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Editorial on the Research Topic
 Statistical Methods, Computing and Resources for Genome-Wide Association Studies



Thanks to the recent advances in genotyping technologies, genome-wide association studies (GWAS) have been an established approach to identifying genetic variants that influence certain characteristics of economic or scientific interest in plants, animals and humans. Applications of GWAS cover a wide range of areas in genetics and have enhanced our understanding of the genetic mechanisms in diseases, physiological or behavioral traits and have generated promises in agriculture, medicine and wildlife conservation. Despite great success, GWAS remains challenged by statistical modeling and computing. This collection of twelve articles presents a variety of interesting scientific problems and novel approaches in GWAS.

Nested association mapping (NAM) is a technique for dissecting the genetic architecture of complex traits in crops. It is designed for NAM-specific populations by taking the advantages of linkage analysis and association mapping while avoiding their disadvantages. Bu et al. developed a multi-locus association mapping model for the analysis of data from multiple families in the NAM population. A notable feature of their method lies in its ability to deal with genetic heterogeneity due to subpopulations, and therefore their approach improves statistical power for quantitative trait locus (QTL) detection and accuracy of QTL effect estimation. In real data analyses, they found that their method identified most QTLs that were detected by linkage analyses of single-family datasets and was also able to disclose some new QTLs with small effects. Three of the 12 articles in this collection are concerned with multi-trait analysis. Multi-trait analysis has been of interest in GWAS due to its potential gain in statistical power and its ability for formal hypothesis testing of biological importance such as pleiotropy vs. linkage. As a common practice, multiple traits are analyzed separately and markers are scanned one at a time. Deng et al. argued that the former does not take advantage of correlations between traits and thus can be a limitation on statistical power, and the latter ignores complex interactions between genomic variants. Therefore, they proposed a genome-wide gene-based multi-trait method to overcome these limitations. Technically, they adopted kernel-based testing to evaluate the joint effect of multiple variants in a gene and proposed an omnibus test strategy to integrate the test results. They demonstrated that their method achieved excellent power with reasonable control of type I error rates. Lin et al. discussed the interpretation of the results from multi-trait analyses. They introduced a bioinformatic tool, MetaPha, which implements a meta-analysis approach by constructing multivariate analysis from univariate GWAS results and then decomposing multivariate associations into multiple ones that facilitate interpretation. They validated their method using lipid data from the Global Lipids Genetics Consortium and found that only three to five central traits of the twenty-one traits they studied were needed at the majority of the loci of their interest. Fernandes et al. focused on a biologically interesting question, linkage vs. pleiotropy, which can be tested by either multivariate or univariate approaches. Using simulation studies, they found that neither of these two approaches alone delivered a satisfactory result, and thus suggest that multivariate and univariate GWAS should be complementary rather than competing. For those interested in mapping imprinted QTLs, Zheng et al. proposed a special type of immortalized F2 population and correspondingly two methods for mapping imprinted QTL and demonstrated the merits of their proposed population and methods in mapping precision. If your research is related to Barley, you may be interested in Li et al. who studied a few traits in Qingke Barley. Other interests include heritability estimation (Xu et al. and Frouin et al.), disease studies using machine learning techniques (Fan et al. and Li et al.), and Mendelian randomization (Xu et al.).

Lastly, we would like to introduce Zhu et al. who reviewed statistical methods for identifying trait-relevant tissues and cell types. Genome-wide association studies (GWAS) have reported numerous quantitative trait loci (QTL). However, few reported QTL have been validated while the ultimate goal of GWAS is to help understand the biological mechanisms of the trait-QTL association. Some researchers have developed statistical methods to integrate genomic information with functional annotations, gene expression data, and gene network information into GWAS, and aim to identify relevant tissue and cell types. Zhu et al. extensively reviewed ten of these methods.

To conclude, this volume highlights new insights and fascinating perspectives in statistical methods, computing, and resources for GWAS. We hope the collection will stimulate more developments in this important topic as biotechnology continues to evolve.
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Background: Multivariate testing tools that integrate multiple genome-wide association studies (GWAS) have become important as the number of phenotypes gathered from study cohorts and biobanks has increased. While these tools have been shown to boost statistical power considerably over univariate tests, an important remaining challenge is to interpret which traits are driving the multivariate association and which traits are just passengers with minor contributions to the genotype-phenotypes association statistic.

Results: We introduce MetaPhat, a novel bioinformatics tool to conduct GWAS of multiple correlated traits using univariate GWAS results and to decompose multivariate associations into sets of central traits based on intuitive trace plots that visualize Bayesian Information Criterion (BIC) and P-value statistics of multivariate association models. We validate MetaPhat with Global Lipids Genetics Consortium GWAS results, and we apply MetaPhat to univariate GWAS results for 21 heritable and correlated polyunsaturated lipid species from 2,045 Finnish samples, detecting seven independent loci associated with a cluster of lipid species. In most cases, we are able to decompose these multivariate associations to only three to five central traits out of all 21 traits included in the analyses. We release MetaPhat as an open source tool written in Python with built-in support for multi-processing, quality control, clumping and intuitive visualizations using the R software.

Conclusion: MetaPhat efficiently decomposes associations between multivariate phenotypes and genetic variants into smaller sets of central traits and improves the interpretation and specificity of genome-phenome associations. MetaPhat is freely available under the MIT license at: https://sourceforge.net/projects/meta-pheno-association-tracer.

Keywords: multivariate analysis, genotype phenotype correlation studies, feature selection, Bayesian information criteria, visualilzation, canonical correlation, multivariate GWAS, pheno- and genotypes


INTRODUCTION

Genome-wide association studies (GWAS) of common diseases and complex traits in large population cohorts have linked thousands of genetic variants to individual phenotypes. In emerging biobank studies as well as in some disease specific collections have focused on, for example, Type 2 diabetes (T2D) (Mahajan et al., 2018) or coronary artery disease (CAD) (Ripatti et al., 2016), multiple related quantitative traits are simultaneously available for genetic association studies. The statistical power in these discovery efforts can be boosted considerably by multivariate tests, which have become more practical through recent implementations that require only univariate summary statistics, such as MultiPhen (O’Reilly et al., 2012), TATES (van der Sluis et al., 2013), CONFIT (Gai and Eskin, 2018), MTAG (Turley et al., 2018), MTAR (Guo and Wu, 2019), and metaCCA (Cichonska et al., 2016). The merits of many of these methods are further discussed by Chung et al. (2019). Concretely, canonical correlation analysis (CCA) (Hotelling, 1936) is the direct extension of the correlation coefficient to identify linear associations between two sets of variables, and it has been successfully applied also to GWAS (Inouye et al., 2012). Moreover, metaCCA extended CCA to work directly from GWAS summary statistics (effect size estimates and standard errors) of related traits and studies. However, a remaining challenge is to interpret which traits are driving the multivariate association and which traits are just passengers contributing little to the association statistic. A successful identification of a subset of central traits for each associated variant can lead to new biological insights in studies of disease progression and heterogeneity. To address this important task, we have introduced MetaPhat (Meta-Phenotype Association Tracer), a novel method to efficiently and systematically:


1.identify and annotate significant variants via multivariate GWAS from univariate summary statistics using metaCCA;

2.perform decomposition by systematically tracing the traits of highest and lowest statistical importance to identify subsets of central traits at each associated variant;

3.plot the traces of trait decompositions and cluster the variants based on the ranking of the importance of traits.





MATERIALS AND METHODS


Workflow

MetaPhat requires as input a set of related GWAS summary statistics from correlated traits. The program implements efficient multi-trait genome-wide association testing, identification of significant associations, and systematic tracing of trait subsets to identify the central traits that consist of a statistically optimal set of traits together with a set of driver traits. A workflow is shown in Figure 1. In steps one to three, genome-wide significant variants [P < 5e-8, the established genome-wide threshold in the field (Sherry et al., 2001; Pe’er et al., 2008)] were identified and were clumped into independent groups that are subsequently represented by the lead variant of each group (i.e., the variant with the smallest P-value). By default, two lead variants were defined as independent if their distance is higher than 1 million base pairs. At step four, we carried out the decompositions of multivariate association by starting from model with all K traits and removing one trait at a time until only one trait remains. We proceeded via two different strategies that we named the highest trace and the lowest trace. More specifically, starting from the model with all K traits, we tested all unique combinations of (K-1) traits to find the subset with the highest CCA statistic (lowest P-value) that we assigned to the highest trace and the subset with the lowest CCA statistic (highest P-value) that we assigned to the lowest trace. We continued both traces iteratively until only a single trait remained by always choosing the subset with the highest CCA statistic on the highest trace and the subset with the lowest CCA statistic on the lowest trace. Intuitively, at each step, the trait dropped on the highest trace was the trait that was best replaceable by the other traits in the model with respect to the genetic association considered. Analogously, at each step, the trait dropped on the lowest trace was the trait that was most irreplaceable by the other traits in the model with respect to the genetic association considered. Altogether, we evaluated K2 subsets out of all possible 2K subsets while building these two traces. Base pair distances, GWAS P-value thresholds, and other program parameters could be updated using command-line arguments.


[image: image]

FIGURE 1. MetaPhat workflow 1. GWAS results for K traits are accepted as input. 2. After quality control and filtering, a multivariate GWAS is performed on the full model with all K traits using metaCCA via efficient multi-processing and chunking to reduce computation time. 3. Lead SNPs are detected and sorted based on the leading canonical correlation/P-value and then clumped based on a user-specified window size. Custom variants can be added. 4. Decomposition of chosen variants is performed through highest and lowest traces to find an optimal subset with a minimum BIC and driver traits based on the established P-value threshold. 5. MetaPhat results include trace plots for P-values and BIC, univariate association statistics plots for all lead SNPs, cluster maps (shown in Figure 2), and a summary table listing central traits (union of drivers and optimal subset).


We used the two traces to identify central traits that are primarily responsible for the association with the variant as explained next.



Evaluating Models

We used two quantities to evaluate models: CCA P-values and Bayesian Information Criterion (BIC; Schwarz, 1978). P-values allowed us to compare each association to the established “genome-wide significance threshold” of 5e-8 (Pe’er et al., 2008). By using the lowest trace, we could identify those traits without which the multivariate P-value is no longer genome-wide significant by simply collecting the traits that have been removed from the full model when the P-value on the lowest trace is first time above 5e-8. We call these traits the driver traits since they drive the association in the sense that without them the association does not anymore reach genome-wide significance and hence would not have been reported as a discovery in a GWAS. This definition of driver traits is based on a fixed P-value threshold, which is an established practice in the field, but does not claim any statistical optimality properties in terms of model comparison. Hence, to more rigorously compare models with different dimensionalities, we used BIC, which approximates the negative marginal likelihood of the model and thus penalizes for the model dimension (Schwarz, 1978). A lower BIC value suggests a statistically better description of the data. A subset of traits with minimum BIC would thus be the model of choice. We defined the optimal subset as the subset with the lowest BIC among all subsets on the highest trace and all subsets on the inverted lowest trace. The inverted lowest trace aggregates the traits that have been dropped on the lowest trace, and, in particular, includes the set of the driver traits as one of its subsets. Subsequently, we defined the central traits as the union of traits from the drivers and optimal BIC subset. MetaPhat traces and terms are summarized in Table 1.


TABLE 1. MetaPhat terminology.

[image: Table 1]


Computing P-Values and BIC From GWAS Summary Statistics

metaCCA outputs the first canonical correlation r1 between the genetic variant x and the set of k traits y1,…,yk and computes the corresponding P-value (Clarke et al., 2011; Cichonska et al., 2016). In this case, the first canonical correlation r1 equals to the maximum correlation between the variant and any linear combination of the traits and hence is equal to the square root of the variance explained R2 from the linear regression of x on y1,…,yk. In general, the expression for BIC is

[image: image]

where n is the sample size, k is the number of parameters (here traits), and [image: image] is the maximized log-likelihood. Next, we have shown how to use metaCCA output r1 to derive BIC from the maximized likelihood of the linear model written as a function of R2 = r12.

Consider a linear model between a (mean-centered) variant x and (mean-centered) traits y = (y1,…,yk)T.

[image: image]

where we do not include the intercept parameter as its maximum likelihood estimate (MLE) is zero after mean-centering. The log-likelihood function is

[image: image]

and MLEs are
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Thus, the log-likelihood at maximum is
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that  is,

[image: image]

Hence, the logarithm of the likelihood ratio between the MLE and the null model can be written as
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Hence, we have that, for an additive constant [image: image],
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which is possible to compute directly from the metaCCA output for models with at least two traits up to an additive constant c. Since c does not depend on the model dimension, we can ignore it in the BIC calculation, when we are only interested in the differences in BIC between models.

Finally, for a single-trait model, R2 can be computed directly from the univariate GWAS summary statistics as

[image: image]

which can be plugged in the BIC formula above to yield BIC for the single-trait model.



Implementation and Output

MetaPhat is written in Python (compatible for 2.7 and 3+) and requires R (3.4+) for plotting. The command-line based program has been tested on multiple operating systems and cloud images. Library requirements and command options are further described in Supplementary Table S1, and test data are accessible from the project page: https://sourceforge.net/projects/meta-pheno-association-tracer.

MetaPhat outputs tabular text files and several plots. A summary result file contains, for each chosen variant, the driver traits and the optimal subset with their P-value and BIC statistics. For each variant, trace plots using P-values and BIC are generated, showing the highest trace, the lowest trace and the inverted lowest trace. In addition, the univariate P-values and directions of effects for each trait are also plotted. The estimated phenotype correlation matrix, clustered heatmaps of trait importance for the chosen variants and a similarity between variants using trait rankings on the lowest trace are produced. Optionally, intermediate statistics during the decomposition can be plotted to get a more detailed view of the decomposition process.



Materials

Our lipidomics data set consisted of the univariate GWAS results of 21 correlated lipid species with polyunsaturated fatty acids that were reported to exhibit high heritability (Tabassum et al., 2019) and showed high correlation (Supplementary Figure S2). These results originated from 2,045 Finnish subjects with imputed genotypes available at ∼8.5 million SNPs. The arbitrarily assigned lipid species identifiers along with their class names and fatty acid chemical properties are listed in Table 2A. To further validate MetaPhat, we processed summary statistics from four basic lipids [high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides (TG), and total cholesterol (TC)] conducted by the Global Lipids Genetics Consortium (GLGC) (Willer et al., 2013; Zhu et al., 2018), and these are listed in Table 2B. With the GLGC data set our aim was to compare MetaPhat results with univariate results reported by GLGC for all variants reported to be significantly associated with two or more traits by GLGC.


TABLE 2. Lipid traits used in MetaPhat analysis.

[image: Table 2]


RESULTS

Using the lipidomics data sets with GWAS summary statistics from the 21 polyunsaturated lipids, MetaPhat found seven independent lead variants after clumping the 415 variants exceeding the standard GWAS P-value threshold of 5e-8 within a window of 1 Mb. Table 3 lists these variants along with their gene annotation, multivariate P-value, and central traits. MetaPhat has strongly reduced the multivariate association for all seven variants into smaller and more specific groups of central traits.


TABLE 3. MetaPhat results of the 7 lead variants from the multivariate analyses of the lipidomics data.

[image: Table 3]We considered in more detail rs7412, which is a missense variant in the APOE gene and is known for its effect on LDL, as reported, for example, in the GLGC analysis (Willer et al., 2013). With the lipidomics data, this variant would not have been identified from any of the 21 univariate GWAS as the smallest univariate P-value was 1.1e-4 (trait PCO23, Supplementary Figure S3.6). On contrary, the multivariate GWAS by MetaPhat clearly highlighted this variant associated with the multivariate lipidomics (P = 4.2e-13) and further determined that the association was driven by CE14 and PCO23 (P-value after excluding these driver traits is 1.8e-06). The BIC-optimal subset for this variant extended the drivers by one additional trait and included CE14, PC36, and PCO23, which form the central traits. The trace plots for rs7412 are shown in Figure 2A (P-values for defining driver traits) and Figure 2B (BIC for defining optimal subset).
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FIGURE 2. MetaPhat results using multivariate lipidomics data. (A) Trace plot of rs7412 identifies CE14 and PCO23 as the driver traits. (B) CE14, PC36, and PCO23 form the optimal subset as defined by minimum BIC (highest negative BIC). (C) Trait importance map of each SNP is the rank on the lowest trace where the rankings are transformed to the range of 0 and 1 values, with darker blue shades representing the most important traits of the multivariate association. (D) SNP similarity based on the rank correlation on the lowest trace.


Variants rs66505542 near BUD13 and rs261290 near ALDH1A2 both have only one driver trait (PI9 for BUD13 and PE7 for ALDH1A2) and three or five central traits (Table 3). Earlier, the APOA1 variant rs964184 within 100 kb of rs66505542 has been reported to be associated with TG (lead trait, P = 7.0e-224), TC, HDL, and LDL in GLGC data and rs66505542 itself with several cell phenotypes (platelet count, red cell distribution width, sum of eosinophil and basophil counts) in the GWAS catalog, while rs261290 has been reported to be associated with HDL (lead trait, P = 1.0e-188), TC, and TG in GLGC data (mapped to LIPC gene) and with HDL in the GWAS catalog.

A very different picture emerges for rs174567 near FADS1/2 since its 18 central traits show its wide effects across the lipidomics traits studied here. Previously reported FADS1/2 associations are with all lipid traits (TG lead trait, P = 7.0e-38) in GLGC data and with metabolite measurements and gallstones in the GWAS catalog.

Trait importance map that clusters each variant based on the lowest trace is shown in Figure 2C and the similarity of the variants as measured by rank correlation of the traits on the lowest trace is shown in Figure 2D. The trace plots for the other six variants than rs7412 are shown in Supplementary Figure S1.


Validation and Global Lipids Genetics Consortium

We processed the Global Lipids Genetics Consortium (GLGC) GWAS study for four plasma lipids (HDL, LDL, TC, and TG, as listed in Table 2B). These correlated traits along with large sample sizes and available summary files are suitable for MetaPhat GWAS and decomposition. We focused on the 13 variants reported by GLGC to have associations with three or more lipid traits (Supplementary Tables S2 and S3 from Willer et al., 2013). In Table 4, we validated that at 12 out of the 13 variants the same associations are confirmed by MetaPhat’s central traits. The only discordance was at rs6831256 (DOK7) where we found TC and TG as central traits compared to previously reported univariate associations with TC, TG, and LDL. As TC and LDL are highly correlated, it is understandable that the smaller dimension of the set TC, TG, may in some analyses be preferred over the set that also includes LDL. In Supplementary Table S2, we further report high concordance between our central traits and GLGC variants found associated with two or more standard lipids.


TABLE 4. MetaPhat detection of driver and optimal lipid sets for 13 variants reported to be associated with at least three lipids by GLGC (12).

[image: Table 4]


Performance

For computing the test statistic, MetaPhat uses metaCCA that, for a single SNP, has previously been shown to reliably estimate the results of standard CCA applied to individual level data (canoncorr function in Matlab) (Cichonska et al., 2016). Additionally, we also empirically validated MetaPhat multivariate findings with GLGC results.

MetaPhat considerably cuts down the computational demands of comprehensive subset testing. With K traits, there are 2K-1 non-empty subsets that have quickly become infeasible to systematically assess, while MetaPhat only considers about K2 models. For example, in our example with K = 21 traits, the gain in performance is about 4,700-fold compared to the complete subset testing. To further increase performance and usability, we have implemented flexibility for multi-thread processing to enable high performance and memory efficiency. On a moderate Google cloud image (16 vCPUs, 8 GB), the complete MetaPhat workflow for our lipidomics analysis, containing 21 lipids and 8.5 million SNPs, was completed in less than 2.5 h (143 min). Using 10 processors and 9 gigabytes of memory, the GLGC job with the four basic lipids and 2.4 million imputed SNPs completed in 24 min. MetaPhat also allows decomposition and plotting of custom SNPs. For example, the custom analysis of the 13 GLGC variants associated with three or more traits, shown in Table 4, was run again on existing GLGC MetaPhat results, and decomposition and plotting took only 2 min. We note that the run time could be longer on shared servers but also substantially shorter using more powerful dedicated cloud images.



DISCUSSION

It is expected that a particular genetic variant may affect only a subset of related biomarkers that are risk factors of complex disorders, such as T2D or coronary heart disease. We implemented MetaPhat to systematically decompose and visualize statistically significant multivariate genome-phenome associations into a smaller group of central traits, based only on univariate GWAS summary statistics. We are not aware of comparable software to MetaPhat that would automatically carry out multivariate GWAS and identify central traits for the associations from summary statistics. ASSET (Bhattacharjee et al., 2012) aims to find the best trait subsets within a pool of multiple studies and has been applied particularly for case-control studies. MTAG (Turley et al., 2018) can be applied to GWAS results of multiple related traits and overlapping samples, but its aim is to improve the accuracy of the univariate effect sizes by using the information from correlated traits rather than decomposing the multivariate association to individual traits.

In our results from an analysis of 21 lipidomics traits, we demonstrated that the APOE association (rs7412) benefited from multivariate testing (driven by CE14 and PCO23 traits), as the univariate P-value was insignificant (P > 1e-4) across all 21 GWAS traits (shown in Supplementary Figure S3.6), but multivariate P-value was low (P < 5e-13). This variant is known to have a strong effect on LDL, and Table 2 shows that CE14 has the highest correlation with LDL (0.464). The other two central traits of this variant, PCO23 and PC36, did not have any correlation to basic lipids larger than 0.20 in absolute magnitude.

Table 3 lists the multivariate results including which four of these seven variants were previously reported by GLGC as associated with at least one of the four basic lipids. The other three variants also have some nearby variants that have been reported in the GWAS catalog (Buniello et al., 2019). First, rs8736 in MBOAT7 has been previously reported to be associated with human blood metabolites (Shin et al., 2014) as well as alcohol related cirrhosis of the liver (Buch et al., 2015). Second, variants in the region of rs146327691, near the SLCO1A2 gene, have been previously reported for response to serum metabolites (Krumsiek et al., 2012) and, interestingly, also for response to statins (Ho et al., 2006; Carr et al., 2019). Lastly, variants in the region of rs188167837 have been previously identified to be associated with nasopharyngeal carcinoma (Su et al., 2013). Additionally, MetaPhat decomposed most variants to substantially smaller sets of central traits than the full set of 21 traits, which can provide new biological insight regarding the variants identified. On the other hand, the essential role of FADS2 gene region in regulating unsaturation in fatty acids was clearly reflected in MetaPhat results, as we observed as many as 18 central traits at the lead variant. Provided that the exact mechanistic roles of polyunsaturated lipids toward heart disease (Teslovich et al., 2010; Malovini et al., 2016; Pizzini et al., 2017) are under active investigation, our findings warrant further evaluation. We further confirmed good concordance (60/67, Supplementary Table S2) with MetaPhat central traits with respect to the earlier reported GLGC associations with two or more standard lipids, and excellent concordance (12/13) with the associations with three or more standard lipids.

MetaPhat optimal subsets are derived from the minimum BIC score representing the model that best describes the data when we account for both the model fit and the model dimension. Qualitatively BIC statistic is similar to the widely-used AIC (Akaike, 1973) statistic, but BIC quantitatively differs from AIC by favoring smaller dimensions, which also improves the interpretation of the optimal models. As intuitively expected, and as seen in Table 3, the driver traits tend to be members of the optimal set although they do not always agree, since the driver traits are defined by a GWAS-specific criterion of P-value threshold 5e-8, which does not need to coincide with the optimal subset chosen by a more statistically justified BIC criterion.

Our software implements flexible parameters for custom multi-thread chunking to enable high performance, genome-wide, multi-trait meta-analysis while integrating metaCCA for multivariate testing followed by systematic decomposition of traits. Thus, a limitation of MetaPhat is that it relies on metaCCA, but other multivariate GWAS algorithms could also be used provided that these methods can work with univariate GWAS results as inputs and produce suitable metrics that can be used to derive the model comparison statistics. With regard to false positives, we used the standard GWAS cutoff (P = 5e-8), as carried out only a single multivariate GWAS to pick the lead variants. This cutoff can be adjusted according to the preferences of the users. MetaPhat also optionally allows the running of metaCCA+ (Cichonska et al., 2016) shown to protect against false positives via shrinkage that adds robustness to the analysis.

Finally, we remind the reader that MetaPhat decompositions are sequential, dropping one trait at a time, and hence are not guaranteed to produce the globally optimal subset. Additionally, for highly correlated traits, such as LDL and total cholesterol, the choice of which one is dropped first may not be completely robust to small changes in data.

The ability of MetaPhat to identify and visualize central traits will also be valuable in supporting efforts and pipelines (Fatumo et al., 2019) comparing results between univariate and multivariate associations as well as in studies that aim to increase specificity of multi-trait associations. We also expect that the multi-phenotype clustering results of MetaPhat can assist researchers investigating disease subtypes.
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Genome-wide association studies focusing on a single phenotype have been broadly conducted to identify genetic variants associated with a complex disease. The commonly applied single variant analysis is limited by failing to consider the complex interactions between variants, which motivated the development of association analyses focusing on genes or gene sets. Moreover, when multiple correlated phenotypes are available, methods based on a multi-trait analysis can improve the association power. However, most currently available multi-trait analyses are single variant-based analyses; thus have limited power when disease variants function as a group in a gene or a gene set. In this work, we propose a genome-wide gene-based multi-trait analysis method by considering genes as testing units. For a given phenotype, we adopt a rapid and powerful kernel-based testing method which can evaluate the joint effect of multiple variants within a gene. The joint effect, either linear or nonlinear, is captured through kernel functions. Given a series of candidate kernel functions, we propose an omnibus test strategy to integrate the test results based on different candidate kernels. A p-value combination method is then applied to integrate dependent p-values to assess the association between a gene and multiple correlated phenotypes. Simulation studies show a reasonable type I error control and an excellent power of the proposed method compared to its counterparts. We further show the utility of the method by applying it to two data sets: the Human Liver Cohort and the Alzheimer Disease Neuroimaging Initiative data set, and novel genes are identified. Our method has broad applications in other fields in which the interest is to evaluate the joint effect (linear or nonlinear) of a set of variants.
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INTRODUCTION

Methods on genome-wide association studies (GWAS) are mostly focused on single variant (e.g., single nucleotide polymorphism, SNP) analysis with a single phenotype, the so-called single-variant single-trait analysis. Increasing evidence shows that pleiotropy, the effect of one gene on multiple phenotypes (often correlated), plays a pivotal role in many complex traits (Stearns, 2010; Schifano et al., 2013). For example, cognitive ability is often assessed in many domains such as memory, intelligence, language, and visual–spatial function (Yang and Wang, 2012). Instead of analyzing one trait at a time, we can take the correlated structure of multiple phenotypes into account and analyze them in a multi-trait analysis. As a complementary approach, such type of analysis can not only gain association power by aggregating multiple weak signals (He et al., 2013; Schifano et al., 2013; Wang, 2014) but also lead to better understanding of disease etiology by detecting genetic variants with pleiotropic effects (Amos and Laing, 1993; Jiang and Zeng, 1995; Schifano et al., 2013).

For a multi-trait analysis, one commonly applied method is the one-way multivariate analysis of variance (MANOVA) (Bilodeau, 2013). Unfortunately, most multi-trait data do not satisfy the multivariate normal assumption for MANOVA, hence greatly limiting its applicability. Other methods are developed based on the idea of dimension reduction. For example, a multivariate response can be summarized into a univariate score using principal component (PC) analysis, based on which traditional univariate association methods can be applied (e.g., Zhang et al., 2012). As the first PC contains the most information about multiple phenotypes, this can change the test between a SNP and multiple phenotypes into a univariate test of association between a SNP and the first PC. The downside for this analysis is the lack of interpretability. Methods focusing on summary statistics have gained much popularity recently since the individual-level data are typically unavailable (e.g., Kim et al., 2015; Turley et al., 2018). However, such methods are largely undermined if the published GWAS summary statistics have limited accuracy. In addition, the marginal SNP effect is usually quite small in many complex diseases, and many identified SNPs have limited biological interpretation, for example, SNPs identified in non-coding regions.

These limitations motivated the development of gene- or pathway-based association analysis aimed at improving the statistical power and gaining novel insight into disease etiology (Wang et al., 2007; Cui et al., 2008; Liu et al., 2010). Firstly, the gene- or pathway-based analysis can largely alleviate the multiple testing burden by more than 10 or 100 folds. Secondly, due to allelic heterogeneity, most diseases are associated with a set of SNPs at different loci, making it hard to replicate the results based on a single-SNP analysis (Neale and Sham, 2004). In this case, a gene- or pathway-based analysis may provide additional insight to reveal the functional mechanism of complex diseases (Wang et al., 2010). Unlike the heterogeneity of a single locus, the biological function of genes is more consistent across populations, which enhances the likelihood of replication (Neale and Sham, 2004; Wang et al., 2010).

Most reports in the literature on multi-trait analysis are focused on a single-variant analysis, which shares the same limitation as described for the single-trait GWAS. Although methods for gene-based analysis focusing on a single trait have been developed, multi-trait analysis focusing on genes or gene sets is largely under-developed. There is a pressing need to develop a gene-based method for a multi-trait analysis.

In a gene-based single-trait analysis, the kernel-based testing (KBT) method is gaining much popularity recently due to its power and flexibility in capturing potential nonlinear effects (Kwee et al., 2008; Mukhopadhyay et al., 2010; Wu et al., 2010; Li and Cui, 2012; Lin et al., 2013; Marceau et al., 2015; Wei and Lu, 2017). The power of the KBT methods depends on the choice of kernel functions which measure the similarity between individuals across multiple genetic variants in a gene. When the underlying true disease function is unknown, this limits the applicability of the KBT methods since the choice of the kernel function needs to be determined. Given a series of candidate kernel functions under the KBT framework, a common method is to choose the kernel function leading to the smallest p-value. This idea, however, could inflate the type 1 error rate due to the greedy process of kernel selection. We recently proposed a nonparametric KBT testing procedure which relaxes the distributional assumption required in most KBT methods (He et al., 2019). The asymptotic distribution of the test statistics approximately follows a normal distribution when the number of SNP variants in a gene set, p, is large. In fact, the normal approximation works well under a large p setting. Given a series of candidate kernel functions, we provided an analytical procedure to evaluate the p-value of the maximum statistics.

Based on empirical studies, the approximation method could be underperformed when p is relatively small. In this work, we borrowed the same idea but relaxed the large p assumption required for the normal approximation and proposed an omnibus testing procedure when multiple candidate kernels are available. Obtaining a p-value needs almost negligible computation and can be extremely fast. When extending the method to a multi-trait analysis, we adopted a Fisher p-value combination (FPC) method with correlated dependent variables, as proposed by Yang et al. (2016). The FPC provides an alternative approach for multi-trait analysis by integrating the single-trait analysis results. The proposed Omnibus Multi-trait Gene-based Association (OMGA) analysis can capture linear or nonlinear effects without kernel selection and is computationally efficient.

We conduct extensive simulation studies to evaluate the type I error control and power and further compare it with its counterparts. We demonstrate the performance of our proposed method through two real data applications of the Human Liver Cohort (HLC) study and the Alzheimer Disease Neuroimaging Initiative (ADNI) study. The results tell which genes are specific to a single phenotype or contributed to a common genetic construction of multiple phenotypes. Our OMGA method enriches the literature of genome-wide gene-based multi-trait association analysis and has broad applications in other fields where the interest is to evaluate the joint effect (linear or nonlinear) of a set of variants.



STATISTICAL METHODS


Gene-Based Association Test Based on a Single Trait


The Model

To model the association between a gene and a quantitative trait, we consider the following semiparametric model (He et al., 2019),

[image: image]

where Yi is the response variable for the i-th individual, n is the sample size, α is the effect corresponding to Wi = (Wi1,Wi2,……WiH)T, a vector of H-dimensional covariates containing variables such as age and gender, xi = (xi1,……xip)T is a vector of a p-dimensional SNP set in a given gene where p can be large, h(⋅) is an unknown function that captures the joint effect of multiple variants in a given SNP set, and εi is the random error with mean 0 and variance σ2. Here, we relax the error distribution assumption for the error term which does not have to follow a normal distribution.

Following model (1), assessing the effect of multiple variants in a given SNP set (e.g., a gene) is equivalent to test the hypotheses H0: h(⋅) = 0, while adjusting for the effects of covariates. Wu et al. (2011) proposed a kernel-based test by considering the joint effect of multiple SNPs in a given set and showed great power compared to a multiple-regression approach. In Wu et al. (2011), the function h(⋅) is modeled as a random effect and h(⋅)∼N(0,τ2K) where τ2 is the variance and K is a kernel matrix which measures the similarity between individuals across multiple SNP variants. However, the normality assumption on h(⋅) limits its power when this assumption is violated. To relax this assumption, He et al. (2019) proposed a U-statistic defined as:
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where [image: image] and [image: image] are sample estimates under the null model Yi = μ + αTWi + εi; [image: image] is the normalized kernel for kernel Kθ(Xi,Xj). In practice, the choice of kernel function for Kθ(Xi,Xj) depends on the underlying relationship between SNPs and the disease response. For example, a linear kernel is applied if the relationship between multiple SNP variants and the disease response is linear, and a Gaussian or polynomial kernel can be applied if a nonlinear relationship between multiple SNPs and the disease response is assumed. Several widely used kernel functions include the linear kernel [image: image], IBS kernel for discrete SNP genotype data [image: image], and Gaussian kernel Kθ(Xi,Xj) = exp⁡(−||Xi−Xj||2/θ). These kernels will be our candidate kernels in the simulation and real data analysis.

Let [image: image] and [image: image]. Then, we have [image: image] and [image: image]. Following the Eigen-decomposition, [image: image] where λm is the eigenvalues and ϕm(⋅) is the orthonormal eigenvectors of the kernel K. For any positive integer k, let [image: image]. Then, under the null hypothesis of no association, the asymptotic distribution of the test statistic Tn follows a chi-square distribution, i.e.:
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where [image: image] are independent chi-square distributions with one degree of freedom. Then, we can apply a Satterthwaite approximation to the mixture of chi-squares by a scaled chi-square distribution [image: image], where [image: image], [image: image], and [image: image] is a consistent estimator of V1 with H = I−n−1J as a projection matrix. Then, an asymptotic α-level test rejects the null if
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where [image: image] is the (1 – α)th quantile of a chi-square distribution with [image: image] degrees of freedom. Following He et al. (2019), [image: image] can be estimated by
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where ∘ represents the Hadamard product, [image: image], and B = HKH. Then, the p-value of Tn can be obtained.



An Omnibus Test With Multiple Candidate Kernels

The method described above works for a given kernel function. There are various kernel functions available to use. For example, if a linear relationship is assumed, then one can apply a linear kernel, while a Gaussian kernel can be applied when potential nonlinear relationship exists. Thus, the power of the proposed test statistic largely depends on the choice of the kernel function. If the optimal kernel function that captures the underlying true relationship cannot be determined, the testing power will suffer. In practice, the true relationship is generally unknown, so does the choice of the kernel function.

To overcome the issue of selecting the optional kernel function, we propose an omnibus test strategy in this work. Given a set of L candidate kernels denoted by K1(⋅,⋅),K2(⋅,⋅),⋯,KL(⋅,⋅),, we can apply the proposed method and get the corresponding p-value denoted by p1, p2,…pL. These L kernel functions can come from a wide range of choices, such as the linear kernel, the Gaussian kernel, and the polynomial kernel. Then, we can transform the L p-values by a Cauchy transformation and combine the transformed p-values to form a new statistic (Liu et al., 2019),

[image: image]

If pj comes from the null hypothesis, the transformation tan⁡{(0.5−pi)π} follows a Cauchy distribution. Then, the p-value of TO can be approximated by

[image: image]

This Cauchy combination method performs similarly as the minimum p-value method. In addition, it works well under different correlation structures. Thus, when the underlying true relationship is unknown, if the choice of the kernel function is rich enough, we can always achieve good power regardless of the underlying disease gene action mode. More importantly, this method is computationally fast and robust to different dependence structures between p-values (Liu and Xie, 2019).



Gene-Based Association Test With Multiple Traits

When multiple correlated traits are available, it is more powerful to analyze them together to find the disease–gene association. One way to do so is to perform a multivariate analysis by treating multiple traits as a multivariate response. Generally speaking, it is much easier to conduct a univariate association test than a multivariate association test. Suppose there are a total of d quantitative traits. For a given gene, we can get d gene-level p-values, denoted by p1, p2,…pd. Since these d traits are generally correlated and the p-values are obtained based on the same gene, these p-values are typically correlated. To obtain a gene-based p-value for multiple traits, one simple way is to do a p-value combination. Unfortunately, the aforementioned Cauchy combination method does not work well in many cases since it functions like a minimum p-value approach, and this is not the intention for multi-trait analysis.

When the d p-values are independent, the Fisher combination method defined as [image: image] follows a chi-square distribution with 2d degrees of freedom (Littell and Folks, 1971). For correlated traits, this method cannot be directly applied to find the association between one gene and multiple traits. In fact, the statistic T is a sum of correlated chi-square statistics which can be approximated by a scaled chi-square distribution [image: image] or a gamma distribution with a scale parameter of 2δ and a shape parameter of τ/2 under the null hypothesis (Yang et al., 2016). Let E(T) = μ and Var(T) = σ2. Then, δ and τ can be computed as δ = σ2/2μ and τ = 2μ2/σ2. Here we adopt the method proposed by Yang et al. (2016) to combine the d-dependent p-values. The variance σ2 can be calculated as

[image: image]

Let δjk = cov{−2log⁡(pj),−2log⁡(pk)}. Yang et al. (2016) proposed a method to estimate δjk based on which we can estimate σ2 [please refer to Yang et al. (2016) for the technical details of estimating σ2 and μ]. An R package implementing the method can be found at https://github.com/jjyang2019/FisherCombinationStat. Then, based on the estimators of μ and σ2 for the gamma distribution parameters, the overall testing p-value of T can be calculated as
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The number of the gene-level test is much smaller than the number of the SNP-level test. After obtaining the gene-level p-values, multiple testing adjustment such as FDR can be applied to claim the significance of a gene.



SIMULATION STUDIES


Simulation Design

To evaluate the statistical power and the type 1 error rate of the proposed method, we conducted extensive simulation studies to compare the proposed method (OMGA) with some existing methods. Specifically, we compared with the method of multivariate multiple linear regression (RMMLR) proposed by Basu et al. (2013) and the MANOVA method. RMMLR was developed based on multivariate regression and transformed the phenotype and genotype data to achieve a rapid gene-based genome-wide association test for multiple traits. The R package that implements the method, termed as RMMLR, is available at GitHub: https://github.com/SAONLIB/RMMLR. For the MANOVA analysis, the association between each SNP in a gene and multi-trait is implemented with the MANOVA function in R. The minimum p-value in a gene is recorded as the gene-level p-value.

The genetic data were simulated to mimic the real structure of a gene through the software EpiSIM (Shang et al., 2013). The software package of EpiSIM can be downloaded at https://sourceforge.net/projects/episimsimulator/. We simulated correlated quantitative phenotypes with the following model:

[image: image]

where ϵi = (ϵi1,ϵi2,⋯,ϵid)T is a d-dim random error vector generated from a multivariate normal distribution with mean 0 and covariance Σ; Yi = (Yi1,Yi2,⋯,Yid)T is a d-dim-dependent trait vector; Zi1∼N(2,1) and Zi2∼Ber(0.6) are two independent covariates; Xi = (Xi1,Xi2,⋯,Xip)T is a p-dim SNP genotype vector in a gene. Under all scenarios, we simulated genes with different dimensions, i.e., p = 50 and p = 100, and with different sample sizes, namely, n = 100, 200, and 400. For the number of traits, we assumed d = 5. The correlation between traits was assumed to be p = 0.3 and 0.8, with the purpose to evaluate the impact of correlation on the testing power. In each scenario, we applied 1,000 simulation replications.

We assessed the type 1 error rates under the null hypothesis [i.e., h(⋅) = 0] by the proportion of results that incorrectly rejected the null hypothesis. To evaluate the power, we set up four different scenarios for the h(⋅) function and recorded the proportion of results that rejected the null hypothesis. Under scenario A, we assumed that [image: image], where the 1st and 6th SNP have a main effect with different directions and the 6th SNP also has a nonlinear effect on the five response traits. Under scenario B, we assumed that h(x) = 0.3x2 + 0.6x4−0.07x8.

To mimic the situation where a large number of SNPs influence the traits, we assumed the following model:

[image: image]

where SM consists of a predefined set of 10 SNPs with main effect, and SN contains a set of 30 SNP pairs with interactions. Both {αk,k ∈ SM} and {βkk′,(k,k′) ∈ SN} were generated from a uniform distribution with Unif (0, 0.02), and were fixed for all simulation replicates once generated. Under scenario C, we set CM = 0.02 and CN = 1.8, which gave a combination of weak main effect and relatively strong interaction effect. Under scenario D, we set CM = 3.8, and CN = 0, with a pure main effect model. The four scenarios with their corresponding mean functions are summarized here:

Scenario A: [image: image]

Nonlinear effect

Scenario B: h(x) = 0.3x2 + 0.6x4−0.07x8

Linear effect

Scenario C: [image: image]

Weak main but strong interaction effects

Scenario D: h(x) = 3.8∑k ∈ SMαkxk

Pure main effects



Simulation Results

Table 1 displays the empirical type 1 error rate of different methods under different settings, from which we conclude that the three methods maintained reasonable type 1 error rate control in most settings.


TABLE 1. The type 1 error rate of different methods under different settings.

[image: Table 1]The power simulation results for the case with p = 0.3 are shown in Figure 1. Under different scenarios, the power of the three methods all increases as the sample size increases. Among the three methods, MANOVA performs the worst in most cases. Although the power decreases as the SNP dimension increases for all the three methods, the power decrease is more dramatic for RMMLR and MANOVA compared to that for OMGA. This indicates the relative advantage of the proposed method against the other two when the data dimension is high. The result clearly shows that the proposed omnibus test outperforms the other two methods under different scenarios since it can better capture the potential nonlinear effect of variants within a gene by applying a nonparametric KBT procedure with different kernel choices.


[image: image]

FIGURE 1. The testing power of different methods under the four scenarios with p = 0.3.


Figure 2 shows the empirical testing power of the three methods with p = 0.8. Compared with the p = 0.3 case, the power of RMMLR and MANONA decreased, while our proposed method can still maintain a comparable power as the p = 0.3 case. Note that the MANOVA method implemented here uses a minimum p-value approach among multiple SNPs to denote a gene-level p-value. The simulation result echoes the work of Basu and Pan (2011), in which the minimum p-value method performs the worst among the three methods that the authors compared in their simulation study.


[image: image]

FIGURE 2. The testing power of different methods under the four scenarios with p = 0.8.


In summary, the simulation results clearly demonstrate that the proposed omnibus test method can maintain a reasonable type I error control while having better power than the other two methods under different scenarios. This is because the proposed omnibus testing method can efficiently capture a linear or a nonlinear relationship between multiple variants in a gene and multiple phenotypes. In practice, the underlying true disease–gene relationship is never known. This makes our proposed omnibus test method particularly attractive in real application since it does not put any model assumption. As long as the choice of kernel functions is rich enough, the omnibus test can achieve its power advantage against the other methods which only function well under the desired model assumption.



REAL DATA ANALYSIS


Case One: The Human Liver Cohort Data Analysis

To demonstrate the power and the applicability of our approach, we applied the proposed method OMGA together with RMMLR and MANONA to a HLC study data set, which can be downloaded from https://www.synapse.org/#!Synapse:syn4499. The HLC study aims to explore the genetic architecture of gene expressions in human liver. There are a total nine phenotypes of P450 enzymes (CYP1A2, 2B6, 2C8, 2A6, 2C9, 2D6, 2C19, 2E1, and 3A4) from unrelated liver samples of Caucasian individuals. The samples were removed if their genotype and phenotype information were missed, and the final data included in our study contained 170 individuals. DNAs were genotyped by the Illumina 650Y SNP and Affymetrix 500K SNP genotyping arrays. SNPs with a minor allele frequency (MAF) less than 5% were removed. The total number of SNPs that remained was 312,082, which were further mapped into 11,579 genes using tools from the NCBI website ftp://ftp.ncbi.nih.gov/snp/.

The cytochrome P450s compose a superfamily of monooxygenases which are critical for anabolic and catabolic metabolism in almost all living organisms (Nelson et al., 1996; Aguiar et al., 2005; Plant, 2007). With its importance in physiology and drug metabolism in human, the regulatory mechanisms and genetic variations of P450 enzyme have been extensively studied. As there is a relatively close relationship among the CYP family enzymes, a joint analysis of multiple P450 enzyme traits and gene association can potentially lead to the identification of novel genes. Based on a hierarchical clustering analysis, we focused on six enzyme activity traits, namely, CYP1A2, CYP3A4T, CYP2C8, CYP2B6, CYP2C9, and CYP2A6, as the response variables since they show a moderate correlation (see Supplementary Figure S1). We included age and gender as covariates in the analysis and log-transformed the six response variables.

For each individual trait, we first conducted a marginal gene-based single-trait analysis with the omnibus KBT. Then, we integrated the p-values for the six traits and applied the p-value combination method to get a gene-based multi-trait p-value. In the multi-trait analysis, we also applied the RMMLR and the MANONA methods. The Q–Q plot of the single-trait analysis is shown in Supplementary Figure S2 and no p-value inflation was observed. Figure 3 shows the Q–Q plot of the multi-trait analysis.


[image: image]

FIGURE 3. The Q–Q plot of the observed –log10 (p-value) versus the expected –log10 (p-value) for the six enzyme traits based on the multi-trait analysis.


If we use the genome-wide gene-level Bonferroni correction, the threshold to claim a significant gene level significance is 4.3 × 10–6. This leads to no significant genes in our analysis. Here, we only listed a few top genes with p-value less than 6 × 10–5 as suggestive significance. In the single-trait analysis, the top genes for each trait are HAUS8 and IRS12 for CYP1A2, TRAPPC10 for CYP3A4T, TARID and FUNDC2 for CYP2C9, and PAPLN for CYP2A6. No genes pass the suggested threshold for trait CYP2B6 and CYP2C8 (see Supplementary Table S1 for a detailed list of associated genes for each trait and the corresponding p-values). For the multi-trait analysis, we listed in Table 2 the results of the top genes along with the results by RMMLR and MANOVA. Among the four genes, TARID, TRAPPC10, and HAUS8 were also in the list of single-trait analysis. Gene ATAD3C is not shown in the top list of the single-trait analysis. This may be due to the low power of the single-trait analysis. If we ignore the correlation information among the six enzyme traits and only focus on a single-trait analysis, we may miss some discoveries. For the top four genes by OMGA, the p-values by RMMLR and MANOVA are all quite large. This could be due to the potential complex functional relationship between the genes and the traits. RMMLR and MANOVA were not designed to capture those complex relationships.


TABLE 2. List of top genes and the p-values with different methods in the Human Liver Cohort study.

[image: Table 2]Empirical evidence supports some of the identified genes. For example, gene ATAD3C has been reported in literature to be associated with aldosterone metabolism and P450 enzyme (Chu et al., 2017). Gene TARID participates in liver cell metabolism (Yuan et al., 2016). Gene TRAPPC10 is associated with the toxic effect of octylphenol on the expression of genes in the liver (Li et al., 2014).



Case Two: The Alzheimer Disease Neuroimaging Initiative Data Analysis

We also applied the developed OMGA method to the ADNI data set which can be accessed at http://adni.loni.usc.edu/. From the ADNI1 and ADNI2 studies, we selected 490 samples with complete genetic and phenotypic information. We deleted SNPs with MAF < 0.05 or those that could not pass the Hardy–Weinberg equilibrium test. This ended up with 620,901 SNPs. We included SNPs within 20 kb upstream and downstream of each gene and mapped them to 22,890 genes according to human genome version GRCh38.

Alzheimer’s disease (AD) is a central nervous system degenerative disease with insidious onset and chronic progress and has affected over 5.5 million Americans, especially among the elderly over the age of 65 years. ADNI provides pre-calculated volumes of five cortical regions including entorhinal, hippocampus, ventricles, midtemp, and fusiform. Brain atrophy is a typical clinical symptom among AD patients (Ferrarini et al., 2006). Studies have pointed out that the volumes in the different cortical regions show different rates of decline and are functionally related to AD. For example, the hippocampus region helps humans to deal with memory sounds, long-term learning, and taste and is a sensitive early indicator of AD (Mu and Gage, 2011). The loss in the entorhinal region is highly correlated with the severity of AD and the loss is obvious even in mild AD patients (Juottonen et al., 1998). Similarly, the volumes in the regions fusiform and midtemp also slightly decrease in AD patients (Thambisetty et al., 2011). This motivates us to take the volumes of the five cortical regions as a multi-trait response and to identify which genes are associated with the volume variation in the different brain regions.

We first conducted the marginal single-trait analysis with the proposed gene-based omnibus kernel testing approach. We log-transformed the volumes of the five cortical regions and took the age, education level, gender, and APOE4 alleles as the covariates. The Q–Q plot of the gene-based single-trait analysis is shown in Supplementary Figure S3. No sign of p-value inflation was observed. Also, there is no strong indication of significant signals either. Then, we carried out the multi-trait analysis which can more accurately reflect the brain atrophy in AD patients. We also applied MANOVA and RMMLR methods for multi-trait analysis. The Q–Q plot of the multi-trait analysis results by OMGA is shown in Figure 4. There is no significant indication of p-value inflation.


[image: image]

FIGURE 4. The Q–Q plots of the observed –log10 (p-value) versus the expected –log10 (p-value) for the five cortical regions based on the multi-trait analysis.


Again no significant genes were identified based on the genome-wide gene-level Bonferroni threshold. Here, we listed the top 12 genes based on a suggestive threshold of 5 × 10–5 in Table 3. From the single-trait analysis, we found eight, 10, 10, five, and six genes associated with the regions entorhinal, ventricles, hippocampus, fusiform, and midtemp, respectively (see Supplementary Table S2 for a detailed list of the genes). Two genes (SNORA30 and TLR4) that were not in the single-trait analysis list but showed up in the multi-trait analysis list are highlighted in bold font in Table 3. Compared to RMMLR and MANOVA analyses, the p-values by OMGA are uniformly smaller, indicating the power of OMGA by taking both linear and nonlinear effect into consideration.


TABLE 3. List of top genes and the p-values with different methods in the Alzheimer Disease Neuroimaging Initiative study.

[image: Table 3]For the 12 genes associated with multi-trait of brain atrophy in AD patients, some of them have been reported in the literature. For example, gene RBM45, known as the RNA-binding motif protein 45 or developmentally regulated RNA-binding protein-1 (Drbp1), has been shown to be associated with the degenerative neurological changes in AD patients (Eck et al., 2018). Gene UPK1B has been shown to be cooperated with CD9 and CD81 and is directly involved in the pathological process of AD (De Strooper and Wakabayashi, 2011; Orre et al., 2014; Wężyk and Żekanowski, 2017). Mutation in gene TLR4 reduces microglial activation, increases Aβ deposits, and exacerbates cognitive deficits in a mouse model of AD (Song et al., 2011). A study showed that polymorphisms in gene TLR4 and CD14 were closely related to AD (Balistreri et al., 2008). Others reported the increasing expressions of TLR2 and TLR4 on the peripheral blood mononuclear cells of AD patients (Zhang et al., 2012). These empirical evidences support the results of the analysis.



DISCUSSION

Increasing evidence has shown that, for correlated phenotypes, multi-trait analysis can significantly increase the power of association analysis (e.g., He et al., 2013; Schifano et al., 2013; Wang, 2014). Given that genes are functional units in most living organisms, we proposed a rapid and powerful gene-based multi-trait analysis method. Our method is developed under the KBT framework without specific error distribution assumptions. It possesses a few advantages over existing methods. First, the method achieves fast calculation speed and decreases the computational burden for high-dimensional data. A testing p-value can be quickly computed with the asymptotic results, making the method computationally attractive. Second, it can capture a potential nonlinear effect within genes by using a nonparametric KBT procedure. By incorporating different kernel functions, potential linear or nonlinear genetic effects can be captured and tested. When a given series of candidate kernel functions is available, the omnibus testing procedure is robust against misspecification of kernel functions. Moreover, it is built upon the Cauchy transformation and is computationally fast (Liu and Xie, 2019). Thus, the proposed method enjoys both theoretical rigor and computational efficiency and can be widely used in gene-based analysis.

We conducted extensive simulation studies to evaluate the type I error control and the power of the proposed method. The results show that the proposed OMGA method can maintain a reasonable type 1 error rate and achieve great power compared to other popular methods such as MANOVA and RMMLR. Furthermore, the omnibus testing procedure incorporating different kernels performs as well as if the underlying true genetic function is correctly specified. Thus, the method is safe to apply in real applications regardless of the underlying disease function, making the method practically attractive.

For multi-trait analysis, there are two different frameworks proposed. One is to jointly model multiple traits as a multivariate response and further assess their association with SNP variants. This framework can directly take correlation information into consideration. Methods for such type of multi-trait analysis include the RMMLR and the MANOVA methods as discussed in this work and many others (e.g., Maity et al., 2012]. Another framework is to conduct a single-trait disease–gene association test and then combine p-values to assess the joint association. The method developed by Yang et al. (2016) falls into this category. Nevertheless, methods to combining p-values have to take the correlation information into consideration. Otherwise, the results can be biased. Ideally, the first framework should be preferable since it models multiple traits simultaneously in one joint model. On the other hand, the second framework has its advantages. For example, it can be computationally less expensive and ease theoretical evaluations. Especially with the proposed method in this work, the second framework can be a better choice since the asymptotic evaluation of the joint association statistics can be theoretically challenging or may not even be feasible.

Our method can be easily applied to a genome-wide pathway-based multi-trait analysis. It is known that genes usually do not work alone. For example, cellular pathways and complex molecular networks are often more directly involved in the progression and the susceptibility of diseases. Thus, a pathway-based analysis can shed light on the mechanics of complex diseases. On the other hand, the current study only focused on quantitative multivariate phenotypes. It can be extended to qualitative response variables or a combination of qualitative and quantitative phenotypes. However, the extension is non-trivial and will be studied in our future investigation. The R code that implements the method can be found in GitHub at https://github.com/yamin-19/OMGA.
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For datasets of gastric cancer collected by TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) repositories, we applied a bioinformatics approach to obtain expression data for the ISLR (immunoglobulin superfamily containing leucine-rich repeat) gene, which is highly expressed in gastric cancer tissues and closely associated with clinical prognosis. Although we did not observe an overall association of ISLR mutation, high expression or copy number variation with survival, hypomethylation of four methylated sites (assessed by the probes cg05195566, cg17258195, cg09664357, and cg07297039) of ISLR was negatively correlated with high expression levels of ISLR and was associated with poor clinical prognosis. In addition, we detected a correlation between ISLR expression and the infiltration levels of several immune cells, especially CD8+ T cells, macrophages and dendritic cells. We also identified a series of genes that were positively and negatively correlated with ISLR expression based on the TCGA-STAD, GSE13861, and GSE29272 datasets. Principal component analysis and random forest analysis were employed to further screen for six hub genes, including ISLR, COL1A2, CDH11, SPARC, COL3A1, and COL1A1, which exhibited a good ability to differentiate between tumor and normal samples. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and gene set enrichment analysis data also suggested a potential relationship between ISLR gene expression and epithelial-mesenchymal transition (EMT). ISLR expression was negatively correlated with sensitivity to PX-12 and NSC632839. Taken together, these results show that the ISLR gene is involved in gastric carcinogenesis, and the underlying molecular mechanisms may include DNA methylation, EMT, and immune cell infiltration.
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INTRODUCTION

The Cancer Genome Atlas (TCGA), a publicly funded project, archives multiple types of genomic data from various types of cancer, including gene expression, mutation, copy number variation (CNV), genome methylation, and clinical data (Cancer Genome Atlas Research Network, 2014; Tomczak et al., 2015; Wang et al., 2016). In addition, GEO (Gene Expression Omnibus) molecular datasets also offer many clinical cancer-related gene expression data (Barrett et al., 2013; Clough and Barrett, 2016). The complicated pathogenesis of gastric cancer involves multiple clinical prognosis-associated oncogenes. Previously, based on the datasets of gastric cancer within TCGA and GEO, we identified the ISLR (immunoglobulin superfamily containing leucine-rich repeat) gene by means of principal component analysis (PCA) and random forest analysis (data not shown), which showed a high expression level in gastric cancer tissues and was closely linked to clinical prognosis. The present study attempted to investigate the possible oncogenic roles of the ISLR gene in the pathogenesis and prognosis of gastric cancer.

The human ISLR gene is situated on human chromosome 15q23-q24 (Nagasawa et al., 1997). The human ISLR protein, a member of the Ig superfamily, contains a leucine-rich repeat (LRR) with conserved flanking sequences and a C2-type immunoglobulin (Ig)-like domain (Nagasawa et al., 1997). The ISLR protein has been reported to be involved in some biological events, such as cell replicative senescence of human dermal fibroblasts (Yoon et al., 2004), embryo development (Homma et al., 2009), and Gaucher disease (Lugowska et al., 2019). However, no study has mainly investigated the potential functional relationship between the ISLR gene and cancer events thus far.

In the current study, we elucidated the underlying molecular mechanisms of the ISLR gene in gastric carcinogenesis from the perspectives of genetic mutation, copy number variation, DNA methylation, immune cell infiltration, expression correlation, pathway enrichment and drug sensitivity for the first time.



MATERIALS AND METHODS


Expression Analysis

We first investigated the expression level of the ISLR gene between gastric cancer and negative controls samples within the TCGA-STAD (The Cancer Genome Atlas stomach adenocarcinoma) cohort and the GTEx (Genotype Tissue Expression) database using the online tool GEPIA21 (Tang et al., 2019). A log2 (FC) (fold change) cutoff = 1, a P-value cutoff = 0.01, and a jitter size = 4 were set. Log2 [TPM (transcripts per million) + 1] values were used for log-scale. Gene expression data were visualized by the “boxplot” function of the R language (for the cancer and control samples) or the “vioplot” R package [for the pathological stage (stages I, II, III, and IV)]. Then, we obtained the expression dataset of “Chen et al. (2003),” which contains a total of 11 diffuse gastric adenocarcinoma and 24 normal control samples, by means of Oncomine2. The log2 (median-centered intensity) data were visualized by GraphPad Prism software, version 5.01 (San Diego).

Furthermore, we utilized the “GEOquery” R package to obtain the available expression and group datasets in GSE13861 and GSE29272. The difference in expression of the ISLR gene between gastric cancer cases and normal controls was analyzed by the t.test function of the compare_means and visualized by the ggviolin function of the “ggpubr” R package. We then used the wilcox.test function of the compare_means with the setting of “paired = TRUE” to analyze the difference in expression between the gastric tumor tissues and adjacent normal tissues and displayed the results using the ggdotchart function of the “ggpubr” R package. R language software [R-3.6.1, 64-bit]3 was used.



Survival Curve Analysis

We conducted OS (overall survival) and DFS (disease-free survival) analyses of gastric cancer cases in the TCGA-STAD cohort according to the expression status of the ISLR gene through GEPIA2. A group cutoff of “quartile” was set, and the Kaplan–Meier curve was plotted. We also pooled the gastric cancer cases in the GSE14210, GSE15459, GSE22377, GSE29272, GSE51105, and GSE62254 datasets for the OS, FP (first progression), and PPS (post progression survival) analyses using the Kaplan–Meier plotter tool (Szasz et al., 2016). The automatically selected best cutoff was used. We considered clinical factors including sex (female or male), pathologic stage (stages 1∼4, T2∼4, N0∼3, M0∼1), HER2 status (negative or positive), Lauren classification (intestinal, diffuse, or mixed), differentiation (poor, moderate, or well), and treatment (surgery alone, 5-Fu-based adjuvant or other adjuvant). Furthermore, we employed the Coxph (Cox proportional hazard) model to determine the correlation between ISLR expression and the clinical prognosis of gastric cancer cases in TCGA-STAD through the web-based tool TIMER (Tumor Immune Estimation Resource) (Li et al., 2016, 2017). Clinical factors, including age, sex, race, stage, and tumor purity, were included in the Coxph model.



Genetic Alteration Analysis

The alteration frequency of the ISLR gene in several studies of gastric cancer, including the TCGA pub (2014), PanCan 2018 (Ellrott et al., 2018; Gao et al., 2018; Hoadley et al., 2018; Liu J. et al., 2018; Sanchez-Vega et al., 2018; Taylor et al., 2018; Bhandari et al., 2019), TCGA cohort, Pfizer and UHK (Wang et al., 2014), UHK (Wang et al., 2011), and U Tokyo (Kakiuchi et al., 2014) studies, was analyzed via the cBioPortal database4. We provided data of genomic alteration type, mutation site profile, OS and D/PFS (disease/progression-free survival) analyses. In addition, we generated a MEXPRESS plot (Koch et al., 2015, 2019) to analyze the CNV types of the ISLR gene. The correlation between CNV and the expression level of ISLR was also analyzed by Pearson’s test. The overall survival analysis according to the CNV status of the ISLR gene (masked CNV ≥ or < −0.019) was performed through UCSC Xena5. The log-rank test was performed.



DNA Methylation Analysis

We analyzed the methylation status of ISLR DNA in the gastric cases in the TCGA-STAD cohort through MEXPRESS (Koch et al., 2015, 2019). Pearson’s test was used to determine the correlation between methylation and the expression level of the ISLR gene. We determined correlation coefficients (R) and Benjamini–Hochberg-adjusted P-values regarding different methylation probes, such as cg05195566, cg15480336, cg02077702, and cg16926502. The waterfall plot of the methylation level of the ISLR gene and Kaplan–Meir plots of the relationship between ISLR DNA hypermethylation/hypomethylation and cancer survival were generated with the MethSurv tool (Modhukur et al., 2018).



Immune Cell Infiltration Analysis

We used GEPIA2 to perform pairwise gene correlation analysis between ISLR expression and the signatures of the following immune cells: macrophages, TAMs (tumor-associated macrophages), dendritic cells, monocytes, NK (natural killer) cells; mast cells, neutrophils, eosinophils, basophils, B cells, Th1 cells, Th2 cells, Th17 cells, CD8+ T cells, Tfh (follicular helper T) cells, resting Treg cells, effector Treg cells, and exhausted T cells. Then, based on a TIMER2 approach, we calculated immune infiltration estimations for TCGA-STAD samples with the TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms. A heatmap with the purity-adjusted Spearman’s rho value was obtained by the “pheatmap” R package. Specific scatter plots were provided. In addition, the correlation between ISLR SNVs and the level of infiltrating immune cells, including dendritic cells, neutrophils, CD8+ T cells, CD4+ T cells, B cells, and macrophages, was also investigated by the TIMER tool.



ISLR-Correlated Gene Cluster Analysis

We utilized the “TCGAbiolinks” R package to download the gene expression and clinical information data of TCGA-STAD cohorts from the TCGA database. Log2 [FPKM (Fragments per Kilobase Million) + 1] values were used for log-scale. The 25/75% quartile cutoff of ISLR expression in three datasets, including TCGA-STAD, GSE13861, and GSE29272, was used to define high and low groups of ISLR expression. We then analyzed the ISLR-correlated genes through the “limma” R package. The positively or negatively correlated significant genes were visualized by the “ggplot2” R package. The “VennDiagram” R package was used to identify the common genes among TCGA-STAD, GSE13861, and GSE29272. Furthermore, the “clusterProfiler” and “pathview” R packages were used for the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses. The data were visualized by the functions cnetplot and dotplot. The GOCircle and chord plots using extracellular matrix-associated terms were visualized by the “GOplot” R package.

In addition, we performed ISLR-correlated GSEA (gene set enrichment analysis) and pathway activation/inhibition analyses through a LinkedOmics approach (Vasaikar et al., 2018). The following cutoffs were used: simulations = 500, minimum number of genes = 3, and rank criteria = FDR (false discovery rate). The pathway activity module presents the difference in ISLR expression between pathway activity groups (activation and inhibition) defined by pathway scores. The pathway activity module presents the difference in gene expression between pathway activity groups (activation and inhibition) defined by pathway scores.



Principal Component Analysis

Based on the above common differentially expressed genes, we used the prcomp function for principal component analysis (PCA) to classify the normal and tumor sections in the TCGA-STAD, GSE13861, and GSE29272 datasets. A scree plot was obtained by the plot function, and a three-dimensional map [principal component 1 (PC1), PC2, and PC3] was drawn using the “scatterplot3d” package.

After using the “VennDiagram” R package, common hub genes among TCGA-STAD, GSE13861, and GSE29272 were identified. Then, the cor function and “corrplot” R package were used for the Spearman correlation analysis of these hub genes. The scatter plots were then obtained by the “ggpubr” R package. The “factoextra” R package was utilized to show the principal component weight and to generate two-dimensional contribution maps of common hub genes.



Random Forest Analysis

Based on the above hub genes, we used the “randomForest” package (ntree = 500) to perform random forest modeling. The MDSplot function was used to obtain a multidimensional scale. The mean decrease accuracy and mean decrease Gini values were calculated by the ggdotchart function in the “ggpubr” package. Using the “pROC” package, the receiver operating characteristic (ROC) curve was plotted, and the area under the ROC curve (AUC) value was calculated.



Drug Sensitivity Analysis

The correlation between ISLR and sensitivity to small molecules and/or drugs was investigated using the GSCALite tool (Liu C. J. et al., 2018). Drug sensitivity and gene expression profiling data of cancer cell lines in the Cancer Therapeutics Response Portal (CTRP) were integrated for investigation (Rees et al., 2016; Liu C. J. et al., 2018). The correlation of ISLR gene expression with the small molecule/drug sensitivity (half-inhibitory concentration, IC50) was determined through a Spearman correlation analysis.



RESULTS


Expression Analysis Data

First, the difference in ISLR gene expression between gastric cancer tissues and negative control tissues was measured. A total of 408 gastric cancer tissue samples in the TCGA-STAD cohort were included, and the adjacent tissues within TCGA-STAD and normal tissues in the GTEx database were included as negative controls (n = 211). As shown in Figure 1A, there was high expression of ISLR in the gastric cancer tumor samples (∗P < 0.05) compared with the controls. We further analyzed the difference in ISLR gene expression among different pathological stages of gastric cancer cases in the TCGA-STAD cohort and identified a positive correlation (Figure 1B, P = 2.1E-06). Then, based on the dataset reported by Chen et al. (2003), we observed that the expression level of the ISLR gene in 11 diffuse gastric adenocarcinoma cases was higher than that in 24 normal controls (Figure 1C, P = 1.8E-05). A similar expression difference between tumor and normal samples was detected in the GSE13861 dataset (Figure 1D, P = 2.4E-06). Moreover, we observed an obvious high expression level of ISLR in 164 gastric tumor tissues compared with 164 adjacent normal tissues within the GSE29272 dataset (Figure 1E, P < 2.2E-16). Collectively, these results indicated that the expression level of the ISLR gene in gastric cancer cases was higher than that in negative controls, which suggests the potential role of the ISLR gene in the etiology of gastric cancer.
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FIGURE 1. Expression analysis of the ISLR gene between gastric cancer and negative control samples. (A) Expression level of ISLR between gastric cancer tissues in the TCGA-STAD cohort (n = 408) and control tissues (n = 211). Normal tissues in both the TCGA and GTEx databases were included as negative controls. *P < 0.05. (B) The expression level of ISLR among different pathologic stages (stage I, II, III, and IV) was also analyzed through GEPIA2. We also compared the expression level of ISLR between diffuse gastric adenocarcinoma cases and normal controls from the studies of “Chen et al. (2003)” through the Oncomine database (C). The differences in ISLR gene expression between gastric cancer cases and normal controls in GSE13861 (D) and GSE29272 (E) were analyzed as well. Violin plots were used for GSE13861. Adjacent normal tissues were used for GSE29272, and the data were visualized by a dot plot.




Survival Curve Analysis Data

Next, we explored the correlation between ISLR expression patterns and clinical prognosis for gastric cancer cases in the TCGA-STAD cohort. As shown in Figure 2A, we observed lower rates of overall survival (P = 0.036) and disease-free survival (P = 0.016) in the high ISLR expression group than in the low ISLR expression group. We also pooled a total of six GSEA datasets for the clinical prognosis analyses. As shown in Figure 2B, there were lower overall survival (P = 3.1E-12), first progression (P = 6.2E-06), and post progression survival (P = 1.1E-16) rates in the ISLR high expression group than in the low expression group. Additionally, we fully considered the effect of different clinical factors (e.g., sex, pathologic stage, HER2 status, Lauren classification, differentiation and treatment) during the above analyses. Survival curve analyses were carried out when grouping the samples by the different clinical factors. As shown in Table 1, there was a relationship between high ISLR expression and poor overall survival (hazard ratio, HR > 1, P < 0.05) in most subgroups but not in the subgroups with poor (P = 0.21) or moderate (P = 0.086) differentiation, or stage 1 disease (P = 0.065). Surprisingly, for the 158 gastric cancer cases treated with 5-Fu-based adjuvant therapy, a high level of ISLR expression was linked to a better clinical prognosis than a low level of ISLR expression (Table 1, HR = 0.63, P = 0.013), indicating a possible connection of ISLR expression with drug sensitivity. We observed similar results in the correlation analysis of ISLR expression and first progression and post-progression survival (Supplementary Tables S1, S2). Moreover, we included the factors of tumor purity, age, sex, race, clinical stage, and ISLR expression in a Cox proportional hazard model and obtained a statistical correlation between high ISLR expression and poor clinical prognosis (Table 2, P = 0.018). These findings offer evidence regarding the relationship between ISLR expression and clinical outcomes. This led us to perform a more in-depth molecular mechanism study.
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FIGURE 2. Survival curve analysis of the ISLR gene for gastric cancer cases. (A) Overall survival (OS) and disease-free survival (DFS) analyses according to the expression level of the ISLR gene were performed using gastric cancer cases in the TCGA-STAD cohort. (B) Based on the data of gastric cancer cases in GSE14210, GSE15459, GSE22377, GSE29272, GSE51105, and GSE62254, we also performed OS, first progression (FP), and post progression survival (PPS) analyses through Kaplan–Meier plotter.



TABLE 1. Correlation of ISLR expression and the overall survival of gastric cancer patients in the GEO cohort (Kaplan–Meier plotter).

[image: Table 1]
TABLE 2. Correlation of ISLR expression and the clinical prognosis of gastric cancer patients in the TCGA-STAD cohort (Cox proportional hazard model).
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Genetic Alteration Analysis Data

We attempted to study the potential mechanism of the ISLR gene in the pathogenesis of gastric cancer in terms of gene mutation and copy number variation. As shown in Figure 3A, we detected the mutation frequency in six groups of gastric cancer cases through the cBioPortal database. There was a low mutation rate (∼2%) of ISLR in the cases in the TCGA-STAD, TCGA pub (2014), and PanCan 2018 (Ellrott et al., 2018; Gao et al., 2018; Hoadley et al., 2018; Liu J. et al., 2018; Sanchez-Vega et al., 2018; Taylor et al., 2018; Bhandari et al., 2019) cohorts and no mutation in gastric cancer cases in the Pfizer and UHK (Wang et al., 2014), UHK (Wang et al., 2011), and U Tokyo (Kakiuchi et al., 2014) cohorts. The type and location of specific mutations, with the most frequent missense mutation being R87C/H (n = 6), are shown in Figure 3B. Additionally, we did not observe a statistically significant correlation between ISLR gene mutation and the OS rate (Figure 3C, P = 0.978) or the D/PFS rate (Figure 3C, P = 0.087).
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FIGURE 3. Mutation and CNV analyses of the ISLR gene. (A) The alteration frequency of the ISLR gene for the cases in several studies as analyzed through cBioPortal. (B) The mutation site profile of the ISLR gene is shown. (C) OS and D/PFS analyses according to the mutation status of the ISLR gene were performed. (D) Correlation between copy number variation and expression of ISLR. (E) OS analysis according to the CNV status of the ISLR gene was performed.


Next, we investigated the CNV status of the ISLR gene. As shown in Figure 3D, the ISLR gene mainly exhibited two kinds of CNVs, namely, single copy deletion and low-level amplification. However, there was no statistically significant association between ISLR CNV and gene expression (Figure 3D, R = 0.064) or the overall survival rate of gastric cancer cases (Figure 3E, P = 0.123). These results suggested that ISLR gene mutation and copy number variation may not affect gastric tumorigenesis.



DNA Methylation Analysis Data

Next, we aimed to investigate whether the ISLR gene was closely linked to ISLR DNA methylation. Based on methylation data from TCGA-STAD, we observed that the methylation values from four methylation probes, cg05195566, cg17258195, cg09664357, and cg07297039, were negatively correlated with the expression level of the ISLR gene (Figure 4, P < 0.05). Supplementary Figure S1 presents the specific information of methylation probe sites and the correlation results of ISLR gene expression with methylation level. Additionally, some methylation probes showed a correlation between ISLR hypomethylation and poor overall survival in gastric cancer (Figure 4 and Supplementary Figure S2, cg05195566, P = 9.5E-06; cg17258195, P = 0.0034; cg09664357, P = 0.0054; cg07297039, P = 0.036).
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FIGURE 4. Waterfall plot and analysis of potential methylation probes targeting the ISLR gene. A waterfall plot of the methylation level of the ISLR gene is provided. The correlations between ISLR methylation or expression level and survival rate were also analyzed. NA, not available.




Immune Cell Infiltration Analysis Data

Herein, we sought to explore possible molecular mechanisms through immune cell infiltration during the etiology of gastric cancer. First, through GEPIA2, we analyzed the association between ISLR gene expression and immune cell infiltration status. As shown in Figure 5, we observed a positive correlation between ISLR expression and the marker genes of M1 macrophages (R = 0.48, P = 1.0E-37), M2 macrophages (R = 0.58, P = 1.2E-56), TAMs (R = 0.65, P = 4.6E-76), dendritic cells (R = 0.53, P = 6.6E-46), monocytes (R = 0.54, P = 3.6E-49), NK cells (R = 0.64, P = 5.6E-72), mast cells (R = 0.25, P = 3.3E-10), neutrophils (R = 0.55, P = 3.3E-49), and eosinophils (R = 0.42, P = 2.6E-27) but not between ISLR expression and basophils (R = 0.041, P = 0.3). We observed similar results for the different types of T and B cells, such as Tfh cells (R = 0.56, P = 2.7E-52) (R = 0.6, P = 4.0E-61), and exhausted T cells (Supplementary Figure S3).


[image: image]

FIGURE 5. Correlation between ISLR expression and markers of immune cells as analyzed through GEPIA2. (A) M1 macrophages; (B) M2 macrophages; (C) TAMs; (D) dendritic cells; (E) monocytes; (F) NK cells; (G) mast cells; (H) neutrophils; (I) eosinophils; (J) basophils.


Then, we utilized the TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, and EPIC algorithms for further immune infiltration estimations. As shown in Figure 6, we observed a relatively obvious correlation between ISLR expression and the immune infiltration levels of CD8+ T cells, monocytes, macrophages (especially the M2 type), activated mast cells and dendritic cells when adjusted by tumor purity.
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FIGURE 6. Correlation between ISLR expression and the infiltration level of immune cells. The TIMER, CIBERSORT, CIBERSORT.ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms were applied for the immune infiltration estimations of CD8+ T cells, CD4+ T cells, Treg cells, and Tfh cells (A); Monocytes and macrophages (M1, M2 type) (B); mast cells and eosinophils (C); and dendritic cells and NK cells (D). A heatmap with the purity-adjusted Spearman’s rho value and specific scatter plots are provided as examples. “NA” means a lack of an association between ISLR expression and the infiltration level of immune cells.


Additionally, we detected the correlation between ISLR CNV and the overall infiltration level of immune cells (Supplementary Figure S4). The copy deletion type of ISLR CNV was correlated with the infiltration level of dendritic cells, neutrophils, CD8+ T cells, CD4+ T cells, B cells, and macrophages (all P < 0.05), while the low-level amplification CNV was only associated with the infiltration level of dendritic cells (P < 0.001), neutrophils (P < 0.01), and CD8+ T cells (P < 0.001).



Cluster Analysis Data

Based on the “limma” R package, we obtained genes positively or negatively correlated with ISLR among three datasets: TCGA-STAD, GSE13861, and GSE29272 (Figure 7A). Then, we performed intersection analysis and identified 134 common positively correlated genes and 8 common negatively correlated genes (Figure 7B). Then, we performed GO enrichment analyses. We observed extracellular matrix-associated terms, such as extracellular structure organization and extracellular matrix structural constituents, in the GO_biological_process (Figure 7C), GO_cellular_component (Supplementary Figure S5A), and GO_molecular_function (Supplementary Figure S5B) categories. Then, we displayed the extracellular matrix-associated terms in GOCircle (Figure 7D) and chord (Figure 7E) plots.
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FIGURE 7. Cluster analysis of significant ISLR-correlated genes. (A) After expression difference analyses between the ISLR-high and -low expression groups were performed with the “limma” R package on the TCGA-STAD, GSE13861, and GSE29272 datasets, volcano plots were constructed. POS, genes positively correlated with ISLR; NEG, genes negatively correlated with ISLR; NO, genes not correlated with ISLR. (B) The “VennDiagram” R package was used for the common genes positively (POS) and negatively (NEG) correlated with ISLR. (C) The “clusterProfiler” R package was used for the GO_biological_process enrichment analysis. The GOCircle (D) and chord plots (E) using extracellular matrix-associated terms were visualized by the “GOplot” R package.


KEGG analysis data identified the ECM-receptor interaction (Supplementary Figure S6). GSEA data also showed the extracellular matrix (ECM)-associated gene sets, including extracellular structure organization, extracellular matrix structural constituents, ECM-receptor interaction, miRNA targets in ECM and membrane receptors (Supplementary Figure S7). Based on the GSCALite pathway score analysis, we further observed activation of the epithelial-mesenchymal transition (EMT) pathway (Supplementary Figure S8).



PCA and Random Forest Analysis Data

To further identify ISLR-correlated hub genes for the differentiation of tumor from normal samples, we performed PCA. As shown in Figures 8A–C, we used PC1, PC2 and PC3 to distinguish normal from tumor samples in the three datasets: TCGA-STAD, GSE13861, and GSE29272. Then, we conducted an intersection analysis and identified six hub genes, ISLR, COL1A2 (collagen type I alpha 2 chain), CDH11 (cadherin 11), SPARC (secreted protein acidic and cysteine-rich), COL3A1 (collagen type III alpha 1 chain), and COL1A1 (collagen type I alpha 1 chain) (Figure 8D). There were strong positive correlations of expression among these genes, and all correlation coefficients were greater than 0.8 (Figure 8E). Figure 8F presents the correlation between ISLR and COL1A2 gene expression in the three datasets (R = 0.91, P < 2.2E-16). Figures 8G–I further shows the contribution of these hub genes to PC1 and PC2.
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FIGURE 8. Principal component analysis. Based on the common_POS_genes and common_NEG_genes, the prcomp function was used for PCA to classify the normal and tumor sections in TCGA-STAD (A), GSE13861 (B), and GSE29272 (C). A scree plot and a three-dimensional map (PC1, PC2, and PC3) are provided. (D) The “VennDiagram” R package was used for the common_PCA_hub_genes. (E) The cor function and “corrplot” R package were used for the Spearman correlation analysis of these hub genes. Correlation coefficients are shown. (F) The scatter plot for the correlation between ISLR and COL1A2 gene expression is provided. (G–I) The “factoextra” R package was utilized to show the principal component weight and two-dimensional contribution maps of common hub genes.


Subsequently, we carried out a random forest analysis based on these six hub genes. The multidimensional scale plot in Figure 9A suggests the effective differentiation of normal from tumor samples in the TCGA-STAD cohort. Figure 9B shows the mean decrease accuracy and mean decrease Gini data. The AUC value of 0.869 indicated high classification accuracy (Figure 9C). Similar results were observed in the GSE16831 (Figures 9D–F) and GSE29272 (Figures 9G–I) datasets.
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FIGURE 9. Random forest analysis. Based on the above hub genes, the “randomForest” package (ntree = 500) was utilized for the random forest modeling analysis. The MDSplot function was used to obtain a multidimensional scale (A,D,G). The data of mean decrease accuracy and mean decrease Gini were visualized by the ggdotchart function in the “ggpubr” package (B,E,H). The receiver operating characteristic (ROC) curve was plotted by the “pROC” package, and the area under the ROC curve (AUC) value was calculated (C,F,I).




Drug Sensitivity Analysis Data

Finally, based on the CTRP database, we conducted a small molecule/drug sensitivity (IC50) evaluation and further detected that the expression of the ISLR gene was negatively related to sensitivity to PX-12 and NSC632839 (Supplementary Figure S9).



DISCUSSION

Based on the available datasets of gastric cancer cases collected by TCGA and GEO, for the first time, we found a statistical correlation between high expression of the ISLR gene and poor overall survival, disease-free survival, first progression, and post-progression survival. There were significant differences in ISLR expression among different pathological stages (stages 1–4). When gastric cancer samples were divided by clinical information, a positive correlation between ISLR expression and gastric cancer prognosis existed in most subgroups, such as subgroups based on different Lauren classifications (intestinal or diffuse). Notably, we only observed a correlation between ISLR gene expression and OS in the well-differentiated subgroup but not in the poorly or moderately differentiated subgroup. In addition, we detected a positive effect of ISLR expression on survival in the pathological stage 3 subgroup but not the stage 1, 2, or 4 subgroups. These results implied that the prognostic ability of high ISLR gene expression may increase with tumor differentiation or pathological grade.

Upon integrated analysis, we observed that high expression of the ISLR gene showed a correlation with low sensitivity to PX-12 (an irreversible inhibitor of thioredoxin-1) (Metcalfe et al., 2016) and NSC632839 (a non-selective isopeptidase inhibitor) (Nicholson et al., 2008), indicating that high ISLR gene expression may be associated with chemoresistance in gastric cancer. Unexpectedly, during the survival analysis of gastric cancer patients treated with a 5-Fu-based adjuvant, high expression of the ISLR gene was linked to a better prognosis than low expression of the ISLR gene. It is possible that 5-Fu treatment interferes with the expression of the ISLR gene in patients, which leads to changes in survival outcomes. Additionally, although we did not detect a correlation between ISLR gene expression and 5-Fu drug sensitivity through our preliminary assessment, more clinical gastric cancer samples specifically under the treatment of 5-Fu and comprehensive analysis are needed to validate the relationship between ISLR expression and 5-Fu chemotherapy resistance.

DNA methylation status is closely associated with the carcinogenesis or drug resistance of gastric cancer (Tahara and Arisawa, 2015; Choi et al., 2017). Although we failed to detect a correlation between ISLR gene mutations or CNVs and the clinical prognosis of gastric cancer, the hypomethylation status of several sites within ISLR (cg05195566, cg17258195, cg09664357, and cg0729703) was linked to high expression of ISLR and clinically poor survival outcomes. We noted that the cg05195566 and cg17258195 sites are situated in the promoter region, while cg09664357 and cg0729703 are outside the promoter region. It is worthwhile to further investigate how methylation of different sites within ISLR affects the expression level and survival outcomes of gastric cancer patients.

Considering the structure of the ISLR protein as a member of the Ig superfamily (Nagasawa et al., 1997) and the functional links between immune infiltration and gastric cancer (Kim et al., 2016; Liu et al., 2016; Pan et al., 2019; Xu et al., 2019), we first investigated the correlation between ISLR gene expression and macrophage, neutrophil, dendritic cell, B cell, T cell and other immune cell infiltration levels based on gene expression correlations and the TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms. The results were adjusted for tumor purity. We observed a positive correlation between ISLR gene expression and several immune cells, especially CD8+ T cells, macrophages and dendritic cells. We also detected a correlation between ISLR CNV and immune infiltration. These results indicated that the tumor microenvironment may be key in the complex molecular mechanism by which the ISLR gene affects carcinogenesis of gastric cancer.

The extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) have been reported to be associated with the invasion and migration of gastric cancer (Lukaszewicz-Zajac et al., 2011; Peng et al., 2014; Huang et al., 2015). After pooling the ISLR expression-associated genes, we detected significantly enriched ECM-related pathways, including miRNA targets in the ECM and membrane receptors. Our PCA and random forest analysis further identified six extracellular matrix-associated hub genes, which were able to distinguish between gastric cancer and normal control samples. We also found that ISLR gene expression was associated with the activation of the EMT pathway. Considering the connection between miRNAs and EMT in gastric cancer (Bure et al., 2019), we performed GSCALite mRNA-miRNA regulation network analysis to identify several potential ISLR-binding miRNAs, including hsa-miR16-5p, hsa-miR-3116, hsa-mir-934, hsa-miR98-5p, and hsa-miR-339-5p (data not shown). It is meaningful to evaluate the relationship between ISLR expression and EMT from the perspective of miRNA and to investigate the mechanism underlying the progression of gastric cancer. In addition, the chief aim of our research was only to examine the potential mechanism by which the ISLR gene participates in gastric carcinogenesis. It should be noted that ISLR does not show specificity for gastric cancer tissue (data not shown), and its role in other cancers cannot be ruled out. Most likely, ISLR works as an effective prognostic marker during gastric carcinogenesis because it forms functional protein-protein and protein-nucleic acid complexes.



CONCLUSION

After our bioinformatics and biostatistics analyses of gastric cancer cases within the TCGA and GEO cohorts, high ISLR expression was identified as a potential prognostic biomarker for gastric cancer. DNA hypomethylation of ISLR is linked to high expression of the ISLR gene and overall clinical prognosis. ISLR expression was also correlated with the infiltration of several immune cells (e.g., CD8+ T cells, macrophages and dendritic cells), EMT pathway activity and sensitivity to PX-12 and NSC632839. Our findings are of great significance for conducting ISLR-based cell or animal experimental validation.
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FIGURE S1 | Correlation between methylation status and expression of ISLR in gastric cases in the TCGA-STAD cohort. Detailed information on the methylation probe is provided. Pearson correlation coefficients (R) and Benjamini–Hochberg-adjusted P-values (∗P < 0.05, ∗∗∗P < 0.001) for the comparison are shown as well.

FIGURE S2 | Correlation between the methylation status of ISLR DNA and the survival rate of gastric patients in the TCGA-STAD cohort. A total of eleven methylation probes, including cg15480336 (A), cg03778780 (B), cg02077702 (C), cg20536146 (D), cg11335960 (E), cg24779381 (F), cg05195566 (G), cg177258195 (H), cg09664357 (I), cg07297039 (J), and cg16926502 (K), were used.

FIGURE S3 | Correlation between ISLR and markers of T or B cells as analyzed through GEPIA2. (A) B cells; (B) Th1 cells; (C) Th2 cells; (D) Th17 cells; (E) CD8+ T cells; (F) Tfh cells; (G) resting Treg cells; (H) effector Treg cells; (I) exhausted T cells.

FIGURE S4 | Correlation between ISLR CNV and the infiltration level of immune cells as analyzed through TIMER. (A) dendritic cells; (B) neutrophils; (C) CD8+ T cells; (D) CD4+ T cells; (E) B cells; (F) macrophages. (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

FIGURE S5 | GO_biological_process and GO_molecular_function enrichment analysis. The “clusterProfiler” R package was used for the GO_biological_process (A) and GO_molecular_function (B) enrichment analyses.

FIGURE S6 | KEGG enrichment analysis. The “pathview” R package was used for the KEGG enrichment analysis.

FIGURE S7 | GSEA. A LinkedOmics approach was utilized for the ISLR-correlated GSEA profiles. Four extracellular matrix (ECM)-associated gene sets, including genes involved in extracellular structural organization (A), extracellular matrix structural constituents (B), ECM-receptor interactions (C), and miRNA targets in the ECM and membrane receptors (D), were identified.

FIGURE S8 | Correlation between ISLR expression and pathway activation or inhibition.

FIGURE S9 | Correlation between ISLR expression and small molecule/drug sensitivity (IC50).

TABLE S1 | Correlation of ISLR expression and the first progression status of gastric cancer patients in the GEO cohort (Kaplan–Meier plotter).

TABLE S2 | Correlation of ISLR expression and the PPS of gastric cancer patients in the GEO cohort (Kaplan–Meier plotter).
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Overall and abdominal obesity were significantly associated with insulin resistance and type 2 diabetes mellitus (T2DM) risk in observational studies, though these associations cannot avoid the bias induced by confounding effects and reverse causation. This study aimed to test whether these associations are causal, and it compared the causal effects of overall and abdominal obesity on T2DM risk and glycemic traits by using a two-sample Mendelian randomization (MR) design. Based on summary-level statistics from genome-wide association studies, the instrumental variables for body mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI) were extracted, and the horizontal pleiotropy was analyzed using MR–Egger regression and the MR–pleiotropy residual sum and outlier (PRESSO) method. Thereafter, by using the conventional MR method, the inverse-variance weighted method was applied to assess the causal effect of BMI, WHR, and WHRadjBMI on T2DM risk, Homeostatic model assessment of insulin resistance (HOMA-IR), fasting insulin, fasting glucose, and Hemoglobin A1c (HbA1c). A series of sensitivity analyses, including the multivariable MR (diastolic blood pressure, systolic blood pressure, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol as covariates), MR–Egger regression, weighted median, MR–PRESSO, and leave-one-out method, were conducted to test the robustness of the results from the conventional MR. Despite the existence of horizontal pleiotropy, consistent results were found in the conventional MR results and sensitivity analyses, except for the association between BMI and fasting glucose, and WHRadjBMI and fasting glucose. Each one standard deviation higher BMI was associated with an increased T2DM risk [odds ratio (OR): 2.741; 95% confidence interval (CI): 2.421–3.104], higher HbA1c [1.054; 1.04–1.068], fasting insulin [1.202; 1.173–1.231], and HOMA-IR [1.221; 1.187–1.255], similar to findings for causal effect of WHRadjBMI on T2DM risk [1.993; 1.704–2.33], HbA1c [1.061; 1.042–1.08], fasting insulin [1.102; 1.068–1.136], and HOMA-IR [1.127; 1.088–1.167]. Both BMI (P = 0.546) and WHRadjBMI (P = 0.443) were unassociated with fasting glucose in the multivariable MR analysis. In conclusion, overall and abdominal obesity have causal effects on T2DM risk and insulin resistance but no causal effect on fasting glucose. Individuals can substantially reduce their insulin resistance and T2DM risk through reduction of body fat mass and modification of body fat distribution.

Keywords: type 2 diabetes mellitus, insulin resistance, abdominal obesity, body fat mass, body fat mass distribution, Mendelian randomization


INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia secondary to insulin resistance and pancreatic β-cell failure (Alejandro et al., 2015). The findings of human epidemiologic studies indicate that the global prevalence of T2DM is increasing rapidly, and this increase parallels the increase in the prevalence of obesity (Sampath Kumar et al., 2019). The body mass index (BMI) is routinely used to quantify the overall obesity although body fat distribution of individuals can vary substantially. The waist-to-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI) are frequently used surrogate measures of abdominal obesity. Many observational epidemiologic studies, including case–control and cohort studies, have demonstrated that higher WHR and BMI are two important risk factors for developing T2DM (Vazquez et al., 2007; Lv et al., 2017). Moreover, cohort and cross-sectional studies (Wang et al., 2018; Benites-Zapata et al., 2019) demonstrated that BMI and WHR were associated with glycemic traits, including fasting insulin, Hemoglobin A1c (HbA1c), and insulin resistance [measured by Homeostatic model assessment of insulin resistance (HOMA-IR)]. Longitudinal and cross-sectional studies have found an association between increased risk of T2DM and higher genetic predisposition to both BMI and WHRadjBMI in European and East Asian populations (Robiou-du-Pont et al., 2013; Zhu et al., 2014; Huang et al., 2015).

However, these observational studies cannot avoid the bias induced by the confounding effect and reverse causation and, therefore, are incapable of confirming whether these associations are causal (Smith and Ebrahim, 2003). Mendelian randomization (MR) is an approach that is used to unbiasedly test or estimate the causal relationship between an exposure and an associated outcome by using data on inherited genetic variants that influence exposure status in the presence of unmeasured confounding (Didelez and Sheehan, 2007; Lawlor et al., 2008). In the past few years, MR has been extensively used in epidemiology and other related areas of population science (Smit et al., 2019; Wainberg et al., 2019; Yang et al., 2019).

Previous MR analyses have demonstrated that per 1 standard deviation (SD) higher WHRadjBMI and BMI were causally associated with T2DM risk in European populations (Dale et al., 2017; Emdin et al., 2017). Wang et al. (2018) conducted an MR to further investigate the causal effect of both BMI and WHR on glycemic traits, and they found that BMI had a causal relevance for insulin secretion, whereas neither WHR and BMI was causally associated with HOMA-IR in a conventional MR in a Chinese Han population. However, there is a dearth of MR studies for testing and comparing the causal effect of both overall and abdominal obesity on glycemic in the European population. Epidemiologic studies have found differences in T2DM epidemiologic characteristics between the Asian and European population wherein, in comparison with South Asians, Europeans have a lower T2DM risk, typically develop T2DM 5–10 years later, and have a slower disease progression (Gujral et al., 2013; Admiraal et al., 2014; Gupta and Misra, 2016; Meeks et al., 2016; Banerjee and Shah, 2018). Moreover, Europeans developed many metabolic abnormalities, including hyperglycemia and elevated triacylglycerol and low high-density lipoprotein cholesterol (HDL-C), at a higher BMI and age (Raji et al., 2001; Razak et al., 2007). Therefore, the estimation and comparison of the causal effects of overall and abdominal obesity on glycemic traits could provide insights into the obesity-related mechanism of T2DM.

In this study, a two-sample Mendelian randomization (TSMR) with a large sample size was conducted to determine whether a genetic predisposition to increased BMI, WHR, and WHRadjBMI was causally associated with T2DM and glycemic traits, including HOMA-IR, fasting insulin, fasting glucose, and HbA1c. The causal effects were further compared to identify differences in the effect of overall and abdominal obesity on T2DM development and glycemic traits.



MATERIALS AND METHODS


Data Source

This study aimed to explore the causal effect of WHR, BMI, and WHRadjBMI on the risk of T2DM and glycemic traits (HOMA-IR, fasting insulin, fasting glucose, and HbA1c) in an European population, and used diastolic blood pressure (DBP), systolic blood pressure (SBP), HDL-C, and low-density lipoprotein cholesterol (LDL-C) as the covariates. The genome-wide association study summary statistics datasets used in this study were obtained from Zenodo1 for WHR (Censin et al., 2019), BMI (Censin et al., 2019), and WHRadjBMI (Censin et al., 2019); the Program in Complex Trait Genomics2 for T2DM (Xue et al., 2018); MAGIC Consortium3 for HOMA-IR (Dupuis et al., 2010), fasting glucose (Manning et al., 2012), fasting insulin (Manning et al., 2012), and HbA1c (Wheeler et al., 2017); the MRBase platform4 for HDL-C (Kettunen et al., 2016) and LDL-C (Kettunen et al., 2016); and the MRC-IEU Consortium5 for SBP and DBP. Detailed information of the summary statistics datasets are displayed in Table 1. We obtained the β-coefficients and standard errors for the per allele association of each single-nucleotide polymorphism (SNP) as well as all exposures and outcomes from these data sources.


TABLE 1. Summary statistics of data source.
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Selection of Genetic Instrumental Variables

In the TSMR analysis conducted in this study, the genetic variants for exposures (BMI, WHR, and WHRadjBMI) were used as instrumental variables (IVs) and were obtained by two steps. Firstly, SNPs that are strongly associated with exposures (P < 5.0 × 10–8) were extracted. Secondly, we pruned these extracted SNPs by linkage disequilibrium (LD; r2 = 0.001, clumping distance = 10,000 kb) to ensure that each IV was independent of the others. To test the strength of the IVs, the F-statistics were calculated as previously described (Xu and Hao, 2017). F-statistics >10 are considered adequately strong to mitigate against any bias of the causal IV estimate.



Heterogeneity and Horizontal Pleiotropic Analysis

In MR, heterogeneity in the causal estimate may indicate that a variant has an effect on the outcome outside of its effect on the exposure (known as horizontal pleiotropy), and this can cause severe bias (Davey Smith and Hemani, 2014). Mendelian randomization–Egger (MR–Egger) regression was undertaken to assess the horizontal pleiotropy of the IVs, where a regression intercept that significantly differed from zero (P < 0.05) indicated the presence of horizontal pleiotropy exists or that the InSIDE (INstrument Strength Independent of Direct Effect) assumption was violated (Bowden et al., 2015). Heterogeneity between IVs in the conventional MR, with the inverse-variance weighted (IVW) method, was estimated by Cochran’s Q statistic. The MR pleiotropy residual sum and outlier (MR–PRESSO) method can be used to test horizontal pleiotropic outliers and can obtain the corrected causal effect after removal of these outliers in MR (Verbanck et al., 2018). In the present study, both MR–Egger regression and MR–PRESSO tests were conducted using the TwoSampleMR and MRPRESSO R package in R (version 3.6.1), respectively.



Mendelian Randomization

Mendelian randomization can test and estimate the causal effect of an exposure on an outcome by using genetic variants as the IVs (Zheng et al., 2017). Firstly, Wald ratios were calculated for each IV by dividing the per-allele log-odds ratio (or beta) of that variant in the outcome data by the log-odds ratio (or beta) of the same variant in the exposure data. Then, the random-effects IVW method was applied to estimate the association between exposures and outcomes. In IVW, the Wald ratio for each SNP was weighted by its inverse variance, and the effect estimates were meta-analyzed using random effects.



Sensitivity Analysis

Sensitivity analysis was used to test the disproportionate effects of variants and the pleiotropy in the MR analysis (Mokry et al., 2016). A series of sensitivity analyses were conducted to test the robustness of the conventional MR results.

Multivariable IVW, which included the DBP, SBP, HDL-C, and LDL-C as covariates, was carried out in accordance with the method proposed by Rees et al. (2017) that was used to account for possible horizontal pleiotropy arising from the association of the instrument with these variables.

The MR–Egger regression and weighted median method are two pleiotropy-robust MR methods that are used to estimate consistent causal effects against unknown directional pleiotropy under the InSIDE assumptions (Bowden et al., 2015). In the MR–Egger regression method, the regression line fitted to the data is not constrained to pass through the origin, and the intercept represents the horizontal pleiotropic effect that may bias the IVW estimate, whereas the slope represents pleiotropy-corrected causal estimates. The weighted median method has considerable robustness to individual genetics with strongly outlying causal estimates and could provide a consistent causal estimate when the valid IVs exceed 50%.

The MR–PRESSO method was used to identify potential outliers in the conventional MR testing, and provided a robust estimate with outlier correction. Moreover, testing of significant distortion in the IVW causal estimate before and after MR–PRESSO correction, was undertaken and served as a sensitivity analysis.

The leave-one-out sensitivity analysis was conducted to ascertain whether the association was being disproportionately influenced by a single SNP. In this analysis, the random-effects IVW was repeated by leaving out each SNP in turn, and the overall analysis including all SNPs was used for the comparison. The variation of the results from before and after the removal of each SNP reflects the sensitivity of this SNP.



RESULTS


Genetic IVs

A total of 546, 356, and 330 IVs were identified for BMI, WHR, and WHRadjBMI, respectively. Some IVs were absent in the outcome data; however, the F statistics for BMI-IVs (86.250–89.078), WHR-IVs (67.502–67.991), and WHRadjBMI-IVs (90.758–96.860) that were used for MR were more than 10, which indicated that the weak instrument bias was negligible. Detailed information of IVs used in this study are shown in Supplementary Table S1.



Horizontal Pleiotropy and Heterogeneity Analysis

The MR–Egger regression intercepts obtained in this study (Table 2) showed that horizontal pleiotropy (P = 0.029) was only found in the MR with WHRadjBMI as exposure and fasting insulin as the outcome. Heterogeneity (Table 2) was observed between IVs; therefore, the random-effect IVW method was used in the subsequent stages of the research analysis. The MR–PRESSO test showed that horizontal pleiotropy was found in all IVW analyses in this study, and the horizontal pleiotropic outliers were identified and removed (Supplementary Table S2). After the removal of these outliers, the F-statistics of BMI-IVs (85.704–89.033), WHR-IVs (62.240–67.991), and WHRadjBMI-IVs (84.668–96.860) continued to remain well powered to estimate the causal effect of the exposure on the outcome.


TABLE 2. Heterogeneity and horizontal pleiotropy analysis.
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Causal Effect of WHR, BMI, and WHRadjBMI on T2DM and Glycemic Traits

Table 3 and Figure 1 show the causal effect estimates of WHR, BMI, and WHRadjBMI on T2DM and glycemic traits. The TSMR analysis by the IVW method showed a significant causal effect, wherein each SD of genetically higher BMI was associated with an increased T2DM risk [OR: 2.741; 95% confidence interval (CI): 2.421–3.104], higher fasting glucose [1.073; 1.048–1.099], higher fasting insulin [1.202; 1.173–1.231], higher HOMA-IR [1.221; 1.187–1.255], and higher HbA1c [1.054; 1.04–1.068]. Each SD of genetically higher WHR was associated with increased T2DM risk [3.12; 2.653–3.668], higher fasting glucose [1.087; 1.054–1.12], higher fasting insulin [1.193; 1.153–1.234], higher HOMA-IR [1.203; 1.155–1.252], and higher HbA1c [1.075; 1.056–1.095]. Each SD of genetically higher WHRadjBMI was associated with increased T2DM risk [1.993; 1.704–2.33], higher fasting glucose [1.039; 1.012–1.067], higher fasting insulin [1.102; 1.068–1.136], higher HOMA-IR [1.127; 1.088–1.167], and higher HbA1c [1.061; 1.042–1.08].


TABLE 3. Mendelian randomization results.
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FIGURE 1. Scatterplot and causal effect of body mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI) on type 2 diabetes mellitus (T2DM) and glycemic traits including HOMA-IR, fasting insulin, fasting glucose and glycate hemoglobin (HbA1c). (A) Causal effect of WHRadjBMI on T2DM, (B) Causal effect of WHRadjBMI on HOMA-IR, (C) Causal effect of WHRadjBMI on fasting glucose, (D) Causal effect of WHRadjBMI on fasting insulin, (E) Causal effect of WHRadjBMI on HbA1c, (F) Causal effect of WHR on T2DM, (G) Causal effect of WHR on HOMA-IR, (H) Causal effect of WHR on fasting glucose, (I) Causal effect of WHR on fasting insulin, (J) Causal effect of WHR on HbA1c, (K) Causal effect of BMI on T2DM, (L) Causal effect of BMI on HOMA-IR, (M) Causal effect of BMI on fasting glucose, (N) Causal effect of BMI on fasting insulin, and (O) Causal effect of BMI on HbA1c. The x-axis presents the single nucleotide polymorphism (SNP) effect on exposure, and the y-axis presents the SNP effect on outcome. The light blue, dark blue and green regression line represents the inverse-variance weighted (IVW), Mendelian randomization (MR)–Egger, and weighted median estimate, respectively.




Sensitivity Analysis

In the leave-one-out sensitivity analysis, no single SNP strongly or reversely drove the overall effect of exposure on outcome in the IVW (Supplementary Figure S1). Consistent results were observed in the IVW after the MR–PRESSO correction, MR–Egger regression, and the weighted median method, with the exception of the causal estimates of WHR on HbA1c (P = 0.058) and fasting glucose (P = 0.098) in the MR–Egger regression. The MR–Egger regression could obtain pleiotropy-corrected causal estimates, although this method had less statistical power than an equivalent IVW method, and the CIs were wider and included the null value (Bowden, 2017; Weng et al., 2018). Because the intercept of the MR–Egger regression indicates that there was no horizontal pleiotropy in the MR–Egger regression between WHR and both HbA1c (P = 0.695) and fasting glucose (P = 0.935), the causal estimate was more convincing in the IVW. In the multivariable IVW (DBP, SBP, HDL-C, and LDL-C as covariates), BMI (P = 0.546) and WHRadjBMI (P = 0.443) were not causally associated with fasting glucose, whereas other multivariable IVW results persisted with that in the univariable IVW.

Taken together, the causal effect estimates of BMI and WHRadjBMI on fasting glucose in conventional MR might be biased by the horizontal pleiotropy of SBP, DBP, HDL-C, and LDL-C, while no significant bias was found in other causal effect estimates despite the existence of horizontal pleiotropy and heterogeneity.



DISCUSSION

Numerous observational studies indicated that obesity was strongly associated with T2DM risk and glycemic traits (Lv et al., 2017), however, a causal effect cannot be ascertained from these studies due to residual confounding or reverse causality. This present study utilized a TSMR design that was applied to the summary-level data from a large-scale genome-wide association study to address the potential causal role of overall obesity (measured by BMI) and abdominal obesity (measure by WHRadjBMI) on the risk of T2DM and glycemic traits. The well-powered conventional MR (random-effect IVW method) confirmed that genetic predisposition to higher BMI, WHR, and WHRadjBMI are causally associated with higher fasting glucose, fasting insulin, HOMA-IR, HbA1c, and increased risk of T2DM in the European population.

However, heterogeneity and horizontal pleiotropy was found in the conventional MR analysis, a series of sensitivity analyses that included the multivariable MR (DBP, SBP, HDL-C, and LDL-C as covariates), MR–Egger regression, weighted median method, MR–PRESSO method, and leave-one-out analysis to test the robustness of the conventional MR results. The causal effect of BMI and WHRadjBMI on T2DM risk, HbA1c, fasting insulin, and HOMA-IR in the conventional MR were consistent with that in all the sensitivity analyses, which suggested that the causal estimate was robust and unbiased.

Each SD of genetically higher BMI [2.741; 2.421–3.104] and WHRadjBMI [1.993; 1.704–2.33] was associated with increased T2DM risk. Human epidemiologic studies have considered obesity to be a major risk factor of T2DM, and the substantial increase in the incidence of obesity contributes to the current T2DM epidemic (Sampath Kumar et al., 2019). Using the MR method in the European descendants, Emdin et al. confirmed that a 1 SD genetic increase in WHRadjBMI was associated with a higher risk of T2DM [1.77; 1.57–2.00] (Emdin et al., 2017), and Dale et al. revealed that each SD higher BMI was associated with increased T2DM risk [1.98; 1.41–2.78] (Dale et al., 2017). The results of this study are in agreement with those of previous observational studies (Lv et al., 2017; Sampath Kumar et al., 2019) and MR studies (Dale et al., 2017; Emdin et al., 2017) which suggested that both overall and abdominal obesity play a causal role on T2DM risk in the European population. In addition, our MR studies suggested that the causal effect of overall obesity on T2DM risk was greater than that of abdominal obesity. Moreover, both BMI [1.054; 1.04–1.068] and WHRadjBMI [1.061; 1.042–1.08] were found to have a causal effect on HbA1c, which suggested that overall and abdominal obesity have a similar but small causal effect on the HbA1c.

Insulin resistance refers to a decreased physiological response of peripheral tissues to insulin action, which implies an impaired effect of insulin in lowering the blood glucose (Gelaye et al., 2010). This serves as the key mechanism and a major global driver of the T2DM condition (Roglic, 2016; Czech, 2017). The accumulation of body fat and abdominal body fat are risk factors for increased insulin resistance (Kohrt et al., 1993; Gobato et al., 2014), and high BMI and WHR were found to be positively correlated with insulin resistance in observational epidemiological studies (Gobato et al., 2014; Benites-Zapata et al., 2019; Lin et al., 2019). Wang et al. reported that higher BMI was causally correlated with increased Stumvoll first- and second-phase insulin secretion and HOMA-IR, whereas no causal relationship between WHR and HOMA-IR was found in a conventional MR study in the Chinese Han population (Wang et al., 2018). In Europeans, a previous MR study found that higher WHRadjBMI was causally associated with higher fasting insulin levels (Emdin et al., 2017). The present MR study provides a similar conclusion with regard to the European population, each SD of genetically higher WHRadjBMI [1.102; 1.068–1.136] and BMI [1.202; 1.173–1.231] was found to play a positive causal effect on higher fasting insulin. Furthermore, each SD of genetically higher BMI [1.221; 1.187–1.255] and WHRadjBMI [1.127; 1.088–1.167] was causally associated with the HOMA-IR. These results suggested that higher overall and abdominal obesity serve as causal risk factors of fasting insulin and insulin resistance in the European population. The findings of the present study are supported by experimental studies as well. Obesity could stimulate the formation of lipid metabolites, hormones, and cytokines, which involves changes in the insulin signaling pathway and the accelerated progression of insulin resistance (Patel and Abate, 2013; Balsan et al., 2015). Moreover, the causal effect of overall obesity on fasting insulin and insulin resistance is slightly greater than that of abdominal obesity. Thus, we highlighted that both mass and distribution of body fat play a causal role on insulin resistance and T2DM risk. This indicates that the development of therapies to modify the mass and distribution of body fat to reduce overall and abdominal obesity might contribute to the prevention and alleviation of T2DM and insulin resistance-related diseases.

Furthermore, although higher BMI and WHRadjBMI was found to be causally associated with higher fasting glucose in our conventional MR in the European population, no statistical significance was found between BMI and fasting glucose (P = 0.546) or with WHRadjBMI and fasting glucose (P = 0.443) in the multivariable MR (DBP, SBP, HDL-C, and LDL-C as covariates). The casual estimates of BMI and WHRadjBMI on fasting glucose in conventional MR might be biased by the horizontal pleiotropy of DBP, SBP, HDL-C, and LDL-C. These negative results warrant further investigation.

Through a comparison of the causal estimates of BMI and WHRadjBMI on glycemic traits (fasting glucose, fasting insulin, HOMA-IR, and HbA1c), this study further emphasizes that overall and abdominal obesity might increase the T2DM risk mainly via elevation of insulin resistance.

In conclusion, overall and abdominal obesity have a causal effect on the T2DM risk and insulin resistance, and overall obesity may have stronger effects, whereas they may have no causal effect on the fasting glucose. These results suggest that individuals can substantially reduce their insulin resistance and T2DM risk through reduction of body fat mass and modification of body fat distribution.
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Barley (Hordeum vulgare L.) is one of the most important cereal crops worldwide. In the Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or “nas” in Tibetan, is produced mainly in Tibet. The complexity of the environment in the Qinghai-Tibet Plateau has provided unique opportunities for research on the breeding and adaptability of qingke barley. However, the genetic architecture of many important agronomic traits for qingke barley remains elusive. Heading date (HD), plant height (PH), and spike length (SL) are three prominent agronomic traits in barley. Here, we used genome-wide association (GWAS) mapping and GWAS with eigenvector decomposition (EigenGWAS) to detect quantitative trait loci (QTL) and selective signatures for HD, PH, and SL in a collection of 308 qingke barley accessions. The accessions were genotyped using a newly-developed, proprietary genotyping-by-sequencing (tGBS) technology, that yielded 14,970 high quality single nucleotide polymorphisms (SNPs). We found that the number of SNPs was higher in the varieties than in the landraces, which suggested that Tibetan varieties and varieties in the Tibetan area may have originated from different landraces in different areas. We have identified 62 QTLs associated with three important traits, and the observed phenotypic variation is well-explained by the identified QTLs. We mapped 114 known genes that include, but are not limited to, vernalization, and photoperiod genes. We found that 83.87% of the identified QTLs are located in the non-coding regulatory regions of annotated barley genes. Forty-eight of the QTLs are first reported here, 28 QTLs have pleotropic effects, and three QTL are located in the regions of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. EigenGWAS analysis revealed that multiple heading-date-related loci bear signatures of selection. Our results confirm that the barley panel used in this study is highly diverse, and showed a great promise for identifying the genetic basis of adaptive traits. This study should increase our understanding of complex traits in qingke barley, and should facilitate genome-assisted breeding for qingke barley improvement.
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INTRODUCTION

Barley (Hordeum vulgare L.) was domesticated in Israel and Jordan in the southern part of the Fertile Crescent approximately 10,000 years ago (Badr et al., 2000). With an average world production of 120 Mt annually (Ullrich, 2010), barley ranks fourth among the most important cereal crops in the world (http://faostat.fao.org). Barley is mainly used for food, fodder, alcoholic beverage ingredient, and is generally considered to be a healthful food (Blake et al., 2010; Collins et al., 2010). In Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or “nas” in Tibetan, is mainly produced in Tibet, and Qinghai, Sichuan, and Yunnan provinces of China. In the Qinghai-Tibet plateau, Tibetans use qingke barley to make wine and for consumption (Tashi et al., 2013). As the main food of Tibetans, qingke barley has been grown on the Qinghai-Tibet Plateau for at least 3,500 years, most probably following its introduction via northern Pakistan, India and Nepal (Zeng et al., 2018). Tibetans have a rich spiritual and cultural connection to qingke barley on the Qinghai-Tibet Plateau due to its wide range of medicinal and nutritional uses. Therefore, analysis of the genetic diversity present in cultivated varieties of qingke barley is especially important.

The adaptation to diverse, high elevation environments makes qingke barley a unique resource for genetic study and barley breeding (Zeng et al., 2015). At present, the genetic architecture of grain starch quality (Li et al., 2014) and drought stress tolerance (Zeng et al., 2016) has been studied in qingke barley, and salt and aluminum tolerance have been studied in Tibetan wild barley (Qiu et al., 2011; Wu et al., 2011; Cai et al., 2013). In other studies, diverse barley lines from different regions, including the US (Zhou and Steffenson, 2013; Genievskaya et al., 2018), Europe (Xu et al., 2018), and India (Visioni et al., 2018), were used to identify the genetic architecture of complex traits (heading time, number of kernels per spike, grain yield) and disease resistance (durable spot, stripe rust) in barley. Although some studies used worldwide collections of barley germplasm, few have included barley varieties from Tibet (Pasam et al., 2012; Gyawali et al., 2017). Over the past decade, studies in barley (Cuesta-Marcos et al., 2008), wheat (Kiseleva et al., 2016), and rice (Yan et al., 2011) have shown that variations in heading date (HD), plant height (PH), and spike length (SL) contribute to environmental adaptation in cereal crops and also influence grain yield. In earlier studies, bi-parental mapping populations were used to reliably detect QTL for HD, PH, and spike morphological traits (Lin et al., 1998; Sameri et al., 2006; Zhang et al., 2009). With the emergence of more cost-effective, high-throughput genotyping technologies, single nucleotide polymorphisms (SNPs) related to HD have been identified by genome-wide association studies (GWAS) (Pasam et al., 2012; Visioni et al., 2013; Genievskaya et al., 2018), PH (Alqudah et al., 2016; Almerekova et al., 2019), leaf area (Alqudah et al., 2018), spike architecture (Comadran et al., 2011) and grain yield (Ingvordsen et al., 2015; Xu et al., 2018) in barley. However, the genetic study of complex agronomic traits in qingke barley is limited (Zhang et al., 2019).

For HD, important genes have been successfully isolated and characterized in barley. Exposure to low temperatures is known as vernalization, which is related to annual differences in seed production and flowering. This process protects the flowering meristem, which is sensitive to the cold, during winter (Yan et al., 2003; Trevaskis et al., 2006). Three genes control the vernalization parameters and growth conditions of barley: HvVRN1, HvVRN2, and HvVRN3. These are found on the respective chromosome arms 5HL, 4HL, and 7HS, all of which have been isolated (Laurie et al., 1995; Yan et al., 2003, 2004, 2006). A MADS-box transcription factor (TF) is encoded by HvVRN1, which shares homology with APETALA1, CAULIFLOWER, and FRUITFULL. These are transcription factors that promote flowering in the apical meristem of Arabidopsis (Trevaskis et al., 2003; Yan et al., 2003; Trevaskis, 2010). A transcription factor with a zinc finger-CCT domain is encoded by HvVRN2. While Arabidopsis has no homologous gene, its function is similar to FLOWERING LOCUS C (FLC), which inhibits flowering (Yan et al., 2004). FLOWERING LOCUS T (FT) in Arabidopsis is similar to HvVRN3 in that it induces the expression of HvVRN1 during periods of long daylight, promoting flowering (Yan et al., 2006; Distelfeld et al., 2009). In barley and wheat, HvVRN3 integrates the photoperiod and vernalization pathways (Distelfeld et al., 2009). Another important pathway is that of the photoperiod, which regulates the date of flowering and heading and uses plant response daylight and optical cues from light receptors. It has been shown that Ppd-H1 is the ortholog of the wheat Ppd-D1 gene, a member of the pseudoresponse regulator (PRR) gene family via homology-based cloning (Beales et al., 2007). The major determinants of the long-day response in barley are the Photoperiod-H1 (Ppd-H1) and Photoperiod-H2 (Ppd-H2) genes on chromosomes 2H and 1H, respectively (Abdullaev et al., 2017). The results of the study of Turner et al. (2005) suggest that Ppd-H1 might affect flowering by altering the expression of photoperiod pathway genes that are under circadian control. The dominant allele of Ppd-H1 regulates response to increased photoperiod length and premature earing during long days. The recessive allele ppd-H1 induces delays in heading during long days, while Ppd-H2, a dominant allele, quickens heading during short days. The recessive allele impedes it.

For PH, semi-dwarf genes include uzu1, ari-e, and sdw1 genes are widely used in modern barley improvement (Kuczynska et al., 2013; Dockter and Hansson, 2015). The ari-e gene has served in European cultivars and been located on chromosome 5HL (Froster, 2001). The uzu gene, the primary dwarfing gene of East Asian barley strains, is located on chromosome 3HL (Zhang, 2000; Chono et al., 2003). Dwarfism regulated by uzu is induced by the mutation of one nucleotide interchange in the HvBRI1 gene, which involves brassinolide in the response (Chono et al., 2003). The chromosome 3HL is also the site of the sdw1 gene, which is an important dwarfing gene in Europe, North America, South America, and Australia breeding programs (Jia et al., 2009; Xu et al., 2017). The dwarfism controlled by sdw1 caused by a deletion mutation in the gibberellin 20-oxidase gene (HvGA20ox2) (Xu et al., 2017). Previous studies have shown that the QTLs controlling PH and SL are distributed on multiple chromosomes (Gyenis et al., 2007; Pasam et al., 2012; Fakheri et al., 2018), and that QTLs for PH and SL are identified on different chromosomes in different environments and treatments (Gyenis et al., 2007; Fakheri et al., 2018). In a wild x cultivated barley cross, Gyenis et al. (2007) identified QTLs for PH on chromosomes 1H, 2H, 3H, and 7H, and for SL on chromosomes 1H, 2H, 3H, and 6H. Another study identified QTLs for PH on chromosomes 2H, 3H, 4H, 5H, 6H, and 7H in a spring barley collection (Pasam et al., 2012). A recent study suggests that QTLs for PH are distributed on chromosomes 5H and 7H and for SL on chromosomes 1H, 2H, 5H, and 6H in Western European barley cultivars exposed to drought (Fakheri et al., 2018).

As the growth range of barley increased, it adapted to a wide spectrum of agricultural conditions. Studying selection signals in the barley genome is important to help us understand how this genome reacted to the various agricultural conditions experienced during domestication (Russell et al., 2016). Zeng et al. (2015) resequenced the genomes of 10 Tibetan wild barley accessions to uncover patterns of adaptation to the stressful environment of the Tibetan plateau. Further resequencing of 177 Tibetan barley genomes was performed to better understand the selection markers for the adaptation of local highland barley in the exome capture target range of the genome using the fixation index (FST) approach (Zeng et al., 2018). Eight regions as possible selective regions were identified, including the location near the Naked caryopsis (nud) on chromosome 7H. Recently, EigenGWAS, which combines the statistical framework of GWAS with eigenvector decomposition, is a novel approach for identifying regions of the genome under selection in any genetic data where the underlying population structure is unknown. EigenGWAS has been applied to studies in evolution, ecology, breeding, and human genetics (https://github.com/gc5k/GEAR/wiki/EigenGWAS).

In the present study, we collected old local qingke barley landraces in Tibet, modern qingke barley varieties, and representative qingke barley varieties from regions surrounding the Tibetan region. The genetic diversity was compared between the landraces and the two variety groups, and the trends in the changes in genetic structure from the landraces to the breeding varieties was considered. In this study, therefore, our objectives were to use the 14,970 high quality SNPs discovered using genotyping-by-sequencing (tGBS) in 308 qingke barley accessions to (1) understand the genetic diversity in the landraces and the modern varieties and the changes in population structure that occurred going from the landraces to the breeding varieties, (2) identify genetic loci associated with HD, PH, and SL by GWAS, and (3) identify loci that underwent selection for environmental adaptation using EigenGWAS. The findings of this study could facilitate a better understanding of the genetic mechanisms underlying the establishment of adaptive traits and genome-assisted selection in qingke barley breeding.



MATERIALS AND METHODS


Plant Materials

A total of 308 qingke barley accessions were used in this study; 206 qingke landraces, 72 qingke varieties, and 30 varieties (including 18, 5, 1, and 6 varieties from Qinghai, Gansu, Yunnan, and Sichuan provinces of China, respectively). All the 308 accessions were planted in Tibet at three locations; Lhasa (N29°36′, E91°06′) in April 2018, Namling (N29°18′, E88°46′) on May 2017, and Nyingchi (N29°39′, E94°21′) in October 2017 with three replicates each. We used a randomized design to construct the field experiment. At each location, 30 seeds of each accession were planted in a plot with two rows of 150 cm long and 30 cm between rows. HD was measured as the number of days when the head first emerged from the flag leaf sheath on the main shoot in a plot (Zadoks scale, Z = 50; Hemming et al., 2009). The PH was measured as the above-ground plant height without the awns. The SL was measured as the length from the base of main spike to the tip of main spike (excluding awns). All traits were measured as the average of five random plants.



Phenotypic Data Analysis

The Pearson's correlation coefficients between the traits and the broad sense heritability (H2) of target traits were calculated by AOV functionality in QTL IciMapping v.4.1 (Meng et al., 2015). In the analysis of variance of the three traits, variance components were estimated from a linear model; phenotype was partitioned into overall mean, genotypic effect, replication effect (i.e., location), and random error effect, all of which were treated as fixed effects. The H2 on plot level was estimated from the following equation:

[image: image]

where [image: image] is the genetic variance and [image: image] is the variance of the error. Although 308 accessions were planted at three locations, HD, PH, and SL were not all measured in three locations. Only SL has high-quality data in two locations (Nyingchi and Namling) in Tibet, abbreviated as SL_NC and SL_NM, respectively. For HD ad PH, phenotype from one location was used, HD in Lhasa (abbreviated as HD_LS) and PH in Namling (abbreviated as PH_NM), since from other two locations either the H2 were lower than 30%, or only one measurement was available for each plant. Considering data with low heritability was not reliable to conduct GWAS, and data with no replication could not be used to estimate the H2 and evaluate the data quality, we discarded the low-quality data. For clarity, HD_LS, PH_NM, SL_NC, and SL_NM were used in the following-up analysis.



SNP Genotyping and Genotypic Data Analyses

The 308 accessions were genotyped using a newly developed genotyping-by-sequencing technology (tGBS) that eases the process of sorting high-quality GBS sequencing libraries and results in more accurate SNP calling (Ott et al., 2017; Li et al., 2019). Sequence reads were aligned to the Hordeum vulgare Hv IBSC PGSB v2 reference genome (Mascher et al., 2017) after de-barcoding and trimming. SNP calling was conducted using only those reads that aligned to a single location in the reference genome. In total, 46,034 polymorphic sites for each accession were discovered, and the data was filtered as follows: missing values ≤ 0.4, heterozygosity rate (Het. Rate) ≤ 0.2, and minor allele frequency (MAF) ≥0.05 (Supplementary Table 1). After filtering, 14,970 high-quality SNPs were retained in the follow-up analysis. To assess population diversity, genome-wide pairwise linkage disequilibrium (LD) was calculated between SNP pairs to investigate the potential of the array to capture all significant regions associated with the observed phenotypes using the software package TASSEL v5.2 (Bradbury et al., 2007). LD was estimated by using the squared allele-frequency correlation (r2; Weir and Cockerham, 1996) for pairs of loci, since r2 is affected not only by recombination frequencies at the two sites, but also by the differences in allele frequencies between sites. Decay of LD was evaluated, as was the distance between sites in base pairs (bp) with non-linear regression as implemented in the R package (Remington et al., 2001). To avoid multiple significances within individual LD blocks, the support interval was determined when the decay distance of LD reached r2= 0.5. Nucleotide diversity (π) across the barley genome was calculated with TASSEL v5.2. The population structure of the 308 accessions was evaluated using principle component analysis (PCA) and a phylogenetic tree. Pairwise distances were estimated between genotyped individuals using an unbiased model of substitution frequencies. Distance estimates were then used to construct a phylogenetic tree using the Neighbor-Joining-like algorithm described by Saitou and Nei (1987) and implemented in the NJS module of the APE R package (Paradis et al., 2004). Unlike conventional neighbor-joining methods, the NJS algorithm is tolerant of missing data, enabling its use with GBS data. Relative branch lengths are proportional to the amount of divergence observed between individuals. The effective sample size was calculated according to the method in Powell et al. (2010) as implemented in the software GEAR.



GWAS Analysis

A GWAS for the three agronomic traits was conducted with a general linear model (GLM) and a mixed linear model (MLM) as implemented in TASSEL v5.2 software (Bradbury et al., 2007). For both models, the first principal component of the PCA was fitted as the cofactor to exclude the effect of population structure. In MLM, a variance–covariance kinship matrix, as covariates to estimate the association between phenotypes and genotypes (Zhang et al., 2010), was also considered. To declare QTL from the GWAS results, the phenotypic observation of SL was reshuffled 1,000 times to analyze the null distribution. We calculated the 95th quantile of the 1,000 most significant p-values over 1,000 permutations to be 5.18 after log10 transformation. The Bonferroni correction, –log10(1/14,970) = 4.18, was also calculated. To balance the false positives and false negatives, a –log10(P) threshold of 4.00 was used for the GLM and 3.00 was used for the MLM. To determine whether the uncovered genetic architecture was appropriate, the identified QTL was used to predict the performance of the corresponding trait. The most significant SNP in each QTL region was fitted in the linear model with the original trait performance as the dependent variable. The adjusted coefficient of determination (R2) from the linear model was then calculated. The performance of QTL in different locations were estimated by [image: image] and aei = ai - a, where a was the averaged effect of QTL across locations, ai was the additive effect of QTL for each location, e is the number of locations, and aei was the additive by environment effect of QTL in each location (Li et al., 2015).



Analysis of Gene Annotation and Enrichment

We used SnpEff to conduct functional annotations and effect predictions of the target SNPs (Cingolani et al., 2012). The Barley Hv_IBSC_PGSB_v2 reference genome gene annotation was downloaded as a gff3 file from the Ensembl plants database (http://plants.ensembl.org/index.html). Gene annotation information was acquired by BARLEX: The Barley Genome Explorer (https://apex.ipk-gatersleben.de/apex/f?p=284:10::::::; Colmsee et al., 2015). A Singular Enrichment Analysis (SEA) tool was used to perform a functional enrichment analysis of the annotated genes (Tian et al., 2017).



EigenGWAS Analysis

EigenGWAS is a regression approach based on principal component analysis (Chen et al., 2016; Li et al., 2019). It is similar to GWAS; however, the phenotype is replaced with an eigenvector (EV) to capture genetic variation in the studied population. In this study, EigenGWAS, implemented in the software GEAR (https://github.com/gc5k/GEAR), was used to separate loci under selection by treating top 10 eigenvectors (i.e., EV1-EV10) as phenotypes. We adjusted the p-value using a genomic control factor, denoted as PGC, to exclude the effect of the genetic drift (Devlin and Roeder, 1999), and used the PGC to identify loci under selection. We reshuffled the first eigenvector 1,000 times to identify the significance cutoff for the relevant loci, which helped us analyze the null distribution. We calculated the 95th quantile of the 1,000 most significant p-values over 1,000 permutations to be 5.75 after log10 transformation. Considering the Bonferroni correction 4.18 as mentioned above, a –log10(P) threshold of 4.00 was applied for EigenGWAS analyses in all 10 eigenvectors.




RESULTS


Phenotypic Variation and Correlation Analysis

To determine whether the observed traits exhibit wide variation, are highly heritable, and/or display a normal distribution, the recorded phenotypic data was analyzed using ANOVA (Table 1 and Supplementary Table 2) and boxplots (Figure 1). Fifty-one plants had no measurement for SL_NC, so the degrees of freedom in this case was only 256 (Table 1). All the variance components were significant (P < 0.05) across trials, with the exception of the replicates in PH_NM and SL_NM (Table 1). Wide variations ranging from 46 to 93 days in HD_LS, from 35 to 117 cm in PH_NM, from 1 to 9.2 cm in SL_NC, and from 1.5 to 9.5 cm in SL_NM were observed in the collection of 308 qingke barley accessions (Figure 1). The SL distribution showed that the SL_NM mean was higher than it was for SL_NC (Figures 1C,D), and the correlation between SL_NM and SL_NC was 0.21 (P < 0.01; Supplementary Figure 1). The reason for this may be due to the big environmental difference between Namling (4,000 m above sea level) and Nyingchi (2,995 m above sea level) and the overcast and rainy weather in Nyingchi at flowering time, which was not conducive to pollination and thus decreased the effective seed-setting rate of the barley spikes. The broad-sense heritabilities for the three observed traits ranged from 44.97 to 73.99% (Figure 1). The highest correlation was between PH_NM and SL_NM (i.e., 0.48 with P < 0.01; Supplementary Figure 1), and there was a negative correlation between SL_NC and HD_LS. These observations are consistent with the general experience regarding the relationships between PH and SL (Wang et al., 2010), and between SL_NC and HD_LS (Wang et al., 2010; Al-Tabbal and Al-Fraihat, 2012).


Table 1. Analysis of variance (ANOVA) of three traits across three locations.

[image: Table 1]
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FIGURE 1. The phenotypic distribution and heritability in broad sense for heading date in Lhasa (HD_LS) (A), plant height in Namling (PH_NM) (B), spike length in Nyingchi (SL_NC) (C), and spike length in Namling (SL_NM) (D).




Genetic Diversity and Population Structure in the 308 Qingke Barley Accessions

The MAF distributions of all 14,970 SNPs in the whole dataset and in the landrace and variety subpopulations are shown in Figure 2A. Because the 14,970 SNPs were filtered to remove those with MAF < 0.05 in the 308 accessions, the minimum MAF here is 0.05, and the average MAF is 0.183. The MAF ranged from 0 to 0.5 in both subpopulations. SNPs with MAF < 0.05 were considered to be rare SNPs. In this sense, more rare SNPs were observed in the landrace subpopulation (2,150) than in the variety subpopulation (1,841). The numbers of SNPs with MAFs ranging from 0.05 to 0.1 were 5,086 and 2,545 in the landrace and variety subpopulations, respectively. This suggests that more low MAF SNPs are present in the landrace subpopulation than in the variety subpopulation. Non-linear models of LD decay for the 206 landraces and 102 varieties are shown in Figure 2B. In general, LD in both datasets showed an intermediate rate of decline. The predicted value of r2 declined to 0.5 within 1 Mb, which is considered to be the length of the support interval. As expected, LD decayed faster in the landrace subpopulation than in the variety subpopulation. The predicted value of r2 declined to 0.2 within 23 Mb for the landraces and within 49 Mb for the varieties. It remained >0.1 for over 80 Mb in the varieties. Due to the different allele distribution of the SNPs in the two subpopulations, nucleotide diversity (π) in the variety subpopulation was higher than in the landrace subpopulation, particularly on chromosomes 2H, 4H, 5H, and 7H (Figure 2C).


[image: Figure 2]
FIGURE 2. The distribution of minor allele frequency (MAF) (A), linkage disequilibrium (LD) decay (B), and nucleotide diversity (π) (C) across the barley genome in all 308 highland barley accessions, 206 landraces, and 102 varieties; the population structure of 308 barley accessions evaluated by principle component analysis (PCA) (D) and phylogenetic tree (E) base on 14970 high-quality SNPs.


To determine whether the population structure could be discerned from the whole-genome genotyping data, PCA (Figure 2D) and a phylogenetic analysis (Figure 2E) were conducted for the 308 accessions. Based on the PCA plot, the two subpopulations, landraces and varieties, could not be clearly separated. This is likely due to a large proportion of the varieties being derived from qingke barley landraces. However, from the phylogenetic tree, it cannot be ruled out that the 15 varieties from Gansu and Qinghai provinces were not derived from the Tibetan landraces (Figure 2E).



GWAS and EigenGWAS

In the GWAS, a total of 62 QTLs distributed across the barley genome that control three agronomic traits were identified either by GLM or by MLM (Figure 3 and Table 2). To evaluate if the first PC as cofactor was appropriate, no PC and PC number with 2–5 were also used to conduct GWAS (Supplementary Figures 2–11). Results showed that the parameter estimation would be inflated if no PC as cofactor in GWAS model. The parameter estimations from PC number 1–5 were fairly the same. Of the 62 QTLs, the largest number of QTLs, 16, was distributed on chromosome 3H, and the lowest number (6) was distributed on chromosomes 6H and 7H. There were 29 QTLs (46.7%) that were detected by both GLM and MLM; 16 QTLs were declared as selection loci by EigenGWAS under five eigenvectors (i.e., EV2, EV3, EV5, EV7, and EV10); six QTLs were reported by other studies, and six QTLs were consistently identified by GLM, MLM, and EigenGWAS (Table 2). In total, 28 QTLs had pleotropic effects (red text in Figures 3, 4A). One QTL with pleotropic effects located at 91,078,604 bp on chromosome 1H was associated with all three traits in four trials. A QTL at 766,144,076 bp on chromosome 2H was related to the three traits HD_LS, PH_NM, and SL_NC, and was also associated with PH, days to seed maturation (SMT), peduncle length (PL), and HD, as reported by Genievskaya et al. (2018). Of 28 pleotropic-effect QTLs, six were detected by EigenGWAS as well, and these are shown in red text highlighted in yellow in Figures 3A–C and Table 2. These are the QTLs located at 437,044,821 bp on chromosome 2H by EV3, 138,693,892 bp on chromosome 3H by EV10, 230,310,274 bp on chromosome 3H by EV5, 276,495,313 bp on chromosome 3H by EV5, 304,221,016 bp on chromosome 3H by EV5, and 600,043,459 bp on chromosome 3H by EV10 (Figure 3 and Table 2). Two QTLs at 91,078,604 bp on chromosome 1H and at 593,522,597 bp on chromosome 2H associated with SL were both detected in two locations (Figures 3, 4A and Table 2).


[image: Figure 3]
FIGURE 3. The circular plots for heading date in Lhasa (HD_LS) (A), plant height in Namling (PH_NM) (B), spike length in Nyingchi (SL_NC) (C), and spike length in Namling (SL_NM) (D). From the outer circle to the inner circle, a is for the barley genome; b is for the SNP density; c is for the manhattan plot from generalized linear model (GLM); d is for the manhattan plot from mixed linear model (MLM); e is for the manhattan plot from EigenGWAS under the tenth eigenvector (EV10); f is for the manhattan plot from EigenGWAS under the seventh eigenvector (EV7); g is for the manhattan plot from EigenGWAS under the fifth eigenvector (EV5); h is for the manhattan plot from EigenGWAS under the third eigenvector (EV3); and i is for the manhattan plot from EigenGWAS under the second eigenvector (EV2). The SNP positions associated with the trait of interest were marked in black font; of which with pleotropic effects were highlighted in red font; and detected by EigenGWAS were highlighted in yellow background.



Table 2. QTL identified by GWAS using generalized linear model (GLM) and mixed linear model (MLM) and EigenGWAS.

[image: Table 2]
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FIGURE 4. Venn plot of QTL distribution for HD_LS, PH_NM, SL_NC, and SL_NM (A), the distribution of QTL number for heading date in Lhasa (HD_LS), plant height in Namling (PH_NM), spike length in Nyingchi (SL_NC), and spike length in Namling (SL_NM) (B); and gene annotation (C) and ontology (D) for the 62 QTL identified by GWAS.


In general, 36, 33, 12, and 11 QTLs were associated with HD_LS, PH_NM, SL_NC, and SL_NM, respectively (Figure 4B and Table 2), and are positively correlated with the broad sense heritabilities (Figure 1). In our study, we were able to investigate pleiotropy of QTLs on multiple traits. We observed that there were 16 QTLs for HD_LS and PH_NM in common. However, the correlation between HD_LS and PH_NM was not significant (Supplementary Figure 1), which may due to the repulsion linkage phase of the 16 QTLs (Supplementary Table 4). In contrast, six PH_NM QTLs were also significant for SL_NM, and the correlation between these two traits was 0.48, which was highly significant. The reason for this may be that the six QTLs are in coupling linkage phase (Supplementary Table 4). To evaluate the performance of QTL associated with SL in different locations, genotype by environment effects were estimated (Supplementary Figure 12 and Supplementary Table 5). The most significant genotype-by-environment QTLs identified by both GLM and MLM were at 593,522,597 bp on chromosome 2H and 21,353,708 bp on chromosome 3H, since their additive effects were both significant in Nyingchi, but not in Namling. In addition, there were three genotype-by-environment QTLs identified by GLM on chromosomes 1H, 2H, and 7H, respectively.



Candidate Gene Annotation and Enrichment

The annotation conducted on the 62 significant QTLs identified by GWAS (Table 2) showed that 52 (83.87%) of QTL regions are intergenic, and that 10 (16.13%) are genic (Figure 4C). This is consistent with the Hordeum vulgare Hv IBSC PGSB v2 reference genome, where 19.2% of the barley genome is genic (Mascher et al., 2017) and a high ratio of loci (78.00%) related to phenotypic variation are identified in intergenic regions (Mei et al., 2017). Of the QTL, 9.68% and 4.84% were located in the upstream and downstream gene regions, and 1.61% of the QTL were in the intron regions (Figure 4C). In total, 114 known genes were mapped as significant QTLs in the GWAS, and most of them were assigned to the “molecular function” and “biological process” categories in gene ontology (GO) analysis (Figure 4D). One QTL, located at 605,456,401 bp on chromosome 7H, controls HD_LS and SL_NC, and is 2.1 Kb upstream of HORVU7Hr1G100540, a known gene that encodes an SBP (S-ribonuclease binding protein) family protein. A QTL at 24,897,375 on chromosome 5H significantly associated with PH_NM was found to be located 799 bp downstream of the gene HORVU5Hr1G009980 that encodes a tetratricopeptide repeat (TPR)-like superfamily protein. For SL_NM and SL_NC, a stable QTL at 593,522,597 bp on chromosome 2H is located 554 bp downstream of HORVU2Hr1G081800, which encodes a WPP domain interacting protein 2 (Supplementary Table 3). In addition, screening of the associated mapping population identified variations in HD, and we found a significant SNP (5H: 599,361,872) near the vernalization gene HvVRN1, a significant SNP (7H: 38,508,938) near the vernalization gene HvVRN3, and a significant SNP (1H: 514,145,049) near the photoperiod gene PpD-H2.



Phenotype Prediction

To determine the accuracy of the QTL effect estimation, we used the significant QTL additive effect estimates to predict the phenotypic observations for the three traits, and were able to accurately predict HD_LS (R2= 69.20%), PH_NM (R2= 64.07%), and SL_NC (R2= 42.37%) (Figure 5). For SL_NM, the prediction was low, due in part to the low heritability of SL in NM (Figure 1). Looking at the broad sense heritabilities for the three traits (Figure 1) suggests that the QTL results presented in this study are reliable, and provide further evidence that a large proportion of the phenotypic variation can be explained by additive variance in this association panel.


[image: Figure 5]
FIGURE 5. The prediction of the observed phenotype by the QTL identified by GWAS for the traits of heading date in Lhasa (HD_LS) (A), plant height in Namling (PH_NM) (B), spike length in Nyingchi (SL_NC) (C), and spike length in Namling (SL_NM) (D).





DISCUSSION

To the best of our knowledge, few genetic studies have investigated the complex agronomic traits in Tibetan qingke barley (Zhang et al., 2019). Previous reports have included only a limited number of qingke barley accessions to identify potential signals of adaptation and domestication. For example, 95 wild barley accessions from Tibet and 28 six-rowed hulless barley varieties from Tibet and Xinjiang were used to show that the Tibetan Plateau and the surrounding areas are primary centers of barley cultivation (Dai et al., 2012); six wild-barley genotypes collected from the Tibetan Plateau were used in an RNA-seq analysis to reveal multiple origins of barley domestication (Dai et al., 2014); 10 Tibetan wild barley accessions were re-sequenced to uncover patterns of adaptation (Zeng et al., 2015); and 177 Tibetan barley accessions were re-sequenced to identify signals of selection in the genome (Zeng et al., 2018). In contrast, 308 qingke accessions from the Qinghai-Tibet Plateau, including 278 qinke barley accessions and 30 qingke varieties collected from five other Chinese provinces, were used for this study. The effective sample size is 272 in total, which is comprised of 182.63 in the landrace subpopulation and 89.37 in the variety subpopulation. Our results demonstrate that this panel has a large effective population size with high levels of intra-species genetic flow, making it a suitable candidate for the characterization of genetic structure and adaptation, and was appropriate for the genetic study of complex traits by GWAS.

Previous studies have shown that QTLs identified on all seven chromosomes are significantly associated with HD, except for photoperiod and vernalization loci (Pasam et al., 2012). QTLs located on chromosomes 1H, 2H, and 5H have been identified that are significantly associated with PH in a worldwide spring barley investigation (Alqudah et al., 2016). Another recent study shows that QTLs on chromosomes 5H and 7H have been identified to be significantly associated with PH, and QTLs on chromosomes 1H, 2H, 5H, and 6H were shown to be significantly associated with SL in spring barley exposed to drought (Fakheri et al., 2018). In our study, SNPs that are significantly associated with HD and PH were identified on almost all barley chromosomes, and the SNPs mainly identified on chromosomes 1H, 2H, 3H, 4H, and 7H had significant effects on SL. To validate the effect estimation of each QTL, QTL effect estimations were used to predict the observed phenotypic performance. The highest prediction accuracy was 69.2% for HD, and the lowest prediction accuracy was 23.55% for SL in Namling. In the present study, heritability for all traits ranged from 44.97 and 73.99%. For these traits, both the number of detected QTL, prediction accuracy, and broad-sense heritability showed the same trend in which higher heritability corresponded to high prediction accuracy and more detected QTLs.

In order to figure out the specific QTLs for qingke barley, QTLs reported in the reference and identified in this study were aligned to the barley Hordeum vulgare Hv IBSC PGSB v2 reference genome, and their physical positions of markers were queried in BARLEX database (https://apex.ipk-gatersleben.de/apex/f?p=284:48:::NO:RP:P48_MARKER_CHOICE:4). As a result, 48 of 62 identified QTLs were first reported in this study (Table 2 and Supplementary Figure 13). For HD, 36 QTLs were identified, 7 of which were reported; for PH, 33 QTLs were identified, 9 of which were reported; and for SL, 22 QTLs were identified, 5 of which were reported. The possible reason for the high number of novel QTLs (viewed as qingke barley specific QTLs) identified in this study may be because (1) the genetics of qingke barley is lack of analysis; and (2) some reported QTLs based on SSR markers could not find the their physical positions, and some reported QTLs developed by in-house SNP chips could not match the chip version in the database. These qingke barley specific QTLs could be utilized for marker-assisted selection in qingke barley breeding programs focusing on adaption and high grain yield.

Among the five common vernalization and photoperiod loci (i.e., HvVRN1, HvVRN2, HvVRN3, Ppd-H1, and Ppd-H2), the SNPs near HvVRN1, HvVRN3, and PpD-H2 were significant in this study. It suggests that HvVRN1, HvVRN3, and Ppd-H2 play an important role in the qingke barley population, and should be prioritized when attempting to improve HD and plant growth in qingke barley cultivars in the qingke barley-growing regions of the Qinghai-Tibet Plateau. Previous studies have shown that QTLs for PH and SL are located on different chromosomes depending on the different environments and treatments (Gyenis et al., 2007; Fakheri et al., 2018). In the present study, we observed QTLs related to PH on all chromosomes, while QTLs associated with SL were detected on all chromosomes in Namling but on 1H, 2H, 3H, 4H, and 7H in Nyingchi. Due to the differences in locations of QTLs identified in different environments, the expression of genes controlling HD, PH, and SL are probably related to the environment and variety-specific adaptability. To validate this hypothesis, the study of selection signals in the qingke barley genome were conducted to help us understand how qingke barley how qingke barley responds to various historical environmental factors (Russell et al., 2016). Eight regions were identified as candidate selective regions, and these are distributed on all chromosomes except for chromosome 4H (Zeng et al., 2018). We used the first 10 eigenvectors for EigenGWAS and identified several selected loci in the qingke barley genome. We further compared the selected loci with the located QTLs, and found that some of these loci were located in the regions (1 Mb) of these QTLs (Table 1). Previous studies have shown that genes for HD and PH always influence barley maturity and adaptation (Barua et al., 1993; Laurie et al., 1994). In the present study, the results of EigenGWAS analysis indicated that the QTLs associated with HD and PH also bear signatures of genetic selection in this qingke barley population.



CONCLUSION

In this study, we identified several genetic loci associated with SL, PH, and HD in qingke barley from the Qinghai-Tibet Plateau using 14,970 SNPs in a tGBS genotyping assay. We found that more rare SNPs (2,150) were found in the landrace subpopulation than in the variety subpopulation. That is to say, the number of SNPs was higher in the varieties than in the landraces, indicating that the varieties grown in Tibet and the varieties from around the Tibetan area may be derived from the different landraces grown in the different regions. A GWAS identified 62 QTLs that are associated with HD, PH, and SL, and 114 known genes were mapped which include, but are not limited to, genes involved in vernalization and photoperiod. Of the 62 QTLs, 48 are first reported here as qingke specific QTLs, 52 (83.87%) were found to be in intergenic regions, 28 had pleotropic effects, and three QTL were in the regions of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. In addition, by comparing signatures of selection identified by EigenGWAS and novel QTLs, we found that six QTLs related to HD and PH in qingke barley cultivars from the Qinghai-Tibet Plateau were also under selection. The findings presented here could help increase our understanding of the genetic mechanisms underlying the establishment of adaptive traits, and also enable marker-assisted selection for important traits in qingke barley breeding.
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Accumulating evidence shows that circular RNAs (circRNAs) have significant roles in human health and in the occurrence and development of diseases. Biological researchers have identified disease-related circRNAs that could be considered as potential biomarkers for clinical diagnosis, prognosis, and treatment. However, identification of circRNA–disease associations using traditional biological experiments is still expensive and time-consuming. In this study, we propose a novel method named MSFCNN for the task of circRNA–disease association prediction, involving two-layer convolutional neural networks on a feature matrix that fuses multiple similarity kernels and interaction features among circRNAs, miRNAs, and diseases. First, four circRNA similarity kernels and seven disease similarity kernels are constructed based on the biological or topological properties of circRNAs and diseases. Subsequently, the similarity kernel fusion method is used to integrate the similarity kernels into one circRNA similarity kernel and one disease similarity kernel, respectively. Then, a feature matrix for each circRNA–disease pair is constructed by integrating the fused circRNA similarity kernel and fused disease similarity kernel with interactions and features among circRNAs, miRNAs, and diseases. The features of circRNA–miRNA and disease–miRNA interactions are selected using principal component analysis. Finally, taking the constructed feature matrix as an input, we used two-layer convolutional neural networks to predict circRNA–disease association labels and mine potential novel associations. Five-fold cross validation shows that our proposed model outperforms conventional machine learning methods, including support vector machine, random forest, and multilayer perception approaches. Furthermore, case studies of predicted circRNAs for specific diseases and the top predicted circRNA–disease associations are analyzed. The results show that the MSFCNN model could be an effective tool for mining potential circRNA–disease associations.
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INTRODUCTION

Circular RNAs (circRNAs) are a type of endogenous non-coding RNA with continuous covalently closed loop structures, which are produced by back-splicing or lariat events in genes (Barrett et al., 2015). Recently, with the development of high-throughput sequencing techniques and other technologies, a large number of circRNAs have been found in various organisms, including protists, plants, and metazoans (Danan et al., 2012; Memczak et al., 2013; Tang et al., 2018). The main functions of circRNAs include sequestration of microRNAs (miRNAs) and proteins (Salmena et al., 2011), regulation of transcription and splicing (Zhang et al., 2013; Conn et al., 2017), and even translation to produce polypeptides (Yang et al., 2017; Sun and Li, 2019). Accumulating evidence implicates mutation or alteration in expression of circRNAs in the initiation and progression of numerous diseases. For example, Chioccarelli et al. (2019) identified the differentially expressed circRNAs in human spermatozoa, and found that circRNAs are related to spermatozoa quality. By comparing the expression profiles of circRNAs in disease-specific tissues or cell lines with those in normal samples, significantly increased or decreased circRNAs can be identified. In addition, the intrinsic characteristics of circRNAs indicate they are stable both inside cells and in extracellular plasma (Bahn et al., 2015; Li et al., 2015; Memczak et al., 2015). Therefore, disease-associated circRNAs are considered to be promising novel biomarkers for diseases.

Recently, several studies have analyzed the roles of circRNAs in varies samples, and further explore their diversity, expression patterns, co-expression network, and so on. circAtlas integrates the most comprehensive circRNAs, their expression, and functional profiles in vertebrates (Wu et al., 2020). MiOncoCirc is a cancer-focused circRNA resource to be generated from an extensive array of tumor tissues (Vo et al., 2019). Ji et al. (2019) identifies full-length transcripts and evolutionarily conserved circRNAs, and infers circRNA functions on a global scale. Ruan et al. (2019) characterizes circRNAs expression profiles, and explores the potential mechanism of circRNA biogenesis as well as its therapeutic implications. exoRBase integrates and visualize the RNA expression profiles both normal individuals and patients with different diseases (Li et al., 2018). These studies will trigger functional implication for human diseases and benefit biomedical research community.

The de-regulated circRNAs in diseases can be identified for validation using low-throughput biological methods such as quantitative real-time PCR, northern blotting, and so on. However, these traditional experiments are costly and time-consuming. Therefore, computational approaches are important for exploring potential disease-causing circRNAs and understanding the associated mechanisms of pathogenicity. Several models have been proposed to forecast circRNA–disease associations; most of these approaches are based on the assumption that circRNAs with similar functions are likely to be associated with the same or similar diseases. Lei et al. (2018) developed a path-weighted model to predict circRNA–disease associations based on circRNA semantic similarity and disease functional similarity (Lei et al., 2018). KATZHCDA was used to calculate the number of walks between nodes and walk lengths for circRNA–disease associations, based on a priori knowledge of the circRNA expression similarity and disease phenotype similarity (Fan et al., 2018b). DWNN-RLS predicted circRNA–disease associations using regularized least squares of the Kronecker product kernel (Yan et al., 2018). Xiao et al. (2019) proposed a weighted dual-manifold regularized low-rank approximation model for disease-related circRNA prediction, called MRLDC (Xiao et al., 2019). Another model, iCircDA-MF, incorporated circRNA–gene, gene–disease, and circRNA–disease associations, together with disease semantic information, and used non-negative matrix factorization to predict circRNA–disease associations (Wei and Liu, 2019). Zhao et al. (2019) integrated the bipartite network projection algorithm and KATZ measure algorithm to explore novel circRNA–disease associations (Zhao et al., 2019). Deng et al. (2019) combined circRNAs, proteins, and diseases to predict circRNA–disease associations using the KATZ algorithm (Deng et al., 2019). Ge et al. (2019) developed the LLCDC model for prediction of human disease-associated circRNAs using locality-constrained linear coding and a label propagation algorithm (Ge et al., 2019). CD-LNLP calculated circRNA similarity and disease similarity using linear neighborhood similarity based on known associations, and then used the label propagation algorithm to mine circRNA–disease associations (Zhang et al., 2019). Wang Y. et al. (2019) used a graph-based recommendation algorithm, PersonalRank, to predict disease-related circRNAs based on circRNA expression profiles and functional similarities (Wang Y. et al., 2019). Lei and Fang (2019) used a gradient boosting decision tree with multiple biological data fusion for circRNA–disease prediction (Lei and Fang, 2019). Ding et al. (2020) developed the RWLR model based on the random walk and the logistic regression to predict circRNA-disease associations. iCDA-CGR quantified the sequence nonlinear relationship of circRNA by chaos game representation technology based on the biological sequence position information (Zheng et al., 2020). Lei and Bian (2020) integrated the random walk with restart and k-nearest neighbors to predict the associations between circRNAs and diseases. Although these computational models have achieved encouraging results, they represent the tip of the iceberg with respect to predicting circRNA–disease associations.

Several circRNAs can bind with the corresponding miRNAs and participate in multiple biological processes synchronously (Qu et al., 2018). Based on this theory, Fang and Lei (2019) used an improved random walk algorithm to predict circRNA–miRNA associations, named KRWRMC (Fang and Lei, 2019). As miRNAs have been implicated in various diseases, we consider that miRNA information should be included in the identification of circRNA–disease associations. However, there have been few studies of circRNA–miRNA interactions, and deep interaction patterns are rarely considered in prediction of circRNA–disease associations. In this work, we take circRNA–miRNA interactions and miRNA–disease associations into account, and capture the complex miRNA-based interaction features of circRNAs and diseases, respectively.

In recent years, deep learning architectures have attracted increasing attention in various fields, including image analysis (Yang and Xu, 2020), speech recognition (Graves et al., 2013), and bioinformatics (Min et al., 2017), etc. The convolutional neural network (CNN) is a well-known feed-forward artificial neural network inspired by biological processes that simulates the cognition function of human neural systems (LeCun et al., 2015). CNN architectures have the ability to automatically learn the meaning of combinations of features from the input data and simplify the process of manual feature selection (Liu et al., 2017). Recent applications of CNN-based methods indicate their effectiveness in computational biology (Liu et al., 2018), including in circRNA research. Wang and Wang (2019) developed the DeepCirCode model to discover the sequence code of back-splicing for circRNA formation, and sequence motifs were also extracted. The CSCRSites model was proposed to predict cancer-specific protein binding sites on circRNAs based on CNNs. The features learned by the CSCRSites model are converted to sequence motifs, some of which are involved in human diseases (Wang Z. et al., 2019). Inspired by the superior prediction performance of this approach, we used CNN architecture to detect combinations of features and predict potential circRNA–disease associations.

In this study, we present a novel computational model to predict potential associations between circRNAs and diseases, named MSFCNN. The main attributes of the MSFCNN model are as follows. (1) Four circRNA similarity kernels and seven disease similarity kernels are constructed using multiple biological and topological information, such as circRNA expression profiles, circRNA sequence information, disease-miRNA interactions, etc. (2) Whereas some existing methods simply use linear weighting to integrate the similarity kernels into one kernel, we considered that this may lead to information loss and noise. Hence, we used the similarity kernel fusion (SKF) method to fuse four circRNA similarity kernels and seven disease similarity kernels, thereby retaining the original information of each similarity kernel. A weight matrix is used to reduce the noise in the fused similarity kernel. (3) A feature matrix is constructed based on the fused circRNA similarity kernel, fused disease similarity kernel, and interactions and features among circRNAs, miRNAs, and diseases. Multiple biological premises are used to construct the feature matrix. On the one hand, two circRNAs (or diseases) are more similar could capture the relationships between the circRNA (or disease) similarities and circRNA–disease associations. On the other hand, circRNA–miRNA and miRNA–disease associations are also integrated, and the interaction features are captured using principal component analysis. (4) A two-layer CNN architecture is used to process the feature matrix and predict potential circRNA–disease associations. Five-fold cross-validation (CV) is used to assess the prediction performance of the MSFCNN model. The results indicate that the MSFCNN model outperforms several conventional machine learning classifiers. Furthermore, case studies of breast cancer, colorectal cancer, hepatocellular carcinoma, and acute myeloid leukemia indicate that MSFCNN could be an effective tool to infer potential circRNA–disease associations.



MATERIALS AND METHODS

A flow chart illustrating MSFCNN, our novel approach to predict potential circRNA–disease associations is shown in Figure 1. First, four circRNA similarity kernels and seven disease similarity kernels are computed based on their biological and topological properties. Then, these kernel similarities are combined into one circRNA similarity kernel and one disease similarity kernel by applying a similarity kernel fusion strategy. Subsequently, the feature matrix can be constructed based on the fused similarity kernels, and interactions and features among circRNAs, miRNAs, and diseases. Finally, we use a CNN to process the feature matrix and predict final scores for prediction of potential circRNA–disease associations.
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FIGURE 1. Flow chart of the MSFCNN approach. Step 1: Four circRNA similarity kernels and seven disease similarity kernels are measured, respectively. Step 2: The similarity kernels for circRNAs (or diseases) is fused with SKF method. Step 3: The feature matrix for each circRNA–disease pair is constructed by integrating the fused similarity kernels, interactions and features among circRNAs, miRNAs, and diseases. Step 4: a CNN architecture is used to train MSFCNN approach and predict latent circRNA–disease associations.



Construction of the CircRNA–Disease, CircRNA–miRNA, and Disease–miRNA Networks

In this study, circRNA–disease associations, circRNA–miRNA associations, and disease–miRNA associations were used to predict circRNA–disease associations. Known circRNA–disease associations were downloaded from the CircR2Disease database (Fan et al., 2018a), which contained 739 entries including 725 experimentally validated circRNA–disease associations from four species. Only human circRNA–disease associations were used in this work. Interactions that did not correspond to circRNAs IDs in the circBase database and disease names were not recorded in the disease ontology database were removed (Glazar et al., 2014; Schriml et al., 2019). Thus, we retained 325 circRNAs, 53 diseases, and 371 circRNA–disease associations as the positive dataset. The circRNA–miRNA interactions were obtained from the CircBank database (Liu et al., 2019), and interactions overlapping with disease-related circRNAs were extracted. Thus, 24745 interactions between 322 circRNAs and 2545 miRNAs were obtained. In addition, the disease–miRNA associations that matched circRNA-related diseases were selected from the human microRNA disease database (Huang et al., 2019), and 4970 associations between 37 diseases and 873 miRNAs were obtained. Finally, all of these associations contained three types of nodes including 325 circRNAs, 53 diseases, and 3175 miRNAs.

Based on the circRNA–disease associations, an adjacency matrix A(i,j) was constructed to represent associations between nc circRNAs and nd diseases; A(i,j) was assigned a value of 1 if circRNA c(i) was found to be related to disease d(j), and 0 otherwise. Similarly, a circRNA–miRNA matrix Y(i, j) was constructed to represent the associations between nc circRNAs and nm miRNAs, and the associations between nd diseases and nm miRNAs were represented by matrix O(i, j). Y(i, j) was set to 1 when there was an association between circRNA c(i) and miRNA m(j), and 0 otherwise. If disease d(i) interacted with miRNA m(j), O(i, j) was set to 1, otherwise it was set to 0.



Representation of CircRNA Similarity Kernels


CircRNA Sequence Similarity

The 325 circRNA sequences were obtained from the circBase database (Glazar et al., 2014), and the sequence similarity of each circRNA–circRNA pair was calculated using a modification of the Needleman–Wunsch algorithm with the Emboss-stretcher tool (Rice et al., 2000). Therefore, the circRNA sequence similarity score SC_Seq(ci, cj) could be obtained by setting the parameters as follows: Matrix = EDNAFULL, Gap open = 16, Gap extend = 4.



CircRNA Regulatory Similarity

Based on the assumption that circRNAs associated with the same miRNAs tend to have similar biological regulatory functions, we used the miRNA–circRNA interactions to measure the circRNA regulatory similarity (Huang et al., 2018). Given the two sets of miRNAs, Mi and Mj, that had relationships with circRNAs ci and cj, respectively, the circRNA regulatory similarity kernel was calculated as follows:
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CircRNA Expression Similarity

The circRNA expression profiles were derived from the exoRBase database (Li et al., 2018). Each circRNA record had 90 dimensions, representing the expression levels of a single type of circRNA. By extracting the common circRNAs between the CircR2Disease and exoRBase databases, circRNA expression profiles were obtained for calculation of the circRNA similarity kernel. We used the Pearson correlation coefficient to measure circRNA expression similarity, and let SC_EP(ci, cj) represent the expression similarity score between circRNAs ci and ci. The expression similarity kernel of the circRNAs was computed as follows:
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where N represents the number of properties of the expression profiles, and xi and yi denote the expression values in different tissues. In general, a pair of circRNAs with a higher correlation score are considered to be more similarly expressed.



GIP Kernel Similarity for CircRNAs

The Gaussian interaction profile (GIP) kernel similarity was used to measure the similarity between circRNAs, based on the assumption that similar circRNAs are more likely exhibit a similar interaction or non-interaction pattern with miRNAs (Van Laarhoven et al., 2011). GIP kernel similarity for circRNAs was measured based on circRNA–miRNA interactions and defined as:
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where the circRNA interaction profiles are represented by c(i), a binary vector that encodes the interaction between circRNA i and all miRNAs, i.e., the i-th row of the circRNA–miRNA interaction matrix Y. The parameter γc controls the kernel bandwidth, and nc is the number of circRNAs.




Representation of Disease Similarity Kernels


Disease Symptom Similarity

According to the co-occurrence of disease and symptom terms recorded in the PubMed bibliography, Zhou et al. (2014) considered that diseases are connected if they have a positive symptom similarity (Zhou et al., 2014). Thus, the disease similarity could be measured and a symptom-based human disease network was constructed. Here, the symptom-based disease similarity SD_Sym was obtained from the symptom profiles of diseases.



Disease Semantic Similarity

According to Medical Subject Headings descriptions, diseases can be described by a hierarchical directed acyclic graph (DAG). Here, disease semantic similarity is calculated using the method of Wang et al. (2007). DAGd = (d, Td, Ed) represents the DAG of a disease, in which Td denotes node d and its ancestor nodes, and Ed denotes the direct edges from a parent node to child nodes within Td. Therefore, the semantic contribution of parent node t to d is defined as follows:
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where △ represents the semantic contribution decay factor (△ is set as 0.5). The semantic value of disease d can be calculated as follows:
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If two diseases share a larger part of DAGs, they tend to have higher similarity. The similarity score between di and dj is defined as:
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GIP Kernel Similarity for Diseases

Similar to the calculation of GIP kernel similarity for circRNAs, the disease GIP kernel similarity was measured based on disease–miRNA interaction profiles. It is defined as:
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where the disease interaction profiles are represented by d(i), a binary vector that encodes the interaction between disease i and each miRNA, i.e., the i-th row of association matrix O. The parameter γd is also used to control the kernel bandwidth, and nd is the number of diseases.



Other Disease Similarities

Besides disease symptom similarity, disease sematic similarity, and GIP kernel similarity, disease similarities can also be measured using the Lin (1998), PSB (Mathur and Dinakarpandian, 2012), Resnik (1995), and SemFunSim (Cheng et al., 2014) methods based on the DincRNA database (Cheng et al., 2018). Four disease similarity kernels were constructed using these methods and denoted SD_Lin, SD_PSB, SD_Resnik, and SD_SemFunSim, respectively.




Similarity Kernel Fusion

Next, we used the similarity kernel fusion method to integrate four circRNA similarity kernels and seven disease similarity kernels (Jiang et al., 2018). Let Sc,m (m = 1,2,…4) represent the four circRNA similarity kernels and Sd,n (n = 1,2,…7) the seven disease similarity kernels, respectively.

First, each original similarity kernel for circRNAs was normalized using Eq. (8):
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where NSc,m denotes a normalized similarity kernel for circRNAs that satisfies ∑ck ∈ CNSc,m(ck,cj) = 1.

Then, a sparse kernel for each circRNA similarity kernel was constructed using Eq. (9):
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where Fc,m is a sparse kernel satisfying ∑cj ∈ CFc,m(ck,cj) = 1, and Ni is a set of ci’s neighbors including ci itself.

The four circRNA similarity kernels were computed using Eq. (10):

[image: image]

where [image: image] is the status matrix of m-th circRNA similarity kernel after t+1 iterations, and [image: image] denotes the initial status of SCc,r.

After t+1 steps, the overall kernel for circRNAs was calculated using Eq. (11):
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Furthermore, a weight matrix wc was used to eliminate the noise in matrix Sc, and the fused circRNA similarity kernel was computed using Eq. (12):

[image: image]

Similarly, the seven disease similarity kernels were fused to form one disease similarity kernel, denoted by [image: image].



Construction of the Feature Matrix

The feature matrix for each circRNA–disease pair was constructed by incorporating the fused circRNA similarity, fused disease similarity, circRNA–miRNA interactions, circRNA–disease associations, and disease–miRNA associations (Figure 2). In the construction process of the feature matrix, three biological premises were used. Here, we take the construction of the c1-d2 feature matrix as an example. Based on the premise that the circRNAs should be more similar that have interaction with circRNA similarities and circRNA–disease associations, the first part of the feature matrix consists of the similarity between c1 and all circRNAs, and the associations of d2 with all circRNAs. If circRNA c1 and c2 or other circRNAs have similar functions, and at the same time d2 has been shown to be associated with these circRNAs, c1 has a large probability associated with d2. The dimension of the first part of the feature matrix is 2 × nc. Similarly, based on the premise that diseases should be more similar that have interaction with disease similarities and circRNA–disease associations, we integrate the associations between circRNA c1 and all diseases, as well as the similarities between disease d2 and all diseases. The second part of the feature matrix has dimension 2 × nd. In addition, circRNA–miRNA and miRNA–disease is integrated to capture the relation features. When c1 and d2 have interactions with common miRNAs, they are more likely to be associated with each other. The interactions between c1 and various miRNAs, as well as the associations between d2 and miRNAs, are integrated to construct a matrix with dimension 2 × nm. However, the matrix is very sparse, so we perform principal component analysis (PCA) to obtain miRNA-based features for the c1-d2 pair with dimension 2 × np (np is set as 50). Finally, we concatenate these three matrices to form the feature matrix of circRNA c1 and disease d2 with dimension 2 × (nc+nd+np).
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FIGURE 2. Establishment of the feature matrix of circRNA c1 and disease d2. Based on three premises, c1-d2 feature matrix is constructed by combing fused similarities and associations among circRNAs, diseases and miRNAs.




Identification of CircRNA–Disease Associations Based on CNN

The MSFCNN architecture consists of an input layer, two convolutions, and an activation layer, polling layer, fully connected layer, and softmax layer (Figure 3). The feature matrix X of node pairs is used as an input to the CNN architecture to learn the representations of node-pair circRNAs and diseases. The MSFCNN can be summarized as:
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FIGURE 3. Graphical illustration of the MSFCNN architecture. The feature matrix of circRNA c1 and disease d2 is input to the convolution neural network model to learn global deep representation between c1 and d2.


where X is the feature matrix that is fed to the two-dimensional convolution (Conv2D) layer. In the first convolutional layer, if the number of filters is nconv1, the width of the kernel is nw, and its length is set as nl. The convolution filters are indicated as Wconv1∈Rnconv1 × nw × nl, and the feature maps are Zconv1∈R nconv1 × (2–nw+1) × (nc+nd+np–nl+1). The convolution process can be described as follows:
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where X(i,j) is the element of matrix X in the i-th row and j-th column, and Xk,i,j represents the region in the filter where the k-th filter slides to the position X(i,j). g is a rectified linear units (relu) function (Nair and Hinton, 2010), bconv1 is the bias vector, ∗ represents the convolution operation, and Zconv1,k(i,j) represents the convolution result of the k-th filter sliding to the j-th column of the i-th row.

Similarly, the second Conv2D layer is also used to learn the higher-level features. To compress data and reduce over-fitting, the polling layer is used to obtain robust features. Here, the max-pooling operation is employed for each feature map (Collobert et al., 2011). Then, the outputs of the pooling layer are concatenated together from all kernels into one feature vector and input into the fully connected layer. The nonlinear softmax activation function is used to perform the task of classification.

To avoid over-fitting, a dropout layer is implemented before the output, in which the output of every neuron is set to zero with a probability of 0.5. The dropped-out neurons are not included in the forward pass or the back-propagation (Hinton et al., 2012).



Prediction of Novel CircRNA–Disease Associations

Next, we used all the positive and negative circRNA–disease association samples to train the MSFCNN architecture. Then, MSFCNN was used to score the unlabeled associations between circRNAs and diseases. Owing to the different negative samples used to train the model in each iteration of the five-fold cross validation (five-fold CV), we scored the candidate associations 10 times. Finally, we calculated the average scores for the candidate associations, and the candidate circRNAs related to specific diseases were analyzed using case studies.




RESULTS


Performance Evaluation

The performance of MSFCNN and other conventional machine learning-based methods for predicting circRNA–disease associations was evaluated using five-fold CV. If the circRNA c(i) was found to be related to disease d(j), the node pair ci-dj was considered as a positive example. Hence, the validated circRNA–disease associations were regarded as the positive set. However, because of the unavailability of a dataset for negative samples, we randomly selected a negative set from unobserved associations that was the same size as the positive set. All the positive samples were divided into five subsets of equal size, and each subset was tested once. For each CV, we took four positive subsets and the same number of negative subsets from five subsets to train the models; the remaining one positive subset and one negative subset were used for testing to evaluate the prediction performance. To lessen the bias resulting from sample division, we performed 10 repetitions of five-fold CV and obtained the average values of five experiments.

Receiver operating characteristic (ROC) curves were plotted to show the prediction performance by calculating the true positive rate and false positive rate. The area under the curve (AUC) was calculated to evaluate the overall performance. In addition, five metrics, precision (Pre), sensitivity (Sen), accuracy (Acc), F1-score, and Matthews’s correlation coefficient (MCC) were used to evaluate the capability of the MSFCNN model. The detailed calculation of these metrics was as follows:

[image: image]

where TP and TN represent the number of true positives and true negatives, respectively, and FP and FN represent the number of positives and negatives, respectively, that were wrongly predicted.



Parameter Setting

Convergence and parameter selection are important factors in the SKF method, that is, the number of iterations and two parameters, α and the size of neighbors. Following a previous study (Jiang et al., 2018), we set these two parameters to 0.1 and 36, respectively. As the number of iterations is important for the convergence of the SKF method, we also analyzed whether the number of iterations was sufficient for convergence in the four circRNA similarity kernels and seven disease similarity kernels. The relative error of the process of iteration was denoted ECt and EDt for circRNA similarity fusion and disease similarity fusion, respectively. The number of iterations ranged from 1 to 25 with steps of 1, and ECt and EDt were computed after every iteration. The convergence processes of the four circRNA similarity kernels and seven disease similarity kernels are shown in Figure 4. The results indicate that the convergence process was fast, and the ECt and EDt values reached 10–10 after 10 iterations. Therefore, we set the number of iterations to 10 for both circRNA similarity fusion and disease similarity fusion.
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FIGURE 4. Relative errors of the SKF method with various numbers of iteration for the four circRNA similarity matrices and seven disease similarity matrices.
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In the convolution operation of the MSFCNN model, the number of filters was set to 8. The kernel size was set to 2 × 32 in the first convolutional layer and 1 × 16 in the second convolutional layer. We implemented the MSFCNN model using the Keras 2.2.4 library in Python 3.7.3.



Evaluation of Prediction Performance

To assess the performance of the MSFCNN model for prediction of circRNA–disease associations, we used five-fold CV with 10 experiments (see Table 1 and Figure 5 for details). MSFCNN achieved average precision, sensitivity, F1-score, Acc, MCC, and AUC values of 0.9030, 0.9464, 0.9240, 0.9220, 0.8452, and 0.9525, with standard deviations of 0.0360, 0.0256, 0.0292, 0.0305, 0.0605, and 0.0202, respectively. Furthermore, the ROC curves for the MSFCNN model were at the upper left of the picture. These results indicate that our proposed model performs well in prediction of circRNA–disease associations.


TABLE 1. Evaluation metrics for performance of the MSFCNN approach.
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FIGURE 5. ROC curves of MSFCNN model for the task of circRNA–disease association prediction.




Comparison With Average Kernel Fusion Strategy

In the MSFCNN model, the SKF method is used to fuse the four circRNA similarity kernels and seven disease similarity kernels into one circRNA similarity kernel and one disease similarity kernel, respectively. We compared the performance of the SKF method when integrating several similarity kernels with that of an average kernel fusion strategy. The average fusion strategy calculated the average similarity scores for four circRNA similarity matrix or seven disease similarity matrices, respectively. Five-fold CV was performed 10 times for predicting circRNA–disease associations. The average kernel fusion-based MSFCNN model had an average AUC of 0.8628 (Figure 6); by comparison, the SKF-based MSFCNN model had an AUC of 0.9525 (an improvement of 0.0897). Other evaluation metrics also indicated that the SKF method performs better than the average kernel fusion strategy in MSFCNN (Table 2). Hence, the SKF method is an effective fusion strategy for prediction of circRNA–disease associations.
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FIGURE 6. ROC curves of the MSFCNN model with average kernel fusion strategy.



TABLE 2. Evaluation metrics for performance of the MSFCNN model with average kernel fusion strategy.
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Comparison With Conventional Machine Learning Approaches

To demonstrate the reliability and robustness of the MSFCNN method, we made comparisons with state-of-the-art machine learning approaches: support vector machine (SVM), random forest (RF), and multilayer perception (MLP). For each of these machine learning approach, the feature matrix fed into the model was consistent with that used for MSFCNN to ensure the fairness of the experiments. As shown in Figure 7, the average AUC of the MSFCNN model in the five-fold CV was 0.9179 higher than those of the SVM, RF, and MLP methods. In addition, MSFCNN achieved higher precision, sensitivity, F1-score, Acc, and MCC values than the other machine learning approaches (Table 3). Therefore, the proposed method is more suitable than these conventional approaches for the task of circRNA–disease association prediction.


[image: image]

FIGURE 7. ROC curves of the MSFCNN model and other machine learning methods.



TABLE 3. Evaluation metrics for performance of the MSFCNN and other tmachine learning methods.
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Case Study

To further demonstrate the ability of the MSFCNN model to discover potential circRNA–disease associations, we scored unlabeled associations between circRNAs and diseases using the trained model. Average scores were obtained from 10 applications of the MSFCNN model, and candidate circRNA–disease associations were identified based on their ranked scores. Case studies were performed for breast cancer, colorectal cancer, hepatocellular carcinoma, and acute myeloid leukemia. Some of the predicted specific disease-related circRNAs were found in the Circ2Traits database (Ghosal et al., 2013), which collects circRNAs and miRNAs related to diseases and traits (Table 4). In addition, we plotted the top 20 predicted circRNA–disease associations; the results show that these circRNAs may be related to the same diseases, and the diseases may also be associated with the same circRNAs (Figure 8). Hence, these results show that the MSFCNN model could be an effective tool for the prediction of circRNA–disease associations.


TABLE 4. Candidate circRNAs predicted by the MSFCNN model for four diseases.
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FIGURE 8. Top 20 predicted circRNA–disease associations.





CONCLUSION

Prioritizing potential disease-related circRNAs based on various types of prior information is beneficial to understanding disease mechanisms, diagnosis, and treatment. In this study, we developed a novel computational method named MSFCNN to predict potential circRNA–disease associations, using a two-layer two-dimensional CNN and integrating multiple biological data. First, one of the crucial technical points for predicting circRNA–disease associations is the similarity calculation for circRNA–circRNA and disease–disease pairs. Therefore, we calculated four circRNA similarity kernels and seven disease similarity kernels based on multiple biological and topological information. In addition, similarity kernel fusion was used to integrate various similarity kernels into one circRNA similarity kernel and one disease similarity kernel. Based on these fused similarity kernels and interactions/features among circRNAs, miRNA, and diseases, a feature matrix was constructed for each circRNA–disease pair. Finally, a two-layer CNN architecture was used to predict circRNA–disease associations. The MSFCNN approach showed good performance based on the five-fold CV, outperforming the SVM, RF, and MLP classifiers. Furthermore, case studies of breast cancer, colorectal cancer, hepatocellular carcinoma, and acute myeloid leukemia demonstrated that the MSFCNN framework could be an effective tool for successfully inferring potential circRNA–disease associations and providing a basis for biological validation.

The good performance of MSFCNN method mainly conclude following aspects. Firstly, multiple similarity kernels for circRNAs and diseases are effectively introduced to measure the biological and topological features of circRNAs and diseases. Secondly, the relationships of circRNA–miRNA and disease–miRNA are also used to construct the feature matrix for each circRNA–disease pair. Furthermore, the application of CNN architecture guarantees the effectiveness of learning the meaning of combinations of features from the feature matrix. Hence, MSFCNN method is an effective biomedical resource to predict the circRNA–disease associations.

Despite its promising prediction performance, the MSFCNN approach has some limitations. First, incomplete and noisy circRNA–disease associations were used as positive samples, and negative samples are randomly selected, limiting the prediction performance. This could be improved as more associations are discovered. Furthermore, more reliable biological information should be considered, such as circRNA coding potential and circRNA functional information, as well as disease phenotypes and functional information, etc. In addition, optional similarity measurements would be integrated based on comparing the prediction results of different similarity measures. Therefore, more data sources should be collected, and a more effective model needs to be developed to address the above limitations.
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Genome-Wide Association Studies (GWAS) explain only a small fraction of heritability for most complex human phenotypes. Genomic heritability estimates the variance explained by the SNPs on the whole genome using mixed models and accounts for the many small contributions of SNPs in the explanation of a phenotype. This paper approaches heritability from a machine learning perspective, and examines the close link between mixed models and ridge regression. Our contribution is two-fold. First, we propose estimating genomic heritability using a predictive approach via ridge regression and Generalized Cross Validation (GCV). We show that this is consistent with classical mixed model based estimation. Second, we derive simple formulae that express prediction accuracy as a function of the ratio [image: image], where n is the population size and p the total number of SNPs. These formulae clearly show that a high heritability does not imply an accurate prediction when p > n. Both the estimation of heritability via GCV and the prediction accuracy formulae are validated using simulated data and real data from UK Biobank.

Keywords: heritability, prediction accuracy, ridge regression, mixed model, generalized cross validation, best linear unbiased predictor


1. INTRODUCTION

The old nature vs. nurture debate is about whether a complex human trait is determined by a person's genes or by the environment. It is a longstanding philosophical question that has been reinvestigated in the light of statistical genetics (Feldman and Lewontin, 1975). The concept of heritability was introduced by Fisher (1918) and Wright (1920, 1921) in the context of pedigree data. It has proved highly useful in animal (Meuwissen et al., 2001) and plant genetics (Xu, 2003) for selection purposes because of its association with accurate prediction of a trait from genetic data. In the last decades, Genome-Wide Association Studies (GWAS) have become highly popular for identifying variants associated with complex human traits (Hirschhorn and Daly, 2005). They have recently been used for heritability estimations (Yang et al., 2010). A shortcut is often made between the heritability of a trait and the prediction of this trait. However, heritable complex human traits are often caused by a large number of genetic variants that individually make small contributions to the trait variation, which is often referred to as polygeny. In this context, the relation between heritability and prediction accuracy may not hold (de Vlaming and Groenen, 2015).

The goal of this paper is to establish a clear relation between prediction accuracy and heritability, especially when the number of genetic markers is much higher than the population size, which is typically the case in GWAS. Based on the linear model, statistical analyses of SNP data address very different and sometimes unrelated questions. The most commonly performed analyses tend to be association studies, where multiple hypothesis testing makes it possible to test the link between any SNP and a phenotype of interest. In genomic selection, markers are selected to predict a phenotype with a view to selecting an individual in a breeding population. Association studies and genomic selection may identify different sets of markers, since even weak associations might be of interest for prediction purposes, while not all strongly associated markers are necessarily useful, because of redundancy through linkage disequilibrium. Genomic heritability allows quantifying the amount of genomic information relative to a given phenotype via mixed model parameter estimation. The prediction of the phenotype using all genomic information via the mixed model is a closely related but different problem.

We approach the problem of heritability estimation from a machine learning perspective. This is not a classical approach in genetics, where inferential statistics is the usual preferred tool. In this context, heritability is considered as a parameter to be inferred from a small sample of the population. The machine learning approach places the emphasis on prediction accuracy. It makes a clear distinction between performance on training samples and performance on testing samples, whereas inferential statistics focuses on parameter estimation on a single dataset.


1.1. Classical Approach via Mixed Models

Heritability is defined as the proportion of phenotypic variance due to genetic factors. A quantitative definition of heritability requires a statistical model. The model commonly adopted is a simple three-term model without gene-environment interaction (Henderson, 1975):

[image: image]

where y ∈ ℝn is a quantitative phenotype vector describing n individuals, f ∈ ℝn is a non-genetic covariate term, g ∈ ℝn is a genetic term and e ∈ ℝn an environmental residual term. The term g will depend on the diploid genotype matrix [image: image] of the p causal variants.

There are two definitions of heritability in common use: first, there is H2, heritability in the broad sense, measuring the overall contribution of the genome; and second, there is h2, heritability in the narrow sense (also known as additive heritability), defined as the proportion of phenotypic variance explained by the additive effects of variants.

The quantification of narrow-sense heritability goes back to family studies by Fisher (1918), who introduced the above model with the additional hypothesis that g is the sum of independent genetic terms, and with e assumed to be normal. This heritability in the narrow sense is a function of the correlation between the phenotypes of relatives.

Although Fisher's original model makes use of pedigrees for parameter estimation, some geneticists have proposed using the same model with genetic data from unrelated individuals (Yang et al., 2011a).


1.1.1. Polygenic Model

In this paper, we focus on the version of the additive polygenic model with a Gaussian noise where g = Zu, f = Xβ, with [image: image] a standardized (by columns) version of M, u ∈ ℝp a vector of genetic effects, [image: image] a matrix of covariates, β ∈ ℝr a vector of covariate effects, μ an intercept and [image: image] a vector of environmental effects.

The model thus becomes

[image: image]

where [image: image] a vector of ones.



1.1.2. Estimation of Heritability From GWAS Results

To estimate heritability in a GWAS context, a first intuitive approach would be to estimate u with a least squares regression to solve problem (1). Unfortunately, this is complicated in practice for three reasons: the causal variants are not usually available among genotyped variants; genotyped variants are in linkage disequilibrium (LD); and the least squares estimate is only defined when n > p, which is not often the case in a GWAS (Yang et al., 2010).

One technique for obtaining a solvable problem is to use the classical GWAS approach to determine a subset of variants significantly associated with the phenotype. The additive heritability can then be estimated by summing their effects estimated by simple linear regressions. In practice this estimation tends to greatly underestimate h2 (Manolio et al., 2009). It only takes into account variants that have passed the significance threshold after correction for multiple comparisons (strong effects) and does not capture the variants that are weakly associated with the phenotype (weak effects).



1.1.3. Estimating Heritability via the Variance of the Effects

Yang et al. (2010) suggest that most of the missing heritability comes from variants with small effects. In order to be able to estimate the information carried by weak effects they assume a linear mixed model where the vector of random genetic effects follows a normal homoscedastic distribution [image: image]. They propose estimating the variance components τ and σ2, and defining genomic heritability as [image: image]. An example of an algorithm for estimating variance components is the Average Information—Restricted Maximum Likelihood (AI-REML) algorithm, implemented in software such as Genome-wide Complex Trait Analysis (GCTA) (Yang et al., 2011a) or gaston (Perdry and Dandine-Roulland, 2018). More recent methods that are much faster than REML have also been proposed, such as the modified Haseman-Elston regression (Chen, 2014) or methods based on summary statistics such as the LD-score regression (Bulik-Sullivan et al., 2015) or the MQS (MinQue for Summary statistics) approach (Zhou, 2017).




1.2. A Statistical Learning Approach via Ridge Regression

The linear model is used in statistical genetics for exploring and summarizing the relation between a phenotype and one or more genetic variants, and it is also used in predictive medicine and genomic selection for prediction purposes. When used for prediction, the criterion for assessing performance is the prediction accuracy.

Although least squares linear regression is the baseline method for quantitative phenotype prediction, it has some limitations. As mentioned earlier, the estimator is not defined when the number of descriptive variables p is greater than the number of individuals n. Even when n > p, the estimator may be highly variable when the descriptive variables are correlated, which is clearly the case in genetics.

Ridge regression is a penalized version of least squares that can overcome these limitations (Hoerl and Kennard, 1970). Ridge regression is strongly related to the mixed model and is prediction-oriented.


1.2.1. Ridge Regression

The ridge criterion builds on the least squares criterion, adding an extra penalization term. The penalization term is proportional to the ℓ2 norm of the parameter vector. The proportionality coefficient λ is also called the penalization parameter. The penalty tends to shrink the coefficients of the least squares estimator, but never cancels them out. The degree of shrinkage is controlled by λ: the higher the value of λ, the greater the shrinkage:

[image: image]

[image: image]

[image: image]

Ridge regression can be seen as a Bayesian Maximum a Posteriori estimation of the linear regression parameters considering a Gaussian prior with hyperparameter λ.

The estimator depends on a λ that needs to be chosen. In a machine learning framework, a classical procedure is to choose the λ that minimizes the squared loss over new observations.

The practical effect of the penalty term is to add a constant to the diagonal of the covariance matrix, which makes the matrix non-singular, even in the case where p > n. When the descriptive variables are highly correlated, this improves the conditioning of the ZTZ matrix, while reducing the variance of the estimator.

The existence theorem states that there always exists a value of λ > 0 such that the Mean Square Error (MSE) of the ridge regression estimator (variance plus the squared bias) is smaller than the MSE of the Maximum Likelihood estimator (Hoerl and Kennard, 1970). This is because there is always an advantageous bias-variance compromise that reduces the variance without greatly increasing the bias.

Ridge regression also allows us to simultaneously estimate all the additive effects of the genetic variants without discarding any, which reflects the idea that all the variants make a small contribution.



1.2.2. Link Between Mixed Model and Ridge Regression

This paper builds on the parallel between BLUPs (Best Linear Unbiased Predictions) derived from the mixed model and ridge regression (Meuwissen et al., 2001). The use of ridge regression in quantitative genetics has already been discussed (De los Campos et al., 2013; de Vlaming and Groenen, 2015) We look at a machine-learning oriented paradigm for estimating the ridge penalty parameter, which provides us with a direct link to heritability. There is an equivalence between maximizing the posterior p(u|y) and minimizing a ridge criterion (Bishop, 2006) under the assumptions that [image: image] and [image: image] (see section 6 in Supplementary Material for details). The optimal penalty hyperparameter of the ridge criterion λ can be used to estimate the heritability. It is indeed defined as the ratio of the variance parameters of the mixed model:

[image: image]

The relation between λ and [image: image] (de Vlaming and Groenen, 2015) is thus:

[image: image]

Consequently, the BLUP has a similar formulation to the ridge estimator. Indeed, as shown in the section 6.2 of the article by Robinson et al. (1991), its general definition is:

[image: image]

where [image: image], [image: image] and Σ = ZWZT + E.

When we further assume β = 0r, W = τIp and [image: image], it becomes:

[image: image]

which is exactly the ridge estimator.



1.2.3. Over-Fitting

Interestingly, ridge regression and the mixed model can be seen as two similar ways to deal with the classical over-fitting issue in machine learning, which is where a learner becomes overspecialized in the dataset used for the estimation of its parameters and is unable to generalize (Bishop, 2006). When n > p, estimating the parameters of a fixed-effect linear model via maximum likelihood estimation may lead to over-fitting, when too many variables are considered. A classical way of reducing over-fitting is regularization, and in order to set the value of the regularization parameter there are two commonly adopted approaches: first, the Bayesian approach, and second, the use of additional data.

Mixed Model parameter estimation via maximum likelihood can be seen as a type of self-regularizing approach (see Equation 5). Estimating the variance components of the mixed model may be interpreted as a kind of empirical Bayes approach, where the ratio of the variances is the regularization parameter that is usually estimated using a single dataset. In contrast to this, in order to properly estimate the ridge regression regularization hyperparameter that gives the best prediction, two datasets are required. If a single dataset were to be used, this would result in an insufficiently regularized (i.e., excessively complex) model offering too high prediction performances on the present dataset but unable to predict new samples well. This over-fitting phenomenon is particularly evident when dimensionality is high.

The fact that the complexity of the ridge model is controlled by its hyperparameter can be intuitively understood when considering extreme situations. When λ tends to infinity, the estimated effect vector (i.e., [image: image]R) tends to the null vector. Conversely, when λ tends to zero, the model approaches maximum complexity. One solution for choosing the right complexity is therefore to use both a training set to estimate the effect vector for different values of the hyperparameter and a validation set to choose the hyperparameter value with the best prediction capacity on this independent sample. An alternative solution, when data is sparse, is to use a cross-validation approach to mimic a two-set situation. Finally, it should be noted that the estimation of prediction performance on a validation dataset is still overoptimistic, and consequently a third dataset, known as a test set, is required to assess the real performance of the model.



1.2.4. Prediction Accuracy in Genetics

In genomic selection and in genomic medicine, several authors have been interested in predicting complex traits that show a relatively high heritability using mixed model BLUPs (Speed and Balding, 2014). The literature defined the prediction accuracy as the correlation between the trait and its prediction, which is unusual in machine learning where the expected loss is often preferred. Several approximations of this correlation have been proposed in the literature (Brard and Ricard, 2015), either in a low-dimensional context (where the number of variants is lower than the number of individuals) or in a high-dimensional context.

Daetwyler et al. (2008) derived equations for predicting the accuracy of a genome-wide approach based on simple least-squares regressions for continuous and dichotomous traits. They consider one univariate linear regression per variant (with a fixed effect) and combine them afterwards, which is equivalent to a Polygenic Risk Score (PRS) (Pharoah et al., 2002; Purcell et al., 2009). Goddard (2009) extended this prediction to Genomic BLUP (GBLUP), which used the concept of an effective number of loci. Rabier et al. (2016) proposed an alternative correlation formula conditionally on a given training set. Their formula refines the formula proposed by Daetwyler et al. (2008). Elsen (2017) used a Taylor development to derive the same formula in small dimension.

Using intensive simulation studies, de Vlaming and Groenen (2015) showed a strong link between PRS and ridge regression in terms of prediction accuracy, when the population size is limited. However, with ridge regression, predictive accuracy improves substantially as the sample size increases.

It is important to note a difference in the prediction accuracy of GBLUP when dealing with human populations as opposed to breeding populations (De los Campos et al., 2013). De los Campos et al. (2013) show that the squared correlation between GBLUP and the phenotype reaches the trait heritability, asymptotically when considering unrelated human subjects. Dandine-Roulland and Perdry (2015) also proposed a theoretical formula of the performance of BLUPs for prediction in the context of human genetics, which is proportional to the number of individuals, to the squared heritability and to the variance of the off-diagonal terms of the Genetic Relatedness Matrix.

Zhao and Zhu (2019) studied cross trait prediction in high dimension. They derive generic formulae for in and out-of sample squared correlation. They link the marginal estimator to the ridge estimator and to GBLUP. Their results are very generic and generalize formulae proposed by Daetwyler et al. (2008).



1.2.5. Outline of the Paper

While some authors have proposed making use of the equivalence between ridge regression and the mixed model for setting the hyperparameter of ridge regression according to the heritability estimated by the mixed model, we propose on the contrary to estimate the optimal ridge hyperparameter using a predictive approach via Generalized Cross Validation. We derive approximations of the squared correlation and of the expected loss, both in high and low dimensions.

Using synthetic data and real data from UK Biobank, we show that our results are consistent with classical mixed model based estimation and that our approximations are valid.

Finally, with reference to the ridge regression estimation of heritability, we discuss how heritability is linked to prediction accuracy in highly polygenic contexts.





2. MATERIALS AND METHODS


2.1. Generalized Cross Validation for Speeding Up Heritability Estimation via Ridge Regression
 
2.1.1. Generalized Cross Validation

A classical strategy for choosing the ridge regression hyperparameter uses a grid search and k-fold cross validation. Each grid value of the hyperparameter is evaluated by the cross validated error. This approach is time-consuming in high dimension, since each grid value requires k estimations. In the machine learning context, we propose using Generalized Cross Validation (GCV) to speed up the estimation of the hyperparameter λ and thus to estimate the additive heritability [image: image] using the link described in Equation (6).

The GCV error in Equation (9) (Golub et al., 1978) is an approximation of the Leave-One-Out error (LOO) (see section 2 in Supplementary Material). Unlike the classical LOO, GCV does not require n ridge regression estimations (where n is the number of observations) at each grid value, but involves a single run. It thus provides a much faster and convenient alternative for choosing the hyperparameter. We have

[image: image]

where [image: image] is the prediction of the training set phenotypes using the same training set for the estimation of [image: image]R and where Hλ is defined as (see section 1 in Supplementary Material for details):

[image: image]

A Singular Value Decomposition (SVD) of the Hλ can be used advantageously to speed up GCV computation (see section 3 in Supplementary Material).



2.1.2. Empirical Centering Can Lead to Issues in the Choice of Penalization Parameter in a High-Dimensional Setting

In high dimensional settings (p > n), the use of GCV after empirical centering of the data can lead to a strong bias in the choice of λ and thus in heritability estimation. Let us illustrate the problem with a simple simulation. We simulate a phenotype from synthetic genotype data with a known heritability of h2 = 0.25, n = 1, 000 individuals, p = 10, 000 variants and 100% causal variants. The simulation follows the additive polygenic model without intercept or covariates, as described in section 2.3. Before applying GCV, genotypes are standardized in the most naive way: the genotype matrix M is empirically centered and scaled column-wise, resulting in the matrix Z. Since we want to mimic an analysis on real data, let us assume that there is a potential intercept in our model (in practice the empirical mean of our simulated phenotype is likely to be non-null):

[image: image]

GCV expects all the variables to be penalized, but penalizing the intercept is not relevant. We therefore consider a natural two-step procedure: first the model's intercept is estimated via the empirical mean of the phenotype [image: image], and, second, GCV is applied on the empirically centered phenotype [image: image].

Figure 1 shows the GCV error (dotted line). Heritability is strongly overestimated. The GCV error appears to tend toward its minimum as λ approaches 0 (i.e., when h2 tends to 1).


[image: Figure 1]
FIGURE 1. Example of biased estimation by GCV if p > n. We computed the GCV error curve with n = 1, 000 individuals, p = 10, 000 causal variants and simulated heritability [image: image]. We used a grid of λ corresponding to the grid of heritability {0.01, 0.02, …, 0.99} using the link described in Equation (6) and computed the GCV error for those λ after empirical standardization of the data (dotted line). The λ that minimizes the GCV error corresponds to the heritability estimation. Here the GCV error tends to its minimum as h2 tends to 1, and heritability is thus largely over-estimated. The plain line corresponds to the GCV error obtained after correction of this bias by the projection approach (see section 2.1.3), which provides a satisfactory estimation of h2. The three vertical lines correspond respectively to the simulated heritability (red line), the heritability estimated using uncorrected GCV (green line) and the heritability estimated using corrected GCV (blue line).


This is a direct consequence of the empirical standardization of M and of the phenotype. By centering the columns of M with the empirical means of those columns, a dependency is introduced, and each line of the resulting standardized genotype matrix Z becomes a linear combination of all the others. The same phenomenon of dependency can be observed with the phenotype when using empirical standardization. Given the nature of the LOO in general (where each individual is considered successively as a validation set), this kind of standardization introduces a link between the validation set and the training set at each step: the “validation set individual” can be written as a linear combination of the individuals in the training set. In high dimension, this dependency leads to [image: image] (see section 4 in Supplementary Material), due to over-fitting occurring in the training set.

From a GCV perspective, a related consequence of the empirical centering of the genotype data is that the matrix ZZT has at least one null eigenvalue and an associated constant eigenvector in a high dimensional setting (see section 4 in Supplementary Material). This has a direct impact on GCV: using the singular value decomposition of the empirically standardized matrix Z = UDVT with [image: image], [image: image] two orthogonal squared matrices spanning, respectively, the lines and columns spaces of Z while [image: image] is a rectangular matrix with singular values {d1, …, dn} on the diagonal. In a high dimensional context: [image: image]. Performing the “naive” empirical centering of the phenotype results in

[image: image]

The very same problem is observed for a more general model with covariates (see section 4 in Supplementary Material).



2.1.3. A First Solution Using Projection

A better solution for dealing with the intercept [and a matrix of covariates [image: image]] in ridge regression is to use a projection matrix as a contrast and to work on the orthogonal of the space spanned by the intercept (and the covariates).

Contrast matrices are a commonly used approach in the field of mixed models for REstricted Maximum Likelihood computations (REML) (Patterson and Thompson, 1971). REML provides maximum likelihood estimation once fixed effects are taken into account. Contrast matrices are used to “remove” fixed effects from the likelihood formula. If we are only interested in the estimation of the component of variance, we do not even need to make this contrast matrix explicit: any semi-orthogonal matrix [image: image] such that [image: image] and C × (μ1n+Xβ) = 0n−r−1 provides a solution (see section 6 in Supplementary Material for details). In a ridge regression context, an explicit expression of [image: image] is needed for choosing the optimal complexity. An explicit form for C is therefore necessary.

In the presence of covariates, a QR decomposition can be used to obtain an explicit form for C (see section 5 in Supplementary Material for details). In the special case of an intercept without covariates, there is a convenient choice of C. Since the eigenvector of ZZT associated with the final null eigenvalue is constant, [image: image] is a contrast matrix adapted for our problem. Additionally, by considering CZ instead of Z, we have [image: image] with D−n the matrix D deprived of row n. This choice of contrast matrix thus simplifies the GCV formula and allows extremely fast computation.



2.1.4. A Second Solution Using 2 Data Sets

Dependency between individuals can be a problem when we use the same data for the standardization (including the estimation of potential covariate effects) and for the estimation of the genetic effects. This can be overcome by partitioning our data. Splitting our data into a standardization set and a training set, we will first use the standardization set to estimate the mean and the standard deviation of each variant, the intercept, and the potential covariate effects. Those estimators will then be used to standardize the training set on which GCV can then be applied.

This method has two main drawbacks. The first is that the estimation of the non-penalized effects is done independently of the estimation of the genetic effects, even though in practice we do not expect covariates to be highly correlated with variants. The other drawback is that it reduces the number of individuals for the heritability estimation (which is very sensitive to the number of individuals). This approach therefore requires a larger sample than when using projection.




2.2. Prediction vs. Heritability in the Context of Small Additive Effects

Ridge regression helps to highlight the link between heritability and prediction accuracy. What is the relation between the two concepts? Is prediction accuracy an increasing function of heritability?

In a machine learning setting, we have training and testing sets. The classical bias-variance trade-off formulation considers the expectation of the loss over both the training set and the test individual phenotype. It breaks down the prediction error into three terms commonly called variance, bias, and irreducible error. In this paper we do consider the genotypes of the training set as fixed and the genotype of a test individual as random, and somewhat abusively continue to employ the terms variance, bias, and irreducible error:

[image: image]

where the index tr refers to the training set, while te refers to the test set.

Assuming a training set genotype matrix [image: image] (without index tr to lighten notations) whose columns have zero mean and unit variances, we denote [image: image]. Assuming the independence of the variants 𝔼zte[zte] = 0p and var(zte) = Ip, irreducible error, variance, and bias become:

[image: image]

where u is the vector of the ridge parameters.

Since individuals are assumed to be unrelated, the covariance matrix of the individuals is diagonal. The covariance matrix of the variants is also diagonal, since variants are assumed independent. Assuming scaled data, ZZT and ZTZ are the empirical estimations of covariance matrices of respectively the individuals and the variants (up to a p or n scaling factor). Two separate situations can be distinguished according to the n/p ratio. In the high-dimensional case where p > n, the matrix ZZT estimates well the individuals' covariance matrix up to a factor p. Where n > p, on the other hand, ZTZ estimates well the covariance matrix of variants up to a factor n. Eventually, [image: image] when n < p and [image: image] when n > p.

Assuming further that

• ∀i ∈ [[1, n]] var(yi) = 1, we then have σ2 = 1 − h2,

• heritability is equally distributed among normalized variants i.e., [image: image] (which is indeed the mixed model hypothesis),

• [image: image] and (Zu)T(Zu) ≃ nh2,

the expected prediction error can be stated more simply, according to the [image: image] ratio (see section 8 in Supplementary Material for details):

[image: image]

When considering the theoretical quadratic error with respect to the log ratio of the number of individuals over the number of variants in the training set (Figure 2), as expected we have a decreasing function. This means that the larger the number of individuals in the training sample, the smaller the error. We also observe that the higher the heritability, the smaller the error. Both of these things are intuitive, and as a consequence the error tends toward the irreducible error when n becomes much larger than p. What is more surprising is that the prediction error is close to the maximum, whatever the heritability, when n is much smaller than p. Paradoxically, even with the highest possible heritability, if the number of variants is too large in relation to the number of individuals, no prediction is possible. This can be explained by the fact that the penalization plays a very important role in that case and thus strongly increases the bias, while reducing the variance. The squared bias and the variance with respect to the log ratio of the number of individuals over the number of variants in the training set are shown in Supplementary Figures 3, 4. The irreducible error is only a function of heritability and is not affected by the dimension of the training set.


[image: Figure 2]
FIGURE 2. Theoretical Quadratic Error with respect to the log ratio of the number of individuals over the number of variants in the training set. Each curve corresponds to a given heritability (in the narrow sense). Note that the total variance is assumed to be 1.


Similarly, the prediction error can be computed on the training set instead of on the test set. Using the same assumptions as before, the expected prediction error on the training set can be approximated by:

[image: image]

A graph similar to Figure 2 for this expected error can be found in Supplementary Figure 5. Interestingly, when p > n, the error on the training set does not depend on the n/p ratio. When n becomes greater than p, it increases and tends toward the irreducible error 1 − h2 when n ≫ p. As shown in Figure 2, the error on the test set is always higher than the irreducible error and thus higher than the error on the training set, which is a sign of over-fitting. However, the difference between the error on the test set and the error on the training set is a decreasing function of the n/p ratio, which is linear when p > n and tends toward zero when n ≫ p.

Another popular way of looking at the predictive accuracy is to consider the squared correlation between yte and [image: image]te (Goddard, 2009; Daetwyler et al., 2010):

[image: image]

Although correlation and prediction error both provide information about the prediction accuracy, correlation may have an interpretation that is intuitive, but it does not take the scale of the prediction into account. From a predictive point of view, this is clearly a disadvantage. Considering yte, zte, and ytr to be random, and using the same assumptions that were made in relation to prediction error, the three terms of the squared correlation become:

[image: image]

Like in the case of prediction error, replacing ZZT or ZTZ by their expectations, the squared correlation simplifies to:

[image: image]

When considering this theoretical squared correlation with respect to the log ratio of the number of individuals over the number of variants in the training set (Figure 3), we have, as expected, an increasing function. Similarly, the higher the heritability, the higher the squared correlation. We also observe that when n ≫ p, the squared correlation tends toward the simulated heritability. Conversely, when p ≫ n, it is close to zero whatever the heritability.


[image: Figure 3]
FIGURE 3. Theoretical squared correlation between phenotype and its prediction with respect to the log ratio of the number of individuals over the number of variants in the training set. Each curve corresponds to a given heritability (in the narrow sense).




2.3. Simulations and Real Data

Since narrow-sense heritability is a quantity that relates to a model, we will first illustrate our contributions via simulations where the true model is known. We perform two different types of simulation: fully synthetic simulations where both genotypes and phenotypes are drawn from statistical distributions, and semi-synthetic simulations where UK Biobank genotypes are used to simulate phenotypes. We also illustrate our contributions using height and body mass index (BMI) from the UK Biobank dataset.

We first assess the performance of GCV for heritability estimation and then look at the accuracy of the prediction when the ratio of the number of individuals to the number of variants varies in the training set.


2.3.1. UK Biobank Dataset

The present analyses were conducted under UK Biobank data application number 45,408. The UK Biobank dataset consists of ≃ 784 K autosomal SNPs describing ≃ 488 K individuals. We applied relatively stringent quality control and minor allele frequency filters to the dataset (callrate for individuals and variants > 0.99; p-values of Hardy-Weinberg equilibrium test > 1e-7; Minor Allele Frequency > 0.01), leading to 473,054 and 417,106 remaining individuals and SNPs, respectively.

Two phenotypes were considered in our analyses: height (standing) and BMI. In order to have a homogeneous population for the analysis of these real phenotypes, we retained only those individuals who had reported their ethnicity as white British and whose Principal Component Analysis (PCA) results obtained by UK Biobank were consistent with their self-declared ethnicity. In addition, each time we subsampled individuals we removed related individuals [one individual in all pairs with a Genetic Relatedness Matrix (GRM) coefficient >0.025 was removed], as in Yang et al. (2011b) in order to avoid confusion between shared genetic factors and shared environmental factors. Several covariates were also considered in the analysis of these phenotypes: the sex, the year of birth, the recruitment center, the genotyping array, and the first 10 principal components computed by UK Biobank.



2.3.2. Synthetic Genotype Data

The synthetic genotype matrices are simulated as in Golan et al. (2014) and de Vlaming and Groenen (2015). This corresponds to a scenario with independent loci or perfect linkage equilibrium. To simulate synthetic genotypes for p variants, we first set a vector of variant frequencies f ∈ ℝp, with these frequencies independently following a uniform distribution [image: image]. Individual genotypes are then drawn from binomial distributions with proportions f, to form the genotype matrix M. A matrix of standardized genotypes Z* can be obtained by standardizing M with the true variant frequencies f.



2.3.3. Simulations to Assess Heritability Estimation Using GCV

We consider both synthetic and real genetic data, and simulate associated phenotypes.

In the two simulation scenarios we investigate the influence on heritability estimation of the following three parameters: the shape of the genotype matrix in the training set (the ratio between n the number of individuals and p the number of variants), the fraction of variants with causal effects fc, and the true heritability [image: image]. The tested levels of these quantities are shown in Table 1.


Table 1. Table of the parameters sets of the simulations.

[image: Table 1]

For each simulation scenario and for a given a set of parameters (n,p,fc,[image: image]), the simulation of the phenotype starts with a matrix of standardized genotypes (either a synthetic genotype matrix Z* standardized with the true allele frequencies, as described in section 2.3.2, or a matrix of empirically standardized genotypes Z obtained from UK Biobank data). To create the vector of genotype effects u, p × fc causal SNPs are randomly sampled and their effects are sampled from a multivariate normal distribution with zero mean and a covariance matrix τIp×fc (where [image: image]), while the remaining p×(1 − fc) effects are set to 0. The vector of environmental effects e is sampled from a multivariate normal distribution with zero mean and a covariance matrix [image: image], where [image: image]. The phenotypes are then generated as y = Z*u + e and y = Zu + e, for the fully synthetic scenario and the semi-synthetic scenario, respectively. A standardization set of 1,000 individuals (that will be used for the GCV approach based on two datasets) is also generated for each scenario in the same way.

Applying GCV to large-scale matrices can be extremely time-consuming, since it requires the computation of the GRM associated with Z* or Z and the eigen decomposition of the GRM. For this reason we employed the same strategy as de Vlaming and Groenen (2015) in order to speed up both simulations and analyses by making it possible to test more than one combination of simulation parameters. We simulated an (nmax = 10,000 × pmax = 500,000) genotype matrix for the training set in the fully synthetic scenario and used this simulated matrix for all the 9 × 3 × 3 = 81 ([image: image]) parameter combinations. Similarly, we sampled nmax = 10,000 individuals from the UK Biobank dataset to obtain an (nmax = 10,000 × pmax = 417,106) genotype matrix for the training set in the semi-synthetic scenario. Smaller matrices were then created from a subset of these two large matrices (note that for subsets of the real genotype matrix we took variants in the original order to keep the linkage disequilibrium structure). Consequently, computation of the GRM and its eigen decomposition needed to be performed only once for each n/p ratio considered. The fully synthetic and the semi-synthetic scenarios were each replicated 30 times.



2.3.4. Simulations to Assess Prediction Accuracy

We performed fully synthetic simulations for different ratios [image: image] in order to study the behavior of the mean prediction error and the correlation between the phenotype and its prediction. We considered a training set of size n = 1,000, and a test set of size nte = 5,000. The maximum number of variants was set to pmax = 50,000 and the heritability to h2 = 0.6. We first simulated a global allelic frequency vector [image: image] and a global vector of genetic effects [image: image]

For each subset of variants of size p < pmax, we selected a vector of genetic effects composed of the p first components of u multiplied by a [image: image] factor assuring a total variance of 1 and [image: image]: [image: image]. The genotype matrix Mte was then simulated and its normalized version [image: image] computed as described in section 2.3.2. The normalization used the first p components of f. The noise vector [image: image] and a vector of phenotypes [image: image] were eventually simulated.

We generated 300 training sets by simulating the normalized genotype matrix, noise, and phenotype using the same process as for the test set. Here, the training set index is denoted as k. A prediction [image: image] for the test set was made with each training set using the ridge estimator of up obtained with [image: image], and the following empirical quantities were estimated: [image: image], [image: image] [image: image] and [image: image][image: image], where [image: image] [image: image]. The squared correlation between [image: image] and yte, k was also estimated.

We considered the following numbers of variants:

[image: image]
 


2.4. Prediction of Height and BMI Using UK Biobank Data

To experiment on UK Biobank for assessing the prediction accuracy, for each phenotype we considered three sets of data: a training set for the purpose of learning genetic effects, a standardization set for learning non-penalized effects (covariates and intercept), and a test set for assessing predictive power. Pre-treatment filters (as described in section 2.3.1) were systematically applied on the training set. We computed the estimation of genetic effects using the projection-based approach to take into account non-penalized effects, where the penalty parameter was obtained by GCV with the same projection approach:

[image: image]

We then estimated non-penalized effects (here X contains the intercept):

[image: image]

Finally, we applied these estimations on the test set:

[image: image]

in order to compute the Mean Square Error = [image: image] between the phenotype residuals [image: image] after removal of non-penalized effects and [image: image].

This procedure was performed for different ratios [image: image] using different sized subsets of individuals for the training set, while keeping all the variants that passed pre-treatment filters (see Table 2).


Table 2. Size (number of individuals) of training, standardization, and test sets for assessing predictive power on real data.

[image: Table 2]

For each number n of individuals considered in the training set, the sampling of these individuals was repeated several times, as seen in Table 3, in order to account for the variance of the estimated genetic effects due to sampling.


Table 3. Number of repetitions for the evaluation of the predictive power on real data.

[image: Table 3]




3. RESULTS


3.1. Generalized Cross Validation for Heritability Estimation
 
3.1.1. Simulation Results

For the two simulation scenarios we look at the difference between the estimation of [image: image] by GCV and the simulated heritability [image: image] in different configurations of study size n/p, [image: image] and the fraction of causal variants fc. Similarly, we look at the difference between the estimation by the classical mixed model approach and the simulated heritability. In our simulations fc was seen to have no influence, and so only the influence of the remaining parameters is shown in Figure 4 and fc is fixed at 10%. For full results, see Supplementary Figures 1, 2.


[image: Figure 4]
FIGURE 4. Distribution of [image: image] for different parameter combinations with 30 replications. (A) Corresponds to data simulated under the “fully synthetic” procedure, while (B) corresponds to the “semi-synthetic simulation” procedure. Each sub-panel corresponds to a different value of n/p. In both scenarios 10% of the variants have causal effects (i.e., fc = 0.1). For each panel, the horizontal axis corresponds to the simulated heritability [image: image] and the vertical axis corresponds to [image: image]. Heritability estimations are done with the random effects model using AI-REML and with ridge regression using three approaches for the choice of λ: GCV with a projection correction, GCV with a two-dataset correction and a 10-fold cross-validation (CV 10f).


For the fully-simulated scenario, the two GCV approaches give very similar results and appear to provide an unbiased estimator of h2. They compare very well with the estimation of heritability by ridge regression with a 10-fold CV. Moreover, the variance of the GCV estimators does not appear higher than the variance of 10-fold CV.

In the case of the semi-synthetic simulations, here too both GCV approaches and the 10-fold CV provide a satisfactory heritability estimation. Our choice of using GCV in place of a classical CV approach for estimating heritability by ridge regression is therefore validated.

For both simulation scenarios we also note that the classical mixed model approach (using the AI-REML method in the gaston R package) gives heritability estimations that are very similar to those obtained using the GCV approaches. The value of simulated heritability does not appear to have a strong effect on the quality of the heritability estimation. On the other hand, the ratio n/p seems to have a real impact on estimation variance, with lower ratios leading to lower variances, which initially might appear surprising. One possible explanation for this is that in our simulations n increases as the ratio n/p decreases. Visscher and Goddard (2015) showed that the variance of the heritability is a decreasing function of n, which could explain the observed behavior.



3.1.2. Illustration on UK Biobank

We now compare heritability estimations between the two GCV approaches and the classical mixed model approach for height and BMI, on a training set of 10,000 randomly sampled individuals (the training set being of the same size as for the simulated data). All three approaches take account of covariates and the intercept. The AI-REML approach also uses a projection matrix to deal with covariates. For the GCV approach based on two datasets, a standardization set of 1,000 individuals is also sampled, and for comparison purposes we have chosen to apply this two-set strategy to the classical mixed model approach as well.

Since the true heritability is of course unknown with real data, the sampling of the training and standardization sets is repeated 10 times in order to account for heritability estimation variability. Note that the SNP quality control and MAF filters were repeated at each training set sampling and applied to the standardization set.

Figure 5 shows that for each phenotype the two GCV approaches and the classical mixed model approach (AI-REML) give similar estimations. There is relatively little estimation variability, and any variability observed seems depend more on the individuals sampled for the training set than on the approach used.


[image: Figure 5]
FIGURE 5. Heritability estimation of BMI and height using AI-REML and GCV, with the projection-based approach and with the two-set approach. We sub-sampled the original UK Biobank dataset 10 times for replication. The cross corresponds to the mean and the error bar to the mean ± one standard deviation.





3.2. Prediction vs. Heritability in the Context of Small Additive Effects
 
3.2.1. Prediction From Synthetic Data

As expected, the mean of the test set error follows closely the theoretical curve when the [image: image] varies (Figure 6). When n > p, the mean of the test set is close to the minimum possible error, which means that the ridge regression provides a reliable prediction on average.


[image: Figure 6]
FIGURE 6. Mean Squared Error of the prediction on the test set with respect to [image: image], using simulated data with h2 = 0.6. The curves correspond to the theoretical link for h2 = 0.6. The black points correspond to the mean expectation for each value of [image: image] over 300 repetitions. The error bars in (A,B) correspond respectively to one standard deviation of the test set error obtained using two different aggregation strategies. On the left (A), we consider an aggregation strategy where each of the 300 training sets results in a mean test set error, whereas on the right (B) each individual in the test set results in an error averaged over all training sets.


Interestingly, if the mean error behaves as expected by our approximation, the standard deviation of the error may be very large. Figures 6A,B show the same mean error with different error bars. Figure 6A plots the error bars corresponding to the training set variation: the mean test set error is computed for each training set and the error bars show one standard deviation across the 300 training sets. Figure 6B plots the error bars corresponding to the variation of the errors across the test set.

The error bars in Figure 6B are much larger than those in Figure 6A, which shows that the variation in the prediction error is mostly due to the test individual whose phenotype we wish to predict, and depends little on the training set. This may be explained by the fact that the environmental residual term can be very large for some individuals. For these individuals the phenotype will be predicted with a very large error even when n ≫ p, that is to say when the genetic term is correctly estimated, irrespective of the training set.

The squared correlation between the phenotype and its prediction, as a function of [image: image], is also in line with our approximation (Figure 7). As expected, when n ≫ p, the squared correlation tends toward the simulated heritability. We compared our approximation with the approximation obtained by Daetwyler et al. (2008) and observed that although Daetwyler's approximation is very similar to ours when p ≫ n, our simulation results make Daetwyler's approximation appear under-optimistic when n ≫ p. Finally, we also compared our approximation with that obtained by Rabier et al. (2016), which is the same as ours when n > p. However, when p > n, Rabier's approximation appears over-optimistic.


[image: Figure 7]
FIGURE 7. Mean squared correlation between the phenotype and its prediction on the test set with respect to [image: image], using simulated data with h2 = 0.6. The salmon points correspond to the evaluation of the squared correlation and the black points correspond to the mean expectation for each value of [image: image] over 300 repetitions. Red dots correspond to training set replications. The red plain curve corresponds to Daetwyler's approximation for h2 = 0.6, while the blue dashed curve corresponds to Rabier's approximation and the green dotted curve corresponds to ours.




3.2.2. Prediction From UK Biobank Data

Let us consider the proposed theoretical approximation of the predictive power of ridge regression with respect to the n/p ratio applied to the UK Biobank data, for height and BMI residuals (after removal of covariate effects and intercept).

The two phenotypes differ considerably as regards heritability: we estimate by the projection-based GCV approach that 73.33% of height is “heritable” whereas only 33.91% of BMI is (on average over the 10 training samples of 20,000 individuals).

These estimated values are close to those currently found in the literature (Ge et al., 2017). It is important to note that the heritability estimation is strongly dependent on the filters. Variations of up to 20% were observed in the estimations when the filtering procedure setup was slightly modified.

A major difference between UK Biobank data and our simulations designed to check the proposed approximation lies in the strong linkage disequilibrium present in the human genome. Several papers have proposed using the effective number of independent markers to make adjustments in the multiple testing framework (Li et al., 2012), and we likewise propose adjusting our prediction model by taking into account an effective number of SNPs (pe). We estimate the effective [image: image] ratio for each training set and for each considered n value using the observed mean square errors, the estimated heritability, and the theoretical relation in the case of independent variants [image: image] when p > n. We then use a simple linear regression to find the coefficient between these estimated [image: image] ratios and the corresponding real [image: image] ratios.

Table 4 shows different but close effective numbers of SNPs for the two phenotypes.


Table 4. Effective number of SNPs.

[image: Table 4]

We also consider normalizing the test set errors using the mean square error of phenotype residuals (after removing non-penalized effects). Using this error normalization and adjusting the theoretical curve for an effective number of SNPs, we observe a close fit between the estimated errors on the test set and their theoretical values (Figure 8).


[image: Figure 8]
FIGURE 8. Normalized Mean Squared Error on the test set for the prediction of Height (A) and BMI (B) with respect to the log ratio of the number of individuals over the number of markers in the training set. Salmon dots correspond to training set replications, black dot to the mean of replications for different ratio and we show one standard deviation (over the training sets) of the mean test set error. The theoretical curves are fitted using the estimated heritability and an effective number of markers.






4. DISCUSSION

In this work we investigated an alternative computation of genomic heritability based on ridge regression. We proposed a fast, reliable way to estimate the optimal penalization parameter of the ridge via Generalized Cross Validation adapted for high dimension. The genomic heritability estimated from the GCV gives results comparable to mixed model AIREML estimates. It clearly demonstrates that a predictive criterion allows a reliable choice of the penalization parameter and associated heritability, even when the prediction accuracy of ridge regression is low. Moreover, even though our approach does not formally consider Linkage Disequilibrium, simulations showed that it still provides reliable genomic heritability estimates in presence of realistic Linkage Disequilibrium.

We also provided theoretical approximations of the ridge regression prediction accuracy, in terms of both error and correlation between the phenotype and its prediction on new samples. These approximations perform well on synthetic data, in both high and low dimensions. They rely on the assumption that individuals and markers are independent in approximating the empirical covariance matrices. Our approximation of the prediction accuracy in terms of correlation proposes a good compromise between existing approximations. In particular, it exhibits similar performances to Daetwyler et al. (2008) when p > n and to Rabier et al. (2016) when p < n.

Our theoretical approximation of the prediction error is also consistent with the error observed on real genetic data when p > n, after adjusting for the effective number of independent markers. Unfortunately, due to computational issues, we were unable to perform the analysis in the n ≃ p case with real data. However, we observed that the prediction accuracy already reaches almost 15% of the heritability of height when n/p ≃ 5%, while De los Campos et al. (2013) suggested that its asymptotic upper bound is of the order of 20% of the heritability because of incomplete LD between causal loci and genotyped markers. Interestingly, ridge regression is not affected by correlated predictors, and consequently it is not affected by high LD between markers. When LD is high, this has the effect of reducing the degrees of freedom of the model (Dijkstra, 2014), which results in an improved prediction accuracy in comparison with a problem having the same number of independent predictors and the same heritability.

Although our approximations and simulation results tend to show that the prediction accuracy can reach the heritability value when n ≫ p, as already suggested by previous works (Daetwyler et al., 2008; de Vlaming and Groenen, 2015; Rabier et al., 2016), the large standard deviation of the prediction error that we observed between simulated individuals suggests that disease risk prediction from genetic data alone is not accurate at the individual level, even for a relatively high heritability value in the context of a small additive effect hypothesis.

In direct continuity of this work, it would be interesting to investigate the behavior of prediction accuracy on real human data where n ≃ p. This would enable us to determine whether our approximations still hold in that case, and even in the case where n > p (where we approximate the empirical covariance matrix of the markers to be diagonal). It would show whether it is possible for the prediction accuracy to exceed the upper bound proposed by De los Campos et al. (2013). A further prospect would be to consider a nonlinear model extension via kernel ridge regression, which may improve the prediction (Morota and Gianola, 2014).
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Genomic imprinting is an epigenetic phenomenon, which plays important roles in the growth and development of animals and plants. Immortalized F2 (imF2) populations generated by random cross between recombinant inbred (RI) or doubled haploid (DH) lines have been proved to have significant advantages for mapping imprinted quantitative trait loci (iQTLs), and statistical methods for this purpose have been proposed. In this paper, we propose a special type of imF2 population (R-imF2) for iQTL mapping, which is developed by random reciprocal cross between RI/DH lines. We also propose two modified iQTL mapping methods: two-step point mapping (PM-2) and two-step composite point mapping (CPM-2). Simulation studies indicated that: (i) R-imF2 cannot improve the results of iQTL mapping, but the experimental design can probably reduce the workload of population construction; (ii) PM-2 can increase the precision of estimating the position and effects of a single iQTL; and (iii) CPM-2 can precisely map not only iQTLs, but also non-imprinted QTLs. The modified experimental design and statistical methods will facilitate and promote the study of iQTL mapping.

Keywords: genomic imprinting, imprinted quantitative trait loci, point mapping, composite point mapping, immortalized F2 population


INTRODUCTION

Genomic imprinting is a phenomenon found in animal and plant, in which two alleles of a gene show unequal expression depending on their parental origins. Genes involved in such phenomenon are called imprinted genes. Many imprinted genes have been found in animal and human (Nolan et al., 2001; Morison et al., 2005; Long and Cai, 2007; Babak et al., 2008; Hagan et al., 2009; Girardot et al., 2013; Pembrey et al., 2014; Hur et al., 2016; Jiang et al., 2017; Mackay and Temple, 2017). In plant, the first imprinted gene, which is involved in the coloration of maize kernel endosperm, was discovered as early as about half centuries ago (Kermicle, 1970). Compared with those in animal, however, the imprinted genes identified in plant so far are still very limited, of which most are found from Arabidopsis, rice and maize (Danilevskaya et al., 2003; Haun et al., 2007; Luo et al., 2009; Bauer and Fischer, 2011; Raissig et al., 2011; Zhang et al., 2011; Ikeda, 2012; Pei et al., 2019).

It has been found that many quantitative traits are affected by genomic imprinting (Spencer, 2002; Croteau and Croteau, 2004; Sandovici et al., 2005; Santure and Spencer, 2011; Wang et al., 2012). The quantitative trait loci (QTLs) showing imprinting effect are called imprinted QTL (iQTL). A number of different experimental designs and corresponding statistical methods have been proposed for mapping iQTLs (Knott et al., 1998; de Koning et al., 2000; Pratt et al., 2000; Strauch et al., 2000; Hanson et al., 2001; Haghighi and Hodge, 2002; Shete and Amos, 2002; Shete et al., 2003; Knapp and Strauch, 2004; Mantey et al., 2005; Cui et al., 2006, 2007, 2008, Cui, 2007; Liu et al., 2007; Li et al., 2008, 2012a; Hager et al., 2008; Yang et al., 2010; Zhou et al., 2012; Karami et al., 2019). F2 (outbred or inbred) and BC1 populations are usually used for iQTL mapping (Haley et al., 1994; de Koning et al., 2000; Cui et al., 2006; Li et al., 2012a), but they have obvious shortcomings, such as relatively low power in iQTL detection, low accuracy in estimating the positions and effects of iQTLs, inability of permanent preservation of the population, and unrepeatability. Besides, determination of the parental origins of alleles is also difficult or problematic under the F2 and BC1 designs (Wu et al., 2002; Cui et al., 2006; Wolf et al., 2008; Lawson et al., 2013). In addition, the imprinting effect cannot be separated from the maternal effect in the BC1 design.

Wen and Wu (2014) proposed statistical methods for iQTL mapping using an immortalized F2 (abbreviated as imF2) population generated from random crosses between recombinant inbred (RI) lines or doubled haploid (DH) lines. Compared with the previous designs, the imF2 design has significant advantages for iQTL mapping. First, the parental origins of marker alleles in each imF2 line can be exactly known from the cross. Second, analysis based on imF2 lines can reduce environmental error so as to increase the statistical power of iQTL mapping. Third, a very large imF2 population can be produced without increasing the cost of molecular marker assay. However, there are also shortcomings in the experimental design and mapping methods proposed by Wen and Wu (2014). In the experimental design, the work of constructing an imF2 population is laborious. In the statistical methods, iQTL mapping is performed only by testing the imprinting effect without making use of the information of additive effect and dominance effect. This may reduce the precision of iQTL mapping.

In this paper, to overcome the above shortcomings, we propose a modified imF2 design and modified statistical methods for iQTL mapping based on the work of Wen and Wu (2014). We demonstrate by simulation studies that the modified methods can map both iQTLs and non-imprinted QTLs (niQTLs) simultaneously as well as improve the accuracies of estimation of the positions and effects of iQTLs. In addition, the modified design can potentially reduce the workload in the construction of the imF2 population.



THEORY


Modification of Experimental Design

Suppose there is a DH or RI population derived from a cross between two pure lines, P1 and P2. The experimental design proposed by Wen and Wu (2014) for iQTL mapping is to develop an imF2 population by randomly crossing DH or RI lines, namely, Line i × Line j (i, j = 1, 2, 3, …; i ≠ j). Consider a QTL with two alleles, Q1 and Q2. The two alleles can form four genotypes: Q1Q1, Q1Q2, Q2Q1, and Q2Q2, with one allele (say, Q1) from the male gamete and the other (Q2) from the female gamete in each genotype. Let a, d and i be the additive effect, dominance effect and imprinting effect of the QTL, respectively. Thus, in an imF2 population, the single-QTL model would be (Wen and Wu, 2014):

[image: image]

where yj is the trait value of the jth combination (or hybrid line); μ is the population mean; xj, zj and tj are dummy variables taking values depending on the QTL genotype in the jth combination (Table 1); and εj is residual error following a normal distribution [image: image].


TABLE 1. Values of dummy variables indicating the QTL genotype in Eq. (1).

[image: Table 1]In the above design, the cross in each combination is “unidirectional,” namely, one line is used as female parent and the other as male parent. However, there can be an alternative genetic mating design, in which reciprocal crosses are performed for every combination, namely, Line i × Line j (positive cross, PC) and Line j × Line i (negative cross, NC; i, j = 1, 2, 3, …; i < j). This modified experimental design generates a special imF2 population. We call it reciprocal-cross imF2 (R-imF2) population. For distinction, we shall call the usual imF2 population as unidirectional-cross imF2 (U-imF2) population. Genetically, Eq. (1) is still applicable to R-imF2. Therefore, the iQTL mapping methods for U-imF2 are also applicable to R-imF2.



Modification of Point Mapping Method

Suppose the parental DH or RI population has been genotyped and therefore a genetic map has been constructed. Thus, the genotypes of imF2 lines can be deduced from the parental DH or RI lines and the genetic map can be used for iQTL mapping. Suppose the genetic map is of ultrahigh density so that the markers can well represent the whole genome. Thus, iQTLs can be mapped by testing every marker throughout the genome. We call this approach point mapping (PM; Wen and Wu, 2014).

Suppose the size (total number of hybrid lines) of the imF2 population is 2n (for R-imF2 population, there are n PC and n NC hybrid lines, respectively). Let RSS0, RSS1 and RSS2 be the minimum residual sum of squares calculated based on Eq. (1) under the hypotheses H0: a = d = i = 0, H1: i = 0 but not a = d = 0, and H2: not a = d = i = 0, respectively. Thus, two approximate log-likelihood ratio tests can be performed as below:

[image: image]

and

[image: image]

The PM method proposed by Wen and Wu (2014) maps iQTLs by checking the imprinting effect of every marker in the genome using Eq. (2). The LOD1 significance threshold is estimated by permutation tests (Churchill and Doerge, 1994). A genomic region covered by a LOD1 peak exceeding the threshold is thought to harbor an iQTL and the highest point of the peak is the most probable position of the iQTL. Obviously, this is a one-step method (denoted as PM-1), in which an iQTL is mapped based on its imprinting effect only.

The modified PM method proposed here is a two-step method (denoted as PM-2). The first step is QTL mapping, namely, to map QTLs (including imprinted and non-imprinted) by testing every marker in the genome using Eq. (3). Similarly, the LOD2 significance threshold used in this step can be estimated by permutation tests. The second step is iQTL identification, namely, to identify iQTLs among the mapped QTLs by checking the imprinting effect of each QTL using Eq. (2). A QTL is taken as an iQTL if its imprinting effect is significant. Otherwise, it is taken as a usual niQTL. The LOD1 significance threshold used in the second step can also be estimated by permutation tests, but the tests are performed only on the mapped QTLs rather than on every marker in the genome.



Modification of Composite Point Mapping Method

The PM method can be extended to composite point mapping (CPM) by adding some markers as cofactors into Eq. (1), namely (Wen and Wu, 2014):

[image: image]

where m1, m2, and m3, [image: image], [image: image], and [image: image], and [image: image], [image: image], and [image: image] are the numbers, effects and corresponding dummy variables of additive, dominance and imprinting cofactors, respectively; other symbols are the same as those in Eq. (1). Cofactors can be selected by stepwise regression. Note that the three effects of a marker are orthogonal or independent to each other, among which only the significant ones are selected by the stepwise regression. Therefore, the markers selected as cofactors based on different effects can be different (Zeng, 1994). The CPM method proposed by Wen and Wu (2014) is a one-step method, corresponding to PM-1. Similarly, there can be an alternative two-step CPM method (CPM-2). CPM-1 and CPM-2 have a similar procedure to that of PM-1 and PM-2, respectively. The only difference of CPM from PM is that the RSS0, RSS1 and RSS2 in Eqs. (2 and 3) are calculated based on Eq. (4) rather than on Eq. (1) under the corresponding hypotheses (H0, H1, and H2).



Simulation Studies

To examine the feasibility and efficiency of the modified imF2 design (R-imF2) and the modified statistical methods (PM-2 and CPM-2) for iQTL mapping in comparison with the previous design (U-imF2) and methods (PM-1 and CPM-1), two simulation studies were conducted. The first study was to compare the performances of R-imF2 and U-imF2, and of PM-1 and PM-2 in the mapping of a single iQTL; the second study was to compare the performances of CPM-1 and CPM-2 as well as PM-1 and PM-2 in the mapping of multiple iQTLs. The programs for PM and CPM were written in Visual Basic 6.01.



Simulation Study I

In this simulation study, we assumed that an iQTL was located at the middle of a chromosome, which was 100 cM in length and had one marker every cM. The iQTL segregated in a DH population of 100 lines, from which a U-imF2 or R-imF2 population comprising 800 hybrid lines was generated. The imprinting effect of the iQTL explained 2% of the phenotypic variance in the U-imF2 or R-imF2 population. Six different types of iQTL in terms of the effects (a, d, and i) were investigated, including the full-effect type, in which all sorts of effect exist, and five partial-effect types, in which either additive effect or dominance effect, or both do not exist (Table 2; Cheverud et al., 2008). The simulated data were analyzed with PM-1 and PM-2, respectively. Each case was simulated for 500 times. LOD thresholds for PM-1 and PM-2 at the overall significance level of 0.05 were estimated by simulation under the null hypothesis with 5,000 replicates. The results (Table 2) showed:


TABLE 2. Simulation results of point mapping of a single iQTL.

[image: Table 2]

(i) When other conditions (iQTL type and mapping method) were fixed, the results (means and standard deviations of estimates and statistical powers) obtained under the two designs were all very similar, suggesting that the two designs are basically equivalent for iQTL mapping.

(ii) Except in the case of type DIB, which had no additive and dominance effects, the power of QTL detection in PM-2 (step 1) was always higher than the power of iQTL detection in PM-1, and the difference was especially large in the cases of type FULL, PEP and PEM. However, the power of iQTL detection in PM-2 (step 2) was always lower than that in PM-1, and the difference was especially large in the case of type DIB.

(iii) The mean estimates of iQTL position obtained by PM-1 and PM-2 were very close to the real value in all the cases, suggesting that a single iQTL can be unbiasedly mapped by both methods. However, the standard deviation of iQTL position obtained by PM-2 was always significantly smaller than that obtained by PM-1 except in the case of type DIB. Even for type DIB, the former was still a little smaller than the latter. This suggests that PM-2 is more precise than PM-1 for iQTL mapping in general.

(iv) The estimation results of imprinting effect obtained by PM-1 and PM-2 were similar in all the cases. Noticeably, the means were always a little larger than the real value, suggesting that both methods may slightly overestimate the imprinting effect. For the additive and dominance effects, the means obtained by PM-2 were very close to the real values, suggesting that the estimation is unbiased; but the means obtained by PM-1 were always obviously smaller than the real values, suggesting that PM-1 may underestimate the additive and dominance effects. These results suggest that PM-2 is better than PM-1 for estimating the additive and dominance effects of iQTL.





Simulation Study II

In this simulation study, we assumed that a species had three pairs of chromosomes, each of which was 150 cM in length and had one marker every cM. There were seven QTLs in the genome, including three iQTLs on chromosome 1, one iQTLs and one niQTL on chromosome 2, and two iQTLs on chromosome 3 (Table 3). An R-imF2 population comprising 800 hybrid lines was generated from a DH population of 100 lines. Each QTL accounted for ∼7% of the phenotypic variance in the R-imF2 population. The simulated data were analyzed with PM-1, PM-2, CPM-1, and CPM-2, respectively. Cofactors for CPM-1 and CPM-2 were selected by stepwise regression at the significance level of 0.05. LOD thresholds at the overall significance level of 0.05 were estimated by permutation test with 1,000 replicates. The results (Figure 1 and Table 3) showed:


TABLE 3. Simulation results of mapping multiple iQTLs using PM-1, PM-2, CPM-1, and CPM-2.

[image: Table 3]
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FIGURE 1. Results of QTL scanning by PM methods (upper) and CPM methods (lower) in an assumed genome consisting of three chromosomes. The horizontal lines indicate LOD thresholds at the overall significance level of 0.05. The filled and blank triangles indicate the positions of iQTL and niQTL, respectively.



(i) All of the iQTLs were precisely mapped by both CPM-1 and CPM-2, and the estimates of iQTL positions obtained by the two methods were almost completely the same (with only a slight difference at Q1-3). PM-1 and PM-2 also precisely mapped some of the iQTLs. These two methods obtained exactly the same estimates of iQTL positions. However, the LOD peaks of PM-1 and PM-2 were broad. In addition, there were many small peaks, which may make it difficult to identify the peaks of true iQTLs (such as the peaks of Q1-2 in PM-1 and PM-2, and the peak of Q3-1 in PM-2) and result in ghost or false iQTLs (such as the peak on the left of Q2-1 and that between Q2-1 and Q2-2 in PM-1, and the peaks between Q1-1 and Q1-2, between Q2-1 and Q2-2, and between Q3-1 and Q3-1 in PM-2).

(ii) Corresponding to the estimation of iQTL positions, the estimates of iQTL effects were also completely the same between PM-1 and PM-2 and almost completely the same between CPM-1 and CPM-2, respectively. In most of the cases, the estimates of effects obtained by CPM-1 and CPM-2 were closer to the real values than those obtained by PM-1 and PM-2.

(iii) The LOD peaks of PM-2 were always higher than those of PM-1. This is consistent with the results of simulation study I. For the same reason, the LOD peaks of CPM-2 were higher than those of CPM-1 except for the DIB-type iQTL (Q3-1). In addition, as expected, the niQTL (Q2-1) was mapped only by PM-2 and CPM-2, respectively.





DISCUSSION

The advantages of iQTL mapping based on imF2 populations have been demonstrated before (Wen and Wu, 2014). R-imF2 is a special type of imF2 population. Although the simulation study results suggest that R-imF2 does not apparently improve the result of iQTL mapping in comparison with U-imF2 (Table 2), it is expected to be advantageous for experimental operation. For each cross combination, only one hybrid line is produced in U-imF2, while two hybrid lines are produced in R-imF2. Therefore, R-imF2 only needs half of the number of combinations used in U-imF2. This makes the cross work more convenient and may, to some extent, alleviate the workload of developing the imF2 population.

According to the simulation study results, PM-2 can estimate the position and the additive and dominance effects of an iQTL more precisely than PM-1 (Table 2). This is understandable. PM-1 estimates the position of an iQTL based on its imprinting effect only, while PM-2 estimates the position of an iQTL based on not only its imprinting effect, but also its additive and dominance effects. Obviously, the latter would have a higher statistical power as long as the additive and dominance effects exist (Table 2). This would surely increase the estimation precision of iQTL position and therefore increase the estimation precision of iQTL effects.

Although PM-2 can noticeably improve the estimation of iQTL position and effects, the power of detecting iQTL in PM-2 is always lower than that in PM-1 (Table 2). This means that there is a cost of losing power for gaining precision in PM-2. The reason may be that an iQTL detected by PM-1 is at the position, where the imprinting effect has the highest significance, while the iQTL position estimated by PM-2 may not be at the point, where the imprinting effect is the most significant. Nevertheless, the power difference of iQTL detection between PM-1 and PM-2 is not large except in the case of type DIB (Table 2). Therefore, the improvement of estimation precision achieved by PM-2 is cost worthy.

Although the PM methods behave well in the mapping of a single iQTL, they are not ideal for multiple iQTL mapping (Figure 1). In practice, therefore, it is more appropriate to use the CPM methods. PM-2 demonstrates the merit of two-step analysis. CPM-2 also exhibits the merit of higher LOD score in the identification of QTL position (Figure 1). However, the LOD peaks obtained by CPM-1 and CPM-2 usually have the same width for the same iQTL (Figure 1). This suggests that the two methods have similar resolution in iQTL mapping. Therefore, the higher LOD score of CPM-2 might have little help for increasing the precision of iQTL mapping, probably due to the role of cofactors. Nevertheless, CPM-2 still has an advantage over CPM-1, namely, it can map both iQTLs and niQTLs.

Considering that the basic principle and conclusions of iQTL mapping may not change with the density of markers (Wen and Wu, 2014), we did not consider in this paper the situation of iQTL mapping based on conventional low-density maps. The methods described above can be directly applied to the conventional map as long as the values of the dummy variables at the position to be tested in Eqs. (1 and 4) are replaced with the expected values calculated according to the flanking markers (Wen and Wu, 2014).

Power is the most frequently used index for evaluating the efficiency of a QTL mapping method, which can reflect the probability of type II error. Besides, false discovery rate (FDR) may be also an important index for the evaluation because it can reflect the probability of type I error (Li et al., 2012b). A good QTL mapping method should have higher power but lower FDR. Similar to the power, the FDR in QTL mapping can also be estimated by computer simulation (Li et al., 2012b). In the simulation study I of this study, one QTL was set at the center of a chromosome of 50 cM in length in each case. Since the QTL really existed, a single QTL detected on the chromosome could be always regarded as true, although the estimated QTL position was very imprecise (far from the real position) sometimes. Certainly, if there were two or more QTLs detected on the chromosome simultaneously, the additional QTL should be false. However, such situations did not occur in the simulations. Therefore, the FDR was always zero in our simulation study. In other words, the conditions assumed in our simulation study avoided the occurrence of false discovery. This was beneficial to the comparative study based on the power.

In this study, we only consider the iQTL mapping based on one-environment experiment. However, the genetic model can be easily extended to adapt the data of multi-environment experiment, from which the QTL-by-environment interaction can be analyzed using suitable statistical methods such as the mixed linear model approach, which has been used for mapping QTLs with the digenic epistasis and QTL-by-environment interaction as well as additive and dominance effects based on imF2 population (Gao and Zhu, 2007).
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Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon called pleiotropy, is facilitated by the increased availability of high-throughput genotypic and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of multivariate and univariate genome-wide association study (GWAS) models to distinguish between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs to be evaluated. Therefore, we used publicly available maize and soybean genotypic data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results suggest that multivariate and univariate GWAS should both be used to infer whether or not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we recommend that future studies use a combination of multivariate and univariate GWAS models, as both models could be useful for identifying and narrowing down candidate loci with potential pleiotropic effects for downstream biological experiments.

Keywords: Simulation, multi-trait, Unified Mixed-Model, QTN, maize, soybean, LD


1. INTRODUCTION

The number of traits available from state-of-the-art phenotyping techniques typically exceeds the number of genes in many species' genomes. For instance, the human genome contains over 20, 000 genes (Wagner and Zhang, 2011), but the Human Metabolome Database (Wishart et al., 2007) alone has collected more than 114, 000 metabolite traits. A direct consequence is that many genes likely control more than one of these traits, a phenomenon known as pleiotropy (Visscher and Yang, 2016). The identification and characterization of this phenomenon has been the subject of extensive research in the 100+ years following the first attributed use of the term “pleiotropy” in Platt (1910) Stearns (2010). Examples of important genes with pleiotropic effects in plant science include Lg1 and its contribution to inflorescence and leaf traits in maize (Foster et al., 2004; Lewis et al., 2014) and multiple disease resistance attributed to GH3-2 in rice (Fu et al., 2011) and Lr67 in wheat (Moore et al., 2015). With the recent acquisition of high-throughput phenotype and genotype data, it is now possible to directly identify pleiotropic causal mutations (Wagner and Zhang, 2011). The abundance of such high-throughput data in conjunction with a plethora of tools available for quantifying genotype-to-phenotype associations (Marchini et al., 2007; Purcell et al., 2007; Lipka et al., 2012; Zhou and Stephens, 2014) is providing increasing evidence for pleiotropic genes involved in evolution (Smith, 2016; Auge et al., 2019), disease resistance (Wisser et al., 2011; Lopez-Zuniga et al., 2019; Qiu et al., 2020), yield (Ward et al., 2019), and many other traits (Jiang et al., 2019; Rice et al., 2020). These analyses have also led to opposing views for (Boyle et al., 2017) and against (Wray et al., 2018) the ubiquitousness of pleiotropy in complex trait variation, particularly in the form of the omnigenic model. This model assumes that the same set of small-effect regulatory genes explain the vast majority of complex disease resistance traits expressed in a disease-relevant cell (Boyle et al., 2017).

One of the most commonly used approaches for quantifying genotype-to-phenotype relationships is the genome-wide association study (GWAS), which has been used to investigate pleiotropy (Wisser et al., 2011; Schaid et al., 2016; Rice et al., 2020). However, a significant drawback of a GWAS is that most of the markers available in typical high-throughput genotypic data are not causal. Instead, they are in imperfect linkage disequilibrium (LD) with the causal mutations of a given trait. This LD obfuscates the ability to distinguish a single pleiotropic causal mutation underlying multiple traits from multiple non-pleiotropic causal mutations in LD with each other (Gianola et al., 2015). Furthermore, it would only be possible to differentiate between a set of multiple non-pleiotropic causal mutations and one pleiotropic causal mutation if the former were in imperfect LD (Kemper et al., 2018). The scenario of tightly-linked non-pleiotropic causal mutations being mistaken for one pleiotropic causal mutation is known as spurious pleiotropy (Solovieff et al., 2013; van Rheenen et al., 2019). In addition to hindering the characterization of biological processes underlying trait variability, the presence of spurious pleiotropy in GWAS results could have serious negative downstream breeding ramifications (Chen and Lübberstedt, 2010). For instance, if two separate causal mutations in LD with antagonistic effects each control one of two correlated traits, breeders could allocate resources toward increasing population size to find individuals with recombination between these causal mutations (Schulthess et al., 2017). However, if a set of GWAS results are misinterpreted as suggesting that one pleiotropic causal mutation is present (i.e., the scenario of spurious pleiotropy is realized), then such efforts to increase the population size may never be undertaken.

Many studies use the term cross-phenotype to refer to markers with strong statistical associations with multiple traits (Tyler et al., 2016). Several univariate and multivariate GWAS approaches have been implemented to detect cross-phenotype associations (Zhou and Stephens, 2014; Cichonska et al., 2016; Joo et al., 2016), with multi-trait models shown to be optimum under many circumstances (Yang and Wang, 2012; Porter and O'Reilly, 2017; Melo et al., 2019; Pitchers et al., 2019; Rice et al., 2020). Although there is great value in detecting cross-phenotype associations, there is still a critical need to distinguish whether the underlying causal mutation(s) are pleiotropic or are non-pleiotropic but in strong LD. We hypothesized that one of the major reasons underlying the difficulty in distinguishing between these two scenarios is that the most widely-used univariate and multivariate GWAS models are insufficient for making such a distinction. Therefore, we used publicly available maize and soybean genotypic data to simulate pairs of correlated traits that were either (i) controlled by non-pleiotropic quantitative trait nucleotides (QTNs) on separate chromosomes, (ii) controlled by non-pleiotropic QTNs in various degrees of LD with each other, or (iii) controlled by a single pleiotropic QTN. We then assessed the ability of state-of-the-art univariate and multivariate GWAS models to identify these QTNs. We predicted that as the amount of LD between the non-pleiotropic QTNs increased, the multivariate GWAS results would more closely resemble those from traits controlled by a single pleiotropic QTN.



2. MATERIALS AND METHODS


2.1. Maize and Soybean Data

In this study, we used publicly available molecular marker data from two crop species, specifically maize (Zea mays L.) and soybean (Glycine max L.). These two species were selected because of their contrasting rates of LD decay; while soybean tends to have long-range LD (Hyten et al., 2007; Zhang et al., 2015), more rapid LD decay is typically observed in maize (Gore et al., 2009; Romay et al., 2013). The maize data were comprised of 2, 815 accessions from the North Central Regional Plant Introduction Station (NCRPIS) panel (Romay et al., 2013), while the soybean data consisted of a random sample of 2, 815 accessions in maturity groups III and IV from SoyBase (Song et al., 2015). To investigate the impact of sample size on the results, for each data set, we considered the full set of S1 = 2, 815 accessions, a subsample of S2 = 1, 000 accessions, and a subsample of S3 = 500 individuals. The accessions of S3 were randomly sampled from S2, whereas the accessions of S2 were randomly sampled from S1, i.e., S3 ⊂ S2 ⊂ S1. All subsamples were obtained using the (vcftools --max-indv) command in vcftools (Danecek et al., 2011). Details on how to access the datasets are provided in the Supplementary Material.

The maize data included 681, 257 single-nucleotide polymorphisms (SNPs) obtained through genotyping-by-sequencing (Romay et al., 2013), available at http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=6. The soybean data were downloaded from SoyBase (Song et al., 2015) at http://soybase.org/snps/download.php, and consisted of 42, 291 SNPs obtained with the SoySNP50K (Song et al., 2013). The same filters were applied to both datasets using vcftools. These filters included removing all SNPs with more than 5% missing data. Additionally, Plink was used to conduct LD pruning, where the LD parameter was set to r2 = 0.9 (--indep-pairwise 100 10 0.9) (Purcell et al., 2007). Thus, only markers that were in an LD of r2 ≥ 0.9 were filtered out. Only SNPs from chromosomal DNA that passed the minor allele count threshold of 5 in S3 were included in this simulation study. Consequently, the final data sets used for simulation were 44, 930 SNPs for maize, and 18, 364 for soybean.



2.2. Trait Simulation

The flow chart presented in Figure 1 summarizes the main aspects of the simulation study we conducted. In brief, we simulated pairs of traits controlled by either pleiotropic or non-pleiotropic QTNs. Each pair of traits was simulated with the simplePHENOTYPES (Fernandes and Lipka, 2020) package in the R software (R Core Team, 2020). We were specifically interested in comparing and contrasting the behavior of single peak-associated SNPs from GWAS, similar in magnitude to those reported in Rice et al. (2020), over multiple simulation replicates. Thus, all individual traits were controlled by exactly one additive QTN selected from either the maize or soybean marker data. For each pair of replicate traits, a maximum of two QTNs were selected. To investigate the impact of LD between two non-pleiotropic QTNs on the GWAS results, we sampled QTNs in three different scenarios. First, the QTNs were sampled from different chromosomes (called “Independent QTNs” in Figure 1). Such a configuration of QTNs was achieved by simulating trait pairs independently in simplePHENOTYPES. For a given set of input parameter values (Table 1), this process was repeated until 100 replicate trait pairs, with each trait in a pair controlled by a QTN on a different chromosome, were obtained. Next, we simulated trait pairs where the maximum amount of LD between the two linked non-pleiotropic QTNs controlling each trait was specified (called “QTNs in linkage” in Figure 1). We simulated this configuration in simplePHENOTYPES by specifying architecture = “LD,” and indicated the amount of maximum desired LD between pairs of selected SNPs through the ld input parameter. We controlled this amount of LD both directly (i.e., the LD between the two QTNs) and indirectly (the LD between each QTN and a marker located in between). Finally, we simulated pairs of correlated traits that were controlled by a single pleiotropic QTN (called “Pleiotropy” in Figure 1). This configuration was specified in simplePHENOTYPES by architecture = “pleiotropic.”


[image: Figure 1]
FIGURE 1. Flow chart with the methods used to simulate, conduct a genome-wide association study (GWAS), and detect quantitative trait nucleotides (QTNs) in multiple traits.



Table 1. Description of the input parameter values considered to simulate each pair of traits in the simulation study.

[image: Table 1]

Table 1 provides a summary of the input parameters considered in the simulation study. Briefly, three configurations of narrow-sense heritability (h2) were simulated: two with the same h2 for both traits and one with a different h2 for each trait. The latter configuration is a common situation in breeding programs, where a trait of interest with small heritability is correlated to a trait of less interest but with a higher h2 (Fernandes et al., 2018). Because a single QTN controlled each trait, and the non-genetic variance was a function of the inputted heritability, the additive effect size of every QTN in this study was set to the same value, namely 0.10. To evaluate the impact of rare vs. common variants on the results, we also considered the minor allele frequencies (MAFs) of the selected markers as an input parameter (see Table 2 for details). Altogether, we simulated 216 scenarios, where each scenario consisted of a unique combination of input parameters. Each scenario was replicated 100 times using the option vary_QTN = TRUE in simplePHENOTYPES, meaning that a different pair of QTNs were selected for each replicate.


Table 2. Description of how minor allele frequency (MAF) was controlled in the simulation study.

[image: Table 2]

We used simplePHENOTYPES' option “remove_QTN = TRUE” to simulate the frequently occurring scenario of the causal mutations not being included in the marker sets. Thus, for each of the 100 replicate trait pairs evaluated at a given scenario, the marker data were saved without the SNPs used as QTNs. Accordingly, for all traits, we conducted GWAS on all markers except the one selected to be the QTN.



2.3. Genome-Wide Association Studies

Multivariate and univariate GWAS was conducted on all simulated traits. For each replicate trait pair, we used the multivariate version of the unified mixed linear model (MLM) (Yu et al., 2006) implemented in GEMMA (Zhou and Stephens, 2014) to conduct the multivariate GWAS. In this analysis, a given replicate trait pair was included in this model as the multivariate response variable. The multivariate MLM was fitted in GEMMA using the commands (“gemma --bfile bed_file -lmm 2 -miss 0.001 -maf 0.001 -r2 0.999999 -n 1 2 -k kinship.txt -o output”), with the kinship matrix (VanRaden, 2008) calculated with the AGHmatrix R package (Amadeu et al., 2016). Similarly, for each of the two simulated traits contributing to a replicate trait pair, an analogous univariate unified MLM was fitted in the GEMMA software using all of the same commands except for -n 1. No fixed-effect covariates accounting for subpopulation structure were included in any GWAS model because (i) subpopulation structure did not explicitly contribute to the variability of the simulated traits, and (ii) all QTNs were randomly sampled irrespective of the degree to which their alleles segregated by subpopulations.



2.4. QTN Detection Rate for Univariate and Multivariate GWAS

For each simulation scenario, we compared the proportion of 100 replicate trait pairs in which the multivariate MLM identified a signal in the vicinity of the QTN(s) and the proportion in which the univariate MLM identified a signal in the vicinity of the QTN controlling the tested trait. We applied the Benjamini and Hochberg (1995) procedure to control the genome-wide false discovery rates (FDR) at 10%, and 5% for each model ran on each replicate trait pair. A SNP-trait association passing this threshold was deemed to be in the vicinity of a given QTN if it was within 10 kb (in maize) or 1 Mb (in soybean) of the QTN. These physical window sizes roughly correspond to a pairwise LD decay of r2 = 0.10 in both species (Supplementary Figures 1, 2). To compare the influence of window sizes on the results, we also considered window sizes of 1 kb in maize and 10 kb in soybean; these results are presented in Supplementary Figures 20–29, 40–49.

For a given replicate trait pair, the multivariate MLM (which tested H0: No association between the tested SNP and any trait in the multivariate model) was said to have identified a QTN if at least one SNP with an FDR-adjusted P-value <0.10 (or 0.05 when the FDR was controlled at 5%) was located within the surrounding physical window. Similarly, for a given trait in a replicate trait pair, the univariate MLM (which tested H0: No association between the tested SNP and the trait in the univariate model) was said to have correctly identified the QTN underlying that trait if at least one SNP with an FDR-adjusted P-value <0.10 (or 0.05) was located within the physical window of that QTN. Thus, across the 100 replicate trait pairs simulated at each setting, we recorded the following percentages:

1. The percentage of replicate trait pairs where a given GWAS model identified the QTN underlying the first trait.

2. The percentage of replicate trait pairs where a given GWAS model identified the QTN underlying the second trait.

3. The percentage of replicate trait pairs where a given GWAS model identified both QTNs underlying both traits.

4. The percentage of replicate trait pairs where a given GWAS model identified at least one statistically significantly associated marker outside of both windows for both traits.

When these percentages 1–3 were calculated for the multivariate GWAS under the “Independent QTNs” and “QTNs in linkage” scenario, they were referred to as the spurious pleiotropy detection rate. Otherwise, these proportions were called QTN detection rates. For both multivariate and univariate GWAS, the percentages calculated in 4 were called the error rate. Finally, as a measure of regional LD, i.e., LD in the region surrounding the selected QTN, we calculated the LD (r2) between the selected QTN and the 20 SNPs upstream and the 20 SNPs downstream.




3. RESULTS

In general, the results were similar across sample sizes and heritabilities. Unless noted otherwise, we highlight below the findings at the relatively moderate sample size of 1, 000 individuals, heritability of trait pairs set to h2 = (0.30, 0.80), 10% FDR and window size of 10 kb for maize and 1 Mb for soybean. We chose to present these particular heritabilities because of the aforementioned interest in correlated traits with contrasting heritabilities among breeders (Fernandes et al., 2018). For completeness, results for the remaining sample sizes and heritabilities are included in the Supplementary Material.


3.1. Observed MAFs Were Similar to User-Inputted Values, but Observed LD Was Lower

The various user-inputted parameters in simplePHENOYPTES enabled control of the MAFs of QTNs, as well as the LD between non-pleiotropic QTNs, to a certain extent. For QTNs where we specified the MAFs as an input parameter (indicated by a darker color in Figure 2; Supplementary Figures 6–9), the observed MAF distributions were similar to the user-inputted values. For QTNs where the MAFs were not directly controlled as an input parameter (indicated by a lighter color in Figure 2), most observed MAFs tended to be lower in maize than in soybean.


[image: Figure 2]
FIGURE 2. Observed minor allele frequencies (MAF) for quantitative trait nucleotides (QTN) controlling trait 1 (QTNT1) and trait 2 (QTNT2), and the observed linkage disequilibrium (LD) between them, measured as r2, for the sample size of 1, 000 and narrow-sense heritability of 0.3 and 0.8, for traits 1 and 2, respectively. Darker colors indicate QTNs that had MAF directly controlled by an input parameter of the simulation, whereas lighter colors indicate QTNs where MAF was not controlled. The simulated genetic architecture is listed in the horizontal and vertical titles.


As expected, the observed LD between non-pleiotropic QTN pairs tended to be higher in soybean than in maize, although outlying instances of similar levels of high LD were observed in maize (Figure 2; Supplementary Figures 6–9). Surprisingly, the distribution of LD between non-pleiotropic QTN under the independent QTNs scenario yielded outlying LD values greater than what was observed under the direct control of LD at r2 = 0.01. Because each pair of independent QTNs were simulated on separate chromosomes, we attribute these outlying values to interchromosomal LD. Thus, these simulated traits yielded pairs of non-pleiotropic QTNs with contrasting levels of LD between each other, enabling a thorough evaluation of the performance of univariate and multivariate GWAS models.



3.2. QTN and Spurious Pleiotropy Detection Rates Varied Across Sample Sizes, Heritabilities and QTN MAFs

The QTN and spurious pleiotropy detection rates generally increased as the sample size increased (Supplementary Figures 10–12, 20–22, 30–32, 40–42). Similarly, these rates increased monotonically as the heritabilities increased (Figure 3, Supplementary Figures 10–12, 20–22, 30–32, 40–42). The overall high QTN and spurious pleiotropy detection rates in soybean precluded the discernment of any notable trends in the GWAS approaches' performance across the observed MAFs (Supplementary Figures 10–12, 20–22, 30–32, 40–42). However, in maize, we noted that for most settings, higher QTN and spurious pleiotropy detection rates tended to be observed for QTNs where the MAFs were specified to be around 0.40 instead of 0.05 (Figure 4). In general, all the conclusions were similar when varying the FDR and window size. The largest difference in this regard was noted in soybean, specifically in that a considerably higher QTN and spurious pleiotropy detection rate was noted whenever the multiple testing was adjusted at 10% FDR and the window size was 1 Mb (Figure 5; Supplementary Figures 16–19).


[image: Figure 3]
FIGURE 3. Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) achieved by multivariate (Multi) and univariate (Uni) GWAS, relative to the QTN controlling trait 1 (T1), trait 2 (T2), and both QTN simultaneously (T1&T2) or, in the pleiotropic scenario, relative to the pleiotropic QTN (MT). These values were obtained for maize with a sample size of 1, 000. The X-axis displays the narrow-sense heritability for Trait 1 (bottom value) and Trait 2 (top value). (A) Inputted minor allele frequency (MAF) of 0.05; (B) MAF of 0.4.
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FIGURE 4. Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) in scenarios for which minor allele frequency (MAF) was directly controlled by a simulation input parameter. These values were obtained by multivariate (Multi) and univariate (Uni) GWAS, relative to the QTN controlling trait 1 (T1), and trait 2 (T2), or in the pleiotropic scenario, relative to the pleiotropic QTN (MT). This figure shows results for maize with a sample size of 1, 000, and a narrow-sense heritability of 0.3 and 0.8, for Trait 1 and Trait 2, respectively.
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FIGURE 5. Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) achieved by multivariate (Multi) and univariate (Uni) GWAS (X-axis), relative to the QTN controlling trait 1 (T1), trait 2 (T2), and both QTN simultaneously (T1&T2) or, in the pleiotropic scenario, relative to the pleiotropic QTN (MT). The simulated genetic architecture is listed in the horizontal and vertical titles. These values were obtained with a sample size of 1, 000, and a narrow-sense heritability of 0.3 and 0.8, for traits 1 and 2, respectively. MAF, minor allele frequencies.




3.3. Observed Multivariate GWAS Performance for Non-pleiotropic QTNs in Linkage and a Single Pleiotropic QTN

The multivariate GWAS results are presented in their entirety in Figure 5 and Supplementary Figures 16–19, 26–29, 36–39, 46–49). In general, high spurious pleiotropy detection rates were observed under the “QTNs in Linkage” scenario. Specifically, for QTNs that were in high LD, we observed that the multivariate GWAS spurious pleiotropy detection rate of both QTNs (depicted as the light green bar in Figure 5) tended to be similar to or greater than the multivariate GWAS detection rate of the pleiotropic QTNs (yellow bar in Figure 5). Interestingly, we also noted a trend in the ability of multivariate GWAS to identify each individual non-pleiotropic QTN in LD (depicted as the purple and blue-green bars in Figure 5). That is, with the exception of indirect LD of 0.01, we observed that all individual multivariate GWAS spurious pleiotropy detection rates were higher than the corresponding multivariate GWAS detection rates on the pleiotropy scenario. The pattern of error rate, i.e., significant markers detected outside the predefined window size, was similar to the QTN and spurious pleiotropy detection rate (Supplementary Figures 50–89). The only notably different result when considering the error rate was observed in the independent QTNs scenario, where it resulted in a reduced error rate compared to the other genetic architectures.



3.4. Univariate GWAS Displayed Distinct Detection Patterns for Non-pleiotropic QTNs in High LD and Single Pleiotropic QTNs

Univariate GWAS tended to yield distinct patterns of QTN detection under both (i) high LD between non-pleiotropic QTNs and (ii) pleiotropy (depicted as the two rightmost columns of Figure 5; Supplementary Figures 16–19, 26–29, 36–39, 46–49). Specifically, the simultaneous detection rate of the QTNs for both traits (depicted as the green bars in Figure 5) tended to be relatively similar to the individual QTN detection rates for each trait (depicted as the purple and blue-green bars Figure 5). For the remaining scenarios where non-pleiotropic QTN were simulated (presented in the four leftmost columns of Figure 5), we contrastingly observed that the simultaneous detection rate of each pair of non-pleiotropic QTNs tended to be less similar to the individual QTN detection rates. These results suggest that univariate GWAS could be extremely useful for distinguishing between a single pleiotropic QTN and two or more non-pleiotropic QTNs in linkage. In the scenarios of high LD, the SNPs selected to be QTNs were located in regions of slightly higher LD (Supplementary Figures 3–5). Consequently, the univariate QTN detection rate was slightly higher in the instances where QTNs in LD were simulated. In most cases, the error rate was similar across different settings.




4. DISCUSSION

The full potential of GWAS to contribute to the identification of pleiotropy will not be realized until its ability to distinguish between a single pleiotropic causal mutation and multiple non-pleiotropic causal mutations in LD is scrutinized in real genomic data. Therefore, we used publicly available maize and soybean marker data to conduct a simulation study that quantified the QTN and spurious pleiotropy detection rates of both pleiotropic and non-pleiotropic QTNs for two widely-used statistical models in plant GWAS. We specifically used the univariate and multivariate MLM and controlled for multiple testing at 10% FDR. Our results showed that even at surprisingly small LD between non-pleiotropic QTNs, the multivariate GWAS model tended to yield high spurious pleiotropy detection rates. Because of the high spurious pleiotropy detection rates we inferred that multivariate GWAS was unable to distinguish between a single pleiotropic QTN and two non-pleiotropic QTNs in LD. We also observed that for pleiotropic QTNs, the univariate GWAS model's simultaneous QTN detection rates for both traits were similar to the QTN detection rates for the individual traits; such a degree of similarity was observed only at non-pleiotropic QTNs pairs in the highest amount of pairwise LD that we specified in our simulation parameters. Collectively, these results suggest that the univariate GWAS model might be useful in conjunction with multivariate GWAS model for distinguishing between true and spurious pleiotropy.


4.1. High Spurious Pleiotropy Detection Rates From Multivariate GWAS Were Observed Under LD

The potential of multivariate GWAS models has been demonstrated in many studies (Galesloot et al., 2014; Zhou and Stephens, 2014; Pitchers et al., 2019; Rice et al., 2020). Our results agree with this previous work, as the observed ability of multivariate GWAS to identify QTNs was generally high for all scenarios particularly in soybean. The fact that the multivariate GWAS was able to detect non-pleiotropic QTNs is not surprising because the null hypothesis for most multivariate tests of association, including those used for the multivariate MLM, is H0: No association between the tested SNP and any trait (Schaid et al., 2016; Salinas et al., 2018). Thus, the multivariate MLM's detection of non-pleiotropic QTN, and more specifically spurious pleiotropy under the “QTNs in linkage” scenario, should not be regarded as false positives because these events technically occur in the alternative hypothesis. Nevertheless, the outcome of spurious pleiotropy underscores an intrinsic lack of resolution to distinguish between pleiotropic and non-pleiotropic QTNs.

The observed performance of multivariate GWAS at the various levels of LD between non-pleiotropic QTNs on the same chromosome was insightful. Although a previous study showed that multivariate GWAS could not distinguish between a single pleiotropic QTN and multiple non-pleiotropic QTNs in LD (Chebib and Guillaume, 2019), we expected that at low levels of LD between non-pleiotropic QTNs, the spurious pleiotropy detection rates would be similar to QTN detection rates under the scenario where non-pleiotropic QTNs were simulated on separate chromosomes. Furthermore, we predicted that as the amount of LD between the non-pleiotropic QTNs increased, the spurious pleiotropy detection rate of multivariate GWAS would become similar to the observed multivariate GWAS detection rate of a single pleiotropic QTN. Instead, we observed that even at LD levels of r2 < 0.01 between non-pleiotropic QTNs, the multivariate GWAS model yielded high spurious pleiotropy detection rates, a trend that was analogous to the QTN detection rates observed for traits controlled by one pleiotropic QTN. Interestingly, for the most stringent control of LD between non-pleiotropic QTNs on the same chromosome (i.e., r2 < 0.01), the maximum amount of observed LD was less than some outlying values of interchromosomal LD between non-pleiotropic QTNs simulated on separate chromosomes (Figure 2). These results were contrary to our prior expectations, and we consequently made two main conclusions. First, we confirmed that multivariate GWAS is a potentially useful tool for identifying causal mutations. Second, multivariate GWAS, particularly the multivariate unified MLM, alone is insufficient for distinguishing between multiple QTNs in LD and a single pleiotropic QTN, irrespective of the amount of LD between the QTNs.



4.2. Univariate GWAS Is Potentially Useful for Identifying Pleiotropy

One of the most useful findings from this study was the subtle differences in univariate GWAS QTN detection rates for both non-pleiotropic QTNs in high LD and pleiotropic QTNs. We hypothesize that if incorporated into standard GWAS analyses, these subtle differences could play a crucial role in inferring whether or not a certain set of GWAS results suggest pleiotropy. Although there is a critical need for future studies to investigate the most appropriate use of univariate GWAS in such a role, our results suggest two steps for using univariate GWAS for this purpose. First, a univariate GWAS could be conducted on each trait separately. Second, an a posteriori analysis could then be used to determine how frequently each univariate GWAS detects a signal. If a signal is consistently detected across several univariate analyses of individual traits, this could provide evidence that a pleiotropic causal mutation is underlying the signals detected from GWAS.



4.3. Considerations for Further Studies on the Ability of GWAS to Identify Loci Controlling Multiple Traits

Our findings build upon other studies (e.g., Chebib and Guillaume, 2019), indicating that caution should be used when interpreting multivariate GWAS results. Moreover, it highlights the usefulness of univariate GWAS in making conclusions regarding trait genetic architecture. However, some potential weaknesses of our study should be considered when designing future research. In particular, the inconsistent amount of local LD levels surrounding QTNs selected from different genetic architectures is a potential source of bias. We opted to consider a fixed window size when detecting the QTNs; this favors a comparison across different sample sizes, but because the LD will vary, so will the chance of detecting a QTN in that specific window.

In particular, when we simulated traits with QTNs in high LD “QTNs in Linkage” scenario, we observed that they were typically selected from genomic regions that contained at least one pair of SNPs in high LD. Thus, the local LD in these regions tended to be biased upwards. For the remaining simulation scenarios, the amount of local LD was not biased upwards, as can be seen in Supplementary Figures 3–5. We infer that these differences in local LD might have influenced the observed QTN and spurious pleiotropy detection rates in this study. A potential solution for this issue would be to simulate pleiotropy and linked QTNs based on marker data with SNPs evenly spaced.

One final suggestion for future research is to investigate the impact of (i) the residual correlation between traits and (ii) the sign of QTN effect sizes on the performance of univariate and multivariate GWAS. As described in Jiang and Zeng (1995), the power of multivariate approaches should be less than those of the univariate ones whenever the direction of residual correlation (i.e., whether the sign of the residual correlation is positive or negative) is the same as those of the product of QTN effect sizes, regardless of whether these QTNs are in linkage or are pleiotropic. Thus, it is critical to determine if the overall patterns of QTN and spurious pleiotropy detection observed in this study are similar under genetic architectures where multivariate GWAS is theoretically expected to yield lower power than univariate GWAS.




5. CONCLUSION

The main conclusion from this study is that the use of either univariate or multivariate GWAS alone is insufficient for rigorously dissecting the genetic architecture of multiple traits. Association studies should instead use both univariate and multivariate models, as we demonstrated that both of these models are useful. Although our results suggest that multivariate GWAS cannot distinguish between a single pleiotropic QTN and multiple non-pleiotropic QTNs in LD, we confirmed that multivariate models are potentially useful for analyzing traits that are controlled by causal mutations that are either pleiotropic or in LD with each other. Once the genomic regions most likely to contain relevant causal mutations are identified through multivariate GWAS, univariate analyses could then be applied, potentially through the a posteriori analysis proposed in the Discussion, to shed light on whether or not the underlying causal mutations are pleiotropic. Such use of univariate and multivariate analyses in a concerted manner could maximize the amount of information ascertained from the GWAS of multiple traits, and potentially provide biological researchers with a smaller list of candidate loci that are likely to contribute to their variability.
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Nested association mapping (NAM) has been an invaluable approach for plant genetics community and can dissect the genetic architecture of complex traits. As the most popular NAM analysis strategy, joint multifamily mapping can combine all information from diverse genetic backgrounds and increase population size. However, it is influenced by the genetic heterogeneity of quantitative trait locus (QTL) across various subpopulations. Multi-locus association mapping has been proven to be powerful in many cases of QTL mapping and genome-wide association studies. Therefore, we developed a multi-locus association model of multiple families in the NAM population, which could discriminate the effects of QTLs in all subpopulations. A series of simulations with a real maize NAM genomic data were implemented. The results demonstrated that the new method improves the statistical power in QTL detection and the accuracy in QTL effect estimation. The new approach, along with single-family linkage mapping, was used to identify QTLs for three flowering time traits in the maize NAM population. As a result, most QTLs detected in single family linkage mapping were identified by the new method. In addition, the new method also mapped some new QTLs with small effects, although their functions need to be identified in the future.

Keywords: nested association mapping (NAM), multi-locus association model, joint-family, subpopulation, maize


INTRODUCTION

Association mapping of large genetically diverse population has advantages over quantitative trait locus (QTL) mapping of biparental segregation population, such as the ability to access multiple gene alleles and higher mapping resolution (Zhang et al., 2005; Korte and Farlow, 2013). This is because the former carries more recombination breakpoints in history. However, the genetic structure of genome-wide association study (GWAS) population leads to high false positive rates (FPRs; Yu and Buckler, 2006). Moreover, low allele frequencies confer low statistical power (Rafalski, 2010). To address these issues, multiparental population or next-generation mapping populations, such as nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC), were proposed (Cavanagh et al., 2008; Yu et al., 2008; Morrell et al., 2012). It was proved to have sufficient power and resolution to detect genomic associations for plant complex traits.

The NAM population was a special kind of multiparental panel, which was first proposed in maize (Yu et al., 2008). They crossed 25 representative lines with homozygous B73 line to generate 25 populations that consisted of 5,000 recombinant inbred lines (RILs; McMullen et al., 2009) and demonstrated that the NAM population method was powerful in dissecting the genetic architecture of complex traits, including flowering time, leaf architecture, stalk strength, and plant height (Buckler et al., 2009; Tian et al., 2011; Peiffer et al., 2013, 2014; Li et al., 2016). This initial success prompted the development of the NAM population in other crops, such as rice, wheat, barley, soybean, and sorghum (Maurer et al., 2015; Schmutzer et al., 2015; Bajgain et al., 2016; Bouchet et al., 2017; Fragoso et al., 2017; Song et al., 2017). Taking a wide view of all NAM methods applied in previous studies, they were prone to joint linkage across all subpopulations over single population mapping, as single population analysis has far less power and accuracy than joint mapping, although it will not position QTL inaccurately (Buckler et al., 2009). However, these approaches did not take into account the potential difference of QTL effects across families.

Genetic heterogeneity from different parents is likely to contribute to potential diversity of genetic architecture across subpopulations. Buckler et al. (2009) investigated the difference of allelic effects across different founder lines and demonstrated that the difference of QTL effects across subpopulations is related to latitudinal variation. Given that this diversity exists, the above methods, considering all QTL with same effects across all subpopulations, are not appropriate. To address this issue, we conducted a series of composite interval mapping (CIM; Zeng, 1994) for each RIL population in the maize NAM population. The results showed that QTLs detected in different subpopulations did not share either the same position or effect (Supplementary Table 1). For instance, different RIL populations might detect different QTLs; even if QTLs were detected across more than one population, these QTLs could rarely share the same effect. Figure 1 shows an example of overlapped QTL. Within a distance of 10 cM, there were three QTLs identified in various subpopulations and having quite different effects. Because their peaks were very close, these QTLs were treated as an overlapped QTL. The results confirmed our suspicion. In association mapping in multiparental population, therefore, it is necessary to discriminate QTL effects in various subpopulations.


[image: image]

FIGURE 1. (A) An overlapped quantitative trait locus (QTL) identified in subpopulations 5, 13, and 23 and (B) its effects.


In this study, we proposed a speculation that QTL shared across multiple subpopulations of NAM has different effects in genetic mapping model. It was a specialty for the NAM design and also other similar multiple populations from multiple parents. A multi-locus association model was introduced to dissect the genetic basis of complex traits. In this kind of statistical model, variables involved are extremely colossal when single-nucleotide polymorphism (SNP) makers are numerous. Thus, we suggested a new matrix transform approach to address the problem of super-high dimensions. A series of Monte Carlo simulation experiments based on NAM marker data were performed to demonstrate the performance of this new method. Additionally, the validated approach was applied in genetic analysis for three flowering time traits in maize.



MATERIALS AND METHODS


NAM Population

We used the maize NAM population data (Buckler et al., 2009) from the Panzea website.1 The NAM population consists of 4,699 RILs derived from the crosses between 25 diverse lines and the common parent B73. All the RILs from each cross were considered as a subpopulation. A total of 1,106 SNP markers were genotyped for each RIL, covering a genetic map of 1,400 cM and one marker every 1.3 cM on average. The best linear unbiased predictions (BLUPs) of three flowering time traits, including days to anthesis (DA, male flowering), days to silking (DS, female flowering), and anthesis-silking interval (ASI), were used as the phenotypic data in following analysis.



Genetic Model

Suppose that a general NAM design is as follows: k selected founder lines are crossed to a common parent, followed by selfing to generate k segregation F2 populations, and each F2 population are used to generate a half-sib subpopulation composed of n RILs by selfing for multiple generations. The phenotypic value of a quantitative trait may be described by the following model:

[image: image]

where Y = (y1,y2,…ykn)′; μ is a 25 × 1 matrix of covariant components; each element represents one subpopulation phenotype mean; λ is the kn×25 indicator matrix relating to each subpopulation; q is the number of QTL associated with interested trait; k is the number of sub-populations; and ε is the vector of residual error with a N(0,σ2) distribution. βij represents the additive effect of the ith QTL in the jth subpopulation. Namely, we gave k effects for one QTL across the k subpopulations. Xijis a kn×1incidence vector of the ith QTL in the jth subpopulation. In this incidence vector, the n elements corresponding to the jth subpopulation are coded (−1, 1), representing the genotype of SNP (AA and aa), and the other (k−1)n elements are assigned 0, suggesting the absence of this QTL effect in other subpopulations. In multi-locus model, all available SNPs are considered as candidate QTL to be incorporated in the genetic model. Thus, the numerous variables in the model from huge number of SNPs and many subpopulations make a big burden for computing.

In order to relieve the computing burden, the dimensions of incidence matrix need to be reduced. Thus, we proposed a strategy to achieve dimension reduction and also make sure that the incidence matrix still involves different subpopulation information. In this method, k column original incidence vectors, corresponding to one QTL in all subpopulations, are emerged into one column vector. Here is the process: as for an SNP, we first calculate the main effect of each genotype in all subpopulations, respectively, [image: image], where i = 1,…,k, j = 1,2 respects AA and aa. Thus, a vector ω, consisted of 2k indicators, is obtained and then sorted. Next, we recode the genotypes across all subpopulations according to their effects’ order and obtain a transformed incidence vector Zi for a given QTL (SNP) (Lü et al., 2011). In addition, Zi could be also transformed according to segmented ω. The genetic model is transformed as:

[image: image]

where Zi is a kn× 1 incidence vector of the ith QTL in all subpopulations, and γi is the corresponding effect of the ith putative QTL.



Multi-Locus Association Analysis

To select, estimate, and validate loci associated with interested trait, we proposed a multi-locus association of two-stage processes. Based on the genetic model (2), genome SNPs scanning needs to further select, estimate, and validate SNPs associated with given trait. We proposed the following two-stage selection process to screen. In the first stage, shrinkage estimate algorithm was used to estimate the additive effect of SNPs, and all SNPs with [image: image] are picked up. Considering stability, effectiveness, and computing time, we adopted the empirical Bayes (E-Bayes) method (Xu, 2010). Compared with other shrinkage estimation (Zhang and Xu, 2005; Yi and Banerjee, 2009; Feng et al., 2013), E-Bayes provides a more robust shrinkage that the large effect subjects are shrunk to virtually no shrinkage while small effects to zero, so that nonsignificant SNP is estimated toward zero. Simulation studies showed that the E-Bayes is predominant compared with other shrinkage estimation methods in terms of small mean squares error (Xu, 2010). For the technical details of the method, refer to the original study by Xu (2010). The method is briefly described here.

The parameters β and σ2 are always included in the model; the uniform prior is assigned to the two parameters: P(β)∝1 and P(σ2)∝1 (Zhang and Xu, 2005). We adopt the normal prior for each of the genetic effects (γk) in model (2): [image: image]. The scaled inverse χ2 prior distribution is further assigned to [image: image]: [image: image] (Xu, 2010). Clearly, Y in model (2) follows a multivariate normal distribution with mean μ = Xβ and variance–covariance [image: image]. Let θ = (β,γ,σ2). Therefore, the main steps for parameter estimation are described as below.

Step (0): Let ξ = (τ,ω) = (0,0), [image: image], [image: image], and γk and [image: image] were initialized (k = 1,2,…,2m2);

Steps (1): Using [image: image] and [image: image], [image: image] was estimated by [image: image]. This is the E-step;

Step (2): update β, σ2 and [image: image]: [image: image],β = (XTV−1X)−1XTV−1y, and [image: image]. This is the M-step;

Step (3): Repeat the E-step and the M-step until convergence is reached.

After the reduction in dimension in the first stage, maximum likelihood method could be used to reanalyze the reduced model and perform the likelihood ratio test (LRT) in the second stage. LRT was aimed to decide the inclusion and retention of a SNP in the model based on LR score:
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where θ is the parameter vector in the reduced genetic model; θ–j is the parameter vector in θ excluding the currently tested genetic effect [image: image]. L(θ) and L(θ−j) are the maximum likelihood function for θ and θ–j, respectively. If LRjexceeds one given threshold, then it indicates that this SNP could significantly improve model fit. For simplicity, we suggested an alternative statistical parameter LOD = LRj/4.61 and 3.0 as the critical value in our association mapping process.



Monte Carlo Simulation Design

For ease of computation, only few subpopulation data from the maize NAM population including 100 SNP markers from chromosome 1 were used to perform the simulation experiments. The length of chromosome segment was 153.4 cM. We investigated four simulation scenarios, and each simulation had 10 assumed QTLs locating at the given chromosome segment evenly. All the QTL were overlapped with the markers and listed in Supplementary Table 2.

In the first scenario, the effect of QTL heritability on the new method was assessed in five populations with 964 RILs. We assumed 10 QTLs in each of three simulations. The size (or heritability, [image: image]) of each QTL, the proportion of total phenotypic variance explained by the QTL, was all set to 0.03 in the first simulation, 0.05 in the second simulation, and 0.08 in the third simulation. We supposed that each of 10 QTLs had different fixed effects αi (i = 1, 2, …, 5) among the five populations, and∑iαi = 0. The breeding value of each RIL i from population k was calculated asaki = ∑jXjαkij (j = 1, 2, …, 10), and the phenotypic value yki = aki + eki,ekiwas a residual effect sampled from a normal distribution with mean 0 and variance [image: image]. The additive genetic variance of the ith QTL,[image: image], was calculated from [image: image]. Then, the QTL effects within a given populations were calculated by relating [image: image] to the allelic frequencies and effects.

In the second scenario, we evaluated the effect of sample size on the new method by setting the sample size as 400 (four subpopulations each with 100 RILs), 600 (six subpopulations each with 100 RILs), and 800 (eight subpopulations each with 100 RILs). Each QTL size was set as 0.07. Other parameters were the same as those in the first scenario.

In the third scenario, we explored the feasibility of a new method on random-effect QTLs. Ten assumed QTLs have the same positions with those in the former two scenarios. The first five QTLs shared a fixed effect (1.5) across all subpopulations. For the jth of the latter five QTLs, five effects αij(i = 1, 2, …, 5) were randomly sampled from multivariate normal distribution with mean 1.5 and variance–covariance structure

[image: image]

was the correlation of QTL effects between two nearest populations and set with two levels (ρ = 0.2 and ρ = 0.8). The proportion of nongenetic variance [image: image] to total additive genetic variance [image: image] in population k was related to a magnitude of heritability for a trait. In this scenario, the total heritability was set to 0.6.



RESULTS


Mapping QTLs for DA, DS, and ASI in Single Maize NAM Subpopulation via the CIM Method

We performed CIM mapping, implemented by Windows QTL Cartographer V2.5,2 for DA, DS, and ASI in each NAM subpopulation. For DA in maize, approximately five to six QTLs were detected in each subpopulation. A total of 137 QTLs were identified, with a LOD threshold of 3. Among the 137 QTLs, 10 QTLs clusters (defined with more than five QTLs within a 30 cM interval) were dispersed across 10 chromosomes (Supplementary Table 1 and Supplementary Figure 1). We found 28 overlapped loci (where more than two QTLs from various subpopulations totally or partially overlapped), whereas no same QTL was found across all 25 subpopulations. For most of those overlapped loci, one QTL contributed different effects in different subpopulations. Figure 1 gave an example of an overlapped QTL. Three subpopulations (5, 13, and 23) detected one QTL in a small 177–189 cM interval on chromosome 1 (Figure 1A), where their effects in the three subpopulations are -0.57, 0.40, and 0.60, respectively (Figure 1B). Yet, there were few overlapped QTLs with similar effects across various subpopulations (Supplementary Table 1). In addition, we found a relatively large proportion of total phenotypic variance explained by all the QTLs, such as 66.4% for DA, 74.6% for DS, and 94.4% for ASI.



Simulation Results


Effect of QTL Size on Mapping QTL

In the first simulation experiment, the effect of QTL size on mapping QTL in the maize NAM population was evaluated. QTL size was set as 3, 5, and 8%. Ten assumed QTLs were uniformly distributed across the genome in the three cases. Each sample was analyzed by the new method, and the results are shown in Figure 2 and Supplementary Table 2.1. The average power for 10 assumed QTLs in each case was 59.2, 81, and 91.1% for the QTL sizes of 3, 5, and 8%, respectively, indicating the increase in average power of all the 10 assumed QTLs with the increase of QTL size (Figure 2A). The FPR was less in both 5 and 8% cases than in 3% case (Figure 2B). The bias of QTL position estimate was relatively low, and it had a negative correlation with QTL size (Figure 2C). Besides, Figure 2D shows a relatively small bias (−0.068 to 0.040) between estimated and assumed effects for each QTL in three simulation cases.


[image: image]

FIGURE 2. Effect of quantitative trait locus (QTL) heritability on the new method. (A) Power of QTL detection, (B) false positive rate, (C) average of absolute bias between estimated and true positions, and (D) average of absolute bias between estimated and true effects.




Effect of Sample Size on Mapping QTL

In the second simulation, we investigated the effect of sample size on mapping QTL. The sample sizes were set as 400, 600, and 800 (k subpopulations each with 100 RILs), all the QTL sizes were set as 0.07, and other parameters were the same as those in the first simulation. The results are shown in Figure 3 and Supplementary Table 2.2. The results indicated the increase in statistical power in QTL detection and accuracy in QTL position estimation with the increase in sample size. FPR still stays on a low level (<2.1%). The effect estimates in this simulation showed more bias than those in the first simulation. This is possibly caused by smaller sample (400, 600, and 800) than those in the first simulation (964).


[image: image]

FIGURE 3. Effect of sample size on the new method. (A) Power of quantitative trait locus (QTL) detection, (B) false positive rate, (C) average of absolute bias between estimated and true positions, and (D) average of absolute bias between estimated and true effects.




Random Effect Simulation

We also conducted a simulation experiment to investigate how fixed or random effect of QTL would influence our association mapping. A fixed effect was assigned to the first five QTLs, and there were no differences for these QTLs across various subpopulations, while random effects were assigned to the last five QTLs, and there were various values of ρ across various subpopulations. As a result, no significant difference between fixed and random effects in fixed ρ value was observed (Figure 4 and Supplementary Table 2.3), although their powers were more than 80%. Meanwhile, no significant difference among various ρ values in the same setup (fixed or random) of QTL effect was observed. FPR and the bias of QTL position and effect stayed a quite low level.


[image: image]

FIGURE 4. Effect of quantitative trait locus (QTL) type on the new method. (A) Power of QTL detection, (B) false positive rate, (C) average of absolute bias between estimated and true positions, and (D) average of absolute bias between estimated and true effects.




Mapping QTLs for DA, DS, and ASI in Joint Maize NAM Subpopulations

The new method was used to identify QTLs for three flowering time traits in the joint maize NAM subpopulations. As a result, 77, 79, and 75 QTLs were identified, and these QTLs accounted for 90.11, 89.44, and 82.50% of the total phenotypic variances for the above three traits, respectively. Most QTLs detected by the CIM method in the single-maize NAM subpopulation were also identified by the new method in the joint maize NAM subpopulations. As for DA, the new results covered 127 of 137 QTLs from the CIM method (Supplementary Figure 1), including all the seven extremely large QTLs (r2 > 15%, light blue), 24 of 25 large QTLs (10% < r2 < 15%, deep green), 56 of 59 relative large QTLs (5% < r2 < 10%, deep blue), and 40 of 46 small QTLs (2% < r2 < 5%, pink) (Supplementary Figure 1). As for DS, 132 of 138 QTLs from the CIM method were covered by our new method, including all the five extremely large QTLs, 21 of 23 large QTLs, 71 of 75 relative large QTLs, and all the 35 small QTLs. As for ASI, 81 of 89 QTLs from the CIM method were found by the new method, including 21 of 22 large QTLs, 55 of 62 relative large QTLs, and all the 5 small QTLs. Clearly, the above results validated our new method.

As compared with the CIM results, we detected 25 additional QTLs for DA, 29 for DS, and 32 for ASI (Supplementary Table 3). The genetic variances of all additional QTLs were quite small. Most QTL for DA and DS accounted for < 1% phenotypic variance by a single QTL, although 8 of 32 QTLs for ASI accounted for more than 1% by a single QTL, and 5 QTLs accounted for more than 3% by a single QTL. This indicated that our new method had a high power for detecting minor alleles.

To validate these additional QTLs, we mined candidate genes around the above additional QTLs via phytozome v9.1.3 All the additional QTLs were found to be very close to their candidate genes, and these candidate genes were listed in Supplementary Table 3. For example, 19 of 25 candidate genes for DA, as well as 21 of 29 candidate genes for DS, were found to be within the distance of 1 kb from their associated SNPs. Among candidate genes for ASI, 23 of 31 genes were within 1 kb, and only two genes were found to be within >5 kb. The close distance indicated a strong linkage between associated SNPs and their candidate genes. Some evidence for candidate genes were described as below (Supplementary Table 3). GRMZM2G154896, near the SNP PZA00368.1 associated with DA, is a pollen tube developmental gene; GRMZM2G177151, near the SNP associated with DS, is C2H2-type zinc finger protein gene, which may play an important role in spike development; and GRMZM2G061900, near the SNP PZA00276.18 associated with ASI, is Ras protein gene that affects cell growth, differentiation, cytoskeleton, protein transport, and secretion.



DISCUSSION

Compared with QTL mapping in biparental segregation population, multiparental population could provide high power and resolution for association mapping in the genetic dissection of complex traits. This is because the association mapping population has more historical recombination events and high linkage disequilibrium (LD), which can increase allelic diversity and mapping resolution. However, conventional association mapping is always confounded by population structure between diverse lines (Flint-Garcia et al., 2005; Yu et al., 2006). The NAM design promised to address these weaknesses and utilize the advantages of linkage and association mapping (Yu et al., 2008). Therefore, it is necessary to propose an optimal approach in the genetic analysis of complex traits in the NAM population.

In this study, we found that genetic heterogeneity was a common factor in the NAM population, which would confound the results of association mapping. Thus, we proposed a multi-locus association model for mapping QTL of complex trait in the NAM population. This model could discriminate the QTL effects across various subpopulations, which addressed the problem of genetic heterogeneity across subpopulations. Because of “p≫ n” in the new model, we proposed a matrix transform approach to shrink the information of independence indicator variables. A multi-locus mapping method, involving with E-Bayes (Xu and Jia, 2007: Xu, 2010) and LRT, were proposed in this study.

In genetic analysis of the NAM population, jointing all families as mapping population is more common than using a single family, such as joint linkage mapping (JLM; Buckler et al., 2009; Tian et al., 2011), JICIM (Li et al., 2011), NAM (Xavier et al., 2015), and GWAS with mixed linear model (Chen et al., 2019). Because it had higher mean prediction ability and performed better at more stringent significance threshold. However, Li et al. (2011) observed that joint multifamily analysis has less power and worse resolution than single family for rare QTL, which is identified in only one or few subpopulations. Ogut et al. (2015) showed that most robust QTLs were restricted to one family and were often not detected at high frequency by joint family analysis. In this study, we found that most rare QTLs with large effect can be detected by our new method. For three flowering time traits, we can detect more than 90% of QTLs from the CIM method in the single NAM subpopulation. Besides, the new method can identify more small-effect QTLs than the CIM method.

In order to compare single family analysis (SF) with our new method, we conducted a series of simulations (more details about the simulation and results, see Supporting Information S4). In the simulation, 10 QTLs with five types of effects were assumed across five subpopulations. Stepwise regression was used for SF analysis, described by Buckler et al. (2009). The results showed that SF stepwise regression was powerful for large-effect QTLs rather than small-effect QTLs in the single-family NAM subpopulation. Because there are much less lines in the single-family NAM subpopulation than in the joint multifamily NAM subpopulations, enough precision for QTL detection cannot provided. However, our new method with multiple families had good power, not only for large- and small-effect QTLs but also for common and rare QTLs. On the one hand, joint multiple families increased population size (usually more than 20 times according to the NAM design) (Li et al., 2011). On the other hand, the new NAM model could discriminate QTL effects across various subpopulations, which controlled false positive signals from sample variance in nonrelated families. In addition, multi-locus GWAS methods are more powerful and robust in the detection of small-effect QTNs (Wang et al., 2016; Su et al., 2018; Wen et al., 2018; Zhang et al., 2019).

Some GWAS software packages are available in the NAM population, such as Trait Analysis by Association, Evolution, and Linkage (TASSEL; Chen et al., 2019) and Jawamix5 (Long et al., 2013). With TASSEL, MLM method can capture the population structure and genetic relatedness of all the lines in the NAM population by Q and K matrices. Jawamix5 also provides a fast GWAS tool in structured populations using the mixed model, as well as stepwise regression in NAM design (Long et al., 2013). These GWAS software packages are very powerful in normal GWAS. However, they were not designed for the NAM population and did not involve the genetic heterogeneity. We have proved that genetic heterogeneity from parents contributed to the diverse effects of a QTL in different families (Supplementary Table 1 and Figure 1). Therefore, the proper mapping methods are important, especially for the NAM population.

Joint linkage mapping (Buckler et al., 2009) and JICIM (Li et al., 2011) used the stepwise linear regression and linkage mapping to select marker effects nested within families and estimate QTL effects. It might lead to missing some large-effect QTLs identified only in one subpopulation (Ogut et al., 2015). In the NAM software (Xavier et al., 2015), a mixed linear model framework with EMMA algorithm (Kang et al., 2008) was used to map associated SNPs in multiparent population, such as the MAGIC population. Recently, this software was also used to detect QTLs in the NAM population (Sunil et al., 2020). In the genetic model of NAM software, the dimension will inflate to k+ 1 times (k families in NAM design), although marker effects can be estimated.

Our new method was designed for association mapping in the NAM population. Based on Monte Carlo simulation experiments and real data analysis, some minor QTLs can be identified by the new method, indicating high QTL signal to noise ratio in the NAM mapping population. The new method gave a dimension reduction via matrix transformation, which can maintain the family information in the genetic model and reduce computational burden. Actually, this approach could be applied in genome-wide association studies (Lü et al., 2011). In this study, the new method was validated in the NAM mapping population. However, it is also suitable for MAGIC population, which is a large RIL population derived from multiple parents (Cavanagh et al., 2008). Thus, the new method is useful in genetic mating design.
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Genome-wide association studies (GWASs) have identified and replicated many genetic variants that are associated with diseases and disease-related complex traits. However, the biological mechanisms underlying these identified associations remain largely elusive. Exploring the biological mechanisms underlying these associations requires identifying trait-relevant tissues and cell types, as genetic variants likely influence complex traits in a tissue- and cell type-specific manner. Recently, several statistical methods have been developed to integrate genomic data with GWASs for identifying trait-relevant tissues and cell types. These methods often rely on different genomic information and use different statistical models for trait-tissue relevance inference. Here, we present a comprehensive technical review to summarize ten existing methods for trait-tissue relevance inference. These methods make use of different genomic information that include functional annotation information, expression quantitative trait loci information, genetically regulated gene expression information, as well as gene co-expression network information. These methods also use different statistical models that range from linear mixed models to covariance network models. We hope that this review can serve as a useful reference both for methodologists who develop methods and for applied analysts who apply these methods for identifying trait relevant tissues and cell types.

Keywords: trait-tissue relevance, epigenetic information, transcriptomic information, genetically regulated gene expression, gene co-expression network, eQTL information


INTRODUCTION

Over the last one and half decades, genome-wide association studies (GWASs) have successfully identified and replicated many trait-relevant genetic variants in terms of single nucleotide polymorphisms (SNPs). However, most of these identified genetic variants reside outside protein-coding regions, making it challenging to understand the biological mechanism underlying these identified associations (Welter et al., 2014). Characterizing the biological mechanism underlying SNP associations is further complicated by the fact that the genetic effects of SNPs on complex traits are likely acted through a tissue-specific fashion. For example, many psychiatric disorders, such as bipolar disorder and schizophrenia, are consequences of dysfunctions of various genes, pathways, and regulatory elements in neuronal and glia cells, resulting from brain-specific genetic effects of polymorphisms (Lang et al., 2007; Uhlhaas and Singer, 2010; Fornito et al., 2015; Grunze, 2015; Xiao et al., 2017). Therefore, characterizing the function of variants in various brain tissues can help elucidate etiology of psychiatric disorders. However, for most complex traits, their trait-relevant tissues and cell types are often unknown or uncertain. As a result, identifying trait-relevant tissues and cell types and characterizing the functions of genetic variants within the relevant tissues and cell types hold the key for better understanding of disease etiology and the genetic basis of phenotypic variation (Trynka et al., 2013, 2015; Kichaev et al., 2014; Pickrell, 2014; Farh et al., 2015; Finucane et al., 2015; Li and Kellis, 2016).

Many genomic studies have been carried out in parallel to GWASs to characterize the genetic and epigenetic landscape of the human genome. These genomic studies often collect samples from multiple different tissues or cell types and characterize genomic information in a tissue- or cell type-specific fashion. For example, the ENCODE (The ENCODE Project Consortium, 2012) and Roadmap (Kundaje et al., 2015) collect various epigenetic annotation measurements in the form of open chromatin accessibility, DNase I hypersensitive sites (DHSs), and histone modifications (e.g., H3K27me3 and H3K36me3) on 16 cell lines and 111 tissues. The epigenetic information measured from these projects allows for a functional characterization of the human genome. As another example, the GTEx project collects gene expression and genotype measurements from 54 human tissues on nearly 1,000 individuals using whole-genome sequencing, whole-exome sequencing, and bulk RNA sequencing (RNA-seq) (GTEx Consortium, 2015). By paring gene expression information with genotype information, GTEx allows for the study of tissue-specific gene expression and its genetic basis in the form of expression quantitative trait loci (eQTLs) mapping. Similarly, the CommonMind project collects gene expression, open chromatin accessibility and genotype information in the dorsolateral prefrontal cortex from up to 452 patients with schizophrenia and bipolar disorder as well as healthy controls (Fromer et al., 2016). Characterizing the cortex-specific transcriptomic and epigenetic profile in CommonMind can facilitate the investigation of the molecular mechanism underlying neuropsychiatric diseases. In addition, various single cell RNA-seq (scRNA-seq) studies are being performed to collect cell type-specific gene expression measurements on tens of thousands of cells from various tissues and organs (Bacher and Kendziorski, 2016). Such cell type-specific expression profiles can be used to understand how specific cell types may underlie complex traits (Watanabe et al., 2019). Finally, existing bulk and single cell gene expression studies also facilitate the characterization of gene co-expression pattern in a tissue- or cell type-specific fashion (GTEx Consortium, 2015; Bacher and Kendziorski, 2016; Shang et al., 2020b). Tissue- or cell type-specific gene co-expression provides invaluable information on the tissue or cell type basis of disease etiology (Shang et al., 2020b). Overall, various genomic studies have provided tissue- or cell type-specific information for inferring trait-relevant tissues and cell types.

With the increasing availability of different tissue- and cell type-specific genomic datasets, many statistical methods have been recently developed to integrate these genomic data with GWASs for identifying trait-relevant tissues and cell types. These various integrative methods differ in terms of the underlying statistical model and the particular genomic information they make use of. For example, the sLDSC (stratified LD score regression) converts tissue-specific epigenetic measurements into tissue-specific SNP functional annotations and estimates to what extent different tissue-specific functional annotations explain trait heritability (Finucane et al., 2015). The inferred SNP heritability due to tissue-specific annotation is treated as a quantitative measurement for trait-tissue relevance. sLDSC is a special case of MQS (minimal norm quadratic unbiased estimation for summary statistics) and effectively relies on a method of moments (MoM) to estimate SNP heritability based on linear mixed models (Zhou, 2017). While sLDSC and MQS were initially proposed to examine one SNP annotation at a time in the presence of multiple epigenetic annotations, SMART (scalable multiple annotation integration for trait-relevant tissue identification) (Hao et al., 2018) extends these methods to simultaneously incorporate multiple tissue-specific binary and/or continuous functional annotations to facilitate consistent trait-tissue inference (Liang and Zeger, 1986; Chen et al., 2004). SMART uses the generalized estimating equation (GEE) algorithm on the same linear mixed model to achieve such inference goal. Different from using epigenetic measurements, the LDSC-SEG (sLDSC applied to specifically expressed genes) uses tissue-specific transcriptomic annotations, allowing for the inference of trait-tissue relevance with transcriptomic data (Finucane et al., 2018). Similarly, RolyPoly (a regression-based polygenic model) relies on a similar linear mixed model as used in sLDSC/MQS/SMART and creates cell type-specific annotations based on scRNA-seq data (Calderon et al., 2017). In contrast, while using the tissue-specific bulk RNA-seq expression information, the deTS method (method of decoding tissue specificity) directly examines whether the tissue-specifically expressed genes tend to be trait-associated genes using standard enrichment analysis such as the Fisher's exact test to serve as evidence of trait-tissue relevance (Pei et al., 2019). Some methods can make use of the expression quantitative trait loci (eQTLs) information in detecting trait-relevant tissues and cell types. For example, NTCS (normalized tissue causality score) uses eQTLs to assess the genetic causality behind GWASs (Ongen et al., 2017) and eQTLEnrich tests whether eQTLs from a given tissue and/or cell type are significantly enriched for trait associations (Gamazon et al., 2018). Alternatively, other methods measure the trait-tissue relevance by evaluating the proportion of phenotypic variance explained by genetically regulated expression levels (GReX) in different tissues. For example, IGREX (impact of genetically regulated expression) (Cai et al., 2020) and RhoGE (Mancuso et al., 2017) obtain the predicted GReX in tissues and use the association evidence of tissue-specific GReX with the trait for inferring trait-relevant tissues. Finally, CoCoNet (composite likelihood-based covariance regression network model) (Shang et al., 2020b) integrates GWAS data with tissue- or cell type-specific gene co-expression patterns obtained from bulk or single cell gene expression studies based on a network model. In particular, CoCoNet expresses gene-level effect sizes for the given GWAS trait as a function of the tissue-/cell type-specific adjacency matrix and infers how a tissue is relevant to the given trait by examining how effective the tissue-specific gene co-expression network is for predicting gene-level association pattern with the trait.

Despite the abundance of integrative methods developed for trait-tissue relevance inference, however, a comprehensive review is currently lacking for summarizing the technical details and benefits of each of the above methods. Previous reviews on tissue-trait relevance inference often focus on a limited number of methods that use only functional annotations (Cano-Gamez and Trynka, 2020). To fill this critical knowledge gap, we provide a systemic review on ten different integrative methods for trait-tissue relevance inference. These methods are organized into four main categories based on the tissue- or cell type-specific genomic information they reply on. For each method in turn, we describe the input genomic data types, the detailed statistical model and computational algorithm, the output for evaluating trait-tissue relevance, and the main results obtained in the original study. A summary of these methods is provided in Table 1 and Figure 1, with a brief schematic illustration of each type of methods provided in Figure 2. We hope that this review can serve as a useful reference for practitioners who are interested in identifying the causal tissues/cell types of GWAS traits and understanding the SNP association with complex traits in a tissue-specific fashion, as well as for methodologists who develop computational methods for quantifying trait-tissue relevance.


Table 1. A summary of statistical methods for trait-tissue relevance inference.
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FIGURE 1. A decision tree on which method to use for identifying trait-relevant tissues/cell types based on the availability of data types.



[image: Figure 2]
FIGURE 2. The schematic illustration of methods in the five different categories. (A) The general schema of methods that make use of epigenetic annotation information; sLDSC is shown as the detailed example. (B) The general schema of methods that use tissue-specific transcriptomic annotation information; these methods first define specifically expressed genes (SEGs) based on differential expression analysis, then construct genomic annotations from the SEGs, and finally use sLDSC to perform trait-tissue relevance inference. (C) The schema of methods that test for enrichment of trait associations among eQTLs in each tissue. (D) The general schema of methods that obtain the estimated genetically regulated expression (GReX) and use the proportion of phenotypic variance explained by GReX (PVEGReX) to measure the trait-tissue relevance. (E) The schema of methods that make use of tissue-specific gene co-expression networks; CoCoNet is shown as the detailed example.




METHODS BASED ON TISSUE-SPECIFIC SNP FUNCTIONAL ANNOTATIONS

Here, we describe the first category of methods for trait-tissue relevance inference. The first category of methods makes use of SNP functional annotations. Exemplary methods include sLDSC (Finucane et al., 2015) and SMART (Hao et al., 2018) that make use of epigenetic annotations; and LDSC-SEG (Finucane et al., 2018), deTS (Pei et al., 2019), and RolyPoly (Calderon et al., 2017) that make use of transcriptomic annotations. The key idea behind these methods is to estimate the contribution of tissue-/cell type-specific functional annotations to SNP heritability for the GWAS trait of interest.


Methods That Use Epigenetic Annotations

In parallel to trait mapping efforts, large-scale functional genomic studies have yielded a rich source of epigenetic annotations (The ENCODE Project Consortium, 2012; Akbarian et al., 2015; Kundaje et al., 2015; Stunnenberg et al., 2016). Various discrete and continuous epigenetic annotations are being developed to describe and characterize the biological function of genetic variants (Kellis et al., 2014; Carithers and Moore, 2015; Dixon et al., 2015). For example, we can now classify genetic variants based on their biochemical function as measured by histone modification, DNase I hypersensitive sites (DHSs), metabolomic QTL evidence, and/or a combination of all these measurements in the form of chromatin states (Pique-Regi et al., 2011; Ernst and Kellis, 2012; McVicker et al., 2013). Often times, these epigenetic annotations are tissue specific and/or cell type specific, allowing characterizing SNP functions in a tissue- or cell type-specific fashion. Paring such tissue-specific SNP epigenetic annotations with SNP association evidence with the GWAS trait allows us to infer trait-tissue relevance. Here, we introduce two methods, sLDSC and SMART, that make use of epigenetic information for trait-tissue relevance inference. In the present review, we simply refer to each tissue-specific epigenetic annotation (e.g., H3K4me1, H3K4me3, and H3K9ac) as a functional category.


sLDSC

The sLDSC (Finucane et al., 2015) estimates how a tissue-/cell type-specific functional annotation contributes to the SNP heritability of the GWAS trait as evidence for trait-tissue relevance inference. Specifically, for each examined tissue in turn, sLDSC first partitions SNPs into C different non-overlapping functional categories based on tissue-specific epigenetic annotations. We use Hc (c = 1, …, C) to denote the set of SNPs that belong to the c-th category. For example, C could be three, with H1 = H3K4me1 that consists of SNPs that are inside or nearby H3K4me1 peaks in the examined tissue, H2 = H3K4me3 that consists of SNPs that are inside or nearby H3K4me3 peaks, and H3 = H3K9ac that consists of SNPs that are inside or nearby H3K9ac peaks. We denote [image: image] as the marginal chi-square statistics for the j-th SNP association with the trait. sLDSC considers the following model on the marginal chi-square statistic:
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where [image: image] is the LD score of the j-th SNP with respect to category c, with [image: image] being the R-squared value between j-th SNP and j′-th SNP that is in the set Hc; and τc represents the per-SNP heritability of category Hc. The total SNP heritability explained by the examined functional annotation Hc is defined as [image: image] with pc being the number of SNPs in category c. By replacing [image: image] with the observed GWAS marginal association statistic [image: image] and solve Equation (1), sLDSC can obtain the estimate of τc, [image: image], and subsequently [image: image]. With the standard error of [image: image] estimated using a jackknife procedure (Quenouille, 1956), sLDSC can further compute a z-score [image: image] and a subsequent p-value as a measurement of the tissue/cell type relevance to the GWAS trait based on the functional annotation c. In the original paper, the sLDSC method is applied to analyze 17 complex diseases and traits using one functional annotation at a time. By analyzing cell type-specific functional annotations, sLDSC identified many cell type relevance to traits. Examples include the relevance of central nervous system cell types to body mass index, age at menarche, year of education, and smoking status.



SMART

sLDSC examines one functional annotation at a time. However, analyzing one epigenetic annotation at a time fails to incorporate the rich information contained in various other annotations that likely characterize other functionality of variants (Lu et al., 2016, 2017; He et al., 2017). For example, some annotations are designed to evaluate the function of a variant in determining the protein structure, while some other annotations are designed to quantify its ability to regulate gene expression. Even categories that belong to the same epigenetic annotation may characterize substantially different functions of a variant. For example, H3K4me1 is used to annotate enhancers while H3K4me3 is used to annotate promoters. Therefore, it is desirable to make use of multiple epigenetic annotations to obtain consistent and robust trait-tissue relevance inference results. A key step that facilitates the incorporation of multiple epigenetic annotations is the discovery that the data generating model underlying sLDSC is a standard linear mixed model and that sLDSC fits the linear mixed model using the method of moments (MoM) (Zhou, 2017). Indeed, sLDSC is practically a special case of MQS, which provides a unified framework for variance component estimation in linear mixed models (Zhou, 2017). Building upon the same linear mixed model that sLDSC and MQS use, SMART (Hao et al., 2018) was developed to incorporate multiple tissue-/cell type-specific epigenetic annotations for trait tissue/cell type inference. In particular, SMART allows for the incorporation of multiple tissue-specific binary and continuous epigenetic annotations. For example, a tissue-specific binary histone annotation can be an indicator that indicates whether the SNP resides inside the peak regions of the histone mark, while a tissue-specific continuous histone annotation can be an average of counts in the histone peak region. Importantly, because of its reliance on a data generative linear mixed model, SMART can be applied to handle either individual-level GWAS data or summary statistics. For individual-level GWAS data, SMART models the phenotype as
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where y is a vector of phenotypes for N GWAS samples; [image: image] is an N × p genotype matrix measured from the same N samples and p genome-wide SNPs; γ is a p-vector of effect sizes; and [image: image] is the N-vector error term, where 0N represents an N-vector of zeros and IN represents an N-dimensional identity matrix. The phenotype y and each column of the genotype matrix [image: image] are standardized to have zero mean and unit standard deviation, allowing us to ignore the intercept in Equation (2). SMART assumes that all SNPs are characterized by a set of s functional annotations. For the j-th SNP, we use a (s + 1)-vector [image: image] to denote its annotation values across s functional epigenetic annotations, where the first value 1 corresponds to the intercept. Here, each of Fj1, …, Fjs can either be a binary value or a continuous value. With the SNP annotations, SMART assumes that the SNP effect size γj follows a normal distribution with zero mean and SNP-specific variance that is a function of the annotation vector,
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where [image: image] is a (s + 1)-vector of coefficients that include an intercept α0 and a s-vector of annotation coefficients α. To evaluate the joint contribution of multiple annotations to genetic effect sizes, SMART performs parameter inference using the generalized estimation equation (GEE) (Liang and Zeger, 1986). Use of GEE not only enables scalable computation, but also allows for the use of GWAS summary statistics based on the same model characterized by Equations (2) and (3). By applying GEE, SMART obtains point estimates [image: image] and their covariance matrix [image: image], which allow for the computation of the multivariate Wald statistic, [image: image]. The Wald statistic is further modeled as a mixture of two non-central chi-squared distributions for classifying tissues into trait-relevant and trait-irrelevant groups. An expectation-maximum (EM) algorithm is then applied to the chi-squared mixture to infer the posterior probability of a tissue being a trait-relevant tissue.

In the original paper, SMART analyzed 43 traits from 29 GWAS studies and obtained many trait-relevant tissues and cell types. For example, SMART identified the central nervous system (CNS) tissues to be the most trait-relevant for psychiatric disorders (e.g., schizophonia, Alzheimer's disease) and neurological related traits (e.g., years of education, childhood BMI). These results are consistent with existing literature. For example, searching the trait-tissue pair schizophrenia-CNS on PubMed yielded 17,720 hits while searching for the trait-tissue pair Alzheimer-CNS yielded 34,395 hits, supporting their clear relevance. As another example, SMART identified the bone and connective tissues to be related to height and femur neck bone mineral density, and the blood/immune tissues to be related to immune diseases (e.g., Rheumatoid Arthritis, type 1 diabetes). These results are also in line with literature: PubMed search for height-BoneConnective yielded 13,644 hits and search for RA-BloodImmune yielded 6,868 hits, supporting their relevance.




Methods That Use Transcriptomic Annotations

Besides epigenomic studies, many gene expression studies have been carried out to characterize the transcriptomic landscape of various tissues and cell types (The ENCODE Project Consortium, 2012; GTEx Consortium, 2015; Kundaje et al., 2015). These tissue- and cell type-specific gene expression information can be invaluable for inferring trait-tissue relevance (Hu et al., 2011; Slowikowski et al., 2014; Pers et al., 2015; Gormley et al., 2016). In this section, we introduce three methods that make use of gene expression data in the form of transcriptomic annotations. These methods include LDSC-SEG (Finucane et al., 2018) and deTS (Pei et al., 2019) that make use of bulk RNA-seq expression data, and RolyPoly (Calderon et al., 2017) that makes use of single-cell RNA-seq expression data.


LDSC-SEG

LDSC-SEG consists of two separate steps. The first step of LDSC-SEG is a differential expression analysis on the gene expression data to identify a set of genes that are specifically expressed in certain tissues. These tissue specific genes are referred to either as specifically/differentially expressed genes (SEGs) or tissue-specific genes (TSGs). In the differential expression analysis, LDSC-SEG examines one gene at a time. For the given gene, LDSC-SEG contrasts the gene expression level of samples collected in a focal tissue (e.g., brain-cortex) with those of samples collected in all other tissues that are not in the same tissue category as the focal tissue (i.e., non-brain tissues). Because tissues within each tissue category tend to share similarly expressed genes, excluding the tissues in the same tissue category in the differential expression analysis step becomes the key to ensure robust detection of SEGs. Indeed, such differential expression analysis allows for the inclusion of as many genes as possible that are highly expressed in the focal tissues but not in tissues from other tissue categories. The SEG evidence for a gene is typically characterized by a t-statistic, with a higher value indicating that the gene is more specifically/differentially expressed in the focal tissue. With the differential expression analysis results, LDSC-SEG ranks all genes in a descending order based on their t-statistics. LDSC-SEG then defines SEGs as the top 10 percentage of all genes. The identification of SEGs allows LDSC-SEG to create a binary SNP annotation in a tissue specific fashion. In particular, for each tissue at a time, LDSC-SEG annotates the SNP to be one if the SNP resides within 100 kb of the transcription start site of any SEG and annotates it to be zero otherwise. With the tissue-specific binary annotation, LDSC-SEG then performs the second step of applying the sLDSC method described in the previous section to estimate the proportion of SNP heritability explained by each tissue-specific binary SNP annotation. The resulting test statistic from sLDSC is then served as a relevance evidence between the tissue and trait.

In real data applications, LDSC-SEG analyzed GWAS summary statistics for 48 diseases and traits and found significant tissue-/cell type-specific enrichments for 34 traits. Several of these findings recapitulate known biology. For example, immunological traits exhibit immune tissue-type enrichments; psychiatric traits exhibit strong brain-related tissue enrichments; and type II diabetes exhibits enrichments in the pancreas. LDSC-SEG also validated several recent genetic analyses results, including robust brain-specific enrichments for smoking status, years of education, body mass index, and age at menarche.



deTS

deTS also consists of two-steps. The first step of deTS also consists of a differential expression analysis as in the first step of LDSC-SEG. The only minor difference there is the definition of SEGs: while LDSC-SEG defines top 10% as SEGs, deTS defines top 5% as SEGs. However, the second step of deTS relies on an enrichment analysis rather than sLDSC. Specifically, deTS implements Fisher's exact approach to test whether the SEGs are enriched in the focal tissue or not. The Fisher's exact test builds upon a two-by-two contingency table, where the two rows represent the number of SEGs vs. the number of non-SEGs in the tissue, while the two columns represent the number of trait-associated genes vs. the number of non-trait-associated genes. Here, the trait-associated gene is defined based on a gene-level p-value threshold of 5 × 10−3, where the p-value is calculated from a gene-based test (Lamparter et al., 2016). In the original study, deTS is applied to analyze GWAS summary statistics for 26 traits. deTS found that artery tissues were primarily associated with anthropometric trait, liver was primarily associated with metabolic traits, blood and spleen were primarily associated with immune-related traits, and brain tissues were primarily associated with neurodegenerative/neuropsychiatric diseases.



RolyPoly

RolyPoly (Calderon et al., 2017) is specifically developed for single cell expression studies. It consists of the same two steps as LDSC-SEG. In the first step, RolyPoly uses a slightly different approach than LDSC-SEG to define the SEGs. Specifically, for each tissue, RolyPoly ranks all genes in a descending order based on the normalized expression values and define the top 20% of genes as SEGs. Afterwards, RolyPoly creates a binary SNP annotation based on whether a SNP resides within a 10 kb window nearby the transcription start site of any SEGs. In the second step, RolyPoly applies the same linear mixed model as used in sLDSC for inference (Finucane et al., 2015). In real data analysis, RolyPoly identified significant relevance of oligodendrocytes and fetal replicating cells with schizophrenia.





METHODS BASED ON EXPRESSION QUANTITATIVE TRAIT LOCI INFORMATION

In recent years, expression mapping studies have succeeded in identifying many cis-acting genetic variants known as cis-eQTLs that are associated with gene expression levels (Schadt et al., 2003; Morley et al., 2004; Lappalainen et al., 2013; Battle et al., 2014). The identified eQTLs can help elucidate the molecular mechanisms underlying human disease associations and facilitate the identification of biological pathways underlying disease etiology. For example, it has been shown that the GWAS variants frequently colocalize and likely share functional effects with eQTLs (Nica et al., 2010; Nicolae et al., 2010; Grundberg et al., 2012; Shang et al., 2020a). Thus, at least some of these variants influence traits through regulatory effects. In addition, the identified eQTLs in multiple tissues and/or cell types can help interpret the GWAS results through linking non-coding genomic regions to gene functions and identifying causal tissues/cell types behind the genetic associations (Nica and Dermitzakis, 2008; Montgomery and Dermitzakis, 2011; Grundberg et al., 2012). In this section, we will introduce two methods, NTCS (Ongen et al., 2017) and eQTLEnrich (Gamazon et al., 2018), that make use of tissue- and cell type-specific eQTL information to infer the trait-relevant tissues and cell types that are behind genetic causality.


NTCS

For a given tissue, NTCS makes use of a list of significant eQTLs that are not in linkage disequilibrium (LD) with each other along with their colocalized GWAS variants. These eQTLs are obtained from a conditional eQTL mapping analysis, performed through, for example, FastQTL (Welter et al., 2014). The identified eQTLs are overlapped with common variants downloaded from the NHGRI-EBI GWAS catalog (Storey and Tibshirani, 2003) to obtain a list of eQTLs that have GWAS significance (P < 5e−8). These eQTLs are denoted as real GWAS variants, GWAS variants, or GWAS-associated variants.

The NTCS method first uses the Regulatory Trait Concordance (RTC) (Nica et al., 2010) approach to detect colocalized variants between the GWAS study and the eQTL study while properly accounting for LD. The resulted RTC score is then converted to a probability value that measures the sharing between a GWAS variant and an eQTL in a tissue, or between two eQTLs in a pair of tissues based on Bayes' theorem:
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where P(shared) = π1 is a π1 statistics and π0 = 1 − π1. When calculating the probability of sharing between the GWAS variants and eQTLs in a given tissue, the π1 statistics is calculated from eQTL p-values in the tissue and GWAS variants. When calculating the probability of sharing between two eQTLs in a pair of tissues, the π1 statistics is calculated from eQTL p-values in the two tissues. Both P(RTC = rtc|not shared) and P(RTC = rtc|shared) are estimated through simulations, where the RTC scores are simulated under both the null and alternative hypotheses. Specifically, for each coldspot that has colocalized GWAS and eQTL variants (eQTLreal), under the null hypothesis (H0) where GWAS and eQTL are tagging two different variants, two hidden causal variants (GWAScausal and eQTLcausal) are randomly selected. Under the alternative hypothesis (H1) where GWAS and eQTL are tagging the same variant, one hidden causal variant (eQTLcausal) is randomly selected. In both hypotheses, the GWAS and eQTL variants are randomly selected from the variants that are in linkage disequilibrium with the hidden causal variants with r2 ≥ 0.5. Afterwards, gene expression is simulated based on the eQTLreal effect size. The RTC analyses are then performed under H0 and H1, each for 200 times. For each coldspot, the total 400 simulated RTC scores under H0 and H1 are merged and sorted to obtain a point probability. Finally, for each GWAS trait in each given tissue and each eQTL that colocalizes with a GWAS variant, NTSC defines a normalized GWAS variant-eQTL probability as the probability of the GWAS variant and eQTL tagging the same functional effect divided by the sum of the tissue-sharing probabilities for the eQTL in that tissue. Intuitively, tissue-specific eQTLs would more likely be a GWAS variant than tissue non-specific eQTLs that are shared across tissues. Therefore, for each GWAS trait in each given tissue, NTCS defines a normalized tissue causality score (NTCS) and a null NTCS as follows:
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where p1 is the number of GWAS-associated variants for the trait; p2 is the total number of eQTLs in a given tissue; p0 is the number of GWAS-null variants; P(SNPj − eQTLj shared|rtc) is the probability that a GWAS variant (i.e., SNPj) and eQTLj tagging the same functional effect; and P(eQTLj shared|rtc) is defined in Equation (4). An enrichment metric is further defined as [image: image]. The tissues with an enrichment metric greater than one are likely the causal tissues for the diseases/traits. To create a p-value for testing trait-relevance of each tissue, NTCS first selects a null GWAS variant to match each of the GWAS variant, based on minor allele frequency and distance to the closest transcription start site. Afterwards, NTCS repeats the above enrichment metric calculation using the set of null GWAS variants, examines one tissue at a time, compares the tissue metric for the disease-associated variants to the metric observed under the null for that tissue, and calculates a corresponding p-value based on a Mann-Whitney test that compares the distribution containing each of the j-th elements in Equation (5) and (6) for the real GWAS and under the null. In the NTCS paper, NTCS method discovers that liver is the tissue most likely to be causal in most of the GWAS traits. Brain tissues are the top tissues relating to traits like schizophrenia, height, and age of onset of puberty.



eQTLEnrich

eQTLEnrich is a rank- and permutation-based method that aims to test for enrichment of trait associations among eQTLs in each tissue. For a given GWAS trait, for each of the tissues with eQTLs, eQTLEnrich first finds the most significant cis-eQTL per eGene, and then extracts the GWAS variant association p-values for each set of eQTLs. Afterwards eQTLEnrich tests for the enrichment of the distribution of GWAS p-values for each set of eQTLs in the corresponding tissue. The distribution of the GWAS p-values for each set of eQTLs is tested for enrichment of highly ranked trait associations compared to an empirical null distribution sampled from non-significant variant-gene expression associations.

Specifically, eQTLEnrich first computes the fold-enrichment for each GWAS-tissue pair. The fold-enrichment is defined as the fraction of eQTLs with GWAS variant p < 0.05 compared to expectation. Similarly, eQTLEnrich also computes fold-enrichment values for randomly sampled sets of non-significant variant-gene expression associations of equal size to the eQTL set, matching the distance of eQTL to TSS of the target gene, MAF, and number of proxy variants (at r2 ≥ 0.5), to account for LD. Then eQTLEnrich computes an enrichment p-value as the fraction of permutations with similar or higher fold-enrichment than the observed value. Finally, eQTLEnrich computes an adjusted fold-enrichment by dividing the fold-enrichment for a specific GWAS-tissue pair by the fold-enrichment of all non-significant variant-gene expression associations with GWAS P < 0.05 for the tissue-trait pair. The eQTLEnrich method is applied to analyze 18 complex diseases and traits on 44 GTEx tissues and identifies many trait-relevant tissues. Examples include the relevance of left heart ventricle and adipose visceral omentum to type I diabetes, ovary and artery coronary to coronary artery disease, and hippocampus to Alzheimer's disease.




METHODS BASED ON TISSUE-SPECIFIC GENETICALLY REGULATED EXPRESSION LEVELS

Here, we describe the third category of methods for trait-tissue relevance inference. The third category of methods use information from genetically regulated expression levels (GReX) that are constructed in a tissue specific fashion. GReX measures the part of gene expression levels that can be predicted by (cis-)SNPs (Gamazon et al., 2015). In a given tissue, GReX is constructed for each gene by fitting a prediction model that relates the gene expression level to the cis-SNPs. Common prediction models for GReX construction include elastic net (Zou and Hastie, 2005), BSLMM (Zhou et al., 2013), and DPR (Zeng and Zhou, 2017). Constructed GReX is often tested with the GWAS trait for association evidence through transcriptome-wide association studies (TWAS) (Gamazon et al., 2015; Gusev et al., 2016). Indeed, GReX of many genes have been identified to be associated with diseases and disease-related complex traits. In this section, we will introduce two methods, IGREX (Cai et al., 2020) and RhoGE (Mancuso et al., 2017), that rely on GReX to infer trait-tissue relevance. Both methods effectively are built upon the same model but rely on different algorithms for model inference.

Specifically, both methods consider two separate models, one for the gene expression study and the other for the GWAS. In the gene expression study, both methods examine one tissue and one gene at a time. For the m-th gene in the tissue, both methods consider the following linear model for modeling the relationship between gene expression and genotypes of cis-SNPs,
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where zm is an n-vector of expression values measured from a focal tissue, with n being number of available samples in this tissue; Gm is an n × p genotype matrix for the same n samples and p cis-SNPs for the given gene; wm is a p-vector of SNP effect sizes on the gene expression; and [image: image] is the residual error term. The gene expression zm and each column of genotype matrix G are standardized, allowing us to ignore the intercept term in Equation (7). The genetic effects on gene expression is assumed to follow a normal distribution a priori, with [image: image].

In the GWAS data, both methods consider the following regression model that relates the phenotype to genotype:
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where y and εy are defined as in Equation (2); [image: image] is the N × p genotype matrix for p cis-SNPs in the given gene; wm is the same SNP effects on gene expression as defined in Equation (7); the scalar [image: image] represents the genetic effect of GReX (i.e., [image: image]) on y and can be interpreted as the causal effect of GReX on y (Yuan et al., 2019; Zhu and Zhou, 2020); and [image: image] is the q-length vector of alternative genetic effects; note that [image: image] is not the same genotype matrix as [image: image], and the q SNPs in [image: image] are those who show direct horizontal effects on y, such as the trans-eQTLs and SNPs associated with alternative splicing events (Matlin et al., 2005).

Above, the proportion of phenotypic variance explained by GReX is calculated as

[image: image]


IGREX

IGREX (Cai et al., 2020) relies on a two-stage method to perform inference for the model defined in Equations (7) and (8). Specifically, IGREX first estimates the posterior distribution of genetic effects on expression based on Equation (7) and obtains the posterior distribution wm|zm, Gm ~ N(μm, Σm) for each gene m. Afterwards, IGREX treats the posterior distribution wm|zm, Gm from Equation (7) as the prior distribution for Equation (8), and obtain the estimates of [image: image], [image: image] and [image: image] using either the method of moments (MoM) or REML. Finally, the estimate of PVEGReX is obtained by

[image: image]

In the above two-step estimation procedure, IGREX relies on the posterior distribution wm|zm, Gm to account for estimation uncertainty associated with wm in Equation (8). Given the point estimate [image: image] and its standard error estimated by block jackknife (Quenouille, 1956), IGREX tests the tissue-specific null hypothesis that H0 : PVEGReX = 0 by using a simple z-test. While IGREX is presented based on individual level data, IGREX is also applicable for GWAS summary statistics using the same model defined above. In the original study, IGREX used the GTEx project as expression mapping study and GWAS data in both individual-level and summary statistics. IGREX identified several trait-relevant tissue types. For example, significant GReX components were observed in liver for both high-density lipoprotein and low-density lipoprotein, in brain-amygdala for bipolar disorder, in brain-spinal cord (cervical c-1) for coronary artery disease, and in spleen for height.



RhoGE

RhoGE (Mancuso et al., 2017) fits a similar model as defined in Equations (7) and (8) as IGREX, but with three differences. First, RhoGE uses only the posterior mean estimate μm obtained from Equation (7) and subsequently ignores the uncertainty in the estimation of wm. Second, RhoGE is based on LDSC, and thus estimates the variance components [image: image] effectively using MoM. Third, RhoGE does not account for the horizontal pleiotropic effects [image: image]. Technically, RhoGE modifies the LDSC estimation procedure to use gene level summary statistics. Specifically, the gene-level statistic [image: image] is computed as [image: image], where [image: image] is obtained from the genomic best linear unbiased prediction (GBLUP) (de los Campos et al., 2013); ϕm are the p-vector of SNP-based Wald statistics from the GWAS study; and Vm is an p × p LD matrix calculated from a reference panel. Afterwards, RhoGE follows the same inference procedure as in LDSC to estimate PVEGReX and tests whether PVEGReX is statistically significant from zero. The resulting test statistic is served as evidence for trait-tissue relevance inference. RhoGE analyzed GWAS summary statistics for 30 complex traits and found 108 significant trait-tissue pairs across 17 traits and 33 tissues, including BMI-brain, schizophrenia-brain, and high-density lipoprotein-heart.




METHODS BASED ON TISSUE-SPECIFIC GENE CO-EXPRESSION NETWORK

In this section, we introduce the fourth category of methods, which currently consists of only CoCoNet (Shang et al., 2020b), for trait-tissue relevance inference. CoCoNet performs trait-tissue relevance inference using tissue- or cell type-specific gene co-expression network information obtained from bulk or single cell gene expression studies. Gene co-expression networks characterize how genes are connected with each other and are coregulated together. Gene co-expression networks have been shown to be informative for predicting gene-level association effect sizes on diseases in GWASs and are often tissue and cell type specific (Chen et al., 2011; Hou et al., 2014; Jia and Zhao, 2014; Hao et al., 2018). Genes with high network connectivity have also been shown to be enriched for heritability of GWAS traits (Kim et al., 2019). Therefore, it is important to take advantage of tissue-specific gene connection information in tissue-specific gene co-expression networks to facilitate the inference of disease tissue relevance.


CoCoNet

CoCoNet (Shang et al., 2020b) first obtains an M-vector of gene-level effect sizes with the trait of interest from the GWAS, denoted as [image: image]. In the gene expression study, CoCoNet examines one tissue at a time and for the given tissue constructs an M by M gene-gene adjacency matrix A = (amm′) to represent the gene co-expression network there. The mm′-th element of the adjacency matrix [image: image] is 1 if gene m is connected to gene m′ in the network and 0 otherwise. amm is set to be 0 for any 1 ≤ m ≤ M to ensure the absence of self-loops (Urry and Sollich, 2013). CoCoNet then relies on a covariance regression network model (Lan et al., 2018) to model the relationship between A and θ

[image: image]

where μ is the intercept and Σ(A) is the covariance of θ as a function of the adjacency matrix A. The covariance Σ(A) is in a general form [image: image], where [image: image] is the l-th power of A, and L is the maximum number of paths considered for linking between any two genes. For any integer l, [image: image] is the number of l-paths linking from gene m to gene m′ in the co-expression network, where an l-path is any path of length l. For example, when l = 2, [image: image], where [image: image] is 1 only when there is a link connecting the three genes m − h − m′ and 0 otherwise. For l ≥ 1, CoCoNet sets [image: image]. When l = 0, CoCoNet sets A0 = I. In the real data application, CoCoNet suggests choosing L based on Bayesian Information Criterion (BIC) according to real data analysis.

Because of the computation burden associated with the model in Equation (11), CoCoNet relies on composite likelihood for approximate inference. In particular, the composite likelihood only needs to make an assumption that each pair (θm, [image: image]) follows a bivariate normal distribution, instead of making a strong assumption that the m-vector of θ jointly follows a multivariate Gaussian distribution. Specifically, for each pair of genes m and m′, CoCoNet considers the composite likelihood [image: image] as

[image: image]

where BN represents bivariate normal distribution. CoCoNet finally constructs the log composite likelihood as

[image: image]

CoCoNet fits the above composite likelihood through a standard maximum likelihood inference procedure. Afterwards, CoCoNet calculates the maximum composite likelihood for each tissue and eventually ranks tissues by the corresponding log likelihoods. In the original study, the comparative results between CoCoNet and LDSC-SEG/RolyPoly in the original study suggest that tissue-specific gene co-expression network provides valuable trait-tissue relevance information, perhaps more so than the information provided by marginal tissue-specific gene expression pattern used in LDSC-SEG/RolyPoly. CoCoNet analyzed eight different disease GWASs that include four neurological disorders and four autoimmune disorders on 38 tissues obtained from GTEx, CoCoNet found that the top relevant tissues identified for neurological disorders are generally brain tissues, which are disease causing tissues. CoCoNet also found the top relevant tissues for autoimmune disorders to be intestinal tissues, which are disease-target tissues. In trait-cell type relevance identification, CoCoNet found GABAergic interneurons, oligodendrocyte precursor cells, astrocytes, and microglia are the top relevant cell types in Alzheimer's disease. CoCoNet also found both pyramidal neurons and various glia cells are selected as top relevant cell types in bipolar disorder.




DISCUSSION

We have presented a systematic review on existing statistical methods for trait-tissue relevance inference. Our review comes from a technical perspective and summarizes the input data types, detailed statistical model and inference algorithm, criteria for evaluating tissue/cell type relevance of a trait, as well as the main findings from these existing methods. Identifying trait-relevant tissues using these methods not only facilitates the understanding of disease etiology but also enables more powerful association analysis in future GWASs (Hao et al., 2018). For example, tissue-specific SNP annotations and their contributing weights to SNP heritability in the trait-relevant tissue can be used to construct more powerful SNP set tests in GWASs (Hao et al., 2018). In addition, the inferred trait-relevant tissues and/or cell types facilities the interpretation of TWAS analysis and improves the analysis power (Gamazon et al., 2015; Gusev et al., 2016).

Thus far, existing methods have primarily relied on ad hoc procedures to validate the inferred trait-tissue relevance results. For example, one would examine top trait-relevant tissues one by one and look for corresponding evidence in the literature to support such results. Manually cross checking with literature, however, requires domain knowledge and may yield biased results. Manual literature checking is also time consuming and the outcome results are not easy to quantify. To overcome the shortcomings of manual literature checking, Hao et al. (2018) provided a convenient approach to quantitatively validate trait-tissue relevance identified from real data applications in an unbiased fashion. Specifically, Hao et al. (2018) performs cross checking with previous literature quantitatively via PubMed search. The intuition behind Hao's approach is that, if a tissue is truly relevant to a given trait, then the number of previous biomedical researches would have been carried out on the tissue for the trait. Consequently, the relevance of a tissue to a trait can be measured by the number of previous publications on the trait-tissue pair. Therefore, for each trait-tissue pair, Hao et al. (2018) used the names of trait and tissue as input and counted the number of publications that contain the input values either in the abstract or in the title. For example, for the schizophrenia-CNS trait-tissue pair, they conducted the search by using “schizophrenia [Title/Abstract] AND (CNS [Title/Abstract] OR brain [Title/Abstract] OR central nervous system [Title/Abstract] OR neuron [Title/Abstract] OR glia [Title/Abstract]).” By counting the number of previous publications on the trait-tissue pair, Hao et al. (2018) provides a somewhat ground truth for quantifying and comparing the inferred trait-tissue relevance results. For example, PubMed yielded 17,720 hits for the pair of schizophrenia-CNS, which covers 63.8% of all schizophrenia-tissue search results from the previous literatures, supporting the relevance between CNS and schizophrenia. By performing PubMed search, Hao et al. (2018) shows that certain histone modification marks often provide more information than others. A follow up study using similar PubMed search approach also shows that histone modifications are more informative in inferring trait-tissue relevance than using either the marginal expression information or gene co-expression network information extracted from gene expression studies (Shang et al., 2020b).

Existing methods are primarily developed to take advantage of one particular genomic information for trait-tissue relevance inference. As we summarized in the review, some methods make use of histone modification marks (for example, sLDSC and SMART) while some other methods make use of gene expression data (for example, LDSC-SEG and RolyPoly). However, different genomic information may contain complementary information for trait-tissue relevance inference. Indeed, Finucane et al. (2018) found that one function annotation may be more preferable than another. The same study thus proposed ways to combine two annotations together either by creating a joint synthetic annotation or by combining p-values from analyses of the two annotations separately. A follow up method, SMART, formally models multiple genomic annotations jointly with a multivariate statistical model to improve the accuracy of trait-tissue relevance inference (Hao et al., 2018). SMART found that substantial accuracy gain can be achieved by combining multiple genomic annotations than using one annotation at a time. Besides methodology development to directly incorporate multiple annotations for trait-tissue relevance inference, methods have also been developed to combine multiple annotations into a single, more interpretable and more informative annotation. For example, GenoSkyline creates synthetic annotation based on a variety of epigenetic annotations (Lu et al., 2016). An updated version of GenoSkyline, GenoSkyline-Plus, can now incorporate both RNA-seq data and DNA methylation data in addition to epigenetic annotations to produce functional epigenetic annotations across 127 tissues and cell types (Lu et al., 2017). A similar method, FUMA, is a recently developed web-based platform that can annotate GWAS significant SNPs for functional consequences on genes, CADD scores, and chromatin states in 127 tissues and cell types (Watanabe et al., 2017). Similarly, in gene expression studies, while existing approaches use either the list of tissue-specifically expressed genes, tissue-specific gene expression levels, or tissue-specific gene co-expression pattern, combining the use of all the information together may have added benefits. Therefore, developing statistical methods to incorporate multiple genomic data types as well as multiple aspects of the same data type will likely yield more accurate tissue-trait relevance in the future. Beyond the scope of our review on trait-tissue relevance, we would add a word for GWAS. GWAS has been developed and used for nearly two decades and reported over 200,000 trait-SNP associations (GWAS catalog as of Dec 15, 2020). However, sample size is always a controversial issue. Current GWAS is toward larger and larger sample sizes in order to discover novel SNPs, however, the “overly-identified” SNPs are often lack of meaningful biological explanations. In contrast, small sample size typically cannot detect any signals. The first issue is now relatively well-studied, for example fine-mapping, gene-based test, etc. We think that the second issue is worth more investigations in the field of GWAS. In addition, factors that determine the phenotype/disease are complex and various, further questions include when and how, i.e., what, when, and how a factor/factors determines a phenotype/disease. We believe that all of the theoretical, computational and experimental work are very meaningful to explore the “truth” of how genome affects “us” and makes “us” different.
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The estimation of heritability has been an important question in statistical genetics. Due to the clear mathematical properties, the modified Haseman–Elston regression has been found a bridge that connects and develops various parallel heritability estimation methods. With the increasing sample size, estimating heritability for biobank-scale data poses a challenge for statistical computation, in particular that the calculation of the genetic relationship matrix is a huge challenge in statistical computation. Using the Haseman–Elston framework, in this study we explicitly analyzed the mathematical structure of the key term tr(KTK), the trace of high-order term of the genetic relationship matrix, a component involved in the estimation procedure. In this study, we proposed two estimators, which can estimate tr(KTK) with greatly reduced sampling variance compared to the existing method under the same computational complexity. We applied this method to 81 traits in UK Biobank data and compared the chromosome-wise partition heritability with the whole-genome heritability, also as an approach for testing polygenicity.

Keywords: polygenicity, UK Biobank, subsampling estimator, effective number of markers, Haseman-Elston regression


INTRODUCTION

Given the increasing sample size and sequencing capability, high-throughput genetic data is presented as the standard input that challenges statistical computation. For example, in the estimation of heritability for complex traits using all markers concurrently, both (i) constructing the genetic relationship matrix [GRM, denoted as K and the mathematical expression can be seen in section Materials and Methods, with its computational cost [image: image](MN2)] and (ii) the estimation of heritability using linear mixed model [[image: image](N3)] are computationally expensive (Yang et al., 2010). In order to alleviate computational burden, various solutions have been proposed. Modified Haseman–Elston regression (HE) can be used to estimate heritability with reduced computational cost in the estimation step [[image: image](N2)], but the construction of GRM is still needed (Chen, 2014). Using summary statistics, such as those estimated from the genome-wide association study (GWAS), rather than individual-level data, can provide a theoretical equivalence estimate of the heritability under the assumption that the source of summary statistics and the linkage disequilibrium (LD) reference are homogeneous (Bulik-Sullivan et al., 2015), if not always the case.

Even under the HE framework, given the availability of biobank-scale data, such as UK Biobank (UKB) data (Bycroft et al., 2018), the computational cost for GRM poses a challenge for heritability estimation mentioned procedure above. In order to reduce the computational cost of GRM, recently a randomized estimation of heritability has been introduced by Wu and Sankararaman (2018), called randomized Haseman–Elston regression (RHE), a promising method that can be used for both single-trait and bi-trait analyses (Sankararaman, 2019). This method is built on a hybrid framework which can be applied to biobank-scale data, and a key innovation involved is a quick evaluation for tr(KTK), the trace of the multiplication of GRM with its transpose. Direct computation of tr(KTK) can be time-consuming, at the time cost of [image: image](N2M), but in RHE the numerical evaluation of tr(KTK) can be realized via a randomization method expressed in quadric form. However, we found that the sampling variance of RHE in the original report is incorrect because of their wrong derivation (refer to Appendix A3 in Wu and Sankararaman's original report). In this study, we further investigate the statistical property of RHE, in particular the term about tr(KTK), and its relevant extensions.

This report was written for three purposes. First, we found that the provided randomization estimate for tr(KTK) is correct but with its sampling variance, which is proportional to tr(KTKKTK), not properly treated in Wu and Sankararaman's original report. We derived and numerically validated the sampling variance of tr(KTK). Second, recently a hybrid routine that can use either individual-level data and summary statistics has also been found (Zhou, 2017; Wu and Sankararaman, 2018), in which subsampling technique is used to evaluate tr(KTK); however, its sampling variance was not available. We provided a similar method as subsampling but with availability of its analytical sampling variance. Third, we partitioned the heritability based on the effective number of markers and applied them in the partitioning of heritability for some complex traits in UKB.



MATERIALS AND METHODS


Genetic Relationship Matrix

For a homogenous unrelated sample, its genotypic matrix can be written as X, a matrix of N rows—individuals, and M columns—coding the count of the reference allele for a biallelic locus. After standardization for each genotype [image: image], in which 2pl is the allele frequency and [image: image] the square root of the variance, we can define GRM as [image: image]. Given K, we can easily derive some characters of K. Denote Ko as the off-diagonal elements, and it is easy to see that [image: image], because the summation of the diagonal is N − 1. var (Ko) is the sampling variance of the all off-diagonal elements.

Of note, var (Ko) relates to the concept, so-called effective number of markers, denoted as Me thereafter. As noticed, Me is defined as the reciprocal of var (Ko). [image: image], in which 𝔼 (ρl1l2) is the expected Pearson's correlation between the [image: image] and [image: image] loci. Alternatively, [image: image]. It is known that for a population, the averaged linkage disequilibrium across the genome is nearly a constant given the markers; in other words, Me is a constant genetic parameter. The definition of Me in this report allows researchers to calculate Me based on a reference population of the same origin to the population in question. Similarly, Me.c represents the averaged LD for any pair of markers on the cth chromosomes.

As the causal variants are hardly observed directly, their relationship with markers are surrogated by relationship between markers, as reflected in Me. As Me is a critical parameter in many genetic applications, a conceptional parameter is its involvement in genetic prediction (Dudbridge and Wray, 2013), or power calculation for the estimation of heritability (Visscher et al., 2014). In the estimation for variance components, as shown below, Me is a key parameter.



Haseman–Elston Regression Framework for the Estimation of Heritability

Haseman–Elston regression (HE) has been initially proposed for the linkage analysis (Haseman and Elston, 1972). With its original kernel relatedness between sib pairs via linkage replaced by linkage disequilibrium for unrelated samples, the modified HE can be used for the estimation of heritability (Chen, 2014). Due to its clear mathematical property, HE has been found a bridge to connect and develop various parallel methods for the estimation of heritability, such as LD score regression that estimates heritability and uses summary statistics from GWAS (Bulik-Sullivan et al., 2015; Zhou, 2017).

However, LD score regression is based on various assumptions that may or may not be met in practice. LD score regression uses SNPs in a sliding window instead of all genome-wide SNPs to calculate LD scores, which will lose efficiency if heterogeneity exists between the reference population and the population that generates the GWAS summary statistics. If we directly use individual-level data, the time cost will be unaffordable, such as for the restricted maximum likelihood estimation method (REML); in contrast, a method of moment (MoM) can provide equivalent estimation for the heritability for complex traits.

We assume that

[image: image]

in which y is the standardized phenotype for a trait of interest, [image: image] is the standardized genotypic matrix of N individuals and M the biallelic markers, β is the additive effect associated with each marker, e is the residual, h2 is the SNP heritability, and [image: image] is the residual variance. It is easy to know that [image: image].



Estimation for Heritability via Modified Randomized Haseman–Elston Regression

Consequently, we extend the work by Wu and Sankararaman (2018); the moment estimator is to minimize

[image: image]

By taking the differentiation in terms of h2 and [image: image], we have

[image: image]

After algebra, we have the normal equations below:

[image: image]

The estimator for ĥ2 can be written as

[image: image]

However, different computational strategies deal with the computational expensive part for both the numerator and the denominator. In particular, for the numerator, yTKy can be decomposed as [image: image], and [image: image], equal to [image: image]. Each element [image: image] of [image: image] is just the regression coefficient between the jth marker and y that can be computed via simple linear regression, or multivariate linear regression if covariates are included. It is easy to recognize that [image: image] follows [image: image] after scaling by the sample size N, and a possible non-central parameter related to the heritability of the trait. Alternatively, we derive the mathematical expectation [image: image], in which [image: image] is the averaged LD score between a marker to a causal variants in LD.

The denominator involves the trace of KTK, a high-order function for GRM. Alternatively, according to the property of the trace of a matrix, it can be calculated that [image: image], a summation of the square of each element in K. From the first glance, it seems inevitable to compute K, the computational cost of which is [image: image], a substantial cost given a large sample size, such as for UKB of about 500,000 samples (Bycroft et al., 2018). In order to have a proper estimate for tr(KTK) but reduce computation cost, three methods are proposed for estimating tr(KTK).



Estimating tr(KTK)

We present three methods in estimating tr(KTK). Sampling method I has been proposed by Wu and Sankararaman, but we provide its correct sampling variance, which was incorrectly given in their original report (Wu and Sankararaman, 2018). Sampling method II derives the expectation of tr(KTK) and estimates it in a reference population with the similar genetic origin of the population of question. Sampling method III slightly modifies method II if the reference population is big and yields smaller sampling variance of tr(KTK) than that of method II.



Sampling Method I: The Randomized Estimator With Corrected Analytical Sampling Variance

Using randomized estimation, an unbiased estimator LB is employed to estimate tr(KTK) in RHE (Wu and Sankararaman, 2018). The rational for a randomized estimate is as below:

[image: image]

In each iteration, a vector z, of length N, is generated from the standard normal distribution. As long as z has been generated B time and B is large enough, it is guaranteed to approach tr(KTK). As [image: image] can be calculated easily, the computational cost is [image: image]. Then, LB can be plugged into a normal equation (Equation 2).

In Wu and Sankararaman's original report, the sampling variance of LB was given as [image: image], which was incorrect, and the correct one should have been

[image: image]

The derivation of the penultimate step uses the quadratic variance calculation formula. The sampling variance of LB is proportional to tr(KTKKTK), the computational cost of which is likely to be infeasible for biobank-scale data. However, its practical sampling variance can be estimated from B iterations above [image: image].



Sampling Method II: Estimating tr(KTK) by Subsampling

In an alternative route, we bypass the direct computation of tr(KTK). It is shown that [image: image] for unrelated samples (see Supplementary Notes). N is the sample size, a known parameter; we only need to estimate Me. As noted above, Me can be estimated by subsampling a proportion of the study population (Figure 1) or by a reference population of the same origin with the population of study (Zhou, 2017). Thus, we can estimate Me using a small proportion of the sample, as long as we can estimate [image: image]; we can easily get the estimator of tr(KTK). We define a new LS estimator: [image: image]. It is an unbiased estimate (see Supplementary Notes). Suppose the sample size of subsample is s, there are s2/2 off-diagonal elements and it takes [image: image](s2M/2) time to calculate [image: image]. The sampling variance of LS is, using the Delta method, [image: image], in which [image: image] the first derivative of LS and [image: image] the sampling variance for [image: image]. [image: image] is not directly known but can be directly estimated in the third method proposed below.


[image: Figure 1]
FIGURE 1. Schematic diagram of the sampling methods for the two estimators. The large square represents the entire genetic relationship matrix (GRM) with sample size N = 14, and each small an element in GRM, and the yellow the diagonal element of the matrix. (A) Schematic diagram of sampling methods for the LS estimator. The red squares in the lower triangular of GRM represent the pairs of samples for LS. This figure shows that when B = 2 (the parameter for the LB estimator given by Wu and Sankararaman, 2018), we set subsample size [image: image] 7 for LS to guarantee the same computational cost. (B) Schematic diagram of sampling methods for the LT estimator. Equally total number (n = BN = 28) of GRM elements in the lower triangular in red represents the pair of the samples for LT. The elements are drawn as if they are randomly, as shot by a gun, to reduce correlation between individuals.




Sampling Method III: Estimating tr(KTK) via Shotgun Randomization

However, [image: image] in method II is not analytical probably because each individual will be involved s times in the estimation of variance. With slightly modification, we developed a new estimator LT (lower triangle shotgun sampling estimator) to estimate tr(KTK) in RHE. The difference in sampling schemes between methods II and III can be visualized as Figure 1. Given the whole GRM, method II samples a square matrix of size s × s after rearrangement and calculates half elements, whereas method III randomly samples n = s2/2 elements in the whole GRM without replacement so as to reduce overlapping of samples (Figure 1). This sampling idea is similar to the shotgun method in the first-generation DNA sequencing technology, so we call the method III shotgun sampling estimator.

Given a random subset of n elements A ⊆ {1, 2, ⋯ , N(N − 1)/2}, we define

[image: image]

It can be proved that LT is an unbiased estimator of tr(KTK) with its sampling variance [image: image], which can be estimated by [image: image] (see Supplementary Notes). Therefore, we can get the unbiased estimate of tr(KTK) and its sampling variance at the same time in one step. It does not need to calculate all the elements in Ko but the corresponding pairs of the individuals, and to calculate the mean of the product of all their genetic values. Therefore, each item in the summation can be computed in [image: image](M), and the total running time is [image: image](nM).



The Estimation of Variance Components and Its Sampling Variance

If we replace tr (KTK) with its subsampling estimators, we can get the synthesized estimator for heritability

[image: image]

where [image: image] is the mean of [image: image] for each SNP with or without the adjustment of covariates. Using the Delta method, we show in Supplementary Notes that the variance of ĥ2 can be formulated as

[image: image]

and each item in the above formula is estimable, then we can get the variance estimator of the variance component

[image: image]

Except for ĥ2, all other parts involved are independent to the phenotype, so given a specific sample of question, the estimator has a linear relationship with the square of the estimated heritability.



Genetic Partitioning of Heritability

Yang et al. (2010) estimated the chromosome-wise partitioned heritability and found that the heritability of complex trait, such as human height is proportional to the length of the chromosome, that is, proportional to the number of causal variants. Some researchers gave more weight to large effects to explain heritability and to study polygenicity (O'Connor et al., 2019; Yang and Zhou, 2020). In this report, we instead calculated heritability based on [image: image] and compared the chromosome-wise partition heritability with the whole-genome heritability

[image: image]

in which [image: image] is the effective of markers for the cth chromosome and [image: image] is the averaged squared correlation between a casual variant and a marker on the cth chromosome. Under the assumption of polygenicity, [image: image], and the ratio between [image: image]. As both [image: image] and [image: image] are unknown, we use [image: image] and [image: image] as the surrogates for [image: image] and [image: image].

By breaking the GRM of the whole genome K in Equation (1) into the GRMs for 22 autosomes, we can also estimate the chromosome heritability jointly in one model. This method has to inverse a 23 × 23 matrix. Under the assumption that the genotype of each chromosome contains the same N individuals, the inversed matrix is completely upon N and Me.c, so a computation cost linear to 23, without bothering the conventional matrix inversion procedure, a computation cost of 233, can be written down analytically. In particular, the cth diagonal element of the inverse matrix is [image: image], and the last column/row is [image: image]. For more details, please see Supplementary Notes.



Heritability for the Weighted Genetic Relationship Matrix

Given the definition of the weighted GRM

[image: image]

we can get an estimator of the weighted heritability as well as its variance estimator based on weighted GRM through a similar derivation

[image: image]

where [image: image] is the estimation of Me for Kw, and [image: image] is the square of the z-score for the lth SNP with or without the adjustment of covariates. The weighted chromosome-wise partition heritability can be expressed as

[image: image]

where [image: image] is the estimation of weighted Me for the cth chromosome and Mc is the number of SNP of the cth chromosome.



Connection to Other Estimators

The BOLT-LMM method (Loh et al., 2015) might be the most widely used method in the field of heritability estimation for large-scale data. Theoretically, the computational complexity of BOLT-LMM is [image: image], where P is the number of iterations for convergence. In the LT estimator, the subsample size n ≪ N1.5, so our calculation time is less than BOLT-LMM in theory. In terms of actual calculation, the LB estimator used less calculation time to get an accuracy similar to BOLT-LMM (Wu and Sankararaman, 2018); the variance of our estimators is about an order of magnitude smaller than LB under the same calculation time. Thus, our method is better than BOLT-LMM in calculation accuracy and time. In terms of memory, the memory complexity of BOLT-LMM is [image: image](NM/4), while the memory of our subsampling estimators is proportional to M and the subsample size s in the LS estimator, which generally does not exceed 10% of the total sample size.

Given the availability of the estimators and their sampling variances, it is able to evaluate the statistical power of the estimators and estimate the sample size for the given type I and type II error rates. Under the null hypothesis h2 = 0, the sampling variance for the additive variance component can be reduced to [image: image], which are equivalent to that of REML (Visscher et al., 2014). It is consequently known that the statistical power of the presented method will be equivalent to REML. In contrast, the original Haseman–Elston regression has doubled sampling variances where [image: image] (Chen, 2014), because the original HE regression only uses the off/upper-diagonal of the matrix, as presented in the numerator above. The connection to LD score regression is obviously too; here, the whole Me can be seen as a genome LD score, rather than being partitioned into genomic bins.




RESULTS


Simulation Results for the Evaluation of tr(KTK)

In the simulation and in the real data, we compared the mean and variance of the three estimators LB, LS, and LT, and the results are as presented in Figure 2. We took n = BN and [image: image] to make sure the three estimators are under the equal computational cost of [image: image](NMB) (see Figure 1 for an example). In the simulation, we set the genotype in two ways: (1) The minor allele frequency (MAF) of each SNP was randomly generated from a uniform distribution between 0.03 and 0.5, and two levels of LD (linkage disequilibrium, in terms of Lewontin's D′, the normalized LD parameter) strength were set as 0–0.2 (weak LD) and 0.6–0.8 (strong LD) with the SNP number M = 2,000, 5,000 and sample size N = 500, 1,000, and 2,000, respectively. (2) The real genotype data consisted of 12,980 adjacent markers on chromosome 22 of 2,000 randomly sampled unrelated white British individuals in UKB. B was set from 5 to 50 and repeated 100 times for each to assess the mean and variance of the three estimators.


[image: Figure 2]
FIGURE 2. The means and the sampling variances of three estimators in simulation. The genotype data were constituted by 2,000 individuals and 2,000 markers with strong LD (from 0.6 to 0.8 in Lewontin's measure D′). B is the parameter related to the iteration for LB. For each B, the number of samples of the LS and LT estimators was adjusted to ensure that the three estimators have the same computational cost. (A) The boxplots of means and (B) the variance of 100 random experiments of three estimators for each B. In (A), we combined 10 cases with B = 5–14 into the first group, and so on, and the last five cases with B = 46–50 were combined into the fifth group. The red boxes represent the means of LB, green the means of LS, and blue the means of LT, respectively. The black horizontal line represents the real value of tr(KTK). In (B), the solid red line represents the true sampling variance of the LB estimator derived in this study, and in contrast the long-dash red line the sampling variance of the LB estimator incorrectly given by Wu and Sankararaman (2018). The solid blue line represents the theoretical sampling variance of LT. The solid green line is not given because we cannot get the theoretical sampling variance of LS yet.


Across different parameter settings (sample sizes, number of loci, MAF, and LD), it yielded a similar pattern for the evaluated results of tr(KTK). We chose M = N = 2,000 and strong LD for detailed presentation, and the rest were shown in Supplementary Figures 1, 2). Figure 2 shows that all the three estimators were unbiased. The variance of each of these estimators, as expected, was inversely proportional to B. The real sampling variance of LB was several times larger than the analytical incorrect result given in Wu and Sankararaman's study (refer to Appendix A3 in their original report) but was consistent with 2tr (KTKKTK)/B, just the corrected one as derived in this study (Equation 3). The sampling variance of LT was about an order of magnitude smaller than that of LB. The simulation results in the real data shown in Supplementary Figure 3 were consistent with Figure 2.



Real Data Analysis for tr(KTK)

We compared the performance of the three estimators LB, LS, and LT in UKB. After quality control, 525,460 autosome SNPs with MAF > 0.01 for 278,788 unrelated British white individuals, whose pairwise genetic relationship coefficient <0.0125, were included for analysis. We set B = 5, 10, 20, 40, 60, 80, and 100, and calculated each of the three estimators 100 times to get the mean and the variance for each B. We compared the means of the three estimators with the expected value of [image: image], where [image: image] was estimated from subsamples; given with [image: image]87,351, tr (KTK) was expected to be 1,168,573 for each of the three estimators.

The calculation was performed on an Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70-GHz server cluster, and about 30 threads were allocated for each calculation. The actual calculation time of the three estimators were basically the same (see Supplementary Table 1) and conformed to the theoretical calculation complexity [image: image](NMB). The variances of the three estimators LB, LS, and LT for tr(KTK) are listed in Table 1. In particular, between the randomized estimator and the subsampling estimators, there was a huge difference between their variances. Under the real data, the sampling variance of LB was large, while the sampling variances of the other two estimators were smaller and the variance of LT was about half that of LS. The variances of each of the three estimators decreased with the increasing B, consistent with the simulation.


Table 1. The sampling variance of the three estimators.

[image: Table 1]



Chromosome-Wise Partitioning for Heritability

Equation (2) presents how heritability is estimated using all 22 autosomes, and Equation (5) offers an alternative method by summation of chromosome-wise estimation for heritability. For ease of comparison, we only estimated heritability for 81 traits as demonstrated by Ge et al. (2017). We used the first two principal components as the covariates to control the possible population stratification; other covariates were adjusted upon the traits. The chromosome-wise partition heritability was calculated by the summation of the heritability estimated for Me.c for each chromosome (Table 2), and the whole-genome heritability was calculated from the GRM of the whole genome.


Table 2. [image: image] and [image: image] of each autosome.

[image: Table 2]

The estimated heritability of some selected UKB traits is listed in Table 3 (see Supplementary Table 2 for all the 81 traits). The heritability of all traits was basically very similar to Ge et al.'s result and within the error range. Several physiological traits, such as height and weight had high heritability, while social traits that were more affected by social factors, such as the duration of certain activities, showed lower heritability. This result was consistent with the mainstream conclusion. The left part of Equation (4) for variance estimators of the whole-genome heritability ([image: image]) contributed a large part of the total variance (about 0.0017 in 0.002 for N = 270,000). Although the variances of the [image: image], [image: image], and [image: image] were several times different, they influenced little on the variance of estimated heritability.


Table 3. Estimation of heritability for some traits in UK Biobank.

[image: Table 3]

In the comparison of the two kinds of heritability for each trait, all the chromosome-wise partition heritability was higher than the whole-genome heritability except for the trait of the age diabetes diagnosed (the explanation of this exception is given below). For a certain polygenic trait, the heritability attributed to each chromosome was proportional to [image: image] according to the heritability estimation formula (Equation 5). Since the LD score between chromosomes could be considered as 0, this causes the [image: image] of the whole genome to be diluted by a large number of blank LD, so the overall [image: image] was smaller than the average [image: image] of each chromosome. In order to eliminate the influence of blank LD to see the contribution of effects of causal variants to heritability, Figure 3 shows the relationship of these two estimations of the heritability for the 81 traits. The slope of the solid gray line in the figure represents the ratio of the whole-genome [image: image] to [image: image], a ratio of 0.729. This figure was to capture traits that do not meet the assumptions of polygenic assumption—or fitness of the model. If a trait were purely polygenic, the point representing this trait would be expected just along the solid gray line. However, the points were mostly distributed above the line, indicating that the effect size of causal variants was not evenly distributed on the chromosomes. In particular, the trait of the age diabetes was diagnosed, the Manhattan plot of which showed many statistically significant SNPs concentrated on the major histocompatibility complex (MHC) region on chromosome 6. They all belong to MHC, which is related to many human traits. Obviously, these loci breached the polygenic assumption underlying. After deleting these loci, we reestimated the two kinds of heritability, and all the traits were basically close to the solid gray line and were closer compared with Figure 3 (see Supplementary Figure 4). This shows that the model assumptions were basically valid, and the estimated value of heritability had a certain degree of reliability.


[image: Figure 3]
FIGURE 3. The relationship of the chromosome-wise partition heritability and the whole-genome heritability. (A) Each dot represents a trait in the UKB dataset listed in Supplementary Table 2. The horizontal axis represents their chromosome-wise partition heritability, and the vertical line at each point is their error bar; the vertical axis represents their whole-genome heritability. The red color represents the chromosome-wise partition heritability calculated jointly, and the green color represents the chromosome-wise partition heritability calculated singly. The long-dash line crosses the origin has a slope of 1. The slop of the solid line is 0.729, the ratio of [image: image]. (B) The Manhattan plot for the trait age diabetes diagnosed, and the threshold is for genome-wise threshold for α= 0.05 after Bonferroni correction.


Alternatively, the chromosome-wise partitioning heritability could be estimated jointly by fitting 22 autosomes altogether. It was basically the same as those calculated singly but slightly lower than the latter. It was because when calculating the heritability of chromosomes jointly, we set N for the whole genome in Equation (5), but smaller N were taken in the equation for estimating the heritability of each chromosome singly, as fewer individuals met the quality control standards for a single chromosome. We mentioned in Method that the fast estimation of joint heritability should meet the precondition that N of each chromosome are equal. The heritability estimated by the two methods will be strictly equal if this precondition holds (see Supplementary Notes). For traits with large sample sizes, this precondition could be met well, and the heritability estimated by the two methods was almost the same.

We also estimated the weighted chromosome-wise partition heritability and the weighted whole-genome heritability for these traits (see Supplementary Figure 5). In general, the weighted estimation of heritability was similar to that without weight.




DISCUSSION

In this study, we corrected the erroneous variance of the LB estimator and proposed another two unbiased estimators of tr(KTK), which was the most time-consuming term in RHE (Wu and Sankararaman, 2018). Instead of plotting the running time and accuracy of different methods like most articles, we used a different experimental design to make a special comparison with the LB estimator. We borrowed the sampling size parameter B in LB and adjusted the sample size of our estimators so that the theoretical calculation time of the three estimators was the same under different sample size parameter B. Under the same time complexity, our results showed better stability with smaller variances. In other words, under the same accuracy requirements, our method could greatly reduce the computation cost.

We noted that Wu and Sankararaman further reduced the calculation time in matrix multiplication by introducing the mailman algorithm (Liberty and Zucker, 2009), which could also be used in our calculation by writing our estimators in the form of multiplication of genetic matrix and a random vector with multinoulli distribution. From these perspectives, our estimators were superior substitutions of the LB estimator in Haseman–Elston regression.

We also gave the sampling variance of the subsampling estimator, which could be calculated by one sampling without additional calculation. As a result, the variance estimator of the heritability could be easily derived. Although the variance of the LB estimator 2tr (KTKKTK)/B could also be derived by the subsampling method (beyond the scope of this study), its time complexity greatly exceeded the calculation of tr (KTK) as far as we know.

The variance of LS was always slightly larger than that of LT. This was because LT randomly extracted nearly uncorrelated elements in the lower triangular matrix Ko, while LS extracted all elements in a triangle of Ko (after reordering the individuals). Although their sampling variance was approximately equal to the population variance var(Ko), the sampling variance of LT was relatively smaller because it uses less related individuals.

One possible drawback of the LT estimator relies on a much larger reference population than that of LS. When the reference sample size is small, it is obvious that LT becomes LS. Therefore, the LT estimator can make full use of large sample size, such as that of UKB. Although the difference between the variances of these two estimators is small, and the difference in the final heritability estimation is even slight, we still provide a novel and simple subsampling idea, which can be used in many situations involving large samples.

In the early analysis of heritability, both GRM and Haseman–Elston regression were applied to related individuals under the context of linkage analysis using sibling data. Under linkage, relatedness is actually related to the concept of identity by descent (IBD). However, with the increasing amount of data, the significance and application range of GRM and HE have been expanded. The unrelated individuals we emphasize here are mainly to distinguish from the linkage analysis of pedigree data. There is no problem in the estimation of heritability with related individuals, as demonstrated below. The expression [image: image] still holds true for related samples (see Supplementary Notes), which was confirmed in simulation (Supplementary Table 3). We have expanded the sample to all UKB British Whites, which included extra 131,850 individuals, totaling sample size N = 410,638, of various possible relatedness with the 278,788 unrelated samples and reestimated the heritability. The results are listed in Supplementary Table 4. In general, the heritability increased compared to the previous results of the unrelated set, but negligible. It shows that our estimators are basically applicable among a more realistic population even containing partially related individuals but leave some concerns in theoretical soundness.

Using modified Haseman–Elston regression to estimate heritability is becoming more and more popular in summary statistics. We further explored an important connection between Haseman–Elston regression and Me, the effective number of independent SNPs, which is also a critical concept in quantitative genetics. We found that Me plays a pivotal role in the estimation of variance components and heritability. As long as we get the estimation of Me, we can easily get the estimation of its corresponding variance components.

Although we used only individual-level data to estimate heritability in this report, the nature of Me allows researchers to estimate heritability based on a reference population of the same origin to the population in meta-analysis. However, the existence of family structure will make Me shrink (see Supplementary Table 3; the expansion of trace means the shrinkage of Me), and different family structures make it shrink differently, leading to inaccurate meta-analysis. Therefore, we do not recommend using our method in samples with various related individuals, but it raises a very interesting question for the estimation theory using mega-scale family trees (Kaplanis et al., 2018; Shor et al., 2019).

Due to the statistical property of Me, we can easily extend Me to the dominant model and use the same method to obtain both additive and dominant heritability, as long as their codes for the count of the reference allele are orthogonal, as discussed (Vitezica et al., 2017; Álvarez-Castro and Crujeiras, 2019). We can also extend Me to estimate a genetic correlation for a pair of traits, in which [image: image], where No is the overlap sample size between a pair of cohorts, which have N1 and N2 individuals, respectively.

URLs: The related source code, https://github.com/GuoanQi1996/LT-Estimator.
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Exposure Outcome Heterogeneity Horizontal pleiotropy

MR-PRESSO test MR-Egger regression
Q Q df P Global Test RSSobs Global Test P intercepts (95% CI) P

BMI

T2DM 2867.057 445 <0.001 2885.029 <0.001 —0.001 (0.994,1.005) 0.837

HOMA-IR 510.260 446 0.019 512.445 0.023 0 (0.998,1.001) 0.430

HbA1c 654.863 445 <0.001 658.515 <0.001 0(0.999,1) 0.714

Fasting insulin 624.170 448 <0.001 626.889 <0.001 0 (0.999,1.001) 0.842

Fasting glucose 619.187 448 <0.001 622.082 <0.001 0 (0.999,1.001) 0.838
WHR

T2DM 1718.377 275 <0.001 1739.466 <0.001 0.008 (1,1.017) 0.055

HOMA-IR 368.360 277 <0.001 371.364 <0.001 0 (0.998,1.002) 0.729

HbA1c 413.286 279 <0.001 416.611 <0.001 0 (0.999,1.001) 0.695

Fasting insulin 431.511 280 <0.001 435.262 <0.001 0 (0.998,1.002) 0.853

Fasting glucose 358.324 280 0.001 361.045 0.001 0 (0.998,1.002) 0.935
WHRadjBMI

T2DM 1590.053 236 <0.001 1609.124 <0.001 0.0083 (0.995,1.011) 0.455

HOMA-IR 290.496 237 0.010 293.251 0.011 —0.001 (0.997,1.001) 0.175

HbA1c 383.587 238 <0.001 387.452 <0.001 0(0.999,1) 0.355

Fasting insulin 362.009 239 <0.001 365.491 <0.001 —0.002 (0.997,1) 0.029

Fasting glucose 276.448 239 0.048 278.957 0.047 —0.001 (0.998,1.001) 0.319

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; SBR, systolic blood pressure; DBP, diastolic blood pressure; T2DM, Type 2 diabetes; SD, standard deviation;, HOMA-IR, Homeostasis
model assessment of insulin resistance; HbA1c, Hemoglobin Alc; Q, Cochran’s Q test estimate; df, Cochran’s Q test degrees of freedom; MR-egger, Mendelian
randomization-Egger regression; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier method; OR, odds ratio; Cl, confidence interval.
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BMI WHR WHRadjBMI

Outcome Method nSNP OR (95% CI) P nSNP OR (95% CI) P nSNP OR (95% CI) P
T2DM
VW 446 2.741 (2.421,3.104)  6.12E-57 276 3.12 (2.653,3.668)  3.87E-43 237 1.993 (1.704, 2.33) 5.59E-18
R-PRESSO (Outlier-corrected) 433 3.064 (2.871,3.271) 9.15E-123 254 3.543 (3.164,3.968)  2.67E-60 211 2.117 (1.908, 2.35) 3.06E-32
ultivariable MR 842 3.338 (2.625,4.246)  1.47E-20 672 2.887 (2.54,3.281) 3.66E-50 633 2.105 (1.755,2.524) 8.57E-15
Weighted median 446 2.835 (2.576,3.12) 6.18E-101 276 2.769 (2.43, 3.156) 1.02E-52 237 1.983 (1.764,2.229) 1.74E-30
R-Egger 446 2.829 (2.042,3.918)  9.28E-10 276 1.894 (1.109,3.234) 0.020 237 1.699 (1.087, 2.656) 0.0201
HOMA-IR
VW 447 1.221 (1.187,1.255)  6.69E-44 278 1.203 (1.185,1.252)  4.03E-19 238 1.127 (1.088,1.167) 3.69E-11
R-PRESSO (Outlier-corrected) 446 1.223 (1.19, 1.258) 5.15E-38 278 NA NA 238 NA NA
ultivariable MR 723 1.294 (1.187,1.411)  1.29E-08 554 1.192 (1.148,1.237)  1.28E-18 529 1.197 (1.134,1.262) 1.61E-10
Weighted median 447 1.214 (1.161,1.27) 2.79E-17 278 1.18 (1.114,1.251)  2.25E-08 238 1.128 (1.07,1.188) 6.90E-06
R-Egger 447 1.255 (1.165,1.352)  4.41E-09 278 1.175 (1.024, 1.348) 0.022 238 1.199 (1.089, 1.32) 2.72E-3
HbA1c
VW 446 1.054 (1.04, 1.068) 4.99E-14 280 1.075 (1.056, 1.095)  1.13E-14 239 1.061 (1.042, 1.08) 3.85E-11
R-PRESSO (Outlier-corrected) 441 1.05 (1.036,1.064) 9.67E-13 278 1.075 (1.056, 1.094)  4.41E-14 235 1.054 (1.037,1.072) 1.61E-09
ultivariable MR 735 1.076 (1.031,1.123)  8.11E-3 569 1.074 (1.055,1.093)  5.04E-14 543 1.065 (1.038, 1.094) 3.79E-06
Weighted median 446 1.06 (1.04,1.081) 3.83E-09 280 1.07 (1.044,1.096)  4.60E-08 239 1.059 (1.034, 1.085) 2.08E-06
R-Egger 446 1.06 (1.024, 1.099) 0.001 280 1.062 (0.998, 1.131) 0.058 239 1.084 (1.033,1.137) 0.001
Fasting
insulin
VW 449 1.202 (1.173,1.231)  4.73E-50 281 1.193 (1.163,1.234)  2.28E-24 240 1.102 (1.068, 1.136) 6.37E-10
R-PRESSO (Outlier-corrected) 446 1.198 (1.17, 1.226) 4.55E-42 280 1.201 (1.162,1.241)  3.45E-23 237 1.108 (1.077,1.141) 2.80E-11
ultivariable MR 742 1.298 (1.204,1.4) 6.62E-11 574 1.184 (1.147,1.223)  5.81E-23 548 1.179 (1.125,1.235) 2.18E-11
Weighted median 449 1.213 (1.168, 1.26) 1.54E-23 281 1.187 (1.136, 1.24) 1.41E-14 240 1.129 (1.083,1.177) 1.03E-08
R-Egger 449 1.209 (1.134,1.289)  1.06E-08 281 1.18 (1.052,1.324) 0.005 240 1.2 (1.105, 1.304) 2.29E-05
Fasting
glucose
VW 449 1.073 (1.048,1.099)  4.53E-09 281 1.087 (1.054,1.12) 8.78E-08 240 1.039 (1.012, 1.067) 0.004
R-PRESSO (Outlier-corrected) 446 1.083 (1.059,1.107)  7.61E-12 278 1.098 (1.067, 1.13) 7.19E-10 239 1.044 (1.017,1.072) 0.001
ultivariable MR 742 1.025 (0.947,1.109) 0.546 574 1.067 (1.034,1.102)  8.18E-05 548 1.019 (0.971, 1.069) 0.443
Weighted median 449 1.077 (1.041,1.114)  1.88E-05 281 1.092 (1.048,1.138)  2.60E-05 240 1.058 (1.017,1.101) 0.005
R-Egger 449 1.067 (1.002, 1.136) 0.043 281 1.091 (0.984, 1.209) 0.098 240 1.075 (1.001, 1.155) 0.049

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic
blood pressure; DBR, diastolic blood pressure; T2DM, type 2 diabetes; SD, standard deviation; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, hemoglobin A1c; nSNR numbers of the SNPs
(instrumental variable) used in Mendelian randomization; IVW, inverse-variance weighted; MR-egger, Mendelian randomization-Egger regression; MR-PRESSO, Mendelian randomization pleiotropy residual sum and
outlier method; OR, odds ratio; Cl, confidence interval.
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Traits Consortium Data sources No. of participants No. of Variants Population Units in TSMR

WHR ZENODO Censin; PloS Genet; 2019 697,734 27,381,301 European SD

BMI ZENODO Censin; PloS Genet; 2019 806,834 27,376,273 European SD

WHRadjBMI ZENODO Censin; PloS Genet; 2019 694,649 27,375,636 European SD

HDL-C MRBase Kettunen; Nat Commun; 2016 21,5565 11,865,530 European SD

LDL-C MRBase Kettunen; Nat Commun; 2016 21,559 11,871,461 European SD

SBP MRC-IEU Ben Elsworth; 2018 436,419 9,851,867 European SD

DBP MRC-IEU Ben Elsworth; 2018 436,424 9,851,867 European SD

Fasting glucose MAGIC Manning, Nat Genet; 2012 58,074 2,628,880 European mmol/L

Fasting insulin MAGIC Manning, Nat Genet; 2012 51,750 2,627,849 European log pmol/L

HOMA-IR MAGIC Dupuis; Nat Genet; 2010 37,037 2,458,074 European log HOMA

HbA1c MAGIC Wheeler, PloS Med; 2017 123,655 2,586,698 European %

T2DM Program in Complex Trait Xue; Nat Commun; 2018 62,892/596,424 5,063,015 European log odds
Genomics

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; SBR, systolic blood pressure; DBR, diastolic blood pressure; T2DM, Type 2 diabetes; TSMR, two-sample Mendelian randomization; SD,
standard deviation; HOMA-IR, Homeostasis model assessment of insulin resistance; HbA1c, Hemoglobin Ac.
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Trait

HD_LS*

PH_NM®

SL_NC®

SLNME

Source

Genotype
Replicate
Genotype
Replicate
Genotype
Replicate
Genotype
Replicate

SHD_LS, heading date in Lhasa.

bPH_NM, plant height in Namling.
SSL_NG, spike length in Nyingchi.
9SL_NM, spike length in Namiing.

°DF, degree of freedom.

Sum of square

22687.70
5627.66
142700.59
27.28
1016.82
6.21
1010.40
5.26

Mean square

73.58
2813.83
464.82
13.64
3.97
311
3.29
263

F-Value

9.44
361.03
8.32
024
504
395
3.45
276

Pr>F

0.00
0.00
0.00
0.78
0.00
0.02
0.00
0.06
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Chr. Pos. (bp)

1H 18,660,555

1H 38,183,233
1H 91,078,604

1H 300,727,664
1H 416,927,192

1H 463,244,825
1H 494,917,059
1H 511,733,587

2H 238,920,322
2H 272,235,316
2H 394,175,662

2H 437,044,821
2H 532,601,090

2H 593,522,597
2H 688,905,964
2H 724,170,299

2H 766,144,076

3H 8,758,006
3H 21,353,708
3H 44,697,894
3H 62,823,357
3H 138,603,892
3H 152,576,024
3H 217,549,848
3H 230,310,274
3H 276,495,313
3H 304,221,016
3H 382,059,872
38H 517,465,249
3H 552,063,733
3H 600,043,459
3H 667,007,849
3H 692,966,791
4H 12,475,673
4H 181,836,208
4H 309,093,312
4H 402,478,131
4H 491,561,122
4H 566,153,079
4H 618,782,170

4H 645,737,383
5H 24,897,375

6H 48,436,494

5H 155,832,101
6H 277,966,262
S5H 371,224,788
6H 466,110,087
5H 504,691,186
5H 567,920,543
5H 632,544,415
6H 140,382,352
6H 208,132,063

6H 252,008,134
6H 294,302,172

6H 341,881,535
6H 380,644,346
TH 4,664,447
7H 28,173,688
TH 223,596,641
7H 378,019,002
7H 606,456,401
7H 623,572,285

~log1o(P)

7.81

12.52
5.36
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8.39
5.16
423
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8.10
9.26
7.00
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5.15

413
7.62
7.72
4.43

4.19
497

5.68
6.30
5.28
1017

4.09
4.38
5.96

GLM

Trait
SL_NC

HD_LS
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HD_LS
HD_LS, PH_NM

SLNM
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PH_NM, HD_LS
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PH_NM
HD_LS, PH_NM
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PH_NM
HD_LS
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PH_NM, HD_LS
HD_LS, SL_NG
PH_NM
SL_NM, PH_NM
PH_NM
HD_LS
PH_NM
PH_NM
PH_NM
HD_LS

SL_NC
PH_NM
HD_LS
HD_LS
HD_LS, PH_NM
HD_LS
PH_NM

SL_NM
HD_LS
PH_NM, HD_LS
HD_LS

HD_LS
PH_NM

HD_LS
HD_LS, PH_NM
SL_NC
SL_NC, HD_LS

SLNM
HD_LS
PH_NM

~log1o(P)

3.66

4.68
3.47

4.67

3.37

3.61
321
3.08

4.82

3.04

3.90

3.14

3.99

3.39
3.36

3.78
3.10
3.05

3.41
3.37

3.16

492

4.05
3.41
3.28

407

4.89
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417
5.10
329

MLM Fst  -logio(Pac)®
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SL_NM, PH_NM

HD_LS
PH_NM

SL_NM, PH_NM

034 606 (EVY)

030  7.34(EV3)
561 EV10)

PH_NM 013 497 EV3)

SL_NM
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SL_NM, PH_NM

HD_LS

SL_NM
SLNC

PH_NM 010 617 (EVI0)
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057  4.48(EV5)
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021 4.02(EV2)
PH_NM 0.33 4.88 (EV2),
4.09 (EV7)
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PH_NM

aCorrected p-value of EigenGWAS. Blank means the QTL was not identified by the corresponding method.
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Data Sample Correlation (p)) OMGA RMMLR MANONA
dimension size (n)

p =50 100 0.3 0.059 0.037 0.052
0.8 0.045 0.052 0.041

200 0.3 0.050 0.061 0.038

0.8 0.048 0.049 0.032

400 0.3 0.048 0.064 0.052

0.8 0.051 0.061 0.061

p =100 100 0.3 0.044 0.052 0.046
0.8 0.049 0.038 0.044

200 0.3 0.061 0.041 0.046

0.8 0.041 0.067 0.043

400 0.3 0.051 0.057 0.035

0.8 0.047 0.050 0.037
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Gene Number of single  Chr OMGA RMMLR MANONA
name nucleotide
polymorphisms

TARID 80 6 1.11E-05  0.1227 0.1048
TRAPPC10 58 21 1.29E-05  0.0072 0.1003
HAUSS 42 19 4.22E-05 0.0425 0.1022

ATAD3C 150 1 5.53E-05  0.0789 0.0926
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Gene name Number of single Chr OMGA RMMLR MANONA
nucleotide
polymorphisms

TMEM26-AS1 731 10 3.45E-06  0.0004 0.2572
TPRG1-AS2 320 3 6.60E-06 0.0238 0.4595
ST3GAL4 2,457 11 837E-06 0.1373 0.0165
LMNTD1 89 12 9.64E-06  0.6580 0.1698
OR4F5 2,234 1 1.08E-05 0.1887 0.1364
MIR6723 170 14 1.83E-05 0.5421 0.2648
RBMA45 468 2 225E-05 0.0017 0.0077
ADAMTS7P1 1,444 15 2.29E-05 0.0003 0.3606
SNORA30 200 16 2.30E-05 0.0213 0.0093
TLR4 163 9 3.45E-05 0.0015 0.1364
Cborf46 663 5 B3.69E-05 0.1254 0.0232

UPK1B 772 3 410E-05 0.1855 0.0036
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Factor Group Sample size HR 95% ClI logRank_P

Gender Female 244 24 1.567-3.68 3.2E-05
Male 567 2.02 1.568-2.59 1.2E-08
Stage Stage 1 69 2.7 0.9-8.07 0.065
Stage 2 145 2.04 1.11-3.74 0.019
Stage 3 319 272 1.84-4.08 1.9E-07
Stage 4 182 1.82 1.22-2.71 0.0029
Stage T T2 253 1.7 1.12-2.6 0.013
T3 208 1.983 1.33-2.95 6.0E-04
T4 39 2.66 1.06-6.68 0.032
Stage N NO 76 2.95 1.13-7.69 0.021
N1 232 2.74 1.78-4.21 1.8E-06
N2 129 315 1.88-5.27 4.9E-06
N3 76 2.08 1.18-3.67 0.0097
N1+2+3 437 222 1.69-2.90 2.9E-09
Stage M MO 459 2.67 1.44-4.96 0.0012
M1 58 212 1.59-2.82 1.6E-07
HER2 Negative 641 2.09 1.61-2.72 1.3E-08
Positive 425 1.74 1.26-2.39 0.00058
Lauren classification Intestinal 336 2.85 2.00-4.08 1.7E-09
Diffuse 248 1.94 1.36-2.77 0.00018
Mixed 33 3.31 1.17-9.42 0.018
Differentiation Poor 166 1.31 0.86-2.01 0.21
Moderate 67 1.75 0.92-3.34 0.086
Well 32 5.97 2.25-15.85 6.1E-05
Treatment Surgery alone 393 1.59 1.19-2.13 0.0017
5-Fu based adjuvant 158 0.63 0.44-0.91 0.013
Other adjuvant 80 3.18 1.30-7.52 0.0072

HR, hazard ratio; Cl, confidence interval; HER2, Erb-B2 Receptor Tyrosine Kinase 2. Bold values mean P < 0.05.
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Factor

ISLR
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Gender (male)
Race (Black)
Race (White)
Clinical stage2
Clinical stage3
Clinical stage4

HR

1.161
0.638
1.032
1.133
1.619
1.109
1.471
2.428
3.813

95% Cl_up

1.026
0.304
1.011
0.754
0.657
0.681
0.679
1.190
1.422

95% Cl_down

1.314
1.338
1.062
1.702
3.992
1.806
3.188
4.954
10.223

Cox_P

0.018
0.234
0.002
0.549
0.295
0.679
0.328
0.015
0.008

HR, hazard ratio; Cl, confidence interval. Bold values mean P < 0.05.
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(A) PLASMA LIPIDOMICS

Identifier Lipid class Lipid species QC'dvariants  HDLcor.  LDLcor. TG corr.
CE14 Cholesteryl ester CE(20:4:;0) 8,711,716 0.032 0.464 0.251
CE15 Cholesteryl ester CE(20:5;0) 8,711,716 0.067 0.396 0.188
CE17 Cholesteryl ester CE(22:6;0) 8,711,666 0.107 0.394 0.107
LPC8 Lysophospatidylcholines LPC(20: 4;0) 8,710,151 0.011 —0.124 —0.083
LPC9 Lysophospatidylcholines LPC(22 : 6; 0) 8,694,250 0.114 -0.015 -0.118
LPES Lysophosphatidylethanolamine LPE(20: 4;0) 8,710,162 0.077 -0.077 0.073
LPES Lysophosphatidylethanolamine LPE(22:6;0) 8,711,087 0235 0005 0.041
PC17 Phosphatidyicholine PC(16:0;0-20:4; 871,715 0.120 0115 0.361
PC18 Phosphatidylcholine PC(16:0;0-20:5; 8,711,533 0.126 0.196 0.248
PC29 Phosphatidyicholine PC(17:0;0-20: 8,704,982 0.113 0.138 0250
PC36 Phosphatidylcholine PC(18:0;0-20:4; 8,711,716 0.033 0.190 0.336
pCar Phosphatidyicholine PC(18:0;0-20:5; 8,751,062 0061 0242 0243
PC46 Phosphatidylcholine PC(18 0-20:4; 8,711,716 0.240 0.105 0.214
PC21 Phosphatidylcholine PC(16:0;0-22:6; 8,711,716 0.154 0.204 0.219
pPCO7 Phosphatidylcholine-ether PC—-0(16:0;0-20:4; 8,711,716 0.081 0.194 0.076
PCO23 Phosphatidylcholine-ether PC—-0(18:0;0-20:4; 8,711,560 0.187 0.115 -0.154
PCO29 Phosphatidylcholine-ether PC—-0(18:1;0-20: 8,710,292 0.198 0.115 —0.086
PE7 Phosphatidylethanolamine PE(18:0;0-20: 8,707,361 —-0.027 0.028 0.585
PEO3 Phosphatidylethanolamine-ether PE—-0(16:1;0-20: 8,706,846 0.083 0.198 0.154
PEOT1 Phosphatidylethanolamine-ether PE—0(18:2:0-20: 4 8,693,147 0.148 0238 0099
P9 Phosphatidylinositol PI(18:0:0-20:4:0) 8,711,716 —0.026 0.231 0.460

(A) Polyunsaturated lipid species with acyl chains- C20:4 (14 lipids), C20:5 (3 lipids), and C22:6 (4 lipids) measured for 2,045 indlviduals (Tabassum et al., 2019). After
quality control (QC), a total of 8,576,290 variants were available for all 21 traits. Correlations to basic lipids HDL, LDL, and TG are also shown. (B) Four basic liids from
GLGC (Willr et al., 2013). After qualty control, a total of 2,267,285 variants were available for all four traits.

(B) GLGC LIPIDS

Identifier ~Lipid class QC’d variants  Sample size
HDL High-density lipoprotein cholesterol 2,343,025 95,129
oL Low-density lipoprotein cholesterol 2,271,091 90,421
Tc Total cholesterol 2,341,202 95,637

TG Triglycerides 2,286,633 91,508
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Variant/Gene Samples P-value Driver trait(s) P-value without BIC optimal P-value BIC Central traits
missing all traits drivers subset optimal
subset
*rs174567/FADS2 1.3% 2.40e-145 PC36, CE14, PC17, LPCS, 1.95e-05 CE15, LPC8, PC17, 2.10e-146  PC36, CE14,
PEO11, PEO3, LPE5, PC21, PC36, PC46, PC17, LPCS,
PC21, PC46, PC29, CE15, PE7, PEO11, PI9 PEO11, PEOS,
PC37, PC18, PCO7, LPES, PC21,
PCO29, PCO23, PI9, PE7 PC46, PC29,
CE15, PC37,
PC18, PCO7,
PCO29, PCO23,
PI9, PE7
*rs66505542/BUD13 0.1% 1.65e-08  PI9 3.39e-04 P19, LPC9, PC36 3.27e-12  PI9, LPC9, PC36
rs146327691/SLCO1A2_1.2% 4.27e-08  LPE5 1.91e-06 LPE5, LPC9, LPEB, 5.60e-11 LPE5, LPC9, LPES,
UTR PE7 PE7
rs188167837/ENSGO0  1.0% 2.95e-08 PC17 7.59e-05 PC17, CE14, CE17, 4.64e-09  PC17, CE14,
000200733_UTR_13KB PC21 CE17, PC21
*rs261290/ALDH1A2 0.6% 2.51e-40  PE7 2.04e-07 PE7, CE15, PC17, 1.37e-46  PE7, CE15, PC17,
PCO29, PI9 PCO29, PI9
*rs7412/APOE 0% 417e-13  CE14, PCO23 1.82e-06 CE14, PCO23, PC36 5.79e-18  CE14, PCO23,
PC36
rs8736/MBOAT7 23.6% 9.12e-50  PI9 5.89e-02 PI9, LPEG, PC36, PE7 1.25e-81 PI9, LPE6, PC17

The lipid trait class names and acyl chain properties are listed in Table 2A. *Variant region reported as significant for basic lipids by GLGC (Willer et al., 2013).
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Gene Variant Chr:Pos GLGC associated GLGC lead MetaPhat all MetaPhat Without driver BIC optimal Central traits
lipids P-value traits P-value driver(s) (s) P-value set
HDL lead
PIGV-NROB2 rs12748152 chr1:27138393 HDL LDL TG 1e-15 2.8e-23 HDL LDL TG 3.0e-06 HDL LDL HDL LDL TG
PPP1R3B rs9987289 chr8:9183358 HDL LDL TC 2e-41 1.6e-76 HDL TC LDL 1.0e-04 HDL LDL HDL LDL TC
LIPC rs1532085 chr15:58683366 HDL TC TG 1e-188 0 HDLTC TG 6.4e-01 HDLTC TG HDLTCTG
(ALDH1A2)
CETP rs3764261 chr16:56993324 ALL 1e-769 0 ALL NA HDL LDL TG ALL
LDL lead
MIR148A rs4722551 7:25991826 LDL TG TC 4e-14 2.5e-24 TG LDL TC 2.0e-02 LDL TG LDL TG TC
APOE rs4420638 19:45422946 ALL 2e-178 6.3e-210 ALL NA LDLHDLTC ALL
TC lead
TIMD4 rs6882076 5:156390297 TCLDLTG 5e-41 1.3e49 TG TC LDL 6.9e-01 TCTG TCLDL TG
CILP2 rs10401969 19:19407718 TC TG LDL 4e-77 1.3e-138 TG TC LDL 1.0e-01 TCTG TC TG LDL
TG lead
LRPAP1 rs6831256 4:3473139 TG TC LDL 2e-12 6.3e-16 TGTC 1.0e-07 TGTC TGTC
(DOK?)
ANGPTL3 rs2131925 1:63025942 TG LDL TC 3e-74 7.8e-157 TG LDL TC 9.5e-05 TGTCHDL ALL
TRIB1 rs2954029 8:126490972 ALL 1e-107 1.6e-148 ALL NA TGTCLDL  ALL
FADS123 rs174546 11:61569830 ALL 7e-38 1.3e-104 ALL NA ALL ALL
APOA1 rs964184 11:116648917 ALL 7e-224 7.9e-264 ALL NA TGTC ALL

We confirmed that the vast majority of the MetaPhat central traits are either the same or a subset of the reported GLGC associated lipids (11/13 for driver traits, 12/13

for BIC).
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Genomic Method ‘GWAS inputs Measurements  Strengths Limitations References
information

Epigenetic sLDSC SNP-based p-values It extends the commonly Examines one annotationat  Finucane
annotations Summary statistics used LDSC approach by atime; relies on the etal, 2015
partitioning SNPs into standard linear mixed model
different functional that assumes a polygenic
categories and determining genetic architecture; uses
the contribution of each method of moments for
category to trait heritabilty; model fitting.

can test one annotation
while controlling for other
annotations in the model.

SMART Either Posterior It handles multiple binary Relies on the standard linear Haoetal.,
individual-level probabilties and/or continuous mixed model that assumes 2018
phenotype and annotations simutaneously;  a polygenic genetic
genotype data or uses the computationally architecture.
summary statistics efficient GEE method to

estimate and make
inference on annotation

coefficients.
Transcriptoric  LDSC-SEG SNP-based prvalues Same as the SLDSC model;  Model performance highly Finucane
annotations summary statistios effectively creates a gene depends on the gene etal, 2018
level annotation by expression data, which is
annotating SNPs in genes used to determine tissue
that are specifically specificity of gene
expressedinatissuetoone  expression and
and annotating the subsequently tissue specific
remaining SNPs to zero. SNP annotations; sensitive
to gene expression
correlation across cell and
tissue types.
RolyPoly SNP-based p-values Similar to the SLDSC model;  Model performance highly Calderon
summary statistios integrates scRNA-seq data depends on the gene etal, 2017
with GWAS; jointly analyzes  expression data used;
gene expression from sensitive to gene expression
multple tissues or cell types;  correlation across cell and
prioritizes trait-relevant cell tissue types.
types and genes.
deTS Alist of prvalues Applicable when only a list Model performance highly Peietal,
trait-associated of GWAS significant genes depends on the gene 2019
genes are available. expression data; there is not
acommonly accepted
threshold for defining
trait-associated genes, and
different thresholds may
result in different sets of
genes and thus different
enrichment resuls.
eQTL NTCS Alist of Ranking of Rank genes in terms of their  No publicly available tools; Ongenetal,
information trait-associated tissues based contribution to trait-tissue model implementation is 2017
and null SNPs on adjusted relevance. redundant and difficult to
fold- replicate.
enrichment
©QTLEnrich GWAS summary prvalues Both tissue-shared and The adjusted Gamazon
statistics tissue-specific regulatory fold-enrichment used for etal, 2018
effects of eQLs are ranking tissues in
analyzed. QTLEnrich is correlated
with GWAS sample size.
Genetically IGREX Either p-values Measures the phenotypic Uses REML for inference, Caietal.,
regulated individual-level variance explained by which can be time 2020
expression phenotype and GReX; can analyze both consurming.
(GReX) genotype data or GWAS individual-level and
summary statistics summary data.
RhoGE SNP-based p-values Measures the phenotypic Usesa two-stage regression  Mancuso
summeary statistics variance explained by for inference, which may fail et al., 2017
GReX. to account for estimation
uncertainty in the first stage.
Gene CoCoNet Either Ranking of Incorporates tissue-specific Currently only focuses on Shang etal.,
co-expression indivicual-level tissues based  gene co-expression ranking tissues for a given 2020b
network phenotype and on networks constructed from disease.
genotype data or log-likelihood either bulk or single cell
summary statistics RNA sequencing (RNAseq)

studies with GWAS data; is
scalable to tens of
thousands of genes.

These methods make use of different genomic information (1st column), GWAS inputs (3rd column), and different measurements (4th column) for trait-tissue relevance inference,
strengths (5th column), and limitations (6th column) of each method.
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(0.02) PM-2 50.05 +7.32 0.01 £ 0.59 0.05 + 0.87 2.33+0.38 71.0 (76.4)
R-imF» PM-1 49.61 +£8.22 —0.02 £ 0.51 0.02 £0.70 217 +£0.45 89.2
PM-2 49.70 £ 7.42 —0.02 £ 0.59 0.00 £ 0.91 2.27 £0.43 69.6 (71.0)
Real value 50 0 0 2

aFULL, full-effect type (a = d =), DIPOD, dominance imprinting, polar, over dominance (a = 0nd = i); DIPUD, dominance imprinting, polar, under dominance (a =
0N d = —i); PER parental expression, paternal (a=ind = 0); PEM, parental expression, maternal (a = —in d = 0); DIB, dominance imprinting, bipolar (a=0Nd = 0).
The data in parenthesis are the total proportion of phenotypic variance explained by the iQTL (the proportion of phenotypic variance explained by the imprinting effect of
the IQTL is 0.02 in each type). P The estimates of position and effects are shown as “mean =+ standard deviation.” ©The powers were estimated based on 500 times of
simulation. The data in parenthesis are the power of QTL detection in PM-2 (step 1). The LOD thresholds for PM-1, step 1 of PM-2, and step 2 of PM-2 were 1.97, 3.25,
and 1.79 in U-imFp and 1.97, 3.36, and 1.80 in R-imF, respectively.
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Height 501
BMI 3.48






OPS/images/fgene-11-589047/fgene-11-589047-i004.jpg





OPS/images/fgene-12-612045/inline_12.gif





OPS/images/fgene-11-589047/fgene-11-589047-i003.jpg
Ty





OPS/images/fgene-12-612045/inline_11.gif
it
iy





OPS/images/fgene-12-612045/inline_10.gif
i
S





OPS/images/fgene-11-581594/fgene-11-581594-t003.jpg
Size of the training set 1,000 2,000 5,000 10,000 20,000
Number of repetitions 100 70 50 20 10
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Set Size

Training {1,000; 2,000 5, 000; 10, 000; 20, 000}

Standardization 1,000
Test 1,000
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Parameters Levels

wp Simulation: 1,000/10,000; 5,000/10,0000; 10,000/500,000
Data-based: 1,000/10,000; 5,000/10,0000; 10,000/417,106

fe 0.1;0.5;1

h,, {01,..,09)

: the ratio of the cimensions of the genotype matri. f: proportion of causal variants.
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Field ID Field name N R Ran 3

3786 Age asthma diagnosed 31,535 0271 0265 0013
2754 Age at first ive birth 100,951 0281 0217 0004
2076 Age diabetes diagnosed 12,628 0231 05618 0033
2139 Age first had sexual intercourse 255,880 0084 0,051 0002
21001 Body mass index (BM) 277,228 0360 0282 0002
4079 Diastolic blood pressure, automated 250815 0.199 0.161 0002
reading
894 Duration of moderate activity 231,311 0045 0,034 0002
914 Duration of vigorous activity 166,696 0082 0.025 0003
874 Duration of walks 267,826 0055 0,040 0002
20150 Forced expiratory volume in 1-s (FEV1), 207,848 0257 0.207 0002
best measure
20151 Forced vital capacity (FVC), best measure 207,848 0314 0252 0002
2149 Lifetime number of sexual partners 253,460 0011 0,008 0002
20127 Neuroticism score 226,198 0.160 0.133 0002
20161 Pack years of smoking 81,556 0.275 0.201 0.005
102 Pulse rate, automated reading 250815 0217 0.170 0002
21021 Pulse wave arterial stffness index 92,187 0045 0.033 0005
1299 Salad/raw vegetable intake 278,142 0079 0,057 0002
20015 Sitting height 277,231 0528 0.444 0002
1160 Sleep duration 278,142 0,089 0,070 0002
50 Standing height 277,508 0895 0.729 0002
4080 Systolic blood pressure, automated 250,812 0.194 0.155 0002
reading
48 Waist circumference 277,649 0278 0219 0002
1528 Water intake 278,142 0098 0075 0002
21002 Weight 277,325 0372 0299 0002
23102 Whole body water mass 278,248 0.488 0.386 0002

Nis the sample size, 1, is the chromosome-wise partition heritabilty calculated by adding the heritabilty of each chromosome, T, is the whole-genome heritabilty calculated from
the GRM of the whole genome, and 12, is the standard error of the whole-genome heritabilty.
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Autosome Number of Mee

markers
1 41,805 10,333.95 5,631.40
& 42,087 10,131.61 5,410.58
3 35,488 8,377.99 4,657.61
4 33,248 8,168.11 4,567.46
5 31,855 TEr21 4,200.29
6 36,643 1217.21 522.52
7 28,868 6,996.85 3,882.00
8 27,244 5,878.64 2,941.71
9 23,120 6,172.40 3,423.64
10 26,242 5,978.38 3,607.96
" 26,119 497877 2,835.29
12 25,041 6,204.85 3,385.99
13 18,065 4,988.62 2,802.15
14 17,040 4,492.69 2,458.88
15 16,555 391111 2,174.81
16 18,570 4,448.96 2,461.84
17 17,140 3,868.71 2,040.32
18 15,837 4,661.48 2,649.61
19 13,998 3,151.14 1,816.42
20 13,997 3,800.48 2,080.39
21 7,949 2,223.92 1,231.52
22 8,549 2,114.08 1,240.90

Mo is the estimation of the effective of markers (Me) for the ™ autosome, and Mew. is
the estimation of weighted Me for the ¢ autosome.
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Estimator B=5 B=10 B=20 B=40 B =60 B =80 B =100

Lg 13,918,476 6,970,471 3,501,313 1,689,667 1,214,649 875,951 781,079
Ls 4,185,873 982,406 501,486 267,914 138,344 142,868 186,764
Ly 1,687,956 787,907 389,442 217,566 130,818 8,6461 81,087

B represents the iterations taken by L. We took sample size's = v/ZBN for Ls and n = BN for Ly in each step to guarantee the three estimators having the equal computational cost
of O(NMB), where N is the total sample size.
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QTN? configuration MAF control

QTNs independently selected Both QTNSs selected based on MAF
LD” between QTNs directly controlled QTN for first trait selected based on MAF

LD between QTNs indirectly controlled Common marker located between
QTNs selected based on MAF

One pleiotropic QTN Pleiotropic QTN selected based on MAF

2QTN, quantitative trait nucleotide.
b1 D, linkage disequilibirum.
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QTN selection® Type of LD MAFe
QTN independently selected Direct 005
LD controlled at < 0.01 Indirect 0.40
LD controlled at < 0.98

One pleiotropic QTN

Each combination of input parameter values resuited in 216 simulation scenarios.
aQTN, quantitative trait nucleotide.

BLD, linkage disequilibirum ().

SMAF, minor allele frequency.

912, parrow-sense heritability.

Trait 1

0.30
0.30
0.80

Trait 2

0.30
0.80
0.80

Sample size

500
1,000
2,815
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