objectively reflect the influence of Confucianism on
management behavior. In recent years, many scholars have started to use historical data to
explain the impact of culture and institutions on financial performance [5, 6]. Confucianism,
a mainstream ideology of ancient China, has accumulated for a long time and has gradually
become the criterion the public uses to think about and judge individual behavior. Therefore,
it is basically feasible to use historical data to measure Confucianism. After a comprehensive
consideration of the above factors, we chose the local records of the Qing Dynasty as the
basic data source and found proxy variables that indirectly measure Confucianism. Then, the
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financial data from A-share listed companies from 2000 to 2012
were selected as the sample for the research.

First, this paper studies the impact of Confucianism on
firm performance, showing that the greater the impact of
Confucianism on a company, the higher its profitability. This
statement implies that Confucianism not only legalizes a
company’s profit-seeking behavior but also contributes to its
capital appreciation and wealth creation. Second, the supervision
and incentive measures adopted by a company for the purpose
of improving profitability are all affected by Confucianism.
The empirical results show that Confucianism is conducive
to improving the efficiency of supervision while weakening
the marginal contribution of the incentive mechanisms to
corporate performance.

This paper has two main research contributions. First,
it attempts to combine empirical scientific methods with
Confucianism and establish a research framework, striving to
find a feasible path for empirical research on Confucianism.
Second, this paper studies the impact of Confucianism on
corporate performance by considering the combination of the
reality of Confucianism and corporate governance. The research
conclusions are of great theoretical significance not only for
academic circles seeking to rediscover Confucianism but also
for listed companies in the Chinese cultural context seeking
to choose appropriate governance mechanisms and government
departments to improve their supervision system.

This paper is arranged as follows: the second part is a literature
review and provides the research hypothesis; the third part
describes the measurement of variables and sample selection;
the fourth part provides the empirical research results; the fifth
part presents the robustness test; and the last part provides
the conclusion.

LITERATURE REVIEW AND RESEARCH
HYPOTHESIS

Literature Review
As shown in the literature on corporate finance, culture is defined
as the concept and related values of stabilizing intergeneration
inheritance through ethnic, religion, and social groups [7]. Byod
and Richerson [8] defined culture as “the knowledge, values and
other factors that are passed down from generation to generation
through education and imitation, and can influence behavior,”
and claimed that culture has the following functions: (1) culture
provides language-based information processing methods; and
(2) the ethics derived from a culture help to reduce the cost
of contract implementation and can effectively reduce the
externality caused by the free rider problem. Guiso et al. [6]
claimed that the intergenerational culture would affect the level
of trust an individual has with other partners, thus affecting
that individual’s behavior and financial performance. As a long-
term and stable informal institutional arrangement in a specific
region, culture may affect the quality of information disclosure
[9–11], tax behavior [12], business decision-making [6, 13], and
investment behavior [14, 15]. Similarly, firm performance is also
affected by external cultural factors.

Franke et al. [16] conducted an empirical study on cultural
and financial performance in 18 countries from 1965 to 1987.
The results show that power distance is positively correlated with
firm performance, while individualism is negatively correlated
with firm performance. Gorodnichenko and Roland [17] used
per capita GDP to measure financial performance. The empirical
results show that individualism is positively correlated with
corporate performance. The above empirical results imply that
it is difficult to use the Hofstadter index. In other words, the
regression results depend on indicators to measure corporate
performance, which makes the results unstable. Doney et al. [18]
studied the Hofstadter index and trust level and found that the
individualism orientation means that the trust process involves
rational calculations, and collectivism means that trust is more
predictable. Therefore, from the perspective of trust and firm
performance, both individualistic orientation and collectivistic
orientation may produce trust and affect corporate performance.
Furthermore, the empirical results of Fidrmuc and Marcus [9]
show that there is a significant positive correlation between the
individualism orientation and corporate performance.

In Chinese history, Confucianism was put forward by
Confucius in the Spring and Autumn period and then inherited
and developed by Mencius and others in the Warring States
period. After Emperor Wu of the Han Dynasty “ousted hundreds
of schools and respected Confucianism alone,” the combination
of Confucianism and feudal monarchy established a set of social
ethics and moral norms and became a tool for governors. For
a long time, Confucianism has been deeply rooted in Chinese
society and become the common people’s inadvertently held
ethics. Although the relationship between culture and corporate
performance has been discussed, there are few studies on
Confucianism and corporate performance.

Research Hypothesis
Traditional Chinese culture, for which Confucianism is the core,
has a long history of thousands of years, and it has gradually
become an indispensable component of the Chinese humanistic
environment. Companies operating in this environment may be
affected by Confucianism. Confucianism does not reject wealth
and even has positive significance for building wealth. Therefore,
the Confucian concept of wealth and the method used for
wealth building may affect the company’s management behavior
and decision-making, so they have a positive significance for
improving firm performance. Therefore, the following research
hypotheses are proposed:

Hypothesis 1:With all other conditions unchanged, the greater
the influence of Confucianism, the higher the profitability of
the company.

Prior studies show that formal and informal institutions
both impact corporate financial behavior [14]. Jebran et al.
[19] examined the monitoring role of institutional ownership
in the relationship between social trust and corporate financial
behavior. They found that institutional ownership, as a
formal governance system, weakens the influence of social
trust (informal institution) on corporate financial behavior.
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FIGURE 1 | Number of Confucian schools in the provinces of the Qing Dynasty. This figure plots the number of Confucian schools in the provinces of the Qing

Dynasty. The horizontal axis represents the provinces, and the vertical axis represents the number of Confucian schools.

In addition, [20] showed that foreign qualified institutional
investors can effectively monitor firms.

We conjecture that the influence of Confucianism on
firm performance will be weaker when a firm’s internal
governance mechanism is stronger. We argue that institutional
ownership, an internal governance system, can moderate the
relationship between Confucianism and firm performance. We
assume that greater institutional ownership indicates the use
of effective internal governance mechanism and thus informal
institutions, such as Confucianism, are less likely to influence
corporate decisions. Thus, the following research hypotheses
are proposed:
Hypothesis 2: With all other conditions unchanged, the
negative association between Confucianism and firm
performance is attenuated by institutional ownership.

VARIABLE MEASUREMENT AND SAMPLE
SELECTION

Independent Variable Measurement
As we all know, the most important feature of Confucianism
is that it seeks to improve human behavior through ethical
education. Confucian education in the Ming and Qing Dynasties
gradually shifted to secularization and popularization. The
academy was an important place for Confucian education in
the Ming Dynasty. During the Qing Dynasty, official schools
and academies laid the foundation for the popularization and
spread of Confucian education. In addition to the above historical
factors, the choice of attending a Confucian school as a proxy
variable was made in light of the following considerations. First,
North [21] generalized theory of the system into theory of
property rights, theory of the state, and theory of ideology and
believed that the role of education was to “instill a set of values

repeatedly.” Weber [22] claimed that the level of Confucian
education was closely related to the quality of education and
pointed out that the difference in the distribution of educational
institutions represents the strength of Confucian influence.

As mentioned above, Confucian schools are an important
source of Confucianism and have gradually developed a common
understanding with officials and intellectuals over a long period
of time. Therefore, it is impossible to directly measure the
influence of Confucianism; however, by using school choice
as a proxy variable it is possible to measure the influence of
Confucianism. Kwok and Tadesse [23] summarized institutional
theory as ownership theory, state theory and ideology theory
and believed that the social function of the education system
is connected with the inculcation of values. In other words,
consistent with the basic theory of institutional economies, we
choose Confucian schools as the proxy variable of Confucian
influence. Specifically, we choose the local chronicles of the Qing
Dynasty as the data source and record the number of official
schools (prefectural, state, and county) and academies within the
jurisdiction of the provinces, counties, and counties according
to the provincial administrative regions of the Qing Dynasty
and compare them with those in the jurisdiction of the People’s
Republic from 1796 to 1840 AD. The statistical results are shown
in Figure 1. During this timeframe, 3,284 Confucian educational
institutions operated within the scope of the Qing government.

When measuring the influence of culture on a region,
usually, two models are used. One is a regional model, and
the other is a distance model. Currently, the widely used
model is the distance model [24–27]. The greatest advantage
of the distance model is that it can use company-level data
to determine whether the explanatory variables represent the
research object itself, eliminating the influence of other factors.
Wines and Napier [28] claimed that the distance model has
more advantages than the regional model when considering the
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company or individual level. John et al. [29] used this model
to study investment decisions and dividend policies. After a
comprehensive consideration of the above factors, we chose the
distance model to measure the proxy variable.

The main calculation steps are as follows: First, the longitude
and latitude of the listed company are determined by using
through the Google Map icon; second, the longitude and latitude
of ancient schools (including official schools and colleges) are
determined. Finally, we calculate the distance between every
listed company and every ancient school according to their
respective longitudes and latitudes, following Equations (1–3)
shown below.

(i) We define the longitude and latitude of ancient schools (listed
companies) asωS and ϕS (ωF and ϕF), respectively. The central
angle (θ) is calculated via the following Equation (1):

cos θ = sinϕS × sinϕF + cosϕS × cosϕF × (ωS − ωF) (1)

(ii) We calculate the arc length per radian using the following
Equation (2):

Rad =
40075.04

360
×

180

π
(2)

(iii) Note that the distance between two points equals the length of
the minor arc across the surface of the earth. Therefore, we
calculate the distance between the location of every ancient

school and listed company using Equation (3), which is a
well-known equation used for GIS, as shown below:

Distance = rad×
(

π

2
− arctan

(

cos θ
√
1− cos2 θ

))

(3)

Finally, 100, 200, and 300 km are utilized as the distance criteria
or upper limits to calculate the number of ancient schools
and then define the variables School_100, School_200, and
School_300, respectively.

Control Variables
In this paper, the explained variate is firm performance, which
is measured by ROA (return on assets). ROA is calculated by
dividing EBIT by average total assets and reflects the economic
surplus contributed by the company to stakeholders such as
shareholders, creditors, and the government.

Based on the studies of Chen et al. [30] and Jebran et al. [19],
we add the following control variables to the regression model:
board size, board independence, management shareholding,
leverage, firm size, liquidity, fixed assets, CEO duality, GDP, and
the number of universities. GDP per capita is used to control for
the economic development level of the place (province) where
the company is registered and is calculated as the logarithm of
GDP per capita (lnGDP). Second, the higher education level of
Puritans has a larger direct impact on financial performance than
ideology [31]. This paper controls for the influence of local higher
education by using the number of 211 project universities in
the company’s registered place (province). Finally, the influence

TABLE 1 | Definitions and calculations of the variables.

Variable name Variable definition Description

ROA Return on assets of the company Earnings before interest and taxes/average total

assets

Tobin Q The ratio of market value to replacement value Market value/total assets

INST Holding proportion of institutional shareholder Data from CSMAR database

Board_size Broad size Logarithm of the number of directors

Board_ind Broad independence The ratio of independent directors to all directors

Man_share Holding proportion of management Data from CSMAR database

Lev Debt to asset ratio Data from CSMAR database

Firm size Firm size, measured by natural log of total assets Data from CSMAR database

Liquidity The average daily return to volume in the past month Data from CSMAR database

Fixed assets Fixed assets that are held for the production of goods or services and have a useful

life of more than one fiscal year

Data from CSMAR database

Duality An indicator variable that is equal to 1 if the CEO and the chairman of the board are

the same person, and 0 otherwise

Data from CSMAR database

School_100 Number of schools within 100 km from the registered address of the company Measure according to local chronicle

School_200 Number of schools within 200 km from the registered address of the company

School_300 Number of schools within 300 km from the registered address of the company

lnGDP The logarithm of the per capita GDP in the registered province Statistics yearbook (Website of National Bureau of

Statistics) http://www.stats.gov.cn/

University Numbers of Project 211 universities in the registered province Website of Ministry of Education http://www.moe.

gov.cn/

This table provides the definitions and calculations used for the variables. The first column is the variable name, the second column is the variable definition, and the third column is the

variable description.
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TABLE 2 | Descriptive statistics.

Variable name Sample observation Mean Standard deviation Minimum Median Maximum

School_100 20,121 0.122 0.049 0 0.132 0.223

School_200 20,121 0.229 0.103 0 0.242 0.505

School_300 20,121 0.224 0.095 0 0.243 0.501

ROA 20,121 0.053 0.052 −0.363 0.027 0.831

Tobin Q 20,121 3.231 2.478 0.435 3.125 23.742

INST 20,121 0.352 0.167 0.013 0.345 0.865

Board_size 20,121 2.008 0.196 1.055 2.132 2.677

Board_ind 20,121 0.324 0.103 0 0.232 0.600

Man_share 20,121 0.053 0.145 0 0 0.687

Lev 20,121 0.423 0.187 0 0.422 0.978

Firm size 20,121 21.234 25.673 19.231 21.537 24.435

Liquidity 20,121 2.219 7.234 0.122 1.343 65.443

Fixed assets 20,121 15.324 17.342 13.326 15.568 19.763

Duality 20,121 0.145 0.327 0 0 1

lnGDP 20,121 10.122 0.758 0.767 9.967 10.345

University 20,121 5.656 5.764 5.456 3.879 21.994

This table shows the descriptive statistics of the variables. The first column is the variable name, and the second column is the sample observation.

of industry and time also need to be considered [13, 14]; thus,
industry and year control variates are added to the regression.
Financial data related to corporate performance and governance
are all extracted from the CSMAR database. The data sources and
calculation methods are shown in Table 1.

Sample Selection
The sample selected for this empirical study is companies that
issued shares and were listed on the Shanghai or Shenzhen Stock
Exchanges from 2000 to 2018. After downloading information
from the CSMAR database, 22,111 primary samples were
obtained, among which were 342 financial industry samples in
total, 676 samples with operating incomes less than or equal to
0 or insolvent (leverage >100%), and 972 samples with missing
data. After eliminating the above 1990 samples, 20,121 valid
samples were obtained, accounting for more than 91% of the
primary samples. See Table 2 for the descriptive statistics of the
research variates.

Model
To test our hypothesis, we consider that firm performance is
a function of Confucianism and other control variables. The
regression equation is given as follows:

ROAit = β0 + β1∗School_numit +
m

∑

q=2

βq∗

(

qth ControlVariableit
)

+ Industry+ Year + εit (4)

where School_num represents the number of schools within
100 kilometers, 200 kilometers, and 300 kilometers of the
registered address of firm i at time t. We use control
variables, mainly including the shareholding ratio of the
institutional shareholders (INST), board size (Board_size), board
independence (Board_ind), management shareholding ratio

(Man_share), debt-to-asset ratio (Lev), firm size (Firm size),
liquidity (Liquidity), fixed assets (Fixed assets), CEO duality
(Duality), GDP (lnGDP), and the number of universities
(University). ε is the regression residual.

To test Hypothesis 2, the following regression equation is used
in this paper:

ROAit = β0 + β1∗School_numit∗INSTit +
m

∑

q=2

β∗
q

(

qth ControlVariableit
)

+ Industry+ Year + εit (5)

where INSTit denotes institutional ownership; the interaction
term, School_numit∗INSTit captures the moderating effect of
institutional ownership; and ControlVariableit denotes a set of
control variables.

THE EMPIRICAL RESEARCH RESULTS

Table 3 reports the regression results. The explanatory variable
in the first column is School_100, which is the number of
schools within 100 kilometers of the registered address of
the firm. The regression results show that the coefficient
of this variable is 0.0232, and it is significant at the 1%
confidence level. The explanatory variables in the second
and third columns are School_200 and School_300, and the
regression coefficients are 0.0132 and 0.0123, respectively;
these are significant at the 1% confidence level. The above
regression results indicate that as Confucian influence increases,
firm performance is enhanced. The empirical results support
Hypothesis 1.

Table 4 reports the regression results. In the first column,
the regression coefficient of the explanatory variable INST is
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TABLE 3 | The impact of Confucianism on firm performance.

School_100 0.0232***

(3.98)

School_200 0.0132***

(3.43)

School_300 0.0123***

(3.32)

INST 0.0354***

(13.15)

0.0381***

(13.09)

0.0351***

(13.05)

Board_size 0.0135***

(7.23)

0.0135***

(7.22)

0.0135***

(7.22)

Board_ind 0.0131**

(1.97)

0.0146**

(2.06)

0.0162**

(2.05)

Man_share 0.0306***

(9.67)

0.0312***

(10.02)

0.0318***

(10.03)

Lev −0.0682***

(−27.52)

−0.0665***

(−27.03)

−0.0698***

(−27.35)

Firm size 0.2313***

(4.23)

0.2412***

(4.33)

0.2431***

(4.54)

Liquidity 0.0081

(0.33)

0.0103

(0.41)

0.0114

(0.42)

Fixed assets 0.1543

(1.34)

0.1632

(1.43)

0.1521

(1.25)

Duality 0.0213

(0.87)

0.0204

(0.86)

0.0254

(0.91)

lnGDP 0.0056***

(5.28)

0.0055***

(5.53)

0.0052***

(5.25)

University −0.0003***

(−4.43)

−0.0003***

(−4.34)

−0.0003***

(−4.76)

Constant −0.0010

(−0.10)

−0.0040

(−0.38)

−0.0011

(−0.11)

Industry Control Control Control

Year Control Control Control

R² (%) 11.89 11.98 11.87

Sample capacity 20,121 20,121 20,121

F statistic 81.97*** 82.94*** 82.96***

This table shows the impact of Confucianism on firm performance. The dependent

variable is ROA, and the main independent variable is School_num (including School_100,

School_200, and School_300). The variable definitions are presented in Table 1. We

control for industry effects and year effects. The figures in parentheses are t-statistics.

**, *** indicate significance at the 5, and 1% confidence levels, respectively.

0.0316 (t = 8.59), and the regression coefficient of the cross-
multiplying term of School_100 and INST is 0.0489 (t =
2.62). The above results imply that as the shareholding ratio
of the institutional shareholder increases, firm performance
increases, which means that the supervision of the institutional
shareholder can effectively improve firm performance. The
significant positive correlation between the cross-multiplying
term of School_100 and INST and the explanatory variable
shows that as Confucian influence increases, institutional
shareholder supervision’s marginal contribution to financial
performance is enhanced. In conclusion, the regression results
provided in Table 4 show that the supervision measures
taken by the firm’s institutional shareholder to improve
financial performance are justified according to Confucianism,
and Confucianism can effectively improve the efficiency
of supervision.

TABLE 4 | Moderating effect of institutional ownership.

School_100*INST 0.0489***

(2.62)

School_200*INST 0.0257**

(2.54)

School_300*INST 0.1182***

(3.50)

INST 0.0316***

(8.59)

0.0317***

(8.62)

0.0299***

(8.32)

Board_size 0.0156***

(7.24)

0.0135***

(7.12)

0.0153***

(7.21)

Board_ind 0.0153*

(1.92)

0.0155**

(1.98)

0.0151**

(1.99)

Man_share 0.0312***

(10.09)

0.0321***

(10.11)

0.0320***

(10.12)

Lev −0.0675***

(−27.02)

−0.0675***

(−27.04)

−0.0677***

(−27.09)

Firm size 0.2254***

(4.26)

0.2389***

(4.45)

0.2129***

(4.09)

Liquidity 0.0102

(0.45)

0.0113

(0.48)

0.0093

(0.34)

Fixed assets 0.1432

(1.21)

0.1427

(1.19)

0.1321

(1.02)

Duality 0.0243

(0.86)

0.0231

(0.81)

0.0245

(0.88)

lnGDP 0.0052***

(5.46)

0.0056***

(5.76)

0.0052***

(5.34)

University −0.0003***

(−4.42)

−0.0003***

(−4.31)

−0.0004***

(−4.46)

Constant −0.0011

(−0.10)

−0.0028

(−0.29)

−0.0011

(−0.12)

Industry Control Control Control

Year Control Control Control

R² (%) 11.87 11.76 11.98

Sample capacity 20,121 20,121 20,121

F statistic 82.55*** 82.54*** 82.65***

This table reports the moderating effect of institutional ownership on the relation between

Confucianism and firm performance. The variable definitions are presented in Table 1. We

control for industry effects and year effects. The figures in parentheses are t-statistics. *,

**, *** indicate significance at the 10, 5, and 1% confidence levels, respectively.

ROBUSTNESS TEST

Alternative Proxy of Confucianism
To ensure the robustness of the regression results, we conducted
the following robustness test; that is, we selected the number
of Confucian schools in the provincial administrative areas
to replace the corresponding explanatory variables mentioned
above and performed another regression. In addition, referring
to the studies of Du [32], Chen et al. [30], Jebran et al.
[19], and Chen et al. [30], we measured Confucianism by the
distance between a firm’s registered address and 7 Confucian
centers in China. We calculated the geographical-proximity-
based Confucianism, CONFN

CONFN =
MaxDISN − DISN

MaxDISN −MinDISN
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TABLE 5 | Robustness test: independent variables School_pro and CONF.

School_pro 0.0362***

(6.35)

School_pro*INST 0.0819***

(6.12)

CONFN 0.1534**

(2.34)

CONF*N INST 0.3212**

(2.56)

INST 0.0369***

(13.25)

0.0272***

(8.21)

0.0432***

(14.43)

0.0532***

(15.23)

Board_size 0.0153***

(7.19)

0.0159***

(7.50)

0.0231***

(5.21)

0.0224***

(4.51)

Board_ind 0.0135*

(1.78)

0.0142*

(1.87)

0.0231**

(2.31)

0.0257***

(2.58)

Man_share 0.0303***

(9.55)

0.0309***

(9.66)

0.0231***

(4.87)

0.0203***

(4.43)

Lev −0.0673***

(−26.87)

−0.0656***

(−26.32)

−0.0532***

(−17.73)

−0.0521***

(−16.33)

Firm size 0.2413***

(4.23)

0.2132***

(3.81)

0.2768***

(5.42)

0.2543***

(5.05)

Liquidity 0 (0.12) 0.0023

(0.14)

0.0124

(0.54)

0.0321

(1.32)

Fixed assets 0.1922*

(1.68)

0.2065*

(1.73)

0.2013*

(1.73)

0.1987*

(1.66)

Duality 0.0312

(0.95)

0.0324

(1.01)

0.0214

(0.75)

0.0321

(0.87)

lnGDP 0.0072***

(7.29)

0.0073***

(7.30)

0.0123***

(6.62)

0.0121***

(6.53)

University −0.0003***

(−3.24)

−0.0005***

(−3.25)

−0.0032***

(−4.65)

−0.0023***

(−3.32)

Constant −0.0231**

(−2.31)

−0.0157*

(−1.65)

−0.0356***

(−3.32)

−0.0457***

(−4.25)

Industry Control Control Control Control

Year Control Control Control Control

R² (%) 12.09 12.13 9.09 12.12

Sample capacity 20,121 20,121 20,121 20,121

F statistic 83.79*** 81.15*** 74.21*** 81.59***

This table shows the results of the robustness test. The dependent variable is ROA, and

the main independent variables are School_pro and CONF. The variable definitions are

presented in Table 1. We control for industry effects and year effects. The figures in

parentheses are t-statistics. *, **, *** indicate significance at the 10, 5, and 1% confidence

levels, respectively.

where N denotes 7 Confucianism centers; DISN denotes the
distance between the firm and Confucianism center N;MaxDISN
and MinDISN represent the maximum and minimum values,
respectively, of DISN for all firms by year. The regression results
are shown in Table 5.

The explanatory variable in columns (1) and (2) of Table 5
is the total number of schools in the provincial administrative
areas. By observing the regression results, it is not difficult to
find that the number of schools in the provincial administrative
areas School_pro is significantly positively correlated with
the dependent variable and passes the significance test at
the 1% confidence level. Similarly, the cross-product terms
of School_pro and supervision mechanism are significantly
positively correlated with the explained variables, and both pass

TABLE 6 | Robustness test: dependent variable Tobin Q.

School_100 2.3213***

(3.32)

School_200 2.7625***

(3.54)

School_300 2.3342***

(3.26)

INST 0.5634***

(9.21)

0.5472***

(8.09)

0.4281***

(6.05)

Board_size 0.1321***

(4.24)

0.1353***

(4.65)

0.1224***

(4.17)

Board_ind 0.6534

(1.55)

0.4623

(1.16)

0.4322

(1.12)

Man_share 0.1282***

(4.03)

0.1321***

(4.21)

0.1223***

(3.86)

Lev −0.2721***

(−17.24)

−0.2323***

(−15.03)

−0.2431***

(−16.32)

Firm size 0.4323***

(3.24)

0.4873***

(3.54)

0.4313***

(3.27)

Liquidity 0.0112

(0.32)

0.0134

(0.35)

0.0105

(0.32)

Fixed assets 0.2341

(1.20)

0.2512

(1.53)

0.2132

(1.12)

Duality 0.1321

(0.37)

0.1043

(0.26)

0.1546

(0.51)

lnGDP 0.0323***

(4.12)

0.0344***

(4.53)

0.0422***

(5.21)

University −0.0011***

(−3.21)

−0.0013***

(−3.34)

−0.0010***

(−3.06)

Constant −0.0234

(−0.12)

−0.0543

(−0.28)

−0.0312

(−0.21)

Industry Control Control Control

Year Control Control Control

R² (%) 14.23 14.28 13.67

Sample capacity 20,121 20,121 20,121

F statistic 88.21*** 86.44*** 85.45***

This table shows the results of robustness test. The dependent variable is Tobin Q, and the

main independent variable is the School_num (including School_100, School_200, and

School_300). Variable definitions are presented in Table 1. We also control the industry

effect and the year effect. Figures in parentheses are t-statistics. *** are significant at 1%

confidence level.

the significance test the 1% confidence level. In addition, we
measure Confucianism by the distance between the registered
address of the company and the seven Confucian centers in
China. The regression results are shown in columns (3) and (4) of
Table 5 and are similar to the previous regression results. CONFN
is significantly positively correlated with the dependent variable.
Similarly, the cross-product terms of CONFN and INST are
significantly positively correlated with the dependent variable.

Alternative Proxy of Firm Performance
To ensure the robustness of the model, we use Tobin Q as a
substitute of ROA and repeat the above regression to measure the
influence of Confucianism on firm performance. The regression
results are shown in Table 6.

The regression results showed that the coefficients of the
independent variables (school_100, shool_200, and school_300)
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are all significant at the 1% confidence level, indicating that
firm performance increases with the increasing influence of
Confucianism; this result is similar to the results shown
in Table 3.

We also carried out additional robustness tests by (1) replacing
the explained variable ROA with the industry-adjusted ROA,
that is, considering the influence of industry factors; and (2)
considering the impact of the financial crisis; that is, the
timeframe of the study was divided into two periods, 2000–2007
and 2008–2012. The results of these tests are very similar to the
previous regression results. Due to space limitations, we do not
report the results of these tests.

CONCLUSION

This paper examines the impact of Confucianism on firm
performance, taking Chinese listed companies from 2000
to 2018 as the research object. The following conclusions
are obtained. (1) Confucianism provides legitimacy for the
company’s profit-seeking behavior and therefore helps to
improve firm performance. (2) Confucianism can effectively
improve the efficiency of supervision mechanisms but weakens

the marginal contribution of incentive mechanisms to financial
performance. This paper provides empirical evidence on the
influence of Confucianism on firm performance, broadening the
understanding of the role of informal institutions in company
finance and enriching theory on “culture and finance.”
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In this mini-review, we critically examine the recent work done on correlation-based

networks in financial systems. The structure of empirical correlation matrices constructed

from the financial market data changes as the individual stock prices fluctuate with time,

showing interesting evolutionary patterns, especially during critical events such asmarket

crashes, bubbles, etc. We show that the study of correlation-based networks and their

evolution with time is useful for extracting important information of the underlying market

dynamics. Also, we present our perspective on the use of recently-developed entropy

measures, such as structural entropy and eigen-entropy, for continuous monitoring of

correlation-based networks.

Keywords: econophysics, random matrix theory, correlation, networks, minimum spanning trees, clustering,

financial networks

1. INTRODUCTION

Network science [1–4] has emerged as an important tool for studying different complex
phenomena– spread of infectious diseases [5, 6], economic production [7], construction of robust
sustainable infrastructure and technological networks [8], processing human information [9],
innovation diffusion [10], detection of financial crashes [11–13], etc. In this mini-review, we
focus on the role of network science in understanding complex financial markets. Our aims are
two-fold: (i) To uncover the structure of the complex interactions among stocks at a particular
period of time (static picture) through correlation-based networks, where the nodes represent the
stocks in the financial market, and the links represent the interaction strengths of co-movements
of stocks (as measured by correlations). For this purpose, one starts with computing the cross-
correlations among stock price returns and then constructs any of the correlation-based networks–
Minimum Spanning Tree (MST) [14, 15], Threshold Network [16], Planar Maximally Filtered
Graph (PMFG) [17], etc. Using these networks, one can identify stocks (or sectors) that are in the
“core” or “periphery” [18], as well as study their hierarchy/importance of the different stocks driving
the market fluctuations. The correlations among stocks change with time, and the underlying
dynamics of the market produces very intriguing and correlation structures. Temporal networks
are those networks in which links are time dependent [19] and are useful for studying systems in
which connections change or evolve with time. Correlation-based networks in the stock market
are therefore temporal networks, because their links (constructed from correlation values) change
or evolve with time. The understanding of the stock market dynamics can be very important
for practical applications like portfolio optimization, risk management, etc. (ii) To continuously
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monitor (dynamic picture) the health and fragility of the financial
market. The market index, which is a weighted arithmetic
mean of the prices of selected stocks in the market, reflects
the performance of the market and assists agents in comparing
the current price levels relative to past prices. The daily index
return is the difference of the logarithmic values of the index (at
market closure) over a period of 1 day. Thus, for the purpose
of continuous monitoring of the financial market, we study the
temporal evolution of the market index returns along with two
entropy measures, structural entropy [20] and eigen-entropy [21].
This becomes very useful and necessary for measuring the
systemic risk, market regulation and predicting downturns or
crashes [22], since there often exist sizable fluctuations during
crashes and bubbles.

2. CORRELATION-BASED NETWORKS

Mantegna first studied the hierarchical structures of correlation-
based networks in financial markets [14, 15]. Later, similar
studies of correlation-based networks were made (see, e.g., [23–
25]). These correlation-based networks provided easy visual
representations of multivariate time series and extracted
meaningful information about the complex market dynamics.
The analysis of evolution of correlation-based networks provides
an understanding of the underlying market trends, especially
during periods of crisis [16]. For the construction of a
correlation-based network to represent N stocks in a financial
market in a time-epoch ending on date τ , one begins with the
correlationmatrix,C(τ ), and uses a transformation to construct a
distance matrix,D(τ ) =

√
2(1− C(τ )) (for mathematical details,

see Supplementary Material).

2.1. Minimum Spanning Tree
MST is constructed by using the distances dij’s, which represent
the interaction strengths (correlations) between pairs of stocks
i, j = 1, . . . ,N in a market for a specific time window, such
that all N nodes (stocks) are connected with exactly N − 1
edges under the constraint that total distance is minimum [25–
27]. Algorithms due to Kruskal or Prim are generally utilized
to obtain MST from a distance matrix. For a non-degenerate
distance matrix, the MST is uniquely determined. Two of the
main advantages of MST are that: (i) it produces a network
structure without putting any arbitrary threshold, and (ii) it has
property of inherent hierarchical clustering. There have been
many papers with applications of MST in equity markets [16,
18], currency exchange rates [28], global foreign exchange
dynamics [29]. MST is useful for studying the taxonomy
or the sector classification [30], with potential applications
in portfolio optimization. Researchers have also carried out
analysis of dynamical correlations using MST [24]. Among
disadvantages, there is the fact that the order and classification
of nodes in a cluster of MST is not robust, and often sensitive
to minor changes in correlations or spurious correlations.
Therefore, for improvement of results, either noise suppression
techniques like Random Matrix Theory (RMT) [31] and power
mapping [13] have been used, or alternative algorithms such as
PMFG, Triangulated Maximally Filtered Graph, Average Linkage

Minimum Spanning Tree, Directed Bubble Hierarchical Tree [17,
32–35] have been proposed. Instead of using pair-wise Pearson
correlations, partial correlations and mutual information have
also been explored in some studies [36, 37].

2.2. Threshold Networks
In this approach, an adjacency matrix is constructed by applying
a threshold value in the correlation (Cij) or distance (dij) of
the network. It filters out the strongest correlations (or shortest
distances) by putting a certain value of threshold and discard
the remaining correlations/distances. A high threshold value
in the distance gives rise to a completely connected graph
(one extreme), while decreasing value of threshold makes the
connections less and less, until one gets a null network (at
the other extreme). Thus, one can tune the threshold in order
to get the desired strength of correlations. For a particular
value of threshold, as correlation matrices change with time, the
threshold networks also change (see Supplementary Material).
One drawback of the threshold networks is that we do not get a
spanning graph, and therefore, there is a “loss of information”;
when we put a threshold value we discard some nodes and edges.
Also, threshold networks are found to be very sensitive to the
noise (random fluctuations).

2.3. Planar Maximally Filtered Graph
PMFG is a network drawn in a plane, such that there are no
intersecting links [17, 38]. If N is total number of stocks, then
it contains 3(N − 2) links. The PMFG has the advantage that it
retains the structure of MST (which contains N − 1 links) and
provides additional information about the connections [17, 32].
However, PMFG has a disadvantage that there exists a certain
arbitrariness in its results, as there is an embedding of data from
higher dimension to lower dimension with a zero genus [39].
Recently, PMFG and threshold network have been combined
to produce PMFG-based threshold networks [40]. Threshold
networks of the financial market are constructed over multi-scale
and at multi-threshold [41].

3. ENTROPY MEASURES

As in other domains, entropy has also been used to understand
the financial hazards as well as to construct an early warning
indicator for predicting systematic risks [42, 43]. Maasoumi
and Racine examined the predictability of the market returns
using entropy measure and found that it is capable to detect
the non-linear dependence within the time series of market
returns as well as between returns and other prediction variables
obtained from other models [44]. Recently, Ricci curvature and
entropy have been used to construct an economic indicator for
market fragility and systemic risk [45]. Very recently, Almog
et al. presented a perspective on the use of entropy measures
such as structural entropy [20], which is computed from the
communities in correlation-based networks. Chakraborti et al.
computed the eigen-entropy from the eigen-vector centrality of
the stocks in the correlation-based network [21]. Below, we
discuss the structural entropy [20] and eigen-entropy [21], and
compare the two measures.
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3.1. Structural Entropy
The concept of structural entropy has resolved the problem
of choosing different period of crisis and extracting substantial
information from the large network of stock market. The
structural entropy measures the amount of heterogeneity of
the network nodes with an assumption that more connected
nodes share common attributes than others. The authors assume
the nature of clusters to be independent sub-units of the
network. The process of calculating the structural entropy
involves two steps: (i) Calculation of an optimal partition
function which places every node in a certain cluster using
a community detection algorithm. (ii) Analysing the partition
function and extracting the representative value of the diversity
level (for mathematical details and schematic diagram, see
Supplementary Material). The formula for Shannon’s entropy is
applied: S(EP) ≡ −

∑M
i=1 Pi ln (Pi), in terms of probability vector

EP ≡
[

c1
N , c2N , . . . , cMN

]

, whereM is the number of communities and
ci is the size of community i (proportional size of the community
in the network).

Structural entropy S of the network provides a way to
continuously monitor the state of the network. However, it
is sensitive to the choice of community detection algorithm
employed in detecting communities. This arbitrariness makes the
calculation of entropy dependent on the choice of the user and
hence is not unique.

3.2. Eigen-Entropy
Very recently, the concept of eigen-entropy was used in
studying financial markets [21]. It is computed from eigen-
centrality of the network obtained from the short time
series correlation matrices [21, 46]. In order to capture the
global feature of the network, every node is ranked by its
eigen-centrality (for mathematical details and schematic
diagram, see Supplementary Material). The similarity of
the eigen-centralities (ranks) of the stocks is uniquely measured
by eigen-entropy, defined as H = −

∑N
i=1 pi ln pi, where pi is the

eigen-centrality of the i-th node (stock). Higher the similarity of
the stock centralities, higher the eigen-entropy.

Empirical correlation matrix of the market may be
decomposed in multiple ways. In many papers, it was
decomposed into three separated modes, market mode CM ,
the group mode CG and the random mode CR. However,
it is difficult (and somewhat arbitrary) to choose the range
of eigenvalues corresponding to the group mode CG and
the random mode CR, as the boundary is not often distinct.
Another way to decompose is to consider the market mode CM

(corresponding to the maximum eigenvalue) and the group-
random modes CGR (rest of the eigenvalues), hence without
any arbitrariness. CM&CGR is the preferable decomposition and
corresponding eigen-entropyHM andHGR could be calculated as
AM = |CM|2 (matrix element-wise) and AGR = |CGR|2 (matrix
element-wise), respectively. The eigen-entropy computed using
above method gives a simple yet robust measure to quantify the
randomness of the financial market without using any arbitrary
thresholds. Further, Chakraborti et al. [21] used the variables
H − HM and H − HGR to construct a phase space, where
the market epochs show phase separation and order-disorder

transitions. These results are certainly of deep significance for
the understanding of financial market behavior and designing
strategies for risk management.

4. EMPIRICAL ANALYSES AND RESULTS

We have analyzed stock prices of the S&P500 USA market for
the period of 1985-2016 (for details of data and methodology, see
Supplementary Material), and made some plots of correlation-
based networks as well as entropy measures, as presented below
as well as in the Supplementary Material. In order to illustrate
the usage and concepts of correlation-based networks and
entropy measures, we have compared three correlation frames
chosen arbitrarily from crash, bubble and normal periods of
the market. It may be mentioned that during a market crash
there is a sharp fall in the index return and all the stocks start
behaving similarly; the whole market begins to act like a single
huge cluster or community. During a bubble period, a particular
sector gets overpriced or over-performs, causing accentuation of
disparities among the various sectors or communities. In both
the crash and bubble periods, there are sizable fluctuations (as
mentioned earlier in the introduction) and consequently market
volatility (see Supplementary Material for definition) is higher
than the normal period. In the normal or business-as-usual
period, there are several distinct sectors performing well, but the
market volatility is low.

Figure 1 shows the analysis for three time-epoch of 40
days ending at: (first column) 23/07/1985, (second column)
08/01/2007, and (third column) 17/06/2010. Figures 1A–C

show the heat-map of correlation matrices at three different
periods. It shows the amount of correlation between N =
194 stocks of S&P 500 at different time periods: (Figure 1A)
normal period (23/07/1985), whenmarket behaves normally with
low mean correlation between the stocks, (Figure 1B) bubble
period (08/01/2007), when market experienced an upward drift
in price in some sectors only and (Figure 1C) crash period
(17/06/2010), when the market experienced huge recession. The
corresponding MST’s are shown in Figures 1D–F, which have
been generated using the Prim’s algorithm. Different colors
in MST’s correspond to different sectors in the market. The
different market structures reflected in the correlation matrix
are also visible in the correlation based Threshold Networks
Figures 1G–I with threshold (dij ≤ 1) and PMFG’s Figures 1J–L.

During the normal phase (Figures 1A,D,G,J) the market
interactions are well-distributed across the stocks and the mean
market correlations are not very high and the volatility is
low (see Supplementary Material). During the bubble period
(Figures 1B,E,H,K) certain sectors of stocks are more correlated
with each other than the rest of stocks in the market. As visible in
Figure 1H, few of the stocks are bunched together. This property
is pronounced during times when a particular sector experiences
a surge, e.g., during the dot-com bubble period, where the IT
sector saw a boost but not the entire market. During the crashes
(for the list, see Supplementary Material), the entire S&Pmarket
react in a similar way, which made the stocks in the market
extremely correlated with each other (Figures 1C,F,I,L).
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FIGURE 1 | Static correlation-based networks: Analysis of S&P 500 market with 194 stocks (epoch of 40 days) for three different periods: first, second, and third

columns are corresponding to 23/07/1985 (normal period), 08/01/2007 (bubble period), and 17/06/2010 (crash period), respectively. (A–C) are heat maps of

correlation matrices of different periods. Minimum Spanning Trees are shown in (D–F). From (G–I), Threshold Networks at a particular value of threshold. Planar

Maximally Filtered Graphs (J–L) for three different periods.

Figure 2 shows how the entropy measures may be used for
continuous monitoring of the financial markets. Figures 2A–C
show the evolution of S&P 500 market over a period of

1985 − 2016 for index returns r(τ ), eigen-entropies H(τ ), and
structural entropy S(τ ), respectively. Three vertical dashed line
are corresponding to epochs ending at 23/07/1985, 08/01/2007,
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FIGURE 2 | Continuous monitoring of S&P 500 market with 194 stocks and for a rolling time-epoch of 40 days and shift of 20 days over a period of 1985− 2016:

The logarithmic returns of S&P 500 index is shown in (A). (B) Shows the temporal evolution of a new measurement “eigen-entropy” H(τ ), calculated from eigen-vector

centralities of correlation matrices. Evolution of structural entropy S(τ ) calculated by using community detection algorithm is shown in (C). The dashed vertical lines are

corresponding to different periods (normal, bubble, and crash) whose static results are shown in Figure 1.

and 17/06/2010. We find that the Pearson correlation among
the two measures S(τ ) and H(τ ) is −0.22, which indicates that
the two measures are anti-correlated. The two entropy measures
actually capture different aspects of the financial market.

The structural entropy is based on the idea of “structural
diversity” in a network, and it was proposed to utilize the number
of communities in a system and their corresponding sizes. In
a way, the structural entropy tries to capture the amount of
heterogeneity of the nodes in the network, with the assumption
that nodes which share common attributes belong to the same
community [39, 47]. The structural entropy reaches maximum
(lnN), when the community structure is heterogeneous– there
areN communities of equal size (unity), i.e., each node is assigned
to a different community; it reaches minimum (zero), when all
theN nodes are assigned to a single community. During a market
crash, the market is extremely correlated and all stocks behave
in a similar way as if belonging to a single community. Hence,
the structural entropy decreases significantly (see also figure in
Supplementary Material).

The eigen-entropy measures how similar the eigen-centrality
ranks of the stocks are. The eigen-entropy reaches its maximum
value (lnN), when all the centralities are of similar value, i.e., all
the individual nodes have similar rank/importance, such that the
variance of the eigen-centralities becomes low. From the return
time series point of view, this occurs when all of stock prices are
entirely uncorrelated such that the market is totally disordered
(or random)—indicative of the lack of any group or sectoral

structures, or when the market is extremely correlated such that
all the stocks behave in a similar way. During a market crash, the
market is extremely correlated and all stocks behave in a similar
way and so the eigen-entropy increases significantly.

5. DISCUSSIONS AND CONCLUDING
REMARKS

In this review, we have discussed different methods for analysis
of static and dynamic correlation-based networks of financial
markets, and also studied how entropy measures can be used to
identify normal, bubble, and crash periods. Specifically, we have
compared the recently developed concepts of structural entropy
and eigen-entropy.

It is noteworthy that financial networks are naturally
“weighted,” as each link bears a numeric value representing the
correlation between the nodes (stocks). In a recent paper [48],
it has been shown how real weighted network with large
link weights heterogeneity may lower robustness in case of
nodes/links failure. It would be interesting to see how these
methods could be used to increase the robustness in context of
financial networks.

We have also seen that many of the correlation-based
networks have shown clustering with communities of stocks.
Thus, community detection in network science serves as
an important technique for extraction of the clustering
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information from empirical correlation matrix of a multivariate
time series. Several community detection algorithms have
been proposed [39, 47, 49]. The problem is that different
community detection algorithms yield different results for
the same empirical correlation matrix. So, often domain
knowledge is required to determine what is a sensible or
meaningful community.

Further, we have seen that many of the networks are sensitive
to noise or spurious correlations. Properties of random matrices
[50] have turned out to be useful in reducing noise and
thus understanding dynamics of complex systems [51]. An
ensemble of random matrices, also known as stationary or
standard random (Gaussian) matrix ensemble [50], introduced
by Wigner [52, 53], have been applied to many studies in
physics, biology, finance, etc. (see [54] and references therein).
The probability distribution of eigenvalues ofWishart orthogonal
ensemble (WOE) followsMarc̆enko-Pastur distribution [55]. The
empirical correlation matrix of a complex system is normally
compared with WOE [24, 31, 56]. It has been observed from
eigenvalues statistics of empirical correlation matrices that
the few largest eigenvalues show deviations from the Wishart
ensemble. Note that Pearson cross-correlation assumes that the
time series are stationary, which are valid for shorter lengths
of time series. However, if the number of time series are
greater than the lengths of time series, then corresponding
empirical correlation matrices are noisy and highly singular.
For such short time series, there is a great need of noise
suppression in correlation matrix to extract actual correlations.
There are different techniques for suppressing the noise in
correlation matrix [57–59]. Notably, any empirical correlation
matrix of financial market can be decomposed into partial
correlations, consisting of market CM , group CG and random CR

modes, respectively [60]. It enables us to identify the dominant
stocks, sectors and inherent structures of the market. Recently,
detailed analyses of the empirical correlationmatrices using these
approaches have been carried out to understand the complexity

in dynamics of stock market [13, 51, 61]. It has been found
that during the crisis, the eigenvalue spectrum behaves very
differently from one corresponding to a normal period.

Finally, we must mention that the prediction of collapses of
financial markets using traditional economic theories has been
a disastrous failure. These new and alternate methods have the
potential use of continuous monitoring and understanding of the
complex structures and dynamics of financial markets. These are
a few of the attempts physicists have made for generation of early
warning signals for crisis, and these methods can be used for
timely intervention.
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Chi Zhang, Shuang Liang, Fei Lyu and Libing Fang*
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Deep learning algorithms’ powerful capabilities for extracting useful latent information

give them the potential to outperform traditional financial models in solving problems

of the stock market which is a complex system. In this paper, we explore the use of

advanced deep learning algorithms for stock-index tracking. We partially replicate the

CSI 300 Index by optimizing with respect to the difference between the returns of the

tracking portfolio and the target index. We extract the complex non-linear relationship

between index constituents and select a subset of constituents to construct a dynamic

tracking portfolio by six well-known auto-encoders (single-hidden-layer undercomplete,

sparse, contractive, stacked, denoising, and variational auto-encoders) that have been

widely used in contexts other than stock-index tracking. Empirical results show that the

auto-encoder-based strategies perform better than conventional ones when the tracking

portfolio is constructed with a small number of stocks. Furthermore, strategies based on

auto-encoders capable of learning high-capacity encodings of the input, such as sparse

and denoising auto-encoders, have even better tracking performance. Our findings offer

evidence that deep learning algorithms with explicitly designed hierarchical architectures

are suitable for index tracking problems.

Keywords: stock-index tracking, complex system, deep learning, auto-encoders, non-linear relationship

INTRODUCTION

The market index system has evolved with the development of the securities market. Financial
products such as index funds, index futures, and index options emerge endlessly, indicating that
indexing investment has won the favor of investors, especially institutional investors. Traditional
investment based on the analysis of timing and stock fundamentals is an actively managed strategy,
whereas indexing investment is passively managed. By constructing a portfolio to track a market
index, investors expect to obtain the same return and volatility as the target index, with relatively
lower risk and management cost, as well as better liquidity. The choice of how to construct a
tracking portfolio (i.e., of an index tracking method) is crucial for the management of index
funds, for hedging or arbitrage through index financial derivatives such as index futures, and
for maximizing the performance of index investment generally. At the present time, the tracking
methods utilized with stock index funds are fairly homogeneous but the tracking errors differ
significantly. Therefore, there is great value in attempting to improve index tracking technology.
In recent years, the rapid development of computer technologies and the discipline of quantitative
finance especially make it possible to propose more effective index tracking methods.

The many index tracking strategies that have been put forward in theory and practice can be
divided into full replication strategies and optimization strategies [1]. In the full replicationmethod,
all the constituent securities of the target index are purchased and allocated the same weights
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that they have in the index. Although full replication is easy
to manage and operate and is highly consistent with the target
index, it has many unavoidable defects. Its large portfolio size
brings high transaction costs and large tracking errors [2]; some
of the constituent securities may not be traded due to liquidity
problems; the adverse effects of individual securities cannot be
avoided; etc. In the optimization method, the historical data of
the components are analyzed and a suitable number of assets
for inclusion in the tracking portfolio are selected with the help
of advanced algorithms. Thus, fewer securities are required to
achieve the purpose of indexing investment [3]. Compared with
full replication, the optimization method can significantly reduce
management costs and increase tracking efficiency, advantages
which have made it the focus of much current academic research.

Among the most widely applied approaches for selecting a
subset of constituent stocks are market-value ranking, weight
ranking, liquidity ranking [4], correlation coefficient ranking,
random sampling, stratified sampling [5], and genetic algorithms
[6]. However, these established stock selection approaches fail
to collect and utilize adequately historical information about
constituent stocks, target indexes, and the correlations between
them. Therefore, it is necessary to develop new techniques.

The goal of index tracking is to make the return of the
tracking portfolio as close as possible to the return of the
target index. There are two main indicators used to evaluate
the performance of index tracking: the standard deviation of
the difference between the return of the tracking portfolio
and that of the benchmark index [7] and the square root
of the second-order moment of the difference [8]. There are
also other, less common metrics for measuring tracking errors,
such as Mean Absolute Deviation (MAD), Maximum Absolute
Deviation (Max), Mean Absolute Downside Deviation (MADD),
and Downside Maximum Absolute Deviation (DMax) [8]. The
objective function can be constructed by minimizing one of
the tracking errors defined above; the weight allocations of the
tracking portfolio can then be obtained. When the tracking error
is defined as the square root of second-order moment of the
return difference, minimizing it requires a quadric programming
model, and therefore its optimal solution can be found by best
linear unbiased estimation (BLUE) [9], a standard econometric
method. We will use this model to construct a tracking portfolio.

SinceMarkowitz [10] first proposed themean-variancemodel,
themeasurement of index tracking errors and optimal replication
methods have generated an extensive literature. For example,
Roll [11] studies partial replication of the index by optimizing
with respect to the volatility of the tracking error based on
Markowitz’s mean-variance model. Ammann and Tobler [12]
present four suitable decompositions of tracking error variance.
Dunis and Ho [13] introduce the concept of co-integration into
the problem of index tracking optimization and obtain good
tracking performance. Chiam et al. [14] build a multi-objective
evolutionary system that can simultaneously optimize tracking
performance and transaction cost to track the index. Filippi et al.
[15] focuses on the problem of index tracking with consideration
of the expected excess return, using a bi-objective approach.

Machine learning algorithms have made dramatic progress
over the past four decades, and applications for them have

been found in various disciplines, including financial asset
management. The tools of machine learning have notable
advantages in solving asset management problems. Asset
managers can use machine learning techniques to identify
underlying assets by discovering new patterns in a complex
system and immediately make investment decisions based these
insights. Further, machine learning algorithms enable new forms
of data, such as data in graphic and sound formats, to be used
as input to models, helping investment managers better analyze
the market trend. In addition, machine learning algorithms may
also reduce the negative impact of human subjective biases on
investment decisions. Consequently, a growing body of research
takes advantage of machine learning algorithms to study asset
management or index tracking. Focardi and Fabozzi [16] propose
to use clustering for constructing index tracking portfolios.
They cluster co-integrated stocks based on Euclidean distances
between stock price series and select one stock from each cluster
to include in the tracking portfolio. Yang et al. [17] study the
index-tracking problem by applying a support-vector machine
model. Their empirical results show the model performs robustly
on tracking the Hang Seng Index (HSI). Jeurissen and Berg
[18] use a hybrid genetic algorithm, where each chromosome
represents a subset of the stocks, to address the problem of
stock index tracking by partial replication. A backpropagation-
based neural network has been built by Zorin and Borisov
[19] to form full replication of the stock index (although the
tracking performance is not as good as expected). Fernández
and Gómez [20] propose a heuristic solution for the portfolio
selection problem based on the Hopfield network, but their
results demonstrate no superiority over other heuristic models.
By analyzing data from the Brazilian stock market, Freitas
et al. [21] find a neural network model that outperforms the
Markowitz’s mean-variance model in portfolio optimization.
Chen et al. [22] propose a flexible neural tree ensemble model to
predict the NASDAQ-100 and S&P CNX NIFTY stock indexes,
achieving reliable forecast performance. Wu et al. [23] use the
non-negative-lasso method to fit and predict the CSI 300 Index
with short-selling constraints; the results indicate that non-
negative lasso can achieve a small tracking error.

Recently, with the rapid development of deep-learning
technology, methods based on artificial intelligence have enjoyed
unprecedented popularity [24]. One approach involves applying
deep learning algorithms to the problem of index replication
since the stock market is a complex system. A portfolio
construction approach based on deep learning is first proposed
in academia by Heaton et al. [25]. Ouyang et al. [26] have
subsequently expanded this framework by including a dynamic
asset-weight calculation method and implemented this model
to track the HSI. However, their optimized asset weights
may become negative, contrary to traditional asset allocation
implementations. In order to accomplish partial replication,
both Heaton et al. [25] and Ouyang et al. [26] select stocks by
measuring the Euclidean distance between the original returns
and the reconstructed returns of the index components using
auto-encoders, which are the core elements of their frameworks.

Kim and Kim [27] argue that such an asset selection criterion
is artificial. They modify it by constructing an auto-encoder in
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such a way that the deepest hidden layer has only one node
(a proxy for the market index) and measuring the similarity of
this latent representation to individual asset returns. We disagree
with this approach. If an auto-encoder uses non-linear activation
functions, then the deepest latent representations are non-linear
combinations of the input original asset returns and capture some
complex abstract features of the market index. Although these
features can represent the market index, it is generally difficult
to find their corresponding economic meanings. The candidate
asset returns’ similarities to these abstract features are not equal
or even related to their similarities to the target index returns. A
selection criterion based on this measure would therefore seem
to be meaningless. Moreover, the extremely contractive structure
of the auto-encoder with a single-node deepest latent layer may
result in excessive loss of input information. None of the above
three papers [25–27] suggests that the index tracking approach
based on deep learning algorithms can outperform traditional
index tracking techniques. Evidence is needed that deep learning
is sufficiently advanced to handle index tracking problems.
Moreover, various auto-encoders with more complex structures
and better properties have been developed; it is reasonable to ask
whether they can improve the performance of stock selection.

Based on the framework proposed by Heaton et al. [25],
this paper investigates the applications of various auto-encoder
deep-learning architectures in selecting representative stocks
from the index constituents. The stocks are also selected by
measuring the Euclidean distance between the original returns
and the reconstructed ones. We then build dynamic tracking
portfolios with the selected stocks to partially replicate the
return of the index and evaluate their tracking performances.
This article differs from Heaton et al. [25] and other related
papers in several respects. First, we examine the effectiveness
not only of the single-hidden-layer undercomplete auto-encoder
but also of five other auto-encoders widely used in academe and
industry, including the stacked auto-encoder and the denoising
auto-encoder. Second, we propose a method for constructing
dynamic tracking portfolios. The weights of the stocks in the
tracking portfolio are calculated and adjusted periodically. This is
more feasible and appropriate for practical indexing investment
than what is done in other deep-learning methods. Third, we
introduce two conventional stock selection strategies (weight
ranking and market-value ranking) in addition to the strategies
implemented by auto-encoders. The tracking performances of
all these strategies in selecting various numbers of stocks are
contrasted to confirm the advantages of applying auto-encoders.

The rest of the paper is organized as follows: section
Methodology outlines the related algorithms and how they
will be implemented. Section Empirical Analysis details our
experimental setups for index tracking and presents the empirical
results and discussion. Section Conclusions concludes the paper.

METHODOLOGY

Stock Selection Using Auto-Encoders
Auto-encoders are a special case of feedforward neural networks
[28]. They are generally used for dimensionality reduction and
feature extraction. Recently, they have also been employed as

FIGURE 1 | General processing flow of an auto-encoder.

generativemodels to produce, for example, pictures. Unlike other
feedforward neural networks, auto-encoders use unsupervised
learning; their task is to copy the input to the output. An auto-
encoder is composed of an encoder and a decoder. In Figure 1,
x represents the input data; f (x) represents the encoder, forming
a hidden layer h that discovers some latent state representation
of the input; and g(h) = g(f (x)) represents the decoder,
which produces a reconstruction x

′. In general, the learning
process of an auto-encoder can be described as minimizing
the reconstruction error L(x, g(f (x))), which is defined as the
difference between x and x

′. The output of an auto-encoder is
worthless if it is simply a copy of the input. Auto-encoders are
prevented from replicating the input completely by imposing
constraints on the hidden layers, such as limiting the number of
hidden units and adding regularizers, so that latent attributes of
the input data can be learned and described.

A common way to obtain useful features from an auto-
encoder is to require the dimension of h to be smaller than
x. An auto-encoder with this bottleneck structure is called an
undercomplete auto-encoder. Consider first a single-hidden-
layer undercomplete auto-encoder that contains one hidden
layer with five neurons, consistent with Heaton et al. [25].
Its architecture is shown in Figure 2. Given a training batch
D = {x(1), x(2), . . . , x(m)} containing m samples, the input
of a single-hidden-layer undercomplete auto-encoder is x =
[x1, x2, . . . , xn]

⊤ ∈ R
n, a vector representing n index component

stock returns on a certain trading day. Similarly, the output is

x
′ = [x′1, x′2, . . . , x′n]

⊤ ∈ R
n. The input x is mapped to h which

is a vector of hidden units through the encoder. The subsequent
decoder maps h to the output vector x′ to reconstruct x. The two
steps can be written

h = f (W⊤
1 x+ b1), (1)

x
′ = W2h+ b2, (2)
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FIGURE 2 | Architecture of the single-hidden-layer undercomplete

auto-encoder.

where W1, W2 represent the weights of a linear transformation;
b1, b2 are the biases; and f (·) is an activation function. Frequently
used activation functions are sigmoid (1/(1+ e−x)) [29, 30],
hyperbolic tangent (tanh(x)) [31], or rectified linear units (ReLU)
(max{0, x}) [32–34]. In this paper, f (·) is set to be a ReLU
function, because ReLU solves the gradient vanishing problem
(in the positive interval) with a high speed of convergence
and calculation compared to other activation functions. When
the activation functions are linear and the loss function is
the mean squared error, the action of the single-hidden-
layer undercomplete auto-encoder is equivalent to Principal
Component Analysis (PCA) [35]. In addition, we do linear
transformation other than use non-linear activation functions
on the output layer to make the output zero-centered. The
characteristics of the output are thereby kept consistent with the
input data.

The network of the single-hidden-layer undercomplete auto-
encoder is trained by minimize the reconstruction error L(x, x′),
i.e., the two-norm difference between the input vector and the
output vector:

min
W1 ,W2 ,b1 ,b2

m
∑

i=1

L(x(i), x′(i)) = min
W1 ,W2 ,b1 ,b2

m
∑

i=1

∥

∥

∥
x(i) − x′

(i)
∥

∥

∥

2
. (3)

Back-propagation is used for the solution of Equation (3),
with the popular gradient descent optimization algorithm called
Adaptive Moment Estimation (Adam) [36]. (Unless otherwise
stated, in the constructions of other auto-encoder models in
this paper, the designs of the input and output vectors, the

FIGURE 3 | Architecture of the sparse auto-encoder.

activation functions of the hidden layers, the loss functions, and
the parameter-optimization algorithms are consistent with those
of the single-hidden-layer undercomplete auto-encoder).

We already know that undercomplete auto-encoders can
learn the most significant features of data distribution. However,
if these auto-encoders are given too much capacity, they
cannot learn any useful information. Regularized auto-encoders
can solve this problem by imposing particular forms of
regularization on the networks in order to encourage the models
to have better generalization abilities rather than limiting their
capacity. Sparse auto-encoders [37, 38] are a common kind
of regularized auto-encoders. A sparse auto-encoder suppresses
the activation of most neurons in the hidden layer by adding
a sparsity penalty in the loss function, thereby providing
another method of knowledge compression without reducing
the number of nodes in the hidden layer. The architecture
of the sparse auto-encoder applied in this paper is shown
in Figure 3. The hidden layer has the same dimension as
the input and output layers. The light-colored circles in the
hidden layer represent suppressed neurons, while the dark-
colored circles represent activated neurons. Since the activation
of neurons is data-driven, the sparse auto-encoder can obtain
specific feature representations for different input data. The
network’s capacity is limited to prevent excessive memorizing
of input data, while the capacity to extract data features is
not limited. There are two common ways of constructing the
sparsity penalty: L1 regularization [39] and Kullback–Leibler
(KL) divergence [40]. In this paper, we use L1 regularization.
The loss function for training our sparse auto-encoder is
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given by

Loss = L(x, x′)+ λ‖h‖1, (4)

where the second term penalizes the output value of the hidden
layer, scaled by a tuning parameter λ.

We also consider another regularized auto-encoder, the
contractive auto-encoder [41], which is designed to make the
learned feature representation insensitive to small changes
around the training examples. This is accomplished by penalizing
instances where a small change in the input results in a large
change in the encoding space. Thus, the loss function is

Loss = L(x, x′)+ λ ‖∇xh‖2F , (5)

where the penalty term is the squared Frobenius norm (sum
of squared elements) of the Jacobian matrix for the hidden
layer outputs with respect to the input observations. Although
the contractive auto-encoder regularization criterion is trivial to
calculate in the case of a single hidden layer auto-encoder, it
becomesmuchmore difficult in the case of deeper auto-encoders.
Therefore, the contractive auto-encoder used in this paper adopts
the same structure as the single-hidden-layer undercomplete
auto-encoder mentioned above. Since we employ ReLU as
the activation function on the hidden layer, the regularization
criterion can be given the following analytical form:

‖∇xh‖2F =
∑

i,j

(

∂hj

∂xi

)2

=
∑

j

φ2(zj)
∑

i

(W⊤
ji )

2
, (6)

φ(zj) = φ(
∑

i

Wijxi + bj) =
{

1, if zj ≥ 0,
0, otherwise.

(7)

Auto-encoders are not required to be composed of a single-
layer encoder and a single-layer decoder. In fact, deep auto-
encoders yield much better compression than corresponding
shallow auto-encoders [42]. The general method for training
a deep auto-encoder consists of training a stack of shallow
auto-encoders so as to pretrain the deep architecture. For
this reason, deep autoencoders are also called stacked auto-
encoders. The stacked auto-encoder employed in this paper is
built with the structure shown in Figure 4, where the numbers
of hidden layers and neurons in each layer are set by trial
and error.

Till now, the input and output of the auto-encoders we
have introduced are identical. Such models may not perform
well on a testing set where the testing and training data do
not exhibit the same distribution. The denoising auto-encoder
[43] provides remedies for this deficiency. Denoising auto-
encoders receive as input data that have been corrupted by some
form of noise, and are trained to reconstruct the uncorrupted
data as their output. After denoising training, the network
is forced to learn more robust invariant features and obtain
more effective representations of the input. This is very similar

to a contractive auto-encoder in the sense that the noise is
considered a series of small perturbations to the input. The
difference is that contractive auto-encoders make the feature
extraction function resist small perturbations of the input,
while denoising auto-encoders make the reconstruction function
resist them [44]. The initial input can be corrupted by adding
Gaussian noise or stochastically discarding certain features. The
denoising auto-encoder employed in this paper is constructed
with the same architecture as the stacked auto-encoder. The only
difference is that the input is the corrupted data x̃, as shown in
Figure 5, and given by

x̃ = x+ ηN (0, I), (8)

where N (0, I) represents a multivariate standard normal
distribution with a diagonal covariance structure,
and η denotes noise intensity. The loss function for
the denoising auto-encoder still computes the two-
norm difference between the output vector x

′, and the
original data x.

The decoder networks built by the auto-encoders we have
introduced above output a single value to describe each
latent attribute. However, sometimes we hope to learn a
probability distribution for each latent attribute to produce
a better generalization and ensure that the latent space has
properties that enable the generative process. This goal can
be achieved by applying a well-known generative model, the
variational auto-encoder [45, 46]. The special structure of
the variational auto-encoder designed for the purpose of this
paper is shown in Figure 6. Its encoder outputs parameters
describing a distribution for each dimension in the latent space.
Here we assume that the prior distribution p(h) of the latent
representation obeys a standard normal distribution, and the
encoder therefore outputs two vectors describing the mean µ

and variance σ
2 of the latent state distribution. The decoder

will then generate a latent vector h by sampling from a
multivariate Gaussian model with a diagonal covariance matrix
and reconstruct the original input. It is worth noting that a
simple trick, reparametrization, is used when sampling. It can be
expressed as

h = µ + σ ⊙ ε, ε ∼ N (0, I), (9)

This allows us to sample from a unit Gaussian N (0, I) rather
than sampling from the distribution N (µ, σ 2), so as to ensure
that the results of sampling are derivable and the error can be
backpropagated through the network. The loss function for the
variational auto-encoder is defined as

Loss = L(x, x′)+ λ
∑

j

DKL(qj(hj |x )
∥

∥p(hj) ), (10)

where

DKL(qj(hj |x )
∥

∥p(hj) ) = DKL(N (µj, σ
2
j )

∥

∥N (0, 1) )

=
1

2
(− log σ 2

j + µ2
j + σ 2

j − 1). (11)
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FIGURE 4 | Architecture of the stacked auto-encoder.

FIGURE 5 | Architecture of the denoising auto-encoder.

The first term in Equation (10) penalizes reconstruction errors
(a feature also found in other auto-encoders). The second term
encourages the learned latent-state distribution q(h |x ) to be
similar to the prior distribution p(h), which minimizes the KL

divergence between these two distributions. The relative weights
of these two items are controlled by a hyperparameter λ.

After the auto-encoders have been trained, their encoders
output an n-dimensional vector that contains n different latent
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FIGURE 6 | Architecture of the variational auto-encoder.

factors. These latent factors are obtained by the process of
dimensionality reduction or compression and can be used to
represent n independent implied abstract features of the stock
index market. This technique is of great significance in finance.
Traditional financial pricing models with shallow architectures
(at most two layers) typically describe market information based
on linear portfolios. For example, the capital asset pricing
model (CAPM) proposed by Sharpe [47] assumes that the
market return is expressed by a linear combination of asset
returns. In the arbitrage pricing theory (APT) proposed by
Rosenberg and McKibbon [48] and Ross [49], a layer of linear
factors is used to perform pricing. These traditional financial
theories also apply the idea of dimensionality reduction, as
they reduce a dataset of n observations (returns or factors)
to one parameter. However, while the implied market prices
capture linear features of the input asset returns or factors,
they ignore a large amount of latent information and the non-
linear relationship between the assets in a complex system with
fractality properties. For this reason, we use the auto-encoder
model with a hierarchical structure of univariate activation
functions of portfolios to make up for the shortcomings of
traditional financial models.

The decoders then proceed to reconstruct the input individual
stock-returns from the latent representations of the stock index
market. However, this process involves compression encoding,
and therefore will inevitably bring information loss. Following
Heaton et al. [25], we calculate the information loss of each stock
during the encoding-decoding process by using Equation (12)
below to measure the similarity of the j-th stock with the stock
index market (i.e., the total two-norm difference between every
original stock return and the corresponding reconstructed one
on the training batch):

Lj =
m

∑

i=1

∥

∥

∥
x
(i)
j − x

′(i)
j

∥

∥

∥

2
. (12)

The smaller Lj is, the less information the j-th stock loses, and
therefore the more similar it is to the stock index market. We
rank the stocks by their communal information content, i.e.,
the amount of information that they share with the stock index
market. Since it is not beneficial for improving index tracking
performance to include too many stocks contributing the same
information, we select a fixed number of the most-communal
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stocks plus a variable number of the least-communal stocks to
construct a tracking portfolio.

In addition, in order to investigate the superiorities of
auto-encoder-based stock selection strategies, we also adopt
for comparison two conventional index-tracking stock-selection
strategies: weight ranking and market-value ranking. We
evaluate the tracking performance of these strategies under the
same conditions.

Index Tracking Model
After selecting the representative stocks by the strategies above,
we use an index tracking model to determine the investment
weight allocated to each stock in the tracking portfolio, with the
objective of minimizing tracking error and other constraints. The
index tracking model established in this paper can be expressed
as the following quadric programming problem:

w
∗ = argmin

w
‖RI − Rxw‖22 + λ ‖w‖22

s.t.
n

∑

i=1

wi = 1,

wi ≥ 0, i = 1, 2, . . . , n, (13)

where RI ∈ R
m is a vector of the index return time series;

Rx = [R1,R2, . . . ,Rn] ∈ R
m×n denotes the return matrix of

the selected stocks; and w = [w1,w2, . . . ,wn]
⊤ ∈ R

n is a vector
of stock weights. The objective function is complemented with a
regularization term, λ ‖w‖22, to avoid overfitting. In addition, the
stock weights are kept non-negative, considering the short-selling
restrictions in China’s stock market.

EMPIRICAL ANALYSIS

Data Description and Processing
We investigate partial replication of the CSI 300 Index with the
index tracking strategies we have proposed. The CSI 300 Index is
a barometer of China’s stock market. Its main income accounts
for more than seventy percent of the Chinese market, and it well-
represents emerging markets throughout the world. We use the
daily closing prices of the CSI 300 Index and its constituent stocks
from the sample period January 1, 2010 through December 31,

2018 (comprising 2,187 trading days). Because the constituents of
the CSI 300 Index are adjusted semi-annually, generally in early
January and early July, we obtain the daily closing prices of all
the stocks that have been included in the constituents during the
sample period.We also record the mid-year and end-year market
values of the constituents and their weights from 2010 to 2018, for
use in weight ranking and market-value ranking.

To ensure the analysis results are accurate and reliable, we first
clean the original pricing data by the following steps:

(i) Exclude the stocks if more than 20% of the pricing data is
missing in the training set (defined in the next sub-section).

(ii) Exclude the stocks if all pricing data for the first 5 days and
the last 5 days is missing in the training set.

(iii) Exclude the stocks if they have been ejected from the
constituents of the CSI 300 Index during the training set and
the following testing set (defined in the next sub-section).

(iv) Perform linear interpolation to fill the missing prices of the
retained stocks.

We obtain the daily return time series ri,t for each stock or the
index by calculating ri,t = (Pi,t − Pi,t−1)/Pi,t−1 , where Pi,t
denotes the daily closing price of stock (index) i on day t. Then
all daily returns are standardized using z-score normalization
as follows:

xi,t =
ri,t − r̄i

σi
, (14)

where r̄i and σi denote the mean and standard deviation of
ri,t , respectively.

Design of Tracking Strategy
In order to construct a dynamically adjusted out-of-sample
portfolio to track the index, the data sample is divided into
training and testing sets by the rolling-window approach [50].
The rolling-window approach keeps the features of time series
in the data, making it match the investment decision-making
process in practice. The training set is used to train the stock
selection model to select a subset of constituents. The index
tracking model which takes the returns of the selected stocks
as input is then also trained on the training set to obtain the

FIGURE 7 | Arrangement for training and testing sets during the whole sample period.
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FIGURE 8 | Stock (601618.SH) with the most communal information: the

prices of the actual and auto-encoded stocks are nearly the same across the

period shown.

FIGURE 9 | Stock (600015.SH) with the least communal information: the

prices of the actual and auto-encoded stocks differ significantly across the

period shown.

stock weights. Afterwards, we construct a tracking portfolio with
the selected stocks and corresponding weights obtained from the
training set, and compute its portfolio return as well as the index
tracking error on the testing set. We use the past four years’
data as a training set. The dataset for the following 6 months is
regarded as a testing set, in line with the adjustment frequency of
the index constituents. This process continues for 5 years on each
half-year from Jan. 2014 to Dec. 2018. For each stock selection
model, there are in all 10 periods and 5 yearly index tracking
results. The tracking procedure is illustrated in Figure 7.

Performance Measurement
We select stocks for each training set by employing eight selection
approaches: six auto-encoder-based models, weight ranking, and
market-value ranking. The auto-encoders are used to measure

the degree of communal information between the stock index
market and the constituent stocks. We then sort the constituents
accordingly and select a subset of constituents that satisfy our
requirements. As an example, Figures 8, 9 illustrate the stock
601618.SH, which shares the most communal information with
the stock index market in the first period of the training sets
(adopting the signal-hidden-layer undercomplete auto-encoder),
and the stock 600015.SH, which shares the least. Obviously, stock
600015.SH loses much more information than stock 601618.SH
during the encoding-decoding process. We already know that
it is not necessary to add too much communal information to
a portfolio. Following Heaton et al. [25], we select the 10 most
communal stocks plus the n − 10 least communal stocks to
construct a tracking portfolio, where n increases from 15 to 80
in steps of five. The weight (market value) ranking method is
to select the n stocks with the largest half-yearly average weights
(market values) for inclusion in a tracking portfolio.

After determining the stocks required for inclusion in the
tracking portfolio, we apply the index tracking model introduced
in section Index Tracking Model to determine the stock weights
and construct a tracking portfolio to partially replicate the CSI
300 Index. We evaluate the tracking errors on portfolios with
the same number of stocks selected by different strategies. A
smaller tracking error indicates better tracking performance of
the stock selection strategy. The equation for calculating the
average tracking error ATE is

ATE =

√

√

√

√

1

T

T
∑

t=1

(RIt − Rpt)
2, (15)

where the T represents the total number of out-of-sample trading
days (which spans from January 1, 2014 to December 31, 2018
and covers 10 adjustment periods as the tracking portfolio is
adjusted every half-year); RIt and Rpt are the returns of the index
and of the tracking portfolio at time t.

Table 1 shows the out-of-sample tracking error values for
the CSI 300 Index. Figure 10 plots how the tracking error
values change as a function of the number of stocks for all
stock selection strategies. The tracking errors of all strategies
decrease as the number of stocks in the tracking portfolio
increases. In particular, the tracking error falls quickly when
< 40 stocks are included in the portfolio. Furthermore, when
the number of stocks included is < 30, the tracking errors of
the six auto-encoder-based strategies are significantly smaller
than those of the weight ranking and market-value ranking
strategies. However, the falling rate of the tracking error slows
down when over 40 stocks are required for inclusion. Moreover,
the tracking errors of the six auto-encoder-based strategies
exceed those of the weight ranking and the market-value ranking
strategies when over 40 and 55 stocks are required for inclusion,
respectively. We suggest the following explanations for the above
results. When the tracking portfolio is constructed with many
stocks selected by the weight ranking and market-value ranking
strategies, the cumulative origin weight in the index of the
selected stocks is larger, making the performance of the tracking
portfolio closer to that of the index. While as the number of
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TABLE 1 | Out-of-sample tracking error values (×10−3) for all strategies covered by this study.

Number of

stocks for

inclusion

Stock selection strategy

Weight

ranking

Market-value

ranking

Single-hidden-layer

undercomplete AE

Sparse

AE

Contractive

AE

Stacked

AE

Denoising

AE

Variational

AE

15 6.554 8.590 5.285 4.976 5.294 5.329 5.115 5.814

20 5.982 7.128 4.770 4.246 4.648 4.491 4.396 4.874

25 5.224 5.940 4.134 3.971 3.993 4.058 3.940 4.403

30 4.351 5.243 3.977 3.737 3.688 3.910 3.659 4.232

35 3.728 4.645 3.812 3.681 3.606 3.766 3.617 4.126

40 3.464 4.077 3.656 3.636 3.517 3.696 3.507 4.052

45 3.208 3.793 3.697 3.492 3.498 3.641 3.309 3.838

50 3.034 3.561 3.535 3.338 3.479 3.426 3.241 3.830

55 2.893 3.155 3.507 3.259 3.353 3.345 3.211 3.820

60 2.736 2.947 3.366 3.151 3.261 3.296 3.195 3.700

65 2.661 2.823 3.320 3.072 3.233 3.268 3.104 3.604

70 2.563 2.722 3.273 3.046 3.248 3.236 3.084 3.569

75 2.489 2.598 3.254 2.965 3.195 3.185 3.053 3.479

80 2.379 2.504 3.222 2.976 3.100 3.171 3.031 3.374

“AE” is short for “auto-encoder”.

FIGURE 10 | Tracking error curves for all strategies covered by this study.

stocks in the tracking portfolio increases, the auto-encoder-
based strategies append more stocks with medium communal
information to the portfolio. The portfolios containing the
most- and least-communal stocks are well able to reflect the
market information. Thus, there is no benefit in having more
medium-communal stocks.

Comparing the auto-encoder-based strategies to one another,
the tracking errors of the strategies based on sparse, contractive,
stacked, and denoising auto-encoders are almost always < that
of the strategy based on single-hidden-layer undercomplete

auto-encoder regardless of the number of stocks, although
the difference is not sizeable. The explanation is that some
of these four types of auto-encoders have a deeper structure
that can learn more complex coding and deeper market
information, while others are regularized to encourage the
model to learn other features (except copying the input
to the output) without limiting the model capacity by
keeping the encoder and decoder shallow and the code size
small. In either case, these auto-encoders can create more
information-efficient representations of the market than the
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FIGURE 11 | Out-of-sample cumulative return curves of the CSI 300 Index and the 25-stock tracking portfolios constructed by all strategies covered by this study.

FIGURE 12 | Tracking error curves for all strategies with 3-year training sets.

single-hidden-layer undercomplete auto-encoder, so that the
stocks selected by the strategies based on them better represent
the entire market.

However, the strategy based on the variational auto-encoder
does not perform better than that based on single-hidden-
layer undercomplete auto-encoder. This can also be explained.
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The purpose of an auto-encoder in the present work is
to replicate the original input stock information from the
latent space representing the compressed market information.
However, a variational auto-encoder (mentioned in section
Stock Selection Using Auto-Encoders, and normally used as a
generative model) is meant to generate variations on an input
vector from a continuous latent space: that is, its encoder
only outputs a range of possible representations of the market,
and these do not necessarily describe the market’s current
state. Therefore, the output reconstructed by the decoder is
far from being a copy of the original input stock information.
From this perspective, it is not surprising that the strategy
based on the variational auto-encoder does not yield the
desired result.

Although increasing the number of stocks in the tracking
portfolio will reduce the tracking error, it will not significantly
improve the tracking performance, while it will create additional
transaction cost when the number of stocks included reaches a
certain value. According to the previous analysis, the tracking
error decreases rapidly as the number of stocks increases
and the corresponding transaction cost is acceptable if a
tracking portfolio is constructed with < 40 stocks. Therefore,
the number of stocks in the tracking portfolio should be
kept under 40 when balancing the tracking error and the
transaction cost.

Considering the absolute tracking error values and the slope of
the curves for the auto-encoder-based strategies in Figure 10, we
find the tracking performance of auto-encoder-based strategies
greatly surpasses that of conventional strategies for a 25-
stock tracking portfolio. Figure 11 shows the out-of-sample
cumulative return curves of the CSI 300 Index and the 25-stock

tracking portfolios constructed by our proposed strategies.
The relative advantages of auto-encoder-based stock selection
strategies can be seen clearly. In particular, the tracking error
of the market-value ranking strategy is 5.940 × 10-3, and that
of the weight ranking strategy is 5.224 × 10-3. Among the six
auto-encoder-based strategies, the tracking error of the denoising
auto-encoder-based strategy is the smallest at 3.940×10-3, which
is 33.67% lower than that of market-value ranking and 24.58%
lower than that of weight ranking. The other five auto-encoder-
based strategies also track better than the conventional strategies
to varying degrees. Even the worst-performing auto-encoder-
based strategy (the variational auto-encoder) has reductions of
25.88 and 15.72% compared to market-value ranking and weight
ranking strategies, respectively. In conclusion, auto-encoder-
based strategies outperform conventional strategies, provided
that only a small number of stocks are required for inclusion in a
tracking portfolio.

Robust Test
To evaluate the sensitivity of these empirical results
to changes in the data sample, we perform various
robustness checks.

First, variations in length of the training set may have
an impact on the results. As a robustness check, we analyze
the tracking performance when each training set length is
changed to 3 or 5 years, respectively. Keeping each testing set
length at 6 months, the length of the out-of-sample period
accordingly changes to 6 and 4 years, respectively. Figures 12,
13 illustrate how the curves of the tracking error vary with
the number of stocks when each training set has a length
of 3 and 5 years, respectively. The results reveal that the

FIGURE 13 | Tracking error curves for all strategies with 5-year training sets.
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FIGURE 14 | Tracking error curves for all strategies with quarterly rebalancing.

FIGURE 15 | Tracking error curves for all strategies with yearly rebalancing.

auto-encoder-based strategies tracks the index better than the
conventional strategies when < 30 stocks are included in a
tracking portfolio. In particular, the sparse auto-encoder-based
strategy gets the lowest tracking error among all the auto-
encoder-based strategies with 3-year training sets, whereas the
denoising auto-encoder-based strategy performs best with 5-
year training sets. In addition, the tracking error values change
little in response to variations in the length of the training set.

Thus, our base case results hold for these alternative training-
set lengths.

Second, the rebalancing frequency, which is the reciprocal
of the length of each testing set, will affect the performance
of dynamic portfolio management. We compute quarterly and
yearly rebalanced portfolios while keeping the training-set
length unchanged to investigate the sensitivity of our results to
alternative rebalancing frequencies. The results in Figures 14, 15
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verify that our base case results are robust to these changes. In
particular, with quarterly rebalancing, the sparse auto-encoder-
based strategy tracks the index best among all auto-encoder-
based strategies and brings greater improvement on conventional
strategies’ tracking performance compared to the base case
results. In the case of a 25-stock portfolio, the tracking error of
the sparse auto-encoder-based strategy is 3.861 × 10-3, which is
34.91% lower than the market-value ranking and 25.86% lower
than the weight ranking. In contrast, with yearly rebalancing,
the denoising auto-encoder-based strategy gets the best tracking
performance. This proves that the sparse and denoising auto-
encoder-based strategies are better at index tracking than the
other four auto-encoder-based strategies.

CONCLUSIONS

We investigate the index tracking performance of deep learning-
based tracking approaches. In particular, we use a variety
of advanced auto-encoders: single-hidden-layer undercomplete,
sparse, contractive, stacked, denoising, and variational auto-
encoders to extract the complex non-linear relationship between
stocks in a complex stock market system and construct dynamic
tracking portfolios with subsets of stocks. Only one or two
of these auto-encoders has previously been examined in the
context of stock selection. Moreover, we evaluate for the first
time whether auto-encoder-based strategies improve the tracking
performance over the conventional strategies of weight ranking
and market-value ranking.

In general, we find that whether auto-encoder-based strategies
outperform conventional ones depends upon the number
of stocks included in the tracking portfolio. When only
a small number of stocks (probably < 30) are needed
to construct a tracking portfolio, the auto-encoder-based
strategies are generally superior to conventional strategies in
terms of tracking performance. Furthermore, auto-encoders
with particular architectures that can learn high-capacity,
overcomplete encodings of the input, e.g., sparse and denoising
auto-encoders, are better even than other auto-encoders at
capturing complex latent representations of the market. The
portfolios with stocks selected by these auto-encoders better

replicate the index. However, if more than 40 stocks are
required for inclusion, the conventional strategies still have
the advantage.

Our findings suggest that deep learning algorithms are suitable
for index tracking problems if the hierarchical architectures
are explicitly designed. We expect these findings to be helpful
in making asset-allocation decisions, especially, for indexing
investment. Nonetheless, there are some limitations to the study:
our analysis concerns a specific dataset; the impact of transaction
costs on index tracking performance is not quantified; and hyper-
parameter optimization is not well performed when constructing
the models. Therefore, additional work with a more extensive
dataset, optimized model settings, and greater practical realism
would help to confirm our findings. This research can easily
be extended to test other deep learning frameworks for index
tracking in the future.
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Does Crude Oil Market Efficiency
Improve After the Lift of the U.S.
Export Ban? Evidence From
Time-Varying Hurst Exponent
Yinghui Shao*

School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, China

On 18 December 2015, the 40-years old U.S. crude oil export ban was repealed. Since

then U.S. crude and oil producers were allowed to reach the global market. In this paper,

we study if the crude oil market efficiency increases after the lift of the export ban via the

Centered Detrending Moving average Analysis (CDMA) and the Detrended Fluctuation

Analysis (DFA). We examine the time-varying market inefficiency from 2011 to 2020 with

different rolling windows. The results indicate that WTI becomes inefficient after the lift

in medium-term. Though in short and long-term, there is evidence for the improvement

of the degree of market efficiency. Generally, the WTI market presents mixed efficiency

behavior at different time horizons. In 1-year window, the degree of efficiency on Brent

decreased while there isn’t enough evidence to conclude that Brent market efficiency

increased or decreased in medium and long term. In this sense, the lift of the ban might

have significant impact on WTI but not on Brent.

Keywords: oil prices, spot market, Hurst exponent, market efficiency, WTI, Brent, detrended fluctuation analysis,

detrending moving average analysis

1. INTRODUCTION

Crude oil is one of the most important commodity in global economy. And crude oil market is
increasingly connected to other financial markets. The market efficiency on crude oil market is
crucial to price discovery, forecasting and investment management. There is a large number of
literature on crude oil market weak-form efficiency.

The presence of long-range dependence in asset returns implies potential predictability, which
contradicts the weak form of efficient market [1]. Hurst exponent is a popular measure of long
range memory and has been widely applied to the test of weak form efficiency on crude oil market.
Alvarez-Ramirez et al. [2] impose Rescaled Range (R/S) analysis on WTI from 1981 to 2002 and
report the long-run memory. Serletis and Andreadis [3] get a similar conclusion with data from
1990 to 2001. Jiang et al. [4] verify the weak-form efficiency of the crude oil futures market from
1983 to 2012 with the Detrended Fluctuation Analysis (DFA) and Detrending Moving average
Analysis (DMA).

One can conclude that the crude oil market is weak-form efficient in the long run, though over
short time horizons the market might need a certain time to digest the information [4]. Tabak and
Cajueiro [5] document that WTI and Brent become more efficient from 1983 to 2004. Via DFA,
Alvarez-Ramirez et al. [6] find mixed scaling behavior in crude oil markets. The prices exhibit
short-term predictability, while for large time horizons reflect non-correlated behavior. Wang and
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Liu [7] report that short-term, medium-term and long-term
behaviors of WTI crude oil market were generally turning into
efficient behavior over time. Mensi et al. [8] find efficiency degree
of WTI and Brent varies through time. Jiang et al. [4] uncover
that the market is inefficient during turbulent events, including
the oil price crash in 1985 and the Gulf war. Gu and Zhang
[9] verify the non-linear relationship between multifractality and
inefficiency in crude oil market. Kristoufek [10] reports that the
WTI remains efficient except several periods, while Brent crude
oil shows more inefficiency.

Notice that the crude oil market is affected by economic
conditions [11], political events [12], policy changes [13, 14] and
other factors, dynamics of the efficiency on crude oil market
during events and crisis is of cardinal significance to investors as
it indicates possible abnormal returns. This study focuses on the
time-varying efficiency on crude oil market before and after the
policy shift.

In 1970s the United States government enacted prohibitions
on the export of crude oil to handle concerns on possible energy
shortage [15]. The ban restricted most crude oil exports from
U.S. to other countries. On 18 December 2015, President Obama
signed a provision that lifted the 40-years old oil export ban.
After the lift, the lead-lag relationship between WTI and Brent
has changed [14] and the two benchmarks reconnected closely

FIGURE 1 | The daily spot prices and returns for WTI and Brent. The vertical line marks the lift of the export ban. (A) WTI prices. (B) WTI returns. (C) Brent prices.

(D) Brent returns.

[13, 14]. However, the impact of this policy shift on crude oil
market efficiency is still open to question.

In this paper we explore whether the crude oil market
efficiency changes after the lift using WTI Brent daily price.
We assess the time-varying market efficiency via the Centered
Detrending Moving average Analysis (CDMA) and DFA. To
compare the difference of market efficiency before and after the
lift, we separate the whole sample into two time periods by the lift,
then implement the Wilcoxon signed-rank test. We investigate
the time-varying long range dependence over rolling windows.
For the sake of consistency, we carry out the whole procedure
with three rolling window sizes.

The paper is organized as follows. Section 2 presents the Data.
Section 3 describes theMethodology. Section 4 shows the Results,
and section 5 Concludes and Discusses.

2. DATA

We investigate the daily closing spot prices from the U.S. Energy
Information Administration (EIA) website. The data spans from
14 October 2011 to 6 March 2020 with 2098 observations, which
is plotted in Figure 1. Note that the vertical black line marks the
date of 18 December 2015 when the lift was officially announced.
Thereby the whole period is divided into two segments before
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and after the lift with the same 1049 sample sizes. The Brent
and WTI price showed an impressive decrease of 60% from
July 2014 to March 2015. Since 2016 until 2018 the price has
steadily increased.

We employ daily returns for the analysis which are defined as
the log difference in price:

r(t) = ln p(t)− ln p(t − 1), (1)

where p(t) is the spot price at time t. The logarithm returns are
illustrated in Figure 1. In 2014 and 2016 the process exhibits
volatility clustering.

3. METHODOLOGY

3.1. Hurst Exponent Estimation Methods
We examine the market efficiency via the centered detrended
moving average analysis (CDMA) and DFA. The two
methodologies show comparable performance for the detection
of long range correlation in time series [16–18], and have
been widely used to determine the Hurst exponent in financial
markets [19, 20].

3.1.1. The Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis is a popular
method to determine the long-range dependence in time
series [21].

For a given time series x(t), t = 1, 2, · · · ,N, compute the
cumulative sum sequence

X(t) =
t

∑

i=1

x(i), t = 1, 2, · · · ,N. (2)

Detrend the integrated profile X(t) by subtracting the local trend
˜X(t) in each box of length s and get the residual series ǫ(t):

ǫ(t) = X(t)−˜X(t). (3)

where ˜X(t) is the polynomial fit of X(t). Then separate the
residual series ǫ(t) into Ns non-overlapped subseries with size s,
where Ns = ⌊N/s− 1⌋. Obtain the fluctuation function via

F2(s) =
1

N

N
∑

t=1

[

ǫ(t)
]2
. (4)

Repeat the procedure above with different box size s. Thus, one
can determine the power-law relationship between F(s) and box
size s for long-range correlated time series

F(s) ∼ sH . (5)

where H is an estimation of Hurst exponent. If H > 0.5,
the time series x(t) displays long-range dependent structure.
When H < 0.5, x(t) has long-range dependent structure. While
H = 0.5 implies non-correlated behavior, which corresponds to
weak-form efficiency in financial market.

FIGURE 2 | Fluctuation function F with different rolling windows on 18 December 2015. (A–C) Depict the fluctuation function of WTI. (D–F) Illustrate the fluctuation

function of Brent. From left to right, each column corresponds to 1, 2, and 4 years window.
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3.1.2. The Detrending Moving Average Analysis

The DMA algorithm [22] is similar to DFA. Recently the
understanding of DMA has been deepened and improved [23–
27].With DMA, one constructs themoving average function˜X(t)
within a moving window with size s [28],

˜X(t) =
1

s

s1
∑

k=−s2

X(t − k). (6)

where s = s1 + s2 + 1, s1 =
⌈

(s− 1)(1− θ)
⌉

, s2 =
⌊

(s− 1)(1− θ)
⌋

and θ is the position parameter with range of
0 to 1 (forward, centered, and backward moving average analysis
for θ = 0, θ = 0.5, and θ = 1, respectively).

We apply θ = 0.5 (CDMA) in this study.

3.2. The Rolling Window Technique
The rolling window technique has been successfully used to
assess time dependent efficiency in financial markets [7, 8, 29–
33], predict crash in stock market [34], and evaluate the level of
stability of financial firms [35].

The length of the subsample analyzed at each time is defined
as the rolling window size. This technique works as follows [34]:
(i) compute the Hurst exponent of the first subsample with a
certain rolling window size. Thus, one can probe the local long

range correlation at time t = 1. (ii) Move the time window
with a specific number of observations, namely the step size. (iii)
Repeat the process until end of whole sample. Thereby one can
calculate the local Hurst exponent. Time series before a given
time t contributes to the local Hurst exponent at time t [34].

4. RESULTS

We use CDMA and DFA to observe the long memory feature and
time-varying inefficiency in WTI and Brent spot markets with
rolling window technique. Rolling window size of DMA/DFA
methods should be large enough to guarantee statistical
significance and small enough to maintain the sensitivity to local
changes [34–36]. Rolling window size under one trading year
is recommended in case of possible seasonal periodicity and
business cycles [34]. Another regular choice is 4-years window
size [5, 7, 8, 10, 29], which corresponds to the political cycles in
most countries [29]. Some studies apply an in-between size (2
years) [37, 38].

For the sake of consistency, we study market efficiency at
different time horizons. We estimate the local Hurst exponent
using three window sizes with a step size of one point: 250
datapoints (almost within 1 year), 500 datapoints (almost within
2 years), and 1,000 datapoints (almost within 4 years).

FIGURE 3 | Time-varying Hurst exponent and δH of WTI (left panel) and Brent (right panel). The black line marks the lift of the ban. (A,B) 1 year rolling window.

(C,D) 2 years rolling window. (E,F) 4 years rolling window.
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The choice of box size s is also essential for the detrending
procedure. A too small or too big box size s can result
in inaccurate estimate of local trend and curvature of the
fluctuation function [16]. While box size s ≧ 5, the slope
of log-log fluctuation plot can be almost approximated by
a linear curve [25, 34]. Accordingly we set the range as
[5, L/10]. Figure 2 shows the fluctuation function F vs. s on 18
December 2015 with different rolling window sizes. Generally
the CDMA curves seems quite straight. The DFA curves exhibit
mild curvature.

There are various methods used to study market efficiency.
Traditionally variance ratio test, unit root test as well as
long memory estimation by the Hurst exponent are popular
procedures [39]. Except those methods, researchers have
developed different measurements based on fractality
measures [40]. Kristoufek and Vosvrda introduced Efficiency
Index to measure capital market efficiency [41], then
extended and applied to commodity futures [42], gold,
currencies [43], and cryptocurrencies [44]. Gu et al. [45]
use δH = |H − 0.5| to quantify the degree of market
inefficiency, while H is the Hurst exponent. Smaller δH
implies a more efficient market. In this paper, we apply
δH to estimate market inefficiency, which is a simple and
effective measurement.

The dynamics of local Hurst exponents and market
inefficiency δH are shown in Figure 3. The black vertical
line represents the lift of the U.S. crude oil export ban on 18
December 2015. The corresponding histograms are illustrated in
Figure 4. Then we report the statistics of Hurst exponent and δH
Table 1.

The local Hurst exponent moves around 0.5 and δH is
generally <0.15. Both the mean and median of local δH is
extremely close to 0. All these indicate that the crude oil markets
are almost efficient with different degrees [2–5, 10].

4.1. Long Memory of WTI and Brent Within
Rolling Windows
Here we give a quick look at the time-varying market efficiency
of WTI and Brent. With rolling window of 1 year, the market
displays higher fluctuation compared with longer time horizons
(see in Figures 3A,B). The WTI returns shows short range
correlation between 2012 and 2013 as well as 2014 and 2017. The
Hurst exponent of Brent moves above 0.5. Both WTI and Brent
display mixed behavior which reveals inefficiency of market at
short time horizon.

In the case of 2-years rolling window, WTI demonstrates
a mixed pattern of long and short-term correlation (see in
Figure 3C). Local Hurst exponent is in the range of 0.35 to 0.55.

FIGURE 4 | Histograms of δH. The first and second columns correspond to results of WTI via CDMA and DFA respectively. The third and fourth columns correspond to

the results of Brent via CDMA and DFA respectively. (A–D) Corresponds to a rolling window size of 1 year. (E–H) 2 years rolling window. (I–L) 4 years rolling windows.
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TABLE 1 | Statistics for Hurst exponent and δH before and after the lift.

1 year 2 years 4 years

Before After Before After Before After

PANEL A: WTI

CDMA H Mean 0.4500 0.4770 0.4710 0.4818 0.4681 0.4713

Median 0.4444 0.4814 0.4679 0.4904 0.4774 0.4764

δH Mean 0.0617 0.0477 0.0379 0.0422 0.0319 0.0287

Median 0.0605 0.0391 0.0330 0.0380 0.0226 0.0236

p 0 0.9923 0.0804

DFA H Mean 0.4926 0.5196 0.4966 0.5035 0.4950 0.4864

Median 0.4945 0.5176 0.5003 0.5074 0.4986 0.4884

δH Mean 0.0535 0.0444 0.0317 0.0433 0.0201 0.0165

Median 0.0511 0.0370 0.0280 0.0426 0.0178 0.0132

p 0 1 0

PANEL B: BRENT

CDMA H Mean 0.5001 0.5228 0.5104 0.5205 0.4856 0.5261

Median 0.4932 0.5256 0.5182 0.5288 0.4854 0.5340

δH Mean 0.0365 0.0550 0.0365 0.0299 0.0362 0.0314

Median 0.0339 0.0471 0.0313 0.0314 0.0277 0.0340

p 1 0 0.0002

DFA H Mean 0.5480 0.5618 0.5371 0.5451 0.5131 0.5423

Median 0.5473 0.5620 0.5403 0.5490 0.5129 0.5454

δH Mean 0.0530 0.0714 0.0428 0.0473 0.0324 0.0429

Median 0.0480 0.0664 0.0406 0.0490 0.0267 0.0454

p 1 1 1

It decrease substantially from 2014 and gravitates around 0.55
since 2018. Obviously Brent returns display long-range memory
(see in Figure 3D). The market is not weak-form efficient since it
possesses long memory features.

With rolling window of 4 years, WTI exhibits extremely weak
short range correlation until 2012 (see in Figure 3E), which is
similar to Kristoufek’s [10] work with longer step of 5 days. Since
then our findings are slightly distinct. The cause might be the
different step size. Basically the local Hurst exponent of WTI
oscillates around 0.5, while Brent presents apparent long-range
memory property (see in Figure 3F).

As is shown in Table 1 and Figure 4, value of Hurst exponent
and δH is more and more concentrated with window size
enlarging. The inefficient behavior on crude oil markets at short
time horizon are not surprising. The oil market is extremely
fragile to economic and political factors as well as policy shift,
which might cause the short time inefficiency. The smoother
curve for the larger rolling window sizes implies the existence
of weak-form efficiency in the crude oil market at longer time
horizon. Over a long enough time, market participants could
absorb the new information, resulting a weak-efficient market.
Our findings is in line with work of Jiang et al. [4], Tabak and
Cajueiro [5], Alvarez-Ramirez et al. [6], Wang and Liu [7], Gu
and Zhang [9], and Kristoufek [10].

4.2. The Effects of the Lift
To investigate if the market efficiency dynamics change after the
policy shift, we compare market inefficiency δH before and after
the lift of export ban. Results in Table 1 and Figure 4 show amild
difference of δH between the two sub-periods.

Prior to hypothesis testing, we examine the distribution of
local δH. Noticed that the histograms (see in Figure 4) show that
the data are not normally distributed. Conducting the Lilliefors
test for normality, we also reject the null hypothesis of normality
at the 1% significance level. Hence commonly used paired t test
isn’t appropriate for the analysis of the data.

Here we implement the right-tailedWilcoxon signed-rank test
on δH to check if the market efficiency increased after the lift.
The Wilcoxon signed-rank test is a non-parametric statistical
hypothesis test to analyze differences between two samples.
Different from the paired t test, it does not require normal
distribution of the data. The null hypothesis and alternative
hypothesis are formulated as

H0: The market inefficiency δH median is no greater than that
after the lift.
H1: δH median before the lift is greater than that after the lift.

IfH0 is rejected, we conclude that the market efficiency increased
after the lift.

Frontiers in Physics | www.frontiersin.org 6 October 2020 | Volume 8 | Article 551501161

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shao Time-Varying Efficiency of Crude Oil Market

As is shown in Table 1, in the case of WTI for 1 year
window the p value = 0 indicates a rejection of the null
hypothesis at 5% significance level. There is enough statistical
evidence to conclude that for 1-year rolling window size,
the median market inefficiency δH before the lift is greater
than that after the lift, which implies the increase of market
efficiency. For 2-years window the result suggests that the
null hypothesis cannot be rejected at 5% significance level,
which means that the market efficiency of WTI didn’t increase
after the lift. However, at large time window the result is
interesting. The result of DFA provides evidence that the market
efficiency improved. For the result of CDMA, the p−value =
0.0804 indicates that the null hypothesis cannot be rejected
at 5% significance level though 10% significance level leads to
opposite conclusion.

For Brent at the smallest time window, both CDMA and DFA
results show that the null hypothesis cannot be rejected, which
means that the market efficiency of Brent didn’t improve after the
lift. At larger time windows, via CDMA one concludes that the
market efficiency increased after the policy shift while via DFA
one obtains totally different results.

5. CONCLUSION

We studied whether or not the crude oil market moved
toward efficiency after the lift of the U.S. export ban.
We comprehensively examine the time-varying long-range
dependence of WTI and Brent crude oil spot prices from
2011 to 2020 based on CDMA and DFA methods. Then we
split the whole sample into two sub periods with the same
sample sizes and carry out Wilcoxon signed rank test. To
increase the reliability of the result, we estimate the time-
varying Hurst exponents and market inefficiency with different
rolling windows.

Our findings indicate that over long horizons the crude
oil markets are close to weak form efficient with time-
varying short-time inefficiency, which is consistent with other
earlier studies [5–8, 10]. We also find a slightly lower
degree of efficiency on Brent, which means a higher level
of predictability.

The result of Wilcoxon signed rank test suggests that after
the lift, degree of market efficiency of WTI increased in short
term, while Brent market efficiency decreased. For the result
of medium term, WTI efficiency declined after the lift. And

within largest time windows, degree of efficiency of WTI is
highly possible to improve after the lift. Consider that, investors
with different or multiple time horizons (asset holding period)
are suggested to adjust investment strategies accordingly. For
arbitragers, there might exist arbitrage opportunity after the lift
in medium time horizon.

However, CDMA and DFA get totally different results on
Brent crude oil market in medium and long term. This might
be caused by the difference between the two methods. Another
possible explanation is that the change of Brent market efficiency
after the lift is too small to be detected. From results of the two
methods, we can hardly determine whether the market efficiency
on Brent increased or not. The lift of the ban might only affect
WTI in medium and long term.

In addition to the U.S. energy policy, the supply and demand
situation and infrastructure issues also count for the WTI crude
oil price and market efficiency [15, 46, 47]. With the hydraulic
fracturing and horizontal drilling techniques, oil production
from shale region in U.S. rose dramatically and led to the shale
boom, while inadequate transportation infrastructures restricted
the U.S. crude supply to the refining centers. Sincemid-2013, new
pipelines and rail transport eased this issue [48]. The effects of
export ban, shale boom and transportation bottleneck on WTI
market efficiency should be fully explored in future studies.
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This paper uses census municipal population data for the United States, Italy, and Spain

to analyze the statistical properties of their 10-year growth (short-term property). As

a result, it was confirmed that the smaller the initial urban population is, the greater

the probability that the urban population will decrease and that the probability that the

urban population will increase does not depend on the initial urban population. We also

observed the statistical properties of long-term growth of urban populations in each

country over 100 years. Specifically, we identified the following properties by observing

the geometric mean of logarithmically equal sized bins of the oldest urban population in

the data used in the analysis. (1) The average urban population increases or decreases

exponentially with time. (2) The smaller the initial average urban population, the smaller

the exponent, which can be negative in Italy and Spain. (3) When the average urban

population is large, exponential growth may stop. We showed that these long-term

properties are derived from the short-term property by random sampling simulations

from real data.

Keywords: urban population, city size distribution, growth-rate distribution, Gibrat’s law, non-Gibrat’s property,

short-term growth, long-term growth

1. INTRODUCTION

There are various universal structures in nature. In physics, various universal structures have been
extracted from nature and described logically and mathematically, such as Newtonian mechanics
in the seventeenth century, electromagnetism, relativity, and thermodynamics in the nineteenth
century, and quantum mechanics in the twentieth century. We have deepened our understanding
of nature by combining these. Interestingly, society also has a universal structure. Economics, of
which we were able to collect data at a relatively early stage, paved the way for research in this area.
The study of economics using methodology in physics (now called econophysics [1]) started with
Pareto’s discovery that the income distribution in the UK follows a power law [2–4]. The power-
law distribution is also called Pareto distribution (so named after the discoverer). Later, as the
accumulation of data progressed, it was found that power laws were observed for various economic
sizes [5, 6]. Typical examples are sales, profits, the number of employees (they are referred as firm
sizes), and the size of cities. Here, the city sizemainly refers to the population of the city. In addition,
the word city means all units, including municipalities.
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A number of studies have shown that the size of these firms
and cities also has a power law and that the distribution is
restricted to the large-scale range. It is commonly recognized that
the mid-scale range of firms and cities follows the lognormal
(LN) distribution. Furthermore, it has been reported that a
small-scale range of firm size distribution is described by
Weibull distribution [7, 8]. For urban size distribution, various
functions have been studied using statistical indicators such
as LN, the double Pareto-lognormal distribution (dPLN), log-
logistic, the threshold double Pareto Singh-Maddala, lognormal-
upper Pareto, Pareto tails - lognormal, three log-normal (3LN),
Pareto tails log-normal (PTLN), and threshold double Pareto
Generalized Beta of second kind (tdPGB2). Relevant references
to this research includes [9–24].

At the same time, studies on the growth rate of firms and
cities have been carried out, and various data have confirmed
that Gibrat’s law is valid in large-scale ranges. Gibrat’s law states
that the size growth rate for two consecutive years is independent
of the initial value [25, 26]. In [27], a simple unified model is
proposed to explain the growth dynamics of cities and scaling
laws, where the model predicts that the size of cities grows
linearly regardless of its current size.

In a previous study, Ishikawa et al. found that the size growth-
rate distribution of firms in a mid-scale range changes regularly
depending on the initial value, and they called this non-Gibrat’s
property [28]. Specifically, in the case of firm sales, for example,
the negative growth rate does not depend on the initial value, as
in the case of Gibrat’s law, but the positive growth rate increases
as the initial value decreases [29]. Our previous studies have
also shown that short-term properties of firm size lead to the
long-term properties. In particular, we show that the size of
newly established firms grows rapidly over time, according to
the non-Gibrat property, and then shifts to a gradual exponential
growth according to the Gibrat law using numerical simulations.
Furthermore, this was confirmed by the observation of geometric
mean of firm sales and number of employees [30, 31].

As mentioned earlier, there are many similarities between
the study of firm size distribution and the study of urban
size distribution. In this paper, we discuss the relationship
between the short- and long-term properties of urban size
based on our previous research on the short- and long-term
properties of firm size.

The structure of this paper is as follows. First, in section 2,
we describe the urban population data of the United States,
Italy, and Spain that we analyzed in this paper. We also describe
the firms’ data that we used to review our previous work in
section 3. In section 3, we briefly review the properties that we
previously found regarding the initial dependence of a firm’s
sales growth rate and the long-term growth properties derived
from them. In section 4, employing the data described in
section 2, we describe the initial dependence of growth rate
distributions on urban populations in the United States, Italy,
and Spain and the properties observed in long-term growth. In
section 5, the process of growth of cities with different population
sizes is simulated using the growth rate distribution of urban
populations sampled from real data, and it is confirmed that
the properties observed in the long-term growth observed in

section 4 are reproduced. Finally, section 6 summarizes this study
through the interpretation of the simulation results in section 5
and describes the future prospects.

2. DATA

This paper uses census data for the United States, Italy, and
Spain. Data for the United States are population data for cities,
towns, villages, and Census-designed Places (CDP) from 1900
to 2010 at 10-year intervals. The number of cities, the number
of people living in them, and the proportion of the population
included in the data to the total population of the United States
are shown in Table 1. In this paper, we will collectively refer
to municipalities and the CDP as cities. The data for Italy
are municipal population data from 1901 to 2011 at intervals
of approximately 10 years (Table 2). The data for Spain are
population data of municipalities from 1900 to 2010 at intervals
of approximately 10 years (Table 3). Census data for Italy and
Spain include nearly all citizens. Census data in the United States,
on the other hand, have gradually increased in coverage from
47.0% in 1900 to 71.6% in 2010. In addition, the population
of Italy and Spain is classified into one of the administrative
divisions, while that of the United States is classified into CDP
in addition to the municipality. There is therefore a significant
difference in the completeness of data aggregation between
Italy/Spain and the United States, which may be attributed to the
fact that the United States is a relatively young country.

In addition, in order to compare the initial value dependence
of the growth rate distribution of the urban population, which
is the main focus of this paper, we introduce the initial value
dependence of the growth rate distribution of firms’ sales, which
is our previous study, in section 3. The analysis will use data from
the Orbis 2016 edition, the world’s largest corporate information
database, provided by Bureau van Dijk. Specifically, we use the
sales and establishment year data of 944,116 Japanese firms for

TABLE 1 | Summary of U.S. population data.

Year Number of cities Urban population Rate

1900 10,597 35,811,876 47.0%

1910 14,130 50,631,562 54.9%

1920 15,530 62,153,225 58.6%

1930 16,721 77,233,423 62.3%

1940 17,313 84,252,429 63.8%

1950 18,921 101,062,173 66.8%

1960 20,002 125,867,952 70.2%

1970 20,948 144,768,910 71.2%

1980 22,262 164,029,093 72.4%

1990 23,434 182,532,293 73.4%

2000 25,375 208,735,266 74.2%

2010 24,685 221,886,645 71.6%

Cities includes municipalities and Census-designed Place (CDP). Number of Cities is the

number. Urban Population is the number of people living there. Rate is the ratio of the

population in the data to the total U.S. population at the time.
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which both 2013 and 2014 sales data exist. The most recent
data in the 2016 edition of Orbis is from 2015, but since the
database was in the process of being collected at the time it was
available, and so was scarce (343, 473 firms), we used the largest
data pair, 2014 (1, 029, 179 firms) and 2013 (1, 133, 993 firms),
for our analysis. There were approximately 3.82 million firms in
Japan in 2014, of which approximately 11, 000 were reported to
be large firms, approximately 557, 000 to be medium-sized firms,
and approximately 3, 252, 000 to be small-sized firms, according
to the Small and Medium Business Administration of Japan. In
Japan, small firms are defined by the number of employees under
the Small and Medium-sized Enterprise Basic Law, which refers
to firms with five employees or fewer in the retail, service, and
wholesale industries and 20 or fewer in the manufacturing and
other industries. Orbis is a comprehensive database of large and

TABLE 2 | Summary of population data for Italy.

Year Number of cities Urban population Rate

1901 8,100 32,963,316 100.0%

1911 8,100 35,841,563 100.0%

1921 8,100 39,396,757 100.0%

1931 8,100 41,043,489 100.0%

1936 8,100 42,398,489 100.0%

1951 8,100 47,515,537 100.0%

1961 8,100 50,623,569 100.0%

1971 8,100 54,136,547 100.0%

1981 8,100 56,556,911 100.0%

1991 8,100 56,778,031 100.0%

2001 8,100 56,871,757 100.0%

2011 8,081 60,429,103 100.0%

Cities includes municipalities. Number of Cities is the number. Urban Population is the

number of people living there. Rate is the ratio of the population in the data to the total

population of Italy at the time.

TABLE 3 | Summary of population data for Spain.

Year Number of cities Urban population Rate

1900 8,077 17,802,721 95.7%

1910 8,077 19,140,404 96.1%

1920 8,077 20,482,448 96.1%

1930 8,077 22,775,879 96.6%

1940 8,077 25,114,397 97.0%

1950 8,077 27,494,367 97.9%

1960 8,077 30,071,527 98.9%

1970 8,077 33,741,276 99.8%

1981 8,077 37,771,008 99.4%

1991 8,077 39,434,102 100.0%

2001 8,077 40,703,018 99.8%

2010 8,074 46,853,613 100.0%

Cities includes municipalities. Number of Cities is the number. Urban Population is the

number of people living there. Rate is the ratio of the population in the data to the total

population of Spain at the time.

medium-sized Japanese firms, including small-sized firms whose
sales are identifiable.

3. SHORT- AND LONG-TERM PROPERTIES
OF FIRMS

In this section, we briefly review our previous study of the initial
dependence of the firms’ sales growth rate distribution [29] and
its long-term growth properties [30, 31] using new data we have.
As mentioned in the previous section, our database contains
sales data for 2013 and 2014 for 944, 116 Japanese firms. The
minimum sales for 2013 was 1, 000 USD, and the maximum was
249, 799, 825 USD. To observe the initial value dependence of the
growth rate (R = x2014/x2013) from 2013 sales (x2013) to 2014
sales (x2014), the initial values are divided into logarithmically
equally sized bins as follows x2013 ∈ [100.5(n−1), 100.5n) (n =
1, 2, · · · , 10). The number of firms in these 10 bins (n =
1, 2, · · · , 10) is 4, 355, 6, 426, 18, 354, 65, 866, 163, 052, 266, 023,
221, 607, 114, 967, 50, 459, and 20, 498, respectively. The number
of firms greater than n = 10 is 12, 509. Although there are
arbitrary ways to divide these bins, if a somewhat smooth growth-
rate distribution is observed, the data are divided as finely as
possible. When the bin is divided more finely than this way,
a smooth growth-rate distribution is not observed, and when
the bin is divided more roughly, the properties described below
are hardly observed. However, it is confirmed by considering
the case where the division of the bins is slightly changed from
that described above, that the properties described below do not
depend on the manner in which the bins are divided.

Figures 1, 2 are their conditional probability density
functions. The horizontal axis represents the logarithmic
growth rate r = log10 R, and the vertical axis represents the
probability density function (PDF) q(r|n). Figure 1 shows that
the smaller the initial value x2013 (the smaller n) is, the larger

FIGURE 1 | Distributions of sales growth rate of Japanese firms. The

horizontal axis shows the logarithmic growth rate: r = log10
x2014
x2013

. The vertical

axis shows its conditional probability density function: q(r|n) . The initial sales

value of x2013 for 2013 is divided into logarithmically equal sized bins:

x2013 ∈ [100.5(n−1), 100.5n) (n = 1, 2, · · · , 5).
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the positive growth rate, and that the negative growth rate is
almost independent of the initial value. Figure 2 also shows
that when the initial value x2013 is 102.5 thousand dollars or
more (n is greater than or equal to 6), both the positive and
negative growth-rate distributions are almost independent of
the initial value. This property is called Gibrat’s law [25, 26]
and is observed in the large-scale range (Now x2013 is over 102.5

thousand dollars). On the other hand, our previous studies have
shown that the non-Gibrat’s property in Figure 1 is observed in
the mid-scale range [28, 32, 33].

In our previous study, we also reported that there is a long-
term growth property in the dependence of the geometric mean
of firms’ sales regarding their age [30, 31]. Figure 3 depicts the
firm age (t) dependency of the geometric mean sales (〈xt〉) in
2014. Here, the firm age is defined as the year of establishment

FIGURE 2 | Distributions of sales growth rate of Japanese firms. The

horizontal axis shows the logarithmic growth rate: r = log10
x2014
x2013

. The vertical

axis shows its conditional probability density function: q(r|n) . The initial sales

value of x2013 for 2013 is divided into logarithmically equal sized bins:

x2013 ∈ [100.5(n−1), 100.5n) (n = 6, 7, · · · , 10).

FIGURE 3 | Dependence of geometric mean of Japanese firms’ sales 〈xt〉 in
2014 on firm age t.

of the firm, e.g., t =1. Figure 3, drawn on a semilogarithmic axis,
shows that for the first 10 years, 〈xt〉 rapidly grows following a
power-law function:

〈xt〉 ∝ tαsalest (1)

with αsales = 0.53 ± 0.02 (the dotted line). Then, 〈xt〉 gradually
grows following an exponential function:

〈xt〉 ∝ eβsalest (2)

with βsales = 0.014 ± 0.001 (the solid line). These values are
measured by applying t = 1, 2, · · · , 10 for power-law growth (1)
and t = 11, 12, · · · , 60 for exponential growth (2).

Similar properties were confirmed not only in sales of Japanese
firms but also in the number of employees of Japanese firms
and sales and number of employees of French firms in previous
studies [31]. Furthermore, we show by numerical simulation that
these long-term growth properties are derived from the short-
term growth properties mentioned above. The initial fast growth
following the power-law function (1) is derived from the non-
Gibrat’s property, and the slow growth following the exponential
function (2) is derived from Gibrat’s law, using a stochastic
process with numerical samples from real data.

4. SHORT- AND LONG-TERM PROPERTIES
OF URBAN POPULATION

The purpose of this study is to confirm whether the properties of
short-term and long-term growth in firms’ sales and the number
of employees in our previous study are observed in an urban
population. Tables 1–3 show that the number of cities in the
United States is around 10, 000 to 25, 000, and those of Italy and
Spain number around 8, 000. As in the previous section, if these
initial values are placed in logarithmically equal-sized bins and
a somewhat smooth growth-rate distribution is to be observed,
there will be only a few bins, and it will be difficult to observe the
properties of the previous section. In the United States, we have
increased the number of pairs of data by overlaying all 11 pairs of
data, such as 1900 − 1910, 1910 − 1920, and · · · , 2000 − 2010,
and conducted the same analysis as in the previous section. This
approach ignores changes in history over 110 years but has the
advantage of being able to observe a macroscopic nature that is
not influenced by the flow of history.

Using this method, pairs of 187,378 cities are created, each
city’s initial population is expressed as xi, and the city’s population
10 years later is expressed as xi+10. The minimum value of xi
is 1 and the maximum value is 8, 008, 278. In the case of the
United States, this small figure is recorded because it includes
population data from Census-designed Places (CDP). To observe
the dependence of the urban growth rate (R = xi+10/xi) on the
initial value (xi), we divide the initial value into logarithmically
equidistant bins, as in the previous section, such as xi ∈
[100.5(n−1)+2, 100.5n+2) (n = 1, 2, · · · , 7). The 7 bins contain
the following cities: 34, 158 (n = 1), 56, 216 (n = 2), 41, 353
(n = 3), 22, 942 (n = 4), 10, 794 (n = 5), 3, 997 (n = 6),
and 950 (n = 7). Number of cities less than n = 1 is 6, 278,
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and number of cities greater than n = 7 is 361. The same
discussion as in the previous section applies to the arbitrariness
of division into bins. Figure 4 shows the conditional PDF. The
horizontal and vertical axes are the same as in the previous
section. Figure 4 shows that the smaller the initial value xi is
(The smaller n is), the larger the negative growth rate is, and the
positive growth rate is almost independent of the initial value.
Surprisingly, this property is symmetrical with that observed
in Figure 1. This property is explicitly confirmed in Figure 5,
which shows the n-dependence of positive standard deviation
(σ+ =

√

6r>0r2q(r|n)) and negative one (σ− =
√

6r<0r2q(r|n)).
Figure 5 shows that σ+ is almost n independent, but σ− decreases
depending on n, as approximated by

σ− ∝ e−γUSn (3)

FIGURE 4 | Distributions of urban population growth rates in the

United States. The horizontal axis shows the logarithmic growth rate:

r = log10
xi+10

xi
. The vertical axis shows its conditional probability density

function: q(r|n) . The initial population xi is divided into logarithmically equal

sized bins: xi ∈ [100.5(n−1)+2, 100.5n+2) (n = 1, 2, · · · , 7).

FIGURE 5 | The n dependence of the positive and negative standard

deviations σ± of the conditional PDFs in the United States (Figure 4).

with γUS = 0.25± 0.03 .
In the previous section, we observed the long-term

property of the growth of the geometric mean of firms’
sales depending on the firm age. With a slightly different
perspective on urban population data, we observe the long-term
property of the growth of the geometric mean of the urban
population over the observable years by size of the initial
population. Figure 6 shows the observed results for the urban
population in the United States. The horizontal axis represents
1900, 1910, · · · , 2010 expressed as T = 1, 2, · · · , 12, respectively,
and the vertical axis represents the geometric mean of the
urban population in each year (〈xT〉). In Figure 6, the original
population of x1 in 1900 (T = 1) is divided into logarithmically
equally sized bins: x1 ∈ [10m+1, 10m+2) (m = 1, 2, 3), x1 ≥ 105

(m = 4). The number of cities in each bin is 4, 593 (m = 1),
2, 482 (m = 2), 317 (m = 3), and 28 (m = 4). The number
of cities less than m = 1 is 46. These totals are fewer than the
10,597 cities in 1900 because of the high frequency of urban
renewal in the United States and the large number of cities that
existed in 1900 but did not exist 110 years later. In Figure 6,
which is the semilogarithmic axis, the optimum line is drawn
by the least squares method for T = 1, 2, 3, 4. Figure 6 shows
that for m = 1, 2 the whole period is approximated by an
exponential function:

〈xT〉 ∝ eβcity(m)T , (4)

where βcity(m) is the index of urban growth corresponding to
βsales in Equation (2). Here, βcity(m) has a factor m because
it varies depending on the bin containing the initial value x1.
On the other hand, at m = 3, 4, the exponential function is
followed up to T = 4, after which the growth is negligible.
Here, the exponents in U.S. βUS

city(m) of the four straight lines

(4) for m = 1, 2, 3, 4 in Figure 6 are evaluated as βUS
city(1) =

FIGURE 6 | Geometric mean growth of the urban population in the

United States from 1900 to 2010 (T = 1, 2, · · · , 12). The original population of

x1 in 1900 (T = 1) is divided into logarithmically equally sized bins:

x1 ∈ [10m+1, 10m+2) (m = 1, 2, 3), x1 ≥ 105 (m = 4). In the figure, ◦, •, △, and

Neach represent m = 1, 2, 3, and 4, respectively.
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0.098± 0.026, βUS
city(2) = 0.13± 0.01, βUS

city(3) = 0.20± 0.02, and

βUS
city(4) = 0.22±0.02, respectively. These values are measured by

applying T = 1, 2, 3, 4 for exponential growth (4). These indicate
that βUS

city(m) is an increasing function of m. In other words, the

geometric mean growth of the urban population will be faster as
the initial urban population size increases.

Similar analyses were conducted on urban population data
in Italy and Spain. As with the initial value dependence of the
urban population growth-rate distribution in the United States,
the negative growth rate increases as the initial value xi decreases,
and the positive growth rate hardly depends on the initial value.
These properties are expressed as positive and negative standard
deviations σ± in Figures 7, 8. In Figures 7, 8, as in the U.S., σ+ is
almost independent of n, and σ− has the same n dependency as
in Equation (3). The parameters for Italy and Spain are evaluated
as γ IT = 0.26 ± 0.01 and γ ES = 0.30 ± 0.06, respectively. In
Italy, the number of (xi, xi+10) pair is 88, 303, and the seven bins
contain the following cities: 2, 008 (n = 1), 14, 721 (n = 2),

FIGURE 7 | The n dependence of the positive and negative standard

deviations σ± of the conditional PDFs in Italy.

FIGURE 8 | The n dependence of the positive and negative standard

deviations σ± of the conditional PDFs in Spain.

36, 913 (n = 3), 26, 002 (n = 4), 6, 781 (n = 5), 1, 453 (n = 6),
and 241 (n = 7). Number of cities less than n = 1 is 948,
number of cities greater than n = 7 is 0. In Spain, the number of
(xi, xi+10) pair is 87, 141, and the seven bins contain the following
cities: 13, 979 (n = 1), 30, 333 (n = 2), 23, 407 (n = 3), 11, 980
(n = 4), 3, 496 (n = 5), 720 (n = 6), and 244 (n = 7).
Number of cities less than n = 1 is 2, 924, number of cities greater
than n = 7 is 302.

As in the United States, Figures 9, 10 shows the long-term
properties of the geometric mean of the urban population
growing with the passage of observable years by size of the

FIGURE 9 | Geometric mean growth of the urban population in Italy from

1901 to 2001 (T = 1, 2, · · · , 11). The original population of x1 in 1901 (T = 1)

is divided into logarithmically equally sized bins: x1 ∈ [10m+1, 10m+2)

(m = 1, 2, 3), x1 ≥ 105 (m = 4). In the figure, ◦, •, △, and Neach represent

m = 1, 2, 3, and 4, respectively.

FIGURE 10 | Geometric mean growth of the urban population in Spain from

1900 to 2001 (T = 1, 2, · · · , 11). The original population of x1 in 1900 (T = 1)

is divided into logarithmically equally sized bins: x1 ∈ [10m+1, 10m+2)

(m = 1, 2, 3), x1 ≥ 105 (m = 4). In the figure, ◦, •, △, and Neach represent

m = 1, 2, 3, and 4, respectively.
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original population in Italy and Spain. For Italy, each bin contains
1, 200 (m = 1), 6, 031 (m = 2), 467 (m = 3), and 11
(m = 4) cities. For Spain, each bin contains 4, 202 (m = 1),
3, 375 (m = 2), 211 (m = 3), and 6 (m = 4) cities. The
number of cities less than m = 1 is 2 in Italy and 6 in Spain.
In Figures 9, 10 on the semilogarithmic axis, the optimum line
is drawn by the least squares method for T = 1, 2, · · · , 8.
From these optimal straight lines, we confirm that the geometric
mean of urban population grows approximately exponentially
over almost all periods for the case of m = 1, 2, 3, and 4.
Here, the exponents in Italy βIT

city(m) of the four straight lines

(4) for m = 1, 2, 3, 4 in the Italian long-term growth Figure 9

are evaluated as βIT
city(1) = −0.0071 ± 0.0058, βIT

city(2) =
0.0055 ± 0.0071, βIT

city(3) = 0.055 ± 0.003, and βIT
city(4) =

0.14 ± 0.01, respectively. The exponents in Spain βES
city(m) of the

four straight lines (4) for m = 1, 2, 3, 4 in the Spanish long-
term growth Figure 10 are evaluated as βES

city(1) = −0.030 ±
0.017, βES

city(2) = 0.016 ± 0.009, βES
city(3) = 0.085 ± 0.003, and

βES
city(4) = 0.18 ± 0.01, respectively. These values are measured

by applying T = 1, 2, · · · , 8 for exponential growth (4). As in
the U.S., βIT

city(m) and βES
city(m) are also increasing functions of

m. Significantly different from the U.S. is that the index βcity(1)
for m = 1 becomes negative, i.e., for m = 1, the geometric
mean of the urban population 〈xT〉 decreases depending on T in
Italy and Spain.

5. SIMULATION OF LONG-TERM GROWTH
PROPERTY

In the previous section, we observed the dependence of the
short-term growth-rate distribution on the initial value and
observed the properties of long-term growth. With respect to
the initial value dependence of the short-term growth rate, it
was observed that the probability of a decrease in the urban
population increases as the initial population decreases, and that
the probability of an increase in the urban population does
not depend on the initial population in any of the countries in
which the urban population data were analyzed. As for long-term
growth, it was confirmed that the geometric mean of the urban
population 〈xT〉 grew exponentially eβcity(m)T as in Equation (4),
depending on the year T = (1, 2, · · · ). In Italy and Spain, an
exponential decline (βIT

city(1),β
ES
city(1) < 0) was also observed

for small (m = 1) original (T = 1) urban populations (x1 ∈
[102, 103)). Collectively, we observed that the larger the original
urban population x1 (the larger the m), the larger the exponent
of the exponential function βcity(m), which indicates the rate of
growth. It was also observed that as large cities grew, their growth
slowed and stopped.

This section uses simulations to show how these short- and
long-term growth properties are related. Specifically, we use
data sampled from the short-term growth-rate distribution to
grow cities with different initial values and confirm whether
the long-term growth has the properties observed in the
real data.

Since it is important to adopt a non-Gibrat’s property
that the growth-rate distribution differs depending on the
initial value, the simulation was designed as follows. First,
we divided the initial city population xT into eight bins:
xT ∈ [1, 102), xT ∈ [100.5(n−1)+2, 100.5n+2) (n =
1, 2, · · · , 6), and xT ∈ [105,∞). The first and last bins
differ from those in the previous section for the initial
dependence of the growth-rate distribution. The first bin is
needed if the city population is smaller than 102 in the
simulation. The last bin removes the upper limit 105.5 in
the empirical data analysis to increase the number of data
items in the bin. A bin corresponding to an initial value
xT is selected from these eight bins, and a growth rate
R is extracted at random from the bin, and each urban
population is grown by xT+1 = R xT to grow each urban
population. In the simulation, this step is repeated 10 times to
obtain x1, x2, · · · , x11.

We confirm that this growth depends on the original urban
population size x1 as follows. From the 1900 urban population,
for seven cases with different original values, we randomly
extracted the population of 10, 000 with repetition: x1 ∈
[100.5(m−1)+2, 100.5m+2) (m = 1, 2, · · · , 7). The 10-step growth
of the geometric mean of the urban population classified by
the seven different original values is depicted in Figure 11 for
the United States and Figure 12 for Italy. The results for Spain
are so similar to those for Italy that they have been omitted.
In Figures 11, 12, as in Equation (4), it is confirmed that the
geometric mean of the urban population 〈xT〉 grows as an
exponential function of step T: 〈xT〉 ∝ eβsim(m)T . In the following,
the exponent of exponential growth observed in the simulation
is expressed as βsim(m). The exponent βsim(m) increases with
increasingm initially but decreases with increasingm.

FIGURE 11 | Results of simulation of the growth of the geometric mean of the

urban population using values randomly sampled from real data in the

United States. Original (T = 1) populations x1 are divided into logarithmically

equally sized bins: x1 ∈ [100.5(m−1)+2, 100.5m+2) (m = 1, 2, · · · , 7). Points in the

figure indicate m = 1, 2, · · · , 7 in order from the bottom.
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FIGURE 12 | Results of simulation of the growth of the geometric mean of the

urban population using values randomly sampled from real data in Italy.

Original (T = 1) populations x1 are divided into logarithmically equally sized

bins: x1 ∈ [100.5(m−1)+2, 100.5m+2) (m = 1, 2, · · · , 7). Points in the figure indicate

m = 1, 2, · · · , 7 in order from the bottom.

FIGURE 13 | The m dependence of the exponent βUS(m) when the T

dependence of the geometric mean 〈xT 〉 is approximated by an exponential

function eβUS (m)T in a US simulation (Figure 11). The errors are so small that

they do not appear in the figure, and they are therefore omitted.

Figures 13–15 show the correlation of this index βsim(m) and
m in the U.S., Italy, and Spain, respectively. In these countries,
βsim(m) initially increased linearly with m. The exponents are
approximated by βUS

sim(m) = 0.041m + 0.001 in the U.S.,
βIT
sim(m) = 0.033m−0.102 in Italy, and βES

sim(m) = 0.060m−0.201
in Spain. Here we consider the optimal line for the first 3 n in
Figure 13 and the first 5 n in Figures 14, 15. In Italy and Spain,
the intercept of these linear relationships is negative, so βsim(m)
becomes negative when m is small. The value of the index βsim

obtained from the simulation results is closer to the value of
βcity(m) measured from the actual city growth. However, they
are not exactly the same and do not have to be because they
are simulated over different time periods. Importantly, the m

FIGURE 14 | The m dependence of the exponent β IT (m) when the T

dependence of the geometric mean 〈xT 〉 is approximated by an exponential

function eβ IT (m)T in a Italy simulation (Figure 12). The errors are so small that

they do not appear in the figure, and they are therefore omitted.

FIGURE 15 | The m dependence of the exponent βES (m) when the T

dependence of the geometric mean 〈xT 〉 is approximated by an exponential

function eβES (m)T in a Spain simulation. The errors are so small that they do not

appear in the figure, and they are therefore omitted.

dependency of β results from the non-Gibrat’s property. Because,
it can be confirmed that them dependency of βsim does not occur
by simulation without the procedure of selecting the growth rate
R from eight n bins divided by the initial value xT .

6. CONCLUSION

This paper uses census municipal population data (these
are collectively called urban populations in this paper) for
the United States, Italy, and Spain to analyze the statistical
properties of their 10-year growth (short-term growth). As
a result, it was confirmed that the smaller the initial urban
population is, the greater the probability that the urban
population will decrease, and that the probability that the
urban population will increase does not depend on the initial
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urban population. We call this the non-Gibrat’s property of the
urban population. We also observed the statistical properties of
long-term growth of urban populations in each country over
100 years. Specifically, we identified the following properties
by observing the geometric mean of logarithmically equal
sized bins of the oldest urban population in the data used
in the analysis.

1. The average urban population increases or decreases
exponentially with time.

2. The smaller the initial average urban population, the smaller
the exponent, which can be negative in Italy and Spain.

3. When the average urban population is large, exponential
growth may stop.

We conducted the following simulations to clarify the
relationship between these short- and long-term properties.
First, the original urban population was randomly extracted
from the oldest urban population in the analysis, and using
short-term growth data, they were grown by 10 steps. What is
important here is that the growth rate varies according to the
size of the initial urban population according to the non-Gibrat’s
property. As a result, it was confirmed that almost all of the
above properties observed in real data for 100 years were
reproduced. Specifically, the following long-term properties
were confirmed.

4. The geometric mean of the urban population grows or
declines exponentially over time.

5. The index increases with the size of the original
urban population.

6. However, when the original urban population is very large, the
index turns to decline.

The property 6. is considered to be the property 3.
smoothed by simulation.

Finally, we consider how the short-term properties leads to the
long-term properties 1. and 2. First, we assume that the definition
of the growth rate approximately holds for the geometric mean.
Furthermore, the growth rate does not change approximately
over a period of around 100 years. In this case, it is easy to
derive that the geometric mean of the urban population grows
exponentially, and that the index is the geometric mean of the
growth rate minus one. From the non-Gibrat’s property observed
in the short-term growth rate, it can be concluded that the
smaller the urban population size, the smaller the geometric
mean of the growth rate, and therefore the smaller the index
of exponential growth. In this way, the non-Gibrat’s property
of short-term growth can be interpreted as being linked to the
long-term growth property. In the case of firm sales, the non-
Gibrat’s property observed in the initial value dependence of
the distribution of short-term growth rates produced the firms’
initial rapid exponential growth. In the case of urban populations,
on the other hand, the non-Gibrat’s property controls the rate
of long-term slow exponential growth through the mechanisms
described above. It is very interesting that the different non-
Gibrat’s properties of firm sales and urban population lead to
different long-term growths.

It was predictable that the distribution of the short-term
growth rate in the mid-size range was dependent on the initial
value, because the power-law distribution in the large-size range
was collapsed in the mid-size range in both firm sales and
urban population. In this study, we found that the urban
population has a property that is completely opposite to the
initial value dependence of the distribution of the short-term
growth rate of firm sales, as described in 1. to 3. above. The
decline in the urban population will be a policy issue. In the
macro view of this paper, the solution is to merge cities with
smaller populations. In Italy and Spain, cities with populations
generally below tens of thousands tend to decline. This figure
may serve as an indicator for policymaking. However, it is
necessary to carefully examine the causal relationship between
such figures and the results of the merger policy. This is a
future issue.

In this paper, we derive these results from three data
analyses, the U.S., Italy, and Spain Census. The remaining
challenge is to clarify the relationship between the short-term
growth parameter γ and the long-term growth parameter β .
Since γ in the three countries matches within the margin of
error, this may be a universal nature. It is also possible that
γ is involved in the correlation between β and m. We are
looking to solve this problem in the near future by analyzing
the urban population data we are trying to obtain in France
and Germany.

This paper discusses the macro-statistical properties of urban
population. This discussion does not take into account the
microscopic nature of individuals at all, and it is thus not possible
to answer why the non-Gibrat’s property occurs. In order to
develop the results of this paper and better understand the
nature of urban population, we need to take into account the
microscopic perspective of human movement between cities. On
an individual level, it is a likely scenario that people tend to move
away from less populated cities because they are inconvenient
and difficult to live in. It is also conceivable that the population of
cities with too many people will not increase further because they
are difficult to live in. In order to construct a theory incorporating
such properties, a microscopic view of the network structure will
be important [34, 35]. This is an important issue that should be
addressed in the future.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: the census information of the municipal
population data of the United States, Italy, and Spain.

AUTHOR CONTRIBUTIONS

AI and SF conceived of the presented idea. AI developed
the theory and performed the computations. AR verified the
analytical methods. TM encouraged AI to investigate non-
Gibrat’s property and supervised the findings of this work.

Frontiers in Physics | www.frontiersin.org 9 October 2020 | Volume 8 | Article 302172

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ishikawa et al. Initial Value Dependence of Urban-Growth-Rate

All authors discussed the results and contributed to the
final manuscript.

FUNDING

This study was supported by JSPS KAKENHI Grant Numbers
17K01277, 16H05904, 18H05217, ROIS NII Open Collaborative
Research 2019-FS01, the Obayashi Foundation, The Okawa
Foundation for Information and Telecommunications, and
ECO2017-82246-P of the Spanish Ministerio de Economía

y Competitividad and ADETRE Reference Group of
Gobierno de Aragón.

ACKNOWLEDGMENTS

The authors thank Dr. Tsutomu Watanabe with whom much
of this work was discussed and Drs. Rafael González-Val, Luis
Lanaspa, and Fernando Sanz-Gracia for the databases that we
have used in this paper.

REFERENCES

1. Mantegna RN, Stanley HE. An Introduction to Econophysics: Correlation and

Complexity in Finance. New York, NY: Cambridge University Press (1999).
2. Pareto V. Cours d’Économie Politique. London: Macmillan (1897).
3. Newman M. Power laws, Pareto distributions and Zipf ’s law. Contemp Phys.

(2005) 46:323–51. doi: 10.1080/00107510500052444
4. Clauset A, Shalizi CR, NewmanM. Power-law distributions in empirical data.

SIAM Rev. (2009) 51:661–703. doi: 10.1137/070710111
5. Saichev A, Malevergne Y, Sornette D. Theory of Zipf ’s Law and Beyond. New

York, NY: Springer (2009).
6. Aoyama H, Fujiwara Y, Ikeda Y, Iyetomi H, Souma W. Econophysics and

Companies -Statistical Life and Death in Complex Business Networks. New
York, NY: Cambridge University Press (2010).

7. Anazawa M, Ishikawa A, Suzuki T, Tomoyose M. Fractal structure with a
typical scale. Phys A. (2004) 335:616–28. doi: 10.1016/j.physa.2003.12.006

8. Ishikawa A, Suzuki T. Relations between a typical scale and averages
in the breaking of fractal distribution. Phys A. (2004) 343:376–92.
doi: 10.1016/j.physa.2004.06.060

9. Reed WJ. On the rank-size distribution for human settlements. J Reg Sci.
(2002) 42:1–17. doi: 10.1111/1467-9787.00247

10. Reed WJ. The Pareto law of incomes–an explanation and an extension. Phys
A Stat Mech Appl. (2003) 319:469–86. doi: 10.1016/S0378-4371(02)01507-8

11. Reed WJ, Jorgensen M. The double Pareto-lognormal distribution -a new
parametric model for size distributions. Commun Stat Theor Methods. (2004)
33:1733–53. doi: 10.1081/STA-120037438

12. Eeckhout J. Gibrat’s law for (all) cities. Am Econ Rev. (2004) 94:1429–51.
doi: 10.1257/0002828043052303

13. González-Val R. The evolution of US city size distribution from
a long-term perspective (1900-2000). J Reg Sci. (2010) 50:952–72.
doi: 10.1111/j.1467-9787.2010.00685.x

14. Giesen K, Zimmermann A, Suedekum J. The size distribution across all
cities–double Pareto lognormal strikes. J Urban Econ. (2010) 68:129–37.
doi: 10.1016/j.jue.2010.03.007

15. Giesen K, Suedekum J. City age and city size. Eur Econ Rev. (2014) 71:193–208.
doi: 10.1016/j.euroecorev.2014.07.006

16. González-Val R, Lanaspa L, Sanz-Gracia F. New evidence on Gibrat’s law for
cities. Urban Stud. (2013) 51:93–115. doi: 10.1177/0042098013484528

17. González-Val R, Lanaspa L, Sanz-Gracia F. Gibrat’s law for cities,
growth regressions and sample size. Econ Lett. (2013) 118:367–9.
doi: 10.1016/j.econlet.2012.11.020

18. González-Val R, Ramos A, Sanz-Gracia F, Vera-Cabello M. Size distributions
for all cities: which one is best? Pap Reg Sci. (2015) 94:177–96.
doi: 10.1111/pirs.12037/full

19. Puente-Ajovín M, Ramos A. On the parametric description of the French,
German, Italian and Spanish city size distributions. Ann Reg Sci. (2015)
54:489–509. doi: 10.1007/s00168-015-0663-3

20. Luckstead J, Devadoss S. Pareto tails and lognormal body of US
cities size distribution. Phys A Stat Mech Appl. (2017) 465:573–8.
doi: 10.1016/j.physa.2016.08.061

21. Luckstead J, Devadoss S, Danforth D. The size distributions of all Indian cites.
Phys A Stat Mech Appl. (2017) 465:573–8. doi: 10.1016/j.physa.2017.01.065

22. Kwong HS, Nadarajah S. A note on “Pareto tails and lognormal body
of US cities size distribution”. Phys A Stat Mech Appl. (2019) 513:55–62.
doi: 10.1016/j.physa.2018.08.073
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The stock market is a canonical example of a complex system, in which a large

number of interacting agents lead to joint evolution of stock returns and the collective

market behavior exhibits emergent properties. However, quantifying complexity in stock

market data is a challenging task. In this report, we explore four different measures for

characterizing the intrinsic complexity by evaluating the structural relationships between

stock returns. The first two measures are based on linear and non-linear co-movement

structures (accounting for contemporaneous and Granger causal relationships), the third

is based on algorithmic complexity, and the fourth is based on spectral analysis of

interacting dynamical systems. Our analysis of a dataset comprising daily prices of a

large number of stocks in the complete historical data of NASDAQ (1972–2018) shows

that the third and fourth measures are able to identify the greatest global economic

downturn in 2007–09 and associated spillovers substantially more accurately than the

first two measures. We conclude this report with a discussion of the implications of such

quantification methods for risk management in complex systems.

Keywords: complex systems, networks, spectral analysis, mutual information, interaction, Granger causality,

algorithmic complexity

1. INTRODUCTION

How can complexity in financial markets be measured? Although financial markets are routinely
thought of as complex systems, exact characterization of their embedded complexity seems
non-existent, as pointed out in Brunnermeier and Oehmke [1]. In various contexts, different
characterizations and underlying mechanisms have been proposed; explanations include the
emergence of macroscopic properties from microscopic interactions [2, 3], the presence of power
laws and/or long memory in fluctuations [4], and scaling behavior in growth rates of economic and
financial entities [5], to name a few.

In this brief research report we investigate the following question: Given the realized dynamical
behavior of a system, can we find the degree of complexity embedded in the system? We note
that in the case of financial markets, while interactions between economic agents can be non-
linear in nature (due to heterogeneity in behavioral aspects, institutional properties, or information
processing abilities), a complete enumeration of all such non-linearities is almost impossible. In
this work we do not attempt to find a microfoundation of complexity based on traders’ behavior;
instead, we aim to quantify complexity in terms of a summary statistic inferred from observed
behavior that potentially evolves over time.

We consider four main candidate measures of complexity in multivariate financial asset return
data. The dataset we analyze is extracted from complete historical data between 1972 and 2018 of
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NASDAQ (National Association of Securities Dealers Automated
Quotations), which is one of the largest stock markets in the
world in terms of trading volume. We divide the whole time
evolution into overlapping windows of 4 years long. To fix
ideas, let N be the number of stocks in the stock market and
T the number of return data points within each time window,
where N ≪ T (in the actual implementation for each window
of data, N = 300 and T ≥ 1, 000, which corresponds to 4
years of trading in NASDAQ; we elaborate on the data structure
and sample selection in section 2.1). The first measure is based
on mutual information across stocks. Mutual information is an
entropy-based measure that generalizes the linear co-movement
structure to non-linear co-movements. The second measure is
based on dispersion in systemic risk captured via Granger causal
relationships across stocks; Granger causality captures lagged co-
movement structure in the data. The third measure is based
on algorithmic complexity evaluated on the projection of the
N-dimensional data onto a two-dimensional space. The fourth
measure is based on a vector autoregression estimation of N-
dimensional data. This measure is motivated by the famous
May-Wigner result that characterizes the instability of many-
dimensional heterogeneous interacting systems. We compute
each of these measures on 4-years windows and study how the
measure evolves when we move the windows by 1 year (from
1972 to 2018 there are 44 such windows).

We assess the usefulness of the measures by seeing whether
they can identify the only major financial crisis in the time period
under consideration (1972–2018), which occurred during 2007–
09 (for an overview of the economic and financial impacts and the
implications of the crisis, readers can consult [6, 7] and references
therein). During this crisis, the housing market meltdown in the
USA led to an avalanche of collapse in the global financial market.
Therefore, if any of the four measures of complexity show an
increase in magnitude during this time period (or around it),
we will take this as a sign of increased instability and hence
embedded complexity.

To summarize the results, we find that the first two measures
do not exhibit any unusual behavior during or around 2007–09.
However, the third and fourth measures (based on algorithmic
complexity and heterogeneity of interactions, respectively) do
show a substantial increase in magnitude during the crisis period.

Our work is related to several strands of the existing literature.
First, it is related to an early attempt of Bonanno et al. to
characterize levels of complexity in financial data [8]. They
graded complexity in three levels: the lowest level has time
series properties (such as volatility clustering); level two contains
cross-correlations; and level three is characterized by extreme
movements in the collective dynamics, signifying the highest
level of complexity. The present work is an attempt toward
numerically quantifying the third level, i.e., the highest level
of complexity as described in Bonanno et al. [8]. Second, we
note that the goal of finding complexity measures for financial
data based on techniques from physics, economics, evolutionary
biology, etc. has often been discussed, for example in Johnson
and Lux [9] and references therein; however, to the best of our
knowledge, currently there is still no measure available (apart
from sudden changes in volatility) that can accurately identify

periods of large-scale financial distress from only asset return
data. We note that this goal is different from that of seeking
statistical precursors to financial crises (or even identifying
mechanisms correlated with financial crises), toward which some
work has already been done (see e.g., [10, 11]).

There is large volume of work on construction and inference
of network structures from multivariate stock return data (see
[12–14] and references therein). Our first measure is based
on non-linear relationships between stock returns, for which
we adopt an entropy-based measure of mutual information
(previously used in the context of financial time series, such
as in Fiedor [15]), and we compare the dynamics of the
corresponding eigenspectrum with that obtained from linear
correlation matrices [16]. We see that there is an overall increase
in the degree of correlation over time between what can be
inferred from non-linear and from linear relationships, along
with a cyclic oscillation in explanatory power. This indicates
that a non-linear relationship between assets does not necessarily
convey more information than a linear relationship.

Next, we quantify the behavior of a directional Granger causal
network over time. The spread in centralities of the nodes
in the directional lagged co-movement network (captured by
Granger causation) remains fairly stable over time. This analysis
is motivated by two influential papers in which the systemic risks
of assets were constructed from return data (see [17, 18]). There
is a related literature on characterizing shock spillover in a multi-
dimensional return network. However, here we do not consider
those constructions, since they do not directly relate to instability
of the financial system.

We then implement a non-parametric, information-theoretic
measure of complexity that is based on algebraic complexity
[19–24]. Zenil et al. [25] applied an algorithmic measure of
complexity to financial data. We adapt their measure to many-
dimensional data by transforming the data through multi-
dimensional scaling. This dimension-reduction technique makes
the method very generally applicable to time series data, and the
measure is able to accurately identify times of crisis.

Finally, the fourth measure is based on the ecology-inspired
dynamical systems theory proposed by Robert May [26]. In
reference [27] an adaptation of the original May-Wigner result is
proposed in the context of a discrete-time vector autoregression
model and applied to a limited set of data from the New York
Stock Exchange. We adopt the same approach and construct the
implied heterogeneity index of stock interactions, which exhibits
sharp transitions during the crisis and also in the post-crisis
period, indicating lagged effects.

2. MATERIALS AND METHODS

In this section we describe the data and the methods.
All background material and a step-by-step description
of the computational procedure are given in the
Supplementary Material.

2.1. Data Description
We collected daily NASDAQ stock return data over a period
of 47 years, from 1972 to 2018 [obtained from the Center for
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Research in Security Prices (CRSP) database, http://www.crsp.
org/, accessed throughWharton ResearchData Services (WRDS),
https://wrds-www.wharton.upenn.edu/]. Let T denote the length
of the entire data series in years, so T = 47. We considered
moving windows of width equal to 4 years, i.e., 1972–75, 1973–
76, and so on until 2015–18, with the windows indexed by
k = 1, 2, . . . , 441. For each window, we calculated the market
capitalization of all stocks at the end of the period and selected
the top N = 300, with the restriction that the data for chosen
stocks cannot havemore than 5%missing values within a window
(which we fill with zeros). This dataset covers pre-crisis, crisis,
and post-crisis periods (the crisis period was 2007–09).

We denote each price series by Ski (t), where i is the stock, t
is the time period within a window, and k is the window. A 4-
years window has ∼1,000 days (each year has slightly more than
250 trading days) and is denoted by Tk. All our analyses were
conducted on the log-return data, defined as

Gk
i (t) = log Ski (t + 1)− log Ski (t). (1)

Next, we normalize the log-return data as follows:

gki (t) =
Gk
i (t)− 〈Gk

i (t)〉
σ k
i

, (2)

where 〈·〉 denotes the sample average and σ k
i is the sample

standard deviation of Gi.

2.2. Quantification of Linear and Non-linear
Relationships
In this subsection we compare the information content in linear
and non-linear relationships.

2.2.1. Correlation Matrix
We construct the cross-correlation matrix Ck as

Ck
ij = 〈gki (t)g

k
j (t)〉 (3)

for all i, j ≤ N for the kth window, where k = 1, . . . ,T. For the
{i, j}th pair we construct a distance measure in the form of (this
form is widely used; see e.g., [13]).

Dk
ij =

√

2(1− Ck
ij). (4)

2.2.2. Entropy and Mutual Information Matrix
First we need to define entropy. For the probability
distribution p(x) of a discrete variable X defined over a
domain [x1, x2, . . . , xN], the Shannon entropy is given by [23]

H(X) = −
∑

i

p(xi) log2 p(xi). (5)

For two discrete variables X and Y with probability distributions
p(x) and p(y), the joint entropy is given by [23]

H(X,Y) = −
∑

i

∑

j

p(xi, yj) log2 p(xi, yj), (6)

1Because of missing data, the first window contains 124 stocks.

where p(xi, yj) denotes joint probability. Mutual information is
an entropy-based measure that is defined for two variables X and
Y having probability distributions p(x) and p(y) [23]:

I(X;Y) =
∑

i,j

p(xi, yj) log2
p(xi, yj)

p(yj)p(xi)
, (7)

which is always guaranteed to be non-negative and symmetric.
We construct the mutual information matrix Mk for each
window k, where the elementMk

ij of the matrix is defined as

Mk
ij = I(gki ; g

k
j ). (8)

By construction, M has all non-negative elements and is
symmetric. We have used the Freedman-Diaconis rule here
[28] to discretize the data. Further details are available in the
Supplementary Material.

2.2.3. Comparison of Linear and Non-linear

Relationships
We conduct an eigendecomposition of both the distance and the
mutual information matrices for every window k = 1, 2, . . . ,T.
First we carry out eigendecompositions of the distance matrix D
(from Equation 4) and the mutual information matrix M (from
Equation 8):

D =
N

∑

i=1

vDi (v
D
i )

′λDi and M =
N

∑

i=1

vMi (vMi )′λMi , (9)

where λi is the ith eigenvalue, vi is the corresponding
eigenvector, and a prime represents transpose. Since the
dominant eigenvector represents the contribution of each asset
to the aggregate interaction matrix, we extract the dominant
eigenvectors from both the distance and the mutual information
matrices for every window and regress the eigenvector obtained
from the kth mutual information matrix (vmi,k) on that obtained
from the corresponding kth distance matrix (vD,k):

vmi,k
j = α + βvD,kj + ǫj for j = 1, . . . ,N, (10)

where α and β are constants and ǫj is an error term. The
explained variation (i.e., the R2 of the regression) over 47
windows is plotted in Figure 1. High explanatory power would
indicate that the information content is similar in the two
measures. Two features stand out from the results. First, there
is substantial time variation and an almost cyclic oscillation
in the explanatory power. Second, there seems to be a general
increase over time in the degree of relationship, indicating that
the information content is becoming more similar, at least for
pairwise relationships. The mutual information estimates were
computed by discretizing the data, with each series converted
into an ordinal categorical series with b classes, where b = 8, 12,
and 16, utilizing the useful property that mutual information is
a probability-based measure. Upon varying number of bins, the
results are similar in all cases [29]. Therefore, the information
content seems to be captured well by linear correlation matrices,
which are much less computationally intensive.
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FIGURE 1 | Evolution of the dominant eigenvalues of the distance matrices (λD) and the mutual information matrices (λbMI with b = 8, 12, 16) over the time period

1972–2018. The dominant eigenvalues of the mutual information matrices (for three bin choices) show variation over time in the semi-log plot. Due to scaling, the

variation in the dominant eigenvalue of the distance matrix is subdued. Inset: Time series of R2 obtained from regressing the dominant eigenvector of the mutual

information matrix on the dominant eigenvector of the distance matrix over the period 1972–2018 comprising 44 time windows. The choice of the number of bins b

seems to have a negligible effect (results are shown for b = 8, 12, and 16). The dominant eigenvectors representing market modes in the distance matrices D and the

mutual information matrices M became strongly correlated after the year 2000.

2.3. Complexity Through Dispersion in
Systemic Risk
The spread in systemic risk across different stocks may indicate
the degree of complexity. A high spread would imply that some
assets are extremely risky while other assets are safe; a low spread
would indicate a similar risk profile for all stocks. We quantify
systemic risk following the method proposed in Yun et al. [17],
which uses the Granger causal network as the fundamental
building block.

We construct the Granger causal network (GCN) for each
window of data (excluding the first window as its network size
was not comparable with that of the rest). Each network is
constructed as follows. If the jth asset’s return Granger causes the
ith asset’s return, then there exists an edge from j to i:

rit = α + βiiri,t−1 + βijrj,t−1 + ǫit for i, j = 1, . . . ,N, (11)

where α is a constant, βij is the parameter of interest, and ǫit is an
error term. In the estimated model, if βij is significantly different
from zero (evaluated at the standard 5% level of significance, with
estimation done using the lmtest package in R), we connect
i and j. We do the same for all i, j = 1, . . . ,N and create a
full Granger causal matrix GN×N . A visual example is shown in
Figure 2A. High dispersion in the degree connectivity is evident.

Once the network is created, we find the PageRank [30]
of the matrix as a measure of the systemic risk [17, 18]. The
interpretation is that a high PageRank would imply a higher
propensity of lagged movement with respect to other assets and,
therefore, higher risk of spillover from other stocks (see the
Supplementary Material).

We study the evolution of the influence of assets in the GCN
by calculating the dispersion in PageRank. High dispersion would
indicate high inequality in influence. We present the evolution

of the standard deviation and the differential entropy, two well-
known measures of dispersion, in Figure 2B. Both series seem to
be quite stable, indicating low spread in the influence of assets in
the predictive GCN, except for the high inequality around 2013
shown by the first series (the estimate for 2013 represents data
from the window 2012–15).

2.4. Algorithmic Measures Based on
Information Theory
In this subsection we treat the problem of defining complexity
in the financial network from the point of view of replicability of
the emergent pattern. Although the present approach is different,
we note that in Zenil and Delahaye [25] it was proposed to apply
an algorithmic complexity measure to financial price data. The
authors analyzed deviation of financial markets from log-normal
behavior in a parametric setup under distributional assumptions.
Here we use a non-parametric formulation and study the time
series behavior of the implied complexity measure.

Our main idea is as follows. Given financial time series
data for a certain window, we first create a correlation
matrix (as in Equation 3), and from that we construct a
distance matrix in the form of an identity matrix minus
the correlation matrix. Then, based on a clustering technique
(multi-dimensional scaling, a non-linear dimension-reduction
technique for information visualization that creates a pattern
of the relative positions of a number of objects in a dataset;
we employed Euclidean distance for the present implementation
[31] using the sklearn.manifold package in Python), we
project the distance matrix onto a two-dimensional plane. This
step generates a data cloud on the two-dimensional plane.

By defining a fine grid on the plane, we convert the data cloud
into a binary matrix, where each cell is evaluated according to
whether or not it contains an asset’s projection. Thus, we get
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FIGURE 2 | (A) Illustrative example of a Granger causal network of 100 firms (nodes) with greatest market capitalization in the last window of data (2015–2018) from

NASDAQ; an edge represents Granger causality between a pair of return time series. (B) Evolution of the spread in systemic risk as measured by PageRank

computed on Granger causality: the top panel shows the evolution of the standard deviation of PageRank for the nodes; the bottom panel shows the evolution of the

differential entropy (Jaynes’ method). The spread in centrality of assets remained stable over time, with a large spike occurring around 2013 in the standard deviation,

while the entropy remains quite stable.

a pattern on a two-dimensional grid. Given this binary matrix
pattern, we can construct a complexity measure [21, 22, 32] based
on how complex the pattern is that emerges on the matrix. Our
main object of study is the evolution of this complexity measure
(see the Supplementary Material).

Given this binary representation, one way to construct a
complexity measure would be to employ a lossless compression
method that captures statistical regularities related to
information-theoretic measures, such as Shannon entropy,
instead of algorithmic measures [22, 33]. A key limitation of such
approaches is that they are not invariant with respect to different
descriptions of the same object, while methods in algorithmic
complexity, such as the “invariance theorem,” can overcome this
difficulty [32]. In the following we adopt an algorithm (the block
decomposition method, BDM for short) developed in Zenil et al.
[21, 22, 32] to construct a complexity measure which in our view
is a potential candidate.

The algorithmic complexity of a string can be defined in terms
of the shortest algorithm that generates that string [34–36]. The
algorithmic complexity K(s) of a string s is the length of the
shortest program p that generates s when executed on a universal
TuringmachineU (prefix-free; for details see [37, 38]), which can
be formally expressed as

KU(s) = min{|p| : U(p) = s}. (12)

In the following we apply BDM estimation of the complexity
of the projection of the data on a two-dimensional grid.
For a complete discussion of the methodology of complexity
calculations and the background, which is a vast literature in
itself, one can consult [34, 35, 39, 40, 40–43].

2.5. Interactive Dynamics: Complexity
Through Heterogeneity
Next, we explore an ecology-inspired [9] characterization of
economic complexity in terms of the stability of interlinked
dynamical systems [44], which comes from the work of Robert
May. The result (which goes by the name of the May-Wigner
result) is based on prior theoretical work done by E. Wigner on
random matrices. The key idea is that as a first-order dynamical
system defined on a vector of variables XN×1 with random
heterogeneous connections becomes larger (i.e., N increases),
the system tends to be become unstable [26]. Formally, if Ŵ

is an N × N interaction matrix with elements γij such that
Prob(γij = 0) = c and γij = f (0, σ 2) for all other elements,
where f is some distribution with mean zero and variance σ 2,
then in the limit N → ∞, the probability that the linear system

Ẋ = ŴXt (13)

is stable tends to 1 if Ncσ 2 < 1 and tends to 0 if Ncσ 2 > 1
[44]. Importantly, for us σ represents the heterogeneity in the
strengths of connections of the interaction matrix Ŵ. In Rai et al.
[27] this idea was applied to the stock market with a discrete-
time formulation in the form of a vector autoregression (Xt =
Ŵ̃Xt−1+ ǫt , where one allows for a constant vector c in the vector
autoregression estimation; see the Supplementary Material). It
is shown that during times of crisis the estimated heterogeneity
parameter (σ obtained from the estimated Ŵ̃ matrix) increases
substantially. However, the data considered in Rai et al. [27]
was limited (spanning the 16 years 2002–17), the time windows
were non-overlapping, and the analysis was done only on data
from the New York Stock Exchange. In the present paper, we
perform a complementary analysis with the same technique,
using NASDAQ data from 1972 to 2018 with overlapping
windows. We fit the vector autoregression model to the data
and estimate the Ŵ̃ matrix for each window; then we compute
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the standard deviation of the estimated parameters in the Ŵ̃

matrix, which represents the degree of heterogeneity in the
interaction strengths.

2.6. Decomposability of Complexity
Measures
We also explore whether a feature that we find at the level of
raw data can be decomposed in terms of slices of data obtained
via eigendecomposition. For this purpose, we consider singular
value decomposition,

g = U6V∗ (14)

where the returnmatrix g (of size T×N) is expressed as a product
of threematrices, namely aT×TmatrixU, anN×N orthonormal
matrix V , such that V = V∗, and a T × N rectangular diagonal
matrix 6 which contains non-negative numbers on the diagonal.
In the present context, T > N.

After de-meaning the data matrix g, we consider the matrix
6′ which contains only a subset of entries on the diagonal while
the rest of the entries are replaced by zeros. The original matrix
6 would have N entries on the diagonal. For 6′, we take the
subsets to be the first to fourth singular values and the fifth to
fifteenth singular values, implying that we can reconstruct the
return series associated with the first four and the next eleven
values by simply constructing

g′ = U6′V∗. (15)

We implement the complexity measures on these reconstructed
data matrices as well, to see whether a complexity measure
calculated from the whole data can be decomposed into
complexity measures pertaining to the dominant eigenmodes
in the data. We note that for the vector autoregression model
estimation, the estimated interaction matrices would have only
k non-trivial columns if we select k eigenmodes to construct the
data slices.

3. RESULTS

In Figure 3 we plot the complexity measure for rolling windows
using the BDM for the whole data. The results were obtained
by employing the multi-dimensional scaling method for fixed
axes using the scikit library in Python [45]. Fixing the axes is
required because the multi-dimensional scaling algorithm does
not always compute the projection in the same way since the
technique is invariant under rotation in the two-dimensional
plane, whereas the complexity measure is not invariant under
rotation. The BDM results were obtained using the Python
module developed by the AlgoDyn Development team (publicly
available at https://pybdm-docs.readthedocs.io/en/latest/index.
html). For the present purposes, we used the 2D implementation
and two symbols. For the heterogeneity estimates following
the May-Wigner theory, in Figure 4 we plot the evolution of
the heterogeneity in the interaction matrix. The analysis was
done using the VARS package in the R programming language.
Both of the above analyses were complemented by computing
the evolution of the same measures on the first four and the

next eleven eigenmodes using the singular value decomposition
(implemented using quantmod in R), as shown in the insets of
Figures 3, 4.

The main takeaway from these results is that both of the
complexity measures correctly indicate the time of crisis. The
BDM-based measure computes an analog of the dispersion in the
clustering of data (even with normalized return data), whereas
the vector autoregression-based measure captures the dispersion
in terms of the strength of interactions. Interestingly, when we
apply the same techniques to slices of data corresponding to
different eigenmodes, similar features are absent. Therefore, these
complexity measures, while reasonably correct at the aggregate
level, do not seem to be decomposable.

4. SUMMARY AND DISCUSSION

The goal of this work was to extract statistical features from time-
varying data that indicate evolution of complexity. Financial
systems are thought of as canonical examples of complex
systems in terms of interaction, emergence, evolution, and non-
stationarity. Here we have analyzed historical financial data on a
comprehensive set of stocks from NASDAQ, which is one of the
three most followed indices of the US stock market and consists
mostly of non-financial tech-oriented firms.

We have estimated four indices of complexity: a measure
based on the information content of non-linear co-movements,
a systemic risk-based measure constructed from Granger
causal networks, an algorithmic complexity measure based on
multi-dimensional scaling, and a heterogeneity-based measure
motivated by dynamical systems theory. To summarize, the first
two measures do not seem to indicate the crisis period (2007–
09) clearly, whereas the third and fourth measures perform
substantially better and are more accurate. However, neither of
the latter two measures is decomposable, in the sense that for
each of them the sum of the complexities of decomposed data
is not the same as the complexity of the original data.

Some caveats and future directions for research are as follows.
First, the results indicate that the information content of the
mutual information matrix and that of the correlation matrix
become quite similar after the year 2000, so a non-linear measure,
such asmutual information is not very useful. There are, however,
some new measures of association, with different asymptotic
theory (e.g., [46]), that could be explored in future work. Second,
an open problem relating to the construction of the Granger
causal matrix from pairwise regression is that it does not test
for joint significance and there can be type I error due to
multiple testing, leading to false discovery of edges [47]. In future
work we intend to explore this issue in more detail. Third, for
the BDM-based measure of complexity, implementation with
more symbols may yield better results, although this would be
computationally quite costly. Fourth, following Rai et al. [27] we
have shown that the heterogeneity of interaction strengths among
the stocks significantly increases during the crisis period and
attains an even higher level in the post-crisis period. Two major
differences between our results and those of Rai et al. [27] are
that (i) in the present work, the spike in heterogeneity has a much
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FIGURE 3 | Evolution of the complexity of financial linkages among the stocks over the period 1972–2018 obtained from the BDM. The dimension of the financial

linkage data was reduced by mapping the dissimilarity matrices (constructed from the cross-correlation matrix ρN×N as IN×N − ρN×N ) onto two-dimensional grids using

a multi-dimensional scaling technique, and the complexity measure was then evaluated on these. The measured value peaks around the crisis period. Inset: Result of

the same procedure applied to data slices corresponding to the first four eigenmodes (black dashed line) and the next eleven eigenmodes (red circles).

FIGURE 4 | Evolution of the heterogeneity in interaction strengths among the stocks over the period 1972–2018 obtained from the vector autoregression model. Each

point estimate corresponds to a 4-years data slice. The x-axis plots the midpoints of the windows. Inset: Result of the same procedure applied to data slices

corresponding to the first four eigenmodes (black dashed line) and the next eleven eigenmodes (red circles). No particular pattern emerges from the decomposition,

but at the aggregate level heterogeneity increases substantially during the time of the crisis and rises further in the post-crisis period.

larger magnitude than that found in Rai et al. [27]; and (ii) in our
results the greatest spike in heterogeneity occurs shortly after the
crisis (rather than during the crisis as in the analysis of NYSE data
in Rai et al. [27]) and seems to continue for a long time without
tapering off.

Management of risk in complex systems, such as financial
markets requires clear quantification of the complexity. The
measures proposed in this paper complement the existing
statistical finance literature on describing evolution of markets
during crisis and non-crisis periods [11, 48–51]. In this work
we have used the word complexity to mean emergent instability,
similar to Kuyyamudi et al. [11]. It would be interesting to see
whether similar ideas can be applied to other complex systems
[12]. In the context of financial markets, such quantification of
complexity brings us closer to answering the question of what
factors (economic or financial) drive the evolution of complexity.

A causal explanation of the mechanisms can inform policy-
making with regard to complex financial systems.
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Time Scales and Characteristics of
Stock Markets in Different Investment
Horizons
Ajit Mahata and Md. Nurujjaman*

Department of Physics, NIT Sikkim, South Sikkim, India

Investors adopt varied investment strategies depending on the time scales (τ) of short-
term and long-term investment time horizons (ITH). The nature of the market is very
different in various investment τ. Empirical mode decomposition (EMD) based Hurst
exponents (H) and normalized variance (NV) techniques have been applied to identify the
τ and characteristics of the market in different time horizons. The values of H and NV
have been estimated for the decomposed intrinsic mode functions (IMF) of the stock
price. We obtained H1 � 0.5 ± 0.04 and H1 ≥ 0.75 for the IMFs with τ ranging from a few
days to 3 months and τ ≥ 5 months, respectively. Based on the value of H1, two time
series have been reconstructed from the IMFs: a) short-term time series [XST(t)] with
H1 � 0.5 ± 0.04 and τ from a few days to 3 months; b) long-term time series [XLT(t)]with
H1 ≥ 0.75 and τ ≥ 5 months. The XST(t) and XLT(t) show that market dynamics is
random in short-term ITH and correlated in long-term ITH. We have also found that the
NV is very small in the short-term ITH and gradually increases for long-term ITH. The
results further show that the stock prices are correlated with the fundamental variables
of the company in the long-term ITH. The finding may help the investors to design
investment and trading strategies in both short-term and long-term investment
horizons.

Keywords: empirical mode decomposition, Hurst exponent, short-term investment time horizon, long-term
investment time horizon, time scale, normalized variance

1. INTRODUCTION

The stockmarket is a complex dynamical systemwhere the evolution of the dynamics depends on the
participation of different types of investors or traders [1–3]. Investors/traders participate in the stock
market to gain profit implementing different investment and trading strategies depending on
investment time horizons (ITH) [4, 5]. The participation of diversified investors, reaction to the
information, and short-term and long-term investment approaches play crucial roles in the
movement of stock prices [4].

In the stock markets, there are mainly two types of investors: short-term investors who invest for
short-term gain and long-term investors who invest for long-term gain [6, 7]. Studies show that the
ITH for short-term investors ranges from a single day to a fewmonths, and for long-term investors, it
usually ranges from a few months to several years [8, 9]. The fund managers and foreign exchange
dealers of various countries use technical analysis for the short-term ITH and fundamental analysis
for the long-term ITH [8, 10]. The time scales (τ) of short-term and long-term ITH by the investors
are generally chosen in an arbitrary manner based on the investment experience [8, 10]. So the
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identification of τ from stock price time series using a well defined
technique may be helpful for both the short-term and long-term
investors.

As the market is mean reversing in short-term ITH [9], traders
fail to generate significant returns using technical analysis [11].
On the other hand, in the long-term ITH, an investor can
generate significant return or help in making decision whether
to exit from that particular stock to avoid loss by determining the
financial health of a company by using fundamental variables
[12–14]. Fundamental analysis is an essential tool to find out the
relation between stock price and fundamental variables such as
book to market (B/M), sales to price, debt to equity, earnings to
price, and cash flow of a stock [12–14]. The stock price is found to
be positively correlated with the essential fundamental variables
[14–20]. The study of the correlation in the short-term ITH and
long-term ITH is essential to take a fruitful investment decision.

In the short-term ITH, the market is generally considered to be
governed by psychological behavior of the investors. However,
the fundamental variables are the main determining crucial
factors in the long-term ITH. Usually, investors choose the τ

of short-term and long-term investment horizon in an arbitrary
manner [8, 9]. Recently, we used structural break study to show
that the τ for the short-term is usually less than a few months [9].
The separation of the short- and long-term dynamics in terms of τ
plays a vital role in the prediction of future price movement.
Hence, detailed studies are required to find the correlation of the
stock price with fundamental variables and to identify the τ of
market dynamics in the short-term ITH and long-term ITH.

In this article, we estimated the τ of the stock price in the short-
term and long-term ITH for twelve leading global stock indices
and the stock price of some companies using empirical mode
decomposition (EMD) based Hurst exponent (H) analysis. We
have reconstructed short-term and long-term time series based
on theH. Finally, we estimated the correlation coefficient between
long-term time series and fundamental variables. Herein we
establish that short-term ITH is normally less than 3 months
and long-term ITH is more than 5 months. Correlation analysis
shows that the long-term stock price is positively correlated with
the fundamental variables.

The remaining part of this paper is organized as follows: In
Section 2, we introduce the method of analysis, while Section 3
presents the data analyzed. Results and discussion and conclusion
are delineated in Sections 4 and 5, respectively.

2. METHOD OF ANALYSIS

A nonlinear two-step technique—EMD followed by
Hilbert–Huang Transform (HHT)—has been applied to
analyze the stock data as it is nonlinear and nonstationary.
Nonlinearity in the stock market appears due to the presence
of market frictions and transaction costs, existence of bid-ask
spread, and short selling, whereas nonstationarity appears due to
different time scales present in the stock market [21, 22]. This
approach helps us to identify the characteristic τ and the
important trends and components present in the data [3].

The EMDmethod decomposes the stock index and stock price
into the intrinsic oscillatory modes of different τ by preserving the
nonstationarity and nonlinearity of the data. These oscillatory
modes are termed intrinsic mode functions (IMF). The IMFs can
be both amplitude and frequency modulated as well as
nonstationary [23, 24]. The τ of each IMFs has been identified
by HHT . The HHT eliminates the spurious harmonic
components generated due to the nonlinearity and
nonstationarity of the data [23, 24].

The IMFs satisfy the following two conditions; i) the number
of extrema and the number of zero crossing must be equal or
differ by one; and ii) mean values of the envelope, defined by the
local maxima and local minima, for each point are zero. The IMF
is calculated in the following way [23, 25]:

a. Lower envelope U(t) and upper envelope V(t) are drawn by
connecting minima and maxima of the data, respectively,
using spline fitting.

b. Mean value of the envelope m � [U(t) + V(t)]/2 is
subtracted from the original time series to get new data
set h � X(t) −m.

c. Repeat the processes (a) and (b) by considering h as a new
data set until the IMF conditions (i and ii) are satisfied.

Once the conditions are satisfied, the process terminates, and h
is stored as the first IMF. The second IMF is calculated repeating
the above steps (a)–(c) from the data set d(t) � X(t) − IMF1.
When the final residual is monotonic in nature, the steps (a)–(c)
are terminated and the original time series can be written as a set
of IMFs plus residue,

X(t) � ∑n
i�1

IMFi + residue,

where IMFi represents the ith IMF, and residue represents the
trend of the stock data.

IMFs are the signal with different τ. The IMF1 is a signal with
the smallest τ, the IMF2 is the signal with the second smallest τ,
and so on. Hence, EMD technique is useful to extract different τ
from the signal. The characteristic τ of each IMF can be estimated
from the frequency (ω) by using Hilbert Transform, which is
defined as

Y(t) � P
π
∫ ∞

−∞
IMF(t)
t − t′

dt,

where P is the Cauchy principle value, and τ � 1
ω
where ω � dθ(t)

dt ,
and θ(t) � tan− 1 Y(t)

IMF(t) [23]. Identification of important IMFs is
essential to differentiate the market dynamics in short-term from
long-term ITH, and the differentiation can be done by evaluating
the H.

Rescaled-range (R/S) analysis is a technique to estimate the
correlation present in a time series by calculating H [26–28].
Details of the R/S technique are described below. Let us consider a
time series of length L and divided into p subseries of length l.
Each subseries is denoted as Yj,t , where t � 1, 2, 3, . . ., p. Mean and
standard deviation of the subseries Yj,t are defined as
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Dt � 1
l
∑l
j�1

Yj,t

and

St �
�������������
1
l
∑l
j�1

(Yj,t − Dt)2
√√

,

respectively. Mean adjusted series is calculated as

Zj,t � Yj,t − Dt

for j � 1, 2, 3, . . ., l. Cumulative time series is given by

Xj,t � ∑j
i�1

Zi,t

for j � 1, 2, 3, . . ., l.
Range of the series has been calculated as

Rt � max(X1,t , . . . ,Xl,t) −min(X1,t , . . . ,Xl,t).
Individual subseries range can be rescaled or normalized by
dividing the standard deviation. So, R/S is written as

(R/S)l � 1
p
∑p
t�1

Rt/St .
The ratio of each subseries of length l is expressed as (R/S)l ∝ lH ,
whereH is the Hurst exponent.H can be estimated from the slope
of ln(R/S) vs. ln(l). For a random time series,H is around 0.5, and
for correlated and anticorrelated time series, H is greater than 0.5
and less than 0.5, respectively.

Normalized variance (NV) is another important
statistical tool to identify the important IMFs based on
the energy of the signal. The higher the NV value is, more
significant the signal is. The technique estimates the energy
of the ith IMFs by calculating variance [29, 30], and NV of ith
IMF is defined as

NVi �

���������∑
t
IMF2

i (t)
√
∑q
i�1

���������∑
t
IMF2

i (t)
√ ,

where q is the total number of IMF.

3. DATA ANALYZED

We have analyzed the stock indices and stock prices of a few
companies of different countries from December 1995 to July
2018, namely, 1) S&P 500 (USA), 2) Nikkei 225 (Japan), 3) CAC
40 (France), 4) IBEX 35 (Spain) 5) HSI (Hong Kong), 6) SSE
(China), 7) BSE SENSEX (India), 8) IBOVESPA (Brazil), 9) BEL
20 (Euro-Next Brussels), 10) IPC (Mexico), 11) Russell 2000
(USA), and 12) TA125 (Israel), and stock prices of the
companies 1) IBM (USA), 2) Microsoft (USA), 3) Tata
Motors (India), 4) Reliance Communication (RCOM) (India),

5) Apple Inc. (USA), and 6) Reliance Industries Limited (RIL)
(India). Stock indices and price data were downloaded from
yahoo finance, and the analysis was carried out using MATLAB
software.

4. RESULTS AND DISCUSSIONS

The stock market shows different behavior in different
investment horizon. EMD based H and NV techniques have
been applied to analyze the market dynamics as discussed below.

Figures 1A–J show the IMF1 to IMF9 and the residue of the
S&P 500 index calculated using EMD technique as described in
detail in Section 2. IMF1 in Figure 1A represents the mode with
the lowest τ, and it gradually increases with the increase in IMF
numbers. Figure 1J represents the residue of the signal, which
indicates the overall trend of the index. Similarly, we have
calculated all IMFs for all the indices and companies to
analyze the market.

4.1. EMD Based H and NV Analysis
H has been calculated for all the IMFs. Figure 2A shows the
typical plot of H versus τ of all the indices and companies. We
obtained single H from IMF1 − IMF5 and it is indicated as H1.
Higher-order IMF shows two H, namely, H1 and H2. We
obtained H1 ≈ 0.5 ± 0.04 for IMF1 to IMF5 with τ ranging
from a few days (D) to 3 months (M). The value of H1 jumps
to ≥ 0.75 for IMF6 with τ ≈ 5 M. It gradually increases for
IMF7 to IMF9 with a τ ranging from 1 year (Y) to 12 Y.
H1 ≈ 0.5 ± 0.04 for IMF1 to IMF5 indicates that the nature of
the first five IMFs is random. IMF6 to IMF9 show a long-range
correlation up to one period lag. τ of IMF1, IMF2, IMF3, IMF4,
and IMF5 of all the indices and companies stock data analyzed
here are in the range of 3–4 D, 7–10 D, 15–18 D, 1–1.5M, and
2.5–3M, respectively.

To further validate the robustness of the proposed method,
analysis of the decomposed time series has been carried out
usingNV technique. Figures 2B–D representNV of all the IMFs
of all the indices and companies, where plots have been arranged
according to the order of higher NV of IMFs. Figures 2B–D
show that the value of NV is very low for all the indices and
companies up to IMF5, and NV increases significantly for IMF6
to IMF9. Hence, based on the value of NV the time series can
also be decomposed into two time series with two distinct time
horizons: short-term time series by adding IMF1 to IMF5 and
long-term time series by adding IMF6 to IMF9 plus residue as
described in Section 4.2. Further, NV technique can be used to
find a time series with important time scale in the form of IMF.
Figures 2B–D show that the value ofNV is higher for IMF7 with
0.8 Y ≤ τ ≤ 1.9 Y , IMF8 with 2.0 Y ≤ τ ≤ 4.4 Y , and IMF9 with
4.5 Y ≤ τ ≤ 12 Y , respectively, for the companies mentioned in
the plots. The decomposed time series with higher value of NV
may play important role to predict long-term behavior of the
market [29]. More such studies in detail can be pursued in
future.
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FIGURE 1 | The plots (A)–(I) represent the IMF1 to IMF9, respectively, and (J) represents residue of the S&P 500 index.

FIGURE 2 | (A) shows the Hurst exponents (H1 andH2) vs. τ of all the IMFs of all the indices and companies with 2σ error bar. The first point represents the average
value ofH1 of all the first IMFs of all stock data, the second point represents the average value ofH1 of all the second IMFs of all stock data, and so on. For IMF1 to IMF5 of
all indices and companies H1 � 0.5 ± 0.04 with a maximum τ of around 3 M. The value of H1 jumps to 0.75 ± 0.04 for IMF6 (with a τ ≈ 5M) and gradually increases for
IMF7 to IMF9.H1 value shows that nature of IMF1 to IMF5 is random and IMF6 to IMF9 have a long-range correlation. (D), (M), and (Y) in the x-axis represent the day,
month, and year, respectively. (B)–(D) represent the normalized variance (NV) of IMFs of all the indices and company, respectively.
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4.2. Reconstruction of Short-Term and
Long-Term Time Series
In order to analyze the market dynamics in short-term ITH and
long-term ITH, we have reconstructed two time series from the
decomposed IMFs as discussed below.

We have reconstructed a time series [XST(t)] by adding the
IMF1 to IMF5 whose H1 ≈ 0.5 ± 0.04, that is, XST(t) � ∑5

i�1
IMFi.

The time scale of XST(t) ranges in 3D≤ τ ≤ 3M. Figure 3B shows
the reconstructed time series XST(t) obtained by decomposing
the original time series of Apple Inc. which is shown in
Figure 3A. H1 ≈ 0.5 ± 0.04 shows that the stock market is
random when τ ranging from a few days to 3 months. Hence,
XST(t) represents the short-term time series in 3D≤ τ ≤ 3M. The
above analysis shows that the market behavior is random in the
short-term ITH when τ is in the range of a few days to 3 months.

Higher-order IMF shows two Hurst exponents (H1 and H2).
We have reconstructed another time series [XLT(t)] by adding
IMF6 to IMF9 whose H1 ≥ 0.75 and residue, that is, XLT(t) �∑9
i�6

IMFi+ residue to understand the market dynamics in long-

term ITH. The time scales of XLT(t) are ≥ 5M. Figure 3C shows
the reconstructed long-term time series [XLT(t)] obtained by
decomposing the original time series of Apple Inc., which is
shown in Figure 3A. The present analysis yielded a H1 value of
≥ 0.75, which shows that the stock market has a long-range
correlation with τ ≥ 5M. Hence, XLT(t) represents the long-term
time series with τ ≥ 5M. From the above analysis, it can be

concluded that the market has a long-range correlation in the
long-term ITH with τ ≥ 5M and hence may be used to predict a
future price. Further, it has been observed that the future price of
a stock is actually much more dependent on the fundamental
variables of a company. In order to understand such dependence,
we have studied the correlation between XLT(t) and the
fundamental variables of the companies.

Table 1 shows that the correlation coefficient (J) between
XLT(t) and three fundamental variables: sale, net profit (NP), and
cash from operating activity (COA) for some Indian and American
companies which are listed in NSE, NYSE, and NASDAQ, from
March 2007 to March 2018 in the annual price level. Fundamental
variables data have been downloaded from screener and
macrotrends. We obtained a positive correlation between
XLT(t) and sale, NP, and COA for all the years. It implies that
stock price is correlated with the sale, NP, and COA. We have
obtained a small J for a few stocks. These stocks show a small J for
the following two possible reasons: a) the stock price of a company
with strong growth prospect increases even though sale or NP
decreases temporarily; b) the stock price of a company with weak
growth prospect decreases even though sale or NP increases
temporarily. Hence, for long-term investment, the fundamental
variables are the most crucial variables for the prediction of the
future price. In the future, we would like to study the correlation
between stock price and other fundamental variables of companies.

5. CONCLUSION

In this paper, we have studied the stock market using the
empirical mode decomposition (EMD) based Hurst exponent
(H) analysis and normalized variance (NV) technique. EMD

FIGURE 3 | (A) represents the daily price movement of Apple Inc. from
April 2007 to March 2018. (B),(C) represent the reconstructed short-term
time series [XST(t)] and long-term time series [XLT(t)], respectively.

TABLE 1 |Correlation coefficient (J) between reconstructed long-term time series
[XLT(t)] and three fundamental variables of some Indian and American
companies.

Company Sale NP COA

NSE: ASIANPAINT 0.9930 1.0000 0.9441
NSE: BPCL 0.6923 0.8322 0.6853
NSE: CIPLA 0.8951 0.6713 0.6713
NSE: DRREDDY 0.9441 0.8671 0.9510
NSE: EICHERMOT 0.9441 0.9790 0.9860
NSE: GAIL 0.5664 0.5804 0.5804
NSE: GRASIM 0.8462 0.4615 0.4615
NSE: HCLTECH 0.9441 0.9231 0.8951
NSE: HEROMOTOCO 0.9650 0.9580 0.9021
NSE: HINDALCO 0.2587 0.4545 0.3776
NSE: HINDUNILVR 0.9720 0.9860 0.8252
NSE: TATAMOTORS 0.8462 0.7832 0.9091
NSE: RCOM 0.0490 0.9510 0.5035
NSE: RELIANCE 0.1119 0.7203 0.4476
NYSE: JNJ 0.8352 0.2747 0.8022
NASDAQ: AMZN 0.9890 0.4231 0.9890
NASDAQ: GOOGL 0.9231 0.8462 0.9231
NASDAQ: AAPL 0.9615 0.9396 0.9341
NASDAQ: MSFT 0.7253 0.0659 0.6484
NASDAQ: INTC 0.9011 0.5879 0.8681

First column: Sale, second column: NP, and third column: COA.
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technique has been applied to decompose the time series in the
form of IMF. H and NV have been calculated for all the IMF to
understand the nature of the market dynamics.

The analysis yielded a value of H1 � 0.5 ± 0.04 for IMF1 to
IMF5. A short-term time series [XST(t)] is reconstructed by
adding IMF1 to IMF5. The time scale of XST(t) ranges from a
few days to 3 months. The estimated value of H1 � 0.5 ± 0.04
which shows that the stock market is random in the short-term
ITH. We have estimated the value of H1 � 0.75 ± 0.04,
H1 � 0.90 ± 0.04, H1 � 0.96 ± 0.02, and H1 � 0.99 ± 0.02 for
IMF6, IMF7, IMF8, and IMF9, respectively, for all the data.
H1 > 0.5 shows that the IMF6 to IMF9 have long-range
correlation, and hence a long-term time series [XLT(t)] is
reconstructed by adding IMF6 to IMF9 and residue. The time
scale of XLT(t) is greater than 5 months. The results show that the
market is random with τ ≤ 3M and having a long-range
correlation with τ ≥ 5M. The study of the correlation between
XLT(t) and sale, net profit, and cash from operating activity of
different companies shows that the market is positively correlated
with the fundamental variables of a company in long-term ITH.
Hence, the dynamics of the market may be predicted in long-term
ITH using fundamental variables.

A detailed study of the market in the long-term ITH in terms
of fundamental variables of a company is necessary to predict the

future price. We believe that the outcome of the present study
may help in making investment decisions in both short-term ITH
and long-term ITH.
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We analyzed the Tokyo Stock Exchange (TSE) for a 29-month period from August 2014

to December 2016, including every transaction and order book snapshot, and confirmed

through a simple statistical test that the market impact depends on each stock. Based on

a correlation analysis, we found that the market impact slowly changes over time. From

an order book analysis, negative correlations were found between the market impact

and the averaged limit order volumes in the order book. We also clarified that one of the

factors of market impact is the volume of limit orders in the order book.

Keywords: financial markets, stock price, market impact, market microstructure, order book analysis

1. INTRODUCTION

Many previous studies have addressed market impact from theoretical [1–8] and empirical [9–
13] viewpoints since it is related to market efficiency and trading costs, especially for trading
large volumes.

The analyses of market impact using order book data has since the 2000s gradually become
popular [14–18] thanks to the provision of datasets of the order book from stock exchange markets
such as the London Stock Exchange (LSE), New York Stock Exchange (NYSE), and Tokyo Stock
Exchange (TSE) and developments of computer technology that enable us to analyze huge size of
order book data.

These studies mainly focused on short time scale market impact such as a single transaction,
a few seconds, or a few minutes. It is useful to discuss how large volume order affects the market
price over a long time scale. However long time scale of it, such as daily market impact, has not
been studied enough compared to the short time scale. In order to estimate transaction costs,
daily market impact analysis is important for asset management companies that manage their
position daily.

In a previous study of a historical dataset of the Tokyo Stock Exchange (TSE) for a 17-month
period from August 2014 to December 2015 [19], we identified the following two relationships: (i)
a proportional relationship between the return of the market price and the order imbalance of the
executed volume and (ii) an inverse proportional relationship between the market impact and the
averaged order book volume.We also introduced a transaction cost model by calculating the spread
cost and applying the relationship between the return and the order imbalance of execution.

We focused on the TOPIX Core 30 where the issues have very high market capitalization and
liquidity, such as Toyota and Sony. However, in this study, we analyzed not only the TOPIX Core
30 but also such smaller stocks as the TOPIX Large 70 and Mid 400 and identified the following
results about market impact: (i) it depends on issues; (ii) it slowly changes over time; and (iii) one
of its factors is order book volume. These findings are useful to estimate transaction costs.
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Our paper is organized as follows. In section 2, we present the
empirical analysis results of the execution and order book data.
Section 3 is our conclusion.

2. EMPIRICAL ANALYSIS

We analyzed the Tokyo Stock Exchange data for a 29-month
period from August 2014 to December 2016, which recorded
every transaction and every order book from the best price (0-
th level) to the 7-th level for the TOPIX Core 30, the Large
70, and the Mid 400. The datasets can be purchased from
Japan Exchange Group (https://www.jpx.co.jp/english/markets/
paid-info-equities/historical/01.html).

In this section, the dataset is analyzed, and we show themarket
impact depends on each stock by a simple statistical test. We

FIGURE 1 | Time series of market price and cumulative transaction volume of Sony (stock code: 6758) from 1 second past 9 a.m. to 1 second before 3 p.m. on June

21, 2016.

clarify the market impact slowly changes over time based on a
correlation analysis of it. Additionally, dependencies of market
impact on order book volume are investigated.

Figure 1 shows an example of Sony’s market price (stock code:
6758) in the upper figure and the cumulative transaction volume
of deal-ask (a market order hits the best-ask price) and deal-bid
(a market order hits the best-bid price) in the lower figure from
1 second past 9 a.m. to 1 second before 3 p.m. on June 21, 2016.
Execution of the opening and closing transactions usually tends
to have very large volume. We focused on continuous sessions
in this study, removed the opening and closing transactions, and
defined the return of the market price for 1 day:

r =
Pe − Ps

Ps
, (1)
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FIGURE 2 | Scatter plots between return (r) and executed order imbalance (1V) from October 1 to 31, 2016. (A) Sony corporation (stock code: 6758) in Core 30, (B)

Nippon Paper Industries Co., Ltd. (stock code: 3863).

FIGURE 3 | Monthly time series of α*
i during 29-month period for three companies: Toyota Motor Corp. (7203), Mitsubishi UFJ Financial Group, Inc. (8306), and

Sumitomo Mitsui Financial Group, Inc. (8316).

where Ps and Pe are the prices at 9:00:01 and 14:59:59. The
executed order imbalance (1V) is calculated as the cumulative
deal-ask minus deal-bid 1 s before 3 p.m.

Figure 2 shows a scatter plot of the return (r) and the executed
order imbalance (1V) of the Sony Corporation (stock code:
6758) in the Core 30 and Nippon Paper Industries Co., Ltd.
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FIGURE 4 | Cumulative distributions of p-values for Core 30, Large 70, and Mid 400.

(stock code : 3863) in the Mid 400 from October 1 to 31, 2016.
Each point is calculated by the data of a single day. We found
a clear linear correlation between return (r) and executed order
imbalance (1V):

r = αl1V + βl, (2)

where gradient α is a measurement of market impact. In the
case of Sony Corporation (stock code: 6758), αl = 2.17 ×
10−8, standard error of αl is 4.07 × 10−9, and p-value for αl

is 4.49 × 10−5. In the case of Nippon Paper Industries Co.,
Ltd. (stock code: 3863), αl = 1.70 × 10−7, standard error is
2.59× 10−8, and p-value is 3.78× 10−6.

To statistically check the existence of the differences of the
market impact among stocks, we define the market impact for
one yen as follows:

α∗
i =

αl,i

Pi
, (3)

where αl,i describes the market impact for unit volume, Pi is
the last price in a month, and i is the index of the stock. We
show examples of monthly time series of α∗

i during 29-month
period for three companies in Figure 3. We compare themonthly
market impact, α∗

i , of companies A and B, and execute the a
binomial test. A null hypothesis is the market impacts between
company A and B is the same. In other words the probability
where the market impact of company A is larger than B is half.
If company A has a larger market impact nA times than B, on the

other hand company B has a larger market impact nB times than
A, a p-value is calculated:

pval =















2×
min(nA ,nB)

∑

k=0

(

n

k

) (

1

2

)n

(nA 6= nB)

1 (nA = nB)

(4)

where two times describes a two-tailed test and
(n
k

)

=
n(n−1)···(n−k+1)

k(k−1)···1 .

We applied a statistical test for all the combinations of Core
30, Large 70, and Mid 400. We are interested in small p-values
and show a cumulative distribution of the p-values in a log-log
scale (Figure 4) and found the actual data have a much bigger
proportion of small p-values than a random case. For example, in
the actual case, about 68% of the p-values are<0.05, implying the
market impact depends on the issues.

To check the robustness of the market impact size, we show a
scatter plot of the log10 α∗ at the M-th and M + 1-th months in
Figure 5. We added a median as well as 25 and 75% percentiles
in each box and identified a clear correlation. The correlation
coefficients have large values (0.67) in the Pearson product-
moment correlation case and 0.71 in the Spearman rank-order
correlation case.

We also checked the 1M dependencies for the correlation
shown in Figure 6. The correlation decreases until 1M = 12 (1
year) and saturates. For the Spearman rank-order correlation, it is
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FIGURE 5 | Scatter plot of log α* at M-th and M+ 1-th months.

FIGURE 6 | Pearson product-moment correlation and Spearman rank-order correlation for log(α*
i ) at M and 1M months.

approximately 0.64 when 1M = 18. The market impact, which
does not change drastically, can be estimated using past market
impact values.

Next we focused on the relationships between the market
impact characterized by α∗

i and the order book volume. We

defined the i-th best-ask and bid-side volumes at t as Va,i(t)
and Vb,i(t). For example, the 0th (best) ask-side volume at t is
written as Va,0(t). and the average of both the bid- and ask-sides
order book volumes from the 0-th to the 7-th levels at t = ts
are given:
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FIGURE 7 | Illustration of Ts.

FIGURE 8 | Time series of monthly gradient (α*
i ) of Mizuho Financial Group, Inc. (stock code: 8411) and averaged order book volume (Vmean, monthly) for a 29-month

period from August 2014 to December 2016.

Vm(ts) =
1

2
Ei∈{0,··· ,7}

(

Vb,i(ts)+ Va,i(ts)
)

, (5)

where E represents the expectation value over the samples. We
then defined the daily averaged order book volume:

Vmean,daily(td) = Ets∈Ts
(

Vm(ts)
)

. (6)

Here we ignore the opening (9 a.m.), closing (3 p.m.), and lunch
(11:30 a.m.–0:30 p.m.) times (Figure 7) and finally calculate the

monthly averaged order book volume:

Vmean,monthly(tm) = Etd∈Td
(

Vm(td)
)

, (7)

where Td represents trading days of TSE market in 1 month
(excluding weekends and holidays).

The upper time series in Figure 8 shows the monthly α∗
i of

the Mizuho Financial Group, Inc. (stock code: 8411), and the
lower time series shows the monthly averaged order book volume
defined in Equation (7). We observed a negative correlation
between these two values.
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FIGURE 9 | Comparison cumulative distributions of p-values among actual, random, and normalized by order book volume.

One reason for the dependencies is the order book
volume; if we normalized the market impact by order
book volume, the cumulative distribution of the p-values
shifted more to random cases than to unnormalized cases
(Figure 9). Here, we focused on order book volumes; if
we normalized the market impact by such other effects
as order flow and the configuration of the stock holders,
the p-value distribution would probably shift more to the
random case.

3. CONCLUSION

We showed that the daily market impact depends on stocks
by executing a binomial test for the Tokyo Stock Exchange
(TSE) during a 29-month period from August 2014 to December
2016. We focused on a longer time scale (such as 1 day) than
previous studies that used a single transaction or 5 min. We
verified the market impact’s robustness and found it does not
change drastically and realized that we can estimate it using past
market impact values. However, we need to pay attention to big
news, such as the Lehman shock, that change market conditions
drastically, causing sudden variation in terms of market impact.
We also investigated the dependencies of the market impact on
order book volume and concluded that if a stock has a larger

order book volume, the market impact tends to be smaller. We
expect our findings to be useful for discussions about controlling
transaction costs.
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Model of Continuous Random
Cascade Processes in Financial
Markets
Jun-ichi Maskawa1* and Koji Kuroda2

1Department of Economics, Seijo University, Tokyo, Japan, 2Graduate School of Integrated Basic Sciences, Nihon University,
Tokyo, Japan

This article presents a continuous cascade model of volatility formulated as a stochastic
differential equation. Two independent Brownian motions are introduced as random
sources triggering the volatility cascade: one multiplicatively combines with volatility;
the other does so additively. Assuming that the latter acts perturbatively on the
system, the model parameters are estimated by the application to an actual stock
price time series. Numerical calculation of the Fokker–Planck equation derived from the
stochastic differential equation is conducted using the estimated values of parameters. The
results reproduce the probability density function of the empirical volatility, the
multifractality of the time series, and other empirical facts.

Keywords: Fokker–Planck equation, intermittency, Langevin equation, Markovian process, multifractal

INTRODUCTION

In financial time series, past coarse-grained measures of volatility correlate better to future fine-scale
volatility than the reverse process. Such a causal structure of financial time series was first reported by
Müller et al. [1]. Since then, the causal structure between time scales, the flow of information from a
long-term to a short-term scale, was investigated empirically in financial markets; it has been
supported by multiple studies [2, 3] as a stylized fact of financial time series [4]. The asymmetric flow
of information resembles an energy cascade found in conditions of turbulence. In a developed
turbulent flow, the energy injected from the outside at macroscopic spatial scales is transferred to
smaller scales and finally dissipated as heat at microscopic spatial scales [5–9]. Gashghaie et al.
investigated details of the self-similar transformation rule of the probability density function of price
fluctuations and the nonlinear scaling law of the structure function (nth moment of fluctuations),
signifying the multifractality of the time series, in their study of the time series of foreign exchange.
They pointed out the similarity of price changes in the financial time series to the velocity difference
between two spatial points in turbulence [10, 11]. The intermittency in turbulence is a phenomenon
characterized by the sudden temporal change of the statistical feature of fluctuations and the spatial
coexistence of large and small fluctuations. Such intermittency, which is frequently encountered in
heterogeneous complex systems, is well known in financial markets as volatility clustering [4, 12].
Intermittency at each time scale produces a characteristic hierarchical structure designated as
multifractality [8, 9].

In the developed turbulence, the process by which mechanically generated vortices on a
macroscale deform and destabilize according to the Navier–Stokes equation and then split into
smaller vortices is regarded as an energy cascade. A similar idea of modeling multifractal time series
by a recursive random multiplication process from a coarse-grained scale to a microscopic scale has
offered an attractive means of describing financial time series [13, 14]. Chen et al. verified the
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statistics of multiplier factors in the random multiplication
process of turbulent flow by empirical studies using measured
data and numerical experiments of Navier–Stokes equations [15].
Results show that the multiplier factors connecting two adjacent
layers follow a Cauchy distribution in which all moments diverge
and show that they are not independent. They show strongly
negative correlation between the multiplier factors of adjacent
layers. The authors verified the statistics of multipliers calculated
backward from actual stock price fluctuations, finding a Cauchy
distribution of multiplier factors and also the strongly negative
correlation between the multiplier factors in financial markets.
Results show that the discrete cascade model using the random
multiplication process did not reproduce the statistical property
of the multiplier factors. Therefore, as an alternative model, a
discrete random multiplicative cascade process with additional
additive stochastic processes [16–18], or a model formulated as
the Fokker–Planck equation considering the cascade process as a
continuous Markov process [19–23] was proposed. Those models
have been applied to stock market or foreign exchange market
data, yielding empirical results including the statistics of
multipliers.

This study examines a continuous cascade model of volatility
formulated as a stochastic differential equation including two
independent modes of Brownian motion: one has multiplicative
coupling with volatility; the other has additive coupling as in the
discrete random multiplicative cascade process with additional
additive stochastic processes described above. The model
parameters are estimated by its application to the stock price
time series. Numerical calculation of the Fokker–Planck equation
derived from the stochastic differential equation is conducted
using the estimated values of parameters resulting in successful
reproduction of the pdf of the empirical volatility and the
multifractality of the time series.

MATERIALS AND METHODS

Continuous Random Cascade Model
Stochastic Differential Equation
These analyses examine the following wavelet transform of the
variation of the logarithmic stock price denoted by
Z(t) � logS(t)/S(0), t ∈ [0, L]:

WψZ[u, s] � ∫ +∞

−∞
Z(t) 1

s
ψ*(t − u

s
)dt, u ∈ [0, L], (1)

where the function ψ is designated as the analyzing wavelet. When
using the delta function ψ(t) � δ(t − 1) − δ(t) as the analyzing
wavelet, the wavelet transform WψZ[u, s] � Z(u + s) − Z(u) is
exactly the logarithmic return of the period s. Here, we use the
second derivative of the Gaussian functions as

ψ(t) � d2

dt2
(e− t2

2) � (t2 − 1)e−t22 . (2)

In general, by using the nth derivative of the function having
asymptotic fast decay as the analyzing wavelet, one can remove
the local trend of mth order (m≤ n − 1) because the function is
orthogonal to mth-order polynomials. For the second derivative

of the Gaussian functions, the linear trends of Z(t) with scale s
have been eliminated in the wavelet transform WψZ[u, s].

In actual financial market, the price fluctuation is
nonstationary and the volatility is not observable. The quantity
used herein is the absolute value of the wavelet transform x(λ) �∣∣∣∣WψZ[t0, s(λ)]

∣∣∣∣ for arbitrary t0 as a volatility proxy, where we use
the variable λ � logL/s. The quantity x(λ) is thought to be a
generalization of empirical volatility, whereas the wavelet
transform WψZ[u, s] is exactly the absolute value of
logarithmic return when we use ψ(t) � δ(t − 1) − δ(t).

The following stochastic equation is used to start.

x(λ + dλ) � x(λ) · eσdB(λ)+μdλ (dλ> 0) (3)

In that equation, B(λ) represents the Brownian motion. Equation
3 expresses that the value of the quantity x(λ + dλ) at scale λ + dλ
is obtained stochastically from x(λ) at just a slightly larger scale λ
by multiplying the stochastic variable W(λ, λ + dλ) � eσdB(λ)+μdλ.
The stochastic multiplier W(λ, λ + dλ) follows a logarithmic
normal distribution LN(μdλ, σ2dλ) because dB(λ) ∼ N(0, dλ).
One can derive the following stochastic differential equation
using dB(λ)2 � dλ as

dx(λ) � x(λ + dλ) − x(λ)
� x(λ) · (eσdB(λ)+μdλ − 1)

� x(λ) · [σdB(λ) + (μ + 1
2
σ2)dλ]. (4)

The solution is obtained easily using Ito’s formula as [24].

x(λ) � x(0) · eσB(λ)+μλ. (5)

The power law behavior of the qth moment E[x(λ)q] (qth
structure function) as a function of scale s is proved by the
solution of Eq. 5 as follows:

E[x(λ)q] � E[x(0)q]exp{μλq + 1
2
σ2λq2}

� E[x(0)q](s
L
)− μq− 1

2σ
2q2

(6)

The multifractality of signal Z(t) for which the wavelet transform
follows the stochastic Eq. 4 is verified because the scaling exponent
τ(q) � −μq − 1

2σ
2q2 − 1 is a convex upward nonlinear function.

However, in this model, the stochastic multiplier W(λ2, λ1) �
x(λ2)/x(λ1) (λ2 ≤ λ1) linking two scales follows the logarithmic
normal distribution LN(μ(λ1 − λ2), σ2(λ1 − λ2)). It is independent
of the multiplierW(λ3, λ2) (λ3 ≤ λ2) linking two adjacent scales. That
result is contrary to the empirical results described in Introduction.

We introduce an additional additive stochastic process as we
have done in the discrete cascade model. We first consider the
following stochastic differential equation.

dx(λ) � x(λ) · ( − cMdλ + σMdBM(λ)) + aA(λ)dλ + bA(λ)dBA(λ)
(7)

The equation is produced on the assumption that Brownian
motions dBM(λ) and dBA(λ) are mutually independent. The
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first two terms correspond to Eq. 4. The origin of those random
sources triggering volatility cascade in financial markets remains
unclear.

To solve the stochastic differential Eq. 7, we consider the
following stochastic differential equation:

dw(λ) � w(λ) · ( − cMdλ + σMdBM(λ)), (8)

which is the same as Eq. 4. Using the solution of Eq. 8

w(λ) � w(0) · exp{ − (cM + 1
2
σ2
M)λ + σMBM(λ)}, (9)

the solution of Eq. 7 is expressed as shown below:

x(λ) � w(λ) · (∫  λ

0

aA(u)
w(u) du + ∫ λ

0

bA(u)
w(u) dBA(u) + x(0)

w(0)). (10)

Statistics of Multipliers
We have mentioned the statistics of multipliers in Introduction:

(1) The stochastic multiplier W(λ2, λ1) � x(λ2)/x(λ1) (λ2 ≤ λ1)
linking two different scales follows a Cauchy distribution.

(2) When considering the three scales λ1 < λ2 < λ3 (s1 > s2 > s3),
the adjacent multipliers W(λ2, λ1) � x(λ2)/x(λ1) and
W(λ3, λ2) � x(λ3)/x(λ2) show strongly negative correlation.

Here, we show property (1) and infer the existence of correlation
between adjacent multipliers under some reasonable
approximations. The parameter σM is an important model
parameter for the signal to have multifractality. As presented in
a later section, in spite of the importance, the value of the parameter
σ2M is small, about 0.02 to − 0.03 in stock markets, irrespective of
the stock issue. To specifically examine the role of additional
stochastic processes, we investigate the 0th-order approximation
of small σM . When setting σM � 0, the solution of Eq. 10 becomes

x(λ) � (∫ λ

λ0

aA(u)ecM(u− λ0)du + ∫ λ

λ0

bA(u)ecM(u− λ0)dBA(u)

+ x(λ0)) (11)

Therefore, the difference Δx(λ, λ0) � x(λ) − x(λ0) follows a
normal distribution.

N(∫  λ0

λ
aA(u)ecM(u−λ0)du,∫  λ

λ0
(bA(u))2e2cM(u−λ0)du). If one

simply assumes that x(λ0) follows a normal distribution, then
the ratio Δx(λ0, λ1)/x(λ0) of two independent stochastic variables
following normal distributions follows a Cauchy distribution. So,
x(λ1)/x(λ0) is the same.

By defining the differences Δx(λ2, λ1) � x(λ2) − x(λ1) and
Δx(λ3, λ2) � x(λ3) − x(λ2) for the three scales λ1 < λ2 < λ3, it is
readily apparent that W1 � x(λ2)/x(λ1) � 1 + Δx(λ2, λ1)/x(λ1)
and W2 � x(λ3)/x(λ2) � 1 + Δx(λ3, λ2)/x(λ2) show correlation.
In this framework, it was difficult to show that they have
strongly negative correlation. Those statistics of multipliers
have also been considered in earlier work by Siefert and
Peinke [22]. The same result can be shown using a
Fokker–Planck equation under some approximations. In a

later section, we show a similar Fokker–Planck equation
derived from the stochastic differential Eq. 7.

Relation to Discrete Random Cascade Model
Assuming that Δλ is sufficiently small, then when we use the
following approximation of Ito’s stochastic integration [24] as

∫ λ+Δλ

λ

bA(u)
w(u) dBA(u) ∼ bA(λ)

w(t) (BA(λ + Δλ) − BA(λ)), (12)

we obtain the discrete random cascade equation as

x(λ + Δλ) � WM(λ, λ + Δλ) · (x(λ) + aA(λ)Δλ
+ bA(λ)(BA(λ + Δλ) − BA(λ)), (13)

where WM(λ, λ + Δλ) � e−(cM+1
2σ

2
M)Δλ+σM(BM(λ+Δλ)−BM(λ)). The

conditional expectation value of the square of x(λ + Δλ), as the
function of x2(λ),
E(x2(λ + Δλ)∣∣∣∣x(λ)) � e(2μM+2σ2M)Δλ(x2(λ) + (2aA(λ)x(λ)

+ b2A(λ)),Δλ)) (14)

shows that deviation of the quadratic curve from the origin results
from the parameter bA(λ), as demonstrated from an empirical
study in [18].

Constraint Condition From the pdf of x(λ).
A remarkable feature of the probability density function (pdf) of the
quantity x(λ) � ∣∣∣∣WψZ[., s(λ)]

∣∣∣∣ is the coincidence of the expected
value E(∣∣∣∣WψZ[., s(λ)]

∣∣∣∣) with standard deviation
V(∣∣∣∣WψZ[., s(λ)]

∣∣∣∣)1/2, as shown in Figure 1 for the data
examined in this study (see also Figure 10 for the pdf of x(λ)).
It indicates the constraint condition as

FIGURE 1 | Scaling properties of E(∣∣∣∣WψZ[., s(λ)]
∣∣∣∣) and

V(∣∣∣∣WψZ[., s(λ)]
∣∣∣∣)1/2. The expected value almost perfectly coincides with the

standard deviation at all scales. The solid line represents the least-squares fit
to the power law function, 2.27s0.5.
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FIGURE 2 | Results of multifractal analysis. (A) Z(t). (B) Z(q, s) for q � −20, . . . , 20 (+) and regression lines. (C) Scaling exponent τ(q) (solid line). The dashed blue
line is the least-squares fit to the quadratic function τ(q) � −1 + 0.52q − 0.013q2. The dotted red line τ(q) � −1 + 0.5q corresponds to Brownian motion. (D) Singular
spectrum D(α).
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aA(λ)E(x(λ)) � b2A(λ). (15)

Derivation of the constraint condition Eq. 15 is given inAppendix 1.
The additional additive stochastic process in model Eq. 7 is

expected to be a small perturbation to basic model Eq. 4 to avoid
violating multifractality. We also impose the following condition
for all scales s:

aA(s)
E(∣∣∣∣WψZ[., s]

∣∣∣∣) < < 1, bA(s)
E(∣∣∣∣WψZ[., s]

∣∣∣∣) < < 1. (16)

The power law scaling shown in Figure 1,

E(∣∣∣∣WψZ[, s]
∣∣∣∣) ∼ s0.5, (17)

and condition Eq. 16 show the following constraint condition:

aA(s) ∼ s0.5, bA(s) ∼ s0.5. (18)

Inserting Eq. 18 into Eq. 15, we also have the equation:

aA(1)E(∣∣∣∣WψZ[, 1]
∣∣∣∣) � b2A(1). (19)

Fokker–Planck Equation
We can derive the Fokker–Planck equation for the stochastic
process {x(λ)} expressed by the stochastic differential Eq. 7 as the
following [24], which is the master equation that the density of
the transition probability p(x, λ|x0, λ0) follows:

z

zλ
p(x, λ|x0, λ0)

� [ − z

zx
D1(λ, x) + 1

2
z2

zx2
D2(λ, x)]p(x, λ|x0, λ0). (20)

Therein, the functions D1(λ, x) and D2(λ, x) are defined as

D1(λ, x) � aA(λ) − cMx,
D2(λ, x) � bA(λ)2 + σ2Mx

2.
(21)

The kthmoment of the change δx(λ) � x(λ + δλ) − x(λ) induced by
the infinitesimal scale transformation δλ is derived as shown below:

E(δxk∣∣∣∣x(λ) � x) � ∫  +∞

−∞
(y − x)kp(y, λ + δλ

∣∣∣∣x, λ)dy
� ∫  +∞

−∞
(y − x)k⎛⎝p(y, λ∣∣∣∣x, λ)

+ δλ
z

zλ′
p(y, λ′∣∣∣∣∣x, λ)|λ′�λ + O(δλ2)⎞⎠dy

� ∫  +∞

−∞
(y − x)k(δλ[ − z

zy
D1(λ′, y)

+ 1
2

z2

zy2
D2(λ′, y)]p(y, λ′∣∣∣∣∣x, λ)|λ′�λ + O(δλ2))dy

� ∫  +∞

−∞
(δλ[k(y − x)k− 1D1(λ, y)

+ 1
2
k( z

zy
(y − x)k−1)D2(λ, y)]δ(y − x) + O(δλ2))d

(22)

Therein, we used the identity p(y, λ∣∣∣∣x, λ) � δ(y − x). Coefficients
D1(λ, x) and D2(λ, x) show a relation to the first and second
moments of δx(λ) in the following way:

lim
δλ→ 0

E(δxk∣∣∣∣x(λ) � x)
δλ

� {Dk(λ, x) k � 1, 2
0 others

(23)

Coefficients Dk are designated as Kramers–Moyal coefficients [24,
25]. We use Eq. 23 to estimate the function aA(λ) and bA(λ) and
parameters cM and σM . To validate model Eq. 7, it is necessary to
confirm vanishing of the kthmoments for 3≤ k in the limit of δλ→ 0.
Renner et al. proposed almost identical equations (Eq. 20) within the
literature [20, 21], in which they deal with the price change itself as an
analogy of the velocity difference in turbulence [19]. They derived a
Fokker–Planck equation as a result of their empirical studies using
Kramers–Moyal expansion of the Chapman–Kolmogorov equation,
regarding the process as a Markovian process.

Empirical Study
Data
We analyze the normalized average of the logarithmic stock
prices of the constituent issues of the FTSE 100 Index listed
on the London Stock Exchange for November 2007 through
January 2009, which includes the Lehman shock of September 15,
2008 and the market crash of October 8, 2008.

Data Processing
First, we calculate the average deseasonalized return of each issue
δZi(t) � log(Si(t)) − log(Si(t − δt)), which describes the average
change of the portfolio as follows:

δZ(kδt) � 1
NF

∑NF

i�1

δZi(kδt) − μi
σ i

, (24)

where μi and σi, respectively, denote the average and the standard
deviation of δZi and where NF represents the number of constituent
stock issues (stocks). The constituents of the FTSE 100 Index are
updated frequently.We selectedNF � 111 stocks that remained listed
on the London Stock Exchange throughout the period. Here, we set
δt � 1 min and examine the 1-min log return. We excluded the
overnight price change and specifically examine the intraday
evolutions of returns. To remove the effect of intraday U-shaped
patterns of market activity from the time series, the return was
divided by the standard deviation of the corresponding time of the
day for each issue i. Then, we cumulate δZ(t) to obtain the path of
process Z(kδt) (k � 1, . . . , L) (Figure 2A) as follows:

Z(kδt) � ∑k
k
′
�1
δZ(k′δt). (25)

The data size L is 217.

RESULTS

Multifractal Analysis
First, we analyze the multifractal properties of the path Z(t) using
an approach with wavelet-based multifractal formalism proposed
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by Muzy, Bacry, and Arneodo [26, 27]. Initially, we define two
mathematical terms. The Hölder exponent α(x0) of a function
f (x) at x0 is defined as the largest exponent such that there exist
an nth-order polynomial Pn(x) and constant C that satisfy∣∣∣∣f (x) − Pn(x − x0)

∣∣∣∣≤C
∣∣∣∣x − x0

α,| (26)

where x in a neighborhood of x0, characterizing the regularity of
the function f (x) at x0. The singular spectrum D(α) is the
Hausdorff dimension of the set where the Hölder exponent is
equal to α, as follows:

D(α) � dimH{x|α(x) � α}. (27)

For multifractal paths, the Hölder exponent α is distributed in a
range; for paths of the Brownian motion, which are fractal,
D(0.5) � 1 and D(α) � 0 for α≠ 0.5.

Muzy, Bacry, and Arneodo proposed the wavelet
transform modulus maxima (WTMM) method based on
continuous wavelet transform of function to calculate the
singular spectrum D(α). We briefly sketch the WTMM
method in Appendix 2. We calculate the partition
function Z(q, s) of the qth moment of wavelet coefficients
using Eq. 37 for the path of our data. Results are presented in
Figure 2B. The partition function Z(q, s) for each order q
shows power law behavior in the range of scales s/L< 2−5.
Exponents τ(q) are derived by Eq. 38. Figure 2C shows that it
is a convex function of q. Those results underscore the
multifractality of the data path. The singular spectrum
D(α) derived as the Legendre transformation of the
function τ(q) by Eq. 39 is a convex function that has
compact support [0.25, 0.79] taking the peak at α � 0.53, as
shown in Figure 3D.

Parameter Estimations
aA and cM

Parameters aA(λ) and cM are estimated by taking the limit λ1 −
λ2 → 0 of the first moment E(x1 − x2|x2 � x)/(λ1 − λ2)
(LABEL : K −M). The first moment E(x1−x2|x2�x)/(λ1−λ2)
is fitted by a linear function as follows:

E(x1 − x2|x2 � x)
dλ

� aA(λ2, dλ) − cM(λ2, dλ)x, (28)

where dλ � λ1 − λ2. As shown in Figure 3A, the first moment is
well fitted by a linear function. Fitting of this kind is applied to
various λ1 � log(L/s1) and λ2 � log(L/s2) combinations
(Figure 3B). Taking the limit dλ→ 0 (ds/s � (s2 − s1)/s2 → 0),
one obtains, aA(λ2) � limdλ→ 0aA(λ2, dλ) (aA(s2) � limds/s→ 0

aA(s2, ds/s)) and cM � limdλ→ 0cM(λ2, dλ) (cM � limds/s→ 0cM(s2,
ds/s)). Figure 4A presents examples of aA(s2, ds/s) and nonlinear
fittings by the function log(aA(s, ds/s)) � a + b(ds/s) + c(ds/s)2.
We estimate aA(s) by aA(s) � exp(a) for each line. The result is
presented in Figure 4B. The solid line is the least-squares fit aA(s)
to a power law function as follows:

log(aA(s)) � −1.50(0.41) + 0.58(0.11)logs, (29)

where the standard errors are in parentheses. The estimated
exponent 0.58(0.11) is consistent with the constraint
condition (Eq. 18) within the standard error. By a similar
extrapolation log(cM(s, ds/s)) � a + b(ds/s) + c(ds/s)2, we
estimate cM(s) � exp(a). Figure 5A presents examples of
cM(s2, ds/s) and nonlinear fittings. We estimate cM(s) by cM(s) �
exp(a) for each line. The result is presented in Figure 5B. We
estimate the parameter cM by the average value weighted by the
reciprocals of the standard errors as follows:

cM � 0.64(0.21), (30)

where the standard error is the value in the parenthesis.

FIGURE 3 | Regression of E(x1 − x2|x2 � x)/(λ1 − λ2). (A) The standard
errors are denoted by an error bar. (B) Fitting is applied to various s1 and s2
combinations.
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bA and σM
Similarly, we estimate parameters bA and σM by taking the limit
λ1 − λ2 → 0 of the second moment E((x1 − x2)2

∣∣∣∣x2 � x)/
(λ1 − λ2)(LABEL : K −M). The second moment E((x1 − x2)2

∣∣∣∣
x2 � x)/(λ1 − λ2) is fitted by a quadratic function (a regression
against x2) as follows:

E((x1 − x2)2
∣∣∣∣x2 � x)

dλ
� bA(λ2, dλ) + σM(λ2, dλ)x2. (31)

As shown in Figure 6A, the second moment is well fitted by a
quadratic function. Fitting of this kind is applied to various λ1 and
λ2 combinations (Figure 6B). Taking the limit dλ→ 0, one obtains
b2A(λ2) � limdλ→ 0b2A(λ2, dλ) and σ2M � limdλ→ 0σ

2
M(λ2, dλ).

Figure 7A presents examples of b2A(s2, ds/s) and nonlinear
fitting by the function log(b2A(s, ds/s)) � a + b(ds/s) + c(ds/s)2.
We estimate b2A(s) for each line by b2A(s) � exp(a). The result is
presented in Figure 7B. The solid line is the least-squares fit b2A(s)
to a power law function as follows:

FIGURE 5 | Estimation of the parameter cM . (A) The parameter
cM(s,ds/s) obtained by the regressions shown in Figure 3 and nonlinear
fitting log(cM(s)) � a + b(ds/s) + c(ds/s)2. The standard errors of regression
Eq. 28 are denoted by an error bar. (B) cM(s) � exp(a) (see the text).
Standard errors of nonlinear fittings are denoted by an error bar.

FIGURE 4 | Estimation of the parameter aA(s). (A) The parameter
aA(s2 ,ds/s) obtained by the regressions shown in Figure 3 and nonlinear
fitting log(aA(s,ds/s)) � a + b(ds/s) + c(ds/s)2. The standard errors of
regression Eq. 28 are denoted by an error bar. (B) aA(s) � exp(a) (see
the text). The standard errors of nonlinear fittings are denoted by an error bar.
The solid line shows the least-squares fit of aA(s) to the power law function.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5653727

Maskawa et al. Random Cascade

204

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


log(b2A(s)) � −1.67(0.56) + 1.26(0.13)logs, (32)

where the standard errors are in parentheses. The estimated exponent
1.26(0.13) is slightly higher than the constraint condition (Eq 18)
(b2A(s) ∼ s). However, it is acceptable with accuracy. By a similar
extrapolation log(σ2M(s, ds/s)) � a + b(ds/s) + c(ds/s)2, we estimate
σ2M(s) � exp(a). Figure 8A presents an example of σ2M(s2, ds/s). and
an estimate σ2M(s) by σ2M(s) � exp(a) for each line. The result is
shown in Figure 8B. We estimate parameter σ2M by the average value
weighted by the reciprocals of the standard errors.

σ2
M � 0.05(0.03) (33)

Therein, the standard error is in the parenthesis.

Higher Moments
Similarly, it is possible to show the kth (3≤ k) moment
E((x1 − x2)k

∣∣∣∣x2 � x)/(λ1 − λ2) of the transition probability
density p(x1, λ1|λ2, x2) vanishes in the limit λ1 − λ2 → 0. As
portrayed in Figure 9A, the fourth moment is well fitted by a
quartic function. Applying the fitting to various λ1 and λ2

combinations (Figure 9B), we have convinced that the fourth

FIGURE 7 | Estimation of the parameter bA(s). (A) The parameter
bA(s2 ,ds/s) obtained by the regressions shown in Figure 6 and nonlinear
fitting log(b2

A(s,ds/s)) � a + b(ds/s) + c(ds/s)2. The standard errors of the
regression Eq. 31 are denoted by an error bar. (B) b2

A(s) � exp(a) (see
the text). Standard errors of nonlinear fittings are denoted by an error bar. The
solid line shows the least-squares fit of b2

A(s) to the power law function.

FIGURE 6 | Regression of E((x1 − x2)|x2 � x)/(λ1 − λ2) against x2. (A)
Standard errors are denoted by an error bar. (B) Fitting is applied to various s1
and s2 combinations.
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moment vanishes in the limit dλ→ 0. The Pawula theorem states
that all higher Kramers–Moyal coefficientsDk (3≤ k) vanish ifD4

vanishes [25]. Therefore, we verified Eq 23.

Numerical Calculation of the Fokker–Planck Equation
We confirmed that estimation of the parameter aA(λ) and bA(λ)
by the E((x1 − x2)k

∣∣∣∣∣x2 � x/(λ1 − λ2 ))(k � 1, 2) is consistent with
the constraint condition (Eq. 18) with accuracy. If one imposes
the other constraint (Eq. 19, then the parameters take the
following functional form:

aA(λ(s)) � ϵs0.5

b2A(λ(s)) � 2.27ϵs, (34)

where ϵ is a small parameter. The consistent range of ϵ found by
estimation of Eq 29 and Eq 32 is 0.15≤ ϵ≤ 0.34. To fix parameters
cM and σM , we use the empirical value of the scaling exponent
τ(q), which is fitted by the quadratic function τ(q) � −1 + 0.52q −
0.013q2 (see Figure 2C). One can derive τ(q) � −1 + (cM +
1
2σ

2
M)q − 1

2σ
2
Mq

2 for the basic model (Eq. 4 without additional
stochastic processes. Again using the assumption of slight
perturbation, then from the coefficients of the quadratic
function, the parameters cM and σM are expected to exist

FIGURE 9 | Fitting of E((x1 − x2)4
∣∣∣∣x2 � x)/(λ1 − λ2) by a quartic

function. (A) Standard errors are denoted by the error bar. (B) Fitting is applied
to various s1 and s2 combinations.

FIGURE 8 | Estimation of the parameter σM . (A) The parameter
σM(s,ds/s) obtained by the regressions shown in Figure 6 and nonlinear
fitting log(σ2M(s)) � a + b(ds/s) + c(ds/s)2. The standard errors of regression
(Eq. 31 against x2 are denoted by an error bar. (B) σ2M(s) � exp(a) (see
the text). Standard errors of nonlinear fittings are denoted by an error bar.
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respectively in the neighborhood of cM � 0.51 and σM � 0.026.
Next, we try the value of the parameters cM � 0.51, σM � 0.026,
and ϵ � 0.16 for numerical calculation of the Fokker–Planck
equation. Results are presented in Figure 10. The initial pdf of
the numerical calculation represented by the dashed line was
based on the measured pdf on scale s � 128(min). In the initial
values, the fine fluctuation was smoothed using a spline function
with the rationale that small fluctuations in the measured pdf
are attributable to the finiteness of the number of observations.
The tails are extrapolated using a power function with index
−4.9 which is obtained empirically. For time evolution, the
fourth-order explicit Runge–Kutta method was used. The
solid line is the calculation result obtained using the
estimated value of the parameters cM � 0.51, σM � 0.026, and
ϵ � 0.16. The dotted line is the result obtained when ϵ � 0. The
difference between the two was very small. The results closely
matched the actual pdf. In the data and the numerical
calculation, the probability density function does not
converge to zero at the origin because of the finite size of the
bin. Although the details around the origin x � 0 cannot be
empirically discussed due to the finiteness of the observed data,
the probability density function must converge to zero at the
origin if the negative qth moment of the fluctuation is requested
to converge.

Using results of the numerical calculation of the pdf obtained
at each scale, we calculate the scaling exponent τ(q) as shown
follows:

E(∣∣∣∣WψZ[u, s] q) ∼ sτ(q)(0≤ q)∣∣∣∣∣ (35)

The result is presented in Figure 11. No difference exists between
the two numerical calculation results. Both curves are convex

upward, indicating multifractal properties. Comparison with
measured values is also good. These results, when combined
with consideration of the statistics of multipliers given in 2.1.2,
underscore the effectiveness of the continuous cascade model Eq.
7 with additive stochastic processes proposed.

DISCUSSION

The random cascade model has evolved as a model of developed
turbulence. The original model, in which the stochastic process
that connects each layer of the spatial scale is an independent
random multiplication process, contradicts results obtained
through empirical research. Therefore, an improved discrete
random multiplicative cascade model with additional additive
stochastic processes was proposed along with a model formulated
as a Fokker–Planck equation by considering cascade processes as
a continuous Markov process. Moreover, those models have been
applied to data analysis of the stock market and the foreign
exchange market, where they have been successful. Herein, we
propose a continuous cascade model formulated as a stochastic
differential equation of volatility including two independent
modes of Brownian motion: one has multiplicative coupling
with volatility; the other has additive coupling, as in an
improved discrete cascade model for the stock market, with
effectiveness clarified by results of earlier research [18]. The
model parameters were estimated by application to a stock
price time series. The Fokker–Planck equation was derived
from the stochastic differential equation as a master equation
with the transition probability density function of volatility.
Furthermore, the model parameters were estimated by its
application to the average stock price time series made from
FTSE 100 constituents listed on the London Stock Exchange. At

FIGURE 11 | Scaling exponent τ(q). A representation of each line is
shown in the legend.

FIGURE 10 | Pdf of measured x(λ) and numerical calculation of the
Fokker–Planck equation. The result of numerical calculation is represented by
the solid lines. Marks are measured values. The scale is attached to each line.
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that time, as an alternative variable of volatility, the wavelet
transform coefficient with the second derivative of the
Gaussian function as an analyzing wavelet was used.
Numerical calculation of the Fokker–Planck equation was
conducted using the estimated parameter values. The results
reported herein faithfully reproduce the results of an earlier
empirical study. This model includes information about
neither the time axis nor the sign of the price fluctuation,
which is necessary for a model of price fluctuations. The
actual stock market exhibits well-known properties that break
symmetry with respect to the time axis, such as the causal
structure from long-term to short-term scale volatility
described first in Introduction and price–volatility correlation
(leverage effect) [4, 12]. Therefore, the extension of the random
cascade model to encompass these phenomena remains as a
subject for future work.
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APPENDIX 1

Derivation of Eq 15
We introduce some notation for simplification of the description:

E1(λ) � E(x(λ)), E2(λ) � E(x2(λ)),ΔBλ

� BA(λ + dλ) − BA(λ), μM � −(cM + 1
2
σ2
M).

From Eq. 13, we have

E1(λ + dλ) � E(WM(λ, λ + dλ) · (x(λ) + aA(λ)dλ + bA(λ)ΔBλ))
� E(WM(λ, λ + dλ))E(x(λ) + aA(λ)dλ + bA(λ)ΔBλ))
� E(WM(λ, λ + dλ))(E1(λ) + aA(λ)dλ)
� e(μM+12σ2M )dλ(E1(λ) + aA(λ)dλ),

E2(λ + dλ) � E(W2
M(λ, λ + dλ) · (x(λ)2 + (2aA(λ)x(λ) + b2A(λ))dλ)

� E(W2
M(λ, λ + dλ))E(x(λ)2 + (2aA(λ)x(λ) + b2A(λ))dλ)

� E(W2
M(λ, λ + dλ))(E2(λ) + (2aA(λ)E1(λ) + b2A(λ))dλ))

� e(2μM+2σ2M )dλ(E2(λ) + (2aA(λ)E1(λ) + b2A(λ))dλ))
We also have

E2
1(λ + dλ) � e(2μM+σ2M )dλ(E2

1(λ) + 2aA(λ)E1(λ)dλ).
Because of the coincidence of the expected value and the standard
deviation, we have E2(λ) � 2E2

1(λ) and E2(λ+dλ) � 2E2
1(λ+dλ).

Inserting those equalities and using approximation eσ
2
Mdλ � 1, we

have the constraint condition 15.

APPENDIX 2

WTMM Method
The WTMM method builds a partition function from the
modulus maxima of the wavelet transform defined at each
scale s as the local maxima of

∣∣∣∣Wψ[f ](x, s)
∣∣∣∣ regarded as a

function of x. Those maxima mutually connect across scales
and form ridge lines designated as maxima lines. The set
L(s0) is the set of all the maxima lines l which satisfy

(x, s) ∈ l0s≤ s0,∀s≤ s00∃(x, s) ∈ l. (36)

The partition function is defined by the maxima lines as

Z(q, s) � ∑
l ∈ L(s)

( sup
(x,s′) ∈ l

|Wψ[x, s′]|)q. (37)

Assuming power law behavior of the partition function

Z(q, s) ∼ sτ(q), (38)

one can define the exponents τ(q). The singular spectrum D(α)
can be computed using the Legendre transform of τ(q):

D(α) � min
q
(qα − τ(q)). (39)
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Analysis of Stock Price Motion
Asymmetry via Visibility-Graph
Algorithm
Ruiyun Liu* and Yu Chen*

Department of Human and Engineered Environmental Studies, Graduate School of Frontier Science, The University of Tokyo,
Kashiwa, Japan

This paper is the first to differentiate between concave and convex price motion trajectories
by applying visibility-graph and invisibility-graph algorithms to the analyses of stock
indices. Concave and convex indicators for price increase and decrease motions are
introduced to characterize accelerated and decelerated stock index increases and
decreases. Upon comparing the distributions of these indicators, it is found that
asymmetry exists in price motion trajectories and that the degree of asymmetry, which
is characterized by the Kullback-Leibler divergence between the distributions of rise and
fall indictors, fluctuates after a change in time scope. Moreover, asymmetry in price motion
speeds is demonstrated by comparing conditional expected rise and fall returns on the
node degrees of visibility and invisibility graphs.

Keywords: asymmetry, stock index, price motions, Kullback-Leibler divergence, visibility graph

1 INTRODUCTION

The use of network science to perform time series analysis has emerged in recent decades. Of the
numerous approaches to rendering a time series into a complex network, three major categories of
approaches have most attracted researchers’ attention [1–11]. The first approach uses recurrence
networks and was introduced by Donner and Zou et al. in 2009 [5–8]. This approach analyzes phase
space recurrence of a time series from a geometric point of view by interpreting the recurrence matrix
of a time series as the adjacency matrix of a complex network. Transition networks represent the
second major approach to transform a time series into a complex network. These networks are
constructed by partitioning the phase space of a dynamic system and were introduced by Nicolis et al.
in 2005 [9]. Hence, a node in a transition network represents a certain discrete state or pattern that
describes the dynamic system. Direct links are established if one of the nodes is followed by another
with nonzero probability along the time series [10]. The third category is the algorithmic group of
visibility graphs (VG) [11]. In 2008, Lacasa et al. proposed an effective method called the visibility-
graph algorithm (VGA) for converting a time series into a graph network by analyzing the mutual
visibility relationships between points and cutting points in a computational geometry landscape [12,
13]. This concept has attracted great interest and numerous extensions of the standard VGA have
been proposed. Luque et al. [14] came up with a simplified VGA called a horizontal visibility graph
(HVG) to transform a time series into a complex network. Specifically, two observations are
connected in an HVG if and only if there are no obstacles in between [15]. Based on the concepts of
the VG and HVG, parametric VGs introduce a viewing angle α and allow one to study the
dependence of network structural measures on α [16]. Limited penetrable VG (LPVG) is a less
restricted HVG in which two observations are connected if either one has a larger value than the
obstacles in between [17, 18].

Edited by:
Wei-Xing Zhou,

East China University of Science and
Technology, China

Reviewed by:
Huijie Yang,

University of Shanghai for Science and
Technology, China

Yong Zou,
East China Normal University, China

*Correspondence:
Ruiyun Liu

ry.liu@scslab.k.u-tokyo.ac.jp
Yu Chen

chen@edu.k.u-tokyo.ac.jp

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 01 March 2020
Accepted: 23 October 2020

Published: 27 November 2020

Citation:
Liu R and Chen Y (2020) Analysis of
Stock Price Motion Asymmetry via

Visibility-Graph Algorithm.
Front. Phys. 8:539521.

doi: 10.3389/fphy.2020.539521

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5395211

ORIGINAL RESEARCH
published: 27 November 2020

doi: 10.3389/fphy.2020.539521

210

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.539521&domain=pdf&date_stamp=2020-11-27
https://www.frontiersin.org/articles/10.3389/fphy.2020.539521/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.539521/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.539521/full
http://creativecommons.org/licenses/by/4.0/
mailto:ry.liu@scslab.k.u-tokyo.ac.jp
mailto:chen@edu.k.u-tokyo.ac.jp
https://doi.org/10.3389/fphy.2020.539521
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.539521


Analyses of financial time series via a VG approach have been
studied intensively [19–29]. For example, Long Yu discovered
small-world characteristics in visibility-graph networks
converted from the time series of the price of gold and its
returns [24]. Moreover, Yao et al. found that exchange-rate
networks converted from the currency-rate time series of the
US dollar, euro, yen, and sterling against the Chinese yuan share
consistent topological characteristics with hierarchical structures
and mixed small-world and scale-free properties. They also
discovered that network communities are actually composed
of large numbers of trending points and small numbers of
discrete peaks and trough points [25]. Furthermore, a novel
method that combined VGA with link prediction was
proposed by Zhang et al. to forecast the time series. Using
fuzzy logic, better predictability can be achieved by fusing the
direct and indirect effects of historical data [26].

Asymmetry in financial time series has generally been
explored via statistical analysis [30–42]. Typically, it is found
that the distribution of time horizons over which a detrended
stock index moves from an arbitrary initial return to a
predetermined positive level deviates to a symmetrically
predetermined negative level [37–40]. This property is known
as the gain-loss asymmetry and has been regarded as a
characteristic of financial time series [30, 34, 36, 37]. Another
well-known asymmetry, which describes the negative correlation
between volatility and the direction of price motion, is the
leverage effect [41]. Recently, Jiang et al. investigated
asymmetry in large-scale price fluctuations. Analyses reveal
that dynamic relaxation before and after large fluctuations is
characterized by a power law with exponents p+ and p−. On
minute time scales, large-fluctuation dynamics are time-reversely
symmetric with p+ � p−. On daily time scales, however, large
price fluctuations that approach financial crashes are asymmetric
with p− ≠ p+ [42]. We shall point out that the results of these
studies are rather generic in the sense that only the price increases
and decreases are considered. In fact, price motions can be
classified in more detail into accelerated or decelerated rise
(AR; DR) and fall (AF; DF), depending upon the convexity or
concavity of the price motion trajectories. Symmetry analysis
should also be performed by taking these four types of price
motion trajectories into account. However, since different price
motion modes can form different convoluted temporal
structures, it would be quite difficult to decompose these price
movements via statistical approaches.

In this paper, we propose to study the financial time series
asymmetry via visibility-graph networks based on the intuition
that network approaches may be more effective in identifying
different price motion trajectories. Hence the terminology of
symmetry in this study specifically refers to the topological
symmetry of the price motion trajectories. In particular, in a
stock price series, we are concerned with whether concave and
convex price motions can form a time-reversed symmetry. The
research question reads as follows: whether those accelerated/
decelerated price rises are statistically symmetric with those
decelerated/accelerated falls. It is worth mentioning that
conventional VGA analysis cannot be applied directly to
investigation of the topologically asymmetric properties of

financial series because the method is incapable of
distinguishing different stock price rise and fall trajectories by
mapping the time series as a whole onto an undirected network.
To solve this problem, an idea from Yan et al. (2012) [43] is
borrowed to address discrimination between price movements
via visibility and invisibility-graph (IVG) networks. Using these
graph networks, asymmetry in stock index motion can be
measured using concave or convex indicator distributions or
expected returns that are conditional on node degrees, instead
of the conventional waiting-time statistics.

Recently, fruitful results have been achieved in the
investigation of time series time reversibility using the HVG
method [44–51]. In a study on how crises affect the motions of
US stock prices, different market price behaviors are identified
by examining the series irreversibility evolved over the time
[50, 51]. Based on the notion that the reversed and original
processes are statistically distinguishable if a stationary process
is time-reversible, we may postulate that a topological
symmetric time series must be a time-reversible one, and
vice versa. A quantitative analysis of this postulation is also
conducted.

The whole paper consists of four sections. Following the
introduction of the study in Section 1, the methodology is
detailed in Section 2. Asymmetry in price motion trajectories
and speeds is analyzed using graph networks in Section 3 and 4,
respectively. Finally, conclusions are described in Section 5.

2 METHODOLOGY

2.1 Basic Algorithms
Graph networks for AR and DF motions of a stock index can be
constructed by mapping a time series of length L, X(ti)(i< L)
onto a graph network using VGA. To start, two arbitrary data
points (ta, xa) and (tb, xb), where a< b, are specified. Two vertical
lines are drawn exactly at ta and tb, with heights equal to the
values of xa and xb, respectively.Next, the endpoints of the two
vertical lines are connected via a straight line whenever vertical
lines from any other data points within the range (ta, tb) do not
cut off the connection. That is, if any intermediate data point
(tc, xc) fulfills the condition

xc < xb + (xa − xb) tb − tc
tb − ta

, a< c < b, (1)

the two data points (ta, xa) and (tb, xb) are visible to each other.
The invisibility-graph algorithm (IVGA) [43] can be used to

build up the networks that describe DR and AFmotions of a stock
index. In contrast to the VGA, here, the data points (ta, xa) and
(tb, xb) are connected only if the point (tc, xc) intersects the
connecting line. Hence, the relationship between these three
data points is transformed into the following:

xc > xb + (xa − xb) tb − tc
tb − ta

, a< c < b. (2)

Based on Yan’s study [43], three conditions are further applied to
distinguish AR and DF in VG as well as DR and AF in IVG. These
conditions are stated as follows:
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1. Any data point in the time series can be linked only to data
points located on its left-hand side.

2. The link between (ta, xa) and (tb, xb) (ta < tb) is connected
only if xb > xa when constructing the graph network for price
increases, and vice versa when constructing the graph
network for price decreases.

3. A moving time scope S is used to construct a graph network
throughout the entire time series; therefore, there is no link
between (ta, xa) and (tb, xb) if |a − b|> S.

With these three additional conditions, VGA and IVGA can
capture rise and fall trends by eliminating links converted from
the short-term disturbing price motions. We demonstrate the
capture of time series topological symmetry in Figures 1 and 2.
The networks in Figures 1 and 2 are built from an artificial
time series that combines the original Hang Seng Index sample
data with its mirror-symmetric counterpart. Figure 1 shows
that VGA can distinguish the concave trajectory of the price
rise from other price motions. For those data points located on
the concave upward trend (from node 11 to node 14 in the
original HSI section and from node 24 to node 26 in the
reversed HSI section), the degree numbers of AR nodes are
higher. For other data points, in contrast, the degree numbers
are lower. VGA can also distinguish concave decreasing price
motions as well (from node 3 to node 5 in the original HSI
section and from node 15 to node 19 in the reversed HSI
section). In Figure 2, however, the convex trajectories of price
motions are captured effectively by IVGA based on the degree
distributions for price rise (from node 10 to node 12 in the
original HSI section and from node 26 to node 28 in the
reversed HSI section) and price fall (from node 1 to node 3 in
the original HSI section and node 17 to node 19 in the reversed
HSI section). Obviously, the artificial time series has perfectly
symmetric price motion trajectories since the concave
(convex) rise in the original HSI section has a
corresponding convex (concave) fall in the reversed HSI
section. The identical rising and falling degree distributions
of VGs and IVGs in Figures 1 and 2 reveal that this artificial
time series does have a perfect topological symmetry. Given
the definition of time reversibility, a topologically symmetrical
time series must be a time-reversible one. The reason lies in
that if a time series is topologically symmetrical, the reversed
and original processes should be statistically indistinguishable
with regard to the degree distributions of nodes.

2.2 Concave and Convex Motion Indicators
To formalize the algorithms shown above, we specify a node b in a
time series of length L and set a time scope S (S< L/2). Based on
Eq. 1, node a, which has a link to node b in the visibility-graph
network, should belong to the following set:

A � [(ta, xa)|xa > xb + (xc − xb) tb − ta
tb − tc

, a< c < b< L]. (3)

Employing the three additional conditions described in Section
2.1, the subsets of nodes that connect to node b in the price rise
and price fall trajectories are defined as follows:

AR � {(ta, xa)|(ta, xa) ∈ A, xb > xa and |a − b|≤ S },
AF � {(ta, xa)|(ta, xa) ∈ A, xb < xa and |a − b|≤ S }. (4)

Hence, the degree of node b in the visibility-graph rise and fall
networks reads as

DX
VG(b) � n(AX), with X � R, F. (5)

By definition, DX
VG ∈ [1, 2S], X � R, F. The concave motion

indicator for a node i is proposed to be the following:

IXCC(i) �
DX

VG(i)
S

, with X � R, F. (6)

Note that, for an ideal concave trajectory consisting of L data
points, the concave indicators along the time axis can be sketched
as in Figure 3. For a realistic time series, the distribution of this
indicator measures how perfectly a concave curve could fit the
ideal AR or DF price motion trajectory.

Hence, the mean value of IR,FCC can be a measure of the
smoothness of AR or DF price motions. The higher the IR,FCC ,
the less the zigzag price variation, and vice versa.

In the same manner, the mathematical set that describes the
invisibility-graph network can be written as

A′ � {(ta, xa)|xa < xb + (xc − xb) tb − ta
tb − tc

, a< c < b< L}. (7)

Subsets of the rise and fall trend read, respectively, as follows:

A′
R � {(ta, xa)|(ta, xa) ∈ A′, xb > xa and |a − b|≤ S },

A′
F � {(ta, xa)|(ta, xa) ∈ A′, xb < xa and |a − b|≤ S }. (8)

The degree of node b in the invisibility rise and fall networks is

DX
IVG(b) � n(A′X), with X � R, F. (9)

Convex motion indicators can thus be defined via

IXCV(i) �
DX

IVG(i)
S

, with X � R, F, (10)

the distribution of which measures how perfectly a convex curve
can fit an ideal DR or AF motion price trajectories. Likewise, IXCV
measures the smoothness of the price motion trajectory.

A quantitative measure of the topological asymmetry in price
motion trajectory can be done via the distinguishability between
distributions of the concave and convex rise/fall indicators
defined above. Specifically, denoting the distribution of rise
indicators as P(IRCC,CV ) and the distribution of fall indicators
as P(IFCC,CV ), a topologically symmetric time series should have
P(IRCC,CV ) � P(IFCC,CV ).

On the other hand, the degree of topological asymmetry is
measured by calculating the Kullback-Leibler divergence (KLD)
of P(IRCC,CV ) and P(IFCC,CV ). Stemming from information theory,
KLD is employed as a measure of the distance between two
probability distributions [52, 53]. KLD of concave/convex rise
and fall indicators distributions can be calculated as follows:

D(P‖Q)def ∑P(IRY)log P(IRY)Q(IFY), with Y � CC, CV , (11)

which equals 0 if and only if P(IRY ) � Q(IFY ) and exceeds 0
otherwise.
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3 ASYMMETRY IN TRAJECTORIES OF
PRICE MOTION

Analyses that include the application of VGA and IVGA to
the stock indices of various countries and regions are
presented in this section. Eight data sets from
international stock market indices that span from June 28,
1999, to June 28, 2019, were selected. These include the Hong
Kong Hang Seng, Dow Jones Industrial Average, Japanese
Nikkei 225, London FTSE 100, German DAX, French CAC
40, Shanghai SSE Composite, and Indian BSE. Here, we set
the time scope as S � 262 since the number can be interpreted
as the trading days in a year.

Networks converted from the Hang Seng Index are used to
demonstrate how the concave and convex motion indicators [Eqs
6 and 10] change along with the time evolution of price.

In the upper panel of Figure 4, the long-lasting bubble right
before the subprime mortgage crisis in 2008 is characterized by
clusters of large concave rise indicators. The large concave fall
indicators in the lower panel of Figure 4, however, characterize
the decelerated fall of the index over 3 years after it reaches 18,000
points on March 27, 2000. The large convex rise indicators in the
upper panel of Figure 5 show that the Hang Seng Index exhibits a
decelerated rise from 2009 to 2011 after the subprime mortgage
crisis. The notorious 2008–2009 crisis is represented by the
extraordinarily large values of convex fall indicators in the
lower panel of Figure 5. Both figures show that the concave
rise indicator changes asynchronously with its fall counterpart,
just as the convex fall indicator changes asynchronously with its
rise counterpart.

To illustrate asymmetry in the price motion trajectories for
these eight financial time series, distributions of IR, FCC and IR, FCV are

FIGURE 2 | Application of the modified IVGA to the daily Hang Seng Index from August 13, 2013, to September 2, 2013, and its time-reversely mirrored data. Note
that perfect reflectional symmetry between DR [nodes 5–8 in (A)] and AF [nodes 6–10 in (B)] is demonstrated via identically distributed degrees in the two networks.

FIGURE 1 | Application of VGA to the daily Hang Seng Index from August 13, 2013, to September 2, 2013, and its time-reversely mirrored data set. Note that the
perfect reflection symmetry between AR [nodes 10–14] and DF [nodes 1–5] is demonstrated via identically distributed degrees in the two networks.
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obtained from the statistics of VG and IVG networks,
respectively. Distributions of rise and fall ICC for the eight
stock indices are shown in Figures 6A–H. As in the small ICC
regime, the rise distributions are similar to the fall distributions in
all cases. However, as ICC becomes larger than 10− 2, the rise
distributions start to deviate from the fall distributions. This
suggests that the AR and DF motions of stock indices are
essentially asymmetric. Similarly, distributions of rise and fall
ICV are displayed in Figures 7A–H. Again, deviation in rise and
fall distributions can be found in the range ICV > 10− 2, indicating
that DR and AF motions of stock indices are essentially
asymmetric, too.

Average values of rise and fall indicators are also calculated for
the eight stock indices. The rise and fall ICC and ICV values are
listed in Tables 1 and 2, respectively. The SSEC AR and DF
motions are smoothest since its IRCC and IFCC rank first in
magnitude among the others in the table. With regard to the
DR motions of stock indices, the Indian market behaves in the
smoothest manner because the IRCV of the BSESN is larger than
those of any other indices. On the other hand, the zigzag AF
appears less frequently in the Chinese stock market than in other
markets, as suggested by the fact that the SSEC has the largest IFCV
in Table 2. These observations are consistent with empirical
evidence that emerging financial markets are less efficient than
developed markets. The presence of fewer price oscillation in
emerging markets implies that investors are more likely to form
a herd.

As the time scale can be an important factor that influences
the topological asymmetry in stock price motion, we measure
the KLD between the rise and fall distributions of ICC and ICV
with different time scopes as S � 100, 130, 160, . . . , 610.
Values of KLD between the rise and fall ICC distributions are
shown in Figure 8 as functions of the time scope for the eight
stock indices, as well as for a purely random time series.
Compared with the KLD of the random series depicted in
blue line dots, the DJIA and BSESN have an impressively

higher value than any other stock indices. This indicates
higher degrees of asymmetry between AR and DF price
motions for these two indices. On the other hand, the
dependence of KLD on the time scope is rather weak outside
of the DJIA, SSEC, and BSESN.

The KL-divergence values between rise and fall ICV
distributions are shown as functions of time scopes in
Figure 9 for the eight stock indices, as well as for the purely
random series. Except in the case of BSESN data, the overall
degree of asymmetry between DR and AF price motions is weaker
than that in Figure 8. However, the dependence of the KL
divergence on the time scope strengthens in all cases except
for the FCHI, FTSE, and Nikkei 225.

In Figures 8 and 9, we note that the KLDs for random series
are close to 0 and vary little as the parameter S changes. This is in
agreement with the postulation that time-reversible time series
are topologically symmetrical. On the other hand, the bigger
KLDs for stock indices shown in the same figures are consistent
with the finding in the previous study on time irreversibility in
stock indices via the HVG method [45], which states that a
chaotic time series results in a bigger KLD between in- and out-
distributions than a Gaussian time series does.

In addition, KLDs of the BSESN are found to be dramatically
higher than those of other stock markets in Figures 8 and 9. In
particular, the observation that the BSESN KLD follows an
increasing trend in Figure 9 indicates that the Indian stock
market index exhibits a long-term, low-speed rise. This is in line
with observations that the Indian stock market was in a bull
market for over 20 years until the coronavirus outbreak. The
KLD results in Figure 8 also show that the DJIA has relatively
large topological asymmetry between AR and DF price motions
during the period from 1999 to 2019, which indicates that the
price is pushed upwards mostly by AF motions in the USA bull
markets. As Yan et al. [43] published, the AR price motion
implies a superexponential growth typically caused by investors’
herding behavior. Over the past decade, there have been several
reports on herd buying behavior of AAPL and MSFT [54, 55]. A
report published on December 4, 2019 [56], said “The Dow
Jones Industrial Average owes Apple and Microsoft corporation
a big thanks.” These reports may explain why AR motions
dominate the movement of DJIA index.

4 ASYMMETRY IN SPEEDS OF PRICE
MOTION

Yan et al. argued that a higher degree number ka indicates a
higher possibility that the time series is growing at a
superexponential rate at time tick a; hence, the degree number
of VG/IVG could be a good indicator for the proximity to the
point of a bubble-and-crash regime shift [43]. However, we
should point out that such an argument may not be accurate
because the high VG degree number can also be a result of a
relatively low-speed and smooth growth as long as the time scope
is large enough. As the price approaches the critical point in stock
markets, the magnitude of fluctuations becomes dramatically
large. Therefore, the correlation between degree number ka

FIGURE 3 | The distribution of concave indicators IR,FCC in an ideal
concave trajectory of length L with time scope S.
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and price return ra should be a more appropriate indicator
showing the possibility for the stock index to grow/drop at the
exponential rate (for AR and DF motions) or at the
logarithmic rate (for DR and AF motions). Comparisons of
these indicators may reveal the asymmetry in the speeds of
price growth and drop.

In order to measure the asymmetry in the speeds of price
motion, the expected price return r over a unit time span is
calculated conditionally on the node degree k in VG and IVG
networks. The conditional expected index return is defined as
follows:

〈r|k〉 � ∑araδ(ka − k)∑aδ(ka − k) , (12)

where ra � logPa − logPa−1. Pa is the stock index, ka is the node
degree at time tick a, and δ(x) is the Kronecker delta function.
The conditional expected price rise and fall returns on the node
degree in VG and IVG networks are defined as follows in order to
illustrate the asymmetry in the speeds of price growth and price
drop for the eight aforementioned financial time series:

〈rrise|k〉 � ∑aH(ra)raδ(ka − k)∑aδ(ka − k) , (13)

〈rfall
∣∣∣∣k〉 � ∑a[1 −H(ra)]raδ(ka − k)∑aδ(ka − k) , (14)

where H(x) is a Heaviside step function [12].

FIGURE 5 | Price motion indicators measure DR and AF in the Hang Seng Index from June 28, 1999, to June 28, 2019. Convex rise and fall indicators are shown in
the upper and lower panels, respectively. The Hang Seng Index is plotted using blue lines and indicators are represented using red bars. Here, the time scope is set to
S � 262, which is equal to the number of trading days per year.

FIGURE 4 | Price motion indicators measure AR and DF in the Hang Seng Index from June 28, 1999, to June 28, 2019. Concave rise and fall indicators are shown
in the upper and lower panels, respectively. The Hang Seng Index is plotted using blue lines, while the indicators use red bars. The time scope is set to S � 262, which is
equal to the number of trading days per year.
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FIGURE 6 | Rise and fall IR, FCC distributions for eight stock indices: (A) Hong Kong Hang Seng; (B) Dow Jones Industrial Average; and (C) Japanese Nikkei 225,
London FTSE 100, German DAX, French CAC40, Shanghai SSE Composite, and Indian BSE.
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FIGURE 7 | Distributions of rise and fall IR, FCV values for the eight stock indices: (A) Hong Kong Hang Seng; (B) Dow Jones Industrial Average; and (C) Japanese
Nikkei 225, London FTSE 100, German DAX, French CAC40, Shanghai SSE Composite, and Indian BSE.
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The expected rise and fall returns that are conditioned on the
VG node degree for eight stock indices are plotted in Figure 10,
while those conditioned on the IVG node degree are in

Figure 11. Expected return data points are fitted linearly and
shown as black lines for rise motions and pink lines for fall
motions, respectively, in Figures 10 and 11. The slopes of the
fitting lines show the correlated relationships between expected
returns and degree regardless of whether the trajectories are
concave or convex. The larger the absolute slope, the more
significantly a stock index exhibits a superexponential or a
logarithmic motion.

For concave price trajectories in Figure 10, stock indices can
be classified into four categories. For category I, which includes
the DAX and FCHI, the rise in absolute slope is almost the same
as the fall in absolute slope, and both the rise and fall slopes are
quite small. This implies that AR and DF are not the main forms
in which these two stock markets exhibit bubbles and crashes.
For category II, which includes the DJIA and FTSE, the absolute
rise slope is far smaller than the fall slope. This suggests that it is
possible for the price to decrease at a logarithmic fall rate after
stock crashes in these two markets. For case III, which includes

TABLE 1 | Rise and fall ICC values of eight stock indices.

IXCC HSI DJIA Nikkei FTSE DAX FCHI SSEC BSESN

Rise 0.0275 0.0276 0.0291 0.0241 0.0251 0.0234 0.0326 0.0316
Fall 0.0243 0.0198 0.0248 0.0208 0.0216 0.0217 0.0279 0.0228

TABLE 2 | Rise and fall ICV values of eight stock indices.

IXCV HSI DJIA Nikkei FTSE DAX FCHI SSEC BSESN

Rise 0.0277 0.0276 0.0252 0.0258 0.0278 0.0252 0.0259 0.0304
Fall 0.0245 0.0225 0.0228 0.0234 0.0244 0.0243 0.0260 0.0228

FIGURE 8 | KL divergence between ICC rise and fall distributions as functions of time scopes for eight stock indices and a random series.

FIGURE 9 | KL divergences between ICV rise and fall distributions as functions of the time scope for eight stock indices and a pure random series.
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the HSI, SSEC, and BSESN, the absolute rise slope is larger than
the fall slope. Obviously, these markets are likely to increase via
a superexponential growth rate within bubble regimes. For case
IV, which includes the Nikkei 225, the absolute rise slope and

absolute fall slope are almost the same. However, their values are
bigger than those noted in case I. This means that the Nikkei 225
rise and fall trajectories contain many concave motions in the
bubble-and-crash regime. For the convex trajectories in

FIGURE 10 |Conditional expected index returns for the degree of rise and fall price motions within VG networks for the eight stock indices. Red indicates a rise and
black indicates a fall.
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Figure 11, the absolute fall slopes exceed the rise slopes for all of
the stock indices. This implies that all of the markets crash at
logarithmic rates. We also note that the FTSE and FCHI have

rather large absolute rise slopes, which means that the price
approaches the critical point in the DR way within the bubble
regimes.

FIGURE 11 | Conditional expected index returns based on the degree of rise and fall price motions in IVG networks for the eight stock indices. Red indicates a rise
and black indicates a fall.
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Overall, the findings in this section agree with the previous studies
of gain-loss asymmetry [37–40]. In particular, stockmarket prices fall
faster than they rise in developed countries. The analysis in this study
provides a clearer picture regarding the conclusion made in Ref. [40]
that the rise speed overtakes the fall speed in developing country stock
markets, such as those of India and China. Indeed, the speed of AR
price motion is larger than that of DF motion, while the speed of AF
price motion exceeds that of DR motion, just as in mature markets.

5 CONCLUSION

In this paper, we developed a new concept of financial time series
asymmetry based on the topological distinguishability of price
motion trajectories. A new application of VGA and IVGA was
developed to capture different types of price motion trajectories.
Measures based on VGA and IVGA were employed to analyze
asymmetry in price motion trajectories as well as in price motion
speeds. To analyze topological asymmetry in price motion
trajectories, we compared the distributions of concave and
convex indicators for both rise and fall price motions.
Deviations in rise and fall indicator distributions among VG
and IVG networks showed that AR-DF and DR-AF stock index
motions are asymmetric with each other. To investigate the
influences of time scopes, the relation between KLD and time
scope was also illustrated. Unlike with the random series, the KLD
of stock index rise and fall indicator distributions is significant
and the dependence of KLD on time scopes is strong. This is
especially true for Indian and American stock indices.

Furthermore, we calculated the conditional expected index
return on node degree to show asymmetry in price motion
speeds. The rise and fall conditional expected index returns on
VG or IVG network node degrees were distributed in an
asymmetric manner, which indicates that asymmetry is
embedded in AR-DF and DR-AF price motion speeds when
the stock index approaches a bubble-and-crash regime shift. Our
result was in line with gain-loss asymmetry overall. However, it
offered details regarding why AF motions in emerging markets
(e.g., China and India) contribute to faster rises and slower falls.

As a byproduct of this study, we also get some knowledge of
the relationship between the topological symmetry and the time
reversibility of a time series. By the definition of time reversibility,
we proved, with an artificially combined piece of HSI time series,
that the topologically symmetrical time series must be time-
reversible. On the other hand, by checking the topological
symmetry of a random series, the numerical evidence, which
supports the postulation that a time-irreversible series must be
topologically asymmetric, has also been found.

Future research will include exploration of topological
asymmetry in other empirical data that exhibits chaotic
behaviors, such as sunspots, heartbeats, and earthquake waves.
The relation between topological symmetry and time reversibility
is also to be investigated theoretically. Finally, the most important
task is to explore how topological symmetry among financial time
series affects the time reversibility. In this sense, we must study
the network properties of VG and IVG networks and identify
network characteristics right before large-scale price changes.
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Inequality Measures: The Kolkata
Index in Comparison With Other
Measures
Suchismita Banerjee1, Bikas K. Chakrabarti 1,2, Manipushpak Mitra1* and
Suresh Mutuswami3

1Economic Research Unit, Indian Statistical Institute, Kolkata, India, 2Saha Institute of Nuclear Physics, Kolkata, and Economic
Research Unit, Indian Statistical Institute, Kolkata, India, 3School of Business, University of Leicester, Leicester, United Kingdom

We provide a survey of the Kolkata index of social inequality, focusing in particular on
income inequality. Based on the observation that inequality functions (such as the
Lorenz function), giving the measures of income or wealth against that of the population,
to be generally nonlinear, we show that the fixed point (like Kolkata index k) of such a
nonlinear function (or related, like the complementary Lorenz function) offer better
measure of inequality than the average quantities (like Gini index). Indeed the Kolkata
index can be viewed as a generalized Hirsch index for a normalized inequality function
and gives the fraction k of the total wealth possessed by the rich 1 − k fraction of the
population. We analyze the structures of the inequality indices for both continuous and
discrete income distributions. We also compare the Kolkata index to some other
measures like the Gini coefficient and the Pietra index. Lastly, we provide some
empirical studies which illustrate the differences between the Kolkata index and the
Gini coefficient.

Keywords: Lorenz function, complementary Lorenz function, k-index and the normalized k-index, Gini coefficient,
Pietra index

1. INTRODUCTION

Inequality in a society can broadly be categorized as inequality of condition or inequality of
opportunity. The former refers to disparities in the current status of individuals, whether this be
income, wealth or their ownership of different goods and services. The latter refers to disparities in
the future potential of individuals. Typically, inequality of opportunity is inferred indirectly
through its effects like education level and quality, health status and treatment by the justice
system. Though the two types of inequality are interrelated, we are interested in the former type
only in this survey. Therefore, in what follows, the term “inequality” will refer exclusively to
inequality of condition.

We focus here on one aspect of inequality, viz., the measurement of inequality. Measuring
inequality is important for answering a wide range of questions. For instance: is the income
distribution more equal than what it was in the past? Are underdeveloped countries characterized by
greater inequality than developed countries? Do taxes or other kinds of policy interventions lead to
greater equality in the distribution of income or wealth? Since the way inequality is measured also
determines how the above questions (among others) are answered, a rigorous discussion of the
measurement of inequality is necessary (see, e.g., Refs. 1–5).
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A tool that is indispensable in measuring income and wealth
inequality is the Lorenz function and its graphical representation,
the Lorenz curve (see Ref. 6). The Lorenz curve plots the
percentage of total income earned by various portions of the
population when the population is ordered by the size of their
incomes. The Lorenz curve is typically depicted as a curve in the
unit square with end points at (0, 0) and (1, 1) (see Figure 1).1
The 45° line is the line of perfect equality representing a situation
where all individuals have the same income.

The Lorenz curve can be used, in a limited way, as a measure of
inequality. Since the 45° line is the line of perfect equality, we can
say that the “closer” a Lorenz curve is to the 45° line, the more
equal is the income distribution. Unfortunately, this does not get
us very far because Lorenz curves can intersect and hence, the
Lorenz curves cannot be ranked unambiguously using the above
criterion (see Ref. 7). We have more to say on this point in
Section 2.

The existing literature sees two approaches to deal with the
problem of intersecting Lorenz curves. The first is to consider
ranking criterion that are “weaker” than this dominance
criterion meaningful only for non-intersecting Lorenz
curves (see Refs. 7–11). The pioneering work in this
approach is Ref. 12 which suggested that there is an
underlying notion of social welfare associated with any
measure of income inequality. It is this concept with which
we should be concerned. Furthermore, we should approach the
question by considering directly the form of the social welfare
function to be employed (see Ref. 13). This is a normative
approach and is meaningful when we want to obtain a ranking
of income distributions in order to infer something from the
social welfare angle like whether “post-tax income is more
equally distributed than pre-tax income”.

The second approach is to develop summary measures of
inequality using the Lorenz functions (see Ref. 7 for details). Here,
each Lorenz function is associated with a real number and these
numbers are used to compare inequality across different income
distributions. This is a descriptive approach where we quantify
the difference in inequality between pairs of distributions (see
Ref. 13).

An index of income inequality is therefore a scalar measure of
interpersonal income differences within a given population. High
income inequality means concentration of high incomes in the
hands of few and is likely to compress the size of the middle class.
A large and rich middle class contributes significantly to the well-
being of a society in many ways. In particular, a large and rich
middle class contributes in terms of high economic growth, better
health status, higher education level, a sizable contribution to the
country’s tax revenue and a better infrastructure, and more social
cohesion resulting from fellow feeling. A society characterized
with a small middle class and more persons away from the middle
income group may lead to a strained relationship between the
subgroups on the two sides of the middle class which can generate
unrest (see Ref. 4). Hence, the need for identifying the magnitude

of income inequality through different indices is of prime
importance.

Except for the unique case of equality, where the Lorenz
curve is trivially linear, the Lorenz function is typically
nonlinear and it accommodates the essential features of the
inequalities involved. However, most of the common
inequality indices formulated and used so far studies some
of the “average” properties of the Lorenz function. On the
other hand, the established observations in statistical physics,
for example in developing the Renormalization Group theory
of phase transitions (see, e.g., Ref. 14) or the chaos theory (see,
e.g., Ref. 15), strongly indicated the richness of the
(nontrivial) fixed point structure (and also of the eigen
vectors and eigen values for the linearized function near
that fixed point) of such non-linear functions to
comprehend the physical and mathematical process
represented by such nonlinear functions. We noted earlier
(see Ref. 1) that, while the Lorenz function has got trivial fixed
points, a complementary Lorenz function has a non-trivial
point corresponding to an inequality index called the Kolkata
index, having several intriguing and useful properties.

Our primary focus in this survey will be on the Kolkata
index as a measure of inequality. The Kolkata index, first
introduced by Ref. 1 and later analyzed in Ref. 2 and in
Ref. 3, is that proportion k of the population such that the
proportion of income that we can associate with k is (1 − k).
Since no single summary statistic can reflect all aspects of
inequality exhibited by the Lorenz curve, the importance of
using alternative measures of inequality is universally
acknowledged (see Ref. 7). We would also discuss two
popular indices namely, the Gini coefficient or index (see
Ref. 16) and the Pietra index (see Ref. 17). The Gini index
is the ratio of the area between the 45° line and the Lorenz
curve to the total area under the 45° line. Equivalently, the Gini
index is twice the area between the Lorenz curve and the line of
perfect equality. The Pietra index is the maximum value of the
gap between the 45° line and the Lorenz curve (also see Ref. 18).

In Section 2, we discuss the fundamentals of Lorenz and
complementary Lorenz functions, along with some examples
extending from continuous to discrete wealth distributions. In

FIGURE 1 | The Lorenz and the complementary Lorenz curves. Q is the
k-index of the Lorenz curve. OP represents the maximum distance between
the perfect equality line and the Lorenz curve.

1The end points are clear since none of the population possesses none of the income
while the entire population possesses all the income.
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Section 3, we define the Kolkata index (k-index) and show some
example calculation of the k-index for continuous wealth
distributions. We also demonstrate an algorithm for
calculating the k-index for discrete wealth distribution. We
conclude the section by comparing the k-index with various
other indices. In Sections 4 and 5, we continue this
comparison based on rich-poor disparity. In Section 6, we
measure the k-index from real society data. Section 7
summarizes and concludes this work.

2. LORENZ FUNCTION AND THE
COMPLEMENTARY LORENZ FUNCTION

Let F be the distribution function of a non-negative random
variable X which represents the income distribution in a society.
The left-inverse of F is defined as F−1(q) � inf x{x ∈ X|F(x)≥ q}.
As long as the mean income μ � ∫∞

0
xdF(x) is finite, we obtain

an alternative representation of the mean: μ � ∫1

0
F−1(q)dq. The

function associated with the Lorenz curve is the Lorenz function,
defined as LF(p) � (1/μ)∫p

0
F−1(q)dq. The Lorenz function gives

the proportion of total income earned by the bottom 100p% of
the population for every given p ∈ [0, 1]. The advantage of this
definition of Lorenz function due to Ref. 19 is that it can be
applied to income distributions with both discrete and
continuous random variables. The Lorenz function thus
defined has the following properties: i) LF(p) is continuous,
non-decreasing and convex in p ∈ (0, 1) and, ii) LF(0) � 0,
LF(1) � 1 and LF(p)≤ p for all p ∈ (0, 1). Moreover, if there
exists p ∈ (0, 1) such that LF(p) � p, then for all p ∈ [0, 1],
LF(p) � p. If the Lorenz function LF(p) is differentiable in
the open interval (0, 1), then the slope of the Lorenz
function at any p ∈ (0, 1) is given by F−1(p)/μ. Let MF be the
median as a percentage of the mean. Then MF is given by the
slope of the Lorenz curve at p � 1/2, that is, MF � F−1(1/2)/μ.
Since many real life distributions of incomes are skewed to the
right, the mean often exceeds the median so that MF < 1. The
complementary Lorenz function is defined as L̂F(p) � 1 − LF(p).
It measures the proportion of the total income earned by the top
100(1 − p)% of the population. Therefore,

L̂F(p) :� 1 − LF(p) � 1 −
∫p
0

F−1(q)dq
μ

�
∫1
p

F−1(q)dq
μ

. (1)

It easily follows that L̂F(0) � 1, L̂F(1) � 0, and 0≤ L̂F(p)≤ 1 for
p ∈ (0, 1). Furthermore, L̂F(p) is continuous, non-increasing and
concave for p ∈ (0, 1).

Consider any egalitarian income distribution Fe where all
agents earn a common positive income so that the associated
Lorenz function is LFe(p) � p for all p ∈ (0, 1). Thus, we have a
case of perfect equality where every p% of the population enjoys
p% of the total income and the Lorenz curve coincides with the
diagonal line of perfect equality. In reality, we do not find any
society where all individuals have equal income. For all other
income distributions the Lorenz curve will lie below the
egalitarian line, that is below the Lorenz curve associated

with the Lorenz function LFe(.) for the egalitarian income
distribution Fe. Similarly, we also do not find a society
where one person has all the income, that is, an income
distribution FI such that LFI(p) � 0 for all p ∈ (0, 1).
Specifically, with complete inequality associated with the
income distribution FI , which is characterized by the
situation where only one agent has positive income and all
other persons have zero income, the Lorenz curve will run
through the horizontal axis until we reach the richest person
and then it rises perpendicularly (see Figure 1). Hence, for any
realistic income distribution of a society, Lorenz curve always
lie in between the perfect equality line and the perfect inequality
line. The Lorenz curve is quite useful because it shows
graphically how the actual distribution of incomes differs
not only from the perfect equality line associated with the
egalitarian income distribution Fe but also from the perfect
inequality line associated with the income distribution FI . The
Lorenz curve, complimentary Lorenz curve, perfect equality
and perfect inequality lines are shown in Figure 1 below, where
we plot the fraction of population from poorest to richest on the
horizontal axis and the fraction of associated income on the
vertical axis.

We provide some simple examples of Lorenz functions for
which the associated income distribution is a continuous random
variable.

• Uniform distribution: Consider a society where the income
distribution is uniform on some compact interval [a, b]with
0≤ a< b<∞ so that the probability density function is
fu(x) � 1/(b − a) and the distribution function is Fu(x) �
(x − a)/(b − a) for every x ∈ [a, b]. Since μu � (a + b)/2 and
F−1
u (q) � a + (b − a)q, we get

LFu(p) � 1
μu

∫p

0
{a + (b − a)q}dq � p[1 − (b − a)

(a + b) (1 − p)],
Observe that if a � 0, then we have LFu(p) � p2.

• Exponential distribution: Suppose the income distribution is
exponential so that the probability density function is given
by fE(x) � λe−λx with λ> 0 and the distribution function is
FE(x) � 1 − e−λx for any x ≥ 0. In this case μE � 1/λ and
F−1
E (q) � −(1/λ)ln(1 − q) implying

LFE(p) � ∫ p

0
− ln(1 − q)dq � −∫t�1

t�1−p
ln(t)dt

� p − (1 − p)ln( 1
1 − p

).
• Pareto distribution: Consider a society where the income

distribution is Pareto so that the density function is fP,α(x) �
α(m)α/(x)α+1 and the distribution function is FP,α(x) � 1 −
(m/x)α where m> 0 is the minimum income, α> 1 and the
density and distribution functions are defined for all x ≥m.
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In this case μP � αm/(α − 1) and F−1
P,α(q) � m(1 − q)− (1/α)

implying

LFP,α(p) � (α − 1)
α

∫p

0
(1 − q)− 1

αdq � [t(α−1)α ]t�1
t�1−p

� 1 − (1 − p)1− (1/α). (2)

Hence, if the income distribution is a continuous random variable
F, one can calculate the Lorenz function LF(p) and, using
L̂F(p) � 1 − LF(p), we can easily calculate the associated
complementary Lorenz function as well.

Example 1. Discrete random variable. To understand the
procedure for getting the Lorenz function for income
distribution given by discrete random variables, consider an
economy with G groups of people where each group
g ∈ {1, . . . ,G} has a total of ng ≥ 1 people with each person
within this group having the same income of xg and
also assume that 0≤ x1 </< xG. Define the total population
as N :� ∑g ∈ Gng and the total income of the economy as M :�∑g ∈ Gngxg so that the mean income for this society is
μG � M/N . This income distribution is a discrete random
variable X � {x1, . . . , xG} such that the probability mass
function is given by fG(xg) � ng /N for all g ∈ {1, . . . ,G} and
the distribution function is given by

FG(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if x ∈ [0, x1),{∑g
t�1nt}
N

, if x ∈ [xg , xg+1) for any given g ∈ {1, . . . ,G},
1, if x ≥ xG,

For each g ∈ {1, . . . ,G}, define N(g) :� ∑g
t�1nt/N , N(0) :� 0,

M(g) :� ∑g
t�1ntxt/M and M(0) :� 0. For any given

g ∈ {1, . . . ,G} and any qg ∈ (N(g − 1),N(g)], one can easily
verify that F−1

G (qg) � xg . Hence, using the Lorenz function
formula we have the following: For any given g ∈ {1, . . . ,G}
and any pg ∈ (N(g − 1),N(g)],

LFG(pg) � M(g − 1) + (pg − N(g − 1))(Nxg
M

). (3)

The following observations are helpful in this context.

(1) The Lorenz function LFG(p) is piecewise linear and, for each
g ∈ {1, . . . ,G − 1}, the point (N(g), LG(N(g)) � M(g)) on
the coordinate plane of the graph of the Lorenz curve is a
kink point.

(2) If G � 1 so that M � Nx1, N(1) � 1, then from Eq. 3 we get
LF1(p) � M(0) + (p − N(0))(Nx1/Nx1) � p for all
p ∈ (N(0),N(1)], that is, Lorenz curve is associated with
the egalitarian distribution and we have LF1(p) � LFe(p) � p
for all p ∈ (0, 1).

2.1. The Lorenz Function as a Measure of
Inequality
The Lorenz curve allows us to rank distributions according to
inequality and say that the country with Lorenz curve closer to the
perfect equality line has less inequality than the country with

Lorenz curve further away. Consider two societies with income
distributions given by the distribution functions Fa and Fb. If it so
happens that LFa(p)≤ LFb(p) for all p ∈ [0, 1], then clearly, the
society with income distribution Fa is more unequal compared to
the society having the income distribution Fb since for every
p ∈ (0, 1) the bottom 100 p% population has a weakly lower
percentage share of income under Fa than under Fb. Formally, for
any two income distributions Fa and Fb, we say that Fb Lorenz
dominates Fa if the Lorenz curve LFb(p) associated with the
income distribution Fb lies nowhere below that of Lorenz
curve LFa(p) associated with the income distribution Fa and at
some places (at least) lies above. Thus, we can think of
domination relation across pairs of Lorenz curves to infer
about inequality and, in particular, in a pairwise Lorenz curve
comparison, higher of the Lorenz curves are preferable. However,
if the Lorenz curves of the two distributions cross, then such an
unambiguous conclusion about inequality ordering cannot be
drawn. The next example provides such an instance of
intersecting Lorenz curves.

Example 2. Consider a society with four people and consider
the following income distribution. Person 1 and Person 2 has an
income of 20, Person 3 has an income of 30 and Person 4 has an
income of 50. We first try to think of a meaningful representation
of such an income distribution. Observe that if we draw a person
at random, then with 1/2 probability we will draw a person having
an income of 20, with 1/4 probability we will draw a person
having an income of 30 and with 1/4 probability we will draw a
person having an income of 50. Therefore, we have a probability
mass function of a random variable of three possible incomes
XA � {20, 30, 50} and the probability mass function is given by
fA(20) � 1/2, fA(30) � 1/4 and fA(50) � 1/4. Using Eq. 3, the
Lorenz function is given by

LFA(p) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2p
3
, if p ∈ (0, 1

2
],

6p − 1
6

, if p ∈ (1
2
,
3
4
],

5p − 2
3

, if p ∈ (3
4
, 1].

Similarly, consider a society with four people and consider the
following income distribution. Person 1 and Person 2 has an
income of 15, Person 3 has an income of 42 and Person 4 has an
income of 48. We have a probability mass function of a random
variable XB � {15, 42, 50} and the probability mass function is
given by fB(15) � 1/2, fB(42) � 1/4 and fB(48) � 1/4. Again,
using Eq. 3, the Lorenz function is given by

LFB(p) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
2
, if p ∈ (0, 1

2
],

28p − 9
20

, if p ∈ (1
2
,
3
4
],

8p − 3
5

, if p ∈ (3
4
, 1].

Now consider the income distribution FA and compare it with the
income distribution FB. Note that at p � 1/2, LFA(1/2) �
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1/3> LFB(1/2) � 1/4 and at p � 3/4, LFA(3/4) � 7/12< LFB
(3/4) � 3/5. Hence, given both LFA(p) and LFB(p) are
continuous in p ∈ [0, 1], the two Lorenz curves overlap and, in
particular, these two Lorenz curve intersects at p* � 17/24, that is,
at p* we have LFA(p*) � LFB(p*).

3. INEQUALITY INDICES IN DETAIL

3.1. The Kolkata Index
The k-index for any income distribution F is defined by the
solution to the equation kF + LF(kF) � 1. It has been proposed as
a measure of income inequality (see Refs. 2 and 3, and Ref. 1, for
more details). We can rewrite kF + LF(kF) � 1 as L̂F(kF) � kF
implying that the k-index is a fixed point of the complementary
Lorenz function. Since the complementary Lorenz function
maps [0, 1] to [0, 1] and is continuous, it has a fixed point.
Furthermore, since complementary Lorenz function L̂F(p)
is non-increasing, the fixed point is unique. Since for any F,
p*F :� L−1F (1/2)≥ 1/2 with the equality holding only if we have an
egalitarian income distribution, the unique fixed point of L̂F lies
in the interval [1/2, p*F] implying that for any distribution F,
kF ∈ [1/2, 1). Therefore, kF lies between 50% population
proportion and the population proportion p*F � L−1F (1/2) that
we associate with 50% income given the income distribution F.
Observe that if LF(p) � p, then kF � 1/2 and for any other
income distribution, 1/2< kF < 1. Also note that while the
Lorenz curve typically has only two trivial fixed points, that
is, LF(0) � 0 and LF(1) � 1, the complementary Lorenz function
L̂F(p) has a unique non-trivial fixed point kF .

The Pareto principle is based on Pareto’s observation (in the
year 1906) that approximately 80% of the land in Italy was owned
by 20% of the population. The evidence, though, suggests that the
income distribution of many countries fails to satisfy the 80/20 rule
(see Ref. 1). The k-index can be thought of as a generalization of the
Pareto principle. Note that LF(kF) � 1 − kF ; hence, the top
100(1 − kF)% of the population has 100(1 − (1 − kF)) �
100kF % of the income. Hence, the “Pareto ratio” for the
k-index is kF/(1 − kF). Observe, however, that this ratio is
obtained endogenously from the income distribution and in
general, there is no reason to expect that this ratio will coincide
with the Pareto principle. The fact that the k-index generalizes
Pareto’s 80/20 rule was first pointed out in Ref. 1 and later also in
Refs. 20 and 21.

• Uniform distribution. If we have the uniform distribution Fu
defined on [a, b] where 0≤ a< b<∞. Then

kFu �
−(3a + b) + �������������

5a2 + 6ab + 5b2
√

2(b − a) ,

KFu �
−2(a + b) + �������������

5a2 + 6ab + 5b2
√
(b − a) .

• Exponential distribution. For the exponential distribution
FE , the complementary Lorenz function is given by

L̂FE(p) � (1 − p)[1 + ln{1/(1 − p)}]. One can show that
kFEx0.6822 and hence KFEx0.3644.

• Pareto distribution. For the Pareto distribution FP,α, the
complementary Lorenz function is given
L̂FP,α(p) � (1 − p)1−(1/α). The k-index is therefore a
solution to (I) (1 − kFP)1−(1/α) � kFP . It is difficult to
provide a general solution to (I). However, we an
interesting observation in this context.

• If α̂ � ln5/ln4x1.16, then kF
P,̂α
� 0.8 and we get the Pareto

principle or the 80/20 rule. Also note that KF
P,̂α
� 0.6.

3.1.1. Discrete Random Variable
Consider any discrete random variable with distribution function FG
discussed in Example 1 for which the Lorenz function is given by Eq. 3.
To obtain the explicit form of the k-index one can first apply a simple
algorithm to identify the interval of the form [N(g − 1),N(g))
defined for g ∈ {1, . . . ,G} in which the k-index can lie.

Algorithm-A:
Step 1: Consider the smallest g1 ∈ {1, . . . ,G} such that

N(g1)≥ 1/2 and consider the sum N(g1) +M(g1).
If N(g1) +M(g1)≥ 1, then stop and
kFG ∈ (Ng1−1,N(g1)] and, in particular, kF � N(g1)
if and only if N(g1) +M(g1) � 1. Instead, if
N(g1) +M(g1)< 1, then go to Step 2 and consider
the group g1 + 1 and repeat the process.
«

Step t. We have reached Step t means that in Step (t − 1) we
had N(g1 + t − 1) +M(g1 + t − 1)< 1. Therefore,
consider the sum N(g1 + t) +M(g1 + t). If
N(g1 + t) +M(g1 + t)≥ 1, the stop and
kFG ∈ [N(g1 + t − 1),N(g1 + t)) and, in particular, kF �
N(g1 + t) if and only if N(g1 + t) +M(g1 + t) � 1. If
N(g1 + t) +M(g1 + t)< 1, then go to Step (t + 1).

Observe that since N(G) � M(G) � 1, if we have N(G − 1) +
M(G − 1)< 1 in some step, then, in the next step, this algorithm
has to end since N(G) +M(G) � 2> 1.

Suppose for any discrete random variable with distribution
function FG discussed in Example 1, Algorithm-A identifies
g* ∈ {1, . . . ,G} such that N(g*) +M(g*)≥ 1. If
N(g*) +M(g*) � 1, then kFG � N(g*) and if N(g*) +M(g*)> 1,
the kFG is the solution to the following equation:

kFG + {M(gp − 1) + (kFG − N(gp − 1))(Nxgp
M

)} � 1.

Thus, to derive the k-index of any discrete random variable with
distribution function FG discussed in Example 1, we first
identifying the group g* ∈ {1, . . . ,G} such that
kFG ∈ (N(g* − 1),N(g*)] (using Algorithm-A) and then, using
g*, we get the following value of kFG:

kFG �
⎧⎪⎪⎨⎪⎪⎩

N(g*), if N(g*) +M(g*) � 1,

μG + N(g*)xg* −M(g*)
μG + xg*

, if N(g*) +M(g*)> 1.
Remark 1. Consider the income distributions FA and FB

defined in Example 2. Recall that the Lorenz functions and
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LFB(p) are such that LFA(p)> LFB(p) for all p ∈ (0, 17/24) and
LFA(p)< LFB(p) for all p ∈ (17/24, 1). However, one can work
out that the k-indices for these distributions. Specifically, note
that for FA, N(1) � 1/2 and M(1) � 1/3 implying that N(1) +
M(1) � 1/6< 1 and N(2) � 3/4 and M(1) � 7/12 implying that
N(2) +M(2) � 4/3> . Hence, by Algorithm-A, kFA ∈ (1/3, 3/4)
and it is a solution to the equation kFA + (6kFA − 1)/6 � 1
implying that kFA � 7/12x0.58 _3 and hence the normalized
value is KFA � 1/6x0.1 _6. Similarly, for FB, N(1) � 1/2 and
M(1) � 1/4 implying that N(1) +M(1) � 3/4< 1 and N(2) �
3/4 and M(1) � 3/4 implying that N(2) +M(2) � 3/2> .
Hence, by Algorithm-A, kFB ∈ (1/2, 3/4) and it is a solution
to the equation kFB + (28kFB − 9)/20 � 1 implying that kFB �
29/48x0.6041 _6 and hence the normalized value is
KFB � 5/24x0.208 _3. Observe that kFA < kFB and hence
KFA <KFB implying that according to k-index as a measure
of income inequality, the income distribution FA is less
unequal than income distribution FB.

3.1.2. The Hirsch Index
The physicist Jorge E. Hirsch suggested this index to measure
the citation impact of the publications of a research scientist
(see Ref. 22). Let X � (x1, . . . , xm) be the set of research
papers of a scientist. Let f : X→N be the citation function
of the scientist. The citation function simply gives the
number of citations for each publication. Let X() �
(x(1), . . . , x(m)) be a reordering of the elements in the set X
such that f (x(1))≥ . . . ≥ f (x(m)). The Hirsch index, or the
h-index, is the largest number H* ∈ {0, 1, . . . ,m} such that
f (x(H*))≥H*. Note that if f (x(1)) � 0, then H* � 0, and, if
f (x(m))≥m, then H* � m and for all other cases
H* ∈ {1, . . . ,m − 1}.

If neither f (x(1)) � 0 nor f (x(m))≥m holds, then how do we
identify the h-index? To see this, suppose that we plot a graph
where on the x-axis we plot the ordered set of publications of a
research scientist in non-increasing order of citations and on the
y-axis we plot the number of citations for each publication.
Moreover, if we join the consecutive plotted points like f (x(t))
and f (x(t+1)) by a straight line for each t ∈ {1, . . . ,m − 1}, then we
get a curve representing a function ~f : [1,m]→ [f (x1), f (xm)],
defined on the domain [1,m] with co-domain [f (x1), f (xm)],
which we call the generated citation curve. The generated citation
curve is continuous, piecewise linear and has a non-positive slope
whenever the slope exists. The generated citation curve resembles
a lot like the complementary Lorenz curve that we can associate
with any income distribution. Consider the fixed point of the
generated citation curve ~f on the interval [1,m], that is, consider
~h ∈ [1,m] such that ~f (~h) � ~h. As long as there is at least one
citation and as long as all papers are not cited more than
(m − 1)-times, such a fixed point ~h exists and is unique with
the added property that ~h ∈ [1,m − 1]. Given this fixed point, we
can identify the relevant value of the h-index, that is,
Hp ∈ {1, . . . ,m} for f by the following procedure: If the fixed
point ~h is an integer, then it is the H* that we are looking for, that
is, ~h � H*. If, however, ~h is not an integer, then there exists an
integer ĥ such that ~f (x(̂h)) � f (x(ĥ))> ĥ and ~f (x(̂h+1)) �
f (x(̂h+1))< ĥ + 1 and then, the relevant value of the h-index

is ĥ � H*. Therefore, graphically, the procedure of obtaining
the h-index of any research scientist using the generated
citation curve is the same as identifying the fixed point of the
complementary Lorenz function of any income distribution that
yields the k index.

3.2. The Gini Index
The Gini index is the ratio of the area that lies between the line
of perfect equality and the Lorenz curve over the total area
under the line of perfect equality. If we plot cumulative share of
population from lowest income to highest income on the
horizontal axis and cumulative share of income on the
Vertical axis (as shown in Figure 1 above), then the Gini
index GF(p) of any income distribution F is given by
GF :� areaofAOCPA/areaofAOCBA. If all people have non-
negative income (or wealth, as the case may be), the Gini index
can theoretically range from 0 (complete equality) to 1 (complete
inequality); it is sometimes expressed as a percentage ranging
between 0 and 100. In practice, both extreme values are not quite
reached. The Gini index is given by the following formula:

GF �
∫1
0

(q − LF(q))dq
(1/2) � 2∫1

0

(q − LF(q))dq � 1 − 2∫1
0

LF(q)dq.
(4)

It is obvious that if LFe(p) � p for all p ∈ (0, 1), then GF � 0. If the
income distribution for a society with n people follows a Power
Law distribution, then LFn(p) � pn. The Gini index is then given
by GFn � {1 − 2/(n + 1)}. Hence, as n→∞, we have GF∞ � 1. Gini
index of some standard continuous random variable are provided
below.

• Uniform distribution: Consider uniform distribution on
some compact interval [a, b] with 0≤ a< b<∞. The Gini
index is given by

GFu � 2∫1
0

[q − q{1 − (b − a)
(a + b) (1 − q)}]dq � (b − a)

3(a + b)>KFu.

• Exponential distribution: Consider the exponential
distribution with distribution function given by FE(x) � 1 −
e−λx for any x ≥ 0 with λ> 0. The Gini index is given by

GFE � 2∫1
0

[q − LFE(q)]dq � 2∫1
0

(1 − q)ln( 1
1 − q

)dq � 1
2
>KFE.

• Pareto distribution: For Pareto distribution given by the
distribution function is FP,α(x) � 1 − (m/x)α with m> 0 as
the minimum income and α> 1, the Gini index is given by

GFP,α � 2∫1
0

[q − {1 − (1 − q)1− 1
α}]dq � 1

2α − 1
.
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If we plot the Gini index for different values of α> 1, then
note that as α increases the Gini index decreases, and, as α→ 1
we have GFP,α → 1. Also note that if α̂ � ln5/ln4, then
GF

P,̂α
x0.7565>KF

P,̂α
� 0.6.

3.2.1. Discrete Random Variable
Consider the discrete random variable FG discussed in Example 1
for which the Lorenz function is given by Eq. 3. As show in
Appendix A, we have the following explicit form of the
Gini index.

GFG �
∑G
g�1

∑G
t�1

ntng

∣∣∣∣xt − xg
∣∣∣∣

2NM
, (5)

Note that if ng � 1 for all g ∈ {1, . . . ,G} so that G � N and
M � ∑N

g�1xg , then from Eq. 5 it follows that

GFN �
∑N
g�1

∑N
t�1

∣∣∣∣xt − xg
∣∣∣∣

2N ∑N
g�1

xg

. (6)

Remark 2. Consider the income distributions FA and FB defined
in Example 2. One can work out that the Gini indices are GFA �
KFB � 5/24x0.208 _3>KFA and GFB � 21/80 � 0.2625> KFB.
Hence, like the normalized k-index, according Gini index
the income distribution FA is less unequal than income
distribution FB.

3.3. The Pietra Index
An interesting index of inequality is the Pietra index (see Pietra
[17]) that tries to identify that proportion of total income that
needs to be reallocated across the population in order to achieve
perfect equality. Given any income distribution F, this proportion
is given by the maximum value of p − LF(p). Therefore, the Pietra
index is PF � maxp ∈ [0,1](p − LF(p)). It is immediate that if
LF(p) � p for all p ∈ [0, 1], then KF � PF � GF � 0. For any
other income distribution F, the maximum distance between
the perfect equality line and the Lorenz curve is the distance OP in
Figure 1 above. Note that for any random variable X with
distribution function F, p − LF(p) � p − (∫p

0
F− 1(q)dq)/μ �∫p

0
{μ − F−1(q)dq}/μ. Therefore, maximizing (p − LF(p)) by

selecting p ∈ [0, 1] is equivalent to maximizing the area ∫p

0
{μ −

F−1(q)}dq by selecting p ∈ [0, 1]. Since the Lorenz curve plots the
percentage of total income earned by various portions of the
population when the population is ordered by the size of their
incomes, it is obvious that {μ − F−1(q)}> 0 for all q ∈ [0, F(μ)), {μ −
F−1(q)}< 0 for all q ∈ (F(μ), 1] and {μ − F−1(q)} � 0 at q � F(μ).
Thus, it follows that the maximum value of the integral ∫p

0
{μ −

F−1(q)}dq is attained at p � F(μ). Hence, the Pietra index for any
random variable with distribution function F is

PF � max
p ∈ [0,1]

(p − LF(p)) � F(μ) − LF(F(μ)). (7)

• Uniform distribution: For the uniform distribution on some
compact interval [a, b] with 0≤ a< b<∞, we have p −

LFu(p) � (b − a)p(1 − p)/(a + b) for all p ∈ [0, p].
Moreover, μu � (a + b)/2 and as a result Fu(μu) � 1/2.
Hence, the Pietra index is given by

PFu � (b − a)
(a + b)Fu(μu)(1 − Fu(μu)) � (b − a)

4(a + b),

Given GFu � (b − a)/3(a + b), we have PFu � (3/4)GFu <GFu.
Moreover, one can easily check that PFu >KFu.

• Exponential distribution: For the exponential distribution
FE(x) � 1 − e−λx defined for any x ≥ 0 with λ> 0, we have
p − LE(p) � (1 − p)ln(1/(1 − p)) for all p ∈ [0, 1]. We also
have μE � 1/λ and hence FE(μE) � 1 − e−1. The Pietra index
is given by

PFE � (1 − FE(μE))ln( 1
1 − FE(μE)) � 1

e
,

Observe that KFEx0.3644<PFE � 1/ex0.3679<GFE � 1/2.

• Pareto distribution: For Pareto distribution given by the
distribution function is FP,α(x) � 1 − (m/x)α with m> 0 as
the minimum income and α> 1, we have p − LP(p) �
(1 − p)1− (1/α) − (1 − p) for all p ∈ [0, p], μP � αm/(α − 1)
and FP,α(μP) � 1 − {(α − 1)/α}α. The Pietra index is given by

PFP,α � (1 − FP(μP))1− (1/α)−(1−FP(μP))�(α−1)α− 1αα
,

One can verify that PFP,α <GFP � 1/(2α − 1) for all α> 1. Also note
that if α̂ � ln5/ln4, then GF

P,̂α
x0.7565>PF

P,̂α
x0.626655>KF

P,̂α
�

0.6.
As shown in Appendix B(i), there is an alternative

representation of the Pietra index as the ratio of the mean
absolute deviation of the income distribution and twice its
mean, that is, PF � E(|x − μ|)/2μ.

3.3.1 Discrete Random Variable
Consider the discrete random variable FG discussed in Example 1
for which the Lorenz function is given by Eq. 3. It is shown in
Appendix B(ii) that the Pietra index has the following
representations:

PFG �
∑~g
g�1

ng(μG − xg)
M

� E(∣∣∣∣x − μG
∣∣∣∣)

2μG
, (8)

where ~g ∈ {1, . . . ,G − 1} is such that μG ∈ [x~g , x~g+1) implying that
FG(μG) � N(~g).

Remark 3. Consider the income distributions FA and FB
defined in Example 2. Observe that for both FA and FB the
mean is the same and, in particular μA � μB � 30. Therefore,
FA(μA) � 3/4 and LFA(μA) � 7/12 implying
PFA � KFA � 1/6x0.1 _6<GFA, and, we also have FB(μB) � 1/2
and LFB(μA) � 1/4 implying PFB � 1/4 � 0.25 ∈ (KFB,GFB).
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Thus, PFA <PFB and hence, like the ordering with the k-index as
well as the Gini index, according to the Pietra index, the income
distribution FA is less unequal than income distribution.

4. COMPARING THE MEASURES

4.1. Rich-Poor Disparity
The Gini index, as is well-known, measures inequality by the area
between the Lorenz curve and the line of perfect equality. For any
p ∈ [0, 1], one can decompose the Gini index into three parts: two
representing the within-group inequality and one representing
the across-group inequality. In Figure 2 below, the unshaded area
bounded by the Lorenz curve and the line from (0, 0) to
(p, LF(p)) is the within-group inequality of the poor. It
represents the extent to which inequality can be reduced by
redistributing incomes among the poor. Similarly, the area
bounded by the Lorenz curve and the line segment from
(p, LF(p)) to (1, 1) represents the within-group inequality of
the rich. The shaded area represents the across-group inequality.
Easy computation shows that the extent of across-group
inequality between the bottom p × 100% and top is the
(across-group) disparity function DF(p) � (1/2)[p − LF(p)].
One can ask for what value of p is the across-group inequality
maximized? The answer is that this is maximized at the
proportion associated with the Pietra index given by
PF � F(μ) − LF(F(μ)). Hence, F(μ) is the proportion where
the disparity is maximized. Therefore, the Pietra index is that
fraction which splits the society into two groups in a way such
that inter-group inequality is maximized.

The discussion to follow shows that interpretation of the
k-index is different from that of the Pietra index. Let us divide

society into two groups, the “poorest”who constitute a fraction p of
the population and the “richest” who constitute a fraction 1 − p of
the population. Given the Lorenz curve LF(p), we look at the
distance of the “boundary person” from the poorest person on the
one hand and the distance of this person from the richest person on

the other hand. These distances are given by
����������
p2 + LF(p)2

√
and�������������������

(1 − p)2 + (1 − LF(p))2
√

, respectively. Then, the k-index divides

society into two groups in a manner such that the Euclidean
distance of the boundary person from the poorest person is equal to
the distance from the richest person.

The value of the disparity function at the k-index is
DF(kF) � kF − 1/2. It measures the gap between the proportion
kF of the poor from the 50 − 50 population split. As long as we do
not have a completely egalitarian society, kF > 1/2 and hence it is
one way of highlighting the rich-poor disparity with kF defining the
income proportion of the top (1 − kF) proportion of the rich
population. In terms of disparity, the Gini index and Pietra index
do not have as nice an interpretation.

4.2. Comparison of Magnitudes
To compare the k-index with other measures of inequality we
will use the normalized k-index which is given by KF :� 2kF − 1.
The normalized k-index was first introduced in Ref. 20 and was
called the “perpendicular-diameter index” (see Refs. 20, 21, 23).
For all income distributions used till the previous section we
found that given any F, the value of the normalized k index is no
more than the value of the Pietra index and the value of the
Pietra index is no more than the value of the Gini index. This is

FIGURE 2 | Rich-poor disparity assuming that the poor are p% of the
population. The blue-shaded area is the disparity among the poor, the green-
shaded area is the disparity among the rich, and the grey-shaded area is the
disparity between the rich and the poor.

FIGURE 3 | The Lorenz curve as an arc of a unit circle. Here, the
normalized k-index and Pietra index are equal but different from the Gini index:
KFR � PFR � ��

2
√ − 1<G � π/2 − 1 .
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not just a coincidence. It was established in Ref. 3 that for any
income distribution F, we have KF ≤PF ≤GF . It is obvious that
since the Pietra index maximizes p − LF(p), it is obvious that
KF � 2kF − 1 � kF − LF(kF)≤PF . Moreover, in Ref. 3, it was also
established that for any given distribution F and any p ∈ [0, 1],
p − LF(p)≤GF and hence, using this result, it follows that
maxp ∈ [0,1]{p − LF(p)}≤GF and hence we get PF ≤GF .

We first provide an example where the normalized k-index
coincides with the Pietra index. This example is taken from Ref. 3.
Let us consider an arc of a unit circle ODB as a Lorenz curve where
OB is one of the diagonal (egalitarian line) of the unit square ABCO
(as shown in Figure 3) where CD represents the unit radius of the
circle, CA is the other diagonal of the unit square ABCO � �

2
√

.
In this case the Lorenz curve is, LFkg(p) � 1 − �����

1 − p2
√

where Fkg
is the relevant income distribution. One can verify that
KFkg � PFkg �

�
2

√ − 1x0.4142<GFkg � (π/2) − 1x0.571. Hence,
the Gini index is larger than the Pietra index and the
normalized k-index. Also in this case the maximum distance
between perfect equality line and the Lorenz curve is at
kFkg � F(μkg) � 1/

�
2

√
, hence Pietra index coincides with the

normalized k-index.
The Lorenz function LF(p) is symmetric if for all p ∈ [0, 1],

LF(L̂F(p)) � 1 − p or equivalently LF(p) + rF(p) � 1, where
rF(p) � L−1F (1 − p). The idea of symmetry is explained in
Figure 4. One can verify that the Lorenz function LFkg(p) � 1 −�����
1 − p2

√
is symmetric. It was proved in Banerjee, Chakrabarti,

Mitra, and Mutuswami [3] that, in general, if the Lorenz function
is symmetric and differentiable, then the proportion F(μ)
associated with the Pietra index coincides with the proportion
kF of the k-index. Hence, we also have KF � PF .

The next example is one where the Pietra index coincides with
the Gini index. This example is taken from Eliazar and Sokolov
[18]. Fix any fraction x0 ∈ (0, 1) and consider the following
Lorenz function:

LFpg(p) � ⎧⎪⎪⎨⎪⎪⎩
0 if p ∈ [0, x0],(p − x0)

(1 − x0), if p ∈ (x0, 1].
(9)

Figure 5 depicts this Lorenz function LFpg(.) and in particular
the curve OBA represents this Lorenz curve. One can show that
x0/2 − x0 � KFpg <PFpg � GFpg � x0. Hence, the Gini index
coincides with Pietra and the normalized k-index has a lower
value. Therefore, from this example we can say that k-index has
different features relative to both the Gini index and the
Pietra index.

Finally, when does all the three indices coincide? It was
established in Ref. 3 that all three measures will coincide if
and only if the Lorenz function has the following form defined
for any given C ∈ [1/2, 1):

LC(p) � ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − C

C
)p if p ∈ [0,C],

(1 − C) + C

(1 − C) (p − C) if p ∈ (C, 1 .] (10)

In Figure 6, the straight lines OQ and QB taken together
represents the Lorenz curve for LC(.). One can verify that

FIGURE 4 | Lorenz curve for which Pietra index and normalized k-index
are equal. The similarity holds only when for all p ∈ [0, 1], AB � CD, where
A ≡ (p, LF(p)),B ≡ (p,0),C ≡ (L−1F (1 − p), (1 − p)) and D ≡ (1, 1 − p) . FIGURE 5 | A Lorenz curve depicting two groups, one with no income

and the other where all agents have the same income. The Gini index and the
Pietra index are equal but different from the normalized k-index: G � P �
x0 >K .
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KFC � PFC � GFC � 2C − 1, (11)

Observe that, if C � 1/2, then we have LF0.5(p) � LFe(p) � p for all
p ∈ (0, 1) and in that case the three indices also coincide since
GFe � PFe � KFe � 0.

It is clear that the Lorenz functions of the form LFC(.) with
C ∈ (1/2, 1) is valid for any society having two income groups.
Therefore, a natural question in this context is the following:
What does the coincidence of the three measures mean in
terms of discrete random variables? For any discrete random
variable FG such that G � 2, we have N � n1 + n2, M � n1x1 +
n2x2 with x1 < x2 and the associated Lorenz function has the
following form:

LF2(p) � ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n1 + n2)x1p
n1x1 + n2x2

, if p ∈ (0, n1
n1 + n2

],
n1x1

n1x1 + n2x2
+ ((n1 + n2)x2

n1x1 + n2x2
)(p − n1

n1 + n2
), if p ∈ ( n1

n1 + n2
, 1).
(12)

For the coincidence of all the three indices we first require that
C ∈ (1/2, 0) and C � n1/(n1 + n2) implying that n1 > n2.
Moreover, for the coincidence we also require C � kF2, that is,
C + LF2(C) � 1 which yields n21x1 � n22x2. Thus, from the above
discussion we have the following result.

• Consider any discrete random variable FG discussed in
Example 1 for which the Lorenz function is given by Eq.
3. The normalized k-index coincides with the Gini index
and the Pietra index if and only if any one of the following
conditions holds:

(C1) The society has all agents having the same income x1 > 0
so that LF1(p) � LFe(p) � p for all p ∈ (0, 1). For this case
we have, KF1 � PF1 � GF1 � 0.

(C2) The society has two groups of agents with one group of n1
agents having an income of x1 and another group of n2
agents having an income of x2 such that x1 < x2.
Moreover, the Lorenz function is LF2(p) given in Eq.
12 with the added restrictions that n1 > n2, n21x1 � n22x2
and hence n1x1 < n2x2. For this case we have, KF2 �
PF2 � GF2 � 2kF2 − 1 � (n1 − n2)/(n1 + n2).

5. RANKING LORENZ FUNCTIONS

Consider the uniform income distribution Fu defined on any
compact interval [0, b] with b> 0. The Lorenz function is given
by LFu(p) � p2 for all p ∈ [0, 1] (see Figure 7). Here kFu is the
reciprocal of the Golden ratio, that is, kFu � ( �

5
√ − 1)/2 � 1/ϕ

where ϕ � ( �
5

√ + 1)/2x0.61803 is the Golden ratio. Moreover,
KFu �

�
5

√ − 2x0.23607. Similarly, one can derive that the Gini
index is GFu � 1/3 and the Pietra index is PFu � 1/4 with
μu � 1/2. Hence, we have GFu � 1/3>PFu � 1/4>
KFu �

�
5

√ − 2. Similarly, consider the Pareto distribution FP,α
with parameter value α � 2. The Lorenz function is given by
LFP,2(p) � 1 − ����

1 − p
√

so that L̂FP,2(p) �
����
1 − p

√
and the k-index is

again the reciprocal of the Golden ratio, that is, kFP,2 � 1/ϕ and
KFP,2 �

�
5

√ − 2 (see Figure 7). Thus, according to the
normalized k-index, a society with an income distribution Fu
is equivalent to a society with an income distribution of FP,2 in
terms of inequality. One can verify that this equivalence
between Fu and FP,2 is also preserved under the Gini index

FIGURE 7 | Two Lorenz curves with identical Gini, Pietra and normalized
k-indices. The blue curve is LFu(p) � p2 and the red curve is LFP,2(p) � 1 −�����
1 − p

√
.

FIGURE 6 | A Lorenz curve depicting two groups with equally distributed
incomes but differing average incomes. The Gini, Pietra and normalized k
indices are all equal here: KFC � PFC � GFC � 2kF − 1 .
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and the Pietra index. Specifically, we have GFP,α � GFu � 1/3
and PFP,2 � PFu � 1/4 though μP,2 � 3/4> μu � 1/2. Hence,
we have

GFP,α � GFu � 1/3>PFP,2 � PFu � 1/4>KFP,α � KFu �
�
5

√ − 2.

Consider the income distributions FA and FB defined in
Example 2. From Remark 1 it follows that KFA <KFB, from
Remark 2 it follows that GFA <GFB and from Remark 3 it also
follows that PFA <PFB. Therefore, all the three measures
unambiguously assures that the society with income
distribution FA is less unequal that the society with income
distribution FB.

Given the above examples of this section, one may be tempted
to think that ranking Lorenz functions using these three measures
always gives the same order, that is, if one measure shows that the
income distribution F is equivalent to another income
distribution F′ in terms of inequality, then the other two
measures will also give the same result, and, if one measure
shows that the income distribution F is less unequal than the
income distribution F′, then also the other two measures will
establish the same order. However, as argued in Ref. 3, this is not
the case. To establish this point [3] provided the following two
examples.

In the first example the following Lorenz functions were
considered to establish that the normalized k-index yields a
different ranking from the Pietra index.

LFa(p) � ⎧⎪⎪⎪⎨⎪⎪⎪⎩
3p
4
, if p ∈ [0, 1/3],

9p − 1
8

, if p ∈ (1/3, 1].

LFb(p) � ⎧⎪⎪⎪⎨⎪⎪⎪⎩
8p
9
, if p ∈ [0, 7/8],

16p − 7
9

, if p ∈ (7/8, 1].

One can show that KFa � KFb � 1/7<PFa � 1/12<PFb � 7/72,
that is, according to the normalized k-index, the society with
income distribution Fb is equivalent to the society with
income distribution Fb in terms of inequality. However,
according to the Pietra index, the society with income
distribution Fa is less unequal than the society with
income distribution Fb.

In the second example, two Lorenz functions were considered
of which the first one is the standard uniform distribution defined
on any compact interval of the form [0, b] with b> 0, that is,
LFu(p) � p2 for all p ∈ [0, 1]. The other Lorenz function has the
following form:

LFS(p) � ⎧⎪⎪⎨⎪⎪⎩
p2 if p ∈ [0, 3/4],

1 − (7(1 − p)
4

) if p ∈ (3/4, 1].

KFu � KFS � 2/ϕ − 1<GFS � 21/64<GFu � 1/3. This example
demonstrates an important difference between KF and GF .
The Gini index is affected by transfers within a group. In
particular, the poor are unaffected but the rich (lying in the

interval [3/4, 1)) have become more egalitarian while moving
from LFu to LFS. The normalized k-index on the other hand is
unaffected with such intra-group transfers. Therefore, if we
are interested in reducing inequality between groups, then
the normalized k-index is a better indicator than the
Gini index.

6. NUMERICAL OBSERVATIONS

For the purpose of comparison between different inequality
indices, we present in Table 1, the estimated values of the
Gini and k-indices for the income distributions in some
countries for the period 1963–1983. Tables 2 and 3 give the
estimated values of these indices along with the Pietra index for
citations, for different institutions and universities across the
world observed in different years. Table 4 also shows the
comparison between Gini, Pietra and k for inequalities in
paper citations for various science journals. All the tables are
taken from Ref. 1.

In Ref. 1 it was observed that Eq. 11 is an approximate result
and can differ for large values of G and k. Furthermore, the value
of k corresponds to an upper limit beyond which the distribution
follows a power law pattern, similar to the celebrated Pareto law

TABLE 1 | The Gini and k-indices for the income distributions of various countries,
1963–1983.

Country Gini index k-index

Brazil 0.62 0.73
Denmark 0.36 0.63
India 0.45 0.66
Japan 0.31 0.61
Malaysia 0.50 0.68
New Zealand 0.37 0.63
Panama 0.44 0.66
Sweden 0.38 0.64
Tunisia 0.50 0.69
Uruguay 0.49 0.68
Columbia 0.55 0.70
Finland 0.47 0.67
Indonesia 0.44 0.65
Kenya 0.61 0.73
Netherlands 0.44 0.66
Norway 0.36 0.63
Sri Lanka 0.40 0.65
Tanzania 0.53 0.70
United Kingdom 0.36 0.63
Australia 0.34 0.62
Canada 0.34 0.62
Netherlands 0.31 0.61
Norway 0.31 0.61
Sweden 0.29 0.60
Switzerland 0.38 0.63
Germany 0.31 0.61
United Kingdom 0.34 0.62
United States 0.36 0.63

The maximum error bar in estimated Gini and k values is x0.01 [Adapted from Ref. 1].
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[24]. For the inequality in citation data, if n is the fraction of
papers andw is the cumulative fraction of citations, then for n≥ k,
1 − w ∼ (1 − n)α with α � 0.50 ± 0.10 which implies n � 1 −
cp(1 − w)] for ] � 2.0 ± 0.5 and c is a proportionality constant.
This is illustrated in Figures 8 and 9.

7. SUMMARY AND DISCUSSION

For the nonlinear Lorenz function (LF(p)), the traditional
measures like Gini index measures some “average property”,
while the Kolkata index (k) identifies the non-trivial fixed
point of the complementary Lorenz function (L̂F(p) �
1 − L(p); note that LF(p) has trivial fixed points at p � 0 and
1, while L̂F(p) has a nontrivial fixed point at p � k). This k-index

TABLE 2 | The Gini coefficient, Pietra and k-indices for citations (up to December
2013) of the papers published from different universities as obtained from ISI
web of science.

Inst./Univ Year Total
papers

Citations Gini
index

Pietra
index

k-index

Melbourne 1980 866 16,107 0.67 0.51 0.75
1990 1,131 30,349 0.68 0.50 0.75
2000 2,116 57,871 0.65 0.49 0.74
2010 5,255 63,151 0.68 0.50 0.75

Tokyo 1980 2,871 60,682 0.69 0.52 0.76
1990 4,196 108,127 0.68 0.51 0.76
2000 7,955 221,323 0.70 0.53 0.76
2010 9,154 91,349 0.70 0.52 0.76

Harvard 1980 4,897 225,626 0.73 0.55 0.78
1990 6,036 387,244 0.73 0.55 0.78
2000 9,566 571,666 0.71 0.54 0.77
2010 15,079 263,600 0.69 0.52 0.76

MIT 1980 2,414 101,929 0.76 0.59 0.79
1990 2,873 156,707 0.73 0.56 0.78
2000 3,532 206,165 0.74 0.56 0.78
2010 5,470 109,995 0.69 0.51 0.76

Cambridge 1980 1,678 62,981 0.74 0.56 0.78
1990 2,616 111,818 0.74 0.56 0.78
2000 4,899 196,250 0.71 0.54 0.77
2010 6,443 108,864 0.70 0.52 0.76

Oxford 1980 1,241 39,392 0.70 0.53 0.77
1990 2,147 83,937 0.73 0.56 0.78
2000 4,073 191,096 0.72 0.54 0.77
2010 6,863 114,657 0.71 0.53 0.76

The number of papers and citations give an idea of the data size involved in the analysis
[Adapted from Refs. 1 and 2].

TABLE 3 | The Gini, Pietra and k-indices for citations (up to December 2013) of the
papers published from different Indian universities, as obtained from ISI web of
science [Adapted from Ref. 1].

Inst./
Univ

Year Total
papers

Citations Gini
index

Pietra
index

k-index

SINP 1980 32 170 0.72 0.49 0.74
1990 91 666 0.66 0.47 0.73
2000 148 2,225 0.77 0.57 0.79
2010 238 1896 0.71 0.52 0.76

IISC 1980 450 4,728 0.73 0.56 0.78
1990 573 8,410 0.70 0.53 0.76
2000 874 19,167 0.67 0.50 0.75
2010 1,624 11,497 0.62 0.45 0.73

TIFR 1980 167 2024 0.70 0.52 0.76
1990 303 4,961 0.73 0.54 0.77
2000 439 11,275 0.74 0.55 0.77
2010 573 9,988 0.78 0.59 0.79

Calcutta 1980 162 749 0.74 0.56 0.78
1990 217 1,511 0.64 0.48 0.74
2000 173 2073 0.68 0.50 0.74
2010 432 2,470 0.61 0.45 0.73

Delhi 1980 426 2,614 0.67 0.49 0.75
1990 247 2,252 0.68 0.52 0.76
2000 301 3,791 0.68 0.51 0.76
2010 914 6,896 0.66 0.49 0.74

Madras 1980 193 1,317 0.69 0.53 0.76
1990 158 1,044 0.68 0.52 0.76
2000 188 2,177 0.64 0.47 0.73
2010 348 2,268 0.78 0.58 0.79

TABLE 4 | The Gini, Pietra and k-indices for citations (up to December 2013) of the
papers published from different journals, as obtained from ISI web of science
[Adapted from Ref. 1].

Journals Year Total
papers

Citations Gini
index

Pietra
index

k-index

Nature 1980 2,904 178,927 0.80 0.63 0.81
1990 3,676 307,545 0.86 0.72 0.85
2000 3,021 393,521 0.81 0.65 0.82
2010 2,577 100,808 0.79 0.63 0.81

Science 1980 1,722 111,737 0.77 0.60 0.80
1990 2,449 228,121 0.84 0.70 0.84
2000 2,590 301,093 0.81 0.66 0.82
2010 2,439 85,879 0.76 0.60 0.79

PNAS(USA) 1980 - - - - —

1990 2,133 282,930 0.54 0.39 0.70
2000 2,698 315,684 0.49 0.35 0.68
2010 4,218 116,037 0.46 0.33 0.66

Cell 1980 394 72,676 0.54 0.39 0.70
1990 516 169,868 0.50 0.36 0.68
2000 351 110,602 0.56 0.41 0.70
2010 573 32,485 0.68 0.51 0.75

PRL 1980 1,196 87,773 0.66 0.48 0.74
1990 1904 156,722 0.63 0.47 0.74
2000 3,124 225,591 0.59 0.43 0.72
2010 3,350 73,917 0.51 0.37 0.68

PRA 1980 639 24,802 0.61 0.45 0.73
1990 1922 54,511 0.61 0.45 0.72
2000 1,410 38,948 0.60 0.44 0.72
2010 2,934 26,314 0.53 0.38 0.69

PRB 1980 1,413 62,741 0.65 0.49 0.74
1990 3,488 153,521 0.65 0.48 0.74
2000 4,814 155,172 0.59 0.44 0.72
2010 6,207 70,612 0.53 0.38 0.69

PRC 1980 630 19,373 0.66 0.49 0.75
1990 728 15,312 0.63 0.46 0.73
2000 856 19,143 0.57 0.42 0.71
2010 1,061 11,764 0.56 0.40 0.70

PRD 1980 800 36,263 0.76 0.59 0.80
1990 1,049 33,257 0.68 0.52 0.76
2000 2061 66,408 0.61 0.45 0.73
2010 3,012 40,167 0.54 0.39 0.69

PRE 1980 — — — — —

1990 — — — — —

2000 2,078 51,860 0.58 0.42 0.71
2010 2,381 16,605 0.50 0.36 0.68
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apart from capturing the essential character of the nonlinear
Lorenz function (as inspired by the major developments of
renormalization group theory in statistical physics [14] or in
identifying the universal characters corresponding to the onset of
chaos in nonlinear systems [15]), also gives us a very tangible one,
giving that (1 − k) fraction of the population possess k fraction of
the total wealth in the society. In Ref. 25 the k-index is used to
define a generalized Gini index. In a recent study, the k-index has
been used to quantify the inequality for spreading of the Covid-19
infection in urban neighbourhoods and slums in a society (see
Ref. 26).

After a general introduction in Section 1, we discuss in
Section 2, some structural features of the Lorenz function and
introduce the Complementary Lorenz function, which has a
nontrivial fixed point (namely the Kolkata index) as
mentioned above. In Sections 3 and 4, we try to demonstrate
the uniqueness of the k-index, compared to Gini and Pietra
indices in ranking the rich-poor disparity, assuming some typical
income distributions. we have argued (in Section 3) that the
procedure of obtaining the h-index of any research scientist using

the generated citation curve is the same as identifying the fixed
point of the complementary Lorenz function of any income
distribution that yields the k index. While comparing the
normalized k-index with the Pietra index and with the Gini
index, one can show that for any given distribution the
normalized k-index is no more than the Pietra index and the
Pietra index is no more than the Gini index. We have also argued
(in Section 4.2) that for any given distribution the normalized
k-index, the Pietra index and the Gini index coincide only if either
the society is such that all agents have equal income or there are
only two income groups in a society with some added restrictions
(see condition C2 in this subsection). We have also argued (in
Section 5) that if we are interested in reducing inequality between
the rich and poor groups of the society, then the normalized
k-index is a better indicator than the Gini index. In Section 6, we
can see that while the Gini index value typically ranges from 0.30
to 0.62, the Kolkata index value ranges from 0.60 to 0.73 at any
particular time or year for income or wealth data across the
countries of the world. It may be mentioned here that income
inequality data are not easily available from reliable sources. On

FIGURE 8 | Illustration of the power law in the citation distributions for
Cambridge and MIT. Here, 1 − w ∼ (1 − n)α for n≥ k, with α � 0.50 ± 0.10
[Adapted from Ref. 1].

FIGURE 9 | Illustration of the power law in the citation distributions for
Nature and Science. Here, 1 − w ∼ (1 − n)α for n≥ k, with α � 0.50 ± 0.10
[Adapted from Ref. 1].
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the other hand, the (paper) citations may be considered as a
measure of the wealth created by the respective University or
Institution and the resulting inequality data are abundantly
available in accurate digital formats (say from the ISI Web of
Science). We estimated the Gini, Pietra, and Kolkata index values
for the citations earned by the yearly publications of various
academic institutions from such data sources. We find that while
Gini and Pietra index values range from 0.65 to 0.75 and 0.50 to
0.60, respectively, the Kolkata index remains around 0.75 ± 0.05
value for Institutions or Universities across the world. As
mentioned already, k-index is the social equivalent to the

h-index for an individual researcher or academician. Also we
find that the value for k-index gives an estimate of the crossover
point beyond which the growth of income (or citations) with the
fraction of population (or publications) enters a power law
(Pareto) region (see Figures 8 and 9).
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8. APPENDICES

8.1. Appendix A
We formally show that for the discrete random variable FG with
the Lorenz function is given by Eq. 3, the Gini index has the
following explicit form:

GFG �
∑G
g�1

∑G
t�1

ntng
∣∣∣∣xt − xg

∣∣∣∣
2NM

.

Observe first that
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0
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Thus, using 2∑G
g�1(∑g−1

t�1nt−∑G
t�g+1nt)ngxg �∑G

g�1∑G
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and using Eq. A1 we get
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Hence, from the last inequality in Eq. A2 the result follows.

8.2. Appendix B
8.2.1. Appendix B (i)
The following derivation shows whyPF � E(∣∣∣∣x − μ

∣∣∣∣)/2μ this is true.
PF � F(μ) − LF(μ)
� F(μ) − ∫F(μ)

0
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8.2.2. Appendix B (ii)
We formally show that for the discrete random variable FG with
the Lorenz function is given by Eq. 3, the Pietra index has the
following explicit form:

PFG �
∑~g
g�1

ng(μG − xg)
M

� E(∣∣∣∣x − μG
∣∣∣∣)

2μG
,

where ~g ∈ {1, . . . ,G − 1} is such that μG ∈ [x~g , x~g+1) implying that
FG(μG) � N(~g).

For the first equality, observe that there exists
~g ∈ {1, . . . ,G − 1} such that μG ∈ [x~g , x~g+1) implying that

FG(μG) � N(~g). Thus, using ∑G
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Given Eq. B2 it follows that the Pietra index of the distribution FG
with μG ∈ [x~g , x~g+1) is

PFG �
∑~g
g�1

ng(μG − xg)
M

. (B3)

Given Eq. B3, we can also derive second equality by using
μG ∈ [x~g , x~g+1) and by using ∑~g

g�1ng(μG − xg) �∑n
g�~g+1ng(xg − μG). Specifically,
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Lending Diversification and
Interconnectedness of the Syndicated
Loan Market
Gabjin Oh1 and A-young Park1,2*

1Division of Business Administration, Chosun University, Gwangju, South Korea, 2Department of Anesthesiology, University of
Michigan, Ann Arbor, MI, United States

We investigate the effects of syndicated loan network centrality on bank performance.
Syndicated loan network centrality measures the similarity and influence of the other banks
within a given banks network. The network centrality constructed by syndicated loans can
allow banks to gather and transfer valuable information and can thus facilitate profit-
making acquisition in loan investment decisions. We use a planar maximally filtered graph
to construct an interbank network using syndicated loan portfolios at the industry level. We
show that the syndicated loan portfolios of high-centrality banks exhibit a higher level of
portfolio diversification than those of low-centrality banks. We also document that our
composite centrality measure of the bank network showed statistical significance in terms
of bank performance even after controlling for the financial variables of market size, loan
allocation, total asset, and loan diversification. Our findings suggest that the performance
of a bank in a syndicated loan hierarchy is related to its position in this hierarchy.

Keywords: performance, connectedness, diversificiation, planar maximally filtered graph network, bank network,
syndicated loan market

1. INTRODUCTION

The connectivity between banks demonstrates the ways in which the contagious nature of high levels
of risk among financial institutions can cause financial crizes and affect future economic conditions
[1–4]. The network structure of the interbank market created by the syndicated loan market suggests
that connections between banks should be an important channel of contagion among financial
institutions [5–7]. Information contagions between banks represent a significant channel that might
explain how information travels through financial systems. Recently, the application of complex
networks to solve this challenging problem has become increasingly widespread in diverse areas
[8–10].

In this paper, we study interbank networks in the form of common exposures among financial
institutions to analyze bank performance based on banks’ exposure to large syndicated loans.
Syndicated loans represent one of the crucial sources of external financing for many firms and
provide an ideal experimental setting for studying the interconnectedness of banks. In this study, the
network between banks is constructed from data sets that contain information regarding both the
borrowers and lenders of syndicated loans. The common exposures of banks are able to measure
bank’s investment strategies in this market in terms of loan portfolio diversification.

Prior research provides evidence that interconnectedness has a considerable impact on the
economy from the perspective of risk exposure. Interconnection between companies or industries
amplifies and propagates shock within an economy [11]. Negative shock and financial distress
contribute to asset fire sales [12]. Consistent with these concepts, credit concentration tends to lead to
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a cascade effect of shock in an economy [13]. [5] defined market
connectedness using banks’ loan specializations in a syndicated
loan market that reflected systemic risk. Furthermore, prior
studies that have examined the role of diversification have
focused on performance. For example, banks with a greater
number of geographically-concentrated mortgage loans
performed better than others with fewer of these loans [14]. In
terms of mergers and acquisitions, diversification is correlated
with fluctuations in external market friction [15].

Based on the social exchange theory as proposed by [16]; we
present different perspectives to understand the banking industry
in the United States; these perspectives recognize the complex and
rich social relationships that define interbank network. When the
economy is growing, banks actually benefit from promoting the
sharing of information with network members for business
expansion; as a result of this sharing, they are able increase
their profits. Nonetheless, during periods of economic
contraction, banks cannot force network members to
restructure because they may be subject to strict constraints
due to their obligations. Banks are expected to expend effort
monitoring and screening their borrowers to mitigate risk
exposure. Additionally, bank performance is negatively
affected within a contracting economy.

To assess the level of connectedness between the banks of
syndicated loan portfolios, we establish a measure of
interconnectedness that utilizes the similarity between bank’s
syndicated loan portfolios at the industry level as proposed by
[5]. An advantage provided by the use of loan portfolios is the
ability to investigate the response of banking systems via direct
connections. To extract meaningful information from all-to-all
connected networks, we employ the planar maximally filtered
graph (PMFG) [17]. We utilize centrality measures to drive an
important component that may affect whether a bank’s centrality
in the interbank network created in the financial sector is related
to its performance. In this paper, the centrality is measured by the
principal component analysis (PCA) method based on four
common measures of centrality in the context of networks:
degree, eigenvector, closeness, and betweenness.

To date, only the lending relationship between banks and
firms has been studied through analyzing the characteristics of
individual banks or firms using corporate loan data. The aim of
this paper is to study an interbank network, namely, the
syndicated loan market. We investigate the evolution of
several types of syndicated loans over time using a Dealscan
database, with a special emphasis on the amount of syndicated
loans that have been extended. More interestingly, the
syndicated loan data used in this study allows us to
investigate the effect of the centrality of interbank networks
on bank performance.

We show that banks with a higher level of network centrality
are more likely to pursue diversification and that this
diversification is more likely to increase during market
instability. To extend our examination of the relationship
between interbank networks and bank performance, we move
beyond bank-to-firm lending by studying interbank networks in
the context of the syndicated loan market. We further find that
banks with a high level of centrality have higher returns than do

banks with a low level of centrality. Since a bank’s centrality
within the network plays an important role in its loan portfolio
strategy, it also plays a significant role for lending market
participants. We also found that in the core group, there was
a negative correlation between diversification and centrality;
however, a positive relation was observed in the peripheral group.

The paper is organized as follows. Section 2 explains the
methodology that we employed. Section 3 presents a description
of the database used, and Section 4 contains an empirical
analysis. Section 5 concludes this paper.

2. METHODOLOGY

In this section, we explain the network construction and
regression variables. For each month, we define an
interconnectedness based on the similarities between
syndicated loan portfolios. The results are not qualitatively
sensitive to bank performance measures, e.g., we obtain
essentially the same results even if we use different financial
variables to measure bank performance.

2.1. Network Construction
In this subsection, we explain the way in which we estimate the
distance between two banks based on their loan portfolios. We
then describe the way in which we construct an interbank
network. To map our interbank network, we obtain
information on the relationships between banks and firms
between 1990 and 2017 from the DealScan database.

First, we investigate bank syndicated loans in the United.States.
lending industry classified using two-digit SIC industry codes. This
measure was developed by [5] and uses the Euclidean distance
between two banks. For each month, we calculate the distance
between bank i and bank k by quantifying the similarity of these
two banks in a n-dimensional space as follows.

Distancei,k,t � 1�
2

√ ×
���������������
Σn
j�1(wi,j,t − wk,j,t)2√

(1)

where wi,j,t � Lj∑ n

j�1Lj
, with syndicated loan of bank i invested in

industry j, Lj, within the 12 months prior to month t. The distance
is normalized between 0 and 1; 0 refers to perfectly matched
portfolios and one refers to portfolios that do not overlap at all.
We then construct a filtered network that connects all the banks so
that a planar maximally filtered graph (PMFG) can be used [17]. The
most common method of forming a stock network is based on the
correlation of stock returns using threshold [18, 19]. This method has
a problem in which correlation coefficient only assumes a linear
relationship and lead to neglect some information. In addition, the
minimum spanning tree (MST), a tree formed by a subset of edges of
a given undirected graph, is also a common method in complex
network analysis [20]. However, this method reflects hierarchical
clustering with information loss to generate a efficient network. To
address these issues, we use PMFG measure to construct a network
based on the syndicated loans.
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2.2. Main Dependent and Independent
Variables
We investigate how network structure affects bank performance
using the banks in the United.States. between January 1, 1990 and
December 31, 2017.We use the Return on asset (ROA) variable as
the dependent variable to measure bank’s performance and
employ several financial variables, such as the bank size, an
amount of syndicated loan, etc. as control variables to
examine network effect on bank’s performance.

2.2.1. Diversification
In information theory, following [21]; the entropy of a discrete
random variable X is denoted as

H(X) � −p(xi)Σn
i log(p(xi))

−pm(xi)Σn
i log(pm(xi)) (2)

where p(xi) is the probability distribution of outcome X and
pm(xi) is defined by 1/n. xi is the proportion of the total loan
amount of industry i held by a bank and n is the number of
industries invested by the bank. It is well known that entropy is
viewed as a measure of the uncertainty of a random variable.
Entropy have manifested useful across a wide range of fields, so it
is remarkable they have begun to make noticeable effect into
economics and finance. It has also been a popular diversity index
in previous literature. In this paper, we use the concept of
diversification that corresponds to the above measure within
the range of zero to one. When H is zero, the bank has
concentration of loan portfolio. Otherwise, when H is one, the
bank has perfect diversification of loan portfolio.

2.2.2. Network Centrality
The effect of bank network centrality on bank performance is due
to the importance of bank-firm lending structure in the context of
information asymmetry. A bank’s network created by bank-to-firm
loan information should affect the profit of lending banks.
Generally, centrality refers to a bank’s location in a network
compared to that of others. The four indices of centrality are
frequently discussed in the social network literature [22]. These
four indices are degree centrality, eigenvector centrality, closeness
centrality, and betweenness centrality. These indices represent
different dimensions of connectedness that affect information
sharing via a network. Degree centrality is the sum of the first-
degree connections of an entity in a network. The raw score is
divided by the total number of nodes in the network minus 1,
because the size of the interbank network changes eachmonth [23].
Eigenvector centrality measures an individual bank’s ability to
obtain or influence information within the network. This measure
increases as connections with other highly connected neighbors are
added. The raw score is divided by the total number of nodes in the
network minus one because the size of the interbank network
changes eachmonth. Closeness centrality is the inverse of themean
of the shortest path length between an individual bank and all the
other reachable banks in the network. The raw score is multiplied
by the total number of nodes in the networkminus one because the
size of the interbank network changes each month. Betweenness
centrality describes the extent to which an individual bank is

connected to the other banks in the network. When the
shortest path of all bank pairs passes through a bank, the
betweenness centrality of that bank is high; this is the reason
why it is important to control the flow of the entire network. The
raw score is divided by the total number of the connected nodes
because the size of the interbank network changes each month.

To generate our composite centrality index (CCI) in Table 1,
we standardize the centrality indices to a mean of 0 and a
standard deviation of 1. Consistent with [24–26]; we use the
factor score to aggregate CCI using the first principal
component for each bank with four centrality indices in the
PMFG network.

2.2.3. Bank Performance Measure
Return on assets (ROA) is an indicator of how well a company
generates profit from its total assets. We calculated ROA by
dividing firms’ profit or loss before taxes by their total assets in
month t and converted this figure to a percentage. The previous
studies related to the current research area show that ROA is the
best measure of performance when comparing similar companies
with the same industry.

3. DATA DESCRIPTION

To test the hypotheses outlined in Section 1, we construct a
sample of syndicated loans matched according to firm and bank
characteristics. Below, we describe the sample construction and
summarize the sample characteristics.

3.1. Data Source
We build our datasets from a comprehensive sample of
syndicated loans and the associated lender and borrower

TABLE 1 | The effect of diversification and network centrality on bank
performance.

Variables Coefficient t-value Coefficient t-value

Intercept −2.1×1010 (−0.4797) −1.3×1010 (−0.2783)
CCI 0.0084*** (10.5008)
CCI×Dummy −0.0170*** (−6.6791)
DIV 0.0344*** (5.0023) 0.0216*** (3.0677)
Market size 0.0820*** (4.3706) 0.0850*** (4.5429)
Market share −0.0140*** (−5.8422) −0.0197*** (−8.0319)
Bank size −0.0623*** (−29.2561) −0.0626*** (−29.3747)
Observations 33,289 33,289
Year FEs Yes Yes
Adj. R2 0.2224 0.2255

This table reports the regressions of diversification and centrality on ROA. ROA is defined
as the net income divided by total assets. DEGREE is the degree centrality. Diversification
(DIV) is measured by the Shannon entropy of bank portfolio calculated as the amount of
loans extended to ten industries by each bank. Composite centrality index (CCI) is
calculated by using principal component analysis of four centrality measures pertaining to
the PMFG network, namely, degree centrality (DEGREE), eigenvector centrality (EIGEN),
betweenness centrality (BTWN), and closeness centrality (CLOSE). Market size is defined
as the log of the sum of all outstanding loans. Market share is defined as the log of the
amount of loans extended by each bank. Bank size is defined by log of total assets of
each bank. Year fixed effects are included to account for time characteristics. The
t-statistic is reported in brackets. The symbols *, **, and *** indicate statistical significance
at 10%, 5%, and, 1%, respectively.
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information by merging data derived from Standard & Poor’s
Compustat and from Thomson Reuters’ LPCDealscan from 1990
to 2017. The Compustat database is free of survival bias, as it
contains the monthly historical accounting data of borrowing
companies, and data regarding syndicated loans are included in
the Dealscan database. Our starting points are the DealScan-
Compustat Link [27] and the Lender link [28].a

Syndicated loans play a crucial role in the American corporate
loan market. These loans are typically offered by a group of lenders.
The lenders in a syndicate are large banks that fall into two categories
of lenders: lead arrangers and participants. In this study, following
the work of [5]; we classify lenders as lender-to-lead arrangers and
participants.We designate a lender as a lead arranger if lead arranger

credit of it is yes or lender role of it is administrative agent, agent,
arranger, book runner, coordinating arranger, lead bank, lead
manager, mandated arranger, or mandated lead arranger. We
designate a lender as a participant if it is not the lead arranger.
We refer to lead arrangers as banks from now on, but we do not refer
to participants in this way. Following the literature, we exclude loans
made to financial companies (i.e., SIC codes between 6,000 and
6,999) as well as classified companies belonging to the Fama-French
12th industrial classification (i.e., others).b

The use of syndicated loan data allows us to explore the
activities of the financial intermediaries in the loan market. Our
loan data, with 52,685 facilities and 35,632 packages, comprises
a complex structure. After excluding banks with negative total
assets, the study sample is composed of banks listed in the
United States during the period 1990–2017.

3.2. Sample Characteristics
Table 2 summarizes the composition of the sample in terms of
diversification, centrality indices, and the control variables described
in Section 2.2. The correlation coefficients of the variables are
reported at the lead-arranger level. Our sample is consisted of
33,386 matched lead arranger-month sets drawn from U.S.
institutions heavily invested in the U.S. syndicated loan market.
Diversification (DIV) is highly correlated with the composite
centrality index (CCI) (0.62) in Table 2 and Figure 1. In terms of
multicollinearity, we control the effect of dummy variables related to
2008–2009 financial crisis in the centrality variables.

4. EMPIRICAL RESULTS

In this section, we first empirically explore the degree distribution
of the PMFG network in the U.S. syndicated loanmarket.We then
examine the ways in which network topology and investment
characteristics impact bank performance.We investigate the effect of

TABLE 2 | Pearson correlation of regression variables.

ROA Market size Market share Bank size DIV CCI DEGREE EIGEN BTWN CLOSE

ROA 1.00 −0.05 −0.12 −0.27 −0.04 0.02 -0.09 −0.09 0.02 −0.13
Market size 1.00 0.37 0.57 0.15 0.00 −0.07 −0.06 −0.02 0.03
Market share 1.00 0.38 0.08 0.57 0.45 0.57 0.36 0.63
Bank size 1.00 0.16 0.03 0.08 0.11 0.02 0.18
DIV 1.00 0.62 0.44 0.62 0.36 0.69
CCI 1.00 0.84 0.88 0.88 0.76
DEGREE 1.00 0.82 0.78 0.67
EIGEN 1.00 0.70 0.86
BTWN 1.0 0.56
CLOSE 1.0

This table presents correlation coefficient of two variables. The value in Table 2 has statistical significance (p < 0.01). ROA is defined as the net income divided by total assets. Market size is
defined as the natural logarithm of the sum of all outstanding loans. Market share is defined as the natural logarithm of the amount of loans extended by each bank. Bank size is defined by
natural logarithm of total assets of each bank. Diversification (DIV) is measured by the Shannon entropy of bank portfolio calculated as the amount of loans extended to ten industries by
each bank. Composite centrality index (CCI) is calculated by using principal component analysis of four centrality measures pertaining to the PMFG network, namely, degree centrality
(DEGREE), eigenvector centrality (EIGEN), betweenness centrality (BTWN), and closeness centrality (CLOSE).

FIGURE 1 | This figure is related to the syndicated loan market in the United
States from 1990 to 2017. (A) describes market size and the number of loans
extended by lead arrangers to borrowers every quarter. Market size is defined as
the sumof the loan amounts extended by each bank. The number of loans is
defined as the total number of loans extended during each quarter. (B) represents
the average loan size, which is the market size divided by the number of loans
during each quarter. Gray shadows represent recessions as measured as the
subprime morgage crisis periods during 2008-2009.

aThe lenders in our sample have at least $10 billion in outstanding loans or at least
50 outstanding loans, following [28].

bWe downloaded the 12 classification data at Fama-French website (http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/index.html).
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bank network centrality on bank performance because of the
importance of the bank-firm lending structure in terms of
information asymmetry. The structure of an interbank network
should affect bank performance. Interbank networks, which are
created by the degree of information asymmetry during the bank-
firm lending process, should affect the performance of lending
banks. A bank with a higher level of information asymmetry
might mimic the loan portfolio structure of a bank with a lower
level of information asymmetry to reduce this asymmetry and
generate profits. The systemic risk research has identified
network connectivity and centrality as channels that transmit
contagions related to negative events [1, 2, 5, 29]. This implies
that a highly interconnected structure can increase systemic risk.
Ultimately, increased connectivity and rapid propagation in bank-
to-bank networks can allow high-centrality banks to address market
instability. In summary, we expect that well-connected banks should
experience lower levels of information asymmetry than do poorly
connected banks and that they should also experience higher levels
of market performance.

4.1. The Analysis of Interbank Network
Since the amount of syndicated loans is related to exposure to
assets, a decline in asset prices should affect the stability of the
banking system. We analyze syndicated loans issued during each

quarter from 1990 to 2017. A visual inspection of the amount of
syndicated loans over time suggests that this figure reflects the state
of the financial market. Figure 1A shows the amount of syndicated
loans as a measure of overall banking loans and the number of
syndicated loans.Wemeasure the total amount of syndicated loans
in each quarter. First, we find that both the overall amount and the
number of syndicated loans follow a similar pattern. The total
amount of syndicated loans started to increase in 2003 and
continued to rise until Q4 of 2007, finally decreasing in 2009.
After the subprime crisis, these loans rapidly increased until 2012.
Second, the mean amount of syndicated loans is calculated as
follows: Mean (Loan) � Market size/number of loans. Figure 1A
shows a pattern similar to that of the results in Figure 1A.

The main goal of this paper is to conduct more rigorous tests
on the relationship between the interconnectivity of banks and
bank performance. To test the validity of our hypothesis, we
construct an interbank network using the PMFG method
developed by [17] based on loan portfolio data in Figure 2. In
January 2002 (2006), this interbank network for the normal
market status consisted of 513 (428) connections and 105 (88)
nodes. The interbank network during and after the financial
market crisis consisted of 423 (328) connections and 87 (68)
nodes in January 2008 (2010). If the loan portfolio of each bank
tended to have a distinct and unique investment strategy, then the

FIGURE 2 | PMFG network (A) 2002 (B) 2006 (C) 2008 (D) 2010. The nodes represent each bank, and the node size is determined by the corresponding bank’s
degree centrality. A node with a higher degree centrality is colored pink and one with a lower degree centrality is colored light green.
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interbank network would be disconnected, and each bank would
correspond to a random network. We construct interbank
networks for normal and abnormal periods based on the
banks’ loan portfolio structures to test whether the
characteristics of the network are related to the market status.
The obtained interbank network, shown in Figure 2 A–D,
displays the banks with higher connections between banks,
regardless of market status, suggesting that the syndicated loan
portfolios of banks are shared with other banks.

The degree (k) distribution of the interbank network indicates
that most of the banks are linked to a few other banks, whereas a
few banks with a large amount of capital are connected to many
individual banks. As shown in Figure 3, the degree distribution in
2006 (2010) follows the power-law distribution with an exponent
of 4.09 (4.1). Consistent with [30, 31]; Table 3 compiles the
results of the likelihood ratio test and includes judgments
supported by statistical methods for the power-law hypothesis
for each distribution over four years. We find that the degree

distributions follow a power-law when comparing to exponential,
stretched exponential, power law with cutoff, and log normal
distributions. The power-law exponents of degree distributions of
PMFG network are in the range 3.49 and 4.43. As a result, we
think that there are the influential banks with a lot of connections
in the interbank network.

The diversification of loan portfolios has important
implications of the role that banks’ investment strategies play
in the syndicated loan market. Is this loan portfolio strategy,
i.e., the diversification of syndicated loans at the industry level,
related to the interbank network? We estimate the correlation
between the diversification of portfolios and network structure to
test whether the investment strategy of a bank is related to the
other banks in the network. Figure 4 shows the correlation
between diversification and the degree of network centrality
for each year. Overall, there is a positive correlation between
diversification and degree of centrality, regardless of the
subperiod observed. In particular, the correlation value starts
to increase in 2002 and continues to rise until 2007 before the
subprime crisis; after this, it decreases in 2011, suggesting that the
correlation between the loan portfolio strategies of banks and the
centrality of the network connectivity among banks should be
understood as indicators of the financial crisis.

To observe the relationship between the degree of network
centrality and portfolio strategies, we divided the whole sample
into three groups according to centrality: G (high), G (middle),
and G (low). Figure 5 displays the distribution function of these
three groups using box plots and calculates the similarity of each
distribution function using the Kolmogorov-Smirnov test (K-S
test) [32]. The results are reported in Table 3. In addition, we
calculate the average diversification of the three groups over time.
Figure 6 shows the time evolution of the average diversification of
these three groups defined according to their degrees of network
centrality from January 1990 to December 2017. The
diversification of the three groups is calculated based on the
loan portfolios using the entropy method. The red circles, blue
diamonds, and black triangles indicate the high-, middle-,

FIGURE 3 | The CDF for the degree of the interbank network is plotted
with a double logarithmic scale. The cumulative distribution function for the
degree of network during four years (A) from 2006 to 2009 and (B) from 2010
to 2013, the Gaussian distribution, and the fitted line are denoted using
dotted blue lines, a black line, and dashed red lines, respectively.

FIGURE 4 | This figure shows the correlation between diversification
(DIV) and the degree of the PMFG network during the sample period of six
months. Gray shadows represent recessions as measured as the subprime
mortgage crisis periods during 2008-2009.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5819946

Oh and Park Lending Diversification and Interconnectedness

243

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and low-centrality groups, respectively. As shown in
Figure 6, we find that since 2004, the diversification levels
of low-centrality groups have moved more volatile than high-
centrality groups.

4.2. The Effect of Centrality and
Diversification on Bank Performance
To the extent that interbank networks in the United States have
heterogeneous characteristics, we suggest that the strategic
behaviors of banks and the central characteristics of banks
have impacts on performance. We focus on two properties of
banks: structural properties and strategic properties. We use the
four measures of centrality as structural properties in the PMFG
network. The relationships between lenders and borrowers are
likely to mitigate the problem of information asymmetry because
lending banks collect a considerable amount of information about
the corporate management of their borrowers and have stable and
long-term relationships with the managers of these organizations
[33]. Sometimes, banks place their directors on borrower’s boards
of directors to improve the quantity and quality of information
regarding operations that they receive [25]. We found that
capitalized banks tend to centralize their networks. Therefore,

we assume that banks with a high level of centrality in their
networks have the unique abilities of quickly obtaining resources
through the members of their network and of reducing the level of
information asymmetry between lenders and borrowers.

Based on our assumption, centralized banks would feel more
secure when expanding their business. In this context, we would
expect to see that these banks hold portfolios that are more
diverse. Diversification in the syndicated loan market creates the
potential advantage of reducing credit risk exposure [5]. Banks
becomemore resilient to common shocks such as exposure to risk
when holding diversified portfolios. We estimate the following
regression with pooled data:

ROAi,t � α + β1DIVi,t + β2Centralityi,t + β3Centralityi,t × Dummy
+ β4Marketsizet + β5Marketsharei,t + β6Banksizei,t + ei,t ,

(3)

where the dependent variable ROAi,t is a financial indicator of
profitability during month t DIVi,t measures the diversification
of bank i based on its syndicated loan portfolio during the
twelve months prior to month t and dummy as an indicator

FIGURE 5 | We divide banks into three groups: high, middle, and low-
centrality. The banks corresponding to the highest (lowest) 10% in terms of
degree centrality are designated as the core (peripheral) of banks in this paper.
The core banks have higher levels of diversification than middle and low-
centrality groups.

FIGURE 6 | Time series of diversification of three groups according to
their degree centrality. This figure shows the time series of the monthly
diversification of syndicated loan portfolios from January 1990 to December
2017. The diversification of the three groups is computed by using the
entropy method based on their loan portfolios. We divided sample into three
groups. The red circles, blue diamonds, and black triangles indicate the high,
middle, and low-centrality groups, respectively.

TABLE 3 | Comparisons of the fitted power-law behavior to alternatives.

Exponential Stretched exp Power law +
cutoff

Log-normal

Year Power law p Est. α LR p LR p LR p LR p

1990 0.43 4.23 2.32 0.02 1.03 0.30 4.44 0.00 −0.14 0.89
1994 0.34 4.43 2.74 0.01 1.22 0.22 5.85 0.00 −0.47 0.64
1998 0.10 3.76 4.29 0.00 0.87 0.06 8.60 0.00 −0.02 0.99
2002 0.02 3.57 2.41 0.02 1.74 0.08 5.77 0.00 0.29 0.77
2006 0.41 4.10 3.27 0.00 2.13 0.03 5.94 0.00 0.75 0.45
2010 0.30 4.11 1.86 0.06 1.36 0.17 4.85 0.00 −0.31 0.76
2014 0.22 3.49 1.50 0.13 1.17 0.24 4.49 0.00 0.05 0.96

We checked the power law test proposed by [30, 31] for the degree distribution of PMFG networks during four years. Statistically significant values are given in bold. Estimated α is the
power-law exponent of the degree distribution.
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variable as follow: Dummy is one if the observation is from
financial crisis period, otherwise 0. As a proxy for structural
importance in the PMFG network, centralityi,t is replaced by
four representative types of centrality: degree centrality,
eigenvector centrality, closeness centrality, and betweennes
centrality.

By including the variables market size, market share, and bank
size in this regression, we control for the systematic and
idiosyncratic effects that we cannot directly observe. Market
share is measured by the natural logarithm of the amount of
outstanding loans held by each bank [34]. use that as a proxy for a
lead arranger’s reputation in terms of market participants’
perceptions of its screening and monitoring of borrowers. We
control for market share to identify the effects of banks’
reputations. Market size is calculated as the natural logarithm
of the sum of the loan amounts of newly originated syndicated
loans in billions of United States. dollars. Controlling high
performance of bank with higher asset, bank size is estimated
by the natural logarithm of total assets of each bank. In all
regressions, we include market size and year fixed effects to
remove the time characteristics.

We report the results related to diversification and four
centrality measures of the interbank networks. In all models,
the regression coefficients of the measures of diversification
are statistically highly significant, and they indicate a
positive relationship (0.3970, p< 0.01; 22.2780, p< 0.01; 0.3078,
p< 0.01; 0.0853, p< 0.01) in Table 4. These findings are in line
with the results of the descriptive studies by [35]; which report
that product-diversified firms have high levels of performance
and innovation. There are simply too many results and
perspectives about the agency theory of diversification to
include them in this paper. Our results support the existing
evidence regarding diversification and profitability in terms of
lead arrangers’ loan portfolios. Each type of centrality represents a

different aspect of a bank’s structural position in the network.
These findings allow us to determine whether each type of centrality
is able to represent a factor of composite centrality index (CCI) in
Table 1. Overall, our results suggest that higher levels of the
individual dimensions of centrality based on loan portfolio
similarities are related to increases in the profitability of banks.

Next, we estabilish dummy variable with centrality indices to
exclude the financial crisis effect in 2008–2009. They are statistically
significant with negative coefficients of DEGREE ×
Dummy,EIGEN × Dummy,CLOSE × Dummy, BTWN × Dummy
(−1.1628, p < 0.01; −50.1001, p < 0.01; −0.8945, p < 0.01; −0.1878,
p < 0.01) in Table 4. As shown in columns 1–4 of Table 4, although
the dummy variable has a negative sign, the main effect for the
dimension of centrality and diversification is positive and significant.
It means that the impact of network centrality on performance is
negative during 2008–2009 financial crisis and positive during the
normal period. We then show the results of the regression using our
composite centrality index (CCI) through principal component

TABLE 4 | Dimensions of connectedness and likelihood of performance.

Variable (1) (2) (3) (4)

Intercept −7.2×1010 (−0.1475) −1.85×1011 (−0.3832) −1.1×1011 (−0.2178) −6.7×1010 (−0.1377)
DEGREE 0.3970*** (9.3934)
DEGREE × Dummy −1.1628*** (−9.1937)
EIGEN 22.2780*** (10.6610)
EIGEN × Dummy −50.1001*** (−10.2535)
CLOSE 0.3078*** (9.8138)
CLOSE × Dummy −0.8945*** (−10.9380)
BTWN 0.0853*** (8.7560)
BTWN × Dummy −0.1878*** (−5.1339)
DIV 0.0339*** (4.9161) 0.0196*** (2.7594) 0.0094 (1.2388) 0.0338*** (4.9143)
Market size 0.0920*** (4.8797) 0.0979*** (5.1879) 0.0927*** (4.9039) 0.085*** (4.5681)
Market share −0.0193*** (−7.8407) −0.0193*** (7.9123) −0.0167*** (−6.9458) −0.0180*** (−7.3890)
Bank size −0.0622*** (−29.1980) −0.0628*** (−29.5153) −0.0623*** (−29.3096) −0.0623*** (−29.2473)
Observations 33,289 33,289 33,289 33,289
Year FEs Yes Yes Yes Yes
Adj.R2 0.2256 0.2263 0.2244 0.2266

This table reports the regressions of four dimension of connectedness and diversification on ROA: degree centrality (DEGREE), eigenvector centrality (EIGEN), closeness centrality (CLOSE),
and betweenness centrality (BTWN). ROA is defined as the net income divided by total assets. Consistent with Section 2.2, the centrality indices of the banks aremeasured for each month.
Diversification (DIV) is measured by the Shannon entropy of bank portfolio calculated as the amount of the loans extended to ten industries by each bank. Market size is defined as the log of
the sum of all outstanding loans. Market share is defined as the log of the amount of loans extended by each bank. Bank size is definedby log of total assets of each bank. Year fixed effects are
included to account for time characteristics. The t-statistic is reported in brackets. The symbols *, **, and *** indicate statistical significance at 10%, 5%, and, 1%, respectively.

TABLE 5 | The relation of the diversification of the subsets of banks to degree
centrality.

High Middle Low

High 1 0.7906*** 0.5488***
(7.82E−51) (7.82E−51)

Middle 1 0.7072***
(7.70E−22)

Low 1

The table represents the Pearson correlation among the three groups of banks. We
construct two groups from the sample bank. One is the core as designated by High with
the highest 10% degree centrality and another is the peripheral as designated by Low
with the lowest 10% degree centrality. The other group of banks is the Middle in table. A
two-sample Kolmogorov-Smirnov test asymptotic significance value (2-tailed) is shown
in the bracket. (P <0.01) rejects the null hypothesis of the other population distributions.
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analysis, including degree centrality, eigenvector centrality, closeness
centrality, and betweenness centrality based on the results shown in
Table 4. The results of the regression including CCI are reported in
Table 1 using equation model 3. Consistent with the preceding
regressions, we use the dummy variable with CCI to remove the
recession trends. We find a negative and significant coefficient for
the CCI × Dummy(−0.0170, p < 0.01), whereas the coefficients of
CCI and DIV are positive and significant
(0.0084, p < 0.01; 0.0216; p < 0.01), consistent with the results in
Table 1. Together, these results suggest that overall centrality
consistently moderates the increase in a bank’s profitability when
it holds a diversified portfolio.

4.3. The Effect of Diversification on Bank
Performance According to the Level of
Centrality
In this section, we examine the different ways in which the
structural importance of the PMFG network affects bank’s
strategic actions. We also consider the way in which the
relationship between strategic actions and relative
profitability identified in the full sample may vary based on
banks’ degree of centrality. Several papers have highlighted the
likelihood that board interlocking between banks has more
power and information in the market when they reduce
financial risk [22, 34, 36, 37]. Because the importance of
each bank in the network is not homogeneous, we group the
banks by their degrees centrality into groups consisting of core
banks and of peripheral banks. We designated the upper
(lower) 10% of banks in terms of degree centrality as high
(low) groups to define the cores and peripheral in the PMFG
network. Table 5 represents the Pearson correlation of
diversification between each subset of banks. The high- and
middle-centrality groups have positive correlations (0.7906),
and the low-centrality groups also have positive correlations
with the other groups (0.5488, 0.7072). Additionally, we
investigate a two-sample Kolmogorov-Smirnov test to assess
the distribution of the two samples in brackets. This test implies
a heterogeneous distribution of diversification among the three
groups of banks. As a result, we conclude that the three groups
classified by degree centrality could have investment strategies
with differing characteristics. Our interpretation is consistent

with the results in Figure 5 and Figure 6. Specifically, we run
the following regression on two sets of banks; core and
peripheral.

ROAi,t � α + β1DIVi,t + β2Marketsizet + β3Marketsharei,t
+ β4Banksizei,t + ei,t ,

(4)

Table 6 shows the results of the linear regressions regarding
bank diversification using the same explanatory variables we
used for the subset of banks. These results indicate that core
banks could obtain better private information than peripheral
banks. This result is consistent with the study of [14]; who
insist that concentrated lenders had higher profits than
diversified lenders during the financial crisis. Additionally
[38], find that the diversification of bank assets is not
guaranteed to produce superior return performances or
greater safety for banks. These findings are different from
the comprehensive perspectives of the market power view and
the resource view in terms of profit maximization. Note,
however, that these studies do not control for network
centrality. Consistent with the systemic risk literature [5],
we consider core banks to have high levels of risk exposure,
and concentrated lenders have high levels of performance
during our sample periods (−0.0635, p< 0.1). As shown in
column 2 of Table 6, the group composed of peripheral
banks has a statistically significant positive effect on
performance (0.0651, p< 0.01). This means that the subsets
of banks in the interbank network reflect the different risk
cultures among banks.

5. CONCLUSION

Banks that are centrally located in a syndicated loan network
have access to better information and more influence in the
syndicated loan market. Adding to the previous studies on the
role of network centrality among banks, we employ a network
centrality measure to test the connection between bank
performance and network structure. In terms of the
diversification of loan portfolios, we show that banks with
higher levels of network centrality are more likely to pursue
diversification, and that this diversification is more likely to

TABLE 6 | The effect of diversification on the bank performance of core and peripheral banks.

Variables Core Peripheral

Intercept −1.1×1012 (−0.5745) −2.1×1012 (01175)
DIV −0.0635* (−1.7079) 00,651*** (52336)
Market size 00735 (13409) 01548*** (40456)
Market share 00372** (37565) −0.0380*** (−8.1899)
Bank size −0.1200*** (−15.6491) −0.0650*** (−14.8352)
Observations 4,241 7,330
Year FEs Yes Yes
Adj. R2 02315 02427

We investigate the effect of diversification on ROA for (1) the core of banks and (2) peripheral of banks. ROA is defined as net income divided by total assets. Diversification (DIV) is measured
by the Shannon entropy of bank portfolio calculated as the amount of loans extended to ten industries by each bank. The control variable is consistent with Eq. 3. Year fixed effects are
included to account for time characteristics. The t-statistic is reported in brackets. The symbols *, **, and *** indicate statistical significance at 10%, 5%, and, 1%, respectively.
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increase during periods of market instability. The evidence
shows that sample banks’ lending strategies exhibited a
significant relationship with these banks’ degrees of network
centrality, regardless of the market status. We further find that
banks with a high level of centrality have higher returns than
banks with a low level of centrality. We then test whether the
diversification of the syndicated loan portfolios of individual
banks is related to the performance of these banks according to
their centrality position in the interbank network. Since a
bank’s centrality in the network plays an important role in
its loan portfolio strategy, this centrality also plays a significant
role for lending market participants. We found that in the core
group, diversification showed a negative correlation with
centrality; however, a positive relation was observed in the
peripheral group.

We contribute to the literature on the bank-firm lending
process in the field of finance by introducing the interbank
network based on the syndicated loan market. Our findings
extend the existing literature on the lending mechanisms
between banks and firms and show that banks’ centrality
within the interbank network influences their portfolios in

the syndicated loan market. Future studies can help to shed
light on bank performance and lending mechanisms.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work has been supported by NRF (National Research
Foundation of Korea) Grant funded by the Korean
Government (NRF-2017R1A2B4009349).

REFERENCES

1. Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G. Debtrank: too central
to fail? financial networks, the fed and systemic risk. Sci Rep (2012) 2:541.
doi:10.1038/srep00541

2. Demirer M, Diebold FX, Liu L, Yilmaz K. Estimating global bank network
connectedness. J Appl Econom (2018) 33:1–15. doi:10.1002/jae.2585

3. Corsi F, Lillo F, Pirino D, Trapin L. Measuring the propagation of financial
distress with granger-causality tail risk networks. J Financ Stabil (2018) 38:
18–36. doi:10.1016/j.jfs.2018.06.003

4. Acharya VV, Pedersen LH, Philippon T, Richardson M. Measuring systemic
risk. Rev Financ Stud (2017) 30:2–47. doi:10.1093/rfs/hhw088

5. Cai J, Eidam F, Saunders A, Steffen S. Syndication, interconnectedness, and
systemic risk. J Financ Stabil (2018) 34:105–20. doi:10.1016/j.jfs.2017.12.005

6. Ivashina V, Scharfstein D. Bank lending during the financial crisis of 2008.
J Financ Econ (2010) 97:319–38. doi:10.2139/ssrn.1297337

7. Fahlenbrach R, Prilmeier R, Stulz RM. This time is the same: using bank
performance in 1998 to explain bank performance during the recent financial
crisis. J Finance (2012) 67:2139–85. doi:10.3386/w17038

8. Rajpal H, Rosas F, Jensen HJ. Tangled worldview model of opinion dynamics.
Frontiers in Physics (2019) 7:163. doi:10.3389/fphy.2019.00163

9. Tomassini M, Antonioni A. Public goods games on coevolving social network
models. FrP (2020) 8:58. doi:10.1063/1.4991679

10. Wen S, Tan Y, Li M, Deng Y, Huang C. Analysis of global remittance based on
complex networks. Front Phys (2020) 8:85. doi:10.3389/fphy.2020.00085

11. Acemoglu D, Carvalho VM, Ozdaglar A, Tahbaz-Salehi A. The network
origins of aggregate fluctuations. Econometrica (2012) 80:1977–2016.
doi:10.3982/ECTA9623

12. Shleifer A, Vishny R. Fire sales in finance andmacroeconomics. J Econ Perspect
(2011) 25:29–48. doi:10.1257/jep.25.1.29

13. Cont R, Moussa A, Santos EB. (2010). Network structure and systemic risk in
banking systems. Available at SSRN: https://ssrn.com/abstract�1733528
(Accessed December 1 2010).

14. Loutskina E, Strahan PE. Informed and uninformed investment in housing: the
downside of diversification. Rev Financ Stud (2011) 24:1447–80. doi:10.1093/
rfs/hhq142

15. Matvos G, Seru A, Silva RC. Financial market frictions and diversification.
J Financ Econ (2018) 127:21–50. doi:10.1016/j.jfineco.2017.09.006

16. Blau P. Exchange and power in social life (Routledge). London and New York:
Taylor & Francis (2017). p. 372.

17. Tumminello M, Aste T, Di Matteo T, Mantegna RN. A tool for filtering
information in complex systems. Proc Natl Acad Sci USA (2005) 102:10421–6.
doi:10.1073/pnas.0500298102

18. Onnela J-P, Kaski K, Kertész J. Clustering and information in correlation based
financial networks. Eur Phys J B (2004) 38:353–62. doi:10.1140/epjb/e2004-00128-7

19. Chi KT, Liu J, Lau FC. A network perspective of the stock market. J Empir
Finance (2010) 17:659–67. doi:10.1016/j.jempfin.2010.04.008

20. Onnela JP, Chakraborti A, Kaski K, Kertész J, Kanto A. Dynamics of market
correlations: taxonomy and portfolio analysis. Phys Rev E–Stat Nonlinear Soft
Matter Phys (2003) 68, 056110. doi:10.1103/PhysRevE.68.056110

21. Shannon CE. A mathematical theory of communication. Bell Sys Tech J (1948)
27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

22. Newman ME. The structure and function of complex networks. SIAM Review
(2003) 45:167–256. doi:10.1137/S003614450342480

23. Wasserman S, Faust K. Social network analysis: methods and applications, Vol. 8.
Cambridge, United Kingdom: Cambridge University Press (1994) p. 825.

24. Omer TC, Shelley MK, Tice FM. Do well-connected directors affect firm
value?. J Appl Finance (2014) 24:17–32. doi:10.2139/ssrn.2167354

25. Omer TC, Shelley MK, Tice FM. Do director networks matter for financial
reporting quality? Evidence from audit committee connectedness and
restatements. Manag Sci (2019) 66:3361–88. doi:10.1287/mnsc.2019.3331

26. Larcker DF, So EC, Wang CC. Boardroom centrality and firm performance.
J Account Econ (2013) 55:225–50. doi:10.1016/j.jbankfin.2018.11.002

27. Chava S, Roberts MR. How does financing impact investment? the role of debt
covenants. J Finance (2008) 63:2085–121. doi:10.1111/j.1540-6261.2008.01391.x

28. Schwert M. Bank capital and lending relationships. J Finance (2018) 73:
787–830. doi:10.1111/jofi.12604

29. Elliott M, Golub B, Jackson MO. Financial networks and contagion. Am Econ
Rev (2014) 104:3115–53. 10.1257/aer.104.10.3115

30. Clauset A, Shalizi CR, NewmanME. Power-law distributions in empirical data.
SIAM Review (2009) 51:661–703. doi:10.1137/070710111

31. Virkar Y, Clauset A. Power-law distributions in binned empirical data. Ann
Appl Stat (2014) 89–119. doi:10.1214/13-AOAS710

32. Chakravarti I, Laha R, Roy J. Kolmogorov-smirnov (ks) test. Handbook
Methods Appli Statis (1967) 1:392–4.

33. Sufi A. Information asymmetry and financing arrangements: evidence from
syndicated loans. J Finance (2007) 62:629–68. doi:10.1111/j.1540-6261.2007.
01219.x

34. Gopalan R, Nanda V, Yerramilli V. Does poor performance damage the
reputation of financial intermediaries? Evidence from the loan syndication
market. J Finance (2011) 66:2083–120. 10.2307/41305185

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 58199410

Oh and Park Lending Diversification and Interconnectedness

247

https://doi.org/10.1038/srep00541
https://doi.org/10.1002/jae.2585
https://doi.org/10.1016/j.jfs.2018.06.003
https://doi.org/10.1093/rfs/hhw088
https://doi.org/10.1016/j.jfs.2017.12.005
https://doi.org/10.2139/ssrn.1297337
https://doi.org/10.3386/w17038
https://doi.org/10.3389/fphy.2019.00163
https://doi.org/10.1063/1.4991679
https://doi.org/10.3389/fphy.2020.00085
https://doi.org/10.3982/ECTA9623
https://doi.org/10.1257/jep.25.1.29
https://ssrn.com/abstract=1733528
https://ssrn.com/abstract=1733528
https://doi.org/10.1093/rfs/hhq142
https://doi.org/10.1093/rfs/hhq142
https://doi.org/10.1016/j.jfineco.2017.09.006
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1140/epjb/e2004-00128-7
https://doi.org/10.1016/j.jempfin.2010.04.008
https://doi.org/10.1103/PhysRevE.68.056110
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1137/S003614450342480
https://doi.org/10.2139/ssrn.2167354
https://doi.org/10.1287/mnsc.2019.3331
https://doi.org/10.1016/j.jbankfin.2018.11.002
https://doi.org/10.1111/j.1540-6261.2008.01391.x
https://doi.org/10.1111/jofi.12604
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1257%2Faer.104.10.3115
https://doi.org/10.1137/070710111
https://doi.org/10.1214/13-AOAS710
https://doi.org/10.1111/j.1540-6261.2007.01219.x
https://doi.org/10.1111/j.1540-6261.2007.01219.x
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.2307%2F41305185
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


35. Hitt MA, Hoskisson RE, Kim H. International diversification: effects on
innovation and firm performance in product-diversified firms. Acad Manag
J (1997) 40:767–98. doi:10.5465/256948

36. Mariolis P. Interlocking directorates and control of corporations: the theory of
bank control. Soc Sci Q (1975) 425–39.

37. Berger AN, Kick T, Schaeck K. Executive board composition and bank risk
taking. J Corp Finance (2014) 28:48–65. doi:10.1016/j.jcorpfin.2013.11.
006

38. Acharya VV, Hasan I, Saunders A. Should banks be diversified? evidence
from individual bank loan portfolios. J Bus (2006) 79:1355–412. doi:10.
2139/ssrn.293295

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Oh and Park. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 58199411

Oh and Park Lending Diversification and Interconnectedness

248

https://doi.org/10.5465/256948
https://doi.org/10.1016/j.jcorpfin.2013.11.006
https://doi.org/10.1016/j.jcorpfin.2013.11.006
https://doi.org/10.2139/ssrn.293295
https://doi.org/10.2139/ssrn.293295
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Analysis of the Global Banking
Network by Random Matrix Theory
Ali Namaki1,2*, Reza Raei 1,2, Jamshid Ardalankia3,4, Leila Hedayatifar4,5, Ali Hosseiny6,
Emmanuel Haven7,8 and G. Reza Jafari 6*

1Department of Finance, University of Tehran, Tehran, Iran, 2Iran Finance Association, Tehran, Iran, 3Department of Financial
Management, Shahid Beheshti University, Tehran, Iran, 4Center for Complex Networks and Social Datascience, Department of
Physics, Shahid Beheshti University, Tehran, Iran, 5New England Complex Systems Institute, Cambridge, MA, United States,
6Department of Physics, Shahid Beheshti University, Tehran, Iran, 7Faculty of Business Administration, Memorial University, St.
John’s, NL, Canada, 8IQSCS, Leicester, United Kingdom

Since the financial crisis of 2008, the network analysis of financial systems has attracted a
lot of attention. In this paper, we analyze the global banking network via the method of
Random Matrix Theory. By applying that method on a cross border lending network, it is
shown that while the connectivity between different parts of the network has risen and the
profile of transactions has diversified, the role of hubs remains important in the weighted
perspective. The largest eigenvalue of the transaction matrix as the leading mode of the
system shows sharp growth since 2002. As well, it is observed that its growth has
diminished since 2008. This indicates that the crisis of 2008 has left a long-lasting footprint
on the financial system. Analyzing the mean value of the participation ratio reveals the fact
that the role of countries in forming small modes, has increased since 2002. In our final
analysis, we provide snapshots of the hubs in the network over time. We observe that the
share of countries in total transactions is not equal to their share in shaping the eigenvector
of the largest eigenvalue. In 2018 for example, while the United Kingdom leads the share of
transactions, it is the United States that has the largest value in the leading eigenvector. The
proposed technique in the paper can be useful for analyzing different types of interaction
networks between countries.

Keywords: global banking network, complex systems, random matrix theory, financial contagion, collective
behavior

1 INTRODUCTION

Since the recent global financial crisis, cross-border lending and financial contagions have gained in
importance. The propagated effects [1, 2] of financial crises on political and economic systems [3, 4]
are not to be underestimated. Those developments have prompted a lot of research on the systemic
dependence of the international banking sector [5–13].

The field of complexity can aid in understanding better such systemic dependence [5, 14–22].
Complex networks are useful instruments for describing a large number of financial systems
[23–31].

Most of the networks have different topological properties such as small-world and scale-free
characteristics [24–26, 32–39].

The purpose of complexity science in finance focusses on the analysis of the structure and the
dynamics of entangled systems.
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Many scholars have applied complexity techniques for the
analysis of financial contagion [6, 9, 10, 40–42].

Their findings suggested that the connectivity of financial
institutions is the source of potential contagions.

For example, Glasserman and Young [40] reviewed the
extensive literature on the network’s structures and their
interactions with other key variables such as leverage, size, and
short-term funding. They emphasized that the network
connections expand the firms’ risk exposures, and through
different routes, the shocks can be proliferated via contagion.

Random Matrix Theory is one of the useful methods for
analyzing the behavior of complex systems [16, 43–54].

This theory was developed to describe the energy levels of
quantum systems [55, 56].

It is the universality regime of the eigenvalue statistics which
provides for the success factor of Random Matrix Theory
[57–59]. Based on previous studies, it is shown that when the
size of the matrix is very large, the eigenvalue distribution tends
toward a specific distribution [59].

Random Matrix Theory has been applied to analyze the
behavior of coupling matrices [16]. This technique divides the
contents of the coupling matrix into noise and information parts.
The noise part of the coupling matrix conforms to the Random
Matrix Theory findings, and the information part deviates from
them. This concept stems from the idea of solving the problem of
non-stationary cross-correlation and measurement noise which
result from market conditions and the finite length of time series
[57, 59].

A system which can be analyzed by the complexity approach is
the global banking network [60].

Minoiu and Reyes [60] have analyzed the global banking
network from 1978 to 2009. They have applied network
metrics such as centrality, connectivity, and clustering for
analyzing financial interconnectedness. They have shown that
during and after systemic banking crises (and sovereign debt
crises), the connectivity drops. Also, it was shown that the
2008–2009 financial crisis provided for an unusually large
perturbation to the global banking network. For more research
on this, please see [61–69].

In this paper, by applying Random Matrix Theory on
bilateral locational statistics data provided by the Bank for
International Settlements (BIS) [70] from 1978 until 2019, we
aim to analyze the global banking network. This data includes all
‘core’ countries (the qualifier ‘core’ is used by many researchers
such as [60], for countries which regularly report their financial
data to BIS).

Our paper is organized as follows. In Section 2 we present our
methods and, in Section 3 we apply Random Matrix Theory on
the global banking network and present our findings. Then, in
Section 4 we conclude.

2 METHODS

Random Matrix Theory has been presented by some scholars in
nuclear physics such as Mehta [55, 56], for analyzing the energy
levels of complex quantum systems. Subsequently, the method

has helped to address specific issues in other fields, such as finance
[45, 57–59, 71, 72].

From random matrix theory, we know that the eigenvalues–in
the real matrix–which deviate from the range of the
eigenvalues–in the random matrix–possess relatively more
complete information from the system [51, 58, 59]. It can be
shown that the majority of the eigenvalues of coupling matrices,
agree with the random matrix predictions, but the largest
eigenvalue has deviations from those estimations [50, 57, 58,
73]. In essence, this eigenvalue develops an energy gap that
separates it from the other eigenvalues [45]. The largest
eigenvalue is related to a strongly delocalized eigenvector that
represents the collective evolution of the system. This is called
market mode. From this perspective, the largest eigenvalue’s
magnitude reflects the coupling strength of the system [45].

In RandomMatrix Theory, there is a parameter named Inverse
Participation Ratio IPR [74]. Its inverse provides a measure for
the number of components which significantly participate in each
eigenvector. This notion shows the effect of components of each
eigenvector and specifically indicates how the largest eigenvalues
deviate from the bulk region which is densely occupied by
eigenvalues of the random matrix. Based on previous papers
[45, 75], IPR can be applied as an indicator for measuring the
collective behavior of the networks. The formula of this concept is
as follows:

IPR(k) � ∑n
l�1

(uk
l )4; (1)

where l � 1, . . . , n and ukl is the l
th element of the kth eigenvector

(lk). To further clarify the concept, one may consider examples
below:

i. In case all elements of a certain eigenvector are equal to
1/

��
N

√
, IPR will be equal to 1/N . This implies that whole

elements are significantly influential on the systems’
behavior.

ii. On the other hand, if just a single element is equal to one and
the others are equal to 0, IPR would be equal to 1. This
implies that only this component is effective in the
corresponding eigenvector. Hence, one can perceive that
IPR clarifies the number of influential elements in a
certain eigenvector.

3 ANALYSIS OF GLOBAL BANKING
NETWORK BY RANDOM MATRIX THEORY

The banking industry is one of the most important sectors in
finance. Given this importance, it is not surprising that a
significant aspect of financial contagion shows that the
banking network is the conduit, through which the emergence
and transmission of crises occurs. In this paper, we create a
weighted and directed financial transaction network
corresponding to each quarter from 1978 until 2018. Each link
corresponds to a loan given by a certain country to another one.
Previous studies have shed light on a country’s dependency
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FIGURE 1 | The evolution of the global banking network is demonstrated for three snapshots of 1978-Q3, 1998-Q3, and 2018-Q3. Left) shows the dendrogram
structure of communities for trading weighted matrices. Right) the network topology is graphed. The size of each node represents the degree.
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network and they showed an increase, over time, of the
dependency structure of the network [7, 60].

In Figure 1, the evolution of the global banking network in
three snapshots (1978-Q3, 1998-Q3, and 2018-Q3) has been
depicted. The left panel in Figure 1 shows the dendrogram
structure of communities for trading weighted matrices.
Furthermore, the right panel shows the evolution, over time,
of the network topology and the size of nodes stands for the

degree. As depicted, not only the size of the network has grown
but also transactions have become more diversified. It is obvious
that, over time, the degree of all countries has grown and has
become more homogeneous. If the size of degrees is considered,
a few countries can be distinguished as hubs, and this will be

FIGURE 2 | Temporal evolution of: (Left) the degree, and (Right) the volume of each country over time. The sorting order of countries is based on the average of the
last 10-year period.

FIGURE 3 | The evolution of the largest eigenvalue, λmax , of the global
banking network and its shuffled, λshmax , are depicted.

FIGURE 4 | The average of the Inverse participation ratio of all
eigenvectors 〈IPR〉 and IPRλmax has been depicted. The decline of the 〈IPR〉
implies that the contribution of countries in all modes has been increased
which can be a consequence of the growth of the connectivity in the
banking network.
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discussed later in the paper. For the continuous monitoring of
networks during the period of study, Figure 2 is plotted. The
results show the same outcomes as Figure 1. The left panel of
Figure 2 represents the evolution of the degree for each country
over time. As can be seen at the beginning of the period, only a
small portion of countries has a high degree. But over time, both
the degree across more countries and the average degree rise. It
means that the sparseness has declined and connectivity has
risen. The right panel of Figure 2 shows this fact, i.e., that only a
small number of countries are in charge of a big portion of
transactions.

To move further into our analysis, we now apply random
matrix techniques. The global banking network possesses an
adjacency matrix. In randommatrix theory, we have learned that
the largest eigenvalue is important and addresses the global trend
of a system [45, 57, 58, 76]. In Figure 3 we have depicted the
evolution of the largest eigenvalue (λmax) overtime. As can be
seen, λmax has grown significantly before the financial crisis of
2008. To figure out whether the growth of the eigenvalue is a
mere consequence of either the growth of the transaction or the
change of the structure of the network, we have compared the
growth of the λmax of the original matrix with λmax of the shuffled
network. If the growth of the largest eigenvalue is a consequence
of the growth of transactions, then we expect that its value will be

close to its counterpart in the shuffled network. In the shuffling
technique, we rewire the network. We do so as follows. Pairs of
links are chosen randomly and their values are exchanged. Over
the course of such a process, the information concerning the
structure of the network is lost. All remains are the size of the
network and the profile of transactions.

The difference between λmax of the network itself and its
shuffled counterpart, implies the existence of information
content which is embedded in the largest eigenvalue of the
banking interaction matrix. This will be discussed further
below. The fast growth of the λmax of the shuffled network
from 2002 to 2004, is the consequence of the fast pace of
transaction volumes.

The fact that the largest eigenvalues of both the banking
network and the shuffled network, have lost their growth
trends after 2008, means that the financial crisis has left a
long-lasting footprint on the network. Since the obtained
eigenvalue does not describe all the details and properties of
the collective behavior, one should investigate other quantities in
the network.

As already discussed in the method section, one should keep in
mind that the IPR possesses the ability of information extraction
from the collective the behavior of systems. Figure 4 represents
the evolution of the 〈IPR〉 and IPRλmax . In this context, by

FIGURE 5 | The percentage of the participation of each country in the eigenvector of λmax vs. the percentage of the transaction of each country from the total
transaction (%volumej/∑N

i Volumei). (Note: Countries possessing more than 5% of total volume are annotated by name.)
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focusing on the mean inverse participation ratio of all
eigenvectors, 〈IPR〉, and also, the inverse participation ratio of
the largest eigenvalue corresponding to the largest eigenvector, we
investigate banking behaviors of countries and their influences on
the network structure and the market trend.

In a network of size N, IPR could have a value within
[1/N − 1]. Values close to the lower end will imply that
almost all nodes play a role in the leading mode. Values close
to one, indicate that a few nodes play an important role in shaping
the eigenvector. As can be seen, for the largest eigenvalue, IPR has
kept a value much higher than its possible minimum, i.e., 1/N .
This means that a few countries lead the network. Disparities
have been even stronger in small modes in the early years of the
studied period. However, from 2002 to 2004, following the fast
growth of global transactions, the average of IPR of all modes, has
tended to the IPR of the largest mode. This means that the
participation of countries in shaping the small modes has grown.

The sustainability of the relatively high rate of IPR in the largest
eigenvalue leads us to investigate the share of countries in shaping
its eigenvector. We expect the countries which have a higher share
of transactions, to play a more important role in shaping the trend
of the system embedded in this eigenvector. Figure 5 visualizes the
contribution of countries in the structure of the leading mode vs.
their contribution to trading volume in five snapshots since 1978. A
couple of interesting results can be inferred from the figure.

In all snapshots, the share of hubs in the leading mode has
been higher than their share in transactions. For example, in 1978
while the share of the United Kingdom in total transactions has
been 21.5 percent, its share in the leading eigenvector has been
31.73 percent. Hence, this means that the role of the
United Kingdom in shaping the leading eigenvalue has been
larger than its share in total transactions. The same scenario
works for other hubs such as France and the United States.

The interesting observation of 1988 is that, while the
United Kingdom holds the lead in the share of transactions,
Japan has the largest component of the leading eigenvector. On
the eve of the economic downturn, Japan has not repeated its
leading role in any other snapshots.

Within the last 2 decades, the United States has become closer
to the United Kingdom in shaping the eigenvector of the largest
eigenvalue. However, for both countries, their share in the largest
eigenvalue is bigger than their share in the total transactions. Such
an effect could be a matter of the country’s role in the structure of
the leading mode in the network.

4 CONCLUSION

In this paper, by applying Random Matrix Theory, the global
banking network is analyzed. For this purpose, we consider the
matrix of the interaction of the banking sectors of BIS
countries. We first focus on the largest eigenvalue which
defines the leading mode in a system. We observe that the
largest eigenvalue grows over time. By making a comparison
with the largest eigenvalue of the network itself and the shuffled
network, we conclude that the growth of the largest eigenvalue
originates from two sources. The first source is the growth of
the transaction volume and the other source is the network
structure. We observe that the growth of the largest eigenvalue
has vanished after 2008.

By focusing on the temporal behavior of the IPR of the largest
eigenvalue, we observe that it has kept a sustainable value far above
its possible minimum. This emphasizes the role of a few countries
as hubs in the system. In comparison, the mean value of the IPR of
all eigenvectors has declined sharply after 2002. This leads us to
conclude, that the contribution of countries to shape small modes
and possibly local structures, has grown. This phenomenon has
occurred in tandem with the fast growth of transactions from 2002
to 2004. In comparing the share of countries in total transactions
with their share in the leading mode, we observe that usually the
share of the leading countries in shaping themarket mode, is larger
than their share in total transactions.

In this work, we analyzed the network of the international
banking system. Our work sheds light on some features of this
network.We suggest future research where financial networks are
studied along with other variables such as commercial
interactions in a multi-layer scheme.
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Community Detection of Dynamic
Complex Networks in Stock Markets
Using Hybrid Methods (RMT-CN-
LPAm+ and RMT-BDM-SA)
Acep Purqon* and Jamaludin

Physics of Earth and Complex Systems, Institute of Technology Bandung, Bandung, Indonesia

A stock market represents a large number of interacting elements, leading to complex
hidden interactions. It is very challenging to find a useful method to detect the detailed
dynamical complex networks involved in the interactions. For this reason, we propose
two hybrid methods called RMT-CN-LPAm+ and RMT-BDM-SA (RMT, random
matrix theory; CN, complex network; LPAm+, advanced label propagation
algorithm; BDM, block diagonal matrix; SA, simulated annealing). In this study, we
investigated group mapping in the S&P 500 stock market using these two hybrid
methods. Our results showed the good performance of the proposed methods, with
both the methods demonstrating their own benefits and strong points. For example,
RMT-CN-LPAm+ successfully identified six groups comprising 485 involved nodes
and 17 isolated nodes, with a maximum modularity of 0.62 (identified more groups
and displayed more maximum modularity). Meanwhile, RMT-BDM-SA provided
useful detailed information through the decomposition of matrix C into Cm
(market-wide), Cg (group), and Cr (noise). Both hybrid methods successfully
performed very detailed community detection of dynamic complex networks in the
stock market.

Keywords: randommatrix theory, complex networks, advanced label propagation algorithm, block diagonal matrix,
simulated annealing, hybrid methods

1. INTRODUCTION

Physics is the study of the structure and dynamics of various systems that exist in nature. In its
current form, the scope of the subject encompasses not only physical systems, but all complex
systems. A complex system is one that comprises parts or agents interacting with each other to
produce a new macroscopic collective behavior without a central control [1]. Such systems are easily
observed in econophysics and social physics (sociophysics).

An example of a complex system in the field of econophysics is the financial market, especially the
stock market. It has numerous investors and companies interacting with each other, exchanging
assets in their possession to determine the best price for each of them. In general, there are several
scientific reasons for physicists to be interested in learning the dynamics that underlie the stock
market system [1].
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In physical systems, the basis for each agents interactions
with another in the system is known; for example, the
electrostatic system, where the interaction between charges is
based on Coulomb forces. However, in the stock market, the
mechanisms underlying the interactions between each agent are
not yet clearly known [2]. A starting point for the study of stock
markets can be the analysis of the correlation between stocks. A
review of the relations between agents in the system is the easiest
way to determine the linearity of such relationships in the
system without the need to know their underlying cause.
From this efficient market hypothesis, it follows that all
agents in the stock market get information simultaneously,
and every time the information enters the stock market, the
stocks respond with changes in the price of the shares so that the
share prices reflect the current market conditions. Therefore,
the correlation between the stocks can be seen from fluctuations
in the share prices.

Recently, a few excellent studies have been published on
community detection based on local information and dynamic
expansion [3]; the application of random matrix theories, and
graphs or networks [4, 5]. Because each method has its strong
points and weaknesses, we propose to combine the strong points
and reduce the limitations or the weak points and use a
combination of these methods for finding the correlations
between agents in the stock market system. For example,
group mapping involves two different approaches: advanced
label propagation algorithm (LPAm+) and simulated annealing
(SA). Both methods have limitations, as shown in a few studies.
Our objective was to combine LPAm+ with a complex network
(CN) and SA with a block diagonal matrix (BDM) for improved
effectiveness. LPAm+with CN determines the group of each node
based on the most frequent label of their neighbor. Meanwhile,
SA with BDM provides the dual benefit of constructing a block
diagonal matrix and finding a global minimum, showing an
annealing concept similar to that seen while constructing a
crystal. However, the correlations still contain noise and need
to be preprocessed using an efficient method. One of the eligible
candidates to clean the stock data and remove noise is the random
matrix theory (RMT).

As stock market conditions change all the time, the
correlations among shares also change. Therefore, the
correlations contained in the stock market do not fully
describe the relationship between actual stocks. This implies
the possibility of noise in the correlation between stocks [6].
In this study, we investigated a method for separating noise from
data that contain real information using RMT. The main concept
behind RMT is a comparison of the distribution of eigenvalues
and eigenvectors in the correlation matrix data owned by a
random correlation matrix. Any part of the data that does not
display the characteristics of a random correlation matrix is the
part that actually contains the real information (non-noise) of the
stock market system; vice versa, if any part of the data displays
characteristics similar to a random correlation matrix, it is noise.

An analysis of the eigenvalues and eigenvectors of the stock
matrix correlation structure has shown that a few of the largest
eigenvector components are localized; for example, components
with the greatest contribution to each eigenvector are found in the

same sector [2]. However, these results are not sufficiently
significant to be adopted as a method for analyzing groups in
the stock market because each eigenvector is not independent of
each other (a few sectors overlap in one eigenvector). Moreover,
during the analysis of eigenvector components, only a few vector
components were observed to have the greatest contribution [7].
Therefore, in this study, another approach was used to analyze the
stock market groups and a few candidates were found. We used a
CN as the first approach and a BDM as the second.

In the CN approach, each share in the stock market is seen
as a node, and the correlation between the shares is analogous
to the connecting side between the nodes. To form a stock
market network, the LPAm+ method is used, which
determines the group (community) label of a node based on
the majority of its neighbor labels; nodes with the same label
are considered to be in the same group or community.
Conversely, in the BDM approach, the stock correlation
matrix is converted to a BDM, where each block represents
a group in the stock market; the method is chosen to create the
BDM as an SA algorithm, which mimics the annealing process
in crystal formation. The data used in the study were the daily
closing price of the shares listed on the S&P 500 from January
1, 2007 to October 28, 2016.

Our purpose was to: 1) generate a correlation filtering data
filtering program using the RMT method; 2) develop a program
for mapping the groups in the stockmarket using the LPAm+ and
SA algorithms, and 3) compare the results of the mapped groups
in the stock market by employing the CN approach using LPAm+
(namely RMT-CN-LPAm+) and the BDM approach using the SA
algorithm (namely RMT-BDM-SA).

2. METHODS

2.1. Random Matrix Theory
The application of RMT assumes a matrix whose elements are
random or not bound to one another. A random matrix has zero
average value and one variance [8]. RMT was first introduced by
Wigner to explain energy-level statistics in complex quantum
systems.Wigner created a matrix model with random elements to
explain the Hamiltonian mechanics of a heavy nucleus that fit the
experimental results [9]. In complex quantum systems, RMT
predictions can explain all the possibilities that can occur in
system [10]; in subsequent developments, it was concluded that
parts incompatible with RMT predictions can provide clues about
the interactions that underlie the system [8].

In the late 1990s, Laloux et al. and Pelrou et al. applied RMT to
correlation data based on changes in stock prices on the
American stock markets [6]. Subsequently, several physicists
tried to apply RMT to different stock markets. The results
showed similarity to the extent that RMT could identify the
noise part contained in the correlation data between stocks, and
proved that most of the stock data followed the random
correlation matrix pattern [2, 7, 10–12]. RMT can distinguish
between noise and the real information part by comparing the
data held in a random correlation matrix. When a part of the data
does not follow the properties or characteristics of a random
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correlation matrix, it is ensured that the particular part contains
real information from the stock market system; and if a part of
data has the same characteristics as a random correlation matrix,
then that part is noise.

There are several characteristics of a random correlation
matrix used in RMT. For example, if A is a random matrix
with dimensions N × Lith ith, the average value of the element is
zero and the variance is one. Then, the random correlation matrix
R is calculated using the following equation:

R � 1
L
AAT (1)

When the values N→∞, L→∞ are chosen and qualify
Q � L

N > 1, the distribution of eigenvalues from the R matrix
follows the Marchenko– Pastur distribution:

Prm(λ) � Q
2π

��������������(λ+ − λ)(λ − λ−)
√

λ
(2)

Here, λ+ and λ− are the minimum and maximum values of the
eigenvalues of matrix R. Then, the distribution of the matrix
eigenvector component Rukl ; l � 1, . . . ,N follows the Gaussian
distribution given in the following equation:

ρrm(λ) �
1���
2π

√ exp(−u2

2
) (3)

2.2. Complex Network
A network can be defined as a set of objects called vertices (nodes
or vertices); the relationships between vertices are called lines or
sides (edges or links) [13]. Suppose a networkG � (N , L) consists
of two sets of N and L, where N is a set of network nodes
N ≡ n1, n2, . . . , nN and L are the network side sets
L ≡ l1, l2, . . . , lK , which are non-sequential pairs of N elements.
A network can be represented as a matrix, usually called an
adjacency matrix A. An adjacency matrix informs if there are
sides (connected or unconnected) between each two nodes in a
network.

The degree of a network is defined as the number of sides
passing through a node. The degree of node i can be calculated
using the following equation:

ki � ∑N
j�1

Aij (4)

Then, the total degree of a network can be calculated as follows:

K � ∑N
j�1

ki (5)

The shortest path that connects two vertices is commonly called
the geodesic path. Take for example, a matrix D whose elements
are geodesic distances between vertices i and j or dij. From the
shortest distance parameter, we obtain another parameter, that is
the diameter of the network, which is defined as the maximum
value of the matrix D. Then, other network characteristics
geodesic distance is the average between vertices obtained
from the following equation:

L � 1
N(N − 1) ∑

i,j∈N,i≠ j

dij (6)

The node betweenness parameter measures the effect of a node in
a network by counting the several geodesic paths through that
node. Mathematically, it is expressed as

bij � ∑
i,j∈N,i≠j

njk(i)
njk

(7)

Here, njk is the number of geodesic paths connecting vertices j
and k; njk(i) is the number of geodesic paths through node i.

The cluster coefficient parameter measures the tendency of n
from node i to become a group or cluster in a network. The cluster
coefficient of node i is calculated by the ratio between the number
of sides (ei) in the subgraph Gi to the maximum number of sides
that might form on Gi as follows:

ci � 2ei
ki(ki − 1) �

∑j,kaijajkaki
ki(ki − 1) (8)

Then, the average cluster coefficient of each node, also called the
network cluster coefficient, is calculated as follows:

C � 〈c〉 � ∑i∈Nci
N

(9)

The quality of the grouping of communities in a network can be
measured from the relationship between the intra-community
and inter-community nodes. When the relationships between the
intra-community nodes are dense and those between the inter-
community nodes are rare, then the grouping of networks, as well
as the parameters that measure the relationships, are considered
good. This is called modularity; a term first introduced by
Newman [14]. The extent of modularity in a network can be
calculated using the following equation:

Q � 1∑ijAij
∑
ij

⎡⎣Aij − kikj∑ijAij

⎤⎦⎤⎦δ(ci, cj) (10)

Here, ki and kj are the degrees of nodes i and j, ci is the
community label of node i, and cj is the community label of
node j. Practically, a modularity value above 0.3 is considered a
good grouping.

Based on their degree distribution, networks can be classified
into two most common types: exponential and scale-free. In
exponential networks, the degree distribution follows the Poisson
distribution, which means that most of the nodes in the network
have the same degree (they are homogeneous). In scale-free
networks, the distribution of degrees in heterogeneous networks
follows the power-law distribution, that is, most vertices have a
small degree; a few or a small proportion of them have a large
degree. Examples of exponential and scale-free networks can be
seen in Ref. [15] and their distribution in Ref. [16].

2.3. Block Diagonal Matrix
Noh proposed a diagonal block matrix model and demonstrated
that for stocks that belong to one group, the diagonals of the
formed correlation matrix have a value of one and the remaining
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entries have the value zero Cg
ij � δαiαj, where αi denotes the group

where shares i are Ref. [17].
Here, 1i is a matrix withNi × Ni dimensions (Ni is the number

of shares incorporated in group i). More than one diagonal
matrix array can be formed in a single correlation matrix.
Therefore, an optimal arrangement of stocks is needed to
produce a good BDM.

Kim and Jeong proposed an optimization of the BDM by
analyzing the correlation between stocks as a force that binds to
particles (in this case, stocks) [7]. Because of the binding force
between the shares, there is total energy in the system. The
equation that calculates the system energy is given in Eq. 11,
and the most stable BDM form is obtained when the energy in the
system is the minimum. An example of the BDM calculated by
Kim and Jeong using the New York Stock Exchange (NYSE) stock
data for the 1993–2003 period can be found in Ref. [7].

Etotal � ∑
i<j
Cg
ij

∣∣∣∣∣∣∣∣∣∣li − lj
∣∣∣∣∣∣∣∣∣∣⊗ (Cg

ij − cc) (11)

Here, Cg is the correlation matrix filtered by RMT, li is the
location where stock i is in stock order, and cc is a cutoff that
eliminates the remaining noise in Cg (usually cc � 0.1) [7].

2.4. Matrix Decomposition
To separate noise from the information in the correlation data
through several stages, namely, during the distribution
comparison between the correlation matrix C and the random
correlation matrix R to calculate the correlation of each share, the
return for each stock is calculated as i � 1, . . . ,N within a certain
period (t).

Gi(t) � lnSi(t + Δt) − Si(t) (12)

Here, Si(t) and Gi(t) are the price and stock return i at time Δt,
respectively. Because each stock has a different volatility value, a
normalized return is defined by

gi(t) � Gi(t) − 〈Gi(t)〉
σ i

, (13)

where σi �
�����������
〈G2

i 〉 − 〈Gi〉2
√

is the standard deviation of Gi. Then,
the correlation matrix C is calculated by

Cij ≡ 〈gi(t)gj(t)〉 (14)

In matrix representations, it is expressed by

C � 1
L
GGT , (15)

where G is a matrix N × L, with the element {gi(mΔt); i �
1, . . . ,N;m � 0, . . . , L − 1} and GT are the transpose matrices
of G.

To compare the eigenvalue distribution of the correlation
matrix C and the random correlation matrix R, the
eigenvector interpretation of the correlation matrix C that is
outside the predicted RMT tests the stability of each eigenvector
of the correlation matrix C. First, we divide the stock price data
(matrix S) into two parts (the first half S1 and the other half S2;

each of them is calculated using the correlation matrices C1 and
C2. Then, the overlap matrix is calculated as follows:

C � C1C
T
2 (16)

A matrix can be decomposed into a linear combination of from a
collection of matrices. To find a noise-free correlation matrix, the
decomposition is expressed by

C � ∑N
α�1

λα|α〉〈α|, (17)

where N is the number of shares and λ is the eigenvalue of the C
matrix sorted.

2.5. Percolation Theory
In the CN approach, the C correlation matrix (which is noise
free) can be treated as an adjacency matrix
[_Jeong_and_Kim_2005] demonstrated that to find a clear
definition for each group (community) in the network, a
weighted network needs to be chosen for the group analysis in
the stock market [7]. Because the value of the elements in the
Cg matrix is not binary (1 or 0), the percolation theory is used
to set it as the adjacency matrix. The basic idea of percolation
theory is to use a threshold value to determine whether two
nodes are connected in the network. If the correlation
coefficient is greater than the boundary value, the
adjacency coefficient is 1, and if it is below the boundary
value, then the coefficient is 0.

2.6. Advanced Label Propagation Algorithm
LPAm+ is a method for developing the label propagation
algorithm (LPA) method. The main idea of the LPA method
is to determine the community label of a node based on the
majority of labels from its neighbors; the nodes that have the same
label are grouped into one community (group) [18]. At the
beginning of the algorithm, different (unique) labels are given
for each node; then, during propagation, a node changes its label
to follow the majority of its neighboring labels, and in case of a tie
(there is more than one label with the same number), the label is
determined randomly. The iteration stops if there is no longer a
label propagation process in the network. In mathematical form,
the label update process can be written according to the following
equation:

C′
x � argmaxc(∑ Aixδ(ci, c)) (18)

Because there is a random aspect to the labeling during series
conditions as described previously, this LPA method does not
produce a unique solution for each run. As a result, more than
one community structure can exist even if they originate from the
same initial conditions. Therefore, the LPA method is generally
performed several times and a community structure that has the
greatest modularity value is taken. The main advantage of the
LPA method is its very high speed compared with other
methods [18].
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FIGURE 1 | Flowchart of the simulated annealing (SA) algorithm to form a block diagonal matrix (BDM). The most stable BDM is obtained when the energy in the
system is of the minimum value. To find the most stable BDM and avoid the local minimum, we propose to combine it with simulated annealing, bringing the concept of
annealing to the formation of crystals in optimization problems.

FIGURE 2 | Distribution of correlation coefficients of matrix C at three
different times in the S&P 500 daily stock price data for the period of January 1,
2007 until October 28, 2016. The black color is for the total period 2012‒2016
and it is decomposed into the green one for the period 2007‒2012 and
the red one for the period 2012‒2016. It shows how the black one contributes
to the different distribution of the green and red ones.

FIGURE 3 | The Probability Density Function (PDF) of the correlation
coefficient C matrix and the R matrix. The red color shows the distribution of
the Cmatrix, and the blue one indicates the distribution of the Rmatrix on the
S&P 500 daily stock price data for the period of January 1, 2007 until
October 28, 2016. It clearly shows the different distribution groups separately
for the correlation coefficient C matrix and R.
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Barber and Clark modified the LPA method by increasing
the monotonous value of the rising modularity in each
iteration [19]. The modularity equation can be rearranged
as follows:

Q � 1∑ijAij

⎛⎝ ∑
i≠,j≠x

Bijδ(ci, cj) − Bxx
⎞⎠ − 2∑ijAij

⎛⎝∑
i

Bixδ(ci, cx)⎞⎠.

(19)

Bij � Aij − kikj∑ijAij
(20)

The aforementioned equation denotes the separation of the terms
containing the label of node x from the previous modularity
equation. To maximize the modularity value, the writer must
maximize the 2nd term of Eq. 19. Therefore, the equation for label
updates becomes

C′
x � argmaxc(∑ Bixδ(ci, c)) (21)

However, the LPAm method still has a shortcoming of possibly
getting trapped in the local maximum in the modularity space;
thus, Liu and Murata modified the LPAm method by applying
agglomeration techniques to combine each of the two groups
(communities) and avoid any changes in values. The modularity
then chooses which results in the largest change in modularity
value. The combination of these methods is called LPAm+ [20].

Regardless of the first local maximum value, the LPAm steps
are repeated to reach the next local maximum value. The
aforementioned two methods (LPAm and agglomeration) are
repeated until there are no more modularity changes.

2.7. Simulated Annealing Algorithm
To find the stock arrangement that provides the most system
energy, the SA algorithm is used in Monte Carlo simulations to

FIGURE 4 | The distribution of eigenvalues from theCmatrix and theRmatrix. The blue color represents the distribution of the eigenvalues of the matrixC, and the
red one shows the distribution of the eigenvalues of the matrix R on the S&P 500 daily stock price data for the period of January 1, 2007 until October 28, 2016.
(A) eigenvalue in the scale for λ of 1‒200 and (B) The eigenvalue in the zoomed scale for λ of 1-20.

FIGURE 5 | Comparison among the distribution of eigenvector components. For example, (A) is the largest u1, (B) is the third largest u3, and (C) is the hundredth
largest u100. The blue color represents the distribution of theCmatrix, and the red one represents the distribution of theRmatrix in the S&P 500 daily share price data for
the period of January 1, 2007 until October 28, 2016.
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avoid brute force. The SA algorithm was first introduced by
Metropolis. Furthermore, SA was first applied to the optimization
issue by Kirkpatrick et al. to avoid local drinking conditions [21].
This algorithm is analogous to the annealing (cooling) process
that is applied while producing glassy materials (comprising
crystalline grains).

The annealing process can be defined as a regular or constant
temperature drop on a previously heated solid object until it
reaches the ground state or freezing point. The temperature is
reduced continuously and carefully so that a thermal balance is
attained at each level. If the temperature is not reduced stepwise,
the solid object acquires structural defects due to the formation of
only optimal local structures. This type of process that produces
only an optimal local structure is called rapid quenching. The
search for a solution with SA is similar to the hill-climbing
concept where the solution tends to change continuously until
the final temperature is reached.

In the SA algorithm, we introduce the concept of annealing to
the formation of crystals in optimization problems. The objective
function, that is to search for the minimum value in the
optimization problem, is compared with the energy of the
material in the case of the annealing process. Then, a control
parameter, which is the temperature, is used for each iteration.

The SA algorithm uses the concept of a neighborhood search
or local search in each iteration to find conditions that provide the
lowest objective function. For each iteration, if the surrounding
conditions (in the case of a BDM, the composition of shares)
provides an objective function value smaller than the original
objective function, then the initial condition is updated (the
condition of the neighbor is set as the new initial condition).
However, when the condition of the neighbor outputs a value
greater than the original objective function, the result can still be
accepted (the initial condition is enhanced by the condition of the
neighbor) with certain conditions of probability.

Classical particle probability is used in this case, which follows
Maxwell-Boltzmann statistics (P � e.

−ΔE
T ), where ΔE is an objective

function and T is the temperature control parameter. The
iteration is performed until the objective function no longer
changes or has reached its ground state [22]. Here, L1 is the
first arrangement guess , L2 is the second arrangement guess, T is
temperature, E1 and E2 are the system energies for L1 and L2,
ΔE � E2 − E1, respectively, and (P � e.

−ΔE
T ) are classical particle

probabilities that follow Maxwell–Boltzmann statistics. In this
study, we performed the calculations using the flowchart shown
in Figure 1.

3. RESULTS AND DISCUSSION

3.1. Random Matrix Theory
3.2.1. Distribution of Correlation Matrix C and Random
Correlation Matrix R
As mentioned in the previous section, the correlation value
between shares has no fixed over time, and a plot was drawn
for three different conditions of the stock correlation data. The
first is the correlation matrix extracted from the 2007 to 2016 data
(black line), the second is the correlation matrix for the data from
2007 to 2012 (green line), and the third is or the data from 2012 to
2016 (red line) using Eq. 12 through Eq. 15. The results are
shown in Figure 2. According to the figure, there is an increase in
the correlation coefficient between the stocks. The average
correlation coefficient between the shares in the data for the
periods 2007‒2012 and 2012‒ 2016 is 0.3832 and 0.2642,
respectively. Then, for the whole period (2007‒2016), the
average correlation coefficient is 0.3451.

Next, the distribution of the C correlational matrix was
compared with that of the R random correlation matrix. The
results in Figure 3 show that the distribution of the R matrix
follows a Gaussian trend, whereas the C matrix has a positive
leaning distribution, indicating that the relationship between the
stocks on the S&P 500 dominant correlates with each other
compared to those who have anti-correlation relationships.

3.2.2. Eigenvalue Distribution of Correlation Matrix C
and Random Correlation Matrix R
Figure 4 shows the eigenvalue distributions of the C matrix and
the random correlation R matrix following Eq. 1. It can be seen
that most (97%) eigenvalues of the Cmatrix are in the vulnerable
boundary of the random R matrix, which indicates that most of
the stock data are noise. Only 3% eigenvalues of the C matrix are
outside the boundary of the random matrix R, and represent the
real information from the stock market. The largest eigenvalue
produced is 185.38, which is more than 90 times the upper limit
of the eigenvalue matrix R (λ+� 2.075).

3.2.3. Distribution of Eigenvector Components in
Correlation Matrix C and Random Correlation Matrix R
Apart from looking at the distribution of eigenvalues from the C
correlation matrix, we also tested for the presence of noise in the
data by looking at the distribution of the eigenvector components.
Figure 5 shows the different distributions of eigenvector

FIGURE 6 | To validate how good the Eigen vectors, we can perform a
comparison of projections of the largest eigenvector component (blue) from
matrixCwith the S&P 500 index (red) on the S&P 500 daily share price data for
the period of January 1, 2007 until October 28, 2016. This indicates that
the method mainly follows the patterns successfully.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5747707

Purqon and Jamaludin Community Detection of Dynamic Complex Networks

263

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 7 | There are many information for each Eigen vectors. Some sectors overlap in several Eigen vectors. This indicates that we require a method to reveal
community detection. The vector component of u2–u8 from the matrix ofC, the arrangement of the stock based on the sectors, 1: consumer discretionary; 2: consumer
staples; 3: energy; 4: financials; 5: health care; 6: industrial; 7: information technology; 8: materials; dan 9:utilities; from the daily stocks of S&P 500 for the period of
January 1, 2007 until October 28, 2016.
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components outside and within the boundary of a randommatrix
(using RMT ). The eigenvector component within the boundary
of the random matrix in Figure 5C follows the Gaussian
distribution as given in Eq. 3. This shows that this part is
noise, whereas the distribution of the eigenvector component
outside the boundary of the random matrix in Figures 5A,B is
heavy or leaning toward one side.

3.2.4. Interpretation of the Largest Eigenvalue and
Eigenvector (u1)
After successfully distinguishing between noise and data
containing real information, we then identified each C
eigenvalue that was outside the boundary of the random
matrix. The uniqueness of the largest eigenvalue can be
observed easily when compared with other eigenvalues because
of its greater value than others, as seen in Figures 4, 5A, which
shows that all the components of the eigenvector are positive.
This demonstrates that the largest eigenvalue has a very
significant influence on the dynamics of the stock market,
commonly referred to as the market-wide effect [2].

To test the assumption that the largest eigenvalue has a
market-wide effect, a comparison between the projections of
the eigenvector components was calculated using Eq. 22 with
an S&P 500 index value. Figure 6 shows that the projections of
the largest eigenvector components and S&P 500 have the same
movement patterns. These results reinforce that the largest
eigenvalue is a representation of the movement of the stock
market itself. The equation is as follows:

S1(t) � ∑N
ix

u1j Sj(t) (22)

3.2.5. Interpretation of Eigenvalues and Other
Eigenvectors That Are Still Outside Random Matrix
Theory Predictions
After successfully identifying the largest eigenvalue, we also
performed identification on other eigenvalues that are still
outside the boundary of the random matrix. However, before
doing that, the largest eigenvalue must be removed first owing to
its market-wide effects. As the results in the previous section have
shown, the largest eigenvalue is a representation of the market
movement itself and has a very significant effect on the
components of other eigenvectors and constrains the other
eigenvectors [2]. To eliminate the market-wide effects, an
ordinary least square is expressed as follows:

Gt(t) � αi + βiG
(1)(t) + ϵi(t), (23)

where G(1)(t) is similar to Eq. 22, which is
G(1) ≡ ∑ N

j�1u1j G(1)(t), αi dan βi are constants. Then, the
correlation matrix C is re-created using ϵi(t); then each
eigenvector component can be seen.

The greater the value of an eigenvector component in its
eigenvector, the greater is its contribution to the eigenvector.
Figure 7 shows the values of each component of the eigenvectors
u2 through u8. It can be seen that a few eigenvectors are localized
to the largest components. For example, in eigenvectors u2 and
u3, the largest components are dominated by utilities in u4 and u5

by the financial sector, and in u6 by the information technology
sector. However, there is no dominant sector in u7. In the last
eigenvector u8, the largest component is dominated by the
consumer discretionary sector.

FIGURE 8 | Stability of the eigenvectors from the largest eigenvectors
(u1) to (u15) ofC in the S&P 500 daily stock price data for the period of January
1, 2007 until October 28, 2016. White blocks indicate stable areas, and black
blocks indicate unstable regions.

FIGURE 9 | Matrix decomposition shows successfully decompose the
group into three different parts. Distribution of Cm (black), Cg (blue), and Cr
(red) on the S&P 500 daily share price data for the period of January 1, 2007
until October 28, 2016. This indicates that the method successfully
shows the decomposition and contribution from each part.
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After an analysis of the eigenvector components, it can be
concluded that the groups identified are not yet comprehensive
owing to the absence of sectors such as energy, materials, industrials,
or consumer staples. This is because during the analysis of the
eigenvectors, only the components with the greatest value are noted.
Therefore, we cannot use only this method for group identification
in the stock market. For the next analysis, we used a CN approach
and BDM to identify groups in the stock market.

3.2.6. Eigenvector Stability of Correlation Matrix C
The results of mapping the stability of the eigenvectors of the C
matrix can be seen in Figure 8. The results not only show that
only the largest eigenvectors are stable over time but also
reinforce previous results that eigenvector analysis cannot be
used to determine groups in the stock market because only stable
eigenvectors can be interpreted [23].

3.2. Matrix Decomposition
From the results of the RMT method, it is evident that the stock
market data contains not only noise but market-wide effects also;
therefore, before analyzing the stock correlation data with CNs
and the BDM, it must be cleaned from noise and market-wide
effects. Matrix decomposition is used for cleaning, where matrix

C is decomposed into three parts, namely market-wide (Cm),
group (Cg), and noise (Cr), using Eq. 24. To be used as an
adjacency Amatrix in CNs and BDM analysis, only (Cg) is used.
The equation is as follows:

Ng � Cm + Cg + Cr � λ1|1〉〈1| +∑Ng

n�2
λn|n〉

〈n| + ∑N
n�Ng+1

λn|n〉〈n|
(24)

Here, Ng is the sequence of the last eigenvalue, which is still
beyond RMT prediction (λNg > λ+). Our results show the
distribution of Cm (black), Cg (blue), and Cr (red) on the
S&P 500 daily share price data for the period between January
1, 2007 and October 28, 2016, as shown in Figure 9.

3.3. Determining the Threshold Value
In a non-weighted network, the determination of the boundary
value is very important because each different boundary value
forms a different group structure. If the selected boundary value is
too small, all the nodes are connected, which means there is only
one large group, and if the chosen boundary value is too large,

FIGURE 10 | The value (A) number of clusters formed, (B) number of vertices, (C) cluster coefficients and (D) number of sides when boundary values vary from −0.2
to 0.4. The method successfully shows the threshold value. This value is important for analyzing the group effectively.
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only a small number of nodes are still connected in the network;
most of them are isolated.

Therefore, to determine the boundary value in this study, four
parameters were considered: the number of groups formed,
number of vertices, number of sides, and average cluster
coefficient [5, 11]. Figure 10 shows that the optimal boundary
value is 0.05.

3.4. Group Mapping Results With Advanced
Label Propagation Algorithm
The LPAm+ program on the S&P 500 network successfully
identified the groups on the network. As many as six groups
were observed, with the number of involved nodes reaching up to
485 out of a total 502 nodes (17 nodes were isolated from the
network) and themaximummodularity value obtained was 0.6164.

The results obtained with LPAm+ show that the shares that
belong to the same group are dominated by certain sectors
(according to the results of the eigenvector analysis with RMT).
Groupmappingwith LPAm+ can be visualized usingGephi software.
The results obtained using the Gephi software are slightly different
than those after using the LPAm+ method. In Gephi, there are six
large clusters (groups) of the stockmarket network with a total of 483
(96%) nodes out of the total, 5579 sides, and amodular value of 0.619
(there is a difference of 0.003 with the LPAm+ results). Figure 11
shows the results of the animation using Gephi.

3.5. Group Mapping Results With Simulated
Annealing Algorithm
The results obtained using the SA algorithm and the Cg
correlation matrix data show accordance with the concept of
the BDM, namely the condition of the stock arrangement that

FIGURE 11 | The method successfully performs community detection. The S&P 500 stock market network using Gephi software, there are six main clusters,
cluster 1 (black) is dominated by the financial sector, cluster 2 (pink) is dominated by the information technology sector, cluster 3 (orange) is dominated by the energy
sector, industrial and materials, cluster 4 (green) is dominated by the consumer staples, utilities, and industry sectors; cluster 5 (blue) is dominated by the consumer
discretionary sector, and finally cluster 6 (purple) is dominated by the health care sector.
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provides the minimum system energy from group blocks in the
correlation matrix.

In the SA algorithm, if the initial arrangement of the selected l1
stock is random, the results obtained are far different from the ideal
conditions (never reaching minimum energy when using the initial
order that was sorted). For example, in Figure 12, a sorted initial
arrangement provides a minimum energy of 6.5 × 104, whereas for
a randomly selected initial arrangement guess, theminimum energy
achieved at the minimum temperature is equal to 8.1 × 104.

Figure 13 shows the result obtained when the initial stock
layout guess l1 follows the order given in the eigenvector analysis,
the initial temperature T0 is 10, ΔT is 0.01, and the maximum

random step used is 10. However, if Cg is replaced with Cg + Cm,
the detected group blocks are less than those using Cg only,
although the parameters used are the same as in Figure 14. These
results show that it is very important to perform filtering for Cm
in addition to Cr in group analysis [7].

4. CONCLUDING REMARKS

We investigated complex networks in the S&P 500 stock market
using two approaches, namely, a CN approach using an LPAm+
algorithm and a BDM approach using an SA algorithm. Before
applying the two approaches, the data of the C stock correlation
matrix were filtered using the RMT. RMT succeeded in separating
the noise from non-noise data and showed that most of the data
contained in the correlation matrix C were noise; an analysis of
the distribution of eigenvector components in the RMT indicated
that stock movements were driven by groups where each group
was dominated by a particular sector. We called this analysis as
simply RMT-CN-LPAm+ and RMT-BDM-SA.

In the first approach, the noise-free correlation matrix and
market-wide (Cg) effects were analyzed using the CN approach
with a threshold value of 0.05 and an LPAm+ network structure
comprising six main groups with 485 out of a total 502 nodes
involved (17 nodes were isolated from the network) and an obtained
modularity value of 0.62. Then, in the second approach, which is a
BDM with the same data, namely Cg using a simulated annealing
algorithm, the stock structure provided a minimum energy system,
and from this arrangement, nine groups of shares were produced.
The decomposition of matrix C into Cm (market-wide), Cg
(group), and Cr (noise) was also accomplished. The combination
provides useful information to identify group classifications.

The difference between RMT-CN-LPAm+ and RMT-BDM-
SA results is that in RMT-CN-LPAm+, a group contains not only
the shares of the same sector but also of other minority sectors,
whereas in RMT-BDM-SA, a group contains shares of the same
sector. The second difference is that in MT-CN-LPAm+, a few
shares still remain that have not joined any group, whereas in
RMT-BDM-SA, not all shares have a group. In general, both

FIGURE 12 | How energy decrease by iteration in Simulated annealing
method results, for example with the initial guess set l1 is random with T0 �
10,ΔT � 0.01 and the maximum random step is 20.

FIGURE 13 | The community detection results from the Cg correlation
matrix mapping using the stock structure generated by the Simulated
Annealing (SA) algorithm with parameters T0 � 0 and ΔT � 0.01 and the
maximum randomstep is 10. Group 1 is the consumer discretionary
sector; group 2, namely the consumer staples sector; group 3, the energy
sector; group 4, the financial sector; group 5, namely the healthcare sector;
group 6, the industrial sector; group 7, namely the information technology
sector; group 8, the materials sector; and finally group 9, the utilities sector.

FIGURE 14 |Community detection results from theCg +Cm correlation
matrix mapping with the same stock structure as in Figure 13. The sectors are
group 1 consumer, 2 energy, 3 financials, 4 industrials, and 5 utilities.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 57477012

Purqon and Jamaludin Community Detection of Dynamic Complex Networks

268

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


hybrid methods successfully show good performance to reveal
detailed community detections.
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Over the last 2 decades, financial systems have been studied and analyzed from the
perspective of complex networks, where the nodes and edges in the network represent
the various financial components and the strengths of correlations between them. Here,
we adopt a similar network-based approach to analyze the daily closing prices of 69
global financial market indices across 65 countries over a period of 2000–2014. We
study the correlations among the indices by constructing threshold networks
superimposed over minimum spanning trees at different time frames. We investigate
the effect of critical events in financial markets (crashes and bubbles) on the interactions
among the indices by performing both static and dynamic analyses of the correlations.
We compare and contrast the structures of these networks during periods of crashes
and bubbles, with respect to the normal periods in the market. In addition, we study the
temporal evolution of traditional market indicators, various global network measures, and
the recently developed edge-based curvature measures. We show that network-centric
measures can be extremely useful in monitoring the fragility in the global financial market
indices.

Keywords: econophysics, correlation, networks, minimum spanning tree, market index

1 INTRODUCTION

It is possible to describe a financial market using the framework of complex networks such that the
nodes in a network represent the financial components and an edge between any two components
indicates an interaction between them. A correlation matrix constructed using the cross-correlations
of fluctuations in prices can be utilized to identify such interactions. However, a network resulting
from the correlation matrix contains densely connected structures. A growing amount of research is
focused on methods devised to extract relevant correlations from the correlation matrix and study
the topological, hierarchical, and clustering properties of the resulting networks. Mantegna et al. [1,
2] introduced the minimum spanning tree (MST) to extract networks from the correlation matrices
computed from the asset returns. Dynamic asset trees, introduced by Onnela et al. [3, 4], were
analyzed to monitor the evolution of financial stock markets using the hierarchical clustering
properties of such trees. Boginski et al. [5] constructed threshold networks by extracting the edges
with correlation values exceeding a chosen threshold and analyzed degree distribution, cliques, and
independent sets on the threshold network. Tumminello et al. [6] introduced planar maximally
filtered graph (PMFG) as a tool to extract important edges from the correlation matrix, which
contains more information than theMST, while also preserving the hierarchical structure induced by
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MST. Triangular loops and four-element cliques in PMFG could
provide considerable insights into the structure of financial
markets.

Network-based analysis has been widely used to study not only
particular stock market structures but also the complex networks
of correlations among different financial market indices across
the globe. For example, MST has been used on stock markets to
detect underlying hierarchical organization [7–9]. Bonanno et al.
[10] studied the correlations of 51 global financial indices and
showed that the corresponding MST was clustered according to
the geographical locations of the indices. In addition, the changes
in the topological structure of MST could help understand the
evolution of financial systems [11–13]. MST and threshold
networks have been used to analyze the indices during the
global financial crisis of 2008 [14–16]. It has also been shown
that geography is one of the major factors which govern the
hierarchy of the global market [17, 18]. Also, Eryǧit and Eryǧit
[19] had investigated the temporal evolution of clustering
networks (MST and PMFG) of 143 financial indices
corresponding to 59 countries across the world from the
period 1995–2008 and once again found that the clustering in
the networks of financial indices was according to their
geographical locations. From the time-dependent network and
centrality measures, they showed that the integration of the global
financial indices has increased with time. Further, Chen et al. [20]
analyzed dynamics of threshold networks of regional and global
financial markets from the period 2012–2018, proposed a model
for the measurement of systemic risk based on network topology,
and then concluded that network-based methods provide a more
accurate measurement of systemic risk compared to the
traditional absorption technique. Silva et al. [21] studied the
average criticality of countries during different periods in
the crisis and found that the United States is the most critical
country, followed by European countries, Oceanian and Asian
countries, and finally Latin American countries and Canada.
They also found a decrease in the network fragility after the
global financial crisis. It has been also shown that financial crises
can be captured using networks of volatility spillovers [22, 23].
Wang et al. [24] constructed and analyzed the dynamical
structure of MSTs and hierarchical trees computed from the
Pearson correlations as well as partial correlations, among 57
global financial markets from the period 2005–2014, and
concluded that MST based on partial correlations provided
more information when compared to MST based on the
Pearson correlations. The market indices from different stock
markets across the globe comprise assets that are very different;
apart from stocks of the big multinational companies that are
traded across markets, the stock markets would have little in
common and hence would be expected to behave independently,
in contrary to the previously reported empirical observations.

In this brief research report, we study the evolution of
correlation structures among 69 global financial indices
through the years 2000–2014. To ensure that we consider only
the most relevant correlations, we construct the network by
creating an MST (which connects all the nodes) and then add
extra edges from the correlation matrix exceeding a certain
threshold, which gives modular structures. Our findings

corroborate the earlier results of geographical clustering [17,
25]. We then study the changes occurring in the market by
analyzing the fluctuations in various global network measures
and the recently developed edge-based geometric measures. Since
there are complex interactions that occur among groups of three
or more nodes, which cannot be described simply by pairwise
interactions, the higher-order architecture of complex financial
systems captured by the geometrical measures can help us in the
betterment of systemic risk estimation and give us an indication
of the global market efficiency. To the best of our knowledge, the
present work is the first investigation of discrete Ricci curvatures
in networks of global market indices. Thus, we find that this
approach along with all these network measures can be used to
monitor the fragility of the global financial network and as
indicators of crashes and bubbles occurring in the markets.
This could in turn relate the health of the financial markets to
the development or downturn of the global economy, as well as
gauging the impact of certain market crises on the multilevel
financial-economic phenomena.

2 METHODS

2.1 Data Description
This study is based on a dataset collected from Bloomberg which
comprises the daily closing prices of 69 global financial market
indices from 65 countries, and this information was compiled for
a period of T � 3,513 days over 14 years from January 11, 2000, to
June 24, 2014. Note that the working days for different markets
are not the same due to differences in holidays across countries.
To overcome any inconsistencies due to this difference in
working days, we filtered the data by removing days on which
> 30% of the markets were not operative. Conversely, if < 30% of
the markets were not operative on a day, we used the closing price
of such markets on the previous day to complete the dataset.
Supplementary Table S1 lists the 69 global market indices
considered here, along with their countries and geographical
regions.

2.2 Cross-correlation Matrix and Market
Indicators
Given the daily closing price gj(t) for market index j on day t,
wherein j � 1, 2, . . . ,N with N � 69 indices, we construct a time
series of logarithmic returns as rj(t) � ln gj(t) − ln gj(t − 1).
Then, we construct the equal time Pearson cross-correlation
matrix as

Cτ
ij(t) �

〈rirj〉 − 〈ri〉〈rj〉
σ iσ j

, (1)

where the mean and standard deviation are computed over a
period of τ � 80 days with end date as t. We also construct the
ultrametric distance matrix with elementsDτ

ij(t) �
����������
2[1 − Cτ

ij(t)]
√

that take values between 0 and 2. To study the temporal dynamics
of the global market indices, we computed the correlation
matrices for overlapping windows of τ � 80 days with a
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rolling shift of Δτ � 20 days. Thence, we obtained 172 correlation
frames between January 11, 2000, to June 24, 2014.

We have computed three market indicators from these
correlation matrices. Firstly, the mean correlation gives the
average of the correlations in the matrix Cτ(t). Secondly, we
have computed the eigenentropy [26] which involves the
calculation of the Shannon entropy using the eigenvector
centralities of the correlation matrix Cτ(t) of market indices.
Both mean correlation and eigenentropy have been shown to
detect critical events in financial markets [26–28]. Thirdly, we
have computed the risk corresponding to theMarkowitz portfolio
of the market indices, which is a proxy for the fragility or systemic
risk of the global financial network [29]. A detailed description of
the Markowitz portfolio optimization is given in the
Supplementary Material.

2.3 Threshold Network Construction and
Characteristics
The distance matrix for the time frame ending on t can be viewed
as a complete, undirected, and weighted graph Dτ(t), where the
element Dτ

ij(t) is the weight of the edge between market indices i
and j. To extract the important edges from Dτ(t), we first
construct its minimum spanning tree (MST) Mτ(t) using
Prim’s algorithm [30]. As MST is an oversimplified network
without cycles, it may lose crucial information on clusters or
cliques. To overcome this, we add edges with correlation
Cτ
ij ≥ 0.65 in Dτ(t) to Mτ(t) and obtain the threshold graph

Sτ(t). Thereafter, we study the temporal evolution of different
network measures in Sτ(t).

Firstly, we have computed standard global network measures
such as the number of edges, edge density, average degree, average
weighted degree [31], average shortest path length, diameter,
average clustering coefficient [32], modularity [33, 34],
communication efficiency [35], global reaching centrality
(GRC) [36], network entropy [37], global assortativity [38, 39],
and clique number. Note that the chosen set of global network
measures studied here are by no means exhaustive and also
depend very much on the specific questions of interest; see,
for example, Wang et al. [40] for several gravitational
centrality measures. Secondly, we have also computed four
edge-centric curvature measures, namely, Ollivier-Ricci (OR)
curvature [29, 41, 42], Forman-Ricci (FR) curvature [42–45],
Menger-Ricci (MR) curvature [46, 47], and Haantjes-Ricci (HR)
curvature [46, 47]. A detailed description of these network
measures along with the appropriate natural weight, strength,
or distance to use in each case is included in the Supplementary
Material.

2.4 Multidimensional Scaling Map
The multidimensional scaling (MDS) technique tries to embed N
objects in high-dimensional space into a low-dimensional space
(typically, 2 or 3 dimensions), while preserving the relative
distance between pairs of objects [48]. Here, we construct the
(average) correlationmatrixCT between the 69market indices for
the complete period of T � 3,513 days between January 11, 2000,
and June 24, 2014, using Eq. 1. Then, we compute the distance

matrix DT from CT for the complete period. Thereafter, we use
MDS to map the 69 market indices into a 2-dimensional space
such that the distances between pairs of indices in DT are
preserved. To create the MDS plot, we used the in-built
function cmdscale.m in MATLAB. Moreover, we also
construct the MST MT starting from the distance matrix DT

and then the threshold network ST for the complete period from
2000 to 2014 by adding edges with CT

ij ≥ 0.65 to MT .

3 RESULTS AND DISCUSSION

The primary goal of this investigation is to evaluate different
network measures for their potential to serve as indicators of
fragility or systemic risk and monitor the health of the global
financial system. For this purpose, we compiled a dataset of the
daily closing prices of 69 global financial market indices from 65
different countries for a 14-year period from 2000 to 2014
(Section 2). Thereafter, we use the time series of the
logarithmic returns of the daily closing prices for 69 global
market indices to compute the Pearson cross-correlation
matrices Cτ(t) with a window size of τ � 80 days with an
overlapping shift of Δτ � 20 days, and ending on trading days
t (Section 2). Subsequently, we employ a minimum spanning tree
(MST) based approach to construct 172 threshold networks Sτ (t)
corresponding to the cross-correlation matrices Cτ(t) spanning
the 14-year period (Section 2). Here, we study the temporal
evolution of the structure of these correlation-based threshold
networks Sτ(t) of global market indices using several network
measures and moreover contrast the evolution of network
properties with generic market indicators such as mean
correlation and minimum risk obtained using the Markowitz
framework.

We reiterate that the threshold networks Sτ(t) are constructed
by computing the MST of the cross-correlation matrices Cτ(t)
followed by the addition of edges with correlation Cτ

ij ≥ 0.65
(Section 2). Intuitively, this network construction procedure
ensures that each threshold network is a connected graph and
captures the most relevant edges (correlations) between market
indices. Since the obtained results may depend on the choice of
the threshold (0.65) used for network construction, we present
the temporal evolution of properties in networks constructed
using 0.65 as threshold in the main text and in networks
constructed using 0.75 or 0.85 as threshold in Supplementary
Material. In the sequel, we will show that the qualitative nature of
the obtained results is not very sensitive to the choice of 0.65, 0.75,
or 0.85 as thresholds to construct the networks of global market
indices.

In Figures 1, 2 and Supplementary Figure S1, we show the
temporal evolution of generic indicators and networkmeasures in
the threshold networks of global market indices over the 14-year
period (2000–2014). Moreover, the four shaded regions in
Figure 1 highlight four periods of the financial crisis, namely,
US housing bubble, Lehman brothers crash, Dow Jones flash
crash, and August 2011 stock markets fall. From Figure 1, it is
seen that the mean correlation between market indices increases
during periods of the financial crisis. Also, the eigenentropy
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FIGURE 1 | Evolution of generic indicators and network characteristics for the global market indices networks Sτ(t), constructed from the correlation matrices
Cτ (t) of window size τ � 80 days and an overlapping shift of Δτ � 20 days over a period of 14 years (2000–2014). The threshold networks Sτ(t) were constructed by
adding edges with correlation Cτ

ij(t)≥0.65 to the minimum spanning trees (MST). From top to bottom, we compare the plots of mean correlation among market
indices, minimum risk corresponding to the Markowitz portfolio optimization, eigenentropy, number of edges, average weighted degree, diameter, clustering
coefficient, modularity, communication efficiency, global reaching centrality (GRC), network entropy, and global assortativity. The four shaded regions correspond
to the epochs around the four important market events, namely, US housing bubble, Lehman brothers crash, Dow Jones flash crash, and August 2011 stock
markets fall.
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FIGURE 2 | Evolution of network characteristics and visualization of the threshold networksSτ (t) ofmarket indiceswith awindow size of τ � 80 days and an overlapping
shift of Δτ � 20 days, constructed by adding edges with correlation Cτ

ij (t)≥ 0.65 to the MST. (Lower panel) Comparison of the plots of mean correlation among market
indices, clique number, average of Ollivier-Ricci (OR), Forman-Ricci (FR), Menger-Ricci (MR), and Haantjes-Ricci (HR) curvature of edges in threshold networks over the 14-
year period. (Upper panel) Visualization of the threshold networks at three distinct epochs of τ � 80 days ending on trading days t equal to August 4, 2005 (normal),
August 14, 2006 (US housing bubble), and June 4, 2010 (Dow Jones flash crash). Threshold networks show a higher number of edges and a lower number of communities
during the crisis. Correspondingly, there is an increase in mean correlation, clique number, average OR, MR, and HR curvature, and a decrease in average FR curvature of
threshold networks during the financial crisis. Node colors and labels are based on geographical region and country, respectively, of the indices and edge colors are based on
the communities determined by the Louvain method. The four United Statesmarket indices, NASDAQ, NYSE, RUSSELL1000, and SPX, are labeled as USA1, USA2, USA3,
and USA4, respectively, while the two Indian indices, namely, NIFTY and SENSEX30, are labeled as IND1 and IND2, respectively.
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which is directly computed from the correlation matrix Cτ(t)
increases during the crisis. Earlier works have shown that mean
correlation and eigenentropy are indicators of instabilities in the
stock market network [26, 28], and we show here that these
measures can also serve as indicators of crisis in the network of
global financial indices. In Figure 1, we also show the temporal
evolution of the minimum risk corresponding to the portfolio
comprising the market indices using the Markowitz framework.
Moving on to widely used network properties, it is seen that the
number of edges, edge density, average degree, average weighted
degree, clustering coefficient, communication efficiency, and
network entropy increase while diameter, average shortest path
length, and modularity decrease during periods of the financial
crisis (Figure 1; Supplementary Figure S1). In Figure 1, we also
show the evolution of two other network measures, global
reaching centrality (GRC) and global assortativity. In Figure 2,
we also visualize the threshold network at three distinct time
windows of τ � 80 days ending on trading days t corresponding to
August 4, 2005 (normal period), August 14, 2006 (US housing
bubble crisis), and June 4, 2010 (Dow Jones flash crash), where
the node colors are based on geographical regions of the market
indices and edge colors are based on modules determined by
Louvain method [34] for community detection. The identified
communities in the three networks corresponding to the normal
period, the US housing bubble, and the Dow Jones flash crash
typically reflect the geographical proximity of financial market
indices. For example, the indices of the United States, Canada,
Mexico, Argentina, Brazil, and Chile form a single community in
the threshold network for the normal period (Figure 2). It is
evident that the number of edges in threshold networks
corresponding to the US housing bubble (246 edges) or Dow
Jones flash crash (390 edges) is much higher in comparison to
that for the normal period (109 edges). In contrast, the
modularity of threshold networks corresponding to the crisis
periods, US housing bubble (0.418), or Dow Jones flash crash
(0.232) is lower in comparison to that for normal period (0.508).
In Figure 2, it is clearly seen that the clique number or size of the
largest clique in threshold networks increases during financial
crisis, and this is also evident from the network visualizations for
normal period, US housing bubble, and Dow Jones flash crash.
Note that bubbles are not easy to detect. In fact, our proposition is
that holistic approaches with network measures, both node- and
edge-based measures, including geometric curvatures, may help
us to better detect and distinguish the bubbles from market
crashes, as also pointed out in recent contributions [26, 49]. In
sum, we find that during a normal period the network of global
market indices is less connected, very modular, and
heterogeneous, whereas, during a fragile period, the network is
highly connected, less modular, and more homogeneous.

In addition to the node-centric global network measures
described in the preceding paragraph, we have also studied
edge-centric network measures, specifically, four discrete Ricci
curvatures [Olivier-Ricci (OR), Forman-Ricci (FR), Menger-Ricci
(MR), and Haantjes-Ricci (HR)] in threshold networks of global
market indices. From Figure 2, it is seen that the average OR,MR,
or HR curvature of edges increases during crisis periods in
comparison to normal periods. In contrast, the average FR

curvature of edges decreases during crisis periods in
comparison to the normal periods. Notably, Sandhu et al. [29]
have shown that OR curvature can serve as an indicator of
fragility in stock market networks. However, to our
knowledge, the present work is the first investigation of
discrete Ricci curvatures in networks of global market indices.
Note that different discretizations of Ricci curvature do not
capture the entire features of the classical definition for
continuous spaces, and thus, the four discrete Ricci curvatures
studied here can capture different aspects of analyzed networks
[42]. Overall, our results suggest that discrete Ricci curvatures can
serve as indicators of fragility and monitor the health of the global
financial system.

In Figure 3, we show the correlation between generic market
indicators and different characteristics of the threshold networks
Sτ(t) of global market indices computed across the 14-year period
from 2000 to 2014. From this figure, it is seen that eigenentropy
and several network measures have a very high (absolute)
Pearson correlation ( ≈ 0.9) with generic indicator, mean
correlation of market indices. Such network measures include
the number of edges, average weighted degree (strength),
clustering coefficient, communication efficiency, clique
number, FR curvature, and MR curvature. In contrast to mean
correlation of market indices, there is moderate to no correlation
between minimum risk corresponding to the portfolio
comprising the market indices and eigenentropy or network
measures (Figure 3). In sum, these results indicate that
network measures including edge-centric FR curvature can be
used to forecast crisis and monitor the health of the global
financial system. To the best of our knowledge, our work is
the largest survey of network measures to identify potential
network-centric indicators of fragility in global financial
market indices.

We must mention that though in the preceding paragraphs we
have described only the results obtained from networks
constructed using a threshold of 0.65, we have shown in
Supplementary Figures S2–S9 that the qualitative conclusions
remain unchanged even when networks with a threshold of 0.75
and 0.85 are considered. In other words, our results are robust to
the choice of the threshold used to construct the networks of
global market indices.

In previous works, the econophysics community has
employed either minimum spanning tree (MST) [7, 9–13, 15,
19] or planar maximally filtered graph (PMFG) [12, 19] or
threshold networks [11, 14, 20] to study the correlation
structure between global financial market indices. As far as we
know, this work is the first to use threshold networks of MST plus
edges with a correlation higher than a specified threshold, to
study the temporal evolution of relationships between global
financial market indices. In contrast, such threshold networks
based on MST have been used earlier to study the structure of
stock market networks [29, 49]. While MST has a tree structure
without loops or cycles, PMFG or threshold network permits
loops or cycles. In Supplementary Text and Supplementary
Figures S10–S13, we also display the temporal evolution and
correlation between generic market indicators and network
measures in PMFG of global market indices constructed from
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cross-correlation matrices Cτ(t). While the construction of
PMFG unlike threshold networks is independent of any
specific choice of the threshold, the number of edges (thus,
edge density and average degree) is fixed in case of PMFG
(Supplementary Figures S10, S11). Due to this reason, we
find that most of the network measures studied here are not
correlated with the generic market indicator, mean correlation of
market indices, in the PMFG case (Supplementary Figure S13).
Still, we find that average weighted degree (strength), clustering
coefficient, and communication efficiency have a very high
correlation with the mean correlation of market indices in
PMFG-based networks (Supplementary Figure S13). Based on
these results, the threshold network construction based on MST
plus edges with high correlation seems to be a better framework to
monitor the state of the global financial system.

Finally, we have also studied the average correlation structure
between global market indices over the 14-year period by

computing the correlation matrix CT between the 69 market
indices by taking window size as the complete period of T days
between 2000 and 2014 (Section 2). Subsequently, we have
constructed a threshold network ST corresponding to CT by
combining MST plus edges with a correlation above the
chosen threshold of 0.65 (Section 2). In Figure 4A, we
visualize this overall threshold network ST of market indices
for the complete 14-year period of T days. In this figure, the node
colors are based on geographical regions of the market indices
and edge colors are based on communities obtained from the
Louvain method. In Figure 4B, we have separated the
communities in this overall threshold network ST of market
indices by removing the intermodule edges in the
visualization. From Figures 4A,B, it is clear that the market
indices form communities in this overall threshold network based
on their geographical proximity. Moreover, we have also
employed multidimensional scaling (MDS) technique to map

FIGURE 3 | Correlations between generic indicators and network characteristics of the global market indices networks Sτ(t), constructed from the correlation
matricesCτ(t) of window size τ � 80 days and an overlapping shift of Δτ � 20 days over a period of 14 years (2000–2014). The threshold networks Sτ(t) were constructed
by adding edges with correlation Cτ

ij (t)≥0.65 to the minimum spanning tree (MST).
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FIGURE 4 | The average correlation structure between 69 market indices over the 14-year period is visualized based on the correlation matrix CT for the complete
period of T � 3513 days between 2000 to 2014. (a) Visualization of the overall threshold network ST corresponding to CT obtained by combining MST plus edges with
correlation ≥0.65. The node colours are based on geographical regions of the market indices and edge colours are based on communities obtained from Louvain
method. (b) Visualization of the communities in the overall threshold network ST after removing the inter-module edges. It is evident that the market indices form
communities in this network based on their geographical proximity. (c)Multidimensional scaling (MDS) map in 2-dimensions of the 69 market indices. In this figure, the
indices are labelled in different colours based on their geographical region and country, respectively. The four USAmarket indices, NASDAQ, NYSE, RUSSELL1000 and
SPX, are labelled as USA1, USA2, USA3 and USA4, respectively, while the two Indian indices, NIFTY and SENSEX30, are labelled as IND1 and IND2, respectively.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6243738

Samal et al. Global Financial Indices Network Indicators

277

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the 69 market indices into a 2-dimensional space such that the
distances between pairs of indices are preserved (Figure 4C;
Section 2). It can be seen that the MDS map is able to partition
the 69 market indices into groups based on their geographical
proximity, and further, the structure in the MDS map has a close
resemblance to the community structure of the overall threshold
network (Figure 4). For example, the grouping of indices from
the United States, Canada, Mexico, Argentina, Brazil, and Chile
can be seen in both the threshold network and MDS map
(Figure 4). Interestingly, when we plotted in Supplementary
Figure S14 the evolution of the eigenvector centralities of the
nodes (market indices), as well as their OR and FR curvature, we
found that there exist certain periods of time when some of the
countries in close geographical proximity display high (absolute)
values and others display low values, indicative of the changes in
the complex interactions and community structures.

4 SUMMARY AND CONCLUDING
REMARKS

In summary, we have investigated the daily closing prices of 69
global financial indices over a 14-year period using various
techniques of cross-correlations based network analysis. We
have been able to continuously monitor the complex
interactions among the global market indices by using a
variety of network-centric measures, including recently
developed edge-centric discrete Ricci curvatures. In the
present study of the global market indices, the novelty lies in
the following: i) Construction of the threshold network Sτ(t), as
superposition of the MST of the cross-correlation matrix and
the network of edges with correlations Cτ

ij ≥ 0.65, which ensures
that each threshold network is a connected graph and captures
the most relevant edges (correlations) between market indices.
In Supplementary Material, we have also reported the results
for networks constructed using MST and two other threshold
values, i.e., Cτ

ij ≥ 0.75 and Cτ
ij ≥ 0.85. Besides, we have also

reported results for networks constructed using PMFG
method. ii) The usage of discrete Ricci curvatures in
networks of global market indices, which capture the higher-
order architecture of the complex financial system. To the best
of our knowledge, this is the first study employing edge-based
discrete Ricci curvatures to networks of global financial indices.
Our recent work underscores the utility of edge-based curvature
measures in the analysis of networks of stocks [49] or global
financial indices. In future, curvature measures may also find
application in other financial networks including Banking
networks [50]. iii) The largest yet by no means exhaustive
survey of network measures to identify potential network-
centric indicators of fragility and systemic risk in the system
of global financial market indices.

The global financial system has become increasingly complex
and interdependent and thus prone to sudden unpredictable

changes like market crises. Our results, compared to the
traditional market indicators, do provide a deeper
understanding of the system of global financial markets.
Specially, we find that the four discrete Ricci curvatures can be
effectively used as indicators of fragility in global financial
markets. We reiterate that the methods used in this work can
detect instabilities in the market and can be used as early warning
signals so that policies can be made in order to prevent the
occurrence of such events in the future.
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Using Topological Data Analysis (TDA)
and Persistent Homology to Analyze
the Stock Markets in Singapore and
Taiwan
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1Energy Research Institute @ NTU (ERI@N), Singapore, Singapore, 2Division of Physics and Applied Physics, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore, 3Complexity Institute, Nanyang
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In recent years, persistent homology (PH) and topological data analysis (TDA) have gained
increasing attention in the fields of shape recognition, image analysis, data analysis,
machine learning, computer vision, computational biology, brain functional networks,
financial networks, haze detection, etc. In this article, we will focus on stock markets
and demonstrate how TDA can be useful in this regard. We first explain signatures that can
be detected using TDA, for three toy models of topological changes. We then showed how
to go beyond network concepts like nodes (0-simplex) and links (1-simplex), and the
standard minimal spanning tree or planar maximally filtered graph picture of the cross
correlations in stock markets, to work with faces (2-simplex) or any k-dim simplex in TDA.
By scanning through a full range of correlation thresholds in a procedure called filtration, we
were able to examine robust topological features (i.e. less susceptible to random noise) in
higher dimensions. To demonstrate the advantages of TDA, we collected time-series data
from the Straits Times Index and Taiwan Capitalization Weighted Stock Index (TAIEX), and
then computed barcodes, persistence diagrams, persistent entropy, the bottleneck
distance, Betti numbers, and Euler characteristic. We found that during the periods of
market crashes, the homology groups become less persistent as we vary the
characteristic correlation. For both markets, we found consistent signatures associated
with market crashes in the Betti numbers, Euler characteristics, and persistent entropy, in
agreement with our theoretical expectations.

Keywords: topological data analysis, econophysics, applied topology, financial market, STI, TAIEX

INTRODUCTION

The earliest success of econophysics is the application of random matrix theory (RMT, which is a
theory combining nuclear physics and statistical mechanics) to the stock market [1–4]. In RMT, one
treats noise as a kind of symmetry, and thus information represents some form of symmetry
breaking. RMT thus allows physicists to discriminate between noise and signal. The next significant
milestone in econophysics is the realization that stock returns follow heavy-tailed Levy distributions
[5] instead of a normal distribution. Also, their dynamical properties can be described in terms of
fractals (in terms for example, of the Hurst exponent) and multifractals [6, 7] instead of the random
walk proposed by Bachelier to model price movements in the stock market. Physicists also love to
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strip problems down to their simplest essence, using information
filtering approaches such as the minimal spanning tree (MST) [8],
planar maximally filtered graph (PMFG) [9], triangular
maximally filtered graph (TMFG) [10], etc. These represent
some of the methodological contributions by econophysicists.

In the PMFG method, important correlations are projected
onto a sphere, which has genus g � 0. This is a good starting point
for understanding the correlated price movements between
different stocks. However, it is possible that the pattern of
dynamic correlations may be explainable more naturally in
terms of some nontrivial geometrical structure with g > 0.
Therefore, the determination of the optimum genus represents
a gap in our understanding of correlations in the stock market.
This best genus can change with time for the same window length.
It can change with window length over the same period, and it can
also depend on which market we are looking at. There is also a
second gap in our understanding of these dynamic correlations,
and that is the problem of overlapping communities. Information
filtering methods like the MST and PMFG are not clustering
algorithms, but there are clustering algorithms based off them.
There are also standard clustering algorithms like k-means and
hierarchical clustering that can be used to study the correlation
structure in a market. However, all clustering algorithms assume
that a stock can be a member-only of one cluster. Ultimately,
classifying stocks into clusters help us better imagine the
geometry of the correlations, but we do not claim that clusters
are independent of each other. We know that within clusters, the
interactions are stronger, and between clusters, the interactions
are weaker. Recently, researchers started to realize that in many
cases, nodes can belong tomore than one cluster, giving rise to the
problem of overlapping clusters. Currently, the identification of
the correct overlapping structures without sacrificing accuracy
and speed remains a daunting challenge. These hinder a deeper
understanding of co-authorship networks, protein-protein yeast
networks, and word association networks. Topological data
analysis (TDA) is a method that will kill both birds with one
stone. It is ideally suited to 1) identify geometrical structures that
are like clusters, and 2) elucidate the weak connections
between them.

So how do TDA concepts like simplicial complexes and
persistent homology help in filling these gaps? First, once the
size of the sliding window is decided, TDA can be quite robust in
deciding which topological space or genus to use for projecting
the correlation matrices. Indeed, TDA lets the data speak for itself
on choosing the optimal topological space and the value of the
genus. Second, by appealing to persistency, we do not presuppose
which correlation threshold value to use. Instead, we scan
through a full range of correlation threshold values, to
determine which range the topological structure is most
persistent. Third, TDA homologies are very robust to random
noises, and as a result, we can avoid technical nuisances such as
‘accumulation of noises’ or ‘overfitting the data’ when clustering
data in higher dimensions. Lastly, persistent homology can be
presented in the form of persistence barcodes, persistence
diagrams, persistence landscapes.

In this paper, our research problem is to use TDA to
understand topological changes accompanying crashes in the

Singapore and Taiwan stock markets in terms of simplicial
complexes, persistent homology, and other metrics. Our
hypothesis is that in different market states, different
topological features emerge, and TDA can be effective in
elucidating these changes. This paper is organized as follows:
In Data Section, we briefly introduce how to collect data on the
daily returns of the Straits Times Index (STI), the Taiwan
Capitalization Weighted Stock Index (TAIEX), and how to
preprocess them. In Topology, and Persistent Homology
Section we introduce the mathematical background of
simplicial complexes, persistent homology, and filtration. In
TDA Toolkits Section, we introduce TDA toolkits like
barcodes, persistent diagrams, Betti numbers, and Euler
characteristics. In TDA of Toy Models and Hypothesis on
Real Markets Section, we introduce toy models of TDA and
the hypothesis on real markets. In Results and Discussion
Section, we show our numerical results computed by TDA
and discuss how they confirm our hypothesis. Finally, in
Conclusion Section, we give concluding remarks and
perspectives.

MATERIALS AND METHODS

Data
Data Collection
First, we show how to collect price data from stocks in the
Singapore Exchange (SGX) [Taiwan Stock Exchange (TWSE)]
using Python pandas, and its function web. DataReader, and use
the Yahoo Finance API option. Second, to use this option, we
need to prepare all the tickers symbols in SGX (TWSE). The
procedure is as follows: 1) we go to the ‘My Screeners’ tab in
https://sg.finance.yahoo.com/, and choose ‘Singapore’ in the
‘Saved Screeners/Region’ tab, before choosing ‘Find Stocks’ to
see a list of ticker symbols. For SGX, there are 672 ticker symbols;
2) copy and save all of them into a file, and 3) using this file of
ticker symbols and pandas. web.DataReader’s Yahoo API to fetch
historical data between January 1, 2017 and April 30, 2019 from
the Yahoo Finance database and save as a CSV file. The Python
code to do so is shown in Code 1, and this code can be modified to
the TWSE (January 1, 2017 to March 31, 2020) or other markets.

Data Cleaning and Preprocessing
After we collected the raw data, the data needed to be cleaned.
First, some ticker symbols are duplicated, so we keep only one
copy. Second, for some ticker symbols, the Yahoo Finance API
gave an error and caused the program to halt, so we needed to
identify these and removed them from the ticker symbol list.
Finally, some of the data may include ‘NaN’s and we needed to
replace them with ‘0’s. However, if the time series contains more
than 50% ‘0’s, we also remove this ticker symbol from the list.
After cleaning, we ended up with the times series data for 560
distinct stocks.

Before we computed the cross correlations between stocks
from the time-series data to obtain the correlation matrices, three
procedures are necessary. First, we standardized the daily prices,
which is δxi � xi−xi�����������∑ (xi− xi)2/(t−1)

√ , where xi is the raw stock price for
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the ith stock, xl is the average stock price for the ith stock, t � 120
is the number of trading days over a six-month period. Second,
we smoothed the time series by averaging over a sliding time
window of 15 days (for a detailed explanation on why we choose a
15-days window, please see Supplementary Figure S1). Lastly,
we converted the daily stock prices to their derivatives, i.e.
Δxi(t) � δxi(t) − δxi(t − 1). In Figure 1A we show the stock
price derivatives within a 6-month period after pre-processing,
and in Figure 1B, we show the correlation matrix generated from
the derivative data. We converted the correlation matrix to a
distance matrix using the formula dij �

��������
2(1 − ρij)

√
. Finally, we

generated distance matrices for successive 6-month periods
that are one month apart, to use as input data for subsequent
TDA calculations. Other data formats acceptable for
TDA include point clouds, networks, or digital images. To
be more clear, the procedures are shown in a flowchart
(Figure 2).

Topology, and Persistent Homology
TDA is a mathematical apparatus developed by Herbert
Edelsbrunner, Afra Zomorodian, Gunnar Carlsson, and his
graduate student Gurjeet Singh [11–13]; it was popularized by

Carlsson’s paper [14] that later turned TDA into a hot field in
applied mathematics, and also found many applications in data
analytics. The foundations of TDA had been laid years before by
others in the fields of topology [15–19], group theory [20, 21],
linear algebra [22, 23], and graph theory [24–26].

To explain the concept of persistent homology, imagine we have
collected a bunch of data points that we refer to as a data cloud.
Next, imagine that there is a control parameter called the
proximity parameter ϵ, which defines the radius of an
imaginary ball centered at each of these data points. When
we gradually increase ϵ, the balls will grow outwards and
eventually touch other balls. The overlapping of these balls
form a unique topological characteristic that is unique to this
dataset, and hence we can use this unique topological
characteristic to differentiate nuances in the topologies of
different point clouds. This filtration process can be
demonstrated and visualized in Figure 3.

Through this encoding process, we can convert a point
cloud that is made from brain functional signals, or a
correlation matrix from financial time series data, to
filtration diagrams. From these filtration diagrams, we can
calculate barcodes, persistence diagrams, and other TDA
metrics for further applications.

FIGURE 1 | (A) The derivative data of a 6-month period collected from STI. (B) The cross correlation matrix is generated from the derivative data in (A). For the time
series and correlation matrices in this work, we will not show error bars to not distract the readers from the overall features.

CODE 1. | A Python code that implements the data collection procedure.
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Simplicial Complexes
A simplicial complex is an abstract collection of entities, which
consists of nodes (i, j, k, . . .), or sets of nodes
({i}, {i, j}, {i, j, k}, . . .). These collections of nodes or sets can
then be used to construct links, surfaces, and higher-dimensional
objects. For example, we can decompose an arbitrary simplicial
complex into its 0-simplexes (nodes), 1-simplexes (links), 2-
simplexes (faces), 3-simplexes (tetrahedrons) components. In other
words, simplexes are generalizations of a triangle in arbitrary
dimensions, and a simplicial complex is an outcome of performing
triangulation in arbitrary dimensions of the raw data. The simplicial
complex is a unique signature that characterizes the topological
structure of the data. Some of the common simplicial complexes
include Vietoris-Rips (VR) complexes [27], Čech complexes [16, 18],
Delaunay complexes [28], Alpha complexes [29], witness complexes
[30], as well as others. In this work, we used the VR complex for our
TDA calculations. VR is appealing because it approximates the more
exact Čech complexes but is more efficient to calculate [31].

Suppose we collected two sets of time-series data of the same
duration from a stock market. After we encode them into
simplicial complexes, these may be different in terms of their
local and global topologies. We then can use TDAmetrics such as
Betti numbers, Euler characteristics, barcodes, persistence
diagrams, persistence landscapes, and Wasserstein distance as
topological descriptors to quantify these differences. In the
following subsections, we introduce some of these
terminologies, their respective definitions, and elaborate on them.

Filtration
Here let us formalize the definition of the filtration procedure,
which is commonly done to obtain barcodes. By changing the
proximity parameter ϵ, we control the size of the balls and thus
their overlaps. At a specific ϵ value, some balls overlap while
others do not, and therefore we have a collection of 0-simplexes
(isolated nodes), 1-simplexes (pairs of linked nodes), 2-
simplexes (triangles), 3-simplexes (tetrahedrons), and so on.

Such a collection is called a sub-complex. If we increase ϵ further,
the sub-complex (and its topological features) may or may not
change. This procedure resembles what we see in physics: by
changing the external fields, e.g. temperature, or magnetic fields,
the system changes from one symmetry group to another. We call
this symmetry breaking. A filtration is conceptually similar to varying
the external fields, and observe how they result in different symmetry
groups. The difference is that in performing filtrations, we look at
how the topological features evolve. Mathematically, a filtration can
be described as a sequence

∅ � Σ04Σ14Σ2/4Σm � Σ,

where Σm � Σ is the simplicial complex, ∅ � Σ0 is the empty set,
and Σk4Σk+1 indicates that the kth sub-complex is included in
the (k+1)th sub-complex. In performing the filtration, we witness

FIGURE 2 | Flowchart of the procedure implemented. There are two parts; the first part involves data collection and pre-processing. The second part regards TDA-
related computations.

FIGURE 3 | A schematic diagram showing a data cloud, and how the filtration process results in outcomes of various overlapping of balls from different proximity
parameters ϵ (shown in the upper column). The bottom column is barcodes scanning through a full-range of proximity parameter ϵ values. β0 and β1 denote the 0-dim
and 1-dim Betti numbers, which can be deduced from the subfigures to be roughly 18→ 11→ 4→ 1, and 0→ 0→ 1→ 2, respectively.

FIGURE 4 | A pyramid illustrating sequential procedures of how we
make use of the original data and convert them into different forms of sets, i.e.
simplicial complexes, and to groups, fields, and rings. At the topmost stage,
we can use them for various applications, such as ML, and statistical
learning, etc.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 5722164

Yen and Ann TDA of STI and TAIEX

284

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


at that at ϵ � ϵk, there is a topological transition from Σk to Σk+1.
By tracking all these ϵkS, we know how the simplicial complex’s
topology changes. We can then characterize these topological
changes in terms of Betti numbers, Euler characteristics,
barcodes, persistence diagrams, and persistence landscapes.

TDA Toolkits
Homology Group
In a filtration process, one can imagine that for smaller ϵ, the
data points will have lesser overlaps; while we increase ϵ
further, balls start to grow in size and eventually touch
other balls, resulting in more overlaps; this continues until
ϵ become so large that all the balls overlap with each other,
leaving no space for holes to persist. Thus, for an intermediate
ϵ, we expect to see balls making some overlaps but not too
much, and the extents of these overlaps constitute different
topological characteristics in terms of ‘n-dimensional holes’.
Homology is a mathematical theory for studying these
n-dimensional holes that exist in simplicial complexes by
identifying which entities constitute these n-holes, and how
many there are.

As mentioned before, SCs are obtained from performing
a triangulation in arbitrary dimensions of the input data,
or a way to represent the data in terms of ‘sets’. But looking
at sets is sometimes hard to develop an overall,
comprehensive picture of the data, and also less

convenient for executing mathematical operations on
them. For this reason, mathematicians convert SCs, and
other topological sets into groups, rings, or fields, so that in
these constructs, they not only can discern between different
sets, but also can impose structures like associative binary
operations, the identity element, and the inverse element on
them. See Figure 4 for the procedures of encoding the raw data
into sets, TDA metrics, allowing for further applications.

Unlike manifolds, which are continuous sets of points, SCs
comprise discrete points instead. Although both can describe
topological features in the data space, there is one advantage in
using SCs, and that is one uses a triangulated (coarse-grained)
surface instead of a continuous one. Practically, we are interested
only in the n-holes and their numbers, and we only have limited
data. In this sense, SCs and their homology are adequate to fulfill
these goals.

Betti Numbers and Euler Characteristics
An Euler characteristic is used to classify different polyhedrons, it
reads:

χ � V − E + F � 2(1 − g),
where χ is the Euler characteristic of a polyhedron, V, E, and F are
the numbers of nodes, links, and surfaces, respectively. In this
formula, g is the genus of the polyhedron. χ can also be calculated
as a sum of Betti numbers,

FIGURE 5 | (A) Barcodes in 0, 1, and 2 dimensions. Each bar represent a generator of the homology group, i.e. H{p,q}
n (Σ), where {p, q} marks a lifetime, the rank of

H{p,q}
n (Σ) equals Betti number of homology groups in the nth dimension, the length of {p, q} signifies the persistence of the nth Betti number. (B) The barcodes can be

converted into persistence diagrams, where one of the bars in (A) is equivalent to one point in the persistence diagram. The lifetime of each bar in (A) can be transformed
into a perpendicular distance concerning the diagonal lines in (B). If A point that is farther away from the diagonal line implies a more persistent topological feature,
whereas a point that is closer to the diagonal line represents a less persistent feature.We found that the barcodes are rather robust and do not show fluctuations once the
dataset is fixed, thus we do not include error bars in all barcodes appearing in this paper.
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χ � ∑
{n≥ 0}

(−1)nβn(Σ),

where the nth dimensional Betti number βn is the dimension of
the nth homology group Hn(Σ) of the SC Σ. These are important
metrics that characterize the topology of the data.

Barcodes and Persistence Diagrams
Barcodes help us visualize the n-dimensional homology group
Hn(Σ) in terms of its generators. We understand that each bar
represents a generator of the persistent homology group
H{p,q}

n (Σ). This representation tell us that the number of bars

that are born at or before the pth filtration stage that are still alive
at the qth filtration stage is precisely the rank of H{p,q}

n (Σ), which
includes the essential classes that do not die with filtration [32].

The rank of the homology group in nth dimensions equals the
nth Betti numbers, which we use to calculate the Euler
characteristics χ. For more persistent bars, their topological
features are more important, whereas the topological features
of those that are less persistent can be treated as noises. Here, we
convert the barcodes into persistence diagrams in Figure 5.
Persistence diagrams carry similar topological information as
barcodes. It is more useful in constructing statistical topological
models that can be used to design weighted kernels.

FIGURE 6 | The toy models illustrating three different sequences of topological changes. (A)We start with two spherical shells of radius one and move them closer
until their surfaces touch, overlap, and finally merged into a larger single spherical shell. (B)We generate a sequence of surfaces of revolution that starts with a torus, then
one with a smaller hole, then a horn torus, a spindle torus, and finally a spherical shell. We also show a solid sphere. (C)We start with a spherical shell and then deform it
into ellipsoids, whose semi-axis we increase from 5→ 10→ 20.
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Computational Methods
TDA Toolkits
Numerically, we used two softwares to perform the TDA
calculations. The first software is called Ripser [33], which
is included inside the Python package TDA [34]. Another is a
Java program called Javaplex [35], which we used to calculate
Betti numbers and Euler characteristics. Javaplex supports
parallel computation in MPI and OpenMP, shortening the
computing time for calculating persistent homology in higher
dimensions. We installed Javaplex on Nanyang Technological
University High-Performance Computing Centre’s NYA2,
equipped with Sandy-Bridge Processors-cores (Intel(R)
Xeon(R) CPU E5-2680 @ 2.70 GHz), and 64 GB RAM per
Node. NYA2 runs Red Hat Enterprise Linux Server release 6.3
(Santiago) and manages job queues using the Load Sharing
Facility (LSF).

For some of the time windows, the Javaplex calculations failed
with the error message “OutOfMemoryError: Java heap space”
and “OutOfMemoryError: GC overhead limit exceeded”. Here we
offer two solutions. The first is to utilize more than 100 GB of
memory on client computers, which can be switched on by
adding a line “#BSUB -q MEM128G-S” in the LSF script. This
option allows the submitted jobs to access up to 128 GB of
memory. If the first solution fails, a second solution is to
reduce the upper limit of the filtration value, say a value near
1.0. These two options can in general solve the problem of the
memory shortage issue. On average, a job submitted to NYA2
accessing 16 CPU cores requires 1–3 days to finish. For each of
the calculations, we saved barcodes figures, n-dimensional Betti
numbers, Euler characteristics in separate folders for further
analysis.

TDA OF TOY MODELS AND HYPOTHESIS
ON REAL MARKETS

Before we analyze the SGX and TWSE data, and discuss their
results, as a proof-of-concept we first digress to demonstrate the
main idea behind our work by applying TDA to three toy models
with definite topological changes. In these three cases, we
randomly sampled data points on the surfaces or in the
volumes and then saved these data points in separate files.
Then, we use the Javaplex software to read in the files and
calculate the persistent homology and respective Betti numbers
up to dim 2. Finally, we use χ � ∑

{n≥ 0}
(−1)nβn(Σ) to calculate the

Euler characteristic. These results are shown in Figure 6.
In the first case (Figure 6A), we started with two spherical

shells of radius one that do not overlap. We then moved the two
shells closer until their surfaces touch, before we moved them
even closer that they overlap. For this sequence of configurations,
we saved the data points and thereafter invoked the Javaplex
software. In the third, overlapping configuration, we manually
deleted those data points that lie inside the spherical shells.
Finally, we compared this sequence of configurations against a
larger spherical shell. We found that χ went from 4→ 3→ 2→ 2,
which was consistent with the analytical results. The sequences of
Betti numbers provided even more information. As we went

through the sequence of configurations, β0 changed from
2→ 1→ 1→ 1, which agrees with what we expected, since β0
tells us how many connected components there are in the
configuration. We also found β1 � 0 throughout the sequence,
since it is the number of irreducible closed loops, and in all
configurations, we can always shrink a closed loop to a point.
Finally, we found β2 changing from 2→ 2→ 1→ 1, since it is the
number of voids enclosed within the different surfaces, so this
becomes 1 after the two spherical shells overlap.

For the second case (Figure 6B), we went through a sequence
of surfaces of revolution of two circles at increasing closer
distances. When the two generating circles were far apart, we
obtained a torus with a big hole, and when the two generating
circles were closer but still non-overlapping, we obtained a torus
with a small hole. When the two generating circles touched each
other, we ended up with a horn torus, which is a critical surface
with no holes but is pinched at a point. When the two generating
circles overlapped each other, we obtained a spindle torus, which
has an inner as well as an outer surface. Finally, when the two
generating circles overlapped completely, we obtained a spherical
surface. This last configuration is then compared against a solid
sphere. For this sequence, we found χ going from
0→ 0→ − 4→ − 1→ 2→ 1, which is the result of an
interesting interplay between the Betti numbers. Going
through the sequence, we found β0 � 1 throughout, because
there is only one connected object. In contrast, β1 went from
2→ 2→ 5→ 3→ 0→ 0 and β2 � 1 for all configurations, except
for the spindle torus (β2 � 2), and the solid sphere (β2 � 0). Since
β2 is the number of voids enclosed, we understand why β2 � 1 for
the spherical shell configurations, and why β2 � 2 for the spindle
torus. In this sequence, the most interesting change occurred
in β1.

For the final case (Figure 6C), we started with a spherical shell
and increased its eccentricity to get longer ellipsoids, with semi-
axis a going from 5→ 10→ 20. For all these different ellipsoids,
we found that χ � 2, confirming the fact that deformation alone
cannot change the topology or the Euler characteristic. We also
found β0 � 1, β1 � 0, and β2 � 1 for all these surfaces, as expected.

For all cases, we also computed the corresponding barcodes
and persistent diagrams for better insights into how they evolve
with topological deformations. These are shown in
Supplementary Figure S2.

Generally speaking, the cross correlations in a stockmarket will be
in the form of a high-dimension topological space, with more
complicated features than those shown above. Nevertheless, we
believe the insights derived from the toy models can help us grasp
the topological changes that occur during a stock market crash
(shown schematically in Figure 7). Just before the market crash
(Figure 7A), we show the cross correlations of the stock market as a
single giant cluster with four holes, which tells us that β0 � 1 and β2 �
4, while β1 will depend on the detail shape of the topological surface.
This strongly interconnected situation is typically generated by a
bubble in the market and can be viewed as the starting point of a
market crash [36, 37]. When the market crash starts (Figure 7B),
parts of the surface will break (red circles inFigure 7B) but overall the
giant cluster remains. The breaking of these two handles results in β2
going from 4 to 2, while β0 remains 1. For every handle broken, β1
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also decreases by 2. As the market crash progresses, the giant cluster
starts to crumble, giving rise to additional small clusters like the ones
shown in Figure 7C. When the number of connected components
increases, β0 goes from 1 to 5, and β2 decreases further to 1, because
there is only one hole remaining. The small clusters do not contribute
to β2 if they are homomorphic to spheres. Finally, at the end of the
market crash, many small clusters are produced by the dissociation of
the giant cluster, so β0 increases dramatically, but β1 and β2 become
small. Such a cluster fusion-fission scenario has been proposed
previously [38, 39], but we suspect TDA will provide additional
information regarding subtle topological changes that these models
cannot provide.

Armed with these insights, we proceed next to the research
question, that is to use TDA to examine the topological changes

associated with market crashes in the SGX and TWSE, to see how
well our hypothesis holds out.

RESULTS AND DISCUSSION

In this work, we examined two stock markets, i.e. the
Singapore Stock Market (STI), and the Taiwan Stock
Exchange (TAIEX). Both markets consist of roughly 600
stock components, and the economic scales of Taiwan and
Singapore are comparable. The time durations that we collect
data are from Jan 2017 to Apr 2019 for STI, and from Jan 2017
to March 2020 for TAIEX. For TAIEX, there is a small market
crash from Sep 2018 to Jan 2019, and a major crash in Mar

FIGURE 7 | A schematic diagram illustrating different states in the stock market across a market crash. (A) All stock components are interconnected and form a
single giant cluster with holes. (B) As themarket starts to crash, some of the connections are broken, but the single giant cluster remains as in case (A). (C) As themarket
crash progresses, the giant cluster remains, but part of it has fragmented into four smaller clusters. (D) At the end of the market crash, the stocks are now organized into
many small and disjoint clusters.

FIGURE 8 | The correlation matrices of STI from Jan 2017 to Apr 2019.
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2020 that is caused by the COVID-19 pandemic, whereas no
market crash was found for the STI.

Correlation Matrices
We visualize the complex dynamics in the two stock markets by
computing correlation matrices over six-month periods that are one

month apart. We used a heat map color scheme, where the highest
correlation value of 1 is red, and themost negative correlation of−0.1
is blue. These are shown in Figures 8 and 9 for STI, and TAIEX.

In Figure 8 for STI, it is clear that the average correlation is low
over most periods. The exceptions are the periods (Sep 2017, Feb
2018), (Oct 2017, Mar 2018), (Nov 2017, Apr 2018), and (Dec

FIGURE 9 | The correlation matrices of TAIEX from Jan 2018 to Mar 2020.

FIGURE 10 | The barcodes, and corresponding persistence diagrams for data collected from Apr 01, 2019 to Sep 30, 2019 in TAIEX.
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2017, May 2018). In Figure 9 for TAIEX, however, we observe
more drastic changes. The correlation matrix first becomes reddish
for the (May 2018, Oct 2018) period, and remains reddish until the
(Oct 2018, Mar 2019). It then became reddish again in the (Oct
2019, Mar 2020) period because of the COVID-19 pandemic.
Particularly, the few correlation matrices preceding the COVID-
19 crash were blue, making the reddening very sudden.

In the literature, spectral reddening can be used as early
warning signals to inform critical transitions [40–43]. Before
market crashes, the co-movement among stocks becomes
stronger, variations become increasingly concentrated at low
wavenumbers, and result in a reddish color in the spectral
density. Although inspecting different properties, both show
early warning signals by turning into red colors when
approaching these critical transition points.

Barcodes and Persistence Diagrams
The barcodes and their corresponding persistence diagrams for
TWSE data between Apr 2019 and Sep 2019 are shown in
Figure 10. In Figure 10, the left three figures are the barcodes
in 0-dim, 1-dim, and 2-dim, respectively, whereas the right three
figures are the corresponding persistence diagrams. In the right
three figures, the x-axis refers to the time of birth, while the y-axis
refers to the time of death for each homology group, represented
by a dot on the figures. We also use red arrows to indicate which
bar in the left figures corresponds to which dot in the right ones.
When the period is varied, the shape of these figures also changes,
revealing the dynamics of the topological structures.

For the persistence diagrams, the dots in the 0-dim figure
only move vertically in time, whereas for those in 1-dim, and
2-dim, the data points can cluster together forming a small
bump, flatten out along the diagonal line, or translate toward
or away from the origin along the diagonal line. During
market crashes, intriguing dynamical properties can be
seen in these figures. To make a clearer comparison, we
show in Figure 11 the aggregated STI and TAIEX 5-years
historical data and discuss the features seen in Supplementary
Appendix Figure A1 and Supplementary Appendix Figure
A2, where we show all the barcodes and persistence diagrams
for the data collected from SGX and TWSE.

In Figure 11A, we find a local market minimum from Sep
2018 to Jan 2019, spanning roughly five months following a small
crash in Sep 2018. From the barcodes and persistence diagrams in
Supplementary Appendix Figure A1, we discover an interesting
feature related to this small crash. When we compare the 1-dim
and 2-dim persistence diagrams for the (Mar 2018, Aug 2018)
period (not including the crash) against those of the (Apr 2018,
Sep 2018) (including the crash) in Supplementary Appendix
Figure A1, the data points flatten out along the diagonal line,
suggesting that in these two dimensions, the persistence of the
homology groups weakens. However, the 0-dim result shows no
signs of change when we compare these two subfigures. This
episode of a persistence-weakening in 1-dim and 2-dim
continued until the (Oct 2018, Mar 2019) period in
Supplementary Appendix Figure A1 when the flattening-out
phenomenon disappears. Looking at the barcodes in the same
period, we witnessed that the 1-dim and 2-dim bars, which are
generally wider before the (Mar 2018, Aug 2018) period,
becoming visibly shorter in the period (Apr 2018, Sep 2018)
to (Oct 2018, Mar 2019). To aid visualization, we used red-shaded
windows in Supplementary Appendix Figure A1 to identify
those barcodes manifesting persistence weakening. In the
Supplementary Figure S4, we also show schematically how
bars in the barcodes become dots in the persistent diagram
during a normal market phase and a market crash phase.

We observed an even stronger persistence weakening for
the (Oct 2019, Mar 2020) period than for the small crash.
Going back to the barcodes, we found the widths of the bars
becoming smaller as the distribution of data points flatten in
the persistence diagram. We also found a large gap of
1.2< ϵ< 1.4 between the death of one bar, and the birth of
the next bar in the 2-dim barcode. To unravel how this
persistence-weakening phenomenon occurs, we reduced the
time windows’ sizes to 2, 3, 4, and 5 months, and show the
results in Figure 12.

In Figure 12, we witness some interesting features. First, in the
0-dim persistence diagram, the dots seem to be lower compared
to those periods without market crashes. This corresponds to a
shorter life expectancy for the homology groups, which can also
be observed in the barcodes. In the 1-dim and 2-dim barcodes, we

FIGURE 11 | The (A) TAIEX and (B) STI index for the past five years, which include the period we collected our data. For TAIEX, the period is from Jan 01, 2017 to
Mar 31, 2020. For STI, the period is from Jan 01, 2017 to Apr 30, 2019. In this figure, the gray bands are periods seen from Figure 14 where the Euler characteristic is
positive.
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find the barcodes falling off rapidly between ϵ � 0 and ϵ � 0.2,
and more slowly thereafter. This suggests that ϵ � 0.2 (ρ � 0.97)
is a characteristic scale that emerged only during the COVID-19
crash. To quantify the persistence-weakening phenomena in
TWSE, we selected three periods and analyzed the H1 and H2

persistence diagrams (see Supplementary Figure S3). In the
normal market state during the six periods (Jan 2017, Jun
2017) to (Jun 2017 to Nov 2017), the two principal variances
were found to be σ21 � 0.361 ± 0.036, and σ22 � 0.066 ± 0.003 for
H1. For H2, we found that σ21 � 0.371 ± 0.07, and
σ22 � 0.036 ± 0.001. For the period (Sep 2018, Feb 2019),
which covers the mini-crash, we measured σ21 � 0.763, and σ22 �
0.046 for H1; for H2, we measured σ21 � 0.860, and σ22 � 0.024.
Finally, for the period (Oct 2019, Mar 2020), we obtained σ21 �
0.770 and σ22 � 0.041 in H1; for H2, σ21 increased to 0.931, while σ

2
2

become 0.020. To conclude, during the two market crashes in
TWSE, the second principal variance was reduced, implying a

shortened persistence lifetime, a manifestation of the persistence-
weakening phenomena that come along with crashes.

Another way to quantify the persistence weakening is through

the persistent entropy, E(F) � − ∑n
i�1

pilog(pi) where F is the

distribution of lifetimes li � yi − xi (xi, yi are the birth time
and the death time of homology group i in the barcode with n
segments), SL � ∑n

i
li is the sum of all lifetimes, and pi � li/SL can

be thought of as the ‘weight’ of homology group i in the barcode
[44, 45]. The persistent entropy E(F) is maximum when all
homology groups have the same lifetimes, and is minimum
when the lifetimes of homology groups are all different. E(F)
thus allows us to distinguish between narrow and broad
distributions of lifetimes, as well as smoothly varying and
multimodal distributions of lifetimes. We chose to compute
E(F) for the same three periods used to calculate the covariance
matrix and principal variances. For the normal market state during

FIGURE 12 | The barcodes and persistence diagrams covering the pandemic COVID-19 crash in March 2020. The first column is a two-month window result, and
the subsequent columns correspond to 3, 4, 5, and 6-months time windows, respectively.
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the six periods (Jan 2017, Jun 2017) to (Jun 2017 to Nov 2017), we
found that E(F) � 2.8185 ± 0.004, 2.741 ± 0.028, 2.733 ± 0.072
in 0–2 dim respectively; for the period (Sep 2018, Feb 2019), E(F)
remained roughly the same at 2.80 for 0-dim, but decrease to 2.55
for 1-dim, andmore significantly to 2.1 for 2-dim. For the COVID-
19 crash, E(F) for 0-dim remained at 2.80, while for the other two
dims, they became 2.40 and 1.94. This suggests that E(F) for 2-dim
changes most dramatically across market crashes.

For SGX (Supplementary Appendix Figure A2), the
persistence-weakening phenomena are less significant,
except for (Sep 2017, Feb 2018), (Nov 2017, Apr 2018), and
(Dec 2017, May 2018). In these periods, persistence-weakening
only occurs in the 2-dim persistence diagrams but not in their
1-dim counterparts. This is rather different from those
observed in the two TAIEX crashes. We believe this is
because over the period Jan 2017 to Apr 2019, the largest
downward movement of the STI is still smaller than the
smaller TAIEX crash, as such the persistence weakening is
less prominent. Referring to Figure 11B, we believe these
downward movements were market corrections in the STI,
and the analysis we introduced thus far cannot help to classify
them. Consequently, we introduce the Betti numbers and Euler
characteristics in the next subsection to resolve this issue.

Other Works Addressing Persistence
In 2015, Teh and Cheong [38] studied dynamics in the SGX
during the Global Financial Crisis using a cluster fusion-fission

approach. They found that before the crisis, a giant cluster of
stocks emerged in the SGX. This later broke up into small clusters
after Lehman Brothers went bankrupt. Also, they found that the
probability that a pair of stock remain in the same cluster decays
exponentially with two time scales i.e. 3 weeks, and 7 weeks. They
called these temporal correlations the ‘persistence’ of stocks. In
our work, since our sliding window size is one month, we can also
measure the persistence in both time scales, in terms of n-holes
that emerge in the two-time windows.

We show the mean value of bottleneck distance D (we pick
three points in Jan 2017 as origins, and calculated D with
subsequent n � 11 months for the origin), and its standard
deviation in SGX over the whole of 2017 in Figure 13. We
discovered that D increased steadily over the next four windows
for H0, and then saturated around 0.25, whereas for H1 and H2, D
also increased but less significantly over the n-windows. A larger
D implies that the homology groups are less persistent, whereas
the converse means the persistence is stronger. As for the case of
TWSE, we investigated two periods. The first period is (Jan 2017,
Dec 2017), the same as the first period studied for the SGX, and
the second is (Sep 2017, Aug 2018), which is in the middle of the
mini-crash. For these two periods, we observe dissimilar features
for H0. In the first period,D grew from an initial value of 0.05, and
saturated around 0.2, before dropping steeply to 0.07. For the
second period, H0 stayed between 0.13 and 0.15, before jumping
to a larger value of roughly 0.22 seven months later. As expected,
the bottleneck distance increases and then decreases over the
course of a market crash.

FIGURE 13 |Bottleneck distances D calculated for (A)H0, (B)H1, and (C)H2 for the origin month (we pick three points in Jan 2017 as origins, and calculated Dwith
subsequent n � 1 months). The solid lines are the mean values, and the vertical bars are the standard deviation for each data point. (D–F) are the same as (A–C) but for
normal market states of TAIEX, and (G–I)we select three points in Sep 2018 as origins, and calculated Dwith subsequent n � 11months, covering the mini market crash
of TAIEX.
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TABLE 1 | (A) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in STI from Jan 2017 to Nov 2018. (B) Euler characteristics, and kth Betti numbers for
k � 0 − 3. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019. Two periods cover the two crashes. We have calculated βk specifically for the
period in TAIEX (Jan 2017 to Jun 2017) 10 times to test if βk fluctuates; our results confirmed that all arrived at the same βk and χ. We therefore will not include the error bars for
the Betti numbers and Euler characteristics.

Intervals χ β0 β1 β2 β3

(A) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in STI from Jan 2017 to Nov 2018
01/17 − 06/17 14 3 7 42 24

02/17 − 07/17 16 4 3 64 49

03/17 − 08/17 30 3 7 69 35

04/17 − 09/17 8 4 5 65 56

05/17 − 10/17 25 4 14 54 19

06/17 − 11/17 10 2 20 47 19

07/17 − 12/17 35 3 22 69 15

08/17 − 01/18 −12 5 22 14 9

09/17 − 02/18 −25 25 53 6 3

10/17 − 03/18 −1 23 35 16 5

11/17 − 04/18 −4 28 38 11 5

12/17 − 05/18 −5 24 41 18 6

01/18 − 06/18 −11 23 58 34 10

02/18 − 07/18 45 5 17 70 13

03/18 − 08/18 63 3 23 100 17

04/18 − 09/18 40 3 30 75 8

05/18 − 10/18 28 3 23 59 11

06/18 − 11/18 15 4 31 64 22

07/18 − 12/18 −7 2 30 69 48

08/18 − 01/19 −9 7 46 43 13

09/18 − 02/19 −19 28 70 28 5

10/18 − 03/19 34 2 29 71 10

11/18 − 04/19 11 3 29 60 23

(B) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019

06/18 − 11/18 23 2 5 62 36

07/18 − 12/18 27 45 21 3

08/18 − 01/19 28 40 16 4

09/18 − 02/19 54 74 18 1

10/18 − 03/19 26 36 21 11 0

11/18 − 04/19 −3 6 34 44 19

(Continued on following page)
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kth Betti Numbers and Euler Characteristics
In the literature, econophysicists use cross correlations to
distinguish between different market states, like the bull and
bear market states, as well as the market correction state. In a
market correction state, the market condition resembles a
random walk process, and thus the cross correlations between
stocks are random matrix-like, and the distribution of their
eigenvalues resembles a Marčenku–Pastur distribution (MPD).
Following Reimann et al. and Santos et al. [46, 47], we can also use
the kth Betti numbers and Euler characteristics as fingerprints to
classify market states in the STI and TAIEX. According to
Reimann et al. and Santos et al., different correlation matrices
can have higher similar fingerprints and thus represent the same
topologies.

In [46, 48], the authors also proposed to use the Euler entropy
Sx � ln(∣∣∣∣χ∣∣∣∣) as an alternative entropy construct, instead of the
conventional Boltzmann entropy. They used the Euler entropy to
inform whether there are topological phase transitions at any
specific time or correlation values. According to their findings, a
negative χ can be geometrically connected to a sheet of

hyperboloid with negative curvature, at χ � 0 the hyperboloid
become cone-like, on the edge of breaking into two hyperboloids,
and finally a positive χ, where the hyperboloid breaks into two
hyperboloids. Hence, when χ changes from a positive value to a
negative one, we can identify a critical point. At these points, the
Euler entropy explodes (ln|0|→ −∞) and become singular. In
statistical mechanics, when the system approaches a critical point,
we expect to see the susceptibility function become non-analytic.
In view of this, we can also use the Euler entropy to analyze and
classify different market states.

Here, we show the kth Betti number and Euler characteristics
for different periods in the SGX (TWSE) in Table 1. For TWSE,
we chose two periods of time, i.e. (Jun 2017, Dec 2018), and (May
2019, Oct 2019), to calculate χ. These periods correspond to the
two TAIEX crashes. Also, we calculated up to 2-dim Betti
numbers, because for TWSE, we were not always able to
compute the 3-dim Betti numbers. From July 2018 to Nov
2018, we found that χ was positive, and become negative in
Dec 2018. From June 2019 to Sep 2019, χ stayed close to zero, and
then suddenly jumped to 98 in Oct 2019, whose time window

TABLE 1 | (Continued) (A) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in STI from Jan 2017 to Nov 2018. (B) Euler characteristics, and kth Betti
numbers for k � 0 − 3. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019. Two periods cover the two crashes. We have calculated βk specifically for
the period in TAIEX (Jan 2017 to Jun 2017) 10 times to test if βk fluctuates; our results confirmed that all arrived at the same βk and χ. We therefore will not include the error bars
for the Betti numbers and Euler characteristics.

Intervals χ β0 β1 β2 β3

12/18 − 05/19 −10 23 44 11 0

05/19 − 10/19 −36 19 79 24

06/19 − 11/19 −2 6 22 28 14

07/19 − 12/19 −38 1 6 10 43

08/19 − 01/20 −33 1 6 23 51

09/19 − 02/20 −7 11 46 31 3

10/19 − 03/20 98 106 10 2

FIGURE 14 | The Euler characteristic χ in (A) TAIEX and (B) STI against dates. Each date represents a six-month period in which the correlation matrix was
constructed. Besides, different dates are associated with different values of ϵ. The gray bands are over the same periods shown in Figure 11 and cover Euler
characteristics that are positive.
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included the COVID-19 crash in Mar 2020. Based on our results,
both crashes seem to be associated with large positive χ values
instead of negative ones. We can understand a positive χ as the
result of many isolated hyperspheres, while a negative χ comes
from averaging the curvature over hyperbolic bridges after some
hyperspheres merged. This conclusion is also supported by the
behavior of β0, whose average values over the two periods are 31.6
and 98 respectively, suggesting that the stock components are
fragmented rather than agglomerated. On the other hand, while χ
is 23 and 27 respectively for (June 2018, Nov 2018) and (Jul 2018,
Dec 2018), the values for β0, β1, and β2 are different, implying that
their topologies are dissimilar. Our findings agree with our
hypothesis that during crashes, stock components tend to
break up into fragments, even though the overall cross
correlations are high.

Going on to the SGX, where the Euler characteristic was
computed up to the 3-dim Betti numbers, we see from
Figure 14B four topological transitions (marked by brown
arrows). These imply that from Jan 2017 to Apr 2019, even
though the signatures were weak in the cross correlations, SGX
switched between different topological phases. We classified the
market period from Jan 2017 to July 2017 as the first market state,
where χ has an average value of around 20. The second market
state was from Aug 2017 to Jan 2018, when χ became negative.
The third market state was from Feb 2018 to Jun 2018, where χ
became positive again. Finally, the fourth market state started
from Jul 2018 and ended in Sep 2018, during which χ turned
negative a second time. Thereafter, χ was positive for the last two
months. The Betti numbers in Table 1 show more subtle
behaviors that the χ alone cannot reveal. For example, in the
first period, we see that β0 ≈ 3 and β2 ≈ 58.5, whereas β1 was
separated into two groups, one averaging 5.5, while the other

averaging 18.6. β3 was also separated into two groups, one having
an average of 41, while the other averaging 17.6. These are in line
with the insights we developed in TDA of Toy Models and
Hypothesis on Real Markets Section, that we cannot deduce the
topology of the data by simply looking at χ, but must also check
the details of βn. We found similar situations for other periods
(Aug 2017 to Jan 2018, Jul 2018 to Sep 2018) in SGX.

To show that we indeed observe in the real market data
topological changes described in our hypothesis in TDA of
Toy Models and Hypothesis on Real Markets Section, we
investigated specifically the mini-crash of TAIEX over four
time periods. One is just before the crash (Jun 2018 to Nov
2018), two is during the crash (Sep 2018 to Feb 2019) and (Oct
2018 to Mar 2019), and the last is just after the crash (Dec 2018 to
May 2019). Here let us point out an important limitation of the
Betti numbers, i.e. they do not tell us how big the clusters are. For
example, the same set of Betti numbers can describe a collection
of clusters that are roughly the same size, some with holes, some
without; this market is not close to a crash. Or it can describe a
collection of clusters, one of which is a giant cluster containing
most of the holes; a market like this is close to a crash. This means
that βn must be supplemented by traditional clustering analysis,
where it is easier to see giant clusters, but difficult to understand
topological changes.

To this end, we show in Figure 15 the results of average-
linkage hierarchical clustering based on the cross-correlation
matrices of the four periods. In the first period, we found one
giant cluster co-existing with two small clusters. β0 � 2 for this
period is close to the number of clusters we found, confirming our
hypothesis that before the crash, we have a growing giant cluster.
By tracking which clusters the 671 stocks belong to, we found that
in the second period, one of the smaller clusters was absorbed by

FIGURE 15 | The hierarchical clustering dendrogram for four periods in TAIEX, i.e. (A) from Jun 2018 to Nov 2018, (B) Sep 2018 to Feb 2019, (C)Oct 2018 to Mar
2019, and (D) Dec 2018 to May 2019.
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the giant cluster. In the third period, this membership
information revealed the initial stages of the giant cluster
breaking up, as it ejected two smaller clusters. For the last
period, we now found 12 different clusters, suggesting that we
were near the end of the market crash. This fusion and fission
phenomenon is in line with the hypothesis we made (see
Figure 7D). To tease out subtle topological changes to the
giant cluster as the market crash progressed, we looked to
changes in the Betti numbers. This is possible because, unlike
the use of a single criterion to group stocks in hierarchical
clustering, TDA uses multiple criteria to accomplish this task.
For example, it is possible for the giant cluster to continue
absorbing stocks while it is ejecting others. The overall change
in the number of clusters is reflected in β0, however with β0 alone
we cannot distinguish between 1 – 2 � −1 and 5 – 6 � −1. These
two scenarios may be differentiated by the other Betti numbers.
Specifically, we found that β2 changed from
62→ 3→ 4→ 1→ 11→ 44→ 11 starting from the period (Jun
2018 to Nov 2018) to the period (Dec 2018 to May 2019),
implying an initial decrease in the number of 2D holes just
before the crash (Figure 7A), becoming 1 in the middle of the
crash (Figure 7B), before increasing again just after the crash
(Figure 7D).

We also wanted to check if there are any handle-breaking
events during real market crashes. For example, if we start with a
torus, the Betti numbers would be β0 � 1, β1 � 2, and β2 � 1. If
the handle of the torus breaks, the object remaining would be
homomorphic to a sphere, which has β0 � 1, β1 � 0, and β2 � 1,
indicating that handle breaking is a topological change whose
signature is (Δβ0,Δβ1,Δβ2) � (0,−2, 0). To track these
topological changes, we kept only the giant cluster in each of
the period, and recomputed the Betti numbers within these
components. During the TAIEX mini-crash, we found the
sequence 1→ 4→ 1→ 2 for β0, which tells us that the giant
cluster for the second period is the least homogeneous. Going
beyond β0, we found the sequence 23→ 61→ 1→ 0 for β1. This
tells us that the initial giant cluster already contained many
irreducible loops, and this number of irreducible loops
increased further in the second period as the giant cluster
increased in size. By the third period, most of these irreducible
loops have disappeared, and by the fourth period, the giant cluster
remaining has a simple topological structure. Finally, for β2, we
found the sequence 78→ 29→ 44→ 2. Specifically, β2 (the
number of enclosed volumes) and β1 (the number of
irreducible loops) can together tell us more about the topology
of the simplicial complex. For example, β1 � 0, β2 � 1 for a
spherical shell, whereas for a torus, β1 � 2, β2 � 1. In the first
period, we found that β1 < β2. This tells us that the giant cluster
contains many enclosed volumes that are not holes (because every
hole in the simplicial complex must be accompanied by
irreducible loops). In the second period, we found instead that
β1 > β2, and in fact β1 ≈ 2β2, suggesting that all the enclosed
volumes have become holes. The number of handles thus
increased from the first period to the second period (although
we cannot exclude the possibility that a few of them might have
broken, although it is unlikely for many to have broken). From
Table 1, we see that the giant cluster broke up most vigorously

during the second and third period. Here we see that beyond this
fragmentation, the topological changes associated with the
second and third periods are very different: in the second
period, enclosed volumes became holes, whereas in the third
period, the handles of these holes broke and more enclosed
volumes emerged. Furthermore, because β2 was large in the
fourth period, the fragmentation products are closer to being
spherical shells than they are to solid spheres.

MST, PMFG, and TMFG
In the econophysics literature, we celebrate insights on stock
markets obtained using correlation filtering methods. From
Mantegna’s work [8], we learned to project an arbitrary
correlation matrix onto a minimal spanning tree, requiring
only N − 1 links when there are N nodes, to visualize the
correlational structure of stock markets. However, there is no
reason why we should admit only N − 1 links. According to
Tumminello et al. [9], the number of non-intersecting links in a
graph G with genus g is at most 3(n − 2 + 2g), and therefore we
may project the correlation matrix onto manifolds with different
genus g to keep more links or fewer links. The simplest such
projection is onto a sphere (g � 0), or other manifolds with a small
genus. The graph that results from projection onto a sphere is
planar and is therefore called a planar maximally filtered graph
(PMFG). A related method, the triangular maximally filtered
graph (TMFG) [10], that checks local planarity but not globally
that the genus is zero. This is computationally more efficient and
can be parallelized for very large datasets. However, there is no
reason to believe that g � 0 is the optimum genus for all
correlation matrices computed from stock markets. We believe
that genus g implied in Table 1 is optimum because they are
computed in an unbiased fashion through the TDA filtration
procedure. We can use this optimum genus to systematically
improve the efficacy of such information filtering methods.

MST methods have been used to track topological changes
during market crashes. To name a few, Onnela et al. [49, 50]
investigated the US stocks during the 1987 Black Monday and
found that the diameter of the MST decreased during the market
crash, so this feature can be used as a universal indicator of
market crashes. We ourselves also used the MST of the 10 US
Dow Jones economic sectors [51] and the 36 Nikkei industry
indices [52] in conjunction with time-series segmentation, to find
a core-fringe structure during crizes. In the same spirit, Wilinski
et al. [53] and Sienkiewicz et al. [54] investigated market crashes
in the Frankfurt Stock exchange (FSE), and the Warsaw Stock
Exchange (WSE), and concluded that a two-transition process
characterizes market crashes universally. The first transition is
from a hierarchical scale-free MST to a superstar-like MST,
followed by a second transition to a power-law MST decorated
with star-like trees or hubs. In using the MST, they have assumed
that loops (β1) in the networks can be ignored. In this sense, the
present is a natural extension to what they have done, where we
take a more detailed look into the topological transitions.

Ultimately, informational filtering methods such as MST or
PMFG are designed to produce connected graphs and are thus
not the best choice for identifying fragmented clusters. To
identify these, we can of course use the minimal spanning
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forest (MSF) [55] or the directed bubble hierarchical tree (DBHT)
[56, 57] methods modified from the MST or PMFG. Here, we
would like to stress that most clustering approaches are limited to
β0 and β1, and cannot differentiate topological changes beyond β1.
TDA is promising because it is an elegant extension beyond 0-
simplices and 1-simplices, allowing us to unravel subtle
topological changes during market crashes.

Outlook and Perspective
Several future directions are possible based on this work. First,
in MST, PMFG, and TMFG Section, we mention that the
upper bound of the number of links for information filtering
methods involving projection to manifolds with genus g is
given by 3(n − 2 + 2g). The Euler characteristic listed in
Tables 1(A, B) can be also be used to calculate the genus g
via χ � 2(1 − g). With this we are not required to assume a
priori that the optimal manifold to project has g � 0 or close to
0. Second, Bubenik [58] had proposed to use persistence
landscapes, which is a Banach space that can be converted
from persistence diagrams. We then can do statistical
averaging of the persistence landscapes, and use the result
to design persistence weighted kernels, see for example this
very recent work [59]. Persistence weighted kernels can fully
maximize the strength of ML algorithms in making stock price
predictions. Third, we identified two market crashes in TWSE
and several topological phase transitions in SGX.

A pearl of commonwisdom that can be gleaned from [47] is that
the number of simplices (kth Betti numbers), in general, will peak at
k � 6 to k � 8, before dropping to zero at k � 11. More computing
resources are required to carry out future works in this direction to
test at which k the number of simplices actually peak, and at which k
it finally dropped to zero. Also, in Reimann’s work, they investigated
directed simplices instead of undirected ones. The former finds
applications in educational science, for example [60]. Also, a recent
work that applied persistent homology in investigating co-
occurrence networks had shown promising results [61].

CONCLUSION

In this work, we collected daily price data from SGX and TWSE
and analyzed them using persistent homology and TDA toolkits.
We then made a case for TDA to be employed alongside the other
state-of-the-art network embedding techniques including the
MST, PMFG, TMFG, in analyzing the topological structures.
We were drawn to the application of Persistent Homology (PH)
and TDA in complex systems for three reasons: ) PH and TDA
are unbiased; ) they scan through a full range of correlation values
instead of using only one or two specific values; and ) it is less
susceptible to random noises.

We then utilize three toy models to illustrate our hypothesis in
Introduction Section, that is “in different market states, their
topological features are also changing accordingly, and TDA can
be effective in scrutinizing these changes.” We showed in these
toy models, including spheres, toruses, and ellipsoids, how χ, the
Betti numbers, the barcodes, and persistence diagrams change
with topological changes. Also, we use schematic diagrams to

illustrate different market states, what the topologies could be
like, and argue what their possible Betti numbers and χ’s could be.

Our results revealed unexpected and promising findings in the
stock markets. In TWSE, we found a small crash from Sep 2018 to
Jan 2019, followed by a larger crash in March 2020, which is due to
the COVID-19 pandemic. For these two crashes, we performed three
tests using TDAmethods. The first test was to quantify a persistence-
weakening phenomenon in the barcodes and persistence diagrams.
This persistence-weakening phenomenon was also discovered in the
SGX, suggesting that it might be universal. However, there were no
reported crashes in the SGX for the period studied. To understand
this apparent inconsistency, in the second test we calculated the Betti
numbers and the Euler characteristic of different 6-months windows
in both markets. Our results suggest that market crashes in TAIEX
and STI are associated with χ > 0, but themarket crash signatures are
stronger and have cleaner interpretations in β0.Whenwe scrutinized
the changes to β0, β1, and β2 of the giant cluster over four time
periods before, during, and after the TAIEX mini-crash, we found
that at the beginning of the crash, the giant cluster has many holes
and many more enclosed volumes. As the market crash progressed,
these enclosed volumes first became holes, before the handles of
these holes broke, to give rise to fragmentation products that were
closer to spherical shells than they are to solid spheres. Finally, in the
last test, we found the dim-2 persistent entropy decreasing
significantly across market crashes. To conclude we found that
TDA confirmed most parts of our hypothesis, but also suggested
that the topological changes surrounding a market crash are more
complex than what we had imagined.
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Characteristics of Principal
Components in Stock Price
Correlation
Wataru Souma*

College of Science and Technology, Nihon University, Funabashi, Japan

The following methods are used to analyze correlations among stock returns. 1) The
meaningful part of the correlation is obtained by applying random matrix theory to the
equal-time cross-correlation matrix of assets returns. 2) Null-model randomness is
implemented via rotational random shuffling. 3) Principal component analysis and
Helmholtz-Hodge decomposition are used to extract leading and lagging relationships
among assets from the complex correlation matrix constructed from the Hilbert-
transformed data set of asset returns. These methods are applied to price data for
445 assets from the S&P 500 from 2010 to 2019 (2,510 business days). Additional analysis
and discussion clarify key aspects of leading and lagging relationships among business
sectors in the market. Numerical investigation of these dataset reveals the possibility that
leading and lagging relationships among business sectors may depend on gross market
conditions.

Keywords: S&P 500, stock return, cross-correlation matrix, random matrix theory, principal component, complex
correlation matrix, complex hilbert principal component analysys, helmholtz-Hodge decomposition

1 INTRODUCTION

The analysis of big data can reveal novel aspects of nature and society. However, data often contain
noise, making it necessary to distinguish the signal from the noise. Principal component analysis
(PCA), independent component analysis, machine learning, and other techniques have been applied
to extract the meaningful components of various datasets. About 20 years ago, randommatrix theory
(RMT) was introduced to distinguish the components of a dataset from the noise. [1, 2] developed a
“null-hypothesis” test based on RMT. In paticular, they compared the properties of empirical equal-
time cross-correlation matrix to those of a random matrix and considered deviations from the
random matrix case to suggest the presence of meaningful information. They compared the
distribution of eigenvalues of this empirical cross-correlation matrix with the Marčenko-Pastur
distribution [3], which is theoretically derived from so-called random Wishart matrices. They
considered the eigenvector corresponding to the largest eigenvalue to represent the “market” itself.
They also compared the distributions of the components of eigenvectors with the Porter-Thomas
distribution [4], finding that the eigenvector corresponding to the largest eigenvalue differed
remarkably from the Porter-Thomas distribution.

[5] confirmed the findings by [1, 2]; the meaningful part represents a market mode and group
structures, such as industry categories and stocks with large market capitalization. [6] applied RMT
to the equal-time cross-correlation matrix of assets listed on the first division of the Tokyo Stock
Exchange (TSE). [7] clarified the structure of the meaningful part of the equal-time cross-correlation
matrix of assets listed on the New York Stock Exchange (NYSE). [8] investigated the empirical
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equal-time cross-correlation matrix of stock price fluctuations on
the National Stock Exchange of India, finding that this emerging
market exhibited strong correlations in the movements of stock
prices compared to developed markets such as the NYSE. [9]
analyzed the empirical equal-time cross-correlation matrix of
stock price fluctuations on the Tehran stock exchange and in the
Dow Jones Industrial Average (DJIA), showing that the DJIA is
more sensitive to global perturbations. [10] investigated the
structures of networks constructed from principal components
of the empirical equal-time cross-correlation matrices of stock
price fluctuations on the Tehran stock exchange and in the DJIA.
[11] constructed an autocorrelation matrix of a time series and
analyzed it based on the random-matrix theory approach and
fractional Gaussian noises.

[5] constructed a “filtered” cross-correlation matrix, from
eigenvalues and eigenvectors outside the random matrix
bound and applied this cross-correlation matrix to portfolio
optimization [12]. The result they obtained shows that
predicted risk was much closer to the realized risk than the
traditional portofolio optimaization. [13] applied the portfolio
optimization method to the stocks listed on the first division of
the TSE and showed that the performance of the portfolio
constructed by this method was usually better than that of
market index such as TOPIX. [14] extended this portfolio
optimization method to a case involving a short sale of stocks.

RMT is a powerful method for distinguishing meaningful
components and noise in financial time-series data. The null
hypothesis of randomness in this method assumes randomness in
cross-correlation and autocorrelation. However, the
autocorrelation of stock returns cannot be considered random
(for example, see [15]. Thus, a new method is needed that
preserves autocorrelation but randomizes cross-correlation.
[16, 17] developed a method referred to as rotational random
shuffling (RRS). In RRS, empirical time-series data are shuffled
rotationally in the time direction with a periodic boundary
condition imposed. Therefore, equal-time cross-correlation
matrices constructed from RRS time series preserve almost all
the autocorrelation information of each time series while
randomizing cross-correlation. By comparing the distribution
of eigenvalues of this RSS cross-correlationmatrix with that of the
empirical cross-correlation matrix, meaningful components and
noise can be successfully distinguished.

It is natural to consider the application of RMT to different-time
cross-correlation matrix. [18] introduced so-called complex Hilbert
principal component analysis (CHPCA), in which the cross-
correlation matrix is defined in the complex space. The
components of eigenvectors of the complex cross-correlation
matrix distribute in the complex plane, allowing the recognition
of lead-lag relationships between components based on the
difference in angle between them. [19] applied CHPCA to time-
series data set for 483 assets representing the S&P 500 from 2008 to
2011 (1,009 business days) and constructed a correlation network in
which pairs of assets with phase differences below a certain threshold
were weighted based on correlation strength. [20] explored data
from 1990 to 2012 for foreign exchanges and stock markets in 48
countries using CHPCA and extracted a significant lead-lag
relationship between the markets. [21] applied CHPCA to a

time-series data for assets listed on the NYSE from 2005 to 2014
and clarified lead-lag relationships among stocks, investment trusts,
real estate investment trusts (REITs), and exchange traded funds
(ETFs). [22, 23] applied CHPCA to the early warning indicators of
financial crizes proposed by the Bank of Japan and explored changes
in lead-lag relationships between indices before and after financial
crizes.

When applying CHPCA to time series data, we need to
explicitly extract the lead-lag relationship between the time
series. [24, 25]; and [26] applied the Helmholtz-Hodge
decomposition (HHD) to extract circular and gradient flows in
a complex network. [27] applied CHPCA and HHD to monthly
time series of 57 US macroeconomic indicators and five trade/
money indexes, confirming statistically significant co-movements
among these time series and identifying noteworthy economic
events. [28] summarized CHPCA, RRS, and HHD and applied
these methods to economic time-series data.

The purpose of the present paper is twofold. The first is to
introduce a recently developed method to analyze stock return
correlations. The second is to highlight a novel aspect of leading
and lagging relations of business sectors in the market. In Section 2,
log returns of stock prices are defined, and an empirical equal-time
cross-correlation matrix is constructed for 445 assets from the S&P
500 from 2010 to 2019 (2,510 business days). A method is also
presented for calculating the eigenvalues and eigenvectors of this
cross-correlation matrix and applies RMT and RRS to distinguish
themeaningful part from the noise. Furthermore, it is shown that the
eigenvector corresponding to the largest eigenvalue represents the
market mode and meaning components without the principal
component represent group mode. In Section 3, the dataset is
investigated using CHPCA, RRS, and HHD and lead-lag
relationships among assets are discussed. In Section 4, an
application of CHPCA to portfolio theory is sketched. Section 5
is devoted to summary and discussion.

2 APPLICATION OF RMT AND RRS

In this section, the equal-time cross-correlation matrix is defined.
RMT is then applied to distinguish the meaningful components
from the noise components. After that, RRS is introduced to
distinguish the meaning components from the noise components.

2.1 Equal-Time Cross-Correlation Matrix
This paper investigates data for 445 assets from the S&P 500 for
dates obtained 2010–2019 (2,510 business days). By denoting an
opening price of stock n on day t as on(t) and a closing price of
stock n on day t as cn(t), the daily log return of stock n on day t is
defined as

rn(t) � ln[cn(t)
on(t)] (1)

where ln represents the natural logarithm. Here,
n � 1, 2, . . . ,N � 445, and t � 1, 2, . . . ,T � 2510. For each
stock n, the time-average of rn(t) is denoted as 〈rn〉, and the
standard deviation of rn(t) is denoted as σn. These are defined by
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〈rn〉 � 1
T
∑T
t�1

rn(t), σn �

�����������������
1
T
∑T
t�1

[rn(t) − 〈rn〉]2
√√

(2)

A normalized log return of asset n is denoted as wn(t), and
define it by

wn(t) � rn(t) − 〈rn〉
σn

(3)

Thus, a component of equal-time cross-correlation matrix is
defined by

Cmn � 1
T
∑T
t�1

wm(t)wn(t) (4)

The left panel of Figure 1 depicts an equal-time cross-
correlation matrix. In this figure, shade indicates the strength
of the positive correlation. White color corresponds to Cnn � 1,
with darker shades representing weaker correlations, and yet
darker shades representing negative correlations. The darkest
shade corresponds to Cmn � −0.515641. Because the stocks are
arranged in industry codes orders, the block pattern seen in the
figure roughly corresponds to a grouping by industry. The right
panel of Figure 1 shows the distribution of components of the
equal time cross-correlation matrix. This figure shows that nearly
all correlations are positive. Furthermore, the right tail of the
distribution is thicker than the left tail.

2.2 Application of RMT
Calculation of eigenvalues λR for this cross-correlation matrix
produces Figure 2. Here, subscript R represents the eigenvalue
rankings. The left panel of Figure 2 shows the distribution of

eigenvalues. The largest eigenvalue is λ1 � 143.516, and the
smallest eigenvalue is λ445 � 0.0638128. The right panel of
Figure 2 shows the distribution in the range of small
eigenvalues. The solid line is the probability distribution
function of the so-called Marčenko-Pastur distribution, which
is derived from RMT in the limit N→∞ and T→∞ by
fixing Q � N/T :

p(λ) � (1 − 1
Q
)+

δ(λ) + 1
2πQ

���������������(λ − λ−)+(λ+ − λ)+√
λ

(5)

where (x)+ � max(0, x); δ(x) denotes Dirac’s delta function; and
λ± is defined by

λ± � (1 ±
��
Q

√ )2 (6)

In this paper, λ+ � 2.01941 denotes the upper bound of
eigenvalue λ, and λ− � 0.335172 denotes the lower bound of λ.

In RMT extraction of the meaningful part of the correlation
structure, empirical eigenvalues larger than λ+ signify the
meaningful part. In particular, in the cross-correlation matrix
of stock returns, the largest eigenvalue corresponds to the market
mode, and the remaining meaningful part correspond to group
modes, such as, industry sectors. In this analysis, it was found that
λ1 > λ2 > . . . > λ17 > λ+, so, 17 meaningful components were
retained.

In traditional PCA, Monte Carlo simulations and so-called
scree graphs are used to extract meaningful components. In the
present method, the time series of each stock is randomly shuffled
to generate an equal-time cross-correlation matrix. This
manipulation breaks both the autocorrelation and the cross-
correlation. It is derived from a similar concept as the
application of RMT. If we construct the equal-time

FIGURE 1 | (Left) Visualization of the equal-time cross-correlation matrix for the data for 445 assets from S&P 500 from 2010 to 2019 (2,510 business days). The
shade is proportional to correlation strength, with white color corresponding to Cnn � 1 and the color becoming dark as the correlation becomes large-magnitude
negative. (Right) The distribution p(Cmn) of components of the equal-time cross-correlation matrix. The components are almost all positive. The right tail of the
distribution is thicker than the left tail.
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cross-correlation matrix from those randomly shuffled time
series, we can obtain the histogram shown in the left panel of
Figure 3. The solid line in this figure corresponds to the
Marčenko-Pastur distribution given by Eq. 5. From this figure,
we can recognize the equivalence between the traditional PCA
and the application of RMT.

The right panel of Figure 3 shows the scree graph. In this
figure, the abscissa corresponds to the eigenvalue rankings and
the ordinate corresponds to the magnitude of eigenvalues. The
curve with error bars in this figure depicts the eigenvalue
distribution of the randomly shuffled cross-correlation matrix.
The thin line with filled circles in this figure depicts the
distribution of eigenvalues of the empirical equal-time cross-
correlation matrix. If we denote the upper bound of eigenvalue
derived from the randomly shuffled cross-correlation matrix as

λmax, we obtain λ1 > λ2 > . . . > λ19 > λmax � 1.7947. Hence, there
are 19 meaningful components in the dataset.

2.3 Application of the RRS
As stated above, when we make a randomly shuffled cross-
correlation matrix, we break both the autocorrelation and the
cross-correlation conditions. However, it has been reported that
the stock price has an autocorrelation tendency. Thus, we need to
develop a method that preserves autocorrelation but randomizes
the crosscorrelation. [16, 17] developed a method referred to as
RRS. In RRS, we shuffle the empirical time-series data rotationally
in the time direction and impose the periodic boundary
condition:

wn(t)→wn(Mod[t + τ,T]) (7)

FIGURE 2 | (Left) Distribution p(λ) of eigenvalues λ of the empirical equal-time cross-correlation matrix. (Right) Empirically obtained distribution p(λ) of
eigenvalues λ in the range of small eigenvalues. The solid line is the Marčenko-Pastur distribution under RMT as the theoretical curve given by Eq. 5.

FIGURE 3 | (Left) Distribution p(λ) of eigenvalues λ of the equal-time cross-correlation matrix constructed from randomly shuffled time series. The solid line
represents the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5. (Right) Scree graph of eigenvalues. The abscissa represents
eigenvalue rankings R, and the ordinate represents empirically obtained eigenvalues λR. The curve with error bars depicts the simulated distribution of eigenvalues using
random shuffling (RS). To obtain this curve, we repeated this manipulation 20 times and calculated the mean value and standard deviation. Each error bar
represents three times the standard deviation. The thin line with filled circles depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix.
The meaningful part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the randomly shuffled cross-correlation
matrix is denoted as λmax, then λ1 > λ2 > . . . > λ19 > λmax � 1.7947. Hence, 19 meaningful components should be retained for this data set.
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Here, τ ∈ [0,T − 1] is a (pseudo-) random integer that
is different for each n. For example, if τ � 1537 for stock 1,
τ � 2128 for stock 2, . . ., τ � 138 for stock N, the time series of
normalized log returns is given by

w1 � {w1(1538),w1(1539), . . . ,w1(2510),w1(1),w1(2), . . . ,w1(1537)}
w2 � {w2(2129),w2(2130), . . . ,w2(2510),w2(1),w2(2), . . . ,w2(2128)}
« «

wN � {wN(139),wN(140), . . . ,wN(2510),wN(1),wN(2), . . . ,wN(138)}

Such a rotationally randomly shuffled time series allows the
cross-correlation matrix to be constructed and eigenvalues to be
calculated. An example is shown in the histogram in the left panel
of Figure 4. The solid line in this figure corresponds to the
Marčenko-Pastur distribution given by Eq. 5. This figure shows
that the distribution of eigenvalues is almost the same as the
Marčenko-Pastur distribution based on RMT except for the large
eigenvalue range.

The right panel of Figure 4 shows the scree graph. In this
figure, the abscissa corresponds to eigenvalue rankings, and the
ordinate corresponds to eigenvalue magnitude. The curve with
error bars in this figure depicts the eigenvalue distribution of the
RRS cross-correlation matrix. The thin line with filled circles in
this figure depicts the distribution of eigenvalues of the empirical
equal-time cross-correlation matrix. Again, if the upper bound of
eigenvalues derived from the RRS cross-correlation matrix is
denoted as λmax, then λ1 > λ2 > . . . > λ19 > λmax � 1.7947 is
obtained. Hence, 19 meaningful components are retained.
Although the numbers of meaningful components in RMT
and RRS are equal, this result is a coincidence specific to the
data set at hand.

Figure 5 shows the distribution of components of the top 20
eigenvectors, v1, . . . , v20. The thin vertical lines in these figures
separate business sectors. RMT suggests that the distribution of

the components of each eigenvector is given by the Poter-Thomas
distribution:

p(v) � N
2π

exp(−Nv2
2
) (8)

The first eigenvector v1 consists of components of similar
magnitude and is referred to as the market mode. In the second
eigenvector, there is a negative peak in the rightmost sector,
which corresponds to the utility sector. In the third eigenvector,
there is a negative peak in the left sector, which corresponds to the
bank sector. In the fourth eigenvector, there is a positive peak in
the middle sector, which corresponds to the oil and gas
equipment and service sector. In the fifth eigenvector, there is
a negative peak in the right middle sector, which corresponds to
the REIT sector. The panels from the sixth eigenvector to the 20th
eigenvector have peaks in some sectors containing a small
number of assets. However, sometimes it is difficult to extract
the meaning of each principal component. Thus, the correlation
matrix was split into three parts:

C � ∑N
R�1

λRvRv
T
R

� λ1v1v
T
1 + ∑19

R�2
λRvRv

T
R + ∑N

R�20
λRvRv

T
R

� CMarket + CGroup + CNoise

(9)

It is important to understand why the largest eigenvalue and
the corresponding eigenvector are referred to as representing the
market mode. The market index on day t is denoted aswM(t) and
defines it by the scalar product ofw(t) and the first eigenvector v1:

wM(t) � w(t) · v1 (10)

FIGURE 4 | (Left) Distribution p(λ) of eigenvalues λ of the equal-time cross-correlation matrix constructed by rotational random shuffling (RRS). The solid line
represents the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5. (Right) Scree graph of eigenvalues. The abscissa represents
eigenvalue rankings R, and the ordinate represents empirically obtained eigenvalues λR. The thin line with filled circles depicts the empirically obtained distribution of
eigenvalues of the empirical equal-time cross-correlation matrix. The curve with error bars depicts the simulated distribution of eigenvalues using RRS. To obtain
this curve, this manipulation was repeated 20 times, after which the mean value and standard deviation were calculated. Each error bar represents three times the
standard deviation. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. The meaningful
part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the RRS cross-correlation matrix is denoted as λmax, then
λ1 > λ2 > . . . > λ19 > λmax � 1.7947. Hence, 19 meaningful components should be retained for this data set.
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i.e., weighting the average return with the weight given by the first
eigenvector. On the other hand, the S&P 500 is used to
characterize the entire market. The normalized log return on
day t from open to close of the S&P 500 is denoted as wSP(t).
Figure 6 shows the scatter plot of wM(t) vs. wSP(t). This figure
shows that wM(t) and wSP(t) exhibit a strong, positive
correlation. The dashed line in this figure shows a
linear function with the slope given by Pearson’s correlation
index ρ � 0.852 and with the intercept equal to 0. This correlation
coefficient is almost the same as that obtained by [5].

3 APPLICATION OF CHPCA AND HHD

In this section, the complex correlation matrix is defined. RRT is
then applied to distinguish the meaning components from the noise
components, and CHPCA is introduced. After that, HHD is
presented in order to clarify the lead-lag relationships among assets.

3.1 Complex Correlation Matrix
A simple definition of different-time correlation is given by
Corr[wm(t),wn(t + Δt)], (Δt � 1, . . . ,T − 1). However, if N
and T are extremely large, a huge number of combinations
must be investigated. Therefore, a complex correlation matrix
is introduced to overcome this problem.

We consider the Fourier transform of the daily log returns of
asset n as represented by

rn(t) � ∑T
k�0

[an(ωk)cos(ωkt) + bn(ωk)sin(ωkt)] (11)

where ωk � 2πk/T ≥ 0. The Hilbert transform of rn(t) is given by

r̂n(t) � ∑T
k�0

[bn(ωk)cos(ωkt) − an(ωk)sin(ωkt)] (12)

We define a complex log return ~rn(t) as

FIGURE 5 | Distribution of components of the top 20 eigenvectors, v1 , . . . , v20. The abscissa represents n, and the ordinate represents to the components vR,n of
eigenvector vR. Here, R is the eigenvalue rankings. The thin vertical lines in these figures separate business sectors.
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~rn(t) � rn(t) + i r̂n(t) � ∑T
k�0

cn(ωk)e−iωkt (13)

where i denotes an imaginary unit defined by i2 � −1. For each asset n,
we define a time average 〈~rn〉 and a standard deviation ~σn as follows.

〈~rn〉 � 1
T
∑T
t

~rn(t), ~σn �

����������������
1
T
∑T
t�1

|~rn(t) − 〈~rn〉|2
√√

(14)

We define the normalized complex log return ~wn(t) as

~wn(t) � ~rn(t) − 〈~rn〉
~σn

(15)

Thus, the time-average of ~wn(t) is zero, and its standarddeviation is
one. Each component of the complex correlation matrix is defined by

~Cmn � 1
T
∑T
t�1

~wm(t)~w†
n(t) (16)

Herein, † represents the transposed complex conjugate.
The elements of the complex correlation matrix distribute on

the complex plane, as shown in the upper left panel of Figure 7.
The lower left panel of Figure 7 shows the distribution of the real
parts of the elements of the complex correlation matrix. This
distribution is almost the same as for the case of the equal-time
cross-correlationmatrix shown in the right panel of Figure 1. The
upper right panel of Figure 7 shows the distribution of the
imaginary parts of the elements of the complex correlation
matrix. This panel shows a symmetrical distribution.

3.2 Complex Hilbert Principal Component
Analysis
Figure 8 is obtained by calculating the eigenvalues λR for the
cross-correlation matrix. As in Section 2.2, here the subscript R

again represents the eigenvalue rankings. The left panel of
Figure 8 shows the distribution of the logarithms of
eigenvalues. The largest eigenvalue is λ1 � 143.71, and the
smallest eigenvalue is λ445 � 0.0442842. The right panel of
Figure 8 shows the distribution in the small eigenvalue region.
The solid line is the Marčenko-Pastur distribution given by Eq. 5
with Q � 2N/T .

Figure 9 shows the scree graph. In this figure, the abscissa
corresponds to the eigenvalue rankings and the ordinate
corresponds to eigenvalue magnitudes. The curve with error
bars in this figure shows the eigenvalue distribution of the
RRS complex correlation matrix. The thin line with filled
circles in this figure depicts the distribution of eigenvalues of
the empirical complex cross-correlation matrix. If we again
denote the upper bound for eigenvalues derived from the RRS
cross-correlation matrix as λmax we again obtain
λ1 > λ2 > . . . > λ16 > λmax � 2.18894. Hence, 16 meaningful
components are retained for this dataset.

Figure 10 shows the distribution of each component for the
top 16 eigenvectors v1, . . . , v16 in the complex plane. In this case,
the Poter-Thomas distribution, which is the null hypothesis of
randomness, is given by

p(v) � N
π
exp(−N|v|2) (17)

In the complex plane, we regard the clockwise direction
from the positive real axis as corresponding to leading
components, whereas the counterclockwise direction from
the positive real axis corresponds to the lagging
components. Components of the first eigenvector v1
distribute along the positive real axis. This means that the
phase difference, i.e., the difference between leading and
lagging, is small for the first eigenvector. Thus, we refer to
the first eigenmode as the market mode. On the other hand,
components of the 2nd to 16th eigenvectors distribute over a
wide region in the complex plane. This behavior suggests
group structure.

3.3 Helmholtz-Hodge Decomposition
We decompose the complex correlation matrix into the
meaningful part and the noise part as

~C � ∑N
R�1

λRvRv
†
R

� ∑16
R�1

λRvRv
†
R + ∑N

R�17
λRvRv

†
R

� ~CPrincipal + ~CNoise

(18)

where † represents taking the complex conjugate of a vector. The
left panel of Figure 11 shows the meaningful part of the complex
correlation matrix. The introduction of a lower bound for the
magnitudes of elements of the principal part of the complex
correlation matrix produces, the right panel of Figure 11. The
components of the real matrix F are the absolute values of the
components of this constrained meaningful correlation matrix.
Here, F is considered the weighted adjacency matrix. The
components of this matrix can then be written as

FIGURE 6 | Scatter plot of the normalized S&P 500 indexwSP(t) and the
normalized market indexwM(t). The dashed line is linear function with slope ρ,
which is Pearson’s correlation index, equal to 0.852, and intercept equal to 0.
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Fmn � F(c)
mn + F(p)mn (19)

where F(c)
mn corresponds to the circular flow in the network

defined by

∑N
n�1

F(c)
mn � 0 (20)

On the other hand, F(p)
mn corresponds to the gradient flow in the

network defined by

F(p)mn � cmn(ϕm − ϕn) (21)

Here, ϕm is the Helmholtz-Hodge potential. By using Eqs 16,
17 can be rewritten as

∑N
n�1

[Fmn − cmn(ϕm − ϕn)] � 0 (22)

By solving Eq. 18, we obtain the Helmholtz-Hodge potential
shown in Figure 12. In this figure, the leading components show a

FIGURE 7 | (Upper left) Distribution of the elements ~Cmn of the complex correlation matrix ~C in the complex plane [R(~Cmn),I(~Cmn)]. (Upper right) Distribution
p[I(~Cmn)] of the elements of the imaginal partI(~Cmn) of the complex correlation matrix. (Lower left)Distribution p[R(~Cmn)] of the elements of the real partR(~Cmn) of
the complex correlation matrix.
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small value of the Helmholtz-Hodge potential, while the lagging
components show a large value.

The average values 〈ϕ〉 of the Helmholtz-Hodge potential
for some major sectors are shown in Table 1. This table shows
that the semiconductors industry is the most strongly leading,
while the drug manufacturing industry is the most strongly
lagging. On the other hand, [28] explored 483 assets from the
S&P 500 for 4-years from 2008 to 2011 (1,009 business days).
He obtained the result that the financial sector is the most
strongly leading, while the telecommunications and service
sector is the most strongly lagging. Therefore, we suspect that
the lead-lag structure depends on the gross market conditions
of the period investigated. However, clarifying this suspicion
is a problem for future study.

4 APPLICATION OF CHPCA TO THE
PORTFOLIO THEORY: A SKETCH

As a problem for future study, we consider the application of
CHPCA to construct a portfolio by following Markowitz’s
portfolio theory [12]. We represent the fraction of wealth
invested in asset n as ξn. If we denote the number of assets as
K, ξn is normalized by

∑K
n�1

ξn � 1 (23)

By using the complex log return of each asset ~rn defined by Eq.
9, we define the complex log return of the portfolio ~rP as

~rP � ∑K
n�1

ξn~rn � ∑K
n�1

ξnrn + i∑K
n�1

ξnr̂n (24)

However, the portfolio return must be a real number, so we
need to impose the following constraint:

∑K
n�1

ξnr̂n � 0 (25)

The risk of the portfolio is defined by the variance:

~σ2
P � ∑K

m�1
∑K
n�1

ξmξn~Cmn~σm~σn

� ∑K
m�1

∑K
n�1

ξmξnR(~Cmn)~σm~σn + ∑K
m�1

∑K
n�1

ξmξnI(~Cmn)~σm~σn

(26)

Here again, the risk must be a real number, so we need to
impose the following constraint:

∑K
m�1

∑K
n�1

ξmξnI(~Cmn)~σm~σn � 0 (27)

FIGURE 8 | (Left)Distribution p(λ) of eigenvalues λ of the empirical equal-time cross-correlationmatrix. (Right)Empirically obtained distributionp(λ) of eigenvalues λ
in the range of small eigenvalues. The solid line is the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5 with Q � 2N/T .

FIGURE 9 | Scree graph of eigenvalues. The abscissa represents
eigenvalue rankings R, while the ordinate represents empirically obtained
eigenvalues λR. The curve with error bars in this figure shows the eigenvalue
distribution of the RRS complex correlation matrix. To obtain this curve,
this manipulation was repeated 20 times, after which the mean value and
standard deviation were calculated. Each error bar represents three times the
standard deviation. The thin line with filled circles in this figure depicts the
distribution of eigenvalues of the empirical equal-time cross-correlation matrix.
The meaningful part can be obtained by comparing these two distributions. If
the upper bound for eigenvalues derived from the RRS cross-correlation
matrix is denoted as λmax, then λ1 > λ2 > . . . > λ16 > λmax � 2.18894. Hence,
16 meaningful components should be retained for this data.
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Therefore, under the conditions given in Eqs 19, 21, 23, a
portfolio can be created that minimizes risk under the assumed
returns.

5 CONCLUSION

An analysis of price data for 445 assets from the S&P 500
from 2010 to 2019 (2,510 business days) provided the basis

for an exploration of recent developments in distinguishing
the meaningful part from the noise part in correlation
structures in big data. Application of RMT to the equal-
time cross-correlation matrix was found to be a useful
method for obtaining the meaningful components of the
correlation structure. However, the null hypothesis of
randomness underlying RMT destroyed both real
autocorrelation and real cross-correlation in the data. In
order to preserve autocorrelation, we introduce RRS. In

FIGURE 10 | Distribution of components of the top 16 eigenvectors, v1 , . . . , v16. In each figure, the abscissa represents R(vR,n), and the ordinate represents
I(vR,n). Here, R is the eigenvalue rankings.
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the case of this paper, the number of meaningful components
for RMT and for RRS happened to be. We also introduced
CHPCA for investigating the various different-time
cross-correlations. By using both CHPCA and HHD, we
clarified the lead-lag relationships for some major business
sectors.
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FIGURE 11 | (Left) Distribution of the components of the meaningful part of the complex correlation matrix. (Right) Distribution of the components of the
constrained meaningful part of the complex correlation matrix.

FIGURE 12 | Distribution of Helmholtz-Hodge potential for each asset.
The abscissa represents n, while the ordinate represents Helmholtz-Hodge
potential ϕn. The thin vertical lines in this figure separate business sectors.

TABLE 1 | Helmholtz-Hodge potentials 〈ϕ〉 for some major business sectors.

Sector # Assets 〈ϕ〉

Semiconductors 12 −0.03334
REIT 29 −0.02810
Software 15 −0.00789
Insurance 18 0.00042
Pharmaceutical retai 17 0.00106
Banks 16 0.00562
Diagnostics and research 10 0.01490
Utilities 28 0.01529
Information technology services 10 0.01661
Drug manufacture 11 0.02270
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Nighttime lights (NTLs) have been used as a proxy for economic growth in recent years.
To verify the effectiveness of NTL in measuring regional economies, this article studies
the regional economic convergence phenomenon in China’s provinces by a
comparative analysis of NTL data and GDP data from 1992 to 2013. It is found
that there is a significant difference between the results of club convergence between
NTL and GDP; GDP high-growth clubs are mainly concentrated in the east and central
areas, while NTL’s high-growth clubs are mostly concentrated in the central and west
areas. Besides, the growth rate gaps between GDP clubs are relatively flat, while the
growth rate gaps between NTL clubs are large. From the perspective of influencing,
factors of the regional convergence, technological innovation, and industrial structure
have a significant impact on GDP and NTL, and industrial structure has opposite effects
on GDP clubs and NTL clubs. Besides the above factors, for NTL convergence clubs,
population growth rate, economic openness, and resource consumption are also
significant.

Keywords: nighttime lights, GDP, regional economies, club convergence, log t test

1 INTRODUCTION

1.1 Outlining the Problem
The nighttime lights (this study is referred to as NTLs) data released by the National Oceanic and
Atmospheric Administration (NOAA) show that NTL is a unique surface landscape phenomenon; it
is representing the laws of human activities on the surface of the Earth and closely related to the
socio-economic development of human beings. The advancement of technology and the
development of NTL data resources have led to the more widespread use of NTL data for
characterizing levels of economic growth and exploring the temporal and spatial characteristics
and heterogeneity of economic development. This has become a trend in several related fields, and
China is one of the most commonly researched regions in the literature on applying NTL to
economic and social issues [1]. On the one hand, China’s high-speed economic growth over the past
40 years has been met with great interest by global economists; on the other hand, although China’s
economy has maintained rapid growth as a whole, large gaps still exist in regional economic
development. As China faces a period of critical strategic opportunity for development and potential
social tensions, more attention has been given to balancing economic development between different
regions. Also, China’s official GDP statistics have received a question for statistical difficulties,
structural incomparable, and human manipulation [2].
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For the above reasons, the practice of measuring economic
development with the easily obtainable and more objective NTL
data has been widely adopted in China, especially in the
investigation of regional economic development issues.
However, these studies have not thoroughly investigated the
reliability of using NTL as an indicator of regional economic
gaps. Questions remain over the difference between NTL data
and traditional GDP statistics in measuring regional economic
disparities, the difference between the two in reflecting objective
economic facts and laws, and what kind of GDP economic
information can and cannot be characterized by NTL. At the
same time, previous studies also ignore China’s economy’s
characteristics in a transition period, including the balanced
growth of multiple regional economies and the heterogeneity
of economic convergence, both of which directly affect the
establishment of research perspectives and selection of
research methods.

Given the above problems, as well as in consideration of the
regional heterogeneity of development in China and the time-
varying convergence rate, this article takes China’s provincial
NTL data and GDP data as the research object, breaks the
traditional eastern, central, and western division of economic
zones, first using the log t test method based on the nonlinear
time-varying factor model to find the convergence clubs of both
types of data, analyze the club convergence characteristics of the
two, and then use ordered logit model to explore the influencing
factors of club membership. The two types of data are then
compared and discussed in terms of club membership, regional
distribution of members, differences in growth rate between
clubs, and club membership factors. The two types of data are
also differentiated according to their characteristics as economic
indicators. It is hoped that these comparisons and discussions can
answer the reliability of using NTL data to measure the regional
economic disparities.

This work contributes to the literature in three aspects. First,
the log t test method based on the nonlinear time-varying factor
model is introduced into the regional economic convergence
study of NTL and GDP, enriching the research perspective of
spatial correlation analysis between the two kinds of data. Second,
using the ordered logit model to explore the factors affecting
convergence is a process that clarifies the similarities and
differences between the NTL and GDP data in characterizing
regional economic development. It also verifies the advantages
and disadvantages of analysis of economic growth performed
with NTL data. Third, this study will broaden the source channels
of economic growth substitution variables, and is of great
significance for exploring the characteristics and reliability of
NTL data as economic indicators. It will also help to promote a
better coordinated and higher quality development of China’s
different regions.

1.2 Literature Review
Since NTL has been shown to have a significantly high correlation
with regional economic activities (GDP, GRP, etc.) and social
activities (population, energy, etc.) [3–9] and NTL can be used as
a proxy variable for social and economic activities. An increasing
number of studies have begun to use this data to characterize the

economy and study the spatial and temporal patterns of regional
economies and industries [10–14], urban development [15–21],
human activities and their effects [22–24], and energy
consumption [22, 25]. Of special interest is the research
conducted in Refs. [26–29]. These studies propose a model,
based on the proof of the correlation between NTL and GDP
that can use the NTL data to correct GDP. This model provides
estimates of economic growth for countries whose statistical
agencies lack reliability and carry great significance for
studying the economics of NTL. The above research enriches
the surrogate indicators of economic variables, expands the
research methods available for analyzing economic and social
problems, opens up research areas in other related issues, and
illustrates the great potential of using NTL data in
economics [30].

Before introducing NTL, many scholars used GDP as the
primary source of economic research data despite some
skepticism toward China’s GDP. With the widespread use of
NTL in economics research, many scholars have begun using
NTL data to investigate China’s economic and social problems,
particularly in research related to the correlation between NTL
and economic and social indicators [31–33], and in studies that
use NTL data to estimate economic and social indicators [34–37].
In a study on regional differences in economic development, Liu
et al. conducted an empirical investigation on the spatial
differences and spillover effects of urban economic growth in
China and found that the economic development of urban
agglomerations shows significant spatial nonequilibrium
characteristics [38]. Liu and Du use NTL data to re-examine
the regional disparity and stochastic convergence characteristics
of China’s economic development and helping identify further
the economic development of convergence clubs in China’s
various regions [39]. Based on the convergence analysis
framework of the growth theory, Wang et al. utilize a dynamic
panel data model to assess the dynamic trend of China’s regional
economic gap and find that between 1992 and 2012, China’s
initial nighttime light intensity, whether at the provincial level or
the prefecture-city level, regions that initially have lower
nighttime light brightness levels exhibit faster growth rates
[40]. This level of growth deviates somewhat from per capita
GDP trends. Ding and Zhou found that the high concentration of
regional NTL on the southeast coast is consistently stable from
1992 to 2013 and is self-reinforcing. They also discovered that
population growth, regional surface area, and distance from the
coastline are all negatively correlated with NTL [41]. Each of these
studies either directly investigates the overall convergence trend
of NTL or uses NTL to characterize economic development and
investigate spatial differences, convergence characteristics, and
development trends of China’s regional economies, and help to
shed light on the nature and heterogeneity of China’s regional
economic growth model.

We believe that there are still some shortcomings in the
perspectives and methods that use NTL to characterize
regional economic development in research. From a research
perspective, they ignore the similarities and differences between
the economy represented by NTL and the economy as defined by
GDP. Most studies are based on a positive correlation between
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NTL and the economy, directly using NTL data as a substitute for
GDP data, without giving proper attention to the information
that is provided by GDP but absent in NTL data, and the new
information provided by NTL data but absent in GDP data.
Although a few scholars have mentioned this concern, none have
carried out an in-depth investigation or argumentation on the
topic. In terms of research methodology, the current mainstream
convergence research methods are combing with statistical
indicators such as the δ convergence index, using the
conditional β convergence or club convergence methods to
examine the regional convergence phenomenon, and to look
for the influencing factors for the regional convergence.
However, these methods ignore the fact that China is in a
“transition period.” When the economy must converge, and
there is heterogeneity in the rate of convergence, if the income
level and convergence rate of the underdeveloped regions are
lower than the developed regions, there is a period in which
developed regions grow faster than underdeveloped regions, but
this does not affect their ultimate convergence. This period is
called the “transition period.” In 1986, Deng Xiaoping put
forward the Reform and Opening Up strategy of “Let a part of
the population get rich first, they will carry more people into
wealth, and eventually everyone will enjoy common prosperity.”
Since then, China has been in the transitional period of economic
transformation. Compared with the traditional tools for
measuring and analyzing economic trends, the nonlinear time-
varying factor model proposed by Phillips and Sul based on the
convergence club division method can more accurately evaluate
the transitional period of the Chinese economy [42]. This method
came to be widely used in the economic convergence analysis
worldwide after its proposal [43–49].

2 DATA AND METHOD

2.1 Data Sets
The most widely used NTL in the academic community is
acquired by the Optical Imaging Linear Scanning Service
sensor of the United States Digital Defense Meteorological
Satellite Program (DMSP/OLS). The device effectively
monitors radiation information such as city lights, fishing
fires, and forest fires. It provides the world’s most extended
time series (1992–2013) of nighttime light-to-earth observation
data provided by the NOAA’s National Geophysical Data Center,
including average visible lights, stable lights, and cloud-free
coverage. In the stable lights images, unstable light sources
such as aurora and wildfire and the interference of moonlight
and clouds have been removed. The final data value is the annual
average gray value of cloudless stable light, which provides a
unique research perspective for human activity detection.
Although the data has a low resolution (approximately l km)
and lacks calibration and urban center saturation [50], the
corrected DMSP/OLS data have become the most commonly
used data source for NTL remote sensing research.

This article uses DMSP/OLS stable lights data from
34 provincial-level administrative regions in China from 1992
to 2013. It combines the NTL data with the GDP data to explore

differences between the use of NTL and GDP in regional
economic convergence research. The NTL data have been
prepared and corrected by Cao et al. [51], based on well-
established methods [25, 52, 53].

The average growth rates of NTL and GDP are then taken as
research variables. The NTL growth rate of each region is
calculated from the average value of the NTL from 1992 to
2013, so the growth rate data for a total of 21 years from 1993
to 2013. In order to remove the inflation effect, the real GDP
growth rates from 1993 to 2013 are adopted in our analysis. The
real GDP growth rates are retrieved from the National Bureau of
Statistics and the Compilation of 60 Years of Statistics of the
People’s Republic of China. The descriptive statistics for each
variable can be found in Table 1.

Between 1993 and 2013, both GDP and NTL growth rates
experienced several fluctuations, and the magnitude and extent of
the changes did not show significant consistency. The regions
with high GDP growth rates are Inner Mongolia, Guangdong,
and Tianjin. The high-growth areas with NTL are Tibet, Yunnan,
and Xinjiang. Whether it is GDP or NTL, the regions with lower
growth rates are concentrated in Macao, Hong Kong, and
Taiwan.

2.2 Club Convergence Test
The convergence club division method proposed by Phillips and
Sul is to judge the convergence of economic growth and price
index changes in a transitional economy at a given level of
significance and to identify and divide the convergence clubs
42. The advantage of using this method lies in that it can fully
consider the heterogeneity of observed entities without the need
for more stringent economic assumptions about model
parameters or convergence clubs, enabling the analytic
framework to be applied to a broader range of complete data
that characterizes economic development.

The club convergence test method is for a nonlinear time-
varying factor model:

yi(t) � δi(t)μ(t), (1)

where yi(t) is a time series, μ(t) is a single common component,
and δi(t) is a time-varying parameter containing the perturbation
term, expressing change in individual heterogeneity over time.
First, the relative transfer coefficient is defined to eliminate the
common factors between individuals. Only the heterogeneous
time-varying features of the individual are retained, which is
called the relative transition path:

hi(t) � yi(t)
1
N ∑N

j�1
yj(t)

� δi(t)
1
N ∑N

j�1
δj(t)

(2)

TABLE 1 | Descriptive statistics of variables.

Variables N Mean (%) SD Min (%) Max (%)

GDP growth rate 714 11.258 3.62 -5.88 26.76
NTL mean growth rate 714 7.137 7.685 0.000 72.459
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A semiparametric model is then constructed as follows:

δi(t) � δi + σ iξ i(t)
L(t)tα , (3)

where L(t) is a slowlychanging function that increases and
diverges at infinity and ξi(t) is weakly dependent upon t but
is i.i.d.(0, 1) over i. This article uses L(t) � log(t) and through
regression of the equation:

log(H1

Ht
) − 2 log L(t) � ĉ + b̂log t + μ̂t , (4)

which verifies the original hypothesis of convergence:

{H0 : δi � δ and α≥ 0
H1 : δi ≠ δ or α< 0 (5)

In Eq. 4, t � [rT], [rT] + 1, . . . ,T , 0< r < 1, and T is the
original length of the time series, where [rT] represents the
integer part of rT . During the regression process, a small
portion of r of the time series needs to be discarded, which
will help focus the test’s attention on the later trend of the time
series. In addition, Ht � (1/N)∑N

i�1(hit − 1)2 where hit is the
relative transition path in Eq. 2 and b̂ � 2α̂ where α̂ is the
least squares estimate of α in H0. The one-sided t test is used
to test α̂≥ 0 in the original null hypothesis, specifically, at the 5%
significance level, if the t statistic of b̂ is less than −1.65, then the
original hypothesis of convergence is rejected.

The above test method is called the log t test, which is the
essential condition for judging whether there is a convergence
club. The specific convergence club division is determined by
sorting the sample area, selecting the core group, and adding the
group member. The log t test is used in both the core group
selection, and the addition of group members, whereby
identifying club convergence is completed.

2.3 The Ordered Logit Regression
In order to search out the various factors affecting club
membership and evaluate their importance in determining
club membership, this article employs the ordered logit model,
based on the club convergence results, to identify the influencing
factors [45]. This method can estimate how the explanatory
variable variation changes the probability that a given region
belongs to the affiliated club while fixing all other variables to its
sample mean. In addition to the indicators of population growth
rate, technological innovation covered by the neoclassical growth
theory model, and human capital emphasized by the endogenous
growth model, other factors that are mainly involved in the
convergence of regional economic growth include the degree
of opening up, marketization, employment rate, geographical
factors, policy factors, and industries structures [54–60].
Considering the characteristics of China’s economic
development and the results of club convergence, combined
with factors that may affect economic activity and NTL, this
article examines the influencing factors of club formation from
six dimensions: capital investment, technological innovation,
industrial structure, market vitality, economic openness, and
resource consumption. Capital investment is divided into

physical capital and human capital, where the physical capital
is measured by fixed capital investment and the human capital is
divided into the number of employees and population growth
rate. The technological innovation is measured by the number of
patents granted. The industrial structure is divided into industrial
proportion and service industry proportion, which are
respectively measured by the secondary industry output and
the tertiary industry output for GDP proportion. Market
vitality is measured by the total retail sales of social consumer
goods. Economic openness is measured by the amount of foreign
direct investment. Resource consumption is measured by the
consumption of coal. In order to eliminate inflation, all nominal
data are deflated based on 1993.We use the fixed asset investment
price index to deflate fixed capital investment, the consumer price
index to deflate consumer goods’ total retail sales, and the U.S.
GDP deflation index to deflate foreign direct investment.

Considering that the club is divided according to the growth
rate, all variables with the exceptions of population growth rate,
industrial proportion, and service industry proportion use the
increment data.

The data comes from the China Statistical Yearbook, the
regional statistical yearbooks, and the China Energy Statistics
Yearbook. Due to the lack of relevant data in Hong Kong, Macao,
and Taiwan, convergence factor testing excludes these three
regions, and only uses relevant data from the mainland’s 31
areas for the impact factor analysis.

3 RESULTS

3.1 Club Convergence in GDP Growth Rates
According to Phillips and Sul’s recommendation 42, this article
takes a value of r � 0.3 for the log t test of the GDP growth rate of
China’s provinces. First, the estimation equation for the log t test
for China’s 34 regions is as follows:

log(H1

Ht
) − 2 log[log(t)] � −1.464

(−11.81)
+ 0.14 log t

(2.904)
(6)

It can be seen that b̂ � 0.14 ± 0.048> 0 and
tk � 2.904> − 1.65. The regression result accepts the null
hypothesis of convergence, which shows that the GDP growth
rates of Chinese provinces reflect a nationwide
convergence trend.

Next, clubs are divided among Chinese provinces to identify
economic convergence in the country. In accordance with the
recommendations of Phillips and Sul, during the initial sorting
process, the last 1/2 data of the entire time span of the observation
values were selected 42, the top-ranking region (Inner Mongolia)
was used as the reference region, and Tianjin, Chongqing, were
then added to perform log t regression and calculate the t statistic
until the t statistic is less than −1.65. We found that for k � {1, 2}
or {1, 2, 3} and tk � −1.292 or −6.479; when Chongqing was
added, tk < − 1.65. At this point the adding of regions was
paused. For the group k � {1, 2}, the value of tk was the
largest, so the core group was confirmed as Inner Mongolia
and Tianjin. Then, one region was added at a time to the core
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group, with 50% as the significance level, 0 was used as the critical
value to check the size of the t statistic; when tk > 0, it was
classified as a club member. It was ultimately determined that
the Club 1 members are Inner Mongolia, Tianjin, Macao, and
Guangdong.

After excluding Inner Mongolia, Tianjin, Macao, and
Guangdong, the log t test was continued as described above.
The members of the second convergence club (Chongqing,
Shaanxi, Jiangsu, Shandong, Qinghai, Guizhou, Fujian, Hubei,
Anhui, Tibet, Henan, Zhejiang, Hebei, and Shanghai), the
third convergence club (Jilin, Sichuan, Guangxi, Jiangxi,
Hunan, Liaoning, Shanxi, Ningxia, Hainan, Gansu, Yunnan,
Heilongjiang, Xinjiang, and Beijing) and the fourth

convergence club (Hong Kong and Taiwan) were identified.
See Tables 2,3 for details. All clubs have a whole group tk
greater than 2, indicating that these clubs are stronger clubs.
The speed of convergence α̂ is not the same among the four
clubs. Club 4 has the fastest convergence rate of 110.3%, Club
1’s convergence speed is 100.4%, and the Club 2 and 3’s
convergence speed is 84.1% and 30.4%, respectively.

The trend of each region’s transition path is shown in the
top panel of Figure 1. The club members have prominent
convergence characteristics. In the first few years, Club 1
members’ transition paths are quite different, but in the
subsequent years, it shows a characteristic of convergence.
Club 2 members’ transition paths gradually narrowed in 2004

TABLE 2 | GDP convergence clubs.

Club Club members Club size Core group
tk

Whole group
tk

b̂ α̂

1 IM, TJ, MO, GD 4 -1.292 10.015 2.007 ± 1.073 1.004
2 CQ, SN, JS, SD, QH, GZ, FJ, HB, AH, XZ, HA, ZJ, HE, SH 14 6.226 7.622 1.682 ± 0.977 0.841
3 JL, SC, GX, JX, HN, LN, SX, NX, HI, GS, YN, HL, XJ, BJ 14 14.523 7.355 0.608 ± 0.039 0.304
4 HK, TW 2 4.866 4.866 2.206 ± 0.453 1.103

TABLE 3 | GDP club identification process.

Qrder tk tk Club tk tk Club tk tk Club

IM SR CR Club 1 HK SR Club 4
TJ ‒1.292 CR Club 1 TW 4.866 Club 4
CQ ‒6.479 ‒11.705 SR CR Club 2
SN ‒13.226 ‒13.731 6.226 CR Club 2
MO 11.303 9.360 Club 1
GD 1.192 2.431 Club 1
JL ‒15.034 ‒23.201 0.688 ‒0.132 SR CR Club 3
SC ‒13.139 ‒18.208 ‒2.614 ‒2.540 ‒0.705 CR Club 3
JS ‒0.713 ‒0.720 3.504 4.121 Club 2
SD ‒1.020 ‒1.138 2.396 2.940 Club 2
GX ‒5.713 ‒20.832 ‒3.971 ‒1.298 1.609 CR Club 3
JX ‒17.750 ‒30.360 ‒1.111 ‒3.415 ‒13.649 6.634 Club 3
QH ‒6.653 ‒1.396 17.132 22.288 Club 2
GZ ‒3.474 ‒0.268 14.477 10.889 Club 2
FJ ‒0.570 ‒0.468 2.945 3.595 Club 2
HN ‒14.141 ‒27.632 ‒13.637 ‒4.417 0.183 3.431 Club 3
HB ‒3.328 ‒5.921 0.410 1.221 Club 2
LN ‒18.349 ‒36.889 ‒4.169 ‒6.121 ‒42.562 5.230 Club 3
AH ‒1.276 ‒1.180 2.182 2.715 Club 2
XZ ‒0.820 ‒1.083 3.026 3.467 Club 2
HA ‒4.123 ‒5.715 0.019 0.537 Club 2
SX ‒11.457 ‒32.357 ‒2.774 ‒0.950 1.800 2.657 Club 3
NX ‒22.311 ‒41.493 0.638 ‒1.893 0.640 9.108 Club 3
HI ‒14.986 ‒21.170 ‒29.715 ‒82.210 ‒14.108 3.438 Club 3
GS ‒19.418 ‒42.349 ‒16.118 ‒10.310 ‒6.469 0.251 Club 3
YN ‒14.062 ‒17.920 ‒82.567 ‒31.452 ‒12.285 1.925 Club 3
ZJ ‒0.431 ‒0.357 2.132 2.525 Club 2
HE ‒2.916 ‒2.953 0.213 0.687 Club 2
HL ‒28.266 ‒65.982 ‒1.632 ‒5.331 ‒5.544 6.954 Club 3
XJ ‒19.100 ‒27.277 ‒18.248 ‒49.762 ‒36.256 0.067 Club 3
BJ ‒6.982 ‒10.648 ‒1.818 ‒0.863 0.675 0.943 Club 3
SH ‒2.642 ‒2.644 0.058 0.547 Club 2
HK ‒47.154 ‒60.820 ‒108.934 ‒99.370 ‒84.7323 ‒114.307
TW ‒78.993 ‒159.575 ‒86.974 ‒286.319 ‒962.4422 ‒83.117

In view of the limitation of the width of the table, we put the logt test process after Club 3 on the upper right of the table. SR refers to standard region.CR refers to core region.
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and 2005, and then the gap gradually widened, but it still
converged to one club. The transition paths of Club 3
members are relatively consistent. The transition paths of
Hong Kong and Taiwan included in Club 4 show a significant
trend of convergence. The initial level of their transition
paths is low, and the level of transition paths in 2013 is also
low, which is significantly lower than the previous three
clubs. It is worth noting that Macao, which has the lowest
initial level, surpassed the transition paths of most regions
and became a member of Club 1, reflecting the rapid growth
of Macao’s GDP.

At the same time, the club convergence results also
showed obvious geographic effects. Both Club 1 and Club
2 are mainly concentrated in central and eastern China,
except Tibet and Qinghai. While Club 3 is mostly
concentrated in the western and northeast areas of China,
the convergence result of the log t test captures the spatial
effects of GDP growth.

Each club’s transition paths were averaged, and the
transition trend of each club’s overall transition path is
shown in the bottom panel of Figure 1. It can be seen from
the figure that in the initial years of the time series, the

transition paths of Club 1 and Club 3 is relatively
concentrated, but then the gap gradually widened. Club 2’s
transition path was the highest at first, but eventually lags
behind Club 1, especially in 2001; it was a key point in
reversing the transition paths of Club 1 and 2. Overall,
clubs 1, 3, and 4’s transition paths show an upward trend,
while the transition path of Club 2 shows a downward trend.
That is to say, the GDP transition paths of the northeast and
part of the central and western regions have an upward trend.
Although the eastern region took the lead at first, it has
subsequently shown a downward trend. One reason for the
existence of this catching-up effect may be the “Western
Development” and the “Rise of the Central China”
strategies introduced by the Chinese government in the
early 20th century; as investment in the central and western
regions continued to increase, the economic growth rate also
continued to grow and even surpassed that of the eastern area.

The transition path of Club 4 has continued to decline since
1992. It also markedly differs from the other three clubs and is the
club with the lowest growth rate; this is due to the social system of
Hong Kong and Taiwan differing from the mainland and can be
regarded as exceptional cases.

FIGURE 1 | Top: transition path of GDP growth rate. Bottom: GDP convergence club average transition path.
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In summary, there is evidence that the GDP growth rates of China’s
34 regions exhibited club convergence from 1992 to 2013. The club
identification results reflect significant geographical features and are
consistent with China’s regional economic development characteristics.

3.2 Club Convergence in Nighttime Light
Growth Rates
In the convergence test of nighttime lights growth rate, we also
take r � 0.3. First, the overall estimation equation for the log t test
for China’s 34 regions is:

log(H1

Ht
) − 2 log[log(t + 1)] � 1.619

(6.219)
− 1.454 log t

(−14.319)
(7)

It can be seen that b̂ � −1.454 ± 0.093< 0 and
tk � −14.319< − 1.65, rejecting the null hypothesis of
convergence. It indicates that the NTL growth rate of the
Chinese provinces does not converge as a whole. The clubs
were then divided into regions to identify NTL convergence in
China.

For the initial sorting process, the last 2/3 of the entire period’s
data was selected for ranking. Based on this ranking, Tibet ranked

TABLE 4 | Nighttime light convergence clubs.

Club Club members Club size Core group
tk

Whole group
tk

b̂ α̂

1 XZ, JX, CQ, QH, IM, SC, GZ, GS, NX, SN, HN, YN, AN, XJ 14 3.382 3.349 0.308 ± 0.375 0.154
2 ZJ, JS, GX, HI, HL, HB, JL, FJ, HA,SD, LN, TJ 12 2.372 ‒1.0751 −0.073 ± 0.167 ‒0.037
3 SX, GD, SH 3 4.73 3.355 0.303 ± 0.686 0.152
4 HK, MO 2 ‒1.057 ‒1.057 −1.44 ± 1.36 ‒0.72
Nonconvergent HE, BJ, TW 3

TABLE 5 | NTL club identification process.

Qrder tk tk Club tk tk Club tk tk tk Club

XZ SR CR 1
JX 2.958 CR 1
CQ 3.382 CR 1 BJ SR NC
QH 0.321 2.871 1 TW ‒7.442 SR NC
IM 0.531 2.623 1 HK ‒9.157 ‒3.576 SR 4
SC 0.017 3.136 1 MO ‒8.176 ‒7.632 ‒1.057 4
GZ 1.901 3.277 1
GS ‒0.416 1.898 1
NX 0.554 2.306 1
SN 0.156 2.452 1
HN 1.494 3.127 1
YN ‒31.470 3.239 1
ZJ ‒42.568 ‒2.693 SR CR 2
AH ‒6.502 0.854 1
XJ ‒17.588 0.860 1
JS ‒5.100 ‒0.392 2.372 CR 2
GX ‒32.778 ‒2.315 2.175 2.876 2
HI ‒4.707 ‒2.047 0.709 3.239 2
HL ‒34.798 ‒21.571 ‒2.979 2.684 2
HB ‒5.859 ‒1.757 1.929 2.894 2
JL ‒9.358 ‒5.337 0.979 0.984 2
FJ ‒124.893 ‒8.461 ‒5.658 2.604 2
HA ‒61.528 ‒18.426 ‒57.047 1.666 2
SD ‒70.587 ‒25.392 ‒73.276 0.409 2
LN ‒12.045 ‒7.962 ‒0.599 1.392 2
TJ ‒67.572 ‒42.692 ‒13.222 0.392 2
HE ‒60.384 ‒22.722 ‒49.956 ‒15.198 SR UC
SX ‒50.626 ‒23.052 ‒38.353 ‒15.987 ‒12.749 SR CR 3
GD ‒40.442 ‒25.990 ‒27.833 ‒16.977 ‒2.943 4.730 CR 3
SH ‒35.280 ‒29.323 ‒23.428 ‒17.420 ‒3.481 4.543 3.355 3
BJ ‒43.330 ‒41.499 ‒28.490 ‒23.206 ‒13.187 ‒17.802 ‒15.994
TW ‒24.647 ‒29.921 ‒15.675 ‒17.387 ‒8.200 ‒7.608 ‒8.611
HK ‒43.784 ‒80.153 ‒24.139 ‒32.027 ‒12.024 ‒11.054 ‒13.344
MO ‒29.294 ‒44.897 ‒17.662 ‒22.060 ‒9.425 ‒8.660 ‒10.374

In view of the limitation of the width of the table, we put the logt test process after Club 3 on the upper right of the table. SR refers to standard region.CR refers to core region.NC refers to
nonconvergence.
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first and was used as the reference region. Tibet, Jiangxi,
Chongqing, Qinghai, Inner Mongolia, Sichuan, Guizhou,
Gansu, Ningxia, Shaanxi, Hunan, and Yunnan were then
added to carry out the log t regression and calculate the t
statistic until the t statistic is less than −1.65. We found that
when Yunnan was added, tk � −31.47< − 1.65. Hence, the
addition of regions was paused. For group k � {1, 2, 3}, the
value of tk was the largest, confirming the core group as
comprising Tibet, Jiangxi, and Chongqing. Each area was then
added one by one into the core group. According to the t statistic,
the members of the first club were finally determined to be Tibet,
Jiangxi, Chongqing, Qinghai, Inner Mongolia, Sichuan, Guizhou,
Gansu, Ningxia, Shaanxi, Hunan, Yunnan, Anhui, and Xinjiang.

After excluding the members of the first club, the above test
method was repeated to determine the second convergence club
(Zhejiang, Jiangsu, Guangxi, Hainan, Heilongjiang, Hubei, Jilin,
Fujian, Henan, Shandong, Liaoning, and Tianjin), the third
convergence club (Shanxi, Guangdong, and Shanghai), the
fourth convergence club (Hong Kong and Macao) and
separate regions not belonging to any convergence clubs
(Hebei, Beijing, and Taiwan). See Tables 4,5 for details. The tk
value of the entire group of Clubs 1 and 3 is greater than Club 2,
indicating that the convergence is relatively strong. The tk value
for the whole group of Clubs 2 and 4 is less than 0, indicating that
their convergence is relatively weak. In terms of convergence

speed, Clubs 1 and 3 have a faster convergence rate of 15.4% and
15.2%. The convergence speeds of Clubs 2 and 4 are not
statistically significant.

The trend of each region’s transition path is shown in the top
panel of Figure 2. Except for Tibet, the growth rate of nighttime
lights in all regions began to stabilize. From 2004, the growth rate
gap between them has gradually opened, but there are still four
clubs that are converging. Geographical effects still exist. Club 1 is
mainly concentrated in the central and western China. Club 2 is
mainly concentrated in the eastern and northeast areas,
indicating that the convergence result also captures the spatial
effect of NTL growth to a certain extent.

The average transition path of each club is averaged, and the
transition trend of each club’s overall transition path is shown in
the bottom panel of Figure 2. It can be seen from the graph that in
the initial years of the time series, the transition paths of Clubs 1,
2, and 3 are relatively concentrated, and the initial growth rate of
Club 4 (Hong Kongand Macao) is the lowest, even lower than the
areas that do not converge. Subsequently, the transition path of
Club 1 gradually increased, Club 2 had a slight downward trend,
and Clubs 3 and 4 had significant downward trends. The
difference in NTL growth rates between clubs has gradually
increased.

In summary, there is evidence that the NTL growth rates of
China’s 34 regions did not have an overall convergence during

FIGURE 2 | Top: NTL transition path. Bottom: NTL convergence club average transition path.
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1992–2013 but exhibited club convergence. The growth rates gap
between different clubs increases with the year.

3.3 Robustness
In order to avoid the influence of the slow change function L(t)
on the results, this article uses three different situations
L(t) � log(t), L(t) � log[log(t)], and L(t) � log[log(t + 1)],
respectively, in the robustness tests, mainly examining the
robustness of club size and club member [43]. The test results
of GDP growth rates are shown in Table 6. The club size and
members are exactly the same for L(t) � log(t),
L(t) � log[log(t)], and L(t) � log[log(t + 1)], with only a
slight difference in the t-values. The robustness results show
that the effect of the slow-changing function on the convergence
of China’s GDP club is ignorable and the GDP club convergence
results are very robust.

The robustness tests for nighttime lights are shown in Table 7.
The club size and members are exactly the same for L(t) � log(t)

and L(t) � log[log(t + 1)], with only a slight difference in the
t-values. When L(t) � log[log(t)], the club size and members are
different from the first two cases, but the clubmembers still have a
remarkable overlap with the first two cases. The robustness results
show that the effect of the slow-changing function on the
convergence of China’s nighttime lights club is minor and the
NTL club convergence results are relatively robust.

3.4 Convergence Factor Testing
Due to the lack of relevant data in Hong Kong, Macao, and
Taiwan, Club 4 is not included in discussing the club convergence
factors for GDP and NTL. According to the principles of club
classification, as the club group rank increases, the growth rate of
clubs in the corresponding region is lower; on the contrary, the
lower the club group ranking, the higher the growth rate of clubs
in the corresponding region. The overall fit of the GDP clubs gives
N � 651 with R2 � 0.046 and p � 0.000, indicating that the
equation is relatively significant. In terms of the direction of

TABLE 6 | Robustness test of GDP convergence.

Clubs Club size Members t-value

Panel A: L(t) � log(t)
1 4 IM, TJ, MO, GD ‒1.292
2 14 CQ, SN, JS, SD, QH, GZ, FJ, HB, AH, XZ, HA, ZJ, HE, SH 6.226
3 14 JL, SC, GX, JX, HN, LN, SX, NX, HI, GS, YN, HL, XJ, BJ 14.523
4 2 HK, TW 4.866

Panel B: L(t) � log log(t)
1 4 IM, TJ, MO, GD ‒1.45
2 14 CQ, SN, JS, SD, QH, GZ, FJ, HB, AH, XZ, HA, ZJ, HE, SH 6.08
3 14 JL, SC, GX, JX, HN, LN, SX, NX, HI, GS, YN, HL, XJ, BJ 8.198
4 2 HK, TW 4.34

Panel C: L(t) � log log(t + 1)
1 4 IM, TJ, MO, GD ‒1.283
2 14 CQ, SN, JS, SD, QH, GZ, FJ, HB, AH, XZ, HA, ZJ, HE, SH 6.248
3 14 JL, SC, GX, JX, HN, LN, SX, NX, HI, GS, YN, HL, XJ, BJ 13.871
4 2 HK, TW 4.813

TABLE 7 | Robustness test of NTL convergence.

Clubs Club size Members t-value

Panel A: L(t) � log(t)
1 14 XZ, JX, CQ, QH, IM, SC, GZ, GS, NX, SN, HN, YN, AN, XJ 3.382
2 12 ZJ, JS, GX, HI, HL, HB, JL, FJ, HA,SD, LN, TJ 2.372
3 3 SX, GD, SH 4.73
4 2 HK, MO ‒1.057
Nonconvergent 3 HE, BJ, TW

Panel B: L(t) � log log(t)
1 12 XZ, JX, CQ, QH, IM, SC, GZ, GS, NX, SN, HN, YN 2.948
2 10 ZJ, AH, XJ, JS, GX, HI, HL, HB, JL, FJ 3.683
3 6 SD, LN, TJ, HE, SX, GD 3.236
4 2 HK, MO ‒1.167
Nonconvergent 4 HA, SH, BJ, TW

Panel C: L(t) � log log(t + 1)
1 14 XZ, JX, CQ, QH, IM, SC, GZ, GS, NX, SN, HN, YN, AN, XJ 3.478
2 12 ZJ, JS, GX, HI, HL, HB, JL, FJ, HA,SD, LN, TJ 4.611
3 3 SX, GD, SH 4.7
4 2 HK, MO ‒1.045
Nonconvergent 3 HE, BJ, TW
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the parameter estimation results, all variables have a negative
impact on club grading, that is, as a region’s mean of these
explanatory variables increases by one unit, the probability that
the region will move toward a club with a higher economic
growth rate will increase.

Excluding Hong Kong, Macao, Taiwan and nonconvergent
regions, the overall fitting result of the NTL club gives N � 609
with R2 � 0.134 and p � 0.000. The equation is relatively
significant, and the direction of the parameter estimation
results is different from the GDP estimation results. Fixed
asset investment increment, population growth rate, patents
increment, foreign direct investment increment, and coal
consumption increment have a negative impact on club
grading, that is, as a region’s mean of these explanatory
variables increases, the probability that the region will move
toward a club with a higher NTL growth rate will increase.
Laborer increment, industrial share, service industry share, and
total retail sales of social consumer goods increment have a
positive impact on club grading, that is, as a region’s mean of
these explanatory variables increases, the probability that the
region will move toward a club with a lower NTL growth rate will
increase.

We further calculated the marginal effects of explanatory
variables on GDP club division. The results are shown in
columns 2, 3, and 4 of Table 8. Clubs 1 and 2 have the
same direction for each variable, which is precisely the
opposite of Club 3. Among these variables, the coefficients
of patents increment, secondary industry proportion, and
tertiary industry proportion are significant. If the patents
increment increases by a mean of 1%, the likelihood that
the region belongs to Clubs 1 and 2 will increase 0.046%
and 0.077%, respectively, while the likelihood of belonging
to Club 3 will decrease 0.124%. If the secondary industry

proportion increases by a mean of 1%, the likelihood that
the region belongs to Clubs 1 and 2 will increase 0.007% and
0.012%, respectively, while the likelihood of belonging to Club
3 will decrease 0.019%. If the mean tertiary industry
proportion increases by 1%, the likelihood of the region
belonging to Clubs 1 and 2 will increase 0.003% and
0.004%, respectively, while the likelihood of belonging to
Club 3 will decrease 0.007%. These results indicate that
technological innovation and industrial structure played an
essential role in promoting economic growth. In fact, the
results of marginal effects are consistent with the realities of
economic development. The high GDP growth clubs are
mainly concentrated in the eastern regions, which have an
economic development level faster than the western regions.
High-tech industries are mainly concentrated in the east
developed areas, and the industrial and service industries
have developed rapidly since China’s economic
transformation, which was initially put forward in 2001.
This is an important reason why the eastern regions’
economic growth is higher than that of the central and
western regions.

The marginal effect of explanatory variables on NTL club
division can be seen in Table 8. Clubs 2 and 3 have the same
direction of change for each variable, which is precisely the
opposite of Club 1. When these data are combined with the
NTL transition paths (bottom panel of Figure 2), it can be found
that the transition path of Club 1 is gradually increasing, that is,
the NTL growth rates increase with time and regarded as a high
growth rates club. The transition paths of Clubs 2 and 3 have a
downward trend, that is, the NTL growth rates decline with time
and regarded as a low growth rates clubs. From the results
presented in Table 8, it can be found that, with the increase
of fixed capital investment, population growth rate, patents

TABLE 8 | Marginal effect of GDP convergence clubs and NTL convergence clubs.

GDP Nighttime light

Explanatory variables Club 1 Club 2 Club 3 Club 1 Club 2 Club 3

Fixed capital 0.000 0.000 −0.000 0.001 −0.000 −0.000
Investment increment (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)
Employees increment 0.143 0.024 −0.038 −0.188 0.111 0.077

(0.408) (0.068) (0.109) (0.169) (0.1) (0.07)
Population 0.003 0.006 −0.009 0.023c −0.014c −0.009c
Growth rate (0.002) (0.004) (0.006) (0.006) (0.004) (0.003)
Patents increment 0.046b 0.077b −0.124b 0.185c −0.109c −0.076c

(0.023) (0.038) (0.06) (0.065) (0.039) (0.028)
Secondary industry 0.007c 0.012c −0.019c −0.017c 0.01c 0.007c

Proportion (0.001) (0.002) (0.003) (0.003) (0.002) (0.001)
Tertiary industry 0.003b 0.004b −0.007b −0.017c 0.01c 0.007c

Proportion (0.001) (0.002) (0.003) (0.003) (0.002) (0.002)
Social consumer goods 0.001 0.002 −0.003 −0.027 0.016 0.011
Retail increment (0.014) (0.024) (0.038) (0.034) (0.02) (0.014)
Foreign direct 0.005 0.008 −0.012 0.062b −0.037b −0.026b
Investment increment (0.003) (0.005) (0.008) (0.031) (0.018) (0.013)
Coal consumption 0.041 0.068 −0.109 0.327b −0.193b −0.134b
Increment (0.062) (0.104) (0.166) (0.159) (0.095) (0.066)
aIndicates significant at the 10% level.
bIndicates significant at the 5% level.
cIndicates significant at the 1% level.
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increment, foreign direct investment, and coal consumption
increment, the probability that a region has a high growth rate
of NTL will increase. Increases in employee increment, the
secondary industrial proportion, the tertiary industrial
proportion, and retail sales of social consumer goods will
increase the probability that a region will have a low growth
rate of NTL. The marginal effect of the population growth rate,
patents increment, secondary industrial proportion, tertiary
industrial proportion, foreign direct investment, and coal
consumption increment is significant. If the population growth
rate mean increases by 1%, the probability of region belonging to
Club 1 will increase 0.023%, while the probability of belonging to
Clubs 2 and 3 will decrease 0.014% and 0.009%, respectively. If
the patent increment mean increases by 1%, the probability of
belonging to Club 1 will increase 0.185%, while the probability of
belonging to Clubs 2 and 3 will decrease 0.109% and 0.076%,
respectively. If the secondary industrial proportion mean
increases by 1%, the probability of belonging to Club 1 will
decrease 0.017%, while the probability of belonging to Clubs 2
and 3 will increase 0.01% and 0.007%. If the mean tertiary
industrial proportion is increased by 1%, the probability of
belonging to Club 1 will decrease 0.017%, while the
probability of belonging to Clubs 2 and 3 will increase by
0.01% and 0.007%, respectively. The influence of foreign direct

investment and coal consumption increment can also be observed
from Table 8.

3.5 Comparison of GDP and NTL Growth
Rate Convergence Characteristics
From the perspective of club membership, we identified the
common regions where the club divisions’ results coexist. We
refer to these common areas as groups. Group A includes six
regions (Tibet, Chongqing, Qinghai, Guizhou, Shaanxi, and
Anhui), Group B contains seven regions (Jiangxi, Sichuan,
Gansu, Ningxia, Hunan, Yunnan, and Xinjiang), Group C
includes six regions (Jiangsu, Shandong, Fujian, Hubei, Henan,
and Zhejiang), and Group D includes five regions (Guangxi,
Hainan, Heilongjiang, Jilin, and Liaoning). These four groups and
their corresponding clubs all appear in the two different club
division results, as shown in Table 9. It can be clearly seen that in
terms of the order of regional growth rate, the results of the two
clubs show certain degree of difference.

From the perspective of regional distribution, the maps in
Figure 3 show that in GDP convergence clubs, the regions in
higher ranked clubs are mainly concentrated in the central and
eastern areas, that is, these regions have higher GDP growth rates.
The western and northeast regions belong to clubs with a relatively

TABLE 9 | Comparison of GDP and NTL club members

Panel A: GDP growth rate

Club Club 1 Club 2 Club 3 Club 4 —

Inclusion groups A, C B, D
Members outside the groups IM, TJ, MO, GD HE, SH SX, BJ HK, TW

Panel B: NTL growth rate
Club Club 1 Club 2 Club 3 Club 4 Nonconvergent
Inclusion groups A, B C, D
Members outside the groups IM TJ SX, GD, SH HK, MO HE, BJ, TW

FIGURE 3 | Club division maps.
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low ranking and these regions have relatively low GDP growth rates.
Simultaneously, Tibet and Qinghai are located in the west but are
divided into the same club as the eastern coastal areas, indicating that
Tibet andQinghai’s GDP growth rates are higher than those of other
western regions. In the NTL convergence clubs, the regions in higher
ranked clubs are mainly concentrated in the west and central areas,
which means these regions have higher NTL growth rates. The eastern
and northeast regions belong to clubs with a relatively low ranking,
which means these regions have relatively low NTL growth rates.

Judging from the gap in transition paths between clubs, the
difference between the two types of data is significant. Due to the
particularity of the data in Hong Kong, Macao, and Taiwan, only
the 31 regions in the mainland are considered. The transition
paths of GDP Clubs 1, 2, and 3 show a catching-up effect. The
transition paths between clubs first converge, then diverge, with a
relatively flat path of divergence. The transition paths of each club
are in line with the patterns of linear development. The transition
paths of Clubs 1 and 3 are on rise, while Club 2 is on decline. The
transition paths of NTL Clubs 1, 2, and 3 do not show a catching-
up effect. With the annual increase, the transition path of each
club grew intenser, showing a nonlinear development pattern.
The transition path of Club 1 is on the rise, and the transition
paths of Clubs 2, 3, and 4 show a downward trend.

From the perspective of influencing factors of club division,
fixed capital investment increment, population growth rate,
patents increment, foreign direct investment increment, and
coal consumption increment have the same direction of
influence on the GDP growth rate and NTL growth rate, but
there are subtle differences in the significance. For the GDP
growth rate, the most significant factor is patents increment,
followed by industrial proportion and industrial proportion. For
the NTL growth rate, in addition to the above three variables,
population growth rate, foreign direct investment increment, and
coal consumption increment are also significant.

4 CONCLUSION

With the development of science and technology, the easily accessible
and more objective NTL data is increasingly valued and used as a
surrogate variable for economic growth. Besides, China is undergoing a
transitional period characterized by strategic developmental
opportunities and social tensions. The consideration of regional
economic convergence where convergence speed is heterogeneous is
crucial for the coordinated development of regional economies. To
explore the reliability of economic variables in NTL data, from the
perspective of regional economic convergence, the log t test based on
the nonlinear time-varying factor model was used for club convergence
analysis on the inter-provincial DMSP/OLS NTL data and GDP data
from 1992 to 2013. It was found that between 1992 and 2013, China’s
provincial NTL andGDP growth rates exhibited club convergence. The
high-GDP-growth clubs are mainly concentrated in the eastern and
central regions, while the high-NTL-growth clubs are mainly
concentrated in the central and west regions. The GDP club’s
catching-up effect between areas is consistent with the neoclassical
growth model’s general conclusion. Also, the growth rate gap among
clubs differs between the two data types. The growth rate gap among

GDP clubs is relatively flat, while the growth rate gap amongNTL clubs
is large. Therefore, there is a significant difference between NTL and
GDP club convergence.

This article further explored the club convergence mechanisms.
We have found that patents increment, industrial proportion, and
service industry proportion have a significant impact on both GDP
and NTL. Among them, the increase in the proportion of industry
and service industry has opposite effects on GDP clubs and NTL
clubs, while the increase in patent increment has the same impact on
GDP clubs and NTL clubs. This confirms that the industrial
structure of eastern coastal areas has been upgraded faster than
central and western regions. In addition, we found that, for NTL
clubs, population growth rate, foreign direct investment, and coal
consumption are also significant factors. An increase in population
growth rate, foreign direct investment, and coal consumption will
increase the probability that a region belongs to a high-growth club.
It explains that there are also certain differences between GDP clubs
and NTL clubs in terms of influencing factors.

On the whole, from 1992 to 2013, there were certain differences
in the results of club convergence between China’s provincial NTL
and GDP growth. The difference between NTL and GDP growth is
mainly reflected in regions and influencing factors. High GDP
growth regions correspond to low NTL growth regions, while
low GDP growth regions correspond to high NTL growth
regions. GDP growth is mainly influenced by technological
innovation and industrial structure, while NTL growth is mainly
affected by the population growth rate, technological innovation,
industrial structure, opening to the international world, and resource
consumption. The impact of industrial structure onGDP andNTL is
the opposite. At present, when GDP statistics are difficult to obtain
or are of low quality, a large number of studies use NTL brightness as
a representative of the level of economic development. But judging
from the results of this work, NTL is not a good substitute for GDP.
Our results suggest that by distinguishing the connotations and
differences between GDP and NTL and combining the
characteristics of the two, a more reasonable alternative indicator
of economic development can be constructed tomake it more in line
with the specific facts and laws of economic activities.
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Network Structures for Asset Return
Co-Movement: Evidence From the
Chinese Stock Market
Huai-Long Shi1* and Huayi Chen2

1School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China,
2College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China

This article focuses on the detailed network structure of the co-movement for asset returns.
Based on the Chinese sector indices and Fama-French five factors, we conducted return
decomposition and constructed aminimumspanning tree (MST) in terms of the rank correlation
among raw return, idiosyncratic return, and factor premium. With the adoption of a rolling
window analysis, we examined the static and time-varying characteristics associated with the
MST(s). We obtained the following findings: 1) A star-like structure is presented for the whole
sample period, in which market factor MKT acts as the hub node; 2) the star-like structure
changes during the periods for major market cycles. The idiosyncratic returns for some sector
indices would be disjointed fromMKT and connected with their counterparts and other pricing
factors; and 3) the effectiveness of pricing factors are time-varying, and investment factorCMA
seems redundant in the Chinesemarket. Our work provides a new perspective for the research
of asset co-movement, and the test of the effectiveness of empirical pricing factors.

Keywords: Chinese stock market, asset pricing, sector index, minimum spanning tree, co-movement

1 INTRODUCTION

Co-movement refers to the correlated or similar movement of two or more entities. In finance, the
co-movement of asset returns is crucial to the cross-sectional diversification and management of
systematic risk. It also affects the way shocks are transmitted and thus the level of systemic risk [1].
Understanding the co-movement for asset returns is essential and beneficial in the academic field and
practical investment. According to the seminal work by Ref. [2], asset co-movement could be
decomposed into two parts. One part is “reasonable” co-movement, which is related to the
fundamentals of assets. And the other part is “excess” co-movement, or “friction-based” co-
movement, which is linked to investor sentiment and is beyond the explanation of fundamental
change with respect to the assets. Motivated by Ref. [2], a strand of ensuing studies have been carried
out in the literature, with the adoption of the indicators in terms of R2 or its variants derived from the
regression on the market performance [1, 3–5].

However, most literature has concentrated more on the co-movement between individual assets
and market performance rather than that among the assets themselves. In practice, people may be
more concerned with the co-dependency or cross-correlation for various assets. It was virtually
realized via the indirect evaluation of the co-movement between each asset and market performance
[6], because of computational complexity in early years. The overall market performance serves as
the “intermediary” during the process.

Along with the sharp drop in computing costs, an increasing number of researchers have turned
their attention to more direct and accurate metrics of the co-movement among the assets. In
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particular, based upon the network theory, a surge of literature is
coming out to unveil the co-movement structures within or
across asset classes. The network-based approach typically
consists of the following two steps: 1) constructing the matrix
in terms of cross-correlation coefficients for given assets, and
thereby 2) mapping it to a graph, in which the nodes refer to the
assets with links or edges connecting them.1 Therefore, the
topological properties associated with the graph or network
can be further obtained to describe the structure of the co-
movement.

For the first step, Pearson correlation is one of the most
popular methods, especially in the early literature, in which it
is simple to capture the linear correlations between the assets.
Some similar alternatives include partial correlation [7], co-
integration [8], and lead–lag relation [9–11]. Although these
approaches function well in featuring the linear correlation
among assets, they fail to capture the non-linear correlation
that is more prevalent in financial markets. In response, more
approaches have been employed, such as copula [12], mutual
information [13], and rank correlation [14]. For the second step,
it is easy to build a complete graph or network based on the raw
correlation matrix, containing rich and even redundant
information. An information filter is necessary, and a number
of network-based methods have been developed to this end. For
instance, minimum spanning tree (MST, hereafter) is one of the
most popular methods [15–17]. Assuming that there are a total of
N nodes in the original network, N − 1 most important edges
would be retained in the MST. Planar maximally filtered graph
(PMFG, hereafter) has also been frequently adopted in the
literature [18]. The PMFG retains more information and
exhibits more robustness than the MST. It is mainly realized
by the fact that the nodes have no cross-linkage on the planar. In
comparison, the most intuitive way is to conduct the threshold
method [19, 20], which is able to filter out all the nodes with
linkage weights greater than a specific critical value.

In this work, we concentrate on the detailed co-movement of
the assets proxied by industrial sector indices in China. China has
witnessed rapid development in its financial market in recent
decades, while some phenomena still characterize the Chinese
market, including the less transparent information environment
at the market and firm levels, and amore significant proportion of
irrational individual investors [21]. These result in remarkably
distinct performance in the stock market from other mature
markets [22], which necessitates further study. Furthermore,
despite rich research on the co-movement for the assets in
China, insufficient attention has been paid to a more detailed
co-movement structure, which plays an increasingly important
role in portfolio selection and risk management. On the other
hand, with the rapid development of “factor zoo” [23], the
performance of assets can be attributed to the compensation
for various kinds of risks or the premium for investing styles. In

this vein, it pays to perform an anatomy of the co-movement
structure for the asset, which is the focus of our work.

Given that the network-based approach is more informative
about detailed co-movement structures than those traditional
methods with respect to the linear regression model (i.e., R2 and
its variants), we constructed the MST with layered structures in
terms of correlations among systematic, idiosyncratic, and raw
returns of assets. Based on the network theory, topological
properties associated with the MST can be derived to describe
the co-movement structure. For the whole sample period, we
found that the MST presented a star-like connection, with the
hub node being market factor MKT, and all sector nodes were
connected to market factor MKT. Size factor SMB was directly
linked to the sector composite (Cps), while the other three factors
were connected through SMB. Our plot of the MST also implied
the effectiveness of Fama-French pricing factors in China: market
factor MKT played an important role, while investment factor
CMA seemed redundant. These findings are consistent with the
prior literature [24, 25].

With the adoption of the rolling window analysis, we observed
that the topological properties associated with the network
structure are time-varying. In particular, in major market
cycles, the star-like structure would be accordingly changing.
This is featured by the fact that a few idiosyncratic returns for
sector indices would be disjointed from market factor MKT and
then connected to their counterparts, which is consistent with the
findings from Ref. [14]. Meanwhile, pricing factors would
generally exhibit more favorable pricing efficacy.

The contributions of our work are as follows:
Our first contribution is to probe into the detailed co-

movement structures of asset returns in China, to which
scarce attention has been paid. In fact, to the best of our
knowledge, our work is the first which is aimed for this
purpose. A mounting of the literature has focused on the
individual stock co-movement in China as well as the driving
factors of change in the co-movement structure [11, 26], while
another strand of the literature has examined the co-movement
structure across the asset classes, such as that for the individual
stocks in the Chinese market and other mature markets [27], and
that between global oil prices and China’s commodity sectors
[28]. In comparison, our focus on detailed co-movement
structures of asset returns differentiates our work from the
literature mentioned previously. Specifically, we conduct the
return decomposition based on the Fama-French five-factor
model for China and further construct the MST with layered
structures. Based on this, we probe into the inter-structure for the
co-movement between asset raw return and price premium, and
the intra-structures for the factor premiums and idiosyncratic
returns.

Our second contribution is to extend Ref. [14] by considering
the weighted schemes for the co-movement structure in asset
returns. The authors of Ref. [14] adopt the network-based
approach to examine the asset returns’ co-movement in the
US market. Based on the Fama-French three-factor model,
they decompose the returns of industrial sector indices into
systematic and idiosyncratic parts. They further examine the
properties associated with time-varying MSTs with unweighted

1The edge exists between the nodes for assets if they have a higher pairwise
correlation, which will be detailed in the following sections. Note that “edge” and
“link” are interchangeable in our work.
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edges between the returns. Their results suggest that unexpected
industries connect idiosyncratically through the dot-com bust.
Different from their work, we focus on unweighted as well as
weighted schemes in our work. Our results based on weighted
schemes reveal more explicit and remarkable fluctuations in the
measures for the co-movement structure for the period of major
cycles in China than the results based on unweighted schemes,
including the period around 2007, 2015, and 2018, corresponding
to three major bursts of stock bubbles in China. In comparison,
the results based on unweighted schemes convey less information,
especially highlighted by our results for the intra-structure of
returns’ co-movement.2

Last but more importantly, our work adds to the literature on
empirical asset pricing by providing evidence of the time-varying
effectiveness of pricing factors in the Chinese stock market. By
conducting the rolling window analysis, our work lends support
to the importance of market factor MKT but the redundancy of
the investment factor CMA, which is also consistent with
empirical findings in previous literature. In fact, the majority
of research works focusing on asset co-movement are conducted
based on cross-sectional and time-series regressions. In contrast,
we employ the network-based approaches to fulfill the goal. In
this regard, our research also provides a new perspective on the
effectiveness evaluation of empirical pricing factors.

The article proceeds as follows: Section 2 and Section 3
introduce the method and data employed in the study; Section
4 presents empirical findings; Section 5 introduces the results of
robustness check; and Section 6 concludes.

2 METHODOLOGY

2.1 Decomposition of Asset Return
Our interest is on the detailed co-movement structures for asset
prices. We examine it by focusing on the inter- and intra-
structures of the co-movement among raw, systematic, and
idiosyncratic asset returns. Therefore, our first step is to
conduct the decomposition of raw asset returns. According to
the theoretical backgrounds of the macro-economy and empirical
asset pricing, asset return can be explained by several common
risk factors regarding fundamentals, plus the compensation for
the idiosyncratic shocks whose expected value is zero [29]. In
light of this, we can base on a specific popular pricing model to do
the return decomposition [21, 30]. We resort to one of the most
popular pricing models, that is, Fama-French five-factor model
(FF5, hereafter) for the Chinese stock market [31]. More
importantly, five factors from FF5 can function more
favorably to describe the systematic risks and deliver better
explanation power to the performance regarding individual
assets and asset portfolios than Fama-French three-factor [32]

and CAPM models [33–35] for China [24, 25]. Specifically, we
regress the return time-series for each of the 28 sector indices
against the Fama-French five factors. In this way, the
idiosyncratic return for each sector indices can be captured by
the residuals plus the intercept.3 The process mentioned
previously can be described as follows:

ERi � αi + βMKT,iRMKT + βSMB,iRSMB + βHML,iRHML + βRMW,iRRMW

+ βCMA,iRCMA + εi, εi ~ N 0, σ2
ε( ),

(1)
where ERt denotes daily log return for stock index i, and RMKT

denotes value-weighted market portfolio returns, both in excess
of the risk-free rate; RSMB, RHML, RRMW, and RCMA constructed
following Refs. [31, 36, 37] represent size, value, profitability, and
investment factors, respectively. εi denotes the idiosyncratic
return of asset i. Accordingly, the raw asset return can be split
into systematic component that is captured by βMKT,iRMKT +
βSMB,iRSMB + βHML,iRHML + βRMW,iRRMW + βCMA,iRCMA, and the
idiosyncratic return that is captured by αi + εi.

2.2 Measurement of Co-Movement
As alternatives, we gauge the co-movement between each pair of
return series with rank correlation, namely, Spearman’s ρ and
Kendall’s τ, which are able to describe the non-linear relationship
among various components based on return decomposition.4

Spearman’s ρ is equivalent to Pearson’s linear correlation
applied to the rankings of each return series. Assume two
return series A � {Ai}n1 and B � {Bi}n1, if all the ranks are
distinct; then the equation could be simplified to

ρSpearman
A,B � 1 − 6∑d2

i

n n2 − 1( ), (2)

where di = rg (Ai) − rg (Bi) is the difference between the two ranks
of each observation in A and B, and n is the length of each
series [38].

Kendall’s τ coefficient can be defined as

τA,B � 2K
n n − 1( ), (3)

where K � ∑n−1
i�1 ∑n

j�i+1f(Ai, Aj, Bi, Bj), and

f Ai, Aj, Bi, Bj( ) � 1, if Ai − Aj( ) Bi − Bj( )> 0
0, if Ai − Aj( ) Bi − Bj( ) � 0 ,

−1, if Ai − Aj( ) Bi − Bj( )< 0
⎧⎪⎪⎨⎪⎪⎩ (4)

According to Eq. 4, the Kendall correlation between two variables
will be high when observations have similar ranks and low when
observations have dissimilar ranks. Specifically, the value of τ

2Similarly, results from Ref. [14] suggest that large fluctuations of measures of co-
movement structures coincide with the burst of the dot-com bubble, while they
remain relatively stable for other periods with major risk events (from Figure 4
through Figure 5 in Ref. [14]). We argue that this may be, to a large extent, due to
the unweighted scheme adopted by the authors.

3The efficacy of the Fama-French five-factor models for the Chinese stock market is
not our focus in this work. We consider pricing factors possibly regarding
fundamentals in the study to serve more favorably for our purpose of return
decomposition.
4It is noted that although we report main results based on rank correlation, our
findings still hold and are even more significant when Pearson’s ρ is adopted.
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ranges from −1 to +1. A value of −1 indicates that one’s ranking is
the reverse of the other, while a value of +1 indicates that the two
rankings are the same. A value of 0 indicates no relationship
between them [39].

Both of the aforementioned correlation coefficients measure
monotonicity relationships. Strictly speaking, the Kendall
correlation is preferred over the Spearman correlation because
of a smaller gross error sensitivity and a smaller asymptotic
variance [40], which nevertheless makes no difference in our
study. Unless noted otherwise, Spearman’s ρ is adopted as the
measurement of correlation, and we leave out the superscript
Spearman in the left hand of Eq. 2 in the remainder of the article.

In light of Ref. [14], we introduce a special correlation
structure for the purpose of this work. In particular, we set the
correlation coefficient between raw and idiosyncratic returns as
one. In other words, raw return Y and its idiosyncratic
component I is perfectly correlated, and together, they can be
further viewed as a new type of node labeled as Z. The correlation
coefficient of special nodes pair Z ~ Z is, in fact, the correlation
coefficient of their idiosyncratic components I ~ I, and the
correlation coefficient of special node and factor premium Z ~
F equals that of its raw return and factor premium Y ~ F.
Assuming there are a total of N assets and M risk factors, that
is, the size of the network isN +M, we thus obtain the correlation
matrix C as follows:

C �

ρI1 ,I1 / ρI1 ,IN ρY1 ,F1
/ ρY1 ,FM

/ 1 / / / /
ρIN,I1

/ ρIN,IN
ρYN,F1

/ ρYN,FM
ρF1 ,Y1

/ ρF1 ,YN
ρF1 ,F1

/ ρF1 ,FM
/ / / / 1 /

ρFM,Y1
/ ρFM,YN

ρFM,F1
/ ρFM,FM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

2.3 Construction of the Network
We can construct an undirected network as follows: First,
correlation matrix C formed according to Eq. 5 needs to be
transformed to a distance matrix before constructing the network.
We follow Ref. [41] to construct the distance measurement for
nodes pair (A, B) in the network:

DA,B �
��������
1 − |ρA,B|

√
, (6)

which is also proven to satisfy the properties of distance norm: 1)

D(.)
A,B � 0 if and only if A = B, 2) D(.)

A,B � D(.)
B,A, and

3) D(.)
A,B < � D(.)

A,K +D(.)
K,B.

5

Second, distance matrixD constructed previously still contains
rich information regarding co-movement structures. It can map
to a complete graph, in which each pair of vertices is connected by
an edge. However, our purpose is to conduct the study based on a

more concise structure containing the most important links or
edges. Accordingly, the MST is employed to filter the original
network. We follow the process similar to that under Kruskal’s
algorithm [42]. Specifically, the lower-diagonal elements of C are
sorted in order. We then rely on the sorted values to screen out
the most significant links, so as to construct an MST. The links
with lower values are preferred, and all nodes are connected
sequentially through the shortest distance. As a result, N +M − 1
links are retained, through which all of the N + M nodes are
connected in the network, compared to a total of (N+M)(N+M−1)

2
edges in its complete graph.

2.4 Topological Properties of the Network
We investigate both static and dynamic co-movement structures
by examining the network’s topological properties. In order to
capture the detailed structure of the co-movement, the properties
are required to characterize the tightness as well as the shape of
the network structure. It is stressed that the results of all metrics
based on both unweighted and distance-weighted (see Eq. 6)
networks are presented in our work, and the comparison of the
results would be conducive to detecting the effectiveness of
pricing factors.

For the tightness of the entire network, we consider node
distance as a proxy, disA,B, for node pair (A, B) [43–45], which acts
as an intuitive but favorable measurement for the level of co-
movement.6 The unweighted distance between A and B is defined
as the shortest path length between them. According to Eq. 6, the
weighted distance betweenA and B can be defined as the length of
the shortest D-weighted path between them. It is noted that the
weighted node distance functions better in capturing the
dynamics of network tightness, given that the unweighted
node distance may remain unchanged over time. To gauge the
tightness of the networkmore accurately, we employ the indicator
in terms of nodes’ distance, which is similar with network
efficiency [46]:

NT � ∑A≠B
1

disA,B

N +M( ) N +M − 1( ), (7)

where disA,B represents the unweighted or weighted distance
between A and B, and N + M denotes the network size.
Specifically, the network structure is tight (loose), when NT is
larger (smaller), thus indicating the higher (lower) level of co-
movement.

In addition, we attempt to devote more attention to the sub-
networks, or detailed structures of co-movement, including the
inter-structure of co-movement across raw return and factor
premium, and the intra-structures for idiosyncratic returns
and factor premiums. As for the sub-network based on given
node types, NT fails to measure the network tightness, since the
nodes may be connected by other nodes outside the sub-network

5It is noted that conventional method of mapping the correlation to the distance
relies on DA,B �

���������
2(1 − ρA,B)

√
[15, 16]. In this vein, positive (negative) correlation

gives rise to the short (long) distance. However, this is not what is required in our
work. High magnitudes of pairwise correlations, irrespective of their directions,
would imply the close relationship between the assets, on which the high level of
co-movement is based. Thus, Eq. 6 serves the purposes of our work better.

6Thanks for the comment offered by one of the anonymous reviewers, and we
notice that tightness of the network in our study is similar to the conception of
network robustness [46]. Despite this, our work concentrates on evaluating
network connectivity for assets and pricing factors. Therefore, we adopt
“tightness” rather than “robustness” to highlight this focus.
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of our interest. We thus consider the average link size of a given
sub-network as an alternative. It is defined by the following:

�lS � ∑e∈Sle∑e∈Gle
. (8)

where le represents the length of link e in the network. S refers to
the sub-network of our interest, while the entire network is
denoted as G. It is noted that the change of link size for the
entire network is controlled for in Eq. 8. By doing so, we can
obtain more accurate results for the co-movement structure.7 In
the case of an unweighted network, the length of link e equals one,
if it exists in network S, and zero otherwise. In this regard,∑e∈Sle is
given by the total link size for all the links of network S, and∑e∈Gle
equalsN +M − 1. In this vein, a larger (smaller) value of�lS implies
the higher (lower) level of tightness, and thereby the lower
(higher) level of co-movement for a given network S. In the
case of a weighted network, le refers to distance measurement d
depicted by Eq. 6. Thus, ∑e∈Sle and ∑e∈Gle equal the sum of d in
the network S and G, respectively. When the absolute link size is
fixed, a larger (smaller) value of �lS implies the lower (higher) level
of the co-movement across the returns in given network S.

As for the shape of the network structure, we consider the
node degree, node strength, and their variants as the major
measurements. Node degree is defined as the number of links
connecting a given node to the rest of the network. Its weighted
version, or node strength, is defined as the sum of weights (or
distances) of links connected to the node. Here we focus on the
maximum and the standard deviation of the node degree
(strength). The maximum degree of the network is defined as
the degree of the node with the greatest number of edges incident
to it. We define the maximum strength of the network as the
strength of the node with the greatest weight of edges incident to
it. Intuitively, the evolution of maximum degree (strength)
indicates a time-varying network shape. The standard
deviation of node degree (strength) measures the amount of
dispersion of nodes’ degree (strength), which plays a more
critical role in characterizing the shape of the network.
Specifically, a larger (smaller) standard deviation of degree
(strength) implies that the shape of the network is more
inclined to be the star-like (chain-like) connection.

3 DATA

Obviously, individual stocks within the same industry or sector,
or more broadly, some style of “portfolio,” share the co-
movement to a large extent [2]. Therefore, we adopt the sector
indices as our data sample, instead of individual stocks. By doing
this, the industry effects are controlled for in our work so that a

more precise co-movement structure can be further evaluated.
Specifically, our work is conducted based on 28 sector indices,
issued by Shenyin and Wanguo Securities Co., Ltd (http://www.
swsresearch.com), and the period spans from 5 January, 2000 to
29March, 2019.With the closing price of sector indices on a daily
basis, we can further obtain their daily log returns, that is, rt = log
(pt) − log (pt−1). Summary statistics associated with daily log
returns for different indices are reported in Panel A of Table 1. It
is noted that price limit trading rules implemented currently in
China became effective since December 1996, requiring that the
maximum daily price fluctuation in terms of the last closing price
is ±10% for risk stocks, as highlighted by the results in the
columns of Max and Min. It is also evident that each sector
produces a time-series average positive profit, and the most
outperformed is F&D with the return of 0.05% per day, or
around 12.6% (≈ 0.05% × 252) per year. The standard
deviation (std) of daily returns ranges from 1.7% to 2.3%;
thus, the annualized standard deviation ranges from about
27% to 37%, which is remarkably higher than those of major
assets around the world.8 In addition to these, we can observe that
a majority of sector returns are negatively skewed, indicating the
relatively higher possibility of a flash crash. The kurtosis is
beyond five for all sector indices, accompanied with the
evidence of negatively skewed distribution, which suggests that
the sector indices are not normally distributed. Accordingly, this
can be further confirmed by the significant statistics of
Jarbe–Barque tests at the 1% level.

Additionally, for the decomposition of the asset return, we also
retrieve a risk-free interest rate as well as Fama-French five factors for
China on a daily basis from the China StockMarket and Accounting
Research (CSMAR) database, which is the comprehensive database
for Chinese business research, covering data on the Chinese stock
market.9 Specifically, the risk-free interest rate is proxied by the
3month fixed deposit benchmark interest rate published by the
China Central Bank. Pricing factors are constructed strictly following
Ref. [31]. Summary statistics associated with Fama-French pricing
factors are also presented in Panel B of Table 1. Apparently, the
market factor, MKT, outperforms other four factors and even 28
sector indices, with an annual return of 15% (≈ 0.06% × 252).MKT
has larger magnitudes of maximum (11%) and minimum (9%), thus
implying the higher volatility, which can also be confirmed by its daily
standard deviation of 1.7%, or around 27% per year, at least twice
than those for other four factors. It is noted that althoughMKT is the
most volatile among the factors, it is still located within the lower
range of the standard deviation for sector indices. Accompanied with
its highest profits,MKT produces the highest Sharpe ratio and acts as

7We argue that it is necessary to consider the weight changes for the edges in the
network. For the inter-structure for raw return and factor premium, we observe a
significant increase in the weighted link size, but a decrease in the unweighted link
size. This is mainly due to the increase in distance measurement for the entire
network. Unsurprisingly, the results are consistent after allowing for weight
changes.

8For the recent decade, global commodities have achieved the highest annualized
standard deviation of about 17%, which is obviously lower than those for sector
indices in China. In the Chinese market, the majority of investors are retail
investors, causing larger irrational and speculative behaviors and thereby higher
volatility [22]. For more information regarding the historical volatility of
worldwide assets, refer to https://advisor.visualcapitalist.com/asset-class-risk-
and-return/.
9As for the detailed construction of Fama-French five factors, we refer interested
readers to Ref. [31] as well as the documents by the CSMAR (https://www.gtadata.
com/), which is not the focus in our study.
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the best “asset”within the framework of portfolio theory [47]. Except
forMKT, themaximumandminimummagnitudes for the other four
factors are lower than 5% and 7% per day, respectively. Relatively
speaking, SMB and HML are more profitable than the others, with
the annual return of 10% (≈ 0.04% × 252) and 2.5%
(≈ 0.01% × 252), respectively, while RMW and CMA produce the
profits approaching zero per day. SMB and HML are more volatile,
with the annual standard deviation of 12.7% and 9.5%, respectively,
than 6.3% for CMA. Similarly, five factors are not normally
distributed, as suggested by the results of their skewness, kurtosis,
and the statistics under the Jarbe–Barque test.

4 EMPIRICAL RESULTS

4.1 Network Connectedness Over the
Whole Sample Period
To begin with, we examine the results over the whole sample
period. With a daily log return for 28 stock indices, we first

retrieve their idiosyncratic returns by performing the regression
of their raw returns on Fama-French five-factor premiums, as
described by Eq. 1. Factor premium, raw return, and its
corresponding idiosyncratic return are employed to calculate
the correlation matrix C in terms of Spearman’s ρ. With the
adoption of the distance measurement in Eq. 6, C is transformed
to D, and its MST can further be obtained, as presented in
Figure 1. The network comprises 33 nodes with 32 most
significant linkages connecting them. The white circles in the
figure represent different sector indices, while the gray ones
represent pricing factors. The width of edges between nodes
denotes the reciprocal of the distance between them. The
edges in bold imply that the shorter the distance the closer the
relationship between the connecting nodes.

It is evident that all sector indices are connected to factor
MKT, as shown in the plot of the MST, which suggests that sector
indices exhibit a high degree of co-movement with market factor
MKT compared to other risk factors. Apparently, market factor
MKT has the maximum degree, while the other four factors are

TABLE 1 | Descriptive statistics of log returns for 28 sector indices and the premiums for Fama-French five factors.

Full name Abbr Code Max Min Mean Std Skew Kurt JB-Stats

Panel A: Sector indices
Agriculture and forestry A&F 801010 0.09 −0.10 0.0002 0.019 −0.48 6.25 2,232**
Automobile Auto 801880 0.09 −0.10 0.0003 0.019 −0.45 6.30 2,277**
Bank Bank 801780 0.10 −0.11 0.0002 0.019 0.19 7.21 3,474**
Biotechnology Biotech 801150 0.09 −0.09 0.0004 0.018 −0.46 6.38 2,388**
Building and decoration B&D 801720 0.09 −0.10 0.0001 0.018 −0.33 6.53 2,508**
Building materials BM 801710 0.09 −0.10 0.0003 0.020 −0.48 6.06 1998**
Chemical Chem 801030 0.09 −0.09 0.0002 0.018 −0.52 6.36 2,405**
Commercial trade ComT 801200 0.09 −0.10 0.0002 0.018 −0.55 6.49 2,604**
Communications Comm 801770 0.10 −0.10 0.0001 0.020 −0.23 6.03 1826**
Composite Cps 801230 0.09 −0.10 0.0001 0.019 −0.66 6.04 2,134**
Computer Cpt 801750 0.10 −0.10 0.0003 0.021 −0.34 5.28 1,098**
Electrical equipment ElecE 801730 0.09 −0.09 0.0003 0.019 −0.43 5.96 1844**
Electronic Elec 801080 0.09 −0.10 0.0001 0.021 −0.53 5.43 1,373**
Food and drink F&D 801120 0.09 −0.09 0.0005 0.017 −0.15 6.24 2058**
Household appliances Happ 801110 0.09 −0.09 0.0003 0.019 −0.23 5.91 1,687**
Leisure and services L&S 801210 0.09 −0.10 0.0003 0.020 −0.43 6.12 2041**
Light manufacturing LMF 801140 0.09 −0.10 0.0001 0.018 −0.68 6.94 3,389**
Mechanical equipment MechE 801890 0.09 −0.09 0.0003 0.019 −0.53 6.34 2,388**
Media Media 801760 0.10 −0.11 0.0002 0.021 −0.36 5.35 1,177**
Mining Mining 801020 0.10 −0.10 0.0002 0.021 −0.13 5.90 1,651**
National defense ND 801740 0.10 −0.10 0.0002 0.022 −0.34 5.89 1718**
Non-bank financial NBF 801790 0.10 −0.10 0.0003 0.023 0.05 5.59 1,310**
Non-ferrous metals NFMet 801050 0.09 −0.10 0.0002 0.022 −0.33 5.64 1,443**
Real estate Rest 801180 0.09 −0.10 0.0003 0.020 −0.37 5.90 1744**
Steel Steel 801040 0.09 −0.10 0.0001 0.019 −0.30 6.35 2,249**
Textile and apparel T&A 801130 0.09 −0.10 0.0001 0.019 −0.70 7.02 3,532**
Transportation Trans 801170 0.10 −0.10 0.0001 0.017 −0.48 7.34 3,846**
Utilities Util 801160 0.09 −0.10 0.0001 0.017 −0.53 7.30 3,804**
Panel B: Fama-French factors
Market factor MKT 0.11 -0.09 0.0006 0.017 -0.19 8.01 4,912**
Size factor SMB 0.05 -0.07 0.0004 0.008 -1.01 9.89 10,009**
Value factor HML 0.05 -0.04 0.0001 0.006 0.67 9.54 8,659**
Profitability factor RMW 0.05 -0.03 0.0000 0.006 0.80 9.00 7,495**
Investment factor CMA 0.03 -0.03 0.0000 0.004 -0.27 6.23 2081**

This table presents the full name, the abbreviation of the name (Abbr.), as well as the code (only for sector index), maximum (Max), minimum (Min), mean (Mean), standard deviation (Std),
skewness (Skew), kurtosis (Kurt), and Jarque–Bera test statistic (JB-stats) of daily log return for each index (Panel A) and pricing factor (Panel B). The superscripts * and ** denote the
statistical significance at 5% and 1%, respectively.
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connected with other sector nodes through sector Cps.
Specifically, size factor SMB is directly linked to sector Cps,
while the other three factors are connected through SMB. In
comparison, investment factor CMA lies in the most periphery of
the MST structure.

We also notice that it is more distant between pricing factors
than that between MKT and sector indices. That is, the links
connecting MKT with sector indices are more preferred during
the construction of the MST. In some sense, the results
aforementioned also unveil the relative strength of the pricing
effectiveness of risk factors in the Chinese stockmarket, which are
in accordance with empirical findings from the literature on asset
pricing. As documented in previous research works, Fama-
French five factors in emerging markets behave differently
from other mature markets. It is widely acknowledged that
market factor MKT is not enough to capture the common
risks associated with assets, and thus, “factor zoo” has been
developed to fulfill this end [23]. Furthermore, new pricing
factors that have been proven in mature markets are applied
to emerging markets, including China. As for the Chinese market,
size factor SMB and profitability factor RMW are found to
function well [24], while investment factor CMA seems
redundant [24, 25], and the results regarding value factor
HML are mixed [24, 48, 49], which is consistent with our
findings in Figure 1.

4.2 Dynamics of Network Connectedness
In order to probe into the dynamics for the co-movement among
raw returns, factor premiums, and their idiosyncratic returns,
rolling or moving window analysis is conducted [50–53]. It is
noted that the rolling window analysis has been frequently
adopted in the literature. Researchers record the behavior
regarding the variable of interest in each moving window,
thereby obtaining its dynamics over time. In the fields of
finance, the authors of Ref. [54] put forward the famous
Fama-MacBeth regression to process the panel data by
evaluating the time-series estimates of slopes based on cross-
sectional regression in each moving window, which has been
widely employed in financial studies; recent research works
include Refs. [55–58] among others. The authors of Ref. [59]
propose variance decomposition based on the VAR model to
detect the spillover effect of variables of interest, whose dynamics
are also obtained by re-estimating the model for each moving
window [60, 61]. There is a body of literature proposing the
econophysics-based methods to process financial data, with the
adoption of the rolling window analysis as well [62]. It is noted
that the rolling window analysis has also been applied to other
fields, including particle-in-cell simulation [63], recurrence plot-
based complexity measurement [64], mutual information
estimation [65], and the study of the dynamical response of a
population [66].

FIGURE 1 | MST for the whole sample period from 1 July 2000 to 29 March 2019. White circles denote 28 sector indices, while gray circles denote five pricing
factors.
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As for our work, the most intuitive and efficient way is to
evaluate the properties associated with the MST in each
moving window and further examine their dynamic
behaviors. The observations in each time window should be
sufficient to guarantee a precise estimation. Following Ref.
[14], the sizes of the rolling window and the step are set as 120
trading days and 1 day, respectively. As such, we follow the
process similar to what is illustrated in the previous
subsection, except that at each trading day t during the
sample period, we construct the MST based on the data
derived from the decomposition of the index return over
the past period from t − 1 to t − 120. To capture the
changing structure of co-movement, we examine the
evolution of the topological properties of the MSTs.

We also wonder whether the topological characteristics of the
network are related to market performance. To this end, we
perform a rough division in terms of market performance proxied
by the Shanghai Component Index (SHCI, hereafter). As shown
in Figure 2, market trends over the period from January 2000 to
March 2019 are roughly divided into five market cycles, which are
typically composed of the phases of accumulation, mark-up,
distribution, and mark-down. In the figure, the red curve
represents the rising phase of the market, while the black
curve represents the downward or adjusting phase. We focus
on the network structures over three time periods corresponding
to the three most important market cycles, namely, the periods
around 2007, 2015, and 2018.

The results are presented in Figures 3, 4. On the whole, our
results unveil the strong correlation between the evolution of
topological properties of the network structure and market cycles,
regardless of which topological properties are considered.

According to Eq. 7, NT plays an important role in characterizing
the level of network tightness. In the top panel of Figure 3, we can
readily observe that both unweighted and weighted results vary over
time and are closely related to themajormarket cycles, represented by
the shaded parts in the plot. NT experiences a sharp decrease during
all three major periods, thus indicating the lower level of co-

movement. It is more pronounced in the unweighted case, since
NT remains relatively stable with slight fluctuations most of the time,
except for the three periods of our interest. It is also worth noting that
the evolution of the average distance is not exactly coherent with the
market trend. The Chinese market has witnessed the most significant
bubble formation and bursting during the period around 2007, while
the market cycle around 2018 is relatively insignificant. However,
Figure 3 presents a seemingly more pronounced increase of the
average distance realized for the period around 2018, rather than
2007. This finding can also be observed in the following results with
respect to other properties. In addition, we also measure the network
tightness by the link size for the entire network, as described by∑e∈Gle
according toEq. 8. Here we focus on the results for the weighted case,
as shown in the bottom panel of Figure 3. It is noted that the
unweighted link size for the entire network remains the value of 32 all
the time, while the result for the weighted case is obviously time-
varying. Also, consistent with findings based upon the results of NT,FIGURE 2 | (Color line) Rough partition of market cycles in terms of the

daily closing price of the SHCI.

FIGURE 3 | (Color line) Evolution of network tightness indicator NT and
weighted link size for the entire network, presented in the top and bottom
panels, respectively. The sample period is from 1 July 2001 to 29 March 2019.
The shaded parts in each plot correspond to the three major market
cycles.
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link size exhibits a significant increase during three major periods,
indicating the lower level of co-movement.

On the other hand, the node degree (strength) of the network
can be employed to depict the shape of the network. The results
for maximum and standard deviation of the node degree
(strength) are presented in the top and bottom panels of
Figure 4, respectively. The maximum degree (strength) shows
the importance of the most connected node in the network, while
the standard deviation of the node degree (strength) denotes the
dispersion of node degree (strength) across the network. As
shown in the figure, node strength is more volatile over time,
while node degree remains stable, with the value being around 28
at most times.10 This implies that the degree of the remaining

nodes fluctuates within a small range; accompanied with the
results in the previous section, market factorMKT is supposed to
be the hub node over the rolling time windows, which needs
further validation. In addition, we can observe that maximum
degree experiences a sharp decrease in all three market cycles,
which indicates that some edges of the hub node are disjointed.
Meanwhile, a pronounced increase in node strength suggests that
the level of co-movement between the hub node and its connected
nodes is weakening. As for the standard deviation of degree
(strength), the results are basically the same as that for the
maximum degree (strength). The results above imply a star-
like connection in the network structure, which is also time-
varying, especially over the period corresponding to major
market cycles.

In order to provide more evidence about the existence of star-
like connection, we further resort to the assortativity coefficient
[14], and the results are shown in Figure 5. Obviously, the
assortativity coefficient is changing over time and exhibits
more significant fluctuations in three major cycles. It is noted
that all results over the rolling windows are negative, which
confirms that nodes with an extremely high degree tend to
connect with nodes with very low degrees. This is also
consistent with our previous findings as well as those from the
prior literature [14].

It is noted that our results are similar to those from Ref. [14]
that adopts a network-based approach to examine the asset
returns’ co-movement in the US market. Based on the Fama-
French three-factor model, the authors decompose the returns of
industrial sector indices into systematic and idiosyncratic parts.
Their results also suggest the time-varying co-movement
structures over the period from 1970 to 2015 (see Figures 2, 3
from Ref. [14]). However, they observe large fluctuations of
measures for co-movement structures over the period around
the dot-com bubble only. It is somewhat out of surprise that no
large fluctuations are observed for the period around 2008,
corresponding to the Global Financial Crisis (GFC). This is

FIGURE 4 | (Color line) Evolution of maximum and standard deviation of
node degree (strength), presented in the top and bottom panels, respectively.
The sample period is from 1 July 2001 to 29 March 2019. The shaded parts in
each plot correspond to the three major market cycles.

FIGURE 5 | Evolution of assortativity coefficient in terms of node
strength. The sample period is from 1 July 2001 to 29 March 2019. The
shaded parts in each plot correspond to the three major market cycles.

10It is noted that the theoretical maximum is 32, which is the number of edges in the
network.
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partly due to their adoption of unweighted schemes, which may
be insensitive to small changes in co-movement structures. Our
results in the following text would further highlight this.

In addition, to further understand theMST structures in the three
market cycles of our interest, we plot the MSTs for three moments
that are randomly chosen out in each of the periods for three market
cycles. The results are shown in Supplementary Figure S1 through
Supplementary Figure S3. It is evident that compared with the
results for the whole sample period in Figure 1, Supplementary
Figure S1 presents a perfect star-like network, though some sector
indices are disjointed frommarket factorMKT, and instead, they are
connected to their counterparts. A similar finding is obtained by Ref.
[14]. The authors also observe that MKT acts as a hub node that
connects the majority of idiosyncratic returns most of the time,
implying the critical role in pricing the assets, while some of the
industrial sectors would be disjointed from MKT and connect with
themselves through the risky periods (see Figure 6 from Ref. [14]).

The structure for pricing factors is also slightly different. Among
them, value factorHML is connectedwith sector Steel, throughwhich
it is connected with market factor MKT. The other three factors are
connected in sequence and connected with market factor MKT
through sector Bank. In comparison, in the plots for 2015 and
2018, as shown in Supplementary Figures S2,3, respectively, the
MST structures are remarkably different from what is suggested in
Figure 1, and the nodes of sector indices aremore inclined to connect
with their counterparts and also with other pricing factors.
Additionally, we observe that value factor HML and profitability
factor RMW take up more important positions in the MST, and size
factor SMB acts as the bridge for other factors. However, investment
factor CMA seems less important than the other factors in the plots.

4.3 Detailed Structure of Co-Movement
With the rolling window analysis, we further attempt to acquiremore
information regarding the detailed structure for different node pairs.

In doing so, we divide the entire network structure into three parts,
that is, intra-structures for both factor premiums and idiosyncratic
returns, and the inter-structure for raw return and factor premium.
We will evaluate the characteristics with respect to each sub-network.
Here, we employ the average link size as the main measurement of
the network structure, as described in Eq. 8, instead of average
distance that only captures the characteristics associated with the
entire network structure.

4.3.1 Inter-Structure for Raw Return and Factor
Premium
Figure 6 presents the results with respect to the inter-structure of
co-movement between raw return and factor premium. Similar to
previous results, the unweighted result of the link size is less
volatile. Specifically, in the result of the unweighted case, its
fluctuation is around 0.95 over most periods, which suggests that
about 95% of connected edges in the network exist between the
sector indices and pricing factors. In comparison, the weighted
results fluctuate more frequently and range between 0.7 and 0.96.
As to the results for the three market cycles, we can observe much
more pronounced fluctuations in both cases, indicating a sudden
change in the MST structure.

It is noted that the results for three major market cycles are
mixed. For the periods around 2007 and 2018, both unweighted
and weighted values exhibited a sharp decline with wild
fluctuation, implying a loose network structure. In
comparison, the results over the period around 2015 were
different. The unweighted value remains stable, while the
weighted value peaks instead of slumping down, suggesting
the lower level of co-movement.

4.3.2 Intra-Structure for Idiosyncratic Returns
The results in Figure 7 reveal important changes in the
network structures for major market cycles. The average

FIGURE 6 | (Color line) Evolution of the average link size of intra-structure
for idiosyncratic returns of sector indices. The sample period is from 1 July
2001 to 29 March 2019. The shaded parts in each plot correspond to the
three major market cycles.

FIGURE 7 | (Color line) Evolution of the average link size of intra-structure
for the idiosyncratic returns of sector indices. The sample period is from 1 July
2001 to 29 March 2019. The shaded parts in each plot correspond to the
three major market cycles.
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link size in the figure remains zero most of the time, which
indicates no connection exists between idiosyncratic returns
in the network. We have already obtained the results for the
whole sample period in Figure 1 that sector indices are all
connected through market factor MKT. However, in some
time windows, such as three major cycles, the connectivity for
idiosyncratic returns is significantly enhanced, regardless of
whether it is in the weighted or unweighted case. This may be
caused by the characteristics embedded in the MST. As the
correlation between sector nodes and common risk factors is
weakened, they have to connect to other nodes instead. On the
other hand, this also implies the possibility of potential
pricing factors hiding in idiosyncratic returns, which
requires further investigation.

4.3.3 Intra-Structure for Factor Premiums
Finally, we move to the results for intra-structures of co-
movement for factor premiums. The results are presented in
Figure 8. Unweighted results fluctuate slightly, ranging from 0%
to 10%, while weighted results fluctuate frequently, but they are
all within a range from 0% to 20%, and weighted average link size
has a downward trend in fluctuations over time. For three major
market cycles, both the weighted and unweighted results exhibit
different decrease degrees. In fact, the link size for pricing factors
is expected to be as small as possible. This is in line with the
intention of asset pricing theory, which is to explore irrelevant but
economically meaningful risk factors. As such, the co-movement
between factors and assets is expected to be as strong as possible,
demonstrating factor pricing effectiveness. Our results provide
evidence that Fama-French five factors are not suitable for the
Chinese stock market on the ground that some risk factors play
their roles only in major market cycles, which is consistent with
our previous finding.

We attempt to explore further how Fama-French five factors
are connected. We examine the evolution of node degree
(strength) for each factor. Here, we report the results on the
market factorMKT only, whose degree remains at a high level for
most time windows. As shown in the bottom panel of Figure 8,
node degree ofMKT only fluctuates slightly, with the value being
around 28 in the plot. This also provides evidence of a close
relationship between the MKT and other sector indices. The
dynamic changes of node strength over time seem to be irregular.
However, for major market cycles, node strength of MKT factor
would be increasing, which implies the weakening of the
relationship with its connected nodes. In comparison, node
degree (strength) for the other four factors fluctuates more
frequently and exhibited a significant upward trend only in
the major cycle around 2018, as shown in Supplementary
Figure S4 through Supplementary Figure S7.

5 ROBUSTNESS CHECK

We employ alternative correlation metrics to conduct the
robustness check, including Pearson’s ρ and Kendall’s τ. It is
noted that similar results are obtained based on different
measurements, and our main findings still hold. In addition,
we also examine the sensitivity of the results when the size of the
rolling step and window varies. The results also indicate that our
findings are not sensitive to the settings associated with the rolling
window analysis.11

6 DISCUSSION AND SUMMARY

In this work, we probe into the detailed structure of co-movement
for the asset price. Specifically, using the data of Chinese sector
indices and Fama-French five factors, we perform the return
decomposition and construct a minimum spanning tree (MST) in

FIGURE 8 | (Color line) Evolution of the average link size of intra-structure
for factor premiums and the node degree (strength) of market factor MKT,
presented in top and bottom plots, respectively. The sample period is from 1
July 2001 to 29 March 2019. The shaded parts in each plot correspond
to the three major market cycles.

11The results mentioned previously could be provided upon the requests.
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terms of the rank correlation coefficients among raw return,
idiosyncratic return, and factor premium.

For the whole sample period, the MST presents a star-like
connection with the hub node being market factor MKT, and all
sector nodes are connected to market factor MKT. We find that
the topological properties associated with the network structure
are time-varying in the rolling window analysis. In particular, in
major market cycles, the star-like structure would be changing.
This is featured by the fact that a few idiosyncratic returns for
sector indices would be disjointed from market factor MKT and
then connected to their counterparts. Also, pricing factors will
generally exhibit more favorable effectiveness of pricing assets.

Our results imply the importance of monitoring assets’ co-
movement in practice. Regulators should be alert to the structural
changes in assets’ co-movement and take measures to avoid
further risk spillovers. Specifically, given that strengthened co-
movement of idiosyncratic returns may lead to continued
amplification of risk, much more attention should be paid to
industrial sectors that are disjointed from crucial risk factors. In
addition, our work also provides a new perspective for the
research on the co-movement structure for the asset price. The
effectiveness of new pricing factors can also be evaluated within
this framework. It is also noted that this work’s focus is to describe
characteristics associated with the time-varying co-movement
structure, whose driving forces will be left in our future work.
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