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Editorial on the Research Topic

Footprints of Immune Cells in the Type 1 Diabetic Pancreas

The Footprints of Immune Cells in the Type 1 Diabetic Pancreas Research Topic represents a
collection of review articles, perspective pieces, and original research articles, which together create a
conceptual framework describing the interactions between cells within the islets of Langerhans and
components of the innate and adaptive immune system. The cellular interactions occurring within
tissues represent crucial events during the natural history and pathogenesis of the disease, and are
not completely understood when studied in isolation. Access to human pancreas samples, through a
number of tissue biorepositories, has dramatically improved our collective understanding of type 1
diabetes (T1D), highlighting a number of outstanding questions and key knowledge gaps within the
field. Although T1D has been traditionally considered a disease of autoimmune origin, the concept
of intracellular stress as a triggering event has gained considerable attention as a means by which
[3-cells may contribute to their own demise.

In a mini-review article, Piganelli et al. described how, under conditions of high endoplasmic
reticulum (ER) stress, B-cells are prone to changes in function and immunogenicity that could lead
to the formation of novel antigenic epitopes. The authors described how the unique physiology of
B-cells and the extreme metabolic burden of insulin synthesis and secretion, may make them more
vulnerable to certain environmental stressors. In addition, genetic risk variants expressed within
B-cells may predispose susceptible individuals to increased stress and damage.

Along these lines, and with special relevance given the global coronavirus disease 2019 (COVID-19)
pandemic, Fignani et al. investigated the expression of the severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2) receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) in [B-cells
and within the islet microvasculature. The authors examined human pancreas samples and reported
that ACE2 could be detected in human islets. It was preferentially expressed in distinct subsets
of B-cells, in addition to pericytes and some ductal cells, though B-cells primarily expressed the short-
ACE2 isoform, which lacks the SARS-CoV-2 high-affinity binding sites. Proinflammatory cytokines
increased the expression of ACE2 in a B-cell line and in isolated islets, indicating a potential link
between inflammation and ACE2 expression. These data add an additional element to a timely
question related to whether or not SARS-CoV-2 can actively infect B-cells and contribute to diabetes.
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In a systematic review article, Colli et al. evaluated selected
publicly available RNA-seq datasets of pancreatic human islets or
FACS-purified human B-cells exposed to: 1) pro-inflammatory
stimuli (IL-1B + IFN-y or IFN-a), 2) metabolic stressors
(palmitate), or 3) the local environment present during T1D
development (primary B-cells from patients). The biological
processes regulated by the transcripts from [3-cells exposed to IFN-
o closely recapitulated those observed in 3-cells from T1D subjects.
Transcriptional profiles contained a gene expression signature
related to responses to type I interferons (IFN-0/f3), MHC class I
antigen presentation, activation of tumor necrosis factor receptor
subunits and ubiquitination. Conversely, biological processes
regulated by the transcripts obtained from T1D subjects vs. B-cells
exposed to IL-1B + IFNY, included gene signatures related to
immune infiltration like cell adhesion, immunoregulatory
interaction between lymphoid and non-lymphoid cells, and PD-1
signaling. The authors also identified several classes of compounds
with some potential to revert 3-cell inflammation during the natural
history of the disease, including bile acids, bromodomain inhibitors,
leucine-rich repeat kinase (LRRK) inhibitors and vitamin D receptor
agonists. Likewise, Yip and colleagues identified various immune
pathways related to cell adhesion, insulin secretion, glucose
metabolism and pancreas development that were differentially
expressed in the pancreas of autoantibody positive (AAb+)
individuals and partially overlapped with changes observed in pre-
diabetic NOD mice. The genes included RGS16, CLEC4D, and
FCGR2B, which are enriched in leukocytes and exhibited reduced
expression in samples from AAb+ individuals. The authors
hypothesized that reduced expression of FCGR2B in pre-diabetic
individuals, detected in blood and pancreas, could lead to hyper-
responsiveness, proliferation and maturation of autoreactive B cells
contributing to a loss of tolerance and progression of disease.

PD-1 signaling represents an important negative regulator of
T cell activation, with implications for controlling autoreactivity
in T1D. Falcone and Fousteri reviewed the role of the PD-1/PD-
L1 axis in the maintenance of immunological tolerance,
described mechanisms by which this pathway is regulated, and
discussed how alterations in this checkpoint could contribute to
islet autoimmunity. The authors further discussed how the
microbiota may alter the PD-1/PD-L1 axis, as well as recent
findings in subjects treated with immune checkpoint inhibitors
for cancer immunotherapy (i.e., anti-PD-1 monoclonal
antibody). The authors concluded by listing strategies to target
this pathway to bolster regulation and avert islet autoimmunity.

Given the interactions between islets and tissue-resident
immune cells, multiple authors centered their work on the cross-
talk between B-cells and innate immune subsets. Macrophages,
dendritic cells (DCs), and neutrophils are often the first cells to
interact with potentially abnormal B-cells and provide a link with
the adaptive immune system, as suggested in a perspective article by
Zirpel and Roep. They highlighted the possible roles of
macrophages and DCs, and the importance of further
understanding the changes between benign leukocyte residency
and pathogenic infiltration. Citro et al. focused on macrophages
and neutrophils, and how cytokines in the islet niche could
modulate insulin secretion and B-cell function. The authors

discussed the importance of their modulation for the protection
and/or improvement of islet function. Xing et al. investigated the
transcriptional profile of patients with latent autoimmune diabetes
in adults (LADA) and identified neutrophilic dysfunction, with
enhanced activation of degranulation, adhesion and migration at
the transcriptional level. Parv et al. investigated the different
polarization of macrophages in the pancreas using a mouse
model. The authors found that endocrine-resident macrophages
were more efficient at performing efferocytosis, a homeostatic
process that clears endogenous cells, and phagocytosis, both in
vitro and in vivo, than exocrine-resident macrophages. The authors
point out the need to further understand the intrinsic differences
between endocrine and exocrine innate immune cells, with respect
to their ability to regulate autoimmunity, providing a potentially
interesting new line of investigation.

In addition to innate subsets, B cells within the adaptive arm of
the immune system are thought to participate in T1D progression.
This notion emanates from their appearance as a prognostic
indicator of disease and invites the hypothesis of a role as non-
professional antigen presenting cells. However, the exact role of B
cells in T1D pathogenesis, particularly within the islet
microenvironment, remains poorly understood. Leete and
Morgan discuss the preferential localization of B cells in T1D in
regard to their detection in peripheral blood, secondary lymphoid
organs, and islets. They highlight studies reporting a notable
increase in islet B cells in individuals diagnosed with T1D in early
life. The authors propose that B cells might promote the activation
of autoreactive CD8" T cells in the islets and highlight therapeutic
strategies for attenuating B cell function.

Autoreactive T and B cells are linked, and their collaboration
can drive immune-mediated pathology. CD4" T cells have been
detected at low frequencies in the islets of T1D subjects but their
numbers may be more prominent at the earliest stages of the
disease. Landry et al. evaluated preproinsulin reactivity among
CD4" T cells isolated from islets of six organ donors with T1D.
The authors identified 14 T cell receptor (TCR) clonotypes, which
recognized proinsulin peptides (A- and B-chain, and C-peptide)
presented by various HLA Class II molecules, and observed a
trend towards dominant restriction by HLA-DQ. However,
citrullination of insulin B-chain peptides did not induce stronger
responses in the TCRs reactive against the native form. CD8" T
cells reactive against preproinsulin have similarly been found in
the pancreas of T1D subjects, and in this Research Topic, Bender
et al. review the differences in autoreactive CD8" T cell frequency
between peripheral blood and pancreas in individuals with and
without T1D, and how cytokines secreted by stressed B-cells could
attract CD8" T cells to the islets. The authors highlight the role of
the chemokine CXCL10, among other chemokines, for its capacity
to attract T cells, which express the CXCL10 receptor, CXCR3.
They also discussed numerous studies that have investigated
CXCL10 expression in o- and B-cells, with mixed results. In an
attempt to provide a definitive answer, Nigi et al. investigated the
expression of CXCL10 among endocrine cell subtypes in NOD
mice and human tissue. CXCL10 was observed in murine o- and
[B-cells, but the colocalization and expression increased in o-cells
of diabetic mice. Likewise, CXCL10 was preferentially expressed in
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o-cells in the islets of subjects with T1D while it was absent in
control donors. Christen and Kimmel reviewed the role of
chemokines in T1D, focusing especially on the CXCL10/CXCR3
axis. They discussed the therapeutic potential of neutralizing
chemokines as part of combination therapies with T-cell
targeting drugs like anti-CD3. The authors ultimately
hypothesize that the blockade of CXCR3 chemotaxis may
provide a novel combinatorial strategy to prevent the migration
of diabetogenic T cells from secondary lymphatics.

The enrichment of autoreactive T cells within the islets in
T1D provides strong evidence for a loss of immune tolerance.
Regulatory T cells (Tregs) are found in very low numbers within
the islets, and their stability and function are not well understood
in the context of human T1D. In their review article, Scherm and
Daniel explore the regulatory potential of miRNAs, including
how miRNAs regulate effector T cell function, and their use as
biomarkers of islet autoreactivity, with a special section dedicated
to miRNA regulation of Tregs. In addition to providing a
comprehensive list of miRNAs involved in immune regulation,
the authors highlight three miRNAs (miR92a-3p, miR181a-5p,
miR142-3p) and describe their function in detail.

The articles noted above underscore the critical cellular
interactions linking the immune effectors and targets of
autoimmunity in T1D. A number of articles highlighted exciting
opportunities to direct therapies not only at the immune system, but
also to protect B-cells within islets. Indeed, Perna-Barrul et al.
discuss the potentially protective role for betamethasone, a drug
routinely administered to mothers at risk of preterm birth, on
preserving B-cells function and restoring proper interactions with
the immune system in early life. The authors speculate that
betamethasone could be used as a protective agent shortly before
birth or in the perinatal period based on its capacity to make B-cells
less immunogenic. Bogdani et al. explored the therapeutic potential
of a VB13a TCR monoclonal antibody, 17D5. They demonstrate
that 17D5 delays spontaneous diabetes onset in DRLyp/Lyp rats.
Some rats did not develop disease and retained a high proportion of
insulin containing islets, with reductions in hyaluronan deposits,
CD68", CD3" and CD8" infiltration.

Overall, the studies outlined in this Research Topic highlight
the critical need for a deeper understanding of this organ-specific
autoimmune disease and the exigence for therapeutic modalities
that can act at the target organ to reduce cellular stress,
immunogenicity, and preserve long-term immune tolerance to
pancreatic B-cells in subjects with or at risk for T1D.
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Type 1 diabetes (T1D) is a multifactorial disease of unknown aetiology. Studies focusing
on environment-related prenatal changes, which might have an influence on the
development of T1D, are still missing. Drugs, such as betamethasone, are used during
this critical period without exploring possible effects later in life. Betamethasone can
interact with the development and function of the two main players in T1D, the immune
system and the pancreatic g-cells. Short-term or persistent changes in any of these two
players may influence the initiation of the autoimmune reaction against g-cells. In this
review, we focus on the ability of betamethasone to induce alterations in the immune
system, impairing the recognition of autoantigens. At the same time, betamethasone
affects B-cell gene expression and apoptosis rate, reducing the danger signals that will
attract unwanted attention from the immune system. These effects may synergise to
hinder the autoimmune attack. In this review, we compile scattered evidence to provide
a better understanding of the basic relationship between betamethasone and T1D, laying
the foundation for future studies on human cohorts that will help to fully grasp the role of
betamethasone in the development of T1D.

Keywords: prenatal betamethasone, Type 1 diabetes, immune system, § cell, glucocorticoid

BETAMETHASONE AS AN EMERGING ENVIRONMENTAL
FACTORIN T1D

Type 1 diabetes (T1D) is an autoimmune disease caused by the selective destruction of insulin-
producing B-cells. The trigger, however, remains unknown. Postnatal environmental determinants
have been thoroughly studied as risk factors (1, 2) but a crucial phase for the immune system
development, the late prenatal stage, has been poorly investigated. Specifically, the interaction
of drugs commonly used during late pregnancy with T1D and the pancreatic B-cells remains
unexplored. Nonetheless, some studies reveal the importance of the prenatal stage and the
prematurity of the newborn in the development of T1D (3-5). An indirect demonstration of
how critical the in utero environment is in T1D development arises from the studies in twins:
heterozygotic twins have an increased concordance of T1D when compared to non-twin siblings
(6,7), underlining the potential relevance of prenatal factors and their influence in the development
of autoimmunity.

Synthetic glucocorticoids, most often betamethasone, are routinely given to mothers at
risk of preterm birth between 24 and 34 weeks of gestation. A single course of prenatal
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betamethasone reduces the occurrence and severity of respiratory
distress syndrome and improves the survival chances in
premature infants (8, 9). Another glucocorticoid used for lung
maturation is dexamethasone and produces similar results on the
newborn survivability (10). These synthetic glucocorticoids cross
the placenta and accelerate foetal lung maturation, achieving
maximum benefit between 24 h and 7 days after administration
(11). Betamethasone is a poor substrate for the glucocorticoid
inactivating enzyme 11beta-hydroxysteroid-dehydrogenase 2
(11BHSD2), therefore, its bioactivity in the foetus lasts for
several days (12) and it is known to exert long-lasting effects on
the hypothalamic-pituitary-adrenal (HPA) axis and cognition in
children (13, 14).

Glucocorticoids exert their effects by binding nuclear
receptors that are ligand-dependent transcription factors. They
can regulate gene transcription, either by direct binding to
DNA or by interacting with other transcription factors (15).
Glucocorticoid receptors (GR) are ubiquitously expressed;
however, due to the variation in the genomic location of GR
binding, the transcriptional responses to glucocorticoids are cell
type-specific (16). Moreover, polymorphisms of the GR result
in alterations in their responsiveness to glucocorticoids and in
gene expression (17, 18). In addition, human GR receptor can
be a target of endoncrine disruptors such as pesticides (19) that,
in combination with antenatal glucocorticoids, could increase
developmental neurotoxicity (20).

The general effects of glucocorticoids administered during
pregnancy have been thoroughly reviewed (21). Considering the
overwhelming use of betamethasone as the treatment of choice
for respiratory distress syndrome in premature infants and the
cell-specific response to glucocorticoids, in this review we will
dissect the specific effects of betamethasone on the main cellular
players in the context of T1D, namely immune cells and their
targets, the p-cells of the pancreas.

DIRECT EFFECTS OF BETAMETHASONE
ON THE IMMUNE SYSTEM

Several cell types of the immune system are involved in the
development of T1D, and disturbances in the activity of these
cells, such as enhanced proinflammatory activity, can increase the
risk to develop T1D (22). Below, the effect of betamethasone on
different cell types of the immune system is detailed.

Innate Immune Cells

Prenatal administration of betamethasone can induce an
anti-inflammatory status in the newborn during the first
days after delivery (23), and this fact could be due to
the immunomodulatory effects of betamethasone on innate
immune cells.

Neutrophils

Neutrophils have gained interest in T1D aetiology due to their
participation in the initial steps of autoimmunity against f-
cells (24). Moreover, neutrophils are part of the islet leukocytic
infiltrates of patients with T1D, and are accordingly reduced in
peripheral blood at disease onset (25, 26).

A described effect of betamethasone is the increase in
leukocyte counts in peripheral blood after treatment (27),
similarly to the effects of natural glucocorticoids during stress
(28). Accordingly, neutrophil number and percentage were
increased in human blood after betamethasone treatment (29),
correlating with the described neutrophil demargination into
the blood vessels (30-32). Moreover, in humans, betamethasone
reduces neutrophil motility and chemotaxis (33), and can affect
metabolism and cytokine production, i.e., reducing interleukin
(IL)-8 and macrophage inflammatory protein alpha (MIP-
la) release (34). The inflammatory capacity of neutrophils
is therefore reduced, as demonstrated in a lamb model of
lung inflammation after betamethasone treatment, where gene
expression of IL-1, IL-6, IL-8, and CCL2 was suppressed (35).

Monocytes

Monocytes are circulating innate immune cells that can
become antigen-presenting cells (APCs), either macrophages,
or dendritic cells (DCs). Thus, reprogramming monocytes may
lead to changes in both differentiated cells. Betamethasone has
an acute effect on the metabolism of monocytes, transiently
reducing the production, and the secretion of IL-6 and reactive
oxygen species. By contrast, the phagocytic activity of monocyte-
derived APCs was not altered by betamethasone (36). In newborn
children with low weight at birth, prenatal betamethasone
administration induced a transient immunomodulatory effect
in monocytes, causing diminished IL-6 and IL-10 release and
downregulation of human leukocyte antigen DR (HLA-DR)
expression (37). Moreover, the total number of monocytes was
reduced by betamethasone (38). This effect was also assessed
in vitro, demonstrating that glucocorticoids induce apoptosis
in human monocytes (39). Nevertheless, these results are
controversial, and other authors reported that betamethasone
does not affect monocytes’ IL-6 production (40).

Macrophages

Macrophages are crucial in the initial damage to B-cells
in T1D. These tissue-resident APCs contribute to initiate
specific immune responses (41). In macrophages, betamethasone
diminishes cytokine secretion (IL-8 and TNFa) (42) and
impairs their ability for antigen presentation to T cells (43).
These effects point to the induction of a regulatory profile
in macrophages, similar as described in M2 macrophages
(44). Indeed, dexamethasone induces the polarization of the
M2 phenotype (45). Moreover, it was recently reported that
dexamethasone increases the migration of macrophages by
CD26 overexpression, a membrane glycoprotein with enzymatic
capabilities involved in inflammation, and this could contribute
to the egress of macrophages from inflamed tissue (46).

Dendritic Cells

DCs are professional APCs with the ability to stimulate naive
T cells. In TID, DCs are responsible for the presentation of
B-cell autoantigens to T lymphocytes, initiating the adaptive
autoimmune response against the insulin-producing cells.
Similarly to the observed effect of dexamethasone on this cell
type, DCs differentiated in vitro in the presence of betamethasone
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failed to achieve a fully mature status, showing a reduced capacity
to stimulate the production of IL-17, a cytokine involved in
autoimmune responses, by T lymphocytes (32). Furthermore,
the release of proinflammatory cytokines was reduced by this
drug in DCs. Betamethasone has been reported to induce
tolerogenic Langerhans DCs (LDCs) in the skin of patients
with psoriasis (47) and atopic dermatitis, which in turn arrest
T helper (Th) 1 and Th2 responses (48). Similarly to the
effects found in monocytes, human DCs differentiated with
betamethasone showed a reduction of membrane expression of
costimulatory molecules, such as CD40 and CD86, accompanied
by a decrease in IL-12 secretion, an important cytokine
for Thl responses. These effects resulted in tolerogenic
function in DCs and impaired ability to induce T lymphocyte
proliferation (39).

Natural Killer Cells

Natural Killer cells (NKc) are effector lymphocytes of the innate
immune system. Their role in T1D is not completely understood,
but abnormalities in this cell type may contribute to trigger
autoimmune reactions against p-cells (49). Little is known about
the effects of betamethasone on NKc. Betamethasone tends to
increase NKc activity in very preterm newborn babies (<32
weeks of gestation), supporting the maturation of this cell type
(40). However, other studies have reported that betamethasone
reduces the number of NKc in newborn infants (50). In
adults, NKc showed a reduced cytolytic activity after topical
betamethasone administration (51).

Adaptative Immune Cells

Innate immune cells are crucial in the first phases of autoimmune
diseases, but the final effector cells are the adaptative immune
system cells, T and B lymphocytes. Modulation of these cells can
dampen or exacerbate an autoimmune reaction.

T Lymphocytes

Betamethasone treatment results in T cell precursor apoptosis
and, to a lesser extent, of mature T cells. Transient reduction
in thymus weight and thymocyte numbers have been described
after prenatal betamethasone administration in mice (32, 52).
In humans, the thymus of the foetus of mothers that were
prenatally treated with steroids showed delayed growth (53).
Moreover, a reduction of 20-30% of peripheral lymphocyte
counts was observed in pregnant women after treatment with
betamethasone, although this effect only lasted for 3 days (27, 38,
54). Other glucocorticoids, like dexamethasone, have comparable
effects on lymphocytes after prenatal treatment (55). In newborn
children, a similar effect on lymphocyte counts has been
described, mainly affecting CD4+ T lymphocytes (56). Data on
lymphocyte counts are still controversial, since a different study
reported an increase in CD3+ T lymphocytes in very preterm
newborn babies (<32 gestational weeks) after betamethasone
treatment (50). Prenatal betamethasone administered to the
experimental model of T1D, the non-obese diabetic (NOD)
mouse, resulted in long-lasting changes in the T Cell Receptor
(TCR) VP repertoire that persisted into adulthood (32).
Importantly, the TCR VB families that diminished in frequency

after prenatal steroid treatment included pathogenic VP domains
(57, 58), so it is reasonable to speculate that betamethasone
will protect against T1D. In humans, betamethasone reduces
T lymphocyte proliferation capacity (40), thus reducing clonal
expansion. Overall, T cells will have an impaired capacity of
interacting with B-cell antigens, thus contributing to prevent the
autoimmune response.

B Lymphocytes

The role of B lymphocytes in the development of T1D is not
completely understood. B cells produce autoantibodies to islet
antigens that, even if extremely useful as predictive biomarkers
for disease, do not appear pathogenic. Also, B cells are critical
as APCs during the first stages of autoimmunity in T1D (59).
Betamethasone has a deleterious effect on mature B cells of
NOD mouse (32) and reduces their ability to produce antibodies,
specifically IgE and IgG (60, 61). Other glucocorticoids, such as
dexamethasone, show a similar deleterious effect (62), affecting
early precursor B cells, whereas mature B cells -IgD positive-
are resistant to glucocorticoid-induced apoptosis (63). The
reduction observed in antibody production could be the result
of impaired B cell receptor and Toll-like receptor 7 signalling,
since without these signals B cells cannot switch their Ig
isotype, thus reducing their functionality. At the same time, B
cells have increased transcriptional activity of IL-10, amplifying
the immunomodulatory capacity of these cells induced by
glucocorticoids (16).

EFFECTS OF BETAMETHASONE ON THE
TARGET CELLS OF AUTOIMMUNE
DIABETES, THE ISLET B-CELLS

B-cells are the insulin-producing cells of the islets of Langerhans.
The autoimmune destruction of these cells is the ultimate cause
of T1D. B-cells also have an active role in their own destruction,
facilitating the interaction with the immune system, and
contributing to their own demise (64). Thus, the identification
of changes induced by betamethasone may help to understand
the possible outcome of this drug in the context of TID.
Studies performed in subjects with long term glucocorticoid
treatment indicate that glucocorticoids can induce dysglycaemia,
leading to diabetes (65, 66). Glucocorticoids increase insulin
resistance (67) without affecting p-cell mass (68). On the other
hand, physiological endogenous levels of glucocorticoids are
necessary for maintaining the regulation of insulin secretion
by B-cells (69). Moreover, prenatal glucocorticoids support the
maturation of B-cells by enhancing their glucose sensitivity due
to increased expression of Glut2 and Gck genes and by reducing
apoptosis, similarly as the overexpression of surfactant proteins
induced by glucocorticoids helps with the maturation of the
foetal lungs (70). In a similar way, prenatal glucocorticoids
enhance insulin secretion in rats due to the overexpression of
Gck, Slca2, and Ins2 genes in P-cells, despite B-cell mass is
smaller than in non-treated animals (71). Experimental data
demonstrate that prenatal betamethasone reduces the risk of
developing T1D in the NOD mice (57), correlating to altered
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expression of genes related to metabolism and autoimmunity in
p-cells. In a previous study we reported a reduction of Ccl2 gene
expression in B-cells, which may lead to a reduced recruitment
of macrophages and monocytes. Moreover, an increase in Gadl
gene expression, could promote tolerance to B-cells in NOD
mice (32). Recent studies in other T1D experimental models
indicate that short-term treatment with betamethasone during
late pregnancy does not affect B-cell metabolism in later life
(72, 73). Glucocorticoid signalling can also cause epigenetic
modifications in these cells. In fact, glucocorticoids impair the
methylation of the DNA by altering the enzymes responsible for
this process. Moreover, the prenatal period is a very sensitive
phase during which the epigenome shows heightened plasticity to
methylation modifications and these changes can be accumulated
throughout life (74). Important B-cell functions, such as insulin
secretion and islet cell mass homeostasis, are controlled by
epigenetic mechanisms (75), and glucocorticoids can modify
the epigenome of P-cells inducing changes that can affect
their function in adults (76), altering the efficiency of glucose
metabolism (77, 78).

HOW CAN BETAMETHASONE AFFECT
THE INTERPLAY BETWEEN THE IMMUNE
SYSTEM AND B-CELLS?

T1D is a multifactorial disease with complex interactions between
the immune system and the pancreatic B-cells. Glucocorticoids
are potent immune suppressors and are commonly used
in patients with autoimmune diseases such as psoriasis or

rheumatoid arthritis (79, 80). Betamethasone, like other synthetic
glucocorticoids, can reduce cytokine production and release,
thereby inhibiting specific immune responses and blocking the
initiation of an autoimmune attack to B-cells (2). Dampening
the autoimmune reaction can be the most efficient form of
preventing T1D, and it might be a consequence of the impaired
functionality of innate and adaptative immune cells (Figure 1).
On the one side, betamethasone diminishes the proinflammatory
action of innate immune cells (neutrophils, macrophages, and
NK cells). On the other side, this drug induces a tolerogenic
antigen presentation in macrophages and DCs, limiting the
possibilities to activate autoreactive T lymphocytes in the lymph
nodes. In turn, lymphocytes are also affected by betamethasone,
as aforementioned. T lymphocytes reduce their proliferation
capacity, decreasing the number of cells that can kill the f-
cells. At the same time, prenatal treatment critically reduces
the number of developing thymocytes and induces a skewed
TCR repertoire towards T cells with less affinity to p-cell
autoantigens (57). This fact will impair autoreactivity when
APCs expose fB-cell autoantigens in Major Histocompatibility
Complex (MHC) molecules. Moreover, in the presence of
betamethasone, T lymphocytes tend to differentiate to Th2
rather than autoimmunity-prone Thl or Th17 cells (81), and
it has been demonstrated that glucocorticoids exposure during
foetal development can alter the HPA axis, impairing CD8+ T
lymphocytes function later in life, making them less responsive
against viral antigens (82), or blunting cortisol response against
rhinovirus (83). In this sense, concerns have been raised about
multiple doses of prenatal betamethasone, including an increased
susceptibility to infections in children (84, 85). B cell precursors
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TABLE 1 | Studies on the effect of betamethasone in the immune system and impact on T1D.

Species/substrates Main findings Expected effect on T1D References

Human 1 NKc cytolytic capacity Protective (49)

Human J IgE synthesis by B cells Neutral (59)

Human 4 Insulin resistance (long-term) Neutral (80)
No effect in T1D prevalence (long-term)

Human 4 T1D Hazard ratio after glucocorticoid treatment 4 Risk (81)

Human 4 Neutrophils Protective 27)
| Basophils, CD3+4-CD4+, and CD3+CD8+ T cells

Human (adult monocytes) J DCs costimulatory molecules Protective 37)
J IL-12p70 | Th1 activation

Human (adult skin cells) J LDCs costimulatory molecules and HLA-DR Protective (45)
J Proinflammatory cytokines
No effects in IL-10 secretion or ILT3 expression

Human (cord blood of preterm babies) 4 NKc activity (<32 weeks gestation) Protective (38)
J Lymphocyte proliferation
No effect in IL-6 secretion

Human (cord blood) J IL-6, IL-8 and TNFa secretion by macrophages Protective (40)

Human (newborn and adult) J migration and motility of newborn’s neutrophils Neutral (81)
No effects in adult’s neutrophils

Human (newborn) J IL-8 and CCLS3 secretion from neutrophils Protective (33)

Human (newborn) J HLA-DR expression on monocytes Protective (35)
J IL-6 and IL-10 in plasma

Human (newborn) 4 CD3+ T cells and monocytes | NKc 4 Risk (48)

Human (newborn) | CD4* and CD25* T lymphocytes Protective (54)

Human (pregnant women) 4 Leukocytes and granulocytes Neutral (25)
J Lymphocytes

Human (pregnant women) 4 Leukocytes Neutral (36)
J Lymphocytes and monocytes

Human (pregnant women) 4 Neutrophils Neutral (52)
J Lymphocytes

Mouse (NOD) J Immunogenicity 1 Tolerance Protective (30)

Mouse (NOD) J T1D incidence | Diabetogenic VB TCR Protective (55)

Mouse J Impaired antigen presentation by macrophages Protective 41)

Mouse J Th1 and Th2 induction by LDCs Protective (46)

Mouse 4 Apoptosis of thymocytes | Thymus weight 4 Risk (50)

Sheep J IL-1, IL-6, IL-8, CCL2, and TLR4 expression Protective (83)

Sheep J IL-6 and ROS from monocytes Protective (34)

Sheep No long-term effects Neutral (69)
Improves preterm delivery adverse effects

Sheep No impairment of insulin sensitivity 1 Insulin signalling pathway Neutral (71)

Rabbit J Bcells IgG+ Neutral (58)

CCL, C-C motif ligand; HLA, human leukocyte antigen;, ILT3, immunoglobulin-like transcript 3; IL, interleukin; IgE, immunoglobulin E; IgG, immunoglobulin G; LDCs, Langerhans dendritic
cells of the skin; NKc, Natural killer cells; ROS, reactive oxygen species; T1D; type 1 diabetes; TCR, T cell receptor; Th, T helper; TLR, toll like receptor; TNF, tumour necrosis factor.

are also affected by betamethasone, showing reduced antibody
production (63). However, how these effects altogether might
influence the development of T1D is not yet known. Taken
together, these alterations suggest a rather positive effect leading
to T1D protection, but this effect could depend, among other
factors, on the concentration, and duration of the prenatal
treatment. In addition, B-cell changes induced by betamethasone
may enhance this protective effect. Especially, f-cell maturation
and the acquisition of an apoptosis-resistant phenotype may be
key factors in thwarting undesired autoimmune reactions (70).
Moreover, alterations found in the expression of genes related

to interactions between the immune system and B-cell reduce
p-cell immunogenicity, hindering their direct interaction with
immune system cells (32). This could help to avoid the activation
of stray cytotoxic T cells with affinity to p-cell autoantigens. How
long this effect is maintained is unknown, but it is reasonable
to speculate that prenatal betamethasone could reprogramme
some aspects of B-cell function until adult life, without affecting
their intrinsic capacities as described for insulin secretion (86).
Furthermore, glucocorticoid stimulation also induces epigenetic
changes in the precursor B-cells (76), and this could be the
main actor behind the long-term effects observed after prenatal
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administration of betamethasone. We have summarised those
studies that used betamethasone in their research (Table 1),
focusing on their findings in the context of the immune system
and fB-cells, and the expected effect these changes would have on
T1D. Further studies are needed to reveal the long-term effects
of prenatal betamethasone treatment in the immune system and
T1D (87).

FUTURE PERSPECTIVES

The effectiveness of glucocorticoids has been demonstrated for
a wide range of immunologically related diseases. However,
their effects during the prenatal period, both in the immune
system and the target tissue of T1D, are not fully characterised.
Expanding the understanding of how they can affect self-
tolerance and T1D could contribute to reduce the increasing
incidence of this and other autoimmune diseases. Another key
point is to determine whether the effects of glucocorticoid
treatment found in immune system cells could result from
changes induced in hematopoietic stem cells, thus explaining
the alterations found in many immune cell types. Further
studies are required to dissect the exact mechanism and the
magnitude of these changes in the immune system and f-
cells, because other factors, such as maternal nutrition or
stress during pregnancy, could also veil betamethasone effects
(88). Finally, epidemiological studies are needed to explore
the effect of prenatal betamethasone on T1D. Finding pieces
of evidence of the precise effects of betamethasone in T1D
development could lead to improved neonatal care, with
special focus on children with higher genetic risk to suffer
from T1D.

CONCLUSION

Knowledge about betamethasone action on the immune system
is currently increasing, but it is very limited in the prenatal
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Institute, Regulation of Adaptive Immunology, Milan, Italy

The human pancreas, like almost all organs in the human body, is immunologically
tolerated despite the presence of innate and adaptive immune cells that promptly mediate
protective immune responses against pathogens in situ. The PD-1/PD-L1 inhibitory
pathway seems to play a key role in the maintenance of immune tolerance systemically
and within the pancreatic tissue. Tissue resident memory T cells (TRM), T regulatory
cells (Treg), macrophages and even B cells exhibit PD-1 or PD-L1 expression that
contributes in controlling pancreatic immune homeostasis and tolerance. Dysregulation
of the PD-1/PD-L1 axis as shown by animal studies and our recent experience with
checkpoint inhibitory blockade in humans can lead to immune dysfunctions leading to
chronic inflammatory disease and to type 1 diabetes (T1D) in genetically susceptible
individuals. In this review, we discuss the role of the PD-1/PD-L1 axis in pancreatic
tissue homeostasis and tolerance, speculate how genetic and environmental factors
can regulate the PD-1/PD-L1 pathway, and discuss PD-1/PD-L1-based therapeutic
approaches for pancreatic islet transplantation and T1D treatment.

Keywords: type 1 diabetes (T1D), programmed death 1 (PD-1), programmed death ligand 1 (PD-L1), immune
tolerance, immune homeostasis, immunotherapy, pancreatic islet transplantation, pancreas

INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease mediated by T-cell destruction of the insulin-
producing B-cells in the pancreatic islets of Langerhans (1). The critical link between the
Programmed death 1 (PD-1)/PD-L1 pathway and constraint of T1D has been demonstrated in
numerous studies and has paved the way for novel therapeutic approaches. PD-1 is an inhibitory
molecule belonging to the class of co-stimulatory molecules expressed on the surface of T cells
that has been linked to immune tolerance (2). PD-1 is a member of the CD28 and CTLA-4
immunoglobulin superfamily and interacts with two B7 family ligands, PD-L1 (CD274) and PD-L2
(CD273) (3). PD-L1 is widely distributed on leukocytes and non-hematopoietic cells in lymphoid
and non-lymphoid tissues, including pancreatic islets, whereas PD-L2 is expressed exclusively on
dendritic cells (DCs) and monocytes (4, 5).

Upon binding to ligands PD-L1 and PD-L2, PD-1 recruits SHP2 phosphatase, which then
dephosphorylates molecules downstream of the TCR and CD28, leading to a block in T cell
effector function (6). Thus, PD-1 blockade can reinvigorate exhausted T cells, providing enhanced
antiviral and antitumor responses (7, 8). These observations have led to the development of PD-1
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immune checkpoint inhibitors (ICI), which have revolutionized
cancer therapy (9). Interestingly, adverse events such as rapid
autoimmunity including T1D developed following checkpoint
blockade in cancer patients (10-13), possibly due to reversal
of T cell exhaustion in pancreatic islets (14). Those findings
suggested a key role for the PD1-PD-L1 inhibitory pathway in the
maintenance of immune homeostasis and tolerance in pancreatic
tissue and the prevention of T1D. Here, we discuss the role of
PD-1 in pancreas immune homeostasis and tolerance and the
progress made so far in exploiting the PD-1/PD-L1 dyad as a
means to prevent and/or treat T1D.

THE PD-1/PD-L1 AXIS PROMOTES BETA
CELL TOLERANCE AND PREVENTS T1D

Several lines of evidence indicate that the PD-1/PD-L1
axis is fundamental to maintain immune homeostasis and
prevent organ-specific autoimmune diseases such as T1D. The
importance of this inhibitory pathway in the pathophysiology
of T1D has been demonstrated in mice and humans. The
Non-obese Diabetic (NOD) mice develop spontaneous T1D
and represent the most used murine pre-clinical models of
T1D. For example, NOD mice deficient for PD-1 or PD-
L1 develop accelerated T1D (15, 16). Using insulin tetramers,
Pauken et al., quantified insulin-specific CD4T cells in the
secondary lymphoid organs (SLO) and pancreas of NOD.PD-
17/~ mice (17). They observed significantly more insulin-specific
T cells in the pancreatic LN (pancLN) of prediabetic and
diabetic NOD.PD-1"/"mice compared to WT NOD controls.
Furthermore, the same group observed that selective loss of
PD-1 on islet-reactive CD4 T cells enhanced their proliferation
and recruitment in pancreatic islets (18). Antibody blockade
experiments showed that PD-1:PD-L1 interactions, but not
PD-1:PD-L2, were necessary for the maintenance of tolerance
toward pancreatic islets in the NOD mice (19-25). Interestingly,
genetic deletion of PD-1 in C57BL/6 and BALB/c mice led to
spontaneous lupus-like disease or autoimmune cardiomyopathy,
respectively, but no T1D (26, 27), thus implying that a
defective PD-1/PD-L1 inhibitory pathway is not sufficient to
trigger autoimmune diabetes. Even in B6.g7 mice sharing the
MHCII with NOD mice and carrying high genetic risk for
T1D, treatment with anti-PD-1 was not enough to induce
T1D (17).

In humans, a possible role for the PD-1/PD-L1 axis in T1D
pathogenesis is suggested by the observation that recent onset
TID patients have elevated gene expression levels of CD274
(PD-L1) in whole-blood RNA analysis (25). In addition, both
decreased PD-1 gene expression in peripheral CD4™ T cells
and low frequency of circulating PD-1T CD4" T cells were
found in T1D patients (25, 28). More recently, Granados et al.,
demonstrated that peripheral T cells from children with new
onset T1D failed to upregulate PD-1 upon T-cell receptor
stimulation (29). Also, the CD4" CD25% Treg cells of T1D
patients are defective in their ability to upregulate PD-1 and
to efficiently use the PD-1/PD-L pathway to mediate their
immunosuppressive function (30).

The importance of the PD-1/PD-L1 pathway in maintenance
of immune tolerance toward pancreatic beta cells in humans
is furtherly highlighted by the observation that 0.4-2.0% of
individuals undergoing treatment with ICI (anti-PD-1 and/or
anti-PD-L1 mAb) develop T1D (11-13). In a recent review of
the literature, 90 clinical cases of T1D induced by ICI were
reported (14). In 51% of cases, T1D onset was associated
with occurrence of one or more autoantibodies against islet
antigens. Genotype associated with T1D susceptibility were
present in 61% of cancer patients who developed T1D upon
ICI treatment (11-13). These findings indicate that the PD-
1/PD-L1 axis plays a key role in maintenance of immune
homeostasis and tolerance to pancreatic antigens. T1D is a
multifaceted disease regulated by genetic and environmental
factors whose pathogenesis could be very diverse in different
T1D patients. In fact, in individuals diagnosed with T1D sharing
common clinical signs of the disease, the triggering pathogenic
events leading to autoimmune destruction of pancreatic islets
maybe very different. Hence, a defect of the PD-1/PD-L1
dyad could lead to TID in a subgroup of patients as the
anti-PD-1/PD-L1 therapy triggers T1D in a percentage of
individuals and, particularly, on those who carry other T1D
susceptibility genes.

How does the PD-1/PD-L1 axis control p cell autoimmunity?
Expression of PD-1 on T cells controls their activation and
drives them toward exhaustion. T-cell exhaustion is an important
mechanism to maintain immune homeostasis and prevent
autoimmune diseases including T1D (7). In support to this idea,
a recent study demonstrated that slow T1D progression was
associated with an exhaustion-like profile on islet-reactive T
cells, with expression of multiple inhibitory receptors (including
PD-1), limited cytokine production, and reduced proliferative
capacity (31). Along the same line, an increase in circulating
exhausted T cells predicted response to anti-CD3 therapy in
T1D (32). FcR-non-binding anti-CD3 mAb immunotherapy
is effective in delaying T1D occurrence in subjects with
risk to develop the disease (autoantibody-positive) (33-35).
Importantly, Fife et al., identified a critical role for PD-1/PD-
L1 in the response of T1D patients to anti-CD3 immunotherapy
(22), suggesting that PD-1-PD-L1 interactions are part of a
common pathway to selectively maintain tolerance within the
pancreatic tissue and the draining lymph nodes possibly through
induction of T cell exhaustion.

Antigen-specific therapy is another highly promising
therapeutic approach to harness the progression of T1D (36-38)
that could also exploit the PD-1-PD-L1 inhibitory pathway.
Using this approach, we and other groups have demonstrated
disease remission, inhibition of pathogenic T cell proliferation
and anergy, decreased pro-inflammatory cytokine production,
and regulatory cytokine and T cell induction (39-44). Fife
et al, showed that an antigen-specific therapy with insulin-
coupled antigen-presenting cells was able to revert TI1D in
NOD mice after disease onset (22). Importantly, robust long-
term tolerance following this treatment was dependent on the
PD-1-PD-L1 pathway (22). Anti-PD-1 and anti-PD-L1, but
not anti-PD-L2, reversed tolerance weeks after tolerogenic
therapy by promoting antigen-specific T cell proliferation
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and inflammatory cytokine production directly in infiltrated
tissues (22), thus suggesting that the PD-1/PD-L1 blockade
at pancreatic tissue level maybe important. Following a
similar approach, administration of the islet antigen peptide
mimic p31 coupled to chemically fixed antigen presenting
cells (APCs) reversed diabetes and induced robust, long-
term inactivation of islet-specific BDC2.5 T-cell receptor
(TCR)-transgenic T cells (23). Here, both PD-1 and CTLA-
4 interactions were critical for the induction of tolerance.
However, long-term maintenance of the anergic T cell state
exclusively depended on PD-1/PD-L1 pathway (23). Additional
experiments indicated that PD-1 acted in a cell-intrinsic manner
to maintain tolerance.

One hallmark of T1D is the presence of islet-specific
autoantibodies (45, 46) whose production depends on cognate
interactions between a specialized subset of CD4 T cells known
as T follicular helper (Tfh) and B cells in the germinal centers
(GC) (47, 48). Tth cells express PD-1, ICOS, CXCRS5, and Bcl-
6 and provide IL-4, IL-21, and CD40-ligand stimulation to
developing/maturing B cells, thus promoting antibody affinity
maturation and somatic hypermutation (49, 50). Increases
in the number of circulating Tfh cells, and, importantly,
elevated expression of an activation phenotype i.e., elevation
of ICOS and PD-1 expression, have been reported in patients
with autoimmunity including T1D, suggesting that these cells
may contribute to disease development (51-57). T follicular
regulatory (Tfr) cells are a subset of FOXP3 Treg cells that
also express PD-1, ICOS, CXCR5, CD25, Bcl-6, and Foxp3 and
suppress Tfth-B cell interactions to limit autoimmunity (58, 59).
In children with new-onset T1D, a reduction of PD-1 expression
on Tir cells was observed in a recent study (60). Additionally,
children with T1D and dysregulated PD-1 expression were
shown to be more susceptible to autoimmune complications of
T1D, such as celiac disease and thyroiditis (29). These studies
highlight that the PD-1 and PD-L1 axis plays an important role
in regulating CD4 T cell-B cell crosstalk, the development of
autoantibodies and the severity of T1D.

In recent work, PD-1 blockade was shown to enhance both
the Tth and Tfr CD4T cells, but their ratio determined
the final outcome of the GC response during foreign
antigen immunization and in experimental autoimmune
encephalomyelitis (61). In the NOD mouse model of T1D,
Martinov et al., demonstrated that PD-1 or PD-L1 deficiency,
as well as PD-1 but not PD-L2 blockade, increased both
insulin-specific Tfth and Tfr cells and increased their survival
(61). Additionally, PD-1 deficiency resulted in an increase in
insulin-specific B cells and insulin autoantibodies (IAAs) in
the mouse sera (61). The increase in insulin-specific Tfh/Tfr
cell ratio after PD-1 blockade possibly accounted for the
increased IAA production, similarly to what has been described
previously for bulk Tfh/Tfr cell ratio (59). Interestingly, using an
antibody that specifically disrupts TCR interactions with insulin
peptide:MHC II complex, reduced the effects of PD-1 blockade
on insulin-reactive B cell expansion but did not impact T1D
incidence (61).

THE PD-1/PD-1L PATHWAY IS
FUNDAMENTAL TO MAINTAIN IMMUNE
HOMEOSTASIS IN THE PANCREATIC
TISSUE

The PD-1/PD-L1 axis is instrumental for maintenance of
immune homeostasis in several organs including the pancreatic
tissue as suggested by the observation that blockade of the
PD-1/PD-L1 pathway in 1.8% of cancer patients treated with
anti-PD-1 antibodies results in acute or chronic pancreatitis
(62). Furthermore, several lines of evidence indicate that
this inhibitory pathway is particularly important to maintain
immune tolerance against insulin-producing pancreatic f cells
for prevention of T1D. Pancreatic § cells express very low levels
of PD-L1 in basal conditions, however inflammation triggers
higher expression mostly through the action of cytokines such
interferons (63, 64). Osum et al.,, found that IFN-y and, to a
lesser extent, IFN-a, promoted increased frequency of PD-L1+
B cells, and increased expression of PD-L1 on a per cell basis
(63). The fact that PD-L1 expression is upregulated in inflamed
islets and, specifically, in the presence of CD8+ T-cell infiltration
suggests that this could represent a key mechanism to control
T cell activation and promote T cell exhaustion in pancreatic
tissues (63).

CD8T cells, most likely islet-specific, are found within islets
and the insulitic lesions as well as in the exocrine pancreas of
T1D patients (5, 16, 65-69), hence the PD-1/PD-L1-mediated
control of CD8 T cell infiltration may play an important role in
prevention of T1D. In support to this hypothesis, autoantibody
positive patients without clinically overt T1D showed a slight
increase in PD-L1 expression on residual pancreatic islets,
thus suggesting that PD-L1 expression maybe protective (63).
Along the same line, PD-L1 expression was absent from
insulin-deficient islets where B cells had been destroyed by the
autoimmune process (63).

The mechanism through which the PD-1 inhibitory pathway
regulates T1D development within pancreatic tissues was
elegantly addressed in vivo in pre-clinical models of T1D by
multiphoton imaging techniques. Those experiments showed
that PD-1 suppressed TCR-driven stop signals in the pancreatic
islets. Moreover, they showed that blockade of PD-1 or PD-L1
inhibited T cell migration, prolonged T cell-DC engagement,
enhanced T cell cytokine production, boosted TCR signaling and
abrogated peripheral tolerance (23).

Recent studies indicated that the PD-1/PD-L1 dyad could
be important in regulating activation of tissue-resident memory
T cells (TRMs), a subset of T cells residing in the pancreatic
tissue under steady-state conditions (70-72), that play a key
role in pancreas immune surveillance and immunopathology
in health and disease (66, 67, 73, 74). TRM cells exhibit site-
specific functional and transcriptional adaptations in certain
tissues including the pancreas (75, 76), playing an important role
in mediating tissue homeostasis. Functionally, TRM cells rapidly
release interleukin-2 (IL-2) and pro-inflammatory cytokines
to mediate immediate protective responses against multiple
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types of pathogens and they can also participate in tissue
immunopathology (77-79). Importantly, TRM cells normally
express molecules that attenuate their activation such as the
inhibitory molecules PD-1 and CD103 and the regulatory
cytokine IL-10 (80, 81). In the human healthy pancreas TRM
cells express elevated PD-1 levels compared to the intestinal
mucosa (jejunum) and pancreatic draining lymph nodes (82),
thus suggesting that their activation is tightly regulated by the
PD-1/PD-L1 pathway. Pancreas TRM cells exhibited tissue-
specific phenotypes and transcriptional programs controlling
T cell activation and metabolism (82). All together these
findings indicate that in steady-state conditions, PD-1/PD-L1
triggering on TRM cells is fundamental to halt their activation
and maintain immune homeostasis within pancreatic tissues.
Polyclonal TRM cells are present in T1D patients, particularly in
the exocrine pancreas, but their exact role in T1D development
is unknown. Another major immune cell type in the exocrine
pancreas are macrophages that enhance TRM cells’ functions
(82). Interestingly, in studies conducted on pancreatic tissues
of patients with chronic pancreatitis, TRM cells exhibited
reduced PD-1 expression concomitant with a marked decrease
in pancreas macrophages (82). Together, these findings suggest
that TRM cells, macrophages, and the PD-1 pathway contribute
to in situ immune regulation in the pancreas and a dysregulation
of this immune regulatory pathway could contribute to the
pathogenesis of T1D (Figure 1). Multiple factors could lead to
breakage of central or peripheral immune tolerance and onset
of B cell autoimmunity in T1D susceptible individuals. The
expression of PD-1/PD-L1 molecules on P cells and tissue-
resident immune cells could represent the ultimate safety
mechanism to prevent autoimmune destruction of the pancreatic
islets in individuals with B cell autoimmunity whose islet-reactive
T cells are activated and recruited within the pancreatic tissue.
Hence, in some individuals with high genetic risk of T1D and
cell autoimmunity, a dysregulation of the PD-1/PD-L1 inhibitory
pathway could be an additional mechanism leading to T1D.

GENETIC AND ENVIRONMENTAL
FACTORS CONTROLLING THE
PD-1/PD-L1 PATHWAY

The aforementioned studies suggest that the PD-1/PD-L1
pathway maybe fundamental to control immune activation of
islet-reactive T cells and TRM cells and to maintain immune
homeostasis and tolerance in the pancreas. The onset of T1D
induced in some individuals treated with ICI (i.e., anti-PD-1
mAb) indicates that a failure of these control mechanisms could
be one of the mechanisms leading to p cell autoimmunity also in
patients with “classical” T1D. Altered PD-1 expression on islet-
reactive T cells and/or polyclonal TRM cells as well as defective
PD-L1 expression on pancreatic islets could lead to failure
of PD-1/PD-L1-mediated tolerance and immune homeostasis,
ultimately leading to T1D. How is the PD-1-PD-L1 pathway
regulated and how it contributes to T1D development? Both
genetic and environmental factors modulate the PD-1/PD-L1
pathway and maybe involved in its dysregulation in TID.

Polymorphisms of the PD-1 gene (PDCDI) have been found in
different autoimmune diseases and confers genetic susceptibility
also to T1D (83). In humans, several studies have been performed
to assess the effects of PD-1 gene polymorphisms on T1D
(84) and few single nucleotide polymorphisms associated with
T1D were identified such as rs2227981 (PD-1.5), rs2227982
(PD-1.9) (85). Importantly, a recent study demonstrated that
rs2227982 had a significant association with clinical signs of
T1D (i.e., hyperglycemia), thus suggesting that the PD-I gene
polymorphisms participate in increasing T1D risk (85).

Recently, a key role for the microbiota in controlling the PD-
1/PD-L1 pathway expression and function has been identified.
This finding has important implication for disease prevention
as diet, antibiotic assumption and others environmental factors
could affect the PD-1/PD-L1 function indirectly by altering the
microbiota profile. Specifically, it was demonstrated that primary
resistance to anti-PD-1 immune-checkpoint immunotherapy
(ICI) in cancer patients is related to abnormal gut microbiome
composition (86). Importantly, transfer of gut microbiota (fecal
material transfer) from ICI responders into ICI resistant patients,
increased the response to the anti-PD-1 treatment indicating
that the components of the microbial strains could directly or
indirectly act on the PD-1/PD-L1 axis (87). Also, modification
of the microbiota induced by antibiotic treatment reduced the
response to ICI suggesting that antibiotics could affect the
inhibitory PD-1/PD-L1 axis by acting on the microbiota (86).

The mechanism underlying microbiota-induced modulation
of PD-1/PD-L1 was analyzed in a murine model. Strikingly, it
was found that administration of the anti-PD-1 mAb unleashed
activation and recruitment of central memory T cells (Tcym)
into draining lymph nodes and within the tumor and increased
the Teff/Treg cell ratio but only if specific bacterial strains
(A. muciniphila and E. hirae) were present in the intestine
of the tumor-bearing mice (86). These bacterial species may
restore gut barrier integrity and reduced bacterial translocation
that could induce immunosuppression of anti-tumor immunity.
Alternatively, some microbiota strains could regulate PD-1
expression on T cells and/or PD-L1 expression on tumor cells
thus increasing the therapeutic response to anti-PD-1.

The interaction between the microbiota and the PD-1-PD-L1
pathway is bi-directional. In fact, important evidence exists that
the PD-1-PD-L1 axis regulate the gut microbiota composition.
Kawamoto et al., (88) demonstrated that PD-17/~ mice have an
altered microbiota profile. Importantly, they showed that PD-
1 modulated the gut bacterial communities through selection
of IgA plasmacell repertoires. PD-1 deficiency generated an
excess number of Tth cells with altered phenotypes resulting
in dysregulated selection of IgA-secreting B cells in the GCs
of Peyer’s patches. The IgA produced in PD-17/~ mice have
reduced bacteria-binding capacity, which causes alterations of the
gut microbiota composition.

Considering the important role of the gut microbiota in
modulating T1D pathogenesis (89-93), it is possible to speculate
that dysregulation of the PD-1/PD-L1 pathway could affect
diabetogenesis also by modifying the microbiome profiles.
On the other hand, since some commensal bacterial strains
modulate the response to anti-PD-1 therapy, the alteration
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FIGURE 1 | The immunomodulatory role of the PD1/PD-L1 axis on different innate and adaptive immune cell subsets in pancreatic lymph nodes (LN) and tissue.
(A) The PD1/PD-L1 dyad is crucial in the crosstalk between B cells and Tfollicular helper (Tfh) and follicular regulatory (Tfr) cells in the draining LN. This mechanism
favors maturation of B cells and their release of islet-specific autoAbs and could have important implications in T1D pathogenesis. (B) PD-L1 expression on
insulin-secreting 13 cells of the pancreatic islets of Langerhans down-regulates the activation and promotes exhaustion of autoreactive CD8 T cells and enhances
suppressive function of FoxP3+ Treg cells. In parallel, PD-L1 expression on tissue resident memory (TRM) cells (and, possibly, Treg cells) regulates macrophage
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recruitment and function within pancreatic tissues.

of microbiota composition found in T1D patients could be
directly or indirectly responsible for a defect of the PD-1-PD-
L1 inhibitory pathway leading to reduced islet-reactive T cell
exhaustion, enhanced activation of TRM cells in pancreatic
tissue and P cell damage. This process could be triggered by
components of the gut commensal microbiota translocating
from the intestine to the pancreatic tissue. However, recent
evidence indicates that not only the gut microbiota but also
organ-specific commensal strains, i.e., skin-resident bacteria,
play immunoregulatory function modulating skin graft rejection
(94). Hence, future studies are necessary to clarify whether
tissue-resident microbiota also exists in pancreatic tissues and,
importantly, whether they are involved in maintenance of
immune homeostasis and tolerance toward p cells possibly
through modulation of the inhibitory PD-1/PD-L1 pathway.

HOW COULD THE PD-1/PD-1L PATHWAY
BE THERAPEUTICALLY EXPLOITED IN
Ti1D?

Considering the important role of the PD-1/PD-L1 pathway in
controlling B cell autoimmunity and in maintaining immune
homeostasis in pancreatic tissues is possible to envision several
therapeutic approaches that target this inhibitory pathway for
T1D prevention and/or treatment (Figure2). In particular,
Adoptive cell therapy (ACT) with tolerogenic dendritic cells

(DCs) and Tregs is explored as a promising standalone or
combination therapy to counter-regulate p cell autoimmunity
in T1D (95). At this moment, there is one completed (96)
and one ongoing phase I clinical trial led by Dr. Roep with
autologous tolerogenic DCs in patients with new onset T1D (CT
No: NTR5542). Over the years, several protocols of tolerogenic
DCs have been developed, with and without in vitro supplied
antigen [reviewed here (95)]. Tolerogenic DCs are thought to
act via Treg expansion and induction, T-cell deletion, T-cell
anergy and hyporesponsiveness. DCs can also be genetically
modified with viral vectors to acquire stable immunogenic
or tolerogenic properties (97). Li et al., reported genetically
modified DCs expressing T-cell co-inhibitory receptor BTLA that
induced CD8 T-cell tolerance and decreased diabetes in NOD
mice (98). More recently, Gudi et al., showed that DCs can
be efficiently engineered to simultaneously express multiple T
cell repressor receptor-selective ligands (among them PD-L1)
using a lentiviral transduction approach. These engineered DCs
induced profound inhibition of T cell proliferation, modulation
of cytokine response, and Treg cell induction, and prevented
experimental autoimmune thyroiditis (99). Thus, DCs could
be genetically modified to express PD-L1 (Figure 2). These
DCs could in turn give rise to more Treg cells that express
elevated levels of PD-1. Alternatively, Treg cells can be genetically
modified to express PD-1 together with a desired, preferably islet-
specific, antigen-specificity (100) (Figure 2). Further preclinical
development and research will be required to address the
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FIGURE 2 | Therapeutic strategies for exploitation of the PD1/PD-L1 pathway in prevention of Type 1 Diabetes and pancreatic islet transplantation. (A,B) Expression
of PD-1 or PD-L1 on engineered immune cells (DC, Treg cells) and tissues could enhance immune tolerance and therapeutic efficacy of adoptive cell therapy or
antigen-specific therapy in T1D. (C) Modification of the microbiota composition through probiotic or prebiotic administration can modulate T1D pathogenesis acting
on the PD1/PD-L1 axis. (D,E) Induction of PD-L1 expression on engineered 13 cells or HSPCs could enhance transplantation tolerance in T1D patients.
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effectiveness of PD-L1-expressing DC and PD-1-expressing Treg
for the treatment of T1D. These approaches could be exploited
to preserve residual p cell mass in newly diagnosed T1D patients
(stage 3 T1D) as well as to prevent occurrence of clinical T1D in
autoantibodies positive individuals (stage 1/2 T1D).

The antigen-specific response that characterizes T1D has been
extensively studied and remains a “hot” area of investigation.
Thus far, the primary antigenic drivers of the autoimmune
damage are antigens which are expressed exclusively in the B
cells. Proinsulin is the major antigen of the immune response and
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often the first adaptive immune response to be detected (insulin
autoantibodies) (101, 102). Other B cell antigens are also targeted
including preproinsulin (PPI), glutamic acid decarboxylase
(GAD), tyrosine phosphatase-like insulinoma antigen (IA2, also
called ICA512), zinc transporter ZnT8, and islet-specific glucose-
6-phosphatase catalytic subunit-related protein (IGRP) (103).
Antigen-specific therapies are tolerogenic approaches that rely on
the administration of islet antigens as peptides, whole proteins
or DNA vaccines (36, 43, 104). Antigen-specific therapies in
general have not been successful so far in inducing durable
protection from T1D in autoantibodies positive individuals
(stage 1/2 T1D), and current studies focus on potentiating
the tolerogenic outcome with combination or more than one
epitopes or combination of epitopes with other tolerogenic
molecules (105). DNA-based antigen-specific therapies present
several unique advantages, as DNA vectors (plasmids) are
easy and cheap to be produced and can guarantee prolonged
expression of the encoded antigens and co-expressing factors. A
possible tolerogenic approach would include the incorporation
in the same DNA vector proinsulin or the major epitopes from
multiple B-cell antigens and PD-L1 (Figure 2). This approach,
although not yet tested, might prove more effective at delaying
T1D in individuals with autoantibodies positivity (stage 1/2 T1D)
but also genetically “at risk” individuals.

Another way to therapeutically exploit the PD-1/PD-
L1 axis for T1D prevention in genetically “at risk” and
autoantibodies positive individuals would be through the
modification of the microbiota. As we previously mentioned,
a key role for the microbiota in controlling the PD-1/PD-
L1 pathway expression and function was recently identified
(85). Thus, modulation of the microbiota composition through
administration of probiotics or dietary approaches could enhance
PD-L1 expression on pancreatic f cells as well as PD-1 on Treg
cells (Figure 2).

So far, we discussed how the PD-1/PD-L1 axis could be
exploited to control B cell autoimmunity and preserve p cell
mass in individuals with newly diagnosed T1D (stage 3 T1D)
or with high genetic risk to develop disease with or without
autoantibodies positivity (stage 0 and stage 1/2 T1D). For
T1D patients with established disease (stage 4 T1D) pancreatic
islet grafts is the main therapeutic option to restore insulin
independence. Importantly, the PD-1/PDLI pathway can also be
exploited to enhance immune tolerance and promote survival of
transplanted islets. The most significant limitations of clinical
islet transplantation include the paucity of pancreas organ
donors and the adverse effects of chronic immunosuppression.
Thus, significant effort is devoted to the generation of a
replenishable supply of insulin-producing cells, such as porcine
pancreatic islets (106) or P cells derived from stem cells
(107). Regardless of the B cell source, immunomodulatory
approaches that control alloreactivity and the recurrence of
autoimmunity are required. The PD-1 pathway seems to
regulate autoreactive, as we previously discussed, but also
alloreactive immune responses. PD-L1 blockade was shown to
enhance alloreactive T cell responses and accelerated MHC
class II-mismatched skin graft rejection in mice (108). A

dimeric form of PD-L1 and Ig fusion protein (PD-L1.Ig)
in combination with anti-CD154 blockade prevented cardiac,
corneal and pancreatic islet allograft rejection, providing direct
evidence for the potential of this pathway to induce allograft
tolerance (109-111). Recently, a recombinant form of PD-L1
chimeric with core streptavidin (SA) (SA-PD-L1) engineered
islets approach was evaluated in a preclinical model of
allogeneic islet transplantation (112). SA-PDLI1-engineered islets
survived indefinitely in allogeneic hosts under a short course of
rapamycin regimen, demonstrating the significant potential of
PD-1 pathway for modulating alloreactive responses to overcome
graft rejection.

Given the importance of the PD-1/PD-L1 pathway in islet-
specific T cell tolerance, some investigators are using techniques
of genetic engineering to generate B cells that would be
immunologically “privileged” to be used for § cell replacement
in TID patients (113, 114). There are several efforts placed for
generating a replenishable supply of hypoimmunogenic f cells
from human pluripotent stem cells (hPSCs) using state-of the-
art genome editing technologies (115). Among the multiple key
genome edits that are being tried, elimination of HLA Class I and
IT as well as inducible overexpression of CTLA4Ig and PD-L1
are included (Figure 2). The successful generation of functional,
immunologically “privileged” p cells would pave the way for a
“universal off-the-shelf” transplantation platform avoiding the
risks of immunosuppression and/or encapsulation and could be
a “game-changer” in the race to cure T1D (5, 16).

Recently, normoglycemia in patients with recently diagnosed
T1D (stage 3 T1D) was obtained with the Voltarelli trial (35,
116, 117). In this trial (117), autologous hematopoietic stem
and progenitor cell (HSPC) transplantation in combination
with thymoglobulin plus cyclophosphamide as induction therapy
in 65 patients with newly diagnosed T1D showed to achieve
insulin independence in nearly 60% of treated patients (117).
This important finding suggested that HSPCs may be a
therapeutic option for new onset T1D patients. Interestingly,
the immunoregulatory properties of HSPCs in T1D appear
to be linked to the expression of the immune checkpoint
PD-L1. Recently, Ben Nasr et al, evaluated the levels of
PD-L1 expression in HSPCs in both NOD mice and T1D
patients (118). By means of transcriptomic profiling, flow
cytometric analysis, RT-PCR, and direct analysis of bone
marrow, they found a defect in the expression of PD-
L1 expression in HSPCs in both NOD mice and TID
patients. To overcome the PD-L1 defect, they developed
genetic (generation of PD-L1.Tg HSPC) and pharmacological
approaches (treatment with IFN-, IFN-y, and polyinosinic-
polycytidylic acid [poly(I:C)]), which successfully abrogated the
autoimmune response in NOD mice (118). Tracking studies
suggested that PD-L1.Tg HSPCs preferentially homed to the
inflamed pancreas (119). Pharmacologically modulated HSPCs
also markedly abrogated CD4- and CD8-restricted autoimmune
responses and reverted diabetes in nearly 40% of newly
hyperglycemic NOD mice (118). Thus, PD-L1-expressing HSPCs
hold great promise for the treatment of TID in humans
(Figure 2).
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SUMMARY

The PD1/PD-L1 dyad is very important to maintain immune
homeostasis and to promote tolerance in peripheral tissues.
Recent evidence indicates that the PD1/PD-L1 pathway is
fundamental to prevent autoimmune diabetes so that, in some
patients undergoing treatment with ICI, blocking this inhibitory
pathway is sufficient to unleash islet-reactive T cells and trigger
T1D. The PD1-PD-L1 axis could affect islet autoimmunity
through different mechanisms involving innate and adaptive
immune cells and taking place in draining lymph nodes as
well as in the pancreatic tissue. The important therapeutic
implication of those findings is that restoring the PD-1/PD-
L1 function could represent a valid strategy to treat T1D at
different stages: to counter-regulate B cell autoimmunity and
prevent T1D in individuals genetically at-risk or autoantibodies
positive (Stage 1/2), to promote immune tolerance and preserve
residual P cell mass in new onset T1D patients (Stage 3) and,
finally, to reduce alloreactive responses and favor survival of
transplanted islets in T1D patients with established disease (Stage
4). Targeting the PD-1/PD-L1 has been already proven as an
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Type 1 diabetes (T1D) is a chronic disease caused by the selective destruction of
the insulin-producing pancreatic beta cells by infiltrating immune cells. We presently
evaluated the transcriptomic signature observed in beta cells in early T1D and compared
it with the signatures observed following in vitro exposure of human islets to inflammatory
or metabolic stresses, with the aim of identifying “footprints” of the immune assault
in the target beta cells. We detected similarities between the beta cell signatures
induced by cytokines present at different moments of the disease, i.e., interferon-a (early
disease) and interleukin-1p plus interferon-y (later stages) and the beta cells from T1D
patients, identifying biological process and signaling pathways activated during early
and late stages of the disease. Among the first responses triggered on beta cells was
an enrichment in antiviral responses, pattern recognition receptors activation, protein
modification and MHC class | antigen presentation. During putative later stages of insulitis
the processes were dominated by T-cell recruitment and activation and attempts of
beta cells to defend themselves through the activation of anti-inflammatory pathways
(i.e., IL10, 1L4/13) and immune check-point proteins (i.e., PDL1 and HLA-E). Finally, we
mined the beta cell signature in islets from T1D patients using the Connectivity Map, a
large database of chemical compounds/drugs, and identified interesting candidates to
potentially revert the effects of insulitis on beta cells.

Keywords: type 1 diabetes, beta cells, pancreatic islets, insulitis, inflammation, therapeutics, interferon,
RNA-sequencing

INTRODUCTION

Pancreatic beta cell stress and death are central components of type 1 diabetes (T1D) and also
contribute in a decisive way to T2D (1, 2). Gertrude Stein once wrote in her poem “Sacred Emily”
that a “rose is a rose is a rose is a rose.” But is “beta cell stress a beta cell stress a beta cell stress?” In
other words, are all forms of beta cell stress the same and, more importantly, does it matter, as the
outcome may be the same, namely relative or absolute reduction in insulin production?

Pancreatic beta cells are highly specialized endocrine cells that have as central tasks to sense
circulating nutrients and respond to their circulating levels by releasing insulin in adequate
amounts to assure their proper uptake and use by different organs; this maintains circulating levels
of nutrients, such as glucose, inside narrow limits in spite of the wide variations in food intake
observed in most mammalian species. Pancreatic beta cells in humans are very long lived, and
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our “beta cell patrimony” is probably established by early
adulthood (3). These cells will thus need to cope with decades
of varying insulin production - not a trivial task, considering
that under stimulated conditions insulin synthesis increases 10-
fold compared to basal level, approaching 50% of the total
protein synthesis.

An important question is how beta cells react when exposed
to mediators of autoimmune damage, such as pro-inflammatory
cytokines released at the islet vicinity during the early [e.g., type
1 interferons (IFNs), such as IFNa] or late [e.g., interleukin-18
(IL1B) and interferon-y (IFNYy)] stages of insulitis, or to saturated
free fatty acids, such as palmitate, that contribute to metabolic
stress in T2D (1, 2)? Available data suggest that beta cells trigger
different adaptive responses that involve a decrease in its most
differentiated functions, i.e., insulin synthesis and release, and
the up-regulation of complex cellular responses, such as the
unfolded protein response [UPR; (4)]. These adaptive responses
are at least in part determined by the stress inducing them -
for instance, beta cells exposed to pro-inflammatory cytokines
trigger branches of the UPR that are different from the ones
triggered in response to palmitate (2, 5, 6). These responses
to diverse stresses will thus leave gene expression/molecular
footprints that can be detected by omics techniques such as
global RNA sequencing. Exam of these footprints may allow us
to detect the nature of the beta cell stress causing them and, by
comparing the molecular footprints induced by in vitro stresses
with those present in beta cells isolated from patients affected by
T1D, enable us to define the best experimental models to study
the human disease. Furthermore, and of particular relevance for
the discovery of novel therapies for T1D, comparisons of the
different beta cells molecular footprints against large databases
of cells exposed to different drugs, such as the recently updated
Connectivity MAP database of cellular signatures, including >
1.3M profiles of human cells responses to chemical and genetic
perturbations (7), can identify agents that antagonize particular
gene signatures that may contribute to beta cell demise. Some of
these agents, such as for instance the JAK inhibitor baricitinib,
are already in use for other autoimmune diseases (8, 9) and can
then be re-purposed for T1D therapy (10) (see below). We have
recently published two comprehensive review articles focusing on
beta cell fate in T1D (2, 11), and will focus here on the available
studies characterizing the footprints left by immune or metabolic
stresses on human beta cells.

In recent years RNA sequencing analysis has been done
by us and others on human islets exposed to IL1p + IFNy
(12), IFNa (10) and palmitate (13) and of purified human
beta cells or whole islets obtained from the pancreata of
patients with T1D (14) or T2D (15); all these valuable datasets
have been deposited on public access sites, such as the Gene
Expression Omnibus repository (GEO). We have presently re-
analyzed the most informative of these datasets, using the same
pipeline [i.e., Salmon, GENCODE v31, DESeq2 (16-18)] to allow
adequate comparisons between them, aiming to answer the
following questions:

- How similar are the molecular footprints left on human islets
by IL1B 4 IFNy (12), IFNa (10) and palmitate (13)?

- Are these footprints representative of the patterns observed in
beta cells obtained from patients affected by T1D?

- Can we obtain relevant indications for new therapies by
mining these molecular footprints against available drug-
induced footprints in other cell types?

METHODS

For the present review and analysis we have selected available
RNA-seq datasets of pancreatic human islets or FACS-purified
human beta cells exposed to different pro-inflammatory stimuli
(10, 12), metabolic stressors (13) or to the local environment
present during TID development (insulitis) (14) that are
publicly available from the GEO repository (www.ncbi.nlm.nih.
gov/geo). For the search we have used the following terms
combinations: (1) “pancreatic endocrine cells” [All Fields] OR
“pancreatic beta cells” [All Fields] OR “human islets” [All Fields]
AND “type 1 diabetes” [All Fields] AND (“Homo sapiens”
[Organism] AND “Expression profiling by high throughput
sequencing”[Filter]); (2) “pancreatic endocrine cells” [All Fields]
OR “pancreatic beta cells” [All Fields] OR “human islets” [All
Fields] AND “cytokines” [All Fields] AND (“Homo sapiens”
[Organism] AND “Expression profiling by high throughput
sequencing” [Filter]); (3) “pancreatic endocrine cells” [All Fields]
OR “pancreatic beta cells” [All Fields] OR “human islets” [All
Fields] AND “palmitate” [All Fields] AND (“Homo sapiens”
[Organism] AND “Expression profiling by high throughput
sequencing” [Filter]). We also searched the Pubmed using
the same criteria and mined online sources for unpublished
data. Since the present analysis focus on beta cell transcript
(isoforms) expression, we excluded articles having insufficient
reads coverage (<20 million reads per sample, n = 3) and
depleted of beta cells (<500 transcripts per million (TPM) of
insulin, n = 1). The PRISM flow diagram (19) describing the
search strategies is represented in Figure 1. Table 1 provides
a detailed description of each dataset including their GEO
reference number.

After downloading the
version 0.13.2 (16) to map the reads to the human
reference  transcriptome [GENCODE  version 31
(GRCh38) (17)] wusing the quasi-alignment model. The
transcript abundance is represented in Transcripts Per
Million (TPM).

Differential analysis was performed using the R package
DESeq2 version 1.24.0 (18). The estimated number of reads
obtained from Salmon were used as input for DESeq2.
Briefly, DESeq2 normalizes samples according to per-sample
sequencing depth and accounting for intra-sample variability.
Then, it fits data to a negative binomial generalized linear
model (GLM) and calculates the Wald statistic. Finally,
the raw p-values are corrected using the false discovery
rate (FDR) for multiple testing by the Benjamini-Hochberg
method. Transcripts with an FDR < 0.05 were considered
differentially modified.

To compare the different signatures present in each dataset,
we performed Rank-Rank Hypergeometric Overlap (RRHO)

raw data, we wused Salmon
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FIGURE 1 | PRISMA flow diagram (19) describing the search strategy used to identify the analyzed studies.

mapping (20). For this goal, we have generated lists of transcripts
ranked by their -logjo p-values from the differential expression
analysis. In a RRHO map the hypergeometric p-value for
enrichment of k overlapping genes is calculated for all possible
threshold pairs for each condition, generating a matrix where
the indices are the current rank in each condition. The log-
transformed hypergeometric p-values are then plotted in a
heatmap indicating the degree of statistically significant overlap
between the two ranked lists on that position of the map.
We have applied adjustment for multiple comparison using the
Benjamini-Yekutieli correction.

To evaluate the similarities between datasets we used
the R package FactoExtra version 1.0.6 (https://github.
com/kassambara/factoextra) considering as (dis)similarity
(distance) measure the Pearson correlation between samples (1 —
correlation) using the 300 most variable transcripts (i.e., median
absolute deviation). Next, hierarchical clustering was performed
based on the average of the pairwise (dis)similarities (distances)
between samples.

For functional enrichment analysis the R/ Bioconductor
package ClusterProfiler version 3.12 (21) was used in
combination with gene sets from the Molecular Signatures
Database (22). All the transcripts presenting a TPM > 1 in at
least half of the samples were considered as background and
a Benjamini-Hochberg FDR threshold of 0.05 was defined as
significant enrichment.

The top 150 up-regulated transcripts in the RNA-seq of FACS-
purified beta cells from T1D individuals (14) were identified
from the differential expression analysis. This list of transcripts
was used to query the Connectivity Map dataset of L1000
cellular signatures, which has transcriptional responses of human
cells to different chemical and genetic perturbations, using the
CLUE platform (https://clue.io) (7). To identify compounds
potentially reverting the effects induced by insulitis on beta
cells we focused on perturbagens promoting signatures that
were opposite (negative tau score) to our query list. Only
perturbagens having a median tau score < —60 were considered
for further evaluation.
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TABLE 1 | Description of the datasets of pancreatic human islets and purified beta cells exposed to different stimuli and conditions presently evaluated.

Treatment Tissue Donors Duration n GEO
Age (years) Gender (M/F) BMI
IL1B + IFNy Human islets 50.6 + 22.8 2/3 251 +34 48h 5 GSE108413
IFNo Human islets 71.3+£17.7 1/5 26.4+5.4 18h 6 GSE133221
Palmitate Human islets 55.2 +20.2 3/2 248+1.6 48h 5 GSE53949
Condition
Control FACS-purified beta cells 16.1 £5.8 8/4 NA - 12 GSE121863
T1D FACS-purified beta cells 19.7 £ 5.4 31 NA 3.1 + 2.8 years 4 GSE121863

GEO, Gene Expression Omnibus repository (https.//www.ncbi.nlm.nih.gov/geo/); NA, non-available; M, male; F, female; BMI, body mass index. Data are mean + standard deviation

(10, 12-14).

RESULTS

The Footprints of in vitro Cytokine, but Not
Palmitate, Exposure Are Similar to the
Ones Observed in Beta Cells From T1D

Patients

In order to obtain in vitro inflammatory and metabolic
footprints of beta cells, we analyzed previously generated
RNA-sequencing of pancreatic human islets exposed to pro-
inflammatory cytokines [IL1p + IFNy (12) or IFNa (10)] or to
a metabolic stressor [palmitate (13)] (Figure 1). Furthermore,
recent advances in techniques to purify beta cells and the
establishment of collaborative networks between different
research groups have allowed for the first time the generation of
RNA-sequencing data of human beta cells from T1D individuals
(14). This database offers a unique opportunity to validate
the in vitro models by comparing them against the in vivo
situation present during T1D development. For this purpose,
we first evaluated the similarities between the signatures of
transcripts induced by the different stimuli (inflammatory and
metabolic) in pancreatic islets and by the local environment
of insulitis that beta cells are exposed to in T1D (Figure 2).
The analysis was performed at the transcript (isoform) level,
since we have previously observed that exposure of beta cell
to pro-inflammatory cytokines promotes major changes in
alternative splicing (AS), leading to a high number of different
splicing events (10, 23-25). This is particularly relevant since
AS is a cell-type- and context-dependent mechanism. In line
with this, several RNA-binding proteins that regulate gene
splicing are significantly modified in beta cells isolated from
individuals affected by T1D (Supplementary Table 1). This
analysis indicated that the pro-inflammatory cytokines trigger
a profile of transcripts that generate clusters of similar samples
(positive Pearson correlation), while the metabolic stressor
palmitate generates different groups of transcripts that cluster
separately and with an opposite profile as compared to cytokines
(negative Pearson correlation) (Figure2). Interestingly, the
samples obtained from T1D individuals (indicated by red color)
clustered together with the two in vitro models of pancreatic
islet inflammation; this similarity was slightly higher (represented

by darker red color boxes) with the signature of the pro-
inflammatory cytokines IL1p + IFNy (orange) than with IFNa
(yellow) (Figure 2). This is probably due to the fact that the
beta cell samples were obtained from four patients 5 months,
2, 3, and 7 years after diagnosis of T1D, a period when a
full adaptive immune response against the beta cells is in
place, including exposure of islets to the cytokines ILI1f +
IFNy, while IFNo may play a more relevant role during
the early and more “innate-immunity related” phases of the
disease (26).

Next, to identify the transcripts that are analogously
modulated in beta cells from individuals affected by T1D and
in pancreatic islets exposed to the different stressful stimuli,
we performed a Rank-Rank hypergeometric overlap (RRHO)
analysis (20) which evaluates the (dis)similarities between two
ranked lists. For this comparison, ranked lists of transcripts
based on the -logjo p-values from the differential expression
analysis (T1D or stimuli vs. controls) were generated. The RRHO
mapping demonstrated a significant intersection of similarly
up-regulated transcripts in T1D beta cells and in human islets
exposed to both IFNa (Figure 3A) and IL1f + IFNy (Figure 3B).
In agreement with the distance matrix findings (Figure 2), the
significance of this intersection was more pronounced for the
late cytokines, i.e., IL1p + IFNYy (Figure 3B), particularly related
to down-regulated genes. This concordance in down-regulated
genes may be due to the fact that IL1p + IFNy but not
IFNo, trigger a more severe beta cell stress, eventually leading
to apoptosis (10, 23, 27). On the other hand, there was no
statistically significant correlation between the T1D beta cells
signature and the one induced by the metabolic stressor palmitate
in human islets (Figure 3C). In line with this, we have previously
shown that there is no clear correlation between human islets
exposed to IFNa (10) or to IL1f + IFNy (2) and human islets
obtained from patients affected by type 2 diabetes.

To gain further insight into the biological processes and
pathways triggered at the different stages of T1D development,
we next performed enrichment analysis of the up-regulated
transcripts present in the areas of significant intersection
between the RNA-seq datasets from islets obtained from patients
affected by T1D as compared to cytokine-treated human islets
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FIGURE 2 | Correlation between the transcripts expressed in human islets exposed to IL18 + IFNy, IFNa or palmitate and the transcripts expressed in human beta
cells of individuals affected by T1D. Data were obtained by RNA sequencing (10, 12-14). The Pearson correlation (1 — correlation) was used to evaluate the
(dis)similarities (distance) among the 300 most variable transcripts in the RNA-seq datasets. Red squares represent a positive correlation (similarity), blue squares a
negative correlation (dissimilarity) and white squares an absence of correlation between each pair of observations. Next, the hierarchical clustering was performed
considering the average of the dissimilarity (distance) between samples. The resulting dendrogram is shown in the upper and lateral part of the matrix.
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FIGURE 3 | Exposure of human islets to pro-inflammatory cytokines, but not to palmitate, induce a similar transcriptomic profile as observed in islets isolated from
patients affected by type 1 diabetes. (A-C) Rank-Rank Hypergeometric Overlap (RRHO) map comparing the transcriptional expression profile of human islets
exposed to IFNa (A), IL1B + IFNy (B) or palmitate (C) to the one present in primary beta cells from individuals affected by T1D, as identified by RNA-seq. Ranked lists
of transcripts based on the -log1o p-values from the differential expression analysis of human islets exposed to IFNa (A), IL18 + IFNy (B) or palmitate (C) were
compared to a similarly ranked-list from beta cells obtained from patients with T1D.

(Figure 4). Figure4A outlines the three intersection areas
evaluated, while Figure 4B shows transcripts up-regulated only
in the intersection between the INFa and T1D datasets,

INFy and TID datasets, probably mirroring the changes
present at later stage of T1D progression. Finally, Figure 4D
shows transcripts up-regulated in the intersection between

reflecting most likely the early changes induced in beta cells
during the evolution of diabetes. Figure 4C shows transcripts
up-regulated only in the intersection between the ILIf +

all datasets (INFa, IL1p + IFNy, and T1D), which may
represent alterations common to different phases of the
disease. These putative early and late changes observed in
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the islets in the course of T1D are discussed in more
detail below.

Early Pancreatic Islets Changes

The biological processes (Gene Ontology) regulated by the
transcripts present in area B (Figure 4B; only T1D vs. IFNa)
recapitulate well the initial events putatively present during
T1D development (26). In brief, innate immune responses
are probably triggered after activation of pattern recognition
receptors (PRRs) (including Toll-like receptors (TLRs), and
RIG-I-like receptors) by endogenous “danger signals” or
exogenous ligands, such as nucleic acids (e.g., double stranded
RNA) produced during viral infections, which are putative
environmental factors associated with T1D (28). The activation
of PRRs on beta cells promotes an increased local production
of antiviral type I interferons, such as IFNa, by the beta
cells themselves and by other cells present in the islets, and
the recruitment of immune cells to the pancreatic islets. In
support to this model, rare variants in the RIG-I-like receptor
MDAS5 that lead to decreased function are associated with

protection against T1D (29). In contrast, a genetic variant
of MDAS5 that leads to a partial gain-of-function significantly
increases the risk for T1D (30). In both cases, the impact on
T1D development is dependent on, respectively, a decreased
or an exacerbated production of type I IFNs. These locally
produced cytokines activate several signaling pathways that
include key pathways observed in early human T1D, such as
MHC class I antigen presentation (31) and beta cell death (26)
(Figure 4B). We have recently demonstrated that IFNa up-
regulates different mechanisms involved in post-transcriptional
regulation of gene expression, especially alternative splicing (AS)
(10) and endoplasmic reticulum (ER) stress (10, 32), which can
potentially generate beta cells neoantigens. This, combined with
the overexpression of HLA class I, may facilitate auto-immunity
progression by activation of autoreactive T-cells that may have
escaped thymic selection (11). Of note, a similar phenomenon has
been observed for the pro-inflammatory cytokines IL1$ + IFNy
which increase the expression of an isoform of secretogranin V,
SCG55-009, that is recognized by auto-reactive CD8" T-cells
present in the pancreas of T1D individuals (12). It has also
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been described that beta cells undergoing endoplasmic reticulum
stress can modify the insulin translation initiation site, producing
a highly immunogenic polypeptide capable of activating T-cells
from T1D individuals with the potential for killing human beta
cells (33).

Macrophages are among the main immune cell populations
present in the human pancreas (34), and their density is
increased in the vicinity of the pancreatic islets (< 20 wM) of
individuals with recent-onset T1D in comparison with non-
diabetic individuals (34). This is compatible with findings from
different animal models showing that macrophages are among
the first activated immune cells present in the pancreas in
autoimmune diabetes (35, 36) and the main cell type responsible
for the TNF production in pancreatic islets (37). Furthermore,
we identified “activation of TNF receptor subunits” and its main
downstream transcription factor nuclear factor-kB (NF- kB) as
important pathways activated in early human T1D (Figure 4B).
This is particularly relevant, since differently from other cell
types in which NF-kB has mainly a pro-survival role (38), NF-kB
activation in beta cells is mostly pro-apoptotic (39).

Finally, pathways involved in the regulation of protein
ubiquitination were also overrepresented in our analysis of
common effects observed in early TID and following human
islet exposure to IFNa (Figure4B). The signal transduction
downstream of the PRRs relies on their association with
specific adaptors, which in many cases require ubiquitin-
specific modifications to became active (40). Ubiquitination
is counteracted by deubiquitinases, a group of enzymes that
remove these modifications and thus provide a negative feedback
on the signaling cascade (41). Interestingly, single-nucleotide
polymorphisms (SNPs) that decrease activity of the ubiquitin-
modifying enzyme TNFAIP3 (A20) (A20 provides a negative
feedback on NF-kB activation by stimulating degradation of
some of its components) are associated with a higher risk
for development of T1D and other autoimmune diseases (42).
Moreover, rare mutations leading to TNFAIP3 loss-of-function
cause a systemic autoinflammatory disease (43). The affected
individuals present a type I interferon (IFN) signature which
correlates with the disease activity and predicts their response
to treatment with janus kinase (JAK) inhibitors (JAK1 is a
key kinase for type I interferon signaling) (44). In agreement
with this, we have shown that the JAK 1 and 2 inhibitors
ruxolitinib (45) and baricitinib (10) prevent IFNa-induced MHC
class I and chemokine up-regulation in human islets, besides
inhibiting IFNa + IL1p-induced beta cell apoptosis; another drug
from this family was shown to prevent diabetes in NOD mice
(46). Baricitinib is already in clinical use for other autoimmune
diseases (8, 9) and may be eventually re-purposed for the
early therapy of T1D. This demonstrates the utility of beta
cell signature characterizations for the identification of new
therapeutic targets in T1D (see below).

Advanced Pancreatic Islets Changes

In the case the local pro-inflammatory environment described
above is maintained, the increased homing of different immune
cells to the pancreatic islets promotes the transition to a scenario
dominated by adaptive immune responses. The intersection area

C may be representative of the findings observed during these
late stages of insulitis (Figure 4C). The biological processes (GO)
are now enriched in IFNy responses, reflecting the increased
number of T-cells present in the islets. A critical step for the
immune cells to reach the inflamed tissue is their adhesion
and crawling on the endothelium (47). In line with this,
several processes (GO) involved in cell adhesion are induced
in pancreatic islets from T1D individuals (Figure 4C). During
this process, activated T-cells expressing high-affinity integrins
bind to the endothelial cells via cellular adhesion molecules
(CAMs) (48). Deficiency of the vascular adhesion molecule
adhesion intercellular adhesion molecule 1 (ICAM1) (49) or its
receptor (50), lymphocyte function-associated antigen 1 (LFA1),
prevents the development/progression of autoimmune diabetes
in NOD mice. Of interest, a genetic risk variant associated to
T1D (rs657152) (51) is also associated with the circulating levels
of soluble ICAM1 (52).

Other potentially important pathways identified by the
present analysis were the “Immunoregulatory interactions
between lymphoid and non-lymphoid cells” and “PD1 signaling”
(Figure 4C). We have recently shown that during insulitis, in
addition to pro-inflammatory stimuli, beta cells also express
immune checkpoint proteins, including programmed death-
ligand 1 (PDL1) and HLA-E, possibly in an attempt to down-
regulate the immune responses and thus avoid further tissue
damage (10, 53). In line with these observations, individuals
receiving immunotherapy based on PDL1/PD1 blockers for
cancer treatment have a higher risk of developing T1D (54)
and other autoimmune diseases (55). The induction of these
checkpoint proteins in human beta cells is mainly mediated by
type I and II IFNs under the control of the transcription factor
interferon regulatory factor 1 (IRF1) (53). The protective role
for these co-inhibitory molecules in beta cells is reinforced by
the facts that beta cells surviving the immune assault in NOD
mice express high levels of PDL1 (56), that transgenic PDL1
overexpression in beta cells decreases diabetes prevalence in
NOD mice (57), and that that both PDL1 (53) and HLA-E (10)
are absent in pancreatic islets from T1D individuals depleted
of insulin.

Another group of immunomodulatory molecules presenting
activation of their signaling pathways were anti-inflammatory
cytokines, including interleukin-10 (IL10) and interleukin 4/13
(IL4/13) (Figure 4D). In line with this, systemic delivery of
IL10 via adenovirus-associated gene therapy prevented diabetes
recurrence after syngeneic islets transplantation in NOD mice
(58). In the same animal model, oral administration of a probiotic
(Lactococcus lactis) expressing IL10 and the autoantigen GAD65,
in combination with low dose of anti-CD3, reversed autoimmune
diabetes (59). The second class of cytokines include IL4 and IL13,
which exerts their actions through three different combinations
of shared receptors (60). These cytokines can trigger phenotypes
that range from allergy, including asthma, to anti-helminthic
responses. Interestingly, helminthic infections are associated with
protection against immune-mediated diseases, such as T1D (61).
The systemic administration of IL4 (62) or IL13 (63) was shown
to prevent the development of diabetes in NOD mice. This effect
is at least in part mediated via their direct action on beta cells,
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since beta cells express all the required IL4/13 receptor subunits
(64) and their in vitro exposure to IL4 or IL13 protects them
against pro-inflammatory cytokine-induced apoptosis (64, 65).
This cytoprotection is associated with the activation of signal
transducer and activator of transcription 6 (STAT6) in beta cells,
leading to the up-regulation of anti-apoptotic proteins such as
myeloid leukemia-1 (MCL-1) and B cell lymphoma-extra large
(BCL-XL) (65).

Finally, analysis of the biological processes and the signaling
pathways controlled by genes commonly up-regulated in all
the three datasets (IFNa, IL1I + IFNy and T1D) (Figure 4D)
indicate that they summarize many findings present at the
different stages of the disease, including regulation of antiviral
responses, responses to type I (IFNa/p) and II (IFNY) interferons,
MHC class 1 antigen presentation, lymphocyte activation,
interaction between lymphoid and non-lymphoid cells and
PD1 signaling. This suggest that signatures of both innate
and adaptive immunity remain present in the islets as the
disease evolves, which is supported by histological and RNA-
seq findings in whole islets from T1D patients (66, 67).
Analysis of transcripts that are only modified in beta cells
of T1D individuals, but not after exposure of these cells
to cytokines (Supplementary Figure 1A), indicates pathways
that are less dependent on these inflammatory mediators
(Supplementary Figure 1B). Changes in genes involved in
digestion and absorption were upregulated in samples from T1D
only, and among these genes we identified CTRB1 and CTRB2.
Polymorphisms in these genes have been associated to higher
risk for T1D development (68, 69), and mild hyperglycemia
induces their upregulation and that of other genes identified
in the same pathway (70). There was also activation of matrix
metalloproteinases, which is a potentially relevant mechanism
in T1D since matrix metalloproteinases can cleave membrane-
bound PDL1 present on the cell surface and thus regulate T-cell
responses (71).

Mining Beta Cell Molecular Footprints for
Drug Re-purposing in T1D
Up to now there is no treatment available to prevent the
development of TID in individuals at risk. This, and the
worldwide increase in T1D incidence observed in recent decades
(72, 73), makes T1D a major area of interest for drug discovery.
We have presently mined the RNA-sequencing of FACS-purified
beta of T1D individuals (14) using the recently updated version
of the Connectivity Map (CMap) database (7). To avoid
potential off-target findings caused by focusing on individual
compounds in the analysis, we focused instead on classes of
drugs that promote an opposite signature to the one present in
beta cells of T1D individuals. We identified several classes of
drugs/compounds that could potentially revert the inflammatory
signatures present in beta cells during T1D, including bile acids,
bromodomain inhibitors, leucine-rich repeat kinase (LRRK)
inhibitors and vitamin D receptor agonists (Figure 5).

Among the top classes of compounds identified were bile
acids. This is an interesting finding, since TUDCA - a conjugated
bile acid with chaperone properties - has been shown to prevent

autoimmune diabetes in NOD mice (74). This protection was
mediated via the restoration of a defective unfolded protein
response (UPR) observed in beta cells during insulitis. In
vitro studies demonstrated that TUDCA also inhibits IFNa-
induced ER stress and its subsequent UPR activation in human
beta cells (75). Finally, there is an ongoing phase 2 clinical
trial evaluating the potential translational impact of these
findings in individuals with recent-onset T1D (ClinicalTrials.gov
Identifier: NCT02218619).

Another class of compounds identified were bromodomain
inhibitors. The bromodomain (BRD) proteins are “readers”
of histone acetylation that, associated with other components
of chromatin-remodeling complexes, promote transcriptional
activation. Bromodomain and extra-terminal domain (BET)
proteins are the most studied members of the BRD family.
Inhibitors of BET proteins have protective effects in different
animal models of autoimmunity (76, 77), including in the NOD
mouse model of autoimmune diabetes (78). We have recently
demonstrated that two bromodomain inhibitors, namely JQ1 and
I-BET-151, partially prevent the deleterious effects of IFNa on
human beta cells (10).

We also identified leucine-rich repeat kinase inhibitors
(LRRK) as a potential perturbagen in TID (Figure5). The
currently available LRRK inhibitors mainly target LRRK2. The
LRRK2 protein has two domains with catalytic activity; a GTPase
domain of the Ras of complex (ROC) protein family, and a
kinase domain of the tyrosine kinase like (TKL) family (79).
Genome-wide association studies have linked kinase-activating
mutations in LRRK2 with an increased risk for both Parkinson
disease (80) and inflammatory bowel diseases (IBD) (81). In vivo
and in vitro studies indicate that these LRRK2 risk variants act
mainly by promoting exacerbated responses to pro-inflammatory
stimuli (82-84). In line with this, LRRK2 inhibition prevented
microglial inflammatory responses triggered by TLR activation
(85). Of concern, systemic LRRK2 knockout (KO) prevented the
phosphorylation of Rab10, a crucial step for insulin-mediated
glucose transporter type 4 (GLUT4) translocation to cell surface
(86). GLUT4 is a key glucose transporter in peripheral tissues,
and this inhibitory impact on its cellular localization may lead to
insulin resistance. This highlights the importance of reviewing
the whole body of evidence before selecting the best potential
therapeutic targets.

Several studies have demonstrated the role of vitamin D
and its analogs as anti-inflammatory and immunomodulatory
agents. In line with this, exposure of human pancreatic islets
to the active form of vitamin D, calcitriol, increases expression
of the protective candidate gene TNFAIP3 and reduces pro-
inflammatory cytokine (IL1f + TNF + IFNy)-induced MHC
class I expression, IL6 production and nitric oxide synthesis (87,
88). In vivo studies on NOD mice support these findings, with
a decrease in insulitis and diabetes prevalence observed when
calcitriol was administrated early in life (89). Furthermore, two
large birth cohorts of genetically at risk individuals demonstrated
that lower levels of 25(OH)-vitamin D in early infancy are
associated with a higher incidence of islet autoimmunity (90,
91) and T1D development (90). This effect was modified by
polymorphisms in the vitamin D receptor (VDR) (91). However,
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FIGURE 5 | Mining the beta cell signature in T1D to identify potential new therapeutic targets. The top 150 up-regulated transcripts identified in the RNA-seq of beta
cells of T1D individuals (14) were used to query the Connectivity Map database of cellular signatures (7). The top Connectivity Map classes of perturbagens that
promote an opposite signature (negative tau scores) to the one present in beta cells of T1D individuals are represented.

data from clinical trials using vitamin D and its analogies
in humans have provided conflicting results. This may be
caused by different factors: (1) the genetic background of the
affected individuals (such as genetic variants in the candidate
gene TNFAIP3 and polymorphisms in the VDR) may modify
their responses to vitamin Dj (2) insufficient doses of vitamin
D to modulate the immune system are often used, due to
concerns regarding hypercalcemia; (3) too late introduction
of the treatment; (4) the need to use vitamin D analogs in
combination with other agents to address the complexity of
T1D pathogenesis.

DISCUSSION

Despite the continued work performed by the research
community there is still no treatment capable of preventing T1D
development in individuals at risk or reverting disease after its
outbreak. At the very best, use of anti-CD3, a class of drugs
targeting exclusively the immune system, delayed by around 2
years the progression to T1D in individuals at high-risk for the
disease (92). A similarly transient benefit on beta cell function
was observed when treating patients with clinical T1D using
anti-CD3 (93) or anti-CD20 (94).

In order to better understand and treat T1D, we may need
to move on from an immune cell-centered view of the disease
to a scenario that considers the disease as the product of a
dynamic interaction between the killing immune cells and the
target beta cells (2, 11, 26). To add information on the impact of

insulitis on the target beta cells, we have presently characterized
the human beta cell responses during T1D and after exposure to
different immune-mediated stimuli. We observed that the in vivo
beta cell responses can be closely recapitulated using an in vitro
system biology approach that combines exposure to cytokines
putatively present at different stages of the disease and high
coverage RNA-sequencing. This may be further improved by the
parallel evaluation of cytokine-induced changes in human beta
cells protein expression (10, 95, 96) and chromatin status (10, 95).
The validation of these models is an important finding, as the
access to high quality beta cells from patients affected by T1D
for multi-omics analysis is extremely difficult. Finally, the present
integrated analysis identified important biological processes and
signaling pathways activated during T1D progression, leading
to the identification of potentially new therapeutic targets to be
considered for future clinical trials.

Recent studies have suggested a role for aging and senescence-
associated secretory profile (SASP) in beta cell disfunction and
death in experimental models for both T1D and T2D (97, 98). We
have searched for eventual changes in SASP-related genes (i.e.,
ARNTL, CDKN1A, ICAM1, ID2, LIMS1, MAP2K1, MAPK14,
MIF, PRKCD, SERPINEI1, TBX2, ULK3, ZMIZ1 etc.) in the
present RNA-seq of beta cells from T1D individuals, but did
not observe significant changes in any of these transcripts as
compared to non-diabetic donors (data not shown).

Weakness of the present study, which may hamper
extrapolations to most T1D patients, include the limited
number of samples analyzed (there were only 4 preparations
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from TID patients available in the literature that reached the
proposed criteria (see Methods) for inclusion in our analysis) and
the disparate age of islet/beta cell donors when comparing for
instance T1D patients (mean age 19.7 years) and IFNa-treated
islets (mean age 71.3 years) (Table 1). It is remarkable that, in
spite of these limitations, there remained major and consistent
similarities between the gene expression observed in beta cells
from different patients affected by T1D and the gene expression
present in human islets exposed to pro-inflammatory cytokines.

To further expand the present information and better define
the role of each cell type present in the islets of Langerhans
or in its vicinity during insulitis, single cells analysis will be
required (99); up to now, however, this has been technically
challenging due to the very limited number of beta cells retrieved
from diabetic individuals (100). This approach has been already
performed in another autoimmune disease, systemic lupus
erythematosus, in which single cell analysis of lupus nephritis
identified cell specific signatures that led to the recognition
of key signaling pathways suitable for specific therapeutic
targeting (101).

The recent technical and scientific advances allowing the
generation of beta cells derived from inducible pluripotent stem
cells (iPSC) that show similar responses to pro-inflammatory
cytokines as adult human beta cells (102), opens the possibility
to differentiate beta cells from individuals with specific genetic
variants that modulate the different stages of insulitis (2).
Notably, these iPSC-derived cells could also be used to generate
organoids simulating the pancreas environment, which would
allow co-culture with relevant immune cells to better define beta
cell-immune system crosstalk in the context of specific genetic
backgrounds, and then to use this system for drug screening.

TID is a complex disease, and a sustained therapeutic
response will only be achieved by combining compounds
that contribute to “re-educate” the immune system and to
protect/regenerate beta cells. An interesting approach to be
pursued at the beta cell level would be to down-regulate HLA
class I antigen presentation while increasing signaling of the
immune check-point proteins (PDL1 and HLA-E); this may
be feasible, as suggested by the observation that inhibiting the
transcription factor STAT2 decreases HLA class I expression
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C-X-C Motif Chemokine Ligand 10 (CXCL10) is a pro-inflammatory chemokine
specifically recognized by the ligand receptor CXCR3 which is mostly expressed in
T-lymphocytes. Although CXCL10 expression and secretion have been widely associated
to pancreatic islets both in non-obese diabetic (NOD) mice and in human type 1 diabetic
(T1D) donors, the specific expression pattern among pancreatic endocrine cell subtypes
has not been clarified yet. Therefore, the purpose of this study was to shed light on the
pancreatic islet expression of CXCL10 in NOD, in C57BI/6J and in NOD-SCID mice as
well as in human T1D pancreata from new-onset T1D patients (DiViD study) compared
to non-diabetic multiorgan donors from the INNODIA European Network for Pancreatic
Organ Donors with Diabetes (EUNPOD). CXCL10 was expressed in pancreatic islets of
normoglycaemic and new-onset diabetic NOD mice but not in C57BI/6J and NOD-SCID
mice. CXCL10 expression was increased in pancreatic islets of new-onset diabetic
NOD mice compared to normoglycaemic NOD mice. In NOD mice, CXCL10 colocalized
both with insulin and glucagon. Interestingly, CXCL10-glucagon colocalization rate was
significantly increased in diabetic vs. normoglycaemic NOD mouse islets, indicating
an increased expression of CXCL10 also in alpha-cells. CXCL10 was expressed in
pancreatic islets of T1D patients but not in non-diabetic donors. The analysis of the
expression pattern of CXCL10 in human T1D pancreata from DiViD study, revealed
an increased colocalization rate with glucagon compared to insulin. Of note, CXCL10
was also expressed in alpha-cells residing in insulin-deficient islets (IDI), suggesting that
CXCL10 expression in alpha cells is not driven by residual beta-cells and therefore may
represent an independent phenomenon. In conclusion, we show that in T1D CXCL10
is expressed by alpha-cells both in NOD mice and in T1D patients, thus pointing to an
additional novel role for alpha-cells in T1D pathogenesis and progression.

Keywords: type 1 diabetes, pancreas, alpha-cells, chemokines, CXCL10
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease, characterized
by a progressive destruction of pancreatic insulin-producing
beta-cells driven by autoreactive T-lymphocytes (1) and leading
to chronic hyperglycemia and to the development of chronic
complications (2).

C-X-C Motif Chemokine Ligand 10 (CXCL10) is a pro-
inflammatory chemokine secreted by a wide spectrum of
cells. It is involved in multiple mechanisms and reported to
have pleiotropic effects, including immune cell migration and
attraction to inflammation sites, angiogenesis, and cancer cell
growth (3, 4). CXCL10 is produced by pancreatic islet cells upon
inflammatory stress (5) and is specifically recognized by C-X-C
Motif Chemokine Receptor 3 (CXCR3) which is expressed by
activated T-lymphocytes and other immune cells (4, 6). Several
reports demonstrated that CXCL10 plays an important role in
the natural history of T1D mainly through the attraction of
autoreactive T-lymphocytes to the islets, thus leading to the
subsequent destruction of pancreatic beta-cells (6-12). Of note,
although still debated, CXCL10 has been proposed as a possible
therapeutic target, supported by several studies showing the
beneficial effects of CXCL10 inhibition (13).

In animal models, transgenic overexpression of CXCL10 in
beta-cells, coupled to the induction of T1D through lymphocytic
choriomeningitis virus (LCMV) infection, accelerated the
autoimmune process by enhancing the migration of antigen-
specific lymphocytes (6, 7, 10). Of note, neutralization of
CXCL10 reduced the occurrence of the disease by affecting
lymphocyte migration to the pancreatic islets and by enhancing
beta-cell proliferation (14-18). Similar results, although more
controversial, were reported in CXCR3-deficient mouse models
or upon antagonistic blockade of CXCR3, leading to delayed
insulitis and diabetes onset (19). Therefore, CXCL10:CXCR3-
based pancreatic immune cell trafficking has been reported as an
important component in the natural history of T1D.

In man, increased CXCL10 levels have been detected in
serum of T1D patients compared to non-diabetic subjects and to
type 2 diabetic (T2D) individuals, thus indicating a relationship
between this phenomenon and autoimmune diabetes (20-23).
Of note, CXCL10 levels were positively correlated with the
numbers of autoreactive CD4 T cells and negatively associated
with T1D duration and age at disease onset, suggesting important
implications for CXCL10 in autoimmune diabetes progression
and severity (21).

Using immunohistochemistry and immunofluorescence,
we and others have previously demonstrated that CXCL10
expression is increased in pancreatic islets of T1D vs. non-
diabetic donors (24-26). However, the exact CXCL10 expression
pattern in pancreatic islet endocrine cell subsets has not
been addressed.

Here, by using immunohistochemical fluorescence and
confocal imaging, we aimed at elucidating the CXCL10
expression pattern among pancreatic islet endocrine cells in T1D
through the analysis of pancreas samples from NOD, C57Bl/6]
and NOD-SCID mice as well as from new-onset T1D patients
(DiViD study) and non-diabetic multiorgan donors from the

INNODIA European Network for Pancreatic Organ Donors with
Diabetes (EUnPOD).

MATERIALS AND METHODS

Animals

C57Bl/6], NOD-SCID, and NOD mice were housed and inbred
in the animal facility of Katholieke Universiteit Leuven (KU
Leuven, Leuven, Belgium) as previously described (27). All
animal procedures were performed in accordance with the
NIH guidelines for the care and use of laboratory animals
and protocols were approved by the Ethics Committees of
the KU Leuven. NOD female mice used in this study were
screened for the onset of diabetes by evaluating urine glucose
levels (Diastix Reagent Strips; Bayer, Leverkusen, Germany) and
venous blood glucose levels (Accu-Chek; Roche Diagnostics,
Vilvoorde, Belgium). Mice were diagnosed as diabetic when they
had glycosuria and two consecutive blood glucose measurements
exceeding 200 mg/mL. Pancreatic sections used for histological
analysis were collected from 8-week-old C57Bl/6] (n = 4), 15-
to 20-week-old C57Bl/6] (n = 3), 2- to 3-week-old NOD (Non-
Obese Diabetic)-SCID (severe combined immunodeficient) (n
= 4), 20-week-old NOD-SCID (n = 3), 20- to 22-week-old
normoglycaemic NOD (n = 4) and 12- to 21-week-old new-onset
diabetic NOD mice (n = 4).

Human Donors
Human pancreatic sections analyzed in this study were collected
from two different cohorts of subjects.

INNODIA EUnPOD Cohort

Following acquisition of informed research consent, pancreata
(n = 3) were obtained from brain-dead multiorgan donors
within the European Network for Pancreatic Organ Donors with
Diabetes (EUnPOD) (2), a project launched in the context of
the INNODIA consortium (www.innodia.eu). Whole pancreata
were processed following standardized procedures at University
of Pisa. Formalin fixed paraffin embedded (FFPE) pancreatic
tissue sections were obtained from n = 3 non-diabetic and
islet-autoantibodies negative donors.

DiViD Cohort

Following the acquisition of appropriate consents, 6 new-
onset T1D patients underwent pancreatic biopsy by adopting
laparoscopic pancreatic tail resection, in the context of the
Diabetes Virus Detection (DiViD) study (28). The pancreatic
tissue was processed for multiple purposes including FFPE
processing (28). From each patient included in the DiViD study,
we analyzed two pancreatic sections from separate parts of the
pancreas tail for CXCL10-INS-GCG staining and one pancreatic
section for CXCL10-INS-CD45 staining. Collection of pancreatic
tissue in the DiViD study was approved by the Norwegian
Governments Regional Ethics Committee. Written informed
consent was obtained from all individuals with type 1 diabetes
after they had received oral and written information from
the diabetologist and the surgeon separately (28). INNODIA

Frontiers in Endocrinology | www.frontiersin.org

42

September 2020 | Volume 11 | Article 630


www.innodia.eu
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

Nigi et al.

CXCL10 in Pancreatic Alpha-Cells

EUnPOD multiorgan donors’ pancreata were obtained with
approval of the local Ethics Committee at the University of Pisa.

Clinical characteristics of EUnPOD donors and of DiViD T1D
subjects are reported in Table 1.

Immunofluorescence Analysis of Mouse

and Human Pancreatic Sections
Formalin-Fixed Paraffin Embedded (FFPE) pancreatic sections
obtained from mouse and human pancreata were analyzed
using single or triple immunofluorescence and confocal imaging
analysis in order to simultaneously evaluate the expression of
CXCL10, insulin, glucagon or CXCL10, insulin, and CD45.

Mouse Pancreatic Sections

After deparaffinization and rehydration through alcohol series,
pancreatic sections (5 pum thickness) were incubated with Tris-
buffered saline (TBS) supplemented with 3% bovine serum
albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA) to reduce
non-specific reactions. Antigen retrieval was performed using
10mM citrate buffer pH 6.0 in microwave (600W) for
10 min. Sections were incubated with polyclonal rabbit anti-
murine CXCL10 [dilution 1:25, cat. 500-P129, Peprotech, Rocky
Hill, NJ, USA; purified by affinity chromatography employing
immobilized mCXCL10 matrix from sera of rabbits pre-
immunized with highly pure (>98%) recombinant mCXCL10]
(29), polyclonal guinea pig anti-insulin (dilution 1:500, cat.
A0564, Dako-Agilent Technologies, Santa Clara, CA, USA)
and monoclonal mouse anti-glucagon (dilution 1:300, cat.
MABI1249 clone 181402, R&D Systems, Minneapolis, MN,
USA) as primary antibodies; subsequently with goat anti-guinea
pig Alexa-Fluor 488 conjugate (dilution 1:500, cat. A11073,
Molecular Probe, Thermofisher, Waltham, MA, USA), goat anti-
rabbit Alexa-Fluor 594 conjugate (dilution 1:500, cat. A11037,
Molecular Probe, Thermofisher), goat anti-mouse 647 conjugate
(dilution 1:500, cat. A21236, Molecular Probe, Thermofisher) as
secondary antibodies. DNA was counterstained with DAPI (4 ,6-
Diamidino-2-phenylindole dihydrochloride, dilution 1:3,000,
cat. D8517, Sigma Aldrich). Sections were mounted with
VECTASHIELD (cat. H-1000, Vector Laboratories, Burlingame,
CA, USA) antifade medium and analyzed immediately or stored

at 4°C until ready for confocal image analysis. Potential non-
specific binding of goat anti-mouse-647 conjugate secondary
antibody to mouse endogenous immunoglobulins was evaluated
through a negative control staining with secondary antibody
(without mouse anti-glucagon primary antibody), demonstrating
the specificity of the reaction (Supplementary Figure 1).

Human Pancreatic Sections

FFPE Pancreatic sections obtained from DiViD and EUnPOD
collections were analyzed by triple immunofluorescence using
different combinations of antibodies. After deparaffinization
and rehydration through alcohol series, 5um thick sections
were incubated with methanol supplemented with 3% H,0,
to block endogenous peroxidases and with phosphate-buffered
saline (PBS) supplemented with 3% BSA to reduce non-
specific reactions. Antigen retrieval was performed with 10 mM
citrate buffer pH 6.0 for 10 min. Sections were incubated with
polyclonal guinea pig anti-insulin (dilution 1:500, cat. A0564,
Dako), monoclonal mouse anti-glucagon (dilution 1:300, cat.
MABI1249, clone #181402, R&D Systems), polyclonal rabbit
anti-human CXCL10 [dilution 1:300, cat. 500-P93, Peprotech;
specific antibody was purified by affinity chromatography
employing immobilized hCXCL10 matrix from sera of rabbits
pre-immunized with highly pure (>98%) Escherichia coli
recombinant hCXCL10] (30-32) and/or monoclonal mouse
anti-human CDA45 (pre-diluted, cat. IR751, clone #2B11 +
PD7/26, Dako) as primary antibodies. Subsequently, the
following secondary antibodies were adopted: goat anti-guinea
pig Alexa-Fluor 488 conjugate (dilution 1:500, cat. A11073,
Molecular Probes, Thermofisher), goat anti-mouse Alexa-Fluor
647 conjugate (dilution 1:500, cat. A21236, Molecular Probes,
Thermofisher), swine anti-rabbit HRP (dilution 1:100, cat.
P0217, Dako), goat anti-guinea pig Alexa-Fluor 647 conjugate
(dilution 1:500, cat. A21450, Molecular Probes, Thermofisher),
goat anti-mouse Alexa-Fluor 488 conjugate (dilution 1:500,
cat. A21236, Molecular Probes, Thermofisher). TSA Fluorescein
system (dilution 1:50, cat. NEL742001KT, Perkin Elmer) was
used to amplify CXCL10 signal. DNA was counterstained with
DAPI. Sections were finally mounted with VECTASHIELD
Antifade Medium (Vector Laboratories). Antibodies details

TABLE 1 | Demographics and main clinical parameters of T1D and non-diabetic donors.

Case ID Gender Age Disease duration Cause of death 1A GADA IA-2A ZnT8A
(weeks)

Non-diabetic (EUnPOD) 20171031 F 54 n/a Cardiovascular disease n/a neg neg neg
20171114 M 49 n/a Cardiovascular disease n/a neg neg neg
20171118 M 39 n/a Trauma n/a neg neg neg

Type 1 diabetic (DiVID) DiViD-1 F 25 4 n/a pos pos pos pos
DiviD-2 M 24 3 n/a pos neg pos pos
DiViD-3 F 34 9 n/a pos neg pos pos
DiViD-4 M 31 5 n/a pos pos neg pos
DiviD-5 F 24 5 n/a pos pos neg pos
DiviD-6 M 35 5 n/a pos neg neg neg
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and main reagents used in the study are reported in
Supplementary Table 1.

Image Acquisition and Analysis

Images were acquired using Leica TCS SP5 confocal laser
scanning microscope system (Leica Microsystems, Wetzlar,
Germany). Images were acquired as a single stack focal plane or
in z-stack mode capturing multiple focal planes (n = 5) for each
identified islet. Sections were scanned and images acquired at
40x or 63 x magnification. The same confocal microscope setting
parameters (laser power, photomultiplier voltage gain and offset
values, pinhole value) were applied to all stained sections before
image acquisition in order to uniformly collect detected signal
related to each channel.

The analysis of CXCL10, insulin, and glucagon positive
signal were performed using Volocity 6.3 software (Perkin
Elmer, Waltham, MA, USA). A background threshold filter was
uniformly applied to all processed images before the evaluation of
specific parameters. A 3D model reconstruction adopting voxels
quantification method or pixels, was used to compute single
channel signals and to evaluate single channel volumes or the
percentage of colocalization coefficient M; (Mander’s coeflicient)
(33) between CXCLI10 and insulin and between CXCL10 and
glucagon. Colocalization Coefficient M considers the percentage
of pixels (or voxels in case of volume) of a given channel which
overlaps to total pixels (or voxels) related to the other channel.
Of note, Mander’s coefficient is independent of absolute signal
as it measures the fraction of one protein that colocalizes with
a second protein where M represents the fraction (reported in
percentage) of colocalizing pixels channel-1/channel-2 on total
channel-1 pixels.

Colocalization coefficient M was analyzed for each identified
mouse and human islet. In mouse islets, the following parameters
were collected for each islet: islet/endocrine volume, insulin
volume, glucagon volume, and CXCL10 volume.

Statistics

Results were expressed as mean =+ SD. Statistical analyses were
performed using Graph Pad Prism 8 software. Comparisons
between two groups were carried out using Mann-Whitney
U test (for non-parametric data) or Wilcoxon matched signed
rank test. Multiple comparisons were analyzed using ordinary
one-way ANOVA. Differences were considered significant with
p-values < 0.05.

RESULTS

CXCL10 Expression in Pancreas of NOD
Mice
CXCL10 expression was not detectable in pancreatic samples
from 8-week-old and 20-week-old control C57Bl/6] mice, and
absent or barely visible in pancreatic islets of 3-week-old and 20-
week-old NOD-SCID mice, which showed no sign of immune
cell infiltration or islet inflammation (Supplementary Figure 2).
In NOD mice pancreata, CXCL10 expression was not
observed in exocrine tissue. In pancreatic islets of 20-22-week-
old NOD normoglycaemic mice, CXCL10 expression was weak
and localized in few cells within islet parenchyma (Figure la,

panels A,B). In contrast, in new-onset diabetic NOD mice (12-
to 21-week-old) the expression of CXCL10 was higher compared
to NOD normoglycaemic mice, as shown by confocal z-stack
imaging analysis of pancreatic islets (Figure la, panels C,D),
revealing an absolute increase of CXCL10 positive volume
(Figure 1b), as well as increased CXCL10 signal normalized
per total islet volume (Figure 1c). Of note, CXCL10 volume
normalization based on beta-cell content, similarly showed
an increase of CXCL10 positive signal in pancreatic islets of
new-onset diabetic NOD mice (Supplementary Figure 3a).
Collectively, these results corroborated previous findings
regarding the increase of CXCL10 in pancreatic islets of NOD
mice in autoimmune diabetes.

CXCL10 Is Expressed in Beta- and in
Alpha-Cells of NOD Mice

In order to verify whether the increase of CXCL10 expression
observed in islets of new-onset diabetic NOD mice was
exclusively dependent on its hyperexpression in beta-cells, we
performed triple immunofluorescence staining for CXCL10,
insulin and glucagon in pancreas sections of normoglycaemic
and new-onset diabetic NOD mice. Interestingly, CXCL10 was
expressed both in beta- and in alpha-cells (Figure 2a), suggesting
that its expression is not an exclusive feature of beta-cells. Of
note, in NOD normoglycaemic mice, colocalization analysis
between CXCL10-insulin and CXCL10-glucagon revealed that
the proportion of beta- and alpha-cells positive for CXCL10
was similar [CXCL10-INS 24.3 + 15.3% vs. CXCL10-GCG
18.7 £ 15.2% (mean =+ SD), respectively] (Figure 2b). In new-
onset diabetic NOD mice, CXCL10-glucagon colocalization was
significantly higher compared to CXCL10-insulin [40.6 &= 15.7%
vs. 21.3 £ 16.0% (mean + SD) p < 0.0001] (Figures 2b,c).
Moreover, CXCL10-insulin colocalization did not differ between
normoglycaemic and new-onset diabetic NOD mice [24.3 £
15.3% vs. 21.3 £ 16.0% (mean £ SD)], suggesting that alpha-
cells significantly contribute to the increase of CXCLI10 in
pancreatic islets of new-onset diabetic NOD mice. Importantly,
such increase was not dependent on changes in islets volume
(Supplementary Figure 3b).

Four Different Islet Subsets Can Be
Identified in Pancreata of New-Onset T1D
Patients Based on CXCL10 Expression

Pattern

Results obtained in NOD mice demonstrated a peculiar CXCL10
expression pattern, pointing out to a significant involvement
of alpha-cells in chemokine secretion in T1D. These findings
prompted us to investigate its distribution in pancreatic islets of
T1D donors.

Firstly, we further confirmed that CXCL10 was absent
in pancreatic islets of non-diabetic donors. We analyzed
pancreatic sections derived from 3 EUnPOD-INNODIA non-
diabetic multiorgan donor (subjects characteristics reported
in Tablel) using triple immunofluorescence analysis for
CXCL10, insulin and glucagon. Results demonstrated that
CXCL10 was not expressed in non-diabetic pancreatic islets
(Supplementary Figure 4). Then, we analyzed CXCL10
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FIGURE 1 | CXCL10 is increased in pancreatic islets of new-onset diabetic NOD mice. (a) Immunofluorescence staining of CXCL10 in pancreatic tissue sections of n
= 4 normoglycaemic NOD mice and in n = 4 new-onset diabetic NOD mice. Representative images of normoglycaemic (panels A,B) and new-onset diabetic NOD
mice (panels C,D) are reported. CXCL10 is reported in red; nuclei in white/gray. Scale bar is 50 um. Analysis of CXCL10 total voxels absolute volume (b) and
normalized per total islet volume (c), in pancreatic islets of n = 4 normoglycaemic and n = 4 NOD new-onset diabetic NOD mice. A total of n =27 and n = 25
pancreatic islets were individually analyzed in normoglycaemic and new-onset diabetic mice, respectively; individual values for each islet are reported in um? (b) or as
a volumetric ratio (c). Exact p-values were analyzed using non-parametric Mann-Whitney U test (p < 0.05).
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FIGURE 2 | CXCL10 is increased in alpha-cells of new-onset diabetic NOD mice. (a) Representative images of triple immunofluorescence reporting the expression of
insulin (INS, green), glucagon (GCG, blue), and CXCL10 (red) in pancreatic islets of normoglycaemic (panels A-E) and of new-onset diabetic NOD mice (panels F-J). In
panels E,K, zoom-in of pancreatic islets are shown. Colocalization between insulin and CXCL10 is shown in yellow and indicated by yellow arrows; colocalization
between glucagon and CXCL10 is reported in magenta and indicated by red arrows. Scale bar in panels D,| = 50 wm. Scale bar panels E,J = 20 pm.

(b) Colocalization rate are reported as the results of Manders’s coefficient evaluation between CXCL10 and insulin (CXCL10-INS) (green dots) and CXCL10 and
glucagon (CXCL10-GCG) (blue dots) in individual pancreatic islets of n = 4 normoglycaemic NOD mice and n = 4 new-onset diabetic NOD mice. Each dot represents
an individual islet. A total of n = 27 pancreatic islets of normoglycaemic and new-onset diabetic NOD mice are reported. Values are reported as the percentage of
CXCL10 signal overlapping with total INS or GCG signal. Exact p-values were analyzed using multiple comparison ordinary one-way ANOVA test (o < 0.05). Dotted
lines represent mean + SD. (¢) Colocalization plots of CXCL10-Insulin (left) and CXCL10-glucagon (right) of a new-onset diabetic NOD mouse pancreatic islet.
Positive pixels for CXCL10 (red), insulin (green), and glucagon (blue), alongside with colocalizing pixels (CXCL10-insulin: yellow; CXCL10-glucagon: magenta), are
reported in the plots. Significant colocalizing pixels are within the area delimited by white lines, representing background and threshold levels relative to each channel.
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expression pattern distribution in pancreatic sections of 6
new-onset (<9 weeks from diagnosis) T1D subjects from DiViD
study (Table 1).

CXCL10 expression was not observed in exocrine tissue nor
in CD45" cells surrounding or infiltrating pancreatic islets or
scattered in acinar tissue (Supplementary Figure 5). In line with
previous reports, we confirmed that CXCL10 was expressed in

pancreatic islets but not in exocrine/acinar tissue. Of note, a
heterogeneous pattern of CXCL10 expression among pancreatic
islets of T1D DiViD cases was clearly observed. Indeed, based
on CXCLI10 positivity and on the presence or absence of insulin
[insulin-containing islets (ICIs) and insulin-deficient islets
(IDIs)], four different islet subsets can be readily distinguished:
ICIs with CXCL10 expression (ICI-CXCL10P°®) and ICIs without
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any sign of CXCL10 positivity (ICI-CXCL10"¢¢); IDIs containing
CXCL10 positive cells (IDI-CXCL10P**) and IDIs without any
positivity for the chemokine (IDI-CXCL10"°¢) (Figure 3).

For each T1D DiViD case, we analyzed two non-consecutive
sections derived from two different paraffin blocks of the
pancreas tail. Overall, using fluorescent confocal microscopy, we
manually screened a total of 1,148 pancreatic islets from 6 new-
onset T1D DiViD subjects. Of 1,148 islets, 343 were ICIs and 805
were IDIs, in line to what has been previously observed from
multiple histological analyses of the same DiViD cases, showing
a higher number of IDIs vs. ICIs. Of 343 IClIs, the majority (n
= 332, 96.7% of the total ICIs) were positive for CXCL10, while
11 (3.3%) were negative for the chemokine. Interestingly, among
805 IDIs, 514 (63.8%) contained CXCL10 positive cells, while 291
(36.1%) were negative (Supplementary File 1).

A case-by-case analysis showed a heterogeneous CXCL10
staining pattern and distribution of islet subsets, confirming a
substantial heterogeneity among T1D individuals (Figure 4 and
Table 2). In all cases, regardless of the section analyzed, almost all
ICIs were positive for CXCL10.

In both sections analyzed, Case-1, Case-2, and Case-5
showed a consistent and significant higher proportion of IDI-
CXCLI10P% compared to IDI-CXCL10"¢¢ (Figure 4). Of note,
in these cases, IDIs represent the major source of CXCLI10,
being higher compared to ICI-CXCL10P°* (Figure 4, Table 2, and
Supplementary File 1).

In contrast, in Case-3, Case-4, and Case-6, we found a striking
heterogeneity between the two sections analyzed, mainly due to
the different rate of IDIs positive for CXCL10 (Figure 4). Notable,
in Case-6, the high heterogeneity observed in terms of ICIs and
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FIGURE 3 | CXCL10 is expressed in ICIs and IDIs of new-onset diabetic individuals and distinguished four pancreatic islet subsets. Triple immunofluorescence
analysis of insulin (INS, green), glucagon (GCG, blue), and CXCL10 (red) in pancreatic sections of new-onset T1D DiViD cases. Representative pancreatic islet 40x
confocal microscope images are shown for each channel, alongside with digital zoom-in for each set of panel. (A=E) ICI showing positivity for CXCL10. (F=J) ICI
without CXCL10 positivity. (K=0O) IDI showing CXCL10 positivity. (P=T) IDI without positivity for CXCL10. Scale bar =100 wm. Scale bar zoom-in = 40 pm.
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FIGURE 4 | Distribution of islet subsets in T1D DiViD individuals based on CXCL10 expression and ICI/IDI classification. Histological evaluation of islet subsets
distribution in each of the six recent-onset DiViD individuals, based on the analysis of two non-consecutive pancreatic sections/case. Distribution of islets is reported

Case Case
#5 #6

TABLE 2 | Table reporting the percentage values and the absolute number (in
parentheses) of ICIs and IDIs positive or negative for CXCL10 in two
non-consecutive pancreatic sections derived from two different formalin-fixed
paraffin-embedded pancreatic tissue histological blocks of the same DiViD case.

Section # ICI ICI IDI IDI
CXCL10P°s  CXCL10™9 CXCL10P°s CXCL10"e9
% (absolute) % (absolute) % (absolute) % (absolute)

Case 1 Section #1 5.9 (3) 0(0) 90.2 (46) 3.9 (2
Section #2 6.0 (5) 0(0) 81.7 (67) 12.2 (10)
Case 2 Section#1  26.2 (22) 3.5(@3) 42.9 (36) 27.4 (23)
Section #2  44.9 (563) 0.8 (1) 47.4 (56) 6.77 (8)
Case 3 Section #1  40.6 (41) 0.9 (1) 5 (5) 53.5 (54)
Section #2  76.6 (69) 5.5 (5) 12.0 (11) 5.5 (5)
Case 4 Section #1 ~ 33.3(15) 2.2 (1) 2.2(1) 62.2 (28)
Section #2  21.9 (23) 0(0) 58.0 (61) 20 (21)
Case 5 Section #1 7.6 (16) 0(0) 67.8 (143) 24.6 (52)
Section #2  12.7(13) 0(0) 64.7 (66) 22.5 (23)
Case 6 Section #1 1.4 (1) 0(0) 15.7 (11) 82.9 (58)
Section #2  81.6 (71) 0(0) 10.3 (9) 8.0(7)

See Supplementary File 1 for an extended version of this table.

IDIs presence (section#1: 1.5% ICIs vs. 98.5% IDIs; section#2:
81.6% ICIs vs. 18.4% IDIs) between the two sections is paralleled
by strong differences in CXCLI10 islets positivity (Figure 4,
Table 2, and Supplementary File 1) being more frequent in
section#2 within ICIs (100% of ICIs CXCL10P°) compared to
IDIs in section#1 (15.7% of IDIs CXCL10P°%).

Alpha-Cells Contribute to CXCL10
Expression in Pancreatic Islets of

New-Onset T1D Patients

The relevant presence of IDIs showing positivity for CXCL10
strongly suggests that also in human context, CXCL10 expression
is not exclusively expressed by beta-cells. Indeed, triple
immunofluorescence staining aimed at detecting insulin,
glucagon, and CXCL10 expression in pancreatic sections of
6 new-onset T1D subjects from DiViD study, demonstrated
that: (a) in ICIs, both beta- and alpha-cells stained positive for
CXCL10 (Figure 5a and Supplementary Figure 6); (b) in IDIs,
CXCL10 was expressed only in alpha-cells, since the (whole)
signal of the chemokine perfectly overlapped with glucagon
(Figures 3K-O and Supplementary Figure 7).

In order to quantify the contribution of beta- and alpha-cells
to the overall expression of CXCL10 in pancreatic islets of T1D
subjects, we analyzed the colocalization rate of CXCL10-insulin
and CXCL10-glucagon in ICIs detected in all DiViD cases. Such
analysis demonstrated that CXCL10-glucagon colocalization rate
was significantly higher compared to CXCL10-insulin [CXCL10-
GCG 36.5 £ 17.1% vs. CXCL10-INS 23.6 £ 18.9% (mean =+ SD)
(Figures 5b,c)], thus demonstrating that alpha-cells significantly
contribute, together with beta-cells, to CXCL10 expression in
pancreatic islets of T1D subjects.

DISCUSSION

Several studies reported that CXCL10 expression is increased
in in-vitro cultured pancreatic islets upon inflammatory stresses
(34, 35), as well as in pancreatic islets of animal models of
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FIGURE 5 | Alpha-cells contribute to CXCL10 expression in islets of new-onset T1D patients. (a) Triple immunofluorescence analysis of insulin (INS, green, panel A),
glucagon (GCG, blue, panel B), and CXCL10 (red, panel C) of pancreatic islets in T1D DiVIiD cases. Panel E: digital zoom-in of overlapping (merge) channels, showing
colocalization of CXCL10 and insulin (yellow pixels) indicated by yellow arrow and of CXCL10 and glucagon (magenta pixels) indicated by red arrow. Scale bar =

50 wm. Scale bar zoom-in = 20 um. (b) Colocalization analysis of CXCL10 and insulin (green dots) and CXCL10 and glucagon (blue dots) in pancreatic islets of T1D
DiVID cases. A total of n = 50 ICIs from 6 DiViD cases were analyzed for both CXCL10-insulin and CXCL10-glucagon colocalization rate. Values are reported as the
percentage of overlapping CXCL10-insulin or CXCL10-glucagon pixels over total insulin or glucagon positive pixels, according to Mander’s Coefficient calculation.
Exact p-value was calculated using Wilcoxon matched-pairs signed rank test. (¢) Colocalization plots of CXCL10-insulin (left) and CXCL10-glucagon (right) of a
recent-onset diabetic DiVIiD individual ICI (Case-1). Positive pixels for CXCL10 (red), insulin (green), and glucagon (blue), alongside with colocalizing pixels
(CXCL10-insulin: yellow; CXCL10-glucagon: magenta), are reported in the plots. Significant colocalizing pixels are within the area delimited by white lines, representing
background and threshold levels relative to each channel. Each pixel is reported as a gray-scale RGB intensity value (0-255).

autoimmune diabetes (6, 7) and in donors with T1D (24-  investigate CXCL10 expression in pancreas sections of NOD mice
26). However, data are lacking regarding CXCL10 intra-islet  and of T1D subjects from DiViD study, in order to better define
expression pattern in T1D. Such context prompted us to further =~ CXCL10 intra-islet distribution.
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In the present study, we confirmed that CXCL10 was
expressed in pancreatic islets but not in exocrine tissue in
T1D, while its expression was not observed in pancreas of
healthy donors. Our data are in line with previous reports
showing increased expression of CXCL10 in pancreatic islets in
T1D (23-25).

Interestingly, our data suggest that both beta- and alpha-cells
contribute to CXCL10 expression in T1D pancreatic islets, both
in diabetic NOD mice and in DiViD T1D subjects.

In 12- to 21-week-old new-onset diabetic NOD mice, CXCL10
was expressed in pancreatic islets, but not in exocrine tissue,
and significantly increased vs. age-matched normoglycaemic
NOD mice.

Our results show a significant increase in the proportion
of alpha-cells expressing CXCL10 in new-onset diabetic vs.
normoglycaemic NOD mice, thus potentially suggesting that a
higher rate of alpha-cells are subjected to inflammatory stresses
and respond by activating CXCL10 transcription.

These findings are mirrored in pancreata of T1D DiViD
subjects compared to healthy multiorgan donors collected within
the EUnPOD network of INNODIA consortium. In line with
previous studies (24-26), we confirmed that CXCL10 was
specifically expressed in pancreatic islets of T1D subjects and
absent in non-diabetic controls. In ICIs, CXCL10 expression
was observed both in beta- and in alpha-cells. As expected,
in all DiViD cases analyzed, most of the ICIs (95%) showed
positivity for CXCL10, in line with previous observations which
attributed a more aggressive insulitis and inflammation to those
islets containing residual beta-cells (36). Of interest, in ICIs
we observed a higher proportion of CXCLI10 positive alpha-
cells compared to beta-cells, suggesting a critical contribution
of alpha-cells to the pancreatic islet expression of CXCL10. To
this regard, it should be underlined that Mander’s colocalization
coefficient is independent of absolute signal as it measures
the fraction of one protein that colocalizes with a second
protein; therefore, it is unlikely that the differences observed
in the colocalization rates are dependent on beta- or alpha-cell
mass modifications.

Strikingly, the expression of CXCL10 was also clearly
observed in alpha-cells of IDIs where beta-cells were absent
and inflammation was lower or not present, as shown
previously (37-40) and in the present manuscript as well
(Supplementary Figures 4a,b). Based on manual counting of
IDI-CXCL10P% in each DiViD case, we observed that Case-1,
Case-2, and Case-5 revealed a higher fraction of IDI-CXCL10P%
among all IDIs detected; this result is consistent between the
two non-consecutive pancreatic sections analyzed. Conversely, a
substantial heterogeneity between the two sections was observed
in Case-3, Case-4, and Case-6, mainly due to the different rate
of ICI-CXCL10P%, clearly evident in Case-6. Despite the high
heterogeneity, overall, Case-3, Case-4, and Case-6 showed the
lowest proportion of IDI-CXCL10P°® (Supplementary File 1). In
an effort aimed at looking for specific characteristics correlated
with CXCL10-based DiViD cases patterning, we found that Case-
6, showing the lowest rate of CXCL10P% islets (considering
both sections and independently of its cellular distribution)

(Supplementary File 1), also exhibited the lowest expression of
HLA-ABC genes among DiViD cases, as previously reported
by Richardson S and colleagues (38). Additionally, in Case-
3, classified by having high residual beta-cell content, severe
insulitis and high expression of HLA Class-I (37, 38), we observed
the highest proportion of ICI-CXCL10P* among all DiViD cases.

Collectively, these results suggest that, although residual beta-
cells drive severe pancreatic islet inflammation leading to a global
CXCL10 increase, the expression of this chemokine in alpha cells
could represent a phenomenon not strictly dependent on beta-
cell content. Of note, a very high level of heterogeneity was
observed among cases analyzed and among different paraffin
blocks of the same case, in line with the heterogeneous nature
of the disease, previously highlighted by several studies assaying
the same cases (28, 37, 38, 41).

In support of our data, CXCL10 hyperexpression in DiViD
cases was also previously observed at the mRNA level,
being its expression significantly increased in laser-captured
microdissected islets of T1D donors compared to non-diabetic
controls (42); of note, CXCL10 hyperexpression was reported to
be significantly associated to peri-islet insulitis microdissected
tissue rather than to pancreatic islets core. Such results are in line
with our data; indeed, it is likely that CXCL10 hyperexpression
observed in peri-islet/insulitic microdissected tissue from T1D
donors was mostly derived from alpha-cells clusters which are
more closely associated to the peri-islets basement membrane
(43). In addition, our results exclude an overlapping between
insulitic immune cells and CXCL10 expression as shown by
CD45-CXCL10 immunofluorescence staining in T1D DiViD
sections (Supplementary Figure 4a).

In support to our findings, CXCL10 expression in alpha-cells
was previously reported by Tanaka et al. in Japanese fulminant
diabetes cases (26) and, more recently, by Moin et al. (44) in
pancreatic islets of multiorgan donors with chronic pancreatitis,
thus confirming and extending the observation of CXCL10
expression in alpha-cells in autoimmune diabetes.

Of interest, our data corroborate the increasing importance
attributed to alpha-cells in the pathogenesis and progression
of T1D. Alterations of several genes alongside with functional
defects have been observed in alpha-cells obtained from T1D
donors. These include alterations of alpha-cells phenotypic-
maintenance genes and defects in glucagon secretion (45).
We can speculate that inflammation may contribute to the
activation of several signaling pathways, which alter alpha-
cells phenotype and activate innate inflammatory responses
leading to CXCL10 expression. As a matter of fact, CXCL10
is not the only pro-inflammatory molecule expressed by
alpha-cells; indeed, it has been reported that alpha-cells can
express also IL-1B (46) as well as IL-6 (47), thus potentially
contributing to the pro-inflammatory islet microenvironment
causing preferential homing of T-lymphocytes in pancreas
in T1D (48). In turn, increased immune cell migration and
then inflammation could enhance beta-cell antigenicity through
higher HLA Class-I expression and novel peptides exposure
to the immune system (49), thus generating a critical positive
feedback loop.
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An additional layer of evidence, supporting the expression
of CXCL10 by alpha-cells, is given by their molecular
equipment needed to induce those signaling pathways which
lead to CXCL10 transcriptional activation. Indeed, analysis of
transcriptome datasets comparing beta- and alpha-cells gene
expression, showed an almost equal expression levels of those
receptors and intracellular molecules which initiate the signaling
cascades leading to CXCL10 transcriptional activation, such as
IFNARI1, IFNAR2, IFNGR, TYK2, TNFRSF1A, and IL-1R (50—
53), thus demonstrating the potential ability of alpha-cells to
respond to the inflammatory milieu and potentially activate
CXCL10 pathway.

However, several open questions remain. Firstly, the potential
role of CXCL10 beside its effects on immune cells recruitment
needs to be clarified; several reports attributed a role for CXCL10
in proliferation and angiogenesis (54). Particularly, it has been
reported that CXCL10 can modulate vascular angiogenesis (55),
also through the inhibition of VEGF-A (56). Angiogenesis has
been linked to beta-cell regeneration through the re-arrangement
of islet microenvironment, thus hypothesizing a role for islet
CXCL10 as a factor involved in the modulation of beta-cell
regeneration (57).

Secondly, the presence of CXCL10 in IDIs with no sign
of inflammation may suggest that CXCL10 transcriptional
activation is not only induced by cytokines and inflammatory
mediators but may be caused by the exposure to additional
factors. In this regard, alternative signaling pathways and
receptors (e.g., TLR4) have been reported for the induction of
CXCL10 (58).

Thirdly, the co-existence of IDI-CXCL10P®® and IDI-
CXCL10"*¢ indicates a high level of heterogeneity involving
also pancreatic islets alpha-cells expressing CXCL10; the
identification of those factors determining the expression of
CXCLI10 in alpha-cells and how these correlate with individual
islet phenotype would be of major importance to understand the
role of this chemokine in T1D.

In conclusion, we have shown that chemokine
CXCL10 is expressed also by alpha-cells which represent
important contributors to the expression of CXCL10 in
pancreatic islets. These results further underline the role
of alpha-cells in TID pathogenesis and progression and
suggest the need to advance our knowledge regarding
function and dysfunction of these cells in pancreatic
islet autoimmunity.
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Type 1 diabetes (T1D) is mainly precipitated by the destruction of insulin-producing B-cells in
the pancreatic islets of Langerhans by autoaggressive T cells. The etiology of the disease is
still not clear, but besides genetic predisposition the exposure to environmental triggers
seems to play a major role. Virus infection of islets has been demonstrated in biopsies of T1D
patients, but there is still no firm proof that such an infection indeed results in islet-specific
autoimmunity. However, virus infection results in a local inflammation with expression of
inflammatory factors, such as cytokines and chemokines that attract and activate immune
cells, including potential autoreactive T cells. Many chemokines have been found to be
elevated in the serum and expressed by islet cells of T1D patients. In mouse models, it has
been demons