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Editorial on the Research Topic

Climatic and Associated Cryospheric and Hydrospheric Changes on the Third Pole

The Third Pole (TP), known as the “Asian Water Tower,” is a high-elevation region of Asia centered
on the Tibetan Plateau. The TP is home to around 100,000 km2 of glaciers, comprising the largest
volume of ice outside the Antarctic and Arctic. The TP lies at the headwaters of many large Asian
rivers (e.g., Ganges, Brahmaputra, Indus, Yangtze, Yellow, Mekong, Salween, Amu Darya, and Syr
Darya) and serves as the main water supply for millions of inhabitants in downstream countries. The
high-elevation region is widely covered by snow, glaciers, lakes, permafrost, and seasonally frozen
ground, and exerts a profound climatic influence on adjacent and distant regions.

The TP has been getting warmer and wetter during the past several decades, as indicated by significant
air temperature rises, and spatiotemporally, heterogeneous precipitation increases–particularly since the
1980s. The TP warming, which is above the global average rate, could be associated with variations in
precipitation and decreases in snow depth, extent, and persistence. The warming and wetting climate has
been closely associated with glacier retreat, lake expansion, permafrost thawing, and thickening of the
active layers over the permafrost.

This research topic aims to cover recent climate changes over the TP and its associated impacts on
the cryosphere and hydrosphere. The studies address changes in surface air temperature,
precipitation, seasonal snow cover, mountain glaciers, permafrost, lakes, and river runoff, and
examine how these changes are linked to climate change across different spatial scales (from a
catchment to the whole TP). Results from these studies will improve our understanding of
cryosphere–hydrosphere–atmosphere interactions over the TP.

This research topic includes three comprehensive reviews in TP cryohydrology (one about the
discipline as a system, and two about permafrost), which describe research progress in these topics
and provide insightful perspectives on the recent advancement of in situ observations, satellite
remote sensing, as well as process-based modeling. This is a multidisciplinary special issue bridging
the gaps in climatology, hydrology, cryosphere, geochemistry, and remote sensing sciences.

Dai et al. suggest that a large alpine lake (Lake Nam Co.) can be an important regulator of regional
climate (e.g., precipitation) over the TP, based on the WRF (weather research forecasting model)
sensitivity experiments for the year 2008. Their study indicates that the lake cooling effect can cause a
reduction in the over-lake summer precipitation by 45–70%, while the lake warming effect can
enhance the autumn precipitation by 60% over the lake and surroundings.
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Wood et al. demonstrate that glacier retreat and snowpack loss
threaten high-altitude communities that rely upon seasonal
melting water for domestic water resources. They indicate that
34–90% of water comes from ice and snow melt during the dry
pre-monsoon season, accounting for an average discharge
contribution of 65% in the Khumbu Valley, Nepal (a highly
glaciated catchment with elevations ranging from 2,000 to
8,848 m). With as much as two-thirds of the dry-season
domestic water supply at risk, the communities of the
Khumbu Valley are extremely vulnerable to the cryospheric
effects of climate change.

Chevallier et al. examine the headwater geochemistry of
Mount Everest (Upper Dudh Koshi River, Nepal). They aim to
address three parallel topics: 1) the dynamics of the water
geochemistry, major ions, and trace elements; 2) the stable
water isotopes of precipitation and rivers; and 3) water use by
the inhabitants.

Chen et al. illustrate an atmospheric bridge that connects the
Barents Sea ice and snow depth in the midwest Tibetan Plateau.
They reveal that a positive anomaly of the Barents Sea ice can
enhance the meridional air temperature gradient to the south and
hence accelerate the polar front westerly jet. Consequently, an
anomalous Rossby wave propagating upward and equatorward is
generated, resulting in a dipole pattern of the atmospheric
circulation anomaly over the polar region and Eurasian
continent.

Different from previous studies on the TP snow using coarse-
resolution microwave data (25 km × 25 km), Smith and
Bookhagen assess multi-temporal snow–volume trends in
the TP from 1987 to 2016 with high-resolution (3.125 km ×
3.125 km) passive microwave data from the special sensor
microwave imager (SSM/I) instrument family at refined
spatial details. They find that changes in the high percentile
monthly snow–water volume exhibit steeper trends than changes
in low percentile snow–water volume, which suggests a
reduction in the frequency of high snow–water volumes in
much of TP. Regions with positive snow–water storage trends
generally correspond to regions of positive glacier mass balances.

Under accelerated warming on the TP, permafrost
degradation is dramatically altering regional hydrological
regimes. Jiang et al. review the progress and challenges in
studying the TP permafrost, with a focus on remote sensing
approach, while Gao et al. review the state-of-the-art
understanding of permafrost hydrological processes in
hydrological models of varying complexity. They both
emphasize the importance of long-term field measurements
and recommend the integration of satellite remote sensing
retrievals together with process-based permafrost-hydrology
models to deepen the understanding of permafrost
hydrological processes and to enhance the ability to predict
the future response of permafrost hydrology to climate change.

Finally, Ding et al. review the evolution of the concept of
cryohydrology, and analyzes its hydrological basis and discipline
system. Three points are concluded in this study. 1)
Cryohydrology was developed based on traditional hydrology
for a single element of the cryosphere, focusing on the
hydrological functions of the cryosphere and their impacts on
the water cycle and water supply to other spheres. 2) The
hydrological function of cryohydrology is further subdivided
into water conservation, runoff recharge and hydrological
regulation. 3) The key research issues of cryohydrology
include the principal research method, hydrological process,
watershed function, and regional impact. Cryohydrology aims
to deepen the theoretical and cognitive levels of the associated
mechanisms and processes, to accurately quantify the
hydrological functions of the basin, and to promote the
understanding of the ecological and environmental impacts of
the cryosphere.
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Retreating glaciers and snowpack loss threaten high-altitude communities that rely upon

seasonal melt for domestic water resources. But the extent to which such communities

are vulnerable is not yet understood, largely because melt contribution to water supplies

is rarely quantified at the catchment scale. The Khumbu Valley, Nepal is a highly glaciated

catchment with elevations ranging from 2,000 to 8,848m above sea level, where

more than 80% of annual precipitation falls during the summer monsoon from June to

September. Samples were collected from the rivers, tributaries, springs, and taps along

the major trekking route between Lukla and Everest Base Camp in the pre-monsoon

seasons of 2016–2017. Sources were chosen based upon their use by the communities

for drinking, cooking, bathing, and washing, so the sample suite is representative of the

local domestic water supply. In addition, meltwater samples were collected directly from

the base of the Khumbu Glacier, and several rain samples were collected throughout

the study site. Meltwater contribution was estimated from δ18O isotopic data using a

two-component mixing model with the Khumbu glacial melt and pre-monsoon rain as

endmembers. Results indicate between 34 and 90% of water comes from melt during

the dry, pre-monsoon season, with an average meltwater contribution of 65%. With as

much as two-thirds of the dry-season domestic water supply at risk, the communities of

the Khumbu Valley are extremely vulnerable to the effects of climate change as glaciers

retreat and snowpack declines.

Keywords: climate change, drinking water, meltwater, glaciers, isotopes, two-component mixing model,

Himalayas, high-altitude

INTRODUCTION

High-elevation communities are some of the most susceptible to the effects of climate change
(Salerno et al., 2008), and a recent report concluded that even if global warming is kept below
1.5◦C, a third of the glaciers in the Hindu Kush-Himalayan region and more than half of those in
the eastern Himalaya will likely be lost by the end of this century (Bolch et al., 2019). Yet significant
questions remain regarding the contribution of melt from glaciers and snow to water resources
in mountain regions (Immerzeel et al., 2010; Bocchiola et al., 2011). Answering them requires
catchment-scale study in order to quantify the role of meltwater and gauge the vulnerability of
these communities to the effects of climate change (La Frenierre and Mark, 2014).
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The sensitivity and vulnerability of high-altitude regions to
the effects of a shifting climate make them ideal long-term sites
for monitoring climate change (Salerno et al., 2008). The Hindu
Kush-Himalayan Region and Tibetan Plateau are often referred
to as the Earth’s “Third Pole” (e.g., Yao et al., 2012) as they
contain the greatest number of glaciers outside of polar regions.
They are also referred to as the “Water Tower of Asia” (e.g.,
Viviroli et al., 2007), because they are the headwaters for some
of the continent’s largest rivers, including the Indus, Ganges,
Brahmaputra, Yangtze, and Yellow rivers.

Previous related studies from the Himalaya have primarily
focused on river discharge, rather than specifically sampling
water sources that are used for domestic purposes including
drinking, cooking, bathing, cleaning, laundry, and other daily
necessities by local communities (e.g., Balestrini et al., 2014;
Wilson et al., 2016); or they have estimated meltwater
contributions at large, basin scales (e.g., Immerzeel et al.,
2010). Analysis of surface waters by Balestrini et al. (2014)
in the upper Khumbu Valley revealed relatively low ionic
concentrations and indicated that surface water composition
did not entirely reflect precipitation composition. This suggests
that another source, or sources, made significant contributions
to the local water resources. Despite the modest contribution
of meltwater to total Ganges River Basin discharge, high-
altitude communities may rely much more heavily on seasonal
melting, and annual recharge of glaciers, snow, and ice since
regional precipitation decreases with increasing altitude (Asahi,
2010). Similar work in the Langtang Basin, a comparable
catchment c. 100 km west of the Khumbu Valley, concluded that
meltwater dominated the hydrograph outside of the monsoon
season (Wilson et al., 2016).

Likewise, our research concludes that in the Khumbu Valley,
Nepal, up to two-thirds of water comes from glacial and snow
melt during the dry season. This indicates that communities
there are especially vulnerable to the retreat and eventual
disappearance of glaciers and permanent snow fields in response
to continued warming trends. By developing a baseline of the
hydrologic cycle for the Khumbu Valley, this study benefits
future monitoring of these critical water resources and provides
a snapshot of pre-monsoon domestic water resources in the
Khumbu Valley against which the effects of climate change can be
observed. Predicting climate-driven changes before they occur,
and quantifying how the contribution of meltwater to domestic
water resources will change will allow the high-altitude Nepali
communities to be better prepared. In addition, the approach
implemented in this project may be applied to other high-altitude
environments where snow and glaciers contribute to valuable
water resources.

MATERIALS AND METHODS

Site Background
The Khumbu Valley is located in the upper catchment of the
Dudh Kosi river basin, in the Sagarmatha National Park, and
Buffer Zone (SNPBZ) of northeastern Nepal,∼140 km northeast
of the capital city of Kathmandu (Figure 1). The park was
established in 1976 (Panzeri et al., 2013), and it was designated

FIGURE 1 | Map of Khumbu Valley; point-up triangle represents glacial melt

sample; point-down triangles represent rain samples; circles represent all other

sampling locations; inset map shows location of study area within Nepal.

a World Heritage Site in 1979 due to its unique geological,
ecological, cultural, and aesthetic value. In 2002, a 275 km2

Buffer Zone was added on the southern border of the 1,148 km2

park to further protect the region (UNESCO [United Nations
Educational Scientific and Cultural Organization], 2009). The
Dudh Kosi river drains theMt. Everest Massif to the south, which
makes it the highest-elevation river system in the world, along
with the Yarlung Tsangpo river in Tibet, which drains the Mt.
Everest Massif to the north. The Dudh Kosi river begins near
the Gokyo lakes in the western portion of the study area, flows
southward past Namche Bazar, and then west of Lukla and out
of the study area. The Imja Khola and Lobuche rivers originate
at the glaciers of the eastern portion of the study site, including
the Khumbu and Imja glaciers. They flow southward, joining the
Dudh Kosi river below Phortse. The Dudh Kosi river is one of
the seven tributaries of the Sapta Koshi river, which is part of the
greater Ganges river system (Xiang et al., 2018). Elevations within
the study area ranges from c. 2,000m where the Dudh Kosi River
flows southward out of the Buffer Zone just southwest of Lukla to
8,848m above sea level (asl) at the summit of Mt. Everest on the
northern border of the park.

The climate of the Khumbu Valley is temperate, characterized
by strong seasonality with dry, cold winters and warm, wet
summers (Nicholson et al., 2016). Due to its location within
the Subtropical Asian Monsoon zone, more than 80% of annual
precipitation to the region falls between the months of June and
September (Mani, 1981; Barry and Chorley, 1982; Byers, 2005;
Salerno et al., 2008). This precipitation is delivered via the South
Asian Monsoon System, which carries warm, moist air out of the
south, or southwest from the Bay of Bengal across the Indian
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Subcontinent and as far north as the Tibetan Plateau (Müller,
1980; Salerno et al., 2015).

Regional vegetation varies with altitude. The majority of
samples were collected below the local tree line at c. 4,000m
asl. The landscape here is dominated by lush rhododendron
forests punctuated by small, terraced, subsistence agricultural
fields. Above the tree line, much of the ground is bare, and juniper
and other hardy shrubs replace rhododendrons. From c. 5,500–
6,000m asl, only low-growing mats of cushion plants thrive. The
nival zone above c. 6,000m asl is glaciated or snow-covered for
much of the year and vegetation is extremely limited. Local fauna
includes the snow leopard, musk deer, and red panda, all of which
are either endangered or threatened species (Van Geldern and
Barth, 2012; Balestrini et al., 2014).

Despite concerns since the 1970s regarding the tourism-
related pollution increase in the region, the first systematic
study of drinking water quality in the Khumbu Valley was
not undertaken until 2014. In that year, Nicholson et al.
(2016) sampled community water sources with a focus on fecal
contamination of drinking water. The study concluded that
there were higher counts of E. coli and other coliform bacteria
associated with fecal contamination in samples collected from
lower elevation, higher population areas, and that surface water
was more highly contaminated than groundwater-fed springs.
Accurate census data for the region are scarce; however, recent
estimates place the population of the Khumbu Valley between
3,500 and 6,000 people (e.g., Byers, 2005; UNESCO [United
Nations Educational Scientific and Cultural Organization], 2009;
Nicholson et al., 2016).

The Khumbu Valley, and the SNPBZ in general, is considered
a data-poor region. The paucity of research is largely due to the
location’s geographic remoteness and ruggedness; historically, it
has been difficult and expensive to access (Salerno et al., 2013).
Increasing tourism over the past few decades has boosted the
local economy and infrastructure, making access to the region for
scientific endeavors more feasible, and there has been a marked
increase in published research of the region since the turn of the
century, and this study represents the first to attempt to evaluate
local vulnerability to climate change with respect to domestic
water resources.

Objectives
The objectives of this study were to: (1) collect a suite of samples
representing community domestic water supplies in the Khumbu
Valley as well as the sources that contribute to them, (2) to analyze
the samples for δ18O and δ2H isotope values, and (3) to identify
source endmembers and estimate the overall contribution of melt
from glaciers, snow, and ice (hereafter “meltwater” or “melt”)
vs. precipitation using a two-component mixing equation. The
results have been used to evaluate the vulnerability of community
domestic water resources in the Khumbu Valley to the observed
and anticipated effects of climate change.

Methods
Two field campaigns were conducted: the first in spring 2016,
when samples were collected between April 21 and May 06;
and the second in spring 2017, when samples were collected

between April 21 and May 05. These campaigns took place
during the dry, pre-monsoon season. Sampling was carried
out within the Khumbu Valley along the main Everest Base
Camp Trekking Route between the town of Lukla and Everest
Base Camp. Sampling locations included large rivers, small
streams, natural springs, numerous community standpipes, and
several indoor taps Locations were selected to reflect community
drinking water sources—primarily standpipes and taps—as
well as the waterways that supply them—rivers, tributaries,
and springs. Collectively, the samples represent the water
used for drinking by local residents and tourists alike. In
addition, a glacial melt sample was taken directly from the
terminus of the Khumbu Glacier in 2016, and precipitation
samples were collected on April 22, April 28, and May 1,
2017 (Figure 1).

Samples for ion analysis were collected with a syringe, then
passed through a 0.45-µm filter into pre-washed 60 or 125-mL
high-density polyethylene bottles with screw-on polypropylene
caps. Bottles were then sealed with paraffin sealing film. Samples
for isotope analysis were collected, unfiltered, by syringe, or
directly from the water source in 2-mL glass vials with plastic
screw-on caps with no visible bubbles or headspace, then sealed
with paraffin sealing film.

Temperature, pH, conductivity, and total dissolved solids
(TDS) were measured in the field via Fisher Scientific
Accumet AP85 portable waterproof meter. When possible, the
instrument probes were inserted directly in the uncollected
water for measurements. In case of insufficient flow—at
standpipes and taps, for example—it was necessary to collect
whole water in a plastic 1-L bottle into which the probes
were inserted.

Ion Analysis
Analysis for cations (Ca2+, K+, Li+, Mg2+, Na+, and NH4

+)
was conducted at Ball State University via ion chromatography
(IC) using a Dionex ICS-2000 with a Dionex AS40 Automated
Sampler and processed through Chromeleon Chromatography
Data System software. Analysis for anions (Cl−, NO3

−,
and SO4

2−) was conducted at Ball State University via
IC using a Dionex ICS-5000+ with a Dionex EGC for
potassium hydroxide eluent generation, a Dionex IonPac
AS15 analytical column, and an Anion Self-Regenerating
Suppressor 300. HCO3

− concentrations were calculated at
Ball State University using AquaChem groundwater software.
All measured and calculated ion concentrations are reported
in µEq/L.

Isotope Analysis
δ18O and δ2H isotopes were measured directly from water vapor
using infrared spectroscopy (Kerstel et al., 1999; Kerstel and
Gianfrani, 2008) at Indiana University Purdue University
Indianapolis using a Picarro L2130-i Cavity Ringdown
Spectrometer according to the methods described by Van
Geldern and Barth (2012).

Isotope values are reported in standard delta notation (δ) in
per mille units (‰), comparing heavy-to-light isotope ratios in
the sample with the reference, Vienna Standard Mean Ocean
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Water (VSMOW). The following equations are used:

δ18O =

(

( 18O / 16O )sample

( 18O / 16O )VSMOW

− 1

)

· 1, 000‰

δ 2H =

(

( 2H / 1H )sample

( 2H / 1H )VSMOW
− 1

)

· 1, 000‰

The VSMOW abundance ratio for 2H/1H is 1.5575 × 10−4 and
2.0052 × 10−3 for 18O/16O (Clark, 2015). The global meteoric
water line (GMWL), defined by Craig (1961) is a linear equation
expressing the global average linear relationship between δ18O
and δ2H ratios in terrestrial waters:

δ18O = 8 · δ2H + 10‰

where 8 is the slope of the line and 10‰ is the deuterium
intercept, or value of δ2H at δ18O = 0. A local meteoric
water line (LMWL) can be defined by the same equation for
a set of samples according to δ18O and δ2H values, slope, and
deuterium intercept. The intercept of any given sample, termed
deuterium excess by Dansgaard (1964), is calculated according to
the following equation:

d = δ2H − 8 · δ18O

For the purposes of this study, deuterium excess is calculated
using Dansgaard’s equation, and all LMWLs are compared to the
GMWL observed by Craig (1961).

Estimating Meltwater Contribution
Meltwater contribution estimates were calculated using the
following two-component mixing equation:

xm =
cs − cp

cm − cp
· 100

where xm is the contribution of meltwater to the sample in
percent, cs is the δ18O value of the sample, cp is the δ18O value
of the precipitation endmember, and cm is the δ18O value of the
melt endmember (Mark and Seltzer, 2003).

RESULTS AND DISCUSSION

Water Chemistry
Ion analysis revealed domestic water resources in the study site
were primarily of the calcium-bicarbonate water-type. HCO3

−

was themost abundant ion overall, with an average concentration
of 234.12 µEq/L. SO4

2− exceeds HCO−

3 as the dominant anion
in only six samples. The average SO4

2− concentration is 84.56
µEq/L. Ca2+ is the dominant cation in the majority of samples,
with an average concentration of 207.41 µEq/L. Na+ is the
second-most abundant cation, with an average concentration of
71.69µEq/L. Overall, the following trends are observed regarding
concentrations of cations and anions, respectively: Ca2+ > Na+

> Mg2+ > K+ > NH4
+ > Li+; HCO3

− > SO4
2− > Cl− >

NO3
+ (Table 1).

All samples were undersaturated with respect to any mineral.
Ionic strength ranged from 0.14 to 0.91 mM/L with an average of

0.50 mM/L. Considering the abundant feldspar minerals in the
lithology of the study site, the relatively low concentrations of
Ca2+, Na+, and K+ may be indicative of a short groundwater
residence time and little water-rock interaction (Ako et al.,
2011; Nganje et al., 2017). And although the dissolution-
resistant local metamorphic bedrock would not be expected
to drastically increase ionic strength even given substantial
groundwater residence time, samples collected from springs were
chemically indistinguishable from other surface water samples.
These observations collectively suggest there may be relatively
little water-rock interaction within the region.

Local Meteoric Water Lines
All collected waters plot close to the Global Meteoric Water Line
(GMWL; Figure 2), and the Local meteoric water line (LMWL)
for 2017 is defined as follows:

δ18O = 8.27 · δ2H + 12.7‰

The deuterium excess of 12.7‰ is slightly higher than for the
GMWL (10‰), and is similar to the results of Balestrini et al.
(2014) and Florea et al. (2017). This increase suggests a slightly
greater kinetic component to primary evaporation than the
global mean. This is consistent with the northward migration
of the thermal equator with the Intertropical Convergence Zone
(ITCZ) during the months of April and May (Kump et al., 2014).
This is only a slight observed deviation from the deuterium
excess of the GMWL, however, and it would be anticipated to
be stronger during the warmer monsoon months, and weaker
during the cooler winter months.

In Figure 2, the sample that is most depleted in heavy oxygen
and hydrogen isotopes compared with VSMOW has a δ18O value
of −20.27‰ and a δ2H value of −152.46‰. This sample was
collected directly from the base of the Khumbu Glacier at Everest
Base Camp during the 2016 field campaign, and it serves as
the melt endmember for the purposes of this study. The three
precipitation samples collected during the 2017 campaign are
the most enriched in the heavy isotopes with δ18O values of at
least −2.09‰ and δ2H values of at least 2.19‰. Excluding the
precipitation samples and meltwater endmember, all samples fell
between a range of −8.25 to −18.39‰ for δ18O and −52.37 to
−135.44‰ for δ2H. Within these samples, there was no clear
trend based upon source. Specifically, there was no characteristic
isotopic signature for samples sourced from springs vs. streams.
Because of this, groundwater is not included as an endmember
in this study. Considering the high topographic relief and dense
metamorphic rocks of the study site, the lack of a groundwater
signal from springs is not surprising. The water produced by
springs is likely interflow with a short residence time below the
surface. This is not to say that there is no groundwater in the
region, but rather that deep groundwater does not seem to be a
significant component in current domestic water resources.

Contribution of Meltwater
The estimated melt contribution to each sample was calculated
based on isotopic composition using a two-component mixing
equation with meltwater from the Khumbu Glacier and local
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TABLE 1 | Summary of results from ion analysis; all concentrations expressed in µEq/L; <DL indicates concentration was below instrument detection limit.

Ca2+ Na+ Mg2+ K+ NH4
+ Li+ HCO3

− SO4
2− Cl− NO3

−

Min. 31.54 10.46 5.32 4.07 <DL <DL 49.21 1.14 1.16 <DL

Max. 515.22 201.97 86.87 31.4 5.91 0.76 442.2 359.11 32.18 62.25

Range 483.68 191.5 81.55 27.33 5.91 0.76 392.99 357.96 31.03 62.25

Avg. 207.41 71.69 39.43 14.61 0.66 0.07 234.12 84.56 7.44 6.97

Stdev. 137.65 40.15 18.18 7.51 0.98 0.14 106.2 81.24 7.77 13.12

FIGURE 2 | Local meteoric water line, represented by solid line, calculated

from isotopic ratios of collected samples; LMWL is δ18O = 8.27 δ2H + 12.7‰;

point-up triangle represents glacial melt sample; point-down triangles

represent rain samples; circles represent all other sampling locations; global

meteoric water line (δ18O = 8 δ2H + 10‰) is represented by dotted line.

precipitation as endmembers (Mark and Seltzer, 2003). The
glacial melt sample was collected during the 2016 field campaign
directly from the base of the Khumbu Glacier. The precipitation
samples were collected during the 2017 field campaign from three
separate rain events at a range of latitudes and altitudes. Themost
depleted of the precipitation samples is used as the precipitation
endmember since it is known to be 100% rain. Using the other
precipitation samples as endmembers or averaging them would
skew the calculations so that the most depleted precipitation
sample would appear to be <100% precipitation. If future
work yields pre-monsoon-season rain samples more depleted
than those in this study, the upper endmember would be
further constrained, facilitating more accurate melt contribution
estimates. Likewise, more enriched meltwater samples would
constrain the lower endmember and alter melt contribution
estimates. The use of rain samples from the pre-monsoon season
assumes that only recent rain contributes to the rain component
of samples. This is likely true as long as the residence time for
surface water in the catchment is short. The majority of annual
rainfall to the catchment occurs during the summer monsoon
and is much more depleted in δ18O than pre-monsoon rain. But
this water likely moves through the catchment very quickly, and
therefore doesn’t significantly contribute to pre-monsoon-season
samples. Future work should focus on collecting additional rain

and melt samples to improve endmember data quality as well as
verifying or disproving the assumption that only pre-monsoon
season rain contributes to the pre-monsoon season water supply.

Melt contribution estimates ranged from c. 34–90% (10–
66% rain) with an average contribution of c. 65% (35% rain;
Table S1). This far exceeds estimates that meltwater contributes
c. 10% to the greater Ganges River Basin, the majority (c.
85%) of which area is located below 2,000m asl, and is
therefore supplied primarily by monsoonal precipitation rather
than meltwater (Immerzeel et al., 2010). Figure 3 shows a
strong positive relationship between altitude and meltwater
contribution regardless of source. This relationship indicates that
vulnerability to water scarcity from climate change increases
with altitude.

For the purposes of this study, there is no differentiation
between melt from glaciers and that from other snow and ice.
Because they are derived from the same vapor bodies, snowmelt
from a mountain peak should isotopically match glacial melt
from an adjacent valley, with any slight differences between
them due to fractionation during melting. Analysis of fresh snow
from the northeast face of Mt. Everest yielded isotopic values
indistinguishable from those of Khumbu Glacier melt from this
study (Kang et al., 2002). Furthermore, a study from the Eastern
Himalaya determined glacial samples were isotopically similar
to fresh snow samples from the same glacier (Nijampurkar and
Bhandari, 1984). Likewise, a more recent study from the Bhutan
Himalaya found that δ18O values for glacier ice, glacial outflow,
and snow were all similar (Williams et al., 2016). Because glacial
melt can only contribute to a sample if there is a glacier upslope of
the sampling site, the contribution of melt from snow vs. glaciers
can be rudimentarily evaluated by “looking uphill.” The region’s
glaciers are located primarily in valley bottoms at elevations
higher than 4,500m. As a general rule, melt contribution from
samples collected downstream of these locations, such as river
samples, can be assumed to have a significant glacial component.
On the other hand, hillside springs and small streams do not
generally have glaciers above them, so the melt component from
those samples must be assumed to derive from snowmelt from
the nival zone.

Implications for Climate Change
Vulnerability
The SNPBZ is known for being the location of Mt. Everest.
The Himalayas, containing the world’s largest freshwater reserve
outside of polar regions and known as Earth’s “Third Pole”
and the “Water Tower of Asia,” are particularly sensitive and
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FIGURE 3 | Comparison of the relationship between percent of meltwater

contribution and elevation; for each elevation group, circle represents mean,

bars represent one standard deviation, and number represents number of

samples.

vulnerable to climate change. The first study of glaciers in the
region was conducted by Müller in 1956, just 3 years after the
first successful ascent of Mt. Everest (Müller, 1959). In 2007,
Bajracharya et al. (2011) mapped 3,808 glaciers across Nepal.
They concluded that glaciers at elevations below 5,800m above
sea level are retreating, and in general, the number of individual
glaciers in Nepal is increasing as larger ones break up. According
to Salerno et al. (2008), there are c. 29 glaciers in the Sagarmatha
National Park, which are primarily summer accumulation,
debris-covered (D-type) “black glaciers.” The melting and retreat
of these glaciers, which feed the Indus, Ganges, Brahmaputra,
Yangtze, and Yellow Rivers, has the potential to impact over 1.4
billion people. Nearly half a billion live in the Ganges River Basin
alone, where snow and glacial melt are estimated to contribute
10% of the basin’s total discharge (Immerzeel et al., 2010).

Despite the significance of the Himalayan glaciers, catchment
scale studies are almost non-existent. Previous studies from
the Himalaya have primarily focused on river discharge (e.g.,
Balestrini et al., 2014; Wilson et al., 2016) and the large basin
scale (e.g., Immerzeel et al., 2010). Yet, catchment-scale studies
quantifying the role of melt are critical to assessing regional
variability and vulnerability (La Frenierre and Mark, 2014). The
results of this study, using geochemistry and δ18O and δ2H
isotope analyses, indicate a reliance on meltwater to supply
domestic drinking water sources in the Khumbu Valley. An
average of 65% of the volume of domestic water resources in
the Khumbu Valley during the dry, pre-monsoon season, can
be attributed to meltwater contribution, with the remaining
35% coming from rain. The results are supported by work in
the Langtang Valley where Wilson et al. (2016) conclude that
meltwater dominates the hydrograph throughout most of the
year, except during the monsoon season when precipitation
dominates. The similarities between the Langtang Valley and the
Khumbu Valley suggests that meltwater plays a significant role
for the streams in the Khumbu region.

Given these results, along with the observation that
Himalayan glaciers are rapidly receding (Bolch et al., 2019),
high-altitude communities within the SNPBZ are likely to be
particularly vulnerable to climate change and receding glaciers;
extrapolating these results indicates that all high-altitude
communities in the Himalaya may also be vulnerable. In
addition, the low ionic strength of the samples in this study
suggest little water-rock interaction, an indication that there
is no long-term reservoir to buffer communities against even
short-term shortages of water from precipitation or melt.
In the long-term these results indicate that surface water
availability during the pre-monsoon season will increase
as rapid melting of alpine glaciers and snow contributes to
streamflow in the short-term future, followed by eventual
pre-monsoon water scarcity as the glaciers and permanent
snow disappear. Because the samples used in this study were
collected in 2016 and 2017, they reflect the relative contribution
of meltwater and rain at that time. As global temperatures
continue to rise (NOAA National Centers for Environmental
Information, 2020), the meltwater contributions presented here
can reasonably be considered minimum estimates, making
these results even more important for local communities’
efforts in resource management in the face of continued
warming. The contribution of meltwater to community
water supply in the Khumbu Valley and other high-altitude
Himalayan catchments should continue to be monitored in
order to refine and update meltwater estimates. Although not
directly addressed in this study, future research may provide
a detailed long-term timeline of Khumbu Valley domestic
water supply through modeling of changing glacier, snow, and
monsoon dynamics.

This study highlights the importance of understanding
the high-altitude catchment basins, in order to predict the
impact of climate change at both high and low altitudes in
a river basin. Understanding climate-driven changes before
they occur and quantifying the contribution of meltwater to
domestic water resources will allow the high-altitude Nepali
communities to be better prepared. These concepts may be
applied to other high-altitude environments where snow and
glaciers contribute to valuable water resources. In addition,
the implications of this research can be used for long-
term planning and climate hazard mitigation throughout the
entire region.

SUMMARY OF CONCLUSIONS

(1) Domestic water resources in the Khumbu Valley are of
low ionic strength and are primarily of the calcium-bicarbonate
water- type, and less commonly, calcium-sulfate, sodium-
bicarbonate, and sodium-sulfate.

(2) The LMWL calculated from 2016 to 2017 isotopic data is
δ18O = 8.27 δ2H + 12.7‰. Long- term monitoring will yield a
more accurate LMWL.

(3) A two-component mixing equation using meltwater from
the Khumbu Glacier and local precipitation as endmembers
reveals that meltwater contributes an average of 65% of the
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volume of domestic water resources in the KhumbuValley during
the dry, pre-monsoon season, and there is a strong positive
correlation between altitude and meltwater contribution.

(4) It is likely that meltwater contribution to pre-monsoon
domestic water resources in the Khumbu Valley will increase in
the short-term future as glaciers, snow, and ice melt, and that
water scarcity will follow when these sources have melted and are
no longer recharged annually.

(5) Water resources in the Khumbu Valley should continue
to be monitored in future years to further confirm or to
update the findings of this study with the ultimate goal
of making the communities of the Khumbu Valley and
other high-altitude communities more resilient in the face of
climate change.
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In contrast to the rapid warming of the climate, there is growing evidence to indicate that
no significant trend exists in the snow cover/depth over the western Tibetan Plateau in
recent decades. Here, by analyzing multiple sources of observational and reanalysis
data, we address the possible interannual connection between the mid-west Tibetan
Plateau (MWTP) snow depth and Arctic sea ice. Results indicate that a robust and
coherent variation exists between the winter Barents Sea ice concentration and the
MWTP snow depth; that is, a positive anomaly of the former can enhance the meridional
air temperature gradient to the south and hence accelerate the polar-front westerly
jet. As a result, an anomalous Rossby wave propagating upward and equatorward
generates, resulting in a dipole pattern of the atmospheric circulation anomaly over
the polar region and the Eurasian continent. The anticyclonic circulation anomaly,
corresponding to the south center of the dipole pattern, weakens the subtropical
westerly jet and forms a southeast wind climbing the MWTP, which enhances the zonal
advection and meridional convergence of the atmospheric moisture flux over the MWTP,
and hence facilitates the MWTP snowfall. The interannual variation of the Barents Sea
ice and the MWTP snow depth are therefore closely connected through the atmospheric
bridge effect of the westerly jet and Rossby wave.

Keywords: Arctic sea ice, Barents Sea, Rossby wave, Tibetan Plateau, snow depth

INTRODUCTION

The Tibetan Plateau is often referred to as the “third pole of the world” owing to its high-altitude
terrain in the mid-latitudes (Yao et al., 2012). Driven by orographic effects, a freshwater resource
exists on the Tibetan Plateau in the form of glaciers, snow cover, lakes, and permafrost (Lu et al.,
2005; Bookhagen and Burbank, 2010; Yao et al., 2012; Zhang et al., 2017; Li et al., 2018), the
surface runoff of which is sufficient to form major rivers such as the Yellow, Yangtze, Brahmaputra,
Mekong, and Indus, which is sufficient to provide water for Asia’s agricultural activities and
ecosystems (Bookhagen and Burbank, 2010; Immerzeel et al., 2010; Singh et al., 2014; Li et al.,
2018). In particular, the snow cover serves as the foundation for the glacial mass balance (Kumar
et al., 2019), and snowmelt can supply the runoff of Asian rivers (Bookhagen and Burbank, 2010;

Frontiers in Earth Science | www.frontiersin.org 1 July 2020 | Volume 8 | Article 26514

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.00265
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2020.00265
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.00265&domain=pdf&date_stamp=2020-07-07
https://www.frontiersin.org/articles/10.3389/feart.2020.00265/full
http://loop.frontiersin.org/people/885743/overview
http://loop.frontiersin.org/people/265053/overview
http://loop.frontiersin.org/people/1012033/overview
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00265 July 4, 2020 Time: 17:42 # 2

Chen et al. Sea Ice Influence Snow Depth

Singh et al., 2014; Li et al., 2018). The increased soil moisture from
the melting of snow cover during the spring can induce localized
thermal anomalies over the Tibetan Plateau and increase the
precipitation in summer over the middle and lower reaches of
the Yangtze River basin through snow-related hydrological effects
(Chow et al., 2008; Xiao and Duan, 2016). Moreover, the snow-
related albedo effect enables the Tibetan Plateau snow cover to
give an indication of the onset of the Indian summer monsoon
and the occurrence of the autumn Indian Ocean Dipole pattern
(Senan et al., 2016; Yuan et al., 2019).

Recently, the snow cover and glaciers distributed in the
western part of the Tibetan Plateau have shown different
characteristics of climate change compared with the eastern
part (Kapnick et al., 2014; Guo et al., 2020). Model projections
under all greenhouse gas emission scenarios suggest a continuous
reduction in low-elevation mountain snow cover by the end
of the 21st century (Hock et al., 2019). However, at high
elevation, the climate trend of winter snow cover tends to
be generally less clear, and snowfall is projected to increase
over the western Tibetan Plateau in particular (Kapnick et al.,
2014; Song and Liu, 2017; Guo et al., 2019; Hock et al., 2019).
The glaciers and snow cover of the whole Tibetan Plateau
are retreating and declining (Yao et al., 2012; Zhang et al.,
2017; Li et al., 2018). However, there is no significant declining
trend of snow depth in the western Tibetan Plateau (Kapnick
et al., 2014; Guo et al., 2019), and the Karakoram glaciers even
show an increasing trend (albeit a statistically non-significant
one) (Gardelle et al., 2012; Yao et al., 2012). All these results
suggest unique characteristics of the snow cover/depth over the
west Tibetan Plateau, which might be related to the different
atmospheric influences on snowfall from those of the eastern
Tibetan Plateau.

As one of the most important components of the cryosphere,
the Arctic sea ice is also undergoing tremendous changes. The
sea ice loss in summer mainly happens over the perennial
ice-covered area, with the East Siberian Sea ice holding the
largest fraction of loss (22%) in September. Meanwhile, the
decline of ice in wintertime mostly occurs in the seasonally
dependent sea ice area, with the Barents Sea ice contributing
the largest fraction of loss (27%) in March (Onarheim et al.,
2018). Recently, it was found that the decline of the Arctic
sea ice contributes greatly to wintertime snowfall change in the
high latitudes, as bare seas with reduced sea ice are capable
of providing rich sources of water vapor. The reduction in sea
ice strengthens the atmospheric circulation meridionally and
promotes the transport of water vapor to Eurasia, resulting
in more winter snowfall over that region (Cohen et al.,
2012; Ghatak et al., 2012; Liu et al., 2012; Wegmann et al.,
2015). As simulated by multi-model ensemble mean results,
a significant role of the decline in autumn Arctic sea ice
in the growing climate change of Eurasian winter snowfall
and snow cover has been proposed during the 21st century
(Song and Liu, 2017).

In addition, the feedback effect of the autumn and winter
Arctic sea ice on the large-scale circulation has been verified
by statistical analysis and model simulations (Honda et al.,
2009; Mori et al., 2014; Sun et al., 2016; Zuo et al., 2016;

Blackport and Screen, 2019). The reduction in Arctic sea ice can
stimulate an upward stationary Rossby wave, amplifying the
Siberian high and transferring the westerly wind equatorward
(Honda et al., 2009; Kim et al., 2014; Cohen et al., 2018,
2020; Blackport and Screen, 2019, imposing an influence
on the climate of East Asia (Sun et al., 2016; Zuo et al.,
2016). In fact, the mid-latitude westerly winds are considered
as a critical factor for TP snow because they serve as a
Rossby waveguide transmission medium, along which small
troughs can propagate and guide water vapor north to
cause TP snowfall (Bao and You, 2019; Song et al., 2019;
Zhang et al., 2019b). Although the long-term change and
climate impact of the Arctic sea ice and snow cover over
the Tibetan Plateau has quite rightly been a primary focus
among scientists, the potential connection between them on
the interannual time scale and the underlying mechanisms
involved remain unclear.

In the above context, the aim of this work is to investigate
the possibility that the winter Barents Sea ice regulates the mid-
west Tibetan Plateau (MWTP) snow depth on the interannual
timescale by considering the non-significant trend in the west
Tibetan Plateau snow cover and significant trend in the Arctic
sea ice. The mechanism involved will be elucidated through
emphasizing the feedback effect of the Arctic sea ice on the
Asian westerly jet and Rossby wave. The data and methods are
introduced in Section “Materials and Methods.” The interannual
relationship between the Barents Sea ice and western TP snow
and the role played by the atmospheric bridge in this relationship
are analyzed in Section “Results.” Finally, a summary and
some further discussion are presented in Section “Discussion
and Conclusion.”

MATERIALS AND METHODS

The datasets utilized in this study include:

1. Snow depth, from 1979 to 2015, derived from passive
microwave data with a spatial resolution of 0.25◦ × 0.25◦,
which can be downloaded from the Big Earth Data
Platform for Three Poles (available at http://poles.tpdc.
ac.cn/zh-hans/). The dataset has been corrected based

FIGURE 1 | (A) Boreal winter (DJF) mean snow depth over the western
Tibetan Plateau and (B) its standard deviation during the period 1979–2015
(units: cm). The gray line outlines the 2-km topography of the Tibetan Plateau.
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FIGURE 2 | (A) Boreal winter mean Arctic sea ice concentration; (B) the corresponding standard deviation during the period 1979–2015; and (C) the normalized
time series of the domain-averaged snow depth (SD, red) over the MWTP (29◦–36◦N, 76◦–88◦E) and the Barents Sea ice concentration (BSIC, blue) in the area of
(65◦–80◦N, 35◦–65◦E) as marked by the black box in B.

on in situ station snow depth and the optimized
Chang algorithm according to TP vegetation and snow
characteristics. More details regarding the improved
temporal consistency of different satellite sensors and the
suitability of the algorithm for the derivation of snow depth
across the whole of China can be found in Che et al.
(2008). These data have been widely used to investigate
snow-related climate characteristics (Xiao and Duan, 2016;
Zhang et al., 2017; Bao and You, 2019). The monthly sea-
ice concentration data are provided by the Hadley Center
(Rayner et al., 2003).

2. ERA-Interim reanalysis data with a spatial resolution
of 0.5◦ × 0.5◦ are utilized in this study (Dee et al.,
2011), which include the spatial geopotential height, winds,
specific humidity, and temperature. Surface sensible and
latent heat fluxes and pressure are also from ERA-Interim.

The monthly means of daily forecast accumulated snowfall
are used to analyze the snow depth contributed by
the snowfall.

All data were calculated for the average of December, January,
and February (DJF) as the winter mean from 1978/1979 to
2014/2015, and the linear trend was removed. To filter the low
frequency of the MWTP snow depth and Barents Sea ice, Lanczos
bandpass filtering was used to extract the 3–9-year interannual
signal in all data (Duchon, 1979). Pearson correlation analysis
and regression analysis were used to investigate the relationship
between the Arctic sea ice and MWTP snow depth. The level
of statistical significance was estimated using the two-sided
Student’s t-test.

To diagnose the moisture transport, we calculated the
water vapor flux 1

gq
−→
V following Banacos and Schultz (2005).
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FIGURE 3 | Regression fields of (A) the winter surface sensible heat flux (units: W/m2), (B) the winter surface latent heat flux (units: W/m2), (C) the 1000-hPa air
temperature (shaded; units: ◦C) and surface pressure (contours; units: Pa), and (D) the 50◦–120◦E-averaged air temperature (shaded; units: ◦C; contours are the
climate mean air temperature) against the BSICI. The shading and contour values of the stippled areas in A, B, D, and C exceed the p = 0.1 confidence level. The
shaded values in C exceed the p = 0.1 confidence level. The dashed box in A and B denotes the Barents Sea region (65◦–80◦N, 35◦–65◦E). The black line over the
region (25◦–45◦N, 60◦–110◦E) in C outlines the 2-km topography of the Tibetan Plateau.

The precipitation can be estimated by the water vapor flux
divergence D as follows:

Pre ≈ −
1
g

∫ ps

300

(
∇ • qEV

)
dp = −

∫ ps

300
Ddp = −

∫ ps

300

(
Dxy + Dp

)
dp,

(1)

D =
1
g
(u

∂q
∂x
+ v

∂q
∂y
+ ω

∂q
∂p
+ q

∂u
∂x
+ q

∂v
∂y
+ q

∂ω

∂p
), (2)

where Pre is the estimated precipitation, EV(u, v,ω) present the
three dimensions of the atmospheric wind component, and q
is the specific humidity. Parameter g represents gravitational
acceleration, while ps refers to the surface pressure. The 300-
hPa level is used to represent the tropopause because the specific
humidity above it is negligible. The horizontal and vertical
components of D are Dxy and Dp. The six terms on the
right-hand side of Eq. 2 stand for the contributions from the
zonal advection, meridional advection, vertical advection, zonal
convergence, meridional convergence, and vertical convergence,
respectively. With the complexity of the MWTP topography, the
D at 400 hPa was calculated and used to estimate the MWTP
winter precipitation.

The atmospheric Rossby wave activity involved in the effect of
sea ice on the atmosphere was diagnosed by the TN Rossby wave

activity flux
−→
W (Takaya and Nakamura, 2001):

−→
W =

P
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(3)
where ψ is the quasi-geostrophic stream function,

−→
U (U,V) is

the zonally inhomogeneous basic flow, P and T are the pressure
and temperature of the atmosphere,

(
u
′

, v
′

,T
′
)

is a perturbation
from the basic flow, the subscript of the parameter indicates
the partial derivatives, f is the Coriolis parameter, Ra is the gas
constant of dry air, N is the buoyancy frequency, and H0 is a
constant scale height.

RESULTS

In winter, the west Tibetan Plateau snow maintains an extensive
coverage in the mountain area, where snow covers throughout
the whole year. The largest amount of snow mainly covers the
mountain ranges including the Karakoram, Pamir, and western
Himalayan mountains (Figure 1A). The variance in the snow
depth displays two centers. One center presents considerable
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FIGURE 4 | Regression fields of the (A) winter 50◦–120◦E-averaged
temperature gradient (shaded; units: 10−6 K/m) and zonal wind (contours;
units: m/s), (B) 50◦–120◦E-averaged geopotential height (shaded; units: m)
and the TN Rossby wave activity flux in the vertical (vectors; units: m2/s2), and
(C) 250-hPa geopotential height (shaded; units: m) and the TN Rossby wave
activity flux (black vectors; units: m2/s2) in the horizontal, against the BSICI.
The contour and shaded values of the stippled area in A and B, C exceed the
p = 0.1 confidence level. The shaded value in A exceeds the p = 0.1
confidence level. The gray line over the (25◦–45◦N, 60◦–110◦E) in C outline
the 2-km topography of the Tibetan Plateau.

variation of snow depth in the Pamirs, while the other exists in the
MWTP (black box in Figure 1B), which is a transition zone from
high to low snow values (Figure 1A). As for the spatial pattern of
the winter climatology of Arctic sea ice, there are large quantities
of stable sea ice in the polar region (Figure 2A). At the fringes of
the Arctic sea ice, the marginal sea ice exhibits a large interannual
fluctuation, especially in the Barents Sea (Figure 2B). Taking
the region (29◦–36◦N, 76◦–88◦E) as the snow depth study area,
the areal mean snow depth was calculated and the time series
shows a distinct interannual variation (Figure 2C). Taking the
region (65◦–80◦N, 35◦–65◦E) of the Arctic sea ice as the Barents
Sea ice, the regional-averaged Barents Sea ice was calculated. It
is worth noting that the time series of areal mean snow depth
over the MWTP and the Barents Sea ice present a robust and

FIGURE 5 | Regression fields of the divergent wind (vectors; units: m/s) and
velocity potential (shaded; units: 106 m2/s) at (A) 250, (B) 500, and (C)
1000 hPa, against the BSICI. Black arrows indicate vector values above the
p = 0.1 confidence level. The shaded values of the stippled areas exceed the
p = 0.1 confidence level. The green box represents the MWTP region. The
black line over the region (25◦–45◦N, 60◦–110◦E) outlines the 2-km
topography of the Tibetan Plateau.

coherent interannual variation, with a correlation coefficient
of 0.64 (p < 0.01) (Figure 2C). This correlation illustrates
a significantly correlated cryosphere between the Arctic and
Tibetan Plateau. Therefore, we selected (65◦–80◦N, 35◦–65◦E)
as the key study region of the Arctic, and the domain-averaged
sea-ice concentration defined the Barents Sea Ice Concentration
Index (BSICI) that is used in the following parts. The cause for
this prominent link on the interannual time scale will be the main
point of discussion below.

As the main source of cold air in the Northern Hemisphere,
Arctic sea ice can form large-scale Eurasian cold events, which
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FIGURE 6 | Regression fields of (A) the winter geopotential height (shaded;
units: m) and horizontal wind vector (units: m/s), and (B) zonal wind speed
(shaded; units: m/s) at 500 hPa, against the BSICI. Blue arrows in A indicate
vector values above the p = 0.1 confidence level. The black contours in B
represent the climatology of the zonal wind speed with intensity larger than
10 m/s. The shaded values of the stippled areas exceed the p = 0.1
confidence level. The black box in B represents the MWTP region. The gray
line over the region (25◦–45◦N, 60◦–110◦E) outlines the 2-km topography of
the Tibetan Plateau.

are closely related to the survival of human beings both directly
and indirectly through their effects on agricultural production
(Cohen et al., 2014; Kim and Son, 2016; Shi et al., 2018). As
demonstrated by simulation of the feedback effect of the Arctic
sea ice, the decline of the Barents Sea ice can produce the upward
propagation of planetary wave energy because of the anomalous
meridional heat flux transition, and stimulate a Rossby wave
that spreads horizontally from the Arctic to Eurasia, by which
the westerly winds may attain some influence (Honda et al.,
2009; Mori et al., 2014; Cohen et al., 2018, 2020; Kim and
Kim, 2018; Blackport and Screen, 2019). When the BSICI is
above normal, the presence of more sea ice will prevent the
transmission of heat from ocean to atmosphere, and weaken
the planetary wave activity (Cohen et al., 2020). This point can
be verified by the negative upward surface turbulent heat flux
in the Barents Sea (Figures 3A,B). When the Barents Sea ice
extends, the surface sensible and latent heat flux are reduced.
The weakened surface heat source reduces temperatures in the
lower atmosphere, leading to a cold center over the Barents Sea
(Figure 3C). A vertical profile averaged from 50◦E to 120◦E of

FIGURE 7 | Regression fields of the (A) cross sections of zonal-vertical
circulation (vectors; zonal wind speed in m/s, and vertical velocity in Pa/s,
multiplied by −57) and specific humidity (shaded; units: 10−2 g/kg) averaged
over 25◦–32◦N, and (B) cross sections of meridional-vertical circulation
(vectors; zonal wind speed in m/s, and vertical velocity in Pa/s, multiplied by
−71) and specific humidity (shaded; units: 10−2 g/kg) averaged over
80◦–88◦E, and (C) water vapor flux (vectors; units: g/cm•s•hPa) and
convergence at 400 hPa (shaded; units: 10−8 g/cm2

•s•hPa), against the
BSICI. The vectors of the stippled areas in A and B exceed the p = 0.1
confidence level. Blue arrows in C indicate vector values above the p = 0.1
confidence level. The red box in C represents the MWTP region. The black
line over the region (25◦–45◦N, 60◦–110◦E) in C outlines the 2-km topography
of the Tibetan Plateau.

the boreal winter mean air temperature and the corresponding
regressed field against the BSICI is shown in Figure 3D. Clearly,
the lower tropospheric atmosphere from 70◦N to 80◦N becomes
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colder because of the reduced oceanic heat. As a result, the
temperature gradient from south to north over the Eurasian
continent turns to be increased (shaded in Figure 4A).

As in the model simulation, the change of the Barents
Sea ice is partially responsible for the shift of the eddy-
driven westerly jet, forming a meridional dipole circulation
pattern in the mid-troposphere (Mori et al., 2014; Sorokina
et al., 2016; Blackport and Screen, 2019). According to thermal
wind theory, the increased meridional temperature gradient
(shaded in Figure 4A) strengthens the zonal wind as height
increases (contours in Figure 4A), which enhances the intensity
of the polar-front jet. Such zonal wind anomalies contribute
to the baroclinicity of the lower troposphere and trigger an
upward propagation of the Rossby waves from 850 to 200 hPa
(Figure 4B). These Rossby waves propagate from north to
south in the horizontal direction, forming a dipole circulation
distributed over the Eurasian continent in winter (Figure 4C).
To the north of the anomalous polar-front jet, the height
is reduced and a convergence forms from 1000 to 250 hPa
(Figures 5A–C), which can weaken the Siberian high and reduce
the delivery of Arctic cold air to Eurasia (Figure 3C). Therefore,
in contrast to the colder temperatures over the Barents Sea,
a positive air temperature anomaly is evident over the mid-
latitudes (Figure 3D), which might be due to the weakened
Siberian high linked with the abnormal Barents Sea ice (Honda
et al., 2009; Overland et al., 2015; Sorokina et al., 2016; Cohen
et al., 2018, 2020; Kim and Kim, 2018).

The MWTP experiences frequent snowfall in the cold season
(Lu et al., 2005; Bookhagen and Burbank, 2010). This abundant
snowfall is often modulated by the subtropical westerly jet, which
may provide moisture transport toward the Tibetan Plateau
(Norris et al., 2015; Bao and You, 2019). Considering the high
topography of the MWTP, the regression fields of 500 hPa (near
the surface over the TP) atmospheric circulation and zonal wind
against the winter BSICI are exhibited in Figure 6. One can see
a salient meridional dipole pattern in the geopotential height
anomaly over the Eurasian continent because of the horizontal
propagation of the Rossby wave in Figures 4B,C. The low center
occupies the north part of the Eurasian continent and another
high center in the belly of Eurasia with the Tibetan Plateau
included (Figure 6A). The south center of the dipole pattern
can generate anticyclonic circulation near the Tibetan Plateau,
which can directly influence the subtropical westerly jet that is
concerned as the regulator of the Tibetan Plateau snow depth.

Generally, the subtropical westerly jet and polar-front westerly
jet coexist in the mid-troposphere over the Eurasian continent,
with the larger intensity in the former, and these two jets converge
into one in the east of East Asia. Synergistic changes in the north–
south jet often induce the Tibetan Plateau and Eurasian climate
change (Zhang et al., 2019a). With above-normal BSICI, the zonal
wind is strengthened around 60◦N and weakened around the
polar region and Tibetan Plateau (Figure 6B). The south center of
the dipole pattern, i.e., the anticyclonic circulation anomaly, leads
to the decelerated subtropical westerly jet, especially over the
southwestern MWTP (Figure 6B). These changes imposed on the
westerly wind may have some influence on the moisture transport
associated with the snowfall over the MWTP. The anticyclonic

circulation can cause anomalous southeasterly wind to climb
the MWTP, and the regression fields of the wind and specific
humidity show that the anomalous southeasterly winds at the
south part of the anticyclonic circulation facilitate the moisture
convergence in the mid-high troposphere over the MWTP
(Figures 7A,B). As indicated by the divergent wind, there is a
large-scale atmospheric divergence at 250 hPa and convergence
at 1000 hPa around the TP region (Figures 5A–C). At 500 hPa,
the surface circulation converges to the TP, especially in the
MWTP. Considering the steep terrain of the MWTP, the 400-
hPa horizontal water vapor flux ( 1

g qu,
1
g qv) and divergence Dxy

were estimated. The water vapor flux converges and forms a
negative center over the MWTP (Figure 7C), which is conducive
to the MWTP snowfall.

To reveal the respective contributions of the moisture
transport to the MWTP snowfall related to the Barents Sea ice
concentration anomaly, in Figure 8, we plot the regression fields
of the winter precipitation, snow depth, the 400-hPa moisture
convergence indicated on the left-hand side of Eq. 2, and the
six terms of the water vapor convergence indicated on the right-
hand side of Eq. 2. It is clear that, with the favorable circulation
as shown in Figures 6, 7, more winter precipitation appears
over the MWTP (Figure 8A) when the BSICI has a positive
anomaly, bringing about more snowfall and greater snow depth
over the MWTP (Figure 8B), which are largely contributed by
the moisture convergence (Figure 8C). The diagnosis of the
six terms of water vapor transport indicates that the moisture
convergence anomaly over the MWTP is contributed mainly
by the zonal advection (Figure 8D), which should be directly
related to the weakened westerly in the downstream regions as
shown in Figure 6B, and the vertical advection and meridional
convergence of moisture flux (Figures 8F,H) as a result of
the anomalous southeasterly winds climbing the MWTP. The
meridional advection has relatively less influence on the snowfall
(Figure 8E), and the contribution from the zonal (Figure 8G)
and vertical (Figure 8I) convergence terms are not conducive
to the snowfall.

DISCUSSION AND CONCLUSION

As the world’s highest topography, the snow depth over the
MWTP shows an inconspicuous trend but strong interannual
variation during recent decades, which inspired us to study the
possible driving force behind its interannual variation. Satellite
snow and sea ice data and ERA-Interim reanalysis data were
utilized to address this issue. The main conclusions can be
summarized as follows:

1) A coherent interannual variation between MWTP snow
depth and the Barents Sea ice concentration is robust
in the observations. Above-normal Barents Sea ice cools
the air temperature aloft by reducing the transmission
of heat between ocean and atmosphere, thus enhancing
the temperature gradient between the polar region and
mid-latitudes over the Eurasian continent.
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FIGURE 8 | Regression fields of (A) the winter snowfall (units: mm/day), (B) snow depth (units: cm), and (C) the moisture divergence D at 400 hPa (units:
10−8 g/cm2

•s•hPa); and the (D) zonal advection, (E) meridional advection, (F) vertical advection, (G) zonal convergence, (H) meridional convergence, and (I)
vertical convergence (units: 10−8 g/cm2

•s•hPa) of moisture flux at 400 hPa, against the BSICI. The stippled areas exceed the p = 0.1 confidence level. The black
box (29◦–36◦N, 76◦–88◦E) represents the MWTP region. The gray line over the region (25◦–45◦N, 60◦–110◦E) outlines the 2-km topography of the Tibetan Plateau.

2) With the increased temperature gradient, the polar-
front westerly jet is enhanced, which increases the
atmospheric baroclinicity and stimulates a Rossby wave
propagating upward and equatorward, producing an
anomalous anticyclone in the mid-troposphere of the
subtropics with the Tibetan Plateau included to influence
the subtropical westerly jet.

3) As a result, the zonal advection of moisture flux and
the meridional convergence of moisture flux over the
MWTP are intensified significantly, bringing about more
moisture from surrounding areas and a resultant above-
normal snowfall and snow depth in the MWTP. Therefore,
the westerly jet and anomalous Rossby wave serve as

an efficient atmospheric bridge in connecting the winter
Arctic sea ice and snow depth over the MWTP.

This paper emphasizes the role of the westerly jet and Rossby
wave in connecting the interannual variation between the Barents
Sea ice and MWTP snow depth, but some other processes might
also be important. The westerly wind anomalies can also be
influenced by El Niño–Southern Oscillation (Matsumura and
Kosaka, 2019) and Atlantic sea surface temperature (Jung et al.,
2017; Sung et al., 2018). The Arctic sea ice aside from that in the
Barents Sea also vary greatly and can impose some influence on
the mid-latitude climate (Screen, 2017; Cohen et al., 2020); plus,
the lagged impact of the autumn Arctic sea ice and continental
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snow cover also play a role in the winter atmospheric circulation
(Cohen et al., 2012; Furtado et al., 2015; Handorf et al., 2015).
In addition, the combination effect of internal variability and
external forcing on the relationship between sea ice change
and Eurasia continent climate is still under debate (Overland
et al., 2015; Park et al., 2015; Kim and Son, 2016; Cohen et al.,
2018, 2020; Ye et al., 2018; Ye and Jung, 2019). Therefore, a
comprehensive picture of the relationship between Arctic sea ice
and snow depth over the Tibetan Plateau needs to be further
explored in future. Moreover, owing to the imperfect physical
schemes and coarse resolutions (Rahimi et al., 2019), existing
climate models fail to simulate the observed spatiotemporal
variation of snowfall and snow depth over the mid-west Tibetan
Plateau, meaning a more complete model is therefore needed
in future work to understand the mechanism involved in the
variation of Tibetan Plateau snow depth.
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Lakes have important influence on local temperature and precipitation and are also
regulators of regional climate. Using satellite and climate reanalysis datasets and a
regional weather research forecasting (WRF) model, we carried out two WRF sensitivity
experiments: one including the lake (WRF_lake) and the other with lake replaced by land
surface (WRF_nolake). The comparison between the two sensitivity WRF experiments
revealed that, in summer, the lake was strong heat sink in the daytime and heat source
at night. In autumn, the lake was weak heat sink in the daytime and strong heat source
at night. Correspondingly, the precipitation was reduced by about 45–70% over the lake
because of the cooling effect in summer of 2008, and the precipitation over the lake and
to the east of the lake was enhanced by 60% because of the warming effect of 2008.

Keywords: cooling effect, warming effect, Nam Co Lake, WRF model, Tibetan Plateau

INTRODUCTION

The landscape of the Tibetan Plateau (TP) is characterized by extremely complex topography.
The local climate varies greatly. Lake represents a significant feature of the surface because its
thermal inertia has a large potential impact on the climate (Bonan, 1995; Laird et al., 2009; Xu
et al., 2009; Zhou et al., 2015; Kirillin et al., 2017; Wang et al., 2018; Zhan et al., 2019). The lake
system of the TP is also closely linked to local climate (Haginoya et al., 2009; Tsujimoto and Koike,
2013; Huang et al., 2017; Wang et al., 2017; Song et al., 2019). The contribution of lake effects to
local or regional climate is becoming more and more important. Due to the lake-air temperature
difference in different seasons, there are different seasonal distribution characteristics of lake effect
precipitation. To understand the seasonal characteristics of lake effect precipitation in the lake area
is conducive to further understanding the regional water cycle characteristics.
Seasonal contributions of lake effects have attracted broad research attention given their dramatic
impacts on local precipitation. In summer, the precipitation in Lake Ladoga and Great Lakes
reduces 20–70% of convective precipitation because of lake effect (Scott and Huff, 1996;

Frontiers in Earth Science | www.frontiersin.org 1 September 2020 | Volume 8 | Article 35824

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.00358
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2020.00358
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.00358&domain=pdf&date_stamp=2020-09-03
https://www.frontiersin.org/articles/10.3389/feart.2020.00358/full
http://loop.frontiersin.org/people/850423/overview
http://loop.frontiersin.org/people/317653/overview
http://loop.frontiersin.org/people/1021125/overview
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00358 September 3, 2020 Time: 11:25 # 2

Dai et al. Seasonal Contribution of Lake on Precipitation

Samuelsson et al., 2010). In winter, the lake effect increases the
precipitation. For example, Lake Ladoga in Russia can increase
convective precipitation by up to 20–40% (Samuelsson et al.,
2010). The Great Lakes in the United States, which are unfrozen
and induces large lake effect precipitation (more than 100%) in
the winter (Umek and Gohm, 2016; Welsh et al., 2016). The
effect is different from Ngoring Lake and Gyaring Lake on the
TP in summer. Both of these two lakes cause an increase of
precipitation in early summer (Wen et al., 2015). The increase
precipitation was attributed to the hollowness of these two lakes,
which allows them to easily warm in the early summer.

To our knowledge, up to now few quantitative studies have
been done regarding the seasonal contributions of lake effects to
local precipitation in such cold and high-mountain environment.

Nam Co Lake is one of the largest lakes on the TP, with an
area of more than 2000 km2. The maximum and average depths
of Nam Co Lake are 98 and 45 m, respectively. The shape of
Nam Co Lake is in the East-West direction, and the length of
the fetch distance is about 73 km (Figure 1). The south area of
the lake is the Nianqing Tanggula Mountains. Previous studies
have demonstrated the role of Nam Co Lake in local climate
(Lazhu et al., 2016; Huang et al., 2017; Dai et al., 2018a,b).
Based on station meteorological data and reanalysis data, we
analyzed the qualitative characteristics of lake effect precipitation
in the Nam Co basin and identified the lake cooling effect
during July–August and lake heating effect during November–
December (Dai et al., 2018b). With weather research forecasting

(WRF) model simulation and station meteorological data, we
pointed out that the lake effect could contribute more than
half of the precipitation to the downwind heavy precipitation
events around Nam Co Lake during October to November
(Dai et al., 2018a). However, the impact of the lake cooling
effect of Nam Co on the regional climate during summer
hasn’t been quantitatively evaluated. The diurnal character of
lake effect of Nam Co on regional climate hasn’t been well-
explored. In this paper, we focus on the lake effect of Nam Co on
regional climate during daytime and nighttime, and its seasonal
variations of the diurnal character of lake effect of Nam Co in
summer and autumn.

MATERIALS AND METHODS

Multiple Data Products
We used MODIS Land Surface Temperature Data Product
(MOD11A2) collected during the daytime (10:30 Local Time;
04:30 UTC) and at night (22:30 Local Time; 16:30 UTC),
and we calculated diurnal surface temperatures separately by
using Modis_day and Modis_night. We then used these surface
temperatures to calculate the monthly averages of surface
temperature. More detailed information of MOD11A2 data can
be found in the MODIS Products Users’ Guide1.

1https://icess.eri.ucsb.edu/modis/LstUsrGuide/usrguide_8dtil.html

FIGURE 1 | Location and topography of Nam Co Lake and the two nearby meteorological stations (Nam Co and Deqing stations). The black dash box denotes the
position of the simulation domain. The AWS is the abbreviation of Automatic Weather Station.
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We used 10 m wind speed and 2 m air temperature data
in 2008 from ERA 5 monthly reanalysis datasets, with a
horizontal resolution of 0.25◦ × 0.25◦ (Copernicus Climate
Change Service (C3S), 2017). We also used 2 m air temperature,
and precipitation data (0.1◦ × 0.1◦ resolution) in 2008 from the
China Meteorological Forcing Dataset (CMFD; Yang et al., 2010;
He et al., 2020) that combines in-situ observations of TP,

provided by the National Tibetan Plateau Data Center. Finally,
we used monthly Tropical Rainfall Measuring Mission (TRMM;
Kummerow et al., 2000) data in 2008.

WRF Model
WRF model is a useful tool to study regional lake-effect
precipitation (Zhao et al., 2012; Nicholls and Toumi, 2014;

FIGURE 2 | Diurnal spatial pattern of temperature of skin surface (TSK, units: ◦C) of WRF_lake simulation in July (A,C) and October (E,G), and the TSK from MODIS
data in July (B,D) and October (F,H). The gridded squares with missed MODIS value are filled by white color.
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Sun et al., 2015; Wen et al., 2015; Dai et al., 2018a;
Shi and Xue, 2019). Using the WRF-Lake model to simulate
the regional climate of Nam Co in October of 2006, we showed
that Nam Co causes lake-effect precipitation in October (Dai
et al., 2018a). Similar to the study of Dai et al. (2018a), in
this study we used the WRF model to simulate the impact
of Nam Co Lake on local climate, with same physics options
choices and similar boundary configuration. Please see more
details in Dai et al. (2018a). The simulation start time was

FIGURE 3 | Comparison of the monthly mean 3-h 2 m temperature (shading,
units: ◦C) and 10 m wind (vector, units: mm/s) between the WRF_lake
simulation, the ERA5 and the CMFD data in July 2008.

0000 UTC 1 May 2008, and the end time was 0000 UTC 1
December 2008, and the model produced output every 3 h.
The averages of the simulated data at two times during the
day (03:00 and 06:00 UTC) and at two times during the night
(15:00 and 18:00 UTC) are reported here to compare with the
corresponding MODIS daytime (04:30 UTC) and nighttime
(16:30 UTC) data. We carried out two WRF experiments: one
including lake (WRF_lake) and the other with lake replaced
by land surface (WRF_nolake). Comparison of WRF_lake
and WRF_nolake showed the influence of the lake on the
regional climate.

FIGURE 4 | Same as Figure 3, but for October 2008.

Frontiers in Earth Science | www.frontiersin.org 4 September 2020 | Volume 8 | Article 35827

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00358 September 3, 2020 Time: 11:25 # 5

Dai et al. Seasonal Contribution of Lake on Precipitation

The aim of this study was to investigate the seasonal variety of
Nam Co lake effects in summer and autumn using observations,
reanalysis data, and numerical modeling. The key factor to
understand the lake effect is lake-air temperature difference
(Lavoie, 1972). In this study, we verified and analyzed the factors
such as lake temperature, air temperature and precipitation. An
observation station located in the Nam Co area since 2005, in
the watershed of the southeastern part of the lake, 2 km away
from the lake shore, where lake effect precipitation occurs in
October and November (Dai et al., 2018a). The precipitation
measurements of the west part of the lake (Deqing station)
have been carried out in 2008 (Zhou et al., 2013). We therefore
chose to analyze the characteristics of the lake effect in 2008.
Nam Co Lake is ice-covered for about 5 months and ice
free for about 7 months per year (Kropacek et al., 2013).
From December to April, as the complex influence of lake
ice and the total precipitation over the lake and surrounding
is few to negligible. In our analysis we therefore focused
on the period from May to November. According to the
seasonal variations in the simulated latent and sensible heat
fluxes of Nam Co (Lazhu et al., 2016), the result indicate that
the evaporation is small in summer and reaches a peak in
October. We chose July in summer and October in autumn for
detailed analysis.

EVALUATION OF WRF SIMULATIONS:
TEMPERATURE AND PRECIPITATION

Comparison of the Skin Surface
Temperatures Between WRF and MODIS
The diurnal changes of MODIS lake surface temperature were
relatively small compared to the corresponding temperature

changes of the surrounding land surface. We first obtained
the temperature of surface skin (TSK) over the lake by WRF
simulation and by MODIS data. The spatial pattern of the
WRF simulated TSK was in agreement with the MODIS data,
though the simulated TSK over land is slightly higher with WRF
than MODIS data in July and lower in October (Figure 2).
In particular, the TSK difference between the lake and land
and its diurnal variety are well-captured by WRF. Based on
MODIS data, the TSK over Nam Co Lake was cooler (warmer)
than the TSK in surrounding land during daytime (nighttime)
(Figure 2). In July (Figures 2A–D), the TSK difference between
the lake surface temperature and land surface temperature
was −16◦C in the daytime and 5◦C at nighttime according
to MODIS data. The simulated TSK difference between the
lake and land with WRF was −12◦C in the daytime and 3◦C
at nighttime. In October (Figures 2E–H), the TSK difference
between the lake and land was −6◦C in the daytime and 15◦C
at nighttime according to MODIS data. The simulated TSK
difference between the lake and land with WRF was −3◦C
in the daytime and 12◦C at nighttime. The simulated TSK
difference between the lake surface temperature and land surface
temperature was consistent with that based on MODIS data,
which the deviation was about 4◦C in the daytime and 3◦C at
nighttime. Therefore, WRF simulation was able to mimic the
characteristics of diurnal variety the TSK difference between the
lake and land in July and October.

Comparison of 2 m Temperatures and
500 hPa Temperatures Between WRF,
ERA5, and CMFD
We also used the ERA 5 and CMFD data in July (Figure 3)
and October (Figure 4) of 2008 to compare with the WRF
simulation in terms of two varieties: 2 m air temperature

FIGURE 5 | The monthly precipitation at the upwind Deqing station (blue), and the downwind Nam Co station (orange), as well as the monthly precipitation averaged
over the Nam Co Lake by the WRF simulation (purple) and from the TRMM product (green) and CMFD (dark blue), in July and October, respectively.
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and 10 m wind speed. The resolutions of WRF, ERA
5, and CMFD were 0.06◦ × 0.06◦, 0.25◦ × 0.25◦, and
0.1◦ × 0.1◦, respectively. Nearly at each 3-h time slices, the
WRF reasonably reproduced the spatial pattern of CMFD 2

m temperature. It is also noticed that the WRF-simulated
temperature over the lake was closer to the ERA5 data.
The WRF-simulated wind pattern was also consistent with
the ERA5 wind. The WRF generally well-simulated both the

FIGURE 6 | Spatial distribution of monthly mean 3-h precipitation (shading, units: mm) from the WRF_lake simulation and the CMFD data in July (left two panels) and
October (right two panels) of 2008.
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wind in July and in October based on reanalysis data and
gave more details.

Precipitation Comparison: Spatial and
Temporal Distribution
The Nam Co Lake is a relatively gentle terrain in the basin.
The simulated precipitation over the lake was larger than the

TRMM and CMFD data (Figure 5). The deviation between
the WRF simulation and the satellite data also appears in
previous study on the TP (Gao et al., 2015). Compared with
two stations on the east and west side of the lake, in July, the
WRF-simulated precipitation was higher than the precipitation
at the Nam Co station on the east coast and lower than
the precipitation at the Deqing station on the west coast.
In contrary, the WRF-simulated precipitation in October was

FIGURE 7 | Spatial pattern of monthly mean 3-h TSK (A–H, shading, units: ◦C) of WRF_lake simulation in July 2008.
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slightly lower than the precipitation at the Nam Co station and
higher than the precipitation at the Deqing station. However,
WRF reasonably reproduced the seasonal rainfall amount in
July and October. Regarding the spatial patterns, nearly at each
3 h time interval, the WRF produced a comparable spatial
pattern of precipitation to that of the CMFD (Figure 6).
We also found discrepancies between the WRF simulation
and the CMFD data from 0:00 to 6:00 UTC, which may be
attributed to their different 2 m temperature over the lake. In

general, the WRF can reasonably depict the lake effect on the
regional precipitation.

RESULTS AND DISCUSSION

Heat Sinks and Sources
Because the temperature difference between the lake and land is
very different during the day and night, we analyzed the diurnal

FIGURE 8 | Same as Figure 7, but for October 2008.
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variety of the temperature difference between the lake and land
during different seasons based on the WRF-simulated TSK. After
the sun rises in the daytime (03:00–09:00 UTC) during July, the
TSK of the land rises faster than the TSK of the lake, which is

about 9◦C cooler than the land TSK at 09:00 UTC (Figure 7).
Six hours after sunset (15:00–18:00 UTC), the TSK difference
between the lake and land reaches a minimum. The land cools
faster at night (21:00–00:00 UTC), and the lake TSK is about

FIGURE 9 | Spatial pattern of simulated of monthly mean 3-h 2 m air temperature (A–H, shading, units: ◦C) and 10 m wind (A–H, vector, units: m/s) anomaly
(difference between WRF_lake and WRF_nolake simulations) in July 2008.
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6◦C warmer than the land TSK. The maximum temperature
difference between the lake and land can be as low as −17◦C
during the day, whereas the temperature difference is about 10◦C
at night. The lake is a strong heat sink during the day, and a source
of heat at night in the summer.

In October, during the 6 h after the sun rises (03:00–09:00
UTC), the TSK of the land rises faster than the TSK of the
lake (Figure 8). During evening and early morning (12:00–00:00
UTC), the TSK of the land decreases much faster than the TSK of
the lake. The maximum TSK difference between the lake and land

FIGURE 10 | Same as Figure 9, but for October 2008.
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is greater than 18◦C at night, whereas the difference between the
land and lake temperature is less than 5◦C during the daytime.
The lake acted mainly as a strong heat source in the autumn.

Cooling and Warming Effects on 2 m
Temperatures
The comparison of WRF_lake and WRF_nolake showed that
the lake had a cooling effect in July, whereas the lake had a
warming effect in October, in terms of 2 m air temperature.
Due to the air temperature varies more diurnally than the lake
temperature, we analyzed the temperatures during the daytime
and night with WRF_lake and WRF_nolake models to determine
the influence of the lake on the daily maximum and daily
minimum air temperatures.

The lake effect was essentially limited to the immediate vicinity
of the lake (Figure 9). In July, the lake was characterized by
a negative temperature anomaly of up to 3◦C during the day
and by the positive anomalies of up to 3◦C during the night.
The presence of the lakes reduces the 2 m temperature within a
distance of 10 km around the lake by an average of 0.4◦C during
the day (03:00–12:00 UTC), and increased it by about 0.3◦C at
night (18:00–03:00 UTC). The diurnal temperature difference
around the lake was reduced by 0.7◦C because of the lake effect.
In July, there was still a warming effect of Nam Co Lake that could
be explained by its relatively warm surface water at night.

In October, Nam Co Lake is characterized by a negative
temperature anomaly of up to 1◦C during the day and by
the positive temperature anomalies of up to 4◦C at night.
According to the spatial pattern of simulated diurnal 2 m

FIGURE 11 | Spatial pattern of the difference between the simulated results by the WRF_lake and the WRF_nolake, which is the gap between the lake surface and
500 hPa temperatures (units: ◦C) in July (A) and October (B) of 2008.

FIGURE 12 | Precipitation difference (mm) between the WRF_lake and the WRF_nolake simulations in July (A) and October (B) of 2008.
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air temperature anomaly (difference between WRF_lake and
WRF_nolake simulations) in October (Figure 10), The presence
of the lakes reduced the temperature around the lake by 0.6◦C in
the daytime (06:00–12:00 UTC), and its influence extended from
the shore for as much as 50 km to the east. In the middle of the
night (21:00–06:00 UTC), the temperature within 10 km of the
lake increased by an average of 0.4◦C. The diurnal temperature
difference around the lake was reduced by 1◦C.

The cooling effect during the day led to a decrease of the
daily maximum temperature in areas adjacent to the lake, and
the warming effect at night led to an increase of the daily
minimum temperature in the region. The lake therefore reduced
the amplitude of the daily temperature difference cycle. Previous
studies of Ngoring Lake and Gyaring Lake on the TP have also
revealed that most lakes reduce the maximum temperature all
year round and increase the minimum temperature, except in
March (Wen et al., 2015). This temperature effect has an impact
on the flora of the region.

Examination of the spatial pattern of the 10 m wind field
(Figures 9, 10) revealed that during the day (06:00–12:00 UTC)
the presence of the lake caused a strong lake breeze around the
lake, which was strongest in the afternoon (15:00–18:00 Local
Time) in July. The Lake breeze emanated from the lake to
the surrounding area and transported water vapor to the land
and increased the humidity. The lake breeze not only changed
the temperature but also caused the formation of low clouds
and fogs. A land breeze, which blew from the land over the
lake, was apparent during 1200–0000 UTC (18:00–06:00 Local
Time) in October.

We compared the temperature difference between the surface
and 500 hPa simulated by WRF_lake and WRF_nolake models
to calculate the influence of the lake on the temperature
difference between lake and 500 hPa. During the period from
May to August, the lake-500 hpa temperature difference was
less than 6◦C based on the WRF_lake simulation, whereas
lake-500 hPa temperature difference exceeded 12◦C according
to the WRF_nolake simulation. In July, the presence of the
lakes reduced the lake-500 hPa temperature difference over
Nam Co Lake by about 5◦C (Figure 11). In September, the
presence of the lake caused a slight increase in the lake-500
hPa temperature difference. In October and November, the lake-
500 hPa temperature difference exceeded 12◦C according to the
WRF_lake simulation, whereas the lake-500 hPa temperature
difference was less than 12◦C based on the WRF_nolake
simulation. In October, the presence of the lake increased the
lake-500 hPa temperature difference by about 7◦C (Figure 11).
Theoretically, changes of the lake effect are reflected by changes
of lake-500 hPa temperature difference.

Lake Effect: Enhancement and
Suppression on Precipitation
The WRF_lake and WRF_nolake simulations indicated that there
was no significant change in the distribution of large scale
precipitation. Because of the cooling effects of the lake, there was
characterized by much less precipitation over the lake during May
to August. The presence of the lake reduced precipitation over

the lake and thereby increased the spatial differences of regional
precipitation. The precipitation over the lake simulated by the
WRF_lake model was less than the simulated precipitation in the
absence of the lake (WRF_nolake). The difference was greatest
in July (Figure 12A). There was no significant change in May
and September. During May to August, the presence of the lake
reduced precipitation over the lake by about 45–70%.

The WRF_lake and WRF_nolake simulation showed that
there was no significant change in the distribution of large scale
precipitation from October to November too. At a smaller scale,
parts of the basin east of 90.25◦E were dominated by lake-
effect precipitation. The precipitation over the lake simulated
by WRF_lake model exceeded the precipitation simulated in
the absence of the lake (WRF_nolake) by more than 60%
(Figure 12B). Furthermore, precipitation was greater in the
eastern than in the western part of the basin because of the lake.

The precipitation over Nam Co Lake is suppressed in summer
and increased in autumn as a result of the lake effect. Although
the Nam Co lake effect did not change the large-scale distribution
of precipitation, it significantly affected the temporal pattern
of precipitation locally. Specifically, the lake effect reduced
precipitation in the wet season and increased precipitation
in the dry season.

CONCLUSION

Although the monthly mean lake–land temperature difference
was small in summer, the surface WRF-simulated temperature
showed that in July the lake was a heat sink during the day
and a source of heat during the night. The monthly mean
lake–land temperature difference was significant in October and
November, when the lake temperature was higher than the land
temperature. In October, the lake was mainly a source of heat,
especially between midnight and early morning. The distribution
of precipitation in the Nam Co basin was characterized by
two patterns. the precipitation was less over the lake than over
the surrounding land in summer; and the precipitation was
greater in the eastern than in the western part of the Nam Co
basin in autumn.

A comparison of two WRF sensitivity experiments, one
including the lake (WRF_lake) and the other with lake replaced
by land surface (WRF_nolake), showed that the lake cooled
the air during the day and warmed the air at night by up
to several degrees, depending on the large-scale meteorological
conditions. The cooling effect of the lake was manifested by lower
air temperatures in the summer, and the warming effect of the
lake was manifested by higher air temperatures in autumn. Both
the cooling and warming effects were limited to the immediate
vicinity of the lake and were normally not apparent more than a
few kilometers from the shore. The presence of the lake reduced
the lake–500-hPa temperature difference over Nam Co Lake
by up to 6◦C from May to August in 2008. In October and
November of 2008, the presence of the lake increased the lake–
500-hPa temperature difference by up to 7◦C. The lake effect
did not change the large-scale distribution of precipitation, but
it affected local precipitation significantly. In 2008, from June
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through August, the lake reduced precipitation over the lake
by about 45–70%; while from October through November in
2008, the WRF-simulated precipitation was 60% greater than the
precipitation in the absence of the lake.
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The aim of this work, conducted in the upper valley of the Khumbu on the southern
part of Mount Everest, is to approach in parallel three topics: (i) the dynamics of the
water geochemistry, major ions and trace elements; (ii) the stable water isotopes of
precipitation and rivers; and (iii) the water uses by the inhabitants. As in most mountain
environments, the Khumbu area is threatened by climate change, which impacts the
cryosphere and consequently the people and the landscapes. Moreover, changes in
water use are also related to new needs stemming from tourism, which strongly affect
local livelihood. For the first two topics, new results are presented. They provide details
on the global chemical quality of the river water and show how certain elements are
seasonally influenced and how other elements allow us to distinguish the water origins
within the study zone. Beside the use of stable isotopes to determine mainly the origin
of the water flow in the rivers, the isotopic patterns confirm the double climatic influence
of the westerly fluxes in the winter season and of the Asian monsoon in the summer
season. Regarding water use, the study does not conclude on the potability of the water
resource, because microbiologic and organic components have not been investigated;
however it confirms that the chemical quality is good. In conclusion, we attempt to
predict the future of the geochemistry patterns submitted to the double pressure of
climate change and the surge in tourism.

Keywords: major ions, trace elements, stable isotopes, precipitation, river flow, water use, Central Himalaya

INTRODUCTION

The future of the cryosphere (glacier and snow cover) in the Hindu Kush Himalaya high mountains
is a major concern (Pörtner et al., 2019; Wester et al., 2019); it is threatened not only by global
warming due to greenhouse gas emissions, but also by local air pollution due to the atmospheric
brown cloud, and especially the transportation and deposition of black carbon aerosol (Bonasoni
et al., 2010; Kaspari et al., 2011; Jacobi et al., 2015) from human activities in the densely inhabited
regions of the south and southwest of the Central Himalaya mountain range as well as the rapid
increase of tourist activity (Jacquemet, 2018).

In this context, the Paprika and Preshine projects (see section “Funding”) joined the efforts
of Nepalese, French, and Italian research teams (see section “Acknowledgments”) to explore the
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impact of these anthropogenic constraints on the water cycle
dynamics in the Dudh Koshi River Basin (Figure 1) on the south
side of Mount Everest (8847 m). Several reasons justified the
choice of this study zone that is characterized by two confluent
watercourses, the Imja River and the Khumbu River, respectively,
originating from the southern and western faces of the main
range of Mount Everest and its satellite summits.

Among these reasons, the following are particularly important
in the context of this article:

• Relative facility of access with the Everest Base Camp Trail;
• Settlements at high altitude (above 3500 m) where

inhabitants are facing a wide range of changes beside
climatic one as a more tourism-centered economy
involving integration to global markets, agropastoral and
lifestyles changes, and new migration patterns (Puschiasis,
2019);
• Presence of a high-altitude scientific laboratory, the

Pyramid of Lobuche (5050 m), administrated by the Italian
Ev-K2/CNR association in agreement with the Nepalese
Academy of Science and Technology (NAST).

In this framework, a working task of the Paprika and Preshine
projects has been devoted to the identification of water resources
and the perception of this held by the local inhabitants. In the
preliminary exchanges with the scientists of the Paprika and
Preshine projects, the Khumbu valley inhabitants manifested
a deep concern regarding their water resource and its future.
They were acutely aware that climate and economic changes will
have a direct impact on the environment in which they live.
As a consequence, it appears as a necessity to also aboard the
climate processes and the water balance through the geochemical
angle, even though this was not the primary route chosen
for these projects.

The village of Pangboche, which includes several settlements,
was chosen as the most convenient. The main settlement is
located at an elevation of approximately 3950 m on the right
bank of the Imja River, 4 km after the confluence of its two
main branches: the Khumbu River flowing from the north and
the Upper Imja River flowing from the west. An important
concern of the local population is the future of the water
resources, not only in quantity, but also in quality. Considering
the latter point, it was also stated that the water quality could
be a substantial indicator of the water flow processes, especially
regarding the different origins of these flows: glacier melt,
snowmelt, groundwater, or direct surface flow. The emergence of
deep water is not documented, but is unlikely or negligible. This
hypothesis is supported by the absence of local hot springs and
by the water temperatures observed in springs or slope streams,
which are directly influenced by air temperature (Figure 2),
confirming a surface or a shallow origin.

During the past decade, geochemistry studies have been
conducted of the Himalaya water flows (e.g., Jeelani et al., 2011;
Ghezzi et al., 2017), but no study has been undertaken in the
context of very high altitudes covering dynamically an entire year.
This issue underlines the exploratory character of the current

study, which, however, does not aim to address all the questions
raised in this exceptional framework.

Numerous isotopic precipitation and river studies have been
carried out in Himalaya at the local or regional scale in the
past few years (Garzione et al., 2000; Wen et al., 2012; Jeelani
et al., 2013, 2017; Balestrini et al., 2014, 2016; He and Richards,
2016; Ren et al., 2017; Florea et al., 2017; Jeelani and Deshpande,
2017; Guo et al., 2017; Li and Garzione, 2017; Kumar et al.,
2018; Verma et al., 2018; Shen and Poulsen, 2019; Singh et al.,
2019). The main aim of these studies was to link the isotopic
variability recorded in precipitation to climate parameters and air
mass circulation and the transfer of this isotopic signal through
the global and complex altitudinal hydrosystem from glaciers to
tropical valleys. Regional precipitation studies of the southern
external border of Himalaya (Jeelani and Deshpande, 2017) from
Kashmir (western Himalaya) to Assam (eastern Himalaya), or
of the whole Tibetan Plateau (Li and Garzione, 2017), showed
that the isotopic variation observed in precipitation across the
Himalayas conforms to the regional repartition of the two main
moisture sources: the westerly fluxes and Asian monsoon. Local
studies of precipitation isotopes were carried out in central Nepal,
Kathmandu, and the north of Kathmandu (Wen et al., 2012)
as well as in the Khumbu Valley at the Pyramid Laboratory
(Balestrini et al., 2014, 2016).

The current article aims to present, analyze and discuss,
on the one hand, the geochemical behavior of the water
flows used by the inhabitants of Pangboche for their activities,
during the year 2011, exploring the conductivity, pH, major
ions, and trace elements dissolved in the water; and, on the
other hand, the water-stable isotopes in the precipitation and
river flows of the Khumbu area, during the period from
November 2014 to May 2017. The article aims to link these
data to the water origins and seasonal variability in the context
of global change.

STUDY AREA AND METHODS

Study Area
The climate of the study area is dominated from June to
September by monsoon dynamics (Wang, 2006; Bookhagen
and Burbank, 2010; Immerzeel et al., 2010; Turner and
Annamalai, 2012), but winter and pre-monsoon precipitations
can occur from December to April due to the Western
Disturbances, which are part of the westerlies entry, originating
from the Mediterranean region (Pisharoty and Desai, 1956;
Madhura et al., 2015).

Above 5000 m in general, and lower during the winter, satellite
imagery shows that the snow cover can be wide; however, the
difficulty of monitoring snowfall in high mountains (Sevruk,
1989; Tahir et al., 2011) does not allow us to quantify precisely
the volume of snowfall in the study area. Recent studies have
explored the spatial distribution of precipitation in this area
(Savéan et al., 2015; Gonga-Saholiariliva et al., 2016; Eeckman
et al., 2017; Mimeau et al., 2019). They roughly show, beside a
large local heterogeneity mainly due to the steep relief, the valley
orientation and the slope aspect, a positive gradient with the
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FIGURE 1 | Bottom left: location of the Dudh Koshi River basin (red line). Left: Dudh Koshi River basin and sub-basins, southern Mount Everest. Right: details of the
Upper Khumbu and Imja area. The red dots represent the sampling points. The labels refer to Table 1. Sources: for relief, digital elevation model based on Spot-HRS
images with a 40-m resolution (Gardelle et al., 2013); for glacier extension, Randolf Glacier Inventory (RGI Consortium 2017).

altitude until a peak of annual precipitation between 2500 and
3200 m and a negative one above.

The geology of the southern area of Mount Everest has
been detailed by Bortolami (1998) and Searle et al. (2003).
It is dominated by Precambrian-Early Paleozoic sillimanite
gneisses in the high faces, which alternate in some places with
intrusive Miocene leucogranites. The highest zone (Everest,
Lhotse), above 6500 m, presents Ordovician shale series and
limestone layers. Except for those slopes covered by glaciers
or rock glaciers, the valley slopes and valley bottoms are
mainly composed of fluvio-glacial deposits and debris, with the
presence of moraines of different levels and ages. According
to Bortolami (1998), the composition of the rocks leads to a
low weathering and a low impact on the chemical composition
of the flows. The same author notes that the aquifers located
in the debris material have a high porosity. Their thicknesses
are largely unknown. By contrast, the fissured rocks, which
constitute the bed rock, are generally impermeable. A few
other studies are devoted to groundwater storage in the
Himalayas. Although their findings are not very helpful with
regard to the geological characteristics (Dongol et al., 2005;
Jeelani, 2008) or the scale of the approach used (Andermann
et al., 2012), these studies highlight a notable contribution
of snow and glacier melt to groundwater. Andermann et al.
(2012) assess the storing capacity of the whole Dudh Koshi
basin (3700 km2) to be approximately 300 mm, i.e., less than
20% of the average annual discharge, which represents a low

impact of the groundwater in our study area, considering
that most of the reservoirs are very likely concentrated in
the bottom material of the middle and low elevations. Other
authors, including Nepal et al. (2014), Savéan et al. (2015), and
Eeckman et al. (2019), consider in their modeling approaches
that the volume stored over a long period in groundwater
reservoirs is negligible.

Water Resources for Local Population
The Khumbu zone (Figure 1) encompasses an area of
approximately 1100 km2 along the border between Nepal and
the Tibet Autonomous Region of China. It is included in the
Nepalese administrative division of the Solu-Khumbu district.
The area is divided into three major distinct valleys—Imja
Valley, Dudh Koshi Valley, and Bhote Khosi Valley—forming
a U-shape, a testimonial to the glacial erosion and draining
of the main rivers in the region. The Dudh Koshi first meets
the Imja Khola on the eastern side of the region, and it
then meets the Bhote Koshi before running out of Khumbu
toward the south into a deep gorge. Khumbu settlements
span elevations from 2805 m (Jorsalle) to 5170 m (Gorak
Shep). The villages are located extensively on the rare alluvial
terraces, hanging valleys, and amphitheater slumps and comprise
mostly south- and north-facing slopes. Khumbu corresponds
to the former Village Development Committees (VDCs, before
administrative restructuring in 2017) of Khumjung and Namche
hosting approximately 3500 residents belonging mostly to the
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FIGURE 2 | Year 2011. Up: electrical conductivity (EC), pH and water
temperature (T) at the five sampling points around Pangboche (∼4000 m).
Down: daily temperature (T) and precipitation (PR) at Pangboche weather
station. The monsoon season (JJAS) is highlighted in green.

Sherpa ethnic group with a growing number of non-Sherpa
residents (Rais, Tamangs, Magar, and Bahun-Chhetri). With
the establishment of the Sagarmatha National Park (SNP)
in 1976 and its designation as a UNESCO World Heritage
Site in 1979, the economy of the region has shifted to a
more tourism-centered form (Spoon, 2011). The number of
visitors to the SNP increased to 45,000 in 2017 (Jacquemet,
2018) leading to an important trekking and expedition
tourism hub, including the popular trekking route to Mount
Everest Base Camp.

All these territorial and economic mutations have led to
profound changes in water resources, increasing needs previously
limited to domestic (drinking water, cooking, personal hygiene),
agricultural (irrigation of barley), and religious purposes (water-
driven prayer wheels, water spirit shrine) (Aubriot et al., 2019).
Water is taken directly from springs or small streams flowing
through the settlements or channeled by pipes to houses, since
large rivers are not the primary source of water for villagers
(McDowell et al., 2012). In Pangboche village, changes appeared
some 20 years ago with the installation of running water
supplying guest houses, a bottled-water manufacturing plant
in 2003, and a micro-hydroelectric plant in 2004 (Puschiasis,
2015). Water has become a “commodity” (André-Lamat, 2017)
with a proliferation of uses for tourism (shower, flushing toilets,
bottled water) and for electrification. Khumbu inhabitants have
become highly dependent on reliable water supply systems
to respond to the new types of usages, which is key to
local development. Nevertheless, there is a lack of a proper
management system at a regional level to reduce the pressure on
water resources.

Methods of Sampling and Analysis
Labels A to Y refer to the sampling points shown in Figure 1
and described in Table 1. They are ordered by altitude
from bottom to top.

Conductivity, Major, and Trace Elements
Temperature, pH, and electrical conductivity (Tref = 25◦C)
were measured in the field, using a portable pH meter and
conductivity meter (WTW 3210i R©). Water samples (125 mL)
were filtered in the field with a PP syringe and Durapore R©

membrane (0.22 µm) and stored in acid-washed HDPE bottles.
Aliquots for major cations and trace elements were acidified with
ultrapure HNO3 (1h v/v). Samples were stored at 4◦C before
reaching Montpellier for analysis.

Five sites in the surroundings of Pangboche village were
selected for the water sampling (G, H, I, J, L):

• The G point on the Imja River represents the reference
site for the main river after the confluence of the Khumbu
branch and the Imja branch. These catchments include,
on the one hand, the large glaciers of the south side
of the Everest Range and, on the other hand, the Imja
moraine lake, which concentrates the melting runoff from
the majority of the glaciers of the upper Imja Valley.
• The Tauche point (J) on the east stream of the southern

slope of the Tauche Peak (6542 m). This watercourse
collects the melt flow from the very small glacier located on
the peak summit.
• The Teouma (L) and Kisang (I) points on the central stream

flow do not receive water of glacial origin. Because this
watercourse flows through the village of Pangboche, the first
point was chosen upstream and the second downstream
from the village in order to analyze how the water quality
of the stream is influenced by the village.
• The Chomar (H) source on the west side of Pangboche

was also sampled, because its water was drawn and bottled
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TABLE 1 | Main characteristics of the sampling points (ordered by altitude).

Name (+) Label (++) Coordinates Data type (*) Sample (**) Glaciers (***)

Longitude Latitude Altitude (m)

Kharikhola A 86◦43′ ′16′′ 27◦36′22′′ 1981 R IS N

Phakding B 86◦42′47′′ 27◦44′53′′ 2620 R IS Y

Jorsalle C 86◦43′19′′ 27◦46′48′′ 2850 R IS Y

Pangom river D 86◦44′38′′ 27◦35′24′′ 2880 R IS N

Pangom village E 86◦44′35′′ 27◦35′17′′ 2890 P IS –

Phuki Tenga F 86◦44′35′′ 27◦49′37′′ 3200 R IS Y

Pangboche-Imja G 86◦47′53′′ 27◦51′40′′ 3917 R MT IS Y

Pangboche-Chomar H 86◦46′59′′ 27◦51′14′′ 3930 R & bottle MT N

Pangboche-Kisang I 86◦47′31′′ 27◦51′18′′ 3971 R MT N

Pangboche-Tauche J 86◦47′35′′ 27◦51′32′′ 4005 R MT S

Shomare K 86◦48′40′′ 27◦52′5′′ 4021 R IS N

Pangboche-Teouma L 86◦47′17′′ 27◦51′32′′ 4148 R MT IS N

Imja confluence M 86◦49′08′′ 27◦52′52′′ 4172 R CP Y

Khumbu confluence N 86◦49′05′′ 27◦52′59′′ 4172 R CP Y

Pheriche hydro O 86◦49’08′′ 27◦53′13′′ 4216 R IS Y

Pheriche village P 86◦49′16′′ 27◦53′46′′ 4260 P R MT IS Y

Dingboche village Q 86◦50′06′′ 27◦53′35′′ 4370 R IS Y

Dingboche hydro R 86◦50′28′′ 27◦53′46′′ 4372 R IS Y

Tauche Kharka S 86◦47′17′′ 27◦52′23′′ 4405 R IS S

Phulung Kharka T 86◦49′01′′ 27◦54′36′′ 4504 R IS S

Tukla U 86◦48′54′′ 27◦55′59′′ 4700 R IS Y

Chukung V 86◦52′41′′ 27◦54′04′′ 4752 R CP Y

Lobuche river W 86◦48′50′′ 27◦57′25′′ 4840 R IS Y

Lobuche spring X 86◦48′43′′ 27◦57′18′′ 4935 R IS S

Imja Lake Y 86◦54′29′′ 27◦54′00′′ 5001 R MT Y

(+) Precipitation samples are in gray; the others are river samples. (++) See location in Figure 1. (*) Data type: P, precipitation; R, river. (**) Sample: MT,
major/trace + conductivity/pH; IS = isotopes; CP = only conductivity/pH. (***) Glacier: N = no; Y = yes; S = not significant.

in 2011 by a small company to be sold to tourists under
the brand name of “Namaste Sabina Tabuche Beiu.” After
2013, the company no longer produced bottled water for
unknown reasons.

The water flows were sampled 18 times between February
and November 2011 following the complete annual cycle
(Figure 2). A total of 12 samplings benefited from a
complete protocol (64 samples) and 6 more samplings,
in winter and autumn, from measurements of electrical
conductivity and pH only.

Two complementary water samples were collected in June
2012 in Imja Lake (Y) and a rainfall reference was taken in the
settlement of Pheriche (P). In addition, several measurements of
electrical conductivity were carried out in different watercourses
within the Imja River basin.

Chemical analyses were performed at the HydroSciences
water chemistry laboratory in Montpellier (France). Total
alkalinity was measured by acid titration with HCl 0.01 N
(Gran method). Major ions (Cl−, NO3

−, SO4
2−, Ca2+,

Mg2+, Na+, and K+) were analyzed by ionic chromatography
(Dionex ICS 1000). The precision error was <±5%. Trace
elements (Li, B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
As, Rb, Sr, Mo, Cd, Cs, Ba, Pb, and U) were analyzed with

Q-ICPMS (X series2 Thermo Scientific R©) on the AETE
(Analyse des Elements en Trace dans l’Environnement) technical
platform of Montpellier University. The precision error
was <±8%.

Stable Isotopes
Six sampling campaigns in rivers located between 1985 m
(Kharikola, label A) and 5000 m (foot of glaciers, X, Y) were
carried out (November to December 2014, November 2015,
November 2016, March 2015, May 2016, May 2017).

In addition, during the study interval from November
2014 to December 2016, monthly rainfall was collected
at Pangom (2890 m, E) using a homemade rain gage
with an 80-cm2 cross-section in a 5-L plastic tank
inside an isotherm box, which was linked to the gage
with a flexible pipe and hermetically sealed to avoid
direct evaporation.

The rainfall and river samples were stored in amber glass
bottles (25 mL) with conical plugs and transported in shaded
conditions to the laboratory in Montpellier.

Water-stable isotopes were measured with an Isoprime R©

mass spectrometer on the LAMA platform of HydroSciences
Montpellier (LAboratoire Mutualisé d’Analyse des isotopes stables
de l’eau). The oxygen isotopic composition was measured after
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equilibration of 200 µL of water with CO2 via the dual-inlet
technique, with an overall precision of ±0.06h. Deuterium
was measured by continuous-flow using a Eurovector Pyr-
OH R© elemental analyzer converting 0.5-µL injections of water
to H2 on Cr powder at 1070◦C, with an overall precision
of±0.6h.

Water isotopic compositions are reported as δ18O and δ2H on
the V-SMOW scale.

RESULTS

Electrical Conductivity and pH
Figure 2 shows the dynamics of the electrical conductivity and
pH during the year 2011 at the five measurement points (G, H, I,
J, L) of the Pangboche area.

Regarding electrical conductivity, the absolute values are
below 60 µS/cm. These very low values indicate the slight
level of mineralization of the flows. Specifically, the five
sites present two main behaviors: (i) Kisang and Teouma
located on the same watercourse have an almost identical
and constant extremely low conductivity during the year
(approximately 20 µS/cm), (ii) for Tauche and Imja the
values are 2–3 times higher, with a slight decrease during
and shortly after the monsoon (July–October), meaning
that the increasing runoff generates a dilution effect. The
Chomar site fits between the two, with a decrease during the
monsoon season.

The pH varies between 7 and 8, except for Pangboche-
Chomar bottled drinking water (8.6) and for the rain sample
(6.8). The different sites present a short-term variability from
date to date. However, two main behaviors can be observed:
(i) for the slope water courses (Tauche, Kisang, Teouma, and
Chomar), the amplitude of the short-term variability reaches 0.5
and a relative dilution effect appears during the monsoon; (ii)
the valley river (Imja) has an almost stable pH value (≈7.8)
during the course of the year, but higher than the pH of the
slope water courses.

Major Ions
The following ranges in concentration were shown by the
major cations and anions: Ca2+ (1.1–11.1 mg/L), Mg2+ (0.1–
0.7 mg/L), Na+ (0.4–1.8 mg/L), K+ (0.2–1.3 mg/L), HCO3

−

(5.1–32.3 mg/L), SO4
2− (0.4–14.5 mg/L), NO3

− (0.1–1.5 mg/L),
Cl− (0.1–0.6 mg/L). Silica ranges from 1.3 to 20.8 mg/L. Average
concentrations of major ions are reported in Table 2. The Piper
diagram for major cations and anions (Figure 3 and Table 2)
shows variations in the chemical composition of the surface
waters, which is dominated by Ca2+ and HCO3

−. The waters
are mainly of Ca+-Mg+-HCO3

− type. Waters influenced by
glacier melt (Tauche and Imja sites) exhibit an enrichment in
SO4

2−, particularly for the Tauche site during the monsoon
season. Ca2+ is the dominant cation contributing more than
70% to the cation budget, followed by Na+ (<20%) and Mg2+

(<10%). In Kisang waters and to a less extent in Teouma
waters, before the monsoon season, Na+ is the dominant
cation. Cl− and NO3

− concentrations are very low, <0.6 mg/L TA
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FIGURE 3 | Piper diagram of the major ions in the collected samples.

and <1.5 mg/L, respectively. The HCO3
− contribution to

the anion budget ranges between 60 and 90%, except for
Tauche water during the monsoon season, which evolves to
a Ca+-Mg+-SO4

2− type. The origin of sulfates is found in
sulfide oxidation via glacier runoff, as suggested by Hodson
et al. (2002), because no anhydrite or gypsum have been
identified in the region. The plot of Ca+ + Mg+ + Na+ versus
HCO3

− + SO4
2− from all the waters shows that most of the

samples lie close to the 1:1 line, indicating the dissolution of
calcite, dolomite, silicates, and sulfides (Figure 4) as suggested by
Crespo et al. (2017).

For all major elements, including SiO2, the temporal evolution
of the concentrations displays a dilution effect during the
monsoon season, except for the Imja site where an increase
in the concentration of all the major elements occurs during
the same season, especially in August 2011, which corresponds
to the maximum glacier melt. This enrichment demonstrates
that the glaciated catchment undergoes more intense chemical
weathering taking place beneath the glacier than catchments
that do not have a glacier because the CO2 dissolved in the
proglacial zone with the aerated flow conditions characteristic of
the meltwater environments may promote chemical weathering
by maintaining the acid potential of the water (Reynolds and
Johnson, 1972) in Singh and Hasnain (1998).
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FIGURE 4 | Ca + Mg + Na versus HCO3 + SO4 (meq/L).

Trace Elements
Average concentrations for measured trace elements are
presented in Table 3. Dissolved trace elements such as Li, B,
Ni, Zn, Cu, Rb, Sr, Ba, and U show a dilution effect during the
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monsoon season at the Teouma, Kisang, Tauche, and Chomar
sites whereas the Imja site in the same season exhibits, except for
boron, a high concentration increase, by a factor of 10–100, as
shown, for example, for rubidium (Figure 5). The origin of this
increase can be found in the glacier melt enriched in subglacial
material leached by the heavy rain during the monsoon. This
phenomenon underlines the integrating power of the Imja
Khola River. On the other hand, Al, Ti, Fe, and Mn to a lesser
extent increase in all the sites during the monsoon season. In
comparison with the Upper Mustang rivers in the western region
of Nepal Himalaya (Ghezzi et al., 2017), the concentrations are
elevated, from 5 to 6600 µg/L for Al, from 0.5 to 485 µg/L for
Ti, from 5 to 7130 µg/L for Fe, and from 2 to 200 µg/L for Mn.
These elements are mobilized by the surface runoff during the
monsoon season and their common origin is to be found in the
weathered bedrock.

In regards of the WHO drinking water guidelines, no major
or trace elements exceed the recommended values, even if the
concentrations for some major or trace elements of the Imja
River are elevated.

Stable Isotopes
Three complete years (2014–2016) of meteorological data (P,
T) are available at the Pangom station (2885 m, label D)
(Chevallier et al., 2017), and a monthly sampling of rainfall for
water isotope analysis was carried out between November 2014
and December 2016. The comparison of all the results is only
qualitative owing to the small temporal record at the Pangom
weather station.

The mean annual temperature measured at Pangom in 2015
was 6.7◦C (7.6◦C in 2014 and 8.0◦C in 2016) with lower
temperatures in the dry season (minimum in December:−1.1◦C)
and higher temperatures during the monsoon season (Figure 6)
(maximum in June: 12◦C). In the higher part of the Khumbu
valley at the Pyramid Laboratory station, monthly temperatures
follow the same pattern ranging between −12 and 4◦C for the
2012–2014 interval (Balestrini et al., 2016).

Precipitations
Annual rainfall in Pangom was 3046 mm in 2015 (3683 mm
in 2014 and 3947 mm in 2016). The South Asia monsoon
(JJAS) accounts for more than 80% of the precipitation amount
(Figure 6) (84.7–86.1% from 2014 to 2016) with no specific
rainier month in this season (JAS between 888 and 1075 mm).

During the sampling interval (November 2014 to December
2016, with a gap in May 2016), a large isotopic variation is
observed (Figure 6): 3.25 to −15.26h V-SMOW for δ18O
and 43.3 to −109.5h V-SMOW for δ2H. Figure 6 shows the
isotopic composition of all precipitations giving a local water line
following the equation:

δ2H = 8.57 δ18O+ 20.5 (R2
= 0.997; n = 25)

The slope is slightly higher than the slope of the global meteoric
water line (GMWL, δ2H = 8.13 δ18O + 10.13) defined by
Rozanski et al. (1993) and also shows an intercept d = 20.5 higher,
close to the meteoric line of the precipitation in the southern

Tibetan plateau (Yao et al., 2013):

δ2H = 8.89 δ18O+ 23.0 (R2
= 0.980; n = 374).

At the Pyramid Laboratory station at the weekly scale between
June 2012 and December 2013, Balestrini et al. (2016) found:

δ2H = 8.17 δ18O + 16.6

In Pangom, if one distinguishes between the seasons, the
equations are:

ONDJFMAM (extra-monsoon)

δ2H = 8.46 δ 18 O + 20.6 (R2
= 0.997; n = 17)

JJAS (monsoon),

δ2H = 8.52 δ18O + 18.4 (R2
= 0.999; n = 8).

The more enriched monthly values above−1h in δ18O (n = 5)
do not show an evaporation mark; a high deuterium excess is
observed (between 17.4 and 21.6h) for low to medium rainfall
amount (21 to 142 mm). These values belong to the extra-
monsoon season and are linked to notable continental recycling
mainly from non-fractional processes such as transpiration or
soil evaporation. In the regional study by Jeelani and Deshpande
(2017), stations in Nepal and Assam also showed a high d-excess
(>20h) associated with a high δ18O >−1h value, suggesting a
dominant influence of transpiration, increasing the δ18O of vapor
over the forest floor (Lai and Ehleringer, 2010).

The isotopic values recorded during the 2 years, including
monsoon and extra-monsoon seasons, display different patterns,
globally more depleted in the monsoon season (2015, −10.05h;
2016, −8.48h, weighted mean for δ18O) and more enriched
in the extra-monsoon season (2015, −4.48h; 2016, −0.81h,
weighted mean for δ18O). The much more enriched values
in the extra-monsoon season in 2016 could be an effect on
isotope composition and deuterium excess in the beginning of
the monsoon season with a possibly late isotope re-equilibration
of the air mass, perhaps due to higher mixing with the recycled
continental vapor. Indeed, in June and July 2016, isotope values
were more enriched than in June and July 2015, also with a
greater d-excess. Then, it is only in August 2016, in the middle
of the monsoon season, that isotope values and d-excess seem
to be consistent with isotope values in the monsoon season, and
this continues until the beginning of the extra-monsoon season
(October 2016) with a dephasing of 2 months.

The relationship between isotope values and temperature
(temperature effect) shows an inverse correlation with a low
coefficient (R = −0.336; n = 25) as well as with rainfall (amount
effect) with R = −0.392, which are not significant using a
t-distribution with n-2 degrees of freedom at a significance level
a = 0.05; the critical values associated with df = 23 are ±0.396
(Bravais-Pearson table). The monsoon season corresponds to
a more depleted rainfall (Dansgaard, 1964). In fact, the main
effect on isotope variability in our site is the origin of air
masses, as shown in previous regional studies cited in this
article or in the local Khumbu Valley at the Pyramid Laboratory
(Balestrini et al., 2016).
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The year 2015, which is complete, gives a weighted
annual value [6(Pi δi)/6Pi] of −9.24h V-SMOW for δ18O
and −60.1h V-SMOW for δ2H (2016: 95.9h of rainfall,
−8.20h and −50.6h), which is in good agreement with the
altitude effect in the region, regarding the results obtained in
Kathmandu (1320 m, −8.7h) and Nyalang (3811 m, −11.3h)
(Wen et al., 2012; Balestrini et al., 2016); at the Pyramid
Laboratory station (5050 m), the isotope content during the
monsoon season in 2012 and 2013 does not show a large
variation (−17.74 to −17.81h in δ18O). The gradient is
−0.23h/100 m, in good agreement with the range of the
isotope altitudinal gradient in Himalaya (−0.15, −0.33h)
(Wen et al., 2012).

The d-excess is a good indicator for evaluating the
contribution of different water vapor sources (Clark and Fritz,
1997). In Himalaya, low d-excess values characterize moisture
coming from the Indian Ocean and the Bay of Bengal, and high
values continental moisture carried by the Western Disturbance
(Jeelani and Deshpande, 2017). At Pangom in 2015 and 2016,
d-excess values during the monsoon season were between 11.3
and 18.7h (n = 8, mean = 13.6h), while in the two extra-
monsoon seasons (2015 and 2016) d-excess values were between
14.3 and 23.9h (n = 14, mean = 19.1h).

At the Pyramid Laboratory, we have the same pattern for
isotope content and d-excess during the monsoon (depleted
values up to −30h for δ18O and d-excess <15h) and the
extra-monsoon seasons (more enriched values and high d-excess
until 26h). The difference observed with the local meteoric
line (LML) in d-excess is due to the different repartition of
measurements in the monsoon season (n = 38) and the extra-
monsoon season (n = 8).

We note in the total observed interval a good correlation
between oxygen-18 and d-excess values (R2 = 0.62; n = 25), which
reaches R2 = 0.72 if the more enriched point is removed (April
2016); this may indicate a slight alteration in isotope air mass
signal by the evaporation process.

To conclude, in Pangom as in other Himalayan sites,
the change in air circulation patterns, marine vapor from
the Indian Ocean and the Bay of Bengal, on the one
hand, and continental vapor from the Western Disturbances,
on the other, modify the isotope composition and d-excess
of precipitation.

Rivers
For the river isotope sampling, in the general spatial pattern,
depleted values are observed in the headwaters of the streams
and enriched values at lower elevations of the catchments.
The water isotope variability of stream water shows a lower
variability with respect to local precipitation at Pangom, in
spite of altitudinal sampling (1981–4935 m) and six campaigns
between November 2014 and May 2017 (local sampling between
one and six campaigns) that ranged from −10.10 to −18.39h
for δ18O and from −64.5 to −135.8h for δ2H (Figure 7 and
Table 4). The sampling was carried out at the beginning of the
extra-monsoon season, with possibly the influence of the end
of the monsoon season, and at the end of the extra-monsoon
season. However, the variability registered is mainly very low,
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lower than 0.6h for δ18O for 89% of local stations. Two stations
with at least five samplings (D – Pangom and J – Tauche) show
a large difference; both stations in March 2015 have a high
depleted value (−16.65 and −16.53h in δ18O, respectively); not
considering this result, Pangom has a mean value of −10.47h
with a range interval of 0.45 (n = 4) and Tauche has a mean
value of −15.31h with a range interval of 1.22 (n = 5). Both
sampling points are located in non-glaciated catchment for
Pangom and small glaciated catchment (less than 1% of the basin
area) for Tauche. The river in this extra-monsoon season with
few precipitations (at Pangom in 2015, precipitation amounts
are 19 mm in January, 19 mm in February and 66 mm in
March) is supplied mainly by superficial aquifer whose main
characteristic is an isotopic composition relatively constant over
the year at a local altitudinal point (Jeelani et al., 2018). The main
hypothesis to explain this important change is the presence of
snow cover at higher altitude with more depleted isotopic content
during this season, which was melting and supplied by direct
runoff from the river.

Although there were no measurements during the monsoon
season in this study, the works of Balestrini et al. (2014) in the
high part of the Khumbu Valley (>4200 m) have shown a higher
variability (2h) close to glacier and morainic lake inflow and
low variability (0.39h in δ18O) at Pheriche (label P in Figure 1)
during monthly sampling between July and October 2008. The
authors suggest that the area extension of the hydrological basin
buffers the isotopic signal. Another fact is the difficulty to link
directly the isotope content of monthly precipitation and isotopic
content of river water at the same time.

The isotopic composition of the stream water in the whole
study interval is close to the local precipitation regression line
(Figure 7) following the equation:

δ2H = 8.23 δ18O + 15.0 (R2
= 0.987; n = 58)

For each season the slope and the d-excess value can differ
greatly, but the number of samples is small (except for May 2017,
which is close to the global river equation) and these variations
are not representative of a particular process:

November 2014 δ2H = 8.11 δ18O + 4.1 (R2 = 0.972; n = 5)

March 2015 δ2H = 7.56 δ18O + 22.2 (R2 = 0.999; n = 9)

November 2015 δ2H = 6.71 δ18O + 9.3 (R2 = 0.934; n = 11)

May 2016 δ2H = 8.24 δ18O + 16.3 (R2 = 0.994; n = 10)

November 2016 δ2H = 8.08 δ18O + 13.3 (R2 = 0.992; n = 9)

May 2017 δ2H = 8.47 δ18O + 19.1 (R2 = 0.997; n = 17)

The mean d-excess value at each sampling point is between
5.6 and 14.4h. For the whole dataset, d-excess values vary
between 3.1 and 15.6h with 19% of samples lower than 10h,
which are altered by an evaporation process. The samples
with d-excess between 10 and 14h do not show a special
trend, likely linked to glacier melt and aquifer discharge where
the main accumulation and recharge are during monsoon
season when the d-excess value of the monthly precipitation is

between 11 and 14h. For d-excess values higher than 14h,
there is possibly a partial contribution of rainfall or melted
snow during the extra-monsoon season where d-excess values
of monthly precipitation can reach 24h during the 2014–
2016 interval.

Contrary to the results of another study in southern Himalaya
by Wen et al. (2012), who found a very good correlation between
the isotope content in the Boqu River and altitude (n = 39,
R2 = 0.90, September 2011) between 1845 and 5060 m, the
relationship between the altitude of the sampling sites and
isotope content is not well correlated (R2 = 0.399; n = 18)
very likely due to the heterogeneity of the catchments and
their glacier cover varying between 0 and 70%. The river
in catchments with glacier cover at all altitudes is mainly
controlled by the ice melting and by higher depleted value
with respect to no glacier catchments. This is the case of
the Phakding samples, located at a low altitude (2620 m),
which show an isotope content in δ18O of −15.89h, with
a 20.9% glacier cover (Everest catchment). By comparison,
the weighted mean annual rainfall in Pangom (2890 m)
yields −9.24h, in better accordance with the isotope values
collected in the Pangom River (watershed without glacier) and
reflecting the isotope composition of rainfall in the whole study
area (−11.71h).

By contrast, rivers in catchments without any or with small
glacier cover (Kharikola, Pangom, Tauche, Chomar, Teouma),
spring (Lobuche spring), or surface flow not connected to glacier
melt such as wet saturated pastures (kharka in Nepali; e.g.,
Phulung Kharka) show (Figure 8) a better correlation with
altitude (R2 = 0.809; n = 8). Focusing only on the river sampling
points that depending on glacier melt, the correlation with
altitude is significantly improved (R2 = 0.525; n = 10). Indirectly,
the lower the altitude, the more the glacier component in the river
decreases and the more the aquifer component increases.

The isotopic altitude gradient for river sampling in no or
in a lightly glaciated catchments shows for δ18O a value of
−0.20h/100m; this is in the range (−0.11/− 0.36h/100 m) of
other studies referenced by Wen et al. (2012) and Ren et al.
(2017) in Himalaya and is close to results found by Florea et al.
(2017), in the same zone, i.e., −0.28h/100 m. By comparison
with the study of Florea et al. (2017), in the Dudh Koshi River
with a sampling set located between Gorak Shek (5180 m),
upstream of Lobuche, and downstream of Phakding (2550 m)
in May 2011, values in δ18O are between −17.9 and −9.7h.
The relationship between δ18O and δ2H demonstrates a lower
slope and d-excess value than our global study, with the equation:

δ2H = 7.8 δ18O+ 4.0 (R2
= 0.94; n = 32).

Individually, tributary streams and direct sampling in the Dudh
Koshi River show a d-excess ranging between 4.4 and 12.7h
(72% of samples lower than 10h), which is globally lower
than the d-excess measured in this study. The slope is lower
than 8, but overall the low d-excess values imply that an
evaporation process during the study interval (Florea et al.,
2017) may be due to the sampling time (end of extra-monsoon
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FIGURE 5 | Temporal variation of Rb concentration. The monsoon season is highlighted in green.

FIGURE 6 | Monthly precipitation data in Pangom (E): precipitation (PR), air temperature (T), and stable isotopes (δ18O, δD, d-excess, h VSMOW). The monsoon
seasons (JJAS) are highlighted in green.
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FIGURE 7 | δ18O versus δ2H for precipitation samples in Pangom (monsoon and extra-monsoon seasons in red and green, respectively) and for river samples in
blue, compared with the Global Meteoric Water Line (GMWL).

season), with warmer conditions than during the sampling
times of this study.

DISCUSSION

Water Origins
Not surprisingly, the isotope properties of the precipitation
highlight the double climatic influence from the arrival of the
westerlies in winter and from the Asian monsoon in summer.

The isotope response to ground ice melt has been investigated
since the mid-1970s (Stuiver et al., 1976; Fujino and Kato,
1978) who relies on isotope fractionation that occurs during
phase changes (i.e., freezing, condensation, adsorption) and the
resulting difference in the slope of the regression of δD on
δ18O with a slope between 3 and 7 (Jouzel and Souchez, 1982;
Lacelle, 2011). Ala-aho et al. (2018) show in western Siberia the
possible discrimination of water origin between precipitation,
river, lakes and thawing permafrost. The slope of the regression
of δD on δ18O was lower than the precipitation (7.6) with
soils/permafrost (4.64) < lakes (5.54) < rivers (6.08) and a strong
variability of median isotope content in precipitation (−15.6h
in δ18O), rivers (−15.3h), soils/permafrost (−13.0h) and lakes
(−11.1h) > rivers (−15.1h). In our study case the river points
do not show an obvious influence of thawing permafrost during
the sampling period which correspond before or after monsoon
when temperatures are lower, may-be during monsoon period of
higher temperature, an important thawing permafrost could be
detected in some rivers.

Locally, the results of the current study confirm that few
chemical patterns can be used to distinguish the waterflow
origins during the different seasons. Rb, as Li, Cu, Sr, Ba, and
SiO2, originating from the minerals of the bedrock, characterizes
substantially the water originating from glacier melt, as shown

in Figure 5, especially during the monsoon season. Nevertheless,
the isotopic results appear to be less useful for that task, even
if differences are observed: the isotopic climate signal in the
water courses is very likely mixed with the signal emitted by
the storage in groundwater temporary reservoirs, which limits
a clear interpretation. Factually, it depends on the sampling
location and of the ratio of glacierized area. In the high
altitudes (>4000 m) the river reflects the isotope content mainly
of the ice and snow melt because the climatic conditions
do not allow an important weathering of the rocks and a
strong development of an aquifer structure; the consequence
is a reduced groundwater capacity, and a fast groundwater
circulation reflecting isotope content of ice and snow. At lower
altitude, the weathering is higher and the aquifer can develop
itself with a higher storage capacity involving local recharge
by rainfall; the isotope content is enriched with respect to
ice and snow melt (altitude effect): the lower the altitude, the
richer is the isotope content of total flow. It is a consequence
of the higher base flow in the dry season and of the higher
contribution of the surface runoff in the monsoon season, this
last being enriched in isotope with respect to ice and snow
melt more depleted.

However, the meltwater marking (glacier as snow cover melt)
by the isotopes can be more visible than by the chemical signature
in downstream sampling sites, because it is less dissolved, with
the inconvenience of a smoothed seasonal effect. The result at
the Phakding (20.9% glacier covered) and Pangom (no glacier)
stations, detailed in the previous section, is, therefore, significant.

The pH remains in a relatively narrow range in the different
sampling points and does not seem useful for characterizing the
water paths or the seasons, while electrical conductivity shows
slightly higher values for flows originating from glaciers and
lower values in the monsoon runoffs of streams not fed by glacier
melt (Figure 2).
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TABLE 4 | Main characteristics of the stable isotope river samples.

Name Label (+) Altitude (m) Sampling seasons (*) Isotope data

N14 MH15 N15 MY16 N16 MY17 Mean 18O Mean D Maximum difference 18O maximum difference D Mean d-excess

Kharikhola A 1981 X X X −10,16 −66,9 0,40 5,4 14,4

Phakding B 2620 X X X X X −15.89 −114.87 0.47 2.9 12.2

Jorsalle C 2850 X X 2 X X −16.05 −116.3 0.34 2.1 12.1

Pangom river D 2880 X X X X −11.71 −80.5 5.98 53.6 13.2

Phunki Tenga F 3200 X X X X X 2 −16.54 −120.5 0.20 0.1 11.8

Pangboche-Imja G 3917 X X X X −16.67 −120.7 0.22 2.5 12.6

Pangboche-Tauche J 4005 X X X X X X −15.51 −113.7 1.65 10.9 10.3

Shomare K 4021 X X −14.08 −107.2 0.53 0.7 5.6

Pangboche-Teouma L 4148 X X X −14.6 −107.8 1.70 10.8 8.9

Pheriche hydro O 4216 X X X X −16.7 −121.7 0.39 2.29 11.9

Pheriche village P 4260 X −16.55 −122.8 9.6

Dingboche village Q 4370 X X X X −16.83 −121.7 0.57 5.2 12.9

Dingboche hydro R 4372 X 2 −17.63 −132.2 0.03 0.7 8.8

Tauche Kharka S 4405 X −14.51 −104.7 11.4

Phulung Kharka T 4504 X 2 −17.13 −127.9 0.10 0.47 9.2

Tukla U 4700 X X −18.21 −133.93 0.35 3.84 11.8

Lobuche river W 4840 X 2 −16.71 −123.03 0.21 0.1 10.7

Lobuche spring X 4935 X −15.06 −109.9 10.5

(+) See location in Figure 1. (*) Axx: A = M (monsoon) or (extra-monsoon); xx is the year (e.g., 14 = 2014). N14, November 2014; MH15, March 2015; N15, November 2015; My16, May 2016, N16, November
2016; My17, May 2017.
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FIGURE 8 | Isotope altitude gradient from sampling in no glacier watershed (isotope value determined by local rainfall and aquifer isotope value), and sampling in
partial glacier watershed (isotope value determined by mixing between melt from high altitude and local rainfall and aquifer isotope value).

TABLE 5 | Additional observations of electrical conductivity, performed on June
19, 21, and 22, 2012.

Name Label (+) Electrical conductivity (µS/cm)

Pangboche-Imja G 53.0

Khumbu confluence N 67.6

Pheriche hydro O 62,6

Imja confluence M 35.4

Dingboche hydro R 32.9

Chukung V 41.5

Imja Lake (*) Y 29.7

30.7

29.6

(+) See location in Figure 1. (*) Three different sampling points in the outlet narrows.

In addition to the previous considerations, complementary
observations on electrical conductivity were made in the
main rivers of this area and in the Imja Lake during a 3-
day interval in the second half of June 2012, in the early
monsoon season. They are summarized in Table 5, which shows
that the flows arising from the Imja Lake are approximately
twofold less mineralized than those of the Khumbu upper
valley. Both basins have similar areas and ratios of glaciated
surfaces. Because the flows are from the same geological and
glaciological origin, the conductivity difference observed can
only be explained by the presence of the lake. The higher
value observed in the lateral Imja River, which does not flow
from the lake, confirms this hypothesis. This phenomenon
could be attributed to the sedimentation only within the lake
of the solid load generated by the glacier abrasion, due to

FIGURE 9 | Confluence of the Khumbu River (down left) and the Imja River
branch (upper right). The image has been saturated for a better depiction of
the difference in turbidity between both branches. Photo by P. Chevallier, June
19, 2012.

quieter hydraulic conditions. This hypothesis is reinforced by
the visual observations at the confluence between the Imja and
the Khumbu rivers, which showed that the turbulence of the
runoff was higher in the Khumbu branch than in the Imja
branch (Figure 9).

Water Uses
Before commenting, it must be stressed that in the framework
of this study no analysis was performed regarding the
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bacterial and organic quality of the water used by the
inhabitants and by the visitors. The reason is that, at
the time of the study, the only laboratory for analyzing
samples, poorly equipped and without dedicated manpower,
was located in the Khumjung Hospital, close to the village
of Namche Bazar, several hours’ walking distance from the
sampling points. This is unfortunate, because the sources of
bacterial and organic pollution are numerous, especially high-
altitude pastures, perfunctory toilet installations, uncontrolled
waste disposal, etc. (Manfredi et al., 2010). These sources
of pollution are increasing with the rapid development
of tourist activities. Furthermore, inhabitants in Pangboche
expressed more concerns about the future of the water quality
than about water quantity since no proper sewage system
exists and they are witnessing a dissemination of plastic
waste in streams.

The quality of the natural water can be chemically considered
good with a very low mineralization degree. It appears that
the reticence to consider the water of the large valley river is
mainly justified by the danger in accessing and harvesting it
and also by its white color, due to the fine particles mentioned
in the previous section. This particular property gave its
name to the Dudh Koshi River, which means Milk River in
Nepali. Nevertheless, these statements cannot conclude on the
drinkability of the river water, since, as written above, organic
and microbiological analysis have not been done in the current
study framework.

The sampling points L (Pangboche-Teouma) and I
(Pangboche-Kisang) were chosen for their location, upstream
and downstream of the village, respectively, in order to
examine an eventual degradation due to the human activities.
No notable differences can be observed in terms of the
major ions (Table 2). Nevertheless, in Figure 4, the trace
elements collected throughout the year in Teouma (upstream)
appear grouped, when a dispersion is noted for those
collected downstream in Kisang. This dispersion is very
likely due to the limited pollution of the water used in the
village. Shortly after Kisang, the slope torrent is intercepted
by the large Dudh Koshi River, where the low chemical
pollution is dissolved.

Finally, the issue of bottled water consumption by tourists
is of some importance to the local economy, because it is a
non-negligible income for the communities (Puschiasis, 2015;
Jacquemet, 2018). Several small companies have been established
in the region to exploit this niche. One of them collected
water at the Pangboche-Chomar point (labeled H in Figure 1)
and, after a basic filtration process, bottled it. The bottled
water was also analyzed with the same procedure as the other
samples, except that it was transported to France after several
months in the original PET bottle and not in a standard
analysis recipient (see section “Conductivity, Major, and Trace
Elements”). As shown in Figure 4, no difference is observed
between the bottle and the other samples from the Chomar site.
In Table 2, a few differences are notable, especially regarding
pH, Cl−, NO3

−, and Na+. They can be explained by the very
long storage in a bad-quality recipient, but this is the reality
for most of the water bottles available in the study zone.

Nevertheless, in terms of chemical quality, the bottled water and
the river water are similar. It seems that for some reason the
water company did not pursue the exploitation of the Chomar
site, which no longer functioned after 2013. However, water
bottles from other places, particularly those collected in the
surroundings of Namche Bazar, were sold in the Pangboche
shops and lodges.

CONCLUSION

Between many studies, the recent IPCC special report on the
cryosphere future (Pörtner et al., 2019) confirms the loss of
cryospheric mass and the rapid permafrost thaw. It is also
verified in the Central Himalaya, which presents threats on
physical entities (water resources, flood, landslide, avalanche)
and on ecosystems (forest, tundra). The Khumbu inhabitants are
strongly preoccupied by this situation, which directly impacts
their livelihood. In addition, they face difficulties in terms of
inequalities in the social water management system, failing to
regulate proper access of water in villages (Puschiasis, 2015;
Faulon and Sacareau, 2020). More than climatic variations,
changes in water use over the past decades are due to a growing
need for tourism and for domestic purposes. Regarding the future
of accessible water resources, this does not seem to be threatened
in terms of quantity, even if seasonal pressures should lead to a
better water management, especially during the high season of
tourism activities (Aubriot et al., 2019). However, water quality
could evolve in a worrisome direction.

Apart from the bacteriological and organic issue, which is not
considered here, the points addressed could change as follows:

• The isotopic signature of precipitation and rivers is a good
indicator of climate change and flow paths. It should be
periodically analyzed. On the one hand, it could follow
changes observed in the seasonal precipitation patterns in
the study region (Shea et al., 2015). On the other hand, it
facilitates the recognition of the transitory storage of surface
water (glacier, snow cover, or underground reservoirs).
• In this study the chemical properties of the water used for

domestic activities do not seem to be hazardous to human
and animal health at present. However, with changes in
precipitation and river regimes, in land use and land cover
due to economic income, in cropping strategies, in the very
low level of waste and toilet water management, the current
fragile balance could be seriously jeopardized. The project
of road construction in the valley, for instance, validated
until Surkhe, close to Lukla (“The Rising Nepal: Everest
Region Closer with Bridge over Sunkoshi”. January 16,
2020. http://therisingnepal.org.np/news/1084. Accessed on
August 10, 2020), will lead to the importation of chemical
products and molecules that have been thus far unknown.
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Assessing Multi-Temporal
Snow-Volume Trends in High
Mountain Asia From 1987 to 2016
Using High-Resolution Passive
Microwave Data
Taylor Smith* and Bodo Bookhagen

Institute of Geosciences, Universität Potsdam, Potsdam, Germany

High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and
glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km ×
25 km) passive microwave assessments of trends in the volume and timing of snowfall,
snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities
in the response of snow to changes in regional climate. Here we use recently developed,
continuous, internally consistent, and high-resolution passive microwave data (3.125 km ×
3.125 km, 1987–2016) from the special sensor microwave imager instrument family to
refine and extend previous estimates of changes in the snow regime of HMA. We find an
overall decline in snow volume across HMA; however, there exist spatially contiguous
regions of increasing snow volume—particularly during the winter season in the Pamir,
Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume
trends through time reveal a large step change from negative trends during the period
1987–1997, to much more positive trends across large regions of HMA during the periods
1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-
water volume exhibit steeper trends than changes in low percentile snow-water volume,
which suggests a reduction in the frequency of high snow-water volumes in much of HMA.
Regions with positive snow-water storage trends generally correspond to regions of
positive glacier mass balances.

Keywords: snow, glacier, climate change, passive microwave, special sensor microwave imager, special sensor
microwave imager/sounder

1. INTRODUCTION

Rivers draining from High Mountain Asia (HMA) are relied upon by more than a billion people for
agriculture, hydropower, and household use (Immerzeel et al., 2010; Bolch et al., 2012; Vaughan
et al., 2013). In much of HMA, snow and glacier meltwaters provide key seasonal water buffers that
help maintain water availability year-round (Barnett et al., 2005; Bookhagen and Burbank, 2010;
Immerzeel et al., 2010; Berghuijs et al., 2014; Lutz et al., 2014; Huss et al., 2017). A large body of
research has identified significant changes in HMA’s cryosphere in recent decades, and in particular,
the retreat of many regional glaciers (e.g., Hewitt, 2005; Déry and Brown, 2007; Scherler et al., 2011;
Bolch et al., 2012; Gardelle et al., 2012; Kääb et al., 2012; Sorg et al., 2012; Kapnick et al., 2014; Wulf
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et al., 2016; Sakai and Fujita, 2017; Smith et al., 2017; Smith and
Bookhagen, 2018; Lievens et al., 2019; Rounce et al., 2019;
Treichler et al., 2019; Shean et al., 2020); however, there exist
large spatial heterogeneities in glacier trends (Hewitt, 2005;
Gardelle et al., 2012; Kääb et al., 2012; Yao et al., 2012; Sakai
and Fujita, 2017; Treichler et al., 2019). Previous work has also
identified spatial and seasonal patterns in snow depth and the
timing of snowmelt in HMA, which are mostly coherent with
changes in glacier mass balances (Smith et al., 2017; Smith and
Bookhagen, 2018; Wang et al., 2018; Treichler et al., 2019;
Notarnicola, 2020; Shean et al., 2020). In-depth analyses of
changes in HMA’s cryosphere are often limited by lack of in-
situ data and rugged terrain which hinders high-resolution data
collection (Bookhagen and Burbank, 2010); estimates of climate
trends from in-situ, satellite, and modeled data often result in
heterogeneous and complex spatial patterns (Smith and
Bookhagen, 2018).

Passive microwave data have long provided the best global
dataset for studying snow depth and snow-water storage (Chang
et al., 1982). However, they are limited by spatial resolution—data
are typically available as 0.25° × 0.25° (∼25 km × 25 km) grid cells
which hinders many analyses. Recently, the National Snow and
Ice Data Center has re-gridded and re-processed the special

sensor microwave imager (SSMI, 1987–2009) and special
sensor microwave imager/sounder (SSMI/S, 2003–2016) to a
3.125 km × 3.125 km (∼10 km2) spatial resolution (Brodzik
et al., 2016). In this study, we leverage this high-resolution,
cross-calibrated, multi-satellite dataset to consider 1.02 million
passive microwave grid cells over 29 complete October-
September water years across HMA (25–45°N, 60–110°E,
1987–2016; Figure 1). The enhanced resolution of this
dataset allows us to more closely examine spatio-temporal
trends in snow-water storage which have previously been
shown to have strong impacts on climate and glacier dynamics
in the region (Zhao and Moore, 2004; Fujita and Nuimura, 2011;
Kapnick et al., 2014; Smith and Bookhagen, 2018).

2. DATA AND METHODS

2.1. Study Area and Data Sources
Our study covers the region from 25 to 45°N and from 65 to
105°E, running across some of themost densely populated regions
of the world. Several key watersheds, such as the Indus, Syr Darya,
Amu Darya, Yangtze, Salween, and Ganges/Brahmaputra drain
from HMA (Figure 1A, blue outlines).

FIGURE 1 | Study area (A) topography (B) average annual Tropical Rainfall Measurement Mission precipitation sum [0.25°, 1998–2018 (Huffman et al., 2007)], (C)
average December-January-February (DJF) snow-covered area percentage from MODIS MOD10A [500 m, 2000–2019 (Hall and Riggs, 2016)], and (D) average DJF
snow-water equivalent (SWE) volume from 3.125 km resolution special sensor microwave imager and special sensor microwave imager/sounder (1987–2016). Deep
snow is generally confined to high-elevation regions. Blue outlines on (A) show major watersheds from HydroBASINS (Lehner and Grill, 2013), black lines show
international borders. Labeled boxes indicate sub-areas shown in Figures 4 and 8.
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Precipitation in HMA is driven by three main weather
systems—the Indian Summer Monsoon, the East Asian
Summer Monsoon, and the Winter Westerly Disturbances
(Bookhagen and Burbank, 2010; Cannon et al., 2016b). These
major weather systems interact to bring a heterogeneous mix of
snow and rain to different regions of HMA. Recent changes in the
timing and intensity of precipitation from these major weather
systems have been observed (e.g., Kitoh et al., 2013; Menon et al.,
2013; Vaughan et al., 2013; Cannon et al., 2015; Singh et al., 2014;
Cannon et al., 2016b; Malik et al., 2016; Norris et al., 2020), and
have been shown to impact the timing and volume of snow-water
storage and snowmelt (Kapnick et al., 2014; Smith et al., 2017;
Smith and Bookhagen, 2018).

2.2. Satellite Data Preparation
Snow has been extensively studied with passive microwave
data—albeit at low spatial resolutions (e.g., 0.25° × 0.25°)
(Chang et al., 1987; Kelly et al., 2003; Smith and Bookhagen,

2016; Smith and Bookhagen, 2018). Recent image processing
advances have allowed researchers to take advantage of the
elliptical nature of passive microwave footprints to re-process
the data onto a much finer spatial grid than previous approaches
had allowed. In this study, we use the EASE-grid 2.0 high-
resolution passive microwave product (1987–2016) (Early and
Long, 2001; Brodzik et al., 2012; Brodzik et al., 2016; Long and
Brodzik, 2016), which provides the 19 and 37 GHz passive
microwave frequencies at spatial resolutions of 6.25 and
3.125 km, respectively. This dataset has been carefully cross-
calibrated between the various SSMI and SSMI/S satellite
platforms to provide consistent and homogenized data
through the entire time series (Brodzik et al., 2016).

To produce consistent snow-water equivalent (SWE)
estimates over the entire study region, we further re-grid the
19 GHz passive microwave data to a 3.125 km spatial resolution.
We then remove areas near lakes and areas with shallow or
infrequent snow-cover, as these areas are not suitable for long-

FIGURE 2 | Sample location (approx. 72.06°E, 38.64°N) illustrating the (A) snow-water equivalent (SWE) time series, (B) seasonal signal to be removed, and (C) the
long-term de-seasoned data. Dashed lines on (C) show fitted lines using Sen’s slope estimator over the whole dataset (green), the first decade (black), the second
decade (purple), and the third decade (blue). There are strong oscillations in the fitted SWE trend based on the start and end dates chosen.
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term SWE trend analysis. Finally, following the methodology of
Smith and Bookhagen (2018), we use the computationally
efficient algorithm proposed by Chang et al. (1987) to convert
the passive microwave data to snow depth:

SD � 1.59 × (Tb19V − Tb36V) (1)

We then convert those snow depth estimates to SWE using a
constant snow density of 0.24 g/cm3, which has been shown to be
a reasonable global average (Sturm et al., 2010; Takala et al.,
2011). In short, the Chang et al. (1987) algorithm uses the
difference between the 19 and 37 GHz passive microwave
channels to estimate snow depth based on a comparison with
extensive snow survey data collected throughout the Canadian
and Russian Arctic (Chang et al., 1982; Chang et al., 1987). This
algorithm is widely used to estimate SWE over diverse terrain,
and has served as the basis for further updates to passive
microwave SWE retrieval algorithms which take advantage of
additional passive microwave channels not carried on SSMI/S to
better constrain the impacts of vegetation cover on SWE
estimates (Chang et al., 1991; Chang et al., 1996; Foster et al.,
2005; Derksen, 2008; Kelly, 2009; Langlois et al., 2011; Smith and
Bookhagen, 2016). In our low-vegetation study area, we rely on
the Chang et al. (1987) algorithm to take advantage of the full
SSMI/S time series.

2.3. Trend Analysis
For parts of the passive microwave time series, there are multiple
overlapping satellite overpasses. For consistency, we aggregate all
night-time overpasses (October 1987–September 2016) into an
average daily SWE estimate over HMA (number of grid cells �
1,027,847) using the median of all available night-time
measurements per day. As the various SSMI satellite platforms
have been carefully cross-calibrated (Brodzik et al., 2016), this step

serves simply to homogenize the temporal sampling of the dataset
over the entire time period. For computational efficiency, we then
further resample each individual daily SWE time series to a
temporal frequency of three days before computing trends; in
our tests this does not significantly modify computed long-term
trends.

Before trend analysis, we first remove the seasonal component
of each individual time series via Seasonal Trend Decomposition
by Loess (Cleveland et al., 1990), using a decomposition window
of 365 days (Figure 2). This method yields a seasonal signal, long-
term signal, and residual short-term signal from a given time
series by removing oscillations at the chosen decomposition time
frequency. We then test the resulting de-seasoned time series for
significant increasing or decreasing trends using the Mann-
Kendall test (Mann, 1945; Kendall, 1948). If there exists a
significant trend, we use Sen’s slope method to capture the
overall trend at that grid cell (Sen, 1968). We thus use a
conservative approach by testing for significance both with the
Mann-Kendall test and via Sen’s slope method. We only present
results from statistically significant (p < 0.05) trends in this study.

3. RESULTS

3.1. Long-Term Snow-Water Equivalent
Trends
Aggregate trends over the entirety of HMA are slightly negative
(sum: −55.5 mm/yr, average: −0.01%) over 3,618 km2× 103 km2,
including only trends with p < 0.05 and areas at least 500 m above
sea level). While the aggregate trends appear to be small, we
emphasize that trends are measured over 9.75 km2 grid cells, and
represent a snow-water storage loss of 5.41 m3 × 105 m3 of water
per year (Figure 3).

FIGURE 3 | Annual snow-water equivalent (SWE) trends (1987–2016) for High Mountain Asia (HMA). There is no spatially coherent SWE trend throughout HMA,
but rather several 100 km2 × 100 km2 or larger regions with similar characteristics (Fujita and Nuimura, 2011; Smith and Bookhagen, 2018; Wang et al., 2018). Large-
scale negative SWE trends are observed in the Tien Shan and Pamir Mountains in western HMA, and at the eastern margin of the Tibetan plateau. The Kunlun Shan,
Karakoram, and western Himalaya are characterized by positive SWEs trends.
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It is clear that SWE trends are spatially diverse—positive SWE
trends are concentrated in the Karakoram, Pamir, Kunlun Shan,
and the high Himalaya (Figures 3 and 4A–D). The most negative
trends are concentrated in the south-eastern Tibetan Plateau
(Figures 4E,F), at the headwaters of the Yangtze, Salween, and

Mekong rivers. There also exist many small-scale features; for
example, there are clear alternating positive-negative SWE trend
patterns along the front of the Himalaya. While there are multiple
possible causes for such small-scale variability, the extreme
topography and the microclimates it creates can drastically

FIGURE 4 | Regional zoom maps (see Figure 1 for locations). Average December-January-February (DJF) snow-water equivalent (SWE) (left column) and annual
SWE trends (1987–2016, right column) for the (A,B) Karakoram-Pamir, (C,D) Kunlun Shan, and (E,F) Eastern Tibetan regions. Regional SWE trends show clear
differences in magnitudes and directions: high SWE areas in the (A) Karakoram and Pamir Mountains have a wide range of trends, but overall more negative trends in
high SWE areas. The (B) Kunlun Shan has lower average SWE, but stronger positive trends. (E) Eastern Tibet has high SWE with overall strongly negative SWE
trends.
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alter snow-loading and snow-water storage on nearby
slopes—particularly when there are large differences in the sun
exposure and overall aspect of neighboring slopes (Supplemental
Figures S1–S5).

3.2. Seasonal Snow-Water Equivalent
Trends
When the SWE data are further divided into seasonal
components, clear differences in trend direction and
magnitude appear (Figure 5). Strong positive winter
(December-January-February) trends are visible in most of the
highest peaks of HMA—running along the Himalaya, into the
Pamir-Karakoram-Kunlun Shan region, as well as through
the Tien Shan. These positive trends are visible through the
spring (March-April-May) and fall (September-October-
November) seasons as well; the only region, however, to
maintain positive trends through the full year and in each
seasonal slice is the Karakoram-Kunlun Shan region, which
has been noted for glacier stability and growth in recent years
(Hewitt, 2005; Kääb et al., 2012; Kapnick et al., 2014; Treichler
et al., 2019; Shean et al., 2020). These positive trends are offset by
large negative SWE trends in lower-elevation regions of HMA
and along the eastern edge of the Tibetan Plateau which has seen

rapidly decreasing SWE—particularly in the December-January-
February and September-October-November periods (Figure 5).

3.3. Magnitude Variations in Snow-Water
Equivalent Trends
To further explore the dynamics of SWE trends in HMA, we have
performed a second set of regressions using monthly SWE
percentiles (Figure 6). In short, we calculate the 10th, 25th,
50th, 75th, and 90th percentile SWE value at each pixel over
each month using daily-averaged SWE data (October
1987–September 2016), remove the long-term monthly mean
value for each given month to reduce the impacts of seasonality,
and perform regressions through each SWE percentile separately.
This yields a set of SWE trend results based on only the lowest
(e.g., 10th percentile) or highest (e.g., 90th percentile) SWE value
for each month.

When the SWE trend magnitudes at each percentile are
compared, differences between high- and low-percentile trends
are apparent (Figure 6). In almost all cases, the trends in high-
percentile SWE are steeper than those in low-percentile SWE. In
positive SWE-trend regions, this indicates that high SWE amounts
are becoming relatively more frequent. For example, along the
border of India and Pakistan, positive SWE-trend regions (see

FIGURE 5 | Seasonal components of snow-water equivalent (SWE) trend (1987–2016). (A) December-January-February (DJF), (B) March-April-May (MAM), (C)
June-July-August (JJA), and (D) September-October-November (SON) trends all have distinct spatial patterns. Note that the magnitude scaling of the seasonal trends is
three times as large as that of the annual trends (see Figure 3). The Karakoram-Kunlun Shan is the only region to maintain large-scale positive SWE trends in the summer
months.
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Figure 3) have a more than six-fold higher trends in 90th
percentile monthly SWE than in 10th percentile SWE,
indicating a drastic increase in monthly high-SWE day
frequency or magnitude. This could be due to the increased
strength of the Winter Westerlies, which has been previously
reported (Cannon et al., 2016b). In contrast, positive SWE-trend
areas in the Pamir have higher 10th percentile magnitudes than
90th, indicating a that positive SWE trends are driven by increases
in low-magnitude SWE rather than in high-magnitude SWE.

In the majority of HMA, however, SWE trends are negative
(Figure 3). Thus, the high 90th/10th (75th/25th) percentile trend
ratios indicate that declines in SWE have been steeper in the
higher end of the monthly SWE distribution, and that high-SWE
values are becoming less common overall. This agrees well with
previous research, which points to overall increasing
temperatures in HMA, particularly on the Tibetan Plateau
(e.g., Wang et al., 2018).

4. DISCUSSION

4.1. Comparison With Previous Work
Previous work by Smith and Bookhagen (2018) used data at
0.25° × 0.25° spatial resolution from only the SSMI-series of

satellites (1987–2009) to establish trends in SWE over HMA.
The higher spatial resolution data used in this study yields only
slight differences in SWE trend when the same period (e.g.,
1987–2009) is considered. However, there are clear differences
in the trends presented by Smith and Bookhagen (2018) and
those shown in Figure 3, which are due to the difference in
analysis time window. To test the sensitivity of SWE trends to
the analysis window, we first break our dataset into three
decade-long slices, as seen in Figure 7.

It is clear that SWE trends are highly variable in time. The
long-term reversal from negative to positive SWE trends seen in
Figure 7, however, is supported by analysis of other related
climate variables. Previous work has noted changes in regional
precipitation and temperature patterns (e.g., Archer and Fowler,
2004; Yao et al., 2012; Palazzi et al., 2013; Lutz et al., 2014;
Cannon et al., 2016a, Cannon et al., 2016b; Zhang et al., 2017;
Wang et al., 2018; Treichler et al., 2019; Norris et al., 2020) and
increases in high-elevation snowcover (Kapnick et al., 2014; Tahir
et al., 2015) in recent years. Furthermore, Treichler et al. (2019)
showed that increasing lake levels on the Tibetan Plateau are
strongly correlated with regions of increased precipitation;
modeled precipitation data suggest stepwise increases in mean
annual precipitation on the Tibetan Plateau between the
∼1980s–1990s and 2000s–onwards (e.g., Kääb et al., 2018).

FIGURE 6 | Ratios of trends in (A,B) 90th/10th percentile snow-water equivalent (SWE) and (C,D) 75th/25th percentile SWE. Panels (B,D) show zoom in box over
the Karakoram, with 100 mm average December-January-February SWE contour line in thick black. Positive (e.g., blue to green) values indicate that the trend in 90th
(75th) percentile SWE values is larger than the trend in 10th (25th) percentile SWE values, and that both trends have the same direction. Orange and red areas have higher
10th (25th) percentile trends than 90th (75th). Black areas indicate a reversal of trend between the 90th/10th (75th/25th) percentiles. The vast majority of High
Mountain Asia—in both positive and negative SWE trend areas (see Figure 3)—has steeper trends in high-percentile SWE than in low-percentile SWE.
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Recent analysis also indicates that the timing of the snowmelt
season has changed over the past decades (Smith et al., 2017).
While the long-term trends (1987–2016) were found to be
generally negative (e.g., earlier and more rapid snowmelt),
recent trends (e.g., 2004–2016) were found to be much more
positive (later and slower onset of snowmelt) (Smith et al., 2017).
It is therefore possible that there has been a reversal of the long-
term losses in SWE storage in HMA; however, it is not clear if this
is a temporary or long-term shift in the snow dynamics of HMA.

4.2. Sliding Window and Spatio-Temporal
Trend Analysis
The timing and magnitude of SWE trend variability can be
further explored by performing the same trend analysis on a
set of time windows and start dates. We use time windows of 5,
10, 15, 20, 25, and 29 years, along with each possible combination
of start years (e.g., 1987–2011) to examine changes in SWE trends
through time (Figure 8).

Long-term (>25 years) SWE trends are generally negative;
these trends also correspond to a particularly negative period
of short-term trends starting in the late 1980s (Figure 8). More
recent trends (e.g., 15–20 years) are generally positive starting in
the early 1990s. One possible explanation for this phenomena is
the previously proposed large-scale changes in regional
precipitation over the past decades (e.g., Kääb et al., 2018).
However, the impacts of changes in temperature cannot be
ruled out—increasing regional temperatures can have highly
variable positive and negative impacts on snow-water storage,
for example, by enhancing atmospheric water content, snow
density, and snowmelt rates.

There also exist strong regional variations in windowed trends
(Figures 8B–D), driven by differences in climatic conditions,
major weather systems, snow accumulation and ablation regimes,
and dust and aerosol melt forcing between regions (Fujita, 2008;
Kaspari et al., 2014; Sarangi et al., 2019). Generally positive SWE
trends in the Kunlun Shan region are contrasted by mixed trends
in the Karakoram, and majority negative trends in Eastern Tibet
(Figures 3 and 4).

4.3. Relationship to Regional Glacier
Changes
Many recent studies have investigated changes in HMA’s glaciers
using a range of satellite (Bolch et al., 2012; Kääb et al., 2012;
Loomis et al., 2019; Treichler et al., 2019; Shean et al., 2020) and
modeling (Kapnick et al., 2014; Rounce et al., 2019) approaches to
derive spatial patterns in glacier gains and losses. Using the
Randolph Glacier Inventory (Arendt et al., 2015), we can
measure the areal extent of glaciers within each passive
microwave pixel, and—where glaciers are large enough—derive
SWE trends over only glaciated areas, defined here as areas with at
least 10% glacier coverage (Figure 9).

In general, SWE trends over glaciated terrain are negative,
outside of parts of the Tien Shan, Karakoram, and Kunlun Shan.
Areas with positive SWE trends agree well with regions of positive
glacier mass balance, as presented by Shean et al. (2020) and
Treichler et al. (2019).While there are many factors that influence
glacier dynamics, it is likely that changes in snowfall are one of the
key drivers of glacier mass gain and loss over HMA (Fujita, 2008;
Fujita and Nuimura, 2011; Kapnick et al., 2014).

4.4. Data Caveats
It is important to mention caveats to the trend analysis presented
in this study. The largest caveat is that passive microwave SWE
estimates are often uncertain—especially over large and complex
regions such as HMA (Kelly, 2009; Takala et al., 2011; Smith and
Bookhagen, 2016). We also cannot rule out the impacts of both

FIGURE 7 | Annual snow-water equivalent (SWE) trends from (A)
1987–1997, (B) 1997–2007, and (C) 2006–2016. There are stark differences
in the spatial distribution of SWE trends depending on the decade chosen. In
particular, the trends in the early part of the time series (1987–1997) are
significantly more negative than SWE trends over the past two decades. Note
that the magnitude scaling of the decadal trends is three times as large as that
of the long-term annual trends (1987–2016, see Figure 3).
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FIGURE 8 | Impact of window length on measured annual snow-water equivalent (SWE) trends. Trends calculated over (A) the entire study area, (B) the Pamir-
Karakoram, (C)Kunlun Shan, and (D) Eastern Tibetan regions (seeFigures 1 and 4). Each dot represents averaged trends over a single window size (5–29 years) and start year
(1987–2011) combination. Only statistically significant trends (p < 0.05) are included in this analysis. Larger dots indicate positive or negative trends larger than 1 × 10−2 mm/yr,
very small dots indicate trends below 0.5 × 10−2 mm/yr. SWE trend direction is highly variable over short (e.g., 5 years) time spans, but growsmore stable over longer time
frames. Trends starting in the 1980s are generally more negative; there is a distinct change in the early 1990s where SWE trends become generally positive.

FIGURE 9 | Snow-water equivalent (SWE) trends and glacier areas aggregated into 50 km × 50 km boxes. Positive (negative) trends are symbolized as circles
(squares), and sized logarithmically by total glacier area within each 50 km × 50 km aggregation window, from 1 to 1,500 km2. Blue outlines show major watersheds
(Lehner and Grill, 2013). There are clear positive SWE trends over the heavily glaciated Karakoram-Kunlun Shan region, which are contrasted by negative SWE trends
throughout much of the rest of High Mountain Asia.
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natural seasonality and regional temperature changes on snow
densities, which could also modify passive microwave SWE
estimates over the course of our time series, and thus are part
of the trends that we present as changes in SWE in this study
(Judson and Doesken, 2000; Chen et al., 2011; Dai et al., 2012).
The impact of seasonal oscillations in snow density is somewhat
mitigated by removing the seasonal cycle from our data before
trend fitting, as some of the seasonality in SWE estimates will be
driven by changes in snow density. However, without a more in-
depth understanding of snow-density evolution in HMA, we
cannot fully constrain this part of our analysis.

Passive microwave signal saturation could bias the presented
SWE trends in deep-snow areas, as previous work has suggested
that passive microwave SWE estimates saturate around 200 mm
of SWE (Takala et al., 2011; Vander Jagt et al., 2013; Dozier et al.,
2016). In examining our dataset, we find that the vast majority of
HMA is not severely impacted by passive microwave signal
saturation (Figure 10); however, it is likely that passive
microwave signal saturation still biases some of our trend
results. In our percentile regressions, we find that SWE trends
generally maintain a consistent direction between high- and low-
percentiles, indicating that saturation biases don’t drastically
influence SWE trend direction (Figure 6).

The third caveat is that trends are somewhat biased by the first
and last values of the time series—this could also play a role in the
trend reversals seen between previous studies of SWE trends in
HMA (e.g., Smith and Bookhagen, 2018; Wang et al., 2018) and
this study (Figures 3 and 7). We attempt to minimize this effect
by using Sen’s slope estimator, which is less sensitive to the first
and last values of the time series (Sen, 1968). We further attempt
to mitigate the impact of the time window over which the trend is
calculated by using multiple overlapping time windows and
window lengths (Figure 8). Finally, we compare our results to
a percentile-regression approach and find that while the
magnitudes of the trends vary between percentiles and
between the de-seasoned trend and percentile approaches, the
trend directions found are consistent. However, snowfall can have
high inter-annual variability, and we do not preclude the

possibility that variations in the timing of large snowfall events
between years, or shifts in the timing of snowfall and snowmelt
(Smith et al., 2017) could impact estimated annual and seasonal
SWE trends.

Lastly, it is important to emphasize that the trends presented
here are relative to the SWE time series as estimated, and are not
calibrated by in-situ measurements. While the SWE algorithms
used here have been extensively validated throughout the world
and have been shown to be generally reliable in low-vegetation
areas (Chang et al., 1982; Chang et al., 1987; Chang et al., 1991;
Chang et al., 1996; Armstrong and Brodzik, 2002; Foster et al.,
2005; Derksen, 2008; Kelly, 2009; Langlois et al., 2011; Dai et al.,
2015; Smith and Bookhagen, 2016), the complex topography and
inaccessibility of HMA poses unique challenges for in-situ data
collection. Unfortunately, calibration data of sufficient spatial and
temporal resolution to properly assess our SWE estimates and
trend results is not currently available in our study region. Future
work could consider other approaches to constraining the
estimated SWE trends, for example, by using watershed-level
snowmelt runoff measurements across HMA.

5. CONCLUSIONS

The increased fidelity and spatio-temporal resolution of newly re-
processed passive microwave data allows for important updates
to analyses of trends in snow-water storage over HMA. While
overall trends are negative, there exist large spatial and seasonal
heterogeneities in snow-water storage trends. High variability in
year-to-year snowfall means that trends are strongly influenced
by the start and end years of any trend analysis. By using multiple
overlapping time windows, we show that while long-term snow-
water storage trends are majority negative, recent (e.g., past
20 years) trends are more positive. Furthermore, by using a
percentile regression approach, we show that trends in high-
percentile monthly SWE are generally steeper than those in low-
percentile, indicating that there have been spatially diverse
changes in the magnitude distributions of SWE across HMA.

FIGURE 10 | Percentage of days with snow-water equivalent (SWE) above (A) 150 mm and (B) 200 mm (1987–2016). While some areas—particularly in the Tien
Shan—are impacted by SWE signal saturation, the majority of the study area should not see large signal saturation effects. Many regions where there are saturation
effects also do not yield statistically significant SWE trends, and are thus not considered in our discussion of SWE trends (see Figure 3).
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Snow-water storage trends over glaciated regions generally
align with previous estimates of glacier mass balance—those
glaciers that are growing are highly correlated with regions of
positive snow-water storage trends. However, snow-water storage
trends are distinct between regions and watersheds, and can vary
greatly over small distances. As the combined meltwaters from
both snow and glaciers are essential to year-round water
provision in the densely populated regions surrounding HMA,
any changes in water storage must be considered in local and
regional water planning. The high resolution and long time series
data presented here allows for new and improved estimates of
changes in snow-water storage that can be used to inform
regional and local analyses of future water availability and
watershed-level management plans.
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Progress and Challenges in Studying
Regional Permafrost in the Tibetan
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Recent climate change has induced widespread soil thawing and permafrost degradation
in the Tibetan Plateau. Significant advances have been made in better characterizing
Tibetan Plateau soil freeze/thaw dynamics, and their interaction with local-scale
ecohydrological processes. However, factors such as sparse networks of in-situ sites
and short observational period still limit our understanding of the Tibetan Plateau
permafrost. Satellite-based optical and infrared remote sensing can provide information
on land surface conditions at high spatial resolution, allowing for better representation of
spatial heterogeneity in the Tibetan Plateau and further infer the related permafrost states.
Being able to operate at “all-weather” conditions, microwave remote sensing has been
widely used to retrieve surface soil moisture, freeze/thaw state, and surface deformation,
that are critical to understand the Tibetan Plateau permafrost state and changes. However,
coarse resolution (>10 km) of current passive microwave sensors can add large
uncertainties to the above retrievals in the Tibetan Plateau area with high topographic
relief. In addition, current microwave remote sensing methods are limited to detections in
the upper soil layer within a few centimetres. On the other hand, algorithms that can link
surface properties and soil freeze/thaw indices to permafrost properties at regional scale
still need improvements. For example, most methods using InSAR (interferometric
synthetic aperture radar) derived surface deformation to estimate active layer thickness
either ignore the effects of vertical variability of soil water content and soil properties, or use
site-specific soil moisture profiles. This can introduce non-negligible errors when upscaled
to the broader Tibetan Plateau area. Integrating satellite remote sensing retrievals with
process models will allow for more accurate representation of Tibetan Plateau permafrost
conditions. However, such applications are still limiting due to a number of factors,
including large uncertainties in current satellite products in the Tibetan Plateau area,
and mismatch between model input data needs and information provided by current
satellite sensors. Novel approaches to combine diverse datasets with models through
model initialization, parameterization and data assimilation are needed to address the
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above challenges. Finally, we call for expansion of local-scale observational network, to
obtain more information on deep soil temperature and moisture, soil organic carbon
content, and ground ice content.

Keywords: process models, satellite remote sensing, freeze/thaw, permafrost, Tibetan plateau

INTRODUCTION

The Tibetan Plateau has an average elevation of 4,000 m and
encompasses an area of approximately 2.5 × 106 km2 (Figure 1).
It is the home to ∼100,000 km2 of glaciers (Yao et al., 2012) and
possesses the largest alpine permafrost area in the world (Ran
et al., 2018; Cheng et al., 2019). The Tibetan Plateau is also the
headwater of many major Asian rivers including the Yangtze,
Yellow, Mekong, Indus, and Ganges (Immerzeel et al., 2010). Due
to its vast domain and high elevation, the Tibetan Plateau is
extremely sensitive to climate change and has a profound
influence on the regional climate (Duan and Wu, 2005).

Long-term in-situ surface meteorology measurements show
that the Tibetan Plateau has been experiencing a significant
warming trend since 1960s, with an average rate of 0.3–0.4°C
per decade, which exceeds the global average during the same
period (Chen et al., 2015a). Previous studies further indicated
such warming trend is elevation-dependent. Specifically, the
warming rate increases with elevation for lower altitude
regions (<∼4,500–5,000 m) and this phenomenon is more
obvious during autumn and winter (Yan and Liu, 2014), while

this warming trend is absent or lower at higher elevations
(>∼5,000 m) based on satellite-based temperature datasets
(Guo et al., 2019; Pepin et al., 2019). Other changes include
slight increases in precipitation, wind speed weakening, solar
radiation declining and mixed trends of relative humidity (Yang
et al., 2014; Bibi et al., 2018). These changes can have significant
impact on regional water and energy balance, and cause non-
negligible changes in the cryosphere, including glacier retreat, soil
warming and permafrost degradation.

Frozen ground occupies the most area of the Tibetan Plateau
(Figure 1), with approximately 40% coverage of permafrost and
55% coverage of seasonally frozen ground (Zou et al., 2017). Since
the 1970s, several in-situ observation networks have been
established to monitor the thermal state of Tibetan Plateau
frozen ground (Yang et al., 2010). These in-situ soil
temperature records have demonstrated substantial changes
occurred in Tibetan Plateau frozen ground including
permafrost degradation over the past few decades. For
example, the in-situ observations in the Beiluhe region
indicated that the active layer thickness has increased at a rate
of ∼4.26 cm yr−1 from 2002 to 2012 while the permafrost

FIGURE 1 | The distribution of permafrost and in-situ observations over the Tibetan Plateau region. The permafrost classification is based on the international
permafrost association permafrost map (Brown et al., 1997), and the “high” and “low” in the legend refer to the ice content of permafrost. Green dots represent
meteorological stations from China Meteorological Administration, black triangles refer to the borehole sites with deeper soil temperature measurements from previous
studies (Wu and Zhang, 2008; Luo et al., 2012; Cao et al., 2019), and red dots are regular observation sites with soil temperature observations within a depth of a
few meters (data source including Yang et al., 2013a; Cao et al., 2019; Zheng et al., 2020).
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temperatures at 10 m depth have increased by ∼0.14°C during the
same period (Wu et al., 2015). In the inner Tibetan plateau,
maximum frozen depth decreased at a rate of 0.71 cm yr−1 during
the period 1967–1997 (Zhao et al., 2004), and reduction in
the maximum frozen depth has accelerated since 2000 (Peng
et al., 2017). Previous study also revealed that a distinct talik
layer separating the permafrost from overlying active layer has
already formed along the Qinghai-Tibet Highway (Jin et al.,
2008).

Previous studies based on the in-situ observations provided
detailed assessments of permafrost thermal state at local scales.
However, extrapolating site-level observations across the Tibetan
Plateau is likely to entail large uncertainties, due to the sparse in-
situ stations, shallow observation depth at most sites,
inconsistency in the measurement methods and data gaps.
Most in-situ observations and boreholes (up to 10 m) were
established along the Qinghai-Tibet Railway/Highway to meet
the engineering demand (Wu and Zhang, 2008; Jin et al., 2011;
Wu et al., 2020), while most of the meteorological stations from
China Meteorological Administration are located in the
seasonally frozen ground of the central or eastern Tibetan
Plateau (Figure 1).There are limited in-situ observations in the
western Tibetan Plateau, with only a few boreholes located in
A-erh-chin Mountain, Gaize and west Kunlun (Zou et al., 2017).
The limited number of in-situ sites poses great challenges for a
comprehensive, regional-scale assessment of the Tibetan Plateau
permafrost thermal state. For example, there are large
discrepancies among the current Tibetan Plateau permafrost
coverage maps (Zou et al., 2017; Wu et al., 2018; Zheng et al.,
2020), and it is difficult to accurately evaluate these maps due to
the different compilation approaches and insufficient in-situ
observations (Cao et al., 2019).

Satellite or airborne remote sensing can provide information
on environmental conditions and freeze/thaw state related to
underlying permafrost properties with improved sensitivity to
subsurface soil properties (Jorgenson and Grosse, 2016), which
can provide critical constraints on assessing regional permafrost
vulnerability. With a wide range of satellite and airborne
observations available from existing and upcoming missions,
remote sensing data are increasingly becoming an essential
element for regional permafrost monitoring (NRC, 2014).
However, current satellite remote sensing systems cannot
provide information on deeper (>∼10 cm) soils; therefore, an
integration of remote sensing data with process-based models are
needed to obtain information on permafrost properties and
dynamics. This review summarizes recent progress
and challenges using multi-source satellite remote sensing data
and process-based models to improve regional permafrost
monitoring across Tibetan Plateau. Airborne remote sensing
also plays an important role in regional permafrost studies
(Miller et al., 2019). For example, the airborne electromagnetic
method has shown a great potential in mapping Alaskan
permafrost (Minsley et al., 2012; Rey et al., 2019). However,
there is very limited airborne experiment in the Tibetan Plateau;
therefore, we only briefly discuss its application in regional
permafrost studies, which mainly occur in other permafrost
areas (Discussion).

The paper is structured as follows: we first discuss the unique
characteristics of Tibetan Plateau permafrost environment
(Environmental Controls on Tibetan Plateau Permafrost
Distribution and Soil Freeze/Thaw Dynamics), and then
summarize the recent advances in regional Tibetan Plateau
permafrost studies using various remote sensing technologies,
and through combination of remote sensing with modeling
approaches (Regional Monitoring Approaches and Associated
Challenges). We also discuss the unique challenges in Tibetan
Plateau permafrost monitoring, the potential of geophysical
measurements and other methods to characterize subsurface
variability and spatial heterogeneity in permafrost areas
(Discussion). We conclude by addressing research priorities
and future studies needed to accurately simulate the evolution
of Tibetan Plateau permafrost and eco-hydrology (Research
Priorities and Recommendations).

Environmental Controls on Tibetan Plateau
Permafrost Distribution and Soil Freeze/
Thaw Dynamics
The Tibetan Plateau is characterized by relatively thin and warm
permafrost with low ice content, potentially more vulnerable to
ongoing and future warming due to the unique environmental
conditions, arid climate, high elevation and steep geothermal
gradient (Wang and French, 1995; Yang et al., 2010; Zhao et al.,
2010; Cheng et al., 2019; Zhao et al., 2020). Therefore, an
improved understanding of permafrost sensitivity to
environmental conditions in the Tibetan Plateau region is
essential for effectively monitoring potential changes and
vulnerability of Tibetan Plateau permafrost (Figure 2).

Permafrost distribution in the Tibetan Plateau is controlled by
the high elevation and complex topography, and has
characteristics different from permafrost in other regions
(Wang and French, 1995). Topographic factors such as
elevation affect regional climate through the effects on
precipitation, temperature lapse rates and solar radiation
loading (Gruber et al., 2017). Therefore, topography can affect
soil freeze/thaw dynamics by altering the land surface
temperature and the surface energy budget. Field
investigations show that the lower limit of permafrost in the
Yellow River region is ∼4,400 a.s.l., while seasonally frozen
ground occurs at lower elevations such as major river valleys
(Luo et al., 2012). Other topographic factors, such as aspect and
slope, also influence permafrost distribution. Due to different
solar radiation loading on different slope and aspect, the lower
limit of Tibetan Plateau permafrost on the north slope is usually
lower than that on the south slope with more sunny conditions
(Cheng and Wu, 2007). In-situ data from the central Tibetan
Plateau show that the average frost depth was much deeper on
north facing slopes than on south facing slopes, and varied
considerably with elevation on both slopes (Ma et al., 2015).

Soil conditions also have a significant influence on permafrost
thermal state. Soil texture is one of the major factors determining
soil thermal conductivity, heat capacity, and hydraulic
conductivity (Chen et al., 2012; Yi et al., 2018a). For example,
gravel soils have a larger thermal conductivity and can result in a
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rapid response of soil temperatures to climate change. The
existence of gravels also tends to reduce the soil water holding
capacity and enhance hydraulic conductivity and drainage (Pan
et al., 2017). As the consequence of slow soil-forming processes
and strong erosion, gravel soils are widespread in the Tibetan
Plateau and has distinct physical properties from agricultural soils
(Arocena et al., 2012; Yi et al., 2018a). In addition, given that
bedrock has quite different hydrological and thermal properties
from upper soil layers, soil depth (or the depth to bedrock) also
has significant influence on soil freeze/thaw dynamics especially
for deep soils. Soil moisture content also affects the soil freeze/
thaw processes through soil water phase change and changing
physical properties such as soil thermal and hydraulic
conductivity (Scherler et al., 2010). Higher soil moisture
content is generally associated with a longer zero-curtain
period, and thus delay soil freeze/thaw onsets (Luo et al.,
2014; Jiang et al., 2018). Tibetan Plateau soils are usually
unsaturated and soil moisture shows a strong heterogeneity
both vertically and spatially (Yang et al., 2013a), and how it
affects the Tibetan Plateau soil freeze/thaw dynamics and
permafrost changes remains under investigated (Yang et al.,
2010). Moreover, although soil organic content in the Tibetan
Plateau is relatively low compared with the northern high-
latitude region, it can strongly influence soil thermal
conditions due to its correlation with soil properties such as
high soil porosity and high soil moisture content (Chen et al.,
2012; Zhou et al., 2013).

In addition, surface conditions, such as vegetation cover and
snow cover, act as important environmental controls on soil
freeze/thaw dynamics and permafrost distribution. Vegetation

cover affects the partition among the sensible, latent and soil
heat fluxes, and therefore plays an important role in surface
water and energy balances (Li et al., 2015a). Although most
Tibetan Plateau permafrost region is dominated by alpine
meadows or grasslands with sparse vegetation, Wang et al.
(2012a) still found that decrease of alpine meadow and
alpine swamps in the Tibetan Plateau were related to the
increasing sensitivity of soil to climate changes and the
greater shifts in soil temperature and water dynamics.
Furthermore, different types of vegetation cover may exert
different impacts on soil thawing (Wang et al., 2012b).
Winter snow cover also has an important effect on soil
freeze/thaw dynamics and permafrost temperature (Zhang,
2005; Yi et al., 2015). Snow cover plays an important role in
determining how soil responds to surface warming due to its
strong insulation effects and impact on surface energy balance
associated with changes in surface albedo and snow water phase
change (Zhang, 2005). Different from the overall thicker snow
cover in the northern high latitude region, snow in the Tibetan
Plateau often melts quickly due to strong solar radiation, and
snow cover is generally shallow and ephemeral, with overall low
albedo of fresh snow and limited insulation effects (Wang et al.,
2020; Zheng et al., 2020). Therefore, snow cover in the Tibetan
Plateau may have a cooling effect on underlying soil
temperature due to the dissipated latent heat resulted from
frequent snow melting or sublimation (Zhu et al., 2017).
Moreover, snow meltwater that infiltrates into the soil could
result in additional soil temperature fluctuations due to soil heat
transport through convection and soil water phase change
(Scherler et al., 2010; Luo et al., 2014).

FIGURE 2 | Interaction among different environmental factors and soil freeze/thaw (F/T) dynamics in the Tibetan Plateau region. Solid and dash arrows indicate the
influences and feedbacks respectively. ALT and MFD represent active layer thickness (defined for permafrost area) and maximum frozen depth (defined for seasonally
frozen ground) respectively.
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REGIONAL MONITORING APPROACHES
AND ASSOCIATED CHALLENGES

Remote Sensing of Tibetan Plateau
Permafrost
Current Progress
The sparse distribution of in-situ observation sites over the
Tibetan Plateau (Figure 1) highlights the potential of satellite
remote sensing to significantly improve regional permafrost
monitoring across Tibetan Plateau. Remote sensing
technology, including optical, near- and thermal-infrared,
passive and active microwave remote sensing, has been used
to directly or indirectly monitor the near-surface soil freeze/thaw
and permafrost state in the Tibetan Plateau. The wavelength
ranges from 0.4–0.7, 0.7–3.0, and 3.0–100 μm for optical, near-
and thermal-infrared remote sensing, respectively; microwave
remote sensing covers the spectrum from 1 mm to ∼1 m in
wavelength and has a much deeper penetration depth (Ulaby
et al., 1982). Optical and near-infrared remote sensing are often
used to detect the vegetation canopy and land surface properties,
while microwave sensors can provide information on land surface
moisture and temperature variations due to strong sensitivity to
changes in land surface dielectric properties and emissivity. The
applications of remote sensing in permafrost can be largely
grouped into two categories: 1) identifying and mapping
surface features and objects typical for permafrost areas; and
2) retrieving physical variables directly or indirectly relevant to
subsurface thermal conditions (Tedesco, 2014). The first category
was dominated by the application of high spatial-resolution
optical and near-infrared images, while the second category
covers a wider range of remote sensing systems from optical
to microwave sensors as discussed below.

Permafrost Monitoring Using Optical and Infrared Remote
Sensing
Optical and near-infrared remote sensing with high spatial
resolutions (<100 m) has been widely used to identify
geological structures and landscapes associated with
permafrost, e.g., hummock, thermokarst lakes, freeze/thaw
boils, and surface classification, which can be used to infer the
presence of underlying permafrost (Panda et al., 2010; Wang
et al., 2014; Niu et al., 2018; Ran et al., 2018; Huang et al., 2020).
Data from some high-resolution satellites such as Landsat-8 and
GaoFen-1, 2, can be used to extract the landscape features and
structures (Niu et al., 2018). This is especially useful for
permafrost research in mountain regions characterized by
heterogeneous surface condition like Tibetan Plateau. On the
other hand, optical and near-infrared remote sensing can also
provide information on land surface variables that can be used as
auxiliary data to empirical or process-based models to infer the
permafrost thermal state (Wang et al., 2014; Dai et al., 2018; Ran
et al., 2018). For example, regional snow cover extent, surface
albedo and vegetation cover products, which are available from
optical sensors such as MODIS (250-m resolution), Landsat (30-
m resolution), and Sentinel-2 (20-m resolution), have been used
as model ancillary inputs to simulate the permafrost thermal state
due to significant influences of vegetation and snow cover on

surface energy and water balance (Niu et al., 2018; Zheng et al.,
2019b). In addition, many thermal infrared satellite systems (e.g.,,
Terra, Aqua, and geostationary platforms like GOES and
METEOSAT) could monitor the land surface temperature at
spatial resolutions of 1–50 km, which is more directly linked to
the subsurface ground thermal state (Holmes et al., 2009). Optical
and thermal infrared remote sensing can provide information at
high spatial resolution; however, it should be noted that factors
such as frequent clouds and mixing pixels will introduce large
uncertainties to these land surface products, and affect their
application in permafrost studies (Kou et al., 2017).

Optical and thermal infrared imaging methods provide
valuable regional datasets; however, permafrost is essentially a
subsurface phenomenon and these methods are limited to
imaging the land surface. Permafrost monitoring requires
knowledge of soil temperature and heat transfer at deep layers;
therefore, statistical or empirical models have been developed to
utilize surface parameters derived from optical and infrared
remote sensing to map permafrost extent and distribution
(Zou et al., 2017; Aalto et al., 2018; Obu et al., 2019).
Statistical models, e.g., decision tree or logistic regression
models, have been applied to Tibetan Plateau permafrost
mapping through building relationship between permafrost
indices and multiple environmental factors including satellite-
based land surface temperature and snow cover extent products.
More recent studies are also developed using deep learning
methods to create Tibetan Plateau permafrost maps (Wang
et al., 2019a; Huang et al., 2020). Empirical models such as the
TTOP (temperature at the top of permafrost) model and
Kudryavtsev model that are derived from simplified heat
transfer equations and require fewer inputs have been also
widely used in Tibetan Plateau permafrost mapping (Zhao
et al., 2017a; Zou et al., 2017).

Permafrost Monitoring Using Microwave Remote Sensing
Microwave remote sensing shows strong sensitivity to soil
dielectric changes induced by landscape and particularly soil
freeze/thaw state, and can operate under all-weather
conditions (Ulaby et al., 2014); therefore, it has been widely
used to map surface soil freeze/thaw status and permafrost
changes in both high latitude and high elevation regions (e.g.,,
Li et al., 2012a; Li et al., 2013; Park et al., 2016).

Brightness temperature (Tb) measured by passive microwave
remote sensing is associated with changes in surface emissivity
and temperature conditions, both of which are closely associated
with soil freeze/thaw status. Depending on the frequency and its
penetration ability, relatively higher frequency (e.g., Ka-band,
∼27–40 GHz) is commonly used to detect the freeze/thaw state of
landscape surface elements, while lower frequencies such as
L-band (∼1–2 GHz) and P-band (∼250–500 MHz) provide
enhanced sensitivity to soil surface and profile freeze/thaw
conditions (Du et al., 2015; Naderpour and Schwank, 2018).
The Tb at Ka-band shows less sensitivity to freeze/thaw induced
changes in surface emissivity, and is more correlated with land
surface temperature especially for the vertical polarization
(Holmes et al., 2009). A negative spectral gradient between 18
and 37 GHz was also found for the frozen soils due to volume
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scatter darkening within the frozen soil (Zuerndorfer and
England, 1992). Therefore, a combination of low Tb37V
(37 GHz Tb at vertical polarization) and negative 18–37 GHz
spectral gradient values has been widely used in frozen soil
classification (Zhao et al., 2011; Han et al., 2015). Surface
conditions such as dry snow may confound the soil freeze/
thaw classification, and a number of groups have explored
combining different indices to identify different surface
conditions. For example, Jin et al. (2009) developed a decision
tree algorithm to classify surface soil freeze/thaw state, through
incorporating Tb37V, polarization Tb difference at 19 GHz, and a
scattering index to distinguish scattering and non-scattering
surfaces. Zhao et al. (2011) developed a discriminant
algorithm that employs the Tb37V and the quasi-emissivity of
Tb18.7H based on model simulations and Fisher linear
discrimination analysis of different surface ground conditions.
More recent studies also explored the values of L-band Tb in soil
freeze/thaw classifications due to its deeper penetration depth
(∼50 and ∼5 cm for the frozen and thaw soils, respectively)
(Rautiainen et al., 2016; Zheng et al., 2019a).

Despite with high revisit frequency (less than a few days),
current passive microwave sensors have the spatial resolutions on
the order of 10–50 km, which can add large uncertainties to
freeze/thaw classifications in an area with high topographic relief
like the Tibetan Plateau (Li et al., 2013). Alternatively, space-
borne synthetic aperture radar (SAR) sensors provide
measurements of radar backscatter at much finer scales
(∼10–100 m) but have a much longer temporal revisit
(>10 days). SAR signals share similar frequency-dependent
responses to vegetation canopy and surface soil dielectric
changes as microwave emission techniques, and radar
backscatter at different frequencies (eg C-band, ∼4–8 GHz;
Ku-band, ∼12–18 GHz) can be potentially used to characterize
surface freeze/thaw and soil moisture status in the Tibetan
Plateau (Van der Velde and Su, 2009; Han et al., 2011). The
integration of active and passive microwave remote sensing
provides a promising way to monitor surface and soil freeze/
thaw and soil moisture states of Tibetan Plateau permafrost,
leveraging the strengths of each method (Dente et al., 2014). A
few studies also explored the value of combining passive
microwave remote sensing and MODIS land surface
temperature for high-resolution freeze/thaw mapping in the
Tibetan Plateau (Zhao et al., 2017b; Kou et al., 2017).

More recently, interferometric synthetic aperture radar
(InSAR) has shown great potential for regional mapping of
active layer thickness. InSAR works by detecting surface
deformation resulting from soil freezing induced uplift and
thawing induced subsidence through measuring the phase
shifts between repeat pass SAR images acquired at different
times (Liu et al., 2012; Li et al., 2015b; Daout et al., 2017; Jia
et al., 2017; Wang et al., 2018). It should be noted that this
technique requires repeat passes to be obtained with less than 5 m
deviation to enable accurate interferograms and phase shifts to be
produced. Different techniques have been developed to generate
interferograms and reconstruct the long-term series and seasonal
trends in the surface deformation, which are linked with the long-
term permafrost thaw and seasonal active layer thawing rate,

respectively. Empirical approaches have been used to convert the
surface deformation to active layer thickness assuming a uniform
soil saturation profile (e.g.,, Liu et al., 2012; Jia et al., 2017). A
more recent study accounts for the soil saturation differences
among different land cover types in the Tibetan Plateau (Wang
et al., 2018), which results in different response curves of surface
deformation to thaw depth. Li et al. (2015b) developed a new
approach that uses the time lag between the periodic features of
InSAR-observed surface deformation and land surface
temperature to estimate the time interval between maximum
surface air temperature and maximum seasonal thaw depth.

Challenges
Currently, there are no direct remote sensing methods to detect
deeper soil freeze/thaw and thermal conditions. Most satellite
detection of soil freeze/thaw is generally limited to upper soil layer
within a few centimeters of the surface. A potential approach to
overcome this limitation is to introduce lower frequency sensors
such as P-band SAR for soil profile characterization (Chen et al.,
2019) and incorporate multi-frequency microwave observations
such as joint L- and P-band SAR for enhanced delineations of soil
profile freeze/thaw characteristics (Du et al., 2015). On the other
hand, algorithms that can link surface properties and soil freeze/
thaw indices to permafrost properties still need improvements.
For example, most methods using InSAR derived surface
deformation to estimate active layer thickness either ignore the
effects of vertical variability of soil water content and soil
properties (Liu et al., 2012; Li et al., 2015b; Jia et al., 2017), or
use site-specific soil moisture profiles (Wang et al., 2018). This
can introduce non-negligible errors when upscaled to the broader
Tibetan Plateau, which is characterized by strong heterogeneous
soil conditions, deep active layer and more variable soil moisture
profiles. A drier surface layer can result in a delayed thawing
subsidence period, comparing with the Arctic permafrost region
(Daout et al., 2017). In addition, prior knowledge of ground ice
content is important to interpret the long-term trend of surface
deformation, but such information is still lacking at regional scale
in the Tibetan Plateau.

Current satellite sensors still cannot provide measurements
with sufficient spatial and temporal resolution to meet
requirements for regional soil freeze/thaw and permafrost
monitoring in the Tibetan Plateau. Satellite passive microwave
remote sensing measurements are available at 10–50 km
resolutions, which may not accurately represent the surface
and subsurface conditions for each resolution element,
especially in the heterogeneous mountain regions (Li et al.,
2014). In addition, ambiguity often exists in the remote
sensing retrievals using a single frequency due to its sensitivity
to multiple land surface properties. More comprehensive
evaluations on the accuracy of current satellite measurements
or retrievals should be conducted through integrating point-scale
in-situ measurements, multi-resolution satellite observations and
forward radiative transfer model simulations (Dai et al., 2017).
Moreover, it is highly desirable to understand the scaling effects
of freeze/thaw state and bridge the multi-sensor retrievals
especially for landscape freeze/thaw monitoring over complex
terrain and diverse land cover types (Li et al., 2014; Du et al.,
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2015). On the other hand, the Tibetan Plateau is characterized by
large diurnal temperature range and rapid freeze/thaw changes,
with long freeze/thaw transition periods (up to a fewmonths) (Jin
and Li, 2009). Therefore, remote sensing data with finer temporal
resolution are needed for better monitoring the diurnal freeze/
thaw cycles in the Tibetan Plateau permafrost area.

Process-BasedModeling of Tibetan Plateau
Permafrost
As mentioned above, current satellite remote sensing is largely
restricted to the measurements of near-surface soils and their
properties, while subsurface properties are more relevant to
permafrost conditions. Many studies have combined satellite
remote sensing data with empirical or statistical models to
estimate the presence of permafrost as discussed above.
However, these models usually oversimplify or overlook key
processes controlling soil freeze/thaw and permafrost
dynamics (Zheng et al., 2019b). Additionally, simple models
also generally assume that the frozen subsurface is in
equilibrium with the current climate, which may not capture
the transient changes in frozen ground (Zhao et al., 2017a).
Process-based models can better represent the underlying
processes with the potential to provide more reliable estimates
of regional permafrost distribution and changes.

Current Progress
Frozen soil parameterizations in early process models was
implemented using analytic or approximate solution of Stefan
problem due to computational limitations (Li and Koike, 2003).
With increased computational power, numerical models with
high precision have been widely used in Tibetan Plateau. Most
numerical models simulate the soil temperature in one dimension
by employing a finite-difference or finite-element form of heat
transfer equation, while many of them also consider other
processes such as soil water migration, and link soil freeze/
thaw process with hydrological process (Riseborough et al.,
2008). A range of models have been used to model Tibetan
Plateau permafrost distribution and changes, including soil
process model GIPL2.0, land surface model CoupModel, CLM,
and some hydrological models incorporating soil freeze/thaw
scheme into water transfer process like VIC and GBEHM
(Geomorphology-Based Eco-Hydrological Model) (Guo and
Wang, 2013; Lan et al., 2015; Qin et al., 2017; Zheng et al., 2019b).

Earlier permafrost models like GIPL 2.0 (Qin et al., 2017) do
not simulate surface energy balance, and usually directly set land/
ground surface temperature as the upper boundary condition for
soil heat transfer. These models are able to simulate soil
temperature for deep layers which could be used to identify
the presence of permafrost, while other processes like surface
energy balance, snow melting are generally not included (Qin
et al., 2017; Sun et al., 2019). These models have relatively lower
requirements on climatic forcing data and usually use land/
ground surface temperature and external soil moisture data as
inputs. Despite the simplified heat-water transfer processes, it can
reduce the uncertainties that may be introduced by external
inputs such as highly uncertain precipitation data in the

Tibetan Plateau. Nevertheless, current soil moisture products
available from global satellite remote sensing and land model
data assimilation system also show large uncertainties in the
Tibetan Plateau region (Yang et al., 2013a; Zhao et al., 2014; Chen
et al., 2017). In addition, although using ground surface
temperature as upper boundary conditions can reduce the
need of calculating surface energy balance budget, those data
may not be widely available at the regional scale. The remotely
sensed land surface temperature can be used as a substitute, but
the difference between ground surface temperature and land
surface temperature can be large due to the buffering effects of
surface vegetation or snow cover (Luo et al., 2018; Luo et al, 2020).

A number of regional and global land hydrological models are
also adapted for permafrost simulation in the Tibetan Plateau
region (Table 1). Some hydrological models link the soil freeze/
thaw scheme with hydrological-related process. For example,
GBEHM model is developed from a hillslope-based hydrology
model (GBHM) (Yang et al., 2015; Zheng et al., 2019b). Land
models describe the complex land system, and therefore often
include many processes related to soil freeze/thaw, such as surface
energy balance processes, snow melting and infiltration process,
soil water migration, and variability in soil thermal properties due
to soil organic content changes etc. In addition to traditional
numerical solution used in most models, there are also some
variations in the model concepts and solution in recent models.
For example, there is a new solution of 1-D heat transfer based on
enthalpy in a land surface model HydroSiB2, showing good
performance in soil freeze/thaw modeling in the Tibetan
Plateau (Bao et al., 2016; Wang et al., 2017). These models
have been applied to either site scale or regional scale in the
Tibetan Plateau, with differences in the forcing data and
representations of essential physical processes.

The parametrizations or representations of hydrological and
thermal processes are different among different land hydrological
models, such as the soil column depth and lower boundary
conditions (Table 1), resulting in varying model performance.
For example, SHAW model assumes that the soil thermal
conductivity is a weighting average of various components in the
soil, while CoupModel calculate the soil thermal conductivity based
on three soil freeze/thaw state (i.e., unfrozen, frozen and partially
frozen). Yang et al. (2013b) compared the simulation results from
CoupModel and SHAW model at northern Tibetan Plateau sites,
and found that soil heat transfer scheme used in CoupModel
showed a better performance than SHAW model. Usually, these
models require meteorological forcing including air temperature,
wind speed, precipitation and radiation to solve the surface energy
andwater balance. It is generally difficult to directly use satellite data
(such as land surface temperature) to drive these land models,
which imposes additional difficulties for high-resolution (∼≤1 km)
simulations as high-resolution surface meteorology datasets are not
readily available in the Tibetan Plateau. Moreover, most land
surface models are originally developed for surficial soil layers
with a focus on the energy and mass exchange between the
surface and the atmosphere, and therefore generally have
simplified representation of the soil properties and thermal
processes in deep soil layers (Sun et al., 2019).
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Challenges
Large uncertainties exist in the reanalysis data, surface
meteorology, surface and soil datasets in the Tibetan Plateau
region, which are required for model inputs and
parameterization, limiting a comprehensive evaluation of
model processes and structure across the region (Dai et al.,
2019). Ground-based meteorological data are particularly
sparse in the Tibetan Plateau, with current stations mainly
located in the central plateau and along the Qinghai-Tibet
Railway/Highways, and complex topography adds additional
challenges to upscaling local meteorological data to regional
scale. For example, Zheng et al. (2019b) showed that the
uncertainties associated with the extrapolation or
interpolation of meteorological data were comparable to the
uncertainties of model parameterizations. Previous studies also
found that similar uncertainties were associated with model
simulated frozen ground using different atmospheric forcing
data comparing with model simulations using different
parameterizations (Wang et al., 2016a; Guo et al., 2017). On
the other hand, meteorological forcing data generated from
global climate models has a coarse spatial resolution and cannot
represent the local or small-scale climate variability (Su et al.,
2013; Westermann et al., 2015). The unique topography and
strong heterogeneous surface conditions in the Tibetan Plateau
make it particular challenging to downscale coarse-resolution
meteorology datasets (Yue et al., 2016). A recently released
China meteorological forcing data incorporating meteorological
stations, satellite data and re-analysis data has somewhat
improved quality in the Tibetan Plateau and has been widely
used; however, its uncertainty remains higher in the Tibetan
Plateau than other regions of China (He et al., 2020). In
addition, regional-scale soil datasets in the Tibetan Plateau,
including soil properties (such as soil texture and soil organic
carbon content), soil depth and ground ice content are
extremely limited, which are important for model
parameterization due to their significant impacts on soil heat
and water transfer (Chen et al., 2015b; Cao et al., 2019).

Process representation in current models also needs
improvement. A large gradient can exist in the surface air-
ground temperature in the Tibetan Plateau region due to arid
climate and high solar radiation (Wang and French, 1995).
Without accounting for this temperature gradient, large biases
can exist in the model simulated soil temperatures. Soil
properties in global land models are generally derived from
agriculture soil samples, while the physical properties of gravel
soils in Tibetan Plateau are less considered (Yi et al., 2018a).
Although most models have coupled soil heat transfer with soil
water movement, the soil moisture profile is not generally well
represented, partly due the complex interactions between
topography, soil organic carbon content, vegetation
distribution and their coupled effects on the dynamics of soil
moisture (Wang et al., 2012a). Some key factors affecting the soil
heat transfer unique to the mountain areas are also not
adequately represented in current models (Zhou et al., 2013).
For example, lateral water flow is generally ignored in most
models, which may be of particular importance in the mountain
areas (Zheng et al., 2019b). Simulating ground ice content in theT
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Tibetan Plateau permafrost is also a challenge. Accurate
representation of ground ice content especially near the
permafrost table will have a large impact on projecting
future permafrost dynamics due to potentially large latent
heat release and thermokarst activity as a result of thawing
ground ice (Chen et al., 2015b; Liljedahl et al., 2016). On the
other hand, model performance is highly affected by boundary
and initial conditions, which vary greatly among models. Zero
heat flux at lower boundary is widely adopted in most
land models, while the geothermal gradient in the Tibetan
Plateau show high spatial variability (Wu et al., 2010).
Assigning a zero or constant geothermal flux might lead to
large biases in model simulated deep soil temperature and
permafrost depth especially at longer time scale (Xiao et al.,
2013). More data on deep-soil layer like borehole observations
are needed to improve deep soil parameterization and
representation of lower boundary conditions in the
permafrost models.

Integrate Remote Sensing Data With
Process-Based Models to Improve Tibetan
Plateau Permafrost Monitoring
Remote sensing can provide spatially continuous landscape and
climatic forcing data across large scale, which is especially useful
for regional modeling in a heterogeneous terrain like the Tibetan
Plateau. Here we summarize recent efforts that use multi-source
remote sensing datasets to improve regional modeling of Tibetan
Plateau permafrost or closely related environmental parameters,
through model initialization, parameterization and data
assimilation.

Climatic factors (such as air temperature and precipitation) in
the Tibetan Plateau area show evident elevation dependence. In
many process-based simulations, the SRTM (Shuttle Radar
Topographic Mission) DEM (Digital Elevation Model) is used
as a basis to extrapolate the in-situ meteorology observations to
regional scale and generate model forcing data (e.g., Guo and
Wang, 2013; Gao et al., 2018). However, in addition to elevation,
other factors such as vegetation, soil wetness, slope, and aspect,
also play important roles on the regional climate variability, and
large uncertainties may exist in the spatial extrapolation using
sparse ground observations (Wang et al., 2019b; Zheng et al.,
2019b). Previous studies found that MODIS land surface
temperature is able to capture the spatial pattern of near-
surface air temperature and is especially useful in reducing the
spatial interpolation errors in data-scarce regions (Zhu et al.,
2013; Shamir and Georgakakos, 2014). In the northeast Tibetan
Plateau, Wang et al. (2016b) used the lapse rate derived from
MODIS land surface temperature product during the spatial
interpolation of air temperature, and found the model
simulated snow processes was improved comparing with
simulations using the interpolated air temperature data.
Regarding precipitation, previous studies found that the
precipitation-elevation relationship contrasts between the
northern and southern Tibetan Plateau, and the satellite-based
precipitation data can approximately capture such patterns (Tang
et al., 2018; Wang et al., 2019b). Nevertheless, very few studies
have investigated the impacts of such satellite-based

improvements in spatial extrapolation of climatic forcing on
frozen soil simulations.

In addition to producing regional climatic forcing data,
satellite remote sensing data has been also directly used as
model parameters, such as vegetation coverage, slope and
aspect, to improve regional simulations of Tibetan Plateau
frozen ground. For example, based on the SRTM DEM, Zhang
et al. (2018) quantified the topographic effects of solar radiation
on permafrost distribution in the northeast Tibetan Plateau and
the simulated permafrost coverage increased by 8% when
accounting for the impact of topographic shadows on surface
energy budget. Li et al. (2019) found that introducing MODIS-
based vegetation coverage data into the CoLM can reduce the
warming biases in land surface temperature and surface soil
temperature by ∼10°C in sparse vegetated areas in the Tibetan
Plateau. Jin and Li (2009) assimilated the satellite microwave-
based brightness temperature into SHAW model at the Amdo
station in the central Tibetan Plateau, and found that the errors of
simulated upper (0–2.58 m) soil temperature during wintertime
reduced by 0.76°C. Through assimilating in-situ soil moisture
data, Zhou et al. (2008) found the accuracy of frozen depth
simulation has improved.

A process-based model fully driven by satellite observations
would bridge the data gap in data-scarce region such as the
Tibetan Plateau with the potential to improve regional permafrost
simulation. As discussed above, most process-based models
heavily rely on surface meteorological forcing data (Zheng
et al., 2019b; Guo et al., 2017), while satellite observations are
not fully consistent with the requirements of these models. For
example, satellite remote sensing is not able to observe the near-
surface wind speed, which, however, is an essential factor in
solving the surface energy balance. In a recent study, Zheng et al.
(2019b) used a maximum entropy production-based
parameterization of surface energy balance to replace the
originally turbulent theory-based scheme in GBEHM to make
it fully driven by satellite data and capable of capturing the water-
heat coupled processes within soil layers. The model was applied
to simulate the frozen soil distribution and recent changes across
the entire Tibetan Plateau (Zheng et al., 2020). The satellite-based
model simulations showed overall higher accuracy, comparing
with previous Tibetan Plateau permafrost maps generated using
ground-based measurements (Figure 3, adapted from Zheng
et al., 2020). In addition to the physics-based scheme, machine
learning and artificial intelligence have also obtained reliable
performance in solving the surface energy budget (Adnan
et al., 2017; Zhao et al., 2019) as well as in regional permafrost
mapping (Pastick et al., 2015; Aalto et al., 2018). A hybrid
approach that combines machine learning-based surface
energy balance and process-based heat-water coupled
processes seems to be a potentially useful tool for regional
mapping of Tibetan Plateau permafrost, while such studies are
still lacking.

Although currently there are very limited studies using satellite
data to directly improve model performance in simulating
Tibetan Plateau permafrost through data assimilation, many
efforts have been devoted to improving the simulation of
variables closely related to the permafrost thermal state, such
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as soil moisture (Zhao et al., 2014; Yang et al., 2020), snow cover
and snow depth (Zhang et al., 2014; Wang et al., 2020), and other
key environmental variables including air temperature and net
radiation (Li et al., 2012b; Lin et al., 2016). Through assimilating
the satellite-based microwave brightness temperature at 6.9 and
18.7 GHz, Yang et al. (2007a) found the accuracy of simulated
surface energy budget was improved. Lin et al. (2016) found that
assimilating MODIS snow cover would be especially important in
reducing uncertainties in air temperature predictions in the
Tibetan Plateau. Those results could potentially improve the
model simulated soil thermal regime and thus permafrost
distribution. Despite its potential advantages in improving
frozen soil simulation, the application of data assimilation is
greatly limited due to large uncertainties in current satellite
products and retrieval algorithms in the Tibetan Plateau
(Chen et al., 2017). In addition, satellite-based soil moisture
and snow cover retrievals from passive microwave remote
sensing data have generally coarse spatial resolution, and
appropriate downscaling scheme is needed to characterize the
spatial heterogeneities within the coarse-grid in the mountain
areas (Zhao et al., 2014).

DISCUSSION

Unique Challenges in Tibetan Plateau
Permafrost Monitoring
Unique environmental conditions in the Tibetan Plateau result in
permafrost characteristics different from that in the northern high
latitudes or other alpine environments as discussed above. The
topography in the Tibetan Plateau is complex and characterized by
strong heterogeneity at small spatial scales, exerting strong control
on local permafrost distribution (Luo et al., 2012), while most
satellite data or models have relatively coarse resolutions (>1 km)
and cannot well represent such local-scale variability (Yang et al.,

2010). Moreover, the complex topography in the Tibetan Plateau
can result in strong spatial heterogeneity in local-scale snow cover
and land surface temperature conditions, which adds additional
uncertainties to satellite-based freeze/thaw detection (Zhao et al.,
2017b; Dai et al., 2018). For example, snow accumulated in shady
areas can result in strong scattering, impacting the accuracy of
coarse-resolution passivemicrowave remote sensing retrievals (Dai
et al., 2017). Accurately accounting for the impact of topography
on Tibetan Plateau soil freeze/thaw dynamics and permafrost
distribution requires improved remote sensing algorithms and
models.

Other surface or subsurface conditions affecting the Tibetan
Plateau permafrost are also different from those in the high-
latitude regions. The Arctic is mostly underlain by continuous
permafrost (Brown et al., 1997), characterized by overall high soil
carbon content, thicker snow cover and more saturated soil
condition (Hinzman et al., 2013). Previous study showed the
uncertainty in spatial and vertical soil organic distribution is the
main factor affecting the model simulated active layer thickness
in Alaska, followed by the impacts of soil moisture (Yi et al.,
2018b). The timing and amount of snow cover also play an
important role in affecting pan-Arctic soil temperatures,
especially in deeper soils, due to its strong insulation effects
(Yi et al., 2015; Jones et al., 2016). However, the frozen
ground in the Tibetan Plateau is generally characterized by
unsaturated soils, low organic carbon content, shallow snow
cover, and shorter snow duration (Li et al., 2008; Kang et al.,
2010). Large uncertainties exist in Tibetan Plateau remote sensing
and model soil moisture products due to strong spatial and
vertical variability in soil moisture. The uncertainties limit
their usefulness in regional permafrost monitoring (Han et al.,
2015; Bi et al., 2016). For example, most InSAR-based active layer
retrieval algorithms assume a saturated soil profile within the
active layer, while Tibetan Plateau permafrost generally shows a
much deeper and drier active layer compared with that in the

FIGURE 3 |Mean spatial patterns of permafrost distribution (A) and active layer thickness (B) over the Tibetan Plateau during the period of 2002–2016, simulated
using a remote sensing driven hydrology model (Zheng et al., 2019b; Zheng et al., 2020). The satellite-based permafrost map indicates that permafrost and seasonally
frozen ground account for ∼37% and ∼56% of the Tibetan Plateau respectively, with an overall accuracy of 79.3–90.7% in identifying permafrost boreholes and
76.5–86.4% in identifying seasonally frozen ground boreholes. The accuracy is generally higher than permafrost maps generated using ground-stations, which
demonstrates the advantage of satellite remote sensing-based methods in simulating frozen soils in data-scarce regions.
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Arctic region (Jia et al., 2017). Other Tibetan Plateau
environmental factors also need to be carefully considered in
model parameterization. For example, the insulation effects of
soil organic carbon in the Tibetan Plateau is likely limited due to
its lower content; however, soil carbon content can significantly
affect Tibetan Plateau soil freeze/thaw dynamics through altering
the soil hydraulic properties and soil moisture distribution (Zhou
et al., 2013; Jiang et al., 2020). Shallow snow cover may have a
cooling effect on subsurface soil temperature through reducing
the absorption of solar radiation (Wang et al., 2020). In addition,
the coarse-fragment soil with a larger thermal conductivity is
widespread in the Tibetan Plateau, unlike the prevailing peat soils
in the Arctic. This should be considered in the model
parameterization when simulating the Tibetan Plateau
permafrost (Arocena et al., 2012; Pan et al., 2017; Yi et al., 2018a).

Potential of Geophysical Measurements in
Regional Permafrost Studies
Current satellite remote sensing cannot directly detect deep soils
and the permafrost, while geophysical techniques have been
proven to be useful for subsurface soil characterization and
permafrost detection in a minimally invasive manner.
Examples of geophysical approaches include thermistors and
dielectric sensors, ground penetrating radar, and
electromagnetic methods (Dafflon et al., 2016). Among these
techniques, electromagnetic methods are becoming increasingly
popular, which calculates the ground conductivity or resistivity
through measuring the changes in the eddy currents and induced
magnetic fields in the subsurface (Hauck et al., 2001). Based on
the distinct difference of resistivity between frozen and unfrozen
materials, the electromagnetic method can detect permafrost
existence with a relatively high spatial resolution. It has the
advantage of being sensitive to the liquid soil water content,
and providing information on the structure and content of the
deep soil layer, which is lacking but usually required by models
(Minsley et al., 2012; Mikucki et al., 2015). In addition to the
surface geophysical measurements, airborne electromagnetic
methods have been widely used in the polar regions to detect
the permafrost over diverse landscapes at the regional scale
(Minsley et al., 2012; Rey et al., 2019). Airborne
electromagnetic methods have less terrain-induced noise than
ground measurements, and may be particular useful for
permafrost mapping in mountain regions (Hauck et al., 2001;
Su et al., 2020), while such applications are still lacking in the
Tibetan region.

The geophysical measurements in combination with other
datasets have shown great potential to improve model
representation of subsurface properties in permafrost region.
For example, Dafflon et al. (2016) combined electromagnetic
method and other types of observations, and successfully mapped
subsurface variability in polygon shaped Arctic tundra area and
document the key controls on the spatial distribution of soil
properties. Léger et al. (2019) used the soil temperature data from
a spatially distributed temperature profiling system and electrical
resistivity data to identify correspondences between surface and
subsurface property distribution in discontinuous permafrost

regions. The results from these studies provide the basis for
model parameterization and initialization, while other studies
have directly used such observations to improve process
representation in the permafrost models (Tran et al., 2017,
Tran et al., 2018). Due to strong influences of organic carbon
content on soil hydrological-thermal parameters, Tran et al.
(2017) performed joint inversion of multiple datasets including
soil temperature, moisture and electrical resistivity data to
estimate the soil organic carbon profile along a transect in
Barrow, Alaska, through linking the petrophysical and
geophysical models with the CLM model. Combining the
CLM model and electrical resistivity data, a follow-on study
further investigated the soil thaw depth and its controlling
factor at a high spatiotemporal resolution over a long period
(Tran et al., 2018). However, it should be noted that additional
errors may be introduced into the model estimates due to
uncertainties in electrical resistivity inversion method and
retrievals.

Improving Model Representation of Spatial
Heterogeneity
An important feature of permafrost affected landscapes is the
large spatial heterogeneity in soil active layer conditions, which
are generally poorly represented in global land models (Muster
et al., 2012; Mishra et al., 2017). Information on active layer soil
conditions at landscape scales is needed to better represent the
spatial heterogeneity and scaling functions in global models and
reconcile coarser model simulations with more extreme local
heterogeneity in active layer and permafrost conditions. Many
studies have combined in-situ measurements, satellite remote
sensing and models to address this problem. However, most
studies focus on the high-latitude permafrost landscapes while
Tibetan Plateau permafrost studies represent a relatively new
research topic. Therefore, we summarize relevant studies in the
high-latitudes, and hope to provide some insights for similar
applications to the Tibetan Plateau region.

Local to landscape scale variations in active layer conditions
can be effectively monitored using in-situ ground measurements
(Brown et al., 2000; Romanovsky et al., 2010) or ground-based
remote sensing including ground penetrating radar and electrical
resistivity measurements (Hubbard et al., 2013; Schaefer et al.,
2015). While these methods provide detailed assessments of
active layer properties, they are generally applied over limited
local areas (<1 km2) and are unsuitable for mapping and
monitoring over large regions. Regionally refined active layer
products upscaled from carefully designed in-situ network
measurements using remote sensing based geospatial data
layers offer the potential to improve the representation of
permafrost active layer properties in global land models.
Earlier studies used empirical models driven by in-situ ground
observations to map permafrost and active layer properties over
larger areas (e.g., Anisimov et al., 2002; Panda et al., 2010). More
recent studies used machine learning data-fusion approaches and
remote sensing data, including optical-infrared and LIDAR data,
to extend ground-based or airborne measurements to produce
regional active layer and permafrost maps (Hubbard et al., 2013;
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Pastick et al., 2015). Similar as active layer thickness, a variety of
methods including geospatial analysis and machine-learning
data-driven approaches have been applied to upscale in-situ
soil organic carbon content and soil moisture measurements
to provide grid-cell mean estimates at a large footprint for
direct comparison with satellite or model-based products (e.g.,
Mishra and Riley, 2015; Clewley et al., 2017).

The above spatial analysis and datasets provide critically
needed information on permafrost distribution for global
model parameterization and validation (Mishra et al., 2017).
Previous studies have demonstrated the importance of
considering sub-grid scale variability in land cover and surface
properties in large-scale global models to accurately simulate
water, energy and carbon exchange in permafrost landscapes
(Liston, 2004; Gouttevin et al., 2012). However, how to represent
those local effects to facilitate upscaling of model simulated water,
energy and carbon fluxes remains a challenge (Muster et al.,
2012). Potential improvements may include statistical
representation of spatial distribution and temporal changes in
the surface variables related to permafrost properties. For
example, Zhang et al. (2014) used statistical functions derived
from field measurements to characterize the spatial variability of
surface ground and soil conditions and incorporated this
information into a process model to simulate the frequency of
permafrost occurrence at very high spatial (<1 km) resolution.
Much better accuracy in model simulated ground temperatures in
Norway was achieved when using a gamma distribution to
represent sub-grid variability in snow distribution than using
grid-cell average snow depth (Gisnås et al., 2016). Yi et al. (2018b)
also found the model better represented the statistical distribution
of active layer thickness when using a logistic distribution
consistent with the spatial distribution of surface wetness
derived from the P-band radar data to represent sub-grid
variability of organic layer thickness. In addition, the zonation
approach can combine diverse datasets over different scales and
identify the large-scale zones that have distinct properties, which
can be used to characterize the spatial heterogeneity in complex
permafrost environments. For example, Wainwright et al. (2015)
employed a nested polygon geomorphic zonation approach to
characterize the distributions of environmental properties in
Arctic tundra and assess their impact on ecosystem carbon
fluxes. The combination of zonation approach and emerging
technologies such as machine learning approach can generate
spatially-explicit datasets from a diverse range of observations
supporting the model needs of parameterization and
initialization, and may have great potential in permafrost
research (Hubbard et al., 2018; Hubbard et al., 2020).

RESEARCH PRIORITIES AND
RECOMMENDATIONS

We have reviewed the state of knowledge for Tibetan Plateau
permafrost, soil freeze/thaw state, and summarized recent
progress in using satellite remote sensing data and models to
monitor Tibetan Plateau permafrost. This exercise has revealed
important gaps in capabilities for monitoring and modeling the

current state of Tibetan Plateau permafrost as well as projecting
its future trajectory. Here we recommend the following research
priorities to address these gaps.

Satellite-based optical and infrared remote sensing provide high
spatial resolution land surface conditions. These techniques have great
potential for producing Tibetan Plateau classification maps and
determining correlations between these classifications and
permafrost distributions, especially in regional-scale applications.
Particularly, high-resolution imagery (<10m scale) can be used to
capture the high degree of spatial heterogeneity in the Tibetan Plateau
and further infer the related permafrost states, such as using high-
resolution imaging of swamps, wetlands and small watersheds to
monitor changes in the hydrologic state thatmay be coupledwith local
permafrost degradation.

Microwave remote sensing has shown great potential in
surface freeze/thaw and permafrost monitoring due to its
strong sensitivity to soil water content and phase changes, its
ability to penetrate clouds, and providing all-weather monitoring
of the land surface. However, current microwave remote sensing
methods are limited to detections in the upper soil layer within a
few centimeters of the surface. Deeper soil remote sensing
requires lower frequency surveys (such as P-band SAR) and
multi-frequency observations (such as joint L- and P-band
SAR) to enable soil vertical profile retrievals. These sensors
and corresponding algorithms should be developed. InSAR
have been widely used to map regional subsidence and active
layer thickness in the Tibetan Plateau, but more systematic
subsidence mapping is still needed, with particular emphasis
on the permafrost transition zone that is vulnerable to abrupt
thaw and degradation. Improved approaches and regional data
such as accurate DEM and soil moisture information are also
needed to support InSAR active layer retrieval.

The apparent scarcity of local-scale observations greatly limits
our process understanding in the Tibetan Plateau permafrost
area. Therefore, we also call for the expansion of the in-situ
sampling network, particularly in the western Tibetan Plateau,
along the transition zones between discontinuous and sporadic
permafrost zones, and along elevation gradients (Figure 1).
Additional information on deep soil temperature, ground ice
content, more consistent soil moisture and dielectric profiles,
improved mapping of soil texture and soil organic content are
required for improving remote sensing algorithms and regional
models. Geophysical measurements especially airborne
electromagnetic method can obtain information on deep
ground structure and unfrozen water content, and provide
more spatially extensive measurements than point-scale
observations, and should be considered when expanding the
local-scale observational network in the Tibetan Plateau.

Integrating local-scale observations, remote sensing data with
process-based models will be an effective way to monitor regional
permafrost and project its future state. However, a number of
factors limit such applications in Tibetan Plateau permafrost
research, including but not limiting to large uncertainties in
current satellite products for the Tibetan Plateau area,
mismatch between model input data needs and information
provided by current satellite sensors, insufficient accounting
for spatial heterogeneity impact on permafrost distribution.
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Better approaches to combine diverse datasets at different spatial
and temporal scales with models are needed to address the above
challenges, and should be developed. In addition, current model
scheme and parameterization also require improvements to
better reproduce the unique soil freeze/thaw characteristics in
the Tibetan Plateau region.
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Initially, cryohydrology was referred to as hydrology involving low temperatures, for
example, the hydrological study of snow, ice, frozen ground, and cold water. This
discipline broadened with the development of cryospheric science and now involves
hydrological processes of various cryosphere elements systematically coupled with river
basin hydrological processes. However, limited studies have introduced the
characteristics and discipline connotations of cryohydrology from a perspective of
cryospheric science. Here, we reviewed the evolution of the connotations of
cryohydrology and analyzed its hydrological basis and discipline system. Three major
conclusions were drawn. (1) Cryohydrology was developed based on traditional hydrology
for a single element of the cryosphere and focuses on the hydrological functions of the
cryosphere and its impact on the water cycle and water supply to other spheres. (2) The
hydrological basis of cryohydrology can be summarized as water conservation, runoff
recharge, and hydrological regulation. In detail, the water conservation function is primarily
expressed as “source of freshwater” and “cold and wet islands,” the runoff recharge
function is concerned with water supply, and the regulation function is effective at intra-
and inter-annual scales. (3) The core research issues of cryohydrology are research
methods, hydrological processes, watershed functions, and regional impact. The
important characteristics of cryohydrology are frequent water phase transitions and
high variability across spatial and temporal scales. Cryohydrology aims to deepen the
understanding of the theoretical and cognitive levels of its mechanisms and processes,
accurately quantify the hydrological functions of the basin, and promote understanding of
the ecological and environmental impacts of the cryosphere.
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INTRODUCTION

The cryosphere refers to the negative temperature zone of the
surface of the Earth, whichmostly exists in the form of solid water
(Steffen et al., 2012). The elements of the cryosphere primarily
include glaciers, ice sheets, frozen ground, snow cover, sea ice,
river ice, and lake ice (IPCC, 2013). The interaction between the
cryosphere and the hydrosphere is an important hydrological
process affecting the Earth’s climate (Slaymaker and Kelly, 2009;
French and Slaymaker, 2012; National Academy of Sciences,
2012; Yao et al., 2012; Qin et al., 2018), which in turn affects
the global sea level and global water-cycle processes (Ding et al.,
2017). Therefore, the cryosphere is unique and plays a critical role
in global water cycles (Qin et al., 2018).

Under the intensified impact of climate change, in the past
decade, the hydrological impacts of the cryosphere have been
increasing from the Arctic (Li et al., 2010) to the Tibetan Plateau
(Immerzeel et al., 2010; Yao et al., 2019), from the Andes
(Masiokas et al., 2010) to the Alps (Bavay et al., 2013;
Pellicciotti et al., 2014), from the endorheic river basins
(Wang et al., 2009; Zhao et al., 2015) to Siberia (Liljedahl
et al., 2016; Kalyuzhnyi and Lavrov, 2017), and from high-
latitude oceans to the global sea level (IPCC, 2013). Therefore,
the hydrological processes of the cryosphere have become a
popular topic within water science for climate change,
focusing on global sea level change and the concept of “water
towers,” for several large rivers and their downstream basins (e.g.,
Georg et al., 2010; Immerzeel et al., 2010, 2019; Sorg et al., 2012;
Biemans et al., 2019; Ye and Lau, 2019).

From the perspective of disciplinary systems, previous studies on
cryosphere water issues focused on the hydrological processes of an
individual element of the cryosphere, such as glacial hydrology
(Yang, 1991; Singh, 2001; Irvine-Fynn et al., 2011), permafrost
hydrology (Woo, 2012), and snow hydrology (Singh, 2001;
DeWalle and Rango, 2008; Ye and Lau, 2019). For example,
research on glacial hydrology primarily involves glacier melt,
runoff generation, and the role of glacial runoff in the watershed
(Ding et al., 2017; Immerzeel et al., 2019; Tang et al., 2019). With the
increasing impact of global warming on the cryosphere, the
hydrological processes of different cryosphere elements and their
impacts often occur simultaneously in the same watershed or region
(Ding et al., 2017). Water issues related to the cryosphere can no
longer be resolved from the process and impact of a single cryosphere
element. It is necessary to examine the water problems of the
cryosphere from the integrated perspective of cryospheric science,
which can be called cryospheric hydrology, or cryohydrology.

Initially, cryohyrdrology was referred to as hydrology at low
temperatures, for example the hydrological study of snow, ice,
frozen ground, and cold water (Woo, 2019). However, the
discipline connotation of cryohydrology needs to be broadened
from the perspective of cryospheric science. To accurately
understand the hydrological effects of different cryosphere
elements and the overall hydrological process of the basin
under the influence of climate change, it is necessary to
consider the hydrological processes of various cryosphere
elements systematically and couple them with river basin
hydrological processes. This is critical for properly responding

to climate change and satisfying the social and economic needs of
cryosphere water issues. The integrated view of different
hydrological processes of the cryosphere is the core idea
behind the term cryohydrology.

Although the term cryohydrology has been mentioned or used
in some studies (Phillips et al., 2013; Singh, 2017;Woo, 2019), few
studies have named it as an independent discipline system
integrating the common and different hydrological
characteristics of cryosphere elements. In this study, by
condensing the core academic thoughts behind cryohydrology,
we attempt to comprehensively construct its research framework
from the succession of the discipline, the common hydrological
characteristics of the cryosphere, to the research content, and the
discipline’s constituents. This study will help understand the
integrated hydrological functions of the different elements of
the cryosphere at the regional or global scale. The paper is
organized as follows: Introduction introduced the background
and the aim of the research; Developing the Cryohydrology
Discipline describes the development of the cryohydrology
discipline including the origin of the cryohydrology concept,
and its relationship and difference with cold region hydrology;
Hydrological Basis of Cryohydrology analyzes the hydrological
basis of cryohydrology including water conservation, runoff
recharge, and hydrological regulation; Discipline System of
Cryohydrology depicts the discipline system of cryohydrology;
and Summary and Perspective presents summary and perspective.

DEVELOPING THE CRYOHYDROLOGY
DISCIPLINE

Origin of the Cryohydrology Concept
Cryospheric hydrology studies have focused on a single element
of the cryosphere for a long time. For example, snowmelt runoff
modelling started in the 1960s based on papers by Martinec
(1960), Martinec (1965). Before that, also in the USA, snow
hydrological investigations had already been carried out (US
Army Snow Hydrology, 1956). The earliest attempts at
quantifying the glacial meltwater proportion of watershed yield
were achieved by leveraging glacier mass balance, climate, and
discharge data (Collier, 1958; Henoch 1971), while a glacier
physics investigation was done on the Penny Ice Cap, Baffin
Island (Ward, 1955). The surface hydrology of permafrost was
summarized by Dingman (1971) and Church (1974), while in situ
observations and cursory measurements were made in
permafrost areas in the early half of the twentieth century by
the Cold Regions Research and Engineering Laboratory
(CRREL), USA (Sellmann, 1967). With these early research
works on glaciers, frozen ground, snow cover, or other
elements, corresponding studies on glacier hydrological
processes and snow hydrology were performed, and a
discipline system based on the methodology of different
elements of the cryosphere was gradually formed, including
glacier hydrology (Yang, 1991), snow hydrology (DeWalle and
Rango, 2008), and permafrost hydrology (Woo, 2012). They
either belonged to a branch of glaciology or became a special
part of hydrology.
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In these studies, water issues related to cryosphere elements
were often attributed to cold region hydrology (Yang et al., 2000)
or permafrost hydrology (Woo, 2012). However, the term cold
region hydrology was used in a broad sense and lacks scientific
definition. Sometimes, cold region hydrology is limited to the
hydrology of the permafrost region (Yang et al., 2000; Woo,
2012). Generally, it refers to hydrology in cold regions, including
the hydrological phenomena of glaciers, frozen ground, and snow
cover, as well as river and lake ice (Woo, 2008; Ding et al., 2017).
Studies on multi-element hydrological phenomena of the
cryosphere are sometimes also expressed as permafrost
hydrology, particularly by Canadian scholars (Woo, 2012).
Whether called permafrost hydrology or cold region
hydrology, the research subjects concentrate on the
hydrological issues of a certain cryosphere element. The
discipline system inherits the respective disciplinary
characteristics of each single cryosphere element and focuses
on the intersection of individual cryosphere elements. In terms of
research content and disciplinary structure, they are the same as
the subject on a single element of the cryosphere, such as glacier
hydrology and snow hydrology. The combined effect of different
elements of the cryosphere at basinal, regional, and global scales
were rarely addressed.

With the recent development of cryospheric science and the
increasing socioeconomic demand for water resources from the
cryosphere for global sustainability, research within the
cryohydrology discipline urgently requires a transition from
the traditional single element perspective to a multi-element,
integrated, comprehensive view. Therefore, integrating
cryosphere water issues into one research framework and
building its disciplinary system from a perspective of
cryospheric science is inevitable. In this discipline system, the
hydro-thermal processes related to glaciers, frozen ground, snow
cover, and lake ice, and the hydrological function of the
cryosphere elements need to be considered within the same
framework.

Therefore, cryohydrology can be seen as both a traditional and
an emerging discipline. Traditionally, the theory and
methodology of mass balance, ablation, hydrothermal
processes, and generation and convergence mechanisms of
single cryosphere elements are the theoretical basis of
cryohydrology. However, owing to the increasing impact of
global warming on the cryosphere, the hydrological processes
and influences of cryosphere elements are receiving broader
attention. Water issues related to the cryosphere can no longer
be understood separately from the traditional hydrology of a
single cryosphere element. It is necessary tomove to a cryospheric
science perspective, thereby promoting the formation of the
cryohydrology discipline.

Relationship Between Cryohydrology and
Cryospheric Science
Cryospheric science studies the formation and evolution of the
cryosphere, as well as the interactions between the cryosphere and
other spheres of the environment, particularly the impacts of the
cryosphere on the rest of the environment and adaptation

mechanisms (Qin et al., 2017; Qin et al., 2018). Cryospheric
science includes: i) the mechanisms of formation, development
and evolution of cryosphere elements, and their interactions; ii)
the interaction between each element and the whole cryosphere,
and other earth spheres including atmosphere, hydrosphere,
lithosphere, and biosphere, among which the intersection of
cryosphere and hydrosphere focus on the water cycle and
water availability (Figure 1A); and iii) the impact and risk of
cryospheric change on other earth spheres, including the
relationship between the cryosphere and social sustainable
development, particularly adaptation and countermeasures to
address cryospheric changes at global and regional scales (Qin
et al., 2018). Cryohydrology is accompanied by the simultaneous
development of cryospheric science, and several of its research
fields are closely related to the elements of cryospheric Science.
From the perspective of hydrology, the hydrological effect, water
cycle, and water resources of the cryosphere elements are the
focus of cryohydrology.

The research tree of cryohydrology is highly similar to that of
cryospheric science, and the research contents of cryohydrology
make up a part of cryospheric science. In the cryospheric science
discipline system, cryohydrology is located together with the
impacts of water availability, sea level, and thermohaline
circulation at the applied basic research level (Figure 1B). The
formation mechanism and changes in cryosphere elements at the
basic research level are the scientific basis for cryohydrology. The
service, adaptation, and sustainability of water availability, and
sea level change at the applied research level are the outputs of
cryohydrology (Figure 1B).

Scope of Cryohydrology and Cold Region
Hydrology
Among the cryosphere elements, except for some unstable snow
cover (snow days less than two months) and short-term frozen
ground (freezing periods less than fifteen days), most elements
are stable and generally persist long-term. There is no commonly
accepted definition for cold regions. They generally refer to high-
latitude or high-altitude regions. Therefore, hydrological research
in these regions has generally been called cold region hydrology
(Yang et al., 2000).

The cold region can be regarded as the core area affected by the
cryosphere, but does not represent its full extent, which is
significantly larger. Theoretically, cryohydrology research
involves all hydrological phenomena and laws in all extents,
including the core area and impact area of the cryosphere, but
cold region hydrology primarily involves water issues in the core
areas of the cryosphere. Both cryohydrology and cold region
hydrology concentrate on cryosphere elements with active
hydrological functions and their impacts, thus from this
perspective cold region hydrology and cryohydrology are the same.

The major difference between cold region hydrology and
cryohydrology is that cold region hydrology focuses more on
the special hydrological process of different cryosphere elements,
including parts of or all the research methods, processes/
mechanisms, basinal functions, and global/regional impacts
(Figure 2). But cryohydrology focuses more on the common

Frontiers in Earth Science | www.frontiersin.org December 2020 | Volume 8 | Article 5747073

Ding et al. Discipline System of Cryohydrology

88

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


characteristics of different cryosphere elements, such as the
research methods of all cryosphere elements including ice
shelf/iceberg, sea ice, snow cover, frozen ground, glacier/ice
sheet, and the combined impact of all the elements at the
basinal/global scale (Figure 2). For example, the study of the
importance and vulnerability of the world’s water towers
(Immerzeel et al., 2019) concerns not only their water-
supplying role in the cryosphere’s core area, but also the
downstream dependence of the ecosystem and society in the
cryosphere’s impact areas. This is typical of a cryohydrology
study, but not a typical study of cold region hydrology.

Therefore, cold region hydrology studies focus on single
cryosphere elements from a vertical perspective of method,
process, and impact, while cryohydrology plays with the
common cryosphere hydrological law of associated cryosphere
elements as much as possible. For example, in cold region
hydrology, glacier, permafrost, snow, river/lake ice, and sea ice
are all affected by water formation (generation and convergence
processes), change (increased and decreased ice volume), and
impact (the function of runoff and water resources in basins,
regions, and the world) (Figure 2). However, in the
cryohydrology discipline system, the hydrothermal processes
and hydrological functions in basins related to glaciers, frozen
ground, snow, and river ice are studied within one framework
(Figure 2). In addition, the cold region has area attributes, and its
scope and boundaries are blurred, thus, the scientific concept of
cold region hydrology is not as explicit as cryohydrology.

HYDROLOGICAL BASIS OF
CRYOHYDROLOGY

The hydrological functions of different cryosphere elements and
their integrated basinwide impacts are the basis of cryohydrology.

They are primarily manifested as water conservation, runoff
recharge, and water resource regulation.

Water Conservation
The water conservation function of cryohydrology includes two
main aspects: the source of freshwater, and the cold and wet
island effect. Owing to the intrinsic nature of high altitudes or
high latitudes, the cryosphere is the birthplace of several of the
largest rivers in the world. Several rivers originate from the high
altitudes and mountains of North America, the South American
Andes, Northern Europe, Siberia, the Alps, and Central Asia.
Water from the cryosphere has a significant impact on the
sustainable use of water resources in these areas and their
downstream basins and were thus called the “water towers”
(Immerzeel et al., 2019). The Qinghai-Tibet Plateau, which is
also called the Asia’s water tower, is the source of the Yangtze
River, Yellow River, Tarim River, Nu River, Lancang River, Yili
River, Irtysh River, Yarlung Zangbo River, Indus River, Ganges
River, etc. (Ding et al., 2017; Yao et al., 2019). The total snowmelt
contribution across the full basins above 2000 m is between 65
and 72% for the Syr Darya, Amu Darya, Indus, and the
Brahmaputra, and 43% for the Ganges (Armstrong et al.,
2019). Freshwater sources in cryohydrology are different from
rainfall runoff sources. A frozen water source converts solid water
to liquid water, and releases past water storage. The cryosphere is
a natural reservoir that contains frozen stock which accumulates
water during the cold season and releases water during the warm
season when water demand is high. The reduction of water
storage volume requires long-term climate fluctuations.
Therefore, the freshwater sources function of cryohydrology to
some extent provides permanent and inexhaustible water sources.
The renewal cycle of different elements of cryohydrology is
varied. Glacier renewal cycles take hundreds to thousands of
years, while ice sheet and permafrost cycles take an even longer

FIGURE 1 |Research content tree of hydrology (A) and (B) cryospheric science (after Qin et al., 2018) aswell as and the relationship between hydrology, cryohydrology,
and cryospheric science. Note that cryohydrology focuses on the water cycle and water availability, and the intersection between cryospheric science and hydrology.
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period of time. Therefore, while the cryosphere constantly
receives material supplies, its melting water also consumes
past accumulations. The release of historical accumulated
water depends on the mass gain or loss status of the elements
of the cryosphere. Under the influence of continuous warming,
the cryosphere is in negative mass balance, which indicates that it
has less water storage. The freshwater source function thus
becomes more important under a warming world, particularly
when river runoff is projected to decrease.

Another aspect of water conservation is the cold and wet
island effect, which has not been fully addressed. As a widely
distributed cold sphere (cold island), the cryosphere changes the
temperature and humidity field and circulation patterns of the
region. It can effectively trap and condense water vapor to form
more local precipitation, thereby forming a local cold and humid
micro environment of climate (wet island) and strengthening the
horizontal turbulence and intensifying the internal turbulence
field, which effectively conserves water sources (Ding and Zhang,
2018; Chen et al., 2019). In the meantime, the local convection of
endorheic river basins is strengthened, and the recycled moisture
over downstream deserts like the Gobi was possibly transported
to the alpine region through atmospheric water vapor cycling.
This increases the precipitation in alpine regions and strengthens
the wet island effect of the high mountain area (Chen et al., 2019).

For example, the upper reach of Hei and Shule river basins in
China’s Qilian Mountains are primarily composed of glaciers,
alpine cold desert, alpine meadow, and alpine steppe permafrost
regions. The runoff from the Hei river was simulated by a
distributed heat-water coupled (DWHC) model (Chen et al.,
2008), while the runoff from the Shule river was simulated by

a variable infiltration capacity (VIC-CAS) model that coupled a
glacier scheme with a VIC-3L model (Zhao et al., 2015; Zhang
and Sheng, 2019). Modeling results suggest that the glacier-alpine
cold desert-alpine meadow and steppe of the two basins
contribute more than 85% of the total runoff for the entire
basin. The isotope trace method also proved that 80.2% of the
annual total mountainous runoff was generated at the alpine
permafrost-snow-ice zone at an altitude of above 3600 m a. s. l.
(Wang et al.,2009). The annual precipitation over a glacier is
nearly twice that over forests and shrubland, both in the Hei and
the Shule river basins, which is consistent with the reported
results that precipitation in the cryosphere and plain regions of
the endorheic basin in arid regions of China can differ by
5–10 times (Yang, 1991; Ding, 1992; Chen et al., 2018). These
phenomena are difficult to explain by large-scale circulation, it
can only be explained by the cold and humid island effect of
cryohydrology. However, the cold and wet island effect of
cryohydrology still needs further quantitative study from the
inter-discipline of climatology and hydrology.

Runoff Recharge
A well-known hydrological function of cryohydrology is runoff
recharge. As a solid water reservoir, the cryosphere is an
important freshwater resource. The resource attributes are
expressed in terms of total storage volume and annual
melting recharge. Reservoirs store ice present in the
cryosphere and participate in river runoff and ocean
circulation by melting from their frozen state. The annual
river recharge by the cryosphere is an important component
of land surface runoff.

FIGURE 2 | Scope of cryohydrology and cold region hydrology. Note that cryohydrology focuses on the common hydrological law of different elements of the
cryosphere, while cold region hydrology focuses on the content of the research method, processes/mechanism, basinal function, and global/regional impact of the
single element of the cryosphere.

Frontiers in Earth Science | www.frontiersin.org December 2020 | Volume 8 | Article 5747075

Ding et al. Discipline System of Cryohydrology

90

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Approximately 68.7% of global freshwater resources are stored
in the cryosphere, with glaciers and ice sheets most dominant.
The ice storage in both the Antarctic and Greenland ice sheets,
and mountain glaciers are approximately 56.6, 7.3, and 0.4% of
global freshwater, respectively. The annual maximum water
equivalent of snow in the northern hemisphere is
approximately 3 × 103 km3 (IPCC, 2013), and one recent
research suggested that the seasonal snowpack pool is between
2.6 and 3.5 × 103 km3(Abbott et al., 2019). Based on the Second
Chinese Glacier Inventory (SCGI), China has 48,571 glaciers with
a total area of 51,770 km2, accounting for approximately 7.1% of
the world’s glacier area (except for Antarctica and Greenland ice
sheets), with ice reserves of 4,500 km3 (Liu et al., 2015). The
ground ice in the permafrost of China’s Tibetan Plateau has been
estimated as 9,530 km3 (Zhao et al., 2010). According to the latest
survey data, the ground ice content in the Tibetan Plateau has
been updated to 12,700 km3 (Zhao et al., 2019), which is 2.8 times
the ice storage in glaciers. Snow cover in China is primarily
concentrated in Xinjiang, the Qinghai–Tibet Plateau, and in
northeast China. The annual maximum snow water equivalent
of the three snow covered areas is approximately 960 × 108 m3, or
approximately 10% of the average annual runoff of the Yangtze
River (Li et al., 2008).

On a global scale, different cryosphere elements influence the
hydrological processes and water cycle on land surfaces and in
the ocean in various ways. Arctic sea ice and snow meltwater
greatly exceed water in the precipitation-evaporation processes
of the Antarctic and Arctic oceans beyond 60° latitude. They
significantly affect the strength of deep-water convection and
thereby ocean thermohaline circulation. The contributions to
sea level rise of thermal expansion by ocean warming of the
cryosphere are nearly stable since industrialization began, if we
ignore the impact of changes in land water storage. The
projected contribution to global average sea level rise from
the cryosphere will exceed that of thermal expansion (Ding
and Zhang, 2015). At a regional scale, the cryosphere affects the
seasonal distribution of river discharge under changed climate.
For example, in the snowmelt-dominated Kelan River basin in
the Altai mountains in China, the seasonal distribution of river
discharge has changed in the last few decades. The permafrost
degradation has significantly affected runoff regulation of the
ratio of winter runoff to annual runoff. The ratio of maximum
monthly runoff (Qmax) and minimum monthly runoff (Qmin)
had changed both in the Arctic and in China. The glacier runoff
in several regions has changed. For example, the estimated
glacier runoff in China by a modified monthly degree day
model (Zhang et al., 2012) has increased during the past
50 years.

The average annual glacial meltwater runoff in China was
estimated to be 630 × 108 m3 yr−1, from 1962 to 2006 (Ding et al.,
2017), which is approximately 2.2% of the total river runoff in
China and is more than the average annual runoff of the Yellow
River flowing into the sea. It is equivalent to 10.5% of the total
river runoff (5,760 × 108 m3 yr−1) of Gansu, Qinghai, Xinjiang,
and Tibet in Western China. Several rivers are supplied by
15–25% of the runoff from snowmelt in Northern China (Hu,
2013). The contribution of snowmelt runoff recharge to river

discharge in northern Xinjiang, particularly the Altai mountains,
reaches 60–70% in comparison to 40%, 20–25%, 15–20% of the
basins in the Tianshan and the QilianMountains, and the Tibetan
Plateau, respectively.

This indicates that changes in the cryosphere will inevitably
affect the global water cycle, basinal or regional hydrological
processes, and water resource utilization.

Water Resource Regulation
Compared to the water conservation and runoff recharge
functions, the hydrological regulation of cryohydrology is
more important. Elements of the cryosphere such as glaciers,
snow, and frozen ground regulate the basin wide runoff process in
different ways on seasonal, interannual, and interdecadal scales,
influencing the use of water resources downstream. Glaciers have
a function in both seasonal and interdecadal runoff regulation.
The freeze-thaw process impacts the seasonal runoff generation
and convergence processes of the basin, while the changes in
ground ice can affect the runoff and water resources for a very
long period. Snow cover primarily affects the seasonal runoff
distribution. At the basinal scale, the regulatory effect of
cryohydrology is primarily reflected in its combined effect
with rainfall runoff in mountainous areas, its regulating role in
river basin runoff by reducing drought, as well as flood mitigation
effects in different seasons and years (Ye et al., 2012; Ding and
Zhang, 2018).

The interdecadal and seasonal regulation of glaciers on runoff
is primarily reflected in solid reservoirs. The glaciers determine
the amount of meltwater based on the water (rainfall) and heat
(ablation) conditions of the basin to regulate the basin runoff
process at the seasonal scale. In this manner, the river runoff in
basins with glaciers remains relatively stable, which has a
significant role in regulating the variation in runoff (Ye et al.,
2012). This is beneficial for the use of water resources in the
downstream oases of arid areas. Studies in the Cascade
Mountains in the United States, the European Alps, and the
arid regions of China suggest that the coefficient of variation of
summer runoff in glacial-covered watersheds is significantly
lower than in other areas (Chen and Ohmura, 1990; Ye et al.,
1999; Casassa et al., 2009; Moore et al., 2009; Viviroli et al., 2011).

This regulatory capacity is related to glacier coverage in the
watershed. When the glacial coverage of a given watershed
exceeds 5% (Casassa et al., 2009; Ye et al., 2012), the
regulation of glacial meltwater runoff on river runoff is
significant. It primarily reduces the variation in annual runoff
and decreases the annual runoff variation coefficients of the basin.
Similar studies (Collins, 2006; Stahl and Moore, 2006) also
demonstrate that intra-annual runoff changes in the basin
decrease with increasing glacier coverage in basins with only
2–3% glacial coverage. When glacial coverage reaches 30–40%,
runoff tends to be stable, but when it is higher than 40%, the
variation in river runoff tends to increase (Bayard et al., 2005).

Snow cover primarily affects the seasonal distribution of river
runoff. Snow has a seasonal regulation and storage function,
which can temporarily accumulate a certain amount of water. The
curves of the snowmelt runoff process are gentler than those of
the rainfall runoff process, thereby altering the rainfall runoff
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process of the basin and achieving the effect of regulating runoff.
In addition, in cryospheric basins, when precipitation is
abundant, solid precipitation formed at high altitudes slows
the peak runoff in the form of snow, then melts after
precipitation, which regulates runoff to some extent. In the
alpine areas of the basin, there is more snowfall in summer
with short-term accumulation, which generally affects the
generation and convergence processes of river runoff.

The regulatory effect of frozen ground primarily appears as
the influence of the freezing and thawing processes on runoff.
These processes change the generation and confluence
processes of the basin at the interannual scale, while
variations in ground ice can affect the runoff and water
resources of the basin for a longer period. The runoff
generated from precipitation and snowmelt tends to be
larger under the influence of the barrier of the frozen
ground, leading to the generation of high runoff even when
the precipitation is low. In summer, seasonally frozen ground
melts. An active layer of permafrost also gradually melts and
the lower limit of the active layer descends to a deeper location.
The profile of soil moisture increases with depth, extending to
deeper soil in active layers. The underground water table over
permafrost declines, while the total water storage capacity of
soil increases. The melting permafrost and seasonally frozen
ground promotes the water storage capacity of the basin,
increases evapotranspiration, and regulates runoff by
cutting flood peaks. Existing studies (e.g., Bayard et al.,
2005; Gibsona et al., 2011; Kalyuzhnyi and Lavrov, 2012;
Liljedahl et al., 2016; Melissa and Scott, 2019; Yang et al.,
2019; Huissteden van, 2020) have suggested that under climate
change, permafrost will degrade by deepening the thickness of
the active layer, which will increase soil water storage space,
and thereby increase the amount of water from summer
precipitation stored in the active layer of permafrost,
leading to a prolonged convergence time of runoff. In the
Arctic region, the thick ground ice in the permafrost melts and
recharges to river runoff or to lakes, with climate warming.
This may lead to an increase in winter (dry season) runoff in
permafrost regions, a decrease in summer runoff, and a slower
interannual runoff process. The intensity of change is related
to the permafrost coverage of the basin.

DISCIPLINESYSTEMOFCRYOHYDROLOGY

Research Content
Cryohydrology’s discipline mainline has a method-process
function-impact, and its core research issues can be sorted out
along this mainline (Figure 3).

The research methods can be summarized as field observation
and experiments, laboratory experiments and analysis, remote
sensing and geographic information system applications, and
mathematical statistics and model simulation.

These processes and changes are the mechanisms of
cryohydrology research. The process involves three major
aspects: 1) the melting, runoff generation, and convergence
process, 2) the runoff change process, and 3) sediment and

water chemistry. The melting, runoff generation, and
convergence process includes snow/ice accumulation and
melting, snow/ice meltwater convergence, frozen ground
freeze/melt runoff generation and convergence, river/lake/sea
ice generation and migration. The runoff change process
includes characteristics of different supply to cryospheric
rivers, the cryospheric meltwater runoff process, and
cryospheric meltwater runoff projection. Sediment and water
chemistry include river sediment changes, the water chemistry
process, biogeochemical processes, and the application of water
chemistry.

Cryohydrology is hydrologically crucial at the basin scale. Its
functions include water conservation, river runoff recharge,
regulation of water resources, and alleviation of extreme
hydrological events.

Cryohydrology’s main impact is in its output to other
spheres. The above research issues in method, processes, and
function are primarily related to the hydrological characteristics
of cryosphere elements. For example, a recent study
(Musselman et al.,2018) suggested that rain-on-snow
becomes more frequent at higher elevations where seasonal
snow cover persists due to a shift from snowfall to rainfall,
with correspondingly increases the flood risk by 20–200% over
North America. When the meltwater flows into the catchment,
it mixes with rainfall runoff. In different parts of the basin,
owing to the proportion of the meltwater runoff and the impact
of the coverage of frozen ground being different, the impact of
the cryosphere on river runoff varies. The impact of
cryohydrology includes cryospheric and fresh water within
river basins, the cryosphere as part of the global water cycle,
and the cryosphere as part of sea level rise.

Discipline Characteristics
The core characteristic of cryohydrology is the phase change of
water. The largest difference between cryohydrology and
traditional hydrology is the frequent phase transitions between
the vapor-liquid-solid states of water and the associated changes
in water, energy, mass, and solute during the phase transition.
Owing to the large energy exchange during the water phase
change, the phase transition further affects the interactions
between the atmosphere, cryosphere, hydrosphere, biosphere,
and even the lithosphere. The phase transition is the link
between cryohydrology and other processes in cryospheric
science. Their high sensitivity to climate change is a common
characteristic of the cryosphere elements, and the hydrological
processes of different cryosphere elements have varied response
patterns, with complicated response processes. In a specific basin,
different elements of the cryosphere act together on river runoff,
resulting in river runoff being very sensitive to climate change. To
accurately predict runoff changes in the cryospheric basin, multi-
source data, multiple experimental measures, multiple models,
and multiple perspectives must be used together to project the
future changes of different cryosphere elements, as well as their
impact on hydrological processes.

Field observations and experiments are an important
characteristic of cryohydrology. The harsh natural
environment makes field observation difficult, resulting in very
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limited experimental data obtained for research. Meanwhile,
cryohydrology not only requires consideration of the water
cycle and water balance between different cryosphere elements
at different scales, but also the energy and mass balances between
them. Therefore, cryohydrology researchers need to conduct
several field observations and multi-measurement experiments
to satisfy the requirements of high quality in situ observations and
experimental data.

The surplus effect is another important characteristic of the
discipline. Cryohydrology not only studies the hydrological
processes of the cryosphere itself, but also considers the
hydrological impact on other regions outside the cryosphere.
This surplus feature affects basins, regions, and even the world.
The understanding of cryohydrologic processes on the
formation of water resources in related regions, the
hydrological functions of different components, and the
potential changes of different components under future
climate change scenarios are closely related to short-term,
medium-term, and long-term sustainable development. One
characteristic of cryohydrology is that it is the intersection of
several of these disciplines. From the perspective of the
mechanism, cryohydrology is a close intersection of
cryospheric science, hydrology, geography, and atmospheric
science. The phase transition processes of water and related
water chemical processes are closely related to traditional
physics and chemistry. The study of the regional and global
impact of the water cycle is also closely related to social science,
such as sustainable development and economics.

The last characteristic of cryohydrology is its varied temporal
and broad spatial scale. Depending on the content of study, the

temporal scale involved in cryohydrology ranges from hours
to hundreds of years (Figure 4). When research issues focus
on the process/mechanism, the temporal scales vary from
hours to hundreds of years, with a daily or monthly scale
as the general one. For example, the temporal scale of one
extreme hydrological event such as a moraine-dammed lake
outburst flood is generally between hours to days. When
researching basinal function, the temporal scale always
ranges from one to hundreds of years. For example, the
intensity and frequency of extreme hydrological events
probably changes under climate change, and its impact on
basin also varies. When focus is on the impact of the
cryosphere’s freshwater cycle on the ocean, the temporal
scale can reach up to a millennial scale or even longer. The
spatial scales of cryohydrology range from points to global
scales. The process/mechanism is generally carried out at a
point/slope/field scale. The hydrological function is analyzed
mostly at the basinal scale, and the impact of cryohydrology is
generally illustrated at the regional/global scale (Figure 4).
Our study found that the time scale generally increases with
the expansion of the spatial scale.

Relationship Between Cryohydrology and
Other Disciplines
The basis of the cryohydrology discipline comes from other related
specialties. Based on the existing research foundation and scientific
understanding, energy balance and water balance are the physical
basis of cryohydrology and are themost basic theoretical foundation
supporting its development. (Figure 5). In terms of the energy

FIGURE 3 | The core research issues of cryohydrology along the discipline mainline which primarily include method (in situ observation, laboratory experiment,
remote sensing application, and statistics/model), processes (melting, runoff generation and convergence, runoff changes, and sediment and chemistry), function (water
conservation, runoff recharge, regulation, and extreme events), and impact (freshwater in basin, global water cycle, and sea level rise).
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balance theory, cryohydrology is more related to cryospheric science
and atmospheric science, while water balance is more related to
hydrology and water resource science. Thus, the most important
basic disciplines of cryohydrology are cryospheric science and
hydrology (Figure 1). Meanwhile, water resource science,
geography, and atmospheric science are also inseparable from
cryohydrology. These are all its important basic and foundational
disciplines (Figure 5).

From this view, glaciers, snow cover, frozen ground, river ice,
lake ice, sea ice, ice sheets, ice shelves, icebergs, and other
elements of the cryosphere can be considered as research
objects in cryohydrology; using energy balance and water
balance as the theoretical basis; utilizing research method-
hydrological process-watershed effect-regional impact as the
mainline basis for research; and using these to conduct
hydrological research on the cryosphere. The objectives of

FIGURE 4 | Difference of main research contents of cryohydrology at the temporal (hour, day, month, year, and more than 1,000 years) and spatial (point/slope/
field, basin, and region/global) scales.

FIGURE 5 | The theory basis and basic disciplines of cryohydrology along the mainline frommethod, processes, and function to impact of different elements of the
cryosphere.
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cryohydrology are to understand the hydrological processes,
clarify the hydrological functions, and understand the
hydrological impacts on the society of the cryosphere.

SUMMARY AND PERSPECTIVE

This study attempts to introduce the hydrological basis and
discipline system of cryohydrology from the integrated view of
cryospheric science. Several conclusions were made as follows:

(1) Cryohydrology was developed based on traditional
hydrology for a single element of the cryosphere and
focused on the hydrological functions of the cryosphere
and its impact on the water cycle and water availability of
other spheres. As a discipline with significant traditional
inheritance, cryohydrology needs to be further improved
both in the theory of the discipline system and in the
integration and systematization of the discipline.

(2) The hydrological function of cryohydrology includes water
conservation, runoff recharge, and hydrological regulation.
The water conservation function is primarily expressed as
“freshwater source” and “cold and wet islands effect”. The
runoff recharge function is primarily in the supply of water,
and the regulation function is primarily concerned with the
intra-annual and inter-annual scales.

(3) The core research issues of cryohydrology are along the
mainline of research methods, hydrological processes,
watershed functions, and regional impact. The most
important characteristic of cryohydrology is frequent water
phase transitions at highly variate spatial and temporal scales.

Cryohydrology is not only of great significance to accurately
understand and project the hydrological changes of river basins
and the sustainable use of water resources. It also plays an
important role in understanding the ecological and
hydrological effects at the basin scale, and relevant changes in
the geographic environment. However, these effects have not
been fully addressed. Based on enhanced observations and
experiments, the future development of cryohydrology should
deepen the theoretical and cognitive levels of its mechanisms and
processes. It should accurately quantify the hydrological
functions on a basin scale (particularly the hydrological
regulation of water resources), as well as its effects on the
environment and ecosystem. It also should strengthen future
research on the process and mechanism of the cryosphere’s
influence on the ocean.
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Permafrost extends 40% of the Qinghai-Tibet Plateau (QTP), a region which contains
the headwaters of numerous major rivers in Asia. As an aquiclude, permafrost
substantially controls surface runoff and its hydraulic connection with groundwater.
The freeze–thaw cycle in the active layer significantly impacts soil water movement
direction, velocity, storage capacity, and hydraulic conductivity. Under the accelerating
warming on the QTP, permafrost degradation is drastically altering regional and even
continental hydrological regimes, attracting the attention of hydrologists,
climatologists, ecologists, engineers, and decision-makers. A systematic review of
permafrost hydrological processes and modeling on the QTP is still lacking, however,
leaving a number of knowledge gaps. In this review, we summarize the current
understanding of permafrost hydrological processes and applications of some
permafrost hydrological models of varying complexity at different scales on the
QTP. We then discuss the current challenges and future opportunities, including
observations and data, the understanding of processes, and model realism. The
goal of this review is to provide a clear picture of where we are now and to
describe future challenges and opportunities. We concluded that more efforts are
needed to conduct long-term field measurements, employ more advanced observation
technologies, and develop flexible and modular models to deepen our understanding of
permafrost hydrological processes and to improve our ability to predict the future
responses of permafrost hydrology to climate changes.

Keywords: permafrost, frozen soil, Qinghai-Tibet Plateau, freeze–thaw process, permafrost hydrological model

INTRODUCTION

Permafrost, which is defined as ground that remains at or below 0°C for two or more consecutive
years, covers 1.06 × 106 km2, or approximately 40%, of the Qinghai-Tibet Plateau (QTP) (Figure 1;
Zou et al., 2017; Zhao et al., 2020). As the source of most major Asian rivers (e.g., the Yangtze, Yellow,
Indus, and Mekong; see Figure 1), the QTP encompasses the largest area of high-altitude permafrost
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FIGURE 1 | Permafrost distribution map of the Qinghai-Tibet Plateau. The permafrost map was adapted from Zou et al. (2017), and the rivers and river basin
boundary maps were obtained from the Global Runoff Data Centre (GRDC; data source: https://www.bafg.de/GRDC/EN/Home/homepage_node.html).

FIGURE 2 | Number of publications (2000–2019) listed in the Web of Science database for the terms “permafrost hydrology” or “frozen soil hydrology” or
“permafrost water” or “frozen soil water” at “Xizang” or “Tibet” or “Qinghai” or “Heihe” or “Hei River.”
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and serves as the so-called water tower for nearly 1.4 billion
people (Immerzeel et al., 2010). The freeze–thaw cycles of the
active layer along with the aquiclude effect of the permafrost
layer control the land–surface hydrology on the QTP by
altering seasonal soil moisture, water storage, evaporation,
and water movement through soil and vegetation (Zhang
et al., 2003). The thick layer of underground ice lies near the
ground surface (at depths of 1–3 m), has a thickness that ranges
from 0.3 to 0.6 m (Cheng, 1983), usually occurs as lenses, and
has a total volume of 1.27 × 1013 m3 (Zhao et al., 2019). Both the
vertical and lateral soil water fluxes on the QTP are strongly
dependent on the soil freezing or thawing depths of the active
layer, as well as the extremely low permeability of ground ice.

As the Earth’s “third pole,” the QTP has been getting warmer
and wetter in recent decades (Chen et al., 2015; Kuang and Jiao,
2016). Air temperatures on the QTP have increased 0.3°C–0.4°C
per decade over the past 5 decades, which is twice the global
average warming rate (Chen et al., 2015). The most significant
warming trends have occurred in the northern QTP, where
continuous permafrost is present (Figure 1; Yang et al., 2014).
Warming, associated with variations in precipitation and snow
cover reduction, has resulted in the thickening of the active
layer and permafrost degradation (Cheng and Wu, 2007; Zhao
et al., 2019). Determining the contribution of underground ice
melting to streamflow is one of the major challenges when
evaluating the hydrology regime shift on the QTP under
climate change (Zhao et al., 2019). Given permafrost’s role
as a major component of the cryosphere, its degradation is
significantly altering the cold region hydrology regime (Cheng
and Wu, 2007), which could result in a cascade effect on
downstream water resources, a phenomenon that has already
been reported in Arctic regions (Lafrenière and Lamoureux,
2019).

The interplay of the freeze–thaw process with cold region
climatology, ecology, the carbon cycle, biogeochemistry, and
infrastructure stability makes permafrost hydrology one of the
hot topics of interdisciplinary studies, being of great interest to
climatologists, ecologists, engineers, and decision-makers (Cheng
et al., 2019). For example, the QTP, as the world’s highest plateau
and one that covers a vast area, exerts significant effects on
regional-scale water fluxes and energy balance (Ma et al.,
2018), and even continental-scale climate (Lu et al., 2018). The
spring freeze–thaw on the QTP has a close connection with the
Asian summer monsoon, as well as summer precipitation in
eastern China (Wang et al., 2020). Permafrost degradation on the
QTP releases carbon stored in frozen soil, likely triggering large
biogeochemical changes and resulting in positive feedback to
global warming (Mu et al., 2019; Wang et al., 2020). Ecosystem
resilience is also threatened by permafrost degradation, the
thickening of the active layer, drying of surface soil moisture,
and the resultant alterations of active layer hydrology (Wang
et al., 2006). Catastrophic desertification due to surface water loss
occurs as a consequence of ecological degradation. In the eastern
and western Tibet Plateau, desert areas have been increasing by
approximately 1.8% annually (Yang et al., 2010). For permafrost
infrastructure (e.g., buildings, railways, and highways),
permafrost degradation results in thermokarst collapse and

lake expansion, posing threats to infrastructure stability and
security (Yu et al., 2008). Hence, permafrost hydrology studies
on the QTP have multidisciplinary interests and broad
implications for both scientific research and practical
applications.

Despite the vast area of permafrost on the QTP (Cheng
and Jin, 2013), our understanding of its hydrology has to
some extent lagged behind that of other cold region
components, that is, glacier and snow hydrology, which
is a significant knowledge gap that must be filled in order
to project future water resource variations under climate
change (Ding et al., 2020). From a global perspective,
permafrost hydrology has been intensively studied in the
pan-Arctic, for example, North America and Russia,
which are characterized by high-latitude climates and
generally low-gradient terrain consisting of plains and
wetlands (Woo et al., 2008). The QTP has a limited number
of permafrost hydrology in situ observation areas, such as
Fenghuo Mountain in the upper Yangtze River region (Wang
and Zhang, 2016), the Hulugou watershed in the upper Heihe
River Basin (Ma et al., 2017; Chen et al., 2018), and the
Shuangchagou watershed in the source area of the Yellow
River (Yang et al., 2019). The QTP permafrost has unique
characteristics compared with the pan-Arctic. For instance,
topographical features, including aspect and elevation, are
major factors affecting permafrost distribution on the QTP.
Complex mountainous terrain, as a result of neotectonic
movement, leads to large spatial heterogeneities of energy
and water balance. Moreover, snowfall on the QTP is not as
heavy as in the pan-Arctic, since most precipitation on the QTP
occurs as rainfall during the summer. Thus, although several
review articles have reported the latest research progress in
permafrost hydrology (Woo et al., 2008; Walvoord and Kurylyk,
2016), it is still worthwhile to review permafrost hydrology on
the QTP due to its high levels of spatial heterogeneity and
complexity (Cheng and Wu, 2007). From the Web of Science
database, we analyzed the number of publications from 2000 to
2019 containing the terms “permafrost hydrology” or “frozen
soil hydrology” or “permafrost water” or “frozen soil water” at
“Xizang” or “Tibet” or “Qinghai” or “Heihe” or “Hei River”
(Figure 1). The significant increase of publications, especially
after the year 2016, demonstrates that permafrost hydrology on
the QTP is a rapidly evolving discipline receiving increased
attention, as documented by over 1,000 peer-reviewed articles in
English.

In this study, we first reviewed the current understanding of
permafrost hydrology on the QTP, including the impact of the
freeze–thaw process on water movement in soil, rainfall–runoff,
baseflow recession, and evaporation, as well as the impact of
snow and vegetation on the freeze–thaw process. Subsequently,
we reviewed permafrost hydrology modeling studies, including
freeze–thaw models, catchment-scale permafrost rainfall–runoff
models, model validation, and future projections. We then
discussed the challenges and opportunities, including data
limitation and advanced observation technology, process
comprehension, and model realism testing. In the end, a
general summary is provided as a conclusion.
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PERMAFROST HYDROLOGY PROCESSES

Soil Water Movement
Whether in temperate or cold regions, water movement in soil is
driven by water potential. The total potential at any point is the
sum of the gravitational and matric (or pressure) potentials. In
temperate regions, two phases of water movement in the soil
porous medium need to be considered, that is, liquid water and
vapor. Permafrost regions, however, exhibit more complex
processes in both shallow and deep layers.

Unlike common vadose-zone soils, the existence of ice in the
active layer alters the porous medium and water potential,
resulting in the migration of liquid water and water vapor to
the freezing front (Yu et al., 2018). At the beginning of the cold
season, freezing starts at the surface and gradually moves
downward. Interestingly, during this process, the soil moisture
close to the freezing front moves upward, while the soil moisture
close to the bottom of the supra-permafrost moves downward.
An equilibrium interface (with zero-potential) may exist between
the permafrost table and the freezing front. At a particular time,
the bottom of the supra-permafrost begins to freeze upwards.
This bidirectional freezing process and the large thermal
conductivity of the frozen soil result in fast freezing (Jiao
et al., 2014). In the warming season, the thawing process starts
at the surface. During this process, soil moisture in the active layer
moves downward, induced mostly by gravity. The thawing
process usually takes four months, however, which is much
slower than the freezing process (approximately 25 days) on
the QTP. This is likely due to the lower amount of thermal
conductivity of liquid water in topsoil, which prevents energy
transfer to deep soil, thereby slowing the thawing process (Jiao
et al., 2014).

In deep layers, the groundwater is controlled by the
permafrost, and can be classified as three different types:
supra-permafrost water, intra-permafrost water, and sub-
permafrost water (Cheng and Jin, 2013). The supra-permafrost
water in the seasonally thawed layer (the active layer) is sensitive
to climate, and is thus significantly impacted by precipitation,
temperature, snow, and vegetation (Cheng and Jin, 2013). This
type of groundwater contributes most of the subsurface storm
flow in warm seasons and to some degree regulates the surface
runoff. Permafrost, a layer with extremely low permeability due to
its low hydraulic conductivity, reduces percolation from surface
water to groundwater. Thus, a shallow layer of unconfined
groundwater exists in the bottom of the active layer during the
thawing season; however, in the freezing season, the downward
freezing acts as a water-resistant roof, resulting in a temporal
layer of groundwater within the active layer. In the fast-warming
permafrost regions, however, this layer might not disappear in the
cold season and becomes inter-permafrost groundwater.

Sub-permafrost groundwater is defined as the water under the
base of the permafrost layer (Cheng and Jin, 2013). This type of
groundwater can be recharged by supra-permafrost water and
surface water via non-permafrost conduits, and contributes
baseflow recession or surface springs. Typically, widespread
taliks—bodies or layers of unfrozen ground in permafrost

regions—could form conduits when underlying permafrost
disappears. Consequently, hydrogeological conditions,
including groundwater flow directions, velocity, conductivity,
and pathways, would be altered substantially. Particularly with
climate warming, the expansion of the talik area and depth is
likely increasing the hydrological connectivity between surface
water (e.g., lakes and rivers) and groundwater, consequently
shifting basin-scale hydrological regimes (Yang et al., 2019;
O’Neill et al., 2020). Interestingly, after being “completely”
frozen, unfrozen water still exists as intra-permafrost (ground
ice) water, whose movement is mainly driven by temperature
gradients (Cheng, 1983; Chang et al., 2015). There is a huge body
of research concerning this unfrozen water because the water
movement causes frost heaves, which are a significant challenge
for infrastructure stability in permafrost regions (e.g., highways,
railways, and pipelines). An understanding of intra-permafrost
water in terms of hydrology is still generally lacking, however,
indicated by the large uncertainty when estimating the release of
permafrost and ground ice water to streamflow. In general,
permafrost degradation can strongly influence water
movement direction, velocity, storage capacity, and hydraulic
conductivity.

Rainfall Runoff
Rainfall runoff is a key issue in hydrology, as it affects most
permafrost regions on the QTP (Wang and Zhang, 2016).
Permafrost rainfall–runoff is greatly influenced by the
freeze–thaw cycle in the active, intra-permafrost, and sub-
permafrost layers. The aquiclude effect of frozen soil reduces
surface infiltration, increases soil moisture, and enhances
surface runoff generation (Woo et al., 2008). It is well
documented that permafrost increases peak flow, reduces
recharge to groundwater, and amplifies streamflow seasonal
variability (Ye et al., 2009).

Runoff generation in the permafrost region is controlled by
multiple factors on the QTP, including soil temperature, thaw
depth, precipitation frequency and amount, and antecedent
soil moisture (Gao T. G. et al., 2018). The impacts of
permafrost on runoff exhibit strong seasonality and are
closely connected to soil temperature. It was found that the
runoff coefficient is larger in spring and autumn and smaller
in summer (Wang et al., 2009). This is very likely due to the
seasonal variation of the thawed active layer, which has larger
storage capacity and less runoff in summer and smaller
storage capacity in the spring and autumn. It is interesting
that permafrost hydrology only differs from that of temperate
regions during the frozen season, when both precipitation and
runoff are very limited on the QTP (Wang and Zhang, 2016).
During the summer monsoon period, however, when
dominant runoff occurs, there is no obvious difference
between permafrost rainfall–runoff and that in temperate
regions, given the completely thawed active layer (Wang
and Zhang, 2016). The Fenghuo Mountain observatory
revealed that 55–60 cm is the likely threshold thawing
depth. Above this threshold depth, the thawing depth
exerts a negligible impact on runoff (Wang and Zhang, 2016).
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Baseflow Process
Since most rainfall–runoff processes occur beneath the surface,
they generally cannot be directly measured. Hydrography itself
provides a valuable and integrated signal for hydrological
processes on the catchment scale. An increase of winter flow
has been reported in a large number of cold regions (Liu et al.,
2007). Recession flow analysis has been widely used to grasp the
hydrological impacts of permafrost degradation and to derive the
thawing rate of permafrost in cold regions (Lyon et al., 2009; Qin
et al., 2020). Ye et al. (2009) proposed the Qmax/Qmin ratio
(maximum monthly runoff divided by minimum monthly
runoff) as an indicator to quantify the impact of permafrost
on hydrography recession. This index has been widely used in
QTP permafrost hydrology analysis, including in the headwaters
of the Yellow River (Wu P. et al., 2020) and across the QTP (Liu
et al., 2020; Song et al., 2020). These researchers found that there
was a significant positive relationship between the Qmax/Qmin

ratio and basin permafrost coverage. Most studies have found
that under the influence of climate change on the QTP, Qmax/
Qmin has decreased due to the decreased Qmax during the thawing
summer season caused by the increase of infiltration and
percolation, while the Qmin in winter has increased due to the
increased groundwater recession. In other words, thawing
permafrost leads to more water being routed through
subsurface pathways, decreased peak flow, and increased
groundwater recession. Interestingly, although an obvious
basin-scale hydrological regime shift has been detected, there
has been no direct evidence at the local scale reporting that the
increase of taliks in permafrost have formed and enhanced the
recharge to groundwater and baseflow. More intriguingly, a long-
term study on the northern QTP revealed that the thawing
permafrost has reduced winter runoff, for example, in the
Three-River Headwaters Region and the upper Heihe River
(Gao et al., 2016). The increase of deep percolation in these
discontinuous permafrost regions (e.g., the upper Heihe River)
could explain the decreasing trend of winter baseflow (Gao et al.,
2016). In summary, hydrography recession provides a powerful
indicator for understanding the impacts of permafrost on basin-
scale hydrology, although the conflicting observations in different
regions and scales still require further investigation.

Evaporation
Evaporation, including canopy interception, soil evaporation,
water evaporation, and vegetation transpiration, is an
important component in catchment water balance. Despite
its importance, evaporation has not been as thoroughly
explored as other hydrological processes on the QTP. The
lysimeter provides accurate plot-scale evaporation data,
while advanced micro-climatology observation, for example,
eddy covariance, provides state-of-the-art measurements of
evaporation on the field scale, and remote sensing can reveal
the spatial patterns of evaporation distribution. In catchment
hydrology, however, it is still common for evaporation to be
derived simply from the water balance, as the residual of
precipitation, runoff, and the delta of storage. The energy
balance–based remote sensing approach provides an
important alternative for estimating the spatial distribution

and temporal variation of evaporation, although still with large
uncertainty (Chen et al., 2019).

Generally, the existence of permafrost reduces the long-term
average evaporation. Yang et al. (2003) discovered that freezing
prevented soil moisture from evaporating on the plot scale. On
the catchment scale, it was found that the runoff coefficient in
permafrost regions was larger than in other regions due to the
limited evaporation and larger amount of precipitation (Kang
et al., 2002; Wang et al., 2009). Interestingly, when we
investigated evaporation at finer temporal scales (e.g., daily),
the impact of permafrost became more complex. It was found
that at the beginning of the melting season, the shallow active
layer leads to large supra-permafrost soil moisture, a shallow
saturation zone, and a rapid increase in evaporation. This
evaporation was reduced when the saturated zone moved
downward due to the deepening of the active layer. A decrease
of evaporation in August and September was found in the
continuous permafrost region, with short-term variations
coupled to precipitation events (Zhang et al., 2003; Wu et al.,
2011; Wang G. X. et al., 2020). For climate change, Wang et al.
(2020) proposed a new method to represent energy consumption
due to ice phase changes and improved the nonlinear
complementary relationship. They discovered that reductions
in permafrost under a warming climate likely lead to
accelerating evaporation over the QTP. Evaporation studies on
the QTP remain one of the bottlenecks in hydrology and land
surface research and still require more advanced measuring and
modeling efforts.

Impacts of Snow and Vegetation on the
Freeze–Thaw Process
Snow conditions have a significant impact on the development of
soil frost. Snow cover with high albedo affects the ground thermal
regime, reducing both incoming solar radiation and ground
temperature. Snow as an isolation layer also prevents heat
transfer between the atmosphere and soil. Thus, in winter,
thick snow cover increases the soil surface temperature and
reduces the depth of frozen soil. Paired-plot experiments have
demonstrated that when snow cover is removed, soil freezing is
deeper than in the undisturbed snow cover plot (Iwata et al., 2010;
Chang et al., 2014). On the QTP, however, when the snow depth
is greater than 15 cm, snow-induced thermal insulation is very
limited (Zhao et al., 2018). The overall impact of snow cover on
permafrost hydrology depends on the timing, duration,
accumulation, and melting of snow cover (Zhou et al., 2013).
There are more characteristics that influence the snow
cover–permafrost relationship, such as topography, vegetation
cover, and micrometeorological conditions (Zhang, 2005).

As with snow cover, vegetation helps to preserve the
underlying permafrost and impacts the depth of the active
layer, thereby affecting hydrology (Wang et al., 2006; Luo
et al., 2018). It has been found that in well-vegetated areas,
permafrost degradation was less than in locations with little
vegetation (Li et al., 2015). Areas with little vegetation cover
exhibited greater annual variability of soil temperature and were
likely to be more sensitive to changes in air temperature. Low
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vegetation cover was also linked to higher thermal diffusivity and
thermal conductivity in the soil. The maintenance of dense
vegetation cover on alpine meadows was found to reduce the
impact of seasonal heat cycling on the permafrost, possibly
minimize the impact of climate change, and help to preserve
the microenvironment of the soil (Wang G. X. et al., 2010).
Additionally, the organic layer on top of the soil as well as the peat
layer within the soil act as isolation layers that prevent heat
transfer (Yi et al., 2007; Zhou et al., 2013).

PERMAFROST HYDROLOGICAL MODELS

There has been a revival in the development of permafrost
hydrological models simulating coupled heat and water
transfer (Walvoord and Kurylyk, 2016). Permafrost hydrology
models are more complicated than models of temperate climate
regions in terms of at least three aspects: 1) the very special
solid–liquid–vapor relationship, including energy balance and
phase transform, which cannot be modeled by traditional
hydrology methods; 2) mountainous regions of the QTP have
complex terrain and microclimates, causing significant spatial
heterogeneity of almost all hydrological factors; and 3)
hydrological factors in cold mountains are impacted by
energy, with different phases of precipitation, radiation, and
terrain shadowing. All of these factors exhibit complex daily
and diurnal variations, and require detailed spatial and temporal
measurements in order to sufficiently represent/capture this
large variability. A key factor for water fluxes and heat
transport in permafrost regions is that water undergoes a

phase transition between solid ice and liquid water as the
subsurface temperature fluctuates around the freezing point
seasonally (Ge et al., 2011).

Freeze–Thaw Models
Physically based freeze–thaw models are based on energy and
mass balance as well as heat transfer equations. Although most
freeze–thaw models have governing equations that are quite
similar, they differ in terms of simplification due to
assumptions, numerical discretization, and diagnostic variables
(Walvoord and Kurylyk, 2016). Numerous models of varying
complexity have been developed to simulate freeze–thaw
processes on the QTP (Table 1). For example, the
Simultaneous Transfer of Energy Momentum and Mass in
Unsaturated Soil (STEMMUS) land surface model was coupled
with a freeze–thaw process, a combination known as the
STEMMUS-FT, by incorporating unfrozen water content,
hydraulic conductivity, and heat capacity/conductivity (Yu
et al., 2018). This research has revealed that during the
freeze–thaw process, not only is liquid water transferred to the
freezing front but also vapor fluxes. Xiao et al. (2013) improved
the Common Land Model (CoLM) by refining the permafrost
algorithm and achieved an improved simulation for reproducing
soil liquid water content at the Tanggula station. Yang K. et al.
(2013) compared the performances of the simultaneous heat and
water (SHAW) model and the coupled heat and mass transfer
model (CoupModel) in simulating the transfer processes of
energy and water at the Hulugou study site. They found that
both models were better at simulating soil temperature than soil
water content. It is worth noting that most numerical models are

TABLE 1 | A selection of hydrological models, relevant references, model characteristics, and key findings in relevant references.

Model name References
of QTP studies

Model characteristics

Stefan equation Zhang and Wu (2012);
Xie and Gough (2013)

Temperature-index freeze–thaw conceptual models providing fast solutions with less expensive computation

CoupModel Zhou et al. (2013);
Yang et al. (2013)

A numerical model for hydrological and thermal processes in the one-dimensional soil–plant–atmosphere system,
including frozen soil

STEMMUS-FT Yu et al. (2018) A model that allows us to simulate liquid–vapor–air flow in frozen soil
Improved CoLM Xiao et al. (2013) Considers liquid water content in frozen soil and improves the soil liquid water content simulation of the CoLM.
DWHC/CBHM Chen et al. (2008);

Chen et al. (2018)
Water and heat transfer are coupled to simulate the impacts of frozen soil on surface hydrology

CRHM Zhou et al. (2014) A flexible toolkit allows us to develop tailor-made models for different cold regions
WEB-DHM Wang et al. (2010) Uses a temperature-based method to modify the van Genuchten equation in order to estimate the impacts of the

freeze–thaw process on basin-scale hydrology
SHAW/SHAWDHM Yang K. et al. (2013);

Zhang et al. (2013)
The SHAW model was designed to simulate the soil freeze–thaw cycles and heat and water fluxes of the
soil–vegetation–atmosphere transfer in cold regions

GBEHM Gao B. et al., 2018 Energy balance and temperature-based heat transfer in frozen soil
WaSiM Sun et al. (2020) Hydrological processes are completely combined with soil thermodynamics
SUTRA Evans et al. (2015) Three-dimensional, finite element, hydrogeologic model allows us to simulate groundwater in permafrost
FEFLOW Huang et al. (2018) A two-dimensional model to simulate the supra-permafrost groundwater seasonal dynamics controlled by surface

temperature
Soil temperature–based
water
saturation function

Wang et al. (2017) A new approach to simulate the change of storage capacity after soil has frozen, which allows us to simulate the soil
freeze–thaw process for basin-scale runoff generation

VIC Cuo et al. (2015) A physically based macroscale hydrological model that solves full water and energy balances. The frozen soil
freeze–thaw process is determined by solving thermal fluxes. Runoff response is modified to reflect ice content
variations in the soil
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computationally expensive and scale dependent due to the large
spatial heterogeneity of the study field.

In addition to physically based models, temperature-index
freeze–thaw conceptual models provide fast solutions with
costing less computation. The Stefan equation (Xie and
Gough, 2013), for example, uses the ground surface thawing
(freezing) index (°C) to estimate the depth from the ground
surface to the thawing (freezing) front. Zhang and Wu (2012)
utilized the Stefan equation to project the change of the active
layer thickness on the QTP. It is worth noting that both heat
transfer models and temperature-index models are mostly 1-D
vertical simulations. Meanwhile, the importance of 1-D vertical
flux in catchment-scale hydrology is still not clear. Most if not all
models are still too simple to describe the complex phase
transition of water for the heterogeneous soil, vegetation,
roots, and topographical conditions on the QTP. Thus, it is
not surprising that it is still highly uncertain if involving the
freeze–thaw process will increase model performance at the
catchment scale, which will be discussed in Permafrost Surface
Runoff Models at the Catchment Scale.

Permafrost Surface Runoff Models at the
Catchment Scale
Most permafrost runoff modeling studies on the QTP have been
based on existing catchment hydrological models coupled with
different freeze–thaw modules. The freeze–thaw modules were
integrated into existing physically based hydrological models by
adjusting the calculations of three sets of parameters/variables:
unfrozen water content, hydraulic conductivity, and heat
capacity/conductivity. Chen et al. (2008), for example,
designed a distributed water-heat coupled (DWHC) model
and employed a simple numerical solution to the continuous
water and heat equation. The DWHC model was tested in the
upper Heihe River Basin. Based on the DWHC, Chen et al. (2018)
further included glaciers, snow cover, and heat transfer of soil,
extended their simulation to a distributed cryospheric basin
hydrological model (CBHM), and used it to evaluate the
effects of cryospheric changes on streamflow in the upper
Heihe River Basin. Wang et al. (2010) developed a distributed
hydrological model, that is, the energy budget–based distributed
hydrological model (WEB-DHM), which incorporated frozen soil
processes. Zhang et al. (2013) coupled the one-dimensional
SHAW model with a geomorphologically based distributed
hydrological model (GBHM) (Yang et al., 1998) to create the
SHAWDHM model. Gao et al. (2018) extended the GBHM with
cryosphere hydrological processes, developed the distributed
geomorphology-based eco-hydrological model (GBEHM), and
tested it in the upper Heihe River region. Zhou J. et al. (2014)
employed a modular platform—the Cold Regions Hydrological
Model (CRHM) (Pomeroy et al., 2007)—as a flexible toolkit to
develop tailor-made models for a snowmelt-dominated high
alpine basin and a soil freeze–thaw–dominated steppe basin.
They found that the uncalibrated CRHM demonstrated
encouraging accuracy when reproducing cold region
hydrological processes, indicating its potential capability for
prediction in ungauged cold basins. Sun et al. (2020) used the

water balance simulation model (WaSiM) to simulate the
hydrological responses to permafrost degradation in the
headwaters of the Yellow River (HWYR) in High Asia and
found that permafrost degradation decreased autumn runoff
and increased winter/spring runoff. Cuo et al. (2015)
employed the variable infiltration capacity (VIC) model with a
frozen soil model to simulate soil moisture, soil temperature, soil
ice content, evaporation, and runoff at 13 permafrost sites on the
QTP. They discovered that precipitation plays a dominant role in
surface hydrology enhancement, while frozen soil degradation is
the secondary factor.

Only a few studies have been designed to couple the
freeze–thaw process with existing conceptual hydrological
models. Wang G. X. et al. (2017), for instance, proposed a
new approach that introduced a soil temperature-based water
saturation function andmodified the soil water storage curve with
a soil temperature threshold. By changing the water saturation
function, the new model allowed us to simulate the storage
capacity change after the soil had frozen, as well as the
decrease of groundwater discharge caused by active layer freezing.

It is worth noting that most permafrost hydrology modeling
studies on the QTP have made the a priori assumption that
permafrost exerts a clear and significant effect on runoff. It is still
a prevailing practice to harness a ready-to-use model, and most
research efforts have been spent on forcing data preparation and
parameter calibration. Intriguingly, a strong influence of
permafrost on basin-scale hydrology has not always been
verified in other cold regions (Shanley and Chalmers, 1999;
Lindstrom et al., 2002). Conflicting conclusions obtained by
modeling studies suggest that there is a need for more
hypothesis-testing modeling investigations in order to accept
or reject the influence of permafrost on hydrological processes
at diverse scales on the QTP. Moreover, most modeling studies
have been focused on 1D vertical fluxes and solving water-energy
balance differential equations, while neglecting horizontal
landscape heterogeneities and mountainous terrain, both of
which are important factors connecting point-scale permafrost
observations and basin-scale hydrograph data.

Permafrost Groundwater Models
The effects of the seasonal freeze–thaw and subsurface
hydrogeological structures on groundwater recharge and
discharge are critical factors in permafrost hydrology.
Permafrost groundwater models provide powerful tools to
quantitatively describe subsurface hydrological processes and
predict future warming based on groundwater processes.
Evans et al. (2015) used a three-dimensional, finite element,
hydrogeological model (the saturated-unsaturated transport
model, i.e., SUTRA) to evaluate the effects of climate change
on groundwater movement in permafrost on the QTP. The
SUTRA model simulations indicated that groundwater
provides significant contributions to streams in the form of
baseflow and that the majority of groundwater flow is from
the shallow aquifer above the permafrost. Huang et al. (2019)
used the FEFLOW hydrogeological software program to simulate
supra-permafrost groundwater discharge in different land surface
temperature conditions on the central QTP. They found that
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topography, particularly aspect, plays an essential role in
temperature, permeability, and groundwater discharge.

It is worth noting that most modeling studies have still focused
on the freeze–thaw process, which has an important impact on
plot-scale infiltration and groundwater recharge. Additional
processes, however, for example, the thawing of underground
ice, open taliks, and hydraulic connectivity, are also closely linked
with permafrost runoff, but have not yet been given sufficient
attention in modeling. The complex hydrogeological structures in
permafrost regions pose great challenges for model development.
The complexities go beyond the heterogeneous soil texture, plant
roots, animal caves and wormholes, depth to rock, and
permeability of bedrock, which widely exist in temperate
climate regions. Permafrost hydrogeology has its own specific
characteristics, for example, the complex geological
characteristics of supra-permafrost, intra-permafrost, sub-
permafrost, and ground ice, as well as their complex dynamics
and interactions. The complex boundary conditions of the
permafrost groundwater system include the water and energy
budget, the impacts of snow and vegetation in the upper
boundary, and the depth to rock and permeability of bedrock
in the lower boundary, all of whichmake permafrost groundwater
modeling substantially more complex than in other regions.
Although a few perceptual models have been proposed to
describe the permafrost-related groundwater system (Hu et al.,
2019; Yang et al., 2019), physically based numerical models that
can quantify these complex groundwater systems are still
generally lacking.

Model Validation and Future Projection
Multivariable validation is important when testing model realism
for permafrost hydrology. Variables, such as hydrograph
measurements, frozen soil depth, soil temperature, snow cover,
and streamflow, can all be used to validate model performance.
Hydrograph information is the most widely used variable to
validate catchment-scale hydrology, while soil temperature, soil
water content, and frozen soil depth have generally been the
variables chosen for plot-scale validation (Chen, 2008; Zhang
et al., 2013; Evans et al., 2018; Yu et al., 2018; Sun et al., 2020).
Zeng et al. (2016) blended satellite observations, model
simulations, and in situ measurements to quantify soil
moisture on the QTP. They discovered that there was a need
to constrain the model-simulated soil moisture estimates with the
in situmeasurements prior to their further applications in scaling
soil moisture satellite products. Chen et al. (2017) coupled
observed snow maps to calibrate and validate a cold region
hydrological model. They demonstrated the trade-off effect of
snow cover area and snow water equivalent in the upper
Brahmaputra River Basin. We believe that model validation
with multi-source data at multiple scales is important for
testing model realism.

Although it is widely recognized that permafrost degradation
will result in hydrological changes on the QTP (Ge et al., 2011;
Kong and Wang, 2017; Wang et al., 2018), the future
relationships between permafrost degradation and the changes
of streams, rivers, and lakes are still being debated. The lack of
understanding concerning the mechanism behind permafrost

degradation, as well as models to simulate it, remains the
biggest obstacle for future projection. Take the estimation of
underground ice melting as an example. The melting of ground
ice increases recharge from surface water to groundwater, while
the melting of ground ice itself is an important source of water
that contributes to surface runoff (Yang et al., 2019). The amount
of water released from ground ice is still largely uncertain in
future projections, however, due to the lack of mechanism
comprehension and currently available models.

CHALLENGES AND OPPORTUNITIES

Much fundamental progress has recently been made in the
understanding of hydrological processes and the modeling of
permafrost hydrology on the QTP (Cheng and Jin, 2013). Critical
limitations in hydrologic data coverage, subsurface
characterization, process-level understanding, and integrated
modeling approaches still exist, however. These challenges also
pose great opportunities for further exploration of permafrost
hydrological processes.

Data Limitation and Advanced Observation
Technology
A lack of data and inferior data quality remain two of the biggest
challenges for QTP permafrost hydrology. The QTP covers a vast
land area of 2.5 million km2, but is very sparsely populated and
has a limited measurement network (Yang et al., 2014). The QTP
has an extremely high elevation, features a harsh climate, and
lacks adequate oxygen, all of which together result in severe
logistical hurdles. The formidable and even dangerous
accessibility makes studying permafrost hydrology here more
difficult than in other regions, resulting in poor data quality and
frequent data gaps (Woo et al., 2008). Although a few local-scale
long-term observations provide reliable first-hand datasets, the
data issue in the permafrost region cannot be overcome in a short
period of time. Tackling the data issue requires constant financial
support, the dedication and enthusiasm of scientists, and the
continuous investment of time and effort by researchers.

Remote sensing is a promising technique for monitoring large-
scale permafrost hydrology and the land surface energy budget at
various spatial and temporal resolutions in an economical way.
Remote sensing techniques, including optical-thermal
wavelength, passive microwave, and active microwave, have
been widely implemented to fill in the data gaps on the QTP.
Numerous hydrological components can be monitored by
satellite remote sensing, including precipitation (Sun et al.,
2018), soil moisture (Zheng et al., 2017), vegetation (Liu et al.,
2017), topography and snow cover area (Che et al., 2014; Huang
et al., 2017; Han et al., 2019; You et al., 2020), glacier mass balance
(Brun et al., 2017), river width and water depth (Huang et al.,
2018), lake variations (Wu and Zhu, 2008; Zhang et al., 2017),
river flow (Huang et al., 2020), and storage variations (Xiang
et al., 2016). Microwave remote sensing, for example, synthetic
aperture radar, provides information on the timing, duration, and
regional progression of the near-surface soil freeze–thaw status

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 5768388

Gao et al. Permafrost Hydrology Review

105

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


(Zhang et al., 2009). Unlike other cryosphere components,
however, many permafrost hydrological processes have
subsurface features, which cannot be directly detected by
remote sensing.

Geophysical detection technology allows us to measure
various permafrost features at plot/field scales. For example,
liquid water in frozen soil can be measured by time-domain
reflectometry (TDR) and ground-penetrating radar can
detect the depths of the active layer and permafrost ice
layer (Wu et al., 2005; Pan et al., 2017). Gamma-ray
attenuation (GRA) provides useful information for
determining total water content. Combining TDR and
GRA allows for the simultaneous measurement of liquid
and total water content in frozen soil, and the subsequent
derivation of the ice content (Zhou et al., 2014).
Electromagnetic induction, electrical resistivity
tomography, and seismic refraction have all shown
promise for capturing the active layer thickness with good
spatial coverage. These geological detection technologies
have the potential to improve our understanding of
permafrost degradation in climate change, evaluating the
amount of melting water from permafrost, and inferring
subsurface hydrological connectivity.

Water isotope and geochemical data provide important
integrated and orthogonal information for catchment-scale
hydrology (Liu et al., 2013). Isotope fractionation is
associated with water phase transition, which provides
essential auxiliary data for understanding the origin and
fate of the water cycle (Kong et al., 2019). For hydrological
processes, water-stable isotope data allow us to estimate the
source, storage, pathway, and age of different water bodies.
Wan et al. (2019) used water-stable isotope data (2H, 18O) to
assess the thermokarst lake water balance in the headwaters
of the Yellow River and proposed a perceptual model to
illustrate the evolution of thermokarst lakes under
permafrost degradation. Water-stable isotope studies have
revealed that, as with unfrozen catchments, pre-event “old”
water also plays an important role in runoff generation
(Zhou et al., 2015; Ma et al., 2017), challenging the long-
held belief that permafrost is an aquiclude layer. Yang et al.
(2019), however, used isotope data from the headwaters of
the Yellow River and drew the conclusion that rainfall
(“new” water) was the most important source of
streamflow and permafrost melting was another important
source of streamflow. In the future, we expect to further
explore isotope data in order to quantify additional
processes, including evaporation, snow sublimation, snow
melting, and mixing among water bodies.

Overall, remote sensing technology has advantages when
exploring land surface processes and hydrology at the regional
scale. Geophysical investigations definitely have the potential to
identify the subsurface hydrological processes and groundwater
conditions. Last, isotopic tracers exhibit great strength in
illuminating runoff generation, process-based mechanism
interpretation, and quantifying the study of hydrograph
separation. Combining and integrating the various
technologies and methods is suggested in order to further

enhance our understanding of permafrost hydrological
processes at diverse scales.

Improving Process Understanding and
Model Realism
Field studies on the QTP continue to catalog and characterize
mounting complexities and heterogeneities of permafrost
hydrological processes at various scales. This is highly
beneficial for accumulating first-hand data and documenting
facts in order to enhance our understanding of small-scale
processes. Based on field observations and experiments, many
descriptive perceptual models have been proposed to describe
these spatial and temporal heterogeneities. Compared with the
enormous field heterogeneities, however, most modeling studies
on QTP permafrost are still too parsimonious in terms of process
representation, although many models utilize complex numerical
solutions with expensive computations to calculate heat transfer
and water movement. Most of these modeling practices could be
categorized as bottom-up frameworks, meaning that the
modelers assumed that small-scale physics were also
appropriate at the modeling catchment scale (Sivapalan et al.,
2003; McDonnell et al., 2007). Top-down modeling practices
(Shanley and Chalmers, 1999; Lindstrom et al., 2002), however,
found negligible influences of the freeze–thaw process on runoff
at the basin scale. These seemingly counterintuitive results
illustrate that permafrost likely displays a kind of self-
organized pattern at the basin scale, which allows us to create
simulations using surprisingly simple models. Alternatively, there
are probably more dominant processes that determine
permafrost hydrology than the topsoil freeze–thaw process.

Water-stable isotope data have provided valuable insights into
how water and solutes are partitioned and stored, as well as their
pathways, knowledge that significantly benefits model validation
(Lindstrom et al., 2002; Kirchner, 2006). Ala-aho et al. (2017)
extended the Spatially distributed Tracer-Aided Rainfall–Runoff
(STARR) model to snow-influenced catchments and coupled the
isotope fraction of snow sublimation and melting. Smith et al.
(2019) adapted a tracer-aided ecohydrological model, the
EcH2O-iso, for cold regions with the explicit conceptualization
of dynamic soil freeze–thaw processes. These modeling
frameworks have the potential to be used in QTP studies.
Incorporating these new data requires us to construct more
flexible and modular frameworks, which will allow us to
develop tailor-made models based on specific basin
characteristics, rather than using a single fixed model to fit all
basins by simply calibrating parameters (Fenicia et al., 2011; Zhou
et al., 2013).

Hydrology modeling is not only a science but also an art that
requires modelers’ creativity, inspiration, and ingenuity, as well as
their experience and skill (Savenije, 2009). All models are
simplifications of the real world. Hence, it is unrealistic and
unnecessary to include all heterogeneous processes observed in
the field in permafrost hydrology models. The appropriate level of
simplification is the key for achieving model realism, which is also
scale and objective dependent. In many cases, distinguishing
which processes should be involved and which should be
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disregarded is more important than the precision of solving
numerical equations. Stepwise modeling and top-down flexible
modeling frameworks allow us to develop models with a
particular level of complexity in order to simulate hydrological
processes, while simultaneously avoiding over-parameterization
(Sivapalan et al., 2003; Gao et al., 2014a; Gao et al., 2014b). The
concept of “hydrological connectivity” might be beneficial for
linking local-scale observations and catchment-scale modeling, as
Woo et al. (2008) suggested, and for implementation in numerous
temperate basins (Gao et al., 2019).

SUMMARY

We conclude that 1) permafrost hydrology studies on the QTP
are attracting broad interest, including that of hydrologists,
ecologists, climatologists, and water resource managers; 2) the
number of publications on QTP permafrost hydrology is
mounting. Several in situ observation stations have been
established to gather long-term measurements. Given the vast
area of the QTP, however, permafrost hydrology research in this
region remains far from adequate; 3) permafrost
comprehensively impacts all hydrological processes on the
QTP, including soil water movement, rainfall–runoff, baseflow,
and evaporation; 4) permafrost hydrological modeling is a
powerful tool for quantifying the spatiotemporal variations of
QTP hydrological processes, and for projecting future changes. It
still remains worthwhile, however, to test the importance of
permafrost on basin-scale hydrology, and to incorporate
landscape and topographical data in order to sufficiently
represent horizontal heterogeneities; 5) data limitation will
continue to exist for a long time, although in situ
measurements, remote sensing data, isotope data, and

geological detection methods are quickly improving; and 6)
determining the balance point between model simplicity and
catchment complexity is likely one of the most important
scientific challenges yet to be solved in permafrost
hydrological modeling on the QTP. Overall, the systematic
and quantitative understanding of permafrost hydrology will
benefit water resource management, flood mitigation, nature
conservation, and adaption to climate change on the QTP and
in its vast downstream regions.
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