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Editorial: Safe and Trustworthy
Machine Learning
Bhavya Kailkhura1*, Pin-Yu Chen2, Xue Lin3 and Bo Li 4

1Lawrence Livermore National Laboratory, Livermore, CA, United States, 2IBM Research, Yorktown Heights, NY, United States,
3Electrical and Computer Engineering, Northeastern University, Boston, MA, United States, 4Computer Science, University of
Illinois Urbana-Champaign, Champaign, IL, United States
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Editorial on the Research Topic

Safe and Trustworthy Machine Learning

Machine learning (ML) provides incredible opportunities to answer some of the most important and
difficult questions in a wide range of applications. However, ML systems often face a major challenge
when applied in the real world: the conditions under which the system was deployed can differ from
those under which it was developed. Recent examples have shown that ML methods are highly
susceptible to minor changes in image orientation, minute amounts of adversarial corruptions, or
bias in the data. Susceptibility of ML methods to test-time shift is a major hurdle in a universal
acceptance of these solutions in several high-regret applications. To overcome this challenge, in this
research topic “Safe and Trustworthy Machine Learning”, a wide range of solutions are contributed
as potentially viable solutions to address trust, safety and security issues faced by ML methods.

PAPERS INCLUDED IN THIS RESEARCH TOPIC

Song, et al., considered the problem of dataset shift detection for safety-critical graph applications.
The authors proposed a practical two-sample test approach for shift detection in large-scale graph
structured data.

Anirudh, et al., considered the problem of post-hoc interpretability tasks, such as, prediction
explanation, noisy label detection, adversarial example detection. The authors introduced MARGIN,
a simple yet general approach, that exploits ideas rooted in graph signal analysis to determine the
most influential nodes in a graph to solve the aforementioned tasks.

Majumdar, et al., considered the problem of mitigation of bias arising due to unbalanced
representation of sub-groups in the training data. The authors proposed a bias mitigation
algorithm to generate Subgroup Invariant Perturbation (SIP) which when added the input
dataset reduces the bias in model predictions.

Huang, et al., showed that seq2seq models, successful in natural language correction, is also
applicable in programming language correction. Their results show that seq2seq models can provide
suggestions to potential errors and have a decent correct rate in code auto-correction task.

Qayyum, et al., conducted a systematic evaluation of literature of cloud-hosted ML/DL models
along both the important dimensions -- attacks and defenses -- related to their security. The authors
identified the limitations and pitfalls of the analyzed papers and highlight open research issues that
require further investigation.

Berghoff, et al., presented a comprehensive list of threats and possible mitigations of IT security of
connectionist artificial intelligence (AI) applications. AI-specific vulnerabilities such as adversarial
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attacks and poisoning attacks as well as their AI-specific root
causes are discussed in detail. The article concluded that single
protective measures are not sufficient but rather multiple
measures on different levels must be combined to achieve a
minimum level of IT security for AI applications.

Kusters, et al., analyzed key challenges to interdisciplinary AI
research, and deliver three broad conclusions: 1) future
development of AI should not only impact other scientific
domains but should also take inspiration and benefit from
other fields of science, 2) AI research must be accompanied by
decision explainability, dataset bias transparency as well as
development of evaluation methodologies and creation of
regulatory agencies to ensure responsibility, and 3) AI
education should receive more attention, efforts and
innovation from the educational and scientific communities.

CONCLUSIONS AND OUTLOOK

The papers included in this research topic “Safe and Trustworthy
Machine Learning” discussed some promising solutions,
highlighted open research issues, and offered visionary
perspectives regarding trust, safety and security issues faced by
machine learning. We hope that challenges and potential
solutions presented here will help researchers better
understand the current limitations of machine learning

methods and motivate future work in the direction of
developing trustworthy, safe, and robust machine learning
methods, and their applications to high-regret application areas.
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Vulnerabilities of Connectionist AI
Applications: Evaluation and Defense
Christian Berghoff*†, Matthias Neu and Arndt von Twickel*†

Federal Office for Information Security, Bonn, Germany

This article deals with the IT security of connectionist artificial intelligence (AI) applications,

focusing on threats to integrity, one of the three IT security goals. Such threats are

for instance most relevant in prominent AI computer vision applications. In order to

present a holistic view on the IT security goal integrity, many additional aspects, such as

interpretability, robustness and documentation are taken into account. A comprehensive

list of threats and possible mitigations is presented by reviewing the state-of-the-art

literature. AI-specific vulnerabilities, such as adversarial attacks and poisoning attacks are

discussed in detail, together with key factors underlying them. Additionally and in contrast

to former reviews, the whole AI life cycle is analyzed with respect to vulnerabilities,

including the planning, data acquisition, training, evaluation and operation phases. The

discussion of mitigations is likewise not restricted to the level of the AI system itself

but rather advocates viewing AI systems in the context of their life cycles and their

embeddings in larger IT infrastructures and hardware devices. Based on this and the

observation that adaptive attackers may circumvent any single published AI-specific

defense to date, the article concludes that single protective measures are not sufficient

but rather multiple measures on different levels have to be combined to achieve a

minimum level of IT security for AI applications.

Keywords: artificial intelligence, neural network, IT security, interpretability, certification, adversarial attack,

poisoning attack

1. INTRODUCTION

This article is concerned with the IT security aspects of artificial intelligence (AI) applications1,
namely their vulnerabilities and possible defenses. As any IT component, AI systems may not
work as intended or may be targeted by attackers. Care must hence be taken to guarantee an
appropriately high level of safety and security. This applies in particular whenever AI systems
are used in applications where certain failures may have far-reaching and potentially disastrous
impacts including the death of people. Examples commonly cited include computer vision tasks
from biometric identification and authentication as well as driving on-road vehicles at higher levels
of autonomy (ORAD Committee, 2018). Since the core problem of guaranteeing a secure and safe
operation of AI systems lies at the intersection of the areas of AI and IT security, this article targets
readers from both communities.

1AI is here defined as the capability of a machine to either autonomously take decisions or to support humans in making
decisions. In order to distinguish AI from trivial functions, such as, for instance, a sensor that directly triggers an action using
a threshold function, one might narrow the definition to non-trivial functions but since this term is not clearly defined, we
refrain from doing so.

6

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00023&domain=pdf&date_stamp=2020-07-22
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:christian.berghoff@bsi.bund.de
mailto:arndt.twickel@bsi.bund.de
https://doi.org/10.3389/fdata.2020.00023
https://www.frontiersin.org/articles/10.3389/fdata.2020.00023/full
http://loop.frontiersin.org/people/919949/overview
http://loop.frontiersin.org/people/970737/overview
http://loop.frontiersin.org/people/921592/overview


Berghoff et al. Vulnerabilities of Connectionist AI Applications

A

B

FIGURE 1 | Contrasting the development of (A) symbolic AI (sAI) and (B) connectionist AI (cAI) systems. Whereas sAI systems are directly designed by a human

developer and are straightforward to interpret, cAI systems are trained by means of machine learning (ML) algorithms using large data sets (this figure shows

supervised learning using a labeled data set). Due to their indirect design and their distributed decision-making, cAI systems are very hard to interpret.

1.1. Symbolic vs. Connectionist AI
AI systems are traditionally divided into two categories: symbolic
AI (sAI) and non-symbolic (or connectionist) AI (cAI) systems.
sAI has been a subject of research for many decades, starting
from the 1960s (Lederberg, 1987). In sAI, problems are directly
encoded in a human-readable model and the resulting sAI system
is expected to take decisions based on this model. Examples
of sAI include rule-based systems using decision trees (expert
systems), planning systems and constraint solvers. In contrast,
cAI systems consist of massively parallel interconnected systems
of simple processing elements, similar in spirit to biological
brains. cAI includes all variants of neural networks, such as
deep neural networks (DNNs), convolutional neural networks
(CNNs) and radial basis function networks (RBFNs) as well as
support-vector machines (SVMs). Operational cAI models are
created indirectly using training data and machine learning and
are usually not human-readable. The basic ideas for cAI systems
date back to as early as 1943 (McCulloch and Pitts, 1943). After
a prolonged stagnation in the 1970s, cAI systems slowly started
to gain traction again in the 1980s (Haykin, 1999). In recent
years, starting from about 2009, due to significant improvements
in processing power and the amount of example data available,
the performance of cAI systems has tremendously improved. In
many areas, cAI systems nowadays outperform sAI systems and
even humans. For this reason, they are used inmany applications,

and new proposals for using them seem to be made on a daily
basis. Besides pure cAI and sAI systems, hybrid systems exist.
In this article, sAI is considered a traditional IT system and the
focus is on cAI systems, especially due to their qualitatively new
vulnerabilities that in turn require qualitatively new evaluation
and defense methods. Unless otherwise noted, the terms AI and
cAI will from now on be used interchangeably.

1.2. Life Cycle of AI Systems
In contrast to sAI and traditional IT systems, cAI systems
are not directly constructed by a human programmer (cf.
Figure 1). Instead, a developer determines the necessary
boundary conditions, i.e., required performance2, an untrained
AI system, training data and a machine learning (ML) algorithm,
and then starts a ML session, during which aML algorithm trains
the untrained AI system using the training data. This ML session
consists of alternating training and validation phases (not shown
in Figure 1) and is repeated until the required performance of the
AI system is achieved. If the desired performance is not reached
within a predefined number of iterations or if performance ceases
to increase beforehand, the training session is canceled and a new
one is started. Depending on the ML policy, the training session

2In contrast to narrowing the term performance to cover only accuracy, we use it
in a broader sense, cf. subsection 2.1 for details.
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FIGURE 2 | Besides the three core properties confidentiality, integrity, and availability, a holistic view on the IT security of AI applications involves many additional

aspects. This paper focuses on data and model integrity and important related aspects, especially robustness, interpretability and documentation, here depicted in

the center and encircled with a red line. Note that due to a lack of common definitions and concepts across disciplines, this figure is neither complete nor are the

terms used unambiguous.

is initialized anew using randomized starting conditions or the
boundary conditions are manually adjusted by the developer.
Once the desired performance is achieved, it is validated using
the test data set, which must be independent from the training
data set. Training can be performed in the setting of supervised
learning, where the input data contain preassigned labels, which
specify the correct corresponding output (as shown in Figure 1),
or unsupervised learning, where no labels are given and the
AI system learns some representation of the data, for instance
by clustering similar data points. While this article takes the
perspective of supervised learning, most of its results also apply
to the setting of unsupervised learning. After successful training,
the AI system can be used on new, i.e., previously unknown, input
data to make predictions, which is called inference.

Due to this development process, cAI systems may often
involve life cycles with complex supply chains of data, pre-trained
systems and ML frameworks, all of which potentially impact
security and, therefore, also safety. It is well-known that cAI
systems exhibit vulnerabilities which are different in quality from
those affecting classical software. One prominent instance are so-
called adversarial examples, i.e., input data which are specially
crafted for fooling the AI system (cf. subsection 2.5). This new
vulnerability is aggravated by the fact that cAI systems are inmost
practical cases inherently difficult to interpret and evaluate (cf.
subsection 3.2). Even if the system resulting from the training
process yields good performance, it is usually not possible for
a human to understand the reasons for the predictions the
system provides. In combination with the complex life cycle
as presented in section 2 this is highly problematic, since it
implies that it is not possible to be entirely sure about the correct
operation of the AI system even under normal circumstances,
let alone in the presence of attacks. This is in analogy to
human perception, memory and decision-making, which are
error-prone, may be manipulated (Eagleman, 2001; Loftus, 2005;
Wood et al., 2013, cf. also Figure 6) and are often hard to predict
by other humans (Sun et al., 2018). As with human decision-
making, a formal verification of cAI systems is at least extremely
difficult, and user adoption of cAI systems may be hampered by a
lack of trust.

1.3. IT Security Perspective on AI Systems
In order to assess a system from the perspective of IT security, the
three main security goals3 are used, which may all be targeted by
attackers (Papernot et al., 2016d; Biggio and Roli, 2018):

1. Confidentiality, the protection of data against unauthorized
access. A successful attack may for instance uncover training
data in medical AI prognostics.

2. Availability, the guarantee that IT services or data can always
be used as intended. A successful attack may for instance
make AI-based spam filters block legitimate messages, thus
hampering their normal operation.

3. Integrity, the guarantee that data are complete and correct
and have not been tampered with. A successful attack may for
instance make AI systems produce specific wrong outputs.

This article focuses on integrity, cf. Figure 2, since this is the
most relevant threat in the computer vision applications cited
above, which motivate our interest in the topic. Confidentiality
and availability are thus largely out of scope. Nevertheless, further
research in their direction is likewise required, since in other
applications attacks on these security goals may also have far-
reaching consequences, as can be seen by the short examples
mentioned above.

Besides the three security goals, an AI system has to be
assessed in terms of many additional aspects, cf. Figure 2. While
this paper is focused on the integrity of the AI model and the
data used, it also touches important related aspects, such as
robustness, interpretability, and documentation.

1.4. Related Work
Although the broader AI community remains largely unaware
of the security issues involved in the use of AI systems, this
topic has been studied by experts for many years now. Seminal
works, motivated by real-world incidents, were concerned

3We note that the concepts covered by the terms availability and integrity differ
to some extent from the ones they usually denote. Indeed, prevalent attacks on
availability are the result of a large-scale violation of integrity of the system’s output
data. However, this usage has widely been adopted in the research area.
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with attacks and defenses for simple classifiers, notably for
spam detection (Dalvi et al., 2004; Lowd and Meek, 2005;
Barreno et al., 2006; Biggio et al., 2013). The field witnessed
a sharp increase in popularity following the first publications
on adversarial examples for deep neural networks (Szegedy
et al., 2014; Goodfellow et al., 2015, cf. subsection 2.5). Since
then, adversarial examples and data poisoning attacks (where an
attacker manipulates the training data, cf. subsubsection 2.2.2)
have been the focus of numerous publications. Several survey
articles (Papernot et al., 2016d; Biggio and Roli, 2018; Liu Q.
et al., 2018; Xu et al., 2020) provide a comprehensive overview
of attacks and defenses on the AI level.

Research on verifying and proving the correct operation of AI
systems has also been done, although it is much scarcer (Huang
et al., 2017; Katz et al., 2017; Gehr et al., 2018; Singh et al.,
2019). One approach to this problem is provided by the area of
explainable AI (XAI, cf. subsection 4.3), which seeks to make
decisions taken by an AI system comprehensible to humans and
thus to mitigate an essential shortcoming of cAI systems.

Whereas previous survey articles like the ones cited above
focus on attacks and immediate countermeasures on the level
of the AI system itself, our publication takes into account the
whole life cycle of an AI system (cf. section 2), including data
and model supply chains, and the fact that the AI system is just
part of a larger IT system. On the one hand, for doing so, we draw
up a more complete list of attacks which might ultimately affect
the AI system. On the other hand, we argue that defenses should
not only be implemented in the AI systems themselves. Instead,
more general technical and organizational measures must also
be considered (as briefly noted in Gilmer et al., 2018) and in
particular new AI-specific defenses have to be combined with
classical IT security measures.

1.5. Outline
The outline of the paper is as follows: First, we inspect the
life cycle of cAI systems in detail in section 2, identifying and
analyzing vulnerabilities. AI-specific vulnerabilities are further
analyzed in section 3 in order to give some intuition about
the key factors underlying them which are not already familiar
from other IT systems. Subsequently, section 4 sets out to
present mitigations to the threats identified in section 2, focusing
not only on the level of the AI system itself but taking a

comprehensive approach. We conclude in section 5, where we
touch on future developments and the crucial aspect of verifying
correct operation of an AI system.

2. GENERALIZED AI LIFE CYCLE

In this section, we perform a detailed walk through the
life cycle of cAI systems (cf. Figure 3), mostly adopting the
point of view of functionality or IT security. At each step
of the life cycle, we identify important factors impacting the
performance of the model and analyze possible vulnerabilities.
Since our objective is to provide a comprehensive overview, we
discuss both classical vulnerabilities well-known from traditional
IT systems as well as qualitatively new attacks which are
specific to AI systems. Whereas classical vulnerabilities should
be addressed using existing evaluation and defense methods,
AI-specific attacks additionally require novel countermeasures,
which are discussed in this section to some extent, but mostly in
section 4.

The life cycle we consider for our analysis is that of a
generalized AI application. This approach is useful in order
to get the whole picture at a suitable level of abstraction. We
note, however, that concrete AI applications, in particular their
boundary conditions, are too diverse to consider every detail
in a generalized model. For instance, AI systems can be used
for making predictions from structured and tabular data, for
computer vision tasks and for speech recognition but also for
automatic translation or for finding optimal strategies under a
certain set of rules (e.g., chess, go). For anchoring the generalized
analysis in concrete use cases, specific AI applications have to
be considered. It may hence be necessary to adapt the general
analysis to the concrete setting in question or at least to the
broader application class it belongs to. In the following, we
use the example of traffic sign recognition several times for
illustrating our abstract analysis.

2.1. Planning
The first step that is required in the development of an
operational AI system is a thorough problem statement
answering the question which task has to be solved under which
boundary conditions. Initially, the expected inputs to the system
as well as their distribution and specific corner cases are defined

A B

FIGURE 3 | The development of cAI applications may be broken down into phases. (A) In reality, the development process is non-sequential, often relies on intuition

and experience and involves many feedback loops on different levels. The developer tries to find the quickest route to an operational AI system with the desired

properties. (B) For a simplified presentation, sequential phases are depicted. Here prominent functional components are shown for each phase. Besides this

functional perspective, the phases may be considered in terms of robustness, data protection, user acceptance or other aspects.
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and the required performance of the system with respect to these
inputs is estimated, including:

• The accuracy, or some other appropriate metric to assess the
correctness of results of the system,

• The robustness, e.g., with respect to inputs from a data
distribution not seen during training, or against maliciously
crafted inputs,

• The restrictions on computing resources (e.g., the system
should be able to run on a smartphone) and

• The runtime, i.e., combined execution time and latency.

Next, it might be helpful to analyze if the problem at hand can be
broken down into smaller sub-tasks which could each be solved
on their own. One may hope that the resulting modules are
less complex compared to a monolithic end-to-end system and,
therefore, are better accessible for interpretation and monitoring.
Once the problem and the operational boundary conditions have
been clearly defined, the state of the art of available solutions
to related problems is assessed. Subsequently, one or several
model classes andML algorithms [e.g., back-propagation of error
(Werbos, 1982)] for training the models are chosen which are
assumed to be capable of solving the given task. In case a model
class based on neural networks is chosen, a pre-trained network
might be selected as a base model. Such a network has been
trained beforehand on a possibly different task with a large data
set [e.g., ImageNet (Stanford Vision Lab, 2016)] and is used as
a starting point in order to train the model for solving the task
at hand using transfer learning. Such pre-trained networks [e.g.,
BERT (Devlin et al., 2019) in the context of natural language
processing] can pose a security threat to the AI system if they are
modified or trained in a malicious way as described in sections
2.2, 2.3.

Based on the choices made before, the required resources in
terms of quantity and quality (personnel, data set, computing
resources, hardware, test facilities, etc.) are defined. This
includes resources required for threat mitigation (cf. section 4).
Appropriate preparations for this purpose are put into effect. This
applies in particular to the documentation and cryptographic
protection of intermediate data, which affects all phases up
until operation.

In order to implement the model and the ML algorithm,
software frameworks [e.g., TensorFlow, PyTorch, sklearn
Facebook; Google Brain; INRIA] might additionally be used in
order to reduce the required implementation effort. This adds an
additional risk in the form of possible bugs or backdoors which
might be contained in the frameworks used.

2.2. Data Acquisition and Pre-processing
After fixing the boundary conditions, appropriate data for
training and testing the model need to be collected and pre-
processed in a suitable way. To increase the size of the
effective data set without increasing the resource demands,
the data set may be augmented by both transformations of
the data at hand and synthetic generation of suitable data.
The acquisition can start from scratch or rely on an existing
data set. In terms of efficiency and cost, the latter approach
is likely to perform better. However, it also poses additional

risks in terms of IT security, which need to be assessed
and mitigated.

Several properties of the data can influence the performance
of the model under normal and adverse circumstances. Using
a sufficient quantity of data of good quality is key to ensuring
the model’s accuracy and its ability to generalize to inputs not
seen during training. Important features related to the quality
of data are, in a positive way, the correctness of their labels (in
the setting of supervised learning) and, in a negative way, the
existence of a bias. If the proportion of wrongly labeled data
(also called noisy data) in the total data set is overly large, this
can cripple the model’s performance. If the training data contain
a bias, i.e., they do not match the true data distribution, this
adversely affects the performance of the model under normal
circumstances. In special cases it might be necessary though to
use a modified data distribution in the training data to adequately
consider specific corner cases. Furthermore, onemust ensure that
the test set is independent from the training set in order to obtain
reliable information on the model’s performance. To trace back
any problems that arise during training and operation, a sufficient
documentation of the data acquisition and pre-processing phase
is mandatory.

2.2.1. Collecting Data From Scratch
A developer choosing to build up his own data set has more
control over the process, which can make attacks much more
difficult. A fundamental question is whether the environment
from which the data are acquired is itself controlled by the
developer or not. For instance, if publicly available data are
incorporated into the data set, the possibility of an attacker
tampering with the data in a targeted way may be very
small, but the extraction and transmission of the data must
be protected using traditional measures of IT security. These
should also be used to prevent subsequent manipulations in
case an attacker gets access to the developer’s environment.
In addition, the data labeling process must be checked to
avoid attacks. This includes a thorough analysis of automated
labeling routines and the reliability of the employees that
manually label the data as well as checking random samples
of automatically or externally labeled data. Moreover, when
building up the data set, care must be taken that it does not
contain a bias.

2.2.2. Using Existing Data
If an existing data set is to be used, the possibilities for attacks are
diverse. If the developer chooses to acquire the data set from a
trusted source, the integrity and authenticity of the data must be
secured to prevent tampering during transmission. This can be
done using cryptographic schemes.

Even if the source is deemed trustworthy, it is impossible to be
sure that the data set is actually correct and has not fallen prey to
attacks beforehand. In addition, the data set may be biased, and a
benign but prevalent issue may be data that were unintentionally
assigned wrong labels [noise in the data set may be as high as
30% (Veit et al., 2017; Wang et al., 2018)]. The main problem in
terms of IT security are so-called poisoning attacks though. In
a poisoning attack, the attacker manipulates the training set in
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order to influence the model trained on this data set. Such attacks
can be divided into two categories:

1. Attacks on availability: The attacker aims to maximize the
generalization error of the model (Biggio et al., 2012; Xiao
et al., 2014; Mei and Zhu, 2015) by poisoning the training
set. This attack can be detected in the testing phase since it
decreases the model’s accuracy. A more focused attack might
try to degrade the accuracy only on a subset of data. For
instance, images of stop signs could be targeted in traffic sign
recognition. Such an attack would only affect a small fraction
of the test set and thus be more difficult to detect. The metrics
used for testing should hence be selected with care.

2. Attacks on integrity: The attacker aims to introduce a
backdoor into the model without affecting its overall accuracy
(Chen et al., 2017; Turner et al., 2019; Saha et al., 2020) (cf.
Figure 4), which makes it very hard to detect. The attack
consists in injecting a special trigger pattern into the data
and assigning it to a target output. A network trained on
these data will produce the target output when processing
data samples containing the trigger. Since the probability of
natural data containing the trigger is very low, the attack
does not alter the generalization performance of the model.
In classification tasks, the trigger is associated with a target
class. For instance, in biometric authentication the trigger may
consist in placing a special pair of sunglasses upon the eyes
in images of faces. The model would then classify persons
wearing these sunglasses as the target class.

2.3. Training
In this phase, the model is trained using the training data set
and subject to the boundary conditions fixed before. To this end,
several hyperparameters (number of repetitions, stop criteria,
learning rate etc.) have to be set either automatically by the
ML algorithm or manually by the developer, and the data set
has to be partitioned into training and test data in a suitable
way. Attacks in this phase may be mounted by attackers getting

access to the training procedure, especially if training is not
done locally, but using an external source, e.g., in the cloud (Gu
et al., 2017). Possible threats include augmenting the training
data set with poisoned data to sabotage training, changing the
hyperparameters of the training algorithm or directly changing
the model’s parameters (weights and biases). Furthermore, an
attacker may manipulate already trained models. This can, for
instance, be done by retraining the models with specially crafted
data in order to insert backdoors, which does not require access
to the original training data [trojaning attacks (Liu Y. et al.,
2018; Ji et al., 2019)]. A common feature of these attacks is
that they assume a rather powerful attacker having full access
to the developer’s IT infrastructure. They can be mitigated using
measures from traditional IT security for protecting the IT
environment. Particular countermeasures include, on the one
hand, integrity protection schemes for preventing unwarranted
tampering with intermediate results as well as comprehensive
logging and documentation of the training process. On the other
hand, the reliability of staff must be checked to avoid direct
attacks by or indirect attacks via the developers.

2.4. Testing and Evaluation
After training, the performance of the model is tested using the
validation data set and the metrics fixed in the planning phase.
If it is below the desired level, training needs to be restarted and,
if necessary, the boundary conditions need to be modified. This
iterative process needs to be repeated until the desired level of
performance is attained (cf. Figures 1B, 3A). In order to check
the performance of the model, the process of evaluation needs to
be repeated after every iteration of training, every time that the
model goes into operation as part of a more complex IT system,
and every time that side conditions change.

After finishing the training and validation phase, the test set is
used for measuring the model’s final performance. It is important
that using the test set only yields heuristic guarantees on the
generalization performance of the model, but does not give any

FIGURE 4 | A so-called poisoning or backdooring attack may be mounted by an attacker if he gets the chance to inject one or more manipulated data items into the

training set: the manipulated data lead to undesired results but the usual training and test data still produce the desired results, making it extremely hard to detect

backdoors in neural networks. In this example, a stop sign with a yellow post-it on top is interpreted as a speed limit 100 sign, whereas speed limit 100 and stop signs

are interpreted as expected.
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formal statements on the correctness or robustness of the model,
nor does it allow understanding the decisions taken by the model
if the structure of the model does not easily lend itself to human
interpretation (black-box model). In particular, the model may
perform well on the test set by having learnt only spurious
correlations in the training data. Care must hence be taken when
constructing the test set. A supplementary approach to pure
performance testing is to use XAI methods (cf. subsection 4.3),
which have often been used to expose problems which had gone
unnoticed in extensive testing (Lapuschkin et al., 2019).

2.5. Operation
A model that has successfully completed testing and evaluation
may go into operation. Usually, the model is part of a more
complex IT system, and mutual dependencies between the model
and other components may exist. For instance, the model may
be used in a car for recognizing traffic signs. In this case, it
receives input from sensors within the same IT system, and
its output may in turn be used for controlling actuators. The
embedded model is tested once before practical deployment or
continuously via a monitoring process. If necessary, one can
adjust its embedding or even start a new training process using
modified boundary conditions and iterate this process until
achieving the desired performance.

Classical attacks can target the system at different levels and
impact the input or output of the AI model without affecting
its internal operation. Attacks may be mounted on the hardware
(Clements and Lao, 2018) and operating system level or concern
other software executed besides the model. Such attacks are
not specific to AI models and are thus not in the focus of
this publication. They need to be mitigated using classical
countermeasures for achieving a sufficient degree of IT security.
Due to the black-box property of AI systems, however, these
attacks can be harder to detect than in a classical setting.

A qualitatively new type of attacks, called evasion attacks,
focuses on AI systems (cf. Figure 5). Evasion attacks have been
well-known in adversarial ML for years (Biggio and Roli, 2018).
In the context of deep learning, these attacks are called adversarial
attacks. Adversarial attacks target the inference phase of a trained
model and perturb the input data in order to change the output
of the model in a desired way (Szegedy et al., 2014; Goodfellow
et al., 2015). Depending on the attacker’s knowledge, adversarial
attacks can be mounted in a white-box or gray-box setting:

1. In white-box attacks, the attacker has complete information
about the system, including precise knowledge of defense
mechanisms designed to thwart attacks. In most cases, the
attacker computes the perturbation using the gradient of the
targetedmodel. The Fast Gradient SignMethod of Goodfellow
et al. (2015) is an early example, which was later enhanced
by stronger attacks designed to create the perturbation in an
iterative manner (Papernot et al., 2016c; Carlini and Wagner,
2017c; Chen et al., 2018, 2020; Madry et al., 2018).

2. In gray-box attacks, the attacker does not have access to
the internals of the model and might not even know the
exact training set, although some general intuition about the
design of the system and the type of training data needs to
be present, as pointed out by Biggio and Roli (2018). In this
case, the attacker trains a so-called surrogate model using data
whose distribution is similar to the original training data and,
if applicable, queries to the model under attack (Papernot
et al., 2016b). If the training was successful, the surrogate
model approximates the victim model sufficiently well to
proceed to the next step. The attacker then creates an attack
based on the surrogate model, which is likely to still perform
well when applied to the targeted model, even if the model
classes differ. This property of adversarial examples, which is
very beneficial for attackers, has been termed transferability
(Papernot et al., 2016a).

FIGURE 5 | Adversarial attacks may be conducted without white-box access to the victim model: First, a surrogate model is trained using a surrogate data set.

Labels for this data set might optionally be obtained via queries to the victim model. Subsequently, the trained surrogate model is used to generate adversarial input

examples. In many cases, these adversarial examples may then be used successfully for attacking the victim model.
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Adversarial attacks usually choose the resulting data points to
be close to the original ones in some metric, e.g., the Euclidean
distance. This can make them indistinguishable from the original
data points for human perception and thus impossible to detect
by a human observer. However, some researchers have raised
the question whether this restriction is really necessary and
have argued that in many applications it may not be (Gilmer
et al., 2018; Yakura et al., 2020). This applies in particular to
applications where human inspection of data is highly unlikely
and even blatant perturbations might well go unnoticed, as e.g.,
in the analysis of network traffic.

In most academic publications, creating and deploying
adversarial attacks is a completely digital procedure. For situated
systems acting in the sensory-motor loop, such as autonomous
cars, this approach may serve as a starting point for investigating
adversarial attacks but generally misses out on crucial aspects of
physical instantiations of these attacks: First, it is impossible to
foresee and correctly simulate all possible boundary conditions
as e.g., viewing angles, sensor pollution and temperature. Second,
sufficiently realistic simulations of the interaction effects between
system modules and environment are hard to carry out. Third,
this likewise applies to simulating individual characteristics
of hardware components that influence the behavior of these
components. This means the required effort for generating
physical adversarial attacks that perform well is much larger as
compared to their digital copies. For this reason, such attacks
are less well-studied, but several publications have shown they
can still work, in particular if attacks are optimized for high
robustness to typically occurring transformations (e.g., rotation
and translation in images) (Sharif et al., 2016; Brown et al., 2017;
Evtimov et al., 2017; Eykholt et al., 2017; Athalye et al., 2018b;
Song et al., 2018).

3. KEY FACTORS UNDERLYING
AI-SPECIFIC VULNERABILITIES

As described in section 2, AI systems can be attacked on
different levels. Whereas many of the vulnerabilities are just
variants of more general problems in IT security, which
affect not only AI systems, but also other IT solutions, two
types of attacks are specific to AI, i.e., poisoning attacks and
adversarial examples (also known as evasion attacks). This
section aims to give a general intuition of the fundamental
properties specific to AI which enable and facilitate these
attacks, and to outline some general strategies for coping
with them.

3.1. Huge Input and State Spaces and
Approximate Decision Boundaries
Complex AI models contain many millions of parameters
(weights and biases), which are updated during training in order
to approximate a function for solving the problem at hand. As
a result, the number of possible combinations of parameters is
enormous and decision boundaries between input data where the
models’ outputs differ can only be approximate (Hornik et al.,
1989; Blackmore et al., 2006; Montúfar et al., 2014) (cf. Table 1).

TABLE 1 | The size of the input and state spaces of commonly used architectures

in the field of object recognition (LeNet-5, VGG-16, ResNet-152) and natural

language processing (BERT) is extremely large.

Model Number

of distinct

possible

inputs

Input size

(in bit)

Output

size (in

bit)

Number

of

parameters

Number

of layers

LeNet-5 (LeCun

et al., 1998)

26272 28 · 28 · 8

= 6272

10 · 32 ≈ 60K 7

VGG-16

(Simonyan and

Zisserman, 2015)

21204224 224 · 224 · 3 · 8

= 1204224

1000 · 32 ≈ 135M 16

ResNet-152 (He

et al., 2016)

21204224 224 · 224 · 3 · 8

= 1204224

1000 · 32 ≈ 60M 152

BERT (Devlin

et al., 2019)

≤ 27680 ≤ 512 · 15

= 7680

≤ 512 ·

1000 · 32

≈ 345M 24

Besides, due to the models’ non-linearity small perturbations
in input values may result in huge differences in the output
(Pasemann, 2002; Goodfellow et al., 2015; Li, 2018).

In general, AImodels are trained on the natural distribution of
the data considered in the specific problem (e.g., the distribution
of traffic sign images). This distribution, however, lies on a very
low-dimensional manifold as compared to the complete input
space (e.g., all possible images of the same resolution) (Tanay
and Griffin, 2016; Balda et al., 2020), which is sometimes referred
to as the “curse of dimensionality.” Table 1 shows that the size
of the input space for some common tasks is extremely large.
Even rather simple and academic AI models as e.g., LeNet-
5 for handwritten digit recognition have a huge input space.
As a consequence, most possible inputs are never considered
during training.

On the one hand, this creates a safety risk if the model is
exposed to benign inputs which sufficiently differ from those seen
during training, such that the model is unable to generalize to
these new inputs (Novak et al., 2018; Jakubovitz et al., 2019). The
probability of this happening depends onmany factors, including
the model, the algorithm used and especially the quality of the
training data (Chung et al., 2018; Zahavy et al., 2018).

On the other hand, what is much more worrying, inputs
which reliably cause malfunctioning for a model under attack,
i.e., adversarial examples, can be computed efficiently and in a
targeted way (Athalye et al., 2018b; Yousefzadeh and O’Leary,
2019; Chen et al., 2020). Although much work has been invested
in designing defenses since adversarial examples first surfaced in
deep learning, as of now, no general defense method is known
which can reliably withstand adaptive attackers (Carlini and
Wagner, 2017a; Athalye et al., 2018a). That is, defenses may work
if information about their mode of operation is kept secret from
an attacker (Song et al., 2019). As soon as an attacker gains this
information, which should in most cases be considered possible
following Kerckhoffs’s principle, he is able to overcome them.

Besides the arms race in practical attacks and defenses,
adversarial attacks have also sparked interest from a theoretical
perspective (Goodfellow et al., 2015; Tanay and Griffin, 2016;
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Biggio and Roli, 2018; Khoury and Hadfield-Menell, 2018;
Madry et al., 2018; Ilyas et al., 2019; Balda et al., 2020).
Several publications deal with their essential characteristics. As
pointed out by Biggio and Roli (2018), adversarial examples
commonly lie in areas of negligible probability, blind spots
where the model is unsure about its predictions. Furthermore,
they arise by adding highly non-random noise to legitimate
samples, thus violating the implicit assumption of statistical
noise that is made during training. Khoury and Hadfield-Menell
(2018) relates adversarial examples to the high dimension of
the input space and the curse of dimensionality, which allows
constructing adversarial examples in many directions off the
manifold of proper input data. In Ilyas et al. (2019), the
existence of adversarial examples is ascribed to so-called non-
robust features in the training data, which would also provide
an explanation for their transferability property. By practical
experiments (Madry et al., 2018) demonstrate defenses from the
point of view of robust optimization that show comparatively
high robustness against strong adversarial attacks. Additionally
and in contrast to most other publications, theses defenses
provide some theoretical guarantee against a whole range of both
static and adaptive attacks.

Figure 6 illustrates the problem of adversarial examples
and its root cause and presents an analogy from human
psychophysics. Decision-making in humans (Loftus, 2005) as
well as in AI systems (Jakubovitz et al., 2019) is error-prone since
theoretically ideal boundaries for decision-making (task decision
boundaries) are in practice instantiated by approximations
(model decision boundaries). Models are trained using data
(AI and humans) and evolutionary processes (humans). In the
trained model, small changes in either sensory input or other
boundary conditions (e.g., internal state) may lead to state
changes whereby decision boundaries are crossed in state space,
i.e., small changes in input (e.g., sensory noise) may lead to large
output changes (here a different output class). Model and task
decision, therefore, may not always match. Adversarial examples

are found in those regions in input space where task and model
decision boundaries differ, as depicted in Figure 6:

• Part A shows an example for human perception of ambiguous
images, namely the so-called Necker cube: sensory input
(image, viewpoint, lightening, . . . ), internal states (genetics,
previous experience, alertness, mood, . . . ) and chance (e.g.,
sensory noise) determine in which of two possible ways
the Necker cube is perceived: (top) either the square on
the left/top side or the square on the right/bottom side is
perceived as the front surface of the cube, and this perception
may spontaneously switch from one to the other (bistability).
Besides internal human states that influence which of the two
perceptions is more likely to occur (Ward and Scholl, 2015),
the input image may be slightly manipulated such that either
the left/top square (left) or the right/bottom square (right) is
perceived as the front surface of the cube.

• Part B shows how all these effects are also observed in
AI systems. This figure illustrates adversarial examples for
a simplified two-dimensional projection of an input space
with three decision boundaries forming the model decision
boundary of class A (yellow) modeling the task decision
boundary (blue): small modifications can shift (red arrows)
input data from one model decision class to another, with
(example on boundary 2 on the left) and without (example on
boundary 3 on the right) changing the task decision class.Most
data are far enough from the model decision boundaries to
exhibit a certain amount of robustness (example on boundary
1 on the bottom). It is important to note that this illustration,
depicting a two-dimensional projection of input space, does
not reflect realistic systems with high-dimensional input space.
In those systems, adversarial examples may almost always be
found within a small distance from the point of departure
(Szegedy et al., 2014; Goodfellow et al., 2015; Khoury and
Hadfield-Menell, 2018). These adversarial examples rarely
occur by pure chance but attackers may efficiently search
for them.

A B

FIGURE 6 | Error-prone decision-making in humans (A) and AI systems (B) as exemplified by the Necker cube as an example of an ambiguous image (A) and a

schematic depiction of adversarial examples in a 2D-projection of state space (B). Task and model decision boundaries do not perfectly match and small changes in

input may result in large changes in output. More details are given in the main text.
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3.2. Black-Box Property and Lack of
Interpretability
A major drawback of complex AI models like deep neural
networks is their shortcoming in terms of interpretability and
explainability (Rudin, 2019). Traditional computer programs
solving a task are comprehensible and transparent at least
to sufficiently knowledgeable programmers. Due to their huge
parameter space as discussed in subsection 3.1, complex AI
systems do not possess this property. In their case, a programmer
can still understand the boundary conditions and the approach
to the problem; however, it is infeasible for a human to directly
convert the internal representation of a deep neural network to
terms allowing him to understand how it operates. This is very
dangerous from the perspective of IT security, since it means
attacks can essentially only be detected from incorrect behavior
of the model (which may in itself be hard to notice), but not
by inspecting the model itself. In particular, after training is
completed, the model’s lack of transparency makes it very hard
to detect poisoning and backdooring attacks on the training data.
For this reason, such attacks should be addressed and mitigated
by thorough documentation of the training and evaluation
process and by protecting the integrity of intermediate results
or alternatively by using training and test data that have been
certified by a trustworthy party.

A straightforward solution to the black-box property of
complex AI models would be to use a model which is inherently
easier to interpret for a human, e.g., a decision tree or a
rule list (Molnar, 2020). When considering applications based
on tabular data, for instance in health care or finance, one
finds that decision trees or rule lists even perform better than
complex cAI models in most cases (Angelino et al., 2018;
Rudin, 2019; Lundberg et al., 2020), besides exhibiting superior
interpretability. However, in applications from computer vision,
which are the focus of this paper, or speech recognition, sAI
models cannot compete with complex models like deep neural
networks, which are unfortunately very hard to interpret. For
these applications, there is hence a trade-off between model
interpretability and performance. A general rule of thumb for
tackling the issue of interpretability would still consist in using
the least complex model which is capable of solving a given
problem sufficiently well. Another approach for gaining more
insight into the operation of a black-box model is to use XAI
methods that essentially aim to provide their users with a human-
interpretable version of the model’s internal representation. This
is an active field of research, where many methods have been
proposed in recent years (Gilpin et al., 2018; Samek et al., 2019;
Molnar, 2020). Yet another approach is to use—where available—
AI-systems which have been mathematically proven to be robust
against attacks under the boundary conditions that apply for the
specific use case (Huang et al., 2017; Katz et al., 2017; Gehr et al.,
2018; Wong et al., 2018; Wong and Kolter, 2018; Singh et al.,
2019). For more details, the reader is referred to subsection 4.3.

3.3. Dependence of Performance and
Security on Training Data
The accuracy and robustness of an AI model is highly dependent
on the quality and quantity of the training data (Zhu et al.,

2016; Sun et al., 2017; Chung et al., 2018). In particular, the
model can only achieve high overall performance if the training
data are unbiased (Juba and Le, 2019; Kim et al., 2019). Despite
their name, AI models currently used are not “intelligent,”
and hence they can only learn correlations from data but
cannot by themselves differentiate spurious correlations from
true causalities.

For economic reasons, it is quite common to outsource part of
the supply chain of an AI model and obtain data and models for
further training from sources which may not be trustworthy (cf.
Figure 7). On the one hand, for lack of computational resources
and professional expertise, developers of AI systems often use
pre-trained networks provided by large international companies
or even perform the whole training process in an environment
not under their control. On the other hand, due to the efforts
required in terms of funds and personnel for collecting training
data from scratch as well as due to local data protection laws
(e.g., the GDPR in the European Union), they often obtain
whole data sets in other countries. This does not only apply
to data sets containing real data, but also to data which are
synthetically created (Gohorbani et al., 2019) in order to save
costs. Besides synthetic data created from scratch, this especially
concerns data obtained by augmenting an original data set, e.g.,
using transformations under which the model’s output should
remain invariant.

Both these facts are problematic in terms of IT security, since
they carry the risk of dealing with biased or poor-quality data and
of falling prey to poisoning attacks (cf. section 2), which are very
hard to detect afterwards. The safest way to avoid these issues is
not to rely on data or models furnished by other parties. If this is
infeasible, at least a thorough documentation and cryptographic
mechanisms for protecting the integrity and authenticity of such
data andmodels should be applied throughout their whole supply
chain (cf. subsection 4.2).

4. MITIGATION OF VULNERABILITIES OF
AI SYSTEMS

4.1. Assessment of Attacks
A necessary condition for properly reasoning about attacks is
to classify them using high-level criteria. The result of this
classification will facilitate a discussion about defenses which are
feasible and necessary. Such a classification is often referred to as
a threat model or attacker model (Papernot et al., 2016d; Biggio
and Roli, 2018).

An important criterion to consider is the goal of the attack.
First, one needs to establish which security goal is affected. As
already noted in section 1, attackers can target either integrity
(by having the system make wrong predictions on specific input
data), availability (by hindering legitimate users from properly
using the system) or confidentiality (by extracting information
without proper authorization). Besides, the scope of the attack
may vary. An attacker may mount a targeted attack, which affects
only certain data samples, or an indiscriminate one. In addition,
the attacker may induce a specific or a general error. When
considering AI classifiers, for instance, a specific error means
that a sample is labeled as belonging to a target class of the
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FIGURE 7 | Summary of possible attacks (red) on AI systems and defenses (blue) specific to AI systems depicted along the AI life cycle. Defenses not specific to AI

systems, e.g., background checks of developers, hardware access control etc. are not shown here and should be adopted from classical IT security. Multiple AI

training sessions with different data sets indicate the risk associated with pre-trained networks and externally acquired data.

attacker’s choosing, whereas a general error only requires any
incorrect label to be assigned to the sample. Furthermore, the
ultimate objective of the attack must be considered. For example,
this can be the unauthorized use of a passport (when attacking
biometric authentication) or recognizing a wrong traffic sign (in
autonomous driving applications). In order to properly assess the
attack, it is necessary to measure its real-world impact. For lack of
more precise metrics commonly agreed upon, as a first step one
might resort to a general scale assessing the attack as having low,
medium or high impact.

The knowledge needed to carry out an attack is another
criterion to consider. As described in subsection 2.3, an attacker
has full knowledge of themodel and the data sets in the white-box
case. In this scenario, the attacker is strongest, and an analysis
assuming white-box access thus gives a worst-case estimate for
security. As noted in Carlini et al. (2019), when performing
such a white-box analysis, for the correct assessment of the
vulnerabilities it is of paramount importance to use additional
tests for checking whether the white-box attacks in question have
been applied correctly, sincemistakes in applying them have been
observed many times and might yield wrong results.

In the case of a gray-box attack, conducting an analysis
requires making precise assumptions on which information is
assumed to be known to the attacker, and which is secret. Carlini
et al. (2019) suggests that, in the same way as with cryptographic
schemes, as little information as possible should be assumed to be
secret when assessing the security of an AI system. For instance,
the type of defense used in the system should be assumed to be
known to the attacker.

The third criterion to be taken into account is the efficiency

of the attack, which influences the capabilities and resources an
attacker requires. We assume the cost of a successful attack to

be the most important proxy metric from the attacker’s point of
view. This helps in judging whether an attack is realistic in a real-
world setting. If an attacker is able to achieve his objective using
a completely different attack which does not directly target the
AI system and costs less, it seems highly probable a reasonable
attacker will prefer this alternative (cf. the concise discussion in
Gilmer et al., 2018). Possible alternatives may change over time
though, and if effective defenses against them are put into place,
the attacker will update his calculation and may likely turn to
attack forms he originally disregarded, e.g., attacks on the AI
system as discussed in this paper.

The cost of a successful attack is influenced by several factors.
First, the general effort and scope of a successful attack have a
direct influence. For instance, the fact whether manipulating only
a few samples is sufficient for mounting a successful poisoning
attack or whether many samples need to be affected can have a
strong impact on the required cost, especially when taking into
account additional measures for avoiding detection. Second, the
degree of automation of the attack determines howmuchmanual
work and manpower is required. Third, the fact whether an
attack requires physical presence or can be performed remotely
is likewise important. For instance, an attack which allows only a
low degree of automation and requires physical presence is much
more costly to mount and especially to scale. Fourth, attacking in
a real-world setting adds further complexity and might hence be
more expensive than an attack in a laboratory setting, where all
the side conditions are under control.

A fourth important criterion is the availability ofmitigations,
which may significantly increase the attacker’s cost. However,
mitigations must in turn be judged by the effort they require
for the defender, their efficiency and effectiveness. In particular,
non-adaptive defense mechanisms may provide a false sense of

Frontiers in Big Data | www.frontiersin.org 11 July 2020 | Volume 3 | Article 2316

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Berghoff et al. Vulnerabilities of Connectionist AI Applications

security, since an attacker who gains sufficient knowledge can
bypass them by modifying his attack appropriately. This is a
serious problem pointed out in many publications (cf. Athalye
et al., 2018a; Gilmer et al., 2018). As a rule, defense mechanisms
should therefore respect Kerckhoffs’s principle and must not rely
on security by obscurity.

4.2. General Measures
A lot of research has been done on how to mitigate attacks on
AI systems (Bethge, 2019; Carlini et al., 2019; Madry et al., 2019).
However, almost all the literature so far focuses on mitigations
inside the AI systems, neglecting other possible defensive
measures, and does not take into account the complete AI
life cycle when assessing attacks. Furthermore, although certain
defenses like some variants of adversarial training (Tramèr
et al., 2018; Salman et al., 2019) can increase robustness against
special threat models, there is, as of now, no general defense
mechanism which is applicable against all types of attacks. A
significant problem of most published defenses consists in their
lack of resilience against adaptive attackers (Carlini and Wagner,
2017a,b; Athalye et al., 2018a). As already stated, the defense
mechanisms used should be assumed to be public. The resistance
of a defense against attackers who adapt to it is hence extremely
important. In this section, we argue that a broader array of
measures need to be combined for increasing security, especially
if one intends to certify the safe and secure operation of an
AI system, as seems necessary in high-risk applications like
autonomous driving. An overview of defenses and attacks is
presented in Figure 7.

There is no compelling reason to focus solely on defending the
AI system itself without taking into account additional measures
which can hamper attacks by changing side conditions. This
observation does not by any means imply that defenses inside
the AI system are unimportant or not necessary but instead
emphasizes that they constitute a last line of defense, which
should be reinforced by other mechanisms.

Legal measures are most general. They cannot by themselves
prevent attacks, but may serve as a deterrent to a certain extent, if
properly implemented and enforced. Legal measures may include
the adoption of new laws and regulation or specifying how
existing laws apply to AI applications.

Organizational measures can influence the side conditions,
making them less advantageous for an attacker. For instance,
in biometric authentication systems at border control, a human
monitoring several systems at once and checking for unusual
behavior or appearance may prevent attacks which can fool the
AI system but are obvious to a human observer or can easily be
detected by him if he is properly trained in advance. Restricting
access to the development and training of AI systems for sensitive
use cases to personnel which has undergone a background
check is another example of an organizational measure. Yet
another example is properly checking the identity of key holders
when using a public key infrastructure (PKI) for protecting the
authenticity of data.

Technical measures outside the AI system can be applied
to increase IT security. The whole supply chain of collecting
and preprocessing data, aggregating and transmitting data sets,

pre-training models which are used as a basis for further
training, and the training procedure itself can be documented and
secured using classic cryptographic schemes like hash functions
and digital signatures to ensure integrity and authenticity (this
ultimately requires a PKI), preventing tampering in the process
and allowing reproducing results and tracing back problems
(Berghoff, 2020). Depending on the targeted level of security
and traceability, the information covered may include all the
training and test data, all AI models, all ML algorithms, a detailed
logging of the development process (e.g., hyperparameters set by
the developer, pseudo-random seeds, intermediate results) and
comments of the developers concisely explaining and justifying
each step in the development process. If the source of the data
used is itself trusted, such documentation and cryptographic
protection can later be validated to prove (with high probability)
that no data poisoning attacks have been carried out, provided the
validating party gets access to at least a sample of the original data
and can check the correctness of intermediate results. As a further
external technical measure, the AI system can be enhanced by
using additional information from other sources. For example, in
biometric authentication, biometric fakes can be detected using
additional sensors (Marcel et al., 2019).

In a somewhat similar vein, the redundant operation of

multiple AI systems running in parallel may serve to increase
robustness to attacks, while at the same time increasing the
robustness on benign data not seen during training. These
systems can be deployed in conjunction with each other
and compare and verify each other’s results, thus increasing
redundancy. The final result might be derived by a simple
majority vote (cf. Figure 7). Other strategies are conceivable
though. For instance, in safety-critical environments an alarm
could be triggered in case the final decision is not unanimous
and, if applicable, the system could be transferred to a safe fall-
back state pending closer inspection. Increasing the redundancy
of a technical system is a well-known approach for reducing
the probability of undesired behavior, whether due to benign
reasons or induced by an attacker. However, the transferability
property of adversarial examples (cf. subsection 2.5, Papernot
et al., 2016a) implies that attacks may continue to work even
in the presence of redundancy, although their probability of
success should at least slightly diminish. As a result, when
using redundancy, one should aim to use conceptually different
models and train them using different training sets that all stem
from the data distribution representing the problem at hand,
but have been sampled independently or at least exhibit only
small intersections. While this does not in principle resolve
the challenges posed by transferability, our intuition is that
it should help to further decrease an attacker’s probability
of success.

4.3. AI-Specific Measures
On the AI level, several measures can likewise be combined
and used in conjunction with the general countermeasures
presented above. First and foremost, appropriate state-of-the-
art defenses from the literature can be implemented according
to their security benefits and the application scenario. One
common approach for thwarting adversarial attacks is to make
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use of input compression (Dziugaite et al., 2016; Das et al.,
2017), which removes high-frequency components from input
data that are typical for adversarial examples. More prominent
still is a technique called adversarial training, which consists
in pre-computing adversarial examples using standard attack
algorithms and incorporating them into the training process of
the model, thus making it more robust and, in an ideal setting,
immune to such attacks. State-of-the-art adversarial training
methods may be identified using (Madry et al., 2018, 2019;
Bethge, 2019). In general, when dealing with countermeasures
against adversarial attacks, it is important to keep in mind
that many proposed defenses have been broken in the past
(Carlini and Wagner, 2017b; Athalye et al., 2018a), and that
even the best defenses available and combinations thereof Carlini
and Wagner (2017a) may not fully mitigate the problem of
adversarial attacks.

In terms of defenses against backdoor poisoning attacks

only a few promising proposals have been published in recent
years (Tran et al., 2018; Chen et al., 2019; Wang et al.,
2019). Their main idea lies in the creation of a method which
proposes possibly malicious data samples of the training set for
manual examination. Those methods use the fact that a neural
network trained on such a compromised data set learns the false
classification of backdoored samples as exceptions, which can
be detected from the internal representation of the network. It
needs to be kept in mind though that those defenses do not

provide any formal guarantees and might be circumvented by an
adaptive adversary.

As a first step, instead of preventing AI-specific attacks
altogether, reliably detecting them might be a somewhat easier
and hence more realistic task (Carlini and Wagner, 2017a). In
case an attack is detected, the system might yield a special output
corresponding to this situation, trigger an alarm and forward the
apparently malicious input to another IT system or a human in
the loop for further inspection. It depends on the application in
question whether this approach is feasible. For instance, asking
a human for feedback is incompatible by definition with fully
autonomous driving at SAE level 5 (ORAD Committee, 2018).

A different approach lies in using methods from the area
of explainable AI (XAI) to better understand the underlying
reasons for the decisions which an AI system takes (cf. Figure 8).
At the least, such methods may help to detect potential
vulnerabilities and to develop more targeted defenses. One
example is provided by Lapuschkin et al. (2019), which suggests
a more diligent preprocessing of data for preventing the AI
system from learning spurious correlations, which can easily be
attacked. In principle, one can also hope that XAI methods will
allow reasoning about the correctness of AI decisions under a
certain range of circumstances. The field of XAI as focused on
(deep) neural networks is quite young, and research has only
started around 2015, although the general question of explaining
decisions of AI systems dates back about 50 years (Samek et al.,

FIGURE 8 | Schematic illustration of the application of explainable AI (XAI) methods to deduce (A) local and (B) global model behavior of an AI system. (A) shows how

heat maps are generated after labels were obtained for a specific input image, in this case using LRP (Samek et al., 2016), which assigns each input pixel a relative

contribution to the output decision (green colors indicate lowest relevance, red colors highest relevance). (B) illustrates how many local model behavior explanations

are combined to explain global model behavior, in this case using spectral analysis (cf. Lapuschkin et al., 2019). Here multiple topographically distinct clusters for

individual labels shown in a 2D projection of input space indicate some kind of problem: the small cluster for speed limit 100 represents the backdooring attack using

modified stop signs (cf. Figure 4) and the small cluster for the yield sign represents the Clever Hans effect illustrated in detail in (C), where specific image tags (here

“@yieldphoto”) correlate with specific input classes (here the yield sign) and the AI system focuses on these spurious correlations instead of causal correlations. Upon

swapping the input data set (not containing any more spurious correlations of this kind), the AI model might show erroneous behavior.
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2019, pp. 41–49). So far, it seems doubtful there will be a single
method which will fit in every case. Rather, different conditions
will require different approaches. On the one hand, the high-level
use case has a strong impact on the applicable methods: When
making predictions from structured data, probabilistic methods
are considered promising (Molnar, 2020), whereas applications
from computer vision rely on more advanced methods like layer-
wise relevance propagation (LRP) (Bach et al., 2015; Samek
et al., 2016; Montavon et al., 2017; Lapuschkin et al., 2019).
On the other hand, some methods provide global explanations,
while others explain individual (local) decisions. It should be
noted that by using principles similar to adversarial examples,
current XAI methods can themselves be efficiently attacked.
Such attacks may either be performed as an enhancement to
adversarial examples targeting the model (Zhang et al., 2018) or
by completely altering the explanations provided while leaving
model output unchanged (Dombrowski et al., 2019). Based on
theoretical and practical observations, both Zhang et al. (2018)
and Dombrowski et al. (2019) suggest countermeasures for
thwarting the respective attacks.

A third line of research linked to both other approaches is
concerned with verifying and proving the safety and security
of AI systems. Owing to the much greater complexity of this
problem, results in this area, especially practically usable ones,
are scarce (Huang et al., 2017; Katz et al., 2017; Gehr et al.,
2018; Wong et al., 2018; Wong and Kolter, 2018; Singh et al.,
2019). A general idea for harnessing the potential of XAI and
verification methods may be applied, provided one manages
to make these methods work on moderately small models. In
this case, it might be possible to modularize the AI system
in question so that core functions are mapped to small AI
models (Mascharka et al., 2018), which can then be checked and
verified. From the perspective of data protection, this approach
has the additional advantage that the use of specific data may
be restricted to the training of specific modules. In contrast
to monolithic models, this allows unlearning specific data by
replacing the corresponding modules (Bourtoule et al., 2019).

5. CONCLUSION AND OUTLOOK

The life cycle of AI systems can give rise to malfunctions
and is susceptible to targeted attacks at different levels. When
facing naturally occurring circumstances and benign failures,
i.e., in terms of safety, well-trained AI systems display robust
performance in many cases. In practice, they may still show
highly undesired behavior, as exemplified by several incidents
involving Tesla cars (Wikipedia Contributors, 2020). The main
problem in this respect is insufficient training data. The black-
box property of the systems aggravates this issue, in particular
when it comes to gaining user trust or establishing guarantees on
correct behavior of the system under a range of circumstances.

The situation is much more problematic though when it
comes to the robustness to attacks exhibited by the systems.
Whereas a lot of attacks can be combated using traditional
measures of IT security, the AI-specific vulnerabilities to
poisoning and evasion attacks can have grave consequences and

do not yet admit reliable mitigations. Considerable effort has
been put into researching AI-specific vulnerabilities, yet more
is needed, since defenses still need to become more resilient to
attackers if they are to be used in safety-critical applications. In
order to achieve this goal, it seems furthermore indispensable to
combine defense measures at different levels and not only focus
on the internals of the AI system.

Additional open questions concern the area of XAI, which
is quite recent with respect to complex AI systems. The
capabilities and limitations of existing methods need to be better
understood, and reliable and sensible benchmarks need to be
constructed to compare them (Osman et al., 2020). The topic
of formal verification of the functionality of an AI system is
an important enhancement that should further be studied. A
general approach for obtaining better results from XAI and
verification methods is to reduce complexity in the models to be
analyzed. We argue that for safety-critical applications the size
of AI systems used for certain tasks should be minimized subject
to the desired performance. If possible, one might also envision
using a modular system containing small modules, which lend
themselves more easily to analysis. A thorough evaluation using
suitable metrics should be considered a prerequisite for the
deployment of any IT system and, therefore, of any AI system.

Thinking ahead, the issue of AI systems which are
continuously being trained using fresh data (called continual
learning, Parisi et al., 2019) also needs to be considered. This
approach poses at least two difficulties as compared to the more
static life cycle considered in this article. On the one hand,
depending on how the training is done, an attacker might have
a much better opportunity for poisoning training data. On
the other hand, results on robustness, resilience to attacks or
correctness guarantees will only be valid for a certain version of
a model and may quickly become obsolete. This might be tackled
by using regular checkpoints and repeating the countermeasures
and evaluations, at potentially high costs.

Considering the current state of the art in the field of XAI
and verification, it is unclear whether it will ever be possible
to formally certify the correct operation of an arbitrary AI
system and construct a system which is immune to the AI-
specific attacks presented in this article. It is conceivable that
both certification results and defenses will continue to only yield
probabilistic guarantees on the overall robustness and correct
operation of the system. If this assumption turns out true for the
foreseeable future, its implications for safety-critical applications
of AI systems need to be carefully considered and discussed
without bias. For instance, it is important to discuss which
level of residual risk, if any, one might be willing to accept in
return for possible benefits of AI over traditional solutions, and
in what way the conformance to a risk level might be tested
and confirmed. For instance, humans are required to pass a
driving test before obtaining their driver’s license and being
allowed to drive on their own. While a human having passed a
driving test is not guaranteed to always respect the traffic rules,
to behave correctly and to not cause any harm to other traffic
participants, the test enforces a certain standard. In a similar vein,
one might imagine a special test to be passed by an AI system
for obtaining regulatory approval. In these cases the risks and

Frontiers in Big Data | www.frontiersin.org 14 July 2020 | Volume 3 | Article 2319

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Berghoff et al. Vulnerabilities of Connectionist AI Applications

benefits of using an AI system and the boundary conditions for
which the risk assessment is valid should be made transparent
to the user. However, the use of any IT system that cannot be
guaranteed to achieve the acceptable risk level as outlined above
could in extreme cases be banned for particularly safety-critical
applications. Specifically, such a ban could apply to pure AI
systems, if they fail to achieve such guarantees.
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With the advances in machine learning (ML) and deep learning (DL) techniques, and the
potency of cloud computing in offering services efficiently and cost-effectively, Machine
Learning as a Service (MLaaS) cloud platforms have become popular. In addition, there is
increasing adoption of third-party cloud services for outsourcing training of DL models,
which requires substantial costly computational resources (e.g., high-performance
graphics processing units (GPUs)). Such widespread usage of cloud-hosted ML/DL
services opens a wide range of attack surfaces for adversaries to exploit the ML/DL
system to achieve malicious goals. In this article, we conduct a systematic evaluation of
literature of cloud-hosted ML/DL models along both the important dimensions—attacks
and defenses—related to their security. Our systematic review identified a total of 31
related articles out of which 19 focused on attack, six focused on defense, and six focused
on both attack and defense. Our evaluation reveals that there is an increasing interest from
the research community on the perspective of attacking and defending different attacks on
Machine Learning as a Service platforms. In addition, we identify the limitations and pitfalls
of the analyzed articles and highlight open research issues that require further investigation.

Keywords: Machine Learning as a Service, cloud-hostedmachine learningmodels, machine learning security, cloud
machine learning security, systematic review, attacks, defenses

1 INTRODUCTION

In recent years, machine learning (ML) techniques have been successfully applied to a wide range of
applications, significantly outperforming previous state-of-the-art methods in various domains: for
example, image classification, face recognition, and object detection. These ML techniques—in
particular deep learning (DL)–based ML techniques—are resource intensive and require a large
amount of training data to accomplish a specific task with good performance. Training DLmodels on
large-scale datasets is usually performed using high-performance graphics processing units (GPUs)
and tensor processing units. However, keeping in mind the cost of GPUs/Tensor Processing Units
and the fact that small businesses and individuals cannot afford such computational resources, the
training of deep models is typically outsourced to clouds, which is referred to in the literature as
“Machine Learning as a Service” (MLaaS).

MLaaS refers to different ML services that are offered as a component of a cloud computing
services, for example, predictive analytics, face recognition, natural language services, and data
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modeling APIs. MLaaS allows users to upload their data and
model for training at the cloud. In addition to training, cloud-
hosted ML services can also be used for inference purposes, that
is, models can be deployed on the cloud environments; the system
architecture of a typical MLaaS is shown in Figure 1.

MLaaS1 can help reduce the entry barrier to the use of ML and
DL through access to managed services of wide hardware
heterogeneity and incredible horizontal scale. MLaaS is
currently provided by several major organizations such as
Google, Microsoft, and Amazon. For example, Google offers
Cloud ML Engine2 that allows developers and data scientists
to upload training data and model which is trained on the cloud
in the Tensorflow3, environment. Similarly, Microsoft offers
Azure Batch AI4,—a cloud-based service for training DL
models using different frameworks supported by both Linux
and Windows operating systems and Amazon offers a cloud
service named Deep Learning AMI (DLAMI)5 that provides
several pre-built DL frameworks (e.g., MXNet, Caffe, Theano,
and Tensorflow) that are available in Amazon’s EC2 cloud
computing infrastructure. Such cloud services are popular
among researchers as evidenced by the price lifting of
Amazon’s p2.16x large instance to the maximum
possible—two days before the deadline of NeurIPS 2017 (the
largest research venue on ML)—indicating that a large number of
users request to reserve instances.

In addition to MLaaS services that allow users to upload
their model and data for training on the cloud, transfer
learning is another strategy to reduce computational cost in
which a pretrained model is fine-tuned for a new task (using a
new dataset). Transfer learning is widely applied for image
recognition tasks using a convolutional neural network
(CNN). A CNN model learns and encodes features like
edges and other patterns. The learned weights and
convolutional filters are useful for image recognition tasks
in other domains and state-of-the-art results can be obtained
with a minimal amount of training even on a single GPU.
Moreover, various popular pretrained models such as AlexNet
(Krizhevsky et al., 2012), VGG (Simonyan and Zisserman,
2015), and Inception (Szegedy et al., 2016) are available for
download and fine-tuning online. Both of the aforementioned
outsourcing strategies come with new security concerns. In
addition, the literature suggests that different types of attacks
can be realized on different components of the
communication network as well (Usama et al., 2020a), for
example, intrusion detection (Han et al., 2020; Usama et al.,
2020b), network traffic classification (Usama et al., 2019), and
malware detection systems (Chen et al., 2018). Moreover,
adversarial ML attacks have also been devised for client-
side ML classifiers, that is, Google’s phishing pages filter
(Liang et al., 2016).

Contributions of the article: In this article, we analyze the
security of MLaaS and other cloud-hosted ML/DL models and
provide a systematic review of associated security challenges and
solutions. To the best of our knowledge, this article is the first
effort on providing a systematic review of the security of cloud-
hosted ML models and services. The following are the major
contributions of this article:

(1) We conducted a systematic evaluation of 31 articles related to
MLaaS attacks and defenses.

(2) We investigated five themes of approaches aiming to attack
MLaaS and cloud-hosted ML services.

(3) We examined five themes of defense methods for securing
MLaaS and cloud-hosted ML services.

(4) We identified the pitfalls and limitations of the examined
articles. Finally, we have highlighted open research issues that
require further investigation.

Organization of the article: The rest of the article is organized
as follows. The methodology adopted for the systematic
review is presented in Section 2. The results of the
systematic review are presented in Section 3. Section 4
presents various security challenges associated with cloud-
hosted ML models and potential solutions for securing cloud-
hosted ML models are presented in Section 5. The pitfalls and
limitations of the reviewed approaches are discussed in
Section 6. We briefly reflect on our methodology to
identify any threats to the validity in Section 8 and various
open research issues that require further investigation are
highlighted in Section 7. Finally, we conclude the article in
Section 9.

2 REVIEW METHODOLOGY

In this section, we present the research objectives and the adopted
methodology for the systematic review. The purpose of this article
is to identify and systematically review the state-of-the art
research related to the security of the cloud-based ML/DL
techniques. The methodology followed for this study is
depicted in Figure 2.

2.1 Research Objectives
The following are the key objectives of this article.

O1: To build upon the existing work around the security of
cloud-basedML/DLmethods and present a broad overview of the
existing state-of-the-art literature related to MLaaS and cloud-
hosted ML services.

O2: To identify and present a taxonomy of different attack and
defense strategies for cloud-hosted ML/DL models.

O3: To identify the pitfalls and limitations of the existing
approaches in terms of research challenges and opportunities.

2.2 Research Questions
To achieve our objectives, we consider answering two important
questions that are described below and conducted a systematic
analysis of 31 articles.

1We use MLaaS to cover both ML and DL as a Service cloud provisions.
2https://cloud.google.com/ml-engine/.
3A popular Python library for DL.
4https://azure.microsoft.com/en-us/services/machine-learning-service/.
5https://docs.aws.amazon.com/dlami/latest/devguide/AML2_0.html.
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Q1: What are the well-known attacks on cloud-hosted/third-
party ML/DL models?

Q2: What are the countermeasures and defenses against such
attacks?

2.3 Review Protocol
We developed a review protocol to conduct the systematic review;
the details are described below.

2.3.1 Search Strategy and Searching Phase
To build a knowledge base and extract the relevant articles, eight
major publishers and online repositories were queried that
include ACM Digital Library, IEEE Xplore, ScienceDirect,
international conference on machine learning, international
conference on learning representations, journal of machine
learning research, neural information processing systems,
USENIX, and arXiv. As we added non-peer–reviewed articles
from electric preprint archive (arXiv), we (AQ and AI) performed
the critical appraisal using AACODS checklist; it is designed to
enable evaluation and appraisal of gray literature (Tyndall, 2010),
which is designed for the critical evaluation of gray literature.

In the initial phase, we queried main libraries using a set of
different search terms that evolved using an iterative process to
maximize the number of relevant articles. To achieve optimal
sensitivity, we used a combination of words: attack, poisoning,
Trojan attack, contamination, model inversion, evasion, backdoor,
model stealing, black box, ML, neural networks, MLaaS, cloud
computing, outsource, third party, secure, robust, and defense. The
combinations of search keywords used are depicted in Figure 3. We
then created search strategies with controlled or index terms given
in Figure 3. Please note that no lower limit for the publication date
was applied; the last search date was June 2020. The researchers (WI

and AI) searched additional articles through citations and by
snowballing on Google Scholar. Any disagreement was
adjudicated by the third reviewer (AQ). Finally, articles focusing
on the attack/defense for cloud-based ML models were retrieved.

2.3.2 Inclusion and Exclusion Criteria
The inclusion and exclusion criteria followed for this systematic
review are defined below.

2.3.2.1 Inclusion Criteria
The following are the key points that we considered for screening
retrieved articles as relevant for conducting a systematic review.

• We included all articles relevant to the research questions
and published in the English language that discusses the
attacks on cloud-based ML services, for example, offered by
cloud computing service providers.

• We then assessed the eligibility of the relevant articles by
identifying whether they discussed either attack or defense
for cloud-based ML/DL models.

• Comparative studies that compare the attacks and
robustness against different well-known attacks on cloud-
hosted ML services (poisoning attacks, black box attacks,
Trojan attacks, backdoor attacks, contamination attacks,
inversion, stealing, and invasion attacks).

• Finally, we categorized the selected articles into three
categories, that is, articles on attacks, articles on defenses,
and articles on attacks and defenses.

2.3.2.2 Exclusion Criteria
The exclusion criteria are outlined below.

• Articles that are written in a language other than English.

FIGURE 1 | Taxonomy of different defenses proposed for defending attacks on the third-party cloud-hosted machine learning (ML) or deep learning (DL) models.
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• Articles not available in full text.
• Secondary studies (e.g., systematic literature reviews,

surveys, editorials, and abstracts or short papers) are not
included.

• Articles that do not discuss attacks and defenses for cloud-
based/third-party ML services, that is, we only consider
those articles which have proposed an attack or defense for a
cloud-hosted ML or MLaaS service.

2.3.3 Screening Phase
For the screening of articles, we employ two phases based on the
content of the retrieved articles: 1) title and abstract screening and
2) full text of the publication. Please note that to avoid bias and to
ensure that the judgment about the relevancy of articles is entirely
based on the content of the publications, we intentionally do not
consider authors, publication type (e.g., conference and journal),
and publisher (e.g., IEEE and ACM). Titles and abstracts might
not be true reflectors of the articles’ contents; however, we
concluded that our review protocol is sufficient to avoid
provenance-based bias.

It is very common that the same work got published in
multiple venues, for example, conference papers are usually
extended to journals. In such cases, we only consider the
original article. In the screening phase, every article was
screened by at least two authors of this article that were
tasked to annotate the articles as either relevant, not relevant,
or need further investigation, which was finalized by the
discussion between the authors until any such article is either
marked relevant or not relevant. Only original technical articles
are selected, while survey and review articles are ignored. Finally,
all selected publications were thoroughly read by the authors for
categorization and thematic analysis.

3 REVIEW RESULTS

3.1 Overview of the Search and Selection
Process Outcome
The search using the aforementioned strategy identified a total of
4,384 articles. After removing duplicate articles, title, and abstract

screening, the overall number of articles reduced to 384. A total
of 230 articles did not meet the inclusion criteria and were
therefore excluded. From the remaining 154 articles, 123
articles did not discuss attack/defense for third-party cloud-
hosted ML models and were excluded as well. Of the remaining
articles, a total of 31 articles are identified as relevant. Reasons
for excluding articles were documented and reported in a
PRISMA flow diagram, depicted in Figure 4. These articles
were categorized into three classes, that is, articles that are
specifically focused on attacks, articles that are specifically
focused on defenses, and articles that considered both
attacks and defenses containing 19, 6, and 6 articles each,
respectively.

3.2 Overview of the Selected Studies
The systematic review eventually identified a set of 31 articles
related to cloud-based ML/DL models and MLaaS, which we
categorized into three classes as mentioned above and shown in
Figure 4. As shown in Figure 5, a significant portion of the
selected articles were published in conferences (41.94%);
comparatively, a very smaller proportion of these articles
were published in journals or transactions (19.35%). The
percentage of gray literature (i.e., non-peer–reviewed articles)
is 25.81%. Yet, a very small proportion of publications are
published in symposia (6.45%), and this percentage is the
same for workshop papers. The distribution of selected

FIGURE 2 | An illustration of a typical cloud-based ML or machine learning as a service (MLaaS) architecture.

FIGURE 3 | The methodology for systematic review.
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publications by their types over the years is shown in Figure 6.
The figure depicts that the interest in the security of cloud-
hosted ML/DL models increased in the year 2017 and was at a
peak in the year 2018 and was slightly lower in the year 2019 as
compared to 2018. Also, the majority of the articles during these
years were published in conferences. The distribution of selected
publications by their publishers over the years is depicted in
Figure 7, the figure shows that the majority of the publications
have been published at IEEE, ACM, and arXiv. There is a similar
trend in the number of articles in the year 2017, 2018, and 2019
as discussed previously.

3.3 Some Partially Related Non-Selected
Studies: A Discussion
We have described our inclusion and exclusion criteria that help
us to identify relevant articles. We note, however, that some
seemingly relevant articles failed to meet the inclusion criteria.
Here, we briefly describe few such articles for giving a rationale
why they were not included.

• Liang et al. (2016) investigated the security challenges for
the client-side classifiers via a case study on the Google’s
phishing pages filter, a very widely used classifier for
automatically detecting unknown phishing pages. They
devised an attack that is not relevant to the cloud-based
service.

• Demetrio et al. (2020) presented WAF-A-MoLE, a tool that
models the presence of an adversary. This tool leverages a set
of mutation operators that alter the syntax of a payload
without affecting the original semantics. Using the results,
the authors demonstrated that ML-basedWAFs are exposed
to a concrete risk of being bypassed. However, this attack is
not associated with any cloud-based services.

• Authors in Apruzzese et al. (2019) discussed adversarial
attacks where the machine learning model is compromised
to induce an output favorable to the attacker. These attacks

FIGURE 6 |Distribution of selected publications according to their types.

FIGURE 4 | Search queries used to identify publications to include in the
systematic review.

FIGURE 5 | Flowchart of systematic review and categorization.

FIGURE 7 | Distribution of selected publications by types over years.
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are realized in a different setting as compared to the scope of
this systematic review, as we only included the articles which
discuss the attack or defense when the cloud is outsourcing
its services as MLaaS.

• Han et al. (2020) conducted the first systematic study of the
practical traffic space evasion attack on learning-based
network intrusion detection systems; again it is out of the
inclusion criteria of our work.

• Chen et al. (2018) designed and evaluated three types of
attackers targeting the training phases to poison our
detection. To address this threat, the authors proposed
the detection system, KuafuDet, and showed it
significantly reduces false negatives and boosts the
detection accuracy.

• Song et al. (2020) presented a federated defense approach
for mitigating the effect of adversarial perturbations in a
federated learning environment. This article can be
potentially relevant for our study as they address the
problem of defending cloud-hosted ML models; however,
instead of using a third-party service, the authors conducted
the experiments on a single computer system in a simulated
environment; therefore, this study is not included in the
analysis of this article.

• In a similar study, Zhang et al. (2019) presented a defense
mechanism for defending adversarial attacks on cloud-aided
automatic speech recognition (ASR); however, it is not
explicitly stated that the cloud is outsourcing ML services
and also which ML/DL model or MLaaS was used in
experiments.

4 ATTACKSONCLOUD-HOSTEDMACHINE
LEARNING MODELS (Q1)

In this section, we present the findings from the systematically
selected articles that aim at attacking cloud-hosted/third-party
ML/DL models.

4.1 Attacks on Cloud-Hosted Machine
Learning Models: Thematic Analysis
In ML practice, it is very common to outsource the training of
ML/DL models to third-party services that provide high
computational resources on the cloud. Such services enable
ML practitioners to upload their models along with training
data which is then trained on the cloud. Although such
services have clear benefits for reducing the training and
inference time; however, these services can easily be
compromised and to this end, different types of attacks against
these services have been proposed in the literature. In this section,
we present the thematic analysis of 19 articles that are focused on
attacking cloud-hosted ML/DL models. These articles are
classified into five major themes: 1) attack type, 2) threat
model, 3) attack method, 4) target model(s), and 5) dataset.

Attack type: A wide variety of attacks have been proposed in
the literature. These are listed below with their descriptions
provided in the next section.

• Adversarial attacks (Brendel et al., 2017);
• Backdoor attacks6 (Chen et al., 2017; Gu et al., 2019);
• Cyber kill chain–based attack (Nguyen, 2017);
• Data manipulation attacks (Liao et al., 2018);
• Evasion attacks (Hitaj et al., 2019);
• Exploration attacks (Sethi and Kantardzic, 2018);
• Model extraction attacks (Correia-Silva et al., 2018;

Kesarwani et al., 2018; Joshi and Tammana, 2019; Reith
et al., 2019);

• Model inversion attacks (Yang et al., 2019);
• Model-reuse attacks (Ji et al., 2018);
• Trojan attacks (Liu et al., 2018).

Threat model: Cloud ML attacks are based on different threat
models, with the salient types with examples are listed below.

• black box attacks (no knowledge) (Brendel et al., 2017; Chen
et al., 2017; Hosseini et al., 2017; Correia-Silva et al., 2018;
Sethi and Kantardzic, 2018; Hitaj et al., 2019);

• white box attacks (full knowledge) (Liao et al., 2018; Liu
et al., 2018; Gu et al., 2019; Reith et al., 2019);

• gray box attacks (partial knowledge) (Ji et al., 2018;
Kesarwani et al., 2018).

Attack method: In each article, a different type of method is
proposed for attacking cloud-hosted ML/DL models; a brief
description of these methods is presented in Table 1 and is
discussed in detail in the next section.

Target model(s): Considered studies have used different
MLaaS services (e.g., Google Cloud ML Services (Hosseini
et al., 2017; Salem et al., 2018; Sethi and Kantardzic, 2018),
ML models of BigML Platform (Kesarwani et al., 2018), IBM’s
visual recognition (Nguyen, 2017), and Amazon Prediction APIs
(Reith et al., 2019; Yang et al., 2019)).

Dataset: These attacks have been realized using different
datasets ranging from small size datasets (e.g., MNIST (Gu
et al., 2019) and Fashion-MNIST (Liu et al., 2018)) to large
size datasets (e.g., YouTube Aligned Face Dataset (Chen et al.,
2017), Project Wolf Eye (Nguyen, 2017), and Iris dataset (Joshi
and Tammana, 2019)). Other datasets include California
Housing, Boston House Prices, UJIIndoorLoc, and IPIN 2016
Tutorial (Reith et al., 2019), FaceScrub, CelebA, and CIFAR-10
(Yang et al., 2019). A summary of thematic analyses of these
attacks is presented in Table 1 and briefly described in the next
section.

4.2 Taxonomy of Attacks on Cloud-Hosted
Machine Learning Models
In this section, we present a taxonomy and description of
different attacks described above in thematic analysis. A
taxonomy of attacks on cloud-hosted ML/DL models is
depicted in Figure 8 and is described next.

6Backdoor attacks on cloud-hosted models can be further categorized into three
categories (Chen et al., 2020): 1) complete model–based attacks, 2) partial
model–based attacks, and 3) model-free attacks).
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TABLE 1 | Summary of the state-of-the art attack types for cloud-based/third-party ML/DL models.

Author(s) Attack type Method Target model
(s)

Threat model Data

(Brendel et al., 2017) Adversarial attack Presented a decision-based attack, i.e., the
boundary attack

Two ML classifiers from Clarifai.com, i.e., brand
and celebrity recognition

Black box Two datasets: Natural images and celebrities

(Saadatpanah et al.,
2019)

— Crafted adversarial examples for copyright
detection system

YouTube content ID and AudioTag copyright White box and
black box

N/A

(Hosseini et al., 2017) — Proposed two targeted attacks for video
labeling and shot detection

Google cloud video intelligence API Black box —

(Kesarwani et al., 2018) Extraction attack Used information gain to measure model
learning rate

Decision tree deployed on BigML platform Gray box Four BigML datasets, IRS tax pattern, GSS
survey, email importance, steak survey

(Correia-Silva et al.,
2018)

— Knowledge extraction by querying the model
with unlabeled data samples and then used
responses to create fake dataset and model

Three local CNN models for visual recognition
for facial expression, object, and crosswalk
classification and Microsoft Azure Emotion API

Black box Used three datasets for facial expression
recognition, object, and satellite crosswalk
classification

(Reith et al., 2019) — Performed model extraction attacks on the
homomorphic encryption-based protocol for
preserving SVR-based indoor localization

Support vector regressor (SVR) and SVM White box California housing, Boston house prices,
UJIIndoorLoc, and IPIN 2016 tutorial

(Joshi and Tammana,
2019)

— Proposed a variant of gradient driven adaptive
learning rate (GDALR) for stealing MLaaS
models

Used three different models Black box Iris, liver disease, and land satellite datasets

(Sethi and Kantardzic,
2018)

Exploration attack Presented a seed-explore-exploit framework for
generating adversarial samples

Google cloud prediction platform Black box 10 real-world datasets

(Gu et al., 2019) Backdoor attack Realized attack by poisoning training samples
and labels

MNIST and a U.S. street sign classifier,
i.e., Faster-RCNN with outsourced training and
transfer learning

White box MNIST and U.S. traffic signs dataset

(Chen et al., 2017) — Used poisoning strategies to realized a targeted
attack and proposed two types of backdoor
poisoning attacks

Two face recognition models, i.e., DeepID and
VGG-Face

Black box YouTube aligned face dataset

(Liu et al., 2018) Trojan attack Proposed stealth infection on neural network-
based Trojan attack

Cloud-based intelligent supply chain,
i.e., MLaaS

White box Fashion-MNIST

(Gong et al., 2019) — Proposed real-time adversarial example crafting
procedure

Voice/speech enabled devices and Google
Speech

Gray box Voice-command dataset

(Ji et al., 2018) Model reuse attack Presented empirical evaluation of model-reuse
attacks on primitive models and realizing attack
by generating semantically similar neighbors
and identifying salient features

Pretrained primitive models for speech
recognition, autonomous steering, face
verification, and skin cancer screening

Gray box Speech commands, udacity self-driving car
challenge, VGG Face2, and International Skin
Imaging Collaboration (ISIC) datasets

(Liao et al., 2018) Data manipulation
attack

Studied data manipulation attacks for stealthily
manipulating ML and DL models using transfer
learning and gradient descent

Cloud-hosted ML and DL models White box Enron spam and MINIST

(Sehwag et al., 2019) — Crafted out-of-distribution exploratory
adversarial examples to compromise ML/DL
models of Clarifai’s content moderation system
in the cloud

Cloud-hosted ML and DL models White box and
black box

MINIST, CIFAR, and ImageNet
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4.2.1 Adversarial Attacks
In recent years, DL models have been found vulnerable to
carefully crafted imperceptible adversarial examples
(Goodfellow et al., 2014). For instance, a decision-based
adversarial attack namely the boundary attack against two
black box ML models trained for brand and celebrity
recognition hosted at Clarifai.com are proposed in (Brendel
et al., 2017). The first model identifies brand names from natural
images for 500 distinct brands and the second model recognizes
over 10,000 celebrities. To date, a variety of adversarial examples
generation methods have been proposed in the literature so far,
the interesting readers are referred to recent surveys articles for
detailed taxonomy of different types of adversarial attacks
(i.e., Akhtar and Mian, 2018; Yuan et al., 2019; Qayyum
et al., 2020b; Demetrio et al., 2020).

4.2.2 Exploratory Attacks
These attacks are inference time attacks in which adversary
attempts to evade the underlying ML/DL model, for example,
by forcing the classifier (i.e., ML/DL model) to misclassify a
positive sample as a negative one. Exploratory attacks do not
harm the training data and only affects the model at test time.
A data-driven exploratory attack using the
Seed–Explore–Exploit strategy for evading Google’s cloud
prediction API considering black box settings is presented
in (Sethi and Kantardzic, 2018). The performance evaluation
of the proposed framework was performed using 10 real-
world datasets.

4.2.3 Model Extraction Attacks
In model extraction attacks, adversaries can query the deployed
ML model and can use query–response pair for compromising
future predictions and also, they can potentially realize privacy
breaches of the training data and can steal the model by learning
extraction queries. In Kesarwani et al. (2018), the authors
presented a novel method for quantifying the extraction
status of models for users with an increasing number of
queries, which aims to measure model learning rate using
information gain observed by query and response streams of
users. The key objective of the authors was to design a cloud-
based system for monitoring model extraction status and
warnings. The performance evaluation of the proposed
method was performed using a decision tree model deployed
on the BigML MLaaS platform for different adversarial attack
scenarios. Similarly, a model extraction/stealing strategy is
presented by Correia-Silva et al. (2018). The authors queried
the cloud-hosted DLmodel with random unlabeled samples and
used their predictions for creating a fake dataset. Then they used
the fake dataset for building a fake model by training an oracle
(copycat) model in an attempt to achieve similar performance as
of the target model.

4.2.4 Backdooring Attacks
In backdooring attacks, an adversary maliciously creates the
trained model which performs as good as expected on the users’
training and validation data, but it performs badly on attacker
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input samples. The backdooring attacks on deep neural networks
(DNNs) are explored and evaluated in (Gu et al., 2019). The
authors first explored the properties of backdooring for a toy
example and created a backdoor model for handwritten digit
classifier and then demonstrated that backdoors are powerful for
DNN by creating a backdoor model for a United States street sign
classifier. Where, two scenarios were considered, that is,
outsourced training of the model and transfer learning where
an attacker can acquire a backdoor pretrained model online. In
another similar study (Chen et al., 2017), a targeted backdoor
attack for two state-of-the art face recognition models, that is,
DeepID (Sun et al., 2014) and VGG-Face (Parkhi et al., 2015) is
presented. The authors proposed two categories of backdooring
poisoning attacks, that is, input–instance–key attacks and
pattern–key attacks using two different data poising strategies,
that is, input–instance–key strategies and pattern–key strategies,
respectively.

4.2.5 Trojan Attacks
In Trojan attacks, the attacker inserts malicious content into the
system that looks legitimate but can take over the control of the
system. However, the purpose of Trojan insertion can be varied,
for example, stealing, disruption, misbehaving, or getting
intended behavior. In Liu et al. (2018), the authors proposed a
stealth infection on neural networks, namely, SIN2 to realize a
practical supply chain triggered neural Trojan attacks. Also, they
proposed a variety of Trojan insertion strategies for agile and
practical Trojan attacks. The proof of the concept is demonstrated
by developing a prototype of the proposed neural Trojan attack

(i.e., SIN2) in Linux sandbox and used Torch (Collobert et al.,
2011) ML/DL framework for building visual recognition models
using the Fashion-MNIST dataset.

4.2.6 Model-Reuse Attacks
In model-reuse attacks, an adversary creates a malicious model
(i.e., adversarial model) that influences the host model to
misbehave on targeted inputs (i.e., triggers) in extremely
predictable fashion, that is, getting a sample classified into
specific (intended class). For instance, experimental evaluation
of model-reuse attacks for four pretrained primitive DL models
(i.e., speech recognition, autonomous steering, face verification,
and skin cancer screening) is evaluated by Ji et al. (2018).

4.2.7 Data Manipulation Attacks
Those attacks in which training data are manipulated to get
intended behavior by the ML/DL model are known as data
manipulation attacks. Data manipulation attacks for stealthily
manipulating traditional supervised ML techniques and logistic
regression (LR) and CNNmodels are studied by Liao et al. (2018).
In the attack strategy, the authors added a new constraint on fully
connected layers of the models and used gradient descent for
retraining them, and other layers were frozen (i.e., were made
non-trainable).

4.2.8 Cyber Kill Chain–Based Attacks
Kill chain is a term used to define steps for attacking a target
usually used in the military. In cyber kill chain–based attacks, the
cloud-hosted ML/DL models are attacked, for example, a high-

FIGURE 8 | Distribution of selected publications by publishers over years.
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level threat model targeting ML cyber kill chain is presented by
Nguyen (2017). Also, the authors provided proof of concept by
providing a case study using IBM visual recognition MLaaS
(i.e., cognitive classifier for classification cats and female lions)
and provided recommendations for ensuring secure and
robust ML.

4.2.9 Membership Inference Attacks
In a typical membership inference attack, for given input data and
black box access to the ML model, an attacker attempts to figure
out if the given input sample was the part of the training set or
not. To realize a membership inference attack against a target
model, a classificationmodel is trained for distinguishing between
the predictions of the target model against the inputs on which it
was trained and that those on which it was not trained (Shokri
et al., 2017).

4.2.10 Evasion Attacks
Evasion attacks are inference time attacks in which an adversary
attempts to modify the test data for getting the intended outcome
from the ML/DL model. Two evasion attacks against
watermarking techniques for DL models hosted as MLaaS
have been presented by Hitaj et al. (2019). The authors used
five publicly available models and trained them for distinguishing
between watermarked and clean (non-watermarked) images, that
is, binary image classification tasks.

4.2.11 Model Inversion Attacks
In model inversion attacks, an attacker tries to learn about
training data using the model’s outcomes. Two model
inversion techniques have been proposed by Yang et al.
(2019), that is, training an inversion model using auxiliary set
composed by utilizing adversary’s background knowledge and
truncation-based method for aligning the inversion model. The
authors evaluated their proposed methods on a commercial
prediction MLaaS named Amazon Rekognition.

5 TOWARD SECURING CLOUD-HOSTED
MACHINE LEARNING MODELS (Q2)

In this section, we present the insights from the systematically
selected articles that provide tailored defense against specific
attacks and report the articles that along with creating attacks
propose countermeasure for the attacks for cloud-hosted/third-
party ML/DL models.

5.1 Defenses for Attacks on Cloud-Hosted
Machine Learning Models: Thematic
Analysis
Leveraging cloud-basedML services for computational offloading
and minimizing the communication overhead is accepted as a
promising trend. While cloud-based prediction services have
significant benefits, however, by sharing the model and the
training data raises many privacy and security challenges.
Several attacks that can compromise the model and data

integrity, as described in the previous section. To avoid such
issues, users can download the model andmake inferences locally.
However, this approach has certain drawbacks, including,
confidentiality issues, service providers cannot update the
models, adversaries can use the model to develop evading
strategies, and privacy of the user data is compromised. To
outline the countermeasures against these attacks, we present
the thematic analysis of six articles that are focused on defense
against the tailored attacks for cloud-hosted ML/DL models or
data. In addition, we also provide the thematic analysis of those
six articles that propose defense against specific attacks. These
articles are classified into five major themes: 1) attack type, 2)
defense, 3) target model(s), 4) dataset, and 5) measured outcomes.
The thematic analysis of these systematically reviewed articles
that are focused on developing defense strategies against attacks is
given below.

Considered attacks for developing defenses: The defenses
proposed in the reviewed articles are developed against the
following specific attacks.

• Extraction attacks (Tramèr et al., 2016; Liu et al., 2017);
• Inversion attacks (Liu et al., 2017; Sharma and Chen, 2018);
• Adversarial attacks (Hosseini et al., 2017;Wang et al., 2018b;

Rouhani et al., 2018);
• Evasion attacks (Lei et al., 2020);
• GAN attacks (Sharma and Chen, 2018);
• Privacy threat attacks (Hesamifard et al., 2017);
• ide channel and cache-timing attacks (Jiang et al., 2018);
• Membership inference attacks (Shokri et al., 2017; Salem

et al., 2018).

Most of the aforementioned attacks are elaborated in
previous sections. However, in the selected articles that are
identified as either defense or attack and defense articles, some
attacks are specifically created, for instance, GAN attacks, side
channel, cache-timing attack, privacy threats, etc. Therefore, the
attacks are worth mentioning in this section to explain the
specific countermeasures proposed against them in the defense
articles.

Defenses against different attacks: To provide resilience against
these attacks, the authors of selected articles proposed different
defense algorithms, which are listed below against each type of
attack.

• Extraction attacks: MiniONN (Liu et al., 2017), rounding
confidence, differential, and ensemble methods (Tramèr
et al., 2016);

• Adversarial attacks: ReDCrypt (Rouhani et al., 2018) and
Arden (Wang et al., 2018b);

• Inversion attacks: MiniONN (Liu et al., 2017) and image
disguising techniques (Sharma and Chen, 2018);

• Privacy attacks: encryption-based defense (Hesamifard
et al., 2017; Jiang et al., 2018);

• Side channel and cache-timing attacks: encryption-based
defense (Hesamifard et al., 2017; Jiang et al., 2018);

• Membership inference attack: dropout and model stacking
(Salem et al., 2018).

Frontiers in Big Data | www.frontiersin.org November 2020 | Volume 3 | Article 58713910

Qayyum et al. Systematic Review of Cloud ML Security

33

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


TABLE 2 | Summary of attack types and corresponding defenses for cloud-based/third-party ML/DL models.

Author Attack Defense Target model Data Measured outcomes

(Liu et al., 2017) Extraction attack and
inversion attack

MiniONN: a defense against information
leakage in DNN to transform into an
oblivious NN

Cloud-hosted DL models, neural network
for cloud-based prediction services

MNIST and CIFAR-10 Response latency and message sizes

(Rouhani et al.,
2018)

Adversarial attacks ReDCrypt: reconfigurable hardware-
accelerated framework for the privacy-
preserving

Cloud-hosted DL models MNIST and MovieLens Throughput

(Wang et al., 2018b) — Arden: To distribute DNN model
computation among edge device and
cloud data centers

Partial cloud-hosted DNN models MNIST, SVHN, and CIFAR-10 Latency, accuracy, and privacy
budget

(Hosseini et al.,
2017)

— Incorporating randomness to video
analysis algorithms

Google cloud video intelligence API Videos comprising of adversarial
examples

Histogram peaks to detect shot
change

(Sharma and Chen,
2018)

Inversion attack and GAN
attack

Image disguising techniques to ensure the
protection against model-based
adversarial attacks

Cloud-hosted DL models MNIST and CIFAR-10 Accuracy, average visual privacy, and
Fano factor

(Hesamifard et al.,
2017)

Privacy threats due to raw
cloud data

Homomorphic encryption to preserve the
privacy and integrity of data in DNN

Cloud-based DNN Crab dataset, fertility dataset, climate
dataset

Accuracy and training time

(Jiang et al., 2018) Side channel and cache-
timing attack

Secure logistic encryption along with
hardware-based security enhancement
by exploiting software guard extensions

Cloud-hosted LR models Edinburgh MI, WI-Breast cancer, and
MONK’s prob

Area under the curve, complexity, and
model training time

(Lei et al., 2020) Evasion attack Pelican: similarity-based analysis of
unknown website with the known
phishing Web site

BitDefender’s partical processing hosted
on cloud

PhishTank, PhishNet Similarity index

(Tramèr et al., 2016) Extraction attack Rounding confidences to some precision,
differential privacy to protect training data
elements, ensemble methods

MLmodels hosted on BigML and amazon 102 categories flower dataset, face
dataset, iris dataset, and traffic signs
dataset

Success rate given the perturbation
budget

(Shokri et al., 2017) Membership inference
attack

Top k class model predictions, increase
entropy, regularization and reducing
precision of prediction vector

MLaaS classification models of Google
and Amazon APIs

CIFAR-10,purchases, locations, Texas
hospital stays, MNIST, UCI adults

Accuracy and precision

(Salem et al., 2018) — Dropout and model stacking to prevent
overfitting

Google cloud prediction API Used eight different datasets Precision and recall

(Wang et al., 2018a) Misclassification attacks Neuron distance model, ensemble
method, dropout randomization

Google cloud ML, microsoft cognitive
toolkit (CNTK), and the PyTorch

102-Class VGG flower, face dataset, iris
dataset, and traffic signs dataset,
Google’s InceptionV3

Accuracy and success rate
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Target model(s): Different cloud-hosted ML/DL models have
been used for the evaluation of the proposed defenses, as shown in
Table 2.

Dataset(s) used: The robustness of these defenses have been
evaluated using various datasets ranging from small size datasets
(e.g., MNIST (Liu et al., 2017; Wang et al., 2018b; Rouhani et al.,
2018; Sharma and Chen, 2018)) and CIFAR-10 (Liu et al., 2017;
Wang et al., 2018b; Sharma and Chen, 2018)), to large size
datasets (e.g., Iris dataset (Tramèr et al., 2016), fertility and
climate dataset (Hesamifard et al., 2017), and breast cancer
(Jiang et al., 2018)). Other datasets include Crab dataset
(Hesamifard et al., 2017), Face dataset, Traffic signs dataset,
Traffic signs dataset (Tramèr et al., 2016), SVHN (Wang et al.,
2018b), Edinburgh MI, Edinburgh MI, WI-Breast Cancerband
MONKs Prob (Jiang et al., 2018), crab dataset, fertility dataset,
and climate dataset (Hesamifard et al., 2017). Each of the defense
techniques discussed above is mapped in Table 2 to the specific
attack for which it was developed.

Measured outcomes: The measured outcomes based on which
the defenses are evaluated are response latency and message sizes
(Liu et al., 2017; Wang et al., 2018b), throughput comparison
(Rouhani et al., 2018), average on the cache miss rates per second
(Sharma and Chen, 2018), AUC, space complexity to
demonstrate approximated storage costs (Jiang et al., 2018),
classification accuracy of the model as well as running time
(Hesamifard et al., 2017; Sharma and Chen, 2018), similarity
index (Lei et al., 2020), and training time (Hesamifard et al., 2017;
Jiang et al., 2018).

5.2 Taxonomy of Defenses on Cloud-Hosted
Machine Learning Model Attacks
In this section, we present a taxonomy and summary of different
defensive strategies against attacks on cloud-hosted ML/DL
models as described above in thematic analysis. A taxonomy
of these defenses strategies is presented in Figure 9 and is
described next.

5.2.1 MiniONN
DNNs are vulnerable to model inversion and extraction attacks.
Liu et al. (2017) proposed that without making any changes to the
training phase of the model it is possible to change the model into
an oblivious neural network. They make the nonlinear function
such as tanh and sigmoid function more flexible, and by training
the models on several datasets, the authors demonstrated
significant results with minimal loss in the accuracy. In
addition, they also implemented the offline precomputation
phase to perform encryption incremental operations along
with the SIMD batch processing technique.

5.2.2 ReDCrypt
A reconfigurable hardware-accelerated framework is proposed
by Rouhani et al. (2018), for protecting the privacy of deep
neural models in cloud networks. The authors perform an
innovative and power-efficient implementation of Yao’s
Garbled Circuit (GC) protocol on FPGAs for preserving
privacy. The proposed framework is evaluated for different

FIGURE 9 | Taxonomy of different attacks realized on the third-party cloud-hosted machine learning (ML) or deep learning (DL) models.
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DL applications, and it has achieved up to 57-fold throughput
gain per core.

5.2.3 Arden
To offload the large portion of DNNs from the mobile devices to
the clouds and to make the framework secure, a privacy-
preserving mechanism Arden is proposed by Wang et al.
(2018b). While uploading the data to the mobile-cloud
perturbation, noisy samples are included to make the data
secure. To verify the robustness, the authors perform rigorous
analysis based on three image datasets and demonstrated that this
defense is capable to preserve the user privacy along with
inference performance.

5.2.4 Image Disguising Techniques
While leveraging services from the cloud GPU server, the
adversary can realize an attack by introducing malicious
created training data, perform model inversion, and use the
model for getting desirable incentives and outcomes. To
protect from such attacks and to preserve the data as well as
the model, Sharma and Chen (2018) proposed an image
disguising mechanism. They developed a toolkit that can be
leveraged to calibrate certain parameter settings. They claim
that the disguised images with block-wise permutation and
transformations are resilient to GAN-based attack and model
inversion attacks.

5.2.5 Homomorphic Encryption
For making the cloud services of outsourced MLaaS secure,
Hesamifard et al. (2017) proposed a privacy-preserving
framework using homomorphic encryption. They trained the
neural network using the encrypted data and then performed
the encrypted predictions. The authors demonstrated that by
carefully choosing the polynomials of the activation functions to
adopt neural networks, it is possible to achieve the desired accuracy
along with privacy-preserving training and classification.

In a similar study, to preserve the privacy of outsourced
biomedical data and computation on public cloud servers,
Jiang et al. (2018) built a homomorphically encrypted model
that reinforces the hardware security through Software Guard
Extensions. They combined homomorphic encryption and
Software Guard Extensions to devise a hybrid model for the
security of the most commonly used model for biomedical
applications, that is, LR. The robustness of the Secure LR
framework is evaluated on various datasets, and the authors
also compared its performance with state-of-the-art secure LR
solutions and demonstrated its superior efficiency.

5.2.6 Pelican
Lei et al. (2020) proposed three mutation-based evasion attacks
and a sample-based collision attack in white-, gray-, and black
box scenarios. They evaluated the attacks and demonstrated a
100% success rate of attack on Google’s phishing page filter
classifier, while a success rate of up to 81% for the
transferability on Bitdefender TrafficLight. To deal with such
attacks and to increase the robustness of classifiers, they proposed
a defense method known as Pelican.

5.2.7 Rounding Confidences and Differential Privacy
Tramèr et al. (2016) presented the model extraction attacks
against the online services of BigML and Amazon ML. The
attacks are capable of model evasion, monetization, and can
compromise the privacy of training data. The authors also
proposed and evaluated countermeasures such as rounding
confidences against equation-solving and decision tree
pathfinding attacks; however, this defense has no impact on
the regression tree model attack. For the preservation of
training data, differential privacy is proposed; this defense
reduces the ability of an attacker to learn insights about the
training dataset. The impact of both defenses is evaluated on the
attacks for different models, while the authors also proposed
ensemble models to mitigate the impact of attacks; however, their
resilience is not evaluated.

5.2.8 Increasing Entropy and Reducing Precision
The training of attack using shadow training techniques against
black box models in the cloud-based Google Prediction API and
Amazon MLmodels are studied by Shokri et al. (2017). The attack
does not require prior knowledge of training data distribution. The
authors emphasize that in order to protect the privacy of medical-
related datasets or other public-related data, countermeasures
should be designed. For instance, restriction of prediction vector
to top k classes, which will prevent the leakage of important
information or rounding down or up the classification
probabilities in the prediction. They show that regularization
can be effective to cope with overfitting and increasing the
randomness of the prediction vector.

5.2.9 Dropout and Model Stacking
In the study by Salem et al. (2018), the authors created three
diverse attacks and tested the applicability of these attacks on
eight datasets from which six are similar as used by Shokri et al.
(2017), whereas in this work, news dataset and face dataset is
included. In the threat model, the authors considered black box
access to the target model which is a supervised ML classifier with
binary classes that was trained for binary classification. To
mitigate the privacy threats, the authors proposed a dropout-
based method which reduces the impact of an attack by randomly
deleting a proportion of edges in each training iteration in a fully
connected neural network. The second defense strategy is model
stacking, which hierarchically organizes multiple ML models to
avoid overfitting. After extensive evaluation, these defense
techniques showed the potential to mitigate the performance
of the membership inference attack.

5.2.10 Randomness to Video Analysis Algorithms
Hosseini et al. designed two attacks specifically to analyze the
robustness of video classification and shot detection (Hosseini
et al., 2017). The attack can subtly manipulate the content of the
video in such a way that it is undetected by humans, while the
output from the automatic video analysis method is altered.
Depending on the fact that the video and shot labels are
generated by API by processing only the first video frame of
every second, the attack can successfully deceive API. To deal
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with the shot removal and generation attacks, the authors
proposed the inclusion of randomness for enhancing the
robustness of algorithms. However, in this article, the authors
thoroughly evaluated the applicability of these attacks in different
video setting, but the purposed defense is not rigorously
evaluated.

5.2.11 Neuron Distance Threshold and Obfuscation
Transfer learning is an effective technique for quickly building
DL student models in which knowledge from a Teacher model
is transferred to a Student model. However, Wang et al.
(2018a) discussed that due to the centralization of model
training, the vulnerability against misclassification attacks
for image recognition on black box Student models
increases. The authors proposed several defenses to mitigate
the impact of such an attack, such as changing the internal
representation of the Student model from the Teacher model.
Other defense methods include increasing dropout
randomization which alters the student model training
process, modification in input data before classification,
adding redundancy, and using orthogonal model against
transfer learning attack. The authors analyzed the
robustness of these attacks and demonstrated that the
neuron distance threshold is the most effective in
obfuscating the identity of the Teacher model.

6 PITFALLS AND LIMITATIONS

6.1 Lack of Attack Diversity
The attacks presented in the selected articles have limited scope
and lack diversity, that is, they are limited to a specific setting, and
the variability of attacks is limited as well. However, the diversity
of attacks is an important consideration for developing robust
attacks from the perspective of adversaries, and it ensures the
detection and prevention of the attacks to be difficult. The
diversity of attacks ultimately helps in the development of
robust defense strategies. Moreover, the empirical evaluation
of attack variabilities can identify the potential vulnerabilities
of cybersecurity systems. Therefore, to make a more robust
defense solution, it is important to test the model robustness
under a diverse set of attacks.

6.2 Lack of Consideration for Adaptable
Adversaries
Most of the defenses in the systematically reviewed articles are
proposed for a specific attack and did not consider the adaptable
adversaries. On the other hand, in practice, the adversarial attacks
are an arms race between attackers and defenders. That is, the
attackers continuously evolve and enhance their knowledge and
attacking strategies to evade the underlying defensive system.
Therefore, the consideration of adaptable adversaries is crucial for
developing a robust and long-lasting defense mechanism. If we do
not consider this, the adversary will adapt to our defensive system
over time and will bypass it to get the intended behavior or
outcomes.

6.3 Limited Progress in Developing
Defenses
From the systematically selected articles that are collected from
different databases, only 12 articles have presented defense
methods for the proposed attack as compared to the articles
that are focused on attacks, that is, 19. In these 12 articles, six have
only discussed/presented a defense strategy and six have
developed a defense against a particular attack. This indicates
that there is limited activity from the research community in
developing defense strategies for already proposed attacks in the
literature. In addition, the proposed defenses only mitigate or
detect those attacks for which they have been developed, and
therefore, they are not generalizable. On the contrary, the
increasing interest in developing different attacks and the
popularity of cloud-hosted/third-party services demand a
proportionate amount of interest in developing defense
systems as well.

7 OPEN RESEARCH ISSUES

7.1 Adversarially Robust Machine Learning
Models
In recent years, adversarial ML attacks have emerged as a major
panacea for ML/DL models and the systematically selected articles
have highlighted the threat of these attacks for cloud-hostedMl/DL
models as well. Moreover, the diversity of these attacks is drastically
increasing as compared with the defensive strategies that can pose
serious challenges and consequences for the security of cloud-
hosted ML/DL models. Each defense method presented in the
literature so far has been shown resilient to a particular attack
which is realized in specific, settings and it fails to withstand for yet
stronger and unseen attacks. Therefore, the development of
adversarially robust ML/DL models remains an open research
problem, while the literature suggests that worst-case robustness
analysis should be performed while considering adversarial ML
settings (Qayyum et al., 2020a; Qayyum et al., 2020b; Ilahi et al.,
2020). In addition, it has been argued in the literature that most of
ML developers and security incident responders are unequipped
with the required tools for securing industry-grade ML systems
against adversarial ML attacks Kumar et al. (2020). This indicates
the increasing need for the development of defense strategies for
securing ML/DL models against adversarial ML attacks.

7.2 Privacy-Preserving Machine Learning
Models
In cloud-hosted ML services, preserving user privacy is
fundamentally important and is a matter of high concern.
Also, it is desirable that ML models built using users’ data
should not learn information that can compromise the privacy
of the individuals. However, the literature on developing privacy-
preserving ML/DL models or MLaaS is limited. On the other
hand, one of the privacy-preserving techniques that have been
used for privacy protection for building a defense system for
cloud-hosted ML/DL models, that is, the homomorphic
encryption-based protocol (Jiang et al., 2018), has been shown
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vulnerable to model extraction attack (Reith et al., 2019).
Therefore, the development of privacy-preserving ML models
for cloud computing platforms is another open research problem.

7.3 Proxy Metrics for Evaluating Security
and Robustness
From systematically reviewed literature on the security of cloud-
hosted ML/DL models, we orchestrate that the interest from the
research community in the development of novel security-centric
proxy metrics for the evaluation of security threats and model
robustness of cloud-hosted models is very limited. However, with
the increasing proliferation of cloud-hosted ML services
(i.e., MLaaS) and with the development/advancements of
different attacks (e.g., adversarial ML attacks), the
development of effective and scalable metrics for evaluating
the robustness ML/DL models toward different attacks and
defense strategies is required.

8 THREATS TO VALIDITY

We now briefly reflect on our methodology in order to identify
any threats to the validity of our findings. First, internal validity is
maintained as the research questions we pose in Section 2.2
capture the objectives of the study. Construct validity relies on a
sound understanding of the literature and how it represents the
state of the field. A detailed study of the reviewed articles along
with deep discussions between the members of the research team
helped ensure the quality of this understanding. Note that the
research team is of diverse skills and expertise in ML, DL, cloud
computing, ML/DL security, and analytics. Also, the inclusion
and exclusion criteria (Section 2.3) help define the remit of our
survey. Data extraction is prone to human error as is always the
case. This was mitigated by having different members of the
research team review each reviewed article. However, we did not
attempt to evaluate the quality of the reviewed studies or validate
their content due to time constraints. In order to minimize
selection bias, we cast a wide net in order to capture articles
from different communities publishing in the area of MLaaS via a
comprehensive set of bibliographical databases without
discriminating based on the venue/source.

9 CONCLUSION

In this article, we presented a systematic review of literature that is
focused on the security of cloud-hosted ML/DL models, also
named as MLaaS. The relevant articles were collected from eight
major publishers that include ACM Digital Library, IEEE Xplore,
ScienceDirect, international conference on machine learning,
international conference on learning representations, journal
of machine learning research, USENIX, neural information
processing systems, and arXiv. For the selection of articles, we
developed a review protocol that includes inclusion and exclusion
formulas and analyzed the selected articles that fulfill these
criteria across two dimensions (i.e., attacks and defenses) on
MLaaS and provide a thematic analysis of these articles across five
attack and five defense themes, respectively. We also identified
the limitations and pitfalls from the reviewed literature, and
finally, we have highlighted various open research issues that
require further investigation.
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The use of artificial intelligence (AI) in a variety of research fields is speeding up multiple
digital revolutions, from shifting paradigms in healthcare, precision medicine and wearable
sensing, to public services and education offered to themasses around the world, to future
cities made optimally efficient by autonomous driving. When a revolution happens, the
consequences are not obvious straight away, and to date, there is no uniformly adapted
framework to guide AI research to ensure a sustainable societal transition. To answer this
need, here we analyze three key challenges to interdisciplinary AI research, and deliver
three broad conclusions: 1) future development of AI should not only impact other scientific
domains but should also take inspiration and benefit from other fields of science, 2) AI
research must be accompanied by decision explainability, dataset bias transparency as
well as development of evaluation methodologies and creation of regulatory agencies to
ensure responsibility, and 3) AI education should receive more attention, efforts and
innovation from the educational and scientific communities. Our analysis is of interest not
only to AI practitioners but also to other researchers and the general public as it offers ways
to guide the emerging collaborations and interactions toward the most fruitful outcomes.

Keywords: artificial intelligence, interdisciplinary science, education, ethics, auditability, interpretability

INTRODUCTION

Artificial Intelligence (AI), which typically refers to the artificial creation of human-like
intelligence that can learn, perceive and process information, is rapidly becoming a powerful
tool for solving image recognition, document classification (Vapkin, 1995; LeCun et al., 2015) as
well as for the advancement of interdisciplinary problems. It is often considered to be a powerful
computational tool that can be applied to many complex problems which have not been
successfully addressed so far. However, this is not a one way street, other fields such as
neuroscience (Hassabis et al., 2017; Ullman, 2019), developmental psychology (Bennetot et al.,
2020; Charisi et al., 2020), developmental robotics (Oudeyer, 2011; Moulin-Frier and Oudeyer,
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2013; Doncieux et al., 2020) and evolutionary biology (Gobeyn
et al., 2019) can inspire AI research itself, for example by
suggesting novel ways to structure data (Timmis and Knight,
2002), or helping discover new algorithms, such as neural
networks, which are inspired from the brain (Rosenblatt,
1958). Of course, combining AI with other fields is not
without challenges. Like any time when fields synergize,
barriers in communication arise, due to differences in
terminologies, methods, cultures, and interests. How to
bridge such gaps remains an open question, but having a
solid education in both machine learning and the field of
interest is clearly imperative. An example of cross-pollination
interdisciplinary program showing the success of these
approaches is not utopic is Frontier Development Lab, a
cooperative agreement between NASA, the Seti Institute, and
ESA set up to work on AI research for space science, exploration
and all humankind (Frontier Development Lab). Besides
multidisciplinarity, advocating for ethics and diversity
(Agarwal et al., 2020) is a must to account for biased models
(Hendricks et al., 2018; Denton et al., 2019) and avoid
stereotypes being perpetuated by AI systems (Gebru, 2019).
For instance, interdisciplinary approaches, e.g., including art
and science, as well as ensuring minorities are well represented
among both the users and the evaluators of the latest
eXplainable AI techniques (Arrieta et al., 2020), can make AI
more accessible and inclusive to otherwise unreachable
communities.

While the AI revolution in research, healthcare and industry is
presently happening at full speed, its long term impact on society
will not reveal itself straight away. In research and healthcare, this
might lead to blindly applying AI methods to problems for which,
to date, the technology is not ready [e.g., IBM’s Watson for
oncology (Strickland, 2019)], and to ethically questionable
applications [e.g., predicting sexual orientations from
people’s faces (Wang and Kosinski, 2017), using facial
recognition in law enforcement or for commercial use
(Clearview)]. AI can be used as a tool to improve data
privacy (e.g., for deidentification, www.d-id.com) or for
threat identification, but it is more often seen as itself being
a threat to IT systems (Berghoff et al., 2020), e.g., in the cases of
biometric security and privacy (Jiang et al., 2017). AI can be a
target of attacks with vulnerabilities qualitatively new to AI
systems [e.g. adversarial attacks and poisoning attacks (Qiu et al.
, 2019)] as well as a powerful new tool used by the attackers
(Dixon and Eagan, 2019). In industry, AI chatbots ended up
being racist, reflecting the training data that was presented to the
algorithm, recruitment software ended up being gender-biased;
and risk assessment tools developed by a US contractor sent
innocent people to jail (Dressel and Farid, 2018). A more careful
consideration of the impact of AI is clearly needed by following
global and local ethics guidelines for trustworthy (Smuha, 2019)
and responsible AI (Arrieta et al., 2020).

While a large number of industries have seen a potential in this
technology and invested colossal amounts of money to
incorporate AI solutions in their businesses, predictions made
by AI algorithms can be frightening and without a proper
educational framework, lead to a societal distrust. In this

opinion paper we put forward three research topics that we
believe AI research should accentuate on,

(1) How can an interdisciplinary approach towards AI benefit
from and contribute to the AI revolution?While AI is already
used in various scientific fields, it should go beyond solely
predicting outcomes towards conducting exploratory
analysis and finding new patterns in complex systems.
Additionally, in the future development of AI, the reverse
direction should also be considered, namely investigating
ways in which AI can take inspiration and can benefit from
other fields of science.

(2) How could regulatory agencies help correct existing data
biases and discriminations induced by AI? To ensure this, AI
research must be accompanied by decision explainability and
dataset and algorithm bias analysis as well as creation of
regulatory agencies and development of evaluation
methodologies and tools. In all cases, AI research should
guarantee privacy as well as economical and ecological
sustainability of the data and algorithms based on it.

(3) How can we manage the impact of this AI revolution once AI
tools are deployed in the real world, particularly how to
ensure trust of the scientific peers and the general public?
This includes establishing public trust in AI through
education, explainable solutions, and regulation.

By considering these three aspects, interdisciplinary research
will go beyond the considerations of individual disciplines to take
broader and more thoughtful views of the promised digital
revolutions. Our recommendations are a result of in-person
discussions within a diverse group of researchers, educators,
and students, during a 3-day thematic workshop, which has
been collectively written and edited during and after the
meeting. While not comprehensive, we believe they capture a
broad range of opinions from multiple stakeholders and
synthesize a feasible way forward.

PART I: ARTIFICIAL INTELLIGENCE AND
INTERDISCIPLINARY RESEARCH

The relationship between AI and interdisciplinary research must
be considered as a two-way street. While one direction may be
more well known (applying AI to other fields), here we consider
both directions: 1) from AI to other fields and 2) from other fields
to AI. Then we argue that applying knowledge from other fields to
AI development is equally important in order to move forward
and to achieve the full potential of the AI revolution.

From Artificial Intelligence to Other Fields
Using AI to make predictions or decisions in e.g. quantitative
science, healthcare, biology, economy and finance has been
extensively, and possibly excessively done over the past several
years. While the application of AI to these domains remains an
active area of research, we believe that the biggest challenge for
the future of AI lies ahead. Rather than just predicting or making
decisions, AI solutions should be developed to conduct
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exploratory analyses, i.e., to find new, interesting patterns in
complex systems or facilitate scientific discovery (Raghu and
Schmidt, 2020). Specific cases where this direction has already
been explored include e.g., drug discovery (Vamathevan et al.,
2019), the discovery of newmaterial (Butler et al., 2018), symbolic
math (Lample and Charton, 2019; Stanley et al., 2019) or the
discovery of new physical laws (Both et al., 2019; Iten et al., 2020;
Udrescu and Tegmark, 2020).Will AI succeed in assisting humans
in the discovery of new scientific knowledge? If so, in which domain
will it happen first? How do we speed up the development of new AI
methods that could reach such goals? These are some questions
that should inspire and drive the applications of AI in other fields.

Another possible approach consists of using AI models as
experimental “guinea pigs” for hypothesis testing. In the domain
of neuroscience, one standard methodology consists of analyzing
which AI model is best at predicting behavioral data (from
animals or humans) in order to support or inform hypotheses
on the structure and on the function of biological cognitive
systems (Gauthier and Levy, 2019). In that case, the process of
training the AI-agent is an experiment in itself since the intrinsic
interest does not lie in the performance of the underlying
algorithm per se but instead in its ability to explain cognitive
functions. Can we create an AI algorithm that will replace all
stages of scientific process, from coming up with questions,
generating the data, to analysis and interpretation of results?
Such automated discovery is considered as the ultimate goal
by some experts, but so far remains out of reach (Bohannon,
2017).

From Other Fields to Artificial Intelligence
Whereas AI approaches are readily impacting many scientific
fields, those approaches also continue to benefit from insights
from fields such as neuroscience (Hassabis et al., 2017; Samek
et al., 2019; Ullman, 2019; Parde et al., 2020), for example the
similarities between machine and human-like facial recognition
(Grossman et al., 2019) and the use of the face space concept in
deep convolutional neural networks (O’Toole et al., 2018; Parde
et al., 2020). Other fields impacting AI research include
evolutionary biology (Gobeyn et al., 2019) and even quantum
mechanics (Biamonte et al., 2017). One of the biggest successes of
integrating insights from other fields in modern day AI, the
perceptron, became the prelude to the modern neural networks of
today (Rosenblatt, 1958). Perceptrons and neural networks can be
considered analogous to a highly reduced model of cortical neural
circuitry. Other examples are algorithms such as reinforcement
learning which drew inspiration from principles of
developmental psychology from the 50s (Skinner, 2019) and
have been influencing the field of developmental robotics
(Cangelosi and Schlesinger, 2015) since the 2010s. Further
illustration of this cross-fertilization can be seen in bio-
inspired approaches, where principles from natural systems are
used to design better AI, e.g., neuroevolution algorithms that
evolve neural networks through evolutionary algorithms
(Floreano et al., 2008). Finally, the rise of quantum computers
and quantum-like algorithms could further expand the hardware
and algorithmic toolbox for AI (Biamonte et al., 2017). Despite
these important advances in the last decade, AI systems are still

far from being comparable to human intelligence (and to some
extent to animal intelligence), and several questions remain open.
For instance, how can an AI system learn and generalize while
being exposed to only a small amount of data? How to bridge the
gap between low-level neural mechanisms and higher-level
symbolic reasoning?

While AI algorithms are still mostly focused on the modeling
of purely cognitive processes (e.g., learning, abstraction,
planning. . .), a complementary approach could consider
intelligence as an emergent property of cognitive systems
through their coupling with environmental, morphological,
sensorimotor, developmental, social, cultural and evolutionary
processes. In this case, the highly complex dynamic of the
ecological environment is driving the cognitive agents to
continuously improve in an ever-changing world, in order to
survive and to reproduce (Pfeifer and Bongard, 2006; Kaplan and
Oudeyer, 2009). This approach draws inspiration from multiple
scientific fields such as evolutionary biology, developmental
science, anthropology or behavioral ecology. Recent advances
in reinforcement learning have made a few steps in this direction.
Agents capable of autonomously splitting a complex task into
simpler ones (auto-curriculum) can evolve more complex
behaviors through coadaptation in mixed cooperative-
competitive environments (Lowe et al., 2017). In parallel,
progress has also been made in curiosity-driven multi-goal
reinforcement learning algorithms, enabling agents to
autonomously discover and learn multiple tasks of increasing
complexity (Doncieux et al., 2018). Finally, recent work has
proposed to jointly generate increasingly complex and diverse
learning environments and their solutions as a way to achieve
open-ended learning (Doncieux et al., 2018). One related research
direction are studies of systems that sequentially and continually
learn (Lesort et al., 2020) in a lifelong setting, i.e., continual
learning without experiencing the well known phenomenon of
catastrophic forgetting (Traoré et al., 2019). When combined, this
research puts forward the following questions: How can we
leverage recent advances that situate AI agents within realistic
ecological systems? How does the dynamic of such systems drive the
acquisition of increasingly complex skills?

PART II: ARTIFICIAL INTELLIGENCE AND
SOCIETY

The rise of AI in interdisciplinary science brings along significant
challenges. From biased hiring algorithms, to deep fakes, the field
has struggled to accommodate a rapid growth and an increasing
complexity of algorithms (Chesney and Citron, 2019). Moreover,
the lack of explainability (Arrieta et al., 2020) has slowed down its
impact in areas such as quantitative research and prevents the
community to further develop reproducible and deterministic
protocols. Here we propose methodologies and rules to mitigate
the inherent risks that arise from applying complex and non-
deterministic AI methods. In particular we discuss how general
scientific methodologies can be adapted for AI research and how
auditability, interpretability and environmental neutrality of
results can be ensured.

Frontiers in Big Data | www.frontiersin.org November 2020 | Volume 3 | Article 5779743

Kusters et al. Challenges for Interdisciplinary Research

43

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Adapting the Scientific Method to Artificial
Intelligence-Driven Research
To ensure that AI solutions perform as we intended, it is
important to clearly formulate the problem and to state the
underlying hypothesis of the model. By matching formal
problem expression/definitions to laws (intentions), functional
and technical specifications, we ensure that the project has a well
established scope and a path towards achieving this goal. These
specifications have been set forward by the GDPR (General Data
Protection Regulation) that published a self assessment template
guiding scientists and practitioners to prepare their AI projects for
society (Bieker et al., 2016). In short, products and services resulting
from AI decision making must clearly define their applicability and
limitations. Note that this differs from problem definition since it
involves explicitly stating how the algorithm will address part or all
of the original problem. The developers have to explicitly detail how
they handle extreme cases and show that security of the user is
ensured. It should be mandatory for the owner and user of the data
to clearly and transparently state the known biases expressed by the
dataset (similar to the way the secondary effects of medicines are
clearly stated on the medication guide). While some of these are
already addressed by the GDPR in the EU, similar regulation and
standards are needed globally. An alternative, complementary
approach would be to rely on the classical scientific method
practices developed over the centuries. Relying on observation,
hypothesis formulation, experimentation (Rawal et al., 2020) and
evaluation allows us to understand causal relationships and
promotes rigorous practices. AI would certainly benefit from
explicitly integrating these practices into its research ecosystem
(Forde and Paganini, 2019).

Biases and Ethical Standards in Artificial
Intelligence
To control the functioning of AI algorithms and their potential
inherent biases, clear, transparent and interpretable
methodologies and best practices are required. Trustworthiness
of AI-driven projects can be ensured by, for example, using open
protocols of the algorithms functionality, introducing traceability
(logs, model versioning, data used and transformations done on
data) or the pre-definition of insurance datasets. In transversal
domains such as software development, tools have been devised
to prevent mistakes and model deterioration over time (such as
automated unit tests). Establishing similar standards for AI would
force data scientists to design ways to detect and eliminate biases,
ultimately making sure that the algorithm is behaving as
intended. If ethical standards can be encoded in the algorithm,
then regulation can be imposed on the optimized objectives of AI
models (Jobin et al., 2019).

Auditability and Interpretability
The goal of AI should be to improve human condition and not
further aggravate either existing inequalities (Gebru, 2019) or
environmental issues in our societies. The AI service and product
developers are likely to be at the center of this challenge - they are
the ones that can directly prevent errors and biases in input data
or future applications. They present a priori knowledge that can

lead to or prevent misuse (conscious or unconscious). It is
tempting to extensively employ libraries and “ready-to-use”
code samples, as these make the production process faster and
easier. However, especially when used by non-experts, the key
features of AI models, e.g., data recasting, could easily be
implemented incorrectly. The secondary users of AI tools
must be able to measure the biases of their input data and
obtained results, which can be done only if they are both
aware of potential problems and if they have the necessary
tools readily available.

As with any software, failures and mistakes will inevitably
arise and a system has to be in place to assess how AI tools and
services behave not only during development but also “in
production.” The combination of decision logs and model
versioning can allow us to verify and ensure the product
outcomes are the ones intended. Here the question of
independent authorities comes in order to regularly audit
the AI products around us. Companies and AI product
developers must be capable of “opening the black box” and
clearly exposing the monitoring they perform over an
algorithm. Opening the black box has already been set as an
important goal in AI research (Castelvecchi, 2016), even if not
all experts agree that this is necessary (Holm, 2019). It includes
not only making the currently used model transparent, but
more importantly being able to explain how it was designed,
and examining its past states and decisions. For example,
developers must track data drifting and deploy policies
preventing an algorithm to produce unintended outcomes.
So far, this has been left to good practices of individual
developers, but we can envision construction of an authority
in charge of auditing AI products regularly. One proposed
approach has been to impose Adversarial Fairness during
training or on the output (Adel et al., 2019). Independently
of a particular way to ensure auditability and interpretability,
the process should be co-designed not only by AI practitioners
but all stakeholders, including the general public, following
open science principles (Greshake Tzovaras et al., 2019).
Auditability and interoperability considerations complement
and extend the more obvious and direct requirements of
robustness, security and data privacy in AI.

Finally, as for any technology, the usefulness of AI will have to
be assessed against its environmental impact. In particular, life
cycle assessment of AI solutions should be systematic. Here also,
auditing by independent authorities could be a way to enforce
environmental neutrality (Schwartz et al., 2019).

Education Through and About Artificial
Intelligence Technologies
Besides impacting research and industry directly, AI is
transforming the job market at a rapid pace. It is expected
that approximately 80% of the population will be affected by
these technological advancements in the near future (HolonIQ).
Highly complex jobs (e.g., the medical, juridical or educational
domains) will be redefined, some simpler, repetitive tasks will be
replaced or significantly assisted by AI and new jobs will appear in
the coming decades. For instance, budget readjustment and
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reeducation of people who lose their jobs, towards a clean energy
shift, with only about 30% coming from governments (which
amounts to less than 10% of the funds committed to coronavirus
economic relief), could positively shift climate change (Florini,
2011). However, workers of these different fields received little to
no formal education on AI, and more initiatives on sustainable AI
(such as EarthDNA ambassadors or TeachSDG Ambassadors)
are needed. Therefore, the AI transformation should come along
with a transformation in education where educational and
training programs will have to be adapted to these different
existing professions.

The transformation in education can be implemented on
four different levels: academic institutions, companies and
governments. Academic institutions should not only prepare
AI experts by providing in-depth training to move forward AI
research but also focus on interdisciplinarity and attract
diversity in AI. Three main axes for AI education should be:
1) high level AI experts who can train future generations 2) AI
practitioners who can raise public awareness in their research
and (3), broader public that can be informed directly, leading to
decrease in a priori distrust.

The end users and beneficiaries of AI services and products,
as the most numerous part of the population, must play a central
role in their development. It is they who should have the final
say on what global use of AI technologies should be pursued.
However, to do so, they must have a chance to learn the
fundamental principles of AI. This is not fundamentally
different from educating the general public about any
scientific topic with a global societal impact, may it be
medical (e.g., antibiotic resistance, vaccination) or
environmental (e.g., climate change). Providing the
information and training at scale is not a trivial task, due to
at least two major issues: 1) the motivation of the general public
and 2) the existence of appropriate educational tools. Various
online resources are available targeting the general public, such
as Elements of AI in Finland or Objectif’IA in France.
Interestingly, in the case of AI, the problem itself could also
be a part of a possible solution - we can envisage AI playing a
central role in creating adaptive learning paths, individual-
based learning programs addressing the needs and interests
of each person affected by AI technology. Educational tools
designed with AI can motivate each individual by providing
relevant, personalized examples and do it at the necessary scale.
Interactions between AI and education is yet another example of
interdisciplinarity in AI (Oudeyer et al., 2016), which can
directly benefit not only the two fields, education and AI, but
society and productivity as a whole.

CONCLUSION

AI is currently ever present in science and society, and if the trend
continues, it will play a central role in the education and jobs of
tomorrow. It inevitably interacts with other fields of science and in
this paper we examined ways in which those interactions can lead
to synergistic outcomes. We focused our recommendations on
mutual benefits that can be harnessed from these interactions and
emphasized the important role of interdisciplinarity in this process.
AI systems have complex life cycles, including data acquisition,
training, testing and deployment, ultimately demanding an
interdisciplinary approach to audit and evaluate the quality and
safety of these AI products or services. Furthermore in Part II we
focused on how AI practitioners can prevent biases through
transparency, explainability, inclusiveness and how robustness,
security and data privacy can and should be ensured. Finally we
emphasize the importance of education for and through AI to
allow the whole society to benefit from this AI transition. We offer
recommendations from the broad community gathered around the
workshop resulting in this paper, with the goal of contributing,
motivating and informing the conversion between AI practitioners,
other scientists, and the general public. In this way, we hope this
paper is another step towards harnessing the full potential of AI for
good, in all its scientific and societal aspects.
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Modern deep learning systems have achieved unparalleled success and several
applications have significantly benefited due to these technological advancements.
However, these systems have also shown vulnerabilities with strong implications on
the fairness and trustability of such systems. Among these vulnerabilities, bias has
been an Achilles’ heel problem. Many applications such as face recognition and
language translation have shown high levels of bias in the systems towards particular
demographic sub-groups. Unbalanced representation of these sub-groups in the training
data is one of the primary reasons of biased behavior. To address this important challenge,
we propose a two-fold contribution: a bias estimation metric termed as Precise Subgroup
Equivalence to jointly measure the bias in model prediction and the overall model
performance. Secondly, we propose a novel bias mitigation algorithm which is inspired
from adversarial perturbation and uses the PSE metric. The mitigation algorithm learns a
single uniform perturbation termed as Subgroup Invariant Perturbation which is added to
the input dataset to generate a transformed dataset. The transformed dataset, when given
as input to the pre-trained model reduces the bias in model prediction. Multiple
experiments performed on four publicly available face datasets showcase the
effectiveness of the proposed algorithm for race and gender prediction.

Keywords: Fairness, trustability, bias estimation, bias mitigation, subgroup invariant perturbation, gender
classification, race classification

1. INTRODUCTION

Increasing use of artificial intelligence (AI) and machine learning (ML) for automation coupled with
instances of biased predictions has motivated and mandated researchers across the globe to pursue
designing dependable AI systems. Out of the several attributes of dependability in AI systems such as
interpretability, explainability, robustness, bias, and fairness (Mehrabi et al., 2019; Drozdowski et al.,
2020; Ntoutsi et al., 2020), this research is focused towards bias and fairness.

Face analysis tasks such as face detection, face recognition, expression analysis, age and gender
prediction are some of the AI applications in which several instances of biased or unfair predictions
have been observed. For instance, Buolamwini and Gebru (2018) have shown that commercial
gender classifiers perform better for lighter skin males while giving poor performance for darker skin
females. Other instances include false identification of 28 members (specifically people of color) of
the US Congress as criminals by Amazon’s facial recognition tool (Paolini-Subramanya, 2018).
Nagpal et al. (2019) analyzed several pre-trained face recognition models to determine where and
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how the bias manifests in the deep neural networks. In light of
these incidents, while some corporate and government
organizations have decided to minimize or ban the
development or usage of automated face analysis systems
(Conger et al., 2019), several others are continuing the
deployment and usage. Therefore, it is of paramount
importance that we design mechanisms to improve the
trustability and dependability of these systems. To address the
challenges related to biased predictions of AI systems, researchers
are broadly pursuing three directions: understanding bias,
mitigating bias, and accounting for bias (Ntoutsi et al., 2020).
Understanding bias involves realizing the source of bias along
with estimating it (Buolamwini and Gebru, 2018; Celis and Rao,
2019; Nagpal et al., 2019; Radford and Joseph, 2020) whereas
mitigation strategies involve designing algorithms that address
bias (Creager et al., 2019; Nagpal et al., 2020).

In the literature, it has been demonstrated that if the training
data used for learning the models is not balanced in terms of
demographic subgroups, for instance, male and female are two
different subgroups of gender, then there can be significant
differences in the classification performance of pre-trained
models observed on subgroups (Barocas and Selbst, 2016).
Recent instances of biased predictions can be safely attributed
to this observation as the training data required for deep learning
models is often collected from the Internet using convenience
sampling, which inherently leads to disparate proportions of data
across subgroups. Models trained on historically biased datasets lead
to biased results. Therefore, researchers have proposed several
algorithms to mitigate the effect of bias on model prediction
(Alvi et al., 2018; Gong et al., 2019). However, there is generally
a trade-off between fairness andmodel performance (Du et al., 2019;
Li and Vasconcelos, 2019). Removal of bias may affect the overall
model performance while a high performing model may affect the
performance of the under-represented subgroup. Therefore, it is
important to 1) measure the trade-off between the effect of bias and
the model performance through a unified metric and 2) mitigate the
effect of bias without affecting the model performance. A solution to
the problem is to re-train themodels with large datasets having equal
distribution of samples across different subgroups. However, in a
real-world scenario, collecting such diverse datasets is not a trivial
task. Also, re-training the models require updating millions of
parameters and is computationally expensive.

This research focuses on estimating the trade-off between the
effect of bias and the model performance and mitigating the
influence of demographic subgroup bias on pre-trained model
prediction to improve the model performance. Existing metrics
such as Disparate Impact, Average False Rate, and Degree of
Bias provide information of only bias or error rates, but they do
not provide the complete information. The first contribution of
this research is a unified bias metric, termed as Precise Subgroup
Equivalence (PSE) which provides a joint estimate of bias in
model prediction and the overall model performance. The
second contribution is to mitigate the influence of
demographic subgroup bias on pre-trained model prediction
to improve the model performance. We propose a novel
algorithm based on adversarial perturbation for bias
mitigation. In general, adversarial perturbation utilizes the

vulnerability of deep models towards small changes in the input
to reduce the confidence of model prediction. In this research, we
have used this concept to reduce the effect of bias on model
prediction. To the best of our knowledge, this is the first time
that adversarial perturbation is used for bias mitigation. The
proposed algorithm utilizes the model prediction to learn a
single uniform Subgroup Invariant Perturbation (SIP) for a given
dataset. SIP is added to the input dataset to generate a transformed
dataset, which, when given as an input to the model, produces
unbiased outcomes and improves the overall model performance.
Figure 1 shows a visual illustration of the proposed algorithm for
bias mitigation using SIP. The proposed algorithm is used to
mitigate the impact of demographic subgroup bias in race and
gender model predictions.

The effectiveness of the algorithm is demonstrated under two
scenarios: 1) independent demographic subgroup analysis and 2)
inter-sectional demographic subgroup analysis on multiple
datasets to showcase enhanced performance and reduced effect
of bias on model prediction. The results show that PSE provides a
unified score of both error and disparity in subgroups which is
addressed using the proposed algorithm. Further, since the
number of learned parameters is equal to the size of the input
image, the proposed algorithm is observed to be computationally
efficient as well.

2. RELATED WORK

Recent years have observed significant increase in the research on
different aspects of bias and fairness in AI systems. Existing
literature can be grouped into three broad categories: 1)
Understanding and Estimating Bias, 2) Bias Mitigation
Algorithms, and 3) Fairness Metrics.

Understanding and Estimating Bias: Researchers have
focused on understanding the presence of bias in the
prediction of commercial-off-the-shelf systems (COTS) and
pre-trained deep models. Buolamwini and Gebru (2018)
evaluated commercial gender classifiers from Microsoft,
IBM, and Face ++ on four categories based on the skin
type, namely, darker males, darker females, lighter males,
and lighter females. It was found that the classifiers
performed best for males with lighter skin tone and least
for females with darker skin tone. Nagpal et al. (2019)
provided an analysis of bias in deep face recognition
models. They have shown that deep models encode race
and age-specific features that lead to biased discrimination.
According to various studies, the training data distribution has
a huge impact on the model’s performance (Torralba and
Efros, 2011; Bolukbasi et al., 2016). Models trained on
imbalanced datasets lead to biased outputs. Therefore,
different data re-sampling techniques have been proposed
by the researchers to balance the training data distribution.
This is done either by over-sampling the minority class
(Mullick et al., 2019) or under-sampling the majority class
(Drummond et al., 2003). However, a recent study has shown
that even models trained with balanced datasets amplify bias
(Wang et al., 2019). It is shown that the learned models amplify
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the association between labels and gender, which in turn leads
to biased discrimination.

Bias Mitigation: Mitigation algorithms can either be applied as a
pre-processing step or in-processing, or post-processing. Different
algorithms have been proposed to mitigate the effect of bias. Ryu
et al. (2017) addressed the problem of the performance gap in
different subgroups of race and gender attributes. They hypothesized
that faces look different across different genders and races, and
proposed InclusiveNet which learns the demographic information
prior to attribute detection. Dwork et al. (2018) proposed decoupled
classifiers to increase fairness and accuracy in classification systems.
The decoupled classifiers learn a separate classifier for sensitive
attributes and can be used with any black-box network. Das et al.
(2018) proposed a Multi-Task Convolution Neural Network
(MTCNN) to classify gender, age, and ethnicity attributes and
minimized the effect of bias by utilizing disjoint features of fully
connected layers of a deep Convolution Neural Network (CNN).
Alvi et al. (2018) proposed a joint learning and unlearning
framework for mitigating bias in CNN models for gender, age,
race, and pose classification. A disentangled representation learning
technique is presented to obtain flexibly fair features by Creager et al.

(2019). Kim et al. (2019) proposed a regularization algorithm to
unlearn the bias information. Recently, Nagpal et al. (2020)
proposed a filter drop technique for learning unbiased
representations. Results are demonstrated for gender prediction
across different ethnicity groups.

Apart from bias mitigation in attribute prediction,
researchers have also focused on mitigating bias in face
recognition. Gong et al. (2019) addressed the problem of
bias in face recognition systems and proposed a debiasing
adversarial network. The proposed network learns unbiased
representation for both identity and demographic attributes.
Huang et al. (2019) investigated the problem of deep
imbalanced learning in the context of deep representation
learning for attribute prediction and face recognition. They
proposed Cluster-based Large Margin Local Embedding
(CLMLE) method, which maintains inter-cluster margin
among the same and different classes. Wang and Deng
(2019) proposed a reinforcement learning-based race
balance network (RL-RBN) to mitigate racial bias. Singh
et al. (2020) provided a review of techniques related to bias
in face recognition.

FIGURE 1 | Effect of demographic subgroup bias on pre-trained model prediction. (A) Pre-trained model prediction is biased towards subgroup R1. (B) Bias
mitigation using SIP to achieve equal performance across R1 and R2 (best viewed in color).
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Fairness Metrics: To measure the fairness of deep models,
different metrics have been proposed in the literature.

Statistical Parity (SP) (Calders and Verwer, 2010): It is one of
the widely used fairness metrics. It suggests that a model gives
unbiased output if the prediction is independent of the
demographic group such as race, gender, and religion.
Deviation from statistical parity is measured as the ratio of the
probability of a positive classification for both subgroups of a
demographic group. It is termed as Disparate Impact (DI)
(Feldman et al., 2015) and computed as:

DI � P(Ŷ � 1
∣∣∣∣D � 0)

P(Ŷ � 1
∣∣∣∣D � 1)

(1)

where,D represents the demographic group, and Ŷ represents the
predicted decision or class. A lower value of DI indicates higher
bias in the model prediction.

Degree of Bias (DoB) (Gong et al., 2019): It is defined as the
standard deviation of Classification Accuracy (CAcc) across
different subgroups of a demographic group. Mathematically,
it is represented as:

DoB � std(CAccDj) ∀j (2)

where, Dj represents a subgroup of a demographic group D. High
performance gap across different subgroups will result in high
DoB, which in turn implies bias in the model prediction.

3. MATERIALS AND METHODS

The following subsections discuss the proposed metric,
estimation of bias in model prediction, and bias mitigation
using Subgroup Invariant Perturbation (SIP). There are two
different scenarios for bias estimation and mitigation: 1)
independent demographic subgroup analysis and 2)
intersectional demographic subgroup analysis. In the first
scenario, bias estimation/mitigation is performed across the
subgroups of a demographic group. For example, bias
estimation/mitigation is performed across the subgroups of
gender. In the second scenario, bias estimation/mitigation is
performed across the intersection of different demographic
groups. For example, bias estimation/mitigation is performed
across the intersectional subgroups of race and gender.

3.1. Proposed Metric: Precise Subgroup
Equivalence
Existing fairness metrics evaluate the performance gap across
different subgroups (Du et al., 2020). However, these do not
reflect the overall model performance. For instance, if a model
gives almost equal but low performance across different
subgroups, then DI will be high, and DoB will be low.
Therefore, the model prediction will be considered unbiased
across different subgroups. However, an unbiased but low
performing model is undesirable. Therefore, in this research,
Precise Subgroup Equivalence (PSE) metric is introduced that

jointly estimates the effect of demographic subgroup bias on
model prediction and the overall model performance. Precise
Subgroup Equivalence (PSE) is the average of Disparate Impact
(DI), Average False Rate (AFR), and Degree of Bias (DoB).

PSE � (1 − DI) + AFR + DoB
3

(3)

Since a lower value of DI indicates higher bias in model
prediction, therefore higher value of (1 − DI) indicates higher
bias in model prediction. Here, AFR is the mean of False Positive
Rate (FPR) and False Negative Rate (FNR). It is robust to the
subgroup imbalance problem and reflects the overall model
performance. On the other hand, (1 − DI) and DoB reflects
the bias in the model prediction. Therefore, PSE provides a
joint estimate of the overall model performance and the
impact of bias. A model with low PSE indicates an unbiased
high performing model.

3.2. Bias Estimation
For joint estimation of pre-trained model performance and the
impact of demographic subgroup bias, PSE of the model
prediction corresponding to a given dataset is computed. Let
X be the training set with n number of images.

X � {X1,X2, . . . .,Xn} (4)

where, each image Xi is associated with m demographic groups.
Let D and E are the two demographic groups and s and t be the
number of subgroups in D and E, respectively.

D � {D1,D2, . . . .,Ds} and E � {E1, E2, . . . .,Et} (5)

where, Dj and Ej represent a subgroup of the respective
demographic group. Let ϕD be a pre-trained model with
weight W and bias b trained for predicting demographic
group D.

For the first scenario, the probability of predicting an input
image Xi to subgroup Dj is represented as:

P(Dj

∣∣∣∣Xi,D) � ϕD(Xi,W, b) (6)

For the second scenario, the probability of predicting an input
image Xi to subgroup Dj across demographic group E is
represented as:

P(Dj

∣∣∣∣Xi,E,D) � ϕD(Xi,W, b) (7)

The PSE of model ϕD corresponding to dataset X is computed as:

PSEϕD � (1 − DIϕD) + AFRϕD + DoBϕD

3
(8)

where, DIϕD, AFRϕD, and DoBϕD are the Disparate Impact,
Average False Rate, and Degree of Bias of model ϕD
corresponding to dataset X, respectively.

3.3. Bias Mitigation
After estimating the bias in the prediction of a pre-trained model
ϕD corresponding to dataset X, the next task is to mitigate the
effect of bias to improve the overall model performance. For this

Frontiers in Big Data | www.frontiersin.org February 2021 | Volume 3 | Article 5902964

Majumdar et al. SIP for Unbiased Pretrained Model Prediction

51

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


purpose, a single uniform Subgroup Invariant Perturbation
(SIP) is learned by minimizing the PSE corresponding to the
first scenario for the given dataset X. The aim is to generate a
transformed dataset T by adding SIP to all the images of
dataset X, such that when T is given as input to the pre-
trained model ϕD produces unbiased outcomes and improves
the overall performance. We hypothesize that the learned SIP
is effective for mitigating the bias corresponding to the second
scenario as well. In order to validate this, multiple experiments
are performed, and the results are discussed in Section 5.2.
The optimization process for learning SIP N is
discussed below.

LetN be the Subgroup Invariant Perturbation (SIP), initialized
with zeros. Each image Xi of the dataset has pixel values in the
range of {0, 1}. Let T be the transformed dataset obtained by
addingN to the datasetX. To bring the pixel values of each image
in the transformed dataset in the range of {0, 1}, tanh function is
applied as follows:

Ti � 1
2
(tanh(Xi +N) + 1) (9)

where, Ti represents the transformed image corresponding to the
input image Xi. The probability of predicting a transformed
image Ti to subgroup Dj is given by:

P(Dj

∣∣∣∣Ti,D) � ϕD(Ti,W, b) (10)

For models that yield biased predictions, there is a
performance gap across different subgroups, where the
performance of some subgroups are better than others.
Therefore, the objective is to reduce PSE by 1) enhancing the
performance of the low performing subgroups and 2)
maintaining/enhancing the performance of high performing
subgroups. In order to achieve both the objectives, the
following objective function is used.

f (Yi,j, P(Dj

∣∣∣∣Ti,D)) (11)

where, Yi,j represents the true label and f (., .) is the function to
minimize the distance between the true label and the probability
of predicting the true class. The above objective function is

optimized corresponding to SIP N. For this purpose, the
following function is minimized:

min
N

f (Yi,j, P(Dj

∣∣∣∣Ti,D)) ∀j (12)

f (Yj, P(Dj

∣∣∣∣T,D)) � 1
q
∑
q

i�1
max(0, 1 − P(Dj

∣∣∣∣Ti,D))

where, j ∈ {1, . . . , s} and q is the number of images belonging to
subgroup j with q< n. f (., .) will increase the probability of
predicting the true class, which in turn reduces the PSEϕD.
Low PSEϕD will simultaneously ensure reduced effect of bias
on model prediction along with improved model performance.
Figure 2 shows the block diagram of the steps involved in
learning the SIP N.

4. EXPERIMENTAL SETUP

The performance of the proposed algorithm is evaluated for race and
gender classification on four different datasets. The results are reported
using the proposed metric PSE, two existing bias evaluation metrics,
and one existing performance evaluation metric. The details of the
datasets with the corresponding protocols and the pre-trained models
used for the experiments are discussed below.

4.1. Databases and Protocols
Experiments are performed for race and gender prediction,
using data corresponding to race R1 (light skin color) and R2
(dark skin color), and gender G1 (Male) and G2 (Female). The
distribution of the number of images in each dataset across
different race and gender subgroups is shown in Table 1;
Figure 3 shows sample images from each dataset.

MORPH dataset (Album-2) (Rawls and Ricanek, 2009)
contains more than 54, 000 images of 13, 180 subjects. The
dataset is partitioned into 60% training set, 20% validation set,
and 20% testing set. The partitioning is done with non-
overlapping subjects in each set.

UTKFace dataset (Zhang et al., 2017) contains more than
20, 000 face images and divided into three parts, having 9, 779,
10, 718, 3, 206 images in Part I, Part II, and Part III, respectively.

FIGURE 2 | Block diagram of the steps involved in learning Subgroup Invariant Perturbation (SIP). In the first step, SIP N is initialized with zeros and added to the
images of the training set to generated the transformed set. In the next step, the transformed set is given as input to the pre-trained model and model prediction is
obtained. Next, loss is computed and optimization is performed over N to minimize PSE. The updated N is added to the training set and the process is repeated until
convergence (best viewed in color).

Frontiers in Big Data | www.frontiersin.org February 2021 | Volume 3 | Article 5902965

Majumdar et al. SIP for Unbiased Pretrained Model Prediction

52

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Part I is used for training, Part II for testing, and Part III for
validation (Das et al., 2018).

LFWA dataset (Huang et al., 2008) contains 13, 233 images of
5, 749 subjects with 73 attributes. Attributes corresponding to
each image is annotated with intensity values. These are binarized
by converting positive intensity values with label 1 and negative
intensity values with label 0. For experiments, attributes
corresponding to race R1, R2, and gender G1 are taken.
Images with label 0 for G1 are considered as G2. Experiments
are performed using the standard pre-defined protocol proposed
by (Huang et al., 2008).

CelebA dataset (Liu et al., 2015) consists of a total of 2, 02, 599
face images of more than 10, 000 celebrities with 40 annotated
binary attributes. For experiments, the G1 attribute is taken and
images with label 0 for G1 are considered as G2. The experiments
are performed using the standard pre-defined protocol defined by
(Liu et al., 2015).

Pre-trained models: Experiments are performed using pre-
trained VGGFace (Parkhi et al., 2015) model, which is trained on
the VGGFace dataset (Parkhi et al., 2015) for face recognition.
VGGFace dataset is a large scale dataset of 2.6M facial images
corresponding to 2.6K subjects. VGGFace model has shown high
generalization abilities for face recognition. Therefore, we have
used this model and fine-tuned it for race and gender prediction.
In this research, three race prediction models and four gender
prediction models are used for the experiments. The race

prediction models are obtained by separately fine-tuning the
pre-trained VGGFace model on the MORPH, UTKFace, and
LFWA datasets. Similarly, the gender prediction models are
obtained by fine-tuning on the MORPH, UTKFace, LFWA,
and CelebA datasets. These models are treated as pre-trained
race and gender prediction models in all the experiments.

4.2. Implementation Details
The implementation details of the network training and
perturbation learning for mitigation are given below.

Network training: Each model is trained by adding two fully
connected dense layers of 512 dimensions after the final
convolutional layer of the VGGFace model. Models are trained
for 20 epochs with Adam optimizer. The learning rate is set to
0.0001 for the first 10 epochs and reduced by 0.1 after every 5
epochs. Categorical cross-entropy loss is used to train the models.

Perturbation learning for mitigation: Perturbation is learned
from the training set of a given dataset. In order to learn Subgroup
Invariant Perturbation (SIP), a matrix is initialized with zeros of
size 64 × 64 × 3 (equal to the dimension of the input image),
which results in 12,288 number of parameters. The parameters of
this matrix are only trainable during SIP learning while keeping
the parameters of the model frozen. In the first step, SIP is added
to the images in the training set using Equation 9 and given as
input to the model to obtain the predictions. In the second step,
model predictions are used to compute the loss using Equation

FIGURE 3 | Sample images of the (A) MORPH, (B) UTKFace, (C) LFWA, and (D) CelebA datasets.

TABLE 1 | Distribution of number of images in the MORPH, UTKFace, LFWA, and CelebA datasets across different race and gender subgroups.

Dataset Race Gender

R1 R2 G1 G2

MORPH 10,662 42,725 46,835 8,527
UTKFace 10,076 4,525 12,389 11,312
LFWA 9,830 560 10,181 2,962
CelebA — — 75,976 1,06,756
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12. In the final step, the gradient of the loss is computed with
respect to the given input, and this gradient is backpropagated to
the input to update the parameters of the SIP matrix only. The
process is repeated until convergence. For perturbation learning,
Adam optimizer is used with a learning rate of 0.001. Depending
upon the training set, the batch size is set between 500 and 1,000.
Each batch is processed for 16 iterations.

5. RESULTS AND ANALYSIS

Models trained on datasets with over-representation of some
demographic subgroups and under-representation of others often
result in biased outputs. In a real-world scenario, it is difficult to
have knowledge of the dataset used to train a model. However,
depending on the training data distribution, the model could lead
to biased prediction outputs. Therefore, it is important to first
estimate the bias in model prediction, followed by mitigation. As
discussed previously, the model’s overall performance should also
be considered during the estimation/mitigation of bias in model
prediction to balance the trade-off between fairness and model
performance. Therefore, in this research, we have jointly estimated
bias in model prediction and the overall model performance using
the proposed metric PSE. A series of experiments are performed
where models pre-trained on some datasets are evaluated on others
for bias estimation using the existing and proposed metrics. Next,
we use the PSE of the model to mitigate the effect of bias in model
prediction using the proposed algorithm.

We have segregated this section into: 1) Bias Estimation and 2)
Bias Mitigation in Sections 5.1 and Sections 5.2, respectively.

Analysis of the experiments are performed under both the
scenarios, Independent demographic subgroup analysis and
Intersectional demographic subgroup analysis. In the first
scenario of independent demographic subgroup analysis, bias
estimation/mitigation algorithms are analyzed across the
subgroups of a demographic group individually. Whereas, in
the second scenario, analysis is performed across the intersection
of different demographic groups. Table 2 shows the details of the
experiments performed in this research.

5.1. Bias Estimation
Bias estimation plays a key role in designing solutions for bias
mitigation. Therefore, it is important to have a good metric to
estimate bias in model prediction along with the overall model
performance. There are various fairness and performance
evaluation metrics, such as DI, DoB, and AFR. DI measures
the deviation from statistical parity, and DoB represents the
standard deviation of classification accuracy across different
subgroups. On the other hand, AFR gives the average of the
false positive rate and false negative rate. These metrics either
evaluate the performance gap across different subgroups or the
overall model performance. Therefore, we have introduced a new
metric PSE that evaluates both fairness and model performance.
To validate this fact, we have evaluated the performance of
multiple pre-trained models (trained on different datasets)
using existing and proposed metrics. The experimental setup
of this experiment is discussed below:

Experimental Setup: In this experiment, the performance of
pre-trained models is evaluated using five different evaluation
metrics: subgroup-specific error rate, (1-DI), DoB, AFR, and PSE

TABLE 2 | Details of the experiments to estimate and mitigate the effect of demographic subgroup bias on pre-trained race and gender prediction models.

Task Scenario Model trained on Bias estimation/mitigation

Race prediction Independent/intersectional demographic subgroup analysis MORPH UTKFace, LFWA
UTKFace MORPH, LFWA
LFWA MORPH, UTKFace

Gender prediction Independent demographic subgroup analysis MORPH UTKFace, LFWA, CelebA
UTKFace MORPH, LFWA, CelebA
LFWA MORPH, UTKFace, CelebA
CelebA MORPH, UTKFace, LFWA

Intersectional demographic subgroup analysis MORPH UTKFace, LFWA
UTKFace MORPH, LFWA
LFWA MORPH, UTKFace

TABLE 3 | Performance of pre-trained race prediction models (%) across different race subgroups for independent demographic subgroup analysis scenario.

Bias estimated on Model trained on Error 1 – DI AFR DoB PSE

R1 R2

UTKFace MORPH 27.72 22.47 6.77 25.09 2.62 11.49
LFWA 0.04 97.54 97.53 48.78 48.75 65.02

MORPH UTKFace 0.52 80.02 79.92 40.27 39.75 53.31
LFWA 0.00 96.86 96.86 48.43 48.43 64.57

LFWA MORPH 83.32 7.64 81.94 45.48 37.84 55.08
UTKFace 17.82 60.37 51.78 39.09 21.27 37.38
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for bias estimation. Evaluation of each pre-trained model is done
on the training set of all the datasets except the one on which the
model is trained. For instance, if the model is pre-trained on the
MORPH dataset, then it is evaluated on the LFWA, CelebA, and
UTKFace datasets. This setup is considered by keeping in mind
the real-world scenario where the training set of the pre-trained
model is unknown. Bias estimation is done on the training set
because the PSE learned from the training set is used to mitigate
the bias in model prediction for the corresponding dataset.

5.1.1. Independent Demographic Subgroup Analysis
In this scenario, the models are evaluated across different race
and gender subgroups, respectively, of a given dataset. The error
rate of each subgroup is computed to understand the variations in

performance across subgroups. Table 3 shows the performance
of pre-trained race prediction models. It is observed that the error
rate of the models varies significantly across different race
subgroups. It is also observed that the distribution of training
data plays a significant role in the performance of pre-trained
models. For instance, the model trained on the MORPH dataset
when evaluated on the UTKFace dataset results in 27.72% and
22.47% error rate corresponding to subgroup R1 and R2,
respectively. On the other hand, when the LFWA model is
evaluated on the UTKFace dataset, it gives 0.04% and 97.54%
error rate corresponding to subgroup R1 and R2, respectively.
The significant difference in the error rate of each subgroup
obtained by different pre-trained models is due to the skewed
training data distribution on which these models are trained as

TABLE 4 | Performance of pre-trained gender prediction models (%) across different gender subgroups for independent demographic subgroup analysis scenario.

Bias estimated on Model trained on Error 1 – DI AFR DoB PSE

G1 G2

UTKFace MORPH 29.42 42.75 18.90 36.08 6.66 20.54
LFWA 24.94 49.12 32.22 37.02 12.09 27.11
CelebA 53.05 41.70 19.47 47.37 5.67 24.17

MORPH UTKFace 36.75 33.53 4.85 35.13 1.61 13.86
LFWA 39.05 24.96 18.77 32.00 7.04 19.27
CelebA 69.82 29.78 57.01 49.79 20.02 42.27

LFWA UTKFace 30.27 36.69 9.21 33.48 3.21 15.30
MORPH 19.27 57.66 47.56 38.46 19.19 35.07
CelebA 16.79 45.74 34.80 31.26 14.47 26.84

CelebA UTKFace 43.23 42.88 0.62 43.05 0.17 14.61
MORPH 39.71 57.79 30.00 48.75 9.04 29.26
LFWA 12.21 54.75 48.45 33.47 21.27 34.40

TABLE 5 | Performance of pre-trained race prediction models (%) across different gender subgroups and gender prediction models across race subgroups of a given
dataset for intersectional demographic subgroup analysis scenario.

Bias estimated on Model trained on Error 1 – DI AFR DoB PSE

G1 G2

R1 R2 R1 R2

Race prediction across gender subgroups
UTKFace MORPH 35.70 18.41 20.76 26.47 14.21 25.33 5.74 15.09

LFWA 1.15 97.52 1.30 100.00 98.75 49.98 48.76 65.83

MORPH UTKFace 0.56 79.71 0.36 81.95 80.74 40.64 40.18 53.85
LFWA 0.00 96.55 0.00 98.74 97.64 48.82 48.82 65.09

LFWA UTKFace 20.49 58.96 9.52 67.40 56.17 39.09 24.08 39.78
MORPH 83.24 6.99 83.58 10.87 81.78 46.17 37.23 55.06

Gender prediction across race subgroups
UTKFace MORPH 32.07 38.95 16.42 54.91 28.09 35.58 11.34 25.00

LFWA 28.97 43.68 9.46 62.75 39.79 36.21 16.99 30.99

MORPH UTKFace 36.76 11.05 36.85 41.81 18.38 31.61 7.66 19.22
LFWA 44.50 17.80 37.70 27.66 23.19 31.91 9.18 21.43

LFWA UTKFace 30.70 35.28 31.01 50.00 17.08 36.75 5.89 19.91
MORPH 19.65 57.28 17.47 58.70 48.39 38.27 19.71 35.46
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shown in Table 1. TheMORPH dataset has under-representation
of subgroup R1 and over-representation of subgroup R2. On
the other hand, the LFWA dataset has a majority of subgroup R1.
Therefore, the model trained on the MORPH dataset performs
better for subgroup R2, while the LFWA model gives better
performance for subgroup R1. A similar observation can be
drawn when the evaluation is performed on the LFWA
dataset using the models trained on the MORPH and
UTKFace datasets.

On evaluating the performance of a pre-trained model using
individual metrics for a given dataset, it is observed that PSE is
a good indicator of fairness and model performance. For
instance, the PSE of the LFWA model corresponding to the
UTKFace dataset is 65.02%. The high value of PSE indicates a
biased and low performing model. The values of metrics (1-DI)
and DoB are 97.53% and 48.75%, indicating a biased model.
However, these do not provide any insights about model
performance. On the other hand, the AFR of the model is
48.78%, indicating that the model performance is low without
providing any insight about the bias in model prediction. This
shows that metric PSE provides a joint estimation of bias and
model performance.

The performance of the gender prediction models is reported
in Table 4. A similar observation is drawn regarding the
effectiveness of metric PSE from Table 4. For instance, the
performance of the model trained on the UTKFace dataset,
when evaluated on the MORPH dataset, shows almost equal
but high error rate across different gender subgroups. Therefore
(1-DI) and DoB of this model are low, but AFR is high. Thus,
none of the metrics is able to provide a unified estimate of fairness
and model performance. On the other hand, the PSE of this
model is 13.86% showing a joint estimate of both. A similar
observation is obtained when this pre-trained model is evaluated
on the LFWA and CelebA datasets. This showcases that PSE
provides a unified score of both error and disparity in subgroups.

5.1.2. Intersectional Demographic Subgroup Analysis
Existing studies (Alvi et al., 2018; Das et al., 2018; Nagpal et al.,
2020) have shown that the influence of one demographic group
can affect the prediction of others. For instance, the performance
of a gender prediction model may be affected due to the
imbalance in ethnicity subgroups. In such a case, the model
prediction will be biased towards the over-represented ethnicity
subgroup. Therefore, it is important to estimate the bias of one

TABLE 6 | Performance of race prediction models (%) after bias mitigation using the proposed and existing algorithms [Multi-task (Das et al., 2018) and Filter Drop (Nagpal
et al., 2020)] for independent demographic subgroup analysis scenario.

Bias estimated on Model trained on Error 1 – DI AFR DoB PSE

R1 R2

UTKFace MORPH Pre-trained 33.95 18.61 18.86 26.27 7.67 17.60
Fine-tuned 4.85 46.37 43.63 25.61 20.76 30.00
Multi-task 29.66 13.32 18.85 21.48 8.17 16.17
Filter drop 27.95 16.16 14.06 22.04 5.90 14.00
Proposed 14.55 19.74 6.08 17.17 2.59 8.61

LFWA Pre-trained 0.08 97.45 97.45 48.76 48.68 64.96
Fine-tuned 3.55 53.44 51.72 28.49 24.94 35.05
Multi-task 31.55 14.50 19.93 23.02 8.53 17.16
Filter drop 26.78 14.84 14.01 20.80 5.97 13.59
Proposed 15.42 25.16 11.52 20.29 4.87 12.23

MORPH UTKFace Pre-trained 0.31 86.45 86.41 43.37 43.07 57.62
Fine-tuned 6.04 1.85 4.27 3.94 2.09 3.43
Multi-task 3.32 5.99 2.75 4.65 1.34 2.91
Filter drop 4.13 5.76 1.69 4.93 0.82 2.48
Proposed 2.47 4.91 2.51 3.68 1.22 2.47

LFWA Pre-trained 0.00 98.11 98.11 49.05 49.05 65.40
Fine-tuned 7.09 1.73 5.46 4.41 2.68 4.18
Multi-task 2.07 7.96 6.01 5.00 2.95 4.65
Filter drop 3.22 6.54 3.42 4.87 1.66 3.32
Proposed 1.31 4.46 3.20 2.88 1.57 2.55

LFWA UTKFace Pre-trained 19.85 63.86 54.92 41.85 22.00 39.59
Fine-tuned 0.71 81.76 81.63 41.23 40.52 54.46
Multi-task 32.04 24.92 9.49 28.47 3.56 13.84
Filter drop 35.62 28.78 9.61 32.19 3.42 15.07
Proposed 8.56 22.11 14.83 15.33 6.77 12.31

MORPH Pre-trained 81.95 2.11 81.56 42.02 39.92 54.50
Fine-tuned 1.47 78.25 77.93 39.86 38.39 52.06
Multi-task 32.61 27.02 7.66 29.81 2.80 13.42
Filter drop 32.69 26.32 8.64 29.50 3.19 13.78
Proposed 8.75 23.16 15.80 15.95 7.20 12.98

The lowest PSE value is highlighted.
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TABLE 7 | Performance of gender prediction models (%) with the proposed and existing bias mitigation algorithms for independent demographic subgroup analysis.

Bias estimated on Model trained on Error 1 – DI AFR DoB PSE

G1 G2

UTKFace MORPH Pre-trained 22.64 41.37 24.56 32.13 9.36 22.02
Fine-tuned 15.61 29.30 16.23 22.45 6.84 15.17
Multi-task 23.65 37.87 18.62 30.75 7.11 18.83
Filter drop 28.08 34.99 9.60 31.52 3.46 14.86
Proposed 10.18 22.30 13.50 16.24 6.06 11.93

LFWA Pre-trained 18.25 51.74 40.97 34.99 16.74 30.90
Fine-tuned 15.00 31.67 19.62 23.33 8.33 17.09
Multi-task 24.01 38.52 19.09 31.26 7.25 19.20
Filter drop 29.77 33.33 5.06 31.54 1.78 12.79
Proposed 11.91 23.15 12.77 17.53 5.62 11.97

CelebA Pre-trained 42.96 47.32 7.65 45.13 2.18 18.32
Fine-tuned 15.14 33.44 21.57 24.28 9.15 18.33
Multi-task 30.86 38.08 10.43 34.46 3.61 16.17
Filter drop 29.12 34.93 8.19 32.01 2.91 14.37
Proposed 34.70 34.98 0.44 34.83 0.14 11.80

MORPH UTKFace Pre-trained 41.27 19.02 27.48 30.14 11.12 22.91
Fine-tuned 5.84 28.52 24.09 17.17 11.34 17.53
Multi-task 10.00 22.80 14.22 16.39 6.40 12.34
Filter drop 8.88 21.67 14.03 15.27 6.40 11.90
Proposed 14.11 3.59 10.92 8.84 5.26 8.34

LFWA Pre-trained 53.80 20.58 41.84 37.19 16.61 31.88
Fine-tuned 8.69 18.75 11.02 13.72 5.03 9.92
Multi-task 9.63 23.07 14.87 16.34 6.72 12.64
Filter drop 9.88 20.94 12.26 15.4 5.53 11.06
Proposed 15.92 4.75 11.72 10.33 5.58 9.21

CelebA Pre-trained 66.47 31.45 51.09 48.95 17.51 39.18
Fine-tuned 7.71 22.01 15.50 14.85 7.15 12.50
Multi-task 8.19 24.60 17.87 16.39 8.21 14.16
Filter drop 9.80 26.47 18.48 18.12 8.33 14.98
Proposed 19.49 3.26 16.78 11.37 8.11 12.09

LFWA UTKFace Pre-trained 29.88 39.39 13.57 34.63 4.75 17.65
Fine-tuned 3.99 54.18 52.28 29.08 25.09 35.48
Multi-task 27.46 36.70 12.73 32.07 4.62 16.47
Filter drop 30.16 34.05 5.56 32.09 1.95 13.20
Proposed 18.12 26.58 10.33 22.35 4.23 12.30

MORPH Pre-trained 19.12 58.50 48.69 38.30 19.69 35.56
Fine-tuned 5.50 50.42 47.53 27.95 22.46 32.65
Multi-task 39.67 28.74 15.34 34.20 5.47 18.34
Filter drop 34.43 37.32 4.40 35.86 1.45 13.90
Proposed 15.95 27.33 13.55 21.63 5.69 13.62

CelebA Pre-trained 16.31 45.21 34.53 30.76 14.45 26.58
Fine-tuned 10.56 36.79 29.33 23.67 13.11 22.04
Multi-task 25.41 37.41 16.07 31.40 6.00 17.82
Filter drop 25.44 34.72 12.49 30.08 4.64 15.74
Proposed 12.61 28.02 17.64 20.31 7.70 15.22

CelebA UTKFace Pre-trained 42.62 42.77 0.27 42.69 0.07 14.34
Fine-tuned 28.26 11.97 18.51 20.11 8.14 15.59
Multi-task — — — — — —

Filter drop — — — — — —

Proposed 33.90 33.92 0.04 33.91 0.00 11.32
MORPH Pre-trained 38.67 56.47 29.02 47.56 8.90 28.49

Fine-tuned 23.85 14.26 11.19 19.05 4.79 11.68
Multi-task — — — — — —

Filter drop — — — — — —

Proposed 14.99 21.73 7.28 18.08 3.37 9.58
LFWA Pre-trained 11.71 55.06 49.10 33.38 21.67 34.72

Fine-tuned 26.03 12.94 15.04 19.48 6.54 13.69
Multi-task — — — — — —

Filter drop — — — — — —

Proposed 11.57 23.33 13.31 17.45 5.88 12.21

The lowest PSE value is highlighted.
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demographic group on the prediction of others. For this purpose,
in this scenario, the pre-trained race prediction models are
evaluated across different gender subgroups and vice versa.
This scenario showcases the performance of the pre-trained
models across the intersection of different demographic groups.

Table 5 shows the results of this experiment. On evaluating the
performance across all the datasets using different pre-trained
race prediction models, it is observed that the models trained on
the UTKFace and LFWA datasets result in a high error rate for
predicting race R2 across G2, i.e., subgroup (R2, G2). It is also
observed that none of the samples in this intersectional subgroup
are correctly classified by the model trained on the LFWA dataset
when evaluated on the UTKFace dataset. This results in a high
PSE value of 65.83%. For gender prediction across race
subgroups, it is observed that all the pre-trained gender
prediction models (except model trained on the LFWA dataset
when evaluated on the MORPH dataset) perform worse for
predicting gender G2 across R2, i.e., subgroup (G2, R2). The
results from Table 5 highlight that the majority of the pre-trained
race and gender prediction models do not perform well for (R2,
G2) and (G2, R2) subgroups, respectively.

5.2. Bias Mitigation
The experiments performed for bias estimation show that the
pre-trained models do not give equal performance across
different subgroups. Therefore, in this experiment, a single
uniform Subgroup Invariant Perturbation is learned by
minimizing the PSE of the pre-trained model prediction to
achieve improved and almost equal performance across
different subgroups. Multiple experiments are performed to
evaluate the effectiveness of the proposed algorithm to
mitigate the effect of bias in pre-trained model prediction. As
mentioned in Section 3.3, SIP learned corresponding to the
‘independent subgroup analysis’ scenario is used to evaluate
the performance of the proposed algorithm for the
‘intersectional subgroup analysis’ scenario as well. The
performance of the proposed algorithm is compared with pre-
trained and fine-tuned model predictions. Performance is
evaluated using multiple existing metrics and the proposed
metric PSE. Additionally, we have compared the number of
trainable parameters of the proposed algorithm with model
fine-tuning. Experimental setup of this experiment is discussed
below.

Experimental Setup: In this experiment, SIP is learned
corresponding to the training set of all the datasets

individually other than the dataset on which the pre-trained
model is trained. The learned SIP is added to the testing set of the
corresponding dataset for evaluating the performance of the
proposed algorithm. For instance, the model pre-trained on
the MORPH dataset learns SIP using the training set of the
UTKFace dataset and bias is estimated on the testing set of
the UTKFace dataset. Similarly, during bias estimation of the
MORPHmodel on the LFWA dataset, SIP learned on the training
set of the LFWA dataset is used. For fine-tuning, the pre-trained
model is updated using the training set of a given dataset and
evaluated on the testing set of the corresponding dataset. The
performance of the pre-trained model is evaluated on the testing
set of the corresponding dataset.

5.2.1. Independent Demographic Subgroup Analysis
The results of the pre-trained model, fine-tuned model, and the
proposed mitigation algorithm are summarized in Table 6. It is
observed that the proposed algorithm reduces the bias in the
model prediction and enhances the performance. For instance,
the proposed algorithm reduces the PSE by 8.99% and 21.39%
from the pre-trained and fine-tuned MORPH model predictions,
respectively, for the UTKFace dataset. It is interesting to observe
that fine-tuning increases the bias in the model prediction and
decreases the overall performance. This is because the fine-tuned
model decreases the error rate from 33.95 to 4.85% of subgroup
R1 but increases the error rate of subgroup R2 from 18.61 to
46.37% compared to the pre-trainedmodel. The UTKFace dataset
has an under-representation of subgroup R2. Therefore, a model
fine-tuned on this dataset decreases the error rate of subgroup R1
and penalizes subgroup R2. A similar observation can be drawn
from the subgroup-specific error rates of fine-tuned MORPH and
UTKFace models on the LFWA dataset, due to the minority of
subgroup R2. On the other hand, the proposed algorithm
overcomes the problem and reduces the performance gap
across different subgroups.

The performance of gender prediction models is shown in
Table 7. It is observed that the proposed algorithm reduces the
PSE of each model corresponding to all the datasets. For
instance, the PSE of the pre-trained and fine-tuned UTKFace
model corresponding to the MORPH dataset is 22.91% and
17.53%, respectively. The proposed algorithm reduces the PSE
to 8.34%. This showcase that the proposed algorithm is jointly
able to reduce the bias in model prediction and improve the
overall performance of the model. Figure 4 shows the
visualization of the learned Subgroup Invariant Perturbation

FIGURE 4 | Visualization of the learned Subgroup Invariant Perturbation (SIP) corresponding to the (A) race and (B) gender prediction models.
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(SIP). A face like structure can clearly be seen in all the
perturbations.

The proposed algorithm is compared with two existing bias
mitigation algorithms (Das et al., 2018; Nagpal et al., 2020). The
comparison of the results for race and gender prediction are
shown in Tables 6 and 7, respectively. It is observed that the
proposed algorithm outperforms existing algorithms for both

race and gender prediction. The proposed algorithm jointly
optimizes bias and the overall model performance while the
existing algorithms focus on bias optimization only. Therefore,
the PSE of the proposed algorithm is minimum compared to
others. For instance, in gender prediction (Table 7), the PSE of the
CelebA model corresponding to the UTKFace dataset for Multi-
task (Das et al., 2018), Filter Drop (Nagpal et al., 2020), and the

FIGURE 5 | Results shows the comparison of alternate and joint optimization using the proposed algorithm corresponding to the independent demographic
subgroup analysis scenario. The proposed algorithm gives the lowest PSE.
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proposed algorithm is 16.17%, 14.37%, and 11.80%, respectively.
This shows the effectiveness of the proposed algorithm for
independent demographic subgroup analysis scenario. In our
experimental setup, the existing algorithms are not applicable for
gender prediction on the CelebA dataset. Apart from this, we have
also performed an experiment, where we reduce bias and improve
the model performance alternatively using the proposed bias
mitigation algorithm. The results of this experiment are
compared with the proposed bias mitigation algorithm, where
we jointly reduce the bias and improve the model performance.
Figure 5 shows the comparison of the results of alternate and
joint optimization corresponding to the independent
demographic subgroup analysis scenario. It is observed that
joint optimization leads to better results as it provides
combined supervision of bias and model performance for
better learning of SIP that results in better performance.

5.2.2. Intersectional Demographic Subgroup Analysis
To further evaluate the effectiveness of the proposed algorithm
across the intersection of different demographic groups, two
different experiments are performed. In the first experiment,
race classification is performed across gender subgroups. While
in the second experiment, gender classification is performed
across race subgroups. These experiments are performed to
analyze the presence of gender bias on race prediction and
race bias on gender prediction. Comparison is performed
with pre-trained and fine-tuned model predictions. Figure 6
shows the PSE corresponding to the first and second
experiments. It is observed that in most of the cases, the
proposed algorithm gives the lowest PSE. For instance, the PSE
of pre-trained and fine-tuned UTKFace models corresponding to
the MORPH dataset for gender prediction is 20.58% and 15.91%,
respectively. The proposed algorithm reduces the PSE to 8.56%.

FIGURE 6 | Results of (A–C) race classification across gender subgroups corresponding to the MORPH, UTKFace, and LFWA models, respectively and (D–F)
gender classification across race subgroups corresponding to the MORPH, UTKFace, and LFWAmodels, respectively for intersectional demographic subgroup analysis
scenario. Comparison is shown with pre-trained and fine-tuned model predictions along with existing algorithms for bias mitigation.

FIGURE 7 | Score distribution of the MORPH race prediction model across gender subgroups (A) G1 and (B) G2 on the LFWA dataset. The first graph of (A) and
(B) shows the score distribution of the pre-trained model and the second graph shows the score distribution of the proposed algorithm.
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This indicates that the proposed algorithm is able to reduce the
effect of bias of one demographic group on the prediction of others.
The reduction in PSE shows the effectiveness of the proposed
algorithm.

Figure 7 compares the performance of the proposed algorithm
and the pre-trained model using the score distribution of the
model prediction. The results are shown for race prediction
across different gender subgroups of the MORPH model on
the LFWA dataset. It is observed that the proposed algorithm
reduces the overlap among the subgroups and separates them
from each other. Class Activation Map (CAM) of race
classification across gender subgroups on the UTKFace dataset
using the MORPH race prediction model is shown in Figure 8. It
is observed that the pre-trained and fine-tuned models focus on
different facial regions across the intersection of different
demographic subgroups. On the other hand, the proposed
algorithm tries to focus on the entire facial region irrespective
of different subgroups. This showcases the effectiveness of the
learned SIP to mitigate the effect of demographic subgroup bias
by enforcing the model to extract features from the entire facial
region for discrimination instead of subgroup-specific regions.

On comparing the number of trainable parameters of the
proposed algorithm with model fine-tuning, it is observed that
the proposed algorithm requires number of parameters equal to the
size of the input image, i.e., 12K parameters. On the other hand,
model fine-tuning requires updation of 0.52M parameters, which is
approximately 43 times more than the proposed algorithm. This
shows that the proposed algorithm is computationally efficient.

Figure 6 shows the comparison of the proposed algorithm
with existing bias mitigation algorithms (Das et al., 2018; Nagpal

et al., 2020). It is observed that in most of the cases, the proposed
algorithm performs better than existing algorithms while giving
comparable results for others. For instance, the PSE of the
proposed and existing algorithms for race prediction across
gender subgroups of the MORPH model corresponding to the
UTKFace and LFWA datasets are 10.24%, 14.83%, 14.10% and
12.06%, 11.94%, 13.57%, respectively. It is important to note that
the proposed algorithm does not require model training and
therefore is computationally efficient.

6. DISCUSSION AND CONCLUSION

The effect of demographic subgroup bias on the performance of
commercial and pre-trained models is studied in the past. A lot of
progress is made towards estimating and mitigating the influence of
bias on model prediction. However, studies have shown that there is
a trade-off between fairness and model performance. Maintaining a
balance between the two is an important factor. This motivated us to
propose a unified metric to measure the trade-off and an algorithm
to mitigate the effect of bias on pre-trained model prediction.

We used multiple pre-trained race and gender prediction
models for bias estimation and mitigation. Since the existing
metrics either evaluate the performance gap across different
subgroups or the overall model performance, therefore we
have introduced a unified metric, PSE, to jointly estimate the
bias in model prediction and the overall model performance.
Additionally, a novel algorithm is proposed to mitigate the effect
of bias using adversarial perturbation by reducing the PSE of the
model prediction. We showed that a single uniform Subgroup
Invariant Perturbation (SIP), when added to the input images, is
able to mitigate the effect of bias on model prediction.

During bias estimation, it is observed that PSE reflects both error
and disparity in subgroups. On analyzing the existing metrics, it is
observed that DI and DoB do not reflect the overall model
performance, while AFR does not reflect the performance gap
across different subgroups. On the other hand, we have
experimentally validated in Tables 3–5 that PSE considers the
model performance along with fairness. Therefore, PSE is utilized
by the proposed algorithm to learn SIP for bias mitigation. The
performance of race and gender prediction models corresponding to
the independent demographic subgroup analysis scenario are
summarized in Tables 6 and 7, respectively. We have found that
the proposed algorithm is able to reduce the PSE of all the pre-trained
models corresponding to all the datasets. To test the proposed
algorithm for mitigating the influence of bias corresponding to the
intersectional subgroup analysis scenario, SIP learned corresponding
to the independent subgroup analysis scenario is used. Figure 6
shows that the proposed algorithm is effective in mitigating the
intersectional subgroup bias. This is validated by the score
distributions in Figure 7 that shows that the proposed algorithm
reduces the overlap between subgroups. We have also found that the
proposed algorithm focuses on the entire face for feature extraction
instead of subgroup-specific regions in Figure 8.

Existing research towards bias mitigation requires model
training to suppress the element of bias for unbiased prediction.
However, the proposed algorithm does not require model training

FIGURE 8 | Class Activation Map of race classification across gender
subgroups on the UTKFace dataset using the MORPH race prediction model.
Top row shows the visualization for the pre-trained model prediction, middle
row for the fine-tuned model prediction, and the bottom row for the
proposed algorithm. It is observed that the proposed algorithm focuses on the
entire facial region instead of the subgroup-specific region for feature
extraction.
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for bias mitigation. It requires the number of trainable parameters
equal to the size of the input image, which is significantly lower than
the model fine-tuning approach. Therefore, the proposed algorithm
is computationally efficient. This showcase the applicability of the
proposed algorithm in real-world scenarios.

In the future, we plan to extend the proposed algorithm for
mitigating the effect of bias due to the influence of multiple
demographic subgroups via learning a single Subgroup Invariant
Perturbation (SIP). Also, we will investigate the effect of bias on
face recognition performance.
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We apply various seq2seq models on programming language correction tasks on Juliet
Test Suite for C/C++ and Java of Software Assurance Reference Datasets and achieve
75% (for C/C++) and 56% (for Java) repair rates on these tasks. We introduce pyramid
encoder in these seq2seq models, which significantly increases the computational
efficiency and memory efficiency, while achieving similar repair rate to their nonpyramid
counterparts. We successfully carry out error type classification task on ITC benchmark
examples (with only 685 code instances) using transfer learning with models pretrained on
Juliet Test Suite, pointing out a novel way of processing small programming language
datasets.

Keywords: programming language correction, seq2seq architecture, pyramid encoder, attention mechanism,
transfer learning

1 INTRODUCTION

Programming language correction (PLC), which can provide suggestions for people to debug code,
identify potential flaws in a program, and help programmers to improve their coding skills, has been
an important topic in the Natural Language Processing (NLP) area. Generally, code errors consist of
two categories: one is explicit, syntax errors, and the other is implicit, logic errors that could cause
failure during program execution, for example, memory allocation errors, redundant code, etc. The
syntax error problem is relatively well studied; most compilers are able to catch syntax errors, and
correcting syntax errors manually is not difficult even for beginner programmers. The latter problem,
however, is much more challenging due to several reasons. First, the error space is vast. For example,
Error-Prone, a rule-based Java code error detector developed by google, identifies 499 bug patterns.
Second, recognizing and correcting these bugs requires a higher level of understanding of the code,
including identifying the relationship between objects, making connections between blocks, and
matching data types. These errors could be seen in even experienced programmers and can be time
consuming to correct manually. Therefore, this study will focus on automatic correction of these
logic errors in code body that pass compiling stage.

At present, most work in this field used rule-based methods [JetBrains (2016); Synopsys (2016);
Google (2016a); Google (2016b); Singh et al., (2013)], using static analyzers, code transformations, or
control flow to identify bug patterns and make corrections. These methods are quite mature, and
some are even commercialized, like Resharper. Machine learning methods, however, have been a
minority and are relatively new. There is also no canonical solution; people have used methods
varying from reinforcement learning to recurrent neural network.

Given the good performance and wide usage of rule-based PLC methods, there is a major
drawback: these methods are often case specific. The developer had to design specific correction
strategy for each bug pattern. For example, the core code body of Error-Prone contains 499 java
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script, each corresponds to a type of error. Therefore, rule-based
PLC often requires large human labor to build. It also suffers from
incompleteness and incapability of dealing with exceptions. In the
long run, one could consider rule-based PLC vs. machine learning
PLC as rule-based translation vs. statistical machine translation.
Machine learning methods have the following advantages: first,
they are self-sufficient; they teach themselves, requiring
minimum amount of human development. Second, they can
do self-improvement and self-prediction by grabbing data
from users. Third, after sufficient training, one can expect
them to perform better with coding style and fluency, like
machine translations. One main obstacle that prevents
machine code correction being as successful as machine
translation is a general lack of data, which will be elaborated
in a latter paragraph. This further leads to another drawback:
insufficient training. However, machine code correction has an
unlimited potential if more studies are carried out and more
datasets are produced. This article aims to provide a successful
example that might inspire further researches on machine code
correction.

Despite good intentions of replacing hand-designed rule-
based PLC method with machine-learning-based PLC method
and its merits discussed above, some may express concerns about
its environmental costs, as such concerns have been raised by
ethical AI researchers (Hao, 2019). Although generally we do not
agree that such concerns should overshadow the value of

liberating human labor and pursuing potentially much better
performances (as one did in machine translation), we leave such
judgment to our readers. Since training a machine learning model
takes mostly electricity and storage space, we provide an
estimated power consumption and the detailed information of
a number of parameters in our models (with chosen hyper
parameters described in Section 3.6) in the Appendix: Section
2. Interested readers could refer to the information accordingly.

The machine learning models we choose are seq2seq models.
Seq2seq (abbreviation of sequence to sequence) model is a group
of neural-network-based models. It usually consists of an encoder
and a decoder. The encoder takes a sequence as input and
produces an encoded representation of the input sequence.
The decoder takes this representation and produces an output
sequence. It has been proved to be very successful in neural
machine translation, natural language correction, text generation,
etc. An example of a seq2seq model structure is shown in
Figure 1. Our results show that seq2seq models successfully
repair over 70% of the code instances if the beam search size
is 1 and over 90% if the beam search size is 5.

Instead of just using regular seq2seq model, we introduce
pyramid encoder structure to better suit the code correction task.
The motivation is as follows: for NLC problems, the model works
on a sentence level and the average length of a sentence lies
around dozens of words. However, for PLC problems, the model
works on the whole code instance. The average length of code

FIGURE 1 |Model structure of a 3-layer seq2seq model with attention. The ith layer takes the output of the previous layer (h(i−1) ) as its input. a is the context vector,
which can be calculated using different attention mechanisms.
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instances in PLC is usually hundreds of syntax words, which
results in enormous computational cost and memory
requirement, especially combined with attention mechanisms.
Pyramid structure aims to reduce these costs by contracting the
data flow and discarding redundant information. Figure 2 shows
a visual representation of the pyramid encoder; it can be
implemented to most of the multilayer seq2seq learning
models. In our model comparison set, pyramid encoder
increases networks’ computational efficiency by 50%–100%
and memory efficiency by up to 600%, while having similar
ability of reparation.

On the other hand, due to the privacy policies, most of the
publicly available datasets are not collected from realistic
program errors and fixes but rather are generated by artificial
tools. The ones that are collected realistically are usually very
small. To handle this issue, we also applied transfer learning to
inherit the knowledge learned from previous datasets to boost the
network’s performance on smaller and noisier datasets. Details of
our project are available on GitHub1.

2 RELATED WORK

Rule-based methods that work on PLC have a long history and
are thus more mature. One of them is proposed by Singh et al.,
(2013), which is a rule-directed translation strategy synthesizing a
correct program from a sketch. Their model is able to provide

feedback for introductory programming problems and has
achieved a correction rate of 64% on incorrect submissions.
Some of these methods are quite mature. For instance, Google
developed Error-Prone (Google, 2016a) and clang-tidy (Google,
2016b) as rule-based tools to help in identifying and correcting
potential mistakes for programmers. Some of them are even
commercialized, like Resharper (JetBrains, 2016), developed by
Synopsys (2016). As a paid feature of Visual Studio, Resharper
provides code analysis, refactoring, and code processing
(including code generation and quick fixes for errors) as extra
features to programmers.

In 2016, Pu et al.’s (2016) study became one of the first
attempts to use machine learning method in PLC tasks. They
used a Long Short Term Memory (LSTM) model on correcting
MOOCs student assignment submissions. However, their dataset
was not publicly available, putting difficulties on reproducing
their work. Later in 2017, Gupta et al., (2017) proposed a seq2seq
model for fixing student submissions (Deepfix), which is also a
private dataset. In a later work, they (Gupta et al., 2018) used
reinforcement learning based on the input code and the error
messages returned by the compiler for the same task, on the same
dataset. Our work, also based on seq2seq models, was carried out
on a public dataset that contains more error categories.

The pyramid encoder played an important role in our
research. It originated from Xie et al., (2016). We proposed its
general form for all seq2seq models and thoroughly studied its
performance in reduction of computational resources. We aimed
to overcome difficulty brought by the extended length of code
instances, compared to natural language sentences. These aspects
of pyramid structure were not studied in Xie’s work. We did the
comparison of pyramid encoder and regular encoder under
different attention mechanisms, showing that pyramid encoder
could drastically reduce memory and computational cost in most
setups that we considered.

3 MODEL

3.1 Overview
Given a code instance, we wish to identify and correct potential flaw
in it, which might lead to a failure in execution after successful
compilation. Each bad code instance contains exactly one flaw.

Formaly speaking, given an input code instance x, we wish to
map it to an output code instance y and we seek to model P(y∣∣∣∣x).
A code is “repaired” if the flaw that x contains is fixed in the
output y. The “repair rate” is defined as the fraction between the
number of code instances fixed and the total number of code
instances that the model was applied on. We use repair rate as the
evaluation metric in our experiments.

For this purpose, we applied two major families of seq2seq
models: GRU and Transformer. We use learnable embedding
layers, which allows the model to recognize the relationship
between different words in the vocabulary. For the encoder, we
applied pyramid encoder, where a pyramid module is added in
between layers of regular multilayer encoders. For the purpose of
testing generality of pyramid encoder, we combined it with different
attention mechanisms.

FIGURE 2 | Visualization of pyramid encoder in multilayer seq2seq
models. Pyramid encoder reduces length of input sequence by half in every
encoding layer. h(i−1) denotes output of (i − 1)th encoder layer and x(i)

denotes the input of ith encoder layer.

1See https://github.com/b19e93n/PLC-Pyramid.
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3.2 Word-Level Reasoning
In language correction, character-level reasoning is a more
commonly applied method, Xie et al., (2016). However, in
code correction, we apply word-level models. A “word” here
is defined as a code syntax (e.g., “void”, “{“, space, “ � “, “int”,
newline, etc.) or a custom variable name. The reason is that the
basic building blocks of a code instance are related to the syntax.
In the field of programming language processing, out-of-
vocabulary (OOV) is less a problem than in natural language
due to a fixed syntax pool.

In order to prevent the model suffering from vast variation of
variable names, we performed a certain degree of variable
renaming. We focused on renaming function names in our
dataset while keeping other variables unchanged. This method
reduced vocabulary size to ∼1,000 and was proven to be effective
in improving the performance.

We include our preprocessingmethod to a code instance in the
Appendix.

3.3 Pyramid Encoder
Given a multilayer seq2seq encoder, its input at ith layer at step t is
x(i)t and the output is h(i)t :

h(i)
t � Layer(i)(x(i)t ) (1)

In standard seq2seq models, the output of the ith layer h(i) is
directly used as input of the i + 1th layer, x(i+1):

x(i+1)t � h(i)
t (2)

and the time step t � 1, 2, . . . ,T , the layer number i � 1, 2, . . . ,N .
Note that x(0)t is the embedded representation of the input
instance.

For pyramid encoder, we introduce a pyramid module in
between h(i) and x(i+1) as Eq. 3 follows:

x(i+1)t′ � tanh (Wpyr(h(i)
2t , h

(i)
2t+1) + bpyr) (3)

This module reduced the length of the input x(i) by half each time it
is applied. The length of final output of the encoder is T/2N−1. One
could also take a bigger window such as 3, 4, 5. . . depending on
their needs. The hope is that pyramid structure will extract the
important information and reduce the redundant information of
each of the neighboring hidden state, therefore reducing the
training cost while keeping the accuracy of the correction. This
is conceptually similar to a convolution, but without using filters.

For our GRU models, we used multilayer bidirectional GRU
and we implemented pyramid encoder as described first in Xie
et al., (2016):

f (i)t � GRU(f (i)t−1, x
(i)
t ) (4)

b(i)t � GRU(b(i)t+1, x
(i)
t ) (5)

h(i)t � f (i)t + b(i)t (6)

x(i+1)t′ � tanh(Wpyr(h(i)
2t , h

(i)
2t+1) + bpyr) (7)

where x(i+1)t′ denotes the input to next layer, f (i)t and b(i)t denote
output from a forward and a backward GRU, respectively. GRU

(Gated Recurrent Unit) is a RNN (Recurrent Neural Network)
type model that includes a gating mechanism in the following
equations (Cho et al., 2014):

rt � σ(W irxt + bir +Whr
~ht−1 + bhr (8)

z t � σ(W izxt + biz +Whz
~ht−1 + bhz (9)

nt � tanh(W inxt + bin + rt*Whnh̃t−1 + bhn) (10)

~ht � (1 − z t) * nt + z t * h̃t−1 (11)

where ~ht is the hidden state at step t, which is denoted by f t in Eq.
4 and bt in Eq. 5. rt , zt , and nt are the reset, update, and new gates,
respectively. σ is the sigmoid function.

Transformer is a novel family of seq2seq model that works
very differently than RNN type models. In the original
Transformer (see Figure 3), a Feed Forward layer directly
takes in the output from the Multihead attention layer catt,
accompanied by a residual connection, shown in

c(i)att � MultiHeadAtt(x(i)) + x(i) (12)

x(i+1) � c(i)att + FeedForward(c(i)att) (13)

In our model, we concatenated the neighboring elements in catt
before we feed it into the Feed Forward. As a result, the
dimension of the first Linear layer in the Feed Forward
layer has to change from [dmodel × dff ] to [2dmodel × dff ].
Here we use the same notation as in Vaswani et al., (2017),
where dmodel is the size of input, output, and attention vectors
and dff is the number of neurons in the Feed Forward layer. The
residual connection also has to be changed accordingly; we tried two
different approaches, simply averaging the neighboring element (Eq.
14) or concatenating the neighboring element and passing it through
another affine transformation to recover its dimensions (Eq. 15). For
simplicity, we denote the former method with subscript “ave” and
the latter with subscript “aff”.

x(i+1)
t′ ,ave

� (c(i)att,2t + c(i)att,2t+1)
2

+ FeedForward[(c(i)att,2t , c
(i)
att,2t+1)] (14)

x(i+1)
t′ ,aff

� tanh[Waff(c(i)att,2t , c
(i)
att,2t+1) + baff]

+ FeedForward[(c(i)att,2t , c
(i)
att,2t+1)]

(15)

In our experiments, both methods show close performance.
Therefore when showing the results, unless otherwise specified,
we use the results of “ave” version.

3.4 Decoder and Attention Mechanisms
For our GRU models, we compared a regular multilayer
unidirectional GRU:

h
(i)
t � GRU(h(i)t−1, h

(i−1)
t ) (16)

In our experiment, we did a comparison study on Bahdanau
attention (Eq. 17) and different Luong attentions. Bahdanau
attention is described in following set of equations.

utk � (W1h
(M)
t + b1)

u

(W2h
(N)
k + b2) (17)
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αtk � utk

∑
j
utj

(18)

at � ∑
j

αtjh
(N)
j (19)

Here, u is the alignment score, h and h denote the hidden state in
encoder and decoder, respectively.M, N are the number of layers
in decoder and encoder, respectively. at is the context vector,
which will be concatenated with the decoder hidden state of last
layer for predicting the next word ŷt .

Luong’s global attentions are generalizations to Bahdanau
attention, but using different alignment score calculation
methods. For simplicity, we omit the superscript (M) and (N).

utk �
⎧⎪⎪⎨
⎪⎪⎩

h
u

t hk dot

h
u

t Wahk general
vua tanh(Wa[ht , hk]) concat

(20)

We also tried one example of Luong’s local attention, which is done
by imposing a Gaussian on Eq. 19 at a desired attention center pt :

at � ∑
j

(αtjhj)exp(− (j − pt)2

2σ2
) (21)

pt � S · sigmoid(Wpht) (22)

where S denotes the total length of the hidden state from the last
encoding layer and σ is a parameter chosen manually.

3.5 Beam Search
We use beam search in test and validation where text generation is
involved. For each time step, we rank candidates based on their total
negative logarithmic probability to current decoding time step tdec:

score � −∑
tdec

t

log(P(ŷ)) (23)

The search stops when there are five completed candidates.

FIGURE 3 | The implementation of pyramid structure in Transformer’s encoder.
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3.6 Model Parameters
In all our experiments, we used a learnable embedding layer which
embeds each “word” into a vector of length 400.

In our GRU models, we used a 3-layer bidirectional encoder;
the size of the hidden states are 400 in all three layers. We used a
3-layer unidirectional decoder; the size of the hidden states are
also 400.

In our Transformer models, following the original study, we used
dmodel � 512 and dff � 2048. We used 3-layer encoder and 3-layer
decoder.

We did a coarse parameter space search to find these
parameters chosen to be roughly optimal. But we did not fine-
tune these parameters, because (1) we show that the overall
performance of seq2seq model on PLC problem is satisfying
and (2) we are more concerned about comparison between
different attention mechanisms and between pyramid encoder
and regular encoder.

4 DATASETS

We perform our experiments mainly on the Juliet Test Suite for
C/C++ (v1.2) (created by NSA Center for Assured Software
(2013)). This dataset contains 61,387 test cases, each test case
contains one flawed code instance and one to several repaired
code instance. These test cases contain more than 100 Common
Weakness Enumerations (CWEs); each of them contains
hundreds of example code instances. We note that the
instances contain significant amount of dead code. To make
the code more realistic, we remove the dead code. We also found
that many of the code instances contain “if conditions”, that, in
the flawed code instance, executes one branch, while, in the
repaired instance, executes the other. These instances are
unrealistic; therefore, we removed them. We also performed
function renaming. After the preprocessing, we obtained
31,082 pairs of good-bad code instances.

To test model’s generality, for some of the models, we also tested
their performance on Juliet Test Suite for Java (v1.3) (released by NSA
Center for Assured Software (2018)). After similar preprocessing
described above, we obtain 23,015 pairs of instances.

We did 4-fold cross-validation in all of our experiments to
achieve statistically accurate results. An estimation of time and
power consumption when running our experiments is provided
in the Supplementary Material in a table, along with hardware
requirements.

5 RESULTS

5.1 Repair Rate
We train our models on a GeForce GTX 1080 Ti graphic card.
The metric we use for evaluation is the repair rate, which is the
fraction of instances that are repaired after the model’s edit. Since
we performed beam search with beam width 5, each time a
correction is being performed, we generate five correction
candidates. Here we have two metrics in measuring the
performance: one-candidate repair rate and five-candidate

repair rate. The former corresponds to the scenario of code
autocorrection, where there is no human judgment involved.
The latter corresponds to correction suggesting, where the
machine will identify an error and provide suggestions for the
programmer for further judgment. The comparisons of the repair
rates for considered models and their counterparts with pyramid
encoder are listed in Table 1 and Table 2. For comparison, we
have attempted to test other machine-learning-based PLC tools
that have been made. Gupta et al., (2018) take error messages
while compiling as input, but our dataset focuses on logic flaws in
programs that do not have syntax errors; therefore, this tool is not
applicable. Pu et al., (2016) do not provide an open source
repository, nor any documentations of their code. We have
successfully trained Gupta et al., (2017) on our C/C++ dataset
and included it in our work for comparison. Unfortunately, a
tokenizer is required for preprocessing the data into a certain
format, and they only provided that for C/C++, but not java.

From these results we see that pyramid encoder has close
performance to regular encoder in most of the models we applied
to, except for Luong’s local attention. The reason is that the
encoder output in pyramid encoder is very “coarse-grained”; each
output position now represents information from 2(N−1) words.
This results in two drawbacks specifically to local attention: one, a
much more “blurry” attention center and two, a much broader
attention window. As a result, the attention is much less targeted,
which damages the performance. Therefore, in the rest of the
article, we will exclude this attention mechanism from our
discussion.

5.2 Converging Speed
Since pyramid encoder reduces the sequence lengths in higher layers,
one can expect a smaller training cost per batch in both GRU and
Transformer models. To quantify this effect, for each of the regular
encoder-pyramid encoder model pairs in Table 1, we set the same
batch size and compare the average training speed in words per
second, as shown in Table 3. Here the batch size is chosen so that it
optimizes the training speed on the given GPU for each model. In
the model, we also included number of epochs for the model to
converge.

Apparently it takes similar number of epochs to converge for the
same type of model with pyramid encoder and regular encoder.
However, pyramid encoders largely increase the training speed,
between 50 and 130%. Therefore it could easily shorten the
training time by two to four folds while the same performance is
achieved. As an example, Figure 4 shows the learning curve for GRU
model with general Luong’s attention, comparing the regular encoder
and pyramid encoder.

5.3 Memory Cost
The last thing we compared is the memory cost of the pyramid
encoder and the regular encoder. This measure is crucial in some
scenarios, where your input instances are very long; therefore, the
memory of GPU is only capable of holding a very small batch. In code
correction, this is often the case.

The metric we use for comparison is memory cost per
instance, k, which is defined as
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k � ΔMemory usage
ΔBatch size (24)

Figure 5 shows the calculation process of k. Define E � 1/k as
memory efficiency. We calculated the k and E value for each of the
models we applied, shown inTable 4.We also included the number of
parameters in eachmodel, fromwhich we see that each pair ofmodels
has roughly the same model size.

The pyramid encoder could increase the memory
efficiency by 20%–600% depending on the attention
mechanisms used, while only increase the memory
occupied by the model itself by around 10%. One should
note that the memory efficiency directly affects the maximum
batch size one is able to use on a single GPU, and therefore
affects the utility of the GPU. For example, for regular GRU
with Bahdanau Attention, the memory of a GeForce GTX
1080 Ti graphic card can only support a batch size of 8, which
does not fully utilize the GPU. With pyramid encoder, it can
support up to 60 instances each batch. In practice, this will

drastically reduce the training time by increasing the GPU
utility, together with the smaller computational cost of
pyramid encoder as addressed in previous section.

6 DISCUSSION

6.1 Length Analyses
Figure 6 shows the repair rate of the models with respect to the
input length. We omitted the result of Transformer, Bahdanau’s
attention, and Luong’s general attention, because they are
qualitatively similar to the result of Luong’s dot attention.
Despite the different attention mechanisms, these seq2seq
models (with pyramid encoder or regular encoder) are
relatively robust to longer input lengths. The performance
drops at around 250 words and above 500 words are likely
resulting from the shortage of samples, which one can easily
observe from Figure 7, the length histogram of source instances
and target instances. The histogram also shows that the majority

TABLE 1 |Repair rate of GRU and Transformer on Juliet Test Suite for C/C++, comparing the regular encoder and pyramid encoder. These results are averaged over a 4-fold
cross-validation. We calculated the improvement of pyramid encoders compared to their nonpyramid pairs. Apparently pyramid encoder does not collaborate well with
Luong’s local attention; therefore, we exclude it from future discussions. It is also not included when calculating the average improvement.

Model 1-Candidate repair rate (%) 5-Candidate repair rate (%)

Regular encoder Pyramid encoder Regular encoder Pyramid encoder

GRU + Bahdanau Att 76.92 76.09 (−0.83) 96.19 95.55 (−0.64)
GRU + Luong Att: Dot 74.38 73.04 (−1.34) 94.27 94.59 (+0.32)
GRU + Luong Att: General 75.79 74.85 (−0.94) 94.83 94.92 (+0.09)
GRU + Luong Att: Concat 50.34 47.26 (−3.08) 86.72 86.14 (−0.58)
GRU + Luong Att: Local 65.70 49.18 (−15.52) 92.46 86.24 (−6.22)
Transformer 75.48 72.39 (−3.09) 97.66 96.78 (−0.88)
Average improvement (%) −1.95 −0.34

TABLE 2 | Repair rate of GRU and Transformer on Juliet Test Suite for Java, comparing the regular encoder and pyramid encoder. We did not include result from DeepFix,
because the provided data tokenizer only support C/C++.

Model 1-Candidate repair rate (%) 5-Candidate repair rate (%)

Regular encoder Pyramid encoder Regular encoder Pyramid encoder

GRU + Bahdanau Att 54.65 56.21 (+1.56) 84.31 83.98 (−0.33)
GRU + Luong Att: Dot 54.30 55.66 (+1.36) 82.73 84.86 (+2.13)
GRU + Luong Att: General 53.15 52.54 (−0.61) 82.81 82.83 (+0.02)
GRU + Luong Att: Concat
Transformer 56.68 57.35 (+0.67) 93.11 93.54 (+0.43)
Average improvement (%) +0.74 +0.75

TABLE 3 | Training speed of GRU and Transformer on Juliet Test Suite for C/C++.

Model Batch size Training speed (words/s) Converge epoch

Regular Pyramid Regular Pyramid

GRU + Bahdanau Att 8 754 1,185 (+57%) 18 18
GRU + Luong Att: General 16 441 853 (+108%) 23 27
GRU + Luong Att: Dot 128 4,646 10,408 (+124%) 36 34
GRU + Luong Att: Concat 6 1,418 2,344 (+65%) 23 29
Transformer 8 1,086 2,181 (+101%) 33 34
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FIGURE 4 | Learning curve of GRU with Luong’s general attention, comparing regular encoder to pyramid encoder. Pyramid encoder model shows fast
converging speed.

FIGURE 5 | Memory cost per instance for GRU models with Bahdanau attention, k is calculated by finding the slope of the linear fit (black dashed line). The red
dashed line represents the maximum memory of a GeForce GTX 1080 Ti graphic card.

TABLE 4 | Memory cost for considered models, comparing regular encoder and pyramid encoder: pyramid encoder greatly increased the memory efficiency.

Model k (Mb/instance) E(10 −3) Parameters (107)

Regular Pyramid Regular Pyramid Regular Pyramid

GRU + Bahdanau Att 1,151.71 164.52 0.86 6.08 (+600%) 1.24 1.11
GRU + Luong Att: General 830.71 165.03 1.20 6.05 (+403%) 1.22 1.10
GRU + Luong Att: Dot 65.91 52.42 15.17 19.08 (+26%) 1.20 1.08
GRU + Luong Att: Concat 1,381.6 431.87 0.72 2.31 (+220%) 1.24 1.11
Transformer 414.67 263.33 0.24 0.38 (+57%) 2.35 2.82
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of code instances contains several hundred words, while natural
language sentences are typically not longer than 50 words. This
feature of code instances calls for a much higher computational
resource requirement for PLC problems than NLC problems,
which makes pyramid structure especially useful.

6.2 Examples of Correction
In this section we give several examples of successful
corrections from our Pyramid GRU model on Juliet
C/C++ Test Suite for closer examination of model and
datasets. The red striked out texts denote the original
faulted instance, and blue buffed texts are the reparation
done by the model.

Example 1: Memory allocation match

The flawed code creates a char variable whose size does notmatch
its concatenating destination. The model is able to correct it so that
their size matches each other.

FIGURE 6 | Length analyses of Luong’s general attention and Luong’s concat attention. The results from the rest of the models are qualitatively similar to result of
Luong’s general attention and thus are omitted.

FIGURE 7 | Histogram of flawed code (left) and repaired code (right) instances.
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Example 2: Redundant Code

This is an example that the model deletes repeated code where
a variable is freed twice.

Example 3: Possible Overflow

Here we show a slightly questionable example of correction
provided by the dataset. In order to prevent potential string
overflow emerging from environment variable, the repair
suggestion given by the Juliet Test Suite is to abort the entire part
of concatenating the environment string and replace the variable
with an arbitrary string “*.*”. This “correction” is easy for the model
to learn; however, it has changed the original purpose of the program.

Example 4: Correction Across Functions

In this example, the models demonstrate the ability of making
connections across the whole instance, between different
functions. Here it prevents potential overflow in the sink
function caused by a variable that was passed from the main
function by adding an “if condition”.

6.3 Generalizability to Syntax Error-Oriented
Dataset
In the spirit of comparative study, we attempted to
compare our method to Deepfix (Gupta et al., 2017), the
only machine-learning-based PLC method that made their
code and dataset open to the public, to the best of our
knowledge. Unfortunately, the attempt of applying Deepfix
onto Juliet Test Suite has failed, because Deepfix is aimed
only to correct syntax errors and a compiler is used as the
evaluator, marking any programs that could pass the
compiling stage as “correct”. This apparently contradicts the
spirit of “identify logic errors from syntactically correct
programs”.

The difficulty that we are facing here comes from a
more general problem in the field of Machine Learning
PLC; the field is still disorganized and works in the field
are uncorrelated. Each group might be using their own
dataset and design their systems to match the specific
purpose of that dataset. Comparative work is difficult to
conduct not only because the datasets are hard to
obtain due to private policies, but also because issues raised
in PLC are versatile; each model is designed and optimized
to best address the problem occurring in their particular
dataset.

For the above reasons, we had to back off to a weaker
comparative study, using seq2seq models on the dataset from
Deepfix. Deepfix uses a generated dataset, originated from
students’ submission to an introductory C course in a web-
based tutoring system (Das et al., 2016). For each student
submission, they generate up to five syntax errors in the code
instance, including replacing “}; ” with “; }”, deleting a
semicolon, add an extra “}”, replacing a semicolon with a
period, and replacing a comma with a semicolon. If all of the
syntax errors were fixed, then consider such a program as
successfully repaired.
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Table 5 shows the comparison of repair rate of our seq2seqmodels
compared to the method applied by Deepfix. We observe that
pyramid encoder performs worse than regular encoder on this
particular dataset. This is expected from how the dataset was
generated. The generated syntax errors are extremely local in
Deepfix’s dataset. The fix usually only involves changing one token
or two neighboring tokens, leaving the rest of the entire code piece
unchanged. Therefore, while a pyramid encoder summarizes the
information from neighboring tokens, it also blurs the local
information.

We also observed that, in Luong’s attention, dot has the best
performance in this dataset and Bahdanau’s attention performs the
worst. After observing the dataset carefully, we came up with the
following hypothesis: in this dataset, the network is only required to
simply copy the original token most part of the instance and locally
fix one or two tokens. This means that in the majority of times, for
each decoder hidden state ht , the normalized attention score
score(ht , ht’) needs to be close to one where t � t’ and close to 0
everywhere else. In Luong’s attention, a dot, which simply do an
inner product of hidden states, could do the job easier, because latent
vectors are mostly orthogonal to each other in the latent space due to
high dimensionality. On the other hand, Bahdanau attention, which
does an affine transformation to every hidden state ht , may
overcomplicate the problem and fail to capture the correct attention.

6.4 Alternative Method for Small Datasets:
Transfer Learning
One main difficulty that researchers often come across when
attempting to apply machine learning methods to PLC
problems is the availability of suitable datasets. Although
there are many datasets and shared tasks available on
Software Assurance Reference Dataset (2006), most of
them include less than 1,000 examples. This makes neural-
network-based methods nearly impossible. To tackle this
problem, we take the idea of transfer learning from Pan
and Yang (2009).

Our idea is to take the encoder part of the model that was
trained on Juliet Test Suite and attach it to a untrained decoder,
which was designed for the specific problem. We aim to take the
advantage that codes written in the same coding language share
the same syntax library and same construction rules.

Since many datasets available only provide the faulted code
and their corresponding fault categories, here we give an example

of fault classification using transfer learning, applying the model
pretrained on Juliet Test Suite for C/C++ on ITC benchmark
(Charles (2015)).

6.4.1 Model Structure
Given a faulted code instance, our goal is to train a classification
model that predicts the type of error of the faulted code from a
given list of error categories.

We keep the encoder part of the pretrained model and use it
directly as the encoder in the classification problem. The exception is
the embedding layer, because the vocabulary in the new dataset will
contain new variable names that did not occur in pretrained
embedding, although the syntax will be the same. In practice, we
manually expanded the embedding layer to accommodate the new
“words” but keep the embeddings of the old “words” unchanged. In
order to add variation from the original model, we also reinitialized
the weights in the last encoding layer.

For the decoder, instead of generating a sequence, we take the
output of the first time step of the reinitiated decoder and pass it
to a linear layer that projects it to an nclass dimensional vector.
nclass is the number of error classes. Model was trained to
minimize cross-entropy loss with an ADAM optimizer.

6.4.2 Results
We extracted 566 C/C++ code instances from the ITC bench
mark. These instances are organized into 44 error categories, with
the largest category containing around 30 instance and the
smallest only containing two instances. Then the instances are
divided into a training set of 485 instances, a validation set of 42
instances, and test set of 39 instances. For comparison, we also
tried Pyramid GRU and Pyramid Transformer with the same
model structure but no prior knowledge from Juliet Test Suites.
The result is shown in Table 6.

TABLE 5 | Comparison of our models with Deepfix, Gupta et al., (2017) on Deepfix dataset. All results are average of 5-fold cross validation.

Model 1-Candidate repair rate (%) 5-Candidate repair rate (%)

Regular encoder Pyramid encoder Regular encoder Pyramid encoder

Transformer 51.96 43.78 67.16 59.32
GRU + Luong Att: General 51.86 34.80 66.33 48.44
GRU + Luong Att: Dot 58.63 41.09 72.31 54.47
GRU + Bahdanau Att 27.47 15.21 36.19 22.59
Deepfix 56

TABLE 6 | Comparison of the result of transfer learning on error type classification
task. The models without transfer learning demonstrate no predicting power
and no improvement during course of training.

Model Accuracy (%)

Transfer learning: PyrGRU 60.5
Transfer learning: PyrTFM 69.1
Fresh pyramid GRU 16.7
Fresh pyramid transformer 7.1
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For the fresh GRU and Transformer models, we observed that
the models have no predicting power as it produces constant
prediction over all inputs. There is even no sufficient gradient on
the loss landscape as the loss did not reduce during the training.
Transfer learning, on the other hand, demonstrates a fair power
of prediction, correctly classifying over 60% of instances, despite
that ITC benchmark is written in very different style than Juliet
Test Suites and that the dataset is 50 times smaller.

This result shows that one is able to use neural-network-based
methods in code correction problems despite the shortage of data,
which is a common problem in this field.

7 CONCLUSION

In our work, we show that seq2seq models, successful in natural
language correction, are also applicable in programming language
correction. Our results shows seq2seq models can be well applied in
providing suggestions to potential errors and have a decent correct
rate (above 70% in C/C++ dataset and above 50% in Java dataset) in
code auto-correction. Although these results are only limited in Juliet
Test Suites, we expect that, given sufficient training data, seq2seq
models can also perform well when applied on other PLC problems.

Based on the commonly used encoder-decoder structure, we
introduce a general pyramid encoder in seq2seq models. Our
results demonstrates that this structure significantly reduces the
memory cost and computational cost. This is helpful because PLC
are generally more computationally expensive than NLC, due to
its longer average instance length.

The publicly available datasets in PLC are mostly small and
noisy. Most datasets we found contain close to or less than 1,000
code instances. This is far less than enough for training seq2seq
and many other machine learning models. Our results on transfer
learning pointed out a way of processing these small dataset using
the pretrained model as an encoder, which boosts the
performance by a large amount.

In future, we will further investigate the influence of different
architectures in neural networks, for instance, parallel encoders/
decoders, Tree2Tree models, etc. On the other hand, instead of code
correction, we will modify and examine ourmodel’s performance on
other tasks such as program generation and code optimizing. We
will also examine the potential difference between artificial datasets
and realistic datasets.
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MARGIN: Uncovering Deep Neural
Networks Using Graph Signal Analysis
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Interpretability has emerged as a crucial aspect of building trust in machine learning
systems, aimed at providing insights into the working of complex neural networks that are
otherwise opaque to a user. There are a plethora of existing solutions addressing various
aspects of interpretability ranging from identifying prototypical samples in a dataset to
explaining image predictions or explaining mis-classifications. While all of these diverse
techniques address seemingly different aspects of interpretability, we hypothesize that a
large family of interepretability tasks are variants of the same central problem which is
identifying relative change in a model’s prediction. This paper introduces MARGIN, a
simple yet general approach to address a large set of interpretability tasks MARGIN
exploits ideas rooted in graph signal analysis to determine influential nodes in a graph,
which are defined as those nodes that maximally describe a function defined on the graph.
By carefully defining task-specific graphs and functions, we demonstrate that MARGIN
outperforms existing approaches in a number of disparate interpretability challenges.

Keywords: graph signal processing, interpretability, influence sampling, adversarial attacks, machine learning

INTRODUCTION

With widespread adoption of deep learning solutions in science and engineering, obtaining post-hoc
interpretations of the learned models has emerged as a crucial research direction. This is driven by a
community-wide effort to develop a new set of meta-techniques able to provide insights into complex
neural network systems, and explain their training or predictions. Despite being identified as a key
research direction, there exists no well-accepted definition for interpretability. Instead, in different
contexts, it may refer to a variety of tasks ranging from debugging models (Ribeiro et al., 2016), to
determining anomalies in the training data (Koh and Liang, 2017). While some recent efforts
(Lipton, 2016; Doshi-Velez and Kim, 2017) provide a more formal definition for interpretability as
generating interpretable rules, these focus on instance-level explanations, i.e. understanding how a
network arrived at a particular decision for a single instance. In practice, interpretability covers a
wider range of challenges, such as characterizing data distributions and separating hyperplanes of
classifiers, identifying noisy labels during training, detecting adversarial attacks, or generating
saliency maps for image classification. As discussed below, solutions to all such problems have
been proposed each using custom tailored, task-specific approaches. For example, a variety of tools
aim to explain which parts of an image are the most responsible for a prediction. However, these
cannot be easily re-purposed to identify which samples in a dataset were most helpful or harmful to
train a classifier.

Instead, we argue that many existing interpretability techniques solve a variant of essentially the
same task–understanding relative changes in the model’s prediction, where the changes are either
global in nature, i.e., across an entire distribution or local, i.e., within a single sample. In this paper, we
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propose the MARGIN (Model Analysis and Reasoning using
Graph-based Interpretability) framework, which directly applies
to a wide variety of interpretability tasks. MARGIN poses each
task as an hypothesis test and derives a measure of influence that
indicates which parts of the data/model maximally support (or
contradict) the hypothesis. More specifically, for each task we
construct a graph whose nodes represent entities of interest, and
define a function on this graph that encodes a hypothesis. For
example, if the task is to determine which samples need to be
reviewed in a dataset containing noisy labels, the domain is the set
of samples, while the function can be local label agreement that
measures how misaligned are the neighborhoods of the input
samples (or their features) and their corresponding labels. Using
graph signal processing (Sandryhaila and Moura, 2013; Shuman
et al., 2013) one can then identify which nodes are essential to
reconstructing the chosen function (hypothesis), which most
likely will correspond to those with flipped labels. In order
words, through a careful selection of graph construction
strategies and hypothesis functions, this general procedure can
be used to solve a wide-range of post-hoc interepretability tasks.

This generic formulation, while extremely simple in its
implementation, provides a powerful protocol to realize several
meta-learning techniques, by allowing the user to incorporate
rich semantic information, in a straightforward manner. In a
nutshell, the proposed protocol is comprised of the following
steps: 1) identifying the domain for interpretability (for e.g. intra-
sample vs inter sample), 2) constructing a neighborhood graph to
model the domain (for e.g. pixel space vs. latent space), 3)
defining an explanation function at the nodes of the graph, 4)
performing graph signal analysis to estimate the influence
structure in the domain, and 5) creating interpretations based
on the estimated influence structure. Figure 1 illustrates the steps
involved in MARGIN for a posteriori interpretability.

Overview
Using different choices for graph construction and the
explanation function design, we present five case studies to
demonstrate the broad applicability of MARGIN for a
posteriori interpretability. First, in Case Study I—Prototypes
and Criticisms we study a unsupervised problem of identifying
samples which well characterize the underlying data distribution,
referred to as prototypes and criticisms respectively (Kim et al.,

2016). We show that the MARGIN is highly effective at
characterizing data distributions and can shed light into the
regimes where classifier performance can suffer. In Case Study
II—Explanations for Image Classification, we obtain pixel-level
explanations from an image classifier using MARGIN, without
the need to access the model internals, i.e., black-box and show
that the inferred feature importance estimates are meaningful. In
Case Study III—Detecting Incorrectly Labeled Samples, we employ
MARGIN to identify label corruptions in the training data and
demonstrate significant improvements over popular approaches
such as influence functions. In Case Study IV—Interpreting
Decision Boundaries, we illustrate the application of MARGIN
in analyzing pre-trained classifiers and identifying the most
influential samples in describing the decision surfaces, akin to
memorable examples in continual learning (Pan et al., 2020).
Finally, in Case Study V—Characterizing Statistics of Adversarial
Examples we extend two recently proposed statistical techniques
to detect adversarial examples from harmless examples, and
demonstrate that incorporating them inside MARGIN
improves their discriminative power significantly.

RELATED WORK

We outline recent works that are closely related to the central
framework, and themes around MARGIN. Papers pertinent to
individual case studies are identified in their respective sections.
Our goal in this paper is to design a core framework that is
capable of being repurposed to interpretability tasks, ranging
from explaining decisions of a predictive model, detecting outliers
to identifying label corruptions in the training data. While post-
hoc explanation methods are the modus-operandi in interpreting
the decisions of a black box model, their scope has widened
significantly in the recent years. For example, popular sensitivity
analysis such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg
and Lee, 2017) or gradient-based methods such as Saliency Maps
(Simonyan et al., 2013), Integrated Gradients (Sundararajan et al.,
2017), Grad-CAM (Selvaraju et al., 2017), DeepLIFT (Shrikumar
et al., 2017) and DeepSHAP (Lundberg and Lee, 2017) are
routinely used to produce sample-wise, local explanations by
measuring the sensitivity of the black-box to perturbations in
the input features (Fong and Vedaldi, 2017). Despite their

FIGURE 1 |MARGIN—An overview of the proposed protocol for post-hoc interpretability tasks. In this illustration, we consider the problem of identifying incorrectly
labeled samples from a given dataset. MARGIN identifies the most important samples that need to be corrected so that fixing them will lead to improved predictive
models.
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wide-spread use, they cannot be readily utilized to obtain dataset-
level explanations, e.g., which are the most influential examples
in a dataset for a given test sample, or to detect distribution
shifts (Thiagarajan et al., 2020). On the other hand, in (Koh and
Liang, 2017), the authors proposed a strategy to select influential
samples by extending ideas from robust statistics, which was
shown to be applicable to a variety of scenarios. However, such
methods cannot be used for obtaining feature importance
estimates. Another important challenge with most existing
post-hoc explanation techniques is their computational
complexity. In contrast, MARGIN leverages the generality of
graph structures to scalably generate explanations, and through
of use of appropriate hypothesis functions can support a large-
class of interpretations.

In a nutshell, MARGIN reposes the problem of generating
explanations as an influential node selection problem, wherein
the node can correspond to a sample-level or feature-level
explanations and the influence is measured based on a
hypothesis function. Defining suitable objectives for detecting
influential features in an image or influential samples in a dataset
has been an important topic of research in explainable AI. For
example, CXPlain (Schwab and Karlen, 2019) and Attentive
Mixture of Experts (Schwab et al., 2019) utilize a Granger-
causality based objective to quantify feature importances. In
addition, prediction uncertainties Chakraborty et al. (2017) or
even loss estimates Thiagarajan et al. (2020) have been widely
adopted to characterize vulnerabilities of a trained model. Note
that, MARGIN can directly use any of these objectives to choose
the most relevant explanations. In this paper, we consider a
variety of interpretability tasks and recommend suitable
hypothesis functions for each of the tasks.

Since MARGIN relies on ideas from graph signal processing
(GSP) to select the most relevant explanations, we briefly review
existing work in this area. Broadly, there are two classes of
approaches in GSP–one that builds on spectral graph theory
using the graph Laplacian matrix (Shuman et al., 2013), and the
other based on algebraic signal processing that builds upon the
graph shift operator (Sandryhaila and Moura, 2013). While both
are applicable to our framework, we adopt the latter formulation.
Our approach relies on defining a measure of influence at each
node, which is related to sampling of graph signals. This is an
active research area, with several works generalizing ideas of
sampling and interpolation to the domain of graphs, such as
(Pesenson, 2008; Gadde et al., 2014; Chen et al., 2015).

A GENERIC PROTOCOL FOR
INTERPRETABILITY

In this section, we provide an overview of the different steps of
MARGIN and describe the proposed influence estimation
technique in the next section.

Domain Design and Graph Construction
The domain definition step is crucial for the generalization of
MARGIN across different scenarios. In order to enable instance-
level interpretations (e.g. creating saliency maps), a single

instance of data, possibly along with its perturbed variants,
will form the domain; whereas a more holistic understanding
of the model can be obtained (e.g. extracting prototypes/
criticisms) by defining the entire dataset as the domain.
Regardless of the choice of domain, we propose to model it
using nearest neighbor graphs, as it enables a concise
representation of the relationships between the domain elements.

More specifically, given the set of samples {xi}, we construct a
k-nearest neighbor domain graph that captures local geometry of
the data samples. The metric for graph construction (that
determines neighborhoods/edges) can arise from prior
knowledge about the domain or designed based on latent
representations from pre-trained models. For example, if we
use the latent features from AlexNet (Krizhevsky et al., 2012),
the resulting graph respects the distance metric inferred by
AlexNet for image classification. Though the difficulty in
choosing an appropriate k for designing robust graphs is well
known, designing better graphs is beyond the scope of this paper.
In our experiments, we find that our results are not very sensitive
to the choice of k.

Formally, an undirected weighted graph is represented by the
triplet G � (ν,Ε,W), where ν denotes the set of nodes, Ε denotes
the set of edges and W is an adjacency matrix that specifies the
weights on the edges, whereWn,m corresponds to the edge weight
between nodes vn and vm. Let Nn � {m∣∣∣∣W1

n,m0} define the
neighborhood of node vn, i.e. the set of nodes connected to it.
The normalized graph Laplacian, L, is then constructed as
I − D−1/2WD−1/2, where Dnn � ∑mWn,m is the degree matrix
and I denotes the identity matrix.

Explanation Function Definition
A key component of MARGIN is to construct an explanation
function that measures how well each node in the graph
supports the presented hypothesis. The function acts on
each vertex of the graph as: f (n) : vnaR for all n vertices in
the graph G. This function is also referred to as the graph signal
defined on the graph domain. We expect this function to
capture properties of the explaination that are deemed
important. Let us illustrate this process with an example–in
order to create saliency maps for image classification, one can
build a graph where each node corresponds to a potential
explanation (i.e. a subset of pixels), while the edges can
measure how likely can two explanations produce similar
predictions. In such a scenario, one can hypothesize that an
ideal explanation will be sparse, in terms of the number of
pixels, since that is more interpretable. Consequently, the size
of an explanation can be used as the function. Case Studies will
present a more detailed discussion.

Influence Estimation
This is the central analysis step in MARGIN for obtaining
influence estimates at the nodes of G, that can reveal which
nodes can maximally describe the variations in the chosen
explanation function. Implicitly, this step can be viewed as a
soft-sample selection strategy with respect to the structure
induced by the domain graph. We propose to perform this
estimation using tools from graph signal analysis. Proposed
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Influence Estimation describes the proposed algorithm for
influence estimation.

From Influence to Interpretation
Depending on the hypothesis chosen for a posteriori analysis, this
step requires the design of an appropriate strategy for transferring
the estimated influences into an interpretable explanation.

PROPOSED INFLUENCE ESTIMATION

Given a nearest neighbor graph G along with an explanation
function f , we propose to employ graph signal analysis to estimate
node influence scores. Before we describe the algorithm, we will
present a brief overview of the preliminaries.

Definitions. We use the notation and terminology from
(Sandryhaila and Moura, 2013) in defining an operator
analogous to the time-shift or delay operator in classical signal
processing. The function f assigns a scalar value to each vertex as
defined earlier, as a result the entire function is written as
f : ν1RN , where |ν| � N , i.e., f is a collection of scalar values
at each vertex, ordered according to the same order of vertices in
the graph. When the graph does not have any special structure
(i.e., it is Euclidean), f is nothing but a vector valued function. We
consider the simplest scenario here where the function only takes
a scalar value at each node, however more general cases maybe
considered where the value at each node is multi-dimensional.
During a graph shift operation, the function f (n) at node vn is
replaced by a weighted linear combination of its neighbors:
f̂ � Af , where A is the graph shift operator, which is the
simplest, non-trivial graph filter. Commonly used choices for
A include the adjacency matrix W, transition matrix D−1W and
the graph Laplacian L.

The set of eigenvectors of the graph shift operator is referred to
as the graph Fourier basis, A � UΛUT , where U ∈ RN×N , and the
Fourier transform of a signal f ∈ RN is defined as UTf . The
ordered eigenvalues corresponding to these eigenvectors
represent frequencies of the signal, with λ1 to λN representing
the smallest to largest frequencies. The notion of frequency on the
graph corresponds to the rate of change of the function across
nodes in a neighborhood. A higher change corresponds to a high
frequency, while a smooth variation corresponds to a low
frequency. In this context, the graph filtering using a graph
shift operator corresponds to a low-pass filter that dispenses
high frequency components in the function. Similarly, a
simple high-pass filter can be easily designed as f̂h � f − f̂ .

Algorithm 1 MARGIN’s simple influence estimation.

Algorithm: The overall procedure to obtain influence scores at the
nodes of G can be found in Algorithm 1. Intuitively, we design a
high-pass filter that eliminates the low frequency content and
retains the signal energy only at those nodes that characterize the

extreme variations of the function. Following the high-pass
filtering step, the influence score at a node is estimated as the
magnitude of the filtered function value at that node:

I(i) �
�������f̂h(i)

�������
2

2
∀i ∈ ν, (1)

where f̂h corresponds to the high-pass filtered version of f .
Interestingly, we find that analyzing the high frequency
components of the explanation function often leads to a sparse
influence structure, indicating the presence of multiple local
optima that corroborate the hypothesis. Conversely, the
influence structure obtained from low frequency components
is typically dense and hence requires additional processing to
qualify regions of disagreement.

Sensitivity to Graph Construction
A critical step in MARGIN is the graph construction process for
datasets that do not naturally have a graph structure. In this work,
we rely on a simple nearest neighbor graph for construction
which can vary depending on the size of the neighborhood. This
is a hyper parameter that must be set with validating examples,
and in all our case studies we found a neighborhood size of 20-40
to be quite good in terms of computational efficiency in
constructing the graph. This directly influences the quality of
low pass filtering of a graph signal similar to the case in Euclidean
signal processing in choosing a size of the window. As the
neighborhood size increases, the filtering at each node
becomes more aggressive since it averages the across several
neighboring nodes, while for a small neighborhood the
smoothing may not have any effect at all. MARGIN is
agnostic to the type of graph construction used, since it
ultimately only relies on the graph filtering process, and as a
result it is applicable to more other graph constructions such as
Reeb graphs (Pascucci et al., 2007) or β−skeletons.

CASE STUDIES

Considering MARGIN is very generic in nature, it is easy
applicable to a wide variety of interpretability tasks. In this
section we illustrate this felxibility on several example tasks.
Table 1 shows the domain design, graph construction, and
function definition choices made for different use cases. Note
in each case study, we construct a k-nearest-neighbor graph
followed by the application of MARGIN with the main
difference is in how the nodes of the graph are defined,
followed by the type of function that is defined at each node.

Case Study I—Prototypes and Criticisms
A commonly encountered problem in interpretability is to
identify samples that are prototypical of a dataset, and those
that are statistically different from the prototypes (called
criticisms). Together, they can provide a holistic
understanding about the underlying data distribution. Even in
cases where we do not have access to the label information, we
seek a hypothesis that can pick samples which are representatives
of their local neighborhood, while emphasizing statistically
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anomalous samples. One such function was recently utilized in
(Kim et al., 2016) to define prototypes and criticisms, and it was
based on Maximum Mean Discrepancy (MMD).

Formulation
Following the general protocol in Figure 1, the domain is defined
as the complete dataset, along with labels if available. Since this
analysis does not rely on pre-trained models, we construct the
neighborhood graph based on the Euclidean distance using k �
25 nearest neighbors. Inspired by (Kim et al., 2016), we define the
following explanation function: For each sample xi, we remove
the chosen sample and all its connected neighbors from the graph
to construct the set Xi � {xj, j ∉ (i∪Ni)}, and estimate the
function at the ith node as f (i) � MMD(Xi,Xi∪xi). MMD
gives us a way to measure the difference between two
distributions, and since we artficially construct the two
distributions by removing a single sample, we are able to
determine the importance of an individual sample (and its
neighbors) within the dataset using MARGIN. Let k : X ×
X→R be a kernel such as the radial basis function (RBF)
kernel, and X � Xi∪xi, then we can use the approximation for
MMD given in (c.f. Eq. 5 in Kim et al. (2016)) as:

MMD(xi) � 1∣∣∣∣X i

∣∣∣∣
∑

xm ∈ X i

k(xi, xm) + 1

|X | ∑
xj ∈ X

k(xi, xj). (2)

In cases of labeled datasets, the kernel density estimates for the
MMD computation are obtained using only samples belonging to
the same class. We refer to these two cases as global (unlabeled
case) and local (labeled case) respectively. The hypothesis is that
the regions of criticisms will tend to produce highly varying
MMD scores, thereby producing high frequency content, and
hence will be associated with high MARGIN scores. Conversely,
we find that the samples with low MARGIN scores correspond to
prototypes since they lie in regions of strong agreement of MMD
scores. More specifically, we consider all samples with low
MARGIN scores (within a threshold) as prototypes, and rank
them by their actual function values. In contrast to the greedy
inference approach in (Kim et al., 2016) that estimates prototypes
and criticisms separately, they are inferred jointly in our case.

Experiment Setup and Results
We evaluate the effectiveness of the chosen samples through
predictive modeling experiments with the idea that the most
helpful samples should result in a good classifier, whereas a the
most unhelpful/confusing samples should result in a poor
classifier. We use the USPS handwritten digits data for this

experiment, which consists of 9,298 images belonging to 10
classes. We use a standard train/test split for this dataset, with
7,291 training samples and the rest for testing. For fair
comparisons with (Kim et al., 2016), we use a simple 1-nearest
neighbor classifier. As described earlier, we consider both
unsupervised (global) and supervised (local) variants of our
explanation function for sample selection.

We expect the prototypical samples to be the most helpful in
predictive modeling, i.e., good generalization. In Figure 2A, we
observe that the prototypes from MARGIN perform
competitively in comparison to the baseline technique. More
importantly, MARGIN is particularly superior in the global case,
with no access to label information. On the other hand, criticisms
are expected to be the least helpful for generalization, since they
often comprise boundary cases, outliers and under-sampled
regions in space. Hence, we evaluate the test error using the
criticisms as training data. Interestingly, as shown in Figure 2B,
the criticisms from MARGIN achieve significantly higher test
errors in comparison to samples identified using MMD-critic
based optimization in (Kim et al., 2016). Furthermore, examples
of the selected prototypes and criticisms from MARGIN are
included in Figure 2C.

Case Study II—Explanations for Image
Classification
Generating explanations for predictions is crucial to
debugging black-box models and eventually building trust.
Given a model, such as a deep neural network, that is designed
to classify an image into one of r classes, a plausible
explanation for a test prediction is to quantify the
importance of different image regions to the overall
prediction, i.e. produce a saliency map. We posit that
perturbing the salient regions should result in maximal
changes to the prediction. In addition, we expect sparse
explanations to be more interpretable. In this section, we
describe how MARGIN can be applied to achieve both these
objectives.

Formulation
Since we are interested in producing explanations for instance-
level predictions using MARGIN, the domain corresponds to a
possible set of explanations for an image. Note that, the space of
explanations can be combinatorially large, and hence we adopt
the following greedy approach to construct the domain. We run
the SLIC algorithm (Achanta et al., 2012) with varying number of
superpixels, say {50, 100, 150, 200, 250, 300}, and define the

TABLE 1 | Using MARGIN to solve different commonly encountered interpretability tasks.

Task Domain Nodes in G Function Explanation Modality

Prototypes/ Criticisms Complete dataset Samples MMD (Global,Local) Sample sub-selection
Explain prediction Single image Explanations Sparsity Saliency maps
Detect noisy-labels Complete dataset Samples Local label-agreement Samples to fix
Detect adversarial-attacks Attacks/Noisy samples Perturbed samples MMD (Global) Attack statistics
Study discrimination Complete dataset Samples Local label-agreement Confusing samples
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domain as the union of superpixels from all the independent runs.
In our setup, each of these superpixels is a plausible explanation
and they become the nodes of G. The edge between nodesm and n
of this graph is defined based on the relative importance of each
super-pixel, i.e., emn �

∣∣∣∣∣
∣∣∣∣∣pj(I) − pj(Im)

∣∣∣∣∣ −
∣∣∣∣∣pj(I) − pj(In)

∣∣∣∣∣
∣∣∣∣∣, where I

is the original image, and Im is the image with themth super-pixel
masked out, and pj( ) extracts the softmax scores for the jth class
in the image. This relative importance captures how two super-
pixels are related in terms of the predictive model, which is related
to a causal objective that is used in CXPlain Schwab and Karlen
(2019).

For each of the explanations (super-pixels) m, we mask its
pixels in the image and use the pre-trained model to obtain a
measure of its saliency as before as

∣∣∣∣∣pj(I) − pj(Im)
∣∣∣∣∣. Using these

estimates, we obtain pixel-level saliency, S, as a weighted
combination of their saliency from different superpixels
(inversely weighted by the superpixel size). This dense saliency
is similar to previous approaches such as (Zeiler and Fergus, 2014;
Zhou et al., 2014).

Note that, this saliency estimation process did not impose the
sparsity requirement. Hence, we use MARGIN to obtain
influence scores based on their sparsity. The explanation
function at each node is defined as the ratio of the size of the
superpixel corresponding to that node and the size of the largest
superpixel in the graph. Intuitively, MARGIN finds the sparsest
explanation for different level sets of the saliency function.
Subsequently, we compute pixel-level influence scores, I, as a
weighted combination of their influences from different
superpixels. The overall saliency map is obtained as
Sfinal � S⊙I, where ⊙ refers to the Hadamard product.

Experiment Setup and Results
Using images from the ImageNet database (Russakovsky et al.,
2015), and the AlexNet (Krizhevsky et al., 2012) model, we
demonstrate that MARGIN can effectively produce
explanations for the classification. Figure 3 illustrates the
process of obtaining the final saliency map for an image from
the Tabby Cat class. Interestingly, we see that the mouth and
whiskers are highlighted as the most salient regions for its
prediction. Figure 4 shows the saliency maps from MARGIN
for several other cases. For comparison, we show results from

Grad-CAM (Selvaraju et al., 2017), which is a white-box approach
that accesses the gradients in the network. We find that, using
only a black-box approach, MARGIN produces explanations that
strongly corroborate with Grad-CAM and in some cases
produces more interpretable explanations. For example, in the
case of an Ice Cream image, MARGIN identifies the ice cream,
and the spoon, as salient regions, while Grad-CAM highlights
only the ice cream and quite a few background regions as salient.
Similarly, in the case of a fountain image, MARGIN highlights the
fountain, and the sky, while Grad-CAM highlights the
background (trees) slightly more than the fountain itself,
which is not readily interpretable.

Case Study III—Detecting Incorrectly
Labeled Samples
An increasingly important problem in real-world applications is
concerned with the quality of labels in supervisory tasks. Since the
presence of noisy labels can impact model learning, recent
approaches attempt to compensate by perturbing the labels of
samples that are determined to be high-risk of being corrupted, or
when possible have annotators check the labels of those high-risk
samples. In this section, we propose to employMARGIN to recover
incorrectly labeled samples. In particular, we consider a binary
classification task, where we assume β% of the labels are randomly
flipped in each class. In order to identify samples which were
incorrectly labeled, we select samples with the highest MARGIN
score, followed by simulating a human user correcting the labels for
the top K samples. Ideally, we would like K, the number of samples
checked by the user, to be as small as possible.

Formulation
Similar to Case Study I, the entire dataset is used to define the
domain. Since we expect the flips to be random, we hypothesize
that they will occur in regions where the labels of corrupted
samples are different from their neighbors. Instead of directly
using the label at each node as the explanation function, we
believe a more smoothly varying function will allow us to extract
regions of high frequency changes more robustly. As a result, we
propose to measure the level of distrust at a given node, by
measuring how many of its neighbors disagree with its label:

FIGURE 2 | Using MARGIN to sample prototypes and criticisms. In this experiment, we study the generalization behavior of models trained solely using prototypes
or criticisms.

Frontiers in Big Data | www.frontiersin.org May 2021 | Volume 4 | Article 5894176

Anirudh et al. Uncovering DNNs Using Graph Signal Analysis

82

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


f (i) � 1 −∑jεNi
L(j, i)
|Ni| , (3)

where L(j, i) is 1 only if nodes j and i share the same label; |.|
denotes the cardinality of a set.

Experiment Setup and Results
We perform our experiments on two datasets: 1) the Enron Spam
Classification dataset (Metsis et al., 2006), containing 4138
training examples, with an imbalanced class split of around
70:30 (non-spam:spam), and 2) 3000 random images from

FIGURE 3 | We show the entire process of constructing the saliency map for one particular image (Tabby Cat) from ImageNet. From left to right: original image
(dense) saliency map S, sparsity map I, and finally the explanation from MARGIN, Sfinal .

FIGURE 4 | Our approach identifies the most salient regions in different classes for image classification using AlexNet. From top to bottom: original image,
MARGIN’s explanation overlaid on the image, and Grad-CAM’s (Selvaraju et al., 2017) explanation. Note our approach yields highly specific, and sparse explanations
from different regions in the image for a given class.
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Kaggle dog v cat classification dataset with almost equal number of
images from each class1. Following standard practice, we randomly
corrupt the labels of 10% of the samples. For the Enron Spam
dataset, we extracted bag-of-words features of 500 dimensions
corresponding to the most frequently occurring words. We
observed these features to be noisy, so we use a simple PCA
pre-processing step to reduce the dimensionality of the data down
to 100. For Kaggle, we use penultimate features from AlexNet
Krizhevsky et al. (2012) in order to construct a neighborhood
graph. In both cases we use k � 20 as the number of neighbors for
this purpose, we observed stable performance even when k � 30 or
k � 40. The use of features instead of the data directly has become
standard practice in several applications as it reduces the
dimensionality of the data, while also providing a more
semantically meaningful notion of neighborhood. We report
average results from 10 repetitions of the experiment.

We compare our approach with three baselines: 1) Influence
Functions: We obtain the most influential samples using
Influence Functions (Koh and Liang, 2017). 2) Random
Sampling 3) Oracle: The best case scenario, where the number
of labels corrected is equal to the number of samples observed.
Following (Koh and Liang, 2017), we vary the percentage of
influential samples chosen, and compute the recall measure,
which corresponds to the fraction of label flips recovered in
the chosen subset of samples.

As seen in Figure 5, we see that our method is nearly 10
percentage points better than the state-of-the-art Influence
Functions, achieving a recall of nearly 0.95 by observing just
30% of the samples. This difference is further improved when
observing a balanced dataset like the Kaggle dogs v cats, as seen in
Figure 5B where MARGIN outperforms Influence functions
signficantly. On examining how MARGIN picks the samples,
we see a clear trend which indicates a strong preference for
samples that lie farther away from the classification boundary. In

other words, this corresponds strongly to correcting the least
number of samples which can lead to the most gain in validation
performance when using a trained model.

Case Study IV—Interpreting Decision
Boundaries
While studying black-box models, it is crucial to obtain a holistic
understanding of their strengths, and more importantly, their
weaknesses. Conventionally, this has been carried out by
characterizing the decision surfaces of the resulting classifiers. In
this experiment, we demonstrate how MARGIN can be utilized to
identify samples that are the most confusing to a model, or more
precisely those examples which are likely to be mis-classified by a
pre-trained classifier. By definition these are images that are closest
to the decision boundary inferred by the classifier.

Formulation
In order to adopt MARGIN for analyzing a specific model, we
construct a nearest neighbor graph (k � 30) using latent
representations inferred from the pre-trained classifier in
consideration. This achieves two things–it gives us a semantic
similarity measure as interpreted by the classifier, i.e., which
similarities are considered important for the classification task.
More importantly for this case study, this automatically distills
the information regarding confusing samples into the graph that
is constructed, since these samples are likely to be in regions of the
neighborhood with high prediction uncertainty. Next, since the
decision surface characterization is similar to case Study III, we
use the local label agreement measure in (3) as the explanation
function. This disagreement between the function and the
neighborhood shows up as high frequency information which
is exploited by MARGIN to identify the decision surface.

Experiment Setup
We perform an experiment on 2-class datasets extracted from
ImageNet andMNIST. More specifically, in the case of ImageNet,

FIGURE 5 |MARGIN can be used to find samples with incorrect labels efficiently, much better than competing influence sampling based approaches. The “Oracle”
here is the best case scenario, where the samples checked are exactly the ones that are corrupted.

1https://www.kaggle.com/c/dogs-vs-cats/data
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we perform decision surface characterization on the classes Tabby
Cat and Great Dane. We used the features from a pre-trained
AlexNet’s penultimate layer to construct the graph. For the
MNIST dataset, we considered data samples from digits ‘0’
and ‘6’, and we used the latent space produced using a
convolutional neural network for the analysis. A selected
subset of samples characterizing the decision surfaces of both
datasets are shown in Figure 6.

Results
From Figure 6A, we see that the model gets confused whenever
the animal’s face is not visible, or if it is in a position facing away
from the camera. This is reasonable since we are only measuring
the most confusing samples between the Tabby Cat and Great
Dane classes which share a lot of semantic similarity. Similarly, in
the MNIST dataset, the examples shown depict atypical ways in
which the digits ‘0’ and ‘6’ can be written. These results suggest
that MARGIN is effective in identifying these examples, with a
combination of the appropriate neighborhoods (in the latent
space of the model) and labels.

Case Study V—–Characterizing Statistics of
Adversarial Examples
In this application, we examine the problem of quantifying the
statistical properties of adversarial examples using MARGIN.
Adversarial samples (Biggio et al., 2013; Szegedy et al., 2013)
refer to examples that have been specially crafted, such that a
particular trained model is ‘tricked’ into misclassifying them. This
is done typically by perturbing a sample, sometimes in ways
imperceptible to humans, while maximizing misclassification
rates. In order to better understand the behavior of such
adversarial examples, there have been studies in the past to
show that adversarial examples are statistically different from
normal test examples. For example, an MMD score between
distributions is proposed in (Grosse et al., 2017), and a kernel
density estimator (KDE) in (Feinman et al., 2017). However, these
measures are global, and provide little insight into individual
samples. We propose to use MARGINto develop these statistical
measures at a sample level, and study how individual adversarial
samples differ from regular samples.

Formulation
As in other case studies, MARGIN constructs a graph, where each
node corresponds to an example that is either adversarial or harmless,
and the edges are constructed using neighbors in the latent space of
the model, against which the adversarial examples have been
designed. We consider two kinds of functions in this experiment: 1)

MMD Global
Similar to Case Study I—Prototypes and Criticisms, we use the
MMD score between the whole set, and the set without a
particular sample and its neighbors. This provides a way to
capture statistically rarer samples in the dataset; 2)

Kernel Density Estimator
We also use the KDE of each sample, as proposed in (Feinman
et al., 2017), where we measure the discrepancy of each sample
against the training samples from its predicted class. While these
measures on their ownmay not be very illustrative, they are useful
functions to determine influences within MARGIN.

Experiment Setup and Results
We perform experiments on 2000 randomly sampled test images
from the MNIST dataset (LeCun, 1998), of which we adversarially
perturb 1000 images. We measure MARGIN scores using both
MMD Global, and KDE, against two popular attacks–the Fast
Gradient Sign Method (FGSM) attack (Goodfellow et al., 2014),
and the L2-attack (Carlini and Wagner, 2017b). We use the same
setup as in (Carlini and Wagner, 2017a), including the network
architecture for MNIST. The resulting MARGINscore determined
using Algorithm 1, is more discriminative, as seen in Figure 7. As
noted in (Carlini and Wagner, 2017a), the MMD and KDE
measures were not very effective against stronger attacks such
as the L2-attack. This is reflected to a much lower degree even in
our approach, where there is a small overlap in the distributions.
We also find that the overlapping regions correspond to samples
from the training set that are extremely rare to begin with (like
criticisms from Case Study I—Prototypes and Criticisms).

Case Study VI—Active Learning on Graphs
To demonstrate the applicability of MARGIN to work with graph
structured data, we study the problem of active learning on

FIGURE 6 | Using MARGIN to sample near decision boundaries.
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graphs, or in other words, generating highly influential samples for
a label propagation task. Label propagation is a semi-supervised
learning problem, where the task is to propagate labels from a small
set of nodes to all the other nodes of the graph. In order to evaluate
the samples chosen using our method, we study the test accuracies
for varying sizes of the training set. In order to perform the semi-
supervised learning, we use the Graph Convolutional Network
(GCN) implementation by Kipf and Welling (2017), with 3 graph
convolutional layers comprising 16 graph filters each, and a
learning rate of 0.01. The rest of the hyper-parameters are those
recommended in the GCN implementation2.

Formulation
Since the attributes are independently defined on each node, they
do not contain information about the neighborhoods in the graph
and therefore do not directly provide us a notion of influence.
Instead, we first embed the attributes using a graph convolutional
autoencoder Kipf and Welling (2016), and compute the
explanation function f as the as the norm of each latent feature
at each node. Next, using MARGIN we compute the influences of
the training samples alone, and sort them in decreasing order.

Datasets and Baselines
We consider two popularly used citation network datasets–Cora
and Citeseer Sen et al. (2008). The Cora dataset consists of 2,708
nodes and 5,429 edges, while the Citeseer dataset consists of 3,327
nodes and 4,732 edges. The attributes at each node are comprised

of a sparse bag-of-words feature vector with 3,703 dimensions for
Citeseer, and 1,433 dimensions for Cora.

We compare with two baselines: 1) Probabilistic resampling on
graphs: The resampling strategy was proposed in Chen et al.
(2017) as a way to efficiently resample dense point clouds. In this
approach, the magnitude of the features at each node after a high
pass filtering is directly used as a probability of influence at that
node, p(n). This is followed by a resampling of the nodes on the
graph according to p(n). While it is an effective strategy to
resample dense point clouds, it tends to be less reliable for the
label propagation experiment, as shown in Figure 8. Since we are
sampling from a distribution, we sample 10 times, and report the
mean and standard deviation. 2) Random sampling: We also
randomly sample from each class on the graph, and repeat this 10
times, while reporting the mean and standard deviation.

Results
In all cases, the accuracy of label propagation is measured on a test
set of size 1,000 samples, by training on only 10-100s of samples.
Figure 8 shows the accuracy of label propagation for varying
number of training set sizes. It is clear that our proposed
sampling achieves state-of-theart performance on the graph. The
performance is around 10–15%points higher in accuracy compared
to the baseline techniques, especially in small training set regimes.
While MARGIN’s resampling method is deterministic, we repeat
the other baselines 5 times and report average and standard
deviation. As we observe in Figure 8, the influence computed by
MARGIN is significantly better and more stable than the influence
obtained by directly using the attributes as the function, as done in
the case of probabilistic resampling. It is also interesting to note that
this probabilisticmethod is highly unstable for a very low number of

FIGURE 7 | We compare histograms of scores obtained from adversarial samples with and without incorporating graph structure. We see that including the
structure results in a much better separation between adversarial and harmless examples. In addition, regions of overlap can easily be explained.

2https://github.com/tkipf/gcn
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samples, as it was originally proposed to resample dense point
clouds. Finally, random sampling itself is a competitive baseline as
the number of samples under consideration is very small.

CONCLUSION

We proposed a generic framework called MARGIN that is able to
provide explanations to popular interpretability tasks in machine
learning. These range from identifying prototypical samples in a
dataset thatmight bemost helpful for training, to explaining salient
regions in an image for classification. In this regard, MARGIN
exploits ideas rooted in graph signal processing to identify themost
influential nodes in a graph, which are nodes that maximally affect
the graph function. While the framework is extremely simple, it is
highly general in that it allows a practitioner to include rich
semantic information easily in three crucial ways–defining the
domain (intra-sample vs inter-sample), edges (pre-defined/native/
model latent space), and finally a function defined at each node.
The graph based analysis easily scales to very sparse graphs with
tens of thousands of nodes, and opens up several opportunities to
study problems in interpretable machine learning.

PYTHON IMPLEMENTATION OF MARGIN

The graph analysis based influence estimation in MARGIN is
extremely simple, in that it can be implemented using a few lines
of python code.

import numpy as np

import networkx as nx

import scipy.sparse as sp

’’’

Inputs:

adj: adjacency matrix

f: function defined at each node

p: number of hops from each node

for filtering

Output:

I: Influence score per node

’’’

def MARGIN(adj,f,p�1):
G � nx.Graph(adj) #graph object

N � adj.shape[0] #number of nodes

degree � G.degree()

deg � [1./d[1] for d in degree.items()]

tmp � np.zeros((N,N))

Dinv � sp.csr_matrix(tmp)

idx0,idx1 � np.diag_indices(N)

Dinv[idx0,idx1] � deg

A_n � np.sqrt(Dinv)*adj*np.sqrt(Dinv)

P � np.power(A_n,p)

M � np.sum(P>0,axis�1,dtype�np.float)
f_0 � np.matrix(f)

f_1 � (P*f_0)/M

f_filter � f_1-(P*f_1)/M

I � np.abs(f_filter)

I � I/np.max(I)

return I.A
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Preventing Failures by Dataset Shift
Detection in Safety-Critical Graph
Applications
Hoseung Song1*, Jayaraman J. Thiagarajan2 and Bhavya Kailkhura2

1Department of Statistics, University of California, Davis, CA, United States, 2Lawrence Livermore National Laboratory, Livermore,
CA, United States

Dataset shift refers to the problem where the input data distribution may change over time
(e.g., between training and test stages). Since this can be a critical bottleneck in several
safety-critical applications such as healthcare, drug-discovery, etc., dataset shift detection
has become an important research issue in machine learning. Though several existing
efforts have focused on image/video data, applications with graph-structured data have
not received sufficient attention. Therefore, in this paper, we investigate the problem of
detecting shifts in graph structured data through the lens of statistical hypothesis testing.
Specifically, we propose a practical two-sample test based approach for shift detection in
large-scale graph structured data. Our approach is very flexible in that it is suitable for both
undirected and directed graphs, and eliminates the need for equal sample sizes. Using
empirical studies, we demonstrate the effectiveness of the proposed test in detecting
dataset shifts. We also corroborate these findings using real-world datasets, characterized
by directed graphs and a large number of nodes.

Keywords: graph learning, dataset shift, safety, two-sample testing, random graph models

1 INTRODUCTION

Most machine learning (ML) applications, e.g., healthcare, drug-discovery, etc., encounter dataset
shift when operating in the real-world. The reason for this comes from the bias in the testing
conditions compared to the training environment introduced by experimental design. It is well
known that ML systems are highly susceptible to such dataset shifts, which often leads to unintended
and potentially harmful behavior. For example, in ML-based electronic health record systems, input
data is often characterized by shifting demographics, where clinical and operational practices evolve
over time and a wrong prediction can threaten human safety.

Although dataset shift is a frequent cause of failure of ML systems, very few ML systems
inspect incoming data for a potential distribution shift (Bulusu et al., 2020). While some
practical methods such as (Rabanser et al., 2019) have been proposed for detecting shifts in
applications with Euclidean structured data (speech, images, or video), there are limited efforts
in solving such issues for graph structured data that naturally arises in several scientific and
engineering applications. In recent years there has been a surge of interest in applying ML
techniques to structured data, e.g. graphs, trees, manifolds etc. In particular, graph structured
data is becoming prevalent in several high-impact applications including bioinformatics,
neuroscience, healthcare, molecular chemistry and computer graphics. In this paper, we
investigate the problem of detecting distribution shifts in graph-structured datasets for
responsible deployment of ML in safety-critical applications. Specifically, we propose to
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solve the problem of detecting shifts in graph-structured data
through the lens of statistical two-sample testing. Broadly,
the objective in two-sample testing for graphs is to test
whether two populations of random graphs are different or
not based on the samples generated from each of them.

Two-sample testing has been of significant research interest
due to its broad applicability. An important class of testing
methods relies on summary metrics that quantify the
topological differences between networks. For example, in
brain network analysis, commonly adopted topological
summary metrics include the global efficiency (Ginestet
et al., 2011) and network modularity (Ginestet et al.,
2014). An inherent challenge with these approaches is that
the topological characteristics depend directly on the number
of edges in the graph, and can be insufficient in practice. An
alternative class of methods is based on comparing the
structure of subgraphs to produce a similarity score
(Shervashidze et al., 2009; Macindoe and Richards, 2010).
For example, Shervashidze et al. (2009) used the earth
mover’s distance between the distributions of feature
summaries of their constituent subgraphs.

While these heuristic methods are reasonably effective for
comparing real-world graphs, not until recently that a
principled analysis of hypothesis testing with random
graphs was carried out. In this spirit, Ginestet et al. (2017)
developed a test statistic based on a precise geometric
characterization of the space of graph Laplacian matrices.
Most of these approaches for graph testing based on classical
two-sample tests are only applicable to the restrictive low-
dimensional setting, where the population size (number of
graphs) is larger than the size of the graphs (number of
vertices). To overcome this challenge, Tang et al. (2017a)
proposed a semi-parametric two-sample test for a class of
latent position random graphs, and studied the problem of
testing whether two dot product random graphs are drawn
from the same population or not. Other testing approaches
that focused on hypothesis testing for specific scenarios, such
as sparse networks (Ghoshdastidar et al., 2017a) and
networks with a large number of nodes (Ghoshdastidar
et al., 2017b), have been developed. More recently,
Ghoshdastidar and von Luxburg (2018) developed a novel
testing framework for random graphs, particularly for the
cases with small sample sizes and the large number of nodes,
and studied its optimality. More specifically, this test statistic
was based on the asymptotic null distributions under certain
model assumptions.

Unfortunately, all these approaches are limited to testing
undirected graphs under the equal sample size (for two graph
populations) setting. In real-world dataset shift detection
problems, these assumptions are extremely restrictive,
making existing approaches inapplicable to several
applications. In order to circumvent these crucial
shortcomings, we develop a novel approach based on
hypothesis testing for detecting shifts in graph-structured
data, which is more flexible (i.e., accommodates 1) both

undirected and directed graphs and 2) unequal sample size
cases). Moreover, it is highly effective even when the sample
size grows. Notice that, similar to the setting in
Ghoshdastidar and von Luxburg (2018), we also
consider scenarios where all networks are defined from the
same vertex set, which is common to several real-world
applications. The main contributions of this paper are
summarized below:

• We propose a new test statistic that can be applied to
undirected graphs as well as directed graphs and/or
unweighted graphs as well as weighted graphs, while
eliminating the equal sample size requirement. The
asymptotic distribution for the proposed statistic, based
on the well-known U-statistic, is derived.

• Apractical permutation approach based on a simplified form
of the statistic is also proposed.

• We compare the new approach with existing methods for
graph testing in diverse simulation settings, and show that
the proposed statistic is more flexible and achieves
significant performance improvements.

• In order to demonstrate the usefulness of the proposed
method in challenging real-world problems, we consider
several applications (including a healthcare application), and
show the effectiveness of our approach.

2 PRELIMINARIES

We consider the following two-sample setting. Let two random
graph populations with d vertices be denoted asA1, . . . ,Am from
P∈[0, 1]d×d and B1, . . . ,Bn fromQ∈[0, 1]d×d with their adjacency
matrices A1, . . . ,Am and B1, . . . ,Bn, respectively. We are
concerned with testing hypotheses:

H0 : P � Q vs H1 : P ≠Q. (1)

Notice that we consider the cases where each population
consists of independent and identically distributed samples,
which encompasses a wide-range of network analysis
problems, see, e.g., Holland et al. (1983), Newman and Girvan
(2004), Newman (2006). In contrast to existing formulations, e.g.,
Ghoshdastidar and von Luxburg (2018), we consider a more
flexible setup where 1) the sample sizesm and n are allowed to be
different and 2) the graphs in p and Q can be weighted and/or
directed.

While there have several efforts to two-sample testing of
graphs (Bubeck et al., 2016; Gao and Lafferty, 2017;
Maugis et al., 2017), recent works such as Tang et al.
(2017a), Tang et al. (2017b); Ginestet et al. (2017) have
focused on designing more general testing methods that
are applicable to practical settings. For example, Ginestet
et al. (2017) proposed a practical test statistic based on the
correspondence between an undirected graph and its
Laplacian under the inhomogeneous Erd}os-Rényi (IER)
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assumption, which means all nodes are independently
generated from a Bernoulli distribution (see details in
Section 3). The test statistic, under the assumption of
equal sample sizes m, can be described as follows:

Tgin � ∑
d

i< j

[(A)ij − (B)ij]
2

a
, (2)

where

a � 1
m(m − 1) ∑

m

k�1
[(Ak)ij − (A)ij]

2

+ 1
m(m − 1)∑

m

k�1
[(Bk)ij − (B)ij]

2

,

(A)ij �
1
m

∑
m

k�1
(Ak)ij, (B)ij �

1
m

∑
m

k�1
(Bk)ij.

The authors showed that Tgin converges to a chi-square
distribution as m→∞ under H0. However, this statistic can be
interpreted as Hotelling’s T2 statistic for multivariate data, thus
leading to no performance guarantees for “small m and large d”
scenario. This is because the variance estimates used in Eq. 2 are not
stable for small m and large d, especially when graphs are sparse.

Recently, Ghoshdastidar and von Luxburg (2018) proposed a
new class of test statistics, designed for different scenarios under
the IER model assumption. More specifically, they focused on
cases with smallm and large d. For cases withm> 1, the following
test statistic was used:

Tspec �

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ ∑
m

k�1
(Ak − Bk)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2																								

max
1≤ i≤ d

∑
d

j�1
∑
d

j�1
∑
m

k�1
[(Ak)ij + (Bk)ij]

√ , (3)

While it was suggested by the authors to perform this test
using bootstraps from the aggregated data, this could be
challenging for sparse graphs, since it is difficult to construct
bootstrapped statistics from an operator norm. Hence, they
considered an alternate test statistic based on the Frobenius-
norm as follows:

Tfro �
∑
d

i< j
( ∑

k≤m/2
(Δk)ij)( ∑

k>m/2
(Δk)ij)

																								
∑
d

i< j
( ∑

k≤m/2
(Sk)ij)( ∑

k>m/2
(Sk)ij)

√ , (4)

where (Δk)ij � (Ak)ij − (Bk)ij and (Sk)ij � (Ak)ij + (Bk)ij. It was
shown that this test is provably effective and more reliable.
Furthermore, they derived the asymptotic normality of Tfro as
d→∞ to make the method instantly applicable without the
bootstrap procedure. Despite the good properties of this
method, this test can be used only when the two sample
sizes are equal, and when graphs are undirected. In the rest of
this paper, we develop a new test statistic which addresses
these two crucial limitations.

3 PROPOSED TEST

To carry out two-sample testing, we want to measure the distance
between two populations. Here, we utilize the Frobenius distance
as the evidence for discrepancy between two populations:

T � ‖P − Q‖2F . (5)

Next, we provide finite sample estimates of this quantity. To
accommodate more general settings for random graphs, the new
test statistic is defined as follows:

Tnew � ∑
d

i�1
∑
d

j�1
Tij, (6)

where

Tij � 1
m(m − 1)∑k≠ l

m

(Ak)ij(Al)ij + 1
n(n − 1)∑k≠ l

n

(Bk)ij(Bl)ij

− 2
mn

∑
k�1

m

∑
l�1

n

(Ak)ij(Bl)ij.

Note that the proposed test statistic accommodates scenarios
where 1) the sample sizesm and n are different and 2) the graphs
in p and Q are weighted and/or directed.

Next, we analyze the theoretical properties of the proposed
test. For the ease of theoretical analysis, we focus on the case
where graphs are unweighted and undirected. However, the
proposed test and algorithmic tools are applicable to weighted
and/or directed graph scenarios which is the main focus of the
paper and is considered in our experimental evaluations. More
specifically, in our theoretical analysis, we assume that graphs are
drawn from the inhomogeneous Erd}os-Rényi (IER) random
graph process, which is considered as an extended version of
the Erd}os-Rényi (ER) model from Bollobás et al. (2007). In other
words, we consider unweighted and undirected random graphs,
where edges occur independently without any additional
structural assumption on the population adjacency matrix.
Note, the IER model encompasses other models studied in the
literature including random dot product graphs (Tang et al.,
2017b) and stochastic block models (Lei et al., 2016). A graph
G ∈ [0, 1]d×d from a population symmetric adjacency p with zero
diagonal is considered to be an IER graph if
(G)ij i.i.d˜ Bernoulli(Pij) for all i, j ∈ {1, . . . , d}. Here, d denotes
the cardinality of the vertex set. Next we analyze the
theoretical properties of the proposed test under IER assumption.

LEMMA 3.1. Tnew is an unbiased empirical estimate of T,
that is,

E(Tnew) � T . (7)

PROOF. Under the IER assumptions, for all i, j � 1, . . . , d, we
have

(Ak)ij(Al)ij ∼ Bernoulli(P2
ij),

∑
m

k≠ l

(Ak)ij(Al)ij ∼ Binomial(m(m − 1), P2
ij),
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(Bk)ij(Bl)ij ∼ Bernoulli(Q2
ij),

∑
k≠ l

n

(Bk)ij(Bl)ij ∼ Binomial(n(n − 1),Q2
ij),

since Ak and Bl are mutually independent
(k � 1, . . . ,m, l � 1, . . . , n). Then,

E(T) � ∑
d

i�1
∑
d

j�1
[

1
m(m − 1)m(m − 1)P2

ij

+ 1
n(n − 1) n(n − 1)Q2

ij −
2
mn

mnPijQij] � ∑
d

i�1
∑
d

j�1
(Pij − Qij)

2

�‖ P − Q‖2F .
In the form of Tij, the first term and the second term represent

a similarity (closeness) within two samples, and the last term
represents similarity between two samples. Hence, a relatively
large value of Tnew is the evidence against the null hypothesis.
Note that the proposed statistic does not require equal sample
sizes and undirected graphs assumptions.

When m � n, we have a simpler form of the estimate.
Let Z � (z1, . . . , zm) be i.i.d random variables zk �
(Ak, Bk) ∼ P × Q (k � 1, . . . ,m). Then,

Tnew � ∑
d

i�1
∑
d

j�1
Tij, (8)

where

Tij � 1
m(m − 1) ∑

m

k≠ l

h(uk, ul)ij, (9)

and
h(zk, zl)ij � (Ak)ij(Al)ij + (Bk)ij(Bl)ij − (Ak)ij(Bl)ij − (Al)ij(Bk)ij.
Since the proposed estimate has a form of U-statistics, which
provides a minimum-variance unbiased estimator for T
(Hoeffding, 1992; Serfling, 2009), the asymptotic distribution
of Tnew can be derived based on the asymptotic results of
U-statistics.

Theorem 3.1 Assume E(h2)<∞. Under H1, we have
		
m

√ (Tnew − T) →d N(0, d2σ2), (10)

where σ2 � varz(Ez’h(z, z′)ij). Under H0, the U-statistic is
degenerate and

mTnew →d ∑
∞

u�1
d2λu(ξ2u − 1), (11)

where ξu ˜
i.i.d N(0, 1) and λu are the solutions of

λuϕu(z) � ∫
z′

h(z, z′)ijϕu(z′)dP(z′). (12)

PROOF. These results can be obtained by applying the
asymptotic properties of U-statistics as given in Serfling (2009)
and the IER assumptions.

Having devised the test statistic, our next aim is to determine
whether the new test statistic Tnew is large enough to be outside

the 1 − α quantile of the limiting null distribution in Eq. 11,
where a is the significance level of the test. One difficulty in
implementing this test is that the asymptotic null distribution 11)
and its a quantile do not have an analytic form unless λu � 0 or 1.
Therefore, in order to estimate this quantile, we propose a
permutation approach on the aggregated data. The main
advantage of this method is that it yields a valid level a test in
finite-sample scenarios (Lehmann and Romano, 2006). To this
end, we first consider a simpler form of the test statistic (based on
Tnew) defined as follows:

T ′
new � ∑

d

i�1
∑
d

j�1
T ′

ij, (13)

where

T ′
ij � 1

m(m − 1) ∑
m

k≠ l
(Ak)ij(Al)ij + 1

n(n − 1)∑
n

k≠ l

(Bk)ij(Bl)ij. (14)

Although we do not use the last term of Tij in the definition of
T ′

ij, the performance of the test statistic T ′new achieved by
incorporating similarities in two samples is still maintained in
the permutation framework. The permutation test is summarized
in Algorithm 1; its computational cost is O(R(m∨n)2), where
(m∨n) indicates the maximum among m and n.

Algorithm 1Permutation test using T ′new.

Input: Graph samples A1, . . . ,Am and B1, . . . ,Bn;
Significance level α; Number of permutation R.
Output: Reject the null hypothesis H0 if p-value ≤ α.
1: Compute T ’new by Eqs. 13, 14.
2: for r � 1 to R do
3: Randomlypermute thepooled samples {A1, . . . ,Am, B1, . . . ,Bn}
and divide into two groups with sample sizes m and n.
4: Compute T ′r which is T ′new (as given in Eqs. 13, 14 calculated
using permuted samples.
5: end for.
6: Calculate p-value � ∣∣∣∣{r : T ′r ≥T ′new}/R_

∣∣∣∣
Unlike Ghoshdastidar and von Luxburg (2018) where the test
is reliable even for a small number of samples, due to its
asymptotic distribution, our test procedure needs a reasonable
number of samples to implement the permutation test. Based
on simulations, we see that as low as four samples are sufficient
to obtain reliable results.

4 EXPERIMENTS

Here, we first examine the performance of the new test statistics
under diverse settings through simulation studies. Later, we will
apply the new test to real-world applications.

4.1 Simulated Data
To evaluate the performance of the new test, we examine sparse
graphs from stochastic block models with two communities as
studied in Tang et al. (2017a) an Ghoshdastidar and von Luxburg
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(2018). Specifically, we consider sparse graphs with d nodes where
the same d/2 size community is constructed with an edge
probability p and d/2 size different community with an edge
probability q. In other words, we define p and Q as follows:

P : ( p q
q p

)
d×d

vs Q : ( p + ϵ q
q p + ϵ)

d×d
.

We generate m samples from p and n samples from Q. Under
the null, ϵ � 0, implying P � Q, whereas ϵ> 0 underH1, implying
P ≠Q. Following Ghoshdastidar and von Luxburg (2018), we set
p � 0.1, q � 0.05, and ϵ � 0 for null, whereas ϵ � 0.04 for the
alternative hypothesis. We examine the performance of the new
test for different choices of d ∈ {100, 200, 300, 400, 500}.

The performance of the test based on T ′new is studied and
compared to existing methods. T fro in Ghoshdastidar and
von Luxburg (2018) is the bootstrap test based on Tfro, and
T asymp denotes the normal dominance test based on the
asymptotic distribution of Tfro (also from Ghoshdastidar
and von Luxburg (2018)). We denote the new test which is
the permutation test based on T ′new as T ′ new. The
estimated power is calculated as the number of null
rejections at α � 0.05 level out of 100 independent trials
for each of these methods. For T fro and T new, p-values
are determined by 1,000 permutation runs to have a reliable
comparison.

Figure 1 shows results for the undirected graph case under
different settings. When two sample sizes are equal (upper panels),
where existing methods can be applied, we see that the proposed test
outperforms all othermethods.Note that, when the sample size of two
graph populations are different (i.e., m≠ n), the existing methods
cannot be applied. We see that the proposed test still performs well
under sample imbalance and the large d regime.

We also evaluate the performance of the new test for directed
graphs under various configurations. (Figure 2). The existing
methods are not applicable to directed graphs, but we transform
Tfro so that it can be applied to directed graphs. The results show
that the new test also has better power than the existing method in
two-sample testing for directed graph and works well for large
graphs.

Next, we examine the effect of the sparsity on the performance of
the tests. To this end, we consider the same setting as above, but with
different choices of ϵ ∈ {0.02, 0.03, 0.04} for each of methods. Small ϵ
implies that there is small difference between p andQ,making the tests
more difficult to detect discrepancy between two samples. Table 1
shows results for undirected graphswith variations in the sparsity level
ϵ. We see that, in general, the proposed method is consistently
superior to existing methods. This indicates that our test statistic is
more effective in detecting the inhomogeneity between two samples
than the existing methods. The effect of a sparsity level ϵ on the
performance of the proposed test for directed graphs can be found in
Table 2. We see that the proposed test also performs better than the

FIGURE 1 | Performance comparison of different tests for undirected graphs.
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existing method for directed graph settings, and as expected, the
power increases as ϵ or the number of samples increases.

This observation becomes particularly evident when we
have a large number of samples. To this end, we study how the
performance of the tests is affected by the number of samples.
For this study, we consider m � n ∈ {10, 20, 50} with relatively
small graphs d ∈ {50, 100, 150, 200} and fix ϵ � 0.02. This

analysis is designed to reveal the potential impact of
sample size in high-dimensional settings. Tables 3, 4
report numerical results for the performance of the tests
with varying number of samples. We see that the proposed
test in general outperforms the existing tests for both
undirected and directed graphs. Hence, we can claim that
the new test works well in high-dimensional settings.

FIGURE 2 | Performance comparison of proposed test for directed graphs.

TABLE 1 | Power comparison of different tests for undirected graphs with varying sparsity levels.

m=n= 4 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

D T fro T asymp T 9 new T fro T asymp T 9 new T fro T asymp T 9 new

100 0.09 0.05 0.10 0.10 0.03 0.08 0.17 0.05 0.17
200 0.09 0.05 0.07 0.18 0.10 0.18 0.39 0.22 0.39
300 0.17 0.03 0.17 0.34 0.19 0.37 0.50 0.40 0.66
400 0.11 0.09 0.15 0.40 0.26 0.53 0.78 0.71 0.90
500 0.22 0.08 0.22 0.63 0.48 0.75 0.91 0.89 0.98

m=n= 8 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

d T fro T asymp T 9 new T fro T asymp T 9 new T fro T asymp T 9 new

100 0.13 0.05 0.08 0.17 0.08 0.23 0.39 0.21 0.64
200 0.19 0.09 0.31 0.40 0.20 0.67 0.80 0.66 0.99
300 0.36 0.22 0.49 0.73 0.58 0.92 0.98 0.94 1.00
400 0.37 0.19 0.61 0.92 0.86 1.00 1.00 0.99 1.00
500 0.51 0.31 0.76 0.98 0.96 1.00 1.00 1.00 1.00

Bold values indicate the largest power of the test under each condition.
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4.2 Real-World Applications
4.2.1 Phone-Call Network
The MIT Media Laboratory conducted a study following 87
subjects who used mobile phones with a pre-installed device
that can record call logs. The study lasted for 330°days from July
2004 to June 2005 (Eagle et al., 2009). Given the richness of this
dataset, one question of interest to answer is that whether the
phone call patterns among subjects are different between
weekends and weekdays. These patterns can be viewed as a
representation of the personal relationship and professional
relationships of a subject. Removing days with no calls among
subjects, there are t � 299 networks in total (corresponding to
number of days) and 87 subjects (or nodes) with adjacency
matrices Nt with value one for element (i, j) if subject i called
j on day t and 0 otherwise. This in turn comprises of 85°days in
weekends and 214°days in weekdays. This is an example of
unweighted directed graphs with imbalanced sample sizes.

The test statistic and corresponding p-value are shown in
Table 5. We see that the new test rejects the null hypothesis of
equal distribution at 0.05 significance level. This outcome is
intuitively plausible as phone call patterns in weekends
(personal) can be different from the patterns in weekdays (work).

4.2.2 Safety-Critical Healthcare Application
Modeling relationships between functional or structural regions
in the brain is a significant step toward understanding, diagnosing,

and eventually treating a gamut of neurological conditions including
epilepsy, stroke, and autism. A variety of sensing mechanisms, such
as functional-MRI, Electroencephalography (EEG), and
Electrocorticography (ECoG), are commonly adopted to uncover
patterns in both brain structure and function. In particular, the
resting state fMRI (Kelly et al., 2008) has been proven effective in
identifying diagnostic biomarkers for mental health conditions such
as the Alzheimer disease (Chen et al., 2011) and autism (Plitt et al.,
2015). At the core of these neuropathology studies is predictive
models that map variations in brain functionality, obtained as time-
series measurements in regions of interest, to clinical scores. For
example, the Autism Brain Imaging Data Exchange (ABIDE) is a
collaborative effort (Di Martino et al., 2014), which seeks to build a
data-driven approach for autism diagnosis. Further, several
published studies have reported that predictive models can reveal
patterns in brain activity that act as effective biomarkers for
classifying patients with mental illness (Plitt et al., 2015).
Following current practice (Parisot et al., 2017), graphs are
natural data structures to model the functional connectivity of
human brain (e.g. fMRI), where nodes correspond to the
different functional regions in the brain and edges represent the
functional correlations between the regions. The problem of defining
appropriate metrics to compare these graphs and thereby identify
suitable biomarkers for autism severity has been of significant
research interest. We show that the proposed two-sample test is
highly effective at characterizing stratification based on
demographics (e.g. age, gender) as well as autism severity states
(normal vs abnormal) across a large population of brain networks.

TABLE 2 | Power of the proposed test for directed graphs with varying sparsity
levels.

m=n= 4 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

D T fro T 9 new T fro T 9 new T fro T 9 new

100 0.13 0.09 0.11 0.11 0.21 0.26
200 0.11 0.12 0.25 0.27 0.49 0.66
300 0.17 0.22 0.46 0.61 0.76 0.94
400 0.20 0.20 0.60 0.72 0.95 1.00
500 0.36 0.37 0.77 0.93 1.00 1.00

m=n= 8 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

D T fro T9 new T fro T9 new T fro T9 new

100 0.14 0.18 0.20 0.42 0.66 0.93
200 0.26 0.38 0.77 0.94 0.97 1.00
300 0.43 0.68 0.94 1.00 1.00 1.00
400 0.62 0.89 1.00 1.00 1.00 1.00
500 0.80 0.96 1.00 1.00 1.00 1.00

Bold values indicate the largest power of the test under each condition.

TABLE 3 | Power comparison of different tests for undirected graphs with varying sample sizes.

m=n= 10 m=n= 20 m=n = 50

d T fro T asymp T 9 new T fro T asymp T 9 new T fro T asymp T 9 new

50 0.08 0.08 0.12 0.11 0.04 0.16 0.28 0.15 0.43
100 0.16 0.08 0.17 0.18 0.05 0.23 0.61 0.42 0.81
150 0.16 0.03 0.15 0.21 0.14 0.30 0.70 0.52 0.97
200 0.14 0.06 0.22 0.37 0.21 0.56 0.94 0.89 1.00

Bold values indicate the largest power of the test under each condition.

TABLE 4 | Power comparison of different tests for directed graphs with varying
sample sizes.

Directed m=n= 10 m=n = 20 m=n = 50

d T fro T 9 new T fro T 9 new T fro T 9 new

50 0.05 0.09 0.12 0.28 0.49 0.77
100 0.15 0.24 0.29 0.43 0.82 0.99
150 0.15 0.21 0.39 0.52 0.95 1.00
200 0.28 0.42 0.66 0.86 1.00 1.00

Bold values indicate the largest power of the test under each condition.

TABLE 5 | Test summary on the phone-call network.

Test statistic p-value

15.8131 <0.001
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In the dataset, there are total 871 graphs and each graph
consists of 111 nodes (functional regions). Through this example,
we study the effectiveness of our approach under the weighted
and undirected graph setting. In particular, we focus on detecting
variations across stratification arising from demographics
(gender, age). Specifically, groups of normal control subjects as
well as those diagnosed with Autism Spectrum Disorders (ADS)
are further sub-divided according to their gender (Male or Female)

and age (under 20 or over 20), and we compare these sub-groups
using the proposed test.Table 6 shows the distribution of graphs in
the dataset and Figure 3 shows an example of the network
structure of normal-male and normal-female groups.

We conduct the two-sample test based on T ′ new for each group
with 10,000 permutations and the results are summarized inTable 7.
We see that the new test rejects the null hypothesis of homogeneity
in groups with respect to the treatment and age at 5% significance

TABLE 6 | Distribution of graphs. “M” and “F” indicate male and female, respectively. ‘<20’ and ‘>20’ represent age less than 20 and over 20, respectively.

TABLE 7 | p-values of the tests on the ABIDE dataset.

TABLE 8 | Estimated power of the tests with the significance level at 5%. Black numbers indicate the power of test based on T fro and red numbers represent the power of
test based on T ’ new.
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level (Normal>20 vs ADS<20 and Normal<20 vs ADS>20). In
addition, the new test rejects the null hypothesis of homogeneity
in both normal and ADS groups with respect to the age difference
(Normal<20 vs Normal>20 and ADS<20 vs ADS>20).

This conclusion indicates there is a dataset shift even within the
same normal andADS groups, depending on the age. Hence, the fact
that normal and ADS groups are considered differently by age may
affect themachine learning subjects classification and prediction task
in population.Moreover, with the dataset in which the normal group
and ADS group are determined differently by age and not by gender,
themachine learning classification and predictionmodel may not be
reliable. Hence, detecting dataset shift shed some light on the
machine learning task for more reliable results.

We also compare the new testwith the existingmethodT fro to this
example. Note that the existing method T asymp may not be reliable
due to the small number of nodes. Since T fro is only applicable to the
balanced sample sizes, we randomly choose 54 graphs from each group
as the smallest sample size among the groups is 54. We run the tests
100 times at the significance level 5%. The test powers are shown in
Table 8. We see that the new test in general outperforms T fro.
Compared to the results in Table 7, some examples show inconsistent
performance of the tests. This is because we only consider a subset of
graphs due to the limitation of the existing approaches in that they
cannot be applied to unbalanced sample size examples.

5 CONCLUSION

We propose the new two-sample test statistic for graph-structured
data. Unlike the existing methods, the new test statistic is more
versatile, which is applicable to directed graphs, imbalanced sample
size cases, and even weighted graphs. The asymptotic distribution of
the test statistic is presented and a practical testing procedure is

proposed. The performance of the new method is studied under a
number of settings. Experiments demonstrate that the new test in
general outperforms state-of-the-art tests. The proposed test is also
applied to two real datasets (including a safety-critical healthcare
application), and we reveal that the new approach is effective to
detecting the heterogeneity between disparate samples.
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