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Editorial on the Research Topic

Antibiotic resistance and its continuity in the environmental niche

Antibiotic resistance is a consequence of biased and exaggerated antibiotic

treatments in both humans and animals and has recently been subject of wide-ranging

community concern (1). Lack of clinical reasoning and consideration for presence or

absence of epidemiological pressure selected representatives of the microbial community

showing resistance plasmids looked at as “resistome.” The “resistome” is continuously

increasing due to changes in the ultrastructure and subsequently in the metabolism

prompted by various factors, due to further introduction of new generation antibiotics

and also concurrent influence of other environmental components. Highly performant

and rapid laboratorymethods are now utmost important for understanding the resistome

from a One Health perspective, involving humans, animals and the environment and for

its timely diagnosis (2).

Intensive farming technologies for food animals broadly imply the use of antibiotics

as therapeutic means, thus trying to reduce the economic and health impact of infectious

diseases by diminishing morbidity and mortality. Nevertheless, the spread of antibiotic

resistant and MDR bacteria from animal farming to the broader environment may cause

diseases in humans, livestock, and wildlife (3).

Research was conducted to clarify the transfer mechanisms of multi drug resistant

(MDR) bacteria from farmed animals/food products to humans due to continuously

increasing emergence of resistance. The variable potential for innate antibiotic resistance

in the soil was also described based on geo-chemical conditions, while bacterio-

plankton tolerance to antibiotics in heavy metal polluted areas was highlighted,

suggesting the selective importance of pollution in maintaining and spreading antibiotic

resistance (4).
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Reciprocal relationships that exist between resistant and

potentially pathogenic bacteria and their habitat or broader

environment need to be precisely defined to allow the

development and implementation of preventive and control

measures with highest benefits for humans, animals and the

environment. A solid connection can be established between the

amounts of antimicrobials used and the increase of numbers

of bacterial species resistant to them, above the presence of

antimicrobial resistance in pristine sources before introduction

of antimicrobials in medical and/or farming practice (5).

This Research Topic aimed at updating research results

on antibiotic resistance, its emergence and persistence,

horizontal transfer of antibiotic resistance genes, rapid

diagnosis of multi antibiotic resistance, its prevention

and control, and its connections to environmental

factors (such as geography, climate, and climate change)

as well as the influence of farming and sewage water

management, wildlife and its conservation, and others, to

have a comprehensive view of the importance of the often

disregarded environmental niche in increasing virulence of

pathogenic bacteria.

In this special e-collection there are 18 papers covering the

above mentioned aspects.

The presence, persistence and technological influences on

antimicrobial resistance in domestic animals were the most

tackled subjects (10 of 18 papers, 55.55%). Numerous categories

of animals from farmed species (pigs, bovine, chickens, and

fish) companion animals (dogs, cats, pigeons, and horses),

and also wildlife (foxes, seals, and Geoffrey’s cats) inhabiting

terrestrial and aquatic environments were monitored for the

presence of multidrug resistant microbiome. Comprehensive

studies of bacteriome resistance in various environments were

also published.

Swine industry is a continuously developing economic

sector, while there is a constant need and demand for

meat and meet products by consumers. Nevertheless, pigs

are hosts for numerous zoonotic pathogens, including ported

bacteria, whose increasing antimicrobial resistance support their

pathogenicity and aggressivenes and thus, their survival in

the habitat. Therefore, ubiquitous bacteria such as Bordetella

bronchiseptica and Escherichia coli need close monitoring for

their antimicrobial resistance gene profile. The resistance profile

found in B. bronchiseptica in pigs from China, one of the

largest pork producers in the world, was highly variable, but

including percentages as high as 83.98 to ampicillin, very

commonly used in animal therapy. Over 90% of the isolates were

positive to the five virulence factor encoding genes examined,

representing a reason for major consumer health concern

(Zhang et al.). Similarly, other researchers (Khine et al.) found

mcr resistance genes to colistin, a last resort antibiotic to fight the

infections with Enterobacteriaceae in MCRPE (mcr positive E.

coli) isolates also showing MDR and connection to E. coli ETEC

(enterotoxigenic) pathotype shared by human and animal hosts.

Further, it has been proven that E. coli strains originating

from non-organic chickens, raised in low-income communities

harbor antibiotic resistant genes found in multidrug-resistant

and extended-spectrum beta-lactamase (ESBL) phenotypes,

which could eventually colonize the human gut of bird contacts

or consumers (Murray et al.). In dairy cow herds, mastitis is

maybe the most economically impacting disease caused by a

variety of agents, with a rapidly changing etiology, frequently

involving antibiotic resistant agents, therefore the phenotypic

and molecular analysis of Candida krusei, a yeast collected from

mastitis cases provided valuable information for disease control,

indicating that drug-resistance was relying on mutations of the

ERG11 gene (Du et al.).

Farming aquatic animals became a widespread practice

lately, following the trend of increased protein need for feeding

the planet. Due to specific use of antibiotics for microbial

disease control, fish farms not only represent a possible source

for antimicrobial resistance for consumers but also impact on

the environment health, by the location of the ponds either

down- or upstream the rivers, thus showing an potentially

enhanced multidirectional spread of this resistance. A study

carried out in Southern Lithuania, envisaging the simultaneous

presence of heavy metal pollution and antimicrobial resistance

in the sediment of fish ponds, indicated that in spite of

the heavy metal (Co, Cu, and As) levels which did not

exceed the maximum allowable concentrations and antibiotic

residues (oxytetracycline, florfenicol, and florfenicol amine)

present in low amounts or below the detectable limit, the

resistance determinants identified (aminoglycoside, β-lactam)

create risks to human hosts by potential transfer (Lastauskiene

et al.). Experiments aiming at investigating the horizontal

transfer of antimicrobial and arsenic resistance genes have

provided positive evidence of this between certain bacteria,

such as Rheinheimera spp. and E. coli, suggesting a permanent

monitoring of antibiotic/arsenic resistance profile of the

bacteriome to reduce or avoid the spread of gene pollutants (Fu

et al.).

Similarly, the identification of increase in the CTX-M type

ESBL producing E. coli variants in the Seine river over time

underlined that the aquatic environment exposed to numerous

polluting sources, posing risks during recreational activities, is

of broad community concern (Girlich et al.).

Several studies mention the MDR or pan-drug resistance in

companion animals such as dogs, cats and horses. An extended

research of clinical cases in the Iberian peninsula provides an

overview of the bacteria most frequently found in dogs and

cats and also their resistance profile to antimicrobials, indicating

the highest antimicrobial resistance in Enterococcus spp. and

Pseudomonas spp., while interestingly, Klebsiella spp., Proteus

spp. or Enterobacter spp. seemed to be the most resistant of

Enterobacteriacea (Li et al.), when compared to the otherwise

MDR ESBL E. coli, as indicated by other researchers (Huang

et al.). Nevertheless, Pseudomonas spp. of canine origin seemed
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to also be resistant (72.7–100%) to antimicrobials linezolid

(LZD) and tigecycline (TGC) efficient in fighting with pan-drug

resistant bacteria isolated from humans (Kim and Kim).

A quite widespread category of companion or hobby birds

are racing pigeons. Their close contact with humans during

feeding, handling and competitions creates the premises for

transfer of multidrug resistant bacteria or yeasts (Staphylococcus

aureus, non-hemolytic E. coli, and C. albicans) and also the

antimicrobial resistance genes to the latter (Chrobak-Chmiel et

al.). Further, such birds could, through their interactions and

lifestyle, close a loop of antimicrobial resistance in their closer

or further environment.

As already mentioned (Li et al.), hospital environment

could provide an appropriate environment for the persistence

of antimicrobial resistance, not only through the patients seen

but also on the contact surfaces. Such a study carried out in

an equine hospital consulting local and international patients

revealed the presence of multidrug resistant, host-versatile

Salmonella typhimurium on human and patient contact surfaces,

which led back to the significance of biosecurity measures

implemented at all times to preserve patient and personnel safety

(Soza-Ossandón et al.).

Wildlife, out of direct connection with antibiotic therapy,

has been disregarded as a link in the antibiotic resistance

transfer chain. Recent research has proven the presence and

high incidence (66%) of enterococci in the feces of wild

foxes (Lycalopex gymnocercus) and Geoffroy’s cats (Leopardus

Geoffroyi) from the Brazilian Pampa, with resistance percentages

as high as 94 or 72.6 to rifampicin, one of the most potent

broad spectrum antibiotics, and erythromycin, respectively. This

phaenomenon was supported by the identified resistance genes

(tetM/tetL and msrC/ermB) along with virulence genes (gelE,

ace, agg, esp, and clyA), standing most probably for human

interference in the pampa habitat (Oliveira de Araujo et al.).

The marine ecosystem is not spared of antimicrobial

resistance, the investigation of marine mammals and costal

environment providing valuable information on another

direction of antimicrobial resistance spread. As such, the

identification of 66.6% MDR of the total E. coli isolates from

feces of rescued seals, identification of resistance genes in 16 of

39 of the isolates and virulence factors associated with adhesion

and siderophores, augmenting the pathogenicity of these strains

was relevant (Vale et al.).

A broader study comparing MRSA and MSSA from various

animal sources and different environments disclosed clear

differences between mecC-positive and mecC-negative types,

with possible human origin of the mecC-MRSA including the

typically human “immune evasion cluster” (IEC) (Gómez et al.).

A review of the perspectives on antimicrobial resistance

at the level middle and low income countries, with special

reference to the COVID period, brings forward a pertinent

analysis of the antibiotic types toward which the resistance is

augmented, the most frequent fields of activity and host species,

representing important links within the antimicrobial resistance

chain as well as multi-level and multi-actor mitigation strategies

(Bandyopadhyay and Samanta).

The food chain represents another potential route for

spreading the antimicrobial resistance from farm to fork.

Further, the beneficial effects of lactic acid bacteria have been

recognized and given attention since decades. Nevertheless,

such strains could serve as vehicle for spreading antimicrobial

resistance as indicated (Stefańska et al.) during a study which

included probiotic feed additives/silage inoculants. Tests carried

out on their antibiotic susceptibility/resistance indicated the

resistance to aminoglycosides and tetracyclines mainly (26%).

Therefore, the authors suggested as a safety criterion the

preliminary resistance analysis of the strains of Lactobacillus and

Pediococcus to ensure their appropriate effects. Moreover, the

analysis for resistance genes in a non-pathogenic bacteria such

as Bifidobacterium animalis subsp. lactis revealed the presence of

tet(W) (tetracyclin resistance gene) in 41 of 44 examined strains,

but being a part of the ancient resistome, is different from other

species and possesses a very low transfer risk (Nøhr-Meldgaard

et al.).

In conclusion, the data gathered in the studies and

reviews mentioned before provide beneficial information,

which, without being exhaustive, offer a valuable insight in the

complex matter of antimicrobial resistance and its transmission

chain, leaving room for the intriguing and still undiscovered

interaction of humans, animals and environment with the aim

of preserving One Health.

Author contributions

Both authors listed have made a substantial, direct,

and intellectual contribution to the work and approved it

for publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers in Veterinary Science 03 frontiersin.org

7

https://doi.org/10.3389/fvets.2022.1119578
https://doi.org/10.3389/fvets.2021.693506
https://doi.org/10.3389/fvets.2021.664226
https://doi.org/10.3389/fmicb.2020.621597
https://doi.org/10.3389/fvets.2020.00346
https://doi.org/10.3389/fvets.2020.606377
https://doi.org/10.3389/fvets.2021.583759
https://doi.org/10.3389/fmicb.2021.655994
https://doi.org/10.3389/fvets.2020.00620
https://doi.org/10.3389/fvets.2021.687071
https://doi.org/10.3389/fmicb.2021.658943
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Spinu and Rzewuska 10.3389/fvets.2022.1119578

References

1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T.
(2015) 40:277–83.

2. Kim DW, Cha CJ. Antibiotic resistome from the One-Health
perspective: understanding and controlling antimicrobial resistance
transmission. Exp Mol Med. (2021) 53:301–9. doi: 10.1038/s12276-021-00
569-z

3. O’Brien TF. Emergence, spread, and environmental effect of antimicrobial
resistance: how use of an antimicrobial anywhere can increase resistance

to any antimicrobial anywhere else. Clin Inf Dis. (2002) 34(Suppl. 3):S78–
S84. doi: 10.1086/340244

4. Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and
planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. (2003)
69:2313–20. doi: 10.1128/AEM.69.4.2313-2320.2003

5. Scott LC, Lee N, Aw TG. Antibiotic resistance in minimally
human-impacted environments. Int J Environ Res Public Health. (2020)
17:3939. doi: 10.3390/ijerph17113939

Frontiers in Veterinary Science 04 frontiersin.org

8

https://doi.org/10.3389/fvets.2022.1119578
https://doi.org/10.1038/s12276-021-00569-z
https://doi.org/10.1086/340244
https://doi.org/10.1128/AEM.69.4.2313-2320.2003
https://doi.org/10.3390/ijerph17113939
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


BRIEF RESEARCH REPORT
published: 10 July 2020

doi: 10.3389/fvets.2020.00346

Frontiers in Veterinary Science | www.frontiersin.org 1 July 2020 | Volume 7 | Article 346

Edited by:

Marina Spinu,

University of Agricultural Sciences and

Veterinary Medicine of

Cluj-Napoca, Romania

Reviewed by:

Min Yue,

Zhejiang University, China

Yves Millemann,

INRA École Nationale Vétérinaire

d’Alfort (ENVA), France

*Correspondence:

Andrea I. Moreno-Switt

andrea.moreno@unab.cl;

andrea.moreno@uc.cl

Specialty section:

This article was submitted to

Veterinary Infectious Diseases,

a section of the journal

Frontiers in Veterinary Science

Received: 24 February 2020

Accepted: 18 May 2020

Published: 10 July 2020

Citation:

Soza-Ossandón P, Rivera D,

Tardone R, Riquelme-Neira R,

García P, Hamilton-West C, Adell AD,

González-Rocha G and

Moreno-Switt AI (2020) Widespread

Environmental Presence of

Multidrug-Resistant Salmonella in an

Equine Veterinary Hospital That

Received Local and International

Horses. Front. Vet. Sci. 7:346.

doi: 10.3389/fvets.2020.00346

Widespread Environmental Presence
of Multidrug-Resistant Salmonella in
an Equine Veterinary Hospital That
Received Local and International
Horses
Paula Soza-Ossandón 1, Dácil Rivera 1,2, Rodolfo Tardone 1, Roberto Riquelme-Neira 1,2,

Patricia García 2,3, Christopher Hamilton-West 4, Aiko D. Adell 1,2,

Gerardo González-Rocha 2,5 and Andrea I. Moreno-Switt 1,2,6*

1 Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile, 2Millennium

Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile, 3 Facultad de Medicina, Pontificia

Universidad Católica de Chile, Santiago, Chile, 4Unidad de Epidemiología Veterinaria, Departamento Medicina Preventiva

Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile, 5 Laboratorio de Investigación
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Salmonella enterica is a highly infectious microorganism responsible for many outbreaks

reported in equine hospitals. Outbreaks are characterized by high morbidity and

mortality rates, nosocomial transmission to other patients, zoonotic transmission

to hospital personnel, and even closure of facilities. In this study, 545 samples

(environmental and hospitalized patients) were collected monthly during a 1-year period

from human and animal contact surfaces in an equine hospital that received local

and international horses. A total of 22 Salmonella isolates were obtained from human

contact surfaces (e.g., offices and pharmacy) and animal contact surfaces (e.g., stalls,

surgery room, and waterers), and one isolate from a horse. Molecular serotyping revealed

18 isolates as Salmonella Typhimurium and three as Salmonella Infantis. Nineteen

isolates were resistant to at least one antimicrobial class, and only two isolates were

susceptible to all antimicrobials tested. In addition, we identified nine multidrug-resistant

(MDR) isolates in S. Typhimurium, which displayed resistance to up to eight

antimicrobials (i.e., amoxicillin/clavulanate, ampicillin, ciprofloxacin, chloramphenicol,

streptomycin, gentamicin, trimethoprim/sulfamethoxazole, and tetracycline). Pulsed-field

gel electrophoresis (PFGE) revealed the presence of three PFGE patterns permanently

present in the environment of the hospital during our study. The persistent environmental

presence of MDR Salmonella isolates, along with the fact that local and international

horses are attended in this hospital, highlights the importance of improving biosecurity

programs to prevent disease in horses and the hospital personnel and also for the global

dissemination and acquisition of MDR Salmonella.

Keywords: Salmonella enterica, multidrug-resistant, equine hospital, hospital-acquired infections, biosecurity
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INTRODUCTION

Salmonella enterica, a Gram-negative bacteria of the family
Enterobacteriaceae, is an important zoonotic pathogen that
causes an estimated of 93.8 human cases and 150,000 deaths
every year worldwide (1). Salmonella is usually transmitted
to humans as foodborne and through contact with infected
animals (2). This pathogen is a microorganism responsible
for gastrointestinal disease affecting equines (among other
animals) of all ages (3). Clinical symptoms include diarrhea,
fever, and dehydration, with severity ranging from a subclinical
colonization to a severe systemic illness (4). As a highly
contagious disease, it can be reported as sporadic cases or as
an outbreak (5, 6). Previous studies have reported significant
mortality (38–44%) (7, 8) associated with salmonellosis outbreaks
in equine veterinary hospitals (EVHs). Also, hospitalization and
associated use of health-care resources increase the susceptibility
of horses to strains of S. enterica disseminated by asymptomatic
animals (4, 5).

It has been reported that one of the main reasons for the
increasing rate of salmonellosis outbreaks aremultidrug-resistant
(MDR) strains of Salmonella (9–13). Last year, the New York
State Veterinary Diagnostic Laboratory reported the isolation of
Salmonella Group C2 from four different horse farms, which had
shown the same MDR profile (14). This is rather concerning if
we consider that back in the early 2000s, a strain of an MDR–
Salmonella Newport (G2) was responsible of a serious outbreak
in a Large Animal Teaching Hospital (9, 15). It is still unclear
when or how MDR–Salmonella emerged, being one of the main
suspects in the non-therapeutic use of antibiotics (14).

Salmonellosis outbreaks in animal health facilities are full of
challenges beside the sole medical treatment and control the
outbreak per se; they also involve communication with owners
and referring veterinarians of infected horses (10). On the other
hand, the consequences are serious including hospital-acquired
infections of patients and hospital personnel, the establishment
of expensive infection control programs, and decrease in clients’
trust and hospitals’ revenues and may even lead to litigation
procedures (11, 12). Infection control programs should be an
integral part of every animal health facility (16, 17). Several
studies have reported outbreak control measurements (7, 12, 18)
and assessment of protocols of contamination, which have been
adopted by many facilities (16, 19). To date, there are no reports
of salmonellosis in veterinary hospitals in Chile, and therefore,
scarce biosecurity protocols have been established. Hence, this
study was performed to determine the presence, antimicrobial
resistance, and subtypes of Salmonella in the environment and
patients from an EVH without reported history of outbreaks or
hospital-acquired infections.

MATERIALS AND METHODS

Description of the Setting and Location
The EVH is located at a thoroughbred horse racetrack at the
center of the city of Santiago (Chile). It has an average flow of
100 incoming patients daily, providing equine health services to
Thoroughbred, Arabian, Chilean rodeo, and Warmblood horses.

TABLE 1 | Results of Salmonella spp. on samples collected in the equine

veterinary hospital during the study.

Sample origin No. of

samples

No. positive

samples

% positive

samples

Animal feces 53 1 1.88

Environmental/surgery (SA)a

Stalls (1–4) 48 1 2.08

Surgery room floor 12 2 16.67

Bed 12 0 0

Pharmacy 12 1 8.33

Washing room 12 1 8.33

Dressing room 12 0 0

Personal entrance 12 0 0

Office 12 0 0

Induction/recovery room 12 0 0

Area Floor 12 0 0

Environmental/hospitalization (HA)a

Stalls (5–10) 72 3 4.17

Floor 12 1 8.33

Environmental/proceeding (PA)a

Pharmacy 12 1 8.33

Floor 12 1 8.33

Main office 12 2b 16.67

Environmental/equipment (EQ)a

Twitches (3×) 36 1 2.78

Endoscope 12 1 8.33

Gastroscope 12 1 8.33

Pitchforks (2×) 24 2 8.33

Waterers (1×) 120 1 0.83

Environmental/exterior (EA)a

Manure collection site 12 1 8.33

Total 545 21 3.85

aEnvironmental samples were classified according to how the hospital was divided into
four main areas, plus equipment (see Figure 1 and Materials and Methods).
bTwo different isolates were obtained from one sample taken on September 2015.

This veterinary hospital has no records of outbreak or hospital-
acquired infections due to Salmonella spp., and this information
is remarkable in view of the lack of biosecurity measures or
infection control programs (e.g., isolation of infected patients and
protocols for cleaning and sanitation).

Sampling Procedure
A total of 545 samples were obtained in a longitudinal
study conducted from July 2015 to June 2016. With the
corresponding consent from the Chief Director, we collected
both environmental (n = 61, for details see Table 1) samples
and patient fecal samples, from one to nine, depending on
hospitalized horses at a given time (20, 21). Samples were
conducted during the afternoon on the last Friday of every
month. The hospital was divided into four areas: surgical area
(SA), proceeding area (PA), hospitalization area (HA), exterior
area (EA), and a fifth category for equipment (EQ), similarly
as described by Alinovi et al. (18) (Figure 1A). In addition, the
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surfaces sampled were classified into animal contact surfaces
(direct contact of animals and humans) (n = 396) and human
contact surfaces (direct contact of humans, but out of reach of
animals) (n = 96), as previously described Alinovi et al. (20)
(Figure 1A). The samples were obtained using a sterile gauze
soaked in 90ml of peptone water (Becton-DickinsonTM, Franklin
Lakes, NJ) and rubbed on the surface for 5min. For patient
samples, approximately 100 g of manure was collected and
transferred into a sterile recipient. To avoid interference with the
normal activities of the EVH, only one sample per hospitalized
patient was collected on each sampling day. All the samples were
maintained at 4◦C during sampling and immediately transferred
to the laboratory at Universidad Andres Bello (Santiago, Chile)
for further analysis.

Bacterial Culture and Molecular
Identification
Salmonella isolation was conducted as previously described
(22). In brief, all samples were cultured in peptone water
at 37◦C overnight, and 100 µl and 1ml were transferred
into Rappaport–Vassiliadis (RV) (BD, Franklin Lakes, NJ)
supplemented with novobiocin (20 mg/ml) and 100 µl of
Tetrathionate (TT) (BD, Franklin Lakes, NJ) supplemented with
iodine, respectively, and incubated at 42◦C overnight. Finally,
100 µl of aliquot of each selective broth was streaked into an
XLT-4 agar plate (BD, Franklin Lakes, NJ) and incubated at
37◦C overnight. Four colonies of each agar plate were selected
and transferred into Tryptic Soy Agar (TSA) (BD, Franklin
Lakes, NJ). All presumed colonies of Salmonella spp. were
confirmed by invA-PCR. Primers and PCR conditions used
in this study have been previously described (23). Confirmed
colonies were grown overnight in Trypticase Soy Broth (TSB)
(BD, Franklin Lakes, NJ) and then immersed in a 20%
solution of glycerol (Winkler, Santiago, Chile) and stored
at−80◦C.

Determination of Antimicrobial
Susceptibility
The disk diffusionmethod of Kirby–Bauer was used to determine
antimicrobial susceptibility (24). PCR-confirmed colonies were
suspended in 5ml of Mueller–Hinton (MH) broth (BD, Franklin
Lakes, NJ) and incubated at 37◦C overnight. Cultures were
adjusted to MacFarland 0.5 (bioMérieux, France) (equivalent to
1.5 × 108 CFU/mL) and streaked on MH agar. An OXOIDTM

(Hampshire, UK) sensitivity disk dispenser was used, along
with the antimicrobial disks, detailed as follows: amikacin
(AMK; 30 µg), amoxicillin/clavulanate (AMC; 30 µg), ampicillin
(AMP; 10 µg), cefoxitin (FOX; 30 µg), ceftriaxone (CTR;
30 µg), ciprofloxacin (CIP; 5 µg), chloramphenicol (CHL;
30 µg), streptomycin (STR; 300 µg), gentamicin (GEN; 10
µg), kanamycin (KAN; 30 µg), trimethoprim/sulfamethoxazole
(SXT; 23.75 µg), and tetracycline (TET; 30 µg). The agar
plates were incubated at 37◦C overnight. Escherichia coli
American Type Culture Collection (ATCC) 25922 was used
as control. Interpretations were made based on the guidelines
of Clinical Laboratory Standard Institute (25). The samples

were classified according to Magiorakos’s criteria as MDR when
resistant to at least one agent in three or more antimicrobial
classes (26).

Molecular Characterization of Salmonella

Serotype
A previously described molecular method for serotype
prediction was used (27, 28). Briefly, DNA extraction of
the isolates was conducted using the DNeasy Blood and Tissue
kit (QIAGEN, Hilden, Germany). The molecular scheme
included an initial multiplex PCR, conducted to identify
the serogroup of each isolate, followed by PCR-sequencing
approaches to determine H1 and H2 antigens (27, 28). PCR
products were sent to MACROGENTM (Korea) for Sanger
sequencing. Consensus sequences were obtained using CAP3
Sequence Assembly Program (http://doua.prabi.fr/software/
cap3); the complementary reverse was obtained by using
Bioinformatics.org. The results were analyzed using basic
local alignment tool (BLAST) on the National Center for
Biotechnology Information (NCBI).

Molecular Typing
Molecular typing of the isolates was conducted by pulsed-field
gel electrophoresis (PFGE), using the CDC PulseNet standard
protocol (29). For this, overnight cultures in brain hearth
infusion broth (BHI, BD, Germany) were embedded in 1% of
SeaKem R© Gold Agarose (Lonza, Rockland, ME, USA). Upon
lysis and washing, the plugs were digested with XbaI (Thermo
Fisher Scientific Inc., Waltham, MA). The CHEF-DR R© III
System (Bio-Rad Laboratories, Hercules, CA) was used for the
electrophoresis for 20 h. A standard, Salmonella Braenderup
digested with XbaI was used. BioNumerics v 7.5 (Applied Maths,
Sint-Martens-Latem, Belgium) (30) was used to analyze the PFGE
images using unweighted pair group method with arithmetic
mean (UPGMA) and the Dice correlation coefficient. PFGE was
conducted at the Microbiology Unit of the Clinical Laboratory
Services of Red Salud UC-CHRISTUS, Catholic University. The
results were analyzed using Tenover guidelines as previously
described (31).

RESULTS

Salmonella spp. Were Obtained Mostly
From Environmental Samples in Human
Contact Surfaces
A total of 545 samples (environmental, n = 492; patient, n =

53) were analyzed. Among these, 21 samples (3.85%) yielded
positive for Salmonella, which were confirmed by invA-PCR
(Table 1 and Supplementary Figure 1). In 3/21 (14.2%) samples,
Salmonella isolates were obtained from TT enrichments; in 10/21
(47.6%), Salmonella isolates were obtained fromRV enrichments;
and in the remaining 10/21 (47.6%) samples, Salmonella isolates
were obtained from both enrichments conducted. On positive
samples, one isolate was selected, except for one sample,
in which two different colonies were obtained; therefore, a
total of 22 Salmonella colonies were further characterized.
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FIGURE 1 | Schematic diagram of the equine veterinary hospital. (A) Black circles show the animal contact surfaces, whereas the white circles show the human

contact surfaces. (B) Locations of the different pulse types of Salmonella enterica found in this study (colors matching Figure 2). SA, surgery area; PA, proceeding

area; HA, hospitalization area; EA, exterior area; S1–10, stalls; Sr, surgery room; I/Rr, induction/recovery room, SPh, surgery pharmacy; Wr, washing room; SOf,

surgery office; En, entrance; Bth, bathroom; Dr, dressing room; MOf, main office; SYr, surgery yard; HYr, hospitalization yard; mcs, manure collection site.
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FIGURE 2 | Dendrogram representation of Salmonella enterica isolates clustered using unweighted pair group method with arithmetic mean (UPGMA) method. Five

pulse types of Salmonella were identified at the right; colors have been assigned for each pulse type (A–D), matching Figure 1B.

From the 22 isolates, 1/22 (4.5%) was obtained from a sick
Chilean rodeo patient, which died of peritonitis after colic
surgery (no positive foreign patients were found), and the
other 21 (21/23; 95.4%) were obtained from 20 environmental
samples (i.e., stalls, surgery room floor, surgical pharmacy,
washing room, hospitalization area floor, main office, pitchforks,
endoscope, gastroscope, twitches, waterers, manure collection
site, proceeding area floor, and pharmacy) (Table 1). Regarding
the type of contact surface, 13/396 (3.28%) isolates were obtained
from animal contact surfaces and 8/96 (9.38%) from human
contact surfaces (Table 2). About the dates of isolation, two
peaks were seen during the months of September 2015 and
May 2016, where 9/22 and 8/22 isolates of Salmonella spp. were
obtained, respectively (Supplementary Figure 1). A few isolates
were also obtained during October 2015 (n= 1), December 2015
(n = 1), April 2016 (n = 1), and May 2016 (n = 2) (Table 2,
Supplementary Figure 1).

Presence of Multidrug-Resistant
Salmonella Isolates
Kirby–Bauer tests revealed six antimicrobial resistant profiles
(Table 2). From the 22 Salmonella isolates, two were pan-
susceptible, 10 isolates were resistant to AMP; one isolate
was resistant to STR; six isolates were resistant to AMC,
AMP, CHL, STR, and TET; one isolate was resistant to AMC,
AMP, CTR, CHL, STR, and TET; and two isolates were
resistant to AMC, AMP, CIP, CHL, STR, GEN, SXT, and TET.
From these, 9/22 (40.1%) were classified as MDR, as these
were resistant to one agent in three or more antimicrobial
classes (26).

Predominance of Salmonella Serotype
Typhimurium
All isolates were tested to predict the serogroup and serotype as
described above. The molecular methods showed 19/22 (86.4%)
of Salmonella isolates to O:4 (B) serogroup and three Salmonella
isolates 3/22 (13.6%) to O:7 (C1) serogroup. Concerning flagellar
antigens, DNA was amplified for both genes, fliC and fljB, in
all Salmonella isolates. The BLAST algorithm of the FASTA
consensus sequences of the PCR products allowed us to predict
the serotype. All isolates belonging to O:4 (B) serogroup (20/22)
yielded positive for serotype Typhimurium, whereas the isolates
belonging to O:7 (C1) serogroup (2/22) were predicted as Infantis
serotype (Table 2).

Five Different Pulsed-Field Gel
Electrophoresis Types of Salmonella Were
Identified
According to the PFGE, four PFGE patterns were identified in
19 Salmonella typhimurium isolates, and one PFGE type was
found in three S. Infantis isolates. Among S. Typhimurium, seven
isolates (1, 2, 3, 4, 7, 10, and 13) were indistinguishable from each
other and classified as PFGE pattern A. In three isolates (5, 6, and
8), PFGE patterns were also indistinguishable from each other
and related to PFGE pattern A, which was therefore classified
as A1. All PFGE patterns A and A1 were detected only in the
sampling of September 2015. Eight isolates (9, 12, 14, 15, 17, 18,
19, and 20) were indistinguishable from each other and different
from all others, classified as PFGE pattern B; these isolates were
obtained in samplings of September 2015 and in April and May
2016. One additional PFGE pattern D of isolate 16 was found in
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TABLE 2 | Characteristics, serotypes, PFGE patterns, and antimicrobial resistance of Salmonella isolates.

Isolate ID (UAB)a Isolation date Sourceb Areab Serotype PFGE pattern Antibiotic resistance profilesc

PS-001 Sept 2015 Stall 1 Surgeryd Typhimurium A AMP

PS-002 Sept 2015 Stall 7 Hospitalizationd Typhimurium A AMP

PS-003 Sept 2015 Stall 10 Hospitalizationd Typhimurium A AMP

PS-004 Sept 2015 Yard Hospitalizationd Typhimurium A AMP

PS-005 Sept 2015 Pitchfork Equipmentd Typhimurium A1 AMP

PS-006 Sept 2015 Manure collection site Exteriord Typhimurium A1 AMP

PS-007 Sept 2015 Main office Proceedinge Typhimurium A Pan-susceptible

PS-008 Sept 2015 Waterers Equipmentd Typhimurium A1 STR

PS-009 Sept 2015 Main office Proceedinge Typhimurium B AMC–AMP–CHL–STR–TET

PS-010 Oct 2015 Stall 10 Hospitalizationd Typhimurium A AMP

PS-011 Dec 2015 Surgery room floor Surgerye Infantis C AMP

PS-012 Apr 2016 Pharmacy Proceedinge Typhimurium B AMC–AMP–CIP–CHL–STR–GEN–SXT–TET

PS-013 May 2016 Surgery room floor Surgerye Typhimurium A AMC–AMP–CHL–STR–TET

PS-014 May 2016 Twitch Equipmentd Typhimurium B AMC–AMP–CTR–CHL–STR–TET

PS-015 May 2016 Endoscope Equipmentd Typhimurium B AMC–AMP–CIP–CHL–STR–GEN–SXT–TET

PS-016 May 2016 Gastroscope Equipmentd Typhimurium D Pan-susceptible

PS-017 May 2016 Proceeding area floor Proceedingd Typhimurium B AMC–AMP–CHL–STR–TET

PS-018 May 2016 Main office Proceedinge Typhimurium B AMC–AMP–CHL–STR–TET

PS-019 May 2016 Washing room Surgerye Typhimurium B AMC–AMP–CHL–STR–TET

PS-020 May 2016 Pharmacy Surgerye Typhimurium B AMC–AMP–CHL–STR–TET

PS-021 Jun 2016 Pitchfork Equipmentd Infantis C AMP

PS-022 Jun 2016 Patient Surgeryd Infantis C AMP

PFGE, pulsed-field gel electrophoresis.
aAll isolates with pre-fix UAB after Universidad Andres Bello laboratory.
bSources and areas in the hospital where the samples were taken (see Figure 1).
cAmikacin (AMK), amoxicillin/clavulanate (AMC), ampicillin (AMP), cefoxitin (FOX), ceftriaxone (CTR), ciprofloxacin (CIP), chloramphenicol (CHL), streptomycin (STR), gentamicin (GEN),
kanamycin (KAN), trimethoprim/sulfamethoxazole (SXT), and tetracycline (TET).
dAnimal contact surfaces.
eHuman contact surfaces.

S. Typhimurium. Isolates 11, 21, and 22 were indistinguishable
from each other and different from all others, classified as PFGE
pattern C. Importantly, these isolates were classified as S. Infantis
(Table 2).

DISCUSSION

This study examined the environmental presence of Salmonella
in an equine hospital with no history of outbreak or hospital-
acquired infections. Here, we identified two serotypes that
were widely distributed. The major findings of this study
are the following: (i) wide spatial distribution of Salmonella
in the hospital, mainly in spring and autumn; (ii) MDR
Salmonella Typhimurium accounted for most of the isolates;
and (iii) multiple Salmonella PFGE patterns present in human
contact surfaces highlight the need of developing biosecurity
standard protocols.

Wide Spatial Distribution of Salmonella in
the Hospital, Mainly in Spring and Autumn
In this study, we found a considerable presence of Salmonella in
the EVH environment, compared with the equine’s samples. The
prevalence of Salmonella in equine subclinical shedders (1–2%)

tends to increase under stress conditions owing to hospitalization
to 9–13% (5, 6, 10). In the environmental samples, positivity was
widespread to all sampled areas (including equipment), reaching
4.5%. A previous study conducted at a large animal hospital has
shown the presence of Salmonella in several areas, accounting
for a positivity rate of 3.9% during a post-outbreak period (32).
Importantly, in our study, no outbreak or hospital-acquired
infections were reported, before and/or during the study.

It has been shown that the peak incidence of salmonellosis
in horses occurs in summer and autumn (5, 33), although there
are some outbreak reports during spring (7). Here, we obtained
Salmonella isolates in every season of the year, although the
highest number of isolates was obtained during September 2015
and June 2016, spring and winter for the southern hemisphere,
respectively (Table 2, Supplementary Figure 2). Our first peak,
on September 2015, was an incoming Chilean rodeo patient
suffering from severe acute diarrhea, which died within 24 h
after being admitted to the EVH. As Salmonella was isolated
from the stall of that patient, Stall 10 (Figure 1), it may
have been introduced to the EVH by this patient, but further
investigation is needed, which is beyond the scope of this study.
Importantly, these isolates represented a closely related PFGE
pattern. Nevertheless, neither official information nor patient
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history could be collected to explain the second peak, in June
2016. Although it is uncertain about the origin of these isolates,
shedding patients present during non-sampling periods could be
a common source of dissemination (5). Other possible sources
of contaminations, such as other animals (rodents), feed, or even
environmental persistent strains (34), are also plausible and have
to be considered.

Multidrug-Resistant Salmonella

Typhimurium Accounted for Most Isolates
Reported outbreaks of Salmonella in EVHs have involved
serotypes such as Typhimurium, Newport, Agona, Anatum
(12, 35), Infantis (36), Heidelberg (37), and Oranienburg (38).
Here, we found that 87% of the isolates were represented by S.
Typhimurium. This serotype has been commonly isolated from
horses, causing severe clinical signs, along with high morbidity
and mortality rates (7, 8, 33). In Chile, only one outbreak of S.
Typhimurium has been reported, which affected weanling foals
with a morbidity rate of 87% and mortality rate of 13% (39).
Regarding Salmonella Infantis, which is less commonly reported
compared with S. Typhimurium, only three isolates were found.
Nonetheless, there is a report of a serious outbreak in 1996, which
caused important economic losses and even the closure of the
facilities (36).

Antimicrobial resistance profiles, which include resistance to
AMP (10 isolates), as the most common profile, followed by the
profile AMC–AMP–CRO–CHL–STR–TE (six isolates), include
antimicrobials in which resistance has already been described in
other salmonellosis outbreaks (38), not only in equine hospitals
but also in small animal shelters (13). Notably, we found that
almost half of the isolates (n= 10) displayed anMDR phenotype,
showing resistance to three or more antimicrobial classes (26),
which is a major concern for the public health, the personnel at
the hospital, and the treatment of hospitalized horses.

Multiple Salmonella Pulsed-Field Gel
Electrophoresis Patterns Present in Human
Contact Surfaces Highlight the Need of
Developing Biosecurity Standards
We found five different PFGE patterns, which were present
in all areas of the hospital, including human contact surfaces.
Environmental presence of Salmonella indicates that personnel
without animal contact at all (e.g., secretary) could also be at
risk of infection. As pointed before, no information concerning
hospital-acquired infections was reported during our study,
neither from incoming patients nor from veterinary staff. In the
environment, Salmonella could put into high risk the incoming
susceptible patients, as young horses or immunocompromised
individuals (33). This leads us to think that it may be a potential
risk of an outbreak. There has been reports of $755,000 USD
of estimated cost to control salmonellosis outbreaks in a large
animal teaching hospital in Virginia (USA) (12), which lead
us to the conclusion that biosecurity standard protocols must
be implemented to prevent any undesirable event (17). There
are many guidelines of biosecurity protocols (e.g., rubber boots,

hand washing, and foot bath) (21, 40, 41) and also published
articles in which salmonellosis outbreaks have been controlled
(7, 12, 16, 18, 19). Although the implementation of biosecurity
protocols is quite expensive, it is much less than controlling
an outbreak itself, especially considering the fact that the EVH
located at a thoroughbred racetrack, harbors nearly 1,500 horses
together with hospital personnel (17).

CONCLUSIONS

This study has revealed the importance of implementing
mitigation strategies and biosecurity protocols to control MDR
Salmonella to ensure the safety of patients and hospital personnel.
Also, this could set an example for other veterinary facilities
to establish or recheck their functioning biosecurity protocols,
especially in developing countries.
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Extended-spectrum β-lactamases (ESBLs) are enzymes that mediate resistance

to newer β-lactam antibiotics, including extended-spectrum cephalosporins and

monobactams. The production of ESBL is primarily plasmid mediated, and such

plasmids often comprise the genes that encode resistance to other classes

of antimicrobials, such as aminoglycosides and fluoroquinolones. Therefore,

ESBL-producing microorganisms leave clinicians with limited therapeutic options

in both human and veterinary medicine. Compared with human medicine, information

regarding ESBL-producing microorganisms is limited in veterinary medicine. We

screened for ESBL-producing Escherichia coli in dogs and cats admitted to National

Taiwan University Veterinary Hospital, Taipei, from 2014 to 2017 and further analyzed

the genotypes and phylogenetic traits of these ESBL producers. Double disk tests

specified by the Clinical and Laboratory Standards Institute were performed on 283

E. coli isolates and revealed a total of 65 E. coli (54 from dogs and 11 from cats)

with the ESBL phenotype (22.8%). blaCTX−M−1 group and blaCTX−M−2group were the

most commonly identified ESBL gene groups. blaCTX−M−55 was the main ESBL gene

within the blaCTX−M−1group, whereas the blaCTX−M−2group contained only blaCTX−M−124.

The ESBL-producing E. coli were all resistant to ampicillin. The resistance rate to

ceftiofur, doxycycline, enrofloxacin, and ciprofloxacin was 93.8, 73.8, 80, and 78.5%,

respectively. Of the antibiotics tested, greater sensitivity to imipenem and gentamicin

was noted. Multilocus sequence typing indicated that ST457, ST131, and ST648 were

the most common sequence types. Our study identified eight ST131/O25b isolates,

which is a global zoonotic clone of public health concern. The major ESBL genes
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of these clones were blaCTX−M−174 and blaCTX−M−194. Because companion animals

such as dogs and cats are in close contact with humans, the characterization of ESBL

producers originating from them is crucial from the perspective of both public health and

veterinary medicine.

Keywords: extended-spectrum-β-lactamases, Escherichia coli, CTX-M, multilocus sequence typing, multidrug

resistance

INTRODUCTION

Escherichia coli, a type of Gram-negative bacteria is a ubiquitous
inhabitant of the gastrointestinal tract of both humans and
animals. This microorganism frequently causes urinary tract,
skin, or soft tissue infections in cats and dogs (1). Commonly
prescribed medications to treat E. coli infection in companion
animals include ampicillin, amoxicillin-clavulanic acid,
fluoroquinolones, or cephalosporins. However, the emergence of
drug-resistant bacteria encountered in clinical practice decreases
the therapeutic efficacy of these antimicrobial agents. One
major mechanism of this drug resistance is the production of
enzymes by microbes to inactivate antimicrobial agents. For
example, β-lactam agents are widely used to treat bacterial
infections in veterinary medicine, whereas extended-spectrum
β-lactamases (ESBLs) are a group of enzymes that mediate
resistance to most β-lactam antibiotics, including extended-
spectrum cephalosporins and monobactams but excluding
carbapenems and cephamycins (2). ESBLs are inhibited by
clavulanic acid, sulbactam, and tazobactam; this fact is used
as a criterion to classify β-lactamases and for ESBL diagnosis
purposes (3). TEM, SHV, and CTX-M-group enzymes are
examples of commonly encountered ESBLs (2). ESBL producers
usually exhibit a multi-drug-resistant phenotype. In addition,
the ESBL genes are mainly plasmid mediated, thus facilitating
the transmission of drug-resistant genes to other bacteria. Such a
situation poses a challenge for infection management in clinical
practice. ESBLs have been previously documented primarily
in human clinical cases (4). Because companion animals such
as dogs and cats are in close contact with humans, they could
contract ESBL-producing microorganisms from humans and
then possibly transmit them back to humans, which represents a
public health concern (5).

Information regarding the prevalence of ESBL producers
or the genotypes of these clinical isolates from cats and
dogs is limited in Taiwan. It is imperative to investigate
related matters from both a veterinary medicine and
public health perspective (6). The present study analyzed a
collection of E. coli isolates obtained from National Taiwan
University Veterinary Hospital (NTUVH), a university-
based veterinary teaching hospital in Taipei, from 2014
to 2017 to determine the prevalence of ESBL-producing
E. coli, assess their antimicrobial profile, and characterize the
strains phylogenetically through multilocus sequence typing
(MLST). The results obtained should provide insights into
the role of ESBL-producing E. coli in companion animals.
Some of the data herein have previously been reported at a
conference (7).

MATERIALS AND METHODS

Sample Collection
NTUVH is a teaching hospital affiliated with the College of
Bioresources and Agriculture at National Taiwan University
located in Taipei, Taiwan. Between 2014 and 2017, 283 E. coli
isolates obtained from dogs (n= 224) and cats (n= 59) that were
admitted to NTUVH were screened for ESBL producers. These
E. coli isolates were cultured from different sources of the animals
and identified using a Vitek 2 Compact (Biomérieux, Marcy-
I’Etoile, France) to the species level and stored at −80◦C. Urine
and pus samples from the uterus or wounds comprised almost
70% (47 and 22%, respectively) of the E. coli sources. These
samples were collected from the animals to facilitate diagnosis
and treatment. An ethical review was not required for this study.

ESBL Phenotype Testing
The ESBL producers of E. coli were tested using combination
disk tests with cefotaxime and ceftazidime (30 µg), with and
without clavulanic acid (10 µg), as specified by the Clinical
and Laboratory Standards Institute (8). Briefly, the tested E. coli
were plated on Muller–Hinton agar at a concentration of 0.5
McFarland standards and incubated at 35◦C for 16–18 h. A
difference of 5mm or more in the inhibition zones for either
cefotaxime or the ceftazidime–clavulanic acid combination vs.
the corresponding cefotaxime or ceftazidime alone was defined as
an ESBL-producing E. coli. Klebsiella pneumoniae ATCC 700603
and E. coli ATCC 25922 were used as the positive and negative
controls, respectively.

Detection of bla Genes
The E. coli isolates that were phenotypically ESBL producers were
analyzed using polymerase chain reaction (PCR) to detect their
bla genes. Bacterial DNA was extracted using the boiling method
(9). Briefly, bacterial strains were cultured overnight at 37◦C
on tryptic soy agar plates (Difco/Becton Dickinson, Franklin
Lakes, NJ), and a loopful of cells was boiled in 200 µL of ddH2O
for 10min. The supernatant was saved after centrifugation
at 12,000 × g for 10min and used as the source of template
DNA for PCR. The primers used to amplify blaCTX−M−1−group,
blaCTX−M−2−group, blaCTX−M−8−group, blaCTX−M−9−group,
blaCTX−M−25−group, blaSHV, blaTEM, and the expected PCR
product sizes are listed in Table 1. The PCR cycling conditions
were as follows: initial denaturation at 95◦C for 5min, followed
by 35 cycles at 95◦C for 30 s, annealing at 52–55◦C (as specified
in Table 1) for 30 s, and a 72◦C extension for 1min. Ten
microliters of each PCR sample were loaded onto a 1.5% agarose
gel and electrophoresed at 100V for 30min. The gels were then
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TABLE 1 | Sequences of primers used in this study.

PCR target Primer Sequences (5′-3′) Annealing Tm (◦C) Predicted PCR size (bp) References

blaTEM TEM-F TCGGGGAAATGTGCGCG 55 972 (10)

TEM-R TGCTTAATCAGTGAGGCACC

blaSHV SHV-F GCCTTTATCGGCCCTCACTCAA 54 819 (11)

SHV-R TCCCGCAGATAAATCACCACAATG

blaCTX−M−1−group CTX-M-1-F CCCATGGTTAAAAAATCACTGC 54 942 (12)

CTX-M-1-R CAGCGCTTTTGCCGTCTAAG

blaCTX−M−2−group CTX-M-2-F CGACGCTACCCCTGCTATT 52 552 (13)

CTX-M-2-R CCAGCGTCAGATTTTTCAGG

blaCTX−M−8−group CTX-M-8-F TCGCGTTAAGCGGATGATGC 52 666 (13)

CTX-M-8-R AACCCACGATGTGGGTAGC

blaCTX−M−9−group CTX-M-9-F ATGGTGACAAAGAGAGTGCAAC 55 876 (14)

CTX-M-9-R TTACAGCCCTTCGGCGATGATT

blaCTX−M−25−group CTX-M-25-F GCACGATGACATTCGGG 52 327 (13)

CTX-M-25-R AACCCACGATGTGGGTAGC

adk adk-F ATTCTGCTTGGCGCTCCGGG 54 583 (15)

adk-R CCGTCAACTTTCGCGTATTT

fumC fumC-F TCACAGGTCGCCAGCGCTTC 54 806 (15)

fumC-R GTACGCAGCGAAAAAGATTC

gyrB gyrB-F TCGGCGACACGGATGACGGC 60 911 (15)

gyrB-R ATCAGGCCTTCACGCGCATC

icd icd-F ATGGAAAGTAAAGTAGTTGTTCCGGCACA 54 878 (15)

icd-R GGACGCAGCAGGATCTGTT

mdh mdh-F AGCGCGTTCTGTTCAAATGC 60 932 (15)

mdh-R CAGGTTCAGAACTCTCTCTGT

purA purA-F CGCGCTGATGAAAGAGATGA 54 816 (15)

purA-R CATACGGTAAGCCACGCAGA

recA recA-F CGCATTCGCTTTACCCTGACC 58 780 (15)

recA-R TCGTCGAAATCTACGGACCGGA

pabB O25pabBspe.F TCCAGCAGGTGCTGGATCGT 65 347 (16)

O25pabBspe.R GCGAAATTTTTCGCCGTACTGT

trpA trpA.F GCTACGAATCTCTGTTTGCC 65 427 (16)

trpA2.R GCAACGCGGCCTGGCGGAAG

stained with a fluorescent nucleic acid dye (Biotium, Hayward,
CA) and examined under ultraviolet illumination. The PCR
products were then purified using a GeneJet PCR purification
kit (Thermo Fisher Scientific, Waltham, MA) according to
the protocol provided by the manufacturer and subjected
to sequencing (Mission Biotech, Taipei, Taiwan). The DNA
sequences were examined using the Beta-Lactamase DataBase
(www.bldb.eu) (17).

Antibiotic Susceptibility Test
The ESBL-producing E. coli isolates were tested for
susceptibility to antimicrobial agents used in clinical settings
using the standard Kirby–Bauer disk diffusion method
(8). The antimicrobial agents tested included β-lactams
(amoxycillin/clavulanic acid, ampicillin, imipenem, and
ceftiofur), tetracyclines (doxycycline), quinolones (enrofloxacin
and ciprofloxacin), aminoglycosides (gentamicin), and
sulfonamides (sulfamethoxazole/trimethoprim). The isolates

were classified as susceptible, intermediate resistant, or resistant
to the antimicrobial agents.

Genotyping and Phylogenetic Analysis
The ESBL-producing E. coli strains were genotyped using MLST
(15). Internal fragments of adk, fumC, gyrB, icd, mdh, purA,
and recA were amplified through a PCR by using the primers
listed in Table 1 and sequenced. They were then uploaded to the
EnteroBase MLST website (http://enterobase.warwick.ac.uk/) for
comparison. Phylogenetic analysis of the strains was performed
using BioNumerics version 7.0 (Applied Maths, Sint-Martens-
Latem, Belgium).

E. coli ST131 O25b Detection
The PCR-based detection of E. coli ST131/O25b was based on the
method described by Clermont et al. (16). The trpA and pabB
primers and annealing temperature used are listed inTable 1. The
PCR cycling conditions were as follows: initial denaturation at
94◦C for 4min, followed by 30 cycles at 94◦C for 5 s, annealing
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at 65◦C for 10 s, and 72◦C extension for 5min. Ten microliters
of each PCR sample was loaded onto 2.0% agarose gel and
electrophoresed at 100V for 30min. The gels were then stained
with a fluorescent nucleic acid dye (Biotium) and examined
under ultraviolet illumination.

RESULTS

A total of 283 E. coli isolates (59 from cats and 224 from dogs)
were obtained during our study period (2014–2017). Table 2 lists
the prevalence of ESBL-producing E. coli from dogs and cats.
In total, 65 ESBL-producing E. coli isolates, 54 from dogs and
11 from cats, were acquired from our assay. The prevalence of
ESBL-producing E. coli isolates was 24.1% (54/224) in dogs and
18.6% (11/59) in cats, and the total prevalence for both animals
was 23.0% (65/283).

Table 3 lists the distribution of bla genes from the
65 ESBL-producing E. coli isolates. blaCTX−M−55 of the
blaCTX−M−1group was the most prevalent bla gene encountered.
The blaCTX−M−2group contained only blaCTX−M−124. The
blaCTX−M−9group contained eight bla gene types, and
blaCTX−M−214 was the most frequently observed. blaTEM−215

was the most common type encountered in the blaTEMgroup. We
only detected blaSHV−199 in the blaSHV group. We did not detect
blaCTX−M−8group or blaCTX−M−25group.

The sequence type (ST), bla genes, and the sampling sites
of the ESBL-producing E. coli isolates from cats and dogs,
respectively, are detailed in Tables 4, 5. MLST analysis identified
20 STs in our ESBL-producing E. coli isolates. In total, 16
E. coli isolates had STs that did not match any ST in the
MLST databank. Combining the data of cats and dogs revealed
that the commonest ST was ST457 (13/65, 20.0%), followed by
ST131 (10/65, 15.4%), ST648 (6/65, 9.2%), ST38 (3/65, 4.6%),

and ST405 (2/65, 3.1%); the other STs were encountered once.
ESBL-producing E. coli were isolated from several sites but were
principally observed in aspirated urine (44/65, 67.7%). Figure 1
reveals the minimal spanning tree of the 65 ESBL-producing
E. coli STs according to the degree of allele sharing.

The ESBL-producing E. coli isolates from cats were all resistant
to ampicillin, ceftiofur, enrofloxacin, and ciprofloxacin, whereas
those from dogs were all resistant to ampicillin. All the ESBL-
producing E. coli were susceptible to imipenem, and more than
50% of the isolates were susceptible to gentamicin. Overall, most
strains exhibited a multidrug resistant phenotype (Table 6).

PCR detection to target trpA and pabB was performed on 10
E. coli ST131 isolates, and 8 isolates were identified as E. coli
ST131/O25b clones (Figure 2). The ESBL-producing E. coli

TABLE 4 | Sequence type, bla genes, and sampling site of ESBL-producing

E. coli in cats.

ST type bla genes

131 (1)a blabCTX−M−194

405 (1) blaCTX−M−194+blacCTX−M−124

457 (5) bladCTX−M−55, bla
d
CTX−M−214, blaCTX−M−55+blaCTX−M−214+

bladTEM−230, blaCTX−M−55+blaCTX−M−198+bladTEM−230,

blaCTX−M−55+blaCTX−M−198+blacSHV−199

648 (3) bladCTX−M−124, bla
d
CTX−M−198,

blaCTX−M−55+blaCTX−M−223+blaeTEM−81

Unknown (1) blaCTX−M−55+blaCTX−M−124+blacCTX−M−214

aNumbers in parentheses indicate isolation numbers.
bFrom an esophageal feeding tube wound.
cFrom a neck abscess.
dFrom aspirated urine.
eFrom the abdominal cavity.

TABLE 2 | Prevalence of ESBL-producing E. coli in dogs and cats.

2014 2015 2016 2017 Total

Number of ESBL+ cat 4 1 3 3 11

Number of ESBL+ dog 18 14 15 7 54

Number of ESBL− dog/cat 99 56 34 29 218

Total number assayed 121 71 52 39 283

ESBL prevalence 18.2% 21.1% 34.6% 25.6% 23.0%

TABLE 3 | Distribution of bla genes in the 65 ESBL-producing E. coli isolates.

bla CTX-M-1 group bla CTX-M-2 group bla CTX-M-9 group bla TEM group bla SHV group bla CTX-M-8 and CTX-M-25 group

blaCTX−M−55 (n = 24) blaCTX−M−124 (n = 12) blaCTX−M−24 (n = 1) blaTEM−81 (n = 1) blaSHV−199 (n = 4) None

blaCTX−M−69 (n = 3) blaCTX−M−67 (n = 1) blaTEM−215 (n = 16)

blaCTX−M−194 (n = 7) blaCTX−M−148 (n = 1) blaTEM−219 (n = 2)

blaCTX−M−199 (n = 1) blaCTX−M−174 (n = 4) blaTEM−226 (n = 1)

blaCTX−M−211 (n = 3) blaCTX−M−196 (n = 1) blaTEM−230 (n = 5)

blaCTX−M−198 (n = 1)

blaCTX−M−214 (n = 11)

blaCTX−M−223 (n = 1)
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TABLE 5 | Sequence type, bla genes, and sampling site of ESBL-producing E. coli in dogs.

ST type bla genes

10 (1)a blabCTX−M−69

38 (3) blacTEM−215, blaCTX−M−198+blacTEM−219, blaCTX−M−198+blacTEM−215

69 (1) blaCTX−M−24+bladTEM−215

73 (1) blaeTEM−230

131 (9) bla2c,fCTX−M−194, bla
g
CTX−M−214, bla

3c
CTX−M−174, blaCTX−M−124+blacCTX−M−194, blaCTX−M−55+blaCTX−M−67+blacTEM−215

359 (1) blaCTX−M−214+blacTEM−215

372 (1) blacCTX−M−198

405 (1) blahCTX−M−214

428 (1) blaCTX−M−55+blacTEM−230

457 (8) bla3c,bCTX−M−55, bla
c
CTX−M−69, blaCTX−M−55+blacCTX−M−214, blaCTX−M−69+bladSHV−199, blaCTX−M−55+blaCTX−M−214+blacTEM−230

636 (1) bladCTX−M−55

648 (3) blaiCTX−M−198, blaCTX−M−55+blacCTX−M−174, blaCTX−M−55+blaCTX−M−148+blaTEM−215+blacSHV−199

1674 (1) blacTEM−215

3429 (1) blaCTX−M−124+blacCTX−M−198

5229 (1) blacTEM−215

5640 (1) blaCTX−M−194+bla
j
TEM−219

5685 (1) blaCTX−M−55+blakCTX−M−124

5686 (1) blalCTX−M−55

5703 (1) blacTEM−215

5865 (1) blacCTX−M−55

Unknown (15) blabCTX−M−55, bla
c
CTX−M−198, bla

c
CTX−M−211, bla

2c,m
TEM−215, blaCTX−M−198+blacTEM−215, blaCTX−M−211+bla

b,c
CTX−M−214,

blaCTX−M−55+blaCTX−M−124+bla2cCTX−M−214, blaCTX−M−124+blaCTX−M−214+blacTEM−226, blaCTX−M−55+blaCTX−M−196+blacTEM−215,

blaCTX−M−124+blaCTX−M−198+blacTEM−215, blaCTX−M−199+blaCTX−M−124+blaTEM−215+blanSHV199

aNumbers in parentheses indicate isolation numbers.
bFrom a wound.
cFrom aspirated urine.
dFrom pyometra.
eFrom an oronasal mass.
fPus from paws.
gFrom an abscess.
hPus from left caudal abdomen.
iFrom an ear infection.
jFrom tonsils.
kPus from the esophageal tube.
lPus from intestinal anastomosis.
mFrom a vaginal smear.
nFrom the gallbladder.

possessed only the trpA specific DNA fragment, whereas the
ESBL-producing E. coli ST131/O25b clones contained both the
trpA and pabB DNA fragments. Among the 10 ESBL-producing
E. coli, only one ST131/O25b clone was from a cat (E. coli 1942),
whereas the others were from dogs. The two non-ST131/O25b
clones were both from dogs.

DISCUSSION

The overall prevalence of ESBL-producing E. coli in dogs and
cats was 23.0% in our study. A comparable prevalence was also
reported in Japan, China, and Switzerland (18–20). However,
this prevalence is considerably higher than that reported in
France (3.7%) and the Netherlands (2%) (21, 22). Themedication
strategy employed by first-line veterinarians from different
countries or regions is a potential explanation for this difference.
High prevalence of ESBL-producing E. coli threatens the efficacy

of third-generation cephalosporins, such as cefovecin, approved
for use in veterinary medicine (23).

The E. coli isolates were obtained from several sample types
in cats and dogs. The most common source of ESBL-producing
E. coli in cats and dogs was from aspirated urine samples, with
prevalence’s of 54.5% (6/11) and 68.5% (37/54), respectively.
This is unsurprising because urinary tract infection (UTI) is a
common diagnosis in companion animals (24). Moreover, UTIs
in cats and dogs usually involve a single agent: E. coli (25).

The blaCTX−M−1 group was observed in 58.5% of the bla genes.
This bla gene group is also commonly detected in Europe, the
Middle East, and Asia (26). blaCTX−M−55 was the major bla gene
in the blaCTX−M−1 group in our study. CTX-M-15 used to be
common in human and animal isolates (27). CTX-M-55 was
first identified in Thailand and is closely related to CTX-M-15
with only one amino acid substitution: Ala-77-Val (28). CTX-M-
55 is a derivative of CTX-M-15. The presence of CTX-M-55 is
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FIGURE 1 | Minimal spanning tree of ESBL-producing E. coli. Each circle indicates one ST, subdivided into one sector for each isolate, and bordered by the ST

number. White circles or sectors without an ST number denote a lack of comparison standard in the current databank. The numbers on the connecting line between

STs within the MSTree indicate the number of different alleles. Solid lines represent an allele difference of three or fewer, whereas dotted lines and faint lines indicate an

allele difference of four or more. ESBL, extended-spectrum β-lactamases; MSTree, minimal spanning tree; ST, sequence type.
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TABLE 6 | Antimicrobial susceptibility test of ESBL-producing E. coli from dogs and cats.

Antibiotic discs Cat, n = 11 (%) Dog, n = 54 (%)

Susceptible Intermediate resistant Resistant Susceptible Intermediate resistant Resistant

Amoxycillin/clavulanic acid 4 (36.4) 1 (9.1) 6 (54.5) 21 (38.9) 14 (25.9) 19 (35.2)

Ampicillin 0 (0) 0 (0) 11 (100) 0 (0) 0 (0) 54 (100)

Imipenem 11 (100) 0 (0) 0 (0) 54 (100) 0 (0) 0 (0)

Ceftiofur 0 (0) 0 (0) 11 (100) 1 (1.9) 3 (5.6) 50 (92.6)

Doxycycline 1 (9.1) 1 (9.1) 9 (81.8) 9 (16.7) 6 (11.1) 39 (72.7)

Enrofloxacin 0 (0) 0 (0) 11 (100) 8 (14.8) 5 (9.3) 41 (75.9)

Ciprofloxacin 0 (0) 0 (0) 11 (100) 11 (20.4) 3 (5.6) 40 (74.1)

Gentamicin 8 (72.7) 0 (0) 3 (27.3) 32 (59.3) 0 (0) 22 (40.7)

Sulfamethoxazole/trimethoprim 3 (27.3) 2 (18.2) 6 (54.5) 25 (46.3) 2 (3.7) 27 (50.0)

FIGURE 2 | PCR detection of E. coli ST131/O25b clone. The trpA band corresponds to the positive control in all isolates, whereas the pabB band corresponds to the

allele-specific amplification obtained only for the ST131/O25b clone. Eight isolates were confirmed to be ST131/O25b clones. M, molecular weight marker, 100 bp

DNA ladder; lane 1, E. coli 1372; lane 2, E. coli 1933; lane 3, E. coli 1942; lane 4, E. coli 1972; lane 5, E. coli 2279; lane 6, E. coli 2289; lane 7, E. coli 2532; lane 8,

E. coli 2588; lane 9, E. coli 2624; and lane 10, E. coli 2670. PCR, polymerase chain reaction.

widely reported in food and pets in China, and its geographic
distribution is primarily in Asian countries (29–31). Notably,
CTX-M-55 has rarely been encountered outside Asia. However,
the recent emergence of CTX-M-55 in companion animals in
Switzerland may indicate the spreading of this enzyme due
to international food or animal trade, which warrants further
attention (18). A study in the United Kingdom also revealed a
decreased prevalence of CTX-M-15 producers over some years
in favor of new variants, particularly CTX-M-55 (32). CTX-M-
124 was another frequently observed β-lactamase in our study.
CTX-M-124 was first detected in wild birds (33); the transmission
of CTX-M-124 to other animals from the migratory behavior of
wild birds may explain, in part, the presence of CTX-M-124 in
ESBL-producing E. coli from pets (34).

ST457, ST131, and ST648 are the three major STs of ESBL-
producing E. coli detected in our study, with ST457 being the
most prevalent. This ST has been associated with diseases in
companion animals in other studies (21, 35). E. coli ST131
and ST648 with CTX-M have been reported worldwide in
both human and animal samples. These two clones combine
multidrug resistance and virulence; ST131, in particular, is a
globally distributed uropathogenic E. coli lineage (36). E. coli

ST131 O25b carrying CTX-M-15 is a globally spreading clone
with a high virulence potential, making it a public health concern
(37), whereas ST131 O25b with CTX-M-14 has predominated
in Japan (38). By contrast, CTX-M-174 and CTX-M-194 were
the two main β-lactamases in our E. coli ST131 O25b clones.
An E. coli ST131 carrying CTX-M-174 was identified in humans
in Korea (39). CTX-M-174 is a variant of CTX-M-14 with
two amino acid substitutions (Glu-7-Leu and Asp-242-Gly).
Regardless of the type of CTX-M present in our ST131 isolates,
the presence of these clones in cats and dogs raises concerns
about potential zoonotic risks. This finding also justifies the
continued investigation of ESBL-producing E. coli to evaluate the
persistence of these fast-spreading clones in companion animals
in Taiwan. A study in Europe indicated that 1.6% of the diseased
dogs and cats carried ESBL-producing Enterobacteriaceae but
only 2 E. coli ST131 isolates were identified; therefore, companion
animals may be a source of bla genes but may not be the major
source of epidemic clones (40).

Previously, LeCuyer et al. (41) revealed a thought-provoking
finding regarding uropathogenic E. coli in canines. They found
that ST372 was the predominant ST in dogs, whereas ST372
was an infrequent human pathogen. The prevalence of ST372
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observed in dogs was similar to that of ST131 in human
uropathogenic E. coli and ST73 in feline E. coli that caused
urinary tract infections. They therefore concluded that each host
species may have a particular ST that comprises most of the E. coli
uropathogens. A French study also reached a similar conclusion,
identifying ST372 as the major pathogenic E. coli ST in dogs (42).
Similar findings in two distinct geographic areas may indicate
a dog-specific distribution of pathogenic E. coli clones instead
of the effect of regional factors (42). In contrast to LeCuyer’s
and Valat’s reports, ST372 was observed only once in our study.
Different criteria for the screening of E. coli in the study design
may have contributed to this discrepancy.

Some STs such as ST3429, ST5229, ST5640, ST5685, ST5686,
ST5703, and ST5865, to the best of our knowledge, have not
been reported before; therefore, the pathogenic potentials of these
strains were unknown.

Imipenem reportedly remains relatively active against ESBL-
producing bacteria (43), which is consistent with our results
(Table 6). Nonetheless, the use of carbapenems in companion
animals should be avoided, since the emergence of carbapenem
resistance in companion animals has been reported (44).

The current study had some limitations. AmpC-β-lactamases,
which also hydrolyze the third generation of cephalosporins,
were not assayed for the E. coli isolates. In addition, resistant
plasmids were not characterized using PCR-based replicon
typing. Although the results obtained in this study originate
from only one veterinary hospital, this university-based teaching
hospital is the major referral hospital for local veterinary clinics
in Taipei. We believe that the information regarding ESBL in
cats and dogs reported herein could be helpful for infection
management and prevention.
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Antimicrobial resistance (AMR) leads to enormous financial losses from issues such

as high morbidity, mortality, man-days lost, hospital length of stay, health-care, and

social costs. In humans, over prescription of antimicrobials, which is presumably higher

during COVID, has been identified as the major source of selection for antimicrobial

resistant bacteria; however, use of antimicrobials in food and companion animals,

fish, and vegetables, and the environmental resistance gene pool, also play important

roles. The possibilities of unnecessary use of antibiotics as prophylaxis during and after

COVID in livestock and companion animals exist in low-and middle-income countries.

A considerable loss in gross domestic product (GDP) is also projected in low-and

middle-income countries (LMICs) due to AMR by the year 2050, which is further going to

be reduced due to economic slowdown in the post-COVID period. Veterinary hospitals

dedicated to pets have cropped up, especially in urban areas of LMICs where use of

antimicrobials has also been increased substantially. The inevitable preventive habit built

up during COVID with the frequent use of hand sanitizer might trigger AMR due to the

presence of cross-resistance with disinfectants. In LMICs, due to the rising demand for

animal protein, industrial food animal production (IFAP) is slowly replacing the small-scale

backyard farming system. The lack of stringent regulations and monitoring increased

the non-therapeutic use of antimicrobials in industrial farms where the persistence of

antimicrobial resistant bacteria has been associated with several factors other than

antimicrobial use, such as co-resistance, cross-resistance, bacterial fitness, mixing of

new and old animals, and vectors or reservoirs of bacterial infection. The present

review describes types of antimicrobials used in agri-food chains and companion

animals in LMICs with identification of the gap in data, updated categories of prevalent

antimicrobial resistant bacteria, the role of animal farms as reservoirs of resistant bacteria,

and mitigation strategies, with a special focus on the pivotal strategy needed in the

post-COVID period.

Keywords: backyard, COVID, food animals, mitigation, industrial food animal production, antimicrobial resistance
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INTRODUCTION

Human and animal populations are at risk of cross-transmission
of zoonotic bacteria via direct contact due to close proximity
with food animals, companion animals, live wildlife markets,
environmental contamination, and the intake of contaminated
animal origin food items. The situation becomes more
complicated due to cross-transmission of antimicrobial
resistance (AMR) determinants along with the infection. In
humans, over prescription of antimicrobials is the major
source of selection for antimicrobial resistant bacteria, but
use of antimicrobials in food animals and, moreover, the
environmental resistance gene pool (“resistome”) also play
important roles in this complex multi-factorial state of affairs.
Recently, the bacteriostatic antimicrobial (azithromycin)
was recommended in synergism with hydroxychloroquine
against SARS-CoV2 in treatment protocols in several countries
despite the dearth of precise clinical evidence (1, 2). The
recent systematic review revealed use of antibiotics in 70%
of COVID patients, mostly in Asian countries, although only
10% of them had a bacterial co-infection (3). Even the World
Health Organization (WHO) warned against the overuse of
antibiotics during the pandemic with the statement: “The
COVID19 pandemic has led to an increased use of antibiotics,
which ultimately will lead to higher bacterial resistance rates
that will impact the burden of disease and deaths during the
pandemic and beyond” (4). The Post-COVID epoch may add
complexities to the AMR perspective, as antibiotics might be
considered as a prophylactic measure among the community,
especially in LMICs where antibiotics are easily available at
the counter without prescriptions (5). The manufacturers of
azithromycin are already facing difficulties to meet the ever-
increasing demands (6). Prophylactic antimicrobial therapy
in food and companion animals may witness a steep rise
during and after the COVID episode, particularly in LMICs,
even if it is not recommended in many countries (7). The
situation becomes catastrophic as the companion animal
practitioners prefer human antibiotics for their better quality
and easy availability.

AMR leads to enormous financial losses associated with
high morbidity, mortality, man-days lost, hospital length of
stay (LOS), direct health-care costs, and the social costs of
infection (8). About 700,000 deaths per year were attributed
to AMR alone, which is more than the toll caused by
malaria, acquired immunodeficiency syndrome (AIDS), and
tuberculosis (9). The World Health Organization (WHO)
identified eight pathogens relevant to AMR, including five
bacteria (Klebsiella pneumoniae, Escherichia coli, Staphylococcus
aureus, Neisseria gonorrhoeae, and Mycobacterium tuberculosis)
(10). Among them, third-generation cephalosporin-resistant and
carbapenem-resistant Enterobacteriaceae (CRE, e.g., Escherichia
coli and Klebsiella pneumoniae) alone were reported to cause
6.4 million bloodstream infections and 50.1 million serious
infections worldwide in a year (11). A recent estimate suggested
33,000 annual deaths due to AMR in the European Union
and European Economic Area (12). Additional treatment

costs and losses due to methicillin-resistant Staphylococcus
aureus (MRSA) and third-generation cephalosporin-resistant
and ESBL-producing Enterobacteriaceae ranged between 1,732
and 9,726 USD and 2.54–6.8 days per case, respectively (8).
For the United States alone, average national health care
expenditure was estimated at around 2.2 billion USD due to
AMR (13).

Addressing AMR in developing countries was considered
crucial by the United Nations to achieve sustainable development
goals (SDGs) associated with poverty and hunger alleviation and
the improvement of health and economic growth (14). In LMICs,
the current rate of AMR-related infections is high and is projected
to grow more rapidly than in developed countries. A substantial
portion (40–60%) of human bacterial infections in Brazil, the
Russian Federation, and India is associated with resistant bugs
in comparison to developed countries (17%) (15). In LMICs, the
direct and prominent effects of AMR include increasedmortality,
in addition to higher morbidity and economic losses (16). The
recent projection about the financial vulnerability of LMICs
revealed that an additional 19 million people are going to fall
into great poverty by 2030 due to AMR producing direct impacts
on labor productivity (neat GDP produced by 1 h of labor) and
increased health care costs (17). A considerable loss in GDP is
also projected in low-income countries due to AMR by the year
2050, which is further going to be reduced due to economic
slowdown in a post-COVID scenario (18).

The present review describes types of antimicrobials used in
food animals, companion animals, aquaculture, and vegetables in
LMICs, categories of prevalent antimicrobial-resistant bacteria in
LMICs, the role of industrial and backyard farms as a reservoir of
resistant bacteria in LMICs, andmitigation strategies with special
reference to a post-COVID scenario.

DEFINITIONS AND USES OF
ANTIMICROBIALS

Antimicrobials (AM) are substances of natural, semisynthetic,
or synthetic origin that kill or inhibit the growth of a
microorganism but cause little or no damage to the host
cells. Antibiotics (AB) are low molecular weight antimicrobials
produced by a microorganism that at low concentrations inhibit
or cause lysis of other microorganisms. WHO made a list of
medically important antimicrobials (MIA) and classified them
into three categories, critically important antimicrobials (CIA,
highest priority CIAs and high priority CIAs), highly important
antimicrobials (HIA), and important antimicrobials (IA), based
on five criteria (19). Similarly, the World Organization for
Animal Health (OIE) determined the degree of importance for
classes of veterinary antimicrobial agents based on antimicrobial
class, use in treatment of serious animal diseases, and availability
of alternative antimicrobial agents (20). Different classes of
important veterinary antimicrobials, mechanism of action,
indication, and mechanism of resistance are described in
Tables 1, 2.
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TABLE 1 | Characteristics of selected veterinary important antimicrobials.

Antimicrobials Mechanism of action Indications WHO

classification

OIE

classification

Resistance mechanism

Human Animals

Sulfonamides and

Potentiated Sulfonamides

Sulfachloropyridazine (sui &

bov)

Sulfadiazine (can and fel)

Sulfadimethoxine (bov, can

and fel)

Sulfamethazine (bov, sui, can

and fel)

Sulfamethoxazole (can and

fel)

Sulfaquinoxaline (Calves,

small ruminants and poultry)

Ormetoprim +

sulfadimethoxine (can and

fel)

Trimethorprim + sulfadiazine

(equ, can and fel)

Trimethoprim +

sulfamethoxazole (equ, can

and fel)

Trimethoprim +

sulfadoxine (bov)

Sulfonamide mimics

paraamino benzoic acid

(PABA) as a false substrate

and

trimethoprim/ormetoprim

inhibits dihydrofolate

reductase enzyme.

Altogether, these

compounds inhibit the

synthesis of dihydrofolic acid,

an important co-enzyme for

many complex biochemical

pathways in bacteria,

including DNA synthesis.

sulfamethoxazole–trimethoprim

combination (co-trimoxazole) indicated in

UTI infections, prostatitis, chronic bronchitis

and invasive salmonellosis

Bacterial (Staphylococcus spp.,
Corynebacterium, Nocardia asteroides,

Stenotrophomonas maltophilia, and bacteria of

the Enterobacteriaceae (Klebsiella, Proteus,

Enterobacter, and Escherichia coli), Pasteurella)
and protozoal (Histophilus, Toxoplasma, and

coccidia.) infections

Pneumonia, intestinal infection (coccidian), soft

tissue infection, UTI

Sulfaquinoxaline is indicated in coccidial enteritis.

HIA VCIA Efflux pumps and changes in

the target enzymes

Penicillins

Natural penicillins Penicillin G

– (bov, sui,ovi and equ)

Aminopenicillins

Ampicillin (can, fel, equ) -

AMC

Ampicillin + sulbactam (can,

fel, equ and ruminants) –A/S

amoxicillin (bov, equ, can, fel)

amoxicillin + clavulanate

potassium (can and fel)

Antistaphylococcal penicillins

(e.g., oxacillin, oxacillin,

cloxacillin, and dicloxacillin)

Limited clinical use

COX: Mastitis

D/C: Can and fel

Extended-spectrum

penicillins (e.g. piperacillin)

TI/TIC (can, fel and equ)

CB (Can and fel)

PI (Can and fel)

Penicillin and cephalosporins

– β-lactam drugs inhibit

bacterial cell wall synthesis

by interfering the

transpeptidation reaction.

Penicillins: Active against

nonpenicillinase-producing

Staphylococcus, Streptococcus, few
Gram-negative bacteria - Arcanobacterium,

Mannheimia haemolytica, Listeria

monocytogenes, and Pasteurella,

anaerobes Fusobacterium, Peptococcus,
Peptostreptococcus, some strains of

Bacteroides and Clostridium, Bacillus
anthracis spirochetes (Leptospira, and

Borrelia burgdorferi).

Aminopenicillins are active against the

bacteria resistant to Penicillin G –

Enterobacteriaceae, Pseudomonas,
Bacteroides fragilis, and penicillinase

producing Staphylococcus spp.,
Antistaphylococcal penicillins penicillin G

and the aminopenicillins resistant

penicillinase producing Staphylococcus
spp. Few other gram-positive and

gram-negative bacteria and spirochetes.

Extended-spectrum penicillins

Gram-negative aerobic and anaerobic

Bacteria; many strains of

Enterobacteriaceae and Pseudomonas

Penicillin G – (Anthrax, BQ, HS in large animals)

Aminopenicillins

AMP: (UTI, pneumonia, wound)

A/S: (acute infection – pneumonia, sepsis and

infections caused by ESBL pathogens,

prophylaxis in neutropaenic patients)

AMX: (UTI, soft tissue infection, pneumonia)

AMC: (skin, UTI, respiratory and wound infection)

Antistaphylococcal penicillins

COX: used in intramammary preparation for

treating mastitis

D/C: β-lactamase producing Staphylococcus

Extended-spectrum penicillins

TI/TCC, CB, PI, PIT

Soft tissue/ bone infection, pneumonia

(synergistic with aminoglycosides)

Ampicillin-resistant bacteria, Pseudomonas

aeruginosa, Clavulanate potentiates its action

against Gram-negative bacteria

and Staphylococcus

HIA VCIA Mediated by production of

enzymes like β-lactamases

that render the

penicillins/cephalosporins by

hydrolysis of β-lactam rings.

Staphylococcus can become

resistant by mutating the

penicillin binding proteins

(PBP2a) which have a

reduced affinity to

β-lactam drugs.

(Continued)
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TABLE 1 | Continued

Antimicrobials Mechanism of action Indications WHO

classification

OIE

classification

Resistance mechanism

Human Animals

Cephalosporins

First generation

Cefacetrile (bov)

Cefalexin (bov,cap, equ, ovi,

sui, can, fel)

Cefalothin (can, fel, equ)

Cephapirin (bov)

Cefazolin (bov, cap, ovi, can,

can, fel)

Cefalonium (bov, cap, ovi)

Cefadroxil (can, fel, equ)

Second generation

Cefuroxime (bov)

Cefaclor (can, fel)

Cefoxitin (can, fel, bov

and equ)

Active against most of the gram positive

bacteria except Enterococcus. Greater
activity against Enterobacteriaceae than

penicillin.

2nd generation cephalosporins are more

active against Enterobacteriaceae
Cephamycin (cefoxitin) groups are also

effective in anaerobic infection.

Skin, soft tissue, respiratory tract and urinary

tract infections, wound, abscess

Eft is useful in porcine respiratory disease

complex (PRDC), bovine respiratory disease

complex (BRDC) and bovine mastitis.

HIA VCIA Narrow-spectrum

β-lactamases can neutralize

early generation

cephalosporins but not the

higher generation

cephalosporins.

Extended-spectrum

β-lactamases produced by

some strains of

Gram-negative bacteria can

deactivate 3rd and 4th

generation cephalosporins.

Third generation

Cefoperazone (bov, cap, ovi)

Ceftiofur (avi, bov cap, equ,

ovi, lep, can, fel)

Ceftriaxone (avi, bov, ovi, sui)

Cefpodoxime (can, fel and

equ)

Cefotaxime (can, fel and equ)

Fourth generation

Cefquinome (bov, cap, equ,

ovi, sui)

Potentiated cephalosporins

(CAZ/CTX with clavulinic

acid, sulbactum

or tazobactum)

3rd generation cephalosporins are more

active against Gram-negative bacteria than

the 1st and 2nd generations which are

rendered ineffective by production of

β-lactamase. CPZ and CAZ are useful in

infections caused by Pseudomonas Eft is
active against Pasteurella multocida,

Mannheimia haemolytica, Histophilus
somnus, Fusobacterium necrophorum,

Actinobacillus, Salmonella cholerasuis,
Streptococcus suis

CIA

Tetracyclines

Chlortetracycline

(avi, bov, cap, equ, lep, ovi,

sui, can, fel)

Oxytetracycline (api, avi, bov,

cam, cap, equ, lep, ovi, pis,

sui, can, fel)

Tetracycline (Api, avi, bov,

cam, cap, equ, lep, ovi, pis,

sui, can, fel)

Doxycycline (avi, bov, cam,

cap, equ, lep, ovi, pis, sui,

can, fel)

Minocylcine (can, fel)

Tetracycline binds to the 30S

ribosomal subunit and

interferes with the interaction

of aminoacyl-tRNA with

mRNA leading to bacterial

protein synthesis inhibition.

Possibly, tetracycline has the broadest

spectrum of activity being effective against

mycoplasma, Rickettsia, chlamydia and

blood protozoa apart from bacteria.

Tetracyclines are indispensible drugs for

treating Ehrlichiosis, anaplsmosis and as an

adjunct therapy in theileriosis – both are

endemic in many Asian and African

countries.

Use to treat infections caused by

Pasteurella multocida, Mannheimia

haemolytica, Histophilus somnii

Pneumonia including BRDC, PRDC, enteritis,

abscess, skin and soft tissue infection. In pigs

these drugs are useful in atropic rhinitis,

Mycoplasma infection and pneumonic

pasteurellosis. In foals tetracyclines are used to

treat angular deformities, possibly for their

anti-inflammatory, chondroprotective, and

antiarthritic effects.

HIA VCIA Resistance is mediated by

energy dependent efflux of

the drugs and alteration of

binding sites of tetracycline

at the 30S ribosomal units.

(Continued)
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TABLE 1 | Continued

Antimicrobials Mechanism of action Indications WHO

classification

OIE

classification

Resistance mechanism

Human Animals

Aminoglycosides

Streptomycin (api, avi, bov,

cap, equ, lep, ovi, pis, sui)

Dihydrostreptomycin (avi,

bov, cap, equ, lep, ovi, sui)

Gentamicin (avi, bov, cam,

cap, equ, lep, ovi, sui, can,

fel)

Amikacin (equ, bov, can and

fel)

Neomycin (api, avi, bov, cap,

equ, lep, ovi, sui, can, fel)

Kanamycin (api, avi, bov,

cap, equ, lep, ovi, pis, sui,

can, fel)

Paromomycin (cap, ovi, lep)

Apramycin (avi, bov, lep,

ovi, sui)

Its irreversible attachment to

30S ribosomal subunit leads

to interruption in mRNA

translation process. This

ultimately leads to premature

termination or faulty protein

synthesis due to misreading

of genetic codes.

Effective against Gram-negative bacteria-

Enterobacteriaceae and Pseudomonas
aeruginosa. Efficacy against Gram-positive

bacteria like Staphylococcus is limited.

Anaerobic pathogens are inherently

resistant.

Useful in septicaemias; digestive, respiratory and

urinary tract infections.

Few drugs have specific indication like

apramycin in swine colibacillosis (pig scours).

Paromomycin is useful in protozoal

gastrointestinal infections.

CIA VCIA Anaerobes are inherently

resistant as the drugs require

oxygen for entry into the cell.

Resistance mechanism

involve alteration in the cell

surface receptor to slow

down or block the passage

of the drugs, changes at the

drug attachment sites (30S

ribosome) and enzymatic

degradation. Amikacin being

unaffected by many of the

hydrolyzing enzymes is more

effective than other

aminoglycosides in

controlling infections caused

by resistant bacteria.

Phenicol

Florfenicol (avi, bov, cap,

equ, lep, ovi, pis, sui, can,

fel)

Thiamphenicol (avi, bov, cap,

ovi, pis, sui, can, fel)

Phenicols are bacteriostatic

agents – phenicols interfere

the peptidyltransferase

enzyme activity at 50S

ribosoma subunit leading to

protein synthesis.

Effective against Mannheimia haemolytica,
Pasteurella multocida, Histophilus somni,
Fusobacterium necrophorum, Bacteroides,
Actinobacillus, Salmonella cholerasuis and
Streptococcus suis, Aeromonas
salmonicida

Respiratory infections in poultry, BRDC, SRDC,

foot rot, acute interdigital necrobacillosis and

infectious pododermatitis

HIA VCIA Resistance mediated by a

variety of mechanism viz.,
efflux pumps, enzymatic

modifications by rRNA

methyltransferases, and

chloramphenicol acetate

esterases and inhibition of

intracellular drug transport

Macrolides

Azalide

Azithromycin*(equ, sui, can,

fel)

Tulathromycin (bov, cap, lep,

ovi, sui)

Macrolides C14

Erythromycin (api, avi, bov,

cap, equ, lep, ovi, pis, sui,

can, fel)

Macrolides C16

Spiramycin (api, bov, cap,

equ, lep, ovi, pis, sui, can,

fel)

Tilmicosin (avi, bov, cap, lep,

ovi, sui)

Tylosin (api, avi, bov, cap,

lep, ovi, sui, can, fel)

By binding to the 50S

ribosomal subunit at 23sRNA

site, macrolides inhibit the

protein systhesis.

Tilmicosin is effective in

BRDC by reduced

expression of PGE2 and

release of

anti-inflammatory cytokines.

Gram-positive infections mainly,

Mycoplasma, Rhodococcus,

Chlamydophila Mycoplasma,

Arcanobacterium, Erysipelothrix, Bordetella,

and Bartonella Moraxella, Serpulina

Lawsonia

Respiratory infection, hemorrhagic digestive

diseases- swine dysentery and proliferative

enteropathy (sui), liver abscess, pododermatitis

(bov)

Additionally, tylosin is effective in pink eye

CIA VCIA Resistance is mediated by

mef gene governed drug

efflux system, drug

inactivating enzymes and

modification of the drug

binding sites at 50S

ribosome (erm genes)

(Continued)
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TABLE 1 | Continued

Antimicrobials Mechanism of action Indications WHO

classification

OIE

classification

Resistance mechanism

Human Animals

Lincosamides

Clindamycin (can, fel)

Lincomycin (api, avi, bov,

cap, ovi, pis, sui, can, fel)

Pirlimycin (bov)

Inhibit protein sysnthesis by

binding with 50S ribosomal

subunit.

Staphylococcus, Streptococcus,

Actinomyces, Nocardia, Mycoplasma and

Cornybacterium, Erysepelothrix, Leptospira,

Bacteroides fragilis, Fusobacterium spp.,

Peptostreptococcus spp., and Clostridium
perfringens Babesia Toxoplasma.

Gram-positive or anaerobic infections in oral

cavity, skin, soft tissue, respiratory tract,

protozoal infection

Lincomycin is used in pyoderma in pets and

mycoplasma infections in pigs and poultry and

infectious arthritis and hemorrhagic enteritis

in pigs

MRSP from dogs are usually

resistant while community

acquired MRSA are

susceptible.

Resistance driven 23sRNA

methylation encoded by erm

gene is the most common

mechanism apart from drug

efflux pumps (mef) and

enzymatic modification of

the drugs.

Quinolones

Quinolone 1G

Fluoroquinolones

Danofloxacin (avi, bov, cap,

lep, ovi, sui,)

Difloxacin (avi, bov, lep, sui,

equ, dog)

Enrofloxacin (avi, bov, equ,

lep, ovi, pis, sui, can, fel)

Orbifloxacin (bov, sui, can,

fel)

Pradofloxacin (fel)

Marbofloxacin (avi, bov, equ,

lep, sui)

Quninoloes are bactericidal

by inhibition of DNA

replication and transcription.

DNA gyrase encoded by

gyrA and topoisomerase IV

encoded by ParC and ParD
are targets of this group of

drugs.

Fluoroquinolones are broad-spectrum

drugs; however, they are more active

against the Gram-negative bacteria like

Enterobacteriaceae.
Gram-positive bacteria- Staphylococcus
are variably susceptible. Marbofloxacin and

pradifloxacin are more effective against

Gram-positive bacteria.

Pseudomonas is not invariably susceptible.

Besides, this group is effective against

Pasteurella multocida, Mannheimia
haemolytica, Histophilus somni and other

intracellular organisms - Rickettsia spp.,

Chlamydia, and Mycobacterium spp. and

Mycoplasma spp

BRDC, septicemia, UTI, gastroenteritis,

Enrofloxacin is effective against many Rickettsia

but not against Ehrlichia CRD in poultry

CIA VCIA Decreased permeability,

efflux pumps, altered targets,

plasmid-mediated resistance

were recorded. Mutation in

the quinolone resistance

determining region – gyrA,

ParC and ParE is responsible

for decreased affinity of

quinolones or

fluoroquinolones to gyrase

and topoisomerase.

Peptides

Bacitracin (avi, bov, lep, sui)

Colistin

Bacitracin kills the bacteria

by interfering with cell

membrane function,

suppressing cell wall

formation and inhibiting

protein synthesis in the

presence of divalent cations,

such as zinc.

Colistin or polymixin interacts

with LPS of Gram-negative

bacteria leaving a porous

cell-membrane and

eventually cell-death.

Bacitracin is mainly effective against

Gram-positive bacteria

Colistin is useful in digestive diseases by

Gram-negative infections

Bacitracin is useful in necrotic enteritis in poultry.

With the concerns over selection of

drug-resistant bacteria, use of colistin and

Bacitracin Methylene Disalicylate (BMD) is under

scrutiny and has been banned by various

countries including India.

Colistin (CIA) VHIA Colistin-resistance is

mediated by changes in the

overall charges LPS of the

bacterial cell membrane

brought about by plasmid

mediated gene mcr or
alternation in two component

signaling system.

Resistance to bacitracin

is rare.

Ionophores

Lasalosid (avi, bov, lep, ovi)

Maduramycin (avi)

Monensin (avi, api, bov, cap)

Salinomycin (avi, lep)

Naracin (avi)

Semiduramicin (avi)

Ionophores cause ion

imbalance in bacterial cell

making them energy deficient

Mainly used in treatment of coccidiosis

In ruminants, it decreases methane production

and better utilization of carbohydrate and protein

utilization. Ionophores are also useful in liver

abscess and rumen acidosis or bloat as they

prevents propionic acid production.

VHIA Bacteria may become

temporarily

ionophores-resistant by

shedding out of cell

membrane or by forming a

glycoprotein armor

(glycocalyx) around their

body (Russell and Houlihan

2003).

(Continued)
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USE OF ANTIMICROBIALS IN THE
AGRI-FOOD CHAIN AND COMPANION
ANIMALS

Vegetable Production
Some antibiotics are used to protect profitable fruits, vegetables,
ornamental plants, and crops from bacterial diseases. The
manure used in green houses and soils acts as an additional
source of antimicrobial residue for fruits and vegetables which
should be treated before direct use (manure composting or
aerobic treatment). Although the studies could not detect
any AMR-associated bacteria in vegetables as such (23),
residues of tetracycline, virginiamycin, tylosin, monensin, and
sulfamethazine could be detected in vegetables (24) and in green-
house soil following manure application (25). The untreated
irrigation water used for the production of vegetables, fruits, and
crops was identified to contain AMR determinants (tet, pAmpC)
in South Africa, which is an indirect indication, although the
precise AMU data for vegetable production is not available in
LMICs (26).

Food Animals
In food animals, antimicrobials are used for several purposes
such as therapy, prophylaxis, metaphylaxis, and promotion
of growth. Therapeutic usage of antimicrobials is difficult
to discontinue, as it not only saves the animal’s life but also
decreases the zoonotic pathogen load in the environment
and reduces methane production by livestock (monensin)
(27). Nevertheless, the use of CIAs should be optimized and
should only be allowed only in emergency or special infectious
conditions, like higher generation or potentiated cephalosporins
(cefoperazone, ceftiofur, ceftriaxone, cefquinome) in the
treatment of septicemias, respiratory infections, and mastitis;
aminoglycosides in septicaemias, severe digestive, respiratory,
and urinary tract infections and in Pseudomonas aeruginosa
infections; fluoroquinolones in the treatment of septicaemias,
respiratory, and enteric diseases; and macrolides in Mycoplasma
infections in pigs and poultry, Lawsonia intracellularis in pigs,
and hepatic abscess in cattle due to Fusobacterium necrophorum
[Table 1, (28)].

Use of colistin, the last resort antibiotic in human medicine,
in poultry and pigs in China recently caused the emergence of
colistin-resistant bacteria possessing the novel resistance gene
mcr-1 (29). Furthermore, other variants of mcr were found
in animals and humans, viz., mcr-2, mcr-3, mcr-4, and mcr-5
(30). China and India recently banned the use of colistin as
a growth promoter in food animals (31, 32). Prophylaxis or
prevention is the administration of antimicrobials to healthy
animals considered to be at risk to prevent the future occurrence
of infection, while the prophylactic use in healthy food animals,
including poultry, is not yet scientifically validated (prohibited
in Europe), except in blanket therapy. Prophylactic antibiotic
use should not be a substitute for improper biosecurity and
inadequate husbandry conditions of the farms. Metaphylaxis
refers to the use of antimicrobials in the infected and healthy
but at risk animals of the same herd to prevent the spread of
the infection. It is preferred in large herds where separation of
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TABLE 2 | Characteristics of selected veterinary important antifungals.

Antifungal Mechanism of action Indications Resistance mechanism

Griseofulvin Interaction of griseofulvin

with mitotic spindles leads

to cell cycle arrest and finally

cell death.

Treatment of dermatophytosis

Effective against Microsporum spp.,

Trichophyton spp., and Epidermophyton

Many are not responsive to

griseofulvin due to the intrinsic

resistance owing to the absence of

energy dependent uptake of the drug

is present in many fungus

Azole compounds

Imidazole

Clotrimazole (can, fel),

Miconazole (can, fel)

Ketoconazole (can, fel)

Triazoles

Fluconazole (avi,equ, can,

fel)

Voriconazole (avi, equ,

can, fel)

Impairs the ergosterol

synthesis by inhibition of

lansosterol C14

demethylase enzyme

(CYP51A/Erg11p)

Ketoconazole: Effective against Candida,
Malassezia pachydermatis, C. immitis, H.
capsulatum, and B. dermatitidis and most

dermatophytes

Useful in canine blastomycosis, histoplasmosis,

cryptococcosis, and coccidioidomycosis

Itraconazole and fluconazole are more effective

than ketoconazole. Proven efficacy of

itraconazole against Aspergillosis and in

Malassezia dermatitis gives it an edge over

ketoconazole.

Voriconazole is also effective against

Aspergillus and Fusarium

Generally, miconazole used as topical agent

(cream or spray) in canine dermatophytosis.

Systemic use of clotrimazole is limited because

of poor oral absorption. However, topical

administration is effective in otitis externa

caused by Malassezia pachydermatitis.
Clotrimazole is effective in nasal aspergillosis

and caniduria in small animals.

Increased biosynthesis of lanosterol

C14α-demethylase, mutation at the

target site (ERG11), efflux pump

mediated drug expulsion and

alternate pathways to replace

ergosterol with other compounds are

the major azole-resistance

mechanisms.

Terbinafine (avi, can, fel) Inhibits ergosterol

biosynthesis by interacting

squaline epoxidase enzyme

Dermatophytosis, topical forms are useful Terbinafine resistance is uncommon;

however, mutation of squalene

epoxidase was recorded to mediate

such resistance in clinical isolates of

dermatophytes.

Polyene compounds

Nystatin

Natamycin

Amphoterecin B

Binds with ergosterol of the

fungal plasma membrane

causing leakage of essential

nutrients and cell death.

Nystatin as topical agent, oral and intestinal

candidiasis

Natamycin is useful in keratomycosis, nasal

aspergillosis, guttural pouch mycosis and

dermatophytosis in horses.

Amphoterecin B: Histoplasma capsulatum,

Cryptococcus neoformans, Coccidioides
immitis, Blastomyces dermatitidis, Candida
spp., and various species of Aspergillus.

Mutation in ERG3 gene which is

responsible for ergosterol

biosynthesis leads to incorporation of

other sterols in plasma membrance

and polyene fails to act on them.

healthy animals from infected ones is difficult based on clinical
signs and rectal temperature (33).

The growth promotion effect of antimicrobials in animals
is doubtful as it is observed that satisfactory effects can be
produced only during the early stages of animal production
or in sub-optimal hygiene conditions (34). Many non-MIA,
such as bacitracin, bambermycins, and carbadox, are currently
used for growth promotion. Although following the immediate
ban of antibiotics as growth promoters in Europe, a few
clinical conditions, such as post-weaning scours, occurred in
pigs with higher frequency (35). The meta-analysis showed that
the restriction of antibiotics as growth promoters in animals
reduced the occurrence of antimicrobial-resistant bacteria in
animals and humans having close contact with the animals, but
the analysis could not reveal the effect on the community (36).
Other studies could not establish any strong evidence that the

restriction of antibiotic use in animals reduced the occurrence of
antimicrobial-resistant bacteria in the human population (37).

Use of MIA in animals for growth promotion, prophylaxis,
and even metaphylaxis is considered as inappropriate
antimicrobial usage (IAMU) by international agencies such as
the World Health Organization (WHO), Food and Agricultural
Organization (FAO), andWorld Organization for Animal Health
(OIE). Recently,WHO recommended complete cessation ofMIA
use in healthy animals for prophylaxis or growth promotion (19).
Among the MIA sold for animal production, tetracycline and
penicillin constitute 32% and 6% of total sale on weight basis in
the United States, 29% and 25% in European Union, 51% and 8%
in Canada, 47% and 12% in Japan, and 9% and 9.8% in Australia,
respectively. Cephalosporins are the MIA used with the lowest
share (> 1%) among the sold antibiotics for animal production in
the studied countries (38). Non-therapeutic antimicrobial use is
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common among food animals, like prophylactic intramammary
antimicrobial infusion in the form of penicillin or β-lactam in
dairy animals, macrolides in beef feedlot cattle for respiratory
illness, and tylosin in beef calves to prevent liver abscesses.
Likewise, tylosin and tetracyclines are common antibiotics
used as feed additives in 88% of the growing pigs in the USA
(39). In the USA, about 74% of farm-animals that received
antibiotics were in feed and 21% in the drinking water, and
the sale of medically important antibiotics was three-time
higher in the animal sector than in human beings (40). There
is a considerable deficit of data on AMU in food animals,
including poultry, from LMICs due to a lack of national-level
surveys (41). The systematic study revealed the maximum use
of tetracyclines followed by aminoglycosides, beta-lactams,
macrolides, arsenicals, fluoroquinolones, ionophores, penicillins,
polymyxins, polypeptides, and sulfonamides, but species-level
consumption data from LMICs are largely unavailable (42).
China exponentially increased the use of antimicrobials for
animal production from 6 million kg in 2001 to 84.2 million
kg in 2013, which is substantially higher than the United States
and Europe (43). Tetracycline and penicillin constitute 33 and
20%, respectively, of total MIA sale for animal production
in the Republic of Korea (38). Southeast Asia (SEA) is a
group of rapidly developing LMIC (except Singapore, Brunei,
and Laos) that shares a linked economy through export of
aquaculture (Vietnam, Thailand, and Indonesia) and poultry
(Thailand) products (44). The meta-analysis of the literature
published from SEA (mostly Vietnam and Thailand) identified
the use of amoxicillin in most of the farms, followed by
enrofloxacin, norfloxacin, doxycycline, ampicillin, colistin,
neomycin, gentamicin, tylosin, trimethoprim, florfenicol,
erythromycin, chloramphenicol (although banned in Vietnam),
sulfamethoxazole, and chlortetracycline for the production
of pigs, chicken, and fish (45). The quantitative analysis
revealed therapeutic use of 46mg of antimicrobial compounds
(penicillin, lincosamide, quinolone, and sulphonamides with
trimethoprim) per kg of live pig and 52–276mg per kg of live
chicken in pig and poultry farms in Vietnam (23). For growth
promotion, 286.6mg and 77.4mg of antimicrobials were used
with feed to produce 1 kg of pork and chicken, respectively.
The feeds of chickens and pigs in SEA mostly contained
non-MIA groups of antibiotics, such as bacitracin (15–24% of
feed formulations), enramycin (enduracidin), and florfenicol,
except a single study from Vietnam which identified critically
important antibiotics (colistin, amoxicillin, and neomycin) in
chicken feed (25). Many of the antibiotics that are being used
in food-animals for non-therapeutic purpose are not clinically
relevant in human medicine but they may still confer cross
or co-resistance to MIAs. Further, many of the antibiotics,
like colistin (polymyxin), ardacin, avoparcin (glycopeptides),
and virginiamycin (streptogramins), were classified as highest
priority antimicrobials (polymyxin and glycopeptides) or highly
important antimicrobial (streptogramins) (46). The global
average annual consumption of antimicrobials per kilogram
of animal produced was 45 mg/kg, 148 mg/kg, and 172 mg/kg
for cattle, chicken, and pigs, respectively (24). The World
Organization for Animal Health (OIE) estimated the amount of

antimicrobial agents used in animals and detected an increase
from 98.97 mg/kg in 2014 to 144.39 mg/kg in 2016 (47). Further
increases in animal protein demand during and post the COVID
period to boost immunity will increase meat production with
higher intensity. Country-specific AMU surveillance data will
allow for the scenario to be realistically predicted.

Companion Animals
Companion animals are not directly linked to the human food
chain and possibly manage to escape the hunt for AMR drivers
across the globe, although isolated studies on AMR bacteria
surveillance have indicated the tip of the iceberg (48). With
growing concern in modern society over pet welfare, more and
more affluent families started treating pets almost like family
members. Veterinary hospitals dedicated to pets have cropped
up, especially in urban areas of LMICs. Keeping pace with the
increasing pet-health care facilities, the use of antimicrobials
has also increased substantially and multi-drug resistant bugs,
like MRSA, methicillin-resistant Staphylococcus intermedius
(49), carbapenem-resistant Enterobacteriaceae (CRE), and even
colistin-resistance E. coli, are also being detected in China
(50). The last group reported a steady increase in recovery of
MDR and β-lactam- and fluroquinolone- resistant E. coli from
pet animals in China over 5 years (2012–17), possibly due to
increased β-lactam usage in pet clinics. The situation became
catastrophic during the COVID period due to non-availability
of qualified companion animal practitioners (associated with
prolonged lockdown in few countries), over-prescription in
telehealth consultations without laboratory-based diagnosis,
easy accessibility of medicines from online pharmacies, and
the preference for human antibiotics for their better quality
and easy availability, especially during the break-down of
the pharmaceutical supply chain. More elaborative studies are
needed to address the issues in LMICs.

Aquaculture
In LMICs, open water aquaculture systems, such as ponds, are
subjected to heavy pollution due to domestic and household
activities, wastewater discharge, animal activities, and livestock
manure fertilization. The pollution can significantly impact
the microbial community and diversity of the pond water
(51). Aquatic bodies are at the receiving end where untreated
human and animal wastage manure are dropped and the aquatic
bodies become ideal hosts for bacterial flora (52). Antimicrobial
resistance genes (ARGs) are being exchanged across the bacterial
species irrespective of their source and host specificity (53)
(Figure 1). Antibiotics are applied en masse (metaphylactic) in
fish as individual treatment is impractical, which also exposes
the non-targets to such treatment (54). Fish generally excrete
out most of the antibiotics into the water and sediment due to
poor gut absorption and the waterbodies become storehouses for
antibiotics, which exert selection pressure on the microflora (55).
In the aquatic environment, transduction facilitates the lateral
transfer of ARGs like β-lactamase (56) and humans can pick
up resistances faster from aquatic sources than from terrestrial
animals. Prophylactic use of antimicrobials in intensive/semi-
intensive aquaculture is on the radar, since prolonged and
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FIGURE 1 | Transmission of antimicrobial resistance genes between the environment and animal/human compartments. The arrows indicate the flow of antimicrobial

resistance genes.

repeated use, even at a low concentration, is sufficient to exert
selection pressure on the bacterial community to maintain their
“resistome” and their spillover to human beings (57). Asian
countries share the majority of global fish production, with
China alone contributing to more than 60%. Little is known
about the amount of AMU in aquaculture, particularly in
LMICs due to a lack of strict monitoring, however, it varies
depending upon geographical areas, climate, disease prevalence,
and other socioeconomic factors. A single hatchery in Bangladesh
experiences about 80 kg of antibiotics per cycle, a recent study
reported (58). In Vietnam, about 72% of aquaculture farms used
∼3.3 g of antimicrobial per kg of fish/shrimp product in the form
of pre-medicated feed (59). Metal-based antifouling compounds
(biocides) which are in use in aquaculture to prevent or treat
bacterial or parasitic diseases may confer co- or cross- resistance
to many antimicrobials (60). Fish are the most affordable source
of protein in LMICs, with low cholesterol and high fatty acids,
as they are cheaper price than beef, chevon, or poultry meat. An
increased protein demand to boost immunity during the COVID
period, especially in infants, children, and the elderly, can be met
by fish due to their easy digestibility. This increased demand will
boost the commercial aquaculture farms, possibly encouraging
the use of more antibiotics.

HOUSEHOLD USE OF ANTIMICROBIALS

Various scientific and medical bodies relied upon alcohol-
based hand rub and handwashing with soap water as the most
effective tools to combat the recent emergence of the COVID

virus. Meanwhile, various commercial sanitizers, most of which
contain medically important disinfectants, flooded the market
with claims to effectively decimate the virus. The possible link
between the use of disinfectants and the development of AMR
received wide attention when the Food and Drug Administration
(FDA) banned the use of triclosan in antibacterial soap (61).
Sodium hypochlorite, commonly used in household cleaning or
sewage decontamination and chlorination of water, has been
on the news recently for its controversial use in purportedly
eliminating coronavirus from the human body. Chlorination-
induced oxidative injury was reported to increase resistance in
Pseudomonas aeruginosa against ceftazidime, chloramphenicol,
and ampicillin by 1.4–5.6-fold through overexpression of the
MexEF-OprN efflux pump (62). Benzalkonium chloride (BAC)
is a quaternary ammonium used as a preservative in eye, ear,
or nasal drops. Lately, BAC was found to induce resistance
even against last-resort antibiotics like polymyxin (63). There
are reports of other quaternary ammonium compounds at sub-
inhibitory concentrations affecting the susceptibility of E. coli
strains to diverse antimicrobials, such as phenicol compounds,
β lactams, and quinolones (64). There is conflicting evidence
on the role of alcohol-based hand sanitizers (ABHS) in the
spread and development of antibiotic-resistant bacteria. The
repeated and prolonged use of ABHS may lead to the rise of
alcohol-tolerant Enterococcus faecium in hospital environments
due to mutations in carbohydrate uptake and regulation genes
(65). Use of alcohol hand rubs was also reported to facilitate
the growth of multidrug-resistant strains of Acinetobacter
baumannii (65).
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CATEGORIES OF ANTIMICROBIAL
RESISTANT BACTERIA PREVALENT IN
AGRI-FOOD CHAIN AND COMPANION
ANIMALS IN LMICs

Livestock-Associated Methicillin-Resistant
Staphylococcus aureus (LA-MRSA)
Livestock-associated methicillin-resistant Staphylococcus aureus
(LA-MRSA) is an emerging pathogen that has been detected
all over the world and, like many other bugs, its presence and
spread are supported by the AMU and hygiene in addition
to some other under-reported/poorly investigated factors like
farm size, farming system, use of disinfectants, and in-feed
zinc (66). Initially reported in animals, LA-MRSA is being
increasingly reported in human beings; prolonged and frequent
exposure of the farm-workers increased the risk of zoonotic
transmission. Reservoir animals as asymptomatic carrier cannot
be detected unless screened for MRSA, which is not under a
routine surveillance program in any of the LMICs. Thus, we need
to rely on the sporadic reports available from these countries. A
number of studies fromChina demonstrated LA-MRSA infection
as an occupational hazard for pig-farm workers (67), although
such a possibility is very low (68). However, depending upon
the prevailing farming style, nasal colonization of LA-MRSA
in pig handlers may vary country wise (i.e., 5.5% in Malaysia,
15% in China, and 19.2% in Taiwan) (69). Unlike European
and North American countries, which witnessed wide-spread
detection of ST-398 clonal type of LA-MRSA, ST-9 predominates
in the Asian continent. The majority of the LA-MRSA strains
belong to SCCmec type IV and V and were frequently co-
resistant to tetracycline and lincosamide, mediated by tet and erm
genes, respectively (70), and glycopeptide-resistance remained a
rare finding (71). MRSA needs special attention, as previously a
SARS-CoV epidemic caused a significant rise in MRSA infection,
especially in patients who required ventilation support (72).
The recent episode of COVID19 may also produce a similar
situation, as a large number of patients, especially with comorbid
conditions, required ventilation support in the ICUs.

Cephalosporin Resistant Bacteria
Due to mutated or modified penicillin binding protein
(PBP2a), MRSA are resistant to all β-lactam drugs, including
cephalosporins. The Gram-negative bacteria (GNB), which are
cephalosporin-resistant mainly through the production of β-
lactamase or cephalosporinase- like AmpC type β-lactamase
(ACBL) and extended-spectrum β-lactamase (ESBL), have
become a cause of concern for their global spread, high
infectivity, and associated mortality. Food and companion
animals being the reservoir of ESBL or ACBL producers can put
people in contact with them or consumers at significant risk. Due
to abysmal public health infrastructure and poor hygiene, LMICs
are overburdened with neonatal sepsis and healthcare-associated
infections (73), with a heavy load of such drug-resistant
pathogens in hospitals and communities (74). About 22% of
healthy humans from Southeast Asia were found to harbor ESBL-
producing bacteria in their gut-which is much higher than the

global average (14%) (75). Increased contact with food animals
is often assumed as an important underlying determinant for
this higher ESBL colonization in Asian and African population
(76). A number of studies from LMICs implicated food-animals
as important reservoirs of ESBLs, however, their role in human
infection cannot be confirmed. In contrast, chickens were
reported to acquire ESBL resistance from water contaminated
with human sewage through integrated farming, which is a
common practice in many parts of Southeast Asia (77). In
cows, ESBL-producers with multiple CTX-M variants were
reported from mostly fecal sources and mastitic milk with a
preponderance of CTXM-1 and CTXM-15 variants. Among
other common types of the ESBLs in bovines from various LMICs
were SHV-180, OXA-10, SHV-5 (Turkey), SHV-12 (Turkey and
Egypt), SHV-180 (India), OXA-30 (Egypt), and TEM (India)
(78). A number of studies conducted by our group revealed the
presence of some ESBL variants in bovine mastitis wherein we
could not trace any known ESBL genes by PCR screening –
existence of a novel ESBL mechanism in this part cannot be ruled
out (79, 80). Cattle manure is widely used as biological fertilizer,
which increases the chance of environmental dissemination
of ESBLs from a fecal source. Separate studies conducted by
our group revealed the presence of ESBLs in broilers or birds
kept exclusively for meat (81, 82) but not in backyard poultry
reared by a large section of resource-poor farmers in India (83).
Likewise, ESBLs and ACBLs were frequently detected in poultry
from the developing countries of Asian (84, 85), African (86),
and European (87) regions. Importantly, pigs, which form a
favorite and affordable dish in many protein-hungry countries,
were reported to carry ESBL determinants (88–90). The ESBL
detection rate was much higher in chicken meat (∼93%) than
meats from other animals, such as pork, beef (∼35%), and
fish/shrimps (∼29%), in a study conducted onmultiple species in
Vietnam; possibly contamination with the caecal flora and poor
disinfection measures led to this higher detection rate (91).

Carbapenem Resistant Bacteria
Carbapenems, due to their exceptional ability to withstand
drug-resistance mechanisms like ESBLs, have remained
an automatic choice of clinicians for treating refractory
infections caused by ESBL-producing GNB. The emergence of
carbapenem-resistance, which is often transmitted via mobile
genetic elements, has far-reaching and rippling consequences,
particularly in countries like India (92), China, and other
Southeast Asian countries (50, 93) with heavy loads of ESBL
infection in the healthcare setting. Carbapenem resistant
Enterobacteriaceae (CRE) has serious repercussions in LMICs
like many other bugs and infections, as it makes the poor
vulnerable due to their lack of access to healthy environments,
hygiene, and safety measures. Poor socio-economics put people
at higher risk of contracting carbapenem-resistant pathogens
(93) and, like many other bugs, this high priority pathogen
was found to emanate amid poverty, violence, discrimination,
and weak governance – key characteristics of LMICs (94).
Fortunately, carbapenem is never chosen by veterinarians
for treating food animals, possibly because of the cost and
regulations putting a bar on its use. This is probably why
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carbapenem resistance has been rarely reported among food
animals, particularly from LMICs. However, animals can also
be exposed to such drugs or bugs in the environment through
contaminated and untreated wastewater discharges from
hospitals; a lack of proper AMR surveillance in LMICs may be
an important reason for the underreporting of CRE in food
animals. In India, in two separate instances, bovine mastitis was
reported to carry NDM-5 producing E. coli (95, 96). Further, two
different studies – one in Algeria (97) and another in the Jiangsu
province of China (98) - reported NDM-5 producing E. coli and
NDM-5 producing K. pneumoniae. Again from China, recently,
another study reported an NDM-5-producing Escherichia coli
strain in poultry (99), indicating an insidious spread of CRE
across food animals; however, proper surveillance is required to
unveil it. Arguably, NDM-5 seems to predominate in animals
- not only in food animals as discussed above, but also in pets
as reported from three continents: Africa (100), Asia (50), and
North America (101). Recent analysis of the COVID scenario
indicated how resistant pathogens, such as carbepenem-resistant
and cephalosporin-resistant Enterobacteriaceae, may complicate
the SARS-CoV2 pneumonia (102). Overenthusiastic antibiotic
therapy in managing COVID patients and chemoprophylaxis
may promote these pathogens further.

Colistin Resistant Bacteria
Colistin, a near abandoned drug due to its nephrotoxicity, has
once again begun gaining attention for its usefulness in treating
extremely drug-resistant pathogens like carbapenem-resistant
Enterobacteriaceae (103). Plasmid mediated colistin-resistance
(mcr) was first reported from China, linked with the use of
colistin in pig and poultry farming (29). Surprisingly, colistin was
not a banned drug in veterinary practices even in many high-
income countries (HICs) until the emergence of mcr. Till date,
mcr and its different allelic variants have been reported from
pigs, poultry (104), cattle (105), and companion animals (106),
but not in human beings. Colistin-resistance was known to be
mediated by chromosomal modification in the two component
regulatory system or deletion ofmgr (107); however, the plasmid-
mediated colistin-resistance has struck the medical community
for the possibility of its rapid spread. Since its initial detection in
2016 from China, plasmid-mediated colistin-resistance has been
reported from different LMICs, such as Egypt (108), India (109),
Vietnam (110), Brazil (111), and Argentina (106). Importantly,
as the whole world is searching for an effective weapon against
coronavirus, an in silico model predicted the ability of colistin to
interfere with the function of novel coronavirus by interacting
with the viral aminoacid residue pockets (Thr24-Asn28 and
Asn119) through hydrogen bonds (112).

ROLE OF ANIMAL/POULTRY FARMS AS
RESERVOIR OF AMR BACTERIA IN LMICs

The human population is expected to grow by 50% by the year
2050 (113), with consequential increases in the demand for food.
In LMICs, consumer preference shifted toward animal protein
from vegetables, consistent with enhanced income, urbanization,

and demographic and lifestyle changes (114). While the global
meat consumption is expected to rise by 76% between 2,000 and
2,050, the rise in LMICs is more than 200% due to an increased
population with enhanced per capita consumption (115). Only
in South-East Asian (SEA) countries is the demand for poultry
projected to increase by 725% between 2,000 and 2,030 (116).

Industrial Food Animal Production (IFAP)
The Industrial Food Animal Production (IFAP) has witnessed
a massive growth to meet the rising demand for animal
protein. Because of intensive rearing, higher stocking density,
zero-grazing, overdependence on MIA and non-MIA for
therapy, prophylaxis and growth promotion, and poor waste
management (117), IFAP is not without hazards, such as
offensive odors, increasing risk of zoonoses, including AMR,
and non-communicable disorders such as stress, hypertension,
and cognitive impairment among animal handlers and people
in the surrounding community (118). The only benefit of IFAP,
as argued by the Brazilian Government, is less environmental
degradation, such as reduced deforestation (119).

In LMICs, due to the rising demand and expansion of
multi-national food production companies, the IFAP is slowing
replacing the small-scale backyard/household rearing system
(120). IFAP is preferred particularly in urban areas of countries
like Ethiopia, Uganda, and Vietnam that experience a shortage
of land and water (121). A lack of stringent regulations and
monitoring increased the non-therapeutic use of antimicrobials
in farms (mostly pig and poultry) in several LMICs, such as China
(122), Vietnam (123), Ethiopia (124), Uganda (125), Kenya (126),
Mexico (127), and Myanmar (128).

The persistence of antimicrobia- resistant bacteria in IFAP
settings is associated with several factors, such as AMU, co-
resistance, cross-resistance with heavy metals, bacterial fitness,
mixing of new and old animals, vectors or reservoirs of bacterial
infection, vertical and pseudo-vertical transmission, and cleaning
and disinfection (129). Even animal transport vehicles and flies
originated from IFAP play a major role in the transmission of
AMR into the community (130).

Backyard Farming
Unlike the developed world, LMICs are largely dependent
upon small-scale backyard farming and as a result are
more environment-friendly; backyard farming is regarded
as sustainable even after meeting the rising demand for
animal protein. As the animals are kept in small flocks or
herds and maintained in a free-range system with occasional
supplementations of raw vegetables with minimum manpower,
backyard farming poses a relatively low risk for zoonotic
transmission (131). However, small-scale backyard farming
(chicken and pigs) is converting rapidly into “medium- to large-
scale” backyard faming bymaking agreements with different food
companies (“contract farming”).

In general, backyard farming is operated with minimal
antimicrobial intervention, replaced instead by indigenous
technical knowledge (ITK) or lower generation cheaper
antibiotics (132). Sporadic studies in different LMICs (Tanzania,
Ecuador, Vietnam, Ghana, Bangladesh, and Cambodia)
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revealed the usage of antimicrobials like oxytetracycline,
penicillin, erythromycin, enrofloxacin, and trimethoprim-
sulfadozine by “medium- to large-scale” backyard pig and
chicken farmers (77, 133), based on personal experience or
communication without veterinary oversight. The lack of costly
higher generation cephalosporin usage in backyard household
poultry was reflected in the absence of extended spectrum
beta-lactamase determinants in Salmonella and E. coli isolated
from backyard layers in India (83, 134).

The use of AMUs by farmers in backyard farms is influenced
by their capacity to detect the diseased animals, the farmer’s
expertise and attitude toward the disease-associated risk, and
the cost-benefit analysis of treatment (135). The cheaper variety
of the antimicrobials is always preferred, although sometimes
it is unsafe due to compromising with the quality, especially
in LMICs. The overall prevalence of low-quality medicine was
estimated to be 13.6% in LMICs, and further, 12.4% of the
antibiotics were substandard or falsified (136). The annual
market for unregistered and poor quality veterinary drugs in
Africa is estimated to be equal to the registered drug market (400
millionUS dollars) (137). The bacterial population exposed to the
poor quality veterinary medicine is not wiped out completely due
to sub-therapeutic dosages and the ineffective release of drugs,
and the left over bacteria may remain as a resistant population
with subsequent transmission (138).

MITIGATION STRATEGY

Substitution of AMU
AMU is the single most important driver for AMR; therefore,
attempts are being made to slowly reduce or phase out
antimicrobials in veterinary medicine. However, substitution of
antimicrobials has short-term economic implications resulting
from substantial loss of production and higher morbidity or
mortality. In any case, if such measures compromise food
security, that may have devastating impacts in poor, highly
populous, and resource-deprived countries. An early warning
system based on a local epidemiological database and regular
health check-ups of the animals may allow us to detect
the disease early and thereby prevent its spread to other
animals in the herd or adjoining areas. Thus, widespread
chemoprophylaxis that becomes indispensable in any outbreak
may be avoided. This needs to be revisited in the face of the
COVID outbreak, with several pets and wild animals having
tested positive for SARS-CoV-2, like cats, dogs, tiger, lions, minks,
ferrets, hamster, bats, and macaques. In addition, preventive
non-antimicrobial strategies which include- timely vaccination,
appropriate biosecurity measures, proper nutrition and housing
may reduce the demand for preventive antimicrobial therapy.
The adoption of herd-specific control measures to minimize the
occurrence of diseases like mastitis may be helpful to promote the
prudent use of antimicrobials (139).

Various alternative ways, like reducing meat consumption,
capping the amount of antimicrobials per year per kilogram of
animal product, and making antibiotics expensive by taxation,
were proposed to cut down AMU in food animals (140). Some
sort of economic shield in the form of insurance packages or

incentives to safeguard the loss arising out of any infectious
diseases in the farm may psychologically motivate farmers to
use antibiotics more judiciously (135). Making the meat from
antibiotic-treated animalsmore expensive and labeling suchmeat
packages with its source (from antibiotic-treated animals) is
another way to discourage consumers and to indirectly reduce
AMU (141).

The alternative anti-infective strategies, such as nano-
material based anti-infective particles, enzymes, antimicrobial
peptides, quorum sensing quenchers, efflux pump inhibitors,
clay, predatory bacteria, teat sealants, and antimicrobial
photodynamic therapy, are in the pipeline to be evaluated at a
field level. The supplementation of essential oils and spices as
an alternative to antimicrobials was reported to have beneficial
health effects in poultry (142, 143). However, the performance
of essential oils still needs to be clinically tested in various
conditions and they may not be equally effective against the
Gram-negative pathogens because of inherent tolerance (144);
the absence of maximum residue levels (MRL) data regarding
those essential oils in food animals has to be checked.

Raising Awareness Among Farmers
FAO referred to farmers as “important frontline defenders” for
the vital role they can play in stemming the spread of AMR by
adopting good hygienic farm operations. Increasing awareness
among farmers by imparting basic knowledge may help reduce
the unnecessary and indiscriminate AMU in food animals (104);
however, it can only be successful if adequate financial support
and insurance packages are given to recuperate any loss in
livestock farming (145). In most of the LMICs, small and
marginal farmers often suffer huge economic losses due to disease
outbreaks for meager investments on biosecurity and farm
hygiene; these psychologically disadvantaged farmers can then be
easily misled about the purported efficacy of antimicrobials for
growth promotion and disease prevention by the unscrupulous
push-sell of drug-marketing agencies. Inadequate veterinary
healthcare facilities and limited drug regulations increase the
magnitude of the problem in LMICs and, without reshaping
these, efforts to bring sustainable change in farmers’ behavior,
knowledge, attitude, and practices may be futile (145). Changing
farmers’ behaviors or increasing their awareness for appropriate
AMU in food animals requires multiple supportive measures,
like incentives to the farmers raising livestock without antibiotics,
subsidized insurance to make up for losses, the implementation
of strict drug regulation, and the establishment of a strong
network of veterinary healthcare facilities accessible to rural
farmers in LMICs. The mobile veterinary clinic was introduced
by the Government of India to reach out to the country’s
remote corners.

Implementation of Government Legislation
FAO underscored strong government legislation as the most
important component in addressing the overuse, misuse, or
abuse of antimicrobials that accounted for the rise in AMR.
Such legislations are essential for defining the responsibilities and
duties of all the stakeholders, and for the sustainability of the
policies and technical objectives aimed at reducing AMR.
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Drug regulatory agencies of European countries and the FDA
implemented strong regulations by banning the prophylactic and
growth-promoting use of antimicrobials in food animals and
capping the limit of CIA/HIA in the veterinary sector. Many
countries (Japan, the USA, Colombia, Denmark, the Netherlands,
and Sweden) fixed national targets to reduce AMU in livestock.
Nevertheless, any kind of regulatory endeavor is still at a primary
stage in many of the LMICs (146); only a few could successfully
implement such regulations or advisories given the prevailing
socio-economic scenario, public administrative constraints, and
absence of political commitment/goodwill in these countries.
Therefore, emphasis on education, awareness, and training of all
stakeholders, particularly the end users, might be more effective
in LMICs (147).

Surveillance of AMU and AMR
Surveillance on AMR pathogens and AMU is undeniably the
key driving force for controlling AMR, with WHO suggesting
this point in the global action plan on antimicrobial resistance
(GAP), which still remains the authentic source of information to
fight against AMR. Many of the HICs (Norway, Japan, Denmark,
Canada, the USA, Finland, the Netherlands, and France)
have articulated national surveillance programs (NORM-VET,
JVARM, DANMAP, CIPARS, NARMS, FINRES-VET, NethMap-
MARAN, ONERBA- RESAPATH, and SWEDRES-SVARM) and
the policies on AMU in animals are tailored based on the
data generated from their networks. Such is not the case in
LMICs, as most of them have no surveillance in place to monitor
the antimicrobial consumption in animals. The government of
India adopted the NAP on AMR and strongly recommended
the need for a strong regulatory framework for restricting the
AMU in animals. A Pan-India Network – ICAR-Indian Network
for Fisheries and Animal Antibiotic Resistance (INFAAR) was
initiated by the Indian Council of Agricultural Research in
collaboration with FAO to cater to the objectives laid down in
India’s NAP on AMR. A lack of robust infrastructural support
crippled by financial constraints remains the most pressing
challenge for the establishment and proper functioning of a
robust surveillance system on AMR/AMU in LMICs. On the
contrary, Ashley et al. (148) proposed to tap the large amount
of data generated by academic institutes and private laboratories
to indirectly and passively monitor the problem in these areas for
the time being.

Drug-Repurposing Strategy
The COVID19 panorama has been an eye-opener for scientists
worldwide; when there are no or limited therapeutic choices, with
a new drug or effective vaccine still a long way off, the only option
left is to experiment with the existing modalities. The whole
world is frantically searching for a solution through drugs such
as hydroxychloroquine, azithromycin through ivermectin (149),
famotidine (150), flavipiravir (151), and remdesivir (152). This is
the same situation with novel antimicrobials as the plausibility
of a new drug to hit the market in the near future is remote.
Even if it comes to market, how long it will be effective for is not
clear. The search for new antimicrobials is impeded by the huge

investment requirement, time lag, and reluctance of pharma-
leaders recently shifting their focus toward cheaper strategies
like the repurposing of drugs which involves less time and
investment. No such study has been conducted on repurposing
of drugs in the veterinary sector. However, veterinary drugs were
tried for repurposing; fenbendazole was found to be effective
against non-small cell lung cancer cells (153) by microtubule
destabilization and inhibition of glucose uptake. Likewise,
isoxazoline was found to be promising in human vector-borne
diseases. Many anthelmintic compounds of the salicylanilide
family-niclosamide, oxyclozanide, rafoxanide, and closantel -
demonstrated antibacterial properties against a wide range of
pathogens -methicillin-, vancomycin-, linezolid-, or daptomycin-
resistant Staphylococcus aureus, Clostridium difficile, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii,
and Helicobactor. Avermectins were tested successfully against
Mycobacterium and MRSA. Likewise, an antifungal property was
reported for mebendazole. Trials with a few NSAIDs (Celecoxib,
aspirin, ibuprofen, and tacrolimus) against a few bacterial and
fungal pathogens turned out hopeful (154). A number of
studies were conducted using anticancer drugs to repurpose
as antibacterial, 5-fluorouracil and gallium nitrate were found
to be effective against MDR A. baumanni and Pseudomonas.
Tamoxifen, floxuridine, and streptozotocin exhibited appreciable
antibacterial activity against Staphylococcus isolates.

However, the dose of the repurposed drugs is comparatively
higher when used as an antimicrobial, so the pharmacokinetic
profiles changes abruptly which necessitates a clinical revaluation
and toxicity testing. LMICs, where the burden of infection is quite
high, can provide ample scope for such trial and testing with
funding support from international agencies.

Pivotal Mitigation Strategy to Be Focused
in Post COVID Period
The pos- COVID scenario might be associated with a rise in
AMR in human and animals due to more stress on antibiotic-
dependent healthcare systems to combat secondary bacterial
infections. Interruptions of antibiotic stewardship programs in
hospitals and communities, prescription with antibiotics for
COVID patients misdiagnosed with bacterial bronchitis, over-
prescription in telehealth consultations, and easy accessibility
of medicines from online pharmacy are just a few key factors
associated with AMR identified during the pandemic (155).
Enhancement of the immune system with an increased animal-
based protein diet was promoted by governments and non-
governmental organizations throughout the world during the
pandemic. It will further increase the demand for animal
protein, which may enhance the growth promotional use of
antimicrobials in IFAPs.

Antimicrobial resistance is mostly dependent on the use of
antibiotics in humans, agri-food chains, and companion animals,
and the use of antibiotics is largely regulated by human instinct
(156). The knowledge, attitude, and practice of the AMU by all
types of prescribers and farmers varies a lot between developed
countries and LMICs, which will be further modified with added
complexities during a post-pandemic period. The qualitative
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and quantitative survey should be established at a national level
in LMICs to explore the behavioral basis of AMU during the
post-COVID period. A national level monitoring system should
be established for the quantification of AMU categorically in
different species of animals, birds, fish, and agri-products to
detect the risk factors for the emergence of any change in
resistance pattern post the pandemic. The quantification of
AMU will develop a benchmarking system with an immediate
identification of the top-level user, although reduction of AMU
is not always directly correlated with reduction of AMR, as
it is a multi-factorial issue (as described earlier). More farm-
level molecular epidemiological studies in livestock, poultry,
and aquaculture to identify the reservoir of resistant bacteria,
categorize the resistance determinants, establish the correlation
between resistance determinants and true resistance againstMIA,
explore the environmental resistome, and explore the wildlife
as carrier of resistant bacteria are in dire need. A holistic one

health approach based intervention strategy incorporating all

the local stakeholders of each LMIC is required to address the
complex issue after identification of the major driver which may
vary between the member countries and during the pre- and
post-pandemic periods. The one health approach to address the
AMR issue might be an easier process during the post-COVID
period as several international collaborative groups were already
created during the pandemic and, moreover, political will and
subsequently more research and development investments by
governments to address health-related issues is expected to save
the human population.
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The presence of the plasmid-mediated colistin resistance encodingmcr gene family in the

Enterobacteriaceae is one of the crucial global concerns. The use of colistin in livestock

rearing is believed to be the cause of mcr gene spreading and is of impact to public

health. The objective of this research was to detect the frequency and virulent genes of

mcr-positive Escherichia coli (MCRPE) in fecal samples from healthy pigs in a contract

farming system across Thailand. A total of 696 pooled samples were derived from 80

farms, located in 49 provinces across six regions of Thailand. The colistin-resistant

E. coli were identified by MALDI-TOF mass spectrometry and antimicrobial susceptibility

testing by broth microdilution. The antibiogram was determined using an automated

susceptibility machine, and the genetic characteristics were investigated for mcr-1–5

genes, phylogenetic group, replicon types, and virulent genes. In total, 31 of 696

samples were positive, with E. coli containing mcr-1 or combination of mcr-1 and

mcr-3 with incidence of 4.45 and 0.43%. Phylogenetic groups A and B1 and the

IncF and IncFIB replicon types were predominantly found in the MCRPE located in

the central area, with multidrug-resistant traits against 3–14 types of antimicrobials.

Additionally, 19 of 31 isolates identified as enterotoxigenic E. coli were with the stap

and stb (enterotoxin-encoding genes). In conclusion, a low carriage rate of mcr-positive

E. coli was detected in the large-scale farming of healthy pigs. The association between

multidrug-resistant MCRPE and their pathogenic potential should be of concern.

Keywords: colistin resistance, Escherichia coli, mcr genes, pigs, virulent factor

INTRODUCTION

Antimicrobial resistance (AMR) is an emerging concern for both human and animal sectors of
the world. The inappropriate use of antimicrobials in clinical settings and, most importantly, in
livestock farming imposes social and economic burdens on society (1). The diminishing number
of active (effective) antimicrobial agents to treat sick farm animals is accompanied by the downfall

46

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2020.582899
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2020.582899&domain=pdf&date_stamp=2020-11-10
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nuvee.p@chula.ac.th
https://doi.org/10.3389/fvets.2020.582899
https://www.frontiersin.org/articles/10.3389/fvets.2020.582899/full


Khine et al. Porcine Colistin Resistance Escherichia coli

in food production and the likelihood of exposure of farmers to
resistant bacteria. Escherichia coli, a commensal microbe, can
accumulate resistance genes. It is widely used as a representative
example for monitoring resistance genes, especially for
horizontal gene transfer (2). Therefore, the assessment of
mobile genetic elements from commensal E. coli could highlight
the AMR transmission between hosts (3).

Colistin is a cationic antibiotic that has long been regarded
as a last resort antibiotic for Enterobacteriaceae infections.
However, the widespread use of colistin in animal production
acts as a selective pressure for the spread of plasmid-mediated
colistin resistance genes, which are in the mcr family. The first
discovery of plasmid-mediated colistin resistance (mcr-1 gene)
in E. coli from China raised an enormous attention globally
and was followed by the subsequent discovery of other mcr
resistance genes, including mcr-2, mcr-3, mcr-4, and mcr-5, in
different geographical areas (4). Recently, another four colistin
resistance genes (mcr-6,mcr-7,mcr-8, andmcr-9) were identified
mainly from members in the Enterobacteriaceae family (5–8).
Among them, mcr-1 is the most frequently detected in farmed
animals and from Enterobacteriaceae infections in humans (9).
These reports raised awareness upon colistin usage, especially in
livestock animals.

In Thailand, over 80% of pig farming systems are contract
farming between the primary producers and the agribusiness
companies, for the latter to procure a certain pre-agreed quality
and quantity of products at an economical price and is lesser from
the primary producers. Antimicrobials including colistin are
feed additives or prophylactic agents, including colistin, against
bacterial infections in pig farms under veterinary prescription
(10). Although there have been a few reports regarding a high
prevalence (60–90%) of multidrug-resistant (MDR) E. coli in pigs
in Thailand, the antimicrobials used on the farms have not always
been clearly defined (11). Since colistin resistance is the crucial
epidemiological data of public health concern, monitoring the
prevalence of colistin-resistant E. coli and their characteristics is
of high priority. The objective of this study was to characterize the
antibiogram and virulent traits of mcr-positive E. coli (MCRPE)
from the fecal samples of healthy pigs derived from the contract
farming system across Thailand.

MATERIALS AND METHODS

Study Area and Animal Selection
Samples were collected from 80 farms, in 49 provinces across
six regions of Thailand, comprised of 15, 5, 12, 7, 4, and 6
provinces from central, northern, northeastern, eastern, western,
and southern Thailand, respectively. Farms were selected based
on the available management data, including the antimicrobial
usage, housing, vaccination, feed type, and production cycle.
However, all historical data was allowed as inclusion criteria for
farm selection only but not allowed to be included in the analysis.
A total of 696 pooled fecal samples (5–10 samples per farm) were
collected from individual 18- to 20-weeks-old fattening pigs with
a normal clinical appearance and no recent history of enteric
disease or therapeutic antimicrobial treatment.

Sample Collection and Bacterial
Identification
At least 5 g of feces per pig was collected into a sterile container
and kept at 4◦C until processed. Then, the fecal samples
were homogenized and mixed to get pooled fecal samples
with a total mass of 25 g. Then, 5 g of well-mixed feces was
collected and diluted 10-fold using sterile 0.85% (w/v) NaCl.
Dilutions of 10−7-10−8 were spread on eosin methylene blue
agar (Oxoid, UK) plates containing 2µg/ml colistin sulfate
(Sigma-Aldrich, USA) to select for the presumptive colistin-
resistant E. coli. The biohazard execution control was approved
by the Institutional Biosafety Committee of the Faculty of
Veterinary Science, Chulalongkorn University (IBC 1731021).
One representative colony with typical E. coli morphology was
picked and subcultured to get pure culture. The E. coli species
was confirmed using matrix-assisted laser desorption ionization
combined with time-of-flight analysis (MALDI Biotyper, Bruker,
USA). The principle behind MALDI-TOF is based on mass
spectrometry and “soft” ionization technique. Depending on the
time of flight of each pathogen, the characteristic spectrum will
be analyzed and displayed via the inbuilt software. Briefly, the
bacterial colony sample was smeared as a thin film directly
on a target plate and then coated with 1 µl polymeric matrix
(a saturated solution of α-cyano-4-hydroxycinnamic acid in
50% acetonitrile and 2.5% trifluoroacetic acid) and air-dried at
room temperature. This matrix could penetrate the cell wall of
microorganisms and able to extract proteins. The target plate
was placed into the mass spectrometer and irradiated by a laser.
Afterwards, themolecules vaporized and ionized at the same time
into the vacuum and transported to the detection device. Lastly,
the computerized database results compared with the reference
library database were generated with interpretations (12).

Antimicrobial Susceptibility Determination
and mcr Gene Detection
For colistin, the broth microdilution procedure was performed
according to the Clinical and Laboratory Standards Institute
(CLSI) recommendation (13). The plasmid-mediated colistin
resistance genes (mcr-1–5) were detected by multiplex (m)PCR
using GoTaq R© Green Master Mix (Promega, USA) and the
previously reported primers and PCR conditions (14). The E.
coli strain CUP13 (15), which is positive for mcr-1 and mcr-
3 (confirmed by Sanger sequencing), and ATCC25922 were
used as positive and negative controls, respectively. Briefly, the
thermocycling conditions were performed at 94◦C for 15min,
followed by 25 cycles of 94◦C for 30 s, 58◦C for 90 s, and 72◦C
for 1min, and then followed by 72◦C for 10 min.

The minimal inhibitory concentration (MIC) of antimicrobial
agents against the E. coli isolates was determined using the AST-
GN 38 test kit in a Vitek2 compact automated susceptibility level
detection apparatus (BioMérieux, France). The antimicrobial
groups selected were synchronized with veterinary guidelines
(16). Justification of the antibiotics chosen is for AMR
monitoring and for the purpose of public health awareness
such as the second generation of cephalosporin, aminoglycoside,
fluoroquinolone, and carbapenem. E. coli ATCC 25922,
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Pseudomonas aeruginosa ATCC 27853, and Staphylococcus
aureus ATCC 25913 were used as the control strains. The
antimicrobials selected were amikacin (AK), amoxicillin (AMX),

amoxicillin/clavulanic acid (AMC), ampicillin (AMP), cefalexin
(CEX), cefpodoxime (CPD), cefovecin (INN), ceftiofur (XNL),
chloramphenicol (C), enrofloxacin (ENR), gentamicin (GEN),

FIGURE 1 | Geographical distribution of either colistin resistant or susceptible E. coli from the surveyed contracted pig farms in Thailand.

FIGURE 2 | Distribution of resistant rates against 18 antimicrobials and presence of extended- spectrum beta-lactamase (ESBL) characteristic among 105

colistin-resistant E. coli isolated from contracted pig farms in Thailand.
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imipenem (IMP), marbofloxacin (MBR), nitrofurantoin (NIT),
piperacillin (PIP), tetracycline (TET), tobramycin (TOB), and
trimethoprim/sulfamethoxazole (SXT). The MIC interpretations
will be reported according to Food and Drug Administration
(FDA) (17), CLSI (13), and EUCAST values (18). The isolates
that presented an extended-spectrum beta-lactamase (ESBL)
phenotype were confirmed with a double disc synergy test and
phenotypic disc confirmatory test as previously reported (19).

Phylogenetic Grouping
The MCRPE isolates were determined using an approved mPCR
identification of their phylogenetic groups and subgroups (A, B1,
B2, C, D, E, and F) as reported (20). Each reaction was performed
in a 25-µl mixture containing 12.5 µl of GoTaq R© Green Master
Mix (supplied with Taq polymerase), 20 pmol of each primer,
and 200 ng of genomic DNA. The E. coli ATCC 25922 and E.
fergusonii CUVET427 (21) strains were used as the controls.

Plasmid Replicon Typing
The Enterobacteriaceae plasmid replicons IncF (IncFIA, IncFIB,
IncFIC, and IncFrep), IncI1-Ig, IncN, IncP, IncW, IncHI1,
IncHI2, IncL/M, IncT, IncA/C, IncK, IncB/O, IncX, and IncY

were detected using five mPCR and three simplex PCR tests.
The primers, PCR conditions, and thermal cycles were applied
as previously reported (22). Briefly, PCR amplifications, except
the F-simplex, were thermal cycled at 94◦C for 5min, followed
by 30 cycles at 94◦C for 1min, 60◦C for 30 s, and 72◦C for 1min,
and then followed by 72◦C for 5min. The F-simplex PCR was
performed with the same amplification program except at an
annealing temperature of 52◦C. Positive control samples were
provided and used as reported (21).

Detection of Virulence Genes
The sets of mPCR and simplex PCRs were performed as
previously reported (23), with the positive control strains taken
from the previously sequenced enterotoxigenic E. coli (ETEC)
and enterohemorrhagic E. coli (EHEC) strains (24). Primers
specific for the StaP (heat-stable toxin a subdivide p), Stb
(heat-stable toxin b), Stx2e (Shiga toxin), K88 (Fimbriae), F4
(Fimbriae), and Ltb (heat-labile enterotoxin b subunit) genes
were used. The PCR assays were prepared with GoTaq R© Green
Master Mix (Promega, USA) and thermocycled at 94◦C for
10min, followed by 30 cycles of 94◦C for 30 s, 55◦C for 45 s, and

TABLE 1 | Antibiograms of the 31 MCRPE isolates distributing in 26 pattern types.

Pattern Profile Number of resistant ABOs Isolate(s)

A AMX–AMP–PIP–CEX–CPD–INN–XNL–GEN–ENR–MBR–TET–C–NIT–SXT* 14 1

B AMX–AMP–PIP–CEX–CPD–INN–XNL–IMP–AK–GEN–ENR–TET–C–SXT* 14 1

C AMX–AMP–PIP–CEX–CPD–INN–XNL–GEN–TOB–ENR–MBR–TET–C* 13 3

D AMX–AMP–PIP–CEX–GEN–TOB–ENR–MBR–TET–NIT–C–SXT 12 1

E AMX–AMP–PIP–CEX–CPD–INN–XNL–IMP–AK–C–SXT* 11 2

F AMX–AMP–PIP–CEX–CPD–INN–XNL–GEN–TOB–TET–NIT* 11 1

G AMX–AMP–PIP–CEX–CPD–INN–XNL–TET–C–NIT–SXT* 11 1

H AMX–AMP–PIP–CEX–CPD–INN–XNL–GEN–TOB–TET–C* 11 1

I AMX–AMP–PIP–GEN–TOB–ENR–MBR–TET–C–SXT 10 2

J AMX–AMP–PIP–CEX–CPD–INN–XNL–TET–C–SXT 10 1

K AMX–AMP–PIP–CEX–CPD–INN–XNL–GEN–TET 9 1

L AMX–AMP–PIP–CEX–ENR–MBR–TET–C–SXT 9 1

M AMX–AMP–PIP–ENR–MBR–TET–NIT–C–SXT 9 1

N AMX–AMP–PIP–CEX–ENR–MBR–TET–SXT 8 1

O AMX–AMP–PIP–ENR–MBR–TET–C–SXT 8 1

P AMX–AMP–PIP–GEN–ENR–MBR–TET–SXT 8 1

Q AMX–AMP–PIP–GEN–TOB–TET–C–SXT 8 1

R AMX–AMP–PIP–CEX–CPD–AK–TET 7 1

S AMX–AMP–PIP–CEX–TET–C–SXT 7 1

T AMX–AMP–PIP–TET–C–SXT 6 1

U AMX–AMP–PIP–GEN–TET–NIT 6 1

V AMX–AMP–PIP–TET–NIT 5 1

W AMX–AMP–PIP–TET–C 5 2

X AMX–AMP–GEN–TET 4 1

Y AMX–AMP–PIP–TET 4 1

Z AMX–AMP–TET 3 1

AMC, amoxicillin–clavulanic acid; AMP, ampicillin; AMX, amoxicillin; C, chloramphenicol; CEX, cephalexin; CPD, cefpodoxime; ENR, enrofloxacin; GEN, gentamicin; MBR, marbofloxacin;
PIP, piperacillin; SXT, trimethoprim/sulfamethoxazole; INN, cefovecin; AK, amikacin; IMP, imipenem; TET, tetracycline; XNL, ceftiofur; TOB, tobramycin; NIT, nitrofurantoin.
*ESBL.
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72◦C for 1.5min increasing by 3 s each cycle, and then followed
by 72◦C for 10 min.

Data Analysis
The colistin resistance rates are presented as percentages divided
by region and province in comparison of the rate with and

without the mcr genes, and the antimicrobial resistance profiles

are reported as the antibiogram patterns of mcr-positive E. coli.
The patterns of virulence gene profiles among MCRPE isolates
are presented in percentages. To define MDR and pathogenic
traits among the colistin-resistant E. coli, the relation between
AMR phenotypes and pathotype characteristics was analyzed
using Fischer’s exact test (p ≤ 0.05).

FIGURE 3 | The phylogroups detected among 31 MCRPE isolates in contracted pig farms in Thailand.

FIGURE 4 | Plasmid replicon types detected among 31 MCRPE isolates in contracted pig farms in Thailand.
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RESULTS

Distribution of Colistin-Resistant E. coli
Containing mcr Genes
A total of 105 colistin-resistant E. coli from the 696 samples
were isolated using the eosin methylene blue (EMB)media. From
the broth microdilution method, the MCRPE isolates had MIC
values of 4 (n= 17) or 8 (n= 14)µg/ml. From the PCR detection,
the mcr-1 gene was found in 31 of these 105 colistin-resistant E.
coli isolates, and among them, three isolates were found to also
express mcr-3. The distributions of colistin-resistant E. coli were
from central (5.4%) (Phetchabun, Nakhon Pathom, Ang-Thong,
and Lopburi), western (0.4%) (Ratchaburi), and eastern (1.4%)
(Chonburi) Thailand. The geographical distributions of E. coli
with or withoutmcr genes are shown in Figure 1.

Antimicrobial Susceptibility Testing
All 31 MCRPE were multidrug resistant (Figure 2), with all
being resistant to AMX, AMP, PIP, and TET, and over 50%
were resistant to CEX, INN, XNL, GEN, ENR, C, and the SXT
combination. No pan-drug resistance was detected among the

TABLE 2 | Presence of virulent profiles including toxin and antigenicity of the 31

MCRPEs.

Virulence genes ESBL (%) Pathotype(s) Number %

StaP–Stb–Stx2e 0 ETEC, EHEC 1 3.2

StaP–Stb–K88 3.2 ETEC 1 3.2

StaP–Stb 16.1 ETEC 13 41.9

StaP 3.2 ETEC 3 9.7

Ltb 0 ETEC 1 3.2

Negative 9.7 Non-pathogenic 12 38.7

ETEC, enterotoxigenic E. coli; EHEC, enterohemorrhagic E. coli; Stap, heat-stable toxin a
subdivide p; Stb, heat-stable toxin b; Stx2e, Shiga toxin; K88, Fimbriae, F4; Ltb, heat-labile
enterotoxin, b subunit.

MCRPE isolates. ESBL was found in 32.3% (10/31)mcr-1 positive
isolates. A total of 26 antibiogram patterns were recorded for
31 MCRPE isolates. Forty-eight percent (15/31) of these isolates
were MDR with resistance to six antimicrobial groups (Table 1).

Phylogenetic Grouping
Most isolates were from phylogenetic group A (51.6%), followed
by group B1 (29%) and groups E (12.9%), B2 (3.2%), and F
(3.2%) (Figure 3).

Plasmid Replicon Typing
The predominantly found plasmid replicons were of the IncF and
IncFIB replicon types at 80.6 and 61.3%, respectively. Plasmid
replicon types L/M, W, Y, A/C, T, and K were not detected in
this study (Figure 4). The other replicon types were found at low
prevalence rates among the MCRPE isolates, with IncX, IncB/O,
and IncHI1 being present at the lowest percentages (3.2%).

Characterization of the Virulent Factors
The virulent genes representing ETEC or EHEC were found
in 18 out of 31 (58.1%) MCRPE isolates (Table 2). The ETEC
strains possessed the StaP and Stb enterotoxin-encoding genes as
the most frequent pathotype, and one strain (from Phetchabun
province) showed a hybrid ETEC–EHEC genotype.

Relation Analysis Between Antimicrobial
Susceptibility and Pathogenicity
The association between antimicrobial susceptibility and
pathogenicity of the 31 MCRPE isolates was analyzed
by Fischer’s exact test (Table 3). No association between
pathogenicity and resistance to the six antibiotic groups
was found (fluoroquinolones, sulfonamides, tetracyclines,
nitrofurazones, phenicols, and aminoglycosides) (p = 0.28, 1.00,
1.00, 1.00, 1.00, and 0.15, respectively).

TABLE 3 | Relation analysis between MCRPE resistance to the other six antimicrobial groups and their pathogenicity.

Antimicrobial group Pathogenicity Resistant Susceptible p-value

Aminoglycosides Non-pathogenic 9 4 0.15

Pathogenic 7 12

Fluoroquinolones Non-pathogenic 7 6 0.28

Pathogenic 6 13

Tetracyclines Non-pathogenic 11 2 1.00

Pathogenic 17 2

Nitrofurazones Non-pathogenic 3 10 1.00

Pathogenic 4 15

Phenicols Non-pathogenic 9 4 1.00

Pathogenic 12 7

Sulfonamides Non-pathogenic 7 6 1.00

Pathogenic 11 8

Aminoglycosides: amikacin, gentamicin, and tobramycin; fluoroquinolones: enrofloxacin and marbofloxacin; tetracyclines: tetracycline; nitrofurazones: nitrofurantoin; phenicols:
chloramphenicol; sulfonamides: trimetroprim/sulfamethoxazole; pathogenic: ETEC, ETEC–EHEC; non-pathogenic: negative for virulence genes.
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DISCUSSION

This national-scale study of contract-farmed pigs in Thailand
confirmed the existence of colistin-resistant E. coli containing
mcr genes and that they showed diversity in their phylogenetic
group, replicon type, antibiogram, ESBL trait, and pathogenic
potential. All recruited contracted pig farms had strict historical
data and management records that can be traced back as
an essential inclusion criteria. The sample collection criteria
were set up and executed by the farm workers under the
authority of veterinarians. In this study, MALDI-TOF MS
was used for the identification and confirmation of bacteria
strains. This technique has emerged as a powerful technique
for the identification of microorganisms with an overall
95% accuracy at the species level. The main advantage of
MADLI-TOF is being able to identify bacterial species directly
from the culture plates as fast as 1 to 15min in a few
simple steps (12).

According to mPCR, our results indicated the lower resistance
rate of mcr-1 (4.4% or 31/696) when compared with a previous
report from healthy pigs in China (21%) (20). This study covered
all parts of Thailand where high-intensity pig farming is done.
Unfortunately, all the historical data could not be analyzed
due to the company’s policy. However, the positive areas were
distributed in the western, central, and eastern parts within a
radius of about 300 km. The distributions of colistin-resistant
E. coli were higher (15–30%) in Nakhon Pathom, Ratchaburi,
Chonburi, Lopburi, and Phetchabun provinces. These provinces
reported to have a huge number of pig farms and total number
of pigs. Colistin was legally use in pig feeds for prophylactic
purposes in Thailand until March 2018. The high percentage of
MCRPE isolates in certain provinces might come from prolonged
cumulative selective pressure from their history of colistin usage
in pig feeds. To the best of our knowledge, this is the first report of
mcr-1 gene in E. coli isolates from pigs in Thailand. Interestingly,
three of the mcr-1-positive isolates also co-expressed mcr-3.
These results could highlight the awareness of the distribution of
mcr genes and for the national policy of livestock immigration.
The mcr-1 genes have been widely shown to be distributed in
Asia, Europe, Africa, and America and primarily due to the
consequence of long-term colistin application in animals (25).
The mcr-3 gene was first reported in China in 2017 (26) and the
prevalence and spread of the mcr-3 gene in Thailand should be
carefully monitored from now on.

According to phylogenetic grouping, the majority of the

isolates in our study were in phylogroups A or B1, predominantly

related with commensal strains (27). On the other hand, for

the virulent E. coli groups, phylogroup D was not detected
in the current study and there was a low frequency of

phylogroup B2. Several studies have reported that phylogroups
B2 and D were associated with intestinal and extraintestinal
pathogenic E. coli as well as MDR strains (28, 29). Nonetheless,
even commensal E. coli from various phylogroups have been
reported to harbor pathogenicity islands that can serve as
integration sites for virulence and/or AMR determinants
(30) and so may facilitate in converting commensal strains
to pathogens.

With respect to plasmid replicon typing, the IncFIB and F
plasmids were the most commonly found replicon types in this
study. They are narrow host-range-type plasmids, which have
been reported in worldwide members of the Enterobacteriaceae
family, associated with various antimicrobial-resistant genes (31).
The mcr-1 and mcr-3 genes were previously described on the
IncI, IncHI2, and IncX4 plasmids (32). A variety of replicon types
were found in the MCRPE isolates in this study, which suggest
that themcr genes can locate and/or transfer to different plasmid
types. This is in accordance with a previous report that the mcr-
1 genes and ESBL could be co-transferred by more than one
type of conjugative plasmid, which might alleviate their effective
dissemination among bacteria (33).

The antibiogram profiles characterized among the MCRPE
isolates revealed that MDR was a common phenotype in this
study. E. coli resistance to beta-lactam and the tetracycline
antibiotic groups was very common in Thailand, and
aminoglycoside and fluoroquinolone resistance was found
to be varied in farm management such as using antibiotic
for prophylactic or treatment purposes (21). The MDR
traits among mcr-1-positive E. coli have been reported
frequently in pigs due to the usage of antibiotics in the
production cycle (34). Interestingly, ESBLs were found
at a high prevalence among the MCRPE isolates of this
study, which might due to co-selection under selective
pressure (33). Moreover, E. coli plasmids that harbor co-
localization of mcr-1 and blaCTX−M genes and/or mcr-1 and
blaNDM−5 genes have been reported previously (35). Genomic
characterization should be performed to resolve the reason for
this apparent correlation.

The presence of the Ltb, Stb, StaP, Stx2e, and K88
virulence genes in MCRPE isolates indicated that they also
had the potential to cause an infection. Thus, healthy pigs
could be an important reservoir of colistin-resistant ETEC.
Interestingly, one MCRPE isolate was found to be an ETEC–
EHEC hybrid strain. E. coli with highly virulent hybrid
pathotype strains had been reported previously both in
animals and human diarrhea patients (36). Since many of
the virulence genes of E. coli are carried on mobile genetic
elements, the genetic combination of these MGE resulted
in the emergence of STEC/ETEC hybrid strains in multiple
events (37). The recent finding of a clone of sequence
type (ST) 95 showing extreme drug resistance with a high
virulence potential underscores the need to monitor new
and emerging trends in antibiotic resistance development
in this important global lineage (38). On the other hand,
aminoglycoside- and fluoroquinolone-resistant E. coli seemed
to have a lower probability to act as an ETEC pathotype in
this study. Pathogenic E. coli tends to be more susceptible to
many antimicrobials (39). However, the mechanism is still not
elucidated and clonal typing should be included for a more
convincing analysis.

In conclusion, a low carriage rate of mcr-1 and mcr-3 co-
positive E. coli was detected in large-scale contract pig farms
in Thailand. The MCRPE isolates showed MDR E. coli and
most of the isolates contained virulence genes representing
an ETEC pathotype. These data provide an insight into the
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occurrence of colistin resistance among E. coli in healthy pig
carriages and their characteristics, in terms of virulence genes and
antibiograms. However, genomic characterization of mcr genes
found in Thailand is required for further study.
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Enterococci are ubiquitous microorganisms present in various environments and within

the gastrointestinal tracts of humans and other animals. Notably, fecal enterococci

are suitable indicators for monitoring antimicrobial resistance dissemination. Resistant

bacterial strains recovered from the fecal samples of wild animals can highlight important

aspects of environmental disturbances. In this report, we investigated antimicrobial

susceptibility as well as resistance and virulence genes in fecal enterococci isolated from

wild Pampas foxes (Lycalopex gymnocercus) (n = 5) and Geoffroy’s cats (Leopardus

geoffroyi) (n = 4) in the Brazilian Pampa biome. Enterococci were isolated from eight out

of nine fecal samples and Enterococcus faecaliswas identified in both animals. However,

E. faecium and E. durans were only detected in Pampas foxes, while E. hirae was only

detected in Geoffroy’s cats. Antimicrobial susceptibility analysis showed resistance to

rifampicin (94%), erythromycin (72.6%), ciprofloxacin/norfloxacin (40%), streptomycin

(38%), and tetracycline (26%). The high frequency of multidrug-resistant enterococci

(66%) isolated in this study is a matter of concern since these are wild animals with

no history of therapeutic antibiotic exposure. The tetM/tetL and msrC/ermB genes were

detected in most tetracycline- and erythromycin-resistant enterococci, respectively. The

gelE, ace, agg, esp, and clyA virulence genes were also detected in enterococci. In

conclusion, our data suggest that habitat fragmentation and anthropogenic activities in

the Pampa biome may contribute to high frequencies of multidrug-resistant enterococci

in the gut communities of wild Pampas foxes and Geoffroy’s cats. To the best of the

authors’ knowledge, this is the first report of antimicrobial-resistant enterococci in the

Pampa biome.

Keywords: Enterococcus spp., pampa biome, wildlife animals, Pampas fox, Geoffroy’s cat, multidrug-resistance,

virulence factors, antibiotic resistance genes
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INTRODUCTION

Brazil hosts six terrestrial biomes, which include the Amazon,
Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal biomes.
Notably, the Pampa biome covers 63% of Rio Grande do Sul State
and extend to Uruguay and the central region of Argentina (1–
3). The fauna of the Brazilian Pampa biome consists of 83 native
mammal species, of which some are endemic and/or considered
endangered species. Among the mammal species, Geoffroy’s cat
(Leopardus geoffroyi) (Felidae) and the Pampas fox (Lycalopex
gymnocercus) (Canidae) are listed as species of “least concern” in
the IUCN Red List of Threatened Species (4, 5). The main factors
contributing to the decline of these species are habitat destruction
and hunting (2, 6, 7). Farming activities have converted natural
areas of the Brazilian Pampa into agricultural and grazing lands,
with ∼48.7% of this biome now being used for plantation crops
(1, 3).

This biome has been suffering constant disturbances due to
anthropogenic impacts and the reduction of natural habitat has
forced wild animals to live near human settlements, which has
resulted in negative outcomes for wildlife conservation (8, 9).
Pampas fox and Geoffroy’s cat population density in Brazilian
Pampa biome is 0.2 and 0.27 ind/km2, respectively (10, 11).
Studies of wild canids and felids from the Pampa biome have
shown that these animals exhibit adaptability in foraging based
on prey availability, which can lead them to establish secondary
food sources on farms. They are known to consume domestic
vertebrates, fruit, insects, and carrion as well as to get food into
the farms trash (12–14). In the past year, various studies have
been published regarding habitat degradation and its effects on
the wildlife and environment of the Pampa biome; however,
studies evaluating the impact of multidrug-resistant bacteria on
the wildlife in this biome remain scarce.

Enterococci are ubiquitous microorganisms found in water,
soil, plants, and gastrointestinal tracts of wild animals, domestic
animals, and humans (15–19). This ubiquitous distribution has
been associated with phenotypic plasticity since they can tolerate
a wide range of temperature and pH and grow in the presence of
6.5% sodium chloride (NaCl) or 40% of bile salts (20). The genus
Enterococcus comprises at least 50 species (21). Among these, E.
faecalis is the predominant species in the gastrointestinal tracts
of mammals, followed by E. faecium, E. durans, E. hirae, and E.
mundtii (18).

Additionally, enterococci are considered opportunistic
pathogens in susceptible hosts. They cause urinary tract, wound,
and soft tissue infections as well as bacteremia (22, 23). Although
enterococci are considered a common cause of nosocomial
infections, they can also cause several diseases including bovine
mastitis, endocarditis, septicemia, and diarrhea in dogs, cats,
pigs, and rats (24). The treatment of enterococcal infections
has been complicated by the emergence of antibiotic-resistant
strains, which makes these infections an important public health
concern. Resistance to different classes of antimicrobials is a
hallmark of Enterococcus spp. since they are intrinsically resistant
to β-lactams, cephalosporin, lincosamides, streptogramins, and
aminoglycosides (25). Meanwhile, resistant strains are not
restricted to clinically known species since such strains have

been isolated from different environments, including wildlife
(15, 17, 19, 24, 26–30). Due to their remarkable ability to adapt
to the environment, ubiquity in gut and to acquire antibiotic
resistance determinants, enterococci have been employed
as sentinel organisms for resistance to antimicrobials with
Gram-positive activity.

Resistant bacterial strains recovered from wild animals
can highlight important aspects of microbial interactions and
environmental disturbances in wildlife (31, 32). Wild animals
can be considered sentinels for the emergence and spread of
antimicrobial-resistant bacteria in the environment. Therefore,
the present study evaluated the presence of resistant enterococci
in wild mammals aiming to detect previously unstudied variation
in antimicrobial resistance distribution patterns in these animals.
Additionally, to date, relatively few reports on antimicrobial
resistance strains have been produced based on samples from
wild canids and felids when compared to the number of
reports on domestic animals. This difference could largely be
explained by the migratory habits of some wild species and
the difficulty of obtaining samples from wildlife. To the best of
the authors’ knowledge, this is the first study of antimicrobial
resistance profiles and virulence genes in fecal enterococci
isolated from wild Pampas foxes and Geoffroy’s cats in the
Brazilian Pampa biome.

MATERIALS AND METHODS

Samples Collection
Rectal swabs were collected from wild Pampas foxes (n = 5) and
Geoffroy’s cats (n = 4) (Figure 1). The animals were captured in
two sites from Brazilian Pampa Biome, Rio Grande do Sul, Brazil.
The first site was located near to Candiota city (31◦33′06.73′′S;
53◦40′40.63′′W), proximal to Jaguarão river, and characterized by
intense agricultural, mining activity and roads; in this site, five
samples were obtained. The second site was located near Arroio
Grande city (32◦13′58.99′′S; 53◦05′11.75′′W), characterized by
forest fragments and agricultural activities; in this site, four
samples were obtained (Supplementary Table 1).

The capture, manipulation, and samples collections were
authorized by Brazilian Institute of Environment and Renewable
Natural Resources, IBAMA, Brasília, Brazil, and Chico Mendes
Institute for Biodiversity Conservation (ICMBio). The protocol
was approved by the Information Authorization System in
Biodiversity (SISBIO) number 0200 1.007 9 10 12006-32. The
animals were captured with the assistance of Tomahawk traps
and anaesthetized via intramuscular (100 mg/mL of ketamine
hydrochloride and 20 mg/mL of xylazine hydrochloride).

Rectal swabs were collected by veterinarians, all animals were
clinically healthy (e.g., heart and respiratory rates and body
temperature) and were classified according to gender and age
group. Rectal swabs were collected from the perirectal area,
stored in Stuart transport medium (Kasvi, Paraná, Brazil), and
transported to our laboratory for microbiological analyses. After
sample collection, the animals were returned to their habitats. All
animals were in health conditions.
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FIGURE 1 | Wild Pampas fox (Lycalopex gymnocercus) (A) and Geoffroy’s cat (Leopardus geoffroyi) (B) during their capture in the Brazilian Pampa Biome. Source:
Felipe Peters.

Isolation and Identification of Enterococci
Isolation of enterococci was performed as described previously
(17). Rectal samples were inoculated in 9mL of azide dextrose
broth (Himedia, Mumbai, India) and incubated for 24 h at 37◦C.
Aliquots of 1mL were placed in 9mL of saline water, and initial
samples were further diluted 10-fold to obtain a final dilution
factor of 1/1,000. From each dilution, 100 µL was inoculated in
brain heart infusion (BHI) agar plates (Himedia, Mumbai, India)
supplemented with 6.5% NaCl.

Since enterococci are present in high concentrations in fecal
samples, typically between 105 and 107 CFU/g, we randomly
selected 10 colonies from each fecal sample. Phenotypic criteria
(size/volume, shape, color, Gram staining, catalase production),
and bile esculin reaction were used to separate the enterococci
group and the non-enterococcal strains. Selected pure colonies
were stored at −20◦C in a 10% (w/v) solution of skim milk
(Difco, Sparks, MD, USA) and 10% (v/v) glycerol (Neon
Comercial Ltda).

Bacterial species identification was performed by matrix-
assisted laser desorption and ionization time-of-flight mass
spectrometry method (MALDI-TOF) technique applied to
Enterococcus (33). MALDI-TOF analysis was performed using
a LT Bruker microflex mass spectrometer (Bruker Daltonik
GmbH) and spectra were automatically identified using
BrukerBioTyperTM 1.1 software. The identification by MALDI-
TOF MS is based on the score value released by the equipment.
A higher or similar 2.3 value indicates that the identifications of
genus and species are reliable. 2.0–2.29 show that the genus is
reliable and the species is probable. 1.7–1.99 values indicate that
the identification of genus is probable.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility of all strains was determined
by Kirby-Bauer disk diffusion method, according to Clinical

and Laboratory Standards Institute (34). Twelve antibiotics
were tested: ampicillin 10 µg (AMP), vancomycin 30 µg
(VAN), erythromycin 15 µg (ERY), tetracycline 30 µg
(TET), ciprofloxacin 5 µg (CIP), norfloxacin 10 µg (NOR),
nitrofurantoin 300 µg (NIT), chloramphenicol 30 µg (CHL),
gentamicin 120 µg (GEN), linezolid 30 µg (LNZ), rifampicin 5
µg (RIF), and streptomycin 300 µg (STR). Reference strain E.
faecalis ATCC 29212 was used as control.

Intermediate and resistant-strains were included in a single
category as resistant-strains. Strains were classified as single (SR),
double (DR) or multidrug-resistant (MDR) phenotype when
showed resistance for one, two, and three or more antimicrobial
classes, respectively (35).

Detection of Resistance and Virulence
Genes
Genomic DNA was extracted by a physicochemical method
as previously described (36). The presence of resistance
and virulence genes commonly observed in clinical and
environmental enterococci was tested by PCR (Table 1). The
resistance-related genes evaluated were: ermB (which encodes
a ribosomal methylase that mediates macrolides, lincosamides
and type B streptogramins resistance); msrC (which encodes
for a macrolide and streptogramin B efflux pump); tetM and
tetS (which encodes for tetracycline resistance via a ribosomal
protection protein mechanism); and tetL (which encodes for
tetracycline resistance via efflux pumps proteins). As well the
virulence genes tested were: ace (adhesin to collagen of E.
faecalis); cylA (cytolysin); agg (aggregation substance); gelE
(gelatinase); and esp (enterococcal surface protein).

Amplifications were carried out in a total volume of 25 µL
containing: 100 ng of template DNA, 1 X reaction buffer (Ludwig
Biotechnology), 0.4µM of each primer (Ludwig Biotechnology),
1.5mM MgCl2, 200µM of dNTPs (Ludwig Biotechnology),
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TABLE 1 | Primers used in the PCR reactions carried out for detection of resistance and virulence genes.

Gene Nucleotide sequence (5′-3′) ATa (◦C) Size (bp)b References

Erythromycin

ermB_F GAAAAGGTACTCAACCAAATA 52 645 (37)

ermB_R AGTAACGGTACTTAAATTGTTTAC

msrC_F AAGGAATCCTTCTCTCTCCG 52 342 (38)

msrC_R GTAAACAAAATCGTTCCCG

Tetracycline

tetL_F ACTCGTAATGGTGTAGTTGC 58 627 (26)

tetL_R TGTAACTCCGATGTTTAACACG

tetM_F GTTAAATAGTGTTCTTGGAG 52 656 (39)

tetM_R CTAAGATATGGCTCTAACAA

tetS_F TGGAACGCCAGAGAGGTATT 58 660 (39)

tetS_R ACATAGACAAGCCGTTGACC

Adhesion

ace_F AAAGTAGAATTAGATCACAC 56 320 (40)

ace_R TCTATCACATTCGGTTGCG

Cytolysin

cylA TE17 TGGATG’ATAGTGATAGGAAGT 56 517 (41)

cylA TE18 TCTACAGTAAATCTTTCGTCA

Biofilm

esp 46 TTACCAAGATGGTTCTGTAGGCAC 60 1198 (42)

esp 47 CCAAGTATACTTAGCATCTTTTGG

Gelatinase

gelE_F ACCCCGTATCATTGGTTT 50 402 (41)

gelE_R ACGCATTGCTTTTCCATC

Aggregation

agg TE3 AAGAAAAAGAAGTAGACCAAC 62 1553 (41)

agg TE4 AAACGGCAAGACAAGTAAATA

aAT, annealing temperatures; bbp, base pair.

1U Taq DNA polymerase (Ludwig Biotechnology), and MilliQ
water. PCR amplifications were performed in the conventional
thermocycler (Applied Biosystems 2720 Thermal Cycler)
according to the following program: 94◦C for 5min followed by
35 cycles of 94◦C for 1min, appropriate annealing temperature
for each primer for 1min, extension at 72◦C for 1min, and a
final extension at 72◦C for 5min. The DNA fragments amplified
were analyzed in 1.5% (w/v) agarose gels stained with SYBR R©

Safe DNA Gel, and visualized on a photo-documenter.

RESULTS

In order to not overestimate the data referring to species
distribution and antimicrobial susceptibility profile, strains
isolated from the same animal with similar phenotypic and
genotypic characteristics, which could indicate clonal strains,
were grouped, generating a total of 50 strains, 30 from Pampas

foxes and 20 from Geoffroy’s cats. The number of isolates per
wild animal ranged from 5 (samples PF3, PF4 and GC1) to 9
(sample GC3).

Isolation and Identification of Enterococci
Enterococci were isolated from eight out of nine fecal samples.
Furthermore, 50 Enterococcus spp. strains were isolated and
characterized of wild Pampas fox and Geoffroy’s cat from the
Brazilian Pampa biome, including E. faecalis (64%; n = 32), E.
faecium (22%; n = 11), E. hirae (10%; n = 5), and E. durans (4%;
n= 2).

The species distribution between wild Pampas foxes and
Geoffroy’s cats are shown onTable 2. Changes in the composition
of Enterococcus species were detected in both animals. E. faecalis
was the most frequent species in fecal samples of both animals;
however, E. faecium and E. durans were isolated only in Pampas
fox and E. hirae just in Geoffroy’s cat.
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Antimicrobial Susceptibility Profile
All enterococci isolated from wild canids and felids were tested
for antimicrobial resistance, and almost all strains (98%, n
= 49) were resistant to at least one evaluated antimicrobial
agent (Table 3). Only one E. hirae isolated from Geoffroy’s
cat was susceptible to all antimicrobials tested. The highest
frequency was found for rifampicin (94%; n = 47), followed by
erythromycin (72%; n = 36), ciprofloxacin/norfloxacin (40%; n
= 20), streptomycin (38%; n = 19), and tetracycline (26%; n =

13). Resistance to nitrofurantoin (18%; n= 9); gentamycin (14%,
n = 7), and chloramphenicol (4%; n = 2), was noted in less
frequency. No strains showed a resistance profile to ampicillin,
linezolid and vancomycin.

The most remarkable result to emerge from the data is that
a high frequency (66%; n = 33) of MDR strains isolated from
wild canids and felids from Brazilian Pampa biome (Table 3).

TABLE 2 | Distribution of Enterococcus species among wild Pampas fox and

Geoffroy’s cat.

Number of species isolated

E. faecalis E. faecium E. hirae E. durans Total

Pampas fox PF1 4 1 0 1 6

PF2 2 5 0 0 7

PF3 2 3 0 0 5

PF4 2 2 0 1 5

PF5 7 0 0 0 7

Geoffroy’s cat GC1 5 0 0 0 5

GC2 0 0 0 0 0

GC3 9 0 0 0 9

GC4 1 0 5 0 6

Total 32 (64) 11 (22) 5 (10) 2 (4) 50 (100)

The percentages of double and MDR strains isolated from wild
Pampas fox (30%; n = 9 and 63.33%; n = 19) were similar to
wild Geoffroy’s cat (20%; n= 4 and 70%; n= 14). Of the 33MDR
strains, 15 (45.45%) were resistant to four ormore antimicrobials,
it is important to highlight that one E. faecalis strain isolated from
wild Pampas fox showed resistance to seven antimicrobials tested
(ciprofloxacin; chloramphenicol; erythromycin; streptomycin;
nitrofurantoin; rifampicin; tetracycline) (Table 4).

Frequency of Antimicrobial Resistance and
Virulence Related Genes
The resistance genes were investigated only in phenotypically
resistant erythromycin and tetracycline strains (Table 5). Of the
36 erythromycin- resistant, four (11.11%) harbored ermB and
nine (25%) msrC genes. Among the 13 tetracycline-resistant
enterococci, tetL and tetM genes were found in 7 (53.85%)
strains. None strain was positive to tetS gene.

All strains were tested for the presence of enterococci
commonly associated virulence genes. The Table 6 shows the
results of gelE, cylA, esp, ace, and agg genes. The highest
frequencies of virulence genes were found in E. faecalis and E.
faecium. The gelE (62%; n = 31) and ace (48%; n = 24) showed
elevated prevalence among these species. The agg gene (22%; n
= 11) was recorded only on E. faecalis strains. Otherwise, esp
and cylA genes were observed in just one E. faecium and E. hirae
strains, respectively.

DISCUSSION

Isolation and Identification of Enterococci
Relatively few studies have reported enterococci isolated from
wild canids and felids such as red foxes (43), Iberian wolves, and
Iberian lynx (44, 45). The results of the present study corroborate
with previous results showing that E. faecalis, E. faecium, E. hirae,
and E. durans are commonly encountered in the fecal samples of

TABLE 3 | Antimicrobial resistance profiles among enterococci isolated from fecal samples of wild Pampas fox and Geoffroy’s cat.

Strains (n)

Number (%) of resistant strainsa Profilesb

ERY CIP/NOR RIF STR GEN NIT CHL TET SR DR MDR

Pampas fox

E. faecalis (17) 13 (76.47) 7 (41.18) 16 (94.12) 7 (41.18) 4 (23.53) 3 (17.65) 1 (5.88) 2 (11.76) 1 (5.88) 5 (29.41) 11 (64.70)

E. faecium (11) 7 (63.64) 4 (36.36) 11 (100) 4 (36.36) 0 1 (9.09) 0 4 (36.36) 1 (9.09) 4 (36.36) 6 (54.55)

E. durans (2) 2 (100) 0 2 (100) 1 (50) 1 (50) 0 0 1 (50) 0 0 2 (100)

Subtotal (30) 22 (73.33) 11 (36.67) 29 (96.67) 12 (40) 5 (16.67) 4 (13.33) 1 (3.33) 7 (23.33) 2 (6.67) 9 (30) 19 (63.33)

Geoffroy’s cat

E. faecalis (15) 12 (80) 9 (60) 15 (100) 3 (20) 2 (13.33) 1 (6.67) 1 (6.67) 1 (6.67) 0 4 (26.67) 10 (66.67)

E. hirae (5) 2 (40) 0 3 (60) 4 (80) 0 4 (80) 0 5 (100) 1 (20) 0 4 (80)

Subtotal (20) 14 (70) 9 (45) 18 (90) 7 (35) 2 (10) 5 (25) 1(5) 6 (30) 1 (5) 4 (20) 14 (70)

Total (50) 36 (72) 20 (40) 47 (94) 19 (38) 7 (14) 9 (18) 2 (4) 13 (26) 3 (6) 13 (26) 33 (66)

aAntimicrobials: ERY, erythromycin; CIP, ciprofloxacin; NOR, norfloxacin; RIF, rifampicin; STR, streptomycin; GEN, gentamicin; NIT, nitrofurantoin; CHL, chloramphenicol; TET, tetracycline.
bProfiles: SR, single-resistance; DR, double-resistance; MDR, multidrug-resistance.
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TABLE 4 | Antimicrobial resistance phenotypic profile of Enterococcus sp.
isolated from fecal samples of wild Pampas fox and Geoffroy’s cat.

Profilea Antimicrobialsb Species

Number of resistances

PFc GCd

SR RIF E. faecalis 1

E. faecium 1

TET E. hirae 1

DR ERY/RIF E. faecalis 3 3

E. faecium 2

STR/RIF E. faecium 1

CIP-NOR/RIF E. faecalis 1 1

E. faecium 1

NIT/RIF E. faecalis 1

MDR CIP-NOR/ERY/RIF E. faecalis 3 4

E. faecium 1

CIP/STR/RIF E. faecalis 1

CIP/ERY/TET E. faecium 1

CIP/CHL/RIF E. faecalis 1

ERY/STR/TET E.durans 1

ERY/GEN/RIF E. faecalis 1

E. durans 1

ERY/STR/RIF E. faecium 1

STR/GEN/RIF E. faecalis 1

CHL/ERY/RIF E. faecalis 1

CIP/ERY/GEN/RIF E. faecalis 1

CIP/STR/GEN/RIF E. faecalis 2

CIP/ERY/STR/RIF E. faecalis 1 1

STR/NIT/TET/NOR E. hirae 1

STR/NIT/TET/RIF E. hirae 1

ERY/STR/GEN/RIF E. faecalis 1

ERY/STR/TET/RIF E. faecium 1

ERY/STR/NIT/TET/RIF E. faecium 1

E. faecalis 1 1

E. hirae 2

CIP/ERY/STR/GEN/RIF E. faecalis 1

CIP/CHL/ERY/STR/NIT/TET/RIF E. faecalis 1

aSR, single-resistance; DR, double-resistance; MDR, multidrug-resistance.
bAntimicrobials: ERY, erythromycin; CIP, ciprofloxacin; NOR, norfloxacin; RIF, rifampicin;
STR, streptomycin; GEN, gentamicin; NIT, nitrofurantoin; CHL, chloramphenicol;
TET, tetracycline.
cPF, Pampas fox (L. gymnocercus).
dGC, Geoffroy’s cat (L. geoffroyi).

wild and domestic canids and felids (31, 43–47). However, when
we verified the distribution of enterococci in Pampas foxes and
Geoffroy’s cats, we observed a higher frequency of E. faecalis than
those previously reported for wild red foxes, Iberian lynx, and
Iberian wolves (44, 45). Moreover, our results are comparable to

those of domestic canids and felids (31, 46, 47) since frequencies
of E. faecalis (64.9%), E. faecium (18.2%), and E. durans (6.5%)
were detected. This minor disagreement is supported by the
fact that the distribution of enterococci may vary according to
individual characteristics (e.g., species, age, and sex), habitat (e.g.,
seasonal variations and diet), and the geographic distribution of
the animals (20).

Enterococcal species prevalence varied according to the host
species studied. Although these species occupy the same area of
the Biome, several types of foods are available to them. Geoffroy’s
cat and Pampas fox are considered generalist omnivores that
opportunistically feed on a wide variety of foods. Pampas fox
has a diet dominated by animal prey, mainly wild mammals,
insects, while the Geoffroy cat feeds mainly on rodents and
hares, and also remains of fish and frogs alongside reptiles and
birds (48, 49). Thus, the distribution of Enterococcus species
among hosts observed in the present study can be justified by
the availability of the animals’ food, since enterococcal species
have been isolated from mammals, birds, fish, insects, and
reptiles (20).

Notably, it was not possible to isolate enterococci from one
of Geoffroy’s cat fecal samples. Previously, Santestevan et al. (50)
and Layton et al. (51) also sought to isolate enterococci from
mammalian fecal samples and were unsuccessful.

Antimicrobial Susceptibility Profile
The results of this study are consistent with previous studies,
which found high rates of resistance to erythromycin (65%),
ciprofloxacin (59.5%), and tetracycline (36.5%) in fecal
enterococci isolates from wild mammals, including wolves
and foxes (31). Some reports have detected enterococci resistant
to tetracycline and erythromycin in wild Iberian wolves,
Iberian lynx, and red foxes in Portugal (43–45). Additionally,
domestic canids and felids also harbored antimicrobial-resistant
enterococci (47, 52, 53).

While MDR enterococci strains have previously been
observed in enterococci isolated from wild mammals, their
resistance levels were not as high as those detected here.
In the present study, 66% of MDR was observed for wild
canids and felids from the Brazilian Pampa biome. The high
frequency of MDR strains may be associated with the proximity
of these animals to human activities since they are sentinel
species (i.e., indicators of danger to the environment). It is
commonly known that wild canids and felids are indifferent to
the presence of humans and often share the same environment.
Our results are in line with those of Nowakiewicz et al. (54),
who observed a high frequency of E. faecalis strains (44%)
among wild mammalian carnivores in Poland. On the other
hand, our data are six times higher than those detected by
Dec et al. (30). According to Hu et al. (55), MDR bacteria are
more commonly associated with environmental contamination
than naturally occurring genes. Moreover, studies of wild foxes
and carnivorous mammals revealed positive correlations with
environmental pollution and the abundance of resistant bacteria
in samples, thereby highlighting the selective pressures that
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TABLE 5 | Distribution of erythromycin- and tetracycline-resistance genes in the enterococci isolated from wild Pampas Fox and Geoffroy’s cat.

Strains
Number (%) of strains positive for resistance genes

Erythromycin Tetracycline

R* ermB msrC R* tetM tetL tetS

Pampa fox E. faecalis 13 0 5 (38.46) 2 0 0 0

E. faecium 7 0 3 (42.86) 4 0 0 0

E. durans 2 1 (50) 1 (50) 1 1 (100) 1 (100) 0

Subtotal 22 1 (4.55) 9 (40.91) 7 1 (14.29) 1 (14.29) 0

Geoffroy’s cat E. faecalis 12 1 (8.33) 0 1 1 (100) 1 (100) 0

E. hirae 2 2 (100) 0 5 5 (100) 5 (100) 0

Subtotal 14 3 (21.43) 0 6 6 (100) 6 (100) 0

Total 36 4 (11.11) 9 (25) 13 7 (53.85) 7 (53.85) 0

*Resistant strains.

TABLE 6 | Number (%) of virulence genes among enterococci isolated from wild Pampas Foxes and Geoffroy’s cat.

Pampas fox Geoffroy’s cat

Virulence genes E. faecalis (n = 17) E. faecium (n = 11) E. durans (n = 2) E. faecalis (n = 15) E. hirae (n = 5) Total (%)

gelE 12 (70.59) 5 (45.45) 0 14 (93.33) 0 31 (62)

cylA 0 0 0 0 1 (20) 1 (2)

esp 0 1 (9.09) 0 0 0 1 (2)

ace 12 (70.59) 7 (63.64) 0 5 (33.33) 0 24 (48)

agg 7 (41.18) 0 0 4 (26.67) 0 11 (22)

human activities and environmental disturbances exert on the
microbial communities of wildlife (31, 54).

The elevated frequency of resistant and MDR enterococci
observed in the fecal samples of wild Pampas foxes and
Geoffroy’s cats might be associated with anthropogenic activities.
Agriculture and livestock are the main economic activities
in the Brazilian Pampa and represents a source of food for
billions of people and animals (mainly cattle and sheep). Since
1998, many drugs have been prohibited from being used as
growth promoters in Brazil. In livestock, antimicrobials such
as amoxicillin, erythromycin and tetracycline are used by
veterinarians to treat bacterial infections (56). Despite bringing
benefits to production, the use of antimicrobials in animals has
fostered the emergence and spread of antimicrobial resistance.
Antibiotics and/or antibiotic-resistant bacteria can be secreted
with animal urine and feces and contaminate the environments
(soils, surface waters, and ground waters) and species inhabiting
these environments (57). In the presence of environmental
concentrations of antibiotics, bacteria face a selective pressure
leading to a gradual increase in the prevalence of resistance.
The association of antibiotic resistance genes in mobile genetic
elements is also an important factor for spreading and persistence
of antimicrobial resistance in the environment (58). It is
important to highlight that the impact created by the presence
of antimicrobial agents in the environment and the frequency
with which these resistance genes are transferred remains a

subject of academic and practical debate. Our results suggest
that the impacted environment occupied by Pampas foxes and
Geoffroy’s cats —with intense agricultural and livestock activities
in the sampling area—possibly contributed to the selection of
resistant bacteria in the environment and subsequent acquisition
of resistant strains by these mammals. Despite anthropogenic
activities, the presence of antibiotic-resistant strains in wild
animals may also be associated with the environmental
resistome, which is composed of genes that naturally occur
in the environment (59). One example is the genes associated
with the expression of efflux pumps, which protect cells
against toxic molecules such as heavy metals, expelling them
to the external environment and leading to antimicrobial
resistance (60).

Frequency of Antibiotic Resistance Genes
The ermB and msrC genes, conferring resistance to macrolides,
were present in 11.11 and 25% of isolates, respectively. The
low frequency of ermB genes detected in the present study
is congruent with the results obtained in previous studies
conducted on Enterococcus strains isolated from wild animals
(17, 18, 30, 50), as in regarding to msrC gene (28). Additionally,
we detected the presence of themsrC gene not only in E. faecium
but also in E. durans and E. faecalis. Although the msrC gene
is considered an intrinsic gene to E. faecium, some studies have
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noted the presence of this gene in other Enterococcus species such
as E. hirae and E. faecalis (30, 38).

In the present study, tetL and tetM genes were detected in
tetracycline-resistant enterococci strains. Previous findings of
enterococci in wild animals such as Iberian wolves and Iberian
lynx also harbored those genes in tetracycline-resistant strains
(44, 45). Some erythromycin- and tetracycline-resistant strains
did not amplify for the tested gene and may carry other antibiotic
resistance genes such as ermA, C, D, E, F, G, Q, msrA/B, other
tet-group genes, and the poxtA gene for tetracycline-resistance
(61). Our results point to the notion that other reported genes
could be associated with erythromycin-resistant enterococci
isolated from Pampas foxes and Geoffroy’s cats. Furthermore,
whole-genome sequencing (WGS) of these enterococci might
be useful in identifying additional mechanisms associated with
resistance profiles.

Antibiotic resistance genes commonly reside on transmissible
plasmids or on other mobile genetic elements, which allow the
horizontal transfer of these genes between strains. The tetM,
tetL, and ermB genes are carried out by mobile genetic elements,
such as transposons (Tn916, Tn1545, and Tn917), conjugative
transposons or plasmids (58). The association of these genes
in mobile genetic elements might be an important factor for
spreading of antimicrobial resistant enterococci in wild Pampas
foxes and Geoffroy’s cats.

Frequency of Virulence-Related Genes
The results of the present study suggest that enterococci obtained
from wild Pampas foxes and Geoffroy’s cats harbored virulence
genes. Moreover, E. faecalis was the most common species
to carry virulence factors. These results are congruent with
previous studies highlighting E. faecalis as the most common
enterococcal species associated with infections, which accounts
for 80–90% of infections. The presence of virulence factors
in clinical enterococci strains is associated with persistent and
difficult-to-treat infections. However, some authors consider the
occurrence of these genes in non-clinical strains as a common
characteristic that increases their ability to colonize hosts, which
improves the survival and proliferation of the strains. Since the
ubiquity of enterococci across a wide range of environments was
initiated by the establishment of these bacteria in either abiotic
surfaces or live tissues, their colonization can be facilitated by
the expression of virulence genes that likely contribute to the
persistence of enterococci in the environment (20).

One limitation of our study is the low number of animals
sampled, which is due to the difficulty of obtaining samples from
wildlife. For example, a study conducted in an anthropogenic
area of the Brazilian Pampa during a 1 year period, 12
Geoffroy’s cat individuals were captured (62). Notably, capturing
and handling wild animals requires specialized equipment, the
consideration of animal welfare concerns (regardless of the
reason for capture), and the efforts of experienced biologists and
wildlife technicians to plan and study suitable capture methods.
In light of these points, the number of animals evaluated in the
present study should be well-considered. Despite its relatively
small sample size, this study demonstrated the importance of

conducting research related to the impact of human activities on
the Brazilian Pampa biome.

In conclusion, this study observed the presence of resistant
Enterococcus strains in wild Pampas foxes and Geoffroy’s cats
from the Brazilian Pampa biome. The presence of MDR
enterococci in fecal samples from these wild animals suggests
that habitat fragmentation and the impact of anthropogenic
activities on the environment might contribute to the occurrence
of resistant strains in the microbial gut communities of these
animals. Furthermore, these animals may contribute to the
spread of resistant strains between different ecosystems. To
the best of our knowledge, this is the first study of resistant
commensal enterococci recovered from wild animals in the
Brazilian Pampa biome. We believe that our research will serve
as a foundation for future studies on the Pampa biome.
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CTX-M-producing Escherichia coli are spreading since 1999 both in clinical and in
community settings. Environmental samples such as rivers have also been pointed out
as being vectors for ESBL producers. In this report, we have investigated the presence
and the diversity of CTX-M-producing E. coli isolates in two samplings of the Seine River
(next to Notre Dame), Paris France, performed in June 2016 and 2017. The total number
of bacteria growing on the selective ChromID ESBL agar was 3.1 × 105 cfu/L (23.8%
of all growing bacteria) in 2016, whereas it was 100-fold lower in 2017 (3 × 103 cfu/L;
8.3% of all growing bacteria). However, among them, the prevalence of ESBL-producing
E. coli increased from <0.1 to 1.1% in one-year. ESBLs were exclusively of the CTX-M-
type: CTX-M-1 (n = 5), CTX-M-15 (n = 7), CTX-M-14 (n = 1), and CTX-M-27 (n = 2).
The isolates belonged to several multi locus sequence types, and a wide diversity
of incompatibility groups of plasmids were identified in those E. coli isolates. The
occurrence and diversity of E. coli isolates belonging to many clones and producing
many CTX-M-variants have been identified in our study. The presence of these bacteria
in rivers that are open again for recreational usage (swimming) is worrying as it may
contribute to further dissemination of ESBL producers in the community.

Keywords: CTX-M-14, CTX-M-15, Escherichia coli, Seine river, plasmids

INTRODUCTION

Escherichia coli is an ubiquitous human pathogen, most commonly involved in urinary tract
infections and bacteremia in humans and animals (Rogers et al., 2011). Plasmid-mediated
extended-spectrum β-lactamases (ESBLs) have become predominant in community-onset E. coli
infection (Pitout et al., 2005). The first human CTX-M variant (previously named MEN-1) was
initially reported in 1991 from a clinical E. coli isolate from France (Bernard et al., 1992). Since,
CTX-M-producing E. coli have increasingly spread both in hospitals and in the community (Cantón
et al., 2012) and represent now the most prevalent ESBLs worldwide. They are divided into
five groups based on amino acid sequence: the CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and
CTX-M-25 groups (Cantón et al., 2012).

The CTX-M-15 variant from the CTX-M-1 group, was first described in 2001 from several
enterobacterial isolates from India on large-sized plasmids along with an ISEcp1 insertion sequence
upstream of the blaCTX−M−15 gene (Karim et al., 2001). Since 2008 (Coque et al., 2008), it has
rapidly become the most prevalent ESBL worldwide in humans, especially linked to an E. coli
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group B2, serogroup O25b, sequence type 131 (ST131).
A collection from eight European countries demonstrated also
the presence of ST131, including 6% of ESBL-producing E. coli
isolates recovered from companion animals (Ewers et al., 2010).
The water environment is conducive to the transfer of resistance
genes between species, where ESBL producers from various
sources get in contact with a broad range of potential recipients.
A previous study, conducted in 2011, reported occurrence and
diversity of ESBL-producing Aeromonas spp. in the Seine river
(Girlich et al., 2011). However, at this date, no ESBL-producing
E. coli isolates were identified in those samples, and the presence
of CTX-M E. coli producers in rivers was still an exceptional event
as shown by Kim et al. (2008) in Korea in 2008 or by Dhanji
et al. (2011) in the United Kingdom in 2011. More recently, the
emergence of ESBL-producing E. coli occurred in urban rivers.
In Austria, CTX-M-producing E. coli were identified in the River
Mur in the center of Graz, Austria’s second largest city (Zarfel
et al., 2017). In Guadeloupe, the predominance of CTX-M-
producing E. coli has been reported from waste water treatment
plant effluents (Guyomard-Rabenirina et al., 2017). In contrast to
what was reported from European countries, the occurrence of
CTX-M-E. coli producers was high in the Pearl River in China
(Ye et al., 2017).

The aim of the present study was to investigate the presence of
expanded-spectrum cephalosporin (ESC)-resistant E. coli isolates
in the water of the Seine River, Paris, France, sampled in June
of two consecutive years (2016 and 2017) at the same centrally
located sampling spot (next to the Notre Dame). We report here,
the isolation of CTX-M-type ESBL-producing E. coli isolates and
the in-depth genomic characterization of 15 of them.

MATERIALS AND METHODS

Water Sampling, ESBL Detection, and
Plasmids
Sampling of the Seine River water, Paris, France, was performed
in June of two consecutive years (2016 and 2017) at the same
centrally located sampling spot (next to the Notre Dame).
Samples were collected c.a. 1 m from the shore and c.a.
20 cm below the water surface using a 1-L sterile plastic
bottle connected to a rope. The bottle was immediately closed,
transferred on ice to the bacteriology laboratory of the Bicêtre
Hospital, Le Kremlin-Bicêtre, France, and directly processed
upon arrival. Four hundred milliliters of water was filtrated
through a nitrocellulose membrane (0.45 µm, Millipore), and
the bacteria were resuspended from the membranes in 2 ml of
sterile water. Aliquots (100 µl) were then plated on ChromID
ESBL plates (bioMérieux, Marcy l’Etoile, France). Pink-colored
colonies growing ChromID ESBL were identified by mass
spectrometry (MALDI-TOF, Bruker, France), and the ESBL
phenotype was evidenced by a double disk synergy test (Karim
et al., 2001). Plasmids, extracted by the Kieser method were
electroporated into E. coli Top10, as previously described (Girlich
et al., 2011). In case electroporation did not work, mating out
assay was performed as previously described (Girlich et al., 2011).
Transformants or transconjugants were selected on cefotaxime

(0.5 µg/ml) agar. Identification of replicon types of the plasmid
incompatibility (Inc) groups was performed by PCR as previously
described by Carattoli et al. (Carattoli, 2009). Using this typing
scheme, 18 Inc groups may be identified: Hl1, Hl2, I1-Iγ, X, L/M,
N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIAs, F, K, and B/O.

Rapid Identification of ESBLs
NG-Test CTXM-Multi, a rapid Lateral Flow Immuno Assay
(LFIA, NG-Biotech, Guipry, France) was used to detect all five
CTX-M-groups, as previously described (Bernabeu et al., 2020).
Briefly, one colony was resuspended in the extraction buffer,
vortexed, and 100 µl was dropped on the LFIA strip. Results were
eye read after 15 min of migration.

Genetic Analyses
Whole genome sequencing was performed on 15 selected ESBL-
producing E. coli isolates using Illumina technology on a
Nextseq 500 sequencer as previously described (Dabos et al.,
2019). De novo assembly was performed by CLC Genomics
Workbench v7.0.4 (Qiagen, Les Ulis, France) after quality
trimming (Qs ≥ 20). The acquired antimicrobial resistance
genes were identified using ResFinder (Bortolaia et al., 2020),
incompatibility groups of plasmids were determined using
Plasmid finder (Clausen et al., 2018), and the sequence type
was obtained using the Multi Locus Sequence Typing (MLST)
modules of the Center for Genomic Epidemiology with genes
adk, fumC, gyrB, icd, mdh, purA, and recA1 (Larsen et al., 2012).

RESULTS

Bacterial Counts and ESBLs
Total bacterial count on Mueller Hinton agar was 1.3× 106 cfu/L
of Seine water samples in 2016, whereas it was 3.5 × 104 cfu/L
in 2017. Bacterial count growing on ChromID ESBL agar was
3.1 × 105 cfu/L (23.8% of all growing bacteria) in 2016, whereas
it was 100-fold lower in 2017 (3 × 103 cfu/L; 8.3% of all
growing bacteria). ESBL-producing E. coli isolates recovered were
11 per 100 ml and 4 per 500 ml of water, in 2016 and 2017,
respectively. Among the total bacteria growing on ChromID
ESBL agar, <0.1% (2.7× 102 cfu/L) were ESBL-producing E. coli
in the samples from June 2016, whereas 1.1% (33 cfu/L) ESBL-
producing E. coli isolates were identified in May 2017. ESBLs
produced by the E. coli isolates were exclusively CTX-M enzymes
(Table 1). NG-Test CTX-M-gr1, a LFIA specific for group 1 CTX-
M-β-lactamases gave positive results for 12/15 ESBL-producing
E. coli isolates.

Resistome Analyses
WGS identified blaCTX−M−1 (n = 5), blaCTX−M−15 (n = 7),
blaCTX−M−14 (n = 1), blaCTX−M−27 (n = 2), blaTEM−52 (n = 1)
ESBL genes, blaDHA−1 (n = 1) cephalosporinase gene, and
blaTEM−1 (n = 3) and blaOXA−1 (n = 2) penicillinase genes
(Table 1). The results of the WGS were in accordance with
those of the NG-Test CTX-M- MULTI LFIA, validating this

1http://genomicepidemiology.org/
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TABLE 1 | Genetic characteristic of ESBL-producing E. coli isolates from the Seine river from 2016 and 2017.

Isolate Acquired resistance determinants Serogroup ST Inc groups Inc group of pCTX-Ma

S46b blaCTX−M−15, blaOXA−1, blaDHA−1, aac(6′)Ib-cr, qnrB4,
aadA5, catB3, mph(A), sul1, tetB, and dfrA17.

O101, H10-like 617 IncFIA + IncFIB + IncFII + Col 156 + ColMG + ColpVC IncFIA + IncFIB

S47 blaCTX−M−15, blaOXA−1, strA, aac(6′)Ib-cr, aac(3)-Iia, strB,
aadA5, catB3, mph(A), sul1, sul2, tetA, and dfrA17.

O102-like, H6-like 405 IncFIA + IncFIB + IncFII + Col BS IncFIA + IncFIB

S55 blaCTX−M−15, aadA5, mphA, sul1, tetA, and dfrA17. O?c, H9-like 410 IncFIA + IncFIB + IncFII + Col 156 IncFIA + IncFIB

S56 blaCTX−M−1, blaTEM−52, aadA17, aadA5, qnrS1, lnu(F),
sul2, dfrA1, and dfrA14.

O8-like, H19-like 162 IncFIA + IncFIB + IncI1 + IncN + IncX1 + p0111 IncI1

S57 blaCTX−M−1 O?, H1 104 IncI1 + IncX4 + Inc X1 IncI1

S58 blaCTX−M−14 O25-like, H4 131 IncI1 + Col156 + IncFIA + IncFIB NDd

S59 blaCTX−M−1, strB, aph(3′)-Ia, strA, sul2, and tetA. O80, H45-like 4175 IncFII + IncY + IncFIA + IncFIB + IncQ ND

S61 blaCTX−M−1, aadA17, lnu(F), sul1, sul2, tetA, and dfrA1. O9-like, H19-like 162 IncFIB + IncFIC IncFIC

S65 blaCTX−M−27 O25-like, H4 131 IncI1 + Col156 + IncFIA + IncFIB + IncFII IncFIA + IncFIB

S66 blaCTX−M−15, blaTEM−1, aac(3)-IId, aadA5, qnrS1, mphA,
sul1, tetA, and dfrA17.

O?, H8-like 13 IncB/OKZ + Col156 + IncFII IncOKZ

S67 blaCTX−M−15 O25-like, H4 131 IncFIA + IncFIB + IncFII IncFIA + IncFIB

S17-1 blaCTX−M−15, blaTEM−1, strA, aac(3)-IId, aadA5, strB,
mphA, sul1, sul2, tetA, and dfrA17.

O16, H5-like 131 IncFII + Col156 + IncFIB ND

S17-2 blaCTX−M−27 025-like, H4 131 IncFIA + IncFIB + IncFII + Col 156 + ColMG + ColpVC IncFIA + IncFIB

S17-3 blaCTX−M−1, blaTEM−1, aadB, aadA5, aadA1, floR, sul1,
sul2, and dfrA17.

O9-like, H25 58 IncI1 + IncFIB + IncFIC + IncFII ND

S17-4 blaCTX−M−15, aadA5, qnrS1, mphA, sul1, and dfrA17. O6, H16-like 4 IncFII + IncFIB ND

aAcquired resistance determinants, in bold are β-lactamase genes.
bSamples numbered as “S#” are samples collected in 2016; samples numbered as “S17-#” are samples collected in 2017.
cO?, is a non-typable O serogroup by using NGS tools.
dND, not determined. PCR amplification with previously reported primers of the most currently described Inc families remained negative (Carattoli, 2009).
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latest test for the rapid detection of the five groups of CTX-
M-producing Enterobacterales, as previously reported (Bernabeu
et al., 2020). As observed in other studies, group 1 CTX-M-
producing E. coli isolates were dominant in our study (Zarfel
et al., 2017; Hooban et al., 2020).

As commonly found in CTX-M-producers, most isolates were
multidrug resistant, possessing aminoglycoside-modifying
enzyme [e.g., aac(6′)-Ib, aadA1, aadA5, or aph(3′)-Ia],
quinolone-resistance genes (qnrS1), tetracycline (tetA, tetB),
chloramphenicol (catB3), and trimethoprim/sulfamethoxazole
(dfrA14, dfrA17, sul1, and sul2). Those resistance gene are, for
most of them, carried by a class 1 integron (Table 1; Cantón
et al., 2012).

Clonal Relationship
Clonal relationship of these isolates was initially assessed by
MLST and then by WGS SNP analysis. MLST analysis revealed
a wide diversity of clonal groups with 10 different STs among
the 15 isolates. Noticeably, only two STs were represented
with at least two isolates being ST162 (n = 2) and ST131
(n = 5) (Figure 1). WGS-based phylogeny confirmed this
diversity but also indicated that the five ST131 isolates can be
divided into two subclones (Figure 1). It can be noticed that
ESBL distribution did not follow the clonal relationship. For
instance, in ST131 isolates, three types of ESBLs were identified:
blaCTX−M−14, blaCTX−M−15, and blaCTX−M−27 genes. The wide
diversity of clones may reflect the large spread of ESBLs in
the community. Indeed, we did not identify a clonal spread
of ESBL-producing E. coli but rather unrelated isolates that
are present in the Seine River. Among the five ST131 E. coli
isolates, four were genetically close (Figure 1). However, these
isolates did not share the same resistome indicating that ST131 is
widely distributed independent of the ESBL content as previously
observed (Pitout and Finn, 2020). Moreover, the two closest
ST131 (S65 and S17-2) possessing the blaCTX−M−27 ESBL gene
were recovered one-year apart indicating the persistence or
continuing contamination by this clone.

Plasmid Analysis
The blaCTX−M genes were located on large plasmids of different
sizes (Figure 2) belonging to diverse incompatibility groups

(Table 1). Several studies have shown that plasmids of the IncF
family were the predominant group that carry the blaCTX−M−15
gene, whereas the blaCTX−M−14 gene is carried on a variety of
plasmid types, including on IncF, especially in the Far-East, and
on IncK, in Western Europe (Bevan et al., 2017). Horizontal
transfer of antimicrobial resistance plasmids by conjugation in
Enterobacterales occurs in the human gut, animals, and the
environment (Bevan et al., 2017; Zarfel et al., 2017). As previously
reported, the main ESBL types identified in companion animals
were CTX-M-14 (26.8%), CTX-M-15 (24.4%), CTX-M-27
(19.5%), and CTX-M-55 (19.5%) (Kawamura et al., 2017), and
the most prevalent STs were ST131 (n = 15, 35.7%), followed by
ST38, ST10, and ST410 (Kawamura et al., 2017). For example,
among those STs, ST10/CC10 corresponds to an international
cluster already identified in humans, wildlife infections, domestic
farm animals, companion animals, and commercial chicken meat
(Nascimento et al., 2017).

DISCUSSION

We identified in this study the occurrence of different ESBL-
producing E. coli isolates from the Seine River in Paris, France.
A wide diversity of clones was identified here. The most prevalent,
with 4 isolates out of 15, was ST131. This result is not surprising
given its widespread occurrence, but the presence of different
CTX-M-variants belonging to different groups of enzymes was
unexpected, as ST131 is frequently associated to CTX-M-15.
We also identified one ST410 isolate. This clone has recently
attracted not only the light by its association with the spread of
the carbapenemase OXA-181 (Patiño-Navarrete et al., 2020) but
also for its isolation in animals (Yang et al., 2019). Of note, two
isolates of ST162 were recovered in this study. This clone has
been reported to be associated with the resistance gene in wild
avian isolates (Oteo et al., 2018). However, it remains difficult
to conclude on the original source of these isolates, which could
be of avian/environmental or human sources. Hooban et al.
(2020) reported that most of the ESBL producers identified in
aquatic environments around the world between 2010 and 2017
expressed blaCTX−M genes (n = 21 among 29 studies), followed by
blaTEM (n = 18), and blaSHV (n = 11). Surprisingly, among eight
Chinese studies, only three identified CTX-M-producing E. coli

FIGURE 1 | Phylogenetic tree of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from Seine River. The phylogeny was performed using
CSIPhylogeny (https://cge.cbs.dtu.dk/services/CSIPhylogeny/). Year of isolation is indicated by colored circles and broad-spectrum β-lactamases by colored
pentagons.
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FIGURE 2 | Plasmid extractions from cultures of the different isolates and their transconjugants or transformants. Lanes 1, 3, 5, 7, 9, 11, 14, 16, 18, 20, 22, and 24
correspond to S46, S47, S55, S56, S57, S59, S61, S65, S66, 17.1, S17.2, S17.3, S58, S59, and S17.4; Lanes 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 28, 30,
and 32 correspond to their respective E. coli transformants or transconjugants; Lanes 13, 26, and 33 correspond to E. coli 50192 harboring four plasmids: 7, 48,
66, and 154 kb.

isolates in rivers and lakes (Hooban et al., 2020). The prevalence
of ESBL producers among waterborne thermo-tolerant coliforms
ranged in amount from 11% (Ye et al., 2017) to 17% in Chinese
rivers (Chen et al., 2010). Ye et al. (2017) identified only CTX-M-
variants as ESBLs, with additional variants: i.e., CTX-M-55 and
CTX-M-65 in addition to CTX-M-14 and CTX-M-15. Notably,
a previous study, 6 years earlier, reported TEM (37.6%) and
SHV (84.1%) as being the most common ESBL among clinical
isolates from the same city of Chongqing in 2004 (Chen et al.,
2010). In Brazil, four studies reported the presence of CTX-M
but also of KPC-2 carbapenemase K. pneumoniae producers in
rivers, lakes, and sea water (Hooban et al., 2020). The presence of
blaCTX−M genes in water is more and more frequent worldwide,
most often associated with highly self-transferable plasmids. In all
cases, it is likely that the transfer of these bacteria from the sewage
to the rivers occurred. Most worrying, concomitant spread of
carbapenemase genes has been witnessed in many countries
including Switzerland, Spain, Portugal, Austria, United States,
Brazil, India, and China (Hooban et al., 2020).

CONCLUSION

The epidemic dissemination of CTX-M-encoding genes is largely
due to their localizations on mobile genetic elements, such as

plasmids, transposons, and integrons, which allow these genes
to easily spread among bacterial communities (Cantón et al.,
2012). In 2016, the samples were collected a few days after
floods that occurred between the end of May and the beginning
of June 2016, thus explaining a high prevalence of ESBL-
E. coli isolates in the Seine river that likely originated from
animal feces that have been drained by the rains. However,
the presence and diversity of those isolates one-year later is
more worrying, as it indicates a persistent contamination of
the Seine river with ESBLs-producing E. coli isolates. This is
especially worrying given that the many rivers all over Europe
open again for different recreational and sporting activities,
including swimming.
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Antibiotics and organoarsenical compounds are frequently used as feed additives in many 
countries. However, these compounds can cause serious antibiotic and arsenic (As) 
pollution in the environment, and the spread of antibiotic and As resistance genes from 
the environment. In this report, we characterized the 28.5 kb genomic island (GI), named 
as ICERspD18B, as a novel chromosomal integrative and conjugative element (ICE) in 
multidrug-resistant Rheinheimera sp. D18. Notably, ICERspD18B contains six antibiotic 
resistance genes (ARGs) and an arsenic tolerance operon, as well as genes encoding 
conjugative transfer proteins of a type IV secretion system, relaxase, site-specific integrase, 
and DNA replication or partitioning proteins. The transconjugant strain 25D18-B4 was 
generated using Escherichia coli 25DN as the recipient strain. ICERspD18B was inserted 
into 3'-end of the guaA gene in 25D18-B4. In addition, 25D18-B4 had markedly higher 
minimum inhibitory concentrations for arsenic compounds and antibiotics when compared 
to the parental E. coli strain. These findings demonstrated that the integrative and 
conjugative element ICERspD18B could mediate both antibiotic and arsenic resistance 
in Rheinheimera sp. D18 and the transconjugant 25D18-B4.

Keywords: antibiotic resistance, arsenic resistance, ICERspD18B, integrative and conjugative element, 
Rheinheimera

INTRODUCTION

In aquaculture systems, the indiscriminate use of chemical additives and antimicrobials 
(especially antibiotics) as preventative and curative measures for diseases has resulted in 
antimicrobial resistance among bacteria (Buschmann et  al., 2012; Sun et  al., 2016; Nakayama 
et  al., 2017; Rico et  al., 2017). Additionally, the transfer of antibiotic resistance elements 
from aquaculture facilities into the environment could have negative impacts on environmental 
biodiversity and human health as a result of further antimicrobial resistance development 
(Garcia-Aljaro et  al., 2014; Xu et  al., 2017). In addition to antibiotics, the metalloid arsenic 
(As) has been used as a feed additive, although it was ranked first on the priority list of 
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hazardous substances by the Agency for Toxic Substances 
and Disease Registry1; arsenic has a significant impact on 
the aquaculture environment because of its toxic, persistent, 
and accumulative properties in organisms, which have 
devastating effects on the diversity of aquatic animals and 
on the ecological balance of aquaculture systems (Miazek 
et  al., 2015; Rahman and De Ley, 2017). Arsenic resistance 
genes, usually organized in ars operons, have been widely 
identified in bacteria (Fekih et  al., 2018; Serrato-Gamino 
et  al., 2018). Therefore, the aquaculture environment poses 
a potential risk for the dissemination of arsenic resistance 
genes as well as antibiotic resistance genes (ARGs) through 
mobile genetic elements (Abdelhamed et  al., 2019).

Bacteria of the genus Rheinheimera are frequently isolated 
from freshwater and estuaries (Baek and Jeon, 2015; Chen 
et  al., 2019); and saline and slightly alkaline lakes (Liu et  al., 
2012; Zhong et  al., 2014). Currently, the genus comprises 27 
species.2 Comparative genomics analysis of Rheinheimera 
genomes revealed that the core genome is relatively small 
(Presta et  al., 2017), which may be  related to the different 
ecological niches colonized by members of this genus (Wang 
et  al., 2018; Panda et  al., 2020). It has been reported that 
many Rheinheimera strains are multidrug-resistant (Liu et  al., 
2012; Mengoni et  al., 2014; Suarez et  al., 2014; Kumar et  al., 
2015), and a series of ARGs in the genomes of Rheinheimera 
spp. have been uncovered, such as acrD in Rheinheimera sp. 
EpRS3, encoding an aminoglycoside efflux pump; acrB in 
Rheinheimera sp. KL1, encoding a multidrug resistance-
nodulation-division efflux pump; and tet(B) in Rheinheimera 
sp. D18, encoding a tetracycline efflux major facilitator 
superfamily (MFS) transporter (O’Connor et  al., 2015; Presta 
et  al., 2017; Fu et  al., 2020). In addition, bioinformatics 
analyses have predicted the widespread presence of arsenical 
resistance genes in Rheinheimera. However, the transferability 
of ARGs and arsenic resistance genes in Rheinheimera has 
not been well characterized.

Rheinheimera sp. D18 strain was previously isolated from 
mariculture environment in the Yellow Sea, which has been 
reported to be  polluted by notable amounts of antibiotic 
residues (Du et  al., 2017; Han et  al., 2020) and arsenic (Jiang 
et  al., 2015; Xiao et  al., 2017), and D18 was found to have 
high-level resistance to tetracycline, florfenicol, amikacin, and 
sulfamethoxazole (Fu et  al., 2020). In this study, the novel 
integrative and conjugative element ICERspD18B was 
characterized in Rheinheimera sp. D18 genome. In addition 
to genes related to DNA replication/partitioning and conjugative 
transfer, ICERspD18B was found to contain three repeated 
copies of a chloramphenicol/florfenicol efflux MFS transporter-
encoding gene (floR), and several other ARGs. An arsenic 
tolerance operon was also identified in ICERspD18B, indicating 
that ICERspD18B mediates combined resistance to antibiotics 
and arsenic, and further analysis indicated that ICERspD18B 
was transferable. This report characterized the first mobile 
genomic island (GI) ICERspD18B that endows both antibiotic 

1 https://www.atsdr.cdc.gov/spl/index.html
2 http://www.bacterio.net/rheinheimera.html

and arsenic resistance in the genus Rheinheimera, providing 
new insights into antibiotic and arsenic spread in the 
mariculture environment.

MATERIALS AND METHODS

Strains and Culture Conditions
Rheinheimera sp. D18 strain was previously isolated from 
maricultural environment (Fu et  al., 2020). Rheinheimera sp. 
D18 was cultured in LB solid medium (tryptone 1%, yeast 
extract 0.5%, 1% sodium chloride, and agar 2%) at 28°C 
and was used as a donor in conjugation experiments. Escherichia 
coli strain 25DN was cultured at 37°C in LB medium and 
was used as recipient in conjugation experiments. 
Transconjugants from conjugation experiments were cultured 
on LB medium containing florfenicol (24 mg/l) and roxarsone 
(8  mM) at 37°C.

Identification of the Genomic Island
The Rheinheimera sp. D18 whole genome sequence has been 
deposited in GenBank (CP037745). The GIs were identified 
using Island Viewer 4 (Bertelli et  al., 2017) and were further 
analyzed using ICEfinder (Liu et  al., 2019). The genes in 
genomic island were annotated using the Prokaryotic Genome 
Annotation Pipeline on NCBI3 and RASTtk server (Overbeek 
et al., 2014; Brettin et al., 2015). Insertion sequence transposases 
were detected using IS-Finder (Siguier et  al., 2012).

Comparative Analysis of ICERspD18B With 
Other Genetic Elements
Pairwise alignment of ICERspD18B and other relevant genetic 
elements was performed using the BLAST search tool and 
ICEberg WU-BLAST search tool (Liu et  al., 2019). Further 
alignment between two sequences was performed using BioXM 
2.6 software.

Conjugation Experiments
To determine whether the antibiotic and arsenic resistance 
genes in ICERspD18B could be  horizontal transferred among 
bacteria, conjugation experiments were carried out as previously 
described with some modification (Fu et  al., 2020). 
Transconjugants were selected on LB agar plates with florfenicol 
(24  mg/l), roxarsone (8  mM), X-Gluc (5-bromo-4-chloro-3-
indolyl-beta-D-glucuronic acid), and sodium azide. The donor 
(Rheinheimera sp. D18) and the recipient (E. coli 25DN) strains 
are inhibited and only the transconjugants would survive on 
the selective agar plates. ICERspD18B and its insertion site in 
the transconjugant were demonstrated by PCR and direct DNA 
sequencing. The ability of ICERspD18B to form a ring in 
Rheinheimera sp. D18 was also verified by PCR and DNA 
sequencing. All the primers used in this report are listed in 
Supplementary Table S1.

3 http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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Metalloid Arsenic and Antibiotic 
Susceptibility Testing
The broth microdilution method was used (CLSI, 2017) to determine 
the MICs for roxarsone, sodium hexafluoroarsenate and different 
antibiotics, including amikacin, florfenicol, and sulfamethoxazole. 
Escherichia coli 25DN strain was also tested for MICs.

Data Analysis
All the experiments in this study were carried out in triplicate. 
The differences in MICs for the transconjugant strain and E. coli 
25DN strain were analyzed using the Student’s t-test (p  <  0.05).

RESULTS

Structure of ICERspD18B in the 
Rheinheimera sp. D18 Strain
A chromosomal GI in Rheinheimera sp. D18 was identified using 
Island Viewer 4 (Figure  1), while it was not predicted as a 
typical integrative and conjugative element (ICE) by ICEfinder 
software. This GI extends from position 2,629,186 to 2,657,721 in 
the chromosome of D18 and contains 28,536 bp. Gene annotation 
indicated that it contains 33 open reading frames (ORFs; 
Supplementary Table S2), among which six ORFs were predicted 
to be  ARGs, including one sulfonamide resistance gene (sul2), 
two aminoglycoside resistance genes (aph(3'')-Ib and strB), and 
three repeated copies of a chloramphenicol/florfenicol resistance 
gene (floR); and four ORFs were predicted to be arsenic resistance 
genes, forming the operon arsRHCB. The GI also contains three 
identical copies of a relaxase-encoding gene (E0Z06_RS12465, 
E0Z06_RS12485, and E0Z06_RS12505) related to a type IV 
secretion system; three conjugative transfer protein-encoding 
genes (trbL, trbK, and trbJ); four genes associated with DNA 
replication or partitioning (repC, repA, E0Z06_RS12575, and 
E0Z06_RS12520); and genes encoding a site-specific integrase 
(int) and its transcriptional regulator (E0Z06_RS12590). Sequence 
examination further indicated that the GI was bordered by a 

20-bp direct repeat (DR; 5'-ACAATNGAGTGGGAATNNTT-3') 
at both ends and that it was inserted into the guaA gene 
(E0Z06_RS12600) in the chromosome of D18. These findings 
suggest that this GI might be an ICE-like genomic island, named 
as ICERspD18B, and provide antibiotic and arsenic tolerance 
to Rheinheimera sp. D18, as we  know, ICEs are now recognized 
as a large and diverse class of chromosomal mobile genetic 
elements in bacteria that can transfer between bacteria through 
conjugation (Baranowski et  al., 2018; Partridge et  al., 2018).

Pairwise Alignment of ICERspD18B With 
Relevant DNA Sequences
The whole ICERspD18B nucleotide sequence was analyzed using 
BLAST, and results revealed that this ICERspD18B presents only 
in the Rheinheimera sp. D18 genome. GC content of ICERspD18B 
is 58.28%, different from that of the overall GC content of 
Rheinheimera sp. D18 genome (44.39%), indicating that this 
genomic island ICERspD18B was derived from other bacteria. 
Pairwise alignment of ICERspD18B with other relevant DNA 
sequences was performed, and the sequence alignment results 
are shown in Figure  2. BLASTn analysis indicated that genes 
relating to conjugative transfer and DNA replication or partitioning 
(from E0Z06_RS12595 to E0Z06_RS12545) in ICERspD18B were 
highly similar to genes in the Klebsiella pneumoniae NCTC9180 
genome (GenBank accession number LR134202.1), and these genes 
were also predicted to be present in the K. pneumoniae NCTC9171 
genome (GenBank accession number LR588410.1). A larger region 
that included the above genes and the arsenic operon (arsRHCB; 
from E0Z06_RS12595 to E0Z06_RS12510) in ICERspD18B showed 
99% identity with a genomic region of K. pneumoniae NCTC9171. 
In addition, the ICERspD18B arsenic operon (arsRHCB) had 100% 
nucleotide sequence identity to the arsenic operon located in 
Salmonella enterica strain 20–56 plasmid 1 (GenBank accession 
number LR536427.1). Of particular note, there were three tandem 
repeats of a set of genes that includes IS91, floR, a relaxase-
encoding gene, and a LysR family transcriptional regulator-encoding 
gene in ICERspD18B, one or two set of these genes were also 

FIGURE 1 | Schematic view of a new identified genomic island (GI) and its position in Rheinheimera sp. D18. Top image, GIs predicted by Island Viewer 4 in 
Rheinheimera sp. D18. Putative genomic islands were predicted by IslandPath-DIMOB method (blue squares) or SIGI-HMM method (orange squares). Bottom 
image, gene arrangement in the genomic island named ICERspD18B. ICERspD18B (from E0Z06_RS12595 to E0Z06_RS12435) is bordered by a 20-bp DR 
(5'-ACAATNGAGTGGGAATNNTT-3') in the chromosome of D18. The diagram shows the predicted classification/function of each gene (represented by arrows) as 
follows: violet, arsenic, or antibiotic resistance; blue, conjugative transfer; green, DNA replication or partitioning; and gray, other functions.
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predicted in ICEVchBan5 of Vibrio cholerae O1 Ban5 (GenBank 
accession number GQ463140) and ICEPmiChn3 of Proteus mirabilis 
JN28 (GenBank accession number KY437727). The structure of 
the remaining part of ICERspD18B, including genes related to 
aminoglycoside and sulfonamide resistance, showed high similarity 
to genes in the Providencia rettgeri Pr-15-2-50 genome (GenBank 
accession number CP039844.1).

Transfer of ICERspD18B to Escherichia coli
In order to determine whether the ICE-like chromosomal genomic 
island ICERspD18B could be horizontally transferred, conjugation 
experiments between the donor strain D18 and the recipient 
strain E. coli 25DN (sodium azide-resistant) were performed. 
Florfenicol and roxarsone were used as the selective pressure, 
and the transconjugation frequency was about 2.76 × 10−7 colony-
forming units/donor. One of the transconjugants was isolated 
and named 25D18-B4. To determine whether ICERspD18B was 
inserted into the chromosome of E. coli 25D18-B4, PCR assays 
and DNA sequencing analysis were performed. The results 
demonstrated that genes strB, floR, and arsB, and the region 
between repC and trbJ in ICERspD18B, were present in 25D18-B4 
but not in strain 25DN (Figures  3A,B). Furthermore, these 
sequences had 100% identity with those of Rheinheimera sp. 
D18, revealing that ICERspD18B had been transferred to 25D18-
B4. Results also revealed that this ICERspD18B had been excised 
from the chromosome and was present in a circular form in 
Rheinheimera sp. D18 (Figure 3C), which is considered to be the 
first step of conjugation.

Localization of ICERspD18B in the 
Transconjugant 25D18-B4
The 3'-ends of tRNA/tmRNA genes are known attachment 
sites of ICEs (Williams, 2002; Liu and Zhu, 2010; Del Canto 
et  al., 2011). However, the 3'-end of the guanosine 
monophosphate synthetase-encoding gene guaA has also been 
reported as an insertion site of genomic islands (Song et al., 2012). 

As bioinformatics analysis had indicated that ICERspD18B was 
inserted into 3'-end of guaA in the Rheinheimera sp. D18 genome, 
we  investigated its location in the transconjugant 25D18-B4 and 
whether integration was orientation-specific, using PCR and DNA 
sequencing. 25D18-B4 was analyzed by PCR using combinations 
of two primer pairs: Junction L-For/Junction L-Rev and Junction 
R-For/Junction R-Rev, with D18 and E. coli 25DN as controls 
(Figure  4). It should be  noted that the sequence of the Junction 
L-For primer is also present in the guaA gene of D18, due to 
the high similarity of guaA in D18 and 25DN, and that Junction 
L fragments were amplified in both 25D18-B4 and D18 (Figure 4B). 
PCR results indicated that ICERspD18B had been inserted into 
the 3'-end of guaA gene of the transconjugant 25D18-B4 strain, 
and DNA sequence analysis of PCR products confirmed that 
ICERspD18B was inserted at this site.

Susceptibility of D18 and 25D18-B4 to 
Antibiotics and Arsenic
The susceptibility of transconjugant 25D18-B4 and Rheinheimera 
sp. D18 to metalloid arsenic and antibiotics was tested. As shown 
in Table 1, 25D18-B4 had acquired resistance to florfenicol (MIC, 
92  mg/L), amikacin (MIC, 24  mg/L), sulfamethoxazole (MIC, 
16 mg/L), sodium hexafluoroarsenate (MIC, 22 mM), and roxarsone 
(MIC, 14 mM). MIC testing revealed that the MICs for amikacin, 
florfenicol, sulfamethoxazole, sodium hexafluoroarsenate, and 
roxarsone in the transconjugant 25D18-B4 were higher than the 
MICs for the recipient strain 25DN (Table 1). The notable increase 
in antibiotic/arsenic resistance of 25D18-B4 suggested that 
ICERspD18B genes involved in antibiotic and arsenic resistance 
had been horizontally transferred to the E. coli strain.

DISCUSSION

In this study, we  reported the discovery and characterization 
of the ICE-like chromosomal genomic island ICERspD18B 
in the genus Rheinheimera. BLASTn analysis indicated that 

FIGURE 2 | Schematic representation of the potential sources of genes in ICERspD18B. Pairwise alignment of ICERspD18B of Rheinheimera sp. D18 with closely 
related DNA sequences from ICEVchBan5 of Vibrio cholerae O1 Ban5, ICEPmiChn3 of Proteus mirabilis JN28, plasmid 1 of Salmonella enterica 20–56, and the 
Klebsiella pneumoniae NCTC9171, K. pneumoniae NCTC9180, and Providencia rettgeri Pr-15-2-50 genomes. Genes are indicated by arrows, and colors represent 
the following predicted functions: violet, arsenic, or antibiotic resistance; blue, conjugative transfer; green, DNA replication or partitioning; and gray, other functions. 
Orange shading matches regions with high sequence identity.
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only part sequence of ICERspD18B exists in other species, 
and mainly derived from pathogenic bacteria such as Vibrio 
cholerae, K. pneumoniae, and P. rettgeri (Figure  2). Further 
alignment with ICEberg WU-BLAST search tool revealed that 
the overall nucleotide sequence of ICERspD18B has low 
similarity to that of previously described ICEs, although a 
portion of ICERspD18B showed high similarity to ICEVchBan5 
of Vibrio cholerae O1 Ban5 and ICEPmiChn3 of P. mirabilis 
JN28 (Figure  2). Additionally, our conjugation experiments 
indicated that ICERspD18B has the ability to transfer among 
bacteria. Hence, we speculate that ICERspD18B was transferred 
horizontally from other unsequenced strains. Moreover, 
ICERspD18B contains genes predicted to encode a site-specific 
integrase, relaxases associated with a type IV secretory pathway, 
conjugative transfer proteins, and DNA replication or 
partitioning encoding genes (Supplementary Table S2), further 
suggesting that ICERspD18B is an ICE.

tRNA, tmRNA, and some small RNA genes are recognized 
as integration hotspots of genomic islands (Williams, 2002; 
Del Canto et  al., 2011). However, the 3'-end of the guaA 
gene is also an insertion site of genomic islands (Song et al., 
2012). Integrases in guaA-associated genomic islands are 
frequently phage P4 integrases, and genes encoding AlpA 
(the positive regulatory protein of P4 integrases) are located 
near the P4 integrase genes in these genomic islands (Song 
et al., 2012). The 8-bp consensus sequence 5'-GAGTGGGA-3' 
within the DR flanking these genomic islands was reported 
to be  the cutting site of the P4 integrases (Song et  al., 
2012). In our study, bioinformatics analysis revealed that 
the site-specific integrase in ICERspD18B belongs to the 

phage P4 integrases and that the AlpA-encoding gene alpA 
is next to the site-specific integrase-encoding gene int 
(Supplementary Table S1). Additionally, the 8-bp consensus 
sequence 5'-GAGTGGGA-3' was also found within the DR 
(5'-ACAATNGAGTGGGAATNNTT-3') of ICERspD18B, and 
ICERspD18B was confirmed to be  inserted into the 3' end 
of guaA in the transconjugant 25D18-B4 (Figure  4). In 
addition, the circular, extrachromosomal form of ICERspD18B 
was also observed in Rheinheimera sp. D18 using PCR 
(Figure  3). These data suggest that ICERspD18B was first 
excised from the donor Rheinheimera sp. D18 chromosome, 
transferred via type IV secretory system-mediated conjugation 
and then inserted into 3'-end of guaA gene of the E. coli 
25DN chromosome by site-specific recombination. These 
data also indicated that ICERspD18B has the ability to 
transfer genes horizontally from Rheinheimera sp. D18 to 
other bacteria. Considering that ICERspD18B is also located 
at the 3'-end of guaA in the Rheinheimera sp. D18 genome, 
our results further demonstrate that the 3'-end of guaA 
gene may be another integration hotspot of genomic islands.

Organoarsenic arsenical compounds (such as p-arsanilic 
acid and roxarsone) are widely used as feed additives in 
many countries, and the land application of poultry or swine 
litter could cause serious arsenic pollution in the environment 
(Liang et al., 2014; Xie and Cheng, 2019), potentially resulting 
in arsenic resistance among environmental bacteria and the 
dissemination of their arsenic resistance genes to other bacterial 
species. Arsenic resistance genes are usually organized in ars 
operons in bacteria, such as in Pseudomonas putida, which 
has two arsRBCH operons and which is highly resistant to 

A

B C

FIGURE 3 | Verification of the presence and the circular form of ICERspD18B. (A) Primer positions in ICERspD18B are indicated using bent arrows. As ICERspD18B 
harbors three copies of floR, primers for determination of the presence of floR are shown in three locations by dashed arrows. (B) Four ICERspD18B fragments were 
amplified by PCR using total DNA of transconjugant 25D18-B4 (lanes 1), strain D18 (lanes 2), strain 25DN (lanes 3) as templates. (C) Verification of the circular form of 
ICERspD18B using the primer pair Ring-For/Rev. Total DNA of strain D18 (lane 1) or strain 25DN (lane 2) was used as template. M, molecular size markers.
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organoarsenicals and inorganic arsenic (Canovas et  al., 2003; 
Villadangos et  al., 2012). The arsB gene encodes an As(III) 
efflux permease, arsC encodes an arsenate reductase for 
reduction of inorganic arsenate to As(III) and arsR encodes 
an As(III)-responsive transcriptional factor that controls 
expression of the operon (Yang et al., 2012). Arsenate [As(V)] 
is reduced to arsenite [As(III)] by the arsenate reductase 
ArsC prior to efflux, and then, arsenite is pumped out through 
ArsB (Shen et  al., 2013). arsH encodes an organoarsenical 
oxidase that confers resistance to organoarsenic (Chen et  al., 
2015; Xie and Cheng, 2019). ICERspD18B contains one ars 
gene cluster, which includes arsBCHR (Figure  1). The 
transconjugant 25D18-B4, which acquired ICERspD18B, was 
found to have markedly higher MICs of roxarsone and sodium 

hexafluoroarsenate compared to those of the parental strain, 
E. coli 25DN (Table  1). These data suggest that ICERspD18B 
can contribute to the dissemination of arsenic resistance genes 
among bacteria.

Sulfonamide, chloramphenicol/florfenicol, and aminoglycoside 
have been used widely to treat bacterial and protozoan infections 
in aquaculture systems (Dang et  al., 2007; Hoa et  al., 2008). 
ICERspD18B also contains three copies of a chloramphenicol/
florfenicol efflux MFS transporter-encoding gene (floR); one 
sulfonamide resistance gene (sul2); and two aminoglycoside 
resistance genes, aph(3'')-Ib, and strB. Escherichia coli is an 
opportunistic bacterium that can cause a wide variety of intestinal 
and extraintestinal infections (Riley, 2014). In this study, 
ICERspD18B was horizontal transferred to E. coli 25DN strain, 

A

B

FIGURE 4 | Analysis of the insertion site of ICERspD18B in transconjugant 25D18-B4. (A) PCR primer positions in ICERspD18B and in the strain 25DN 
chromosome are indicated by bent arrows. The insertion site of ICERspD18B in the strain 25DN chromosome is indicated by dashed lines, and the cutting site 
(5'-GAGTGGGA-3') of the integrase (Song et al., 2012) is underlined and marked in red. (B) Gel picture of the PCR products generated by the Junction L-For/
Junction L-Rev and Junction R-For/Junction R-Rev primer pairs. Total DNA of strain D18 (lanes 1), transconjugant strain 25D18-B4 (lanes 2), and strain 25DN (lanes 
3) was used as template. M, molecular size markers.

TABLE 1 | MICs of antibiotics and arsenic (As).

Strain Amikacin* Florfenicol Sulfamethoxazole Roxarsone# Sodium 
hexafluoroarsenate#

D18 96 128 72 20 35
25DN <2 <2 4 4 10
25D18-B4 24 92 16 14 22

*Concentrations of the three antibiotics are given in mg/L.
#Concentrations of roxarsone and sodium hexafluoroarsenate are given in mM.
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and generated the transconjugant 25D18-B4 strain. The 
transconjugant 25D18-B4 was found to have notably higher 
MICs of amikacin, florfenicol, and sulfamethoxazole when 
compared to the parental strain, E. coli 25DN (Table 1), suggesting 
that the ARGs in ICERspD18B contribute to the antibiotic 
resistance profile of Rheinheimera sp. D18 as well as of E. coli 
25D18-B4. These data suggest that the ICE-like genomic island 
ICERspD18B has the ability to disseminate these ARGs, along 
with arsenic resistance genes, among bacteria in the environment.

In conclusion, the findings of this study demonstrate that 
ICERspD18B is an ICE that increases host tolerance to arsenic 
and several antibiotics. Our results also reveal that this mobilizable 
ICERspD18B could be  horizontal transferred to E. coli 25DN 
strain, and the transconjugant 25D18-B4 also has resistance 
to arsenic and antibiotic. Continuous monitoring of the antibiotic/
arsenic tolerance of bacteria detected in the aquaculture industry 
is recommended to reduce the spread of resistance genes.
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Pet animals are assumed to be potential reservoirs in transferring antimicrobial
resistance (AMR) to humans due to the extensively applied broad-spectrum
antimicrobial agents and their close contact with humans. In this study, microbiological
data and antimicrobial susceptibility results of dog (n = 5,086) and cat (n = 789) clinical
samples from a private Laboratory of Diagnosis in Barcelona were analyzed. Samples
came from different counties of the Iberian Peninsula during 2016–2018. In dogs,
clinical samples were most commonly from otitis, and in cats from wounds, respiratory
tract infections and conjunctivitis. In both pet groups, Staphylococcus spp. (31% in
dogs vs 30% in cats), Streptococcus spp. (19% vs 17%), Pseudomonas spp. (16%
vs 10%), Escherichia coli (8% vs 5.6%), and Enterococcus spp. (5.5% vs 6.8%) were
shown as the most predominant bacteria. However, higher frequencies of P. aeruginosa,
P. canis, and S. pseudintermedius were found in dogs, while S. aureus and P. multocida
were more prevalent in cats. The antimicrobial susceptibility testing demonstrated that
Enterococcus spp. and Pseudomonas spp. presented the highest levels of AMR in
both dogs and cats. Within the Enterobacteriaceae, E. coli showed low levels of
AMR compared to Klebsiella, Proteus, or Enterobacter spp. Respiratory tract infections
caused by K. pneumoniae presented higher AMR in cats. By contrast, Pasteurella
isolates from the respiratory tract were highly sensitive to all the antimicrobials in cats
and dogs. Data from this study could be used to guide empirical antimicrobial selection
in companion animal veterinary practices in the Iberian Peninsula.

Keywords: antimicrobial resistance, bacteria, cats, dogs, Iberian Peninsula

INTRODUCTION

The emergence of antimicrobial resistance (AMR) has become a great concern worldwide,
threatening the public healthcare system (Brinkac et al., 2017). Some studies assumed that food
animals were the main contributors of human AMR by transferring resistant bacteria or genes
through food chain (Witte, 1998; Fey et al., 2002; Smith et al., 2002; White et al., 2002; Angulo
et al., 2009; McEwen and Fedorka-Cray, 2017). However, (Barber et al., 2016) established a
new analytical model and assumed the non-foodborne transmission of AMR should be equally
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emphasized. Thus, the companion animals, mostly dogs and
cats, started to be considered a potential reservoirs of AMR
due to their close contact with humans and being extensively
treated by broad-spectrum antimicrobial agents (Guardabassi
et al., 2004; Lloyd, 2007). If AMR can be transmitted to humans
from companion animals, and if multi-drug resistant (MDR)
bacteria exist among the household pets, the risk of antimicrobial
treatment failure would highly increase in both animals and
humans. Thus, understanding the prevalence of AMR among
pets, mainly dogs and cats, is demanded from both veterinary and
human medicine perspectives. However, due to the clinical cases
are not always entirely recorded and monitored, the available data
on pet-related AMR are very minimal.

In this study, we analyzed the clinical microbiological data on
pet dogs and cats with data collected between 2016 and 2018 in
the Iberian Peninsula, and found out the most prevalent bacterial
infections and AMR profiles among the two companion animals.

MATERIALS AND METHODS

Data Source and Management
Retrospective records of 5,875 microbiological analyses of clinical
specimens from dogs (n = 5,086) and cats (n = 789) between
2016 and 2018 were analyzed in the present study. The records
were provided by the Veterinary Medicine Department of a
large private Laboratory of Diagnosis in Barcelona. The lab
records contained information about clinical cases submitted
by veterinary clinics covered throughout the Spanish provinces,
Portugal, and Andorra (Figure 1). Data were assessed for
duplicates and missing information. Finally, only samples
with complete records were analyzed. Repeat samples of the
same case were not included. The following variables were
extracted from the records: animal species, type/origin of sample,
county of specimen, bacterial identification, and antimicrobial
susceptibility testing.

The specimens were classified according to the sample
origin as follows: otitis (n = 3,043), wounds (n = 1,142),
respiratory tract infections (which included rhinitis, bronchitis,
pneumonia, and pleuritic, n = 483), dermatitis (n = 341),
abscesses (n = 218), conjunctivitis (n = 190), and others
(which included reproductive tract infections, musculoskeletal
infections, arthritis, and osteomyelitis, n = 458). Urine samples
were not included in the study.

Microbiological Analysis and
Antimicrobial Susceptibility Testing
Microbiological identification was performed using the
MALDITOF mass spectrometeror the API R© ID system
(bioMérieux, Spain). All Gram-positive bacterial isolates
were performed by the antimicrobial susceptibility test
using the standard disk diffusion method according to
Performance Standards for Antimicrobial Susceptibility
Testing for bacteria isolated from animals (M31-A3, CLSI
VET01, 2008) and from humans (M100-S24, CLSI, 2016) for
drugs not licensed for veterinary use. The panel included the
following antimicrobial classes: beta-lactams (amoxicillin-
clavulanic acid, oxacillin, cefoxitin, penicillin, piperacillin,

piperacillin/tazobactam, ampicillin, cephalexin, cephalotin,
cefazolin, cefuroxime, ceftazidime, cefotaxime, cefovecin,
cefotaxim, and cefepime), carbapenems (imipenem and
meropenem), and aztreonam; fluoroquinolones (ciprofloxacin,
enrofloxacin, and marbofloxacin); aminoglycosides (amikacin,
gentamicin, tobramycin, and neomycin); macrolides
(azithromycin and erythromycin); tetracyclines (doxycycline);
clindamycin; polymyxin B; trimethoprim/sulphamethoxazole;
chloramphenicol/florphenicol; fosfomycin; mupiracin; and
glycopetides (vancomycin). For Gram negative bacteria, NM44
MicroScan (Beckman Coulter, Villepinte, France) system
was performed for all the antimicrobials except for those
antibiotics authorized for veterinary uses that are not included
in the automatic scan panels (enrofloxacin, pradofloxacin,
marbofloxacin, doxycycline, cephalexin, and cefovecin).
The MicroScan is an automated bacterial identification and
susceptibility testing system based on microbiology principles
of true minimum inhibitory concentration (MIC) testing. Based
on the lab readings, isolates were classified as Susceptible,
Intermediate or Resistant. For statistical assessments, isolates
that exhibited intermediate resistance were re-classified as
resistant. The laboratory has the quality management system
certificate ISO-9001 since 1998 and the accreditation from
ENAC (National Accreditation Entity) according to criteria
included in the ISO/IEC 17025 Standard defined in the Technical
Annexes 511/LE1947 for Pharmaceutical Toxicology and
Microbiology Testing.

Statistical Analysis
Descriptive and statistical analysis was performed using the
SPSS Advanced Models TM 15.0 (SPSS Inc. 233 South
Wacker Drive, 11th Floor Chicago, IL, United States 60.606-
6412). The Chi-square (χ2) or Fishers Exact tests were
used to compare bacterial spp. and the AMR frequencies
in both animal groups. Statistical significant was considered
when p < 0.05.

RESULTS

Microbiological Diagnosis of Bacterial
Infections
In dogs, most of the samples remitted to the lab were from
cases related to otitis (55.3% dogs vs 29% cats, χ2 = 187.2, and
p < 0.05). In cats, samples from wounds (23% cats vs 19% dogs,
χ2 = 6.6, and p = 0.01), respiratory tract infections (24% vs 5.8%,
χ2 = 299, and p< 0.05), and conjunctivitis (6% vs 2.8% χ2 = 21.6,
and p < 0.001) were more frequently remitted (Figure 2).

Staphylococcus spp. (31–30%), Streptococcus spp. (19–17%)
and Pseudomonas spp. (16–10%), followed by Escherichia coli
(8.0–5.6%), and Enterococcus spp. (5.5–6.8%), were the most
predominant bacteria isolated in both dogs and cats (Table 1).
As a differential trait, dogs presented higher frequencies of
Pseudomonas aeruginosa (92% vs 72%), P. canis (36.7% vs 6.5%),
and S. pseudintermedius (17% vs 4.6%), while S. aureus (6% vs
1.5%) and P. multocida (63% vs 20.4%) were more prevalent in
cats (Table 1).
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FIGURE 1 | Map of the origin and the number of clinical specimens from dogs and cats in the Iberian Peninsula between 2016 and 2018.

The distribution of pathogens for different sample categories
showed that wounds and dermatitis presented similar patterns of
distribution in dogs and cats, with Staphylococcus, Streptococcus,
Enterococcus, and E. coli identified as the most frequently
isolated agents (Figure 3). From otitis specimens, infections
by Staphylococcus spp. were highly detected in both cats and
dogs; meanwhile in cats, high frequencies of P. aeruginosa and
E. coli were presented. On the other hand, dogs presented in
general a larger bacterial diversity in samples from abscess,
conjunctivitis and respiratory tract infections in comparison to
cats. In this line, cats showed higher percentages of Bordetella
spp. and P. multocida infections in conjunctivitis and respiratory
specimens, respectively, (Figure 3).

Antimicrobial Susceptibility Testing
Comparisons of AMR levels between dogs and cats were only
made for bacterial species, which were recorded for more than
20 different strains in the antibiotic sensitivity test. Thus, the
following species were involved: Staphylococcus spp. (n = 1,572
isolates from dogs, n = 239 from cats), Streptococcus spp.

(n = 969, n = 132), Enterococcus spp. (n = 281, n = 54),
Escherichia spp. (n = 405, n = 44), Enterobacter spp. (n = 193,
n = 22), Klebsiella spp. (n = 103, n = 23), Pseudomonas spp.
(n = 825, n = 76), Pasteurella spp. (n = 49, n = 62), and
Corynebacterium spp. (n = 194, n = 22). In addition, for the
most relevant gram-negative bacteria species, minimal inhibitory
concentration (CMI) values required to inhibit the growth of 50%
(MIC50) and 90% (MIC90) of organisms were assessed for some
antimicrobials (Table 2). Interestingly, the Enterobacteriaceae
species presented high values of CMI90 for beta-lactams,
ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole
in both animal groups. Pseudomonas spp. showed the highest
CMI50 values for amoxicillin-clavulanate and cefoxitin (jointly
with Enterobacter spp.), for ampicillin (jointly with Klebsiella
spp.), and for cefotaxime and cefuroxime. Finally, Proteus spp.
isolated from dogs presented a CMI90 value = 8 mg/L to
imipenem, exceeding the resistant breakpoint (Table 2).

Among the Gram-positive bacteria, more than 80% of
Enterococcus isolates presented resistance to oxacillin, cefoxitin,
amikacin, clindamycin, polymyxin B, and fosfomycin from
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FIGURE 2 | Proportion of analyzed samples between cats and dogs according to the type or source of specimens.

both dogs and cats (Figure 4). Similar patterns but with
lower frequencies were detected for Staphylococcus, Streptococcus,
and Corynebacterium spp., principally in isolates from dog
specimens. Besides, Staphylococcus spp. isolated from dogs
presented higher levels of AMR to macrolides, tetracycline,
trimethoprim/sulfamethoxazole and chloramphenicol compared
to cat isolates. Of note, a significant higher frequency of
imipenem and marbofloxacin Corynebacterium resistant isolates
were found in dog cases (Figure 4).

Within the Enterobacteriaceae family, although E. coli was
highly isolated from wounds, dermatitis, abscesses, and otitis
in both dogs and cats, they presented low levels of AMR
(with the exception of ampicillin where 50% of isolates were
resistant), in comparison to other members of the family such
as Klebsiella, Proteus, or Enterobacter spp. (Figure 5). More
in detail, Enterobacter strains from dog specimens showed a
higher level of AMR to β-lactams, imipenem, and mupirocin
than cats. K. pneumoniae from cat respiratory tract infections
presented an overall higher resistance to antimicrobials than
from dogs, showing statistical differences for piperacillin and
trimethoprim/sulfamethoxazole (Figure 5).

Finally, Pseudomonas spp. presented the highest levels of AMR
in both dogs and cats, showing between 80 and 97% of resistance
to penicillin and cephalosporin classes, including 3rd GC, 79–
94% trimethoprim/sulfamethoxazole, 68–85% flophenicol, 55–
62% chloramphenicol, and 69–78% fosfomycin. In general,
isolates from dogs presented higher levels of resistance than the
cat isolates (Figure 5).

Antimicrobial susceptibility in Proteus spp. (n = 205,
n = 5), Serratia spp. (n = 104, n = 14), Acinetobacter spp.
(n = 61, n = 18), and Bordetella spp. (n = 47, n = 15) was
mainly done from dog isolates. (Figure 6) Interestingly, more
than 80% of Proteus isolates were resistant to doxycycline
and polymyxin B. Acinetobacter isolates presented a high
resistance rate to cephalexin (66.1% of dog, 44.4% of cat, and
p < 0.05), cefovecin (65.0%, 38.9%, and p < 0.05), ampicillin
(63.8%, 44.4%), amoxicillin (59.0%, 22.2%, and p < 0.05),

and cefuroxime (57.4%, 33.3%). Meanwhile, resistance to
piperacillin, piperacilina/tazobactam, cefotaxime, ciprofloxacin,
enrofloxacin, marbofloxacin, amikacin, tobramycin, and
trimethoprim/sulfamethoxazole was also found in both pet
groups but in a low proportion of isolates (<20%; Figure 6).

As regard Pasteurella isolates, they were detected principally
from respiratory tract, most of the isolates were highly sensitive
to all the antimicrobials in cats and dogs, showing low
resistance frequencies only to cefuroxime (8.2%) and ampicillin
(6.1%) in dogs, and cephalexin (6.5%) and cefovecin (4.8%) in
cats (Figure 6).

DISCUSSION

This study provides data of the most frequently isolated bacteria
from cat and dog infections and their associated AMR profiles
based on a large number of clinical cases (N = 5875) within
the Iberian Peninsula. This information can be a guide to
clinicians, especially those working in this region, to make
rational decisions on the use of antimicrobials, principally when
empirical antimicrobial treatment is recurrent in companion
animal veterinary medicine.

Most of the specimens submitted to the lab were from
ears in both cats and dogs, and in cats, a large number of
samples were also from respiratory tract infections and wounds.
The distribution of pathogens showed that Staphylococcus,
Streptococcus, Pseudomonas, E. coli, and Enterococcus were the
most frequently isolated agents for different sample categories.
In both cats and dogs, Staphylococcus spp. was commonly
isolated from several sample sources including ears, skin, eyes,
abscesses and wounds. This finding agrees with other studies
conducted in Canada, Sweden, and South Africa (Windahl
et al., 2015; Qekwana et al., 2017; Awosile et al., 2018) which
confirms Staphylococcus spp. as an opportunistic pathogen of the
integument and mucosae, causing otitis externa, pyoderma, and
post-surgical complications in dogs.
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Thirty-one and thirty percent of the studied samples were
tested positive for Staphylococcus spp., respectively, in dogs and
cats. In dogs, the identified species of Staphylococcus included
S. pseudintermedius (17.4%), S. intermedius (7%), S. schleiferi

TABLE 1 | Frequencies of bacterial species identified in dog and cat specimens.

DOGS
(N = 5,086)

CATS
(N = 789)

n (%) n (%)

Acineto
bacter spp.

61 (1) 18 (2)

A. baumannii 22 (36.1) A. lwoffii 8 (44.4)

A. lwoffii 14 (23) A. baumannii 2 (11.1)

A. haemolyticus 4 (6.6) A. haemolyticus 1 (5.5)

Others 2 (3.3)

Bordetella
spp.

47 (0.9) 15 (1.9)

B. bronchiseptica 47 (100) B. bronchiseptica 15 (100)

Candida
spp.

30 (0.5) 7 (0.9)

C. parapsilosis 5 (16.7) C. parapsilosis 3 (42.9)

C. albicans 2 (6.5) C. albicans 2 (28.6)

Others 4 (13.3)

Coryne
bacterium
spp.

194 (3.8) 22 (2.8)

C. amycolatum 7 (3.6) C. amycolatum 2 (9.1)

C. auriscanis 5 (2.6)

Others 2 (1)

Entero
bacter spp.

84 (1.6) 26 (3.3)

E. cloacae 59 (70.2) E. cloacae 22 (84.6)

E. aerogenes 13 (15.5) E. aerogenes 3 (11.5)

E. gergoviae 8 (9.5) E. gergoviae 1 (3.8)

Entero
coccus
spp.

281 (5.5) 54 (6.8)

E. faecalis 92 (32.7) E. faecalis 18 (69.2)

E. faecium 8 (2.8) E. avium 2 (7.7)

E. canintestini 1 (0.4) E. faecium 1 (3.8)

E. durans 1 (0.4) E. hirae 1 (3.8)

Escherichia
spp.

405 (8) 44 (5.6)

E. coli 400 (98.8) E. coli 42 (95.5)

E. vulneris 4 (1)

Klebsiella
spp.

103 (2) 23 (2.9)

K. pneumoniae 73 (70.9) K. pneumoniae 17 (73.9)

K. oxytoca 28 (27.2) K. oxytoca 6 (26.1)

K. ornithinolytica 1 (1)

Pasteurella
spp.

49 (1) 62 (7.8)

P. canis 18 (36.7) P. multocida 39 (62.9)

P. multocida 10 (20.4) P. canis 4 (6.5)

P. pneumotropica 3 (6.1) Others 4 (6.5)

(Continued)

TABLE 1 | Continued

DOGS
(N = 5,086)

CATS
(N = 789)

n (%) n (%)

Proteus
spp.

205 (4) 5 (0.6)

P. mirabilis 198 (96.6) P. mirabilis 5 (100)

P. vulgaris 3 (1.5)

Pseudo
monas spp.

827 (16.3) 76 (9.6)

P. aeruginosa 761 (92) P. aeruginosa 55 (72.4)

P. fluorescens 18 (2.2) P. fluorescens 5 (6.6)

Others 34 (4.1) Others 16 (21.1)

Serratia
spp.

104 (2) 14 (1.7)

S. marcescens 96 (92.3) S. marcescens 12 (85.7)

S. liquefaciens 7 (6.7) S. liquefaciens 2 (14.3)

Staphylo
coccus
spp.

1,581 (31) 239 (30.3)

S. pseudintermedius 275 (17.4) S. aureus 14 (5.9)

S. intermedius 109 (6.9) S. epidermidis 12 (5)

S. schleiferi 30 (1.9) S. felis 12 (5)

S. aureus 23 (1.5) S. pseudintermedius 11 (4.6)

S. epidermidis 9 (0.6) S. schleiferi 2 (0.8)

Others 25 (1.6) Others 16 (6.7)

Strepto
coccus
spp.

972 (19) 132 (16.7)

S. canis 23 (2.4) S. canis 2 (1.5)

S. dysgalacticae 3 (0.3)

S. halichoeri 1 (0.1)

(2%), S. aureus (1.5%), and S. epidermidis (0.6%), which
presented a similar prevalence patterns as other studies reported
in South Africa (Qekwana et al., 2017). The lower prevalence of
S. aureus compared with S. pseudintermedius was in accordance
with previously published works (Hanselman et al., 2009;
Kawakami et al., 2010; Chanchaithong et al., 2014; Dos Santos
et al., 2016). In cats, S. aureus was the most common isolated
specie. The high rate of colonization with S. pseudintermedius
and S. aureus found in dog and cat specimens could represent
a public health concern, as has been described in many papers
the potential transmission of Staphylococcus spp. from dogs to
humans when exposing to carrier or infected dogs (Boost et al.,
2007; Faires et al., 2009; Frank et al., 2009; Pantosti, 2012; Dos
Santos et al., 2016).

The most common ear pathogens isolated from dogs
are coagulase-positive staphylococci (Staphylococcus
pseudintermedius) and P. aeruginosa (Cole et al., 1998). By
contrast, a recent study conducted in France showed that the
major causative agents of dog otitis were coagulase-positive
staphylococci, P. aeruginosa, P. mirabilis, and streptococci
(Bourély et al., 2019). In that study, the authors found that
since 2003 resistance to fluoroquinolones has been decreased in
both P. aeruginosa and S. pseudintermedius isolates, resulting
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FIGURE 3 | Frequencies of bacterial species according to the origin of infections in dogs and cats.
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for P. aeruginosa, 19.4% of isolates were resistant to both
enrofloxacin and gentamicin (Bourély et al., 2019). In the present
study, S. pseudintermedius, P. aeruginosa, and E. coli. were
also frequently isolated from dog otitis specimens, and similar
percentages of fluoroquinolones and gentamicin resistance were
observed for S. pseudintermedius and P. aeruginosa isolates
(<20%). Meanwhile, the P. aeruginosa isolates showed high
levels of resistance to penicillin and cephalosporin classes
(including 3rd GC), trimethoprim/sulfamethoxazole, phenicoles,
and fosfomycin, both in dogs and cats. Pseudomonas spp.
were intrinsically resistant to beta-lactams, combinations with
β-lactamase inhibitors, chloramphenicol, erythromycin, and
trimethoprim/sulfamethoxazole. In this study, high proportions
of Pseudomonas were susceptible to the aminoglycosides
(>95%). As well, the frequency of enrofloxacin resistance was
low (27% in dogs and 20% in cats) compared to other studies

conducted in Canada (Awosile et al., 2018). Enrofloxacin is
commonly used systemically with concurrent topical treatment
in cases of canine otitis caused by P. aeruginosa (Hariharan
et al., 2006). These results suggest that aminoglycosides
and fluoroquinolones have potential to be used as anti-
pseudomonal drugs (Dowling, 1996). Our findings are also
consistent with similar retrospective studies from Denmark,
United States, and Canada (Petersen et al., 2002; Authier et al.,
2006; Pedersen et al., 2007).

Enterococci are MDR from both intrinsic and acquired
features. Specifically, Enterococcus spp. are naturally resistant
to clindamycin, as well as to penicillin G and cephalothin,
giving them a characteristic of AMR profile (Prescott et al.,
2002; Delgado et al., 2007). Enterococci isolates of this study
were principally isolated from wounds and dermatitis of
companion animal specimens. More than 80% of Enterococcus

TABLE 2 | Minimal Inhibitory Concentrations (MIC, mg/L) values in Gram-negative bacteria isolated from dogs and cats.

DOG SPECIMENS

Acinetobacter spp. Pseudomonas spp. Escherichia spp. Klebsiella spp. Enterobacter spp. Proteus spp.

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

AMC 4 >32 >32 >32 4 >32 4 >32 >32 >32 <2 16

AMK <2 16 >2 16 <2 <8 <2 16 <2 <8 <2 4

AMP 16 >32 >32 >32 16 >32 >32 >32 16 >32 <2 >32

CAZ 4 16 4 8 <1 16 <1 16 <1 >64 <1 <1

CIP <0.25 >4 <0.25 >4 <0.25 >4 <0.25 >4 <0.25 >4 <0.25 >4

CTX 8 32 16 >64 <1 8 <1 >64 <1 >64 <1 4

CXM 32 >64 >64 >64 4 >64 4 >64 4 >64 <1 16

FOX >64 >64 >64 >64 <4 >64 >8 >64 >64 >64 <4 16

GEN <1 8 <1 8 <1 >16 <1 >16 <1 8 <1 >16

IPM <0.25 1 2 2 <0.25 <0.5 <0.25 <0.25 <0.5 2 2 8

SXT <20 >320 160 >320 <20 >320 <20 >320 <20 >320 <20 >320

TZP 8 16 8 32 <4 8 <4 >128 <8 >128 <4 <4

CAT SPECIMENS

Acinetobacter spp. Pseudomonas spp. Escherichia spp. Klebsiella spp. Enterobacter spp. Proteus spp.

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

AMC 4 16 >32 >32 4 >32 16 >32 >32 >32 8 8

AMK <2 <8 <2 16 <2 8 <2 16 <2 16 <2 <2

AMP 4 >32 >32 >32 >16 >32 >32 >32 >32 >32 >32 >32

CAZ 4 4 16 >64 <1 >16 <1 >16 <1 >64 <1 <1

CIP <0.25 <0.5 <0.5 >4 <0.25 >4 >2 >4 <0.25 >4 <0.25 2

CTX 8 16 16 >64 <1 >64 <1 >64 <1 >64 <1 <1

CXM 16 >64 >64 >64 4 >64 >16 >64 16 >64 <1 4

FOX >64 >64 >64 >64 >4 8 >64 >64 <4 16

GEN <1 <2 <1 8 <1 <2 <1 >16 <1 8 <1 >16

IPM <0.25 <1 2 2 <0.25 <1 <0.25 <1 <0.25 <1 – –

SXT <20 <20 >320 >320 <20 >320 >320 >320 <20 >320 >320 >320

TZP <8 16 8 >128 <4 64 16 >128 <8 >64 <4 <4

AMC, Amoxicillin-clavulanic; AMK, amikacin; AMP, ampicillin; CAZ, ceftazidime; CIP, ciprofloxacin; CTX, cefotaxime; CXM, cefuroxime; FOX, cefoxitin; GEN, gentamicin;
IPM, imipenem; SXT, trimethoprim/sulphamethoxazole; and TZP, piperacillin/tazobactam. CLSI (M100-S24): AMC ≥ 32/16, AMK ≥ 64, and AMP ≥ 16; CAZ ≥ 16,
CIP ≥ 1, CTX ≥ 4, CXM ≥ 32, FOX ≥ 32, GEN ≥ 16, IPM ≥ 4, SXT ≥ 4/76, and TZP ≥ 128/4. CLSI (VET01): AMC ≥ 1, AMP > 8, AMK ≥ 16, CAZ ≥ 16, and GEN ≥ 8.
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FIGURE 4 | Comparison of antimicrobial resistance frequencies in Gram negative bacteria isolated from dogs and cats. Statistical significance was calculated by
Chi-square (χ2) or Fishers Exact tests, *p < 0.05. AMC, Amoxicillin-clavulanic; AMP, ampicillin; FOX, cefoxitin; LEX, cephalexin; CFZ, cefazolin; CEF, cephalotin;
CXM, cefuroxime; CAZ, ceftazidime; CTX, cefotaxime; CVN, cefovecin; FEP, cefepime; IPM, imipenem; MEM, meropenem; CIP, ciprofloxacin; ENR, enrofloxacin;
MFX, marbofloxacin; PRA, pradofloxacin; AMK, amikacin; GEN, gentamicin; TOB, tobramycin; DOX, doxycycline; FOF, Fosfomycin; NIT, nitrofurantoin; and SXT,
trimethoprim/sulfamethoxazole.

isolates showed resistance to cephalosporins, clindamycin and
polymyxin B, and more than 50% of them were also resistant
to aminoglycosides. These results are consistent with findings
from Canada, United States, Portugal (Delgado et al., 2007;
Jackson et al., 2009; Awosile et al., 2018), and Spain (unpublished
data) where enterococcal isolates from urinary infections had
similar levels of resistance to cephalosporins, clindamycin, and
polymyxin B, but high levels of susceptibility to penicillin,
ampicillin, and amoxicillin-clavulanate. Thus, oral ampicillin
or amoxicillin which is commonly prescribed as a first line
treatment for empirical therapy in enterococcal infections could
be appropriate for the studied region. Nevertheless, the increased
AMR to gentamicin observed in this study could compromise the
effectivity of combined therapies with ampicillin or amoxicillin
(Arias et al., 2010).

In this study, Streptococcus spp. were highly susceptible
to several antimicrobials, including penicillin, ampicillin,
amoxicillin-clavulanate, trimethoprim/sulfamethoxazole,
fluoroquinolones, and allowing for several likely effective
choices for empirical therapy. Similar susceptibility pattern
of Streptococcus spp. has also been reported (Pedersen et al.,

2007; Awosile et al., 2018). Nevertheless, our isolates from
dogs presented the highest resistance percentage for amikacin
and neomycin (>50%); this finding could compromise the
bactericidal activity of therapies holding aminoglycosides for
the empirical treatment of streptococcal infections in dogs of
the studied region.

Among the Enterobacteriaceae family, E. coli and Proteus spp.
were highly isolated from wounds, dermatitis, abscesses
and otitis in dog specimens in this study. The reduced
susceptibility patterns of these bacterial species was found
to cephalosporins (1st generation, 30% for cephalexin) and
to ampicillin (50%). Proteus isolates presented resistance to
doxycycline and polymyxin B (>80%) as well. Ampicillin
was used in the susceptibility test to predict activity of
amoxicillin (Weese et al., 2019), and is a good first-line
option for the treatment of sporadic bacterial cystitis
associated to E. coli in cats and dogs (Weese et al., 2011,
2019). The use of this antimicrobial for empirical treatment
of E. coli infections should be with caution due to the
rapid development of resistance caused by beta-lactamase
production (Boehmer et al., 2018). Nonetheless, our results
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FIGURE 5 | Comparison of antimicrobial resistance frequencies in Gram positive bacteria isolated from dogs and cats. Statistical significance was calculated
Chi-square (χ2) or Fishers Exact tests, *p < 0.05. AMC, Amoxicillin-clavulanic; AMP, ampicillin; LEX, cephalexin; CFZ, cefazolin; CXM, cefuroxime; CTX, cefotaxime;
CVN, cefovecin; IPM, imipenem; MEM, meropenem; CIP, ciprofloxacin; ENR, enrofloxacin; MFX, marbofloxacin; PRA, pradofloxacin; AMK, amikacin; GEN,
gentamicin; TOB, tobramycin; DOX, doxycycline; ERY, erythromycin; FOF, fosfomycin; NIT, nitrofurantoin; SXT, trimethoprim/sulfamethoxazole; and VAN,
vancomycin.

support than other antimicrobials, also effective against E. coli
and Proteus spp., such as amoxicillin-clavulanate, amikacin,
and gentamicin could be included as empirical selection
(Awosile et al., 2018).

In the present study, E. coli strains isolated from dogs
and cats showed low levels of AMR (with the exception
of ampicillin) in comparison with other members within
the same family, i.e., Klebsiella, Proteus, or Enterobacter spp.
Accordingly, Enterobacter strains from dog specimens showed
higher levels of AMR for β-lactams, imipenem and mupirocin
compared to cats. Moreover, K. pneumoniae from respiratory
tract infections in cats presented in general higher resistance to
antimicrobials than dog specimens, mainly for piperacillin, and
trimethoprim/sulfamethoxazole.

On the other hand, high susceptibility to many antimicrobials
has been observed for Pasteurella isolates from respiratory tract
of cats and dogs. This is consistent with findings in other reports
(Pedersen et al., 2007; Kroemer et al., 2014; Awosile et al.,

2018). Clinically, doxycycline and amoxicillin-clavulanate are
often used for the treatment of Pasteurella infections (Lappin
et al., 2017). Since most of the isolates were highly sensitive to
antimicrobials including fluoroquinolones, aminoglycosides, and
trimethoprim/sulfamethoxazole which are reasoned to be used
for the treatment of Pasteurella infections in cats and dogs.

The antimicrobial options for empirical therapy can be
compromised in companion animals (Prescott et al., 2002;
Jung et al., 2020) basically due to: (1) the increased incidence
in the last years of antimicrobial-resistant bacteria such as
MDR Enterococcus spp., Enterobacter spp., P. aeruginosa
and K. pneumoniae, and (2) the extended AMR to other
antimicrobial families (i.e., aminoglycosides, fluoroquinolones,
and carbapenems). Of note, the results obtained from pets of this
study are similar to those reported in human hospitals in Spain
(ESTUDIO EPINE-EPPS, 2017). The most prevalent bacterial
species found in human nosocomial and community infections
are E. coli (19.5%), S. aureus (9%) and P. aeruginosa (8%),
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FIGURE 6 | Comparison of antimicrobial resistance frequencies in other bacteria spp. isolated from dogs and less representative from cats. Statistical significance
was calculated by Chi-square (χ2) or Fishers Exact tests, *p < 0.05. AMC, Amoxicillin-clavulanic; FOX, cefoxitin; PIP, piperacillin; TZP, piperacillin/tazobactam; AMP,
ampicillin; LEX, cephalexin; CXM, cefuroxime; CAZ, ceftazidime; CVN, cefovecin; CTX, cefotaxime; CPD, cefpodoxime; IPM, imipenem; CIP, ciprofloxacin; ENR,
enrofloxacin; MFX, marbofloxacin; AMK, amikacin; GEN, gentamicin; TOB, tobramycin; N, Neomycin; DOX, doxycycline; PB, polymyxin B, SXT,
trimethoprim/sulfamethoxazole; FFC, florfenicol, and CHL, chloramphenicol.

followed by K. pneumoniae (6.3%), Enterococcus spp. (5.8%),
P. mirabilis (3.2%), and Enterobacter spp. (2.2%). Moreover,
CMI90 results of Enterobacteriaceae isolated from dogs and
cats of this study presented values for amoxicillin-clavulanate
>32–16 mg/L, ceftazidime = 8 mg/L, cefotaxime = 4 mg/L,
cefuroxime > 64 mg/L, cefoxitin > 32 mg/L, and
piperacillin/tazobactam = 16–4 mg/L, which have been associated
with a BLEE phenotype in E. coli, K. pneumoniae, and E. cloacae
from human isolates (Canton, 2010). Finally, the presence of
Proteus isolates from dogs with imipenem CMI90 > 4 mg/L is
highly suspicious for carbapenemasa production. To prevent the
selection of BLEEs and carbapenem- resistance profiles in both
human and animal medicine, is very important to implement
the One Health approach, and monitor the resistance patterns
of these pathogenic bacteria in companion animals (ESTUDIO
EPINE-EPPS, 2017; Nigg et al., 2019; Jung et al., 2020).

Some limitations have to be considered in the present
study. Firstly, data on clinical history and antimicrobial
usage were not available. Secondly, some cases might have
been treated empirically prior to culture and susceptibility
testing. Thirdly, the use of laboratory data may represent a
bias toward resistance, since cultures from complicated cases
tend to be requested more often than uncomplicated cases.
Finally, isolates that exhibited intermediate resistance were
classified as resistant, this could have biased the results to
some extent toward overestimating the resistance levels among
the tested strains.

Despite these limitations, the results of this study provides
information on susceptibility patterns in major cat and dog
bacterial isolates from the Iberian Peninsula. These results
show Staphylococcus spp., Streptococcus spp., Pseudomonas
spp., E. coli, and Enterococcus spp. as the most predominant
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bacteria in cats and dogs, and with the highest levels of
AMR in Enterococcus spp. and Pseudomonas spp. Within
the Enterobacteriaceae, E. coli presented low levels of AMR
compared to Klebsiella, Proteus or Enterobacter spp. Since dogs
and cats are supposed to act as reservoirs of AMR genes that may
transfer to humans, data from this study combined with clinical
judgment can be used as a guide for rationalizing antimicrobial
treatment of companion animals, at least in the Iberian Peninsula.
Finally, optimizing antimicrobial use in the vet clinics will benefit
to limit the selection and spreading of resistant bacteria not only
among our pets but also among the human population.
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The widespread and poorly regulated use of antibiotics in animal production in low-
and middle-income countries (LMICs) is increasingly associated with the emergence
and dissemination of antibiotic resistance genes (ARGs) in retail animal products.
Here, we compared Escherichia coli from chickens and humans with varying levels of
exposure to chicken meat in a low-income community in the southern outskirts of Lima,
Peru. We hypothesize that current practices in local poultry production result in highly
resistant commensal bacteria in chickens that can potentially colonize the human gut.
E. coli was isolated from cloacal swabs of non-organic (n = 41) and organic chickens
(n = 20), as well as from stools of market chicken vendors (n = 23), non-vendors
(n = 48), and babies (n = 60). 315 E. coli isolates from humans (n = 150) and chickens
(n = 165) were identified, with chickens showing higher rates of multidrug-resistant
and extended-spectrum beta-lactamase phenotypes. Non-organic chicken isolates
were more resistant to most antibiotics tested than human isolates, while organic
chicken isolates were susceptible to most antibiotics. Whole-genome sequencing of
118 isolates identified shared phylogroups between human and animal populations
and 604 ARG hits across genomes. Resistance to florfenicol (an antibiotic commonly
used as a growth promoter in poultry but not approved for human use) was higher in
chicken vendors compared to other human groups. Isolates from non-organic chickens
contained genes conferring resistance to clinically relevant antibiotics, including mcr-1
for colistin resistance, blaCTX-M ESBLs, and blaKPC-3 carbapenemase. Our findings
suggest that E. coli strains from market chickens are a potential source of ARGs that
can be transmitted to human commensals.

Keywords: AMR, genomics, LMIC, poultry, Escherichia coli, one health, WGS, Peru
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INTRODUCTION

Antimicrobial resistance (AMR) in human pathogens has
become a major global health threat (O’Neill, 2014; World
Health Organization [WHO], 2017b), with bacterial infections
increasingly failing to first-line and “last-resort” antibiotic
therapies. Decades of widespread antibiotic use in medicine
and agriculture (Silbergeld et al., 2008) have resulted in the
emergence and spread of various resistance determinants in
microbial populations. In particular, the increasing demand
for animal protein has led to a dramatic modernization of
agriculture, including the regular use of antibiotics in feed to
promote animal growth in addition to their therapeutic use. At
low (sub-inhibitory) but constant dosages, antibiotics serve as
growth promoters by reducing the levels of pathogenic strains
and altering the microbiota to allow the host for more nutrient
uptake (Evans and Wegener, 2003). This selective pressure has
dramatically increased the rate of resistance to various drugs
in the microbiota of farm animals, including commensals and
pathogens alike (Woolhouse et al., 2015; Robinson et al., 2016;
Liu et al., 2018; Nadimpalli et al., 2018; Van Boeckel et al.,
2019). Resistant strains can be transmitted from animals to
humans through meat consumption, direct animal contact,
and exposure to environmental runoff (Hoelzer et al., 2017).
Furthermore, horizontal gene transfer can enable the rapid
exchange of resistance determinants between different bacterial
lineages across hosts and environments (Marshall and Levy, 2011;
Woolhouse et al., 2015). Because most antibiotic resistance genes
(ARGs) are found in bacteria isolated from both humans and
animals, the direction of transfer of most such genes and resistant
organisms can be difficult to demonstrate.

We previously surveyed the antibiotic resistomes in the guts
of healthy adults in a peri-urban community south of Lima
and found high diversity and abundance of genes encoding
resistance to amphenicol antibiotics (Pehrsson et al., 2016).
A recent study in Cambodia compared E. coli isolates from
humans, meat, and fish and found moderate levels of amphenicol
resistance in human isolates (Nadimpalli et al., 2019). Although
used widely until the 1980s, chloramphenicol is now rarely
prescribed in human medicine in Peru and is banned from
food animal production since 2013 (Diario Oficial El Peruano,
2013). However, florfenicol (a fluorinated thiamphenicol analog)
is widely employed in broiler farming therapeutically and as
a growth promoter and available in various commercial feed
premixes (FAO, 2014). This has led to the hypothesis that
amphenicol resistance in human commensals did not emerge
from clinical use, but in food animal populations due to extensive
veterinary use of chloramphenicol, florfenicol, and other related
compounds. Chickens, most of which now are grown under local
intensive farming systems, provide the primary source of animal
protein for the Peruvian population (World Bank Group, 2017).
Average per capita consumption was estimated at 49.5 kg in 2018,
and up to 80.5 kg per person per year in the capital of Lima
(Ministerio de Agricultura y Riego [MINAGRI], 2018).

We hypothesize that current practices in poultry production
and handling in LMICs result in highly resistant chicken
commensals that can potentially colonize the human gut. To test

this, we assessed the distribution of resistant E. coli and associated
ARGs in market chickens, chickens grown without antibiotics
(organic chickens), and residents from a low-income, peri-urban
community in Lima, with varying levels of exposure to poultry.

MATERIALS AND METHODS

Study Site
Local market stalls in Villa El Salvador (VES) and its neighboring
district, San Juan de Miraflores (SJM) in southern Lima, were
visited to purchase whole chickens. Human fecal samples
were collected from the community surrounding the VES
market (see Supplementary Table 1). These neighboring districts
share similar demographic characteristics and contain various
urban informal settlements (Instituto Nacional de Estadística e
Informática [INEI], 2017). Informal housing arrangements, lack
of running water, and inadequate sanitation in most households
make these sites representative of peri-urban settlements
in other LMICs, which are considered hotspots for AMR
(Nadimpalli et al., 2020). We also collected laying hens’ samples
from an organic free-range farm in Vegueta (VEG), located
approximately 150 km north of Lima.

Samples
Humans
Fecal samples were collected in March 2018 from three resident
groups in the VES community: chicken vendors (n = 23) working
in the markets where chickens were purchased, babies (n = 60)
between 1 and 24 months old from an ongoing cohort study in
the community, and non-vendor adults (n = 48). Fresh feces were
collected by individuals and legal guardians as instructed. Fecal
samples were swabbed and placed vials with Cary-Blair transport
medium, stored at 4◦C, and transferred to the laboratory
for further processing. Ethical approval was obtained from
Institutional Review Boards at Universidad Peruana Cayetano
Heredia and Asociación Benéfica Prisma.

Market (Non-organic) Chickens
Forty-one recently slaughtered whole chickens were purchased in
14 market stalls of VES and SJM from March to April of 2018.
Whole chickens and market stands were selected by convenience.
We have no information on the exact rearing conditions or
origin of these chickens. However, almost all of the chicken
meat sold in Lima originates from conventional local production
systems that heavily rely on routine antibiotic use as a standard
industry practice. Chickens were taken to field laboratories for
the collection of intestinal contents. Cloacal and intestinal swabs
were put in sterile tubes with saline solution and transferred
within 2 h to the laboratory for bacterial culture.

Organic Laying Hens
Cloacal swabs from 20 laying hens from the sole Certified
Humane R© (Humane Farm Animal Care [HFAC], 2018) organic
free-range farm in Lima were obtained in May of 2019 to have a
set of isolates originating from poultry raised without antibiotics
as a comparison group to the market chickens. Cloacal swabs
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were put in sterile tubes with Cary-Blair transport medium,
stored at 4◦C, and transferred to the laboratory for processing.

Culture and Isolation
Samples were streaked in CHROMagar Orientation Media
(CHROMagar Microbiology, Paris, France) for rapid
differentiation and presumptive identification of E. coli. Up to 3–
5 dark pink to red colonies indicative of E. coli were re-streaked
to MacConkey agar (Becton Dickinson, Heidelberg, Germany)
for lactose fermentation confirmation and then selected for
species confirmation with a conventional biochemical profiling
panel (Garrity et al., 2005). Those confirmed as E. coli (n = 315)
were included in the study and stored in Tryptic soy broth (TSB,
Becton Dickinson) with glycerol at−20◦C until DNA extraction.

Antibiotic Susceptibility Testing
Disk diffusion tests were performed with CLSI 2018 standards,
using susceptible, intermediate, and resistant definitions
for Enterobacteriaceae (Clinical and Laboratory Standards
Institute (CLSI), 2018). A total of 18 antibiotics were used
(see Supplementary Table 2). Extended-spectrum β-lactamase
(ESBL) activity was detected using the cefotaxime-ceftazidime-
cefepime-aztreonam with amoxicillin with clavulanic acid test,
according to EUCAST standards (The European Committee
on Antimicrobial Susceptibility Testing [EUCAST], 2017). We
interpreted florfenicol susceptibility using chloramphenicol’s
CLSI breakpoints as there are no approved cut-off values
for E. coli (White et al., 2000; Clinical and Laboratory
Standards Institute (CLSI), 2018). We did not report on
colistin phenotypic resistance due to the lack of recommended
cut-off values for colistin disk diffusion testing (Ezadi et al.,
2018). A multidrug-resistant drug isolate was defined as
expressing phenotypic resistance to three or more antibiotic
classes (Magiorakos et al., 2012).

DNA Extraction and WGS
DNA was extracted from 1 ml TSB culture using the GeneJet
Genomic DNA purification kit (Thermo Fisher Scientific,
Waltham, MA, United States) following the manufacturer’s
instructions. DNA was eluted in 200 µl Tris-EDTA buffer and
quantified using the Qubit dsDNA BR Kit (Thermo Fisher
Scientific). We selected a subset of 118 isolates for WGS on the
Illumina MiSeq platform. We randomized isolate selection within
each study group to include representative drug susceptibility
patterns. Libraries were prepared from 1 ng gDNA with the
Nextera XT kit (Illumina, San Diego, CA, United States). Batches
of 24 libraries were indexed and sequenced with MiSeq v3
sequencing kits to generate 300 bp paired-end reads and yield a
mean of 84x genome coverage (minimum 17x, maximum 163x).
Raw Illumina reads were uploaded to GenBank under BioProject
PRJNA633873.

Genomic and Phylogenetic Analyses
Raw reads were assessed with FastQC v0.11.9, trimmed with
Trimmomatic v0.36.6 (Bolger et al., 2014), assembled with
SPAdes v.3.10.0 (Bankevich et al., 2012), and annotated with

Prokka v1.5 (Seemann, 2014). MLST was determined from
de novo assemblies using the CGE pipeline (Thomsen et al.,
2016) based on the Enterobase scheme1 accessed through
PubMLST2. ARGs were annotated by querying assemblies against
the CARD database (Alcock et al., 2020) at >90% identity.
We clustered ARG-containing contigs with CD-HIT (Li and
Godzik, 2006) at an 80% similarity threshold over the contig’s
length. Plasmid typing was done using the PlasmidFinder
database (Carattoli et al., 2014) and BLAST (Ye et al., 2006)
to identify assemblies containing an Inc reference gene, with
a threshold of 90% identity and E-value <1e-35. Prokka-
annotated assemblies were used as input for Roary v3.13.0
(Page et al., 2015) to determine the pangenome and perform
a core gene alignment of all sequenced isolates using blastp
identity threshold of 95%. Variable positions were extracted
from an alignment of 2,233 core genes (2,252,390 bp) and used
to build a maximum-likelihood phylogenetic tree with RAxML
v8.2.4 (Stamatakis, 2014) with the general time-reversible (GTR)
substitution model and gamma correction for rate heterogeneity.
SNP-dists v0.7.0 was used to build a pairwise SNP distance
matrix from the pangenome alignment. A published genome
of Escherichia fergusonii (Manninger et al., 2016) was used
to root the phylogenetic tree. CLC Genomics Workbench
v20.0 (QIAGEN Bioinformatics) was used to visualize and
annotate the tree.

Statistical Analysis
The proportion of resistant isolates was tabulated for each
sample type. Comparisons of proportions were evaluated using
the Chi-square test or Fisher’s exact test as appropriate. Data
management and statistical analysis were performed with a
confidence level of 95% using STATA 16 (StataCorp, College
Station, TX, United States) and R (v3.5.2).

RESULTS

Antimicrobial Susceptibility
Chickens
Escherichia coli isolates were obtained from market (non-
organic) (n = 130) and organic (n = 35) chickens. Multidrug-
resistant (MDR) rates were higher in non-organic animals
(76.9 vs. 11.4%, p < 0.001, Chi-square test). Only the
non-organic chicken isolates were ESBL producers (39.2%,
n = 51), and presented resistance to at least five antibiotic
families (46.2%, n = 60), including chloramphenicol (62.3%,
n = 81), florfenicol (52.3%, n = 68), and meropenem (0.8%,
n = 1). These isolates presented the highest resistance levels
to almost every antimicrobial tested. In contrast, the organic
chicken isolates were susceptible gentamicin, amoxicillin with
clavulanic acid, cefotaxime, cefepime, ceftazidime, and cefoxitin
(Figure 1). A comparison of resistance rates is detailed in
Table 1.

1http://enterobase.warwick.ac.uk/
2https://pubmlst.org/
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FIGURE 1 | Phenotypic antibiotic resistance of 315 E. coli isolates from humans and chickens in Lima, Peru. (A) Isolates were grouped by number of antibiotics to
which they were resistant based on disk-diffusion assays. (B) Based on resistance to 16 antibiotics. (A) Percentage of resistances to different drugs, DR, drug
resistance. (B) Resistance patterns to different antibiotics, TET, tetracycline; AMX, amoxicillin; SXT, trimethoprim/sulfamethoxazole; NA, nalidixic acid; CLO,
chloramphenicol; CF, cefalotin; FLO, florfenicol; CIP, ciprofloxacin; CTX, cefotaxime; AZT, azithromycin; GN, gentamicin; AMC, Amoxicillin with Clavulanic Acid; FEP,
cefepime; CAZ, ceftazidime; FOX, cefoxitin; MEM, meropenem.

Humans
Human isolates (n = 150) were obtained from babies aged 0–
2 years (40%, n = 60), adult non-vendors (32%, n = 48), and
chicken vendors in local markets (28%, n = 42). MDR isolates
were more frequent in chicken vendors (38.1%, n = 16) compared
to non-vendors (22.9%, n = 11). Isolates from chicken vendors
presented higher resistance rates to florfenicol (16.7%, n = 7)
compared to non-vendor adults (4.2%, p = 0.077, Fisher’s exact
test) and babies (5%, p = 0.087, Fisher’s exact test). However,
they were not more resistant to chloramphenicol (11.9 vs. 4.2%,
p = 0.245, Fisher’s exact test). E. coli isolates from babies
presented high resistance levels to tetracycline (45%, n = 27),
trimethoprim/sulfamethoxazole (60%, n = 36), amoxicillin (65%,
n = 39), azithromycin (13.3%, n = 8), chloramphenicol (15%,
n = 9), cefalotin (15%, n = 9), cefotaxime (8.3%, n = 5), and
gentamicin (3.3%, n = 2).

Chickens Versus Humans
Overall, resistance rates were higher among chicken E. coli
compared to human isolates (Table 1), including MDR (63 vs.

37.3%, p < 0.001, Chi-square test) and ESBL-producing E. coli
(30.9 vs. 4.0%, p < 0.001, Chi-square test). Additionally, we found
higher florfenicol resistance in 43.1% (n = 71) of chicken isolates
and 16.7% (n = 7) of chicken vendors compared to other groups.
Further resistance results are shown in Table 1.

Genomic Analysis
We selected a random subset of 118 isolates from babies
(n = 19), adults (n = 22), chicken vendors (n = 23), non-organic
chickens (n = 31), and organic chickens (n = 23) to further
understand the flow of E. coli phylogroups and ARGs between
animals and humans. The genomic dataset had a mean N50
of 102,136 bp (SD = 49,584 bp) and a mean total length of
4,490,970 bp (SD = 1,222,343 bp). Pangenome analysis using
Roary identified a core genome (i.e., genes found in ≥99% of
isolates) of 2,304 genes and an accessory genome (found in≤15%
of isolates) of 26,135 genes. To assess the genomic similarity
between isolates, we built a maximum-likelihood phylogenetic
tree from the pangenome alignment (Figure 2) and calculated
all pairwise SNP distances (Supplementary Figure 1). We
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TABLE 1 | Resistance profiles and bivariate analysis of E. coli isolates from chickens and humans.

Results Humans Chickens Total (n=315) pe

Total (n=150) N (%) pa pb pc Total (n=165) N (%) pd

Non-vendor
adults (n=48)

Babies (n=60) Vendors
(n=42)

Non-organic
(n=130)

Organic
(n=35)

Multidrug-resistance

Yes 56 (37.3) 11 (22.9) 29 (48.3) 16 (38.1) 0.007 0.305 0.117 104 (63) 100 (76.9) 4 (11.4) <0.001 160 (50.8) <0.001

ESBL

Yes 6 (4) 1 (2.1) 4 (6.7) 1 (2.4) 0.379* 0.646* 1.000* 51 (30.9) 51 (39.2) 0 (0) <0.001 57 (18.1) <0.001

Amphenicols

Cloramphenicol 16 (10.7) 2 (4.2) 9 (15) 5 (11.9) 0.107* 0.655 0.245* 84 (50.9) 81 (62.3) 3 (8.6) <0.001 100 (31.8) <0.001

Florfenicol 12 (8) 2 (4.2) 3 (5) 7 (16.7) 1.000* 0.087* 0.077* 71 (43.1) 68 (52.3) 3 (8.6) <0.001 83 (26.4) <0.001

Tetracyclines

Tetracycline 57 (38) 12 (25) 27 (45) 18 (42.9) 0.032 0.830 0.073 117 (70.9) 104 (80) 13 (37.1) <0.001 174 (55.2) <0.001

Sulfonamides

Trimethoprim/
sulfamethoxazole

63 (42) 12 (25) 36 (60) 15 (35.7) <0.001 0.016 0.268 89 (53.9) 83 (63.9) 6 (17.1) <0.001 152 (48.3) 0.034

Aminoglycosides

Gentamicin 4 (2.7) 1 (2.1) 2 (3.3) 1 (2.4) 1.000* 1.000* 1.000* 36 (21.8) 36 (27.7) 0 (0) <0.001 40 (12.7) <0.001

Macrolides

Azithromycin 18 (12) 5 (10.4) 8 (13.3) 5 (11.9) 0.643 0.831 1.000* 16 (9.7) 7 (5.4) 9 (25.7) <0.001 34 (10.8) 0.511

Penicillins

Amoxicillin 70 (46.7) 16 (33.3) 39 (65) 15 (35.7) 0.001 0.004 0.813 103 (62.4) 100 (76.9) 3 (8.6) <0.001 173 (54.9) 0.005

Amoxicillin with
Clavulanic Acid

4 (2.7) 0 (0) 0 (0) 4 (9.5) N.A. 0.026* 0.044* 9 (5.5) 9 (6.9) 0 (0) 0.207* 13 (4.1) 0.214

Cephalosporins

Cefalotin 16 (10.7) 2 (4.2) 9 (15) 5 (11.9) 0.107* 0.655 0.245* 73 (44.2) 72 (55.4) 1 (2.9) <0.001 89 (28.3) <0.001

Cefotaxime 8 (5.3) 1 (2.1) 5 (8.3) 2 (4.8) 0.223* 0.697* 0.597* 51 (30.9) 51 (39.2) 0 (0) <0.001 59 (18.7) <0.001

Cefepime 1 (0.7) 0(0) 1 (1.7) 0 (0) 1.000* 1.000* N.A. 14 (8.5) 14 (10.8) 0 (0) 0.042* 15 (4.7) 0.001

Ceftazidime 2 (1.3) 2 (4.2) 0(0) 0(0) 0.195* N.A. 0.497* 10 (6.1) 10 (7.7) 0 (0) 0.122* 12 (3.8) 0.029

Cefoxitin 1 (0.7) 0 (0) 0 (0) 1 (2.4) N.A. 0.412* 0.467* 3 (1.8) 3 (2.3) 0 (0) 1.000* 4 (1.3) 0.624*

Carbapenems

Meropenem 0 (0) 0 (0) 0 (0) 0 (0) N.A. N.A. N.A. 1 (0.6) 1 (0.8) 0 (0) 1.000* 1 (0.3) 1.000*

Quinolones

Nalidixic Acid 42 (28) 14 (29.2) 14 (23.3) 14 (33.3) 0.492 0.265 0.670 100 (60.6) 89 (68.5) 11 (31.4) <0.001 142 (45.1) <0.001

Ciprofloxacin 7 (4.7) 1 (2.1) 3 (5) 3 (7.1) 0.627* 0.688* 0.336 67 (40.6) 63 (48.5) 4 (11.4) <0.001 74 (23.5) <0.001

P-values: Chi-square test and confidence level of 95%, *Fisher exact test and confidence level of 95%.
pa: babies and non-vendor adults, pb: babies and chicken vendors, pc: chicken vendors and non-vendor adults, pd : non-organic and organic chickens, pe: humans and chickens. ESBL, Detection of Extended Spectrum
Beta-lactamases; N.A., not applicable.
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FIGURE 2 | Maximum likelihood phylogenetic tree built from the alignment of 2,233 E. coli core genes from 118 human and animal isolates, using E. fergusonii as
outgroup. Nodes are shaped by host type (circle = human, triangle = chicken) and colored by sampling group. Outer gray circles indicate presence of ESBL, mcr-1,
and floR genes. Outer red circles indicate the number of antibiotic classes to which the isolate is resistant. WGS-based sequence type (ST) is indicated for each
isolate.

identified 58 sequence types (ST) and 14 clonal complexes in
the dataset (Figure 3). ST-10 (n = 21), ST-155 (n = 11), ST-
48 (n = 5), and ST-648 (n = 2) were assigned to isolates of
both animal and human origin. Highly similar isolates (differing
in less than 100 SNPs across their pangenomes) were only
found within host groups. STs shared by humans and chickens
were more distantly related: ST-155 isolates (differing in 951
SNPs) were found in organic chickens and babies; ST-10 (1,046
SNPs), ST-155 (1,141 SNPs), ST-48 (1,542 SNPs), and ST-648
(13,470 SNPs) were shared by chicken vendors, non-vendors and
market chickens.

We identified 604 ARG hits and 81 unique ARGs in the
dataset (Figure 4) with a mean of 5.1 genes (95%CI: 4.2–6.0)
per isolate. Detected ARGs are associated with resistance to
beta-lactams (n = 30), aminoglycosides (n = 18), trimethoprim
(n = 7), amphenicols (n = 4), tetracyclines (n = 4), quinolones
(n = 4), sulfonamides (n = 3), fosfomycins (n = 2), lincosamides
(n = 2), macrolides (n = 1), glycopeptides (n = 1), polymyxins
(n = 1), streptogramins (n = 1), and streptothricins (n = 1).
Fifteen isolates (13 from market chickens and two from vendors)
were positive for ESBLs; we found blaCTX-M-55 in 73%
(11/15) of them, in plasmid contigs that shared >96% sequence
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FIGURE 3 | Sequence types (ST) identified among sequenced E. coli isolates.

similarity between chickens and vendors. We found the blaKPC-
3 gene encoding carbapenem resistance in one market chicken
isolate. Additionally, three isolates (two from market chickens
and one from a baby) had the mcr-1 colistin resistance gene
(Figure 2). Forty-five plasmid replicon markers were identified
in both humans and chickens (Supplementary Data Set 1 and
Supplementary Figure 2). The most frequent markers were
IncFIB (AP001918) (42.4%), Col (pHAD28) (35.6%), and IncFII
(28%). Some markers were found in only one host type, such as
IncB/O/K/Z_4 (p < 0.001) and Col156 (p = 0.003) in humans,
and IncHI1B (p < 0.001) in chickens (Supplementary Figure 2).
We did not find significant differences in plasmid markers
among CTX-M, mcr-1, and blaKPC-3 producers from chickens

and humans (Supplementary Table 3). We identified the floR
gene in 18.6% (22/118) of genomes, and their contigs clustered
into eight unique (>80% identity) sequences that matched to
plasmid replicons of the IncF family (Figure 5). They shared
a common theme in which floR was often found along with
other antibiotic resistance genes (tetA, APH(6)-Id, sul2) and
proteins predicted to be involved in horizontal gene transfer
and DNA recombination (transposases, resolvases, recombinases,
relaxases). This suggests that floR has been transferred on
multiple occasions to MDR plasmids commonly shared by animal
and human hosts. The cmlA1 and catA1 genes (which encode
resistance to chloramphenicol but not florfenicol) were found in
11 and four genomes, respectively. A summary of the genomic
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FIGURE 4 | Antimicrobial resistance genes detected among sequenced E. coli.

analysis is described in Supplementary Data Set 2. All 604 ARG
hits are listed in Supplementary Table 4.

DISCUSSION

We compared the resistance rates, genotype distributions, and
ARGs present in commensal E. coli isolates from human and
chicken populations. 315 E. coli isolates from humans (n = 150)
and chickens (n = 165) were identified, with chickens showing
higher rates of MDR (63 vs. 37.3%) and ESBL (30.9 vs. 4%)
phenotypes. Poultry production is one of the largest and most
widespread industries in Peru, making use of large quantities
of various antimicrobials critical for human medicine (Page
and Gautier, 2012; World Health Organization [WHO], 2017a).
Despite their importance for treatment and disease prevention,
their extended and unregulated use as growth promoters
increases selective pressure for MDR bacteria (Diarra and
Malouin, 2014). Our results highlight the potential consequences
of this practice in poultry production.

Given that many LMICs are now transitioning to industrial
models of animal production, there is a concern that extensive
animal exposure to antibiotics may result in the “spillover”
of resistant bacteria and ARGs into humans. Although ARG
transfer has been extensively studied in pathogenic organisms,
the vast majority of transfer events occur silently among
non-pathogenic bacteria in host-associated and environmental
microbial communities (Smillie et al., 2011; Pehrsson et al., 2016;
Wang et al., 2017). E. coli and members of the Enterobacteriaceae
are well adapted to the gut environment, acquiring diverse
functions and ARGs to colonize their hosts (Szmolka and
Nagy, 2013). It is thus likely that ARGs can accumulate in

commensal strains to enrich the human gut resistome, and
later be mobilized into pathogenic strains to become multidrug-
resistant (Penders et al., 2013).

Increased global consumer awareness of how animal meat is
produced has increasingly lead to the establishment of organic
and free-range farms (Holtcamp, 2011). This production model
aims to stop the widespread use of antibiotics as prophylactics
and growth promoters in chickens under the premise that it
will reduce AMR rates in exposed bacteria due to an absence
of this selective pressure (Tang et al., 2017). The lower rates
of AMR found in organic chickens compared to conventionally
raised ones support this assertion. Furthermore, organic chicken
isolates were entirely susceptible to gentamicin, amoxicillin with
clavulanic acid, cefotaxime, cefepime, ceftazidime, and cefoxitin;
the first three, together with florfenicol, are frequently found
as active ingredients in local commercially available premixes
aimed toward infection prevention and enhancement of growth
performance.

The number of peri-urban communities has increased
dramatically in recent decades in Peru and other LMICs,
on par with poorly regulated neighborhood markets. Despite
regulatory authorities’ supervision, many small markets function
clandestinely for slaughtering to meet the consumers’ demand
for “fresh” goods. Such consumer preferences, combined with
other external factors, result in the poultry industry trading
around 80% of its chicken production live (De León, 2009).
Consequently, poultry butchering and handling practices in
market stalls and related environments (including households)
pose a risk of exposure to fecal cross-contamination from the
viscera, a possible transfer route of animal-derived E. coli into the
human gut. Despite their close contact with chickens and regular
manipulation of viscera, E. coli isolates from chicken vendors
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FIGURE 5 | Mobilization of floR in conjugative plasmids from animals and humans. Eight unique (80% ID clustering) floR-containing plasmids were found in 22/118
humans and chicken isolates.

did not fully match the resistance patterns observed in chicken
isolates; this may be in part because the use of antibiotics to
treat human infections also determine the resistance patterns of
E. coli in the human gut. Shared STs (e.g., ST-10, ST-155, ST-
48) were found in both chicken vendors and market chickens,
coinciding with previous reports of globally successful STs linked
to zoonotic transmission (Cohen Stuart et al., 2012; Yamaji et al.,
2018; Falgenhauer et al., 2019; Hussain et al., 2019). However,
shared STs differed in 900+ SNPs across their core genomes,
which rules out a direct transmission between hosts and may
reveal host-specific adaptations in E. coli.

Florfenicol, which is not approved for use in humans, was the
only antibiotic tested for which resistance levels were significantly
higher in chicken vendors than other human groups. We found
florfenicol resistance in 43% of non-organic chicken isolates and
17% of chicken vendors. The floR gene was found in 17 E. coli
genomes from chickens and five from humans and was associated
with conjugative plasmids that were highly similar between
humans and animal isolates (Figure 5). The high diversity of floR-
carrying plasmids and the fact that they were identified in 15

different STs may reflect a strong selective pressure to maintain
resistance to florfenicol in chicken E. coli populations. The
floR gene confers resistance to florfenicol and chloramphenicol
via an efflux pump mechanism (Bischoff et al., 2005; Braibant
et al., 2005; Van Hoek et al., 2011) and is readily transferred
among Gram-negative bacterial lineages via conjugative plasmids
(Kruse and Sorum, 1994; Singer et al., 2004). We hypothesize
that resistance to florfenicol in humans may occur via the
colonization by floR-positive strains of animal origin or plasmid
conjugation from animal strains into human commensals, both
facilitated by improper handling of chicken meat by both vendors
and consumers. This identifies floR as a potential marker of
antibiotic resistance in humans that can be traced directly to
antibiotic use in animals.

Resistance to last-resort drugs such as colistin and
carbapenems is increasing worldwide (Peyclit et al., 2019).
The blaKPC-3 gene and phenotypic resistance to meropenem
were observed in one market chicken isolate. The blaKPC-2
gene had been described in Klebsiella pneumoniae from Peruvian
hospital settings (Horna et al., 2017; Roach et al., 2020) but
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this is, to our knowledge, the first report of KPC-3 in Peru;
its origins and spread into animal populations warrant further
study. Three isolates harboring the colistin resistance mcr-1
gene were found in humans and chickens. Colistin is used to
treat human infections caused by carbapenem-resistant bacteria
(Nation et al., 2017) and mcr-1 has already been reported in local
E. coli and K. pneumoniae clinical isolates (Ugarte-Silva et al.,
2018; Deshpande et al., 2019). The import and trade of colistin in
veterinary products was banned in Peru in 2019 (Diario Oficial
El Peruano, 2019) but they were still in use in poultry farms at
the time of sampling.

Despite our initial assumption that babies would present lower
rates of resistance compared to adults, they had similar resistance
profiles to chicken vendors and had higher rates of phenotypic
resistance to amoxicillin and trimethoprim/sulfamethoxazole
than adults. This supports the findings of a previous study
in Peru that found older age protective against resistance
(Kalter et al., 2010). Children are prone to play in soils
and have a higher risk of colonization with enteropathogens
via the fecal-oral route (Marquis et al., 1990; Lietzau et al.,
2007; Fuhrimann et al., 2016). The effect may be exacerbated
in this community, where water and adequate sanitation are
not available in all households. Surveys collected during an
ongoing cohort study in VES (unpublished data) indicate
that the most commonly used antibiotics in this group were
amoxicillin and amoxicillin with clavulanic acid, followed by
trimethoprim/sulfamethoxazole and erythromycin, consumed
between the first 2 months up to 2 years at a rate of 3.8
courses per child-year (Nadimpalli et al., 2020). Predictably,
63.9% of the baby isolates in our study exhibited resistance to
amoxicillin and 52.5% to trimethoprim/sulfamethoxazole. Other
antibiotics administered to this group but with no evidence
of resistance were cephalexin, clarithromycin, azithromycin,
ciprofloxacin, and furazolidone. Community-level education
campaigns on antibiotic awareness, combined with behavior
change interventions, could help limit the transmission of ARGs
and resistant bacteria to babies.

Many reports have identified high levels of AMR in food
animals and retail meats in the United States (Davis et al.,
2018; Liu et al., 2018), China (Liu et al., 2017; Wu et al., 2018;
He et al., 2019), and Europe (Gelbíčová et al., 2019; Mellor
et al., 2019). Other studies have assessed ARG dissemination
between isolates of human, animal, and environmental origin
in LMICs (Nadimpalli et al., 2019; Subbiah et al., 2020). Our
study is innovative because we compared animals raised with
and without antibiotics, along with humans with varying levels
of exposure to chicken meat, and used WGS to identify resistant
isolates and ARGs among human and animal populations within
the same community. However, it presents limitations: (i) We
focused exclusively on E. coli, and our results do not account
for the effects in other commensal species nor the transfer of
mobile genetic elements (MGEs) between them; (ii) We included
only one isolate for each subject, so we were unable to assess
within-host E. coli diversity; (iii) The timeline for our collection
of human stool samples and chicken intestinal and cloacal
isolates do not overlap for much of the study; (iv) Illumina-
based sequencing generated short reads that made it challenging

to reconstruct full plasmid sequences. The use of long-read
sequencing should vastly improve assemblies and provide new
insights into the exchange and recombination of mobile genetic
elements between hosts.

There are very few studies that can clearly link antibiotic use
on farms with antibiotic resistance in humans, in part because
of the lack of national antibiotic consumption surveys on farms
and the high degree of HGT that occurs in enterobacterial
genomes (Smillie et al., 2011; Partridge et al., 2018). WHO’s 2017
Global Action Plan on AMR calls for strengthening national
surveillance capacities (World Health Organization [WHO],
2017b). Surveillance data on antibiotic use and resistance rates in
poultry may serve stakeholders to make evidence-based decisions
and policies, as is the case with high-income countries. AMR
surveillance studies conducted in South America are scarce
compared to other LMICs (Bantar et al., 2000; García et al.,
2012; Baker et al., 2017; Bazzo et al., 2018 ). As the antibiotic
resistome expands through the accumulation of gene cassettes
or novel plasmids, and with further ARG transfer from animals
into commensal human strains, last-resort drugs such as colistin
and carbapenems will become increasingly ineffective to combat
pathogenic microorganisms.

This study highlights the potential dissemination of resistance
genes in Escherichia coli from market chickens into human
populations. Policy change is needed to curb the misuse of
antibiotics in agriculture, which in the past has been successful
at reducing the environmental burden of resistance without
hurting the productivity of farmers (Aarestrup et al., 2010;
Marshall and Levy, 2011). It is estimated that Peru will increase
antimicrobial use in livestock by 160% from 2010 to 2030 (Van
Boeckel et al., 2015). To offset this scenario, the National Multi-
sectoral Action Plan to Combat Antimicrobial Resistance is set to
provide a set of milestones involving regulations of antimicrobial
use in food animals by 2021 (Ministerio de Salud [MINSA],
2019). We support the view that restricting non-therapeutic
supplementation of antibiotics in animal feed and regulating
the drug classes used to treat disease will help prevent the
dissemination of AMR from animals into humans. Our research
may serve as a baseline for future interventions aimed at limiting
the spread of AMR in the environment.
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Marine mammals are frequently considered good sentinels for human, animal and

environmental health due to their long lifespan, coastal habitat, and characteristics

as top chain predators. Using a One Health approach, marine mammals can provide

information that helps to enhance the understanding of the health of the marine and

coastal environment. Antimicrobial resistance (AMR) is the quintessential One Health

problem that poses a well-recognised threat to human, animal, and ecosystem health

worldwide. Treated and untreated sewage, hospital waste and agricultural run-off are

often responsible for the spread of AMR in marine and freshwater ecosystems. Rescued

seals (n = 25) were used as sentinels to investigate the levels of AMR in the Irish

coastal ecosystem. Faecal swabs were collected from these animals and bacterial

isolates (E. coli and cefotaxime-resistant non-E. coli) from each swab were selected for

further investigation. E. coli isolates were characterised in terms of phylogenetic group

typing, AMR, and virulence factors. All E. coli isolates investigated in this study (n = 39)

were ampicillin resistant while 26 (66.6%) were multi-drug resistant (MDR). Resistance

genes blaOXA−1 and blaTEM−1 were detected in 16/39 and 6/39 isolates, respectively.

Additionally, virulence factors associated with adhesion (sfa, papA, and papC) and

siderophores (fyuA and iutA) were identified. An additional 19 faecal cefotaxime-resistant

non-E. coli isolates were investigated for the presence of β-lactamase encoding genes.

These isolates were identified as presumptive Leclercia, Pantoea and Enterobacter,

however, none were positive for the presence of the genes investigated. To the authors

knowledge this is the first study reporting the detection of blaOXA−1 and blaTEM−1 in

phocid faecal E. coli in Europe. These results highlight the importance of marinemammals

as sentinels for the presence and spread of AMR in the marine and coastal environment.

Keywords: antimicrobial resistance, β-lactamases, One Health, seals, virulence factors, E. coli

INTRODUCTION

Located in the North Atlantic region, Ireland offers an important habitat for marine mammals
including harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) in search of haul-out
sites during breeding and moulting (1). Grey seals are known to migrate between countries, but
harbour seals tend to travel less widely. Nonetheless, both species usually return to their breeding
areas (2).
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Marine mammals are frequently considered good sentinels
for human and environmental health because their position at
the top of the food chain, their long-life span and their coastal
habitat can provide an early warning system for public health
issues (3, 4). Using a One Health approach, marine mammals
can be seen as an important source of information that helps
to enhance our understanding of the health of the marine and
coastal environment (3).

Antimicrobial resistance (AMR) is the quintessential One
Health problem (5) that poses a well-recognised threat to human,
animal and ecosystem health worldwide (6). Much of this
problem has been associated with the misuse of antimicrobials
in human, veterinary and agricultural settings (7) leading
to the increased emergence of antimicrobial-resistant bacteria
(ARB) in marine and fresh water ecosystems (8). Treated and
untreated sewage, hospital waste and agricultural run-off are
often responsible for the spread of AMR in these ecosystems
(9–11). Studies have shown that natural environments, such as
soils, sediments, and surface waters have complex microbiomes
which include clinically important ARBs and antimicrobial-
resistant genes (ARGs) (12). ARGs can be transferred into soils
and leached to groundwater or carried by runoff and erosion
to surface water (13). In addition, dense bacterial populations
in treatment plants facilitate frequent genetic exchange through
mobile genetic elements (MGE), such as plasmids, integrons,
and transposons (8, 14). For example, the spread of β-
lactamases, enzymes responsible for decreasing the efficacy
of critically important β-lactam antimicrobials against Gram
negative bacteria, is frequently due to MGEs (15). These enzymes
are currently the most important mechanism of resistance
in Gram negative pathogens with more than 2,600 enzymes
described to date. The most frequently described enzymes in E.
coli include CTX-M, TEM and SHV, Ambler class A enzymes,
and OXA, Ambler class D enzymes (16). Also disseminated by
MGEs, virulence factors including adherence factors, invasion
factors, iron acquisition systems, capsules and toxins facilitate
bacterial colonisation of the host (17).

An Irish technical report identified high levels of resistant E.
coli in urban wastewater (18). More recently, Mahon et al. were
the first in Europe to report the isolation of New Delhi metallo-
beta-lactamase (NDM)-producing Enterobacteriaceae from both
fresh water and seawater sampled on 2 Irish beaches located
near an untreated human sewage ocean discharge (19). This
finding raises concerns regarding the potential of sewage
discharges to contribute to the spread of ARBs and ARGs in
the environment, especially when recent studies have shown that
resistant bacteria can be selected at extremely low antibiotic
concentrations, similar to concentrations found in some aquatic
and soil environments (20, 21). Although it is recognised that
proximity to human activities shapes the AMR profile of the
gastrointestinal microbiome of wild mammals, the presence of
ARBs and ARGs in the intestinal microbiota of wild animals has
not been thoroughly investigated (8, 22, 23). Additionally, the
role played by wildlife colonised with ARB in the dissemination
of ARGs worldwide needs to be addressed (24, 25).

In light of the recent findings of ARB in Irish coastal waters
and the complexity of the factors governing dissemination of

AMR in the environment, a pilot study was conducted to
characterise the faecal E. coli populations of pinnipeds living
in coastal waters surrounding Ireland, and investigate the
presence of β-lactamase encoding genes and virulence factors.
Furthermore, the presence of β-lactamase encoding genes was
examined in cefotaxime-resistant non-E. coli isolates.

MATERIALS AND METHODS

Animals
In the summer breeding season of 2017, collection of faecal
swabs from 23 harbour seals (P. vitulina) and two grey seals (H.
grypus) was attempted at the premises of Seal Rescue Ireland
(SRI), the only marine rehabilitation centre in the Republic of
Ireland; however, three animals did not defecate during the visit.
Convenience sampling was conducted on two occasions in July
2017, 22 days apart, to sample as many individual animals as
possible (Table 1). Fourteen and eleven animals were sampled on
the first and second sampling-days, respectively, which made up
the total number of animals housed at SRI at the time (Table 1).

Sterile cotton swabs were used to collect freshly voided faeces
from each animal’s enclosure (individual pens with covered roof)
without contacting the floor. Enclosures at SRI are cleaned daily;

thorough washing and disinfection with bleach and Virkon© are
performed before any new animal is moved into an enclosure.

Faecal swabs were kept refrigerated for a period no longer than
24 h before being processed in the laboratory.

At time of sampling, the age of animals ranged from 9 days to
10 months approximately. Samples were collected from animals
between 24 h and 8 months after their arrival at the SRI facilities.

Faecal Swab Processing and E. coli

Isolation
In the microbiology laboratory, the faecal swabs were placed into
20mL sterile plastic tubes filled with 5mL of buffered peptone
water (BPW, Lab M) and vortexed for 10 s.

Aliquots of 0.1mL of each initial suspension were plated
onto the chromogenic selective medium Tryptone Bile X-
glucuronide (TBX, Fisher Scientific) and TBX supplemented
with cefotaxime (sc-202989 Cefotaxime Sodium Salt;
0.250 mg/L according to EUCAST epidemiological cut-
off value (ECOFF) at the time of the study). TBX and
TBX supplemented with cefotaxime were used to detect
cefotaxime-susceptible and cefotaxime-resistant E. coli colonies
(blue/green colonies), respectively. Sterile spreaders were
used to evenly distribute the faecal suspension across the
plates and then all plates were incubated at 37◦C for a
period of 20–24 h. Two to three colonies were isolated from
each plate/sample if colonies differed phenotypically. E. coli
ATCC 25922 and extended spectrum β-lactamase (ESBL)-
producing isolate R5S (26) were used as negative and positive
controls, respectively.

Antimicrobial Susceptibility Testing of E.
coli
Thirty-nine E. coli isolates (selected from TBX and
TBX supplemented with cefotaxime media) were
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TABLE 1 | Sampling details including animal identification, sampling day and bacteria isolated from faeces; E. coli isolated from TBX supplemented with cefotaxime

(REC), E. coli isolated from TBX (EC) and non- E. coli isolated from TBX supplemented with cefotaxime (RC) according to sampling-day (3rd of July and 25th of July).

Seal

ID

Isolate ID Sampling

day

Bacterial

species

Phylogenetic

group

typing

Resistance

phenotype

Resistance

genotype

Virulence

factors

Previous

antibiotic

treatment

No. days

between

treatment

and sampling

1 1EC1 1 E. coli B1 AMP, PIP, ENR, TET sfa N.A. N.A.

1EC2 1 E. coli N.A. N.A.

2 2EC1 1 E. coli B1 AMP N.A. N.A.

2EC2 1 E. coli N.A. N.A.

3 3EC1 1 E. coli N.A. N.A.

3EC2 1 E. coli B1 AMP, PIP, ENR, TET blaTEM−1 Marbofloxacin 39

4 4EC1 1 E. coli B1 AMP, CHL N.A. N.A.

4EC2 1 E. coli N.A. N.A.

5 5EC1 1 E. coli B1 AMP, CHL N.A. N.A.

5EC2 1 E. coli N.A. N.A.

6 6EC1 2 E. coli B1 AMP, PIP, TOB, SXT blaTEM−1 fyuA, iutA,

sfa, papC

N.A. N.A

6EC2 1 E. coli B1 AMP, PIP, TOB, STX blaTEM−1 fyuA, iutA,

papA

N.A N.A.

6EC3 1 E. coli B1 AMP, CEV, CHL N.A. N.A.

7 7EC1 1 E. coli B1 AMP, CHL N.A. N.A.

7EC2 N.A. N.A.

9 9EC1 1 E. coli A/Ca AMP N.A. N.A.

9EC2 1 E. coli B1 AMP, PIP, ENR, TET blaTEM−1 N.A. N.A.

10 10EC1 1 E. coli A AMP N.A. N.A.

10EC2 1 E. coli B1 AMP N.A. N.A.

13 13EC1 1 E. coli B1 AMP, PIP, ENR, TET blaTEM−1 N.A. N.A.

13EC2

14 14EC1 1 E. coli B2 AMP N.A. N.A.

14EC2

12 12REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, iutA,

sfa, papC

N.A. N.A.

12REC2

16 16REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, iutA,

papA

Enrofloxacin

Amoxicillin/

Clavulanate

202

192

16REC2 2 E. coli A/Ca AMP, AMC, PIP, CEF,

AMK, GEN, TOB, ENR,

MAR, CHL, STX

blaOXA−1 fyuA, iutA,

papA

17 17REC1 2 E. coli A/Ca AMP, AMC, PIP, LEX,

CPD, CEF, GEN, TOB,

ENR, MAR, CHL, STX

blaOXA−1 fyuA, iutA,

sfa, papC,

papA

N.A. N.A.

17REC2 2 E. coli A/Ca AMP, AMC, PIP, LEX,

CPD, CEF, GEN, TOB,

ENR, MAR, CHL, STX

blaOXA−1 fyuA, iutA,

papC, papA

18 18REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, papA Marbofloxacin 0

18REC2 2 E. coli A/Ca AMP, AMC, PIP, GEN,

TOB, ENR, MAR, CHL,

STX

blaOXA−1 fyuA, papA

19 19REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, iutA,

papC, papA

Marbofloxacin 1

19REC2

(Continued)
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TABLE 1 | Continued

Seal

ID

Isolate ID Sampling

day

Bacterial

species

Phylogenetic

group

typing

Resistance

phenotype

Resistance

genotype

Virulence

factors

Previous

antibiotic

treatment

No. days

between

treatment

and sampling

20 20REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, iutA,

papC, papA

Marbofloxacin 1

20REC2

23 23REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, iutA,

papC, papA

N.A. N.A.

23REC2

24/25 24/25REC1 2 E. coli A/Ca AMP, AMC, PIP, CEF,

ENR, MAR, CHL, STX

blaOXA−1 fyuA, iutA,

papC, papA

Marbofloxacin 2

24/25REC2 2 E. coli A/Ca AMP, AMC, PIP, CEF,

GEN, TOB, ENR, MAR,

CHL, STX

blaOXA−1 fyuA, iutA,

papC, papA

1–10

and

13–14

1RC1

1RC2

2RC1

2RC2

3RC1

3RC2

4RC2

5RC1

5RC2

6RC1

7RC1

7RC2

8RC1

8RC2

9RC2

10RC1

13RC2

13RC3

14RC3

1 Non-E. coli N.A. N.A. N.A. N.A. N.A.

Characterisation of faecal E. coli isolated from seals according to their phylogenetic group typing, virulence factors, antimicrobial resistance genes (genotype), and antimicrobial

susceptibility profile (phenotype) given by Vitek2. For the purpose of this study intermediate antimicrobial susceptibility was interpreted as resistant. Antimicrobials tested: AMP,

Ampicillin; AMC, Amoxicillin/Clavulanic Acid; PIP, Piperacillin; LEX, Cefalexin; CPD, Cefpodoxime; CEV, Cefovecin; CEF, Ceftiofur; IPM, Imipenem; AMK, Amikacin; GEN, Gentamicin; TOB,

Tobramycin; ENR, Enrofloxacin; MAR, Marbofloxacin; TET, Tetracycline; NIT, Nitrofurantoin; CHL, Chloramphenicol; PMB, Polymyxin B; SXT, Trimethoprim/Sulfamethoxazole. Additional

information on antimicrobial use, number of days between antimicrobial treatment and sampling-time for the samples with antimicrobial resistance genes. N.A., not applicable.
aPhylogenetic groups A and C could not be differentiated.

grown on blood agar plates for 18 h at 37◦C before
testing for antimicrobial susceptibility by the VITEK 2

automated system (Biomerieux©), as recommended by
the manufacturer (Table 1). Vitek 2 AST-GN65 cards
(Biomerieux©) were used to investigate the susceptibility
of the isolates to amoxicillin, ampicillin, amoxicillin
and clavulanic acid, piperacillin, cefalotin, cefalexin,
cefpodoxime, cefovecin, ceftiofur, imipenem, amikacin,
gentamicin, tobramycin, enrofloxacin, marbofloxacin,
tetracycline, nitrofurantoin, chloramphenicol, and
trimethoprim/sulfamethoxazole. Results were interpreted
according to the Clinical and Laboratory Standards Institute
(CLSI) guidelines. E. coli ATCC 25922 was used as control
strain (27–31).

Rapid DNA extraction was performed on all isolates by the
boiling method (32).

Investigation of Phylogenetic Group Typing
and Virulence Factors of E. coli
The phylogenetic group of 33 E. coli was investigated using
an adapted version of the Clermont method (Table 2) (33).
Each isolate was assigned to a group (A, B1, B2, C, D, E,
F) according to the presence or absence of genes arpA, chuA,
yjaA, and the DNA fragment TSPE4.C2 (33). Positive controls
were provided by the Galway University Hospital National
Microbiology Reference Laboratory.

Briefly, all PCR reactions were performed in a final volume
of 25 µl containing 1× master mix [2× Qiagen Multiplex
PCR Master Mix, final primer concentrations of 0.2–0.7µM as
appropriate (Table 2), PCR grade water] and 1.5 µl of bacterial
lysate. PCR reactions were performed as follows: denaturation
15min at 95◦C, followed by 30 cycles of 20 s at 94◦C, 20 s at 60◦C,
and 30 s at 72◦C with a final extension step of 5min at 72◦C. PCR
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TABLE 2 | List of primers, target genes, primer sequences, annealing temperatures, and primer concentrations used for E. coli phylogenetic group typing in this study.

Primer ID Target Primer sequence (5
′

- 3
′

) Annealing

T (◦C)

Final concentration

(µM)

PCR product

(bp)

PCR reaction References

chuA.1b chuA ATGGTACCGGACGAACCAAC 60 0.3 288 Quadruplex (a)

chuA.2 TGCCGCCAGTACCAAAGACA 0.3

yjaA.1b yjaA CAAACGTGAAGTGTCAGGAG 0.6 211

yjaA.2b AATGCGTTCCTCAACCTGTG 0.6

TspE4C2.1b TspE4.C2 CACTATTCGTAAGGTCATCC 0.7 152

TspE4C2.2b AGTTTATCGCTGCGGGTCGC 0.7

AceK.f arpA AACGCTATTCGCCAGCTTGC 0.3 400

ArpA1.r TCTCCCCATACCGTACGCTA 0.3

trpAgpC.1 trpA AGTTTTATGCCCAGTGCGAG 59 0.2 219 Group C duplex (b)

trpAgpC.2 TCTGCGCCGGTCACGCCC 0.2

ArpAgpE.f arpA GATTCCATCTTGTCAAAATATGCC 57 0.2 301 Group E duplex

ArpAgpE.r GAAAAGAAAAAGAATTCCCAAGAG 0.2

trpBA.f trpA CGGCGATAAAGACATCTTCAC 59/57 0.2 489 Internal control group C and E (c)

trpBA.r GCAACGCGGCCTGGCGGAAG 0.2

Adapted from (a) Clermont et al. (33) and Tim Julian (Eawag, Switzerland), (b) Lescat et al. (34), and (c) Clermont et al. (35).

products were loaded on 2% agarose gels with SYBR R© Safe DNA
gel stain and run for 60min at 100V. DNA bands were visualised
using a UV-transilluminator. For groups C and E, two further
PCRs were performed using the previous protocol with 5× Q-

Solution (Qiagen©) included in the master mix. PCR reactions
were performed as follows: denaturation 15min at 95◦C, 30
cycles of 20 s at 94◦C, 20 s at 59◦C (group C) or 57◦C (group E),
respectively and 30 s at 72◦C, with a final extension step of 5min
at 72◦C.

Selected genes encoding virulence factors associated with
adhesion (afaE8, papA, papC, and sfa), capsular antigen
(kpsMFII), toxins (CNF1), and siderophores (fyuA and iutA)
were also investigated as previously published (36–40). Positive
PCR products were Sanger sequenced for identification of gene
variants. The nucleotide sequence queries were loaded into the
Virulence Factor Database (VFDB) (41).

Identification of Cefotaxime-Resistant
Non-E. coli
Faecal samples collected on the first-sampling day did not
yield any E. coli colonies that grew on medium supplemented
with cefotaxime. However, 19 other colonies that were not
E. coli were selected from this medium for further analysis
(Table 1). Identification of these colonies was carried out by
performing 16s rRNA PCR according to Marchesi et al. (42).
PCR products (1,300 bp) were Sanger sequenced and the
nucleotide sequence queries were loaded into the National
Centre for Biotechnology Information (NCBI) Basic Local

Alignment Search Tool (BLAST©). The highest query cover,
identity and max score were used to determine the best fit for
sequence alignment.

Investigation of β-Lactamase-Encoding
Genes
Thirty-three E. coli isolates yielding a phenotype of resistance
to ampicillin (Table 1) were tested to see if they contained

β-lactamase-coding genes SHV, TEM, and OXA (Multiplex I)
while 16 isolates with susceptibility reported as intermediate or
resistant to 3rd generation cephalosporins (Table 1) were further
investigated for the presence of ESBL (CTX-M) (Multiplex II)
and plasmid-mediated AmpC (ACC, FOX, MOX, CMY, DHA,
LAT, ACT, BIL, MIR) (Multiplex III) encoding genes (32).
Additionally, 19 cefotaxime-resistant non-E. coli isolates were
investigated for the presence of β-lactamases. Positive controls
were provided by the Galway University Hospital National
Microbiology Reference Laboratory.

Briefly, for multiplex PCRs I, II and III, reactions were carried
out in 25 µl of reaction mix containing master mix (2× Qiagen
Multiplex PCR Master Mix, 5× Q-Solution (Qiagen), primers at
concentration of 0.2–0.5µM as appropriate, PCR grade water)
and 1.0 µl of bacterial lysate. PCR reactions were performed as
follows: denaturation 15min at 95◦C, 30 cycles of 30 s at 94◦C,
90 s at 60◦C, and 90 s at 72◦Cwith a final extension step of 10min
at 72◦C.

Agarose gels ranging between 1.2 and 2% (according to the
size of PCR product) were run at 100V for 60min. A UV-
transilluminator was used to visualise the PCR products.

Positive PCR products were Sanger sequenced. The nucleotide
sequence queries were loaded into the Comprehensive Antibiotic
Resistance Database (CARD) (43).

RESULTS

Cefotaxime Resistant E. coli
Faecal samples from 22 seals were collected over two sampling
days. Samples were plated onto TBX and TBX supplemented with
cefotaxime. After overnight incubation, samples were examined
for growth and the results are shown in Table 1. E. coli were not
retrieved from faeces sampled from 2 animals, while there was no
E. coli growth on TBX supplemented with cefotaxime on samples
collected on day 1. E. coli was recovered from all faecal samples
from day 2 plated on TBX supplemented with cefotaxime.
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Antimicrobial Susceptibility Testing of E.
coli
In total, 39 E. coli isolates were investigated in the present
study; 23 from the faeces collected on sampling-day 1 and
16 from sampling-day 2. All isolates were ampicillin-resistant,
16 of them were also resistant to amoxicillin and clavulanic
acid (Table 1), while 22 of the isolates were intermediately
susceptible or resistant to fluoroquinolones. From day 1 E. coli
isolates, 10 (43.5%) were multidrug resistant (MDR) showing
resistance to 3–4 different antimicrobial classes (penicillins,
cephalosporins, tetracyclines, and potentiated sulphonamides)
(44). In contrast, all E. coli isolates from sampling-day 2
were MDR, displaying resistance to 4–6 different antimicrobial
classes including penicillins, fluoroquinolones, amphenicols, and
potentiated sulphonamides (Table 1).

Molecular Investigation of E. coli
From a total of 39 E. coli isolates, 33 were selected for analysis by
PCR and sequencing. Twenty-two carried β-lactamase encoding
genes; blaTEM−1 was detected in six E. coli isolated from four seals
on Day 1 while blaOXA−1 was detected in 16 E. coli isolated from
nine animals on Day 2. Of four seals shedding TEM-1 E. coli,
two originated from county Galway and one had been treated
at SRI with marbofloxacin, 39 days before sampling. Of nine
seals shedding E. coli carrying blaOXA−1, five had been medicated
with marbofloxacin (Table 1). Reasons for medication included
wounds, otitis, and umbilical abscess.

Additionally, the presence of CTX-M and AmpC encoding
genes was investigated in the 16 isolates from day 2 (cefotaxime-
resistant E. coli) using multiplex II and multiplex III PCRs;
however, none of these genes was detected.

E. coli isolates belonged to phylogenetic groups A (n = 1),
B1 (n = 13), B2 (n = 2), and A/C (n = 17) with the all
16 isolates from Day 2 belonging to group A/C. For isolates
characterised as A/C it was not possible to further determine their
phylogenetic group.

To further characterise the E. coli isolates investigation of
selected virulence factors was performed. From day 1 samples, 3
of 17 E. coli isolates carried at least one virulence factor associated
with adhesion (sfa, papA, and papC) and/or siderophores (fyuA
and iutA) while all E. coli (16) isolated on the second sampling
day carried at least two virulence factors. Some isolates carried
multiple virulence factors including isolate 17REC1 that carried
five of the eight virulence factors investigated.

Investigation of Non-E. coli
Cefotaxime-resistant non-E. coli isolates were grown from
samples collected on both sampling-days and 19 colonies
recovered on the first sampling-day were selected for further
investigation based on colony morphology.

16s rRNA PCR was used to amplify a specific region of the
genome of each isolate. Despite the limitations of this method,
sequence homology suggests that most of the isolates belong to
the genera Leclercia, Enterobacter, Pantoea, and/or Psychrobacter
(Supplementary File). Definitive species identification was not
established. None of these isolates carried any of the β-lactamase
encoding genes investigated (Table 1).

DISCUSSION

To the authors’ knowledge this is the first study reporting
the detection of blaOXA−1 and blaTEM−1 in phocid faecal E.
coli in Europe. The presence of β-lactamase producing E.
coli in the microbiota of wild seals, some of which had not
been previously medicated with antimicrobials is a cause for
concern and highlights their potential to serve as One Health
sentinels when investigating AMR. There is also scope to explore
zoonotic diseases including avian influenza and environmental
contamination by heavy metals and domoic acid, among other
things, using these species as sentinels.

All 39 E. coli isolated from seal faeces at the SRI marine
rehabilitation centre were ampicillin resistant and 26 of 39
(66.6%) were MDR, which highlights the presence of MDR
bacteria in themicrobiome ofmarinemammals. Despite rigorous
cleaning and disinfection protocols at the SRI centre, it cannot
be proven that faecal isolates were not simply representative of
the in-house flora of the centre however, the isolation of MDR
E. coli from animals only recently arrived in the rescue centre
strongly suggests that the organisms may have been present in
the gastrointestinal tract of at least some of the seals before arrival
at the centre. It is noteworthy that all E. coli (16) isolated on the
second sampling-day wereMDRwhich contrasts with 10MDR E.
coli of 23 E. coli recovered on the first sampling-day. Interestingly,
the number of MDR E. coli isolates sampled on these two
sampling-days differs considerably. The only major difference
recorded between the 2 days was an outbreak of disease due to
phocid herpes virus diagnosed soon after the second sampling-
day. Whether this bears any relationship with the findings of
this study is unclear. Research has shown that neurohormones
released in the gut as a result of stressful events can increase the
rate of horizontal gene transfer of genes encoding for AMRwhich
can lead to an increase in shedding of resistant bacteria (45–47).
Although little is known about the impact of acute viral infections
on the composition and kinetics of the microbiome, these types
of infections could be classified as systemic stressful events and
therefore one could hypothesise that an increase in horizontal
gene transfer may occur (48, 49). Fifty-six per cent of E. coli
investigated showed resistance to fluoroquinolones, which may
be associated with the use of marbofloxacin at the SRI, although
not all isolates with resistance to fluoroquinolones came from
animals with a history of marbofloxacin treatment.

In Ireland, a wide range of β-lactamases has been reported in
bacteria isolated from humans, companion animals, production
animals and wastewaters (26, 50–54). Karczmarczyk et al. (52)
identified blaTEM in 89.2% of the E. coli examined in their study
while blaOXA were detected in 1.35%. Additionally, Carroll et al.
(55) identified blaTEM in faecal E. coli sampled from one Irish
herring gull and one Irish black-headed gull while another study
identified blaCTX−M group 1 in 4.5% of the samples collected
from Irish gulls (55, 56). In line with this, isolates with either
blaOXA or blaTEM were identified in the faecal samples collected,
suggesting these genes are circulating in the marine environment
also. ESBL-producing E. coli have been identified in more than
30 wild animal species (11) but none were identified in the E. coli
or non-E. coli isolates investigated in this study. While this does
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not rule out their presence, it may suggest that these genes are
not as prevalent in the environment of these seals as the ones that
were identified.

This study further characterised E. coli isolated from seals
in terms of phylogenetic groups and virulence factors. Due to
the lack of information in the literature, a subset of virulence
factors was selected for investigation, based on data available for
E. coli isolated from domestic animals. In this study, virulence
factors associated with adhesion and siderophores were detected
in many isolates. Despite the constraints of the small number
of animals investigated and further bias by the selection criteria
of E. coli (1, 2, or 3 colonies per sample according to colony
phenotype), a difference between the number of E. coli carrying
virulence genes on each sampling day is clear. Horizontal gene
transfer is an essential mechanim for the spread of virulence
determinants between different bacterial strains and species
(57). Moreover, studies have shown that stress can induce the
release of norepinephrine in the gut and this catecholamine can
promote horizontal gene transfer by conjugation and influence
the production of virulence factors including toxins and adhesins
in E. coli (46, 58–61). It is possible that the differences reported
between sampling day 1 and day 2 were triggered by the herpes
virus infection that was subsequently diagnosed (48, 62).

Studies have shown that ecological niches and life events
impact the phylogenetic group dynamics and diversity of E.
coli (63, 64). In the present study, phylogenetic groups A,
B1, B2, and A/C were detected on the first sampling day
while on the second sampling day only A/C E. coli were
detected. Further characterisation of A/C isolates was not
possible due to non-specific DNA amplification. Differences
in the antimicrobial susceptibility profile and virulence factors
exclude the possibility of clonal spread of A/C E. coli on
the second sampling day. These suprising findings, including
the number of MDR isolates, number of E. coli carrying β-
lactamases and virulence factors and phylogenetic diversity
detected on two different sampling days suggest differences
in the population sampled on these two occasions again
pointing to the impact a natural herpesvirus infection could
have had on the profile of the samples. These data highlight
the importance of examining the resistome of sentinal species
throughout time.

Phocid faecal cefotaxime-resistant non-E. coli isolates were
homologous to members of the Enterobacterales: Leclercia,
Pantoea, and Enterobacter. Leclercia adecarboxylata is an
opportunistic pathogen associated with water affecting both
immunocompromised and immunocompetent patients (65).
Studies have reported Leclercia adecarboxylata susceptibility to
cephalosporins and blaSHV−12 has been identified in Leclercia
adecarboxylata clinical samples (66, 67). Pantoea agglomerans
may cause infections in humans and is variably susceptible to
antimicrobials while Enterobacter ludwigii, previously included
in the Enterobacter cloacae complex, is a MDR bacterium that
can carry β-lactamase encoding genes (68–71). Because all the
above bacteria belong to the Enterobacterales order, distinction
between species is complex. For more accurate identification,
PCR protocols investigating genetic characteristics other than
16S rRNA would be required.

Despite the fact that animals sampled in this study represented
all live stranded seals in Ireland housed at SRI during the period
of the trial, the relatively small sample size is a limitation of this
study. A larger population would have given a better idea of the
magnitude of the problem, but it is clear that even with a small
sample size, this study has pinpointed issues and has provided
justification and a roadmap for future studies in this area.
Stringent cleaning and disinfection and other infection control
protocols in place at SRI and a rigorous sampling technique
greatly reduced the possibility of cross-contamination between
different enclosures/pens.

It is difficult to determine the exact origin of β-lactamase
encoding genes circulating in the population of young Irish
seals as they share their costal habitat with different species,
but the fact that blaTEM−1 and blaOXA−1 were present in
their faeces and MDR E. coli were frequently detected, is
concerning. The presence of β-lactamases jeopardises the use
of critically important antimicrobials including penicillins and
cephalosporins and the findings of this study indicate the spread
of AMR mechanisms to bacteria in coastal areas.

Marine mammals can act as reservoirs, vectors, and
bioindicators of resistant bacteria and AMR genes in the
environment (72, 73). Treated and untreated sewage, hospital
waste, aquaculture discharges and agricultural runoff provide
means to deliver antibiotics, pollutants and resistant bacteria to
the aquatic environment, thus playing a major role in driving
ARG transfer, ecology, and evolution (14). Additionally, seals
can interact with other marine wildlife and birds and engage
in the transfer of ARB between populations across large parts
of the world. Future investigations should acknowledge the
presence of these issues and seek to understand the movement
of ARGs between populations and the extent to which global
spread of ARGs in human populations is reflected in wild
animal populations.

This study shows that some isolates of E. coli carried β-
lactamase encoding genes (blaOXA−1 or blaTEM−1) as well as
virulence factors associated with adhesion (sfa, papA, and papC)
and/or siderophores (fyuA and iutA). While harbour seals have
the potential to migrate to different locations, they tend to return
to the same breeding grounds (2) and young pups similar to the
ones sampled in this study do not tend to migrate long distances.
The presence of MDR bacteria in the seal pups indicates that
were probably acquired locally, however, it is also possible that
the adult seals or other migratory wildlife in the area may have
acquired these resistant bacteria elsewhere, brought them to
Ireland and passed them to the pups. At this point, although
it is difficult to identify the geographic source exactly, the data
presented in this study clearly establishes the presence of MDR
E. coli circulating in the Irish marine environment at the time
of sampling.
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Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC
gene belong to clonal complex CC130. This lineage has traditionally been regarded
as animal-associated as it lacks the human specific immune evasion cluster (IEC),
and has been recovered from a broad range of animal hosts. Nevertheless, sporadic
mecC-MRSA human infections have been reported, with evidence of zoonotic
transmission in some cases. The objective of this study was to investigate the
whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant
(mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types,
obtained from a variety of host species and origins (human, livestock, wild birds and
mammals, and water), and from different geographic locations, in order to identify
characteristic markers and genomic features. Antibiotic resistance genes found among
MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130
strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed
scn-sak and one MSSA-ST130 had lukMF’. The MSSA-ST700 strains were most
divergent in their resistance and virulence genes. The pan-genome analysis showed
that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21
among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP,
and AcrB were identical at the amino acid level in all strains, but some differences were
found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers
showed that the 3’ region of the bacteriophage ϕ3 was nearly identical to the reference
sequence. Truncated hlb gene was also found in scn-negative strains (two of them
carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations.
The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in
one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different
from the human and equine variants. Finally, a phylogenetic analysis showed that the
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three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the
remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The
presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that
these isolates may have had a human origin.

Keywords: MRSA, MSSA, whole genome sequencing, CC130, ST700, IEC, etD2

INTRODUCTION

Staphylococcus aureus is a common colonizer of the nasopharynx
and skin of animals and humans; however, it is also a versatile
opportunistic pathogen causing a wide variety of diseases
from mild skin problems to life-threatening bacteraemias. The
situation may be complicated when infections are caused by
methicillin-resistant S. aureus (MRSA) isolates. Currently, the
expression of mecA gene, as well as of other mec homolog genes,
mecC and mecB, have been described in S. aureus conferring
methicillin resistance (Becker et al., 2018).

The mecC-gene has been found in several MRSA lineages,
mainly associated with animals, such as CC130, CC49, ST425,
CC599, and CC1943. The ruminant associated CC130 is the
most commonly found mecC lineage (Paterson et al., 2014a;
Zarazaga et al., 2018). mecC-MRSA-CC130 was first described
in cattle and in humans in the United Kingdom, Denmark,
and Ireland (García-Álvarez et al., 2011; Shore et al., 2011).
Since then, this lineage has been detected in diverse hosts in
many European countries, with cattle and wildlife (including free
grazing domesticated animals) being the most common hosts
(Zarazaga et al., 2018). The prevalence of mecC-MRSA in people
seems to be low (Paterson et al., 2014a,b; Lozano et al., 2020),
however, the zoonotic transmission from livestock to people has
been reported (Harrison et al., 2013), as well as its ability to
cause disease (Petersen et al., 2013). This mecC-MRSA-CC130
lineage seems to be susceptible to many non-β-lactam agents
and lacks major human virulence factors (Cuny et al., 2011;
Monecke et al., 2013; Paterson et al., 2014a). However, they are
carriers of a novel allele of exfoliative toxin gene (named etd2),
which could explain the wide variety of hosts (Monecke et al.,
2013). Adaptation of S. aureus to particular host species can be
associated with mobile genetic elements (MGEs) or chromosomal
mutations. In particular, the genes of the human specific immune
evasion cluster (IEC) are considered to be a marker indicating
some degree of human host adaptation. This IEC system is found
in seven different configurations (types A–G) depending on the
combination of five genes (scn, chp, sak, sea/sep); the scn gene
(encodes a staphylococcal complement inhibitor) is included in
all IEC types, and is often used as a marker of IEC-positive
isolates, and is functionally essential (van Wamel et al., 2006).
None of the mecC-MRSA reported strains harbored the scn gene
(essential for the IEC system) (Lozano et al., 2020), with the
exception of a few isolates belonging to ST1945, ST1581, and
ST1583 previously described by our group from wildlife and
extensively farmed domestic animals (Gómez et al., 2014, 2015;
Ruiz-Ripa et al., 2019) and one ST1945 MRSA strain from a
human sample (Harrison et al., 2017); it is worth noting that

all these IEC-positive isolates were of type-E (carrying the scn
and sak genes).

The methicillin-susceptible S. aureus (MSSA) isolates of the
CC130 clonal complex are commonly found in cattle and are
an important cause of disease (Monecke et al., 2016). The mecA
gene has never been found in isolates belonging to the CC130
clonal complex and S. aureus-CC130 was initially described as a
MSSA of animals from Europe and Africa (Smith et al., 2014).
The ST700 lineage is part of CC130 by definition, as a single
locus variant of ST130 (tsi allele different between them). MSSA-
ST700 isolates are frequently found in Italian sheep populations
(Azara et al., 2017; Vitale et al., 2018) and ST700 and some of its
single locus variants (CC700) may be considered as a distinct, or
separate, lineage due to its independent evolution and different
epidemiology (Smith et al., 2014).

Studies of the intrinsic Penicillin-Binding-Proteins (PBPs)
of S. aureus have shown that PBPs may contain mutations
that affect β-lactam resistance, as highlighted by the case of
a PBP4 capable of conferring high-level and broad-spectrum
resistance to β-lactams, comparable to that provided by PBP2a
(Chan et al., 2016).

In order to better understand the genetic characteristics of
S. aureus CC130, the objective of this study was to analyze data
from whole genome sequencing (WGS) of a collection of CC130
S. aureus strains (MRSA and MSSA) belonging to different
sequences types, obtained from various host species, and from
different geographic locations, in order to identify distinctive
markers and genomic features of public health relevance.

MATERIALS AND METHODS

Strains Included in the Study
Eighteen S. aureus strains of the clonal complex CC130 were
included in this study for genomic comparison. These strains
were as follows: (1) 13 MRSA, carrying the mecC gene,
and belonging to the sequence types ST130, ST1945, ST3061,
ST1571, ST1581, and ST1583; (2) two MSSA-ST130; and (3)
three MSSA-ST700 (as a possible divergent CC130 lineage).
These 18 MRSA-CC130, MSSA-ST130, and MSSA-ST700 strains
were studied by WGS, having been collected during previous
studies from different host samples: animals from extensive
farms [four red deer (Cervus elaphus), two sheep (Ovis sp.), and
one goat (Capra sp.)] (Gharsa et al., 2015; Gómez et al., 2015),
wildlife [four magpies (Pica pica), two wild rabbits (Oryctolagus
cuniculus), one wood mouse (Apodemus sylvaticus), one white
stork (Ciconia ciconia), and one cinereous vulture (Aegypius
monachus)] (Gómez et al., 2014, 2016; Ruiz-Ripa et al., 2019),
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the environment (one river water) (Gómez et al., 2017),
and humans (one skin lesion of a cattle farmer)] (Benito
et al., 2016). The characteristics of the included strains are
indicated in Table 1.

Whole Genome Sequencing and Analysis
of Sequences
Genomic DNA from each isolate was extracted with
MasterPureTM DNA Purification Gram Positive (Cambio,
United Kingdom). WGS was performed on an Illumina HiSeq
2000 using paired-end mode (100 bp). De novo assembly and
initial annotation was carried out using bioinformatic tools
at the Wellcome Trust Sanger Institute. Reordering of the
contigs was performed by alignment against S. aureus LGA251
genome (GenBank accession number: NC_017349) using
Mauve (Rissman et al., 2009). Predicted coding sequences were
identified and annotated automatically using RAST (Aziz et al.,
2008) and manually with Genious Prime (Biomatters, Auckland,
New Zealand). The resistance and virulence genotypes as well
as the presence of rep genes were studied using ResFinder,
VirulenceFinder and PlasmidFinder, respectively1. In silico
analysis of the presence of antimicrobial substances related genes
was performed using some genome-mining tools as antiSMASH
and BAGEL (de Jong et al., 2006; Blin et al., 2019). PHASTHER
Search Tool was used to determine the presence of prophage
sequences (Arndt et al., 2016). When the study required it, the
sequences were compared using Clustal Omega2.

1http://www.genomicepidemiology.org/
2https://www.ebi.ac.uk/tools

The pan-genome was analyzed to estimate the core genome
and the accessory or variable genome using Roary (Page et al.,
2015) and BLAST-Ring-Image-Generator (BRIG) was employed
to obtain a visual comparison with S. aureus LGA251 genome
as reference (GenBank accession number: NC_017349) (Alikhan
et al., 2011). Phylogenetic trees were generated using Geneious
Prime with default settings.

RESULTS AND DISCUSSION

Whole Genome Sequencing Results
The genome data of the 13 MRSA-CC130, two MSSA-ST130
and three MSSA-ST700 strains analyzed in this study have
been placed in the European nucleotide archive3, and general
sequence data, with the accession numbers are shown in
Supplementary Table 1.

Antimicrobial and Heavy Metal
Resistance and Virulence Genotype
The resistance genotype analysis showed that all MRSA-CC130
strains contained the mecC as well as the blaZ-SCCmecXI
(β-lactamase), arsB (arsenite efflux pump), and arsC (arsenate
reductase) genes, which are described as being part of SCCmecXI
element (Shore et al., 2011). No other resistance genes were
detected among MRSA-CC130 strains, which agrees with the
fully susceptible phenotype for non-β-lactams previously found
in these mecC-positive strains. Among MSSA strains, three out
of the five showed resistance to at least one of the antimicrobial

3http://www.ebi.ac.uk/ena

TABLE 1 | Characteristics of the 18 S. aureus CC130 strains (13 MRSA and 5 MSSA).

Molecular typing

Strain Origin Location
(Region, country)

spa-type Sequence-type (arcC, aroE,
glpF, gmk, pta, tpi, yqiL)

Resistance
Phenotype

C3817 Goat Tunisia t773 ST700 (6, 57, 45, 2, 7, 95, 52) –

C3608 Sheep Tunisia t773 ST700 (6, 57, 45, 2, 7, 95, 52) Tetracycline

C3630 Sheep Tunisia t7579 ST700 (6, 57, 45, 2, 7, 95, 52) Tetracycline

C5802 River water La Rioja, Spain t843 ST130 (6, 57, 45, 2, 7, 58, 52) Penicillin

C6771 Red Deer Aragón, Spain t1535 ST130 (6, 57, 45, 2, 7, 58, 52) –

C7705 Red Deer Cádiz, Spain t1535 ST1945 (6, 57, 45, 2, 215, 58, 52) Methicillin

C6595 Wood Mouse Cádiz Spain t1535 ST1945 (6, 57, 45, 2, 215, 58, 52) Methicillin

C7708 Red Deer Cádiz, Spain t1535 ST1945 (6, 57, 45, 2, 215, 58, 52) Methicillin

C7246 Farmer La Rioja, Spain t843 ST1945 (6, 57, 45, 2, 215, 58, 52) Methicillin

C7925 White stork Ciudad Real, Spain t843 ST3061 (6, 57, 393, 2, 215, 58, 52 Methicillin

C7697 Red Deer Cádiz, Spain t843 ST1945 (6, 57, 45, 2, 215, 58, 52) Methicillin

C8664 Magpie Ciudad Real, Spain t843 ST1583 (6, 57, 45, 2, 215, 58, 476) Methicillin

C8666 Magpie Ciudad Real, Spain t843 ST1583 (6, 57, 45, 2, 215, 58, 476) Methicillin

C8667 Magpie Ciudad Real, Spain t843 ST1583 (6, 57, 45, 2, 215, 58, 476) Methicillin

C8671 Magpie Ciudad Real, Spain t843 ST1581 (417, 57, 45, 2, 215, 58,
476)

Methicillin

C8699 Cinereous vulture Madrid, Spain t843 ST1571 (6, 548, 45, 2, 215, 58, 52) Methicillin

C8483 Rabbit Aragón, Spain t843 ST130 (6, 57, 45, 2, 7, 58, 52) Methicillin

C8500 Rabbit Aragón, Spain t843 ST130 (6, 57, 45, 2, 7, 58, 52) Methicillin
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TABLE 2 | Antimicrobial resistance and virulence genes detected in the 18 S. aureus CC130 strains included in this study.

Strain Resistance genotype
(antimicrobials and heavy metals)

Virulence genotype and host adaptation markersa

C3817 No related genes lukMF’, lukED, hlgAB, hlgCB, tst-variant, sec, sel, edinB, splA/B/E, aur, vwbp, scn-type

C3608 tet(K) lukMF’, lukED, hlgAB, hlgCB, tst-variant, sec, sel, edinB, splA/B/E, aur, vwbp, scn-type

C3630 tet(K) lukMF’, lukED, hlgAB, hlgCB, tst-variant, sec, sel, edinB, splA/B/E, aur, vwbp, scn-type

C5802 blaZ lukMF’, lukED, etD2, hlgAB, hlgCB, edinB, splA/B, aur

C6771 No related genes lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur, vwbp, scn-type, sak-type

C7705 blaZ-SSCmecXI, mecC, arsB, arsC scn, sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C6595 blaZ-SSCmecXI, mecC, arsB, arsC scn, sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C7708 blaZ-SSCmecXI, mecC, arsB, arsC scn, sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C7246 blaZ-SSCmecXI, mecC, arsB, arsC sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C7925 blaZ-SSCmecXI, mecC, arsB, arsC lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C7697 blaZ-SSCmecXI, mecC, arsB, arsC scn, sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C8664 blaZ-SSCmecXI, mecC, arsB, arsC scn, sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C8666 blaZ-SSCmecXI, mecC, arsB, arsC lukED, etD2, hlgAB, hlgCB, edinB,splA/B/E, aur

C8667 blaZ-SSCmecXI, mecC, arsB, arsC lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C8671 blaZ-SSCmecXI, mecC, arsB, arsC scn, sak, lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur

C8699 blaZ-SSCmecXI, mecC, arsB, arsC lukED, etD2, hlgAB, hlgCB, edinB, splA/B/E, aur, sak-type

C8483 blaZ-SSCmecXI, mecC, arsB, arsC lukED, etD2, hlgAB, hlgCB, edinB, splA/B, aur

C8500 blaZ-SSCmecXI, mecC, arsB, arsC lukED, etD2, hlgAB, hlgCB, edinB, splA/B, aur

a In bold are highlighted the genes associated with: human immune evasion system, bovine leucocidin, toxic shock syndrome, enterotoxins, von Willebrand factor-binding
protein, and staphylococcal complement inhibitor and staphylokinase-type genes (of about 45% of amino acid similarity).

agents tested, one MSSA-ST130 strain for penicillin (with blaZ
gene) and two MSSA-ST700 strains for tetracycline [with tet(K)
gene] (Table 2).

A list of selected virulence and/or fitness genes are shown
in Table 2. All the strains carried the genes: lukED, hlgAB,
hlgCB, edinB, splA/B, and aur. Nevertheless, some differences
were detected with respect to genes belonging to the IEC
system, leucocidins, exfoliative toxins, allele variant of toxic shock
syndrome toxin, enterotoxins, and immune evasion proteases.
The three MSSA strains of lineage ST700 carried sec and sel
genes, and also a variant of tst with an amino acid sequence
closer to the tst gene found associated with bovine origin than
with the one of human origin (Monecke et al., 2007); this
combination of pyrogenic toxin superantigens is associated with
the pathogenicity island SaPIbov (Fitzgerald et al., 2001), and
has been previously described in strains from ruminants with the
same ST (Luzzago et al., 2014). The ST700 strains were obtained
from apparently healthy animals although a subclinical mastitis
cannot be ruled out. All of them presented the tst-variant, sec,
and sel virulence genes, as well as the lukMF’ gene, previously
found in isolates from cases of mastitis (Schlotter et al., 2012).
All our CC130 strains, except those belonging to ST700, carried
the etD2 gene. The lukMF’ genes, encoding a leucocidin strongly
associated with ruminants (Monecke et al., 2007), were only
detected in four MSSA strains obtained from sheep and goats
(MSSA-ST700) and from river water (MSSA-ST130); these data
support the association of this leucocidin with a ruminant origin,
and also may suggests that the strain from river water could have
a bovine origin.

On the other hand, the lukED, hlgAB, hlgCB, edinB, splA/B,
and aur genes were present in the 18 strains. Usually, S. aureus
has up to 6 types of toxin genes in the core genome

(HlgAB, HlgCB, and LukAB) (Alonzo and Torres, 2014). The
combination of LukED with splA/splB genes has been detected
previously among other clonal complexes (Jamrozy et al., 2012),
generally being found on the genomic island νSaβ, highly
conserved in some lineages (McCarthy and Lindsay, 2013).
Other genes, such as aur (immune evasion proteases), edinB
(exfoliative toxin) or splA/B/E (immune evasion proteases),
are found highly conserved in S. aureus (Sabat et al., 2008;
Munro et al., 2010; Paharik et al., 2016). Nevertheless, the
splE gene was absent in three of our strains, and some
authors suggested the implication of this nuclease in clinical
manifestations (Stach et al., 2018). The analysis of genes
encoding bacteriocins revealed the presence of the gene encoding
the bacteriocin lactococcin 972 (GenBank accession number:
NC_004955) in all the analyzed strains; furthermore, this gene
showed in all isolates an identical genetic environment, which
corresponds to the one found in the reference sequence of
S. aureus LGA251.

Comparison Between the Strains
The pan-genome study showed that a total of 2,318 genes were
included in all strains, 539 were in two or more strains, and
345 were unique genes of specific strains. Circular genome
comparison of MSSA and MRSA strains (LGA251 as reference)
showed some differences between MRSA and MSSA strains
(Supplementary Figure 1). It was determined that 29 genes were
present in all 13 MRSA and in none of the MSSA strains (mainly
associated with SCCmecXI mobile genetic element), and 21 genes
in all 5 MSSA strains and not in the MRSA (mostly associated
with phages) (Supplementary Table 2). It has been reported that
the core genome is largely preserved within the same lineage
(McCarthy et al., 2011). In addition, we analyzed the presence
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of unique genes in scn-positive (n = 6) and scn-negative strains
(n = 12). The scn-negative strains did not carry unique genes,
however, scn-positive strains presented different genes encoding
proteins associated with bacteriophages (including the human
scn-IEC gene), that were not present among scn-negative strains
(Supplementary Table 3).

SCCmecXI Element and Penicillin
Binding Proteins (PBPs)
The structure of the SCCmecXI element in the 13 MRSA
CC130 strains was compared with the one of MRSA strain
M10/0061 (GenBank accession number: FR823292), used as
reference. This structure seems to be highly conserved among
the 13 MRSA-CC130 strains, pointing out the potential of

this type of SCCmec to be transferred among S. aureus, due
to the relatively small size of this mobile genetic element,
approximately 30 Kb (Shore et al., 2011). In fact, it has been
suggested that SCCmecXI could have originated in another
species or genus, being distantly related to the other SCCmec
elements and possibly SCCmecXI represent an ancestral form
(Shore et al., 2011).

The results of the study of amino acid changes in PBPs
and in other three proteins previously associated with β-lactam
resistance (Ba et al., 2014, 2019) are shown in Table 3. Amino acid
changes in our strains were included, as well as those of MRSA
LGA251 using the corresponding sequences of MSSA ATCC
25923 (GenBank accession number: CP009361) as reference
for all sequences, except for PBP2c. In the case of PBP2c,
the sequence of MRSA LGA251 was used as reference. The

TABLE 3 | Identified amino acid changes in PBPs 1, 2, 2c, 3, 4, YjbH, GdpP, and AcrB proteins of the 18 S. aureus strains included in this study and also of MRSA
LGA251 strain (MRSA LGA251 as used as reference strain for PBP2c and MSSA ATCC 25923 as reference strain for PBPs 1, 2, 3, 4, YjbH, GdpP, and AcrB
protein analysis).

Strain ST PBP1 PBP2 PBP2c PBP3 PBP4 YjbH GdpP AcrB

LGA 251 ST425 Wild T439V,
T691A,
A705V

Wild M1L, K504R,
D563E

E398A L95V I456V, D561E S52T, L198V, T282A,
E456D, T577A, S861F

C3817 ST700 Wild T439V – M1L, K160N,
K504R, D563E

D28N, K349E, E398A L95V I456V, D561E S52T, T282A, T577A

C3608 ST700 Wild T439V – M1L, K160N,
K504R, D563E

D28N, K349E, E398A L95V I456V, D561E S52T, T282A, T577A

C3630 ST700 Wild T439V – M1L, K160N,
K504R, D563E

D28N, K349E, E398A L95V I456V, D561E S52T, T282A, T577A

C5802 ST130 T371I T439V – M1L, K160N,
K504R, D563E

K349E, E398A L95V I456V, D561E S52T, T282A, T577A

C6771 ST130 Wild T439V – M1L, K160N,
K504R, D563E

K349E, E398A L95V I456V, D561E S52T, T282A, T577A

C7705 ST1945 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C6595 ST1945 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C7708 ST1945 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C7246 ST1945 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C7925 ST3061 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C7697 ST1945 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C8664 ST1583 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C8666 ST1583 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C8667 ST1583 Wild T439M Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C8671 ST1581 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C8699 ST1571 Wild T439V Wild M1L, K160N,
K504R, D563E

K349E, E398A L95V, A83P I456V, D561E S52T, T282A, T577A

C8483 ST130 Wild T439V Wild M1L, K160N,
K504R, D563E

A288T, K349E, E398A L95V I456V, D561E S52T, T282A, T577A

C8500 ST130 Wild T439V Wild M1L, K160N,
K504R, D563E

A288T, K349E, E398A L95V I456V, D561E S52T, T282A, T577A
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PBP2c protein, encoded by the mecC gene, presented a 100%
of amino acid similarity to PBP2c of MRSA LGA251. As
regards the other PBPs, some amino acid changes were found,
especially in PBP3 and PBP4. These amino acid changes seem
to be repeated in the 18 strains, including MSSA ones, with
some few exceptions (PBP1: T371I in a MSSA-ST130 water
strain; PBP2: T439M in a MRSA-ST1583 magpie strain; PBP4:
D28N in MSSA-ST700 strains, and A288T in two MRSA-ST130
rabbit strains). Nevertheless, differences were greater in the case
of MRSA LGA251. It should be noted that previous studies
indicate that mutations in PBP4 are related to increased MICs
for β-lactams (Alexander et al., 2018), and a modified PBP1
had been previously associated with a reduced susceptibility
in S. lugdunensis, but not in S. aureus (Kotsakis et al., 2012).
Only one of the changes detected in this study, T371I in PBP1,
was previously reported, combined in that case with other PBP
mutations in a clinical MRSA ST1 strain lacking mec gene
(Ba et al., 2014); in our case, the strain which harbored the
T371I change was MSSA. In addition to PBPs, the study of
GdpP, YjbH, and AcrB proteins, which could be implicated
in β-Lactam resistance (Banerjee et al., 2010; Göhring et al.,
2011; Ba et al., 2019), showed the same amino acid changes in
all analyzed strains, with the exception of YjbH in which two
changes (L95V, A83P) were detected in all strains, but in MSSA-
ST700, MRSA-ST130 and MSSA-CC130 where only one change
was found (L95V).

Host Adaptation, Prophages, and Other
Mobile Genetic Elements
The presence of the scn gene in some of our mecC-positive
MRSA-CC130 strains is a remarkable feature since mecC-
MRSA, as well as CC130 strains in general, are considered
animal-associated, and IEC system is considered a human
adaptation marker. The 3’ conserved region of the β-hemolytic
bacteriophage ϕ3 (approximately 8,000 pb) of the mecC-positive
strain C6595 (IEC type E, isolated of a wood mice) was compared
with the IEC of the reference strain MRSA252 (GenBank
accession number: BX571856, type A) (Figure 1), and no
differences were observed apart from the different content in
genes that give rise to the type of IEC. It can be assumed that these
strains have an advantage in colonizing and/or infecting humans,
as already was described in unusual IEC-positive MRSA livestock

associated CC398 strains (Cuny et al., 2015; Pérez-Moreno et al.,
2017; Ceballos et al., 2019).

The hlb gene was also analyzed, showing that it was
truncated in all the strains that presented the IEC system.
The truncated hlb gene was also found in other three scn-
negative strains (C6771, C7246, and C8699), which showed
an integrated phage of about 45 kb, that only contained
phage-related genes; it should be highlighted that C6771 and
C8699 isolates contained a sak-related gene with a 45% of
similarity respect to the sak IEC virulence gene (GenBank
accession number: NC_026016). The dtlB gene, present in the
two MRSA-ST130 mecC-positive strains isolated from healthy
wild rabbits (C8483 and C8500), showed the following amino
acid changes with respect to the reference MRSA252 strain
(GenBank accession number: BX571856): (a) C8483 (I227T,
A382S, and ∗405Q); (b) C8500 (A382S, G401D, and K402R).
None of the strains presented the mutations T113K, Y250H,
or ∗405Y previously described (Viana et al., 2015), and only
the A382S change present in both strains has not been
previously reported (Viana et al., 2015; Holmes et al., 2016).
The vwbp gene (SaPIbov5, GenBank accession number: JP5338
used as reference) was found in the three MSSA-ST700 strains
from small ruminants and in the MSSA-ST130 strain from
a red deer, indicating in this case an adaptation to the host
(Viana et al., 2010).

Phage analysis showed 12 different intact prophages in
genome with an average of 2 ± 2 prophage regions per
genome. The strains C3608, C3630, C3817, and C6771 (3 MSSA-
ST700 and one MSSA-ST130, that also carried the vwbp
gene), showed an identical coding sequence contained in a
phage described as a protein related to the expression of
fibrinogen (scn-type gene), but different from human variant
(47% similarity of amino acid sequence with WP_000702262 as
reference) and from the new variant described and associated
with the evasion of the equine immune system (45% similarity
of amino acid sequence with WP_106096712 as reference)
(Supplementary Figure 2).

Only three strains (C3608, C3630 and C5802, corresponding
with two MSSA-ST700 and one MSSA-ST130), presented rep
genes: rep7, rep24, repUS23, rep5. In addition, only rep7 was
detected showing a 100% nucleotide identity in two of the strains
(C3608 and C3630). The gene rep7 has been previously described

FIGURE 1 | Comparison of 3′ conserved region of β-hemolytic bacteriophage (83) between reference strain MRSA-252 (above) and C6595 (below). The percentage
of similarity is indicated (right). Arrows in green corresponding to the IEC genes, and in red other coding sequences.
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FIGURE 2 | Phylogenetic tree showing the phylogenetic distance between 18 strains CC130 included in this study. Green lines corresponding to MSSA and red lines
to MRSA strains.

widely distributed in other CCs within the species S. aureus
(Lozano et al., 2012).

Phylogenetic Analysis
The phylogenetic tree (Figure 2) showed that the three MSSA
strains belonging to ST700, clearly constituted a separate clade
from the remaining CC130 strains included in this study. Our
ST700 MSSA strains were very different from the other 15
strains of the studied collection based on the results from
all the analyses performed, supporting the consideration of
ST700 as a lineage distinct from CC130 (Smith et al., 2014).
The other 2 MSSA-ST130 strains also form a distinct clade in
this collection.

Finally, the 13 MRSA-CC130 strains are grouped and the
following associations can be seen: (1) C8483 and C8500 from
rabbits from Aragon are clustered together indicating the possible
animal-animal transfer; (2) C6595, C7697, C7705, and C7708,
from red deer and small mammals from the same geographical
area, highlighting C7705 and C6595 MRSA strains that were
indistinguishable (by this analysis), which might suggest an
interspecies transmission event; (3) C8666, C8667, C8664, and
C8671, all isolated from magpies in the same location; (4)
C7925 and C7246 that were isolated in a different geographical
area, of different origins (stork and human, respectively),

and with different STs; and (5) C8699 (from vulture) that is
grouped individually.

CONCLUSION

Taking into account the relatively small number of strains
included in this study, the comparison of fifteen strains CC130
from different animal origins, geographical locations and STs,
demonstrated clear differences between isolates depending if
they were mecC-positive or mecC-negative and between sequence
types. Markedly divergent results from the three MSSA-ST700
isolates reinforce the idea of considering this lineage as distinctly
separate from CC130. The etD2 gene appears to be a genetic
marker of CC130 lineage (MSSA and MRSA), which is missing
from ST700 strains although further studies are required to
confirm this. The presence of IEC system in some of the MRSA-
mecC from animals opens questions about the origins and
evolution of mecC-MRSA.
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Golke A, Dolka B, Adamczyk K,
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Pigeons are widespread bird species in urban regions (Columba livia forma urbana)

and may carry pathogens with zoonotic potential. In recent years, more and more data

indicate that these zoonotic pathogens are multidrug resistant. Our results confirmed

that global trend. Three different multidrug-resistant pathogens were isolated from

an oral cavity of a racing pigeon with lesions typical for pigeon pox virus infection.

Staphylococcus aureus was recognized as methicillin resistant, thus resistant to all

beta-lactams. Additionally, it was also resistant to many other classes of antibiotics,

namely: aminoglycosides, tetracyclines, phenicols, lincosamides, and macrolides.

Escherichia coli showed resistance to all antimicrobials tested, and it was classified

as intermediate to amikacin. Moreover, Candida albicans resistant to clotrimazole,

natamycin, flucytosine, and amphotericin and intermediate to ketoconazole, nystatin,

and econazole was also isolated. This raises the question how pigeons acquire such

highly resistant strains. Therefore, more data are needed concerning the resistance to

antibiotics in strains from domestic and wild pigeons in Poland. Until the problem is

fully understood, it will be challenging to implement adequate planning of any control

measures and check their effectiveness.

Keywords: antimicrobial resistance, Candida albicans, Escherichia coli, MRSA, pigeon

INTRODUCTION

In pigeons, most staphylococcal infections are caused by Staphylococcus aureus; however, a few
studies have indicated that after S. aureus, the most prevalent coagulase-positive staphylococci
(CoPS) in pigeons are Staphylococcus delphini and Staphylococcus intermedius (1, 2), which inhabit
the choanal slit (posterior nasal apertures) of healthy birds.
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S. aureus is widely spread among humans and numerous
animal species. It means that it can be easily transmitted between
animals and humans. Since pigeons share common environment
with humans, they may not only be the source of staphylococcal
infection but may also pose a reservoir of bacteria-carrying
resistance and virulence factor genes. Therefore, this might be of
a great importance in the context of public health.

Extensive and often inappropriate use of antimicrobials causes
a strong selective pressure that leads to the rapid increase in
antimicrobial resistance in bacteria. Thus, the antibiotic use plays
a crucial role in the emerging public health crisis of antimicrobial
resistance. Increased number of multidrug-resistant bacteria
has become a global problem. The World Health Organization
(WHO) alarms that humanity is at risk of returning to the “pre-
antibiotic era” (3). It should be noted that resistant bacteria
may circulate among humans, animals, and the environment.
Therefore, the “One World—One Health” concept created in
2004 becomes an especially important issue nowadays (4, 5).

Homing pigeons and fancy pigeons, which are bred for
ornamental traits are very popular in Poland. Currently, homing
pigeons are mainly used in racing competitions. Nowadays,
there is a huge problem in Poland related to the frequent use
of antimicrobials by breeders without consulting a veterinarian
(6, 7). This directly contributes to the increase of drug resistance
in bacteria occurring in pigeons.

METHODS

In August 2019, one racing pigeon from the affected pigeon
loft was submitted to the veterinary clinic. Clinical examination
revealed several dry, yellowish nodular lesions on the eyelids, as
well as protuberant black pocks in the nostrils, cere region, and
lower beak. Lesions were firmly attached to the skin. In addition,
the abscess was found on the palate. Clinical examination allowed
the recognition of pigeon pox virus infection based on the
presence of typical cutaneous and mucosal diphtheritic lesions
(Figure 1). The swab from oral cavity was collected for laboratory
tests. Basing on the clinical changes, bacteriological as well
as mycological examinations were performed. Collected swab
was cultured on Columbia agar supplemented with 5% sheep
blood (Graso Biotech, Poland), MacConkey agar (Graso Biotech,
Poland), and Sabouraud agar (Biomerieux, France). Bacterial
isolates were identified based on their phenotypic properties,
such as: Gram stain characteristics, catalase and oxidase results,
as well as on colony morphology on blood agar and MacConkey
agar plates. For further identification of staphylococcal isolate,
a tube coagulase test was performed. Additionally, a rapid
agglutination test was used for the differentiation of S. aureus by
the detection of clumping factor and protein A specific for this
staphylococcal species (Microgen Staph, Graso Biotech, Poland).
Moreover, for tested staphylococcal strain multiplex PCR assay
based on the amplification of nuc gene was used. This method
allows for differentiation of coagulase-positive staphylococci
isolated from animals (8). Four reference strains from the Culture
Collections of the University Göteborg S. intermedius CCUG
6520T, S. schleiferi subsp. coagulans CCUG 37248T, S. delphini

FIGURE 1 | Pox in pigeon from which multidrug-resistant E. coli and S. aureus

strains were isolated: note typical yellow-to-brown nodules on and around

beak and eyes.

CCUG 30107T, and S. pseudintermedius CCUG 49543T used in
this study were obtained from the Department of Veterinary
and Animal Sciences, Faculty of Health and Medical Sciences,
University of Copenhagen. One strain of S. aureus ATCC 6538
belonged to the strain collection of theWarsaw University of Life
Sciences. Candida species was identified based on the positive
germ tube test and API Candida (Biomerieux, France). A disk-
diffusion method was used to check antimicrobial susceptibility
profiles of isolated microorganisms. Escherichia coli isolate was
tested for susceptibility to amoxicillin with clavulanic acid (AMC;
30 µg), cefpodoxime (CPD; 10 µg), cephalothin (CF; 30 µg),
gentamicin (GM; 10 µg), tetracycline (TE; 30 µg), doxycycline
(D; 30 µg), sulfamethoxazole with trimethoprim (SXT; 23.75
µg/1.25 µg), florfenicol (FFC; 30 µg), enrofloxacin (ENO; 5
µg), ampicillin (AM; 10 µg), and amikacin (AN; 30 µg), while
S. aureus isolate was tested for penicillin (P; 10 µg) instead of
ampicillin, and it was additionally tested for susceptibility to
clindamycin (CC; 2 µg) and erythromycin (E; 15 µg) (Becton
Dickinson, USA). The presence of mecA gene was checked by
PCR method according to Larsen et al. (9). Candida albicans
isolate was tested for susceptibility to: clotrimazole (CTM; 1 0µg),
natamycin (NAT; 10 µg), flucytosine (FY; 1 µg), amphotericin
(AMB; 20 µg), ketoconazole (KCA; 10 µg), nystatin (NY; 100
units), and econazole (ECM; 10 µg) (Mast Group, UK). After
incubation at 37◦C for 24 h, the growth inhibition zones were
measured and interpreted in accordance with CLSI guidelines
(10, 11).

To evaluate the cumulative data concerning antimicrobial
resistance in selected bacteria isolated from pigeons,
comprehensive literature search was performed in the PubMed
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database for studies published from 01.01.2000 to 01.07.2020.
The database was searched for the following keywords: bacterial
infection, antimicrobial resistance, and pigeon, giving a total of
35 search results. Manual revision and selection of data were
based on information in the titles and/or abstracts. Selected
publications had to contain extractable data in English on the
number of bacterial strains isolated from clinical and/or non-
clinical samples from feral and/or domestic pigeons. Moreover,
they had to contain data on the resistance profile to the tested
antibiotics separately for each tested strain. Considering the fact
that among the publications that meet the above criteria, the
most numerous were those relating to E. coli, 11 publications
were selected for the final analysis. Selection of studies and
extraction of data were done independently by the authors AG
and EK and then compared and reviewed by the third author
DCC. The extracted data was collected in a database created
for this publication and analyzed for the percentage of strains
resistant to particular classes or subclasses of antibiotics. The
results obtained in the research on feral pigeons and homing
pigeons were also compared.

RESULTS

In the present study, S. aureus, non-hemolytic E. coli, and
C. albicans were isolated from oral cavity of racing pigeon.
Disk-diffusion method revealed in E. coli isolate intermediate
susceptibility to amikacin only. Furthermore, it was resistant
to amoxicillin with clavulanic acid, cefpodoxime, cephalothin,
gentamicin, tetracycline, doxycycline, sulfamethoxazole with
trimethoprim, florfenicol, enrofloxacin, and ampicillin.Whereas,
S. aureus isolate was resistant to all beta-lactam antibiotics
tested and to amikacin, gentamicin, tetracycline, doxycycline,
florfenicol, and clindamycin, erythromycin. Intermediate
susceptibility was confirmed only to enrofloxacin. The detection
of the mecA gene in isolated S. aureus strain correlated with
the antimicrobial resistance phenotype indicating MRSA
(methicillin-resistant S. aureus). Both bacterial isolates were
resistant to at least three antimicrobial classes, thus could be
classified as multidrug-resistant pathogens (12).

In mycological examination, C. albicans isolate was resistant
to clotrimazole, natamycin, flucytosine, and amphotericin.
Moreover, it was intermediately susceptible to ketoconazole,
nystatin, and econazole.

According to our best knowledge, 10% florfenicol acquired
from unknown source was administered orally despite
the antibiogram result. The outcome of the disease has
remained unknown.

DISCUSSION

The highlight of this case is the fact that three different
pathogenic microorganisms were isolated from an affected racing
pigeon, and all of them were multidrug resistant. Although,
increasing resistance to antimicrobials in bacteria and fungi is
a well-known fact, mistakes in antimicrobial therapy are still
common (6, 7). Antibiotics are often administered “blindly,”

without previous microbiological examinations, and the drug
selection is often random. Antimicrobial therapy must base on
the results of antimicrobial susceptibility testing and on the
prescription of a veterinarian. In many cases, the antibiotic
use is unnecessary because the etiological agent of a disease
is not of bacterial origin. Other common problems are wrong
dosage of a drug, and too long or too short duration of
the treatment. Therapy is often not continued as soon as the
clinical symptoms subside. In case of animals taking part in
competitive sport, including racing pigeons, before the sporting
event, antibiotics are frequently given preventively to treat any
possible disease, even if the animal shows no clinical symptoms.
Among the domestic pigeon breeders even more irresponsible
practices concerning antibiotic usage may occur. Antimicrobial
cocktails (preparations consisting of antibiotics from different
classes) are purchased from unknown sources and sometimes
also shared between breeders. This cocktails can contain not only
antimicrobials registered for pigeons or other animals but also
antimicrobials registered for humans (13).

The resistance of the E. coli isolate to enrofloxacin and
doxycycline, as well as the resistance of the S. aureus isolate to
doxycycline and intermediate susceptibility to enrofloxacin, may
be associated with an extensive use of those antimicrobials
authorized for treatment of pigeons in Poland. Similar
observations were described previously for pigeon pathogens
by other research groups (7, 13, 14). However, the resistance
to aminoglycosides, macrolides, and phenicols, which are not
registered in Poland for use in pigeons, suggests the possible
acquisition of resistance determinants from other bacteria, as
well as an effect of selective pressure caused by unauthorized
previous treatment with antibiotics from these classes. Moreover,
we recognized MRSA in the racing pigeon in Poland by PCR
with mecA-specific primers. Up to date, there is only one
report concerning the presence of pigeon methicillin-resistant
staphylococci in Poland, but this feature was not genetically

TABLE 1 | Cumulative results of antimicrobial resistance in E. coli isolated from

pigeons, according to publications available in the PubMed database (18, 21–30).

Antimicrobial or antimicrobial Class % of resistant strains

Beta-lactams Penicillins 45

Cephalosporins 18

Cefamycins 17

Penicillins with betalactamase inhibitors 8

Olaquindox 82

Tetracyclines 65

Lincosamides 42

Aminoglycosides 40

Phenicols 32

Fluoroquinolones 29

Macrolides 25

Sulfonamides 17

Nitrofurantoin 17

Tigecycline 3
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FIGURE 2 | Comparison of antimicrobial resistance in E. coli strains isolated from feral and domestic pigeons, according to publications available in the PubMed

database (18, 21–30).

confirmed (14). Multidrug-resistant, biofilm-producing S. aureus
strains were also isolated from pigeons with conjunctivitis in
Iran (15). Moreover, in Italy it was shown that pigeons can be
colonized by methicillin-resistant S. aureus (16).

In this study, we also found multidrug-resistant E.coli isolate.
It was previously shown that pigeons are reservoir of multidrug-
resistant E. coli, including ESBL-producing strains (17–19).
Cunha et al. (20) found that feral pigeons carried ESBL-positive E.
coli strains producing the enzymes CTX-M-2 and CTX-M-8 (20).

Cumulative data based on the analysis of available
publications concerning antimicrobial resistance in E. coli
isolated from pigeons has shown that the majority of them
were resistant to tetracyclines. This may be due to the fact,
that tetracyclines are registered for birds in many European
countries, including Poland. Another class of antimicrobials
registered for birds are fluoroquinolones and according to
the cumulating data 29% of strains were reported as resistant
to them. The highest percentage of strains was resistant to
olaquindox; however, data on this antibiotic came only from
one study from China (21) (Table 1). Figure 2 compares the
differences in resistance to different classes of antibiotics of E.
coli strains isolated from feral and domestic pigeons. In general,
E. coli strains obtained from domestic pigeons shown higher rate
of resistance to all antimicrobials tested, except nitrofurantoin.
However, it is worth noting that most studies on the prevalence
of multidrug-resistant zoonotic pathogens concerned feral
pigeons, and infectious agents were isolated from faeces of
healthy birds. There is only limited data on the isolation of such

pathogens from clinical samples, and they are mainly obtained
from racing pigeons.

There is also literature data indicating the presence of
multidrug-resistant yeasts in pigeons (31). Multiple studies
showed the prevalence of yeasts belonging to the genus
Cryptococcus, Candida, Rhodotorula, and Trichosporon in pigeon
droppings (32–36). Moreover, many strains were resistant to
the azole antifungal drugs (36). However, as it was described in
the case of bacterial isolates, there is only limited data on the
isolation of multidrug-resistant yeasts from clinical samples of
pigeon origin.

The occurrence of methicillin-resistant staphylococci and
other multidrug-resistant microorganisms in pigeons is alarming
due to the fact that these pathogens can be transmitted to
humans and other animal species. Pigeons may shed such
microorganisms in a wide geographical area because the
competition flights cover considerable distances (37). Moreover,
these birds share the same environment with humans, domestic
and wildlife animals, and act as carriers of many emerging
pathogens. It is worth to mention that feral pigeons are known
to be the source of human pathogens such as toxigenic E. coli,
Salmonella, and Enterococcus (25, 30, 38–42).

The potential risk for public health posed by drastically
increasing multidrug resistance of microorganisms isolated
from pigeons must be highlighted. However, it must be also
emphasized that veterinarians should inform pigeon breeders
that multidrug resistance leads to higher morbidity, mortality,
and increased treatment costs.
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Aquaculture is a fast-growing animal food sector, and freshwater fish farming is

particularly common in Central and Eastern Europe. As the biodiversity of fishery ponds

is changed toward fulfilling the industrial needs, precautions should be taken to keep the

system sustainable and protect the adjacent environment from possible damage. Due to

risk of infectious diseases, antibiotics are used in aquaculture production systems. The

constant exposure to antimicrobials can contribute to the rise of antibiotic resistance in

aquaculture products and the adjacent ecosystems, with possibility of dissemination to

the wider environment as well as between animals and humans. Even though previous

studies have found antibiotic resistance genes in the sediments and water of farming

ponds, the tendency and direction of spreading is not clear yet. The objective of this

project was to evaluate the influence of intensive fish farming on the condition of water

bodies used for the aquaculture and the environment, concentrating on the impact of the

aquaculture on the surrounding water ecosystems as well as the possibility of transferring

the pollutants and antibiotic resistance genes to both environment and the human

hosts. Combined measurement of antibiotic and heavy metal contamination, toxicity

assessment, microorganism diversity, and the detection of common antibiotic resistance

genes was performed in the sediments of one fishery farm ponds as well as sampling

points upstream and downstream. All the tested sediment samples did not show

significantly elevated heavy metal concentrations and no substantial veterinary antibiotic

pollution. From the antibiotic resistance genes tested, the presence of aminoglycoside

and β-lactam resistance determinants as well as the presence of integrons could be of

concern for the possibility of transfer to humans. However, despite the lack of heavy

metal and antibiotic pollution, the sediments showed toxicity, the cause of which should

be explored more.

Keywords: antibiotic resistance genes, fish farming, heavy metals, sediment microbiomes, sediment toxicity
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INTRODUCTION

According to the report of Food Agriculture Organization of the
United Nations 2020 aquaculture is one of the most important
food sectors which, increased by annual 3.1% during 1961–
2017 and exceeded annual world population growth (1.6%)
almost double for the same period. Fish ponds are rich
in dissolved organic materials due to the intensive feeding
and fecal waste. Ponds continuously accumulate sediments
after the formation of their basins with the influence of
water regime (filling and discharging). These sediments are
formed from biological remains originating in the ponds and
its catchment area as well as soil particles and other non-
biological materials that were transported to the pond. The
most common type of sediments that is found in ponds is
organogenic sediments (1). The intensity and combination of
these processes are very variable depending on the different
geological and geomorphological settings, hydrological regimes,
and atmospheric conditions, as well as human activities (2, 3).
The composition of sediments of aquaculture ponds could also
be influenced by changes in the biodiversity, as the aquaculture is
directed toward fulfilling the industrial needs. The monoculture
of highly-productive industrial aquatic organisms is introduced
and sustained by intensive rearing system, differing greatly from
wild aquatic ecosystems.

Another factor that should be considered in the sediments of
the fishery ponds is the presence of heavy metals. Heavy metals
which enter aquatic environment typically bond with bottom
sediments and, thus over time, can reach high concentrations. In
these circumstances heavy metals can become a potential risk to
human health through the food chain (4).

Heavy metal toxicity is of great ecological concern, due
to their stability, bioaccumulation and non-biodegradability.
The accumulation of the heavy metals can lead to the
changes in microbial community composition and activation
and accumulation of heavy metals resistance genes, that are
often closely related to antibiotic resistance genes (5–9). It
has been previously observed, that the co-selection of heavy
metal and antibiotic resistance genes (ARGs) are happening
in the environment (5), thus increasing the concern of the
accumulation and spread of potentially hazardous ARGs from
the environment to humans.

A more straightforward influence on accumulation and
spread of ARGs in aquaculture is the use of antimicrobial
substances for animal treatment. In the Eurozone, the use of
veterinary drugs is regulated through EU Council Regulations
(10, 11), which describe procedures for establishing maximum
residue limits for veterinary medicinal products in foodstuffs
of animal origin. In Lithuania, only two broad-spectrum
antibiotics florfenicol and oxytetracycline are authorized for
aquaculture use (http://vetlt1.vet.lt/vr/). Florfenicol is a structural
analog of chloramphenicol similar to thiamphenicol, but is
more active against some bacteria than chloramphenicol (12).
Oxytetracycline is a tetracycline broad-spectrum antibiotic
with bacteriostatic action, used to treat systemic bacterial
infections of fish (13, 14). Among the 11 major aquaculture
producing countries, about 73% applied oxytetracycline and

florfenicol (15). The introduced antibiotics not consumed with
the feed or excreted by the fed animals enter the water
where they can persist or even concentrate in the sediments.
The residual amounts of antibiotics in the environment have
the potential to cause considerable impact on human health
and ecosystems (16). However, these antibiotics are still not
included in the (updated) Watch List of the Water Framework
Directive (17). The antibiotic pollution problem deepens as
farm animal manure can also be used to increase productivity
of fishery ponds (18), thus introducing antibiotics used for
animal treatment.

The analysis of sediments composition of long-running
aquaculture farming is important for determination of the impact
of anthropogenic activity and dynamics of pond ecosystems.
The comparison of the sediments in the fishery ponds as well
as upstream and downstream could show the impact of the
intense aquaculture on the surrounding water ecosystems as
well as the possibility of transferring the ARGs to the human
hosts. We have chosen to analyze the sediments of Simnas
fishery farm in Southern part of Lithuania, comparing them
with samples in the inflow point located upstream from the
fishery farm (chosen as an area untouched by antropogenic
activity) and the outflowing river, carrying surplus water from
the ponds. The aim of this study was to investigate the pollution
of heavy metals and residual antibiotic in fishery ponds and the
inflow and outflow points. Together with sediment composition
analysis we explored the toxicity and determined the diversity
and changes in microbiota composition as well as the presence
of ARGs.

MATERIALS AND METHODS

Sediment Sample Collection
Sediment samples were collected during September 2019, from
20 sites in or near Simnas fishery ponds, located in Southern part
of Lithuania. The sampling areas cover the inflow (Kalesnykai
pond, C1) and outflow (Dovine river, E2) points of Simnas fishery
ponds and 18 sample points directly in the fishing ponds (B1–B8
main fishery pond, BE1 exit from the main pond, U1–U8 unused
ponds, S1–S2 nurseries). Sediment samples were collected from
surface sediment layer using Kajak corer, registered and placed
in plastic bags. The exact locations of the sampling points
were recorded using the GNSS (Global Navigation Satellite
System) device. In addition, altitudes of the main pond were
registered and bathymetry was produced (Figure 1). ArcMap
10.8.1 software was used for mapping and geo-spatial analysis.

Determination of Heavy Metal
Concentration
Sediment samples were dried at 110◦C to the constant mass,
then the particles of the 125µm size were separated and
concentrations of HM (Heavy metals) were analyzed using X-
ray fluorescence spectrometer NITON XL2 Analyzer (2009). The
overall accuracy of chemical elements analyzed is between 10 and
20% for different chemical elements.
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FIGURE 1 | The sampling points in Simnas fishing ponds. (A) The location of Simnas fishery ponds in Lithuania, (B) The map of Simnas fishery ponds. Sample

collection points are indicated and named in the figure, as well as the legend for the bathymetry measurements.
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Detection of Antibiotic Residues by
HPLC-MS
Antibiotic residues were extracted from the sediment samples
located in the main fishery pond and the exit areas, based
on the method described previously (19). The sediment
extracts were cleaned-up and concentrated using solid-phase
extraction SAX cartridges (Merck, Germany) and HLB cartridges
(Merck, Germany) in a tandem arrangement. The samples were
eluted with 10ml of methanol. Finally, the eluted samples
were evaporated to dryness and dissolved in 1ml of an
aqueous 40% methanol solution (v/v). The resulting sediment
extraction samples were analyzed using high-performance
liquid chromatography-mass spectrometry (HPLC-MS) system
(Shimadzu, Japan) equipped with a photodiode array (PDA)
detector (Shimadzu, Japan) and mass spectrometer (LCMS-2020;
Shimadzu, Japan) with an electrospray ionization (ESI) source.
The chromatographic separation was conducted using a YMC
Pack Pro column (3 × 150mm; YMC, Japan) at 40◦C and a
mobile phase that consisted of 0.1% formic acid water solution
(solvent A) and acetonitrile (solvent B) delivered in the 5–
95% gradient elution mode. Mass scans were measured from
m/z 50 up to m/z 1,200 at a 350◦C interface temperature,
250◦C desolvation line (DL) temperature, ±4,500V interface
voltage, and neutral DL/Qarray, using N2 as nebulizing and
drying gas. Mass spectrometry data were acquired in both
positive and negative ionization modes. The data were analyzed
using LabSolutions liquid chromatography-mass spectrometry
(LCMS) software.

Sediment Toxicity Bioassay
The acute luminescent bacteria test was performed in compliance
with ISO 11348-3:2007 using the Aliivibrio fischeri strain NRRL
B-11177. The composition of bacterial culture growth medium
and growth conditions were presented earlier (20). Biomass and
suspension of marine A. fischeri for luminescence measurement
was prepared as previously described (21). Sediment suspensions
(solid-phase), aqueous elutriates and respective serial dilutions
were prepared as described earlier (22). The exposure experiment
started after addition of 20 µl bacteria suspension to each well
containing 80 µl of prepared samples (sediment suspensions
or elutriate supernatants at different concentrations), control
(2% w/v NaCl) and reference chemical (3.5-dichlorphenol). The
effect of elutriate supernatants and sediment suspensions was
determined after 1 and 30min, respectively, using microplate
reader Tecan Infinite M200 (Tecan Group Ltd., Männedorf,
Switzerland) at 20◦C. Three independent measurements were
conducted in duplicate. The level of luminescence inhibition in
exposed groups was expressed as percentage relative to control
according to formula: INH (%) = 100 − BLS/BLC × 100; where
BLS bacterial luminescence after exposure to samples; and BLC
bacterial luminescence in control after respective incubation
time. Median effective concentration (EC50 in mg dry weight/ml)
of sediment suspensions was obtained using Regtox software
(version EV7.0.5, Eric Vindimian, Paris, France). Since it was
not possible to derive EC50 values for sediment elutriates it was
replaced by the inhibition value after 1min exposure to undiluted

sediment elutriates corresponding to 75mg dw sed./ml as
suggested earlier (22). Solid-phase EC50 values were converted to
toxic units (TU) values as follows: TU= 100/EC50. Samples were
classified using Persoone et al. (23) classification system. Toxicity
classes were determined according TU values estimated for solid-
phase and percentage effect (PE) for sediments elutriates. No
acute toxicity if PE < 20; slight acute toxicity if PE < 50; acute
toxicity if 1 ≤ TU < 10; high acute toxicity if 10 ≤ TU < 100;
very high acute toxicity if TU ≥ 100.

DNA Extraction
Genomic DNA was isolated from sediment samples using
the ZymoBIOMICSTM DNA Miniprep Kit (Zymo Research,
USA) according to the manufacturer’s recommendations.
The concentration of extracted DNA was evaluated using a
biophotometer (Eppendorf, Germany). Four DNA extractions
were carried out for each sample. DNA was stored at −80 ◦C
until further analysis. PCR inhibition was tested using primers
Frrs/Rrrs (Supplementary Table 1).

Microbiome Analysis
Sequencing
The composition of the bacterial community was determined by
next-generation sequencing (NGS) by scanning the amplicons
of the bacterial 16S rRNA gene. The V3–V4 16S rRNA regions
were chosen for sequencing because they are capable to detect
both bacterial and archaea taxons with high resolution (24, 25).
NGS was performed by Novogene Bioinformatics Technology
Co., Ltd. (Beijing, China) on Illumina paired-end platform to
generate 250 base pairs (bp) length paired-end raw reads.

16S rRNA Data Analysis
The reads were demultiplexed. Barcode and primer linker
sequences were removed using “cutadapt” tool (26). The
following steps were performed in QIIME2 (version 2020.11)
(27). Data were denoised using read quality scores, low-quality
part at the end of reads was trimmed (227 bp were left in forward
and 224 bp in reverse reads), paired-end reads were merged and
chimeras were removed using the pipeline that includes DADA2
algorithm (28). The result of DADA2 pipeline was amplicon
sequence variants (ASV). Phylogenetic trees were created using
MAFFT sequence alignment (29) and FastTree tree generation
(30). Taxonomic, alpha and beta diversity analyses were based
on ASV’s. Taxonomic annotation was assigned by using pre-
fitted Scikit-learn (31) based taxonomy classifier trained on full
16S gene (available at https://data.qiime2.org/2020.11/common/
gg-13-8-99-nb-classifier.qza) based on Greengenes database
(v13_8) at 99% threshold (32) via QIIME 2’s “q2-feature-
classifier” plugin (33). Core alpha and beta diversity metrics were
generated with rarefaction depth equal to the lowest feature count
of a single sample (34). Jaccard index was used as a measure of
beta diversity.

Antibiotic Resistance Gene Detection
Genes, commonly found in the clinically important bacteria and
conferring resistance to the different classes of antibiotics used
in the human and veterinary medicine, were included in the
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study. In addition, ARGs, previously found in the environmental
samples were also screened. The presence of genes encoding
antibiotic resistance determinants was assessed by PCR at the
same conditions as described earlier (35). The genes tested and
specific primers used are described in Supplementary Table 1.
Together with ARGs detection, the presence of genes conferring
resistance to heavy metals (As, Co, Cu, Pb, Cr) was also tested,
the genes and primers are presented in Supplementary Table 1.
PCR amplifying 16S rDNA fragment was used in parallel as
amplification control.

RESULTS

Heavy Metal Content Analysis
The concentrations of heavy metals that were detected in fishing
ponds were similar to the geochemical composition of the
bottom sediments of other Lithuanian lakes, with the exception
of individual ponds located on both sides of the railway. The
bottom sediments of these ponds were contaminated with Co
and Cr which are common pollutants of railways (Figure 2). Co
concentrations were up to 4 times (varies from 69.2 to 191.2 ±

23 mg/kg) higher than the maximum allowable concentrations
(MAC) stated for lake bottom sediments. Concentrations of Cr
did not exceed the MAC, but higher concentrations were also
detected among both sides of the railway (varies from 18.8. to
53.9± 8.2 mg/kg).

An increase of As and Cu concentrations was also observed.
Concentrations of these elements in the bottom sediments of
the main fishing pond did not exceed the MAC, but a higher
accumulation of these elements was observed in the northern
part (concentrations of As varies from 6.1 to 13.7 ± 2.3 mg/kg,
Cu—from 11.3 to 26.8 ± 6.4 mg/kg), due to the relief of the
bottom of the pond (Figure 2), which descends from south
to north. In this part, optimal conditions are formed for the
sedimentation processes of bottom sediments (accumulation of
sediments). In this way chemical elements are not removed
or redistributed to other parts of the pond together with
bottom sediments.

An analysis of the distribution of concentrations of chemical
elements in different fisheries ponds showed that no influx of
high concentrations of hazardous heavymetals could be observed
during fish rearing activities. Only slight increase of As and Cu
concentrations could be related with the activity of fishing ponds.
The main sources of the pollution were the railway line crossing
the territory of the fishery ponds and the nearby city of Simnas.

Determination of the Antibiotic Residues in
Sediments
Eight sediment samples (B3-B8, collected from the main fishery
pond, and exit points BE1 and E2, located at the exit from
the main fishery pond and the exit from the whole Simnas
fishery farming, respectively) were analyzed for the presence of
veterinary antibiotic residues by HPLC-MS. The characteristic
molecular ions indicating oxytetracycline, florfenicol, and
florfenicol amine (Supplementary Figures 1A–C) were not
detected in any sediment sample tested, including sample
no. B5 (Supplementary Figures 2, 3) which was chosen for

representation. The limits of detection were 5.3, 9.2, and 15 ng/g
in dry sediments for oxytetracycline, florfenicol, and florfenicol
amine, respectively. Limits of detection were defined as the
sample concentrations at a signal-to-noise ratio (S/N) of 3.
Our findings indicate that the concentrations of oxytetracycline,
florfenicol, and florfenicol amine in the sediment samples
collected from Simnas fishery ponds were very low or below the
detection limit.

Sediment Toxicity
Solid-phase test results indicated that all tested sediment samples
caused acute toxicity to A. fischeri (Table 1). Interestingly, the
most toxic solid-phase of sediment sample was from Kalesnykai
pond (C1), which was analyzed here as a clean entry point. The
least toxic solid-phase of sample was collected from Exit site
(E2). As it was expected due to complexity the solid-phase was
more toxic than sediment elutriates. In case of undiluted aquatic
sediment elutriates, the most part of analyzed samples did not
inhibit the luminescence of A. fischeri bacteria, but enhanced
light production (Table 2). Only one sample, which was collected
in the main fishing pond (B7) caused slight acute toxicity.

Microbiome Analysis
The number of species identified in one sample varied from 1,949
to 3,619 species for samples from ponds, 2,673 for samples at
the entrances to the ponds (C1), as well as 3,619 and 3,450 for
samples at the exit points (BE1, E2).

Sediment sample analysis showed that 10 phyla with highest
average relative abundance of identified microorganisms were
Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes,
Cyanobacteria, Chloroflexi, Acidobacteria, Nitrospirae,
Verrucomicrobia, and Chlorobi (Figure 3, left). Proteobacteria
phylum microorganisms predominate in all samples (mean
55.8%, SD = 5.4%). The highest relative abundance of
Proteobacteria was identified in the U7 sample (72.4%) and
the lowest in the U8 sample (47.6%). Actinobacteria phylum
microorganisms also make up a large part of the microorganism
communities (mean 11.4%, SD = 4.1%). The highest number of
these microorganisms was detected at the S2 point (15.6%) and
the lowest at the B7 point (5.2%). Bacteroidetes abundance varies
between 3.1 and 15.2%, Firmicutes−1.3–12.4%, Chloroflexi−1.1–
7.6%, Acidobacteria−0.9–6.7% and form a significant proportion
of bacterial communities. Nitrospirae, Verrucomicrobia, and
Chlorobi were less frequently detected, with a <5% in relative
abundance. It is important to note that Cyanobacteria are
particularly characteristic of U2 (14.0%), U8 (31.2%), and S2
(16.3%) samples. At the remaining points, the cyanobacterial
content did not exceed 5%.

The analysis of the relative abundance of the classes
(Figure 3, right) revealed that dominant microorganisms in
the samples belong to alpha-proteobacteria (3.7–23.0%), beta-
proteobacteria (13.9–22.8%), gamma-proteobacteria (7.2–19.7%),
and delta-proteobacteria (9.2–23.8%) classes. The abundance of
the Acidimicrobiia class varies from 1.0% (B7) to 5.4% (S2). Small
amount of Thermoleophilia (0.8–5.9%) was detected in all the
samples, as well as Bacilli class microorganisms (0.6–11.1%).
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FIGURE 2 | Distribution of heavy metals concentrations: (A) Co, with the highest concentration detected in U4, U3, and U2 sediment samples, (B) Cr, most abundant

in small nursery ponds S1, S2, and U4, U5, U3, U8, (C) As, mostly detected in the sediments from the main pond at B8, B7, B6, and U2 sampling point from the

unused pond, (D) Cu, prevalent in all the testes ponds, highest concentrations determined in U4, U5, U3, B3, B7, U8, S1 and S2 locations.
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TABLE 1 | Solid-phase EC50 (mg sediment dry weight/ml), 30min, determined

using A. fischeri luminescence inhibition test.

Sample

No.

EC50, mg dry

weight/ml, 30

min

Confidence

interval,

95%

TU (toxic

unit)

Classification

according Persoone

et al. (23)

C1 18.71 12.21–25.77 5.35 acute toxicity

B3 38.05 37.90–38.30 2.63 acute toxicity

B4 21.94 21.81–22.01 4.56 acute toxicity

B5 52.53 50.29–54.40 1.90 acute toxicity

B6 45.11 38.52–49.78 2.22 acute toxicity

B7 25.63 23.40–28.72 3.90 acute toxicity

B8 51.60 47.50–54.33 1.94 acute toxicity

E2 62.94 62.94–62.94 1.59 acute toxicity

TABLE 2 | Inhibition of A. fischeri luminescence caused by undiluted sediment

elutriates corresponding to 75mg sediment dry weight/ml, after 1min incubation.

Sample No. Inhibition

average, %

Standard

deviation

Classification

according Persoone

et al. (23)

C1 −66.15 0.18 No acute toxicity

B3 −7.70 3.48 No acute toxicity

B4 −3.52 10.50 No acute toxicity

B5 19.59 22.33 No acute toxicity

B6 15.80 3.09 No acute toxicity

B7 38.23 4.56 Slight acute toxicity

B8 16.60 5.37 No acute toxicity

E2 −54.94 33.33 No acute toxicity

The microbiome beta-diversity analysis results clearly
indicated the differences between the microbiota composition
of all pond sediments and entrance point, treated as a clean area
(Figure 4). In the PC plot, the samples from the exits of the
ponds were situated in the middle of the other sample points,
and the points from the main pond (orange) formed a separate
cluster. In this plot, the differences of the clean (taken upstream
the ponds) and the remaining specimens were evident.

Members of Archaea domain were found in the sediments
as well. Most of them belonged to phylum Parvarchaeota,
Crenarchaeota, and Euryarchaeota (Figure 5). Euryarchaeotawas
the predominant phylum of Archaea found in all the specimens,
with abundance varying from 0.1 to 1.1%. Highest abundance
of Archaea (2.0%) was discovered in U1 sample (Parvarchaeota
0.1%, Crenarchaeota 0.1%, Euryarchaeota 1.8%).

Antibiotic Resistance Gene Detection
The ARG detection results are presented in Figure 6. Tetracyclin
resistance genes were quite common in the sediment samples, the
most common one being tetM, detected in more than a half of the
samples. However, tetM was also found in entrance point sample
(C1), indicating the spread of tetracyclin ARGs might not be
related to fishery pond treatment. The screening for β-lactamase
ARGs, revealed an extended spectrum β-lactamase (ESBL) tem
gene, which was found in the samples both main pond and in the

unused ponds, and one case of the shv ESBL gene. shv gene was
detected in the sample B7 located in the deepest part of the pond
where accumulation of sediments could occur (Figures 1, 6).
Apart from ESBLs, the only genes of known clinical relevance
were the ones coding for aminoglycoside modifying enzymes.
The aph(3′)-Ia, aac(6′)-Ib, aac(3)-Iab, ant(3′′)-Ia and ant(6)-I,
genes, coding for a range of aminoglycoside resistance were
detected, three of them in the entrance point of the fishery ponds
C1. Macrolide resistance gene ermC was present in the majority
of samples, while ermA and ermB were also detected. We have
also tested for the most common heavy metal resistance genes
(Supplementary Table 1), however, only one instance of chrB
gene, coding for a regulator of Cr resistance operon, was detected
in U3 sample (not shown), which represents one of the most Cr
polluted areas in the ponds (Figure 2).

Since an important trait of both heavy metal resistance genes
and ARGs is their ability to be transferred between the organism
thus spreading the trait, we also tested the sediment samples
for the presence of integrons. Only integrase genes belonging
to class I were found in the sediment samples, spread evenly
between main ponds and unused ponds and also in the C1
sample, indicating the presence of mobile elements in the fishery
ponds as well as the adjacent areas.

DISCUSSION

In this study, we aimed to evaluate the condition of Simnas
fishery ponds, that have been used for aquaculture since 1964.
Only one main pond is currently used for fish farming, and
several smaller ones are still used as nurseries, therefore we had
an opportunity to see the differences in fishery pond sediments
composition under intense use vs. unused for several years.

Most of the tested heavy metal concentration mostly did not
exceed the MAC, only Co was detected up to 4-fold higher
concentrations than MAC. The highest concentrations of Co
and Cr was apparently due to railway line passing the fishery
ponds territory. However, increased concentrations of Cr were
also observed in small ponds used as nurseries (S1 and S2).
Increased concentrations of Cu and As were mostly dependent
on the descending relief of the ponds, concentrations increasing
where the sediments collect. Concentrations of heavy metals
in sediments of Simnas fishing ponds were similar to other
already investigated lakes in Lithuania, situated in a moderate
anthropogenic environment (36, 37) and were much higher than
the background concentrations of natural and semi natural lakes
(38). Though the concentration in the fishery pond samples
did not exceed the MAC (39, 40), the observed heavy metal
concentration could indicate the increase of over time is ongoing.

The presence of heavy metals in the environment is known
to be connected with ARG co-selection (9). Even present in low
levels, heavy metals and antibiotics could enhance the selection
of bacteria carrying ARGs (41). Oxytetracycline accumulation in
sediments has been reported at concentration levels of a few to
hundreds of µg/kg in different water bodies (42, 43), reaching
maximum concentration of hundreds µg/kg d.w. was found in
sediments sampled near fish farms in Italy (44, 45). However
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FIGURE 3 | Weighted relative abundance of micro-organisms in phylum (left) and class (right) level in sediment specimens. Both phylum and class named “(Others)”

represent relative abundance of the remaining phyla or classes besides the top 10 ones.

FIGURE 4 | Microbial similarity (beta-diversity) of specimens expressed as Jaccard distances and represented as (A) a dendrogram and (B) principal coordinates plot.

The first three principal coordinates (PC) explain, respectively, 10.8, 8.4, and 7.1% of variance.

florfenicol and its metabolite florfenicol amine can be detected in
surface water but not in sediments of aquaculture systems (45).
Our testing for the residues of two antibiotics, that are allowed
for use in veterinary setting in Lithuania, also did not detect their
presence in the main pond sediments.

Our results show only a minor accumulation of heavy metals
and no substantial pollution with antibiotics, hopefully indicating
no additional pressure on ARG co-selection. However, one case
of Cr resistance gene was observed in the area of one of the
highest Cr concentrations, indicating further increase of heavy
metal concentration could push the microorganisms toward
obtaining heavy metal resistance genes, which could be followed
by co-selection of ARGs.

The sediment microbiome analysis revealed that
Proteobacteria are the most abundant phylum found in all
the sediment samples. Sediments from fishing ponds are
commonly characterized by high concentrations of organic and
inorganic substances. These substances settle to the bottom
of ponds together with fish feces and uneaten feed and cause
eutrophication of water bodies and depletion of oxygen. Our
findings are in agreement with other authors indicating that
Proteobacteria is themost frequent phylum found in water bodies
and dominate between fishery ponds microorganisms (46, 47).
Proteobacteria in aquaculture are known as organic-degrading
microorganisms (47). Liu et al. found that Proteobacteria
predominated in both water and sediment samples, regardless
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FIGURE 5 | Distribution of archaea phyla in each specimen of sediments.

FIGURE 6 | The antibiotic resistance genes detected in the total DNA of fishery pond sediments. Black squares denote the gene was detected. The same samples

were tested for the presence of class I and II integrase genes, the presence of the genes is indicated by gray squares.

of the species farmed in the ponds and the aquaculture pattern.
meanwhile, discovered that the use of different fish feeds
also did not affect the dominance of Proteobacteria. The
second type of bacteria in terms of the highest abundance is
Actinobacteria (mean 11.4%, SD = 4.1%). These bacteria are
also commonly found in water bodies (48). In addition, the
abundance of Actinobacteria and Firmicutes is known to be
positively correlated with sediment pH (46, 49). Firmicutes-type
bacteria were characteristic of all studied groups of the samples,
but most of them were detected in the BE1 sample (12.4%).
Meanwhile, Chloroflexi microorganisms abundant in all samples
play an important role in sediment carbon metabolism (50). An

equally important process is the oxidation of fish-toxic nitrites
to fewer toxic nitrates (51). Nitrospirae-type microorganisms are
known to be able to catalyze these oxidation reactions and were
found in all samples.

Analysis of the class structure in the samples revealed that
the dominant type of Proteobacteria consists of microorganisms
of the classes Alfaproteobacteria, Betaproteobacteria,
Gammaproteobacteria, andDeltaproteobacteria. High abundance
of Gammaproteobacteria is associated with an environment
enriched with organic substances (46). Deltaproteobacteria
also can be used as a bioindicator of organic compound
contamination. Betaproteobacteria, are known as nitrifying
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bacteria, capable to oxidize potentially toxic ammonia to
non-toxic nitrates. This process is particularly important in
aquaculture ponds, where ammonia can reach concentrations
harmful to fish (46). It is important to note that very few
human pathogenic genera were identified in this study. Highest
abundance of family Listeriaceae were found in E2 (2.29%) and
B3 (2.50%) samples. In C1, B4, U6, U7, BE1 samples number
didn’t exceed 0.5% and Listeriaceae were not detected in the rest
of the sampling points. Listeria monocytogenes is reported to be
predominant in temperate aquaculture. Listeria monocytogenes
can be found in lightly preserved or raw aquatic food products
and become the cause of human disease (52). Other genera
with the members exhibiting potential pathogenicity detected
in our research are Bacillus and Pseudomonas, but their relative
abundance in sediment samples is low.

The Archaea community analysis revealed the predominance
of Archaea belonging to phylum Euryarchaeota, Crenarchaeota,
and Parvarchaeota. The knowledge of uncultivated archaea,
previously known as extreme environment microorganisms,
revealed that they can be found in various environments from
extreme to ordinary (53). They are an important part of the
ecosystem capable of cycling of carbon, nitrogen, sulfur, and
others playing the important role in the biogeochemical cycle
of those elements (54). Many Archaea species are capable to fix
carbon from inorganic sources and can affect the dynamics and
balance of greenhouse effect related gases. Moreover, Archaea
are the microorganisms capable to fulfill various metabolic
strategies using organic and/or inorganic electron donors and
acceptors (55).

ARG were not abundant in the fishery pond sediments,
most of the ARGs found were the ones conferring resistance to
tetracyclines, which could indicate the history of oxytetracycline
use. However, the presence of tetracycline resistance genes has
been previously observed also in pristine environments (56),
therefore the connection with veterinary antibiotic use need to
be analyzed further. A variety of aminoglycosides ARGs were
detected, which confer resistance to various aminoglycosides,
even the ones used in clinical setting (such as gentamicin,
amikacin, tobramicin), which could be a reason for concern.
However, the presence of three aminoglycoside genes in C1
sample, which was upstream from the fishery ponds, indicated
the ARGs could be present as components of naturally inhabiting
microorganisms. Our preliminary data indicate, aminoglycoside
ARGs can be found also in the water bodies higher upstream
from the fishery ponds, which would further confirm them being
a part of the natural microbiota. From β-lactam ARGs tem was
the most common, which has been observed elsewhere (57, 58),
and one sediment sample (B7, located in the deepest part of
main pond) also had shv. The presence of shv in fishery farming
samples has also been reported previously (57). However, finding
ESBL gene in the environment could always be considered
a hazard due to the possibility of transferring it to humans
by means of fish produce. Interestingly, tetM, ermC were also
often found in the soil samples from Lithuanian farmland (59),
indicating the spread of such ARGs in Lithuania or a natural
habitat of the microorganism bearing them. The presence of
integrons was also checked. More than a half of tested sediment

samples contained integrons, as detected by the presence of
integrase (class I) genes, indicated that the discovered ARGs
could indeed be mobilized and transferred between the species,
including human pathogens.

Even though the heavy metal concentrations did not exceed
the MAC and residues of antibiotics were not detected, the
toxicity of the samples has been observed. Inhibition of
bacteria luminescence could be caused by mixtures of various
components, which are at MAC or lower concentrations.
Effects of elutriates and solid-phase reflect toxicity of water
soluble compounds and whole sediments containing adsorbed
chemicals, respectively. The determined toxicity of elutriates
was lower than of solid-phase, such differences in toxicity have
been observed earlier (22, 60). The solid-phase EC50 values (19–
63 mg/ml) were similar to sediment toxicity results observed
for contaminated river (22) and freshwater aquaculture (61).
More than two orders of magnitude lower solide-phase EC50

values were determined for sediments of Atlantic coast of Spain
(ranged of 0.051–20.23 mg/ml) and was highly affected by sulfide
concentrations (60).

Altogether, no elevated heavy metal concentrations and
no substantial veterinary antibiotic pollution was detected in
Simnas fishery ponds. From the ARGs tested, the presence of
aminoglycoside and β-lactam resistance determinants as well as
the presence of integrons could be of concern. However, despite
the lack of heavy metal and antibiotic pollution, the toxicity
of the sediments and its cause should be explored more, as
other compounds causing it could be affecting the health of fish
population and consequently humans.
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Bordetella bronchiseptica From Pigs
in China, 2018–2020
Yue Zhang 1,2, Hao Yang 1,2, Long Guo 3, Mengfei Zhao 1,2, Fei Wang 1,2, Wenbo Song 1,2,

Lin Hua 1,2, Lei Wang 1,2, Wan Liang 4, Xibiao Tang 3, Zhong Peng 1,2* and Bin Wu 1,2*

1 State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan,

China, 2MOST International Research Center for Animal Disease, Cooperative Innovation Center for Sustainable Pig

Production, Huazhong Agricultural University, Wuhan, China, 3Diagnostic Center of Animal Diseases, Wuhan Keqian Biology

Co., Ltd, Wuhan, China, 4MARA Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal

Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China

Bordetella bronchiseptica is a leading cause of respiratory diseases in pigs. However,

epidemiological data of B. bronchiseptica in pigs particularly in China, the largest pig

rearing country in the world is still limited. We isolated 181 B. bronchiseptica strains from

4259 lung samples of dead pigs with respiratory diseases in 14 provinces in China from

2018 to 2020. The average isolation rate of this 3-year period was 4.25% (181/4259).

Antimicrobial susceptibility testing performed by disc diffusion method revealed that

most of the B. bronchiseptica isolates in this study were resistant to ampicillin (83.98%),

while a proportion of isolates were resistant to cefotaxime (30.39%%), chloramphenicol

(12.71%), gentamicin (11.60%), florfenicol (11.60%), tetracycline (8.84%), amoxicillin

(8.29%), tobramycin (6.63%), ceftriaxone (4.97%), and cefepime (0.55%). There were no

isolates with resistant phenotypes to imipenem, meropenem, polymyxin B, ciprofloxacin,

enrofloxacin, and amikacin. In addition, ∼13.18% of the isolates showed phenotypes of

multidrug resistance. Detection of antimicrobial resistance genes (ARGs) by PCR showed

that 16.57% of the B. bronchiseptica isolates in this study was positive to aac(3)-IV,

while 3.87%, 2.21%, 1.10%, 0.55%, 0.55%, and 0.55% of the isolates were positive

to aac6’-Ib, rmtA, blaTEM, blaSHV, oqxB, and tetA, respectively. Detection of virulence

factors encoding genes (VFGs) by conventional PCR showed that over 90% of the

pig B. bronchiseptica isolates in this study were positive to the five VFGs examined

(fhaB, 97.24%; prn, 91.16%; cyaA, 98.34%; dnt, 98.34%; betA, 92.82%). These results

demonstrate B. bronchiseptica as an important pathogen associated with pig respiratory

disorders in China. The present work contributes to the current understanding of the

prevalence, antimicrobial resistance and virulence genes of B. bronchiseptica in pigs.
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INTRODUCTION

Bordetella bronchiseptica is an aerobic, motile, gram-negative
rod, or coccobacillus belonging to genus Bordetella. It is an
important pathogenic bacterium in agriculture and in veterinary
medicine (1). In veterinary medicine, B. bronchiseptica is a
leading cause of many respiratory infections including rhinitis,
tracheitis, bronchitis, and pneumonia in a wide spectrum of
animals (2). It can also enhance respiratory colonization of
Streptococcus suis and Haemophilus parasuis, promote disease
caused by S. suis, and interact with porcine reproductive and
respiratory syndrome virus (PRRSV) and swine influenza virus
(SIV) to increase severity of respiratory disease (3). While rarely
to be reported, B. bronchiseptica is also potentially involved
in infections in humans, and human cases are frequently
associated with direct contact with infected animals such as
swine, dog, rabbit and/or cat (4–6). Similar to the other members
belonging to genus Bordetella, many B. bronchiseptica produces
several important virulence factors, including filamentous
hemagglutinin, and protein toxins, adenylate cyclase toxin,
pertussis toxin, dermonecrotic toxin as well as type III
secretion system (T3SS) and effector proteins, contributing to its
pathogenesis (7, 8).

In swine, B. bronchiseptica is proposed as a main causative
agent of porcine respiratory disease complex (PRDC) and
atrophic rhinitis; both of which are economically-important
diseases in pig industry (9, 10). Continuously monitoring
the prevalence, antimicrobial resistance (AMR) and virulence
profiles of B. bronchiseptica in pigs are beneficial for the
prevention and control of swine bordetellosis. However, the
relevant data are still limited. China is the largest pig-farming and
pork consuming country in the world. Although the outbreak of
African Swine Fever in August 2018 caused a huge loss of pigs
in China, there are still more than 406 million pigs rearing in
China in 2020 (11). To understand the current epidemiological
and microbiological characteristics such as the antimicrobial
resistance profiles of B. bronchiseptica isolates from pigs in China,
we performed bacterial isolation of B. bronchiseptica strains
from lung samples of dead pigs with a history of respiratory
disorders in China from 2018 to 2020 in this study. These isolates
were characterized by testing the antimicrobial susceptibility and
detecting the antimicrobial resistance genes (ARGs) as well as
virulence encoding genes (VFGs).

MATERIALS AND METHODS

Study Design, Sample Collection, and Ethic
Statement
Study design was shown in Figure 1A. From 2018 to 2020, a
total of 4259 lung samples (3022 samples in 2018, 841 samples
in 2019, 396 samples in 2020) from 14 provinces (Guangdong,
Henan, Hubei, Shandong, Fujian, Hebei, Zhejiang, Hunan,
Anhui, Sichuan, Shanxi, Inner Mongolia, Xinjiang, Guizhou) in
China were used for B. bronchiseptica isolation and identification
(Figure 1B). All of the clinical samples used in this study were
submitted by veterinarians/or the farm owners to the Veterinary

Diagnostic Laboratory of Huazhong Agricultural University
(Wuhan, China) for routine testing.

Bacterial Isolation and Identification
Collected samples (∼10 grams per sample) were cut into pieces
and lysed in sterile 0.9% normal saline by using a TissueLyser II
(QIAGEN, Venlo, Netherlands). Thereafter, tissue homogenates
of each sample were streak-plated onto one tryptic soy agar
(TSA; Becton, Dickinson and Company, MD, USA) containing
10µg/ml nicotinamide adenine dinucleotide (NAD; Sigma, St.
Louis, MO) and 10% new-born bovine serum. The agar plates
were incubated at 37◦C for 24∼48 h. Isolates growing on the
plates were then purified and cultured following the standard
methods used for bacterial identification (12). On each of the agar
plates, five colonies with similar morphological characteristics to
B. bronchiseptica [small circular glistening or rough colonies with
0.5 to 1.0mm in diameter after 48 h of incubation in air at 37◦C
(4)] were selected for biochemical test. Presumptive isolates of
B. bronchiseptica were finally confirmed using polymerase chain
reaction (PCR) assay amplifying the species-specific gene flawith
the primers listed in Table 1 (26). Considering B. bronchiseptica
possesses only one serotype (27), we therefore chose one
colony confirmed by both PCR and biochemical tests (positive
for fla and displaying similar biochemical characteristics to
B. bronchiseptica) to represent B. bronchiseptica strain recovered
for its corresponding sample.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility of the B. bronchiseptica isolates
was tested by using Disk diffusion method following the
Clinical and Laboratory Standards Institute (CLSI) antimicrobial
susceptibility testing standards (28). Briefly, purified overnight-
cultured colonies of B. bronchiseptica were picked up from
TSA plates and resuspended in sterile 0.9% normal saline to
0.5 McFarland standard. The suspension was then prepared by
swabbing on Mueller-Hinton (MH) agar (Sigma-Aldrich, 102
St. Louis, MO) using sterile swabs. After dry for ∼5min, disks
containing specific antibiotics (Hangzhou Microbial Reagent,
Hangzhou, China) were dispensed onto the plates. All plates
were finally incubated overnight at an incubation temperature
of 37◦C. A total of 16 types of antibiotics including amikacin
[AMK; 30 µg], gentamicin [GEN; 10 µg], tobramycin [TOB;
10 µg], ceftriaxone [CRO; 30 µg], cefotaxime [CTX; 30 µg],
cefepime [CPM; 30 µg], imipenem [IPM; 10 µg], meropenem
[MRP; 10 µg], enrofloxacin [ENR; 10 µg], ciprofloxacin [CIP;
5 µg], chloramphenicol [CHL; 30 µg], florfenicol [FLO; 30
µg], amoxicillin [AMX; 20 µg], ampicillin [AMP; 10 µg],
tetracycline [TET; 30 µg], and polymyxin B [PMB; 300 IU] were
tested. The zone diameter values were measured and the results
were interpreted according to CLSI document (28). As clinic
breakpoints specific to B. bronchiseptica are limited available
(2), we thereby used breakpoints to Enterobacteriaceae published
in CLSI document M100 for result-interpretation in this study.
Breakpoints used are listed in Table 2. Escherichia coli ATCC R©∗

25922 was used as quality control.
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FIGURE 1 | Study design and isolation of B. bronchiseptica from swine lung samples in different regions in China from 2018 to 2020. (A) Shows study design of this

work; (B) shows the geographic sites of sample collection. Numbers of B. bronchiseptica from the samples as well as numbers of samples collected from each of the

provinces are shown; (C) shows the isolation rates of B. bronchiseptica from swine lung samples in different regions in China from 2018 to 2020.

Detection of Antimicrobial Resistance
Genes
PCR assays were performed to detect the presence of putative
genes conferring resistance to aminoglycosides [aac(3)-IV,
aac6’-Ib, rmtA], β-lactams (blaVIM, blaNDM−1, blaTEM, blaSHV,
blaCTX−M, MOX), quinolones (qnrS, oqxA, oqxB), phenicols
(floR, catA1, catB1), tetracyclines (tetA, tetB), and polymyxins
(mcr-1) in each of the B. bronchiseptica isolates with the primers
listed in Table 1. PCR assays were performed in a 20-µL reaction
mixture comprised of 2-µL bacterial DNA, each of the forward
and reverse primers 1-µL, 2×Taq Master Mix (Dye Plus) 10-
µL, DMSO 2-µL, and ddH2O 4-µL. The cycling conditions
were 94◦C for 5min, followed by 35 cycles consisting of
denaturation for 30 s at 94◦C, annealing for 30 s at 52∼63◦C,
and extension for 30 s at 72◦C, and a final extension at 72◦C
for 5min. PCR products were analyzed by electrophoresis on a
1% agarose gel. Genomic DNAs extracted from our previously
sequenced multidrug resistant E. coli strain RXD033 (GenBank
accession no. SQQZ00000000) (29) and drug-sensitive bacterium
Pasteurella multocida strain HND05 (GenBank accession no.
PPWG00000000) (30) were used as positive and negative
controls, respectively.

Detection of Virulence Factors Encoding
Genes
The presence of five well-characterized VFGs, including the
filamentous haemagglutinin encoding gene fhaB, the pertactin
encoding gene prn, the adenylate cyclase-haemolysin toxin

encoding gene cyaA, the dermonecrotic toxin encoding gene dnt,
and the Bordetella type-III secretion system effector A encoding
gene bteA in each of the isolates were examined by PCR with
primers listed inTable 1, as described previously (25). PCR assays
were performed in a 20-µL reaction mixture comprised of 2-µL
bacterial DNA, each of the forward and reverse primers 1-µL,
2×Taq Master Mix (Dye Plus) 10-µL, DMSO 2-µL, and ddH2O
4-µL. The cycling conditions were 94◦C for 5min, followed by
35 cycles of 94◦C for 30 s, 59◦C for 30 s and 72◦C for 30 s, and
a final extension at 72◦C for 5min. Our laboratory stored B.
bronchiseptica strain HH0809 (31) and the sterile ddH2O were
included as the positive and negative controls, respectively. PCR
products were analyzed by electrophoresis on a 1% agarose gel.

Statistical Analysis
We used SAS version 9.0 (SAS Institute Inc.) software to
perform statistical analyses in this study, as described previously
(26). Univariate association between variables and isolation
rates of B. bronchiseptica was determined by using univariate
ordinary logistic regression analysis. P < 0.05 was considered to
be significant.

RESULTS

B. bronchiseptica Isolation and
Identification
From 2018 to 2020, we isolated a total of 181 B. bronchiseptica
strains (4.25%) from 4259 lung samples of dead pigs with

Frontiers in Veterinary Science | www.frontiersin.org 3 June 2021 | Volume 8 | Article 672716145

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Zhang et al. Characteristics of Swine Bordetella bronchiseptica

TABLE 1 | Primers used in the present study.

Primers Sequences (5′-3′) Product size (bp) Annealing

temperature (◦C)

Description References

Bacterial species identification genes

Fla1 TGGCGCCTGCCCTATC 237 56 B. bronchiseptica identification (13)

Fla2 AGGCTCCCAAGAGAGAAA

Antimicrobial resistance genes

SHV1 CCCTGTTAGCCACCCTGCCG 829 62 Detection of blaSHV (14)

SHV2 CGTTGCCAGTGCTCGATCAGC

CTXM1 GCTGTTGTTAGGAAGTGTGCCGC 798 61 Detection of blaCTX−M (14)

CTXM2 GCCGCCGACGCTAATACATC

TEM1 GTATTCAACATTTCCGTGTCG 854 56 Detection of blaTEM (14)

TEM2 CCAATGCTTAATCAGTGAGGC

VIM-1 GATGGTGTTTGGTCGCATA 390 57 Detection of blaVIM (15)

VIM-2 CGAATGCGCAGCACCAG

NDM-1 GGTTTGGCGATCTGGTTTTC 621 56 Detection of blaNDM−1 (15)

NDM-2 CGGAATGGCTCATCACGATC

MOX-1 GCTGCTCAAGGAGCACAGGAT 520 59 Detection of OMX (16)

MOX-2 CACATTGACATAGGTGTGGTGC

AAC-1 GTTACACCGGACCTTGGA 674 55 Detection of aac(3)-IV (17)

AAC-2 AACGGCATTGAGCGTCAG

Aac6-1 TTGCGATGCTCTATGAGTGGCTA 482 58 Detection of aac6’-Ib (18)

Aac6-2 CTCGAATGCCTGGCGTGTTT

RmtA-1 ATGAGCTTTGACGATGCCCTA 756 53 Detection of rmtA (19)

RmtA-2 TCACTTATTCCTTTTTATCATG

QnrS1 CGACGTGCTAACTTGCGTGATA 537 58 Detection of qnrS (20)

QnrS2 TACCCAGTGCTTCGAGAATCAG

OqxA-1 GATCAGTCAGTGGGATAGTTT 670 52 Detection of oqxA (21)

OqxA-2 TACTCGGCGTTAACTGATTA

OqxB-1 TTCTCCCCCGGCGGGAAGTAC 512 61 Detection of oqxB (22)

OqxB-2 CTCGGCCATTTTGGCGCGTA

TetA-1 GTAATTCTGAGCACTGTCGC 937 56 Detection of tetA (23)

TetA-2 CTGCCTGGACAACATTGCTT

TetB-1 CTCAGTATTCCAAGCCTTTG 416 44 Detection of tetB (23)

TetB-2 CTAAGCACTTGTCTCCTGTT

FloR-1 CACGTTGAGCCTCTATAT 868 52 Detection of floR (23)

FloR-2 ATGCAGAAGTAGAACGCG

CatA11 CCACCGTTGATATATCCC 623 55 Detection of catA1 (17)

CatA12 CCTGCCACTCATCGCAGT

CatA21 TTTGCCCTTTATCGTCAGC 486 55 Detection of catA2 This study

CatA22 GCGGTCACCTTCCTGCT

Mcr-1 CGGTCAGTCCGTTTGTTC 309 58 Detection of mcr-1 (24)

Mcr-2 CTTGGTCGGTCTGTAGGG

Virulence factors encoding genes

FhaB-1 GCGCAGAACATCACCAATG 475 59 Filamentous haemagglutinin encoding gene fhaB (25)

FhaB-2 TGAAATACTCCATGGCGGAC

Prn-1 GACCTCGCTCAGTCGATC 555 59 Pertactin encoding gene prn

Prn-2 GAAGACATTCATGCGGAACAG

CyaA-1 CTACGAGCAGTTCGAGTTTC 377 59 Adenylate cyclase-haemolysin toxin encoding gene cyaA

CyaA-2 TATTCATGTCGCCGTCGTA

Dnt-1 TGATCCTGCAGTGGTTGATC 491 59 Dermonecrotic toxin encoding gene dnt

Dnt-2 ATCGGCATACGCCAGATC

BteA-1 TGTTGAGCAACAACGTCAATC 474 59 Bordetella type-III secretion system effector A encoding

gene bteABteA-2 TATGCAGGTCTTCGAGGTTC
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TABLE 2 | Zone Diameter Breakpoints (mm) used in the present study.

Antibiotics Amikacin Gentamicin Tobramycin Ceftriaxone Cefotaxime Cefepime Imipenem Meropenem

Z.* R ≤14 ≤12 ≤12 ≤13 ≤14 ≤14 ≤13 ≤19

D. I 15∼22 13∼14 13∼14 14∼20 15∼22 15∼17 14∼15 20∼22

B. S ≥23 ≥15 ≥15 ≥21 ≥23 ≥18 ≥15 ≥23

Antibiotics Enrofloxacin Ciprofloxacin Chloramphenicol Florfenicol Amoxicillin Ampicillin Tetracycline Polymyxin B

Z. R ≤15 ≤15 ≤12 ≤12 ≤17 ≤19 ≤14 ≤8

D. I 16∼20 16∼20 13∼17 13∼17 18∼20 20∼22 15∼18 8∼11

B. S ≥ 21 ≥ 21 ≥ 18 ≥18 ≥ 21 ≥ 23 ≥19 ≥12

*Zone Diameter Breakpoints (Z.D.B.) were defined as sensitive (S), intermediately resistant (I), or resistant (R) with reference to CLSI (CLSI document M100, 28th Edition).

respiratory diseases. The isolation rates of B. bronchiseptica
over the 3 years were 3.51, 5.47, and 7.32%, respectively. Rates
of isolation across different provinces in China ranged from
2.49 to 29.17% (Figures 1B,C). Biochemical tests revealed that
B. bronchiseptica isolates could not ferment fructose, glucose,
mannitol, maltose, rhamnose, and lactose; the methyl red (MR),
voges-proskauer (VP), and indole reactions were negative. It is
positive testes for oxidase and catalase.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility testing (AST) revealed that 9.39%
(n = 17) of the B. bronchiseptica isolates recovered in this study
were susceptible to all of the 16 types of the antibiotics tested
while the remaining 90.61% (n = 164) of the isolates were
resistant to at least one type of the antibiotics. All of the B.
bronchiseptica isolates recovered in this study were susceptible
to imipenem (100%, n = 181), meropenem (100%, n = 181),
and polymyxin B (100%, n = 181); more than 80% of the B.
bronchiseptica isolates were susceptible to ciprofloxacin (99.45%,
n = 180), cefepime (97.79%, n = 177), enrofloxacin (97.79%, n
= 177), tobramycin (92.27%, n = 167), gentamicin (86.74%, n
= 157), florfenicol (86.74%, n = 157), chloramphenicol (86.19%,
n = 156), tetracycline (85.08%, n = 154), amikacin (83.43%,
n = 151), and amoxicillin (83.43%, n = 151) (Figure 2A).
Approximately 55.25% (n= 100) of the B. bronchiseptica isolates
were susceptible to ceftriaxone, while only 14.36% (n = 26) and
10.50% (n= 19) of the B. bronchiseptica isolates were susceptible
to cefotaxime and ampicillin, respectively (Figure 2A). Among
the 164-drug resistant B. bronchiseptica isolates, resistance rates
to 1 type, 2 types, 3 types, 4 types, 5 types, 6 types, and 7 types
of drugs were 53.05% (n = 87), 23.17% (n = 38), 7.32% (n =

12), 6.10% (n = 10), 4.88% (n = 8), 3.66% (n = 6), and 1.22% (n
= 2), respectively (Figure 2B). Approximately 50.00% (n = 82),
26.83% (n = 44), 17.07% (n = 28), 9.76% (n = 16), and 4.88%
(n = 8) of the isolates were resistant to at least 2 types, 3 types,
4 types, 5 types, and 6 types of the antibiotics tested, respectively
(Figures 2B,C).

The tested antibiotics in the present study could be divided
into eight classes: aminoglycosides (AMK, GEN, TOB), broad-
spectrum-cephalosporins (CRO, CTX, CPM), carbapenems
(IPM, MRP), fluoroquinolones (ENR, CIP), phenicols (CHL,
FLO), penicillins (AMX, AMP), tetracyclines (TET), and
polymyxins (PMB). Most of the B. bronchiseptica isolates

(86.19%, n = 156) in this study were resistant to less than three
classes of the antibiotics. Among these isolates, 55.77% (n =

87) and 32.05% (n = 50) of them were resistant to one and
two classes of drugs, respectively (Figure 3A). Approximately
13.18% (n = 25) of the isolates were resistant to more than three
classes of the antibiotics. According to the international expert
proposal for interim standard definitions for acquired resistance
(32), these 25 B. bronchiseptica isolates could be defined as
multidrug resistant (MDR) strains. Among these MDR strains,
proportions of isolates resistance to three-, four-, and five-classes
of drugs were 64.00% (n = 20), 28.00% (n = 7), and 8.00%
(n= 2), respectively (Figure 3A). Most MDR-strains possessed a
phenotype of co-resistance to aminoglycosides, broad-spectrum-
cephalosporins, and penicillins (37.93%, n= 11) (Figure 3B).

Detection of Antimicrobial Resistance
Genes
Detection of ARGs showed that 16.57% (n = 30) of the
B. bronchiseptica isolates in this study was positive to aac(3)-
IV, while 3.87% (n = 7), 2.21% (n = 4), 1.10% (n = 2), 0.55%
(n = 1), 0.55% (n = 1), and 0.55% (n = 1) of the isolates
were positive to aac6’-Ib, rmtA, blaTEM, blaSHV, oqxB, and tetA,
respectively (Figure 4). All isolates were negative to the other
ARGs detected (blaVIM, blaNDM−1, blaCTX−M,MOX, qnrS, oqxA,
tetB, andmcr-1).

Detection of Virulence Factors Encoding
Genes
Screening of VFGs revealed that 98.90% (n = 179) of the
B. bronchiseptica isolates in this study was positive to at least
one of the five VFGs detected while the remaining 1.10%
(n = 2) ones were negative to all VFGs. The detection rates
of fhaB, prn, cyaA, dnt, and betA were 97.24% (n = 176),
91.16% (n = 165), 98.34% (n = 178), 98.34% (n = 178), and
92.82% (n = 168), respectively (Figures 5A,B). Among the
VFG-positive isolates, 84.36% (n= 151) of the isolates contained
fhaB, prn, cyaA, dnt, and betA, simultaneously (Figure 5C).
The remaining isolates harbored “fhaB+prn+cyaA+dnt”
(6.15%, n = 11), “fhaB+cyaA+dnt+betA” (7.26%, n = 13),
“prn+cyaA+dnt+betA” (1.68%, n = 3), and “fhaB+dnt+betA”
(0.56%, n= 1), respectively (Figure 5C).
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FIGURE 2 | Resistance phenotypes of B. bronchiseptica from pigs in China. (A) Shows percent isolates susceptible or resistant to the 16 kinds of antibiotics tested;

(B,C) display the number of isolates with different resistance patterns. In (B,C), X axes show the number of B. bronchiseptica strains while Y axes indicate different

resistance patterns. AMK, amikacin; GEN, gentamicin; TOB, tobramycin; CRO, ceftriaxone; CTX, cefotaxime; CPM, cefepime; IPM, imipenem; MRP, meropenem;

ENR, enrofloxacin; CIP, ciprofloxacin; CHL, chloramphenicol; FLO, florfenicol; AMX, amoxicillin; AMP, ampicillin; TET, tetracycline; PMB, polymyxin B.

FIGURE 3 | Distribution of multidrug resistant (MDR) strains and non-MDR strains of B. bronchiseptica from pigs in China. (A) Shows the percentages of MDR and

non-MDR strains as well as percent strains resisting 0, 1, 2, 3, 4, and 5 classes of drugs; (B) displays the number of isolates resistance to different groups of drug

classes. In (B), X axis shows the number of B. bronchiseptica strains while Y axis indicates different resistance patterns.
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FIGURE 4 | Distribution of antimicrobial resistance genes (ARGs) among B. bronchiseptica isolates in this study.

FIGURE 5 | PCR detection of virulence factors encoding genes (VFGs) among B. bronchiseptica isolates in this study. (A) Shows agarose gel analysis on the PCR

products on the five VFGs cyaA (band 1, 377 bp), betA (band 2, 474 bp), fhaB (band 3, 475 bp), dnt (band 4, 491 bp), and prn (band 5, 555 bp); (B) shows the

detection rates of the five VFGs while (C) shows the number of strains containing different groups of VFGs. In (C), X axis shows the number of B. bronchiseptica

strains while Y axis indicates different groups of VFGs.
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DISCUSSION

Although B. bronchiseptica is a well-known leading cause of

pig respiratory disorders and an important causative agent of

PRDC, there is not too much report on the epidemiology of B.

bronchiseptica in pigs round the world, particularly in China,
the largest pig rearing and production country. In this study, we

described the isolation and characterization of B. bronchiseptica
in pigs in China from 2018 to 2020. The average isolation rate of
this 3-year period was 4.25% (181/4259), which is much lower
than that reported in pigs with clinical respiratory disease in
China from 2003 to 2008 (4.25 vs. 18.6%, P < 0.05) (26). The
average isolation rates of B. bronchiseptica in pigs in different
regions from 2018 to 2020 were also much lower than those
reported in the same regions from 2003 to 2008 (Hubei: 3.48 vs.
18.0%, P < 0.05; Henan: 3.42 vs. 19.6%, P < 0.05; Fujian: 4.14 vs.
18.4%, P < 0.05; Hunan: 5.96 vs. 19.2%, P < 0.05; Anhui: 7.32 vs.
18.0%, P < 0.05; Shandong: 3.98 vs. 20.7%, P < 0.05) (26). The
significant decreasing average isolation rate of B. bronchiseptica
from 2018 to 2020 compared to that from 2003 to 2008 might be
owing to China’s continuously efforts to promote transformation
and upgrading of pig industry as well as improve the level of
disease prevention and control in pig farms. In addition, the
outbreak of African Swine Fever in 2018 and its continuous
circulation in pigs in China also accelerates the improvement and
enhancement of biosecurity on pig farms in recent years (33),
which may also be beneficial for the control of B. bronchiseptica
and the other pathogens.

Administration of antimicrobials is still one of the most
effective way to control B. bronchiseptica and the other bacteria,
but the emergence of drug-resistant bacteria may lead to
the failure of using antibiotics in clinic (34–36). Therefore,
monitoring the drug resistance profile of clinical microbiology is
an important aspect in many epidemiological studies (25, 37, 38).
In this study, we characterized the resistance phenotypes of B.
bronchiseptica from pigs in China from 2018 to 2020. The results
revealed that all isolates were susceptible to imipenem (100%),
meropenem (100%), and polymyxin B (100%). All of these three
types of antibiotics are proposed to be the last-resort antibiotics
for the treatment of infections caused by gram-negative bacteria
(29), and they are not approved to be used in veterinary medicine
in China. In addition, the majority of the isolates were sensitive
to ciprofloxacin (99.45%), cefepime (97.79%), enrofloxacin
(97.79%), tobramycin (92.27%), gentamicin (86.74%), florfenicol
(86.74%), chloramphenicol (86.19%), tetracycline (85.08%),
amikacin (83.43%), and amoxicillin (83.43%). These results are
in agreement with the results of previous studies in China
(25, 39), as well as in other countries such as Germany
and Korea (2, 40–42), suggesting these antibiotics might be
suitable candidates for treating B. bronchiseptica infections when
necessary. A high level of resistance was found for ampicillin
(83.98%), followed by resistance for cefotaxime (30.39%). These
findings are also in agreement with those from the other articles
(2, 25, 39), and in particular, B. bronchiseptica is documented
to be commonly resistant to ampicillin (2). Therefore, these
drugs are not recommended to be used in clinic settings.
It should be also reminded that several B. bronchiseptica

isolates from pigs in China displayed a level of multidrug
resistance, particularly co-resistance to aminoglycosides, broad-
spectrum-cephalosporins, and penicillins. Continues studies
should be taken to monitor the prevalence and change-
trend of these MDR-isolates in clinic, as some antibiotics
belonging to aminoglycosides, broad-spectrum-cephalosporins,
and penicillins are commonly used for treating B. bronchiseptica
infections in veterinary medicine (2, 35).

Virulence factors (VFs) play an important role in the
pathogenesis of bacteria (43). For B. bronchiseptica, important
VFs include filamentous haemagglutinin (FHA), pertactin
(PRN), adenylate cyclase-haemolysin toxin, dermonecrotic
toxin (DNT), and types III secretion system (44–48), and
the expression of these VFs facilitates the invasion of B.
bronchiseptica in hosts (49). In the present study, we examined
five genes encoding these VFs, including fhaB which encodes
filamentous haemagglutinin; prn which encodes pertactin; cyaA
which encodes adenylate cyclase-haemolysin toxin; dnt which
encodes DNT; and bteA which encodes the T3SS effector A.
Surprisingly, over 90% of the pig B. bronchiseptica isolates in
this study were positive to these five VFGs examined (fhaB,
97.24%; prn, 91.16%; cyaA, 98.34%; dnt, 98.34%; betA, 92.82%).
Importantly, approximately 84.36% of the isolates contained
these five kinds of VFGs simultaneously. These results are
also in agreement with those reported in B. bronchiseptica
isolates from rabbits in China (25), suggesting carrying of
these VFGs are broad characteristics of B. bronchiseptica.
Laboratory studies have shown that FHA, and PRN expressed
in E. coli and Salmonella enterica, as well as adenylate
cyclase-haemolysin toxin expressed in B. bronchiseptica provide
protection against fatal infections with B. bronchiseptica in mouse
models (5, 50, 51).

Despite the findings, this work has several limitations that
should be noted. First, all samples used for bacterial isolation
were submitted by pig farms from different provinces in China.
This way of sample collection may have some influences on the
isolation rate. However, the outbreak of African Swine Fever
since 2018 and its continuous circulation in pigs in China, and
more recently, the worldwide pandemic of the novel coronavirus
disease since the late 2019 (COVID-19) made it very difficult
for us to collect samples initiatively. Second, the results of
antimicrobial susceptibility testing in this study were interpreted
by using breakpoints to Enterobacteriaceae published in CLSI
document M100, and this is because clinic breakpoints specific
to B. bronchiseptica are limited available (2). Third, a very few
published epidemiological studies of swine B. bronchiseptica in
China are available to date [On March 18, 2021, we searched
PubMed with key words “(((Bordetella bronchiseptica) AND
(Prevalence)) AND (Pigs)) AND (China)” for reports published,
with no language restrictions. Our search identified two articles
(26, 39) of relevance to this study. All of them were published
by our group in 2011], therefore, we only compared the results
we obtained from this study to those reported in our previously
published two studies in 2011 (26, 39). However, the results from
this work could still help understand the current epidemiological
and microbiological characteristics of B. bronchiseptica in pigs
in China.
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In summary, we reported the isolation, antimicrobial
resistance phenotypes, the detection of ARGs and VFGs of
B. bronchiseptica from pigs in China from 2018 to 2020
in this study. Our results showed that B. bronchiseptica
remains an important pathogen associated with pig respiratory
disorders in China. While most of the isolates were still
susceptible to ciprofloxacin, cefepime, enrofloxacin, tobramycin,
gentamicin, florfenicol, chloramphenicol, tetracycline, amikacin,
and amoxicillin, MDR-isolates were still determined. These
isolates should receive more attentions and further studies
are necessary to monitor the prevalence of drug-resistant B.
bronchiseptica. In addition, our results also revealed that several
VFGs, including fhaB, prn, cyaA, dnt, and betA displayed a high
level of detection rate.
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The spread of resistance to antibiotics is a major health concern worldwide due to the

increasing rate of isolation of multidrug resistant pathogens hampering the treatment of

infections. The food chain has been recognized as one of the key routes of antibiotic

resistant bacteria transmission between animals and humans. Considering that lactic

acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes,

LAB strains intended to be used as feed additives should be monitored for their safety.

Sixty-five LAB strains which might be potentially used as probiotic feed additives or

silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials

by a minimum inhibitory concentration determination. Among antimicrobial resistant

strains, a prevalence of selected genes associated with the acquired resistance was

investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic,

and 15 strains were resistant to more than one of the tested antibiotics. The resistance

to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and

26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials

was found in single strains. Determinants related to resistance phenotypes were detected

in 15 strains as follows, the aph(3
′′
)-IIIa gene in 9 strains, the lnu(A) gene in three strains,

the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in

one strain. The nucleotide sequences of the detected genes revealed homology to the

sequences of the transmissible resistance genes found in lactic acid bacteria as well as

pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial

resistance determinants, thus, the first and key step in considering the usefulness of

LAB strains as feed additives should be an assessment of their antibiotic resistance. This

safety criterion should always precede more complex studies, such as an assessment

of adaptability of a strain or its beneficial effect on a host. These results would help in

the selection of the best LAB strains for use as feed additives. Importantly, presented

data can be useful for revising the current microbiological cut-off values within the genus

Lactobacillus and Pediococcus.

Keywords: acquired resistance genes, antimicrobial susceptibility testing, food additives, minimum inhibitory

concentration, lactic acid bacteria, probiotics, reservoir of resistance determinants
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INTRODUCTION

Lactic acid bacteria (LAB) strains are important industrial
microorganisms, and they have a long history of safe use as
feed additives. They are commonly used as probiotics, animal
growth biopromoter, as well as bacterial inoculants for forage
ensiling to improve not only the quality but also safety of feed
(1, 2). Many LAB species are part of the resident microbiota
of the gastrointestinal and genitourinary tracts of humans and
animals, where they are thought to exert many health-associated
beneficial effects (2). Moreover, they have ability to inhibit
othermicroorganisms, including pathogens that cause foodborne
diseases or food spoilage (3).

Among the different genera belonging to the LAB group,
mainly Lactobacillus spp. and Pediococcus spp. have been register
as gut biota stabilizers and silage additives (4). The interest in
the application of pediococci in animal husbandry is gradually
increasing due to the improvement of the characteristics and
growth abilities of animals that can be achieved with their use
(5). They were shown to be effective as probiotics for broiler
chickens, laying hens, piglets, fish, crustaceans, and as silage
additives (4). Moreover, many strains produce bacteriocins or
bacteriocin-like substances that have well-recognized pathogen
inhibitory activities (5). Although Enterococcus spp. strains as
human probiotics remain controversial, in a point of view of
the opportunistic and nosocomial infections caused by these
bacteria, they are used as silage additives and probiotics for
stabilizing themicrobial communities of the gastrointestinal tract
of animals (4, 6).

Increasing awareness of probiotics and their therapeutic and
prophylactic properties constantly encourages the search for
new LAB strains, with beneficial health properties and safe for
animal consumption. A wide variety of LAB is used in animal
nutrition, either directly or as a source of feed additives. Most
LAB species are granted the GRAS status (Generally Regarded
As Safe) provided by the US Food and Drug Administration
(FDA) and within Europe “QPS status (Qualified Presumption
of Safety)” notified by European Food Safety Authority (EFSA),
The Panel on Biological Hazards (BIOHAZ), which means that
they are considered safe for human and animal consumption and
for the environment (7).

Despite that LAB species are widely used and recognized

as safe food and feed additives, the rare cases of serious

infections in humans caused by LAB have been described in

the literature, including bacteremia (8–11), endocarditis (12,
13), pleuropneumonia (8, 14), meningitis (15), and urinary
tracts infections (16). The infections occur mainly in patients
with serious underlying illnesses, the immunocompromised
ones, premature newborns, or elderly individuals. In case of
Lactobacillus spp. most of the reported clinical cases are related to
Lactobacillus rhamnosus. Infections associated with Lactococcus
spp. are mainly concerned to Lactobacillus lactis subsp. lactis and
Lactobacillus garvieae, while infections caused by Pediococcus
spp. and Leuconostoc spp. have rarely been described (17, 18).
Little is known about the role of LAB in animal infections,
although the genus Lactococcus may be associated with bovine
mastitis and infections in fish and birds (19), up to date

there are no reports of Lactobacillus and Pediococcus infections
in animals.

The second serious concern is acquired resistance to
antimicrobials of human and veterinary importance among
LAB strains (20). There has been increasing attention to
this phenomenon since LAB are considered as a reservoir
of resistance genes that can be transferred to pathogenic
bacteria, leading to the spread of antibiotic resistance among
pathogens and complicating the treatment of infection caused
by these bacteria (19). Therefore, caution is needed in selecting
and monitoring potentially probiotic strains, and antimicrobial
resistance (AMR) is regarded as a crucial safety issue during
assessing and approving LAB as feed additives (21). The safety
assessment of microbial feed additives is governed under specific
EU regulatory frameworks in accordance with Regulation (WE)
No 1831/2003 and Commission Regulation (EC) No 429/2008.
The Panel on Additives and Products or Substances used in
Animal Feed (FEEDAP) provides the scientific opinion on the
efficacy of feed additives and their safety to target animals, the
consumers of products derived from animals treated with the
additives, and to the environment. In line with the FEEDAP
recommendation, any bacterial strain carrying an acquired gene
conferring AMR or strains with the unknown genetic nature of
a demonstrated resistance to antimicrobial agents should not be
used as a feed additive due to the greatest risk of horizontal
spread (21).

The aim of the present study was an AMR safety assessment
of selected LAB strains intended for use as feed additives
by phenotypic screening of resistance to clinically relevant
antimicrobials. The identification of resistance determinants in
the resistant LAB strains was also performed in order to exclude
the presence of potentially transferable AMR genes.

MATERIALS AND METHODS

Bacterial Strains
The study provides a safety assessment of 65 LAB strains
potentially useful as probiotics and other feed additives.
Fifty-seven Lactobacillus strains [Lactobacillus plantarum
(n= 26), Lactobacillus fermentum (n = 7), Lactobacillus casei
(n = 3), L. rhamnosus (n= 3), Lactobacillus reuteri (n = 3),
Lactobacillus brevis (n = 3), Lactobacillus buchneri (n = 2),
Lactobacillus salivarius (n = 2), Lactobacillus agilis (n = 2),
Lactobacillus acidophilus (n= 1), Lactobacillus johnsonii (n= 1),
Lactobacillus diolivorans (n= 1), Lactobacillus delbrueckii (n =

1), Lactobacillus paracasei (n = 1), Lactobacillus farraginis (n
= 1)], six Pediococcus strains [Pediococcus pentosaceus (n= 5),
Pediococcus acidilactici (n = 1)], and two Enterococcus strains
[one Enterococcus durans strain and one Enterococcus faecium
strain] were selected for this study (Supplementary Table 1).
A total of 47 strains are available at the culture collections: 42
strains at the Collection of Industrial Microbial Cultures (KKP),
located at the prof. Waclaw Dabrowski Institute of Agricultural
and Food Biotechnology (IAFB) inWarsaw (Poland), four strains
at the Polish Collection of Microorganisms (PCM), located at the
Institute of Immunology and Experimantal Therapy in Wroclaw
(Poland) and one strain from American Type Culture Collection

Frontiers in Veterinary Science | www.frontiersin.org 2 July 2021 | Volume 8 | Article 687071154

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Stefańska et al. Antimicrobial Susceptibility of Lactic Acid Bacteria

(ATCC). The rest 18 strains were isolated from fermented or
fresh vegetables and fruits (n = 14) or probiotic drinks (n =

4). The isolates were identified by nucleotide sequence analysis
of the gene encoding 16S rRNA. LAB strains belonging to the
L. plantarum phylogenetic group (L. plantarum, Lactobacillus
pentosus, and Lactobacillus paraplantarum) were differentiated
by multiplex PCR using species-specific primers amplified the
fragment of the recA gene encoding the recombinase A (22). The
strains isolated from the same sources were typed by RAPD-PCR
(Random Amplified Polymorphic DNA) with primers RP and
PRIMO2 (23) in order to confirm their intraspecies diversity
(data not shown). All strains were stored in a liquid nitrogen
atmosphere in MRS (deMan- Rogosa-Sharpe) broth (Oxoid)
supplemented with glycerol (15% v/v). Before the antibiotic
susceptibility assay, LAB strains were cultivated in MRS agar
(Oxoid) at 37◦C for 24–48 h in 5% CO2. After incubation, the
colonies were suspended in 0.85% NaCl solution to prepare the
inoculum for the broth microdilution test.

Phenotypic Antimicrobial Resistance
The following antimicrobials, used in therapy of common
infections, were tested: gentamicin (0.125–64 mg/L), kanamycin
(0.5–256 mg/L), streptomycin (0.5–256 mg/L), tetracycline
(0.125–64 mg/L), chloramphenicol (0.06–32 mg/L), ampicillin
(0.015–8 mg/L), erythromycin (0.015–8 mg/L), and clindamycin
(0.015–8 mg/L). Gentamicin, kanamycin, erythromycin,
clindamycin originated from the European Pharmacopoeia
(EP) Reference Standards, while streptomycin, tetracycline,
chloramphenicol, and ampicillin from Sigma-Aldrich. LSM
broth (IsoSensitest broth (90%) and MRS broth (10%), adjusted
to pH 6.7) and the microdilution method according to Klare et al.
(24) were used. The lowest concentration of each antibiotics that
inhibits the visible growth of bacteria (MIC,Minimum Inhibitory
Concentration) was determined after 48 h of incubation at 37◦C
and in the presence of 5% CO2. Susceptibility of strains was
established in accordance with the microbiological cut-off
values defined by the EFSA Panel on Additives and Products
or Substances used in Animal Feed (21). The accuracy of
antimicrobial susceptibility testing was monitored by parallel use
of the reference strains, Enterococcus faecalis ATCC 29212 and
Escherichia coli ATCC 25922 as a quality control. The study was
performed in triplicate. The differences of MICs for independent
sample never exceed 1 order of dilution.

Genetic Determinants of Antimicrobial
Resistance
All LAB strains phenotypically resistant to the tested
antimicrobial agents were examined by PCR for the presence
of selected AMR genes. The following genes were detected:
bla gene (ampicillin-resistant strains); the erm(A), erm(B),
erm(C), msr genes, and the lnu(A) gene (erythromycin and/or
clindamycin-resistant strains); genes encoding ribosomal
protection proteins (universal primer set and subsequently,
specific primers for tet(W) and tet(M) genes for positive
strains) and the tet(K) and tet(L) genes encoding a tetracycline
efflux pump (tetracycline-resistant strains); the cat gene

(chloramphenicol-resistant strains); the aph(3′′)-IIIa gene
(kanamycin-resistant strains); the ant(6), str(A)/str(B) and
aad(A) genes (streptomycin-resistant strains); the aac(6′)-
aph(2′′) gene (aminoglycosides-resistant strains). In case of
the detection of resistance genes, the cut-off values given in
the previous EFSA guidance (25) were additionally used for a
results analysis.

The characteristics of the primers used in the
study and appropriate references (26–36) are shown in
Supplementary Table 2. The primer set for msr(C) detection
was designed using the PCR Primer Design Tool (https://
eurofinsgenomics.eu/en/ecom/tools/pcr-primer-design) and
checked using an Oligo Analysis Tool (https://eurofinsgenomics.
eu/en/ecom/tools/oligo-analysis). PCR reactions were performed
in a total volume of 25 µL containing 1 µL of each primer (10
pmol/µL), 12.5 µL of DreamTaq PCR Master Mix (2×)
(ThermoFisher Scientific) or JumpStart REDTaq ReadyMix
Reaction Mix (2×) (Sigma-Aldrich) and 50 ng of DNA
template. A template bacterial genomic DNA was purified using
GenEluteTM Bacterial Genomic DNA Kits (Sigma-Aldrich)
following the manufacturer’s instruction for Gram-positive
bacteria cells (pre-incubation with lysozyme). The amount and
quality of DNA was determined using the Thermo Scientific
NanoDropTM 1000 Spectrophotometer.

PCR products were separated by electrophoresis on a 1%
agarose gel (Sigma-Aldrich), stained with ethidium bromide,
in TBE buffer (100V). The O’RangeRulerTM 200bp DNA
Ladder, GeneRulerTM 100 bp DNA Ladder or GeneRulerTM

100 bp Plus DNA Ladder (ThermoFisher Scientific) were
used as size standard markers. Additionally, PCR products
were purified and sequenced (Genomed S.A.). The obtained
DNA sequences were analyzed using BLASTn (Basic Local
Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi)
and compared with sequences available in GenBank (National
Center for Biotechnology Information) and CARD database
(The Comprehensive Antibiotic Resistance Database, https://
card.mcmaster.ca) (Supplementary Table 3).

Nucleotide Sequence of AMR Genes
The nucleotide sequences of themsr(C), erm(B), lnu(A), aph(3

′′
)-

IIIa, str(B), tet(M), and tet(K) genes described in this study are
shown in Supplementary Table 4.

RESULTS

Phenotypic Antimicrobial Resistance
Each strain was able to grow on LSM medium without antibiotic
(growth positive control). The MICs of antibiotics for studied
strains are presented in Table 1 and Supplementary Table 5.
The MIC ranges for particularly antibiotics were varied and
were within the used concentration ranges of tested antibiotics:
for gentamicin <0.125–32 mg/L, for kanamycin 4–≥256 mg/L,
for streptomycin <0.5–≥256 mg/L, for tetracycline 0.25–32
mg/L, for chloramphenicol 1–8 mg/L, for ampicillin <0.015–≥8
mg/L, for erythromycin <0.015–≥8 mg/L, and for clindamycin
<0.015–≥8 mg/L (Table 2). Only 31 strains (17 L. plantarum,
four L. fermentum and L. casei, three L. reuteri and one
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TABLE 1 | Distribution of MICs of tested antibiotics among phenotypically resistant LAB strains (n = 34).

Number Strain MIC (mg/L)a

GMb K TE CH A E CL S

Microbiological cut-off values (mg/L) proposed by EFSA for obligate heterofermentative Lactobacillus

16 64(32)c 8 4 2 1 4(1) 64

1 L. buchneri KKP 2047p 4 128 16d 4 1 0,25 0,5 64

2 L. diolivorans KKP 2036p 8 128 16 2 2 0,25 0,125 128

3 L. fermentum KKP 2020 2 32 16 4 0,5 0,25 0,25 32

4 L. fermentum KKP 830 8 64 16 2 1 0,25 0,25 64

5 L. fermentum Sieger 16 128 4 4 0,125 0,125 0,03 32

6 L. brevis Pap3/4 2 64 16 4 0,25 0,125 0,25 64

7 L. brevis Pat1 0,5 16 16 4 2 0,5 ≤0,015 8

8 L. brevis Solaris 1 16 16 4 1 0,25 0,5 16

9 L. farraginis E/J 0,5 8 16 4 0,125 0,03 0,03 8

Microbiological cut-off values (mg/L) proposed by EFSA – facultative heterofermentative Lactobacillus

16 64 8 4 4 1 4(1) 64

10 L. agilis KKP 1834 32 ≥256 0,25 4 1 ≥8 1 ≥256

11 L. salivarius KKP 1828 16 128 1 4 0,25 0,125 0,125 128

12 L. salivarius KKP 1835 8 128 16 4 2 0,125 0,03 128

Microbiological cut-off values (mg/L) proposed by EFSA for Lactobacillus rhamnosus

16 64 8 4 4 1 4(1) 32

13 L. rhamnosus KKP 849 4 128 1 8 1 0,5 0,5 32

14 L. rhamnosus B/J 32 128 1 4 0,5 0,125 0,5 32

Microbiological cut-off values (mg/L) proposed by EFSA for Lactobacillus plantarum/pentosus

16 64 32 8 2 1 4(2) n.r.

15 L. plantarum KKP 804 4 64 32 4 ≥8 0,25 4 n.r.

16 KKP 815 8 128 16 8 1 0,25 2 n.r.

17 KKP 835 8 ≥256 16 8 2 0,25 1 n.r.

18 KKP 870 16 ≥256 32 8 2 0,25 4 n.r.

19 KKP 872 16 ≥256 16 8 2 0,25 4 n.r.

20 KKP 2021p 4 128 16 8 1 0.25 4 n.r.

21 KKP 1821 4 128 16 4 1 0,25 0,5 n.r.

22 KKP 1822 8 128 16 8 1 0,25 0,5 n.r.

23 ATTC 8287 8 128 16 8 2 0,5 2 n.r.

Microbiological cut-off values (mg/L) proposed by EFSA for obligate homofermentative Lactobacillus

16 16 4 4 2(1) 1 4(1) 16

24 L. delbrueckii PCM 490 4 32 2 2 0,06 0,06 0,06 8

Microbiological cut-off values (mg/L) proposed by EFSA for Lactobacillus acidophilus group

16 64 4 4 1 1 4(1) 16

25 L. acidophilus PCM 2499 4 16 32 2 0,25 1 0,125 32

26 L. johnsonii KKP 878 4 64 16 8 0,125 0,25 0,5 32

Microbiological cut-off values (mg/L) proposed by EFSA for Pediococcus spp.

16 64 8 4 4 1 1 64

27 P. pentosaceus KapA 4 128 16 4 2 0,25 0,03 128

28 P. pentosaceus Pom7 4 64 16 2 1 0,25 0,03 64

29 P. pentosaceus AG 16 128 16 4 2 0,5 0,03 128

30 P. pentosaceus MA 16 ≥256 16 4 2 0,25 0,03 64

31 P. pentosaceus WN1 8 64 16 4 1 0,5 0,03 128

32 P. acidilactici KKP 1839 4 128 16 4 2 0,25 0,03 128

Microbiological cut-off values (mg/L) proposed by EFSA for Enterococcus spp.

32 1024 4 16 2 4 4 128

33 E. durans KKP 1586 16 64 0,5 8 0,25 ≥8 ≥8 128

34 E. faecium TR2 32 128 32 2 0,125 ≥8 4 128

aMICs higher than EFSA cut-off values in bold; bGM, gentamicin; K, kanamycin; TE, tetracycline; CH, chloramphenicol; A, ampicillin; E, erythromycin; CL, clindamycin; S, streptomycin;
cthe previous EFSA proposed cut-off values (2012) are given in brackets; dL. buchneri the cut-off for tetracycline is 128; KKP - strains from the Culture Collection of Industrial
Microorganisms; PCM - strains from The Polish Collection of Microorganisms; n.r., not required.
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TABLE 2 | Distribution of the MIC, MIC50, and MIC90 values of eight antibiotics among studied LAB species (n = 65).

Antibiotic MIC values (mg/L)

0,015 0,003 0,06 0,0125 0,25 0,5 1 2 4 8 16 32 64 128 256 MIC50 MIC90

Gentamicin 1 3 8 10 19 16 7 3 4 16

Kanamycin 2 1 8 14 21 16 5 64 128

Streptomycina 1 2 4 6 11 6 9 1 32 128

Tetracycline 2 2 8 3 5 3 37 7 16 32

Erythromycin 1 2 4 20 30 5 2 3 0,25 1

Clindamycin 6 13 5 7 9 14 4 3 5 1 0,25 2

Ampicillin 1 1 3 14 10 5 17 14 1 1 0,5 2

Chloramphenicol 2 13 34 18 4 8

a27 L. plantarum strains were not tested.

L. buchneri, L. agilis and L. rhamnosus) out of 65 strains were
susceptible to all antibiotics as the microbiological cut-off values
were below the proposed by the FEEDAP Panel breakpoints (21).
Nineteen LAB strains were resistant to one of the investigated
antibiotics (i.e., 11 strains to kanamycin, seven to tetracycline
and one to ampicillin), whereas 15 strains displayed resistance
to more than one of the investigated antibiotics (i.e., 8 strains
to two antibiotics, 6 strains to three and one strain to four
antibiotics) (Tables 1, 3). The resistance to aminoglycosides
was the most prevalent (37%), since 21 strains (32%) were
resistant to kanamycin, 10 to streptomycin (15%) and two to
gentamicin (3%). The Lactobacillus agilis KKP 1834 strain was
highly resistant to all aminoglycosides tested, as the MIC values
were twice higher than the corresponding breakpoints proposed
by the EFSA. The tetracycline resistance was the second common
antibiotic resistance found in the studied LAB strains, and
was reported in 17 resistant strains (26%). The resistance to
erythromycin or chloramphenicol was reported in two strains,
while single strains were phenotypically resistant to clindamycin
or ampicillin. The MIC, MIC50, and MIC90 values of tested
antibiotics for all studied strains are shown in Tables 1, 2.

Distribution of AMR Genes
To identify determinants responsible for the displayed resistance
phenotypes, the strains were screened by PCR for the presence
of selected AMR genes. Acquired AMR genes were only found in
15 strains (Table 3). When investigating 17 tetracycline-resistant
strains, the tet(M) gene encoding ribosomal protection proteins
were found in two strains (L. salivarius KKP 1835 with
tetracycline MIC value of 16 mg/L and E. faecium TR2 with
MIC value of 32 mg/L). L. acidophilus 2499 strain displaying the
MIC value of tetracycline three times higher than the breakpoint
(32 vs. 4 mg/L), was positive for the tet(K) gene. The erm(B)
gene was detected in L. plantarum KKP 2021p (the MIC value
of clindamycin was 4 mg/L, but the strain was susceptible to
erythromycin, MIC = 0.25 mg/L) and in E. durans KKP 1586
(erythromycin and clindamycin MIC values were 8 mg/L and
higher than 8 mg/L, respectively). In addition, two L. plantarum
strains resistant to clindamycin (870 and 872, with MIC value 4
mg/L) and E. faecium TR2, susceptible to clindamycin, carried

the lnu(A) gene. Two strains were positive for the msr(C) gene,
L.agilisKKP 1834 and E. faecium TR2 strains (erythromycinMIC

value was 8mg/L). The aph(3
′′
)-IIIa gene was detected in 9 strains

belonging to the species: L. plantarum (n = 3), L. fermentum (n
= 3), L. buchneri (n= 1), L. diolivorans (n= 1), and L. agilis (n=
1). Two strains, L. acidophilus 2499 and L. salivarius 1835, with
streptomycin MIC values 32 and 128 mg/L, respectively, were
positive for str(A)/str(B) genes.

The selected PCR amplicons were sequenced, and
the obtained sequences of the tested AMR genes
(Supplementary Table 4) indicates the homology to the
DNA sequences detected in other LAB, as well as in pathogens
(Supplementary Table 3). The PCR product for msr(A)/msr(B)
genes, encoding for a macrolide efflux protein and conferring
resistance to macrolides and streptogramins B, were identified
as the msr(C) gene by sequencing (Supplementary Table 3). No
specific primers targeting the msr(C) gene were found in the
available literature, thus we designed a primer set to detect this
gene without the need for sequencing of the PCR product. For
both strains, L. agilis KKP 1834 and E. faecium TR2, the specific
product of 354-bp with newly designed primer set was obtained.
In the case of ampicillin resistant strains, a product of ∼297 bp
obtained with primers specific for the bla gene was found in one
strain (L. plantarum 804). However, the presence of this gene is
questionable as the chromatograms obtained by sequencing were
unreadable despite the repetition.

DISCUSSION

It is generally accepted that starter cultures or feed additives
contain strains isolated from target raw materials, in accordance
with their intended use. The source of probiotic strains used
in animals are often the gastrointestinal tract or feces of
the same or different animal species (37). Natural microbiota
isolated from the host usually more easily and quickly adapts
and could be more effective as a probiotic compared to
strains from other sources. Nevertheless, numerous studies
indicate high prevalence of drug resistance in strains isolated
from various animals, including pigs, ruminants, companion
animals, poultry, or even wild animals (38–41) as well as
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TABLE 3 | Correlation between resistance phenotype and genotype among

studied LAB species (n = 40).

Strains Resistance

phenotypea

Resistance

genotype

L. fermentum KKP 2020 TE n.d.

L. fermentum KKP 830 n.d.

L. brevis Pat1 n.d.

L. brevis Solaris n.d.

L. brevis Pap3/4 n.d.

L. farraginis E/J n.d.

P. pentosaceus Pom7 n.d.

L. buchneri KKP 2047p K aph(3′′)-IIIa

L. fermentum Sieger n.d.

L. plantarum KKP 815 n.d.

L. plantarum KKP 835 aph(3′′)-IIIa

L. plantarum KKP 870 aph(3′′)-IIIa

L. plantarum KKP 872 n.d.

L. plantarum KKP 2021p n.d.

L. plantarum KKP 1821 n.d.

L. plantarum KKP 1822 aph(3′′)-IIIa

L. plantarum ATCC 8287 n.d.

L. delbrueckii PCM 490 n.d.

P. pentosaceus MA K – TE n.d.

L. salivarius KKP 1828 K – S n.d.

L. rhamnosus KKP 849 K – CH n.d.

L. plantarum KKP 804 A n.d.

L. rhamnosus B/J GM – K n.d.

L. acidophilus PCM 2499 TE – S tet(K), str(A)/str(B)

P. pentosaceus WN1 n.d.

E. durans KKP 1586 E – CL erm(B)

E. faecium TR2 TE – E tet(M), msr(C),
lnu(A)

L. diolivorans KKP 2036p TE – K – S aph(3′′)-IIIa

L. salivarius KKP 1835 tet(M), str(A)/str(B)

P. pentosaceus KapA n.d.

P. pentosaceus AG n.d.

P. acidilactici KKP 1839 n.d.

L. johnsonii KKP 878 TE – CH – S n.d.

L. agilis KKP 1834 GM – K – S – E aph(3′′)-IIIa, msr(C)

L. fermentum KKP 811,

KKP 830, KKP 843

K aph(3′′)-IIIa

L. plantarum KKP 870,

KKP 872

CL lnu(A)

L. plantarum KKP 2021p CL erm(B)

aGM, gentamicin; K, kanamycin; TE, tetracycline; CH, chloramphenicol; A, ampicillin;
E, erythromycin; CL, clindamycin; S, streptomycin; n.d., tested resistance genes not
detected. The strains carrying a resistance gene but phenotypically resistant only in line
to cut-off values adopted in previous EFSA guideline (2012) are in bold.

from food of animal origin (30, 42). The intensive and
irresponsible (especially non-therapeutic) use of antimicrobial
agents in animal husbandry and veterinary practice contributes
to developing of resistance of gut microbiota and potentially
beneficial LAB to antibiotics, including tetracycline, enrofloxacin,
ampicillin and MLS antibiotics (macrolides, lincosamides and

streptogramins) (20, 40, 41, 43, 44). Such strains considered
as a reservoir of AMR genes for other commensal bacteria,
as well as pathogenic and opportunistically pathogenic species
through horizontal gene transfer (20, 45). This poses a
threat not only to animals, but resistant strains can also be
widely distributed through the food chain. Hence, the use of
LAB strains isolated from non-intestinal sources has become
increasingly attractive and justified. The alternative sources from
which beneficial LAB can be isolated are fruits, vegetables
and juices, cereals, silages, sourdough, fermented foods and
beverages, as well as raw materials and ingredients used to
make non-fermented and fermented foods (37, 46). The strains
selected from various “unconventional” sources meet the criteria
for probiotic strains, such as resistance to low pH and high
bile concentrations, adherence capacity to epithelial intestinal
cells, and strong antimicrobial activity against pathogenic
microorganisms, including bacteriocin-like activity (37). The
strains deposited in different Microbial Culture Collections can
also be screened to find beneficial LAB strains, although this does
not appear to be a common practice. The advantage of strains
from the Collections with the status of International Deposit,
however, may be their widespread availability. In the present
study we used LAB strains from both sources, isolated from
animal origin and strains from alternative sources. Most of the
strains are deposited in the Microbial Culture Collections.

Recently, the taxonomy of genus Lactobacillus changed
significantly. The genus Lactobacillus was one of the most
taxonomically complex and extremely heterogeneous and
composed 261 genera (as of March 2020) (47). In 2020, based
on polyphasic approach (phylogenomic analysis), Zheng et al.
(47) reclassified the genus Lactobacillus into 25 genera, including
23 new one. The emended genus of Lactobacillus currently
consists of 38 species well adapted to vertebrates’ or invertebrates’
hosts. The general term lactobacilli are further used to designate
bacteria classified to the family Lactobacillaceae until 2020. In our
work, we use the names of the former Lactobacillus classification
to avoid any confusion and for maintenance of compliment with
the nomenclature used in EFSA guidance for microbiological
cut-off values. It should be highlighted that the complexity of
this phylogenetic group of microorganisms make it difficult to
generalize about this genus and contributes to many difficulties
in antimicrobial susceptibility testing of these bacteria, regarding
the appropriate medium or establish the cut-off values.

LAB species differ significantly in their growth requirements.
TheM45 (3rd ed.) CLSI (Clinical Laboratory Standards Institute)
procedure proposes the use of cation-adjusted Mueller-Hinton
broth (CAMHB) supplemented with 2.5 or 5% lysed horse
blood (LHB) as a conventional susceptibility test medium,
however, some lactobacilli exhibited weak growth in this medium
(24, 48). In this study, we used the LSM broth proposed by
Klare et al. (24) and in line with ISO/IDF standard procedure,
which is more accurate and reproducible for lactobacilli and
pediococci (24, 48). To distinguish strains with phenotypic
resistance from susceptible one, the MIC-off value proposed by
the EFSA FEEDAP were used (21). The standard procedures
of the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) and CLSI provide the same breakpoints for all
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lactobacilli species, while the EFSA’s guidelines refer to different
groups within LABs, which is relevant considering the great
differences in AMR among lactobacilli species. Some species
of Lactobacillus are intrinsically resistant to certain antibiotics
(e.g., L. plantarum/L. pentosus to streptomycin), while other
lactobacilli have variable activity against these antimicrobials
(49). Moreover, the breakpoint values are best established for
clinically important microorganisms. In the case of lactobacilli,
which are infrequently associated with a clinical infection, the
collected data are limited, and the guidelines of CLSI and
EUCAST provide breakpoints for only four of antibiotics testing
(ampicillin, clindamycin, chloramphenicol, and erythromycin).

Antimicrobial susceptibility is a key criterion that must be met
when microorganisms are intentionally introduced into the food
chain. Numerous data indicate that LAB exhibit highly variable
sensitivity to antimicrobial agents. In our study, a total of 65
strains intended for use as a feed or silage additives were tested for
their susceptibility to eight selected antimicrobials. Thirty-four
tested strains were resistant to at least one antimicrobial agent
according to a current EFSA guidance (21).

The high susceptibility of LAB strains to ampicillin (98.5%)
was observed in our study, which is in line with a number of
previous data (29, 50, 51). However, it should be noted that
higher resistance for this antibiotic was also noted in lactobacilli,
mainly in isolates from poultry and fermented dairy products
(40, 41, 52). The resistance to β-lactam antibiotics is related to the
presence of the bla gene whilst we not confirmed by sequencing
the presence of this gene in ampicillin-resistant L. plantarum
strain. The absence of genes associated with β-lactam resistance
among strains with relatively high MIC values was observed by
others (40, 41).

High susceptibility among tested LAB strains has been also
noted in case of chloramphenicol (96.9%). This is consistent
with many published data (40, 50, 51, 53), although resistance
to chloramphenicol in lactobacilli strains isolated from various
fermented products has also been reported (52, 54). The
genotypic resistance to this antibiotic class is usually associated
with the presence of cat gene (55) and the occurrence of this gene
was noted among some of LAB strains, including L. salivarius,
L. johnsonii, L. crispatus, L. reuteri, L. plantarum, L. ingluviei,
and P. acidilactici (40, 41, 54). Interestingly, the cat gene was
not detected in chloramphenicol-resistant L. rhamnosus and
L. johnsonii strains in this study (MIC= 8 mg/L while the cut-off
values is 4 mg/L). According to the literature data, the resistance
to chloramphenicol may not be related only to the presence of
specific genes encoding antibiotic-modifying enzymes, but may
also result from diminished expression of many genes, including
efflux pumps and oxidative stress-related genes as well as genes
encoding outer membrane proteins (56). This phenomenon may
be a cause of phenotype and genotype inconsistency observed
also in the tested strains.

The occurrence of tetracycline resistance was found in 26.2%
of LAB strains in this study. In other studies conducted in
Poland, the percentage of tetracycline-resistant lactobacilli was
significantly higher (40, 41, 53), however, it is not surprising
considering that these strains were isolated from poultry. The
tet genes are often found in isolates of animal origin (38, 39),

while in lactobacilli strains isolated from fermented food the
resistance to tetracyclines is less frequent, like our findings (29,
52). The prevalence of the tet genes which confers resistance
to teracyclines was not significant among tested LAB strains.
The tet(M) gene encoded the ribosomal protection protein
was found in L. salivarius and E. faecium strains whilst tet(K)
encoded the energy-dependent efflux protein was presented in
L. acidophilus. Similarly, the tet(M) gene was noted in E. faecium
and L. salivarius isolates from fermented food in India (57).
Nawaz et al. (29) detected this gene in L. plantarum, L. salivarius,
L. animalis, and L. brevis strains isolated from fermented food.
This gene was also widespread in L. salivarius, L. agilis, and
L. crispatus strains isolated from chickens, turkeys, and pigeons
in Poland (40, 41, 53). Generally, the tet(M) gene is one of
the most widespread tetracycline resistance determinants in
lactobacilli (55). The tet(K) gene has so far been detected in
strains of L. fermentum, L. buchneri, and P. pentosaceus from
fermented food (51, 57) or L. plantarum, L. salivarius, and
L. reuteri isolates from meat pork and poultry in Italy (42).
Interestingly, to the best of our knowledge, it seems that tet(K)
has not been previously described in L. acidophilus. Among
the LAB strains tested, we observed the highest prevalence of
phenotypic tetracycline resistance in obligate heterofermentative
lactobacilli (64% strains) and pediococci (100% strains) (MIC
= 16 mg/L), but tet resistance genes were not detected in any
of the strains. Similar results were reported by other authors
(40, 41, 58). This contradiction between the phenotypic resistance
and the absence of the tet genes indicates that tetracycline
resistance in these bacteria is likely to be intrinsic and the
current microbiological cut-off values for tetracycline should be
reevaluated. We propose the MIC = 16 mg/L as cut-off value for
categorization of susceptible and resistant strains within obligate
heterofermentative Lactobacillus spp. and Pediococcus spp. The
pediococci resistance to tetracyclines was considered as intrinsic
also by other authors, who failed to detect the tet genes in strains
with MIC values ≥16 mg/L (32, 58–60). The high resistance
to tetracycline that may be naturally conditioned was also
discussed in lactobacilli species (50, 61). The intrinsic resistance
to tetracyclines is related to the complex regulatory network that
modulate the uptake, as well as intracellular accumulation of
these antibiotics. The mutations affect to expression and function
of activator or repressor of pumps and porins (62). The regulation
of intrinsic tetracycline resistance is better characterized in
Gram-negative bacteria. The available data about this resistance
in Gram-positive species are still poorly understood.

The low rates of resistance to erythromycin (4.6%) and
clindamycin (1.5%) were observed in tested LAB strains,
although other reports showed the high prevalence of resistance
to these antimicrobials among lactobacilli strains (40, 41,
43, 44, 52). The erm(B) gene encoding the ribosomal RNA
methylase was detected in L. plantarum and E. durans. The
presence of the erm genes is related to exhibit of MLSB
resistance phenotype (macrolides-lincosamides-streptogramins
B), however, only E. durans 1586 was resistant to erythromycin
and clindamycin, whereby L. plantarum 2021p was susceptible
to both antimicrobials. It is also worth highlighted that the
recommendation for clindamycin has been revised and the
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current cut-off value for all lactobacilli is MIC = 4 mg/L (21).
According to the previous guidance (25), this strain would
be considered phenotypically resistant to clindamycin, however
still susceptible to erythromycin. The presence of the erm
genes in strains with phenotypic susceptibility to MLS or only
erythromycin was previously reported by others (40, 43, 44) and
may be related to defective expression of this gene (43, 44).
The relatively high occurrence of erm(B) was noted for different
Lactobacillus and Enterococcus strains isolated from fermented
food (29, 57). The erm(B) gene was detected in different
lactobacilli (L. plantarum, L. jonsonii, L. salivarius, L. reuteri,
L. crispatus, L. amylovorus, L. gallinarum) isolated from broilers
(43, 44), from swine and poultry meat products (42) or from
wine (59). Moreover, in our study two erythromycin-resistant
strains, L. agilis 1834 and E. faecium TR2, carried the msr(C)
gene. To the best of our knowledge, this is the first study
which reports the presence of this gene in L. agilis. The msr(C)
gene was initially considered as characteristic for E. faecium
(63), then it was found in other Enterococcus species, including
E. durans, E. lactis, and Enterococcus casseliflavus, and also P.
pentosaceus and L. fermentum strains (57). The ever frequently
occurrence of msr(C) in different LAB species may be associated
with increasingly widespread transfer of this gene between these
bacteria. Moreover, two L. plantarum (870, 872) and one E.
faecium TR2 strains, phenotypically susceptible to clindamycin
with MIC = 4 mg/L, carried the lnu(A) gene which encoding
lincosamide O-nucleotidyltransferase. This gene was found in
L. salivarius, L. johnsonii, L. crispatus, L. reuteri, L. agilis, and
L. ingluviei (40, 53). Similarly, to our results, also Dec et al.
(53) noted the lnu(A) gene in lactobacilli strains susceptible to
clindamycin. However, the reason of this relationship remains
unknown. In the other hand, the presence of lnu(A) gene in
strains with the clindamycin MIC of 4 mg/L may suggest that
the previous cut-off values (25) were more suitable to distinguish
between a susceptible and a resistant strain. Interestingly, it seems
that according to available data lnu(A) has not been described so
far in L. plantarum and E. faecium species.

In the current study, we observed a high resistance of LAB
strains to kanamycin (32.3%) and streptomycin (15.4%), while
gentamicin resistance was much less prevalent (3.1%). Similarly,
more frequent occurrence of resistance to streptomycin than
to gentamicin was recorded for lactobacilli from chickens and
turkeys in Poland (40, 41). However, the higher resistance to
gentamicin was also reported previously (52). The widespread
occurrence of kanamycin-resistant lactobacilli strains of various
species has been noted by others (29, 51, 53). It is generally
known that some lactobacilli species display resistance to
aminoglycosides. Of the genes that determine resistance to
aminoglycosides, the most prevalent was aph(3′′)-IIIa, encoding
the kinase APH(3′′)-IIIa, which confer resistance to kanamycin.
This gene was found in 6 kanamycin-resistant strains with the
MIC value in the range from 128 to ≥256 mg/L, including
L. plantarum (835, 870, 1822), L. buchneri 2047p, L. diolivorans
2036p, and L. agilis 1834. The aph(3′′)-IIIa gene has been
previously detected in L. delbrueckii subsp. bulgaricus and
Streptococcus thermophilus strains from yogurts (64) and L.

plantarum isolated from wine (59). Surprisingly, the presence of
aph(3′′)-IIIa was also noted in this study in three L. fermentum
strains (811, 830, 843) with MIC = 64 mg/L, classified as
susceptible to kanamycin. Similarly, to our results, the presence
of aminoglycoside resistance genes in phenotypically susceptible
lactobacilli have been observed previously (40). Moreover, the
str(A)/str(B) genes, encoding the streptomycin kinases APH(3′′)-

Ib and APH(6
′
)-Id, respectively, were noted in L. acidophilus

2499 and L. salivarius 1835. Interestingly, both these strains
had MIC values on-fold higher than the cut-off value for
streptomycin (32 mg/L for L. acidophilus 2499 and 128 mg/L for
L. salivarius 1835). It should be highlighted, that the str(A) and
str(B) genes are most frequently linked (65). In this study, we
used the primer set which can detect both these genes, whereby
a primer forward is complementary to the final part of the str(A)
gene. Therefore, the partial sequence of str(B) is the main PCR
product. The possible occurrence of str(A) should be confirmed
by additional sequencing of longer fragments of this gene or
using a specific primer set. It should be mentioned that the
vast majority of phenotypically aminoglycoside-resistant strains
did not contain any of the known genes that determine this
resistance. This phenomenon has been described in other reports
(53) and it was suggested that resistance to aminoglycosides,
such as kanamycin and streptomycin, is innate in pediococci
and some lactobacilli species, including L. fermentum (32, 50).
The intrinsic aminoglycoside resistance may be associated with
the low level of transmembrane potential or its absence that
leads to the impaired uptake of these antibiotics. Moreover,
the chromosomal mutations which impact to transmembrane
electrical potential, were described in Gram-positive bacteria,
while in Gram-negative bacteria the variable efflux systems were
identified (32, 66). Furthermore, a high spontaneous mutation
rate to resistance to kanamycin and streptomycin in lactobacilli
has been reported (67).

In our study, the phenotypic and genotypic resistance do not
correspond in many cases since the strains had the MIC values
higher that the microbiological cut-off values but did not have
the corresponding resistance genes. These findings are consistent
with the results reported in other studies regarding AMR of LAB
(31, 40–42, 60). The simple explanation could be a mutation and
mismatches at the primer annealing site that prevents detection
of the target resistance gene (68). The phenotype-genotype
discrepancies observed in our study could be also explained
by the fact that other resistance genes may exist that were not
investigated by us; however the number of the known resistance
genes continues to increase. The presence of novel, unknown
or unusual resistance determinants should also be considered.
Moreover, the resistance might be also acquired through some
mutations, for example a high spontaneous mutation rate to
resistance to aminoglycosides in lactobacilli has been reported
(67). Finally, some LAB species could be intrinsically resistant to
certain antimicrobials due to inherent structural and functional
features which aid their survival in an environment, but are
independent of antibiotic selective pressure and are not spread
through horizontal gene transfer. Generally, the regulation of
intrinsic resistance is better characterized in Gram-negative
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bacteria. The available data about AMR in LAB species, are still
poorly understood and the further studies should certainly be
carried out to clarify this phenomenon (60).

The recent studies have shown the potential of whole
genome sequencing (WGS) for define the accurate genotype
and link it to the observed phenotypes (55). WGS analysis
for AMR allows detection of a much higher number of
resistance markers, including the complete set of resistance
genes present in isolates as well as the mutations and
mobile genetic elements associated with resistance (69).
Nevertheless, WGS analysis is still quite expensive as a technique
and creates vast amounts of data and requires specialized
bioinformatics expertise. Most authors still rely on phenotypic
characterization of isolates and PCR-based detection of
AMR genes.

The transfer of AMR genes between different LAB species and
other bacteria has been well-documented and demonstrated by
in vitro studies with a filter mating technique, as well as by in vivo
models of animal rumen and alfalfa plant (29, 70). Moreover, it
was shown that AMR genes may be transfer from lactobacilli to E.
faecalis, which is an inhabitant of the animal and human gut, but
also a potential pathogen (70, 71). Although the transferability
of the detected resistance markers was not analyzed in our study
and specific mobile genetic elements in tested LAB strains were
not identified, the nucleotide sequences of the identified AMR
genes showed high similarity or even identity to the AMR genes
associated with mobile genetic elements, such as transposons and
plasmids, described in LAB and other bacteria, even distantly
related, and in some cases pathogenic (Supplementary Table 3).
This suggests possible acquisition of detected AMR genes
from other bacteria. Furthermore, it can be predicted that
detected genes are located on mobile genetic elements. Thus,
it is important to consider the possibility of further transfer
of the detected AMR genes to other bacteria in the gut via
horizontal transfer, which poses a serious health risk to animals
and humans.

Despite the improved awareness and understanding of

AMR of LAB, and the possibility of its spread through
the food chain, this safety criterion is not always taking

into consideration by researchers (72–74). The results of
the current study highlight that the AMR assessment of
LAB strains should be the first and key step in considering
their applicability and should precede other studies regarding
the beneficial effects of the strains, their usefulness or
adaptation criteria.

CONCLUSION

Concluding, the presence of acquired AMR genes in the
tested LAB strains, including genes that were not previously
described in this bacterial group, like those found in pathogenic
bacteria, confirms that LAB are capable of acquiring resistance
determinants via horizontal gene transfer. Importantly, many
studies show that such genes can be transferred in both
directions. While conjugation is the most common way of
dissemination of AMR genes, transformation and transduction

may also play an important role in this process, even greater
than previously thought (45). Therefore, all strains in this study
carrying the acquired AMR genes cannot be considered as
safe and should not be used as feed or silage additives. On
the other hand, the susceptibility of most of the tested strains
to the antibiotics recommended by EFSA make them safe for
direct use in agriculture and animal husbandry and thus, worth
further exploration.
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53. Dec M, Stepień-Pyśniak D, Nowaczek A, Puchalski A, Urban-Chmiel R.

Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli

from domesticated pigeons in Poland. Anaerobe. (2020) 65:102251.

doi: 10.1016/j.anaerobe.2020.102251

54. Sukmarini L, Mustopa AZ, Normawati M, Muzdalifah I. Identification of

antibiotic-resistance genes from lactic acid bacteria in indonesian fermented

foods. HAYATI J Biosci. (2014) 21:144–50. doi: 10.4308/hjb.21.3.144

55. Campedelli I, Mathur H, Salvetti E, Clarke S, ReaMC, Torriani S, et al. Genus-

wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ

Microbiol. (2018) 85:e01738-18. doi: 10.1128/AEM.01738-18

56. Fernández M, Conde S, de la Torre J, Molina-Santiago C, Ramos JL,

Duque E. Mechanisms of resistance to chloramphenicol in Pseudomonas

putida KT2440. Antimicrob Agents Chemother. (2012) 56:1001–9.

doi: 10.1128/AAC.05398-11

57. Thumu SC, Halami PM. Presence of erythromycin and tetracycline resistance

genes in lactic acid bacteria from fermented foods of Indian origin. Antonie

Van Leeuwenhoek. (2012) 102:541–51. doi: 10.1007/s10482-012-9749-4

58. Danielsen M, Simpson PJ, O’Connor EB, Ross RP, Stanton C. Susceptibility of

Pediococcus ssp. to antimicrobial agents. J Appl Microbiol. (2007) 102:384–9.

doi: 10.1111/j.1365-2672.2006.03097.x

59. Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres

C. Assessment of antibiotic susceptibility within lactic acid bacteria

strains isolated from wine. Int J Food Microbiol. (2006) 111:234–40.

doi: 10.1016/j.ijfoodmicro.2006.06.007

60. Lüdin P, Roetschi A, Wüthrich D, Bruggmann R, Berthoud H, Shani N.

Update on tetracycline susceptibility of Pediococcus acidilactici based on

strains isolated from swiss cheese and whey. J Food Prot. (2018) 81:1582–9.

doi: 10.4315/0362-028X.JFP-18-160

61. Gevers D, Huys G, Devlieghere F, Uyttendaele M, Debevere J,

Swings J. Isolation and identification of tetracycline resistant

lactic acid bacteria from pre-packed sliced meat products. Syst

Appl Microbiol. (2000) 23:279–84. doi: 10.1016/S0723-2020(00)

80015-6

62. Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb

Perspect Med. (2016) 6:a025387. doi: 10.1101/cshperspect.a025387

63. Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres

C. Macrolide resistance genes in Enterococcus spp. Antimicrob Agents

Chemother. (2000) 44:967–71. doi: 10.1128/AAC.44.4.967-971.2000

64. Zhou N, Zhang JX, Fan MT, Wang J, Guo G, Wei XY. Antibiotic resistance

of lactic acid bacteria isolated from Chinese yogurts. J Dairy Sci. (2012)

95:4775–83. doi: 10.3168/jds.2011-5271

65. Chiou CS, Jones AL. Expression and identification of the strA-strB gene

pair from Streptomycin-resistant Erwinia Amylovora.Gene. (1995) 152:47–51.

doi: 10.1016/0378-1119(94)00721-4

66. Vakulenko SB, Mobashery S. Versatility of aminoglycosides and

prospects for their future. Clin Microbiol Rev. (2003) 16:430–50.

doi: 10.1128/CMR.16.3.430-450.2003

67. Curragh HJ, Collins MA. High levels of spontaneous drug

resistance in Lactobacillus. J Appl Bacteriol. (1992) 73:31–6.

doi: 10.1111/j.1365-2672.1992.tb04965.x
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The Tetracycline Resistance Gene,
tet(W) in Bifidobacterium animalis
subsp. lactis Follows Phylogeny and
Differs From tet(W) in Other Species
Katrine Nøhr-Meldgaard1,2, Carsten Struve1, Hanne Ingmer2 and Yvonne Agersø1,2*

1 Chr. Hansen A/S, Hørsholm, Denmark, 2 Department of Veterinary and Animal Sciences, University of Copenhagen,
Frederiksberg, Denmark

The tetracycline resistance gene tet(W) encodes a ribosomal protection protein that
confers a low level of tetracycline resistance in the probiotic bacterium Bifidobacterium
animalis subsp. lactis. With the aim of assessing its phylogenetic origin and potential
mobility, we have performed phylogenetic and in silico genome analysis of tet(W) and
its flanking genes. tet(W) was found in 41 out of 44 examined B. animalis subsp.
lactis strains. In 38 strains, tet(W) was flanked by an IS5-like element and an open
reading frame encoding a hypothetical protein, which exhibited a similar GC content
(51–53%). These genes were positioned in the same genomic context within the
examined genomes. Phylogenetically, the B. animalis subsp. lactis tet(W) cluster in
a clade separate from tet(W) of other species and genera. This is not the case for
tet(W) encoded by other bifidobacteria and other species where tet(W) is often found
in association with transferable elements or in different genomic regions. An IS5-like
element identical to the one flanking the B. animalis subsp. lactis tet(W) has been found
in a human gut related bacterium, but it was not associated with any tet(W) genes.
This suggests that the IS5-like element is not associated with genetic mobility. tet(W)
and the IS5 element have previously been shown to be co-transcribed, indicating that
co-localization may be associated with tet(W) expression. Here, we present a method
where phylogenetic and in silico genome analysis can be used to determine whether
antibiotic resistance genes should be considered innate (intrinsic) or acquired. We find
that B. animalis subsp. lactis encoded tet(W) is part of the ancient resistome and thereby
possess a negligible risk of transfer.

Keywords: antimicrobial, antibiotic, resistance evolution, non-pathogenic bacteria, ribosomal protection, intrinsic
resistance

INTRODUCTION

Antibiotic resistance genes are widely spread among bacteria and they pose a serious threat to
human health as they can compromise our ability to treat bacterial infections (World Health
Organisation (WHO), 2017). Although the extensive use of antibiotics to treat infections in
both humans and animals is considered to be the main reason for the development and
spread of resistance genes (Levy and Bonnie, 2004; WHO, 2011), they have been present long
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before the introduction of antibiotics to the clinic (Martínez,
2008; Allen et al., 2010). Antibiotics are naturally produced
by environmental microorganisms and the producers often
have “self-resistance” encoded by antibiotic resistance genes
located in the antibiotic biosynthesis gene clusters (Martínez,
2008). Some antibiotic resistance genes show homology to
housekeeping genes such as those involved in protein synthesis
suggesting that they may have evolved from such functions and
this could explain their prevalence among bacteria (Martínez,
2008; Allen et al., 2010). Antibiotic resistance genes have
mainly been studied in clinically relevant bacteria and often in
relation to horizontally transferable elements (Shrivastava et al.,
2018). In contrast, less attention has been paid to antibiotic
resistance in non-pathogenic bacteria (Klare et al., 2007; Agersø
et al., 2019; Campedelli et al., 2019), e.g., bacteria ingested
via the food chain.

When products contain viable, non-pathogenic bacteria, e.g.,
fermented food, probiotics or feed additives, it is a requirement
from legal authorities [e.g., European Food Safety Authority
(EFSA)] that these bacteria do not possess acquired genes
encoding resistance toward antimicrobials, which are considered
as highly or critically important for treatment of humans and/or
animals by the World Health Organization (WHO) (WHO, 2011;
EFSA panel on Additives and Products or Substances used in
Animal Feed (FEEDAP), 2018). However, some bacteria are
intrinsically resistant to some of the antimicrobials (Peterson
and Kaur, 2018). Impermeability of the outer membrane
provides resistance to vancomycin for Escherichia coli and
other Gram-negative bacteria (Arthur and Courvalin, 1993).
Bacillus licheniformis and Bacillus paralicheniformis are resistant
(or reduced in susceptibility) to erythromycin, chloramphenicol
and streptomycin due to putative intrinsic resistance genes
(Agersø et al., 2019).

Thus, homology to a known antibiotic resistance gene does
not in itself indicate whether a putative resistance gene is acquired
or intrinsic. Therefore, analysis of the genetic context and
comparison to other genomes within the same species/subspecies
are needed, although exact guidance on this is not provided by
EFSA (EFSA panel on Additives and Products or Substances used
in Animal Feed (FEEDAP), 2018).

Tetracyclines are broad spectrum antibiotics, which have been
used for treatment of infections in humans and animals since
the early 1950s and resistance toward tetracyclines is widespread.
The tet(W) tetracycline resistance gene encodes a protection
protein that attaches to the ribosome and causes an alteration
of the ribosomal conformation to which tetracycline cannot
bind and therefore protein synthesis can proceed (Chopra and
Roberts, 2001; Connell et al., 2003). Genes with more than
80% identity to tet(W) have been found in 19 different genera
belonging to both Gram-positive and Gram-negative bacteria
and thus, it is the most widely spread tetracycline resistance
gene class (Chopra and Roberts, 2001). The first tet(W) gene
was reported in Butyrivibrio fibrisolvens located on a Tn B1230-
like transposable element, which has spread to several different
genera due to the broad host range of the element (Scott et al.,
1997; Barbosa et al., 1999). Transfer of tet(W) in association with
mobile genetic elements has also been reported to occur at low

frequencies in Bifidobacterium longum strain F8 (Kazimierczak
et al., 2006), Arcanobacterium pyogenes (Billington et al., 2002)
and Streptococcus suis (Palmieri et al., 2011).

Several bifidobacterial species carry tet(W) genes, including
B. longum, B. thermophilum and B. bifidum (Ammor et al.,
2008). tet(W) is widespread and confers a low level of
tetracycline resistance in B. animalis subsp. lactis that varies over
three two-fold dilutions between different strains (Gueimonde
et al., 2010), which has been suggested to be caused by
genetic diversity in the miaA gene encoding for a tRNA
dimethylallyltransferase (Milani et al., 2013). Furthermore,
bile exposure have been shown to induce tet(W) expression
(Gueimonde et al., 2010). The widespread nature of tet(W)
suggest that it confers a selective advantage, perhaps a
physiological function such as improving translation under the
stress conditions of the gut. Although unsuccessful transfer
studies are often not published, several studies on transferability
of tet(W) from B. animalis subsp. lactis to other bacterial
species and genera are published and all were unsuccessful
(Gueimonde et al., 2010; Naghizadeh Raeisi et al., 2018; Polit
et al., 2018). Bifidobacteria are Gram-positive, anaerobic, non-
motile and non-spore-forming bacteria, which are commonly
found in the gastrointestinal tract of various animals and
humans, the human oral cavity and sewage (Milani et al.,
2014). Members of the Bifidobacterium genus are among the
first microbes to colonize the human gastrointestinal tract of
newborns. Multiple health beneficial effects including reduction
of diarrhea, colorectal cancer prevention and inhibition of
pathogen growth and adherence have been reported for
Bifidobacterium spp. (Turroni et al., 2012; O’Callaghan and
van Sinderen, 2016). Therefore, many Bifidobacterium spp. are
widely used in probiotic products (Garrigues et al., 2010).
B. animalis including B. animalis subsp. lactis have had
Qualified Presumption of Safety (QPS) status by EFSA since
the establishment of the QPS concept in 2007 (Barlow et al.,
2007; Koutsoumanis et al., 2020) and specific strains have
acquired the Generally Recognized as Safe (GRAS) status from
the Food and Drug Administration (FDA) in the United States
(O’Callaghan and van Sinderen, 2016).

The aim of this study was to assess the phylogenetic
relationship of tet(W) in B. animalis subsp. lactis through
phylogenetic analysis, analysis of the genetic context surrounding
the gene and core genome analysis. The study will serve
as evidence to further establish that tet(W) in B. animalis
subsp. lactis is innate; it originates from the ancestral host
and has retained the same genomic position ever since.
This supports the common perception that tet(W) should be
considered an intrinsic and non-transferable gene in B. animalis
subsp. lactis.

MATERIALS AND METHODS

Bacterial Genomes, Subspecies
Identification and Genome Quality
All publicly available genome sequences of B. animalis subsp.
lactis (50 strains including the type strain DSM 10140)
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and B. animalis subsp. animalis (8 strains including the
type strain ATCC 25527) were downloaded from the NCBI
microbe genome database on the 21st of November 2019
(Sayers et al., 2019).

Subspecies identification was either obtained from previously
published articles (Lugli et al., 2019) or performed by employing
the rpoA and 16S ribosomal DNA sequence. A >98% identity
to the type strain genes was used as threshold and the genes
should furthermore be different from the type strain of a related
subspecies, in this case B. animalis subsp. animalis, as shown
through a phylogenetic tree (data not shown).

The sequence quality was assessed and sequences with an
average coverage of ≥30× and a contig number below 120 were
considered acceptable for phylogenetic analysis. The quality of
the genomes was also evaluated by checking that the length of the
sequenced genome corresponds with the expected length of the
genome, based on the type strain (Milani et al., 2014).

Other bifidobacterial species, which have been shown to
harbor tet(W) (Ammor et al., 2008; Wang et al., 2017) were
also downloaded from the NCBI microbe genome database on
the 21st of November 2019 and included B. longum (14 strains,
type strain NCTC11818), B. thermophilum (6 strains, type
strain DSM 20212), B. bifidum (11 strains, type strain ATCC
29521), B. pseudolongum (4 strains, type strain DSM 20099),
B. pseudocatenulatum (3 strains, type strain DSM 20438) and
B. breve (41 strains, type strain NCTC 11815). All tet(W)
sequences from other genera where the gene have been described
(Scott et al., 1997; Chopra and Roberts, 2001; Flórez et al., 2006;
Kazimierczak et al., 2006; Ammor et al., 2008; Palmieri et al.,
2011; Schröder et al., 2012) and shared identity to the tet(W) gene
found in B. animalis subsp. lactis were also downloaded from
NCBI on the 21st of November 2019.

Screening for tet(W), Genome
Annotation and Examination of
Sequences Flanking tet(W)
ResFinder (Zankari et al., 2012), with a 80% identity threshold,
was used to search for the presence of tet(W) in the examined
genomes and the Rapid Annotation using Subsystems
Technology (RAST) server with default settings was used
to annotate the genomes. The annotated genomes were
downloaded in GenBank format from the RAST server (Aziz
et al., 2008; Overbeek et al., 2014) and imported to CLC
Genomics Workbench 20 (Qiagen Bioinformatics, Aarhus,
Denmark), where the presence of tet(W), its flanking genes
and presence of mobile genetic elements was examined. tet(W)
nucleotide and protein sequences was extracted from the
annotated genomes for further phylogenetic analysis. GC
content of tet(W) and other genes was assessed by employing
the DNA/RNA GC Content Calculator at ENDMEMO
(Endmemo, 2020).

ISFinder
The blastN tool available at ISFinder (Siguier et al., 2006)
with default settings was used to determine the identity of the
mobile genetic protein next to tet(W) in B. animalis subsp.

lactis and its sequence was used to search for its presence in
other genomic regions in the B. animalis subsp. lactis genomes,
which was performed in CLC Genomics Workbench 20 (Qiagen
Bioinformatics, Aarhus, Denmark).

tet(W) Nucleotide and Amino Acid
Phylogenetic Analysis
The phylogenetic analysis of tet(W) included both the
nucleotide and protein sequences from B. animalis subsp.
lactis (Supplementary Table 1) and tet(W) genes found in other
bifidobacterial species and other genera where the presence of
tet(W) previously have been published (Table 1) (Scott et al.,
1997; Chopra and Roberts, 2001; Flórez et al., 2006; Kazimierczak
et al., 2006; Ammor et al., 2008; Palmieri et al., 2011; Schröder
et al., 2012). The nucleotide and protein tet(W) sequences was
either extracted from the annotated genomes or from NCBI
(Sayers et al., 2019).

ClustalX2 (Larkin et al., 2007) was used to perform a
pairwise multiple alignment of the tet(W) sequences (Higgins
and Sharp, 1988) and BioEdit (Hall, 1999) was used to remove
gaps and unpaired ends. The nucleotide phylogeny was built
by evolutionary analysis by the Maximum Likelihood method
and Tamura-Nei model by MEGA X (Tamura and Nei, 1993;
Kumar et al., 2018) and the amino acid phylogeny was built by
evolutionary analysis by Maximum Likelihood method and JTT
matrix-based model also by MEGA X (Jones et al., 1992; Kumar
et al., 2018). Number of single nucleotide polymorphisms (SNPs)
and single amino acid polymorphisms (SAPs) was obtained from
the multiple alignment output from MEGA X that was used to
build the phylogenetic relationships.

Core Genome Phylogeny
The genomes, either fully assembled or contigs were annotated
by Prokka, which annotates genomes through the use of
different tools including Prodigal (coding sequences), RNAmmer
(Ribosomal RNA genes), Aragorn (Transfer RNA genes),
SignalP (Signal leader peptides) and Infernal (Non-coding RNA)
(Seemann, 2014). Prokka annotation is a requirement for
using Roary, since the .gff file (file containing sequences and
annotations) provided by Prokka is used by Roary to create
a multi-FASTA alignment of all the core genes (Page et al.,
2015). Roary was set to perform nucleotide alignment using
MAFFT and a Blastp percentage identity at 80% (Katoh, 2002).
FastTree was used to produce an approximately maximum-
likelihood phylogenetic tree from the core gene alignment file,
which was visualized by MEGA X (Price et al., 2009, 2010;
Kumar et al., 2018).

RESULTS AND DISCUSSION

Assessment of Genome Quality
A total of 50 publicly available B. animalis subsp. lactis
strains including the type strain DSM 10140 were downloaded
from NCBI and consisted either of contigs or assembled
genomes (Supplementary Table 1). The sequence quality
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TABLE 1 | tet(W) encoded by Gram-positive and Gram-negative bacteria.

Strains Nucleotide identity (%) to
B. animalis subsp. lactis

DSM 10140 tet(W)

Accession
number

Mobile genetic
elements

Horizontal
transfer

confirmed

References

Gram-positive bacteria

Arcanobacterium pyogenes

BBR1 91.79% AY049983 Integrase, putative
mobilization protein,
mobilization protein

Yes (18) Chopra and Roberts, 2001;
Billington et al., 2002

Bifidobacterium bifidum

L22 98.01% EU434755 No MGE Ammor et al., 2008

Bifidobacterium breve

12L 98.01% NZ_CP006711 Integrase NCBI database

139W423 99.74% CP021556 Transposase, integrase
and mobile element
protein

Bottacini et al., 2018

lw01 98.06% CP034192 No MGE Wang et al., 2019

Bifidobacterium longum

BG7 98.85% CP010453 Transposase, mobile
element protein and
phage infection protein

Kwon et al., 2015

BXY01 99.74% CP008885 Transposases and
mobile element proteins

NCBI database

H66 98.06% DQ060146 No MGE Flórez et al., 2006

F8 99.37% DQ294299 Tandem repeat flanking
a transposase

Yes (17) Kazimierczak et al., 2006

L42 98.06% EU434756 Transposase Ammor et al., 2008

B93 97.96% EU434749 NA Ammor et al., 2008

B94 97.96% EU434750 NA Ammor et al., 2008

E111 98.01% EU434751 NA Ammor et al., 2008

LMG 13197 99.69% EU434752 NA Ammor et al., 2008

Bifidobacterium thermophilum

DSM 20210 (type strain) 99.69% NZ_JDUB00000000 No MGE Sun et al., 2015

DSM 20212 99.74% NZ_JHWM00000000 No MGE NCBI database

LMG 21813 99.69% EU434753 No MGE Ammor et al., 2008

RBL67 99.74% CP004346 No MGE Rbl et al., 2013

Bifidobacterium pseudocatenulatum

DSM 20438 (type strain) 99.38% NZ_AP012330 No MGE Morita et al., 2015

12 98.01% CP025199 No MGE NCBI database

Bifidobacterium pseudolongum

DSM 20092 98.06% CP017695 Mobile element protein,
transposase

NCBI database

Clostridium difficile

CD5 98.85% AM749838 No MGE Spigaglia et al., 2008

Corynebacterium

DSM 45100, pJA144188 99.69% NC_014167 Plasmid Schröder et al., 2012

Lactobacillus reuteri

PA-16 99.74% FJ489649 Transposase Egervärn et al., 2009

ATCC 55730, pLR581 99.63% EU583804 Plasmid Egervärn et al., 2010

Roseburia sp.

A2-183 98.01% AJ421625 Putative mobilization
protein

Flórez et al., 2006;
Kazimierczak et al., 2006

Streptococcus suis

SsCA-1 98.85% FN396364 Protein with putative
involvement DNA
transfer

Chopra and Roberts, 2001;
Palmieri et al., 2011

(Continued)
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TABLE 1 | Continued

Strains Nucleotide identity (%) to
B. animalis subsp. lactis

DSM 10140 tet(W)

Accession
number

Mobile genetic
elements

Horizontal
transfer

confirmed

References

Phi-SsUD 99.69% FN997652 Genetic element with
typical phage
organization

Yes (19) Palmieri et al., 2011

GZ1 99.74% CP000837 No MGE Palmieri et al., 2011

Trueperella pyogenes

TP3 98.33% CP033904 IS21 family
transposase, conjugal
transfer protein TrbL

Feßler and Schwarz, 2017

Gram-negative bacteria

Butyrivibrio fibrosolvens

Tn 1230 98.06% AJ222769 Tn1230 transposon Yes (16) Scott et al., 1997; Chopra
and Roberts, 2001

JK51 98.01% AJ427421 No MGE Chopra and Roberts, 2001;
Kazimierczak et al., 2006

Megasphaera elsdenii

2–9 No significant similarity found AY196917 NA Chopra and Roberts, 2001;
Stanton and Humphrey,
2003

7–11 No significant similarity found AY196919 NA Chopra and Roberts, 2001;
Stanton and Humphrey,
2003

4–13 No significant similarity found AY196918 NA Chopra and Roberts, 2001;
Stanton and Humphrey,
2003

25–50 98.01% AY485125 NA Stanton and Humphrey,
2003

Mitsuokella multiacidus

P208-58 98.06% AJ427422 No MGE Chopra and Roberts, 2001;
Flórez et al., 2006;
Kazimierczak et al., 2006

Selenomonas ruminantium

FB322 99.58% DQ294295 No MGE Kazimierczak et al., 2006

NA, whole genome sequence was not available, the flanking sequences could therefore not be examined. Accession number provided are either nucleotide or genome
accession number.

was assessed and sequences with an average coverage of
≥30 fold and a contig number below 120 were considered
acceptable. On this basis, six strains (B420, DS1_2, BI-04,
IDCC4301, CF3_2, AD011) were excluded from the study.
The genomes of CNCM I-2994 (Chervaux et al., 2011) and
AD011 (Kim et al., 2009) had both been sequenced by Sanger
shotgun sequencing and consist of complete genomes. However,
AD011 has previously been shown to exhibit a poor sequence
quality and was therefore excluded (Garrigues et al., 2010),
CNCM I-2994 was not excluded from the study. A total of
44 genome sequences were therefore acceptable for further
phylogenetic analysis.

The B. animalis subsp. lactis genomes exhibited a size of
1.91–2.08 Mb with a GC content of 60.0–60.6% (Supplementary
Table 1), which is in agreement with data for the type strain of
the subspecies (Milani et al., 2014).

Subspecies identification was either obtained from previously
published articles (Lugli et al., 2019) or performed by analysis of
the rpoA and 16S ribosomal DNA sequence.

Diversity of the B. animalis subsp. lactis
Genomes
The majority of the B. animalis subsp. lactis strains originated
from human feces, but also from food samples, dietary
supplements and domestic pigs, chimpanzees, rabbits, vervet
monkeys, a barbary macaque, three different dog breeds and
one strain, the genomic unique ATCC 27673 (Loquasto et al.,
2013) originated from sewage (Supplementary Table 1). Species
within the bifidobacterial genera are commonly found in the
gastrointestinal tract of various animals, the human oral cavity
and sewage (Milani et al., 2014) and the strains in this study
therefore represent the most common habitats of bifidobacteria.

Since B. animalis subsp. lactis is included in a wide range
of probiotics, it cannot be excluded that the strains isolated
from human feces, domestic pigs and dogs originate from
ingested products such as probiotics. However, the strain
collection also include strains such as Bl12 that has been
isolated from a healthy patient, which has not ingested probiotic
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products (Milani et al., 2013) and rabbits and monkeys have
with high likelihood not been exposed to probiotics and
these strains are therefore expected to be diverse from the
industrially exploited strains. The genome sizes of the different
strains also vary, which also indicate that the strains are
diverse (Supplementary Table 1). Most of the strains are
isolated or submitted to NCBI between year 2006–2018,
which reflect the increased focus on probiotics in the last
decades (Gogineni, 2013), while the type strain DSM 10140
originates from 1997 (Supplementary Table 1). However, the
submission date of the genome sequences to NCBI does not
necessarily reflect the time of isolation as some strains are
isolated even earlier.

B. animalis subsp. lactis has previously been shown to be
a strict monophyletic bifidobacterial taxon that has recently
evolved (Milani et al., 2013), however, some diversity is observed
between the strains within the subspecies based on the presence
of truly unique genes in some of the strains (Lugli et al., 2019).
The strains with the highest number of truly unique genes are
also included in this study. It is therefore concluded that the
strains included in the current study represent the diversity
within the subspecies.

The tet(W) Gene and its Genomic
Location in B. animalis subsp. lactis
A 1920 bp tet(W) gene flanked by genes annotated as mobile
element protein (966 bp), with inverted repeats at both ends of
50 bp and a hypothetical protein (HP) of unknown function
(183 bp) was found in the majority of the studied B. animalis
subsp. lactis strains (38 out of 44). These genes exhibit similar GC
content (51.01–53.23%), which is lower than the flanking genes
in the genetic region (52.46–62.25%) (Figure 1) and the average
of the genome (60.0–60.6%) (Supplementary Table 1). tet(W)
genes found in non-bifidobacterial and bifidobacterial species
exhibit a GC content of 52.19–53.18%, indicating that tet(W)
genes generally exhibit a GC content around 53%.

The three strains originating from dogs (2007B, 2010B, 2011B)
did not encode tet(W), the mobile element protein or the HP
(Figure 1 and Supplementary Table 1). Two strains (DS28_2,
LMG P-17502_2) only encoded the tet(W) gene, while LMG P-
17502 encoded tet(W) and the mobile element protein (Figure 1).
UBBLa 70 exhibited a large deletion in the tet(W), with only
117 bp remaining and two strains (ATCC 27673, 1528B) encoded
a truncated version of the mobile element protein. This indicate
that the three genes have been present originally in B. animalis
subsp. lactis but have been subject to deletion in some strains.
Despite these differences, the presence of tet(W), the putative
mobile element protein and the HP are highly conserved within
B. animalis subsp. lactis strains. This conservation was even
observed in the strains that are more genomic unique which
include ATCC 27673 and 1528B, and the Bl12 strain and the
strains isolated from monkeys and rabbits. This suggest that the
genetic organization surrounding tet(W) is not only present in
the industrially exploited B. animalis subsp. lactis strains.

The tet(W), the mobile element protein and the HP genes
were positioned in the same genomic context in the majority

of the examined strains, however, in a few strains, alterations
downstream (DS28_2, LMG P-17502_1, LMG P-17502_2, 2007B,
2010B, 2011B) and upstream (2011B) (Figure 1) of the three
genes were observed. These were the same strains that exhibited
complete or partial deletions of the tet(W), the mobile element
protein and HP genes.

The genomic position of tet(W) was also reported by Rozman
et al. (2020). They suggest that tet(W) and its flanking genes
from the HP before the IS element to the HP after isochorismate
pyruvate-lyase (Figure 1), based on nucleotide bias and codon
usage bias, is part of a putative genomic island that has co-
evolved together with B. animalis subsp. lactis and originate
from an ancestral host (Guo et al., 2012; Bertelli et al., 2017).
The codon usage bias corresponds with the gene GC content
being lower in these genes compared to the rest of the genome.
Genomic islands are defined as clusters of genes in bacterial
genomes of probable horizontal origin and they often provide
adaptive traits that has the ability to enhance the fitness of
bacteria within a specific niche (Dobrindt et al., 2004). The
putative genomic island in B. animalis subsp. lactis encodes for
genes involved in cell metabolism and gene regulation and has
not been found in other bacteria (Rozman et al., 2020). This
could suggest that the putative genomic island including tet(W)
encodes for important B. animalis subsp. lactis niche factors,
which enable it to survive and compete for nutrients in the gut
and has been part of the genome of B. animalis subsp. lactis long
before the antibiotic era.

The tet(W), the mobile element protein and the HP gene
were absent in all eight B. animalis subsp. animalis strains
included in the study (Supplementary Table 1), which otherwise
exhibited almost identical gene organization in the genomic
region including the genes part of the putative genomic island
(Figure 1). This could suggest that the tet(W), the mobile element
protein and HP genes have been inserted in an ancestor of the
B. animalis subsp. lactis close to subspecies differentiation and
most likely lost by the three dog originating strains (2007B,
2010B, 2011B) not carrying tet(W).

Identification of the Putative Mobile
Element Protein Flanking tet(W)
The presence of a putative mobile element protein next to tet(W)
has previously been reported (Ammor et al., 2008; Gueimonde
et al., 2010; Rozman et al., 2020). The sequence encodes a
putative DDE transposase gene that is flanked by inverted
repeats upstream and downstream of 50 bp, which collectively
belong to the insertion sequence (IS) 5-like element ISBian1
family that originate from B. animalis according to ISFinder
(Siguier et al., 2006).

DDE transposases are able to catalyze the movement of IS
elements and transposons by introducing nicks at each end
of the elements (Frost et al., 2005) and are able to move
within a genome or horizontally if they are part of mobile
genetic element vectors such as plasmids, conjugative transposon
and phages (Vandecraen et al., 2017). However, several studies
have been unsuccessful in transferring tet(W) from B. animalis
subsp. lactis to other species and genera (Gueimonde et al., 2010;
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Naghizadeh Raeisi et al., 2018; Polit et al., 2018), A BLASTp
analysis showed that the IS5-like element ISBian1 family
with 99.07% identity was found in the human ileum isolated
Angelaksiella massiliensis (Mailhe et al., 2017) and the IS5
element was not associated with tet(W) in this species. The IS5
element was not found in other bifidobacterial species besides
B. animalis subsp. lactis. The IS5 element was not found in other
positions within the B. animalis subsp. lactis genomes and the
inverted repeats flanking the transposase was only flanking the
transposase next to tet(W). This indicates that the IS element is
stably positioned next to tet(W) and does not mobilize within
the B. animalis subsp. lactis genome, which is in accordance
with the stable nature of the B. animalis subsp. lactis genome
(Morovic et al., 2018).

Besides IS elements involvement in mobilization, IS5 elements
are mainly able to modulate the expression of neighboring
genes through co-transcription from the transposase promoter
located in the terminal inverted repeat if inserted into non-
coding regions (Schnetz and Rak, 1992; Luque et al., 2006;
Vandecraen et al., 2017). The IS5 element flanking tet(W) in
B. animalis subsp. lactis is positioned in a non-coding region
meaning it does not cause deletion of other genes (Figure 1)
and has previously been shown to be co-transcribed with tet(W)
(Gueimonde et al., 2010). This indicates that the IS5 element
potentially is involved in modulating the expression of tet(W)
rather than mobilization.

tet(W) Encoded by Gram-Positive and
Gram-Negative Bacteria
All previously published tet(W) genes were included in the
analysis. Direct submissions at NCBI also include other tet(W)
genes, however, none of these exhibited 100% identity to the
subspecies B. animalis subsp. lactis tet(W) and we did not
find any variants not represented in the analysis (data not
shown). The published tet(W) genes are therefore a good
presentation of tet(W).

tet(W) is one of the most widely spread resistance genes and
is both found in Gram-positive and -negative bacteria (Chopra
and Roberts, 2001). Despite the wide spread nature of tet(W),
it was not found to be encoded by all the strains within the
examined Gram-positive and -negative species, showing that
tet(W) has been acquired by a few strains or lost as compared with
B. animalis subsp. lactis where it is a general genetic feature of
the subspecies. For both the Gram-positive and -negative bacteria
other than B. animalis subsp. lactis, tet(W) was often found to
be flanked by mobile genetic elements (Table 1) and in some
strains tet(W) was positioned in a genomic region with several
mobile genetic elements, e.g., B. longum BG7 and A. pyogenes
BBR1. Transfer of tet(W) has been reported for B. longum strain
F8 (Kazimierczak et al., 2006), A. pyogenes (Billington et al.,
2002), S. suis (Palmieri et al., 2011) and B. fibrosolvens (Scott
et al., 1997). Within species, the tet(W) genes in the examined
Gram-positive and -negative bacteria were positioned in different

FIGURE 1 | The chromosomal region flanking tet(W) in Bifidobacterium animalis subsp. lactis and the same region in Bifidobacterium animalis subsp. animalis.
Hypothetical proteins are designated HP. GC content (%) is provided for the genes found in the B. animalis subsp. lactis type strains (TS) DSM 10140. Genes that
are present in the majority of the examined B. animalis subsp. lactis strains (represented by DSM 10140) has the same color in all the shown strains [blue colors
downstream of tet(W) and green colors upstream of tet(W)].
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TABLE 2 | Clades in the nucleotide and protein phylogenetic trees based on
number of SNPs and SAPs.

Clades SNPs SAPs Species

I 0–1 0–1 Bifidobacterium animalis subsp. lactis

II 12 5 Bifidobacterium pseudocatenulatum

III 11–13 5–7 Bifidobacterium breve, Bifidobacterium longum,
Bifidobacterium thermophilum, Streptococcus
suis, Corynebacterium, Lactobacillus reuteri

IV 15 6 Selenomonas ruminantium

V 19 8 Bifidobacterium longum

VI 26–29 15 Bifidobacterium longum, Clostridium difficile

VII 38 20 Trueperella pyogenes

VIII 44–46 21–23 Bifidobacterium bifidum, Bifidobacterium breve,
Bifidobacterium longum, Bifidobacterium
pseudolongum, Bifidobacterium
pseudocatenulatum, Butyrivibrio fibrosolvens,
Mitsuokella multicidus, Megasphaera elsdenii,
Roseburia sp.

IX 13 6 Bifidobacterium longum, Bifidobacterium
thermophilum

X 28 13 Streptococcus suis

XI 161 69 Arcanobacterium pyogenes

genomic regions. Together, this indicates that tet(W) probably
has been acquired independently in the examined bacteria
in Table 1.

The observation that tet(W) is generally present in B. animalis
subsp. lactis strains and is positioned in the same genomic
region indicates that tet(W) is conserved and thereby an innate
part of the subspecies, while tet(W) only has been acquired
by a few strains within the examined Gram-positive and
-negative bacterial species.

tet(W) Encoded by B. animalis subsp.
lactis Is Distinct From tet(W) Encoded by
Other Bacteria
A phylogenetic analysis was conducted of the tet(W) gene
(Supplementary Figure 1) and protein (Figure 2) present in
B. animalis subsp. lactis (Supplementary Table 1) and in the
examined Gram-positive and -negative bacteria (Table 1).

The tet(W) genes encoded by the M. elsdenii strains (2–9, 7–
11, 4–13) was shorter (1474–1476 bp) and exhibited a GC content
(54.61–55.22%) higher compared to the other examined tet(W)
genes and was therefore excluded from the phylogenetic analysis.
The tet(W) gene of the remaining M. elsdenii strain (25–50) was
found to be more similar to the other tet(W) genes and therefore
included in the analysis.

Generally, the phylogenetic trees showed a high similarity
between the different tet(W) genes and proteins, which is in
agreement with previous observations (Aminov and Mackie,
2007), with the number of SNPs ranging from 1 to 46 and
single amino acid polymorphisms (SAPs) ranging from 1 to 23
in the coding region compared to the tet(W) genes encoded by
B. animalis subsp. lactis. The tet(W) gene encoded by A. pyogenes
differed the most from B. animalis subsp. lactis tet(W) (161
SNPs and 69 SAPs). None of the SNPs lead to a premature

FIGURE 2 | tet(W) protein phylogenetic tree. The tree was built by
evolutionary analysis by maximum likelihood method and JTT matrix-based
model (Jones et al., 1992; Kumar et al., 2018). The branch lengths are
measured in the number of substitutions per site. Strain name and genome or
tet(W) gene accession number is provided for the sequences. Type strains
(TS) are included for the species, when the type strain encodes tet(W). Clades
are defined by the number of SAPs, which can be seen in Table 2. The
phylogenetic tree was rooted with the ribosomal protection gene tet(O) from
Campylobacter jejuni (M18896) as an outgroup and similar results was
obtained with the Streptococcal ribosomal protection gene tet(M) (X04388)
(data not shown) (Levy et al., 1999).

stop codon. Based on the number of SNPs and SAPs (Table 2),
clades were formed in the phylogenetic trees (Figure 2 and
Supplementary Figure 1), which follows the phylogeny for
B. animalis subsp. lactis but not the other examined Gram-
positive and -negative bacteria.
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FIGURE 3 | Core genome phylogenetic tree based on 250 core genes which
include B. animalis subsp. lactis strains and other related Bifidobacterium
species. Type strain has been included for each species, designated TS and
strains both with and without tet(W) are included for each species, except for
B. animalis subsp. animalis and B. bifidum. tet(W) positive strains are marked
with a green circle. B. animalis subsp. lactis UBBLa 70 exhibit a tet(W) gene
with large deletions and is marked with a yellow circle. The tree is rooted with
the Bifidobacterium tissieri type strain DSM 100201 as an outgroup (Lugli
et al., 2018). Bootstrap percentages are shown at node points.

The phylogenetic analysis showed that the tet(W) genes
(Supplementary Figure 1) and proteins (Figure 2) from the
B. animalis subsp. lactis strains share a high degree of homology
and forms a separate clade.

The tet(W) gene and protein in the B. pseudocatenulatum
type strain DSM 20438 (Genome GC content 56.40%) was
located nearest the B. animalis subsp. lactis tet(W) genes
and proteins in the phylogenetic trees and exhibited 12 SNPs
and 5 SAPs compared to the tet(W) genes and proteins encoded
by B. animalis subsp. lactis. The tet(W) gene encoded by
B. pseudocatenulatum DSM 20438 and B. animalis subsp. lactis
both exhibit a high identity to tet(W) from S. suis (FN396364).
The tet(W) gene encoded by B. pseudocatenulatum strain 12
exhibited 45 SNPs and 22 SAPs and was located in another clade
than the DSM 20438 tet(W) gene, indicating that the tet(W)
encoded by the two B. pseudocatenulatum strains differ. tet(W)
has been shown to be present in 33–41% of B. pseudocatenulatum
isolates from human (Aires et al., 2007; Wang et al., 2017), no
mobile genetic elements including IS5 elements was found in the
flanking regions of tet(W) in the two examined strains (Table 1)
and transfer of tet(W) from B. pseudocatenulatum have so far not
been shown to occur (Wang et al., 2017). An examination of the
flanking sequences of tet(W) in B. pseudocatenulatum type strain
DSM 20438 revealed that the downstream genes were organized
similarly as the genes downstream of tet(W) in the majority of
the studied B. animalis subsp. lactis strains (Figure 1), except
that six hypothetical proteins was present between tet(W) and
the GMP synthase gene and no IS5-like element was present
(Supplementary Figure 2). These genes were also present in
B. pseudocatenulatum strain 12 but in another genetic location
than tet(W), and in a B. pseudocatenulatum strain (ca_0067,
NZ_RCXS00000000) that did not encode tet(W). This indicates
that the presence of these genes is independent of the presence of
tet(W) and are shared genes between B. animalis subsp. lactis and
B. pseudocatenulatum.

The tet(W) genes present in the examined Gram-positive
and -negative bacteria including the two B. pseudocatenulatum
strains, were scattered over different clades in the phylogenetic
tree indicating that the tet(W) genes encoded by these bacteria
are diverse, does not follow the phylogeny of the specific species
and thereby support the acquired nature of these tet(W) genes.

tet(W) Encoded by B. animalis subsp.
lactis Follows the Phylogeny of the
Subspecies
A core genome phylogenetic analysis was conducted with the
examined B. animalis subsp. lactis strains (Supplementary
Table 1), the bifidobacterial species from Table 1 and B. animalis
subsp. animalis strains from Supplementary Table 1 (Figure 3).
For each species, strains were included that both did and did
not encode tet(W), except for B. animalis subsp. animalis and
B. bifidum.

The core genome phylogenetic analysis showed that the
bifidobacterial species separated from each other in individual
clades and both strains with and without tet(W) clustered
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together within species, showing that the core genome analysis
was able to separate at species and subspecies level.

The fact that the tet(W) gene encoded by the examined
B. animalis subsp. lactis strains formed a separate
clade in the gene and protein phylogenetic analysis
(Supplementary Figure 1 and Figure 2) similar to the one
formed in the core genome phylogenetic tree shows that
the phylogeny of tet(W) follows the phylogenetic relationship of
the subspecies, indicates that tet(W) originates from an ancestral
host. This is further supported by the gene being positioned
in the same genomic context in the examined strains. For the
other examined bifidobacterial species, the tet(W) genes does not
follow the phylogeny of the species, indicating that the tet(W)
gene has been acquired at different timepoints, which is in line
with them being flanked by different mobile genetic elements
and positioned in different genomic contexts. This indicates that
tet(W) present in B. animalis subsp. lactis is distinct from tet(W)
found in other bifidobacterial species and other genera.

CONCLUSION

The paper presents a method where in silico genome
analysis together with phylogenetic analysis can be used to
determine whether a gene is innate and thereby not considered
a safety concern.

A phylogenetic analysis of tet(W) in B. animalis subsp. lactis,
a widely used probiotic bacterium, was performed and shows
that tet(W) in this specific subspecies is present in the majority
of the strains (41 out of 44), positioned in the same genomic
region and is different on the amino acid level from tet(W)
genes found in other species. tet(W) is flanked by an IS5-like
element, which is known to be present in other human gut related
bacteria, however, the IS5-like element was not associated with
tet(W) in these bacteria. Previously results show that tet(W) is co-
transcribed with the IS5 transposase in B. animalis subsp. lactis,
indicating that the expression of tet(W) is regulated by the IS5
transposase. Together with the previous unsuccessful attempts to
transfer tet(W), our data suggest that tet(W) is non-transferable
and that the flanking IS5 element is not involved in mobilization
of tet(W). The phylogenetic analysis showed that tet(W) follows
the phylogenetic relationship of the subspecies and is distinct
from tet(W) found in other genera and bifidobacterial species.

We conclude that tet(W) in B. animalis subsp. lactis originates
from an ancestral host and is therefore an innate part of the

subspecies and should be considered as innate (intrinsic) in
this subspecies. There is therefore a negligible risk that tet(W)
from B. animalis subsp. lactis will add to the pool of mobile
resistance genes and thus potentially cause treatment failures in
humans and animals.
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The emergence of multidrug-resistant bacteria in companion animals is an increasing

concern in view of the concept of One Health. The antimicrobials linezolid (LZD) and

tigecycline (TGC) are effective against multidrug-resistant bacteria isolated from humans;

however, thus far, no previous study has evaluated the efficacy of these drugs against

bacteria isolated from companion animals. This study aimed to evaluate the efficacy of

LZD and TGC against bacteria that were isolated from companion dogs and showed

resistance to all classes of antimicrobial agents. Clinical samples (auditory channel, eye,

skin, and urine) were collected from dogs that visited the Veterinary Medical Teaching

Hospital of Konkuk University (Seoul, South Korea) from October 2017 to September

2020. In total, 392 bacterial isolates were obtained, of which 85 were resistant to

all classes of antimicrobial agents tested and were, therefore, considered potentially

pan-drug resistant (PDR). The susceptibility of isolates to LZD and TGC was determined

by the disk diffusion method and interpreted using the Clinical Laboratory Standards

Institute guidelines. In total, 95.6% (43/45) and 97.8% (44/45) of gram-positive isolates

were susceptible to LZD and TGC, respectively, whereas 82.5% (33/40) of gram-negative

isolates were sensitive to TGC. In conclusion, both agents showed favorable efficacy, with

the susceptibility rates for all potential PDR bacteria, except Pseudomonas spp., ranging

from 72.7 to 100%. Thus, these drugs may serve as excellent antimicrobial options for

veterinary medicine in the future.

Keywords: linezolid, tigecycline, antimicrobial resistance, pan-drug-resistant, companion animals

INTRODUCTION

The emergence of multidrug-resistant (MDR) bacteria, which are resistant to three or more
categories of antimicrobials, in companion animals is highly concerning. Particularly, resistance
to antimicrobials is growing among bacteria such as Staphylococcus aureus, Staphylococcus
pseudintermedius, and Escherichia coli (1), which cause infections in dogs. The transmission of such
bacteria can be either direct or indirect among dogs, owners, and veterinary staff. Indeed, practicing
veterinarians are far more likely to experience nasal colonization with S. aureus than the general
population (2). Notably, under theOneHealth concept, companion animals have been documented
to be reservoirs of some high-risk MDR clones of Enterobacteriaceae (3), which are likely to be
acquired from their human owners. Overuse of antimicrobials in veterinary clinics may amplify
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antimicrobial resistance and result in a subsequent spread
of resistant microorganisms to animal owners. Therefore, the
appropriate use of antimicrobials to prevent pain, illness, or
death should be adopted for infection management in animals
to improve the public health of both humans and animals.

Previous studies that analyzed the temporal trends of
antimicrobial resistance in small collections of bacterial isolates
from infected companion animals have provided evidence for
a significant increase in antimicrobial resistance, particularly to
agents frequently used in clinical settings, such as cephalosporins,
ampicillins, and quinolones (4).

Linezolid (LZD) is a member of the oxazolidinone class
of synthetic antibacterial agents that inhibit bacterial protein
synthesis through a unique mechanism. In contrast to other
inhibitors of protein synthesis, oxazolidinones act early in
translation by preventing the formation of a functional initiation
complex (5). Discovered in 1987 at E.I. DuPont de Nemours and
Co., Inc., DuP-721 was the first well-characterized oxazolidinone
(5) that exhibited strong activity against MDR gram-positive
pathogens (6). In fact, it is currently used for the treatment of
clinical methicillin-susceptible andmethicillin-resistant S. aureus
infections and for managing infections caused by vancomycin-
resistant enterococci (7) in humans.

Tigecycline (TGC) is a glycylcycline antibiotic that is effective
against a variety of gram-positive and gram-negative bacteria (8).
TGC is currently one of the most potent antimicrobial agents
for treating infections caused by MDR bacteria in humans (8).
This drug has demonstrated in vitro activity against important
resistant organisms, including methicillin-resistant S. aureus,
penicillin-resistant Streptococcus pneumoniae, and vancomycin-
resistant enterococcal species, in addition to extended-spectrum
beta-lactamase-producing E. coli and Klebsiella pneumoniae
(9). A previous study has shown that more than 90% of
Enterobacteriaceae isolates are susceptible to this drug (10).

Nevertheless, LZD and TGC have not been used as first- or
second-line treatment options in companion animals owing to
concerns that the overuse and abuse of antimicrobials in animals
would limit treatment options for human bacterial infections, in
view of the One Health concept. Moreover, no previous study
has evaluated the efficacies of LZD and TGC against bacteria
originating from companion animals.

The present study aimed to evaluate the efficacies of LZD and
TGC against potential pan-drug-resistant (PDR) bacteria (i.e.,
resistant to all classes of antimicrobial agents) isolated from dogs.
Antimicrobial stewardship and related policies are beyond the
scope of the current work.

MATERIALS AND METHODS

Sampling
A total of 359 clinical samples were collected from different
lesions in dogs that visited the Veterinary Medical Teaching
Hospital of Konkuk University (Seoul, South Korea) from
October 2017 to September 2020. The samples were immediately
placed into a transport medium (ESwab, Copan, Brescia,
Italy). The sampling sites included the auditory channels,
eyes/conjunctiva, gastrointestinal tract, skin/mucosa, blood, and

TABLE 1 | Distribution of sampling sites and isolates.

Sites No. of samples No. of isolates

Urogenital tract 101 99

Auditory channel 92 80

Skin/mucosa 79 105

Eye/conjunctiva 33 30

Gastrointestinal tract 10 25

Tooth 7 7

Joint effusion 7 0

Blood 6 5

Respiratory tract 5 17

Other sites* 19 24

Total 359 392

*Other sites include cerebrospinal fluid, tissue of various types, synovial capsule, foreign

body, mass, bone (Supplementary File 1).

urogenital tract (Table 1). Auditory channel, eye, and skin
samples were routinely collected using sterile cotton swabs, and
urine samples were collected by cystocentesis. In addition, we
collected at least 2 g of feces, which were cubed to ∼½ to ¾
inch on a single side using a fecal loop. Peripheral blood was
collected by venipuncture of the jugular vein to identify systemic
infections. Furthermore, cerebrospinal fluid was obtained at the
junction between lumbar vertebrae 5 and 6 using a conventional
lumbar tapping method, and samples from the peritoneal walls
were collected with sterile cotton swabs. All samples were
immediately transported to the NosVet Laboratory (Gyeonggi-
do, South Korea) and analyzed within 3–4 h.

The animal study and the protocol was reviewed and approved
by the Institutional Animal Care and Use Committee (KU20218).
Written informed consent was obtained from the owners for the
participation of their animals in this study.

Bacterial Isolates
In total, 392 isolates were obtained from the dogs by directly
inoculating blood agar plates with the clinical samples using
cotton swabs, followed by incubation of the agar plates at
37◦C for up to 24 h. Morphologically identical colonies were
picked and sub-cultured onto blood agar plates, and species were
identified using a matrix-assisted laser desorption/ionization
mass spectrometer (ASTA, Gyeonggi-do, South Korea). Bacterial
stock solutions were stored at−20◦C.

Antibiotic Susceptibility Testing
Commercial antimicrobial disk diffusion tests were performed
by NosVet, Inc., according to the Clinical Laboratory
Standards Institute (CLSI) guidelines (VET08). Susceptibility
to 21 antibiotics from 10 classes, namely, amikacin (AK),
amoxicillin/clavulanic acid (AMC), ampicillin (AMP),
azithromycin (AZM), cefixime (CFM), cefotaxime (CTX),
cefpodoxime (CPD), ceftazidime (CAZ), cephalexin (CL),
cephazolin (KZ), ciprofloxacin (CIP), clindamycin (DA),
doxycycline (DO), enrofloxacin (ENR), erythromycin
(E), gentamicin (CN), lincomycin (MY), ofloxacin (OFX),
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spiramycin (SP), sulfamethoxazole/trimethoprim (SXT), and
tetracycline (TE), was determined using a Vitek R© AST-P601
card (bioMérieux, Marcy l’Étoile, France).

Two additional antibiotics, namely, LZD and TGC (Thermo
Fisher Scientific, Waltham, MA, USA), which are not included
in the CLSI VET08 guidelines, were tested against potential
PDR strains. Susceptibility to LZD and TGC was determined
by the disk diffusion method and interpreted based on the
CLSI guidelines. The European Committee on Antimicrobial
Susceptibility Testing (EUCAST) guidelines were used when
information was missing in the CLSI guidelines. Briefly, bacteria
were inoculated from stock solutions onto Mueller–Hinton agar
plates and incubated at 37◦C for 24 h. Colonies were suspended
in normal saline, and the turbidity was adjusted to a 0.5
McFarland standard equivalent (∼108 colony-forming units per
milliliter). Sterile cotton swabs were dipped into inoculation
broth and subsequently streaked over Mueller–Hinton agar
plates. Antibiotic disks of 30 µg of LZD and 15 µg of TGC were
then placed on these plates, followed by incubation of the plates
at 37◦C for 24 h. Diameters of the inhibition zones were used
to categorize bacteria as susceptible, intermediate resistant, and
resistant according to the CLSI and EUCAST guidelines.

Statistical Analysis
Descriptive statistics were used for the analyses of signalment,
clinical data, and laboratory findings. All statistical analyses were
performed using Microsoft Excel (Microsoft Corp., Redmond,
WA, USA). An exact chi-square test was used to compare the
efficacies of LZD, TGC, and the 21 other antibiotics against
potential PDR bacteria from dogs. Differences with P-values of
<0.05 were considered statistically significant.

RESULTS

Based on the antibiotic sensitivity evaluation conducted by
NosVet, Inc., 211 bacterial isolates were classified as extensively
drug resistant (XDR), as previously described (11). Of these 211
isolates, 57 were resistant to eight classes and 69 were resistant
to nine classes, while 85 were resistant to all ten classes of
antimicrobial agents tested and were thus considered potential
PDR bacteria (11). Table 2 presents the taxonomic distribution
of the 85 isolates.

Gram-Positive Isolates
According to the tests conducted by NosVet, Inc., 163 (65%) of
249 gram-positive strains showed sensitivity to AK, 131 (52.6%)
were sensitive to AMC, 90 (36.1%) were sensitive to AMP, 110
(44.2%) were sensitive to AZM, 5 (2.0%) were sensitive to CFM,
89 (35.7%) were sensitive to CTX, 88 (35.3%) were sensitive to
CPD, 11 (4.4%) were sensitive to CAZ, 97 (39.0%) were sensitive
to CL, 114 (45.8%) were sensitive to KZ, 20 (8.0%) were sensitive
to CIP, 93 (37.3%) were sensitive to DA, 124 (49.8%) were
sensitive to DO, 133 (53.4%) were sensitive to ENR, 99 (39.8%)
were sensitive to E, 88 (35.3%)were sensitive to CN, 8 (3.2%)were
sensitive to MY, 125 (50.2%) were sensitive to OFX, 87 (34.9%)
were sensitive to SP, 84 (33.7%) were sensitive to SXT, and 85
(34.1%) were sensitive to TE. Among these strains, 215 (86.3%)

TABLE 2 | Species distribution of potential pan-drug-resistant isolates tested in

this study.

Gram Species No. of isolates

Negative Escherichia coli 12

Klebsiella pneumoniae 11

Proteus mirabilis 10

Pseudomonas aeruginosa 3

Citrobacter freundii 1

Enterobacter aerogenes 1

Enterobacter cloacae complex 1

Pasteurellaceae bacterium 1

Positive Staphylococcus pseudintermedius 26

Enterococcus faecium 6

Enterococcus faecalis 5

Staphylococcus schleiferi 3

Corynebacterium auriscanis 2

Rothia nasimurium 1

Staphylococcus epidermidis 1

Streptococcus canis 1

Total 85

wereMDR, 125 (50.2%) were XDR, and 45 (18.0%)were potential
PDR bacteria (Supplementary File 1).

Among the potential PDR gram-positive bacteria, 95.6%
(43/45) and 97.8% (44/45) of isolates were susceptible to LZD
(Figure 1) and TGC (Figure 2), respectively. Superiority of LZD
and TGC over the other antibiotics was statistically analyzed, and
the result is presented in Tables 3, 4. Overall, the potential PDR
bacteria were significantly more susceptible to these two agents
than to the other 21 agents (P < 0.05). The average diameter of
the zone of inhibition for LZD was 31mm, which fell within the
susceptibility zone diameter of gram-positive bacteria for LZD.
The average diameter of the zone of inhibition was 24.5mm for
TGC, which exceeded the zone of resistance size.

Staphylococcus spp.
One hundred sixty Staphylococcus spp. isolates showed sensitivity
to AK (93.7%), followed by AMC (53.1%) and DA (52.4%). Of
these isolates, 30 (18.7%) were potential PDR strains, and all
of them were susceptible to LZD and TGC, with an average
diameter of the zone of inhibition of 31.7 mm.

Enterococcus spp.
Forty-two Enterococcus spp. isolates showed sensitivity to AMP
(17.5%), followed by AMC (16.8%). Of these isolates, 11 (26.2%)
were potential PDR strains. The sensitivity of potential PDR
Enterococcus faecium and Enterococcus faecalis isolates to LZD
was 83.3% (5/6) and 80.0% (4/5), respectively, and the sensitivity
to TGC was 83.3% (5/6) and 100% (5/5), respectively.

Uncommonly Encountered Species
One Rothia nasimurium, one Streptococcus canis, and two
potential PDR Corynebacterium auriscanis isolates were
susceptible to LZD and TGC.
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FIGURE 1 | Efficacy of linezolid compared to 21 antibiotics for potential pan-drug-resistant (PDR) bacteria from dogs. Circles indicate the susceptibility of

gram-positive potential PDR isolates for each antibiotic. Squares indicate the average susceptibility of gram-positive potential PDR isolates.

Gram-Negative Isolates
According to the tests conducted by NosVet, Inc., 105 (73.4%)
of the 143 gram-negative strains showed sensitivity to AK,
68 (47.6%) were sensitive to AMC, 33 (23.1%) were sensitive
to AMP, 37 (25.9%) were sensitive to AZM, 56 (39.2%) were

sensitive to CFM, 61 (42.7%) were sensitive to CTX, 59 (41.3%)
were sensitive to CPD, 83 (58.0%) were sensitive to CAZ, 55
(38.5%) were sensitive to CL, 49 (34.3%) were sensitive to KZ,
17 (11.9%) showed sensitivity to CIP, 4 (2.8%) were sensitive
to DA, 58 (40.6%) were sensitive to DO, 64 (44.8%) were
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FIGURE 2 | Efficacy of tigecycline compared to 21 antibiotics for potential pan-drug-resistant (PDR) bacteria from dogs. Circles indicate the susceptibility of potential

PDR isolates for each antibiotic. Squares indicate the average susceptibility of potential PDR isolates.

sensitive to ENR, 11 (7.7%) were sensitive to E, 79 (55.2%)
were sensitive to CN, 1 (0.7%) showed sensitivity to MY, 71
(49.7%) were sensitive to OFX, 1 (0.7%) showed sensitivity to
SP, 53 (37.1%) were sensitive to SXT, and 50 (35.0%) were
sensitive to TE. Among these strains, 130 (90.9%) were MDR, 87

(60.8%) were XDR, and 40 (27.9%) were potential PDR bacteria
(Supplementary File 1).

Of note, 82.5% (33/40) of the potential PDR gram-negative
isolates were sensitive to TGC. The average inhibition zone
diameter was 18.5mm for positive isolates, which slightly
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TABLE 3 | Superiority of linezolid efficacy over 21 different antibiotics to eradicate

potential pan-drug-resistant bacteria from dogs.

Antibiotic Susceptible (%) Linezolid P-value

Amikacin 39.1% <0.001

Amoxycillin/Clavulanic acid 10.9% <0.001

Ampicillin 0.0% <0.001

Azithromycin 8.7% <0.001

Cefixime 0.0% <0.001

Cefotaxime 4.3% <0.001

Cefpodoxime 0.0% <0.001

Ceftazidime 9.7% <0.001

Cephalexin 0.0% <0.001

Cephazolin 15.2% <0.001

Ciprofloxacin 0.0% <0.001

Clindamycin 4.3% <0.001

Doxycycline 28.3% <0.001

Enrofloxacin 2.2% <0.001

Erythromycin 4.3% <0.001

Gentamicin 0.0% <0.001

Lincomycin 3.2% <0.001

Ofloxacin 0.0% <0.001

Spiramycin 2.2% <0.001

Sulfamethoxazole/Trimethoprim 0.0% <0.001

Tetracycline 0.0% <0.001

Linezolid 95.7%

exceeded the resistance cutoff. Among Enterobacteriaceae, 100%
(12/12) of the E. coli strains and 72.7% (8/11) of the K.
pneumoniae strains, as well as single Citrobacter freundii,
Enterobacter aerogenes, and Enterobacter cloacae complex
isolates, were susceptible to TGC. The overall sensitivity to TGC
was 88.5% (23/26).

Escherichia coli
Fifty-two E. coli isolates showed sensitivities of 27.3% to AK and
21.0% to CN. Of these, 12 (23.0%) were potential PDR strains,
as recommended by the CLSI VET08 guidelines. The average
diameter of the zone of inhibition for TGC was 18.6mm, which
fell within the susceptibility zone (≥18 mm).

Klebsiella pneumoniae
Nineteen isolates of K. pneumoniae showed <10% sensitivity
to the 21 antibiotics, and 11 (57.8%) were potential PDR
strains, which was very high compared to that in other species.
Furthermore, K. pneumoniae showed the highest resistance rate
(27.3%; 3/11) to TGC among the bacteria tested in this study.
The inhibition zone diameters of the resistant isolates were in
the range of 13–17mm, which was within the resistance zone
(≥18 mm).

Proteus mirabilis
Among the 31 P. mirabilis isolates, 10 were classified as potential
PDR strains, and only one of these (10%; 1/10) was classified as
being resistant to TGC.

TABLE 4 | Superiority of tigecycline efficacy over 21 different antibiotics to

eradicate potential pan-drug-resistant bacteria from dogs.

Antibiotic Susceptible (%) Tigecycline P-value

Amikacin 40.0% <0.001

Amoxycillin/Clavulanic acid 11.8% <0.001

Ampicillin 0.0% <0.001

Azithromycin 7.1% <0.001

Cefixime 5.7% <0.001

Cefotaxime 7.1% <0.001

Cefpodoxime 1.2% <0.001

Ceftazidime 17.1% <0.001

Cephalexin 1.2% <0.001

Cephazolin 10.6% <0.001

Ciprofloxacin 1.9% < 0.001

Clindamycin 2.4% <0.001

Doxycycline 18.8% <0.001

Enrofloxacin 2.4% <0.001

Erythromycin 2.4% <0.001

Gentamicin 2.4% <0.001

Lincomycin 1.9% <0.001

Ofloxacin 3.5% <0.001

Spiramycin 1.5% <0.001

Sulfamethoxazole/Trimethoprim 0.0% <0.001

Tetracycline 1.2% <0.001

Tigecycline 90.6%

Pseudomonas aeruginosa
P. aeruginosa isolates were less sensitive to the 21 antibiotics
tested than those of other species. Only three of the 13 isolates
were classified as potential PDR strains, and all three isolates
(100%) were resistant to TGC, with an inhibition zone diameter
of 0 mm.

Uncommonly Encountered Species
One (100%) isolate of each of the following species was
susceptible to TGC: C. freundii, E. aerogenes, E. cloacae complex,
and an unclassified species of Pasteurellaceae.

DISCUSSION

To the best of our knowledge, no studies reported the
susceptibility of S. aureus, isolated from animals, to LZD and
TGC; however, some reports indicated that all human S. aureus
isolates show susceptibility to these drugs (12, 13), consistent
with our isolates from dog samples.

S. pseudintermedius, the most common opportunistic
pathogen in dogs (14), exhibits resistance to commonly used
antimicrobials (15). It is the most common pathogen causing
recurrent skin infections in dogs because of allergies, endocrine
diseases, or other immunocompromising factors including old
age and cancer (15). The possibility of S. pseudintermedius
transmission from animals to humans was evaluated in four
clinical human cases, among which two dog owners and their
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dogs carried identical S. pseudintermedius strains (16). Although
some strains can acquire methicillin resistance and cause severe
refractory infections, even potential PDR strains are susceptible
to LZD and TGC.

R. nasimurium and S. pseudintermedius can exhibit increased
pathogenicity through synergistic effects (17); if these bacteria
are potential PDR, then the associated fatality rate can
significantly increase.

E. faecalis is the most frequently encountered enterococcal
species in the anus and tonsils of dogs, followed by E. faecium
(18). These two species are considered the third and fourth most
prevalent nosocomial human pathogens worldwide, respectively
(18), necessitating their control in both humans and animals.
Although there is scarce evidence for susceptibility testing of
Enterococcus spp. in animal samples, the sensitivity of E. faecalis
and E. faecium isolates from human samples to LZD was 94.3
and 93.5%, respectively (12). In another study, the sensitivity
of Enterococcus spp. isolates to TGC was 100% (201/201) (19),
consistent with our results.

Oxazolidinones, including LZD, are excluded from gram-
negative bacteria-related infection treatment because they
enhance pump activity against LZD and expel the antibiotic from
the cytoplasm, resulting in lower LZD accumulation levels in
E. coli, C. freundii, and E. aerogenes than in S. aureus and E.
faecium (20).

E. coli is frequently encountered and causes severe infections
in both humans and dogs (21). The possible transmission
of virulent and/or resistant E. coli strains between animals
and humans through numerous pathways is highly concerning
(21). E. coli represents a main reservoir of resistance genes
probably responsible for treatment failure in both human
and veterinary medicine (22). Indeed, an increasing number
of resistance genes have been identified in E. coli during
the past decades, mostly acquired through horizontal gene
transfer (23). In the enterobacterial gene pool, E. coli acts
as a donor and recipient of resistance genes from other
bacteria (24). Hence, the broad-spectrum resistance of this
species is quite likely, considering that most recommended
antimicrobials do not effectively inhibit its growth. Therefore,
TGCmay broaden antimicrobial treatment choices for refractory
E. coli infections.

K. pneumoniae is an important nosocomial agent that
spreads easily (25) and causes community-onset infections in
companion animals and humans. It is the second most common
Enterobacteriaceae species causing urinary tract infections in
dogs; strains are frequently MDR, posing important therapeutic
limitations (26, 27). In previous studies, 84.6% (55/60) and
87.6% (340/388) of human K. pneumoniae isolates showed TGC
susceptibility (19, 28). Our results showed a lower susceptibility
TGC rate (73.7%), indicating the stronger resistance of isolates
of animal origins to TGC. The resistance gene appears to have
originated from the chromosome of a Pseudomonas species and
may have been transferred to plasmids by adjacent site-specific
integrases. Although the gene appears to be rare in human
clinical isolates, the transferability of the gene cluster and its
broad-spectrum substrate make further dissemination of this
mobile TGC resistance determinant possible (29). The rapid

development of TGC resistance necessitates further expansion of
other treatment options.

Human Proteus spp. and P. aeruginosa isolates exhibit strong
resistance to TGC. Nevertheless, we evaluated their susceptibility
to TGC because strains of the same species may have different
antimicrobial susceptibility profiles depending on their host of
origin (30). P. mirabilis is the epitome of an opportunistic
nosocomial pathogen in humans and animals (31), causing
urinary tract infections (32) and chronic otitis externa (33) in
companion animals. Moreover, P. mirabilis has low susceptibility
to TGC (34). Moreover, a novel TGC resistance gene, tet, has
recently been identified in Proteus species isolated from animals
(35). Fortunately, isolates from the current study, collected over 3
years, showed sensitivity to TGC, suggesting that TGC-resistant
P. mirabilis has not yet been disseminated in Korea.

P. aeruginosa is a clinically important opportunistic pathogen
causing serious acute and chronic infections (36). It is ubiquitous
in the environment and can persist in water and soil despite
minimal nutrients, tolerating a broad spectrum of humidity
and temperature conditions (37). P. aeruginosa is one of the
pathogens that most frequently acquire or develop multidrug
resistance (37). The exceptional array of intrinsic and acquired
drug resistance mechanisms employed by P. aeruginosa renders
the antibiotic-based treatment of these infections difficult. One
important resistance mechanism is mediated by the resistance–
nodulation–cell division family of efflux pumps (38). In one
study, all (15/15) human P. aeruginosa isolates were resistant to
TGC (28). Similarly, our results showed that TGC is not suitable
for treating P. aeruginosa infections.

C. auriscanis was first discovered in a dog with ear infection
(39) and typically acts as an opportunist in mixed infections
associated with bacterial otitis externa, which can be resolved
by treating and controlling other causative agents, but it may
have pathological significance when occurring alone (40). C.
auriscanis is often resistant to beta-lactam antibiotics; therefore,
other antimicrobials may be necessary if skin lesions are not
resolved after antimicrobial therapy (41).

S. canis is considered part of the healthy microbiota of
the skin and mucosa of dogs but may be responsible for
opportunistic infections. In dogs, S. canis is isolated from
skin infections, urogenital and respiratory tract infections,
otitis externa, septicemia, necrotizing fasciitis, and streptococcal
toxic shock syndrome (42). Only one strain was tested
in this study and found to be susceptible to LZD and
TGC, indicating they are possible treatment options for
S. canis infections.

E. aerogenes and E. cloacae complexes are members of the
intestinal microbiota and are commonly MDR. Fortunately, both
isolates were susceptible to TGC in this study, indicating the
potential application of TGC for treating urinary tract infections,
accounting for 38% (8/21) of animal cases, and wound infections,
accounting for 19% (4/21) (43). C. freundii is intrinsically
resistant to AMP, AMP/sulbactam, and cephalosporins and
causes sepsis in dogs (44). A single isolate of this species
was tested in this study and was susceptible to TGC;
therefore, this antibiotic may be considered for treating C.
freundii infections.
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This study has several limitations. First, for certain
bacteria (e.g., C. auriscanis, Pasteurellaceae, P. mirabilis, P.
aeruginosa, and R. nasimurium), there are no susceptibility
or resistance criteria. Second, many countries prohibit
LZD and TGC use in animal settings to preserve treatment
options for human infections. However, these agents may be
employed in the future under well-organized antimicrobial
stewardship frameworks and policies, and our results
provide foundational knowledge for using LZD and TGC
in veterinary medicine.

In conclusion, we evaluated the efficacies of TGC and LZD
against potential PDR bacteria that are frequently isolated from
companion dogs, and the results showed resistance of the
organisms to all other antimicrobial classes recommended by
the veterinary CLSI guidelines. Both agents showed favorable
efficacy, with susceptibility rates of all potential PDR bacteria,
except P. aeruginosa, ranging from 72.7 to 100%. Thus, TGC
and LZD may serve as promising antimicrobial options for
veterinary medicine in the future. For application in patients,
in vivo pharmacokinetic and pharmacological studies are
needed. To avoid exacerbating bacterial antibiotic resistance,
legal regulations for TGC and LZD are needed to prevent
their misuse.
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Itraconazole in Candida Krusei
Isolated From Mycotic Mastitis of
Cows
Jun Du 1,2, Wenshuang Ma 1,2, Jiaqi Fan 1,2, Xiaoming Liu 1,2*, Yujiong Wang 1,2* and

Xuezhang Zhou 1,2*
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China, Ningxia University, Yinchuan, China, 2College of Life Science, Ningxia University, Yinchuan, China

Candida krusei (C. krusei) has been recently recognized as an important pathogen

involved in mycotic mastitis of cows. The phenotypic and molecular characteristics of

15 C. krusei clinical isolates collected from cows with clinical mastitis in three herds of

Yinchuan, Ningxia, were identified by matrix-assisted laser desorption ionization–time

of flight mass spectrometry. In addition to sequencing analysis, the ERG11 gene

that encodes 14α-demethylases, the expression of the ERG11 gene, and efflux

transporters ABC1 and ABC2 in itraconazole-susceptible (S), itraconazole-susceptible

dose dependent (SDD), and itraconazole-resistant (R) C. krusei isolates was also

quantified by a quantitative real-time reverse transcription polymerase chain reaction

(qRT-PCR) assay. Sequencing analysis revealed three synonymous codon substitutions

of the ERG11 gene including T939C, A756T, and T642C in these C. krusei

clinical isolates. Among them, T642C and T939C mutations were detected in

itraconazole-resistant and -susceptible C. krusei isolates, but the A756T substitution

was found only in itraconazole-resistant isolates. Importantly, the expression of the

ERG11 gene in itraconazole-resistant isolates was significantly higher compared with

itraconazole-SDD and itraconazole-susceptible isolates (p = 0.052 and p = 0.012,

respectively), as determined by the qRT-PCR assay. Interestingly, the expression of the

ABC2 gene was also significantly higher in itraconazole-resistant isolates relative to

the itraconazole-SDD and itraconazole-susceptible strains. Notably, the expression of

ERG11 was positively associated with resistance to itraconazole (p = 0.4177 in SDD

compared with S, p = 0.0107 in SDD with R, and p = 0.0035 in S with R, respectively).

These data demonstrated that mutations of the ERG11 gene were involved in drug

resistance in C. krusei. The A756T synonymous codon substitution of the ERG11 gene

was correlated with an increased expression of drug-resistant genes including ERG11

and ABC2 in itraconazole-resistant C. krusei isolates examined in this study.
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INTRODUCTION

Cow mastitis has a major negative impact on dairy industries,
causing significant economic losses to farmers. Pathogenically, a
wide variety of microorganisms have been identified as causative
agents of cow mastitis, mainly bacteria and fungi (1). In cases of
fungal infection of the mammary gland, yeasts of Candida genus
are the most reported fungal pathogens in cow mastitis (2).

Historically, the mycotic mastitis caused by fungi of the
Candida genus was first described by Fleischer as early as 1930
(3). Although the infection of C. albicans was considered as the
most common cause of mastitis, cases of cow mastitis caused
by the infection of non-albicans Candida spp. (NAC), such as
C. krusei, C. parapsilosis, C. glabrata, and C. tropicalis, have
increased significantly during the last decade (4). Among these
NACs, C. krusei ranked as the fifth most common cause of cow
mycotic mastitis (5, 6). C. krusei was reported as the causative
agent of bovine mastitis and bronchopneumonia in Canada,
Mexico, Japan, the United Kingdom, Turkey, Poland, and Algeria
(7, 8). Our previous investigation also suggested thatC. kruseiwas
one of the most important pathogens in mycotic mastitis in dairy
farms of the Yinchuan region in Ningxia, China. This result was
in accordance with the report of Erbaş et al. (9).

Candida krusei has been regarded as a multidrug-resistant
fungal pathogen because of its intrinsic resistance to fluconazole
(FLC) (10, 11), with more than 96% of human clinical and
veterinary isolates being fluconazole-resistant (12). Azole is one
of the most common antifungal drugs in agricultural practices
(13), including itraconazole, ketoconazole, and tetraconazole.
Although it has been reported that multiple mechanisms are
involved in drug resistance in Candida spp., mechanisms
involved in alterations of target enzymes and upregulation of
multidrug resistance (MDR)-related proteins are the common
mechanisms of Candida resistant to azoles. In this regard,
14α-lanosterol demethylase (14-DM) is the target enzyme of
azoles, which is responsible for the production of an ergosterol
precursor and is encoded by the ERG11 gene. In C. albicans
and C. parapsilosis, the efflux pump genes CDR1, CDR2, and
MDR1 are also associated with azole resistance (14). Nowadays,
although transporter genes ABC1 and ABC2 were involved
in drug resistance in C. krusei (15, 16), increased lines of
evidence suggested that changes in the expression of activity
of target enzyme and upregulation of MDR were the main
mechanisms of drug resistance in C. krusei (11, 16). To date,
the study on mechanisms of Candida in azole resistance has
mainly focused on C. albicans, C. glabrata, and C. tropicalis,
but studies on azole resistance mechanisms in C. krusei,
especially the C. krusei isolates from cow mastitis resistant to
itraconazole, are limited, and the involvement of ERG11, ABC1,
and ABC2 genes in the drug resistance of C. krusei has not been
determined (17).

In the present study, we evaluated the profile of the
susceptibility of C. krusei to itraconazole and investigated the
potential alterations of the ERG11 gene and the differential
expression of ERG11, ABC1, and ABC2 genes of 15 clinical C.
krusei isolates that were isolated from cow mastitis in Yinchuan,
Ningxia, China.

MATERIALS AND METHODS

Isolation and Identification of Fungal
Pathogens
This study was submitted to and approved by the Ethic
Committee of Animal Study in Ningxia University. A total of
465 quarter-milk samples were collected from the cows with
clinical or subclinical mastitis, which originated from three herds
in Yinchuan, Ningxia, China. Clinical or subclinical mastitis
was defined by swelling, reduced milk flow, and abnormal
milk appearance (watery to viscous with clots varying from
gray-white to yellowish). Additionally, other signs of infection
such as fever, inappetence, ataxia, and depression were also
considered. These cows have been treated with antibiotics before
sample collection. The isolates of C. krusei were identified by
using Candida chromogenic medium (CHROMagar, France)
(18) and matrix-assisted laser desorption ionization–time of
flight mass spectrometry (MALDI-TOF MS) with score values of
>2.000 (VITEK R© MS, BioMerieux, France) (19) and stored in
liquid nitrogen.

Antimicrobial Susceptibility Tests
The susceptibility assay was conducted using the Clinical and
Laboratory Standard Institute (CLSI) broth microdilution
(BMD) method. The CLSI BMD method was performed
in a 96-well polystyrene microtiter plate in accordance
with CLSI M27-A3 and M27-S4 guidelines (20, 21).
The ranges of concentrations of tested drugs were as
follows: 5-flucytosine (0.03–64µg/ml), amphotericin B
(0.008–16µg/ml), fluconazole (0.03–64µg/ml), itraconazole
(0.03–64µg/ml), and ketoconazole (0.03–64µg/ml) (15, 22). The
antifungal drugs were all purchased fromMeilun Biotechnologies
(Dalian, China). The C. krusei NCCLS reference strain ATCC
6258 served as quality control to ensure the test (3, 23); 1 × 103

CFU/ml working suspension of the C. krusei isolates was added
into the each well. Results were recorded as resistant, susceptible
dose dependent, and sensitive as shown in Table 1.

PCR Amplification and Sequencing
Alignment of the ERG11 Gene
Candida krusei isolates were subcultured twice on Sabouraud
agar at 37◦C for 18–24 h to revive and ensure the purity of
cultures. A single colony was then transferred to 20ml of liquid
YPD (yeast extract 1%, dextrose 2%, and peptone 2%) broth and
cultured at 35◦C in a shaking incubator (120 rpm) exponential
growth phase. The bacteria cells were collected by centrifugation
at 3,000 rpm for 20min, and the bacteria pellet was used for
total genomic DNA preparation using a DNI5-A new Plant
Genomic DNA Rapid Extraction Kit (Aidlab Biotechnologies,
Beijing, China) according to the manufacturer’s instruction.
The isolated DNA was used as a template for amplification of
the ERG11 gene. The primer set of ERG11 was designed by
Primer 5.0 and synthesized at Sangon Biotech (Shanghai, China),
based on the available sequence information of the C. krusei
ERG11 gene (Gene accession number DQ903905) at the National
Center for Biotechnology Information (NCBI) (Table 2). The
PCR amplification was conducted in 25 µl volume containing
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TABLE 1 | Minimal inhibitory concentration (MIC) and susceptibility profile of C. krusei clinical isolates (n = 15).

Name Susceptibility profile

ITR AMB FLC 5-FC KET

ATCC 6258 0.06/S 0.5/S 8/S 4/S 0.125/S

CK1 4/R 2/SDD 64/R 8/SDD 1/R

CK2 8/R 4/R 64/R 32/R 1/R

CK3 0.25/SDD 2/SDD 16/SDD 32/R 1/R

CK4 0.25/SDD 2/SDD 64/R 8/SDD 0.25/SDD

CK5 8/R 4/R 64/R 32/R 1/R

CK6 0.5/SDD 2/SDD 64/R 32/R 1/R

CK7 0.06/S 2/SDD 16/SDD 8/SDD 0.25/SDD

CK8 0.25/SDD 2/SDD 64/R 32/R 1/R

CK9 4/R 2/SDD 64/R 32/R 1/R

CK10 0.25/SDD 2/SDD 32/SDD 32/R 1/R

CK11 0.25/SDD 2/SDD 64/R 16/SDD 0.5/SDD

CK12 4/R 4/R 64/R 32/R 1/R

CK13 0.5/SDD 2/SDD 64/R 32/R 1/R

CK14 0.06/S 2/SDD 16/SDD 32/R 0.5/SDD

CK15 0.25/SDD 2/SDD 64/R 16/SDD 1/R

CK, Candida krusei; S, susceptible; SDD, susceptible dose dependent; R, resistant; 5-FC, 5-flucytosine, MIC break point: S, ≤4µg/ml; SDD, 8–16µg/ml; R, ≥32µg/ml; AMB,
amphotericin B, MIC break point: S, ≤1µg/ml; SDD, 2µg/ml; R, >2µg/ml; FLC, fluconazole, MIC break point: S, ≤8µg/ml; SDD, 16–32µg/ml; R, ≥64µg/ml; ITR, itraconazole,
MIC break point: S, ≤0.125µg/ml; SDD, 0.25–0.5µg/ml; R, ≥1µg/ml; KET, ketoconazole, MIC break point: S, ≤0.125µg/ml; SDD, 0.25–0.5µg/ml; R, ≥1 µg/ml.

1 µl of genomic DNA (200 ng/µl), 0.5 µl of specific forward
and reverse primers (50 µmol/L), and 12.5 µl of 2× Phanta
Max Master Mix (Vazyme Biotech, Nanjing, China). The PCR
parameters were set as denaturation for 3min at 95◦C, followed
by 35 cycles of 95◦C for 15 s, 60◦C for 15 s, and 72◦C for 1min,
and a final step of elongation (72◦C for 5min). The resultant PCR
product was cleaned by gel purification in 1.5% agarose prior
to being cloned into the pTOPO-TA Vector using a CV16-Zero
Background pTOPO-Blunt Cloning Kit with Blue/white selection
(Aidlab Biotechnologies, Beijing, China). The white colonies
were analyzed for clones containing the DNA fragment of gene
of interest. Eight to fifteen plasmids from clones generated from
an identical PCR product were further sequenced for the ERG11
gene (Sangon Biotech, Shanghai, China). The sequences were
then aligned with the online published sequence of the ERG11
gene of C. krusei strain (Gene Accession Number DQ903905) to
determine gene mutation (17).

Quantitative Real-Time PCR Analysis
For quantitative real-time PCR (qRT-PCR) analysis, total RNA
was extracted from C. krusei cultures with RNAiso Reagent
(TaKaRa, Dalian, China) and reverse transcribed to cDNA with
HiScript III RT SuperMix for qPCR (+gDNA wiper) (Vazyme
Biotech, Nanjing, China) according to the manufacturer’s
instruction. For the ERG11 target gene and GAPDH reference
gene, primer pairs were designed with the Primer 5.0 program
and synthesized by Sangon, Shanghai, China (Table 2). qRT-PCR
was conducted with a 20-µl volume containing the following
reagents: 10 µl of 2× ChamQ Universal SYBR qPCRMaster Mix
(Vazyme), 1 µl of total RNA sample, 0.5 µl of each primer pair
at a concentration of 10 µmol/L, and 8 µl of distilled water.

Each reaction was run in triplicate. Samples were subjected to
an initial step at 95◦C for 3min, followed by 40 cycles, each of
which consisted of 10 s at 95◦C and 30 s at 60◦C. Melting curves
were recorded every 5 s. The fluorescence data were collected
and analyzed with the QuantStudio Design Analysis Software
1.3.1. A 2−11Ct algorithm was employed to analyze the relative
expression levels of drug-resistant genes at resistant, susceptible
dose-dependent, and sensitive strains.

Statistical Analysis
Statistical analysis was performed with the GraphPad Prism
program (GraphPad 8.0.1 Software Inc., San Diego, CA).
The two-tailed Student’s t-test was used to analyze significant
differences between gene expression displayed by the distinct C.
krusei strains; p < 0.05 was considered statistically significant.

RESULTS

Resistance of C. krusei Isolates to
Antifungal Agents
A total of 15 C. krusei isolates (designated as CK1–CK15) were
isolated from clinical samples from April 2018 to October 2019
in three herds at Yinchuan, Ningxia, China. Drug sensitivity
testing was performed according to the broth microdilution
method M27-A2 (NCCLS 2002), and the result showed that
among 15 C. krusei isolates, 73.4, 73.4, and 66.7% were resistant
to fluconazole (FLC), ketoconazole (KET), and 5-flucytosine (5-
FC), respectively. However, 20 and 33.3% of the isolates were
susceptible to amphotericin B (AMB) and itraconazole (ITR),
respectively. Interestingly, isolates CK2, CK5, CK6, CK8, CK9,
CK12, and CK13 showed resistance to both 5-FC and FLC. The
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TABLE 2 | Primers used in this study.

Gene Primer sequencea (5′-3′)a Annealing temperature Accession number PCR product size (bp)

Sequencing primers

ERG11 F: ATGTCCGTCATCAAGGCAAT 60◦C DQ903905 1,587

R: CTAGTTCTTTTGTCTTCCCTCCC

Real-time PCR primers

ABC1 F: GATAACCATTTCCCACATTTGAGT 60◦C DQ903907.1 139

R: CATATGTTGCCATGTACACTTCTG

ABC2 F: CCTTTTGTTCAGTGCCAGATTG 60◦C AF250037.1 133

R: GTAACCAGGGACACCAGCAA

ERG11 F: AGCAACAACAATGTCCGTCA 60◦C DQ903905 108

R: TTTGTCTTCCCTCCCACTTG

GAPDH F: GTGCCAAAAAAGTTATCATC 60◦C CP039612.1 112

R: AGTTCTACCACCTCTCCAGT

aF, forward; R, reverse.

TABLE 3 | Results of antimicrobial susceptibility tests of C. krusei isolates (n = 15).

Antibiotic Resistant, % (no.) Susceptible dose dependent, SDD, % (no.) Susceptible, % (no.)

ITR 33.3 (n = 5) 53.3 (n = 8) 13.3 (n = 2)

AMB 20 (n = 3) 80 (n = 12) 0

FLC 73.4 (n = 13) 26.6 (n = 4) 0

5-FC 66.7 (n = 10) 33.3 (n = 5) 0

KET 73.4 (n = 13) 26.6 (n = 4) 0

rates of resistance to azole of these C. krusei isolates are listed
in Table 3. Moreover, isolates CK2, CK5, and CK12 showed
multidrug resistance to AMB, 5-FC, FLC, KET, and ITR. In
contrast, the reference strain ATCC 6258 was susceptible to all
of the five antifungal agents. Overall, among these 15 isolates,
5 were isolates resistant to ITR, 8 belonged to susceptible
dose-dependent isolates, and 2 were isolates susceptible to ITR
(Tables 1, 3).

Mutational Analysis in ERG11 of C. krusei
Isolates
The ERG11 gene fragment was amplified from ATCC 6258 and
all 15 C. krusei isolates. The PCR product of the open frame of
the ERG11 gene was 1,587 bp, which encodes 529 amino acids.
Sequencing analysis identified four different mutations, three
synonymous mutations (C642T, A756T, and T939C), and one
missense mutation (C44T) in these 15 C. krusei isolates (Table 4).
Synonymous mutations C642T and T939C were presented in
all sequenced isolates, but the synonymous mutation A756T
was found in the ERG11 gene of C. krusei isolates resistant to
itraconazole (Table 4). One missense mutation was also found at
44 bp (C→ T) of the ERG11 gene (Table 4), which resulted in
an amino acid alteration from alanine to valine. However, such a
missense mutation was also found in the reference strain ATCC
6258 and all C. krusei strains, which indicated that the C44T
missense mutation might not be associated with drug resistance
to azoles in C. krusei.

Increased ERG11 Gene Transcript in
Itraconazole-Resistant C. krusei
In order to examine whether an alteration of ERG11 gene
expression was correlated with the drug resistance of C.
krusei clinical isolates, the transcript of the ERG11 gene
was accessed by a qRT-PCR assay. In comparison with the
reference strain ATCC 6258, the relative ERG11 gene expression
of field isolates in five itraconazole-resistant isolates was
significantly upregulated (p < 0.01), while only two itraconazole-
susceptible dose-dependent isolates showed a significantly
upregulated ERG11 gene expression (p < 0.01, Figure 1A).
The result showed that the transcript of the ERG11 gene in
itraconazole-resistant isolates was significantly more abundant
than itraconazole-susceptible strains (p = 0.0012, Figure 1B)
and itraconazole-susceptible dose-dependent (SDD) strains
(p = 0.0052, Figure 1B). However, there was no significant
difference between itraconazole-susceptible dose-dependent
isolates and itraconazole-susceptible isolates (p = 0.2562,
Figure 1B).

Increased ABC2 Gene Transcript in
Itraconazole-Resistant C. krusei
ABC transporters are involved in drug resistance; next, we
therefore sought to examine the alteration of ABC transporters
in C. krusei isolates. Interestingly, unlike the ERG11 gene,
none of field isolates showed an upregulated ABC1 gene
expression as compared with that of the reference strain
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TABLE 4 | ERG11 gene point mutations in C. krusei clinical isolates.

Information of strains ERG11 gene mutation sites

Name ITR susceptibility category 44 642 756 939

DQ903905 T T A T

ATCC 6258 S C C — —

CK1 R C — T C

CK2 R — — T C

CK3 SDD C — — —

CK4 SDD — — — C

CK5 R — C T C

CK6 SDD C — — —

CK7 S C — — —

CK8 SDD — — — C

CK9 R — — T —

CK10 SDD C C — —

CK11 SDD — — — —

CK12 R — — T C

CK13 SDD C — — —

CK14 S — C — C

CK15 SDD C — — —

The numbering of the nucleotides shown in this table starts with 1 for the A of the ATG start codon. DQ903905, GenBank Accession no. of C. krusei whose ERG11 sequence published
online is used to align with C. krusei clinical isolates in this study.

FIGURE 1 | ERG11 relative gene expression levels in three groups of C. krusei clinical isolates. (A) Relative levels of ERG11 mRNA in all the C. krusei clinical isolates.
ERG11 gene expression levels were quantified and normalized relative to the reference gene, GAPDH; S, itraconazole-susceptible; SDD, itraconazole-susceptible

dose dependent; R, itraconazole-resistant. Asterisks indicate that the difference between field isolates with the reference strain ATCC 6258 is significant compared to

the reference strain ATCC 6258: **p < 0.01 in CK6, CK13 with ATCC6258; ***p < 0.001 in CK1 with ATCC6258; and ****p < 0.0001 in CK2, CK5, CK9, CK12 with

ATCC6258. (B) Log10+3 fold increase of gene expression levels in three groups (NS, no significance in SDD compared with S; *p < 0.05 in R with SDD; **p < 0.01 in

R with S).

ATCC 6258 (Figure 2A). The results of qRT-PCR for ABC1
genes showed that the expression of ABC1 gene mRNA
was not significantly different between itraconazole-resistant
isolates, itraconazole-susceptible dose-dependent isolates, and
itraconazole-susceptible strains (p = 0.3844, p = 0.9997, and
p = 0.2996, respectively, Figure 2B). Similar to that seen
in the ERG11 gene, the relative ABC2 gene expression was

extremely significantly upregulated in four itraconazole-resistant
isolates (p < 0.01) and significant in one itraconazole-resistant
isolate (p < 0.05), as compared with the reference strain
ATCC 6258, whereas only two itraconazole-susceptible dose-
dependent isolates showed an extremely significant upregulation
of ABC2 gene expression compared to the reference strain
ATCC 6258 (p < 0.01, Figure 3A). Intriguingly, the transcript
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FIGURE 2 | ABC1 relative gene expression levels in three groups of C. krusei clinical isolates. (A) Relative levels of ABC1 mRNA in all the C. krusei clinical isolates.
ABC1 gene expression levels were quantified and normalized relative to the reference gene, GAPDH; S, itraconazole-susceptible; SDD, itraconazole-susceptible dose

dependent; R, itraconazole-resistant. Asterisks indicate that the difference between field isolates with the reference strain ATCC 6258 is significant compared to the

reference strain ATCC 6258: *p < 0.05 in CK1, CK6, CK13 with ATCC6258 and **p < 0.01 in CK2, CK7, CK9, CK14, CK15 with ATCC6258. (B) Log10+3 fold

increase of gene expression levels in three groups (NS, no significance in SDD compared with S; *p < 0.05 in R with SDD; **p < 0.01 in R with S).

FIGURE 3 | ABC2 relative gene expression levels in three groups of C. krusei clinical isolates. (A) Relative levels of ABC2 mRNA in all the C. krusei clinical isolates.
ABC2 gene expression levels were quantified and normalized relative to the reference gene, GAPDH; S, itraconazole-susceptible; SDD, itraconazole-susceptible dose

dependent; R, itraconazole-resistant. Asterisks indicate that the difference between field isolates with the reference strain ATCC 6258 is significant compared to the

reference strain ATCC 6258: *p < 0.05 in CK12 with ATCC6258; **p < 0.01 in CK3, CK10 with ATCC6258; ***p < 0.001 in CK5 with ATCC6258; and ****p < 0.0001

in CK1, CK2, CK9 with ATCC6258. (B) Log10+3 fold increase of gene expression levels in three groups (NS, no significance in SDD compared with S; *p < 0.05 in R

with SDD; **p < 0.01 in R with S).

of the ABC2 gene in itraconazole-resistant isolates was
more abundant relative to itraconazole-susceptible strains
(p = 0.0035) and itraconazole-susceptible dose-dependent
strains (p = 0.0107, Figure 3B). No significant difference was
found in the expression of the ABC2 gene was determined

between the itraconazole-susceptible dose-dependent group
and itraconazole-susceptible C. krusei isolates (p = 0.4177,
Figure 3B).

DISCUSSION

Our previous study demonstrated that C. krusei was a
predominant pathogen isolated from mycotic mastitis of cows
in Yinchuan, Ningxia, China (12), suggesting that it may be
an important fungal pathogen of mycotic mastitis of cows
in this area. The crucial roles of drug-resistant genes ERG11,
ABC1, and ABC2 in FLC-resistant clinical isolates of C. krusei
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from human have been well-established (15, 24). However, the
pathogenic molecular mechanism of C. krusei isolated from cow
mastitis remains unclear. In the present report, we evaluated
the susceptibility profiles and mutations in the ERG11 gene in
15 clinical C. krusei isolates. The expression of drug-resistant
genes ERG11, ABC1, and ABC2 between isolates susceptible,
susceptible dose-dependent, and resistant to ITR was also
analyzed. We identified three synonymous mutations and one
missense mutation in the ERG11 gene in these clinical C.
krusei isolates, as previously described in human C. krusei.
Furthermore, the A756T was only presented in ITR-resistant
strains, suggesting that it might be correlated with drug resistance
in C. krusei, while mutations T642C and T939C were presented
in all these 15 C. krusei isolates. The expression of drug-resistant
ERG11 andABC2was also significantly higher in ITR-resistant C.
krusei isolates compared to ITR-susceptible and susceptible dose-
dependent isolates, suggesting a correlation of mutations of the
ERG11 gene with the resistance to antifungal agents in C. krusei.

In the present study, based on the CLSI BMD method’s
susceptibility to ITR, the 15 C. krusei clinical isolates from
cows with clinical mastitis could be divided into three groups:
ITR-susceptible (2 isolates), ITR-susceptible dose-dependent (8
isolates), and ITR-resistant (5 isolates). The antifungal testing
showed that 13.3, 53.3, and 33.3% were susceptible, susceptible
dose-dependent, and resistant to itraconazole among these C.
krusei clinical isolates, respectively. Notably, 13 of the 15 C.
krusei isolates (73.4%) were also resistant to FLC and KET, 10
of the 15 C. krusei isolates (66.7%) were resistant to flucytosine,
and 3 of the 15 isolates (20%) were resistant to amphotericin
B. This finding was consistent with a study by Namvar et al.
(25), but was different from reports by others (8, 9, 26). Of
interest, the rate of resistance to antifungal agents in these C.
krusei isolates was lower than our previous findings (12), which
might be attributed to the reduction in the use of antifungal
drugs during breeding. Consistent with our previous studies, C.
krusei isolates were double-resistant and multidrug-resistant to
antifungal drugs. It is strongly recommended that ketoconazole
and other azole antifungal agents should not be used in the
treatment of C. krusei infection in dairy cows in Ningxia, China,
owing to high drug resistance.

It is worth noting that CK2, CK5, and CK12 showed resistance
to amphotericin B, but such cases are rare (27). However, several
lines of studies evidenced an increased minimum inhibitory
concentration (MIC) of amphotericin B in C. krusei isolates.
In Candida spp., resistance to amphotericin B was found to be
associated with a decreased ergosterol content of cell membrane
(28–30). In addition, an inactivation of ERG3 could substitute
14α-methylfecosterol with ergosterol, thus reducing ergosterol
levels, which, in turn, resulted in deficient ergosterol to counter
the function of amphotericin B (31). Moreover, several other
mutations in the ergosterol biosynthetic genes such as ERG2,
ERG5, ERG6, and ERG24 can also result in C. albicans and
C. glabrata resistant to amphotericin B (32–34). However, such
mutations have not been reported in C. krusei and further studies
are needed in future studies.

A number of studies have focused on ERG11 gene mutation
in Candida species (35–37). In order to fully understand ERG11

gene mutation of C. krusei, the whole open reading frame of
the ERG11 gene was amplified for sequencing analysis, and
three synonymous mutations and one missense mutation were
identified in this study. C44T has one missense mutation and
was found in all 15 isolates and the reference strain, suggesting
that it had no impact on the itraconazole resistance of C.
krusei. Molecularly, the C44T mutation resulted in the alteration
of alanine to valine in the 15th amino acid of 14α-lanosterol
demethylase (14-DM); this mutation might occur outside the
active site of the ERG11 gene, which might not affect the
mutual interaction of azole and 14-DM, or a single missense
mutation might not be sufficient to change the affinity of
the 14-DM to azole (15). Moreover, synonymous mutations
(C642T, A756T, and T939C) in the 15 isolates were consistent
with a previous report (24). Synonymous mutations can affect
transcription, splicing, mRNA transport, and translation, any
of which could change phenotype, rendering the synonymous
mutation non-silent (38). He et al. (15) also reported that C642T,
T1389C, and G1536C mutations occurred in all the experimental
strains. In addition, the T1389C mutation was also reported by
Ricardo et al. (16). Tavakoli et al. (35) revealed a heterozygous
polymorphism at position T939C in the ERG11 coding region
and speculated that this polymorphism might play a key role in
the transcriptional regulation of genes and be involved in the
processes of ergosterol biosynthesis. Of note, several previously
reported mutations, including the T418C missense mutation
(16), and C51T, T1389C, and G1536C synonymous mutations
(15), have not been found in this study; thus, limited clinical
isolates (15) were analyzed. Mechanistically, previous studies
on C. albicans and C. tropicalis have demonstrated that the
missense mutation was associated with resistance to azole, which
was partly through changing the conformation of the target
enzyme 14-DM, which, in turn, decreased its drug affinity and
influenced the enzyme’s function in ergosterol biosynthesis (39,
40). The resistance mechanism of these resistant strains may be
due to one or multiple mutations in these genes, which needs
further investigation.

In addition, the expression of ABC2 and ERG11 genes was
significantly upregulated in C. krusei veterinary clinical isolates
resistant to itraconazole. Previous studies demonstrated that
resistance to azole was also due to the increased expression
of ERG11. This results in insufficient azole activity owing to
the overproduction of the target enzyme (41). Although ERG11
overexpression has been reported in C. krusei, the mechanism
behind the overexpression remains unclear (15, 35). Another
mechanism of resistance to azole is via the decreased intracellular
accumulation of azole. This can be due to efflux pump activity
or changes in the cell membrane. In this regard, drug efflux
pumps belong to either the ATP-binding cassette (ABC) family
of transporters or the major facilitator super family (MFS) class.
These proteins can pump out fungicidal compounds across the
cell membrane, and their overexpression results in multidrug
resistance phenotype in pathogenic fungus (17). In contrast to
members of the MFS class that are actuated by electrochemical
proton-motive force, ABC family members depend on the
hydrolysis of ATP for energy (42, 43). Indeed, along with the
decrease of susceptibility to itraconazole, the ABC2 gene mRNA
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expression in the isolates appeared to increase. Although it
was considered that Abc1p played an important role in the
innate FLC resistance of C. krusei (16, 17), the ABC2 gene
could be activated slower than the ABC1 gene in the presence
of voriconazole (16). Given voriconazole tolerance, the Abc1p
efflux pump is supposed to be more efficient in expelling drug
and plays a late role in the development of resistance, and
the accumulation of itraconazole in drug-susceptible C. krusei
was higher than that of resistant strains (44). Interestingly,
Venkateswarlu et al. found that two isolates highly resistant
to fluconazole showed a different sensitivity to itraconazole,
suggesting that itraconazole and fluconazole in C. krusei may
have different resistance mechanisms (44). The authors stated
that C. krusei resistant to itraconazole was due to decreased
drug accumulation in cells and speculated that there might
exist more efflux pumps contributing to itraconazole resistance
of C. krusei, which could be well-explained in this study. The
overexpression of both ERG11 and ABC2 has been reported
to be involved in itraconazole resistance in C. krusei (15, 35).
However, an unusual transient or stable resistance of C. krusei
to voriconazole has also emerged. Overexpression of ABC2 and
ERG11, as observed in itraconazole resistance, imparts a transient
resistance to voriconazole, while a more stable resistance was
observed due to the overexpression of ABC1 and point mutation
in ERG11 (16). Taking this into account, we speculate that the
resistance mechanisms of itraconazole and voriconazole in C.
krusei clinical isolates may be different. Moreover, other genes
encoding ATP-dependent efflux transporters may occur in C.
krusei, such as a CgSNQ2 homologous gene that was verified as
an azole-associated resistance gene in C. glabrata (45). Although
the C. krusei genome has been sequenced, it is not completely
annotated yet; thus, other transporter genes were not assessed.
Our mRNA expression data showed that Abc2p may play a more
important role in itraconazole resistance of C. krusei, instead
of Abc1p.

This study has enriched our knowledge in the veterinary
clinical C. krusei resistance gene expression and mutation data
by comparing the difference between the veterinary clinical
and the human clinical C. krusei, and further deepened our
understanding of the resistance mechanism of C. krusei in
veterinary clinics. The limitation of this study is that the sample
size was small and no drug susceptibility test and resistance
mechanism research related to echinocandin has been included,
which require further investigations.

In conclusion, in this study, we found that C. krusei veterinary
clinical isolates exhibited a different susceptibility to antifungal

agents. Mechanistically, the A756T mutation in the ERG11 gene
resulted in an upregulation of drug-resistant genes ERG11 and
ABC2, substantially enhancing the resistance to itraconazole of
C. krusei. Although we have identified four point mutations in
the ERG11 gene associated with itraconazole resistance and have
already described their role on the itraconazole resistance of C.
krusei, it is necessary to confirm the effect of these mutations by
site-directed mutagenesis of the C. krusei strain in the future.
Nevertheless, this study may thus provide an insight into the
mechanism of the resistance of C. krusei to antifungal agents,
which warrants for further investigation.
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