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Editorial on the Research Topic

EnablingWearable Brain Technologies - Methods and Applications

INTRODUCTION

Modern technological advances in portable technologies have made it possible to study the brain
in its entirety, to promote convalescence after an accident and to help in the treatment of various
brain diseases and disorders, to develop a greater perception of the world around us, etc. All of
this is possible because the results of modern technologies allow us to better understand how the
brain works. Readings and images from different sensors can be processed as digital values (Zhu et
al.; Zheng et al.; Zhang et al.), dedicated image forms or even sophisticated waves using advanced
methodologies (Wang et al.; Zhang et al.). A variety of new aspects is studied in modern sciences to
better understand how the brain works.

This Research Topic aims to find answers to the following questions: Is it possible to use brain
to control some devices? How the processes of control and interaction through modern technology
reflect thinking and functions of the brain? Do we see any clues for potential disorder from
readings of brain sensors? Do we have yet good methods to analyze brain signals and use them
for prediction? Is modern science able to simulate brain and its functions?

This Research Topic presents a collection of research papers covering an open cross-field
junction between technology, methodology, science and didactics to enable professional discussion
and presentation of innovative and efficient ideas to maximize any possible benefits of the research
to the society, at a technological and methodological level.

RESEARCH TOPIC COVERAGE

This Research Topic received a wide acknowledgments among research communities in various
parts of theWorld. The authors of accepted publications presented articles covering latest advances
on Internet of Things, deep learning for neuroimage and neurosignal processing, Virtual and
Augmented Reality for neuroscience, multimodal data fusion, and various interesting real world
applications and simulation.

In Wang et al. was presented a research on the model of Electroencephalography (EEG) signal
from electrodes placed on the scalp. Experiment has shown how to approach potential disorders of
the auditory function within the brain by using proposed Random Stimulation Rate (RSR) method

4
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which integrates a random interval between two adjacent stimuli.
As a result an early diagnoses of auditory pathway abnormities
was proposed.

In Flynn et al. was presented a model of automatic
emotion recognition by using neural network approach. In
the research Authors analyzed combination of methodology
underpinned by psychology and latest technology like iMotions
biometric research platform to formulate model of relations
between automatically and interactively captured responses of
participants in a form of International Affective Picture System
(IAPS) standard.

In Zhu et al. was proposed Hierarchical Attentive Decoding
(HAD) model where by exploring knowledge associations
in sequence-to-sequence classification framework Authors
proposed a model of adaptive assignment of multiple species
from input texts.

In Zhang et al. was presented a new idea for automatic
diagnosis of patients with alcoholism by analyzing neural activity
from electroencephalogram (EEG) signals in a two-dimensional
perspective. Model works in a form of Transfer Learning with
Convolutional Neural Network (CNN). Authors tested various
configurations to find the best architecture.

In Zheng et al. was presented a model to estimate mental
fatigue by proposed Steady-State Visual Evoked Potential
(SSVEP) from six stimulus paradigms: reverse vertical sinusoidal
gratings, reverse horizontal sinusoidal gratings, reverse vertical
square-wave gratings, brief-onset vertical sinusoidal gratings,
reversal checkerboards, and oscillating expansion–contraction
concentric rings.

In Ptito et al. was presented a discussion on new trends and
possibilities sourced in research on technology and neuroscience
to help blind people by using sensory substitution or cross-modal
plasticity for brain to support vision sense.

In Zhang et al. was presented a novel non-contact sensing
technique to detect sensory ataxia and cerebellar ataxia,
which reveal in poor body coordination and balance disorder.
Authors present Romberg’s test and gait analysis model which
collect information for machine learning based classifiers.
Results have shown high potential for further research
and development.

All presented articles show important ideas for solving
medical problems in brain sensing and activity by applied
models of Artificial Intelligence. Editors are happy to present this
collection to the scientific community, and hope that it will start
a new trend on neuroscience development.
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Electroencephalography (EEG) signal is an electrophysiological recording from electrodes
placed on the scalp to reflect the electrical activities of the brain. Auditory brainstem
response (ABR) is one type of EEG signals in response to an auditory stimulus, and it
has been widely used to evaluate the potential disorders of the auditory function within
the brain. Currently, the ABR measurements in the clinic usually adopt a fixed stimulation
rate (FSR) technique in which the late evoked response could contaminate the ABR
signals and deteriorate the waveform differentiation after averaging, thus compromising
the overall auditory function assessment task. To resolve this issue, this study proposed
a random stimulation rate (RSR) method by integrating a random interval between two
adjacent stimuli. The results showed that the proposed RSR method was consistently
repeatable and reliable in multiple trials of repeated measurements, and there was a
large amplitude of successive late evoked response that would contaminate the ABR
signals for conventional FSR methods. The ABR waveforms of the RSR method showed
better wave I–V morphology across different stimulation rates and stimulus levels, and
the improved ABR morphology played an important role in early diagnoses of auditory
pathway abnormities. The correlation coefficients as functions of averaging time showed
that the ABR waveform of the RSR method stabilizes significantly faster, and therefore,
it could be used to speed up current ABR measurements with more reliable testing
results. The study suggests that the proposed method would potentially aid the adequate
reconstruction of ABR signals towards a more effective means of hearing loss screening,
brain function diagnoses, and potential brain–computer interface.

Keywords: auditory brainstem response, random stimulation rate, hearing loss, hearing impairment,
electroencephalogram

INTRODUCTION

Hearing impairment or hearing loss primarily occurs as a result of damage to a specific part of the
ear due to congenital defects, diseases, exposure to excessively loud noise, or injury, among others.
This phenomenon often leads to a decrease in the auditory sensitivity or hearing dysfunction that
prevents humans from sensing sounds in their environment.
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Individuals suffering from hearing impairment usually have
difficulties in adequately perceiving and understanding what is
spoken around them. Depending on where the damage occurs,
hearing loss can be classified into different types that include
conductive (outer-ear or middle-ear problem), sensory (inner-
ear problem), neurological (auditory center problem), and mixed
hearing loss (Elzouki et al., 2012). From recent studies, it was
reported that hearing loss affects over 1.1 billion individuals
across different age groups (World Health Organization, 2011;
Olusanya et al., 2014; Vos et al., 2015). It leads to disability
in about 50% (360–538 million) of the hearing loss populace
with around 124 million persons having moderate to severe
disability (World Health Organization, 2015). Meanwhile, it has
been projected that the number of persons with hearing loss
will continually increase with time since the number of affected
individuals rose from 1.1 billion in 2013 to 1.4 billion in 2017
(James et al., 2018). Due to the growing number of patients,
more and more attention are being paid to medical technology
research. Some researchers pay attention to the construction of
a physiological system platform and the development of some
acquisitionmethods (Samuel et al., 2017a,b; Pirbhulal et al., 2018;
Wu et al., 2018; de Oliveira et al., 2019). However, researches
on the system or platform cannot solve the essential problems in
clinically used technology and help less with the early detection in
an auditory aspect. Therefore, there is an urgent need to develop
an efficient strategy for early detection and timely treatment of
hearing loss, to prevent the language development impediment
of newborns and life quality decline of adults.

In clinical settings, the commonly used method for auditory
function assessment is the auditory brainstem response (ABR)
measurement, in which electrodes are placed on the scalp to
record electrical brain activities in response to brief sound
stimulation to the ear. Fundamentally, the ABR signal usually
occurs within the first 10 ms following the stimulus onset, and
it could reflect the functional status of the auditory pathway
when the neural information of the incoming sound propagates
from the auditory nerve to the auditory cortex. Therefore,
the ABR measurement is commonly regarded as an objective
method for evaluating the perceiving sensitivity of the auditory
system (Galambos and Hecox, 1978; Avan and Bonfils, 1997;
Alwan, 2012; Xie et al., 2018). ABR parameters such as the
amplitude of peaks, the latency of waves I–V, interpeak latency,
and interaural latency are very important for the detection
of brainstem impairments and central auditory abnormities.
For example, the absolute latency of wave I is prolonged, but
interpeak latencies are not affected for conductive hearing loss.
In contrast, wave I tends to be normal, but the interpeak
latencies of waves I–III and I–IV are usually prolonged for neural
hearing loss.

The lowest intensity at which wave V of ABR signals
can be reliably observed could provide an estimation of the
hearing threshold. However, it is still controversial to use the
ABR thresholds as a replacement of the behavior pure-tone
audiometry (PTA). For instance, Canale et al. (2020) reported
that the mean difference between the ABR and PTA thresholds
was about 20 dB in normal hearing, and no differences were
found in conductive or sensorineural hearing loss. Ceylan

et al. (2018) showed that the mean threshold difference was
5 dB at 1 kHz and that there was no significant difference
at high frequencies. Lu et al. (2017) reported that the click-
evoked ABR thresholds and PTA thresholds differed by less
than 20 dB in 72.6% subjects at frequencies of 2–4 kHz. Hoda
et al. (2019) showed that there was a high degree of correlation
between click ABR and behavioral PTA thresholds. However,
Talaat et al. (2020) claimed that the click- and tone burst-
evoked ABR hearing thresholds significantly overestimate the
behavioral threshold.

Among all the factors that may lead to the controversies
of comparison between ABR and PTA thresholds, the most
important factor might be that it is still a great challenge to obtain
reliable ABR waveform morphologies for accurate diagnostic
purposes, given that the ABR signal is rather low in amplitude
(as low as 0.1 µV). For instance, the current method that adopts
an overlapping averaging technique with a fixed stimulation rate
(FSR) usually generates a relatively poor ABR waveform when
the stimulation rate is high. Although the irrelevant noises could
be attenuated during the averaging, the obtained ABR signals
by the FSR method not only contain the target signals but also
include evoked potential trails from the previous segments. The
auditory evoked potential (AEP) is segmented in three parts,
namely, according to different latencies: short latency response
(SLR; 0–10 ms), middle latency response (MLR; 10–50 ms), and
long latency response (LLR; >50 ms). The first part SLR is
characterized by a lower amplitude, which is filtered to eliminate
the power frequency and other environmental interferences and
averaged via the overlapping technique to obtain the actual
ABR signal (Wong and Bickford, 1980; Aimoni et al., 2010;
Rouillon et al., 2016; Jiang et al., 2018). It should be noted that
the temporal gap between two adjacent stimuli onset could be
short for high stimulation rate, so the unwanted components
from the previous late evoked response (MLR and LLR) would
mix with the ABR signal of the current stimulation. For the
FSR method, the interferences from the previous MLR and
LLR components would be enhanced after fixed-rate averaging,
leading to undesired ABR morphology alteration.

To reduce the interferences from the MLR and LLR
components, Alvarez used an iterative randomized stimulation
and averaging (iterative-RSA) and deconvolution method
to measure ABR at a high stimulation rate (Alvarez et al.,
2010; Valderrama et al., 2012, 2014). Their method could
help to reduce the late response interferences through
an iterative process in the time domain. However, the
deconvolution algorithms (such as least-squares deconvolution
and continuous-loop averaging deconvolution) involve complex
computations which are rather time-consuming. Moreover, the
deconvolution algorithms require a controlling factor alpha, and
the deconvolution algorithms might be unstable if the factor is
not chosen properly. Talaat et al. (2020) utilized a chirp signal
with the latencies of different frequency components adjusted
according to the traveling wave delays of the basilar membrane
and found that the chirp-evoked ABR could achieve statistically
higher amplitudes within a shorter time. However, the traveling
wave delays of the basilar membrane may be highly individual
dependent, and the constructed chirp stimulus was usually
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much longer than the commonly used click sounds, making
the maximum stimulation rate largely limited by the stimulus
duration. Hence, it is necessary to develop a practical method
that could effectively eliminate the influences of MLR and LLR
components to obtain reliable ABR waveform morphologies.

The purpose of this study is to propose a random stimulation
rate (RSR) technique with the capability of mitigating the
interferences arising from the late evoked response from
previous stimulation. The performance of the proposed method
in improving the ABR waveform morphologies and signal
quality was thoroughly evaluated and compared with that of
the commonly used FSR method under various stimulation
conditions. It is believed that the outcome of this study may
potentially aid adequate improvement of ABR measurements
towards more accurate hearing loss assessment.

MATERIALS AND METHODS

Subjects
A total of 10 healthy subjects with ages from 20 to 30 years
old were recruited in this study (mean age = 24 ± 2.87). The
subjects had no history of outer- or middle-ear problems and
had normal hearing function with thresholds of 20 dB hearing
level or less for frequencies from 250 to 8,000 Hz in standard
audiogram tests. The experimental sessions were conducted in
an electromagnetically shielded room to prevent acoustical and
electromagnetic interferences. The subjects were instructed to
sit in a comfortable position and to be as quiet as possible
during the test to minimize artifact interferences. The protocol
of this study was approved by the Institutional Review Board of
Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences (SIAT-IRB-190615-H0352).

Experimental Principles
In this study, the method of RSR was proposed to improve
the signal quality of ABR measurements. To prevent the ABR
signals from being contaminated by interferences from MLR
and LLR components of the previous stimulation, the RSR
method introduced random time intervals between two adjacent
stimulations, as compared with the commonly used FSR method
with a fixed stimulus onset interval (Figure 1). As shown in
Figure 1, the responses of each stimulation would be averaged
in reference to the stimulus onset to obtain the ABR signals, for
both the FSR and RSRmethods. In Figure 1A, the ABR evoked by
the second stimulation overlapped with the late response (MLR
and LLR) of the first stimulation, as indicated by the shadow
area of the late response. For the FSR method, the overlapped
shadowed interferences would be in synchronization with the
stimulus onset and therefore be enhanced during the averaging,
leading to undesired ABR waveform changes after mixing with
the early ABR. In contrast, the shadowed interferences of the
RSR method (Figure 1B) no longer synchronized with the
stimulus onset after random intervals were introduced, making
the shadowed interferences cancel out each other after the
averaging. In this way, the interferences of the late responses
could be prevented to obtain more accurate ABR results for
the proposed RSR method. In Figure 1B, the random interval

was set to duration with a uniform distribution between 0 and
10 ms. The stimulation period T was changed from 20 to 70 Hz
to systemically investigate the performance of the RSR method
under different conditions.

Different stimuli such as clicks, chirps, and tone bursts could
be used to evoke ABR signals. The click stimulus is considered the
most efficient stimulus for the ABR test due to its easy generation,
short duration, and broadband (Eggermont and Moore, 2012;
Lu et al., 2017). In this study, the click-based stimulus was
adopted for conducting all the ABR tests. The duration of the
click stimulus was set to 100 µs throughout the experiments. The
earphones that were used to play the click sound were ER-2A
(Etymotic Research, Inc., Elk Grove Village, IL, USA), in which
plastic tubes were used to connect the earphones and the inserted
earplugs tominimize the electromagnetic interferences picked up
by the electrodes.

Experimental Procedures
The diagram of the system configuration for the ABR data
collectionwas illustrated in Figure 2. A customwireless hardware
platform was built for high-precision ABR measurements.
The hardware platform was made up of a low-noise analog
frontend, a high-precision analog-to-digital converter (ADC),
and the CC3200 Wi-Fi MCU module. Since the ABR amplitude
is rather low, the original analog signal was first amplified
by an INA188 instrumentation amplifier (Texas Instruments,
Dallas, TX, USA) with a gain of 10 and then processed by
a high-pass filter with a cutoff frequency of 100 Hz. The
filtered signal was then amplified by an INA141 instrumentation
amplifier (Texas Instruments, Dallas, TX, USA) with a fixed
gain of 100 and finally amplified by a programmable gain
amplifier integrated in ADS1299 (Texas Instruments, Dallas,
TX, USA), with a gain of 24. The ADS1299 is an ultra-low-
noise, 24-bit simultaneous sampling analog-to-digital converter
(ADC) that incorporates all commonly required features for
extracranial electroencephalogram (EEG) applications. The
amplified analog signal was digitized in the ADS1299 analog
frontend at a sampling rate of 16,000 Hz, and the raw
data were sent from the CC3200 MCU to the PC through
Wi-Fi transmission by Transmission Control Protocol (TCP)
packets. The electromagnetic interferences introduced by the
Wi-Fi transmission were minimized by the randomization
of the TCP packet length, so that the interferences of
different Wi-Fi TCP packets would not be synchronized to
the stimulus onset, leading to cancelation of each other during
the averaging. The performance of the custom ABR data
collection platform had been evaluated prior to this study,
and the internal noise characteristics were comparable to the
commercial SynAmps EEG system (Neuroscan). The wireless
raw data were then received by a customMATLAB (MathWorks,
Natick, MA, USA) GUI software platform that was capable
of real-time digital filtering, ABR waveform averaging, and
noise rejection. The raw data were also stored for further
off-line analyses.

During the experiments, the subjects were told to comfortably
sit on an adjustable backrest chair inside an electromagnetically
shielded room. Then the three skin regions mapped out for
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FIGURE 1 | The stimulus presentation comparison of the fixed stimulation rate (FSR; A) and random stimulation rate (RSR; B) to generate the auditory evoked
potential (AEP)s. The overlapped late responses (shadowed area) were synchronous in panel (A) and asynchronous in panel (B).

electrode placement were wiped with alcohol pads: the left
mastoid, the right mastoid, and the forehead (Figure 2).
Afterward, the reference (inverting) electrodes were placed over
the right mastoid, and the active (non-inverting) electrode
was placed over the forehead. Finally, the ground electrode
was placed over the left mastoid to minimize the common mode
of the reference and active electrodes, using the right leg drive
technology incorporated in the ADS1229 chip. The impedance
between the skin and the electrodes was screened prior to
the experiments to ensure it was below 5 k�. The impedance
difference between the active and reference electrodes was kept
below 1 k� for satisfactory common-mode rejection. All the
electrodes used in this study were disposable snap electrodes with
built-in soft gel.

After all the electrodes were in place, the stimulus
was generated from the PC and delivered to the ER-2A
earphone that was inserted to the right ear. To eliminate
the influence of environmental artifacts on the recorded
signals, a foam earplug was inserted into the left ear so
that the non-test ear would not have impacts on the ABR
results. The earphone wires were kept away from the electrode
wires as far as possible to avoid possible electromagnetic
interferences when playing the stimuli. For each stimulus

condition, the stimulation was repeated 2,000 times for
both the FSR and RSR methods. Then the responses of the
repeated measures were averaged in reference to the stimulus
onset so that the synchronous ABR component could be
enhanced while the irrelevant noises would be canceled during
the averaging.

In this study, each subject participated in four different
experimental sessions to systemically evaluate the performance
of the proposed RSR method. A rest time of about 5 min
was introduced between two consecutive sessions to prevent
the subject from possible fatigue which may degrade the signal
quality. In session 1, five trials of the same ABR tests evoked
by the RSR method were conducted repeatedly, to examine the
test–retest reliability of the proposed method. In this session,
a stimulation rate of 20 Hz that was close to the commonly
adopted settings in the clinic was used, and the sound intensity
of the click stimulus was set to 60 dB SPL. In session 2,
the stimulation rate was increased from 20 to 70 Hz with
an increment of 10 Hz to explore the performance difference
between the FSR and RSR methods under different testing
speeds. The stimulus sound intensity was fixed at 60 dB SPL
for this session. In session 3, the level of the click stimulus
was increased from 50 to 65 dB with a step of 5 dB, and ABR
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FIGURE 2 | The diagram of the data acquisition system and the configuration of the electrode placement for the auditory brainstem response (ABR) measurements.

signals were measured for both methods. The stimulation rate
was constant at 50 Hz. In session 4, the impact of alternate
stimulus polarity was investigated for the FSR and RSR methods,
with the stimulation rate set to 50 Hz and the stimulus level fixed
at 60 dB.

For the data analyses, a digital band-pass filter with cutoff
frequencies of 100 and 3,000 Hz was also applied to the raw
data to attenuate the out-of-band noises. For the filtered data,
an amplitude of 100 µV or greater would be considered as
noises (possibly caused by body movements), and the response
of the corresponding stimulation would be excluded from
the averaging. Then the waveform morphologies and wave
I–V latencies of the ABR signals were systemically compared
between the FSR and RSR methods, grouped by different
stimulus conditions.

EXPERIMENTAL RESULTS

Test–Retest Reliability of the RSR Method
Five repeated trials of the same RSR–ABR measurements were
carried out on the same subject, and the temporal waveforms
of different trials were compared in Figure 3 in different colors.
The stimulation rate was set to 20 Hz, and the stimulus level was
60 dB SPL. It could be observed from Figure 3A, which showed
the first 35 ms from the stimulus onset (the beginning of the
click stimulus by the earphone), that the peaks and troughs of
the five repeated measurements demonstrated good test–retest
reliability. It should also be noted that there was a large amplitude
of the late responses (such as the peaks of R1 and R2) after the
first 10 ms, which could affect the ABR signal if they overlapped
with the successive stimulation. The first 10 ms (the actual

RSR–ABR signals) of Figure 3A was further examined, and the
details were shown in Figure 3B. It could be seen that all standard
peaks from wave I to wave V could be clearly identified for the
RSR–ABR waveforms, and the morphologies of all the five trials
showed great consistency. Then the latency of each peak of the
ABR signals in Figure 3 was calculated, and the distribution
(mean and standard deviation) of the wave latencies from all the
five trials was plotted in Figure 4. It could be observed that the
mean latencies of waves I–V were consistent with related reports
in subjects with normal hearing (Nazeri et al., 2016; Cargnelutti
et al., 2017; Jiang et al., 2019). The maximum standard deviation
of the latencies was as low as 0.2 ms, indicating that all the
five trials showed rather consistent waveform morphologies.
Similar observations could be found from the results of the
other subjects.

Effects of Stimulation Rate
To explore the performance difference between the FSR and
RSR methods under different stimulus repetition speeds, the
stimulation rate was increased from 20 to 70 Hz, and the
comparisons under different speeds (20, 50, and 70 Hz)
were shown in Figure 5 (stimulus level = 60 dB SPL).
Generally, the overall ABR waveforms of the two methods were
rather consistent across different stimulation rates. However,
as compared with the FSR method, the RSR method could
achieve better ABR morphologies indicated by clearer waveform
differentiation, especially at high stimulation rates (Figure 5C).
All peaks from waves I to V could be easily recognized for the
RSR method regardless of the stimulation rate, whereas waves II
and IV were not visible for the FSR method at the stimulation
rate of 70 Hz.
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FIGURE 3 | The time waveforms of five repeated trials of the same stimulus
condition (stimulation rate of 20 Hz and stimulus level of 60 dB SPL) for the
duration of 35 ms (A) and 10 ms (B) from the stimulus onset.

FIGURE 4 | The means and standard deviations of the latencies of wave I–V
averaged across all the five repeated trials of ABR tests.

Effects of Stimulus Level
To further examine the performance of the proposed RSR
method, the stimulus level was increased from 50 to 65 dB with
a step of 5 dB, and the comparisons with the conventional FSR
methodwere shown in Figure 6 (stimulation rate = 50Hz).While
the waveforms of both methods deteriorated as the stimulus
level decreased, the RSR method was less affected by random

FIGURE 5 | The comparison of ABR waveforms between fixed and random
stimulation rates under different repetition speeds of 20 Hz (A), 50 Hz (B) and
70 Hz (C), with the stimulation level fixed at 60 dB SPL.

noises and demonstrated slightly smoother morphologies. The
RSR method also showed larger wave V amplitudes at lower
stimulus levels of 55 and 50 dB SPL. Similar effects of stimulus
level were observed in the results of other subjects.

Effects of Stimulus Polarity
In this study, two ways of manipulating the stimulus polarity
were performed: non-alternate (only condensation click stimuli
were used) and alternate (the condensation and rarefaction
clicks were used alternately). The effects of stimulus polarity
on the performance of both the FSR and RSR methods
were compared in Figure 7. It could be observed that
large amplitudes of stimulus artifacts were present at the
stimulus onset (t = 0 ms, marked by red ovals) for the
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FIGURE 6 | The comparison of ABR waveforms between fixed and random
stimulation rates under different stimulus levels of 65 dB (A), 60 dB (B),
55 dB (C) and 50 dB (D) SPL, with the stimulation rate fixed at 50 Hz.

non-alternate stimulus polarity. In contrast, the alternate
stimulus polarity approach could eliminate such stimulus
artifacts by canceling the stimulus-related components of the
condensation and rarefaction clicks. However, no significant
effects of the stimulus polarity on the amplitudes and latencies
of waves I to V were observed, for both the FSR and RSR
methods.

FIGURE 7 | The comparison of ABR waveforms using non-alternate and
alternate stimulus polarities for the fixed-rate (A) and random-rate (B)
methods.

Effects of Averaging Times
In order to investigate the speed of convergence (stabilization)
of the RSR method, the correlation coefficients between the ABR
waveform of increasing average times (from 200 to 1,400 with
an increment of 200) and the final ABR waveform (averaged
a total of 2,000 times) were calculated for each subject. Then
the correlation coefficients of all the subjects were analyzed,
with the correlation coefficient statistics (mean and standard
deviation) plotted as functions of averaging times (or repeated
times) shown in Figure 8. The most noteworthy observation was
that the convergence speed of the RSR method was significantly
faster than that of the conventional FSR method for different
stimulus levels, indicating that the proposed RSR method could
achieve ABR waveforms similar to the final results (averaged
2,000 times) much earlier. For the same averaging time, the
correlation coefficient of the RSR method was also significantly
higher. Especially at the stimulus level of 60 dB, the mean
correlation coefficient of the RSR method was as high as
0.87 for the averaging time of only 200, whereas the mean
correlation coefficient of the FSR method was only 0.72 as
a comparison.

DISCUSSION

Although some studies were made on the medical system
platform and acquisition system (Han et al., 2019; Pirbhulal et al.,
2019; Sun et al., 2020), it helped less with the improvement
of ABR morphology. Towards effectively solving the problem
on the quality of ABR signals, the RSR method was proposed
to improve the morphology and reliability of current ABR
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FIGURE 8 | The correlation coefficients between the ABR waveform with
varying averaging time and the final ABR waveform (averaged for 2,000 times)
under the stimulation conditions of 20 Hz, 60 dB (A) and 20 Hz, 55 dB (B).

measurements. By integrating a random interval between two
adjacent stimulations, the proposed method could mitigate the
interferences arising from the late evoked response of the
previous stimulation. The performance of the proposed method
was systemically evaluated and compared with the currently
used FSR method under various stimulation conditions using a
custom wireless high-precision data acquisition platform.

Effects of Stimulation Rate
The stimulation rate has been proven as an important factor
that significantly affects the ABR results in the context of clinical
hearing loss diagnosis (Schwartz and Morris, 1991; Musiek et al.,
1994). In this study, different stimulation rates from 20 to
70 Hz were used to evoke the ABR potentials. The results
showed that the ABR waveform differentiations deteriorated
as the stimulation rate increased (Figure 5), and the findings
are consistent with the other studies (Don et al., 1977; Kjær,
1980; Lasky, 1984; Valderrama et al., 2012). Moreover, it was
found that at high stimulation rates such as 70 Hz, waves II
and IV started to disappear for the conventional FSR method
(Alvarez et al., 2010; Valderrama et al., 2012). The reason
might be that a large amplitude of late response (10 ms after
the stimulus onset, as seen in Figure 3A) overlapped with the
response of the successive stimulation, given that there was only
about 14 ms of time gap between the two stimulus onsets. The
previous overlapped late response mixed with the ABR signal of
the current stimulation and would be synchronously enhanced
after the averaging for the FSR method (Figure 1A), leading
to significant morphology changes in the ABR measurements.
As a comparison, the proposed RSR method could eliminate
the synchrony of the overlapped late responses, making them
cancel each other during the averaging. Therefore, the waveform
differentiation of the RSR method was significantly improved
when compared with the FSR method, indicated by the presence
of waves II and IV even at a stimulation rate of 70Hz (Figure 5C).

The proposed method could make the ABR measurements to
be carried out with a faster stimulation rate while maintaining
reliable waveform differentiations.

Effects of Stimulus Level
A general observation on the effects of the stimulus level was
that better ABR waveform morphologies and shorter wave V
latencies could be seen at higher stimulus levels (Figure 6), which
is consistent with other studies (Serpanos et al., 1997; Louza
et al., 2016; Rouillon et al., 2016). Figure 6 also showed that
the proposed RSR method could obtain cleaner ABR signals and
better waveform morphologies when compared with the FSR
method. The finding might be explained by the cancellation
of the overlapped late response of the previous stimulation, as
well as other noise sources that were synchronized with the
stimulus onset. For low stimulus levels such as 55 and 50 dB,
the RSR method could also obtain a larger amplitude of wave
V (Figures 6 C,D), indicating that the proposed RSR method
might be able to measure ABR thresholds at lower stimulus levels
and therefore could provide more accurate results for clinical
evaluation of hearing functions.

Effects of Stimulus Polarity
In this study, Figure 7 showed that the large amplitude of
stimulus artifacts happening at the stimulus onset could be
efficiently eliminated by alternatively changing the polarity of the
click stimuli. Similar findings are also reported by other studies
when altering the stimulus polarity to measures ABR signals
(Gorga et al., 1985; Akhoun et al., 2008; Hornickel et al., 2012;
Anderson et al., 2013; Ahadi et al., 2014; Mamo et al., 2016).
This can be explained by the linear relationship between the
stimulus artifacts and the click polarity. However, no significant
effects of the stimulus polarity on the amplitudes and latencies
of the waveform peaks were observed for both the FSR and RSR
methods. Salt and Thornton (1984) also found that the major
component of the ABR was insensitive to stimulus polarity.
Regarding the latency of wave V, while some studies reported
that there were some differences when changing the stimulus
polarity (Borg and Löfqvist, 1981; Hughes et al., 1981; Pijl, 1987),
other studies showed that there was no significant difference
at all (Rosenhamer et al., 1978; Beattie and Boyd, 1984; Tietze
and Pantev, 1986; Kumar et al., 2014). The discrepancy might
be attributed to the high sensitivity of ABR signals to various
noises. The present study suggests that stimulus polarity is not
an important factor when choosing the stimuli in routine clinical
ABR measurements.

Effects of Averaging Times
Another important finding of this study is that the convergence
speed of the RSR method was significantly faster for different
stimulus levels when plotting the correlation coefficients as
a function of averaging time (Figure 8), indicating that the
proposed method could obtain stable ABR waveform earlier
than the conventional FSR method. With an averaging time of
only 200, the mean correlation coefficient between the current
and final ABR waveforms was as high as 0.87, given that over
4,000 averages are usually required to achieve a satisfactory result
(Johnson et al., 2008; Hornickel et al., 2009; Skoe and Kraus,
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2010; Skoe et al., 2015). The statistics in Figure 8 suggest that
the proposed RSR method is superior in preventing undesired
noises from contaminating the target ABR signals so that the
waveforms could be stabilized faster than the currently used FSR
method. Therefore, the efficiency of current ABR tests could be
significantly improved by incorporating the RSR paradigm into
clinical settings.

Clinical Implications
In clinical applications, ABR parameters such as the amplitude
of peaks, the absolute latency of waves I–V, interpeak latency,
and interaural latency are of great importance for the diagnoses
of hearing loss and other hearing impairments. However, all
these ABR parameters heavily rely on the ABR signal quality
and waveform morphologies. Given that the ABR waveform
of the conventional fixed-rate method might be affected by
interferences originating from the previous late response, the
proposed RSR showed great performance in improving the ABR
waveform differentiation under different stimulus conditions.
Generally, the amplitude and latency of waves I, III, and V
and their inter-wave latencies will be taken as the diagnostic
parameters for hearing impairments. However, the proposed
RSR method could help to identify clear waves II and IV, whose
amplitudes and latencies also provide rather useful information
for clinical diagnoses. For example, the inter-wave latency of
waves III and IV reflects axonal conduction time, and the interval
of wave IV and V reflects a synaptic delay (De Vries and Glass,
2019). Lee et al. (2018) reported that the amplitude of wave II
could be considered a supplementary indicator to help with the
diagnosis of vestibular paroxysmia.

Compared with Valderrama’s iterative-RSA method
that might involve complex deconvolution algorithms and
empirically chosen controlling factors (Valderrama et al., 2014),
the implementation strategy of the proposed method is much
simpler, with only minimal changes to the stimulus presentation
of the current commercial systems. The easy implementation
of the proposed method would help to greatly reduce the cost
while achieving significant improvement in ABR signal qualities,
making it rather useful in medical application scenarios such as
intraoperative monitoring during surgery, auditory threshold
estimation, and newborn hearing screening.

CONCLUSION

In this study, an RSRmethod was proposed, and the performance
on improving the morphology and reliability of ABR signals was

systemically investigated under different stimulus conditions.
The results showed that the RSR method demonstrated great
test–retest reliability in repeated measurements. By canceling the
interferences of the late response from the previous stimulation,
it could also achieve better ABR morphologies indicated by
clearer waveform differentiation under different stimulation
rates and stimulus levels. The RSR method could obtain
satisfactory results significantly faster than the conventional FSR
method, and it could help to greatly improve the efficiency
of current ABR measurements. The proposed RSR method
may provide a candidate tool that would aid accurate and
efficient diagnoses of hearing impairment in clinical settings. The
approach of obtaining reliably evoked potentials from the brain
might also be helpful for applications such as brain–computer
interface and intelligent control of robotic systems.
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Recent success stories in automated object or face recognition, partly fuelled by deep

learning artificial neural network (ANN) architectures, have led to the advancement of

biometric research platforms and, to some extent, the resurrection of Artificial Intelligence

(AI). In line with this general trend, inter-disciplinary approaches have been taken to

automate the recognition of emotions in adults or children for the benefit of various

applications, such as identification of children’s emotions prior to a clinical investigation.

Within this context, it turns out that automating emotion recognition is far from being

straightforward, with several challenges arising for both science (e.g., methodology

underpinned by psychology) and technology (e.g., the iMotions biometric research

platform). In this paper, we present a methodology and experiment and some interesting

findings, which raise the following research questions for the recognition of emotions

and attention in humans: (a) the adequacy of well-established techniques such as

the International Affective Picture System (IAPS), (b) the adequacy of state-of-the-art

biometric research platforms, (c) the extent to which emotional responses may be

different in children and adults. Our findings and first attempts to answer some of these

research questions are based on a mixed sample of adults and children who took part in

the experiment, resulting in a statistical analysis of numerous variables. These are related

to both automatically and interactively captured responses of participants to a sample of

IAPS pictures.

Keywords: emotion, brain, artificial neural network, computing, clinical investigation

1. INTRODUCTION

Emotions are the essence of what makes us human. Emotional response can be measured by at least
three different systems: affective reports, physiological reactivity, and overt behavioral acts (Lang,
1969). One of the strongest indicators for our emotions has always been considered our face.
Cross-cultural studies suggest that there is a set of universal basic emotions that can be recognized
from facial expressions, including anger, disgust, fear, sadness, and enjoyment (Ekman, 1993).
Facial expressions are a strong correlate of emotion, and it has been shown that almost everyone can
produce and recognize facial expressions (Ekman and Friesen, 1978; Ekman, 2016). Consequently,
previous studies have investigated emotional reactions using affective pictures to elicit emotional
experience in adults (Greenwald et al., 1989) and in children (McManis et al., 2001).
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Prominent position in these studies was taken by the
International Affective Picture System (IAPS) (Lang et al.,
1997), which provides a set of normative emotional stimuli for
experimental investigations of emotion and attention. When
used in combination with tools for the collection of subjective
affective ratings such as the Self-Assessment Manikin (Bradley
and Lang, 1994) or the Affective Slider (Betella and Verschure,
2016), which are non-verbal assessment techniques that directly
measure the pleasure and arousal associated with a wide variety
of stimuli, emotional affect can be measured. Furthermore, skin
conductance is also a sensitive autonomic measure of emotional
arousal (Boucsein et al., 2012). The higher the arousal, the higher
the skin conductance for both positive (“happy” or “joyful”) and
negative (“threatening” or “saddening”) stimuli. Consequently,
biometric research platforms have emerged specializing in
computer vision and machine learning techniques, which
enable reliable, valid measurement of emotion-related facial
expressions from real-time non-invasive sensors (Sikka et al.,
2015). Combining computer machine learning techniques that
measure facial expressions with skin conductance responses and
self-report may provide useful insight into emotional states.

Despite all these technological advancements, there is
currently an ongoing lively debate about the effectiveness of
automated emotion recognition approaches. For instance, there
seems to be a paradigm shift from the basic emotion perspective
to an appraisal perspective to find the appropriate theory
integration in the area of automated facial emotion classification.
In general, the criticism of the basic emotion perspective argues
that, although automated facial expression analysis may classify
basic emotional expression categories, it might not ultimately
measure emotional states.

The fact that automated facial expression analysis relies on the
assumption that there is coherence between emotion and facial
expressions (Bonanno and Keltner, 2004; Reisenzein et al., 2013)
limits the interpretation of data generated by automated facial
expression analysis and throws into question the generalization
of automated emotion classification (Wolf, 2015). Furthermore,
some researchers argue that inferences based on data generated
by automated facial expression analysis should build upon
emotion theories that go beyond the basic emotion perspective,
adopt an appraisal perspective, and allow more flexibility to
consider different contexts.

Further to this criticism, relying on machine learning
techniques and algorithms also raises the question of whether
the algorithmic design and implementation introduced is
transparent and also discrimination- and fairness-aware. It is
only then that classifications or predictions, such as those
imposed by the foreseen recognition of emotions in children
prior to clinical investigation, are trustworthy and not subject
to bias. Generally speaking, there are two sources of bias to be
prevented: (a) data sources and input, (b) algorithms (Hajian and
Bonchi, 2016).

Given this context, this paper contributes to the lively
debate and criticism surrounding the effectiveness of automated
emotion recognition approaches. In particular, it presents the
results and interesting findings from a study and experiment that
set out to determine how children and adults may respond to

emotional stimuli and whether such emotions can be adequately
captured and analyzed by state-of-the-art biometric research
platforms. The study has the potential to advance our ability to
identify children in a hospital environment who are very anxious,
scared, or upset.

This paper, however, focuses on the observed discrepancies,
under specific circumstances, in expected (e.g., IAPS) and
observed (e.g., biometric research platform, subjective
classification) emotional responses, which may further help
in identifying the root for the emergence of such a criticism
against automated emotion recognition approaches, in general,
and those based on facial recognition, in particular. Hence, the
rest of the paper is structured as follows. The state of the art is
reviewed in section 2. Section 3 presents our methodology and
experimental setup, where materials are thoroughly explained
by giving an overview and then focusing on each piece of the
system. Then, the first statistical results are presented in sections
4.1 (adults) and 4.2 (children). Finally, we conclude by also
considering the outlook for the future.

2. RELATED WORK

This section provides a brief overview of the literature on the
attempts to classify emotions and of the development of affective
computer systems in relation to facial expression recognition
and other computer-based systems developed to recognize
human emotions.

Emotion refers to a shaking of the organism as a response
to a particular stimulus (person, situation, or event), which is
generalized and occupies the person as a whole. Usually, it is
very brief in duration, which makes it different than Mood.
Mood is a feeling that tends to be less intense than emotion and
often lacks a contextual stimulus (Weiss and Cropanzano, 1996;
Feidakis et al., 2011). Both emotions andmoods are encompassed
under the umbrella of “Affect,” which is a generic term that
covers a broad range of feelings that people experience (George,
1996). Affective computing is the set of techniques aimed at
performing affect recognition from data in different modalities
and by using multiple sensors in order to increase the reliability
of estimates. Affective computing involves two areas: emotion
synthesis, which is used to artificially imitate some of the physical
or behavioral expressions associated with affective states, and
emotion analysis, which is often employed in decision making
for interactive systems (Shen et al., 2009; Poria et al., 2017).
In this paper, we discuss and implement both kinds of affects
by specifically using well-established datasets such as the IAPS
for emotion evocation and stimulus and facial recognition
software for identifying and analyzing emotions in an adult and
child population.

Before discussing the methodology of our affective system,
we introduce the literature on the different categorizations
of emotions and the state-of-the-art of affective systems in
relation to protective groups. In the last several decades,
psychologists have categorized emotions with two fundamental
viewpoints: (1) discrete categories, and (2) emotions grouped
on a dimensional basis. In the first category, all humans
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are believed to have an essential set of basic emotions that
are distinguishable by an individual’s facial expression and
biological processes (Colombetti, 1995). Most emotion experts
think there are a few “basic emotions,” although they do not
all agree on what they are or why they are basic (Ortony
et al., 1987). Ekman (2003) and Ekman and Friesen (1978)
has been very influential with his studies of facial expressions.
He developed a list of basic emotions that are universal, not
culturally determined. These basic emotions are “anger, disgust,
fear, happiness, sadness, and surprise” (Ekman and Friesen,
1978). A few tentative efforts to detect non-basic affective states,
such as “fatigue, anxiety, satisfaction, confusion, or frustration”
have also been made (Dalgleish and Power, 1999; Prinz, 2004).
In the second category, researchers define emotions according
to one or more dimensions. Most of these models integrate
valence and arousal or intensity dimensions, as they propose
that a common and interconnected neurophysiological system
is responsible for all affective states (Rubin and Talerico,
2009). Russell 1980; 2003 circumplex model of affect was
developed on the basis that affective states arise from cognitive
interpretations of core neural sensations that are the product
of two independent neuro-physiological systems. The model
suggests that emotions are distributed in a two-dimensional
circular space, valence and activation (or arousal). Valence
represents the horizontal axis. It can be pleasant (positive) such
as happiness or joy, or it can be unpleasant (negative), such
as anxiety, anger, or boredom. Researchers have criticized two-
dimensional models as being too simplistic. Recent evidence
suggests there should be a fourth dimension (Fontaine et al.,
2007). Watson and Tellegen (1985) changed the orientation and
proposed four dimensions: “pleasantness, engagement, positive,
and negative affect.” Fontaine et al. (2007) reported consistent
results from various cultures where a set of four dimensions is
found in user studies, namely “valence, potency, arousal, [and]
unpredictability.” Plutchik (1980, 2003) proposed a cone-shaped
model with intensity of emotional experience represented by
depth, similarity by nearness, and four pairs of opposites, all
represented by color-coded segments.

As we have seen from the above categorization of emotions,
Ekman (2003); Ekman and Friesen (1978), a pioneer in the visual
modality analysis of emotions, referred to facial expressions as
primary cues for understanding emotions and sentiments. Facial
expressions are a gateway into the human mind, emotion, and
identity and, along with textual data, can provide important cues
to better identify true affective states in the participants (Taggart
et al., 2016; Kim et al., 2018). It can be crucial to understand facial
characteristics when working with patients, especially patients
who are unable to communicate in other ways, for example,
when trying to assess emotions in children unable to self-
report information. This is particularly true when the children
have multi-systemic problems and may be dysmorphic, making
interpretation of facial expressions even more difficult.

Therefore, in clinical environments, assessments of the child’s
emotional state are typically made by clinical staff or family
members. However, in some instances, staff may have difficulty
in accurately estimating children’s emotional states, and family
members/carers may not always be available. In such cases,

automated systems based on computer vision and machine
learning techniques that can reliably process and analyze valid
measurements of emotion-related facial expressions without
using invasive sensors can play a crucial role in diagnostic cases
such as autism. Due to the nature of these studies, which have
very detailed ethical requirements and require access to data on
protected groups, only a handful of studies have examined the
efficacy of automated systems in detecting emotional expressions
in individuals from protected groups in order to assist and define
protocols for better therapeutic treatments. Trevisan et al. (2016)
used facial expression analysis technology to determine how
children with and without autism spectrum disorder (ASD) may
differentially produce facial expressions in response to emotional
stimuli and whether alexithymia may contribute to diminished
facial expressions. Xefteris et al. (2016) developed a methodology
for emotion recognition using facial expressions as indicators
to evaluate the overall health status of subjects suffering from
neurodegenerative diseases (e.g., Mild Cognitive Impairments,
Alzheimer’s, dementia). Leo et al. (2015) used machine learning
strategies based on facial expressions during robot-child user
interaction to evaluate the behaviors of children who belong
to the ASD group for the development of better therapeutic
protocols. Suzan and Mariofanna (2016) used computer vision
and machine learning methods such as active shape models
(ASM) and Support Vector Machine (SVM) to recognize facial
expressions in children with ASD during playtime. Kunz et al.
(2017) used an interdisciplinary approach of human observers
and video-based pain detection systems that analyzes facial
expressions to identify pain in people with dementia and ensure
effective treatment and ongoing care.

In addition, studies using physiological signals to recognize
emotional states such as electroencephalogram (EEG)-based
brain-computer interface systems (BCI) are also providing
interesting results, and there is promise for use in a number of
real-world applications. Huang et al. (2019) showed participants
video clips with negative and positive valence while recording
EEG. The EEG-based BCI system successfully induced and
recognized positive and negative emotional states in patients with
Disorders of Consciousness. Hou and Chen (2019) presented
a system for characterizing emotions using EEG signals, where
four classes of emotions in particular (i.e., happy, sad, calm, and
angry) could be distinguished. They induced these emotions by
musical stimuli (using 20 music passages in each music emotion
group) and recorded the EEG signals of the subjects using 12
electrodes. Guan et al. (2019) proposed a novel classification
framework using a decision tree (DT) classifier to distinguish
between multiclass motor imagery (MI) for BCI. Their proposed
data reduction method performed better when compared
to state-of-the-art semisupervised joint mutual information
(semi-JMI) and general discriminant analysis (GDA) methods.
Fernàndez-Rodríguez et al. (2019) used different sets of flashing
stimuli in a number of participants in order to assess the
effect of the emotional stimuli in these images by using a
P300 brain-computer interface (BCI) speller. Finally, it has been
demonstrated in various studies (Acharya et al., 2018; Jahmunah
et al., 2019) that EEG signals are commonly used to detect brain
diseases such as depression and schizophrenia.
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All of the above models of emotions are very important when
designing and informing the development of affective systems.
Dimensional models have been used by various researchers,
mainly because they provide a way of describing a wide range of
emotional states that occur in real life. “Basic” emotional models
were very influential in early human-computer interaction
studies. When all these emotional models are put into a
computational framework where programmers and developers
map aspects of emotion to aspects of the system, different models
have different pros and cons (Bosse et al., 2010). In our study,
we have used basic emotional models in the categorical data and
dimensional models for automatically measuring and analyzing
the emotions of related behaviors.

3. METHODOLOGY AND EXPERIMENTAL
DESIGN

In the following sections, two experiments will be described, one
with adult participants and one with child participants. Studies
such as Mikels et al. (2005), which aimed to provide categorical
data for the IAPS dataset, have shown that some pictures were
rated as evoking a combination of emotions, for example, anger,
fear, and disgust. Studies such as Barke et al. (2012) have shown
that there are sex differences and cross-cultural differences in
the rating and categorization of a subset of IAPS pictures, with
women tending to rate negative pictures more negatively and
with higher arousal ratings than men, and they established
valence and arousal norms for a German sample, suggesting that
country and sex-specific norms should be used when selecting
IAPS pictures.

Due to the paucity of studies providing categorization of
IAPS pictures in a British sample, in the current adult study,
pictures were selected from the Mikels et al. (2005) paper that
had been rated as representing sadness and fear only, not mixed
emotions, and only those that in their sample did not show
gender differences in their valence and arousal ratings. Due to
the small sample size in both our studies, sex differences and
cross-cultural differences in ratings were not taken into account.

The nature of work for this research is rooted in empirical
software engineering using a controlled experiment method.
The system, which will recognize the participants’ emotions and
control the materials delivery, is the independent variable that
will be manipulated to measure its effect on the dependent
variable, which will be the participants’ emotional state during
the assessment.

3.1. Participants
For the adult-related experiment, nineteen participants were
recruited, the demographics of whom are depicted in Table 1.
Participants were a combination of undergraduate psychology
students from the University of Westminster, who were awarded
1 h of research participation credit, and colleagues and
acquaintances recruited by word of mouth. For the child-related
experiment, eleven children were recruited (five females, six
males, with a mean age of 11.5 years, SD 3.24, and an age range of
7–16). They were recruited by opportunistic sampling and word

TABLE 1 | Mean age and standard deviation for 19 participants.

Males (n = 8) Females (n = 11)

Age, years, mean ± SD 33.10 ± 16.06 28.55 ±10.48

Age range in years 19–61 19–46

of mouth. Written parental consent and verbal child consent
was obtained.

3.2. Ethics and Regulatory Framework
This study was carried out in accordance with the Ethics Code
of the University of Westminster. This includes the assurance
that data about an individual will be held securely, handled in
accordance with the Data Protection Act 1998, and disposed of
in line withWestminster’s retention policy. The Ethics Code1 and
the Data Protection Policy2 are available from the University of
Westminster’s Website. For the child-related experiment, written
parental consent and verbal child consent was obtained.

In order to protect research participants and research staff
involved with unpleasant IAPS protocols, specific measures
were taken to ensure that the risk of negative psychological
consequences was minimized for all parties involved, and the
nature of the images shown was fully explained to both research
staff and participants. As the researchers were interested in
emotions that may be evoked in a hospital waiting room
environment, no images involving mutilations or sexually
arousing images were included, and the unpleasant images
selected for the study had been identified as more likely to have
been rated as evoking discrete emotions such as fear and sadness.

The researchers observed each participant during the study,
and there were procedures in place so that if it was noticed that
a participant was becoming distressed or emotionally upset, the
researchers would ask the participant if they needed anything or
would like to take a break. If a participant was distressed, the
researcher would also get in contact with them later in the day
to confirm that they were feeling less distress and that they had
sought any help they may have needed. In addition, participants
were provided with details of the University Counseling Services
and, following completion of the study, all participants were
fully debriefed.

3.2.1. Data
Participants are referred to using unique numbers, and no
collected data contains participant-identifying information. The
consent form requires a signature and/or the initials of the
participant, but this is kept separately from any data and is
held in a secure file that is only available to the research team.
Data are stored on a password-protected computer on University
premises, and only the research team have access. Data stored on
the laptop and external hard-drive are encrypted. Only members

1https://www.westminster.ac.uk/sites/default/public-files/general-documents/

research-code-of-good-practice.pdf
2https://www.westminster.ac.uk/about-us/our-university/corporate-information/

information-compliance-records-management-and-information-security/

personal-data-protection/
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of the research team have access to the key. Participants had been
made aware that their facial expressions will be photographed
and videoed. No photographs or videos will be published without
the participant’s explicit consent.

3.3. Materials
3.3.1. Photographic Stimuli
The International Affective Picture System (IAPS) (Lang et al.,
1997) is a set ofmore than 900 standardized pictures that has been
widely used in the study of emotion and attention, with more
than 2700 citations. When used with tools for the collection of
subjective affective ratings such as the Self-Assessment Manikin
(SAM) (Lang et al., 1997) or the Affective Slider (Betella
and Verschure, 2016), insights into the dimensional aspects of
emotion are derived. The set of pictures includes pictures such
as snakes, accidents, kittens, babies, and everyday items such as
chairs. Based on previous emotional ratings, 80 pictures were
selected for the current study, 50% neutral, 10% pleasant, and
40% unpleasant. The pictures selected were based on a study
by Mikels et al. (2005) who attempted to provide categories
for the IAPS pictures based on the ratings of pictures by a
sample of 120 participants in the United States. Although it
can be difficult to elicit emotional responses in a laboratory
environment, particularly discrete emotions, the pictures in the
current study were selected to try to evoke emotions in a hospital
waiting room environment, so pictures that were rated as likely to
represent sadness and fear were chosen as well as those rated for
happiness. Pictures in the dataset that had been rated as showing
amixture of emotions, e.g., fear, anger, and anxiety were excluded
as were pictures that had shown sex differences in their ratings.

Normative ratings are available for the pictures based on a
nine-point scale. Mikels et al. (2005) selected the images based
on minimum criteria. The negative images met the minimum
criterion that they be less than the neutral midpoint of 5 (mean
pleasure rating = 3.05, SD = 0.84, and mean arousal rating =
5.56, SD = 0.92). The positive subset were selected as positively
valenced on the criterion of being equal to or greater than 5
(mean pleasure rating = 7.05, SD = 0.63, mean arousal rating =
4.87, SD = 0.98). As we were particularly interested in negative
emotions, the images selected were based on emotions that may
be experienced in a hospital waiting room, such as fear and
sadness. Images of a sexual nature or ones that evoked disgust
were not relevant to the current study.

3.3.2. Affective Digital Slider
The affective digital slider is a tool that provides a self-assessment
scale for the measurement of human emotions that does not
require written instructions. There are two sliders, onemeasuring
arousal, ranging from calm to excited, and one measuring
affective valence, ranging from pleasant to unpleasant (see
Figure 1). Each slider measures a single value on a continuous
normalized scale ranging from 1 to 9 with a central value equal
to 5 and a minimum resolution 0.01; 9 represents a high rating
on each dimension (i.e., high pleasure, high arousal) and 1
represents a low rating on each dimension (i.e., low pleasure,
low arousal).

FIGURE 1 | Overview of the study protocol including the “Affective

Slider” (Betella and Verschure, 2016) (AS), which measures arousal (top) and

pleasure (bottom) on a continuous scale.

FIGURE 2 | System diagram of the multimodal human behavior study.

3.3.3. Subjective Data
In addition to providing dimensional data using the digital slider,
participants were asked to select from a list the word that best
described the predominant emotion that they felt after viewing
each picture. The list included the words happy, sad, fear, neutral,
and disgust; there was also an option for the participants to
select ‘other’ and write their own description. For data analysis
purposes, these subjective ratings were then coded as negative,
neutral, or positive (such that happy was rated as positive, sad,
fear were negative).

3.4. Biometric Research Platform
Galvanic Skin Response (GSR) and facial expressions were
measured using the iMotions Biometric Research Platform 6.0,
iMotions A/S, Copenhagen, Denmark, 2016. An Application
Programming Interface (API) module was used together with
the iMotions platform and the Galvanic sensor to monitor and
control in real time the connections with the biometric sensors
through TCP ports, and the data flow of the experiment, with
time, sequence number, and stimulus name and type assigned
to variables (see Figure 2). Facial expressions were recorded for
analysis via a webcam (Logitech HD Pro Webcam C920).

iMotions can detect changes in key face features such as brows,
eyes, and lips and analyze the basic emotions of the recorded
face. Researchers can choose between two different algorithms to
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FIGURE 3 | The general pipeline of the iMotions recognition system. Adapted from Kim et al. (2018). Female Mood Avatars by Namnso Ukpanah3.

FIGURE 4 | UML interaction overview diagram.

classify emotions from facial expressions in iMotions’s platform:
the FACET module, based on the FACET algorithm (Littlewort
et al., 2011), and the AFFDEX module, based on the AFFDEX
algorithm by Affectiva Inc. (El Kaliouby and Robinson, 2005;
McDuff et al., 2010). Affectiva is an API for emotion recognition
using deep learning. It is said to have nearly 6 million faces
as an emotion database in order to provide great accuracy4.
These algorithms detect facial landmarks and apply a set of
rules based on psychological theories and statistical procedures
to classify emotions (Li and Deng, 2018; Stöckli et al., 2018).
Different algorithms, like AFFDEX and FACET, use distinct
statistical procedures, facial databases, and facial landmarks to

3https://blog.affectiva.com/the-worlds-largest-emotion-database-5.3-million-

faces-and-counting
4https://search.creativecommons.org/photos/21d1d4c8-a166-4ac2-9100-

f6e33ab7b316

train the machine learning procedures and ultimately classify
emotions (Kim et al., 2018). For all our experiments, we have
used the AFFDEX algorithm. iMotions classifies the seven basic
emotions (joy, anger, surprise, fear, contempt, sadness, and
disgust) and provides a confidence rating for the probability that
an emotion is being expressed. For data analysis purposes, joy
was coded as positive; anger, fear, contempt, sadness, and disgust
were coded as negative; and data reflecting surprise was excluded,
as surprise can be either positive or negative in valence. Figure 3

shows the iMotions architecture diagram with an image or video

sequence as input, the feature maps based on convolution and

pooling layers, the fully connected layers, and the output, which

can be happiness, sadness, or any of the seven emotions classified
by iMotions.

Galvanic skin response was measured from the phalanx of
the index and middle finger of the nondominant hand using 1
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cm2 Ag/AgCl (silver/silverchloride) electrodes placed in reusable
snap-on Velcro straps. For each participant, the GSR recorded
in microvolts (µV) was segmented into 8-s intervals for each
picture, and the mean of each participant’s 2-min baseline
measure was subtracted from the peak of each segment.

The API module was designed to receive the biometric
sensor data, analyse it, and control the delivery of the
presented materials. The Unified Modeling Language (UML)
interaction overview diagram (see Figure 4) shows how the
system starts by testing the biosensors, starting with the camera
for facial detection, then the GSR sensor. After passing the tests
successfully, the participant engages with the first material (P1),
while the API reads and analyses the data provided by the sensors.
The material will continue playing to the end before moving to
the next. This process will continue in the same pattern through
the rest of the materials.

Figure 5 presents a flow chart for the pilot study of
the automated emotion assessment in adults and children.
The API continuously reads/monitors the data and provides
control signals accordingly until the emotion assessment session
is completed.

3.5. Protocol
Participants were seated comfortably in front of a computer
screen. They were advised that their facial expressions in
response to each photograph would be recorded via a webcam
and recorded with iMotions facial expression analysis software.
Participants were recorded individually in a quiet laboratory at
the university and were asked to rate a set of 80 photographs
selected from IAPS. The order of the photographs was pseudo-
random such that each emotive photograph was preceded by
a neutral photograph. Each photograph was presented on a
computer screen for 8 s. Participants were instructed to maintain
their attention on the screen for the whole time that the
image was present. Galvanic skin response was recorded from
each participant at baseline for 2 min, during which time the
participants were asked to relax and close their eyes. GSR was
then recorded throughout the study. Standardized instructions
were read to each participant based on the Self-Assessment
Manikin instructions (Bradley and Lang, 1994) amended for use
with the Affective Slider (Betella and Verschure, 2016) with the
instruction to “move the sliders to express how you actually
felt while watching the picture.” Participants were asked to view
and rate four photographs that were similar to those used in
the study to familiarize themselves with the rating scales and
to ensure that they were happy to participate. Written consent
forms were completed.

Figure 6 shows the experimental set up with the participant.
Following each photograph, the screen showed the rating page,
and the participant was asked to provide their subjective affective
ratings for pleasure and arousal using the Affective Slider and
then to select the word that indicated the predominant emotion
that they felt when viewing the picture. Participants were advised
that if the word that described their emotion was not there, they
should select ‘other’ and type the word that best describes how
they felt in response to the photograph in the space provided.
The rating screen stayed in place until ratings had been made.

FIGURE 5 | Flowchart of the pilot study of automated emotion assessment in

adults and children.

A further screen then appeared for 4 s, advising the participant to
prepare to view the next slide.

3.5.1. Additional Notes for the Child-Related

Experiment
Each child was rewarded for their participation with a £10 “Love
to Shop” voucher. They were advised that they could withdraw
their participation at any point without penalty. Recording of the
data took place in the participants’ home environment. Thirty-
two images (16 neutral, eight positive and eight negative) were
selected from IAPS for the study with children based on those
used in a study by McManis et al. (2001), where they had been
judged by teachers to be appropriate for viewing by children
in the age range 7–14 years. The images covered a wide range
of affective content, and each emotive image was preceded by
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FIGURE 6 | Overview of the study protocol. The top row shows the participant together with the facial landmark points assigned by the iMotions facial recognition

algorithm and a screen with instructions. The middle row shows the GSR and the Affdex Facial expression metrics. The bottom row shows in a timeline the response

of the participant per image, and the Affective Slider, which, as can be seen in Figure 1, measures arousal (top) and pleasure (bottom) on a continuous scale. Due to

copyright issues associated with the IAPS images, all images at the bottom have been blurred.

a neutral image. Standardized instructions based on the SAM
for children, adjusted for use with the Affective Digital Slider,
were read to each participant. Participants were seated in front
of a laptop with a built-in camera that recorded their facial
expressions. Parents were allowed to be in the room if they
requested to be.

4. STATISTICAL ANALYSIS AND RESULTS

The following section provides details of the treatment of results
from both experiments. The participant’s valence, arousal, and
GSR scores are subjected to Analysis of Variance (ANOVA),
whilst participants’ subjective ratings and iMotions classification
are subjected to analysis using Chi-square.

4.1. Study With Adults
Participants’ responses on the digital slider scales for valence and
arousal were recorded for each picture, as was GSR response.
Mean scores and standard deviations (SD) of participants’ ratings
(on a scale of 1-9) for each of the IAPS negative, neutral, and
positive pictures and their GSR response recorded in microvolts
(µV) are shown in Table 2. GSR data for one participant was
excluded due to technical difficulties during the recording.

Low scores (i.e., < 5) indicate negative valence and low
arousal, scores around 5 indicate neutral valence and little or no
reported arousal, and higher scores (i.e., >5) indicate positive
valence and high arousal. The descriptive statistics reported in

TABLE 2 | Mean (+SD) valence and arousal ratings for the Affective Digital Slider

(n = 19) and GSR data (n = 18) for each IAPS picture category.

IAPs category

Measure Negative (n = 30) Neutral (n = 40) Positive (n = 10)

Valence 3.49 (±0.91) 5.02 (±0.23) 6.38(±1.19)

Arousal 5.78 (±1.13) 4.55 (±1.03) 4.16 (±1.00)

GSR(µV) 9.16 (±27.67) 8.78 (±27.50) 11.73 (±28.02)

Table 2 suggest that, for valence, as expected, negative pictures
have the lowest mean score, suggesting that they evoked negative
emotions, neutral pictures have a mean score at the mid-point
of the scale, suggesting that neither positive or negative emotion
was evoked, and positive pictures have the highest mean score,
suggesting that more positive emotions were reported.

In terms of arousal, it was expected that both positive and
negative images would have a higher mean arousal rating than
neutral images. However, the descriptive statistics suggest that
negative images elicited a higher mean arousal rating, while
the ratings for neutral and positive images were similar. In
addition, mean GSR scores (µV) indicate that positive pictures
and negative images elicited a greater GSR response than neutral
pictures, with positive pictures eliciting the greatest GSR.

In order to establish whether any of these differences were
significant, repeated-measures one-way ANOVA was conducted.
The within-subjects factor, the type of IAPS image, had three
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levels: negative, neutral, and positive. There was a significant
effect of the type of IAPS image on the valence score [F(2, 36) =

39.989, p < 0.01]. Bonferroni-corrected simple effects reveal that,
using the digital slider, positive images were rated as significantly
more positive than both neutral and negative images (t =

4.871, df = 18, p < 0.05; t = 6.538, df = 18, p < 0.05) and
negative images were rated as significantly more negative than
neutral images (t = 1.420, df = 18, p = 0.173).

There was a significant effect of the type of IAPS image on
the arousal score [F(2, 36) = 10.500, p < 0.01]. Bonferroni-
corrected simple effects reveal that, using the digital slider,
negative images were rated as significantly more arousing than
positive images (t = 3.872, df = 18, p = 0.001) but not
significantly more arousing than neutral images (t = 3.093, df =
18, p = 0.006), and there was not a significant difference
in arousal rating between neutral and positive images (t =

7.636, df = 18, p < 0.05).
There was a statistically significant effect of the type of IAPS

image on the GSR score [F(2, 34) = 25.037, p < 0.001]. Bonferroni
simple effects reveal that positive images provoked a significantly
higher GSR than neutral or negative images (t = 5.387, df =

17, p = 0.001; t = 4.758, df = 17, p < 0.001); there was
no significant difference in GSR between neutral and negative
images (t = 2.341, df = 17, p = 0.032). These findings suggest
that, when using the digital sliders, participants generally showed
agreement with the IAPS classification of the images in terms of
their valence rating and that negative images were more arousing
when rated using the digital slider but that positive images elicited
the greatest GSR.

As ratings using the affective digital slider show that
participants generally rate the images in accordance with the
IAPS classification and neutral images were only included in the
study to bring participants’ valence and arousal back to neutral
between each of the emotive images, analysis of the association of
subjective ratings and picture type and iMotions data and picture
type focused on the negative and positive images.

A Chi-squared test was conducted to test for an association
between the type of image displayed (negative or positive) and
subjective rating of participants, who selected a word that best
described how each picture made them feel (negative or positive).
Results show a significant association between IAPS picture type
and subjective rating (X2 = 192.700, df = 1, p < 0.001).
Participants rated negative pictures as negative in 85.6% of cases
and rated positive pictures as positive in 75.9% of cases (see
Table 3 for observed and expected counts). The results show that
participants weremore likely to rate a negative picture as negative
and a positive picture as positive.

The results of a Chi-squared test for an association between
the type of picture displayed and the classification of the facial
expression by iMotions software show a significant relationship
between IAPS picture type and iMotions (X2 = 32.233, df =

1, p < 0.001). The iMotions software identified negative facial
expressions in participants viewing negative images in 95.8% of
cases and identified positive facial expressions in participants
viewing positive images in 23% of cases. Interestingly, iMotions
also identified negative emotional reactions to 77% of the
positive pictures (see Table 4 for expected and observed counts).

TABLE 3 | Participants’ ratings (negative, positive) of negative and positive

images.

IAPS picture type

Subjective rating Count Negative Positive Row totals

Negative Observed 357 (85.6%) 35 (24.1%) 392

Expected 290.9 101.1

Positive Observed 60 (14.4%) 110 (75.9%) 170

Expected 126.1 43.9

Columns totals 417 145 562 (grand total)

TABLE 4 | iMotions classification (negative, positive) of participants’ facial

expressions to negative and positive images.

IAPS picture type

iMotions identifier Count Negative Positive Row totals

Negative Observed 277 (95.8%) 77 (77%) 354

Expected 263.0 91.0

Positive Observed 12 (4.2%) 23 (23%) 35

Expected 26.0 9.0

Columns totals 289 100 389 (grand total)

TABLE 5 | Mean (+SD) valence and arousal ratings for the Affective Digital Slider

(n = 11) and GSR data for each IAPS picture category.

IAPs category

Measure Negative (n = 8) Neutral (n = 16) Positive (n = 8)

Valence 5.26 (±0.49) 5.01 (±0.42) 5.40 (±0.67)

Arousal 5.62 (±0.67) 4.43 (±1.13) 5.87 (±0.87)

GSR(µV) 3994.85 (±203.60) 3997.65 (±204.59) 3999.27 (±204.16)

The results show that iMotions software was more likely to
identify negative facial expressions in response to negative
images but interestingly, more negative facial expressions to
positive pictures.

4.2. Study With Children
Participants’ responses on the digital slider scales for valence and
arousal were recorded for each picture, as was GSR response.
Mean scores and standard deviations (SD) of participants’ ratings
(on a scale of 1-9) for each of the IAPS negative, neutral, and
positive pictures and their GSR response recorded in microvolts
(µV) are shown in Table 5.

The descriptive statistics reported in Table 5 suggest that,
for valence, the pictures did not evoke reportable negative or
positive emotions. In terms of arousal, both positive and negative
images have a higher mean arousal rating than neutral images. In
addition, mean GSR scores (µV) indicate that positive pictures
elicited a greater GSR response than both neutral and negative
pictures. To establish whether any of these differences were
significant, repeated-measures one-way ANOVA was conducted.

The within-subjects factor, the type of IAPS image, had three
levels, negative, neutral and positive. There was no significant
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TABLE 6 | Participants’ ratings (negative, positive) of negative and positive

images.

IAPS picture type

Subjective rating Count Negative Positive Row totals

Negative Observed 33 (50%) 40 (50.6%) 73

Expected 33.2 39.8

Positive Observed 33 (50%) 39 (49.4%) 72

Expected 126.1 43.9

Columns totals 66 79 145 (grand total)

effect of the type of IAPS image on the valence score [F(2, 20) =

1.744, p = 0.200]. This indicates that the pictures did not
evoke reported emotional responses in the children. There was
a significant effect of the type of IAPS image on the arousal score
[F(2, 20) = 6.028, p < 0.01]. Bonferroni-corrected simple effects
(p should be ≤0.0016 to reach significance), however, did not
reach significance when comparing negative with neutral images
(t = 2.390, df = 10, p = 0.038) and positive with neutral images
(t = 2.654, df = 10, p = 0.006).

There was a statistically significant effect of the type of IAPS
image on the GSR score [F(2, 20) = 22.193, p < 0.001].
Bonferroni-corrected simple effects reveal that positive images
had a significantly higher GSR than negative images (t =

5.442, df = 10, p < 0.001), but there was no significant
difference in GSR between neutral and negative images (t =

3.804, df = 10, p < 0.03) or between neutral and positive images;
(t = 4.758, df = 17, p < 0.002). These findings suggest that,
when using the digital sliders, participants did not report either
negative or positive responses or higher arousal to negative and
positive images, as would be expected. GSR, however, was higher
in response to positive images.

In order to explore whether subjective ratings and iMotions
measures of facial expression were associated with the type of
picture presented, Chi-squared tests were conducted. A Chi-
squared test was conducted to test for an association between
the type of image displayed (negative or positive) and subjective
rating of participants, who selected a word that best described
how each picture made them feel (negative or positive). The
results show no association between IAPS picture type and
subjective ratings (X2 = 0.006, df = 1, p = 1). Participants rated
negative pictures as negative in 50% of cases and rated positive
pictures as positive in 49.4% of cases (see Table 6 for observed
and expected counts). The results show that participants were just
as likely to rate a negative picture as positive and a positive picture
as negative.

The results of a Chi-squared test for an association between
the type of picture displayed and the classification of the facial
expressions by iMotions software did not show an association
between IAPS picture type and iMotions (X2 = 2.716, df =

1, p = 0.112). The iMotions software identified negative facial
expressions in participants viewing negative images in 71.4%
of cases where a negative picture was shown and identified
positive facial expressions in participants viewing positive images
in 46.7% of cases (see Table 7 for expected and observed counts).
The results show that iMotions software was more likely to

TABLE 7 | iMotions classification (negative, positive) of participants’ facial

expressions to negative and positive images.

IAPS picture type

iMotions Identifier Count Negative Positive Row totals

Negative Observed 25 (71.4%) 24 (53.3%) 49

Expected 21.4.0 27.6

Positive Observed 10 (28.6%) 21 (46.7%) 31

Expected 13.6 17.4

Columns totals 35 45 80 (grand total)

identify negative facial expressions in response to negative images
but also to positive pictures.

5. DISCUSSION

The findings in the current study are interesting for a number of
reasons. Rating the IAPS images using the Affective Digital Slider
produced differing results for adults and children. Adults rated
positive images with a higher valence, which was representative
of the images making them feel happier than neutral images
and negative images with lower valence, suggesting that the
negative imagesmade them feel sad/fearful. This is what would be
expected and would appear to corroborate the IAPS classification
of the images, as has been shown in many previous studies.
However, it should be noted that the mean ratings for the
positive images, although consistently higher than neutral, were
not that much higher. In contrast, the children did not rate the
negative, neutral, or positive images as differing in valence or
arousal. These findings are in alignment with those of Vetella
and Verscure (2016), who also found that standardized sets of
stimuli, such as IAPS, may not be as effective as they once were
at evoking emotions, due to our exposure to highly arousing
stimuli in the media and general desensitization. In addition,
the respective associations of subjective ratings and iMotions
classification of facial expressions with picture category suggest
that, for adults, subjective rating is better at identifying emotions
than biometric software. It is unsurprising that participants
show higher reliability than iMotions in classifying positive and
negative images, given the importance of facial expression to
human communication. In children, subjective ratings and the
iMotions identification of expressions were at the level of chance.
An additional factor that must be considered is that researchers
in both studies noted little change in the facial expression
of participants as they observed the IAPS images, once again
suggesting that the stimuli may not have sufficiently evoked the
emotions of the participants.

Other explanations for the difference in findings between
children and adults could be due to the IAPS pictures selected and
the environment in which the studies took place. Children were
shown different and fewer images to ensure that the images were
age-appropriate and that the task was not too onerous. The adult
experiments took place in a laboratory at the University, whilst
the children performed the task in their home environment. In
the home environment, conditions such as lighting could not be
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controlled in the same way as in the laboratory, and this may have
led to the biometric platform not detecting all facial movements.
One of the difficulties with evoking and categorizing emotions in
a laboratory scenario and not only through the use of pictures is
establishing how each picture will actually make the individual
feel—this will vary between participants. What may evoke fear in
one participant may evoke anger, or indeed a mixture of more
than one emotion, in another. In future studies, it is important
to use more provocative stimuli (for example, emotive video
clips) to ensure that emotions are sufficiently elicited and a larger
sample and to ensure maximal environmental conditions for the
use of the biometric platform.

While the biometrics facial recognition industry has grown,
facial movements and expressions may not always be a reliable
indication of how someone is feeling. Studies have shown
that humans make assessments about other people’s emotions
based on factors including body language and tone of voice.
As such, many emotion detection algorithms that have been
developed in the last two decades are still facing problems with
accuracy, complexity, and real-world implementation due to the
irregularities in the complexity of models and unpredictability
between expression categories. These approaches should thus
always be used responsibly, especially when used in crime-
detection applications.

6. CONCLUSION

In this paper, we contributed to the lively debate about and
criticism of the effectiveness of automated emotion recognition
approaches by attempting to question the following aspects:
(a) the adequacy of well-established techniques such as the
International Affective Picture System (IAPS), (b) the adequacy
of state-of-the-art biometric research platforms, (c) the extent
to which emotional responses may be different between children
or adults. Our initial statistical analysis and results indicate that
although there is, in general, an alignment between expected
(IAPS) and observed (iMotions) responses for negative images,
there is an interesting discrepancy in the expected and observed
responses for positive images. This may be for many reasons
ranging from incorrect classification of images in IAPS to
incorrect classifications of responses by the biometric research
system, iMotions, to significant changes in the emotional

responses of the human population. In the future, we plan to
dig deeper into the correlations among all of the significant
variables by addressing all aspects of the experiment: facial
recognition, subjective classification of responses, collection of
images (IAPS), and different groups, i.e., adults and children.
This multi-dimensional, multi-variate analysis will help shed
more light on the real causes of such problems with automated
emotion recognition, as well as into the limitations of current
state-of-the-art approaches and technologies.
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Large-scale neuroscience literature call for effective methods to mine the knowledge

from species perspective to link the brain and neuroscience communities, neurorobotics,

computing devices, and AI research communities. Structured knowledge can motivate

researchers to better understand the functionality and structure of the brain and link

the related resources and components. However, the abstracts of massive scientific

works do not explicitly mention the species. Therefore, in addition to dictionary-based

methods, we need to mine species using cognitive computing models that are more

like the human reading process, and these methods can take advantage of the rich

information in the literature. We also enable the model to automatically distinguish

whether the mentioned species is the main research subject. Distinguishing the two

situations can generate value at different levels of knowledge management. We propose

SpecExplorer project which is used to explore the knowledge associations of different

species for brain and neuroscience. This project frees humans from the tedious task

of classifying neuroscience literature by species. Species classification task belongs to

the multi-label classification which is more complex than the single-label classification

due to the correlation between labels. To resolve this problem, we present the

sequence-to-sequence classification framework to adaptively assign multiple species

to the literature. To model the structure information of documents, we propose the

hierarchical attentive decoding (HAD) to extract span of interest (SOI) for predicting

each species. We create three datasets from PubMed and PMC corpora. We present

two versions of annotation criteria (mention-based annotation and semantic-based

annotation) for species research. Experiments demonstrate that our approach achieves

improvements in the final results. Finally, we perform species-based analysis of brain

diseases, brain cognitive functions, and proteins related to the hippocampus and provide

potential research directions for certain species.

Keywords: brain science, neuroscience, cognitive computing, multi-label classification, corpus annotation,

PubMed, linked brain data
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1. INTRODUCTION

Managing neuroscience literature from species perspective is an
innovative and important research task for understanding the
functionality and structure of the brain. Species information in
scientific works can be used to organize knowledge facts in the
Linked Brain Data1 (LBD) (Zeng et al., 2014b) scheme, and then
the system composed of brain and neuroscience communities
(Ascoli et al., 2007; Gardner et al., 2008; Imam et al., 2012;
Sunkin et al., 2012; Larson and Martone, 2013; Poo et al., 2016),
neurorobotics, and other devices can automatically utilize species
knowledge on the Internet by accessing the API provided by the
LBD platform. For example, brain science knowledge of different
species can be used to build brain simulation cloud computing
platforms for different animals (Liu et al., 2016), monkey brain-
inspired neurorobotics (Zeng et al., 2018), Drosophila brain-
inspired Unmanned Aerial Vehicle (UAV) (Zhao et al., 2018),
neuroimaging (Zeng et al., 2014a), and help neuroscientists
design biological experiments (Poo et al., 2016). Internet of
Things for brain science aims to link the brain-related data and
devices to the Internet and help research and protect the brain.
Our research opens up new opportunities for understanding
and exploring the brain of different species to promote brain
and neuroscience research. The species classification task is to
assign pre-defined species labels to neuroscience literature that
does not explicitly mention the species. This technology can be
used to classify and organize neuroscience literature based on
the species to help researchers and devices easily compare the
similarities and differences between different species for linking
the brain and neuroscience communities and different devices.
The knowledge about certain species can also help find solutions
to address some of the major health problems in humans, e.g.,
the HIV (Micci and Paiardini, 2016), the Jenner vaccine (Riedel,
2005), the Parkinson’s disease (Bailey, 2006), etc.

The use of model organisms for human research purposes is
commonplace—researchers can study these organisms in ways
that are unethical or impractical in humans. Model organisms
represent the species that have been extensively studied to
understand specific biological phenomena and are usually easy
to maintain and breed in a laboratory setting. In this paper, as
an illustrative example, we focus on 23 types of representative
animal models selected from Neuromorpho.org, i.e., “Agouti,
Blowfly, Elegans, Cat, Chicken, Cricket, Dragonfly, Drosophila
melanogaster, Elephant, Frog, Goldfish, Guinea pig, Human,
Monkey, Moth, Mouse, Rabbit, Rat, Salamander, Sheep, Spiny
lobster, Turtle, Zebrafish”. Many scientific works do not explicitly
mention research species, which poses challenges for large-
scale automated species extraction and analysis. Although some
species can be inferred by manual reading and analysis of
other information in the literature, such as target gene terms,
organs, and functions, it is already difficult for humans to read
a hundred articles. Analyzing millions of literature in this way
is almost impossible. When classifying these documents, the
human brain uses not only the brain’s dictionary matching
mechanism but also other mechanisms (such as attention and

1http://www.linked-brain-data.org

memory). The secondary challenge is how to guess various
species at once. The research of other species is crucial for the
study of brain and neuroscience. Faced with large-scale literature,
it is inefficient to manually summarize species or to infer species
using complex processes.

Species information is one of the most basic information that
researchers are concerned about. (1) Researchers based on model
organisms first focus on what species the research is based on.
Because the species studied in the paper determine whether this
paper has reference value or impact on their research. When
research problems shift from frontier species to later species,
a lot of species matching work is needed. It would be great
if the species could be identified automatically. For example,
specific genes related to working memory have been studied in
Drosophila melanogaster, and they have also been found in mice,
but no experiments have been performed. If the researcher doing
the mouse experiment wants to search all the genes that have
been studied in other species, or if he wants to search whether
the specific genes present in mice have been studied in other
species, then he first needs to know which species were studied
in each article. Species are important information in biological
research because each species has different characteristics, the
research area suitable for each species is different, and the
infrastructure investment (e.g., smart animal house, humidity
and temperature control devices, laboratory instrument, etc.) of
each species is also different. For example, zebrafish are suitable
for exploring developmental problems, and fruit flies are more
likely to perform genetically modified experiments. It is difficult
to use mice to study developmental problems. It is important and
instructive to make full use of species information for knowledge
integration. (2) For researchers who do not consider too much
species information, they also need to be aware of the importance
of species in their research. If researchers want to write a review,
such as a survey of mice or fruit flies, the need to use such a
toolkit to eliminate many unnecessary papers. (3) If researchers
want to build an automated literature analysis system in a certain
field, the lack of species information will lead to confusion of
knowledge on the Internet. In subsequent applications, users
cannot get the results they are searching for. Machines simply
cannot distinguish which species the knowledge belongs to, so
this system cannot be easily accomplished.

Brain science knowledge urgently needs to be managed from
a species perspective. Otherwise, this knowledge will be mixed,
which will seriously affect subsequent applications and elements,
including biologists/researchers who perform literature analysis
and the automated literature analysis systems on the Internet.
We need to use the knowledge of other species to solve the
problems of humans. Categorizing several documents manually
does not yield much valuable information. Categorizing large-
scale literature by species will help harness the knowledge of other
species to solve the problems of humans. This paper proposes
a framework that can effectively process large-scale documents,
improves the efficiency of literature analysis, and organizes
the brain science knowledge based on species of interest. This
framework uses not only species mentions and genetic terms
but also cognitive computing models to process the contextual
expressions and span of interest in the text. Our work has greatly
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improved the efficiency of species analysis and data transmission
on the Internet.

This task can be formulated as two different task schemes,
the text classification scheme (discriminative model) and
the text summarization scheme (generative model). The text
classification scheme classifies a document into different species,
while the text summarization scheme summarizes the document
from a species view and naturally considers the label correlation.
The text classification scheme is easier because a document can be
encoded as a fixed-length vector to retain the main information.
The challenge is how to emphasize effective information about
species in a long document. Note that this is a multi-label
classification (MLC) task since a scientific work may be related
to two or more species. The text summarization scheme is more
like the human reading process because when humans read the
paper, we gradually discover each species by mapping to different
parts of the paper. Although the labels are obtained in a certain
order, this order is not considered in evaluation—and this is not
needed, as it is being used as a MLC problem. Inspired by the
human reading process, the text summarization model gradually
generates each species by attending to the span of interest (SOI)
and considers the correlation between the tags. SOI in text is
equivalent to region of interest (ROI) (Girshick et al., 2014;
Girshick, 2015; Ren et al., 2015; He et al., 2017) in a picture. ROI
is widely used in object detection of computer vision (CV) and it
can be any particular portion of the image that seems important
for the task. Here, we use SOI to represent the important text
spans for species prediction.

The PubMed2 provides the citations of references and
abstracts of biomedical literature from MEDLINE, life science
journals, and online books. The PubMed Central (PMC)3

archives publicly accessible full-text articles of biomedical
and life sciences journal literature. The research project of
this paper is mainly about knowledge linking and extraction
in the field of brain and neuroscience. Linked Brain Data
(Zeng et al., 2014b, 2016; Zhu et al., 2016b,c) is an effort
for extracting, integrating, linking and analyzing brain and
neuroscience data and knowledge from multiple scale and
multiple data sources. This platform focuses on the associations
among brain regions, brain diseases, cognitive functions,
neurons, proteins, and neurotransmitters. There are more than
2,339,898 relational triples in the LBD platform, such as
(Hippocampus, relatedTo, Alzheimer’s disease), (Hippocampus,
relatedTo, Associative memory). These relations are machine-
readable structured knowledge. This paper can organize massive
structured brain science knowledge according to different
species, thereby forming the structured species knowledge, which
can be considered as 4-ary, e.g., (Hippocampus, relatedTo,
Alzheimer’s disease, Human) or (Hippocampus, relatedTo,
Alzheimer’s disease, Monkey). The proposed approach can
facilitate the cross-species brain science research. The LBD
platform provides services to connect the brain and neuroscience
communities and devices.

2https://www.ncbi.nlm.nih.gov/pubmed/
3https://www.ncbi.nlm.nih.gov/pmc/

A commonly used multi-label approach is the binary method
(Fan and Lin, 2007) which builds a decision function for each
class. Despite the success of theMLC scheme, it is often necessary
to find a threshold to convert the probability value into a
true/false flag for each class so that we can select a subset
of the species as the final result. The thresholds for different
species are usually different, and the final result is affected by
the hard threshold. Finding globally optimal thresholds (Fan
and Lin, 2007) for all classes is complicated. Inspired by Yang
et al. (2018), we propose the sequence-to-sequence classification
(SeqC) framework. Different from the MLC scheme, our SeqC
framework does not need to search the thresholds because each
step only outputs the most probable label by emphasizing SOIs.
When there are no more species, this model will output the stop
tag (Bahdanau et al., 2015). Abstractive summarization models
usually have a ground truth sequence to learn how to paraphrase
the main content of the passage and may use the teacher forcing
(Williams and Zipser, 1989) and the scheduled sampling (Bengio
et al., 2015) to improve the model performance. In contrast,
this task only has class labels without the sequence order, so we
convert species labels into virtual species sequences in a fixed
order. During the model evaluation, we do not consider the
label order.

MLC is more complex than single-label classification in that
the labels tend to be correlated and different parts of a document
have different contributions when predicting labels. Our decoder
considers the correlations between species by processing species
dependencies through LSTM units. A document can be very
long, which poses a challenge for the one-level encoding model.
Besides, not all sentences help to predict the species and not
all words contribute equally to a sentence. To solve these two
problems, we integrate the hierarchical document encoding and
hierarchical attentive decoding (HAD) into the sequence-to-
sequence model. We consider the word- and sentence/section-
levels. Besides, simple MLC models only generate a vector
representation that calculates an attention distribution over
the document. Different species are usually associated with
different parts of the document, so simple MLC models cannot
adaptively attend to different parts of the document for different
species, which potentially limits the performance. In contrast, our
sequence-to-sequence classification model allows each species
prediction to attend to different parts of the document.

To train and evaluate models, we label the PubMed and
PMC corpora4. We present two versions of annotation criteria
(mention-based annotation and semantic-based annotation).
This paper is organized below. Section 3 describes the core
modules of this framework. Section 4 describes the labeled
datasets and experimental analysis. The major contributions of
this paper can be summarized below.

I. This paper formulates a new task, species classification in
neuroscience literature. We propose the SeqC framework to
classify neuroscience literature based on SOIs. This study
improves the transfer efficiency of brain science knowledge

4https://github.com/sssgrowth/SPECIESEXPLORER
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on the Internet and opens up opportunities for brain science
text mining from the species perspective.

II. Our approach integrates the hierarchical document
modeling and hierarchical attentive decoding to model the
document structure and extract informative SOIs related
to species. This framework supports both dictionary-based
method and various deep learning models.

III. We create three datasets which label 23 types of
representative species in the PubMed and the PMC
corpora. We propose two versions of annotation standards
to facilitate the use of knowledge extraction in brain science
text mining. This process is semi-automated and easily
extendable to greater sets of species.

2. RELATED WORK

Some works use the knowledge of different animals to resolve
biological and biomedical questions. The species information can
be used to manage the facts in a knowledge base to support the
research of brain and neuroscience, such as the Brain Knowledge
Engine5 (Zhu et al., 2016a). They organize the knowledge with
species meta-data and explore the multi-scale nervous systems,
cognitive functions and diseases of different species for linking
brain and neuroscience communities, neurorobotics, brain
simulation cloud computing platform, and other devices on the
Internet by accessing the API. Norouzzadeh et al. (2018) propose
a method to identify the location and behavior of animals from
pictures to study and conserve ecosystems. McNaughton et al.
(1983) study the contributions of position, direction, and velocity
to single unit activity in the hippocampus of rats. Leach et al.
(1996) found that blockade of the inhibitory effects of CTLA-4
can allow for, and potentiate, effective immune responses against
tumor cells on mice. The above two contributions won the Nobel
Prizes in Medicine because they have profound implications
on human biomedical research. The animal information is also
helpful for the study of the welfare of the animals, and the concept
of animal rights (Andersen and Winter, 2017).

The technologies for the Internet of Things (Gochhayat
et al., 2019; Kumar et al., 2019; Bebortta et al., 2020; Qian
et al., 2020) are also widely used in different domains for
understanding the functionality and structure of the brain and
address some problems in human daily life. De Albuquerque et al.
(2017) investigate the applications of brain computer interface
systems. Some IoT frameworks are proposed to analyze the brain
signals, such as brain CT images (Jaiswal et al., 2019; Sarmento
et al., 2020; Vasconcelos et al., 2020), MRI (Mallick et al.,
2019; Arunkumar et al., 2020), etc. Many applications benefit
human daily life. Innovative algorithms for improving video
streaming are proposed in the Internet of Multimedia Things
(IoMT) and Internet of Health Things (IoHT) to optimize the
Telemedicine and medical quality of service (m-QoS) (Sodhro
et al., 2018). Sodhro et al. (2019a) propose the QGSRA algorithm
to alleviate fluctuation in the wireless channel to support
multimedia transmission. Using artificial intelligence algorithms
to solve accurate resource management and energy efficiency

5http://www.brain-knowledge-engine.org

issues (Sodhro et al., 2017, 2019b) is an important aspect of
implementing the Internet of Things.

The NCBI Taxonomy6 (Federhen, 2011) is a curated
classification and nomenclature for all of the organisms in the
public sequence databases. It accounts for about 10% of the
described species of life on the planet. It includes more than
234,991 species with formal names and another 405,546 species
with informal names. Currently, the experiments of this paper
focus on the 23 model organisms because there are systematic
research methods for these species. Bada et al. (2012) create the
Colorado Richly Annotated Full-Text (CRAFT) Corpus which
contains 97 articles and annotates the concepts from 9 well-
known biomedical ontologies and terminologies. Funk et al.
(2014) evaluate dictionary-based concept recognizers on eight
biomedical ontologies in the CRAFT dataset. Biomedical natural
language processing (BioNLP) (Ananiadou and McNaught,
2006; Cohen and Demner-Fushman, 2014; Wei et al., 2015)
aims to enable computers to efficiently read the vast amount
of the literature and extract key knowledge about specific
topics. There are some BioNLP tasks and corpora in the
context of the BioCreative and BioNLP shared tasks. BioNLP
(open) shared tasks (Dubitzky et al., 2013) contains a series
of computational tasks of biomedical text mining (TM),
evaluations, and workshops. Critical Assessment of Information
Extraction in Biology (BioCreative) (Hirschman et al., 2005;
Hemati and Mehler, 2019) includes assessments of biological
domain information extraction and text mining development
across the community.

BioNLP has achieved substantial progress on many
tasks (Ananiadou and McNaught, 2006; Hunter and
Cohen, 2006; Jensen et al., 2006), such as named entity
recognition, information extraction, information retrieval,
corpora annotation, evaluation, etc. These researches open
up opportunities to integrate biomedical text mining with
knowledge engineering and data mining. Many NLP techniques
can be used to extract linguistic features from text in different
languages for model learning, such as part-of-speech tagging,
word segmentation, linguistic parsing (Manning et al., 2014;
Zheng et al., 2016; Che et al., 2018; Li et al., 2019; Wang
et al., 2020), etc. There are some researches on text mining
in the genomics domain (Zweigenbaum et al., 2007), e.g.,
identifying gene/protein names and their relations. Hersh (2008)
introduce the methods and challenges in many aspects of health
and biomedical information retrieval systems. Bodenreider
(2008) describe the role of biomedical ontologies in knowledge
management, data integration, and decision support. There are
some ontologies, such as SNOMED CT, the Logical Observation
Identifiers, Names, and Codes (LOINC), the Foundational
Model of Anatomy, the Gene Ontology, RxNorm, the National
Cancer Institute Thesaurus, the International Classification of
Diseases, the Medical Subject Headings (MeSH), and the Unified
Medical Language System (UMLS). Smith et al. (2007) introduce
the shared principles governing ontology development in the
Open Biomedical Ontologies (OBO). Curtis et al. (2005), Khatri
and Drăghici (2005), and Huang et al. (2008) use microarray

6https://www.ncbi.nlm.nih.gov/taxonomy
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technology and Gene Ontology (GO) terms to analyze the gene
expression to characterize biological processes and identify the
mechanisms that underlie diseases.

A commonly used multi-label approach is the binary method,
which constructs a decision function for each class. Fan and Lin
(2007) present a method to adjust the decision thresholds for
each class. Zhang and Zhou (2007) propose the BP-MLL with
a fully-connected neural network and a pairwise ranking loss
function. Kim (2014) proposes the one layer CNN architecture
with multiple filter width to encode both task-specific and static
vectors. Nam et al. (2014) propose a neural network using cross-
entropy loss instead of the ranking loss. Kurata et al. (2016) utilize
word embeddings based on CNN to capture label correlations.
Yang et al. (2016) propose a hierarchical attention network
(HAN) to encode the sentence representation and document
representation. They experimented with IMDB reviews, Amazon
reviews, etc. for sentiment estimation and topic classification
(Di Buccio et al., 2018; Tiwari and Melucci, 2018a,b, 2019a,b).
Our model also considers the hierarchical attention, but the
difference is that our model uses a decoder to resolve the multi-
label classification problem and to calculate the hierarchical
attention. Our proposed method uses the HAD mechanism in
the decoder for each species prediction, while HAN calculates
the attention in the encoding process. Besides, our model
considers the discourse sections structure in scientific works
during the decoding process. Liu et al. (2017) present a variant
of CNN based approach to extreme multi-label text classification.
Chen et al. (2017) propose a method to ensemble the CNN
networks to capture diverse information on different nets. See
et al. (2017) present the pointer generator network for text
summarization. Yang et al. (2018) propose a sequence generation
model for MLC. Cohan et al. (2018) propose a discourse-
aware attention model for text summarization. They consider
each section as a sequence and attending to the sequences of
words. Inspired by the above studies, we integrate hierarchical
document modeling, sequence-to-sequence model, and HAD
into our species classification model.

3. METHODS

First, we give an overview of the model. Second, we describe
data acquisition, processing, and corpus annotation of the
PubMed and PMC literature. Then, we explain in detail the SeqC
framework of encoder and decoder which includes the sequence-
to-sequence scheme and the hierarchical attentive decoding
mechanism. Finally, we introduce the training method.

3.1. Overview
First, we define some notations and describe the species
classification task. Given the predefined m species L =

{c1, c2, ..., cm} and a scientific work (neuroscience literature),
our model assigns a subset of species to this document.
More formally, each document has a list of predefined species
candidates {y1, y2, ..., ym}, where the label of the i-th species (ci)
is yi ∈ {0, 1} with 1 denotes a positive class and 0 otherwise.
Our goal is to learn a model that can select the possible species
subset involved in this scientific work. From the perspective

of sequence-to-sequence model, this task can be modeled as
finding an optimal species combination y∗ that maximizes the
conditional probability p(y|x), which is calculated as follows.

p(y|x, θ) =

m
∏

i=1

p(yi|y1, y2, ..., yi−1, x, θ) (1)

where θ is the model parameter. The loss of the whole dataset
can be calculated as Equation (2). We sort the label sequence
of each sample according to the label frequency in the training
set, with the higher frequency labels ranked front. For multi-label
classification problems, the order of the labels is not needed for
the result evaluation. We tested several methods to sort the labels
and found that the results were almost the same.

L(θ) =
∑

j

p(yj|xj, θ) (2)

where j is the j-th document.

y∗ = arg max
y∈Y(z)

log p(y|x, θ) (3)

where Y(z) denotes 2m possible combinations.
An overview of our proposedmodel is shown in Figure 1. Our

main effort lies in designing a model that predicts each species
by emphasizing SOI from the document. First, we convert the
ground truth label into a species combination sequence. This
allows the model to predict each species sequentially. Besides, the
beginning symbol (BOS) and end symbol (EOS) are added to the
head and tail of the species labels, respectively. Second, we use
the two-level encoder to generate the contextual representation
of the sentence/section and the document respectively. Finally,
the decoder predicts each species by using the HADmechanism.

This model can be seen as a simplified version of the neural
abstractive text summarization model. Text summarization has
a larger vocabulary for summarizing the main content, while
the size of our vocabulary is 23. Text summarization allows
the same words appear repeatedly in the output, while in our
model each class label only appears once, so it reduces the
repetition problem (See et al., 2017) in text summarization. Text
summarization has the problem of out-of-vocabulary (OOV)
words and uses the copy mechanism (See et al., 2017) to solve it,
while our model does not have this problem since all the labels
are fixed. In summary, this approach is promising in this task
since this task is well-defined under the sequence-to-sequence
classification scheme.

3.2. Data Processing
3.2.1. Data Acquisition and Preprocessing
To obtain the neuroscience literature, we download all
biomedical literature from 1987 to 2019 on the PubMed7 and
PMC8. Then, we retrieve the biomedical literature related to

7https://ftp.ncbi.nlm.nih.gov/pubmed/
8https://ftp.ncbi.nlm.nih.gov/pub/pmc/
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FIGURE 1 | SeqC framework overview.

neuroscience. We tokenize the documents and match the case-
insensitive prefix (i.e., brain,neuron,neural,neuro,cerebral) at the
word level.

In order to reduce the impact of the references and
additional sections, we analyze the XML tag name and use
the regular expression to extract the PMID/PMC, article title,
abstract, keywords, article body, and date. We deleted tables
to only preserve the textual content. We also convert XML
escape characters into human-readable characters, for example,
converting &#60; to <, &#62; to >, &#38; to &, &#34; to”, etc.
Then we select the literature by matching the keywords in the
title, abstract, and body of the article.

3.2.2. Full-Category Sampling
We sample two sets of documents from PubMed and PMC
corpora respectively. The set of articles in the PubMed
corpus overlaps with the articles in the PMC corpus, given
that the PMC articles would have a corresponding abstract
in PubMed. To make the two datasets independent of
each other, we removed the overlapping abstracts. The
PubMed dataset contains 5,040/778/775 documents as
the division of training/development/test (train/dev/test)
sets. The PMC corpus contains 1,427/204/195 documents.
In order to make the dataset cover all categories and

better reflect the distribution of categories, we propose
the full-category sampling (FCS) algorithm, as shown in
Algorithm 1.

During the sampling process, we shuffle the documents and
randomly select 50,000 documents as candidate documents. If
the class support degree of species x (e.g., Mouse) reaches 400,
this method no longer samples this species. The x denotes
any pre-defined species. This class support degree denotes the
maximum number of documents in each class. This method
ensures that the dataset can cover all categories. The key insight
of this algorithm is that it can prevent the oversampling of
sparse classes.

We explain this algorithm. As shown in line 1, this method
shuffles the corpus and randomly samples the candidate set. This
operation prevents the oversampling of sparse classes. Otherwise,
for sparse classes, this method will skip too many unrelated
documents until enough samples of this class are obtained. Then,
we initialize the specDict and samples to hold the sample results.
Note that each sample is annotated with the mention-based
annotation described in subsection 3.2.3. In lines 4–14, if the
tag of the i-th document contains species x and the number of
documents related to species x does not reach the class support
degree s, the i-th document will be added to the dataset. Finally,
samples contains the selected documents.
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Algorithm 1: The full-category sampling algorithm

Require: The corpus D with species labels for each document,
class support degree s, candidates number n

Ensure: The sampled dataset samples

1: Shuffle the corpus D and sample n candidates D
′

2: specDict = {}, samples = []

3: for i← 0,D
′

.length− 1 do

4: doc, tags = D
′

[i]
5: added = False
6: for j← 0, tags.length− 1 do
7: if !specDict.contains(tags[j]) then specDict[tags[j]]=0
8: end if

9: if specDict[tags[j]] < s then
10: specDict[tags[j]]++

11: if added != True then Add D
′

[i] to samples
12: end if

13: added=True
14: end if

15: end for

16: end for

3.2.3. Corpus Annotation
From the perspective of literary expression, the expression of
related species is mainly divided into two types. First, some
species are mentioned in the literature, such as monkeys, but
monkeys themselves are not the main experimental subjects.
Monkeys are associated with this study. This information
can help find more comprehensive and instructive relevant
knowledge. Second, this species is the main experimental subjects
of the literature. This information can produce accurate semantic
search results. Both cases have high research value.We create two
versions of the dataset which are the mention-based annotation
and the semantic-based annotation.

3.2.3.1. Mention-based annotation
The first version (mention-based annotation) follows the criteria
of species mention, which considers all the mentioned species as
labels. More formally, let ci ∈ C denote a predefined species,
where C is the pre-specified species set. sj ∈ S is a sample (i.e.,
an abstract or an article). If sj mentions ci (including one of
its synonyms, variants, subspecies and its common alias from
NCBI Taxonomy vocabulary), we assign ci to sj. We consider
the singular and plural forms of the species. We use the above
dictionary-based method to label the entire dataset. Labeling
documents that explicitly mention species is straightforward and
efficient. The advantage is that it can find more relevant and
comprehensive species to a study. After that, we can use these
species labels as keys to efficiently retrieve the literature related
to a specific species. This process avoids repeated computation
and saves resources. The species tags of each article link massive
documents. Users can utilize species tags to get more articles.
This method is more complete and efficient than using words to
retrieve plain text.

We also let three human annotators check the
comprehensiveness and correctness of the species labeled

for each sample. For example, some documents use other words
related to humans, e.g., “humankind, humanity, humane, man,
woman, men, women, male, female, patients." Overview articles
also follow this annotation standard consistently, so they are
considered relevant to the species mentioned. A conclusive
dataset is generated using the combination of these annotations
by an independent person.

The dictionary-based method may not perform well in the
following situations. Sometimes, it is necessary to use context
to determine whether “cricket” is a species or a game and
whether “mouse” is an animal or a computer device. There are
18 PMC articles and 2 PubMed abstracts use “cricket” as the
game. For example, “Hamstring injuries are not confined strictly
to Australian Rules football but are also seen in soccer, athletics,
hurling, cricket and touch football (Hoskins and Pollard, 2005).”
There are 6 PMC articles and 1 PubMed abstract use “mouse”
as the computer device. For example, “Total in-home computer
use per day was calculated usingmousemovement detection and
averaged over a 1-month period surrounding the MRI (Silbert
et al., 2016).” The weakness is that this standard may introduce
some noisy species labels when they are not the main research
subjects of the literature. This problem can be resolved by the
following semantic-based annotation.

3.2.3.2. Semantic-based annotation
The second version (semantic-based annotation) follows the
criteria of expert knowledge. We let domain experts in the
field of biology manually label the above PMC dataset based
on the main research subjects of the article body. However,
this process is costly and time-consuming, because annotators
need to read the article and discuss the annotation standard.
We add “cell,” “not applicable,” and “others” classes in that
most cell-centric experiments share common methodologies. It
is valuable to consider the “cell” as a class. For example, there
are a lot of drug tests on cell or expression system related
researches. Besides, a few papers did not study these species.
We also need to use appropriate levels of species as the label to
generate more valuable information. For the moth, considering a
specific moth cannot generate much valuable information. The
advantage of this standard is that articles retrieved using the
primary research subject are more likely to contain satisfactory
knowledge. However, the weakness is that the recall may not
be high enough. For example, humans are not actually studied
in some articles, but the research as a whole is done for the
purpose of gaining insight into a disease that affects humans.
There are 968 such documents without human labels. The
mention-based annotation can make up for this problem. The
mention-based annotation generally mine more species from
these documents. Detailed standard is described in section 1 in
the Supplementary Material9.

3.2.3.3. Inferring species from the literature
To evaluate whether our model can infer species from
the literature that does not mention species, we hid the

9https://github.com/sssgrowth/SPECIESEXPLORER/blob/master/icon/appendix.

pdf
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species mentions and substituted them with the same symbol
“*SPECIES*" to simulate the document that does not mention
species. For example, masking “monkey" and “mouse” in a
document (Cho et al., 2019), the sentence

We have established monkey NPC cell lines from induced

pluripotent stem cells (iPSCs) that can differentiate into

GABAergic neurons in vitro as well as in mouse brains without

tumor formation.

becomes

We have established *SPECIES* NPC cell lines from induced

pluripotent stem cells (iPSCs) that can differentiate into

GABAergic neurons in vitro as well as in *SPECIES* brains

without tumor formation.

Masked language models predict each masked token in the
sentence, which is the token-level prediction. Different from the
masked language model, we do not predict the masked token
in the document, instead we predict each species only once and
the prediction happens in the whole document, which is the
document-level prediction. Masking species enables the model
to learn how to use other information in the text to execute
inference. Otherwise, the attention focuses on species words, not
generating much valuable information. Besides, the performance
of all models on the PubMed dataset is almost the same as
using a dictionary-basedmethod. In practice, this model does not
need the above mask operation since we can input the original
scientific work (with or without mentioning the species). To
quantitatively analyze the inference performance, this way of
data creation can reduce the risk of missing species. We also
test our model when restoring the species mention. We keep
the original files for human access. This would be critical for
correct resolution.

3.3. Encoder
Our encoder extends the RNN encoder to the hierarchical RNN
that captures the document structure. We first encode each
sentence/section and then encode the document. The word-
section level encoding is only used to model the article body. The
abstract does not have section, but we unify these two modeling

into one framework. Therefore, h
(s)
i denotes sentence and section

interchangeably. Formally, we encode the document as a vector
based on the following equation:

h(doc) = RNNdoc(h
(s)
1 , h

(s)
2 , ..., h(s)n ) (4)

RNN(·) represents a recurrent neural network whose final state
is used to represent the input sequence. n is the number
of sequences in the document. The superscript (s) and (doc)

denote the sentence/section and the document representation

respectively. h
(s)
i is the representation of the i-th sequence, which

is computed as follows.

h
(s)
i = RNNs(x(i,1), x(i,2), ..., x(i,m)) (5)

where x(i,j) is a word embedding of token w(i,j) and m is the
sequence length. The parameters of RNNs(·) are shared by all the
sentences/sections. We use the single layer bidirectional LSTM
for both RNNdoc(·) and RNNs(·) to encode hidden states.

3.4. Decoder
3.4.1. Sequence-to-Sequence Scheme
See et al. (2017) present the pointer-generator network for
text summarization. Different from them, our decoder aims
to model the correlation between species. At each step t, the
decoder (a single-layer unidirectional LSTM) receives the species
embedding of the previous step and the information of the input
document. During training, the previous species comes from the
ground truth label; at test time, the previous species is emitted

by the decoder. The hidden state h
(d)
t at time step t is computed

as follows.

h
(d)
t = RNNdec([spec(yt−1); ct−1], h

(d)
t−1) (6)

where [; ] denotes the concatenation operation. The superscript
(d) denotes the decoder. RNNdec(·) is a uni-directional LSTM-
RNN decoder. spec(yt−1) denotes the species embedding with
the highest probability under the prediction distribution yt−1.
yt−1 is the prediction of the previous step. ct−1 is the context
vector generated from the input document using the hierarchical
attention mechanism. spec(y0) is initialized to a trainable vector.

c0 and h
(d)
0 are initialized to a zero vector and the document

vector h(doc) respectively.

3.4.2. Hierarchical Attentive Decoding Mechanism
When the model predicts certain species, not all
sentences/sections and words contribute equally. The attention
mechanism can generate a context vector by attending to
the SOIs of the document and aggregating their contextual
representations. Modeling an article directly into a sequence of
words cannot fully preserve the information and structure of the
document. Discourse structure (Tang et al., 2015) information
has proven effective in modeling document. Scientific works
are usually composed of standard discourse sections structure
describing the problem, methodology, experiments, conclusions,
etc. Cohan et al. (2018) present a discourse-aware attention
mechanism that generates better representation by incorporating
discourse sections structure knowledge in themodel architecture.
We propose the HAD mechanism to consider discourse sections
information for species prediction so that the model can extract
important information from the literature more accurately
based on the discourse sections, thus obtaining a better vector
representation. Most literature only provides abstracts, so we
use the HAD mechanism for the word and the sentence/section.
When we process the full-text, our model uses the discourse
sections structure, like (Cohan et al., 2018).

Specifically, the context vector related to the species
information is computed as follows.

ct =

n
∑

i

m
∑

j

αt(i,j)h
(e)
(i,j)

(7)
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where h
(e)
(i,j)

is the hidden state of the encoder for the j-th word

in the i-th section. The superscript (e) denotes the encoder. αt(i,j)

denotes the attention weight of the j-th word in the i-th section
at the t-th step. The scalar weight αt(i,j) is computed as follows.

αt(i,j) = softmax
(i,j)

(βt(i)score(h
(e)
(i,j)

, h
(d)
t−1)) (8)

where the score(·) function is the additive attention function, as
shown in formula (10). βt(i) is the weight of the i-th section at
the t-th step. We parse the start and end positions of each section
from the original literature files using the DOM parser so that we
can find discourse sections.

βt(j) = softmax
i

(score(h
(s)
i , h

(d)
t−1)) (9)

The correlation score is calculated by the additive attention

(Bahdanau et al., 2015). h
(s)
i denotes the hidden state of the

i-th section.

score(h
(e)
(i,j)

, h
(d)
t−1) = vT tanh(W1h

(e)
(i,j)
+W2h

(d)
t−1 + b(d)) (10)

where v ∈ R
τ is a weight vector. W1,W2 ∈ R

τ×τ are weight
matrices. b(d) ∈ R

τ is a bias vector.

3.5. Training Method
At the t-th decoding step, the vector h

(d)
t generated by the decoder

is used to predict the probability distribution of each class by the
softmax function, as shown in Equation (11).

ŷ = softmax(Wh
(d)
t + b+ It) (11)

where theW and b are the weight matrix and bias vector. It ∈ R
m

is the mask vector that prevents the decoder from predicting
repeated species.

(It)i =











−∞, if species yi has been predicted at previous time

steps

0, otherwise

(12)

At the training time, the objective function is the cross-entropy
loss as follows.

min
2

L = −

|D|
∑

i

1

l(i)

l(i)
∑

t

y
(i)
t · log(ŷ

(i)
t ) (13)

where i is the document index and t is the decoder time step. 2 is
the model parameter. |D| is the size of the training set. l(i) is the

decoder sequence length of i-th document. ŷ
(i)
t is the predicted

probability of ground truth class y
(i)
t at the t-th time step. At test

time, we use the beam search algorithm (Wiseman and Rush,
2016) to find the top-ranked prediction sequence.

4. RESULTS

In this section, we conduct experiments on three datasets. We
first introduce the datasets, evaluation metrics, implementation
details. Then, we compare our method with baselines. Finally, we
analyze the model components and experimental results.

4.1. Experimental Settings
4.1.1. Dataset

4.1.1.1. PubMed
Corpus contains 2.55M abstracts, including 22.9M sentences,
related to neuroscience science. 1.21M (47.5%) documents
mention at least one pre-defined species using the mention-
based annotation. The labels of these documents may not be
complete, as the abstract may not mention all species. These
documents can be used for further research in knowledge linking
and extraction projects. We sample 5,040/778/775 documents as
the experimental train/dev/test datasets. Figure 2A visualizes the
distribution of sentence number of the abstract. The x and y axes
are the sentence number in a scientific work and the count of
scientific works that have the corresponding number of sentences
respectively. Each document averagely contains 8.9 sentences.
Figure 2B visualizes the sentence length distribution. Figure 3A
visualizes the species distribution. “Human”, “Mouse,” and “Rat”
are more frequent labels.

4.1.1.2. PMC mention
Corpus consists of 0.43M articles, including 54.3M sentences,
related to neuroscience science. 0.36M (83.5%) documents
mention at least one pre-defined species. Annotating the
entire corpus is costly and time-consuming, so we sample
1,427/204/195 documents as the train/dev/test datasets for our
experiments. Figure 2C visualizes the distribution of sentence
number of the paper. The sentence distribution varies over a
wide range (14–3,087). Long documents occupy a small portion,
so we merge the documents with more than 600 sentences. The
criteria of this corpus is the species mention. Each document
averagely contains 205.6 sentences. Figure 2D visualizes the
sentence length distribution. Figure 3B visualizes the species
distribution. “Human,” “Mouse,” “Rabbit,” and “Rat” are more
frequent labels.

4.1.1.3. PMC semantics
Dataset uses the same documents of the PMC Mention dataset.
We let domain experts annotate these documents. The criteria of
this version are based on expert knowledge. Figure 3B visualizes
the species distribution. “Human,” “Mouse,” “Not applicable,” and
“Cell” are more frequent labels.

4.1.2. Evaluation
In single-label classification (1-of-n), the prediction can be either
correct or wrong. Compared with the single-label classification,
MLC is unique since the prediction can be partially correct
(Venkatesan and Er, 2014). MLC requires different evaluation
metrics to evaluate the partially correct. Following (Zhang and
Zhou, 2007; Chen et al., 2017; Yang et al., 2018), we adopt the
Hamming loss, micro-F1 score. Besides, we also measure the
macro-F1 score and F1 per document. F1 per document would
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also be informative to measure document-level performance.
This metric is calculated by averaging the precision, recall, and
F1 of each document.

Hamming =
1

|N| · |L|

|N|
∑

i=1

|L|
∑

j=1

xor(y(i,j), t(i,j)) (14)

4.1.2.1. A. Hamming loss
Calculates the fraction of wrong labels. The lower the hamming
loss, the better the performance is, as shown in formula (14). For
an ideal classifier, the Hamming loss is 0.

F1 =
2 · Precision · Recall

Precision+ Recall
(15)

4.1.2.2. B. Micro-F1
Is the harmonic mean of micro-precision and micro-recall as
formula (15). This metric calculates metrics globally by counting
the total true positives, false negatives and false positives. This
metric aggregates the contributions of all classes.

4.1.2.3. C. Macro-F1
Computes the metric independently for each class and then take
the average. This measurement treats all classes equally. We can
evaluate the overall model performance for all classes.

4.1.3. Implementation Details
Table 1 reports the main hyperparameters. We train the
200-D GloVe embedding on the whole PubMed and PMC
corpora (3M documents). We did not update the pre-trained
word embeddings during model training. For the character
embeddings, we initialize each character as a 25-D vector. If
using character Bi-LSTM, we set 50-D hidden state. If using
character CNN, the convolution kernel width is 3, and we use
max-pooling to generate 100-D vector representation. The Bi-
LSTM dimension of encoder and decoder is 200-D. We use the
Adam algorithm (Kingma and Ba, 2014) to train the model. The
initial learning rate is 0.001. The size of species embedding is 200-
D. We limit the sentence length to 128 and section length to 512
tokens. We conducted experiments on an Intel(R) Xeon(R) CPU
E7-4830 v3 @ 2.10 GHz (Mem: 976G) and the GPU Tesla K40c
(12G) and TITAN RTX (24G).

4.2. Baseline Models
We compare our method with several baseline models. The
Dictionary-based method uses string matching. To extract more
species, the glossary of species includes species names, synonyms,
variants, subspecies, and its common alias.

The LSTM (Zhang et al., 2015) and CNN (Kim, 2014) models
consider the document as a sequence of words and generate a

FIGURE 2 | Dataset visualization where (A) is the PubMed sentence distribution of each document and (B) is the PubMed sentence length distribution and (C) is the

PMC sentence distribution of each document and (D) is the PMC sentence length distribution.

Frontiers in Human Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 12838

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhu et al. Species Classification for Neuroscience Literature

FIGURE 3 | Species distribution where (A) is the species distribution of the PubMed dataset and (B) is the species distribution of the PMC dataset.

TABLE 1 | The hyperparameter configuration.

Hyperparameters Value

Character embedding 25

CNN kernel width 3

Encoder LSTM 100

Decoder LSTM 100

Dropout 0.5

Word embedding GloVe.PubMed.200D

Epoch 100

vector representation. The main difference is the components
they choose to encode the document.

The hierarchical CNN (H-CNN) and hierarchical LSTM
(H-LSTM) use word- and sentence- level encoders to
model the document structure, as shown in Figures 4A,B

respectively. This is a hierarchical version of CNN and
LSTMmodels.

The H-LSTM-ATT, also known as the hierarchical attention
network (HAN) (Yang et al., 2016), adds an attention mechanism
to the H-LSTM to extract informative words, as shown in
Figure 4C. c(w) and c(s) are the word- and sentence- level context
vectors respectively, and they can be trained jointly. To evaluate
the influence of the LSTM layer, the H-MLP-ATT replaces the
LSTM layer with a single layer neural network with the ReLU
activation function, as shown in Figure 4D. This network can be
seen as the H-CNN-ATT with the kernel size of 1× d where d is
the vector dimension.

BERT (Devlin et al., 2019) is a pre-trained bidirectional
transformer that has proven effective in various NLP
tasks by fine-tuning the model. We use the representation
of “[CLS]" to generate the document representation, as
shown in Figure 4E. “[CLS]” stands for the representation
of the class. Note that this model can only process up to
512 tokens.

4.3. Model Results
4.3.1. Results of the PubMed Dataset
Table 2 lists the results on the PubMed dataset. A first
observation is that hierarchical models (H-LSTM and H-
CNN) achieve similar results with the corresponding single-
level models (LSTM and CNN) on the PubMed dataset. CNN
models achieve higher results than the LSTM models in
document classification. H-LSTM-ATT achieves better results
than H-LSTM. This means the attention mechanism is
important on this task. H-LSTM-ATT outperforms H-MLP-
ATT, which means the LSTM layer encodes more context
information of the sentence and the document. H-LSTM-ATT
outperforms CNN, which further proves the importance of
attention mechanism.

BERT achieves the highest result because fine-tuning this
model allows it to adapt to a new target task. BERT’s P/R/F1
per document are 0.7843/0.7994/0.7847. The drawback is that
the model cannot encode the document structure and has the
highest computation costs. Our SeqCmodel achieves comparable
results. The P/R/F1 per document are 0.7588/0.7774/0.7612.
Figures 5A,B show the class-aware results of SeqC and BERT
respectively. The x- and y-axes denote the precision and recall
respectively. The dotted lines are the contours of the F1. We
observe that BERT achieves higher results on “Elegans, Moth,
Elephant, Cat, Goldfish” classes. SeqC achieves higher results
on “Agouti, Rat” classes. Other species achieve comparable
prediction results on both models.

The dictionary-based method is most computationally
efficient and easier to use, but it can be difficult to accomplish this
task without mentioning species in the document. We evaluate
this method in the case of restoring (+ Restore) the mentions
of species in the literature. The dictionary-based method is a
good choice when directly extracting the mentions of species.
Restoring the mentions also significantly improves the SeqC
model results. This is because the model will pay attention to the
mentions of species.
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FIGURE 4 | Architectures of baseline models. (A) H-CNN, (B) H-LSTM, (C) H-LSTM-ATT, (D) H-MLP-ATT, (E) BERT.

TABLE 2 | Results of species classification on the PubMed dataset.

Algorithms Hamming Micro-F1 Macro-F1

LSTM (Zhang et al.,

2015)

0.0302 79.01 73.33

CNN (Kim, 2014) 0.0247 82.84 81.13

H-LSTM 0.0292 79.86 74.09

H-CNN 0.0245 82.87 79.04

H-MLP-ATT 0.0275 81.47 80.53

H-LSTM-ATT 0.0228 84.35 84.24

BERT 0.0204 86.20 86.03

SeqC 0.0247 83.57 82.42

Dictionary + Restore 0.0029 97.98 99.50

SeqC + Restore 0.0007 99.46 99.39

Bold values represent the best results.

4.3.2. Results of the PMC Mention Dataset
Table 3 presents the results on the PMC dataset. We observe
that CNN and LSTM models achieve comparable results on
the PMC dataset. BERT achieves similar micro-F1 score with
the H-LSTM-ATT model, but the macro-F1 score is higher
than other models. This means that the overall performance

of BERT is more balanced across classes. The simple SeqC
model cannot predict the masked species well. When the
SeqC model considers the discourse sections structure (+
Discourse), this method outperforms all baselines. The discourse
sections structure denotes the section-level structure in the
article’s body. This model uses the word-discourse HAD, that
is, considering the word-section level attention. This means
the section-level information is important for extracting the
SOIs of the article. This is because certain sections (e.g.,
the experiments section) can find research species more
effectively. Longer documents contain more noise, which poses
challenges for model prediction. The P/R/F1 per document
of SeqC + Discourse are 0.7598/0.6901/0.7021. As shown in
Figures 6A,B, we observe that BERT achieves higher results on
“Human, Moth, Zebrafish” classes. Our model achieves higher
results on “Mouse, Frog, Elephant, Drosophila melanogaster,
Blowfly, Elegans, Monkey, Goldfish, Cricket, Guinea pig”
classes. Other species achieve comparable prediction results on
both models.

When we restore the mentions of species in the literature, the
dictionary-based method outperforms other methods. Restoring
mentions of species also significantly improves the results of our
model when we extract species from the article’s body.
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FIGURE 5 | Prediction results on the PubMed dataset where (A) is the prediction results using SeqC and (B) is the prediction results using BERT.

TABLE 3 | Results of species classification on the PMC Mention dataset.

Algorithms Hamming Micro-F1 Macro-F1

LSTM (Zhang et al.,

2015)

0.0735 73.08 56.47

CNN (Kim, 2014) 0.0813 72.28 57.44

H-LSTM 0.0778 72.01 57.64

H-CNN 0.0760 72.78 57.05

H-MLP-ATT 0.0871 70.15 54.81

H-LSTM-ATT 0.0769 73.23 60.05

BERT 0.0767 73.93 63.02

SeqC 0.0889 70.26 55.91

SeqC + Discourse 0.0655 76.81 64.41

Dictionary + Restore 0.0037 98.69 99.75

SeqC + Discourse +

Restore

0.0448 84.85 76.14

Bold values represent the best results.

4.3.3. Results of the PMC Semantics Dataset
Table 4 lists the results on the PMC Semantics dataset. We
observe CNN models achieve higher results than the LSTM
models. This means CNN units are good at capturing the internal
semantics of documents. H-LSTM-ATT andH-CNN outperform
the BERT. This means that the hierarchical modeling mechanism
is good at capturing the document-level semantics. The simple
SeqC does not perform well. The SeqC + Discourse achieves the
highest performance. This means the section-level structure is
more informative when modeling the article. This experiment
proves our model is good at learning the semantic label of an
article. As shown in Figures 7A,B, we observe that BERT achieves
higher results on “Turtle, Salamander” classes. SeqC achieves
higher results on “Spiny lobster, Zebrafish, Frog, Mouse, Rat,
Goldfish, Cricket, Rabbit, Blowfly” classes. Other species achieve
comparable prediction results on both models.

The PMC mention dataset is easier because the criteria
of species mention are straightforward. The PMC Semantics
dataset is more difficult because the annotation criteria are more
complicated. The SeqC model can be more flexible to focus
on different words for each species, which is helpful to let the
model learn the annotation rule. This model frees researchers
from tedious work and automatically classifies the literature. This
experiment further proves the effectiveness of our models. The
P/R/F1 per document is 0.8102/0.8/0.8006.

4.4. Analysis and Discussion
4.4.1. Ablation Study
To analyze the contributions and effects of different components,
we perform ablation studies on the PubMed dataset, as shown in
Table 5. The performance degrades by 1.83% micro-F1 without
sentence-level attention (s-att). This is because the model cannot
consider the sentence-level structure. The single-level attention
only considers the word sequence, which assumes all sentences
of a document are equally relevant for word selection. This
setting limits the performance. When we remove the word-level
attention (w-att), the performance drops by 2.02% micro-F1 and
4.28%macro-F1. This setting assumes that the contribution of all
words in a sentence is the same, but the contribution of different
sentences is different.

When we remove the HAD mechanism [s-att and word-level
attention (w-att)], the performance drops by 3.62% micro-F1
and 4.61% macro-F1. This is because the model only uses the
document vector to generate species and the decoder cannot
attend to the document. When we remove the HAD mechanism
and the decoder, the performance drops by 3.71% micro-F1 and
8.33% macro-F1. This is because the model becomes H-LSTM.
The memory of a single document vector is limited.

4.4.2. Results of Different Species
It is instructive to analyze the prediction result of different
species. Figures 5A, 6A, 7A visualize the class-aware prediction
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FIGURE 6 | Prediction results on the PMC Mention dataset where (A) is the prediction results using SeqC + Discourse and (B) is the prediction results using BERT.

TABLE 4 | Results of species classification on the PMC Semantics dataset.

Algorithms Hamming Micro-F1 Macro-F1

LSTM (Zhang et al., 2015) 0.0341 70.32 46.51

CNN (Kim, 2014) 0.0230 81.45 73.25

H-LSTM 0.0289 75.70 71.33

H-CNN 0.0213 82.17 72.05

H-MLP-ATT 0.0266 78.60 71.68

H-LSTM-ATT 0.0209 83.22 74.64

BERT 0.0230 81.57 72.12

SeqC 0.0246 80.91 70.34

SeqC + Discourse 0.0203 84.03 74.75

Dictionary + Restore 0.1270 42.50 35.38

SeqC + Discourse + Restore 0.0189 85.41 79.03

Bold values represent the best results.

results. The x- and y-axes represent the precision and recall
respectively. The dotted lines denote the contours of the F1. For
the PubMed dataset, we found “Dragonfly,” “Blowfly,” “Agouti,”
“Elegans,” and “Human” are more easy to predict. The “Spiny
lobster,” “Rabbit,” “Cat,” and “Goldfish” aremore problematic. For
the PMCMention dataset, we observe the “Human” and “Mouse”
are easier to extract. The “Sheep,” “Guinea pig,” “Cricket,” and
“Cat” are more problematic. For the PMC Semantics dataset, we
observe the “Elephant,” “Spiny lobster,” “Zebrafish” are easier to
extract. The “Salamander” and “Others” are more problematic.
We observe the prediction results are highly correlated to the
class distribution.

As shown in Figure 3B, when we let experts annotate the
corpus, the class imbalance problem has become more serious.
This poses a challenge to the model. This phenomenon often
occurs. Different versions of the annotated data have different

class distributions. The forecasting of the results of the corpus
annotation is important.

4.5. Species-Based Brain Cognitive
Function, Brain Structure, and Protein
Analysis
The hippocampus is a core brain region that is involved in
many cognitive functions and brain diseases. The first part
of Table 6 lists part of the data and knowledge about brain
diseases of different species extracted and analyzed using the
proposed method. These diseases are considered related to the
hippocampal study. This knowledge is also freely accessible on
the Internet. We observe that some brain diseases are related
to hippocampus, such as “Alpers’ disease,” “Anxiety,” “Autism,”
“Brain edema,” “Cerebral artery occlusion,” “Lateral temporal
epilepsy”, etc. The research about “Lateral temporal epilepsy”
is mainly conducted on “Human,” “Rat,” “Mouse”, etc. Few
studies are conducted based on the “Monkey,” “Guinea pig,”
“Chicken,” etc. Experiments with some innovative species could
be instructive for gaining innovative insights into this disease.
We can trace back to the scientific works based on the “Guinea
pig,” e.g., “The stimulation of 5-ht(1E) receptors and subsequent
inhibition of adenylate cyclase activity in the DG suggests that 5-
ht(1E) receptors may mediate regulation of hippocampal activity
by 5-HT, making it a possible drug target for the treatment
of neuropsychiatric disorders characterized by memory deficits
(such as Alzheimer’s disease) or as a target for the treatment of
temporal lobe epilepsy (Klein and Teitler, 2012).”

The second part of Table 6 lists part of the data and
knowledge about cognitive functions of different species which
are considered related to the hippocampal study. We observe
that some cognitive functions are related to hippocampus,
such as “Associative learning,” “Aversion,” “Acuity,” “Concepts,”
“Decision making,” “Olfactory,” etc. Researchers prefer to
conduct the researches for “Olfactory” on “Rat,” “Mouse,”
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FIGURE 7 | Prediction results on the PMC Semantics dataset where (A) is the prediction results using SeqC + Discourse and (B) is the prediction results using BERT.

TABLE 5 | The ablation results on the PubMed dataset.

Model Hamming Micro-F1 Macro-F1

SeqC 0.0247 83.57 82.42

–s-att 0.0274 81.74 82.06

–w-att 0.0274 81.55 78.14

–HAD (s-att,w-att) 0.0300 79.95 77.81

–HAD (s-att,w-att), decoder 0.0292 79.86 74.09

“Human,” etc. Few studies are conducted based on the “Monkey,”
“Sheep,” “Guinea pig”, etc. We found that research on monkeys’
olfactory of smell may be relatively innovative. We can trace
back to the scientific works based on the “Monkey,” e.g.,
“Early developmental events involving the olfactory and limbic
system start and conclude possibly slightly early in primates
than rodents, and we find a comparable early conclusion of
primate hippocampal neurogenesis (as assessed by the relative
number of Ki67 cells) suggesting a plateau to low levels at
approximately 2 years of age in humans (Charvet and Finlay,
2018).”

It can be found in the third part of Table 6 that some proteins,
such as “Acetylcholine esterase,” “Adenosine deaminase,”
“Adenylate cyclase,” “Aromatase,” “Glutamine synthetase,”
“Nitric oxide synthase,” etc., are related to the hippocampus.
Researchers prefer to conduct the researches for “Nitric oxide
synthase” on “Rat,” “Mouse,” “Human,” etc. Few studies are
conducted based on the “Guinea pig.” We found that research on
Guinea pig may be more instructive. For example, “Decreased
nitric oxide synthase (NOS)-catalyzed formation of NO from
L-arginine may be involved in ethanol teratogenesis involving
the hippocampus (Gibson et al., 2000).”

4.6. Case Study
It is instructive to analyze how the attention mechanism extracts
SOIs to predict species. We choose two abstracts (Zhou et al.,
2017; Cho et al., 2019) to visualize the attention distribution, as
shown in Figures 8, 9. When the model predicts different species,
it attends to different parts of the document. We restore the
species names in the figure to better understand the samples.
These species are marked with underlined stars.

For the first sample, this model first predicts “Human”
by using the document representation. We observe this class
is not mentioned in the abstract but is mentioned in the
text so the “Human” can be assigned to this paper. This
means our model can help infer more complete species.
Some terms are potential topics in human-related research,
e.g., “Huntington’s disease,” “Cognitive dysfunction,” “huntingtin
gene,” “monogenetic disorder,” etc. Figure 8A visualizes the
attention distribution when predicting “Human.” The attention
distribution (“transgenic HD, N171-82Q, HD, neural, WT-NPCs,
iPSCs”) also contains information about the next species to be
predicted, as this decoder sequentially models the correlation
between species. When predicting “Mouse”, the attention
weight of “monogenetic, N171-82Q, neural progenitor, NPCs,
pluripotent” increases and the weight of “iPSCs, WT-NPCs”
decreases, as shown in Figure 8B. When predicting “EOS,” token
weights are distributed over all emphasized words and are most
distracting, as shown in Figure 8C. This shows that the model
attends to different words when predicting different species. The
model also considers the correlation between labels and retains
historical memory. However, this model misses “Monkey.”

For the second sample, when predicting “Human,” the
model uses the document representation and attends to “neural,
experimentation, nervous system, T-UCRs.” When predicting
“Monkey,” the attention weights of “T-UCRs” and masked
species words (“rhesus monkey”) are increased. When predicting
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TABLE 6 | Some examples of brain diseases, brain cognitive functions and proteins related to the brain region “hippocampus” in different species, where the number

behind the species is the number of related studies.

Types Examples Species

Brain

diseases

Alpers’ disease Cat (2), Chicken (1), Human (46), Mouse (21), Rabbit (8), Rat (62), Sheep (2)

Anxiety Cat (9), Human (119), Monkey (8), Mouse (206), Rat (241)

Autism Human (11), Monkey (1), Mouse (22), Rat (16)

Brain edema Cat (1), Human (2), Mouse (11), Rabbit (4), Rat (33)

Cerebral artery occlusion Cat (1), Human (2), Mouse (22), Rat (38)

Lateral temporal epilepsy Cat (1), Chicken (2), Guinea pig (3), Human (348), Monkey (3), Mouse (102), Rat (253),

Zebrafish (1)

Brain

cognitive

functions

Associative learning Human (19), Monkey (12), Mouse (24), Rabbit (5), Rat (34)

Aversion Cat (6), Human (52), Monkey (3), Mouse (96), Rabbit (6), Rat (356)

Acuity Human (1), Mouse (4), Rat (2)

Concepts Human(19), Monkey(2), Mouse(1), Rabbit(2), Rat(13)

Decision making Cat(1), Human(34), Mouse(6), Rat(26)

Olfactory Cat (5), Chicken (3), Frog (3), Guinea pig (7), Human (106), Monkey (7), Mouse (190), Rabbit (6),

Rat (335), Sheep (8)

Proteins Acetylcholine esterase Cat (8), Guinea pig (8), Human (42), Monkey (6), Mouse (142), Rabbit (6), Rat (397)

Adenosine deaminase Human (1), Mouse (1), Rat (14)

Adenylate cyclase Cat (4), Chicken (1), Guinea pig (20), Human (18), Monkey (1), Mouse (31), Rabbit (1), Rat (150)

Aromatase Chicken (1), Human (15), Monkey (4), Mouse (30), Rat (42)

Glutamine synthetase Human (11), Mouse (10), Rabbit (2), Rat (41)

Nitric oxide synthase Guinea pig (9), Human (30), Mouse (89), Rat (240)

FIGURE 8 | Visualization of SOIs when the model predicts (A) Human (B) Mouse and (C) EOS where redness indicates attention and the stars below the text indicate

the masked species.
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FIGURE 9 | Visualization of SOIs when the model predicts (A) Human (B) Monkey (C) Mouse (D) Rat and (E) EOS where redness indicates attention and the stars

below the text indicate the masked species.

“Mouse,” the weights of “T-UCRs, nervous systems, neural stem”
are increased. When predicting “Rat,” the weights of “nervous
systems, neural stem” are decreased. When predicting “EOS,”
token weights are most distracting.

5. CONCLUSION

We propose the SeqC framework to classify neuroscience
literature for linking brain and neuroscience communities and
devices on the Internet. This study facilitates knowledge transfer
and real-time data analysis over the Internet. The advantages
are that it is possible to visualize words that are receiving
attention to make the model interpretable. Additionally, this
could be used to infer more complete names of species. We
use hierarchical encoders to model the document structure. We
use a decoder with the HAD mechanism to extract SOIs for

different species. To evaluate model performance, we create
three datasets for species research of brain and neuroscience.
We resolve the problem of species annotation and present two
versions of annotation criteria (mention-based annotation and
semantic-based annotation). Limitations are that labels should be
provided before, and that a manual tagging is needed. However,
the process is semi-automated and can be easily extended to a
wider variety of species.

This paper uses deep learning models to resolve the problem

of species classification for neuroscience literature. The proposed

cognitive computing model resolves this problem primarily by

attending to the SOIs of a document. This approach can help

predict species in the neuroscience literature. Structured species

knowledge can be used to inspire researchers to better understand

the knowledge associations in brain and neuroscience. In the
future, the limitations of manual labeling can be alleviated

Frontiers in Human Neuroscience | www.frontiersin.org 17 April 2020 | Volume 14 | Article 12845

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhu et al. Species Classification for Neuroscience Literature

by adding terms to the dictionary and using automatic
model annotation. It seems promising to apply named entity
recognition Zhu et al. (2019) models and attention mechanism
to find more species names in the literature and perform open
species extraction.
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Purpose: The occurrence of mental fatigue when users stare at stimuli is a critical
problem in the implementation of steady-state visual evoked potential (SSVEP)-based
visual acuity assessment, which may weaken the SSVEP amplitude and signal-to-noise
ratio (SNR) and subsequently affect the results of visual acuity assessment. This study
aimed to explore the anti-fatigue performance of six stimulus paradigms (reverse vertical
sinusoidal gratings, reverse horizontal sinusoidal gratings, reverse vertical square-wave
gratings, brief-onset vertical sinusoidal gratings, reversal checkerboards, and oscillating
expansion–contraction concentric rings) in SSVEP acuity assessment.

Methods: Based on four indices of α + θ index, pupil diameter, National Aeronautics
and Space Administration Task Load Index (NASA-TLX), and amplitude and SNR of
SSVEPs, this study quantitatively evaluated mental fatigue in six SSVEP visual attention
runs corresponding to six paradigms with 12 subjects.

Results: These indices of mental fatigue showed a good agreement. The results
showed that the paradigm of motion expansion–contraction concentric rings had a
superior anti-fatigue efficacy than the other five paradigms of conventional onset mode
or pattern reversal mode during prolonged SSVEP experiment. The paradigm of brief-
onset mode showed the lowest anti-fatigue efficacy, and the other paradigms of pattern
reversal SSVEP paradigms showed a similar anti-fatigue efficacy, which was between
motion expansion–contraction mode and onset mode.

Conclusion: This study recommended the paradigm of oscillating expansion–
contraction concentric rings as the stimulation paradigm in SSVEP visual acuity because
of its superior anti-fatigue efficacy.

Keywords: steady-state visual evoked potential, visual acuity, mental fatigue, anti-fatigue performance, stimulus
paradigm
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INTRODUCTION

Recently, there have been some research findings across a range of
applications in vision science based on steady-state visual evoked
potential (SSVEP) (Norcia et al., 2015; Odom et al., 2016; Zheng
et al., 2019b). As an essential part of any ophthalmological or
optometric examination, visual acuity is the most commonly
measured visual function (Fahad et al., 2008). Within 40 years,
the SSVEP technique has been used for measuring visual acuity
in some studies, demonstrating that SSVEP provides an objective
and quantitative method in visual acuity assessment, especially
for infants or individuals with intellectual disabilities, hysteria,
or malingering (Tyler et al., 1979; Norcia and Tyler, 1985a,b;
Hemptinne et al., 2018).

There are some parameters, such as electrode placement,
temporal frequency, stimulus area, and sweep duration, related
to SSVEP visual acuity assessment, and some studies have
given their recommended parameter settings (Yadav et al.,
2009; Almoqbel et al., 2011; Hemptinne et al., 2018). As for
stimulus paradigms used in SSVEP visual acuity assessment,
previous studies have compared some performance, such as
sensitive electrodes, harmonic components of SSVEP response,
correlation, and agreement between objective SSVEP and
subjective psychophysical visual acuity, of six paradigms (reverse
vertical sinusoidal gratings, reverse horizontal sinusoidal
gratings, reverse vertical square-wave gratings, brief-onset
vertical sinusoidal gratings, reversal checkerboards, and
oscillating expansion–contraction concentric rings) (Tobimatsu
et al., 1993; Chen et al., 2019; Zheng et al., 2019a, 2020;
Hamilton et al., 2020).

However, although SSVEP can be an objective method to
assess visual acuity, mental fatigue caused by uncomfortable light
twinkling and contrast changes of prolonged visual stimulus can
decrease arousal level and attention, worsening the SSVEP signal
quality and consequently degrading the practical performance
(Lee et al., 2010; Zhu et al., 2010; Cao et al., 2014; Chen et al.,
2015). Previous studies have indicated that the amplitude and the
signal-to-noise ratio (SNR) are related to the mental fatigue of
the subjects, with decreasing amplitude and SNR corresponding
to the developing fatigue (Wu et al., 2010), which can affect the
precision and the accuracy of SSVEP visual acuity results since
the threshold determination criterion of SSVEP visual acuity is
related to the amplitude and the SNR of electroencephalography
(EEG) response (Fahad et al., 2008; Yadav et al., 2009).

To evaluate the mental fatigue of prolonged SSVEP task,
previous studies have proved that EEGs in the α band (8–13 Hz)
and the θ band (4–7 Hz) can be adapted to assess mental fatigue
(Klimesch, 1999; Cao et al., 2014; Kathner et al., 2014; Xie et al.,
2016). The θ activity is related to drowsiness, while the α waves
appear during relaxed conditions, at decreased attention levels
and in a drowsy but wakeful state (Klimesch, 1999). Increased
fatigue level is often related to the global increase of EEG power in
the α and the θ bands (Klimesch, 1999; Xie et al., 2016). Moreover,
pupil diameter can also be an index to evaluate mental fatigue,
and the increase of mental fatigue coincides with a decrease
in pupil diameter (Hopstaken et al., 2015b; Koo et al., 2018).
Besides that, the National Aeronautics and Space Administration

Task Load Index (NASA-TLX) is also used as a subjective and
quantitative estimation of mental fatigue (Hart and Staveland,
1988; Sampei et al., 2016).

On this basis, in this study, four indices, i.e., the EEG spectral
powers of α + θ, SSVEP properties of amplitude and SNR, pupil
diameters recorded by the eye tracker, and subjective NASA-TLX,
were measured in six SSVEP visual attention runs corresponding
to six previously mentioned types of paradigms to compare their
anti-fatigue performance (Cao et al., 2014; Xie et al., 2016).
We hypothesized that the reversal vertical sinusoidal gratings,
reverse horizontal sinusoidal gratings, reverse vertical square-
wave gratings, and reversal checkerboards would show a similar
anti-fatigue performance since the stimulus mode and the pattern
were similar. When staring at the brief-onset vertical sinusoidal
gratings, the subjects would become more fatigued because of the
constantly changing brightness of the onset and offset mode. As
for the oscillating expansion–contraction concentric rings, since
the overall brightness was uniform when evoking steady-state
motion visual evoked potential (SSMVEP) (Xie et al., 2016; Zheng
et al., 2019a), its anti-fatigue property would be better than that
of other stimulus paradigms.

MATERIALS AND METHODS

Subjects
Twelve subjects (two females), aged between 21 and 25 years old
and with normal or corrected normal visual acuity, participated
in this experiment. They had no history of eye disease. All
the subjects gave informed written consent following a protocol
approved by the institutional review board of Xi’an Jiaotong
University, conforming to the Declaration of Helsinki.

EEG Recordings
In this study, EEG signals were recorded from six occipital
electrodes (PO3, PO4, POz, O1, O2, and Oz) according to
the 10–20 system with a ground electrode, Fpz, placed on the
forehead and a reference electrode, A1, placed on the left earlobe
(Listed, 2006). The EEG signals were collected by a g.USBamp
acquisition and processing system and an active electrode system
g.GAMMAbox (g.tec, Schiedlberg, Austria) at a sampling rate
of 1,200 Hz. Besides that, an online band-pass filter from 2 to
100 Hz was imposed to remove artifacts, and an offline notch
filter between 48 and 52 Hz was applied to eliminate the power
line interference.

Stimulus Designs
As shown in Figure 1, six stimulus paradigms (A: reverse vertical
sinusoidal gratings, B: reverse horizontal sinusoidal gratings,
C: reverse vertical square-wave gratings, D: brief-onset vertical
sinusoidal gratings, E: reversal checkerboards, and F: oscillating
expansion–contraction concentric rings) were introduced as six
separate experimental runs (Zheng et al., 2020). As for each run,
one stimulator was presented to the subjects at the center of a
24.5-in. LCD monitor (PG258Q, ASUS, Taipei, China) with a
resolution of 1,920× 1,080 pixels and a refresh rate of 240 Hz.
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FIGURE 1 | Examples of six stimulus paradigms (Zheng et al., 2020). (A) Reverse vertical sinusoidal gratings. (B) Reverse horizontal sinusoidal gratings. (C) Reverse
vertical square-wave gratings. (D) Brief-onset vertical sinusoidal gratings. (E) Reversal checkerboards. (F) Oscillating expansion–contraction concentric rings. The
yellow ring indicates the shape shifting of the same zone during different processes in the paradigm of concentric rings.

The subjects were asked to sit 60 cm away from the monitor
with the center at eye level. The visual angle of the stimulator
was 4◦ with a diameter of 148 pixels, in accordance with
the recommended visual angle parameter of previous studies
(Almoqbel et al., 2011; Ng et al., 2012). The reversal or oscillating
details of the six paradigms were the same as in our previous
studies, with a contrast of 99.7%, and the duty cycle of paradigm
D remained at 0.3 (Zheng et al., 2019a, 2020). According to
previous studies (Almoqbel et al., 2011), the spatial frequency
of three cycles per degree (cpd) corresponding to 1.0 logMAR
optotype and temporal frequency of 7.5 Hz was assigned to all
six stimulus paradigms. In the whole experiment, a spatially
homogeneous white background with luminance of 208 cd/m2

was displayed in pauses and around the stimulators. The stimulus
paradigms were controlled by MATLAB (MathWorks, Natick,
United States) with the Psychophysics Toolbox (Brainard, 1997).

Experimental Procedure
For each subject, six runs A, B, C, D, E, and F corresponding to
six stimulus paradigms A, B, C, D, E, and F were carried out,
respectively. An eye tracker (Tobii X2-30, Stockholm, Sweden)
was used to monitor the subjects’ eye movements and record their
pupil diameter at a sample rate of 30 Hz. Each run consisted of
23 trials with three pre-experimental trials and 20 experimental
trials. Each trial lasted 5 s, with an interval of 0.5 s between two
trials. During the first three pre-experimental trials, to measure
the baseline mental fatigue level from baseline pupil diameter
and α + θ band, the subjects stared at a black screen with only
a red fixation cross at the position of the center stimulator, so
there was no interference from the pupillary light reflexes of
the eye to the environmental lighting (Hopstaken et al., 2015a).
As for the other 20 trials, the stimulator was presented and
the subjects were instructed to binocularly maintain attention
on the center target stimulus throughout the experiment. The
order of the six runs was random, and there was enough rest
time for the subjects between two runs as long as the subjects
wished. Additionally, a red fixation cross was presented at the
center of the paradigms to aid fixation (Almoqbel et al., 2011).

The whole experiment of each subject usually lasted for about
30–45 min, depending on the inter-run rest time governed
by the subjects.

NASA-TLX
NASA-TLX, originally developed as a paper-and-pencil
questionnaire by NASA Ames Research Center’s Sandra
Hart in the 1980s, has become a gold standard for measuring
subjective workload across a wide range of applications (Hart and
Staveland, 1988; Hart, 2006). Here we used NASA-TLX to assess
mental fatigue subjectively as a psychological measurement. We
assumed that workload deduced by the NASA-TLX represented
the mental fatigue of the subjects (Sampei et al., 2016).

Firstly, the six defined sources of workload – mental
demand (MD), physical demand (PD), temporal demand (TD),
performance (PE), effort (EF), and frustration (FR) – were
explained to the subjects.

The instruction was in Chinese as it is their native language.
Then, after the subjects completed each run, they were asked to
evaluate the six factors on a 0–100 scale. Next, after all the runs
were completed, the subjects were asked to complete a pairwise
comparison method of the six defined sources. The weights a, b, c,
d, e, and f were assigned to each of the six workload sources from
the pairwise comparison results, with weight integers ranging
from 0 to 5, and their combinations were C(6, 2) = 15 (Sampei
et al., 2016). Finally, the individual NASA-TLX of each run for
each subject was derived from a weighted average of the ratings
of these six factors:

NASA− TLX

=
a ∗MD+ b ∗ PD+ c ∗ TD+ d ∗ PE+ e ∗ EF+ f ∗ FR

15
. (1)

Signal Processing of the EEG Data
Canonical Correlation Analysis
Canonical correlation analysis (CCA) is a non-parametric
multivariable method used to reflect the overall linear correlation
between two groups of variables, and it is also used in the analysis
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of SSVEPs (Lin et al., 2007; Bin et al., 2009; Yan et al., 2018). In our
study, it was also used to describe the correlations between the
multi-channel SSVEP signals X and reference signal Yi. X is the
six-electrode channel signal in each trial. The reference signal Yi
composed of sine and cosine pairs is constructed at the reference
frequency fi (i = 1, 2, . . ., N):

Yi =

(
sin
(
2πfit

)
cos(2πfit)

)
, t =

1
Fs

, . . . ,
S
Fs

. (2)

where Fs is the sampling rate, and S is the sample point. Here the
reference frequency fi is set to 1.0, 1.1, . . ., 35.0 Hz (i.e., N = 341).

The linear transformations of X and Yi are x = wx
TX

and yi = wyi
TYi, respectively, and the maximum correlation

coefficient value ρi between X and Yi can be calculated by the
CCA method as:

ρi = max
wx,wy

E[wT
x XY

T
i wyi]√

E
[
wT
x XXTwx

]
E[wT

yiYiYT
i wyi]

. (3)

where E denotes the symbol of the expected value in statistics,
and the superscript T indicates the transposed matrix. The
maximum correlation coefficient value ρi, which represents the
maximum correlation between X and Yi, can be considered
as the response to the stimulus paradigm of SSVEPs at the
reference frequency fi (f1, f2. . ., fN). Therefore, all the ρi and their
corresponding frequency fi can be plotted as a CCA spectrum.
The ρi at the stimulus frequency of 7.5 Hz was regarded as the
SSVEP amplitude.

Signal-to-Noise Ratio
Signal-to-noise ratio (SNR) refers to the ratio of signal to noise in
a device or system. In our study, the SNR was defined as the ratio
of the square of the CCA coefficient at the stimulus frequency of
7.5 Hz to the mean value of the square of the n adjacent points on
the CCA spectrum:

SNR =
z(f )2

1
n ∗

∑ n
2
k=1

[
z
(
f + c ∗ k

)2
+ z

(
f − c ∗ k

)2
] . (4)

where n is set to 10, and f is 7.5 Hz. z(f ) is the CCA coefficient
of the stimulus frequency f on the CCA spectrum. Then, c is the
scale value of abscissa on the CCA spectrum, which is set to 0.1.

EEG Spectral Powers of α + θ Band
Common average reference (CAR) fusion is a commonly used
EEG spatial filtering method performed by subtracting the mean
of all electrode signals from the selected electrode signals to
enhance the SNR of the selected electrode signals (Friman et al.,
2007; Yan et al., 2019). In this study, we chose Oz electrode in
spectral analysis, so the time domain EEG signal Vi to be analyzed
can be expressed as:

Vi = VOz −
1
6

6∑
j=1

Vj, (5)

where Vj is the EEG signal from six electrode channels (PO3,
PO4, POz, O1, O2, and Oz).

As for the processing of the EEG signals, firstly, a band-pass
filter of 3–45 Hz was carried out to remove low-frequency drift
and high-frequency interference. Then, CAR fusion was used for
spatial filtering in each trial. Next, the Welch power spectrum
density (PSD) in bins of 0.1 Hz was used for spectral analysis to
obtain the EEG spectral powers of the α band of 8–13 Hz and the
θ band of 4–7 Hz. Finally, the sum value of the PSD amplitude
in the frequency band on the Welch power spectrum was defined
as the EEG band power indices of the frequency bands of α and
θ (Cao et al., 2014). Hence, the EEG combined index (α + θ) in
each trial was obtained.

As the stimulation time and the experimental trial increased,
the subject could get more fatigued. Hence, the mean values and
SD of each index in the 1–5, 6–10, 11–15, and 16–20 experimental
trials of each run were used to represent the corresponding four
fatigue levels (i.e., level 1, level 2, level 3, and level 4), respectively
(Xie et al., 2016). Fatigue level 4 represented the most fatigued
state, while level 1 represented the least fatigued state.

Statistical Analysis
Statistical analyses were carried out using SPSS 22.0 (IBM,
Armonk, United States). One-way or two-way repeated-measures
analysis of variance (ANOVA) with a significance of P < 0.05
was employed to evaluate the significance of changes in
the four indices of α + θ index, SSVEP amplitude and
SNR, pupil diameter index, and NASA-TLX index of six
paradigms at two fatigue levels, i.e., fatigue level 1 and level
4. The post-hoc analysis with Bonferroni correction method
for multiple comparisons was also used when necessary.
Besides that, we used equal signs and inequality signs to
visualize the anti-fatigue performance among the six paradigms
based on each index.

RESULTS

Pre-experimental Trials
As for each subject, we assumed that the initial mental fatigue
was the same at the beginning of each run since there was
enough rest time between two runs and the order of the
presentation of the six runs was random. Here, to verify
this assumption, we estimated the difference of initial baseline
mental fatigue among six runs corresponding to six paradigms.
As the first three pre-experimental trials of each run were
presented with a black background, the mean fatigue level of
the first three pre-experimental trials can be regarded as the
initial mental fatigue for each run. One-way repeated-measures
ANOVA was used to analyze the difference in pupil diameter
and α + θ band of the first three pre-experimental trials for
each paradigm. As shown in Figure 2, there was no significant
difference both in the pupil diameter and the α + θ band
of the first three pre-experimental trials for each paradigm
[F(5,55) = 0.687, P = 0.635 for pupil diameter; Greenhouse–
Geisser correction: F(3.238,35.623) = 0.774, P = 0.525 for the
α + θ band], demonstrating that our assumption that the
initial mental fatigue was the same at the beginning of each
run was credible.

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 30152

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00301 July 30, 2020 Time: 18:28 # 5

Zheng et al. Anti-fatigue Performance of SSVEP Stimulus

FIGURE 2 | Comparison of the mean values and SD of the pupil diameter and α + θ band index of the first three pre-experimental trials for each paradigm over 12
subjects. Statistics were assessed by one-way repeated-measures ANOVA. (A) Pupil diameter index. (B) α + θ band index.

Comparison of NASA-TLX
For the convenience of data analysis, the NASA-TLX of
psychological measurement of mental fatigue was normalized per
subject by his/her maximal value of six workload sources. The
mean values and SD of normalized NASA-TLX for six stimulation
paradigms over 12 subjects are shown in Figure 3. One-way
repeated-measures ANOVA revealed that there was a significant
difference in NASA-TLX among six paradigms [F(5,55) = 0.074,
P = 0.044]. As the corresponding Bonferroni post-hoc analysis
shows in Table 1, there was no difference in the mean values of
NASA-TLX among paradigms A, B, C, and E, demonstrating that
these pattern reversal paradigms had a similar stimulus intensity
for the human eyes. Paradigm D had the highest mean value of
NASA-TLX than the other paradigms (P < 0.05, respectively),

FIGURE 3 | Comparison of the mean values and SD of normalized National
Aeronautics and Space Administration Task Load Index for six stimulus
paradigms over 12 subjects. Statistics were assessed by one-way
repeated-measures ANOVA.

demonstrating that visual stimulation of onset mode had a high
stimulus intensity, which may be due to the repetitive attentional
demands of continuous flicker and contrast change (Xie et al.,
2017). Except for paradigms C and E with a slightly but non-
significantly higher NASA-TLX than paradigm F, there was a
significant difference in the mean values of NASA-TLX between
paradigms F and A, B, and D (P < 0.05, respectively), showing
that paradigm F had the lowest value of NASA-TLX, in favor of
that motion expansion–contraction SSMVEP stimulation which
exhibited a superior anti-fatigue efficacy over the conventional
flickering or pattern reversal SSVEP stimulation (Xie et al., 2016).
Hence, the anti-fatigue performance of six paradigms based on
NASA-TLX was as follows: F > E = A = B = C > D.

Comparison of SSVEP Amplitude and
SNR
To compare the changes in amplitude and SNR, the mean
values and SD of the SSVEP amplitude and SNR summed
over the stimulus frequency of 7.5 Hz in the 1–5 and 16–20
trials of each run were grouped to represent fatigue levels 1
and 4, respectively, as shown in Figure 4. Two-way repeated-
measures ANOVA revealed that the interaction of two factors

TABLE 1 | Bonferroni post-hoc analysis of National Aeronautics and Space
Administration Task Load Index among six stimulus paradigms.

Paradigm B C D E F

A P = 0.273 P = 0.436 P = 0.010* P = 0.374 P = 0.038*

B – P = 0.828 P = 0.016* P = 0.183 P < 0.001***

C – – P = 0.008** P = 0.058 P = 0.054

D – – – P = 0.005** P = 0.002**

E – – – – P = 0.302

F – – – – –

***P < 0.001; **P < 0.01; *P < 0.05.
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FIGURE 4 | Comparison of the mean values and SD of steady-state visual evoked potential amplitude and signal-to-noise ratio (SNR) between fatigue level
1 and fatigue level 4 for each paradigm over 12 subjects. (A) Amplitude. (B) SNR. Statistics were assessed by one-way repeated-measures ANOVA.
∗∗P < 0.01; ∗P < 0.05.

of “stimulus paradigm” and “fatigue level” yielded significance
in SSVEP amplitude [F(5,55) = 2.955, P = 0.020] and SNR
[F(5,55) = 2.695, P = 0.030]. Subsequently, one-way repeated-
measures ANOVA found a significant difference in SSVEP
amplitude among six paradigms at fatigue level 1 [Greenhouse–
Geisser F(2.510,27.609) = 14.116, P < 0.001] and fatigue level 4
[Greenhouse–Geisser F(2.637,29.006) = 11.019, P < 0.001]. As the
corresponding Bonferroni post-hoc analysis of SSVEP amplitude
among six paradigms at fatigue level 1 and level 4 shows in
Tables 2, 3, the SSVEP amplitude induced by different stimulus
paradigms was different. Paradigms E and D induced the highest
amplitude, and paradigms A, B, and C induced the lowest
amplitude, with paradigm F in between.

One-way repeated-measures ANOVA was also used to analyze
the difference in SSVEP amplitude for paradigms A, B, C, D, E,
and F between fatigue level 1 and level 4 and found a significant
decrease in paradigms B, C, and D [F(1,11) = 12.201, P = 0.005
for paradigm B; F(1,11) = 5.047, P = 0.046 for paradigm C;
F(1,11) = 13.749, P = 0.003 for paradigm D]. The same trend
of decrease was also found in paradigms A and E without
statistical significance [F(1,11) = 2.550, P = 0.139 for paradigm

TABLE 2 | Bonferroni post-hoc analysis of steady-state visual evoked potential
amplitude among six paradigms at fatigue level 1.

Paradigm B C D E F

A P = 1.000 P = 1.000 P = 0.228 P = 0.204 P = 1.000

B – P = 1.000 P = 0.022* P < 0.001*** P = 0.006**

C – – P = 0.116 P < 0.001*** P = 0.086

D – – – P = 1.000 P = 1.000

E – – – – P = 0.017*

F – – – – –

***P < 0.001; **P < 0.01; *P < 0.05.

A; F(1,11) = 4.353, P = 0.061 for paradigm E]. However, there was
no obvious change in amplitude for paradigm F [F(1,11) = 0.083,
P = 0.779].

A similar significant difference of SNR results can also be
found among six paradigms at fatigue level 1 [Greenhouse–
Geisser F(2.427,26.696) = 11.949, P < 0.001] and fatigue level 4
[Greenhouse–Geisser F(2.688,29.569) = 10.594, P < 0.001] by one-
way repeated-measures ANOVA. The corresponding Bonferroni
post-hoc analysis of SSVEP SNR among six paradigms at fatigue
level 1 and level 4 is shown in Tables 4, 5, revealing that
paradigms E and D had the highest SNR and paradigms A, B, and
C had the lowest SNR, with paradigm F in between.

One-way repeated-measures ANOVA found that SNR had
a similar decrease for paradigms A, B, and D between fatigue
level 1 and level 4 [F(1,11) = 6.175, P = 0.030 for paradigm
A; F(1,11) = 12.471, P = 0.005 for paradigm B; F(1,11) = 8.584,
P = 0.014 for paradigm D]. The same but non-significant trend
of decrease was also found in paradigm C [F(1,11) = 1.103,
P = 0.316] and paradigm E [F(1,11) = 1.341, P = 0.271].
However, there was no obvious change in SNR for paradigm F
[F(1,11) < 0.001, P = 0.999].

TABLE 3 | Bonferroni post-hoc analysis of steady-state visual evoked potential
amplitude among six paradigms at fatigue level 4.

Paradigm B C D E F

A P = 0.695 P = 1.000 P = 1.000 P = 0.018* P = 1.000

B – P = 0.343 P = 0.109 P < 0.001*** P = 0.024*

C – – P = 0.459 P < 0.001*** P = 0.094

D – – – P = 1.000 P = 1.000

E – – – – P = 0.533

F – – – – –

***P < 0.001; **P < 0.01; *P < 0.05.
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TABLE 4 | Bonferroni post-hoc analysis of steady-state visual evoked potential
signal-to-noise ratio among six paradigms at fatigue level 1.

Paradigm B C D E F

A P = 1.000 P = 1.000 P = 0.311 P = 0.025 P = 1.000

B – P = 0.654 P = 0.043* P < 0.001*** P = 0.060

C – – P = 0.198 P < 0.001*** P = 0.298

D – – – P = 1.000 P = 0.501

E – – – – P = 0.015*

F – – – – –

***P < 0.001; **P < 0.01; *P < 0.05.

TABLE 5 | Bonferroni post-hoc analysis of steady-state visual evoked potential
signal-to-noise ratio among six paradigms at fatigue level 4.

Paradigm B C D E F

A P = 1.000 P = 1.000 P = 1.000 P = 0.008 P = 0.734

B – P = 0.576 P = 0.274 P < 0.001*** P = 0.044*

C – – P = 1.000 P < 0.001*** P = 0.247

D – – – P = 1.000 P = 1.000

E – – – – P = 0.134

F – – – – –

***P < 0.001; **P < 0.01; *P < 0.05.

This implied that the factor of the types of stimulus paradigm
had a significant influence on the SSVEP response during
prolonged usage. Both SSVEP amplitude and SNR between
fatigue level 1 and fatigue level 4 had a downtrend for paradigms
A, B, C, D, and E, but paradigm F did not present a significant
change in SSVEP amplitude and SNR between fatigue level 1
and level 4. These results were also in line with previous studies
such that paradigm F of motion SSMVEP stimulation exhibited
a superior anti-fatigue efficacy than conventional flickering or
pattern reversal SSVEP stimulation during prolonged SSVEP
visual acuity assessment (Xie et al., 2016). Hence, the anti-fatigue

performance of six paradigms based on SSVEP amplitude and
SNR was as follows: F > E > A = C = B ≥ D.

Comparison of Pupil Diameter Index
For the convenience of data analysis, the pupil diameter
corresponding to each paradigm was normalized for each subject
by his/her respective baseline pupil diameter of the first three
pre-experimental trials of each paradigm. Figure 5A presents
the normalized pupil diameter index between fatigue level 1 and
fatigue level 4 for six stimulus paradigms over 12 subjects. Two-
way repeated-measures ANOVA revealed that the interaction of
two factors of “stimulus paradigm” and “fatigue level” yielded
significance in normalized pupil diameter index [F(5,55) = 2.727,
P = 0.029]. Subsequently, one-way repeated-measures ANOVA
found no significant difference in pupil diameter index among
six paradigms at fatigue level 1 [F(5,55) = 1.796, P = 0.129] and
fatigue level 4 [F(5,55) = 0.170, P = 0.973].

One-way repeated-measures ANOVA was also used to analyze
the difference in pupil diameter index for all six paradigms
between fatigue level 1 and level 4 and found a significant
decrease in paradigms A, B, C, D, and E [F(1,11) = 18.291,
P = 0.001 for paradigm A; F(1,11) = 15.803, P = 0.002 for paradigm
B; F(1,11) = 15.226, P = 0.002 for paradigm C; F(1,11) = 8.134,
P = 0.016 for paradigm D; F(1,11) = 13.177, P = 0.004 for paradigm
E). However, there was no obvious change in pupil diameter
index for paradigm F [F(1,11) = 0.091, P = 0.769]. This also
revealed that paradigm F had better anti-fatigue efficacy than the
other five paradigms. Hence, the anti-fatigue performance of the
six paradigms based on the pupil diameter index was as follows:
F > E = A = B = C = D.

Comparison of α + θ Index
The α+ θ band corresponding to each paradigm was normalized
for each subject by his/her respective baseline α + θ band of the
first three pre-experimental trials of each paradigm. Figure 5B
presents the normalized α + θ index between fatigue level 1 and

FIGURE 5 | Comparison of the mean values and SD of normalized pupil diameter index and normalized α + θ index between fatigue level 1 and fatigue level 4 for six
stimulus paradigms over 12 subjects. (A) Normalized pupil diameter index. Statistics were assessed by repeated-measures ANOVA. ∗∗P < 0.01; ∗P < 0.05.
(B) Normalized α + θ index.
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TABLE 6 | Bonferroni post-hoc analysis of the α + θ index among six paradigms.

Paradigm B C D E F

A P = 1.000 P = 1.000 P = 0.362 P = 0.010 P = 1.000

B – P = 0.479 P = 0.072 P < 0.001*** P = 0.035*

C – – P = 0.278 P < 0.001*** P = 0.110

D – – – P = 1.000 P = 1.000

E – – – – P = 0.024*

F – – – – –

***P < 0.001; **P < 0.01; *P < 0.05.

fatigue level 4 for six stimulus paradigms over 12 subjects. Two-
way repeated-measures ANOVA revealed that the interaction of
two factors of “stimulus paradigm” and “fatigue level” was non-
significant in normalized α+ θ index [F(5,55) = 1.930, P = 0.104].
The factor of “stimulus paradigm” had a significant effect
on α + θ index [Greenhouse–Geisser F(2.466,27.128) = 13.166,
P < 0.001], and the corresponding Bonferroni post-hoc analysis
of α + θ index among six paradigms is shown in Table 6. The
factor of “fatigue level” also had a significant effect on α+ θ index
[F(1,11) = 9.028, P = 0.012]. The α + θ index and its change of
paradigms A, B, and C were similar, revealing that paradigms
A, B, and C had a similar anti-fatigue performance. Similarly,
paradigms D and E also had a close anti-fatigue performance.
Although the α + θ index of paradigm F was slightly higher
than those of other paradigms at fatigue level 1, there was
little change in the α + θ index between fatigue level 1 and
level 4, demonstrating that paradigm F had better anti-fatigue
efficacy than the other five paradigms. Hence, the anti-fatigue
performance of six paradigms based on the α + θ index was as
follows: F > A = B = C = E ≥ D.

DISCUSSION

In this study, we used four indices of α+ θ index, pupil diameter
index, NASA-TLX, and SSVEP amplitude and SNR to compare
the mental fatigue and anti-fatigue performance of six paradigms
in SSVEP visual acuity assessment. First, as for α + θ index,
the θ waves tend to appear during meditative, drowsy, hypnotic,
or sleeping states, and the increase in θ waves is related to
performance decrements on task (Klimesch, 1999; Xie et al.,
2016). The α waves appear during wakeful relaxation with closed
eyes at decreased attention levels and in a drowsy but wakeful
state, and the increase in α waves associated with fatigue is
related to the increased mental effort to maintain vigilance level
(Cao et al., 2014; Kathner et al., 2014). More specifically, the
decreased attention and arousal level caused by mental fatigue are
associated with the global increase in the θ and the α activities.
Hence, the α + θ index shows a significant increase associated
with the increasing fatigue level and also related to the mental
alertness level (Eoh et al., 2005; Cao et al., 2014). Second, as for the
pupil diameter, it is also a well-documented psycho-physiological
proxy of effort, load on memory, and arousal (Peysakhovich
et al., 2015), and the decrease in pupil diameter is related to
deep breathing, mental work, and sleep. Hence, the increase of

mental fatigue coincides with the decrease in pupil diameter
(Hopstaken et al., 2015b). Third, NASA-TLX is a gold standard
for measuring subjective mental fatigue across a wide range
of applications (Hart and Staveland, 1988). Finally, previous
studies have proved that the SSVEP amplitude and SNR can
be significantly affected by the increasing fatigue level, and the
amplitude and SNR of the elicited SSVEP are easily affected by
mental states, fatigue, and degree of attention level (Cao et al.,
2014; Xie et al., 2016).

This study focused on the mental fatigue effects caused by the
long-time SSVEP stimulus of six stimulus paradigms. The results
of all the indices of α + θ index, pupil diameter index, NASA-
TLX, and SSVEP amplitude and SNR showed that paradigm
F of motion expansion–contraction had a superior anti-fatigue
efficacy than the other five paradigms of conventional onset mode
or pattern reversal SSVEP stimulation during prolonged SSVEP
experiment. The paradigm D of brief-onset mode showed the
lowest anti-fatigue efficacy, and the other paradigms A, B, C,
and E of pattern reversal SSVEP stimulation paradigms showed a
similar anti-fatigue efficacy, which was between paradigms D and
F. These indices of mental fatigue showed a good agreement. The
results showed the anti-fatigue performance calculated averagely
through all the four indices of mental fatigue estimation of six
paradigms as follows: F > E ≥ A = B = C > D. Besides that, the
decrease of SSVEP amplitude and SNR caused by mental fatigue
during prolonged EEG experiment especially in paradigms A, B,
C, D, and E may consequently deteriorate the SSVEP visual acuity
assessment since the threshold determination criterion of SSVEP
acuity is related to the amplitude and SNR of SSVEP response
(Zheng et al., 2019a). Hence, we recommended paradigm F
of oscillating expansion–contraction concentric rings as the
stimulation paradigm in SSVEP visual acuity.

The reason for paradigm F to have the highest anti-fatigue
property may be because of its uniform brightness and position
changes rather than luminance alternations when presented to
the subject, which overcame the problem of visual fatigue caused
by uncomfortable light twinkling and contrast changes in the
pattern reversal and brief-onset mode (Xie et al., 2012, 2016;
Han et al., 2018; Yan et al., 2018). According to the theory of
visual pathways, the visual system is divided into two major
pathways of the parvocellular pathway and the magnocellular
pathway (Pokorny and Smith, 1997). The magnocellular pathway
contains the detection of dynamic motion and depth, whereas
the parvocellular pathway contains the detection of spatial
contrast and color information, with a slower propagation than
the magnocellular pathway. Previous studies have proposed
that attention uses the faster and more dominant signals of
the magnocellular pathway to give priority to stimuli and
simultaneously enhance the activity of the parvocellular pathway
(Pokorny and Smith, 1997; Di Russo and Spinelli, 1999; Yeshurun
and Sabo, 2012). If attentional networks are more reliant on
parvocellular pathways, extra reaction time and demand are
required for attention (Li et al., 2007; Laycock et al., 2008). Hence,
the attention demand may be alleviated in motion expansion–
contraction mode in paradigm F, while the contrast change in
paradigm D of brief-onset mode may be a bit intense, resulting
in the increase of attention demand.
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There were also some limitations in this study that should
be weighted. First, although the temporal frequency of 7.5 Hz
was often used in SSVEP visual acuity (Almoqbel et al., 2011;
Hamilton et al., 2020), the only one temporal frequency did
not fully consider all relevant research since mental fatigue
was limited by stimulus frequency to some extent (Won et al.,
2016). Second, the number of trials and the time spent on
one run were not necessarily the same as those of the SSVEP
acuity test in clinical experiments, which may also have a
certain influence on the results. Third, we used binocular
rather than monocular viewing in our study, and the two may
be not completely equivalent. Fourth, we used a consistent
spatial frequency rather than a set of sweep spatial frequencies
similar to the SSVEP visual acuity experiment, which may also
lead to some difference in results from the actual experiment.
Finally, in this study, compared to pupil diameter index and
α + θ index, there were no corresponding baseline of SSVEP
amplitude and SNR in the first three pre-experimental trials of
each paradigm because of no visual stimulus during the three
trials, so SSVEP amplitude and SNR were not normalized by
respective baseline.

CONCLUSION

To conclude, this study has explored the anti-fatigue performance
of six stimulus paradigms (reverse vertical sinusoidal gratings,
reverse horizontal sinusoidal gratings, reverse vertical square-
wave gratings, brief-onset vertical sinusoidal gratings, reversal
checkerboards, and oscillating expansion–contraction concentric
rings) used in SSVEP visual acuity assessment. Four indices of
α + θ index, pupil diameter index, NASA-TLX, and SSVEP
amplitude and SNR were proposed to estimate mental fatigue
quantitatively. These indices of mental fatigue showed a good
agreement. The results showed that the paradigm of motion
expansion–contraction had a superior anti-fatigue efficacy than
the other five paradigms of conventional onset mode or
pattern reversal mode during prolonged SSVEP experiment. The
paradigm of brief-onset mode showed the lowest anti-fatigue
efficacy, and the other paradigms of pattern reversal mode
showed a similar anti-fatigue efficacy, which was between motion
expansion–contraction mode and onset mode.

Except for brief-onset vertical sinusoidal gratings, the
four commonly used stimulus paradigms (i.e., reverse
vertical sinusoidal gratings, reverse horizontal sinusoidal
gratings, reverse vertical square-wave gratings, and reversal
checkerboards) in SSVEP acuity assessment had a relatively good
anti-fatigue property, indicating that mental fatigue could not

affect the SSVEP acuity estimation too much when using the
four stimulus paradigms. As for the paradigm of oscillating
expansion–contraction concentric rings, it had the highest
anti-fatigue property, and we recommended the oscillating
expansion–contraction concentric rings as the stimulus paradigm
in SSVEP acuity assessment.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the institutional review board of the Xi’an
Jiaotong University. The patients/participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

AUTHOR CONTRIBUTIONS

XZ contributed to the study design, data acquisition, analysis,
interpretation, manuscript writing, and revision. GX contributed
to the study design and the approval of the final version
for publication. YZ contributed to the statistical analysis and
manuscript drafting. RL and KZ contributed to the data analysis
and interpretation. YD contributed to the manuscript writing
and revision. JX provided the experimental equipment and
approved the final version for publication. SZ conceptualized the
study. All authors contributed to the article and approved the
submitted version.

FUNDING

This research was supported by grants from the Special
Guidance Funds for the Construction of World-Class
Universities (Disciplines) and the Characteristic Development
in Central Universities (PY3A071), the National Key Research
and Development Program of China (2017YFC1308500),
and the National Natural Science Foundation of China
(NSFC-51775415).

REFERENCES
Almoqbel, F. M., Yadav, N. K., Leat, S. J., Head, L. M., and Irving, E. L. (2011).

Effects of sweep VEP parameters on visual acuity and contrast thresholds in
children and adults. Graefes. Arch. Clin. Exp. Ophthalmol. 249, 613–623. doi:
10.1007/s00417-010-1469-8

Bin, G., Gao, X., Yan, Z., Hong, B., and Gao, S. (2009). An online multi-
channel SSVEP-based brain-computer interface using a canonical correlation

analysis method. J. Neural Eng. 6:046002. doi: 10.1088/1741-2560/6/4/04
6002

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi:
10.1163/156856897X00357

Cao, T., Wan, F., Wong, C. M., da Cruz, J. N., and Hu, Y. (2014). Objective
evaluation of fatigue by EEG spectral analysis in steady-state visual evoked
potential-based brain-computer interfaces. Biomed. Eng. Online 13:28. doi: 10.
1186/1475-925X-13-28

Frontiers in Human Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 30157

https://doi.org/10.1007/s00417-010-1469-8
https://doi.org/10.1007/s00417-010-1469-8
https://doi.org/10.1088/1741-2560/6/4/046002
https://doi.org/10.1088/1741-2560/6/4/046002
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1186/1475-925X-13-28
https://doi.org/10.1186/1475-925X-13-28
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00301 July 30, 2020 Time: 18:28 # 10

Zheng et al. Anti-fatigue Performance of SSVEP Stimulus

Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T. P., and Gao, S. (2015). High-
speed spelling with a noninvasive brain-computer interface. Proc. Natl. Acad.
Sci. U.S.A. 112, E6058–E6067. doi: 10.1073/pnas.1508080112

Chen, X., Wang, Y., Zhang, S., Xu, S., and Gao, X. (2019). Effects of stimulation
frequency and stimulation waveform on steady-state visual evoked potentials
using a computer monitor. J. Neural Eng. 16:066007. doi: 10.1088/1741-2552/
ab2b7d

Di Russo, F., and Spinelli, D. (1999). Spatial attention has different effects on the
magno- and parvocellular pathways. Neuroreport 10, 2755–2762. doi: 10.1097/
00001756-199909090-00011

Eoh, H. J., Chung, M. K., and Kim, S. H. (2005). Electroencephalographic study of
drowsiness in simulated driving with sleep deprivation. Int. J. Ind. Ergonom. 35,
307–320. doi: 10.1016/j.ergon.2004.09.006

Fahad, A., Leat, S. J., and Elizabeth, I. (2008). The technique, validity and clinical
use of the sweep VEP. Ophthal. Physl. Opt. 28, 393–403. doi: 10.1111/j.1475-
1313.2008.00591.x

Friman, O., Volosyak, I., and Graser, A. (2007). Multiple channel detection of
steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans.
Biomed. Eng. 54, 742–750. doi: 10.1109/TBME.2006.889160

Hamilton, R., Bach, M., Heinrich, S. P., Hoffmann, M. B., Odom, J. V., McCulloch,
D. L., et al. (2020). VEP estimation of visual acuity: a systematic review. Doc.
Ophthalmol. doi: 10.1007/s10633-020-09770-3

Han, C., Xu, G., Xie, J., Chen, C., and Zhang, S. (2018). Highly interactive brain-
computer interface based on flicker-free steady-state motion visual evoked
potential. Sci. Rep. 8:5835. doi: 10.1038/s41598-018-24008-8

Hart, S. G. (2006). Nasa-task load index (NASA-TLX); 20 years later. Proc. Hum.
Fact. Ergon. Soc. Annu. Meet. 50, 904–908. doi: 10.1177/15419312060500
0909

Hart, S. G., and Staveland, L. E. (1988). Development of NASA-TLX (Task Load
Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183.
doi: 10.1016/s0166-4115(08)62386-9

Hemptinne, C., Liu-Shuang, J., Yuksel, D., and Rossion, B. (2018). Rapid objective
assessment of contrast sensitivity and visual acuity with sweep visual evoked
potentials and an extended electrode array. Invest. Ophthalmol. Vis. Sci. 59,
1144–1157. doi: 10.1167/iovs.17-23248

Hopstaken, J. F., van der Linden, D., Bakker, A. B., and Kompier, M. A.
(2015a). A multifaceted investigation of the link between mental fatigue
and task disengagement. Psychophysiology 52, 305–315. doi: 10.1111/psyp.
12339

Hopstaken, J. F., van der Linden, D., Bakker, A. B., and Kompier, M. A. (2015b).
The window of my eyes: task disengagement and mental fatigue covary with
pupil dynamics. Biol. Psychol. 110, 100–106. doi: 10.1016/j.biopsycho.2015.
06.013

Kathner, I., Wriessnegger, S. C., Muller-Putz, G. R., Kubler, A., and Halder, S.
(2014). Effects of mental workload and fatigue on the P300, alpha and theta
band power during operation of an ERP (P300) brain-computer interface. Biol.
Psychol. 102, 118–129. doi: 10.1016/j.biopsycho.2014.07.014

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29,
169–195. doi: 10.1016/s0165-0173(98)00056-3

Koo, B. Y., Jang, M. H., Kim, Y. C., and Mah, K. C. (2018). Changes in the subjective
fatigue and pupil diameters induced by watching LED TVs. Optik 164, 701–710.
doi: 10.1016/j.ijleo.2018.03.077

Laycock, R., Crewther, D. P., and Crewther, S. G. (2008). The advantage in
being magnocellular: a few more remarks on attention and the magnocellular
system. Neurosci. Biobehav. Rev. 32, 1409–1415. doi: 10.1016/j.neubiorev.2008.
04.008

Lee, P. L., Sie, J. J., Liu, Y. J., Wu, C. H., Lee, M. H., Shu, C. H., et al. (2010).
An SSVEP-actuated brain computer interface using phase-tagged flickering
sequences: a cursor system. Ann. Biomed. Eng. 38, 2383–2397. doi: 10.1007/
s10439-010-9964-y

Li, J. C., Sampson, G. P., and Vidyasagar, T. R. (2007). Interactions between
luminance and colour channels in visual search and their relationship to parallel
neural channels in vision. Exp Brain Res. 176, 510–518. doi: 10.1007/s00221-
006-0773-3

Lin, Z., Zhang, C., Wu, W., and Gao, X. (2007). Frequency recognition based on
canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng.
54, 1172–1176. doi: 10.1109/tbme.2006.889197

Listed, N. (2006). Guideline 5: guidelines for standard electrode position
nomenclature. Am. J. Eeg. Technol. 46, 222–225. doi: 10.1080/1086508x.2006.
11079580

Ng, K. B., Bradley, A. P., and Cunnington, R. (2012). Stimulus specificity of a
steady-state visual-evoked potential-based brain-computer interface. J. Neural
Eng. 9:036008. doi: 10.1088/1741-2560/9/3/036008

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., and Rossion, B.
(2015). The steady-state visual evoked potential in vision research: a review.
J. Vis. 15:4. doi: 10.1167/15.6.4

Norcia, A. M., and Tyler, C. W. (1985a). Infant VEP acuity measurements: analysis
of individual differences and measurement error. Electroencephalogr. Clin.
Neurophysiol. 61, 359–369. doi: 10.1016/0013-4694(85)91026-0

Norcia, A. M., and Tyler, C. W. (1985b). Spatial frequency sweep VEP: visual acuity
during the first year of life. Vis. Res. 25, 1399–1408. doi: 10.1016/0042-6989(85)
90217-2

Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Mizota, A., et al.
(2016). ISCEV standard for clinical visual evoked potentials: (2016 update).
Doc. Ophthalmol. 133, 1–9. doi: 10.1007/s10633-016-9553-y

Peysakhovich, V., Dehais, F., and Causse, M. (2015). Pupil diameter as a measure
of cognitive load during auditory-visual interference in a simple piloting task.
Proc. Manufact. 3, 5199–5205. doi: 10.1016/j.promfg.2015.07.583

Pokorny, J., and Smith, V. C. (1997). Psychophysical signatures associated with
magnocellular and parvocellular pathway contrast gain. J. Opt. Soc. Am. A Opt.
Image Sci. Vis. 14, 2477–2486. doi: 10.1364/josaa.14.002477

Sampei, K., Ogawa, M., Torres, C. C. C., Sato, M., and Miki, N. (2016).
Mental fatigue monitoring using a wearable transparent eye detection system.
Micromachines 7:20. doi: 10.3390/mi7020020

Tobimatsu, S., Kurita-Tashima, S., Nakayama-Hiromatsu, M., and Kato, M. (1993).
Effect of spatial frequency on transient and steady-state VEPs: stimulation with
checkerboard, square-wave grating and sinusoidal grating patterns. J. Neurol
Sci. 118, 17–24. doi: 10.1016/0022-510x(93)90239-u

Tyler, C. W., Apkarian, P., Levi, D. M., and Nakayama, K. (1979). Rapid assessment
of visual function: an electronic sweep technique for the pattern visual evoked
potential. Invest. Ophthalmol. Vis. Sci. 18, 703–713.

Won, D. O., Hwang, H. J., Dahne, S., Muller, K. R., and Lee, S. W. (2016). Effect of
higher frequency on the classification of steady-state visual evoked potentials.
J. Neural Eng. 13:016014. doi: 10.1088/1741-2560/13/1/016014

Wu, Z., Yao, D., Tang, Y., Huang, Y., and Su, S. (2010). Amplitude modulation of
steady-state visual evoked potentials by event-related potentials in a working
memory task. J. Biol. Phys. 36, 261–271. doi: 10.1007/s10867-009-9181-9

Xie, J., Xu, G., Luo, A., Li, M., Zhang, S., Han, C., et al. (2017). The role of
visual noise in influencing mental load and fatigue in a steady-state motion
visual evoked potential-based brain-computer interface. Sensors 17:1873. doi:
10.3390/s17081873

Xie, J., Xu, G., Wang, J., Li, M., Han, C., and Jia, Y. (2016). Effects of mental load and
fatigue on steady-state evoked potential based brain computer interface tasks:
a comparison of periodic flickering and motion-reversal based visual attention.
PLoS One 11:e0163426. doi: 10.1371/journal.pone.0163426

Xie, J., Xu, G., Wang, J., Zhang, F., and Zhang, Y. (2012). Steady-state motion
visual evoked potentials produced by oscillating Newton’s rings: implications
for brain-computer interfaces. PLoS One 7:e39707. doi: 10.1371/journal.pone.
0039707

Yadav, N. K., Almoqbel, F., Head, L., Irving, E. L., and Leat, S. J. (2009). Threshold
determination in sweep VEP and the effects of criterion. Doc. Ophthalmol. 119,
109–121. doi: 10.1007/s10633-009-9177-6

Yan, W., Xu, G., Chen, L., and Zheng, X. (2019). Steady-state motion visual evoked
potential (SSMVEP) enhancement method based on time-frequency image
fusion. Comput. Intell. Neurosci. 2019:9439407. doi: 10.1155/2019/9439407

Yan, W., Xu, G., Xie, J., Li, M., and Dan, Z. (2018). Four novel motion paradigms
based on steady-state motion visual evoked potential. IEEE Trans. Biomed. Eng.
65, 1696–1704. doi: 10.1109/TBME.2017.2762690

Yeshurun, Y., and Sabo, G. (2012). Differential effects of transient attention on
inferred parvocellular and magnocellular processing. Vis. Res. 74, 21–29. doi:
10.1016/j.visres.2012.06.006

Zheng, X., Xu, G., Wang, Y., Han, C., Du, C., Yan, W., et al. (2019a). Objective
and quantitative assessment of visual acuity and contrast sensitivity based on
steady-state motion visual evoked potentials using concentric-ring paradigm.
Doc. Ophthalmol. 139, 123–136. doi: 10.1007/s10633-019-09702-w

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2020 | Volume 14 | Article 30158

https://doi.org/10.1073/pnas.1508080112
https://doi.org/10.1088/1741-2552/ab2b7d
https://doi.org/10.1088/1741-2552/ab2b7d
https://doi.org/10.1097/00001756-199909090-00011
https://doi.org/10.1097/00001756-199909090-00011
https://doi.org/10.1016/j.ergon.2004.09.006
https://doi.org/10.1111/j.1475-1313.2008.00591.x
https://doi.org/10.1111/j.1475-1313.2008.00591.x
https://doi.org/10.1109/TBME.2006.889160
https://doi.org/10.1007/s10633-020-09770-3
https://doi.org/10.1038/s41598-018-24008-8
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/s0166-4115(08)62386-9
https://doi.org/10.1167/iovs.17-23248
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1016/j.biopsycho.2015.06.013
https://doi.org/10.1016/j.biopsycho.2015.06.013
https://doi.org/10.1016/j.biopsycho.2014.07.014
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.1016/j.ijleo.2018.03.077
https://doi.org/10.1016/j.neubiorev.2008.04.008
https://doi.org/10.1016/j.neubiorev.2008.04.008
https://doi.org/10.1007/s10439-010-9964-y
https://doi.org/10.1007/s10439-010-9964-y
https://doi.org/10.1007/s00221-006-0773-3
https://doi.org/10.1007/s00221-006-0773-3
https://doi.org/10.1109/tbme.2006.889197
https://doi.org/10.1080/1086508x.2006.11079580
https://doi.org/10.1080/1086508x.2006.11079580
https://doi.org/10.1088/1741-2560/9/3/036008
https://doi.org/10.1167/15.6.4
https://doi.org/10.1016/0013-4694(85)91026-0
https://doi.org/10.1016/0042-6989(85)90217-2
https://doi.org/10.1016/0042-6989(85)90217-2
https://doi.org/10.1007/s10633-016-9553-y
https://doi.org/10.1016/j.promfg.2015.07.583
https://doi.org/10.1364/josaa.14.002477
https://doi.org/10.3390/mi7020020
https://doi.org/10.1016/0022-510x(93)90239-u
https://doi.org/10.1088/1741-2560/13/1/016014
https://doi.org/10.1007/s10867-009-9181-9
https://doi.org/10.3390/s17081873
https://doi.org/10.3390/s17081873
https://doi.org/10.1371/journal.pone.0163426
https://doi.org/10.1371/journal.pone.0039707
https://doi.org/10.1371/journal.pone.0039707
https://doi.org/10.1007/s10633-009-9177-6
https://doi.org/10.1155/2019/9439407
https://doi.org/10.1109/TBME.2017.2762690
https://doi.org/10.1016/j.visres.2012.06.006
https://doi.org/10.1016/j.visres.2012.06.006
https://doi.org/10.1007/s10633-019-09702-w
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00301 July 30, 2020 Time: 18:28 # 11

Zheng et al. Anti-fatigue Performance of SSVEP Stimulus

Zheng, X., Xu, G., Zhi, Y., Wang, Y., Han, C., Wang, B., et al. (2019b). Objective
and quantitative assessment of interocular suppression in strabismic amblyopia
based on steady-state motion visual evoked potentials. Vis. Res. 164, 44–52.
doi: 10.1016/j.visres.2019.07.003

Zheng, X., Xu, G., Wu, Y., Wang, Y., Du, C., Wu, Y., et al. (2020). Comparison
of the performance of six stimulus paradigms in visual acuity assessment based
on steady-state visual evoked potentials. Doc. Ophthalmol. doi: 10.1007/s10633-
020-09768-x

Zhu, D., Bieger, J., Garcia Molina, G., and Aarts, R. M. (2010). A survey of
stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci.
2010:702357. doi: 10.1155/2010/702357

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zheng, Xu, Zhang, Liang, Zhang, Du, Xie and Zhang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 11 July 2020 | Volume 14 | Article 30159

https://doi.org/10.1016/j.visres.2019.07.003
https://doi.org/10.1007/s10633-020-09768-x
https://doi.org/10.1007/s10633-020-09768-x
https://doi.org/10.1155/2010/702357
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


METHODS
published: 18 September 2020

doi: 10.3389/fnhum.2020.00365

Frontiers in Human Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 365

Edited by:

Adel Said Elmaghraby,

University of Louisville, United States

Reviewed by:

Chee-Ming Ting,

University of Technology

Malaysia, Malaysia

Fuad Noman,

Universiti Tenaga Nasional, Malaysia

*Correspondence:

Hongyi Zhang

zhanghongyi@xmut.edu.cn

Specialty section:

This article was submitted to

Brain-Computer Interfaces,

a section of the journal

Frontiers in Human Neuroscience

Received: 13 May 2020

Accepted: 10 August 2020

Published: 18 September 2020

Citation:

Zhang H, Silva FHS, Ohata EF,

Medeiros AG and Rebouças Filho PP

(2020) Bi-Dimensional Approach

Based on Transfer Learning for

Alcoholism Pre-disposition

Classification via EEG Signals.

Front. Hum. Neurosci. 14:365.

doi: 10.3389/fnhum.2020.00365

Bi-Dimensional Approach Based on
Transfer Learning for Alcoholism
Pre-disposition Classification via
EEG Signals

Hongyi Zhang 1*, Francisco H. S. Silva 2, Elene F. Ohata 2,3, Aldisio G. Medeiros 2,3 and

Pedro P. Rebouças Filho 2,3,4

1 School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China, 2 Laboratório

de Processamento de Imagens, Sinais e Computação Aplicada, Instituto Federal do Ceará, Fortaleza, Brazil, 3 Programa de

Pós-Graduação em Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, Brazil, 4 Programa de

Pós-Graduação em Ciência da Computação, Instituto Federal do Ceará, Fortaleza, Brazil

Recent statistics have shown that the main difficulty in detecting alcoholism is the

unreliability of the information presented by patients with alcoholism; this factor

confusing the early diagnosis and it can reduce the effectiveness of treatment. However,

electroencephalogram (EEG) exams can provide more reliable data for analysis of

this behavior. This paper proposes a new approach for the automatic diagnosis

of patients with alcoholism and introduces an analysis of the EEG signals from a

two-dimensional perspective according to changes in the neural activity, highlighting

the influence of high and low-frequency signals. This approach uses a two-dimensional

feature extraction method, as well as the application of recent Computer Vision (CV)

techniques, such as Transfer Learning with Convolutional Neural Networks (CNN).

The methodology to evaluate our proposal used 21 combinations of the traditional

classification methods and 84 combinations of recent CNN architectures used as

feature extractors combined with the following classical classifiers: Gaussian Naive

Bayes, K-Nearest Neighbor (k-NN), Multilayer Perceptron (MLP), Random Forest (RF)

and Support Vector Machine (SVM). CNN MobileNet combined with SVM achieved the

best results in Accuracy (95.33%), Precision (95.68%), F1-Score (95.24%), and Recall

(95.00%). This combination outperformed the traditional methods by up to 8%. Thus, this

approach is applicable as a classification stage for computer-aided diagnoses, useful for

the triage of patients, and clinical support for the early diagnosis of this disease.

Keywords: electroencephalogram, alcoholism, convolutional neural network, computer vision, transfer learning

1. INTRODUCTION

In 2016, there were around 3 million deaths worldwide due to alcohol abuse, 5.3% of all deaths
recorded that year. The number of deaths from alcohol is greater than from some other serious
diseases like tuberculosis, Acquired Immunodeficiency Syndrome (AIDS) and diabetes (World
Health Organization, 2019). Still in 2016, alcohol caused 132.6 million disability-adjusted life years
(DALYs) which represented 5.1% of all DALYs in that year. The World Health Organization
(WHO) estimates that 283 million people worldwide have alcohol use disorders (World Health
Organization, 2019).
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Moderate and frequent alcohol consumption (>30 g/day) can
bring benefits to the cardiovascular system (Foppa et al., 2001),
with increased High Density Lipoprotein (HDL) cholesterol and
the consumption of red wine has antioxidant action (da Luz
and Coimbra, 2004). However, abusive alcohol consumption
(>60 g/day) has direct consequences for the medium-long
term health of the individual, such as liver disease, cancer,
cardiovascular, and mental problems, as well as indirect
consequences in case of accidents, suicides, and homicides
due to short-term harm, such as cognitive and mobility
problems (da Luz and Coimbra, 2004; Jennison, 2004; World
Health Organization, 2019). Alcohol affects the Central Nervous
System (CNS) directly, causing changes in its function and
in brain functions. One way to check brain activity and the
changes caused by alcohol is through an EEG exam (Devor
and Cloninger, 1989) which can identify different types of
brain activities through electrodes placed on specific regions of
the head.

The EEG has multiple channels to collect electrical signals,
which are emitted through neuron synapses and are incredibly
complicated and non-linear. Specific techniques are required
to interpret the complexity of these exams. Computer Aided
Diagnostic (CAD) tools along with the use of Digital Signal
Processing (DSP) and Artificial Intelligence (AI) techniques,
with Machine Learning (ML) (Acharya et al., 2012; McBride
et al., 2015; Patidar et al., 2017; Bhattacharyya et al., 2018;
Bosl et al., 2018; Ibrahim et al., 2018; Amezquita-Sanchez
et al., 2019; Rodrigues et al., 2019) can be applied to interpret
these signals. Several studies have been performed using EEG
signals to identify different types of disturbances in brain
activity, such as the detection of patterns that characterize
Alzheimer’s disease (McBride et al., 2015; Amezquita-Sanchez
et al., 2019; Tzimourta et al., 2019), autism (Boutros et al.,
2015; Bosl et al., 2018; Ibrahim et al., 2018), sleep disorders
(Koley and Dey, 2012; D’Rozario et al., 2015; Rundo et al.,
2019), hyperactivity (Mohammadi et al., 2016; Muñoz-
Organero et al., 2018; Wang et al., 2019), and epilepsy
(Bhattacharyya et al., 2018; Ibrahim et al., 2018; Ren et al.,
2018).

Besides the fact that EEG exams have previously presented
good results in identifying different diseases, we chose to use the
EEG exam because it provides an extensive mapping of brain
activity equal to other exams, such as Magnetoencephalography
(MEG), functional Magnetic Resonance Imaging (fMRI),
functional Near-Infrared Spectroscopy (fNIRS) and Positron
Emission Tomography (PET). However, recording EEG signals
is simpler than MEG signals, since the measurement of electrical
voltages is more easily performed than the measurement
of magnetic fields as they have a low amplitude (Stam,
2010). Hair artifacts can influence infrared-based fNIRS
measurements, and thus directly interfering with the
reliability of the exam (Lloyd-Fox et al., 2010). EEG does
not emit particles to obtain the result of the examination,
as in the case of PET (Chugani et al., 1987). Furthermore,
fMRI (Kozel et al., 2004) requires the use of high-cost magnetic
scanners unlike EEG, which in comparison is a low-cost
equivalent solution.

1.1. Contribution and Paper Organization
Among the main contributions of this work to diagnose a
predisposition to alcoholism, we highlight the use of a heat map
to represent the brain activity of each patient in order to provide
a visual analysis and the use of the Transfer Learning method, as
the extraction of deep attributes as a way to represent the healthy
and pathologic samples.

The paper is organized as follows: section 2 presents a
literature review concerning the topic. Section 3 discusses the
materials and methods that support the proposed technique.
Section 4 gives a description of the use of CNN as an attribute
extractor. The proposed methodology is described in section 5,
and finally, in section 6, we present the results obtained
and the discussion.

2. OVERVIEW OF THE ALCOHOLISM
PREDISPOSITION CLASSIFICATION

This section presents the state of the art of EEG analysis
to identify alcoholism considering the evolution of feature
extraction methods from the traditional statistical approach to
the current use of CNNs as feature extractors.

Acharya et al. (2012) developed an automatic technique for
CAD to identify healthy patients with a genetic predisposition
to alcoholism through EEG signal analyses. These authors
combined a non-linear feature extraction, such as Approximate
Entropy, Sample Entropy, Largest Lyapunov Exponent, and four
Higher-Order Spectra (HOS) functions with a SVM classifier,
varied the Polynomial and Radial Basis Function (RBF) kernals.
Their results indicated that non-linear measurements extracted
from EEG signals can achieve promising results.

Using the electrical impulses that represent the physiological
functions like eye blinking and heart beating, Rachman et al.
(2016) proposed an independent component analysis through
EEG signals. In their work, the features extracted by stationary
wavelet transformwith Daubechies decomposition at level 6 were
combined with a probabilistic neural network to classify samples
from 64 channels into two classes: healthy and alcoholism
patients. However, this work only used classical statistic features
like maximum, minimum, and average values, showing its
fragility when outlier samples were present in the dataset.

Mumtaz et al. (2016), on the other hand, analyzed 19
channels placed according to the international 10–20 system
to identify healthy and alcoholism patient. The dataset had
18 alcoholism and 15 healthy patients. They extracted features
through quantitative electroencephalography from EEG data.
The features were used as the input for classification models:
Linear Discriminant Analysis, SVM, MLP, and Logistic Model
Trees. This study suggests that EEG spectral analysis can help to
classify pathologic samples from the healthy ones. Nevertheless,
they used seven frequency bands in these analyses, indicating an
increase in the time to generate results.

Ehlers et al. (1998) proposed an approach to evaluate the
influence of alcohol consumed on brain activities. They analyzed
EEG signals through temporal series combined with the chaos
theory. In their study, the authors assessed two groups of patients,
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a control group, and an alcoholism group. Based on this, they
suggested that the EEG signal has non-linear structures that can
be modified when the patient is under the effect of alcohol.

Kannathal et al. (2005) analyzed EEG signals through non-
linear measurements, such as correlation dimension, largest
Lyapunov exponent, Hurst exponent, and entropy values. The
authors suggested that non-linear analysis could contribute to
distinguish between healthy and alcoholic patients.

Faust et al. (2013) also considered the non-linear
characteristics of EEG signals. These authors used the non-
linear feature of HOS to extract information about alcoholic
patients. This feature was used as the input to six different
classifications models: Decision Tree, Fuzzy Sugeno Classifier,
k-NN, Gaussian Mixture Model, Naive Bayes Classifier, and
Probabilistic Neural Network.

Although these recent works in the literature have presented
promising results, some of them omitted the number of
samples evaluated and which criteria was used to select the
channels of the EEG exam to be analyzed. Furthermore, most
of these works use feature extraction techniques specially
adjusted to assessed datasets, hindering the possibility to
generalize to signals with other characteristics. Finally, these
works did not evaluate new feature extractors, especially such
algorithms based on the recent technique of Deep Learning
(DL) using Transfer Learning; this is one of the innovations of
our approach.

Moreover, these works were performed using the
raw one-dimensional signals of the EEG, in addition
to selecting specific channels to solve the problem. In
our work, we proposed a two-dimensional heat-map
representations to represent the EEG channels, where
each value acquired from one channel corresponds to
the pixel value in the resulting image, so the junction
of all selected channels makes up the final image for
each patient.

The generated image corresponds to the heat map of the
brain activity of this patient, thus giving a visual analysis of the
problem, as well as the use of CV, DL, and ML methods. The
use of heat map imaging enables the application of structural and
textural analysis methods, such as pixel variance, morphological
gradient calculations, equalization, as well as enhancement
algorithms that can improve the distinction between alcoholic
and healthy samples; thus giving a more accurate diagnostic.

The two-dimensional approach also allows the use of feature
extraction methods, which describe different shapes, textures and
structures of each image, such as Gray-Level Co-Occurrence
Matrix (GLCM) (Haralick et al., 1973), Hu’s Moments (Hu,
1962), and Local Binary Patterns (LBP) (Ojala et al., 2002).
Furthermore, the application of the Transfer Learning technique
using CNNs enables the extraction of the most relevant
features from an image through extreme non-linear models. The
classification of these characteristics belonging to each patient is
obtained using ML algorithms. Through a Random Search for
the optimal parameters, we obtained the best configuration of
the following models: k-NN (Fukunaga and Narendra, 1975),
MLP (Haykin, 2008), RF (Breiman, 2001), and SVM (Vapnik,
1998).

3. MATERIALS

In this section, we present the digital image processing techniques
and the ML that supports the methodology proposed in
this work.

3.1. Dataset
The dataset used in this work is publicly available in Begleiter
(2019) from the University of California, Irvine, and is known as
Knowledge Discovery in Database (UCI KDD). This dataset was
initially developed to examine genetic predisposition, through
EEG signals, to alcoholism. Two subject groups made up the
dataset: an alcoholics group and a control group. The Alcoholic
group consists of the 77 male subjects with a mean age of 35.83
± 5.33. The control group consists of 48 male subjects with no
particular or family history of alcohol misuse or neurological
disorder or any history of psychiatric disease.

The signal acquisition is according to the 10–20 International
System with 64 electrodes placed on the scalps of the subjects,
with a sampling frequency of 256 samples per second. The Cz
electrode is taken as a reference. Each signal has a period of 190
ms of a pre-stimulation and 1,440 ms after each stimulus.

Each subject was exposed to three conditions, a single
stimulus (S1) was presented to each subject. A second stimulus
(S2) is a matching condition, here the same stimulus S1 was
repeated. Finally, the last stimulus (S3) presented in either
a matched condition where S1 was identical to S2. Each
stimulus corresponds to a picture of objects chosen from the
1980 Snodgrass and Vanderwart picture set (Snodgrass and
Vanderwart, 1980).

3.2. Tradictional Feature Extraction
Methods
In this study, three feature extraction methods were used to
improve the analysis of the proposed approach.

Haralick et al. (1973) proposed a statistical analysis
considering the co-occurrence of gray levels in the image.
This method is called Gray-Level Co-Occurrence Matrix
(GLCM) and identifies the spatial influences of pixels related to
their grayscale. GLCM has 14 features, and among which the
angular second moment and entropy are commonly used and
here they are presented in Equations (1) and (2), respectively,
where p is central pixel, i and j are indexes according to image
height and width.

∑

i

∑

j

p(i, j)2 (1)

−
∑

i

∑

j

p(i, j)log(p(i, j)) (2)

The Local Binary Patterns (LBP) proposed by Ojala et al. (1994),
was developed as an efficient and straightforward way to describe
the texture of an image. LBP extracts information from the local
gray scale levels of the image to define a pattern that represents
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P pixels of the near neighbors. This binary pattern follows a
pattern determined by neighbors analysis direction. Equation (3)
presents the neighborhood analysis, where gp is a neighbor pixel
P to the region of the radius R, and gc is the central pixel.

LBPP,R =

P−1
∑

p=0

f (gp − gc)
2P (3)

According to the threshold x, a binary pattern is assigned to each
operation (Equation 4).

f (x) =

{

1, if x ≥ 0
0 otherwise

(4)

Hu (1962) developed a model that uses central moments to
make the method invariant to scale and rotational changes. This
method, known as HU moments, describes a feature extraction
family composed of seven moments; each one is invariable to
size, rotation, and translation operations. Equation (5) shows the
relation between central moment and normalized moment. This
normalized moment can be obtained from the central moment,
µpq, divided by an exponential of the area, µ00, to obtain the
normalized central moment, ηpq.

ηpq =
µpq

µ
α

00

(5)

where

α =
p+ q

2
; ∀p+ q ≥ 2 (6)

3.3. Classifiers
This section describes the ML techniques used to classify
the features extracted by the traditional methods and the
CNN architectures.

3.3.1. Naive Bayes
Bayesian Classifier is based on statistical analysis of input data.
The classifications are based on the probability distribution of
each sample to a specific class, considering that this class has the
highest probability to be associated with the sample (Theodoridis
and Koutroumbas, 2008). The Bayes Theory inspires this model,
and it assumes that there are no dependencies among the
features, according to the value of posterior probability and
conditional probability.

3.3.2. K-Nearest Neighbor
K-Nearest Neighbor (k-NN) is a machine learning method
proposed by Fukunaga and Narendra (1975) that falls into the
supervised category. It determines the class to which a sample
belongs by comparing the features of the k nearest neighbors
that were acquired in a previous training step. The variable
k represents the number of samples of the training set that
possess the closest features to the sample being classified. Still
regarding the variable k, there is not a standard value for it, but in

general, even numbers are avoided to prevent a drawn situation
in which the sample could be classified into two classes at the
same time.

3.3.3. Multilayer Perceptron—MLP
Multilayer Perceptron (MLP) is a neural network architecture
formed by multiple layers with perceptron neurons. The input
data vector is introduced to the first layer where each feature
is computed and each neuron contributes to transform the
input space into a linearly separable space and thus to classify
the object in its specific class (Haykin, 2008). The learning
technique is supervised through a backpropagation algorithm
where the errors calculated at the last layer are retro propagated
to adjust the hidden layers (Haykin, 2008). Therefore, throughout
this procedure, the solution to samples in the input vector is
presented in the output layer.

3.3.4. Random Forest
Random Forest (RF) is based on decision trees, proposed by
Breiman (2001). It aims to make a decision tree using a set of
features selected from the initial set. The training is achieved by
using a meta-algorithm called bagging, which uses the stability
and accuracy of the results to improve the classification. Bagging
is used to reduce the variance and over-fitting. After the tree sets
are created, it is possible to determine which set contains the best
configuration to solve a problem.

3.3.5. Support Vector Machine—SVM
A Support Vector Machine (SVM) is based on the statistic
distribution of the samples in the input vector proposed by
Suykens and Vandewalle (1999). SVMs aim to identify samples
that are most difficult to classify because they are close to the
decision boundary. This method uses the optimization theory
to adjust the optimal decision boundary for the minimization
of the cost function with restriction parameters. Originally
developed for binary classification, this classifier can be extended
to multiclass problems through the one-against-all and one-
against-one approaches, in addition these are techniques based
on the graph theory (Vapnik, 1998). SVMs can be applied to both
linear and non-linear problems, this latter method can use an
RBF type kernel.

4. CONVOLUTIONAL NEURAL NETWORKS

In this paper, we evaluated the following CNNs: DenseNet
(Huang et al., 2017), Inception-ResNet (Längkvist et al., 2014),
Inception (Szegedy et al., 2015), MobileNet (Howard et al., 2017),
NasNet (Zoph and Le, 2016), ResNet (Wu et al., 2018), VGG
(Simonyan and Zisserman, 2014), and Xception (Chollet, 2017).

4.1. Convolutional Neural Networks as
Feature Extractor
In this paper, CNNs used the transfer learning concept, which
relates the descriptive power of a pre-trained CNN on samples of
a problem not yet known by the model. The first fully connected
layer is removed, and then, a resizing of its input is transformed
into a one-dimensional array. After this process, a pre-trained
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model does not behave as a classifier, so it is used as a feature
extractor. The transfer learning technique is detailed in the work
of da Nóbrega et al. (2018), who applied transfer learning to lung
nodule classification.

4.1.1. Architecture Construction and Initialization
Many architectures have been proposed in the last few years,
especially since 2010, with the advent of object recognition
challenges in large scale image datasets (Deng et al., 2009).
However, it is not viable to evaluate all of the architectures
proposed by the scientific community; therefore, 12 well-known

architectures were selected for the experiments of this work. The
configurations of the models described in their respective paper
were used during implementation.

4.1.2. Architecture Training
The twelve architectures were trained from the ImageNet
dataset (Deng et al., 2009), which consists of 1.2 million non-
medical images, and grouped into 1,000 categories. The training
methodologies used by each architecture are documented in
detail in their respective articles. This step was done based on the
premise that the features learned by a CNN to discriminate a set

FIGURE 1 | Transfer learning figure.

FIGURE 2 | Flow chart of the proposed methodology.

FIGURE 3 | The transformation from 1D EEG signals to 2D EEG signals. Low-frequency channels are transformed to a smooth texture block. High-frequency

channels are transformed to a rough texture block.
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FIGURE 4 | On the left, original EEG signals. On the right the final image after channels transformation from the 1D channels to a 2D image.

of classes are capable of representing other samples as the model
can extrapolate the known patterns to new sample with the use of
transfer learning technique.

4.1.3. Converting CNNs Into Feature Extractor
In this last step, the CNNs trained on the previously mentioned
set are transformed into feature extractors. Nonetheless, to
perform this step, it is crucial to understand the four
transformations executed by these neural networks.

Initially, the input image is submitted to a sequence of
non-linear transformations. These transformations are defined
depending on the architecture used. In this first stage, the input
image is converted into a set of small matrices. Secondly, each of
these matrices is resized to a one-dimensional array. Then, the
set of arrays is concatenated, thus generating a single array. Each
one-dimensional array can be interpreted as a feature vector that
represents the heat map image. Lastly, the features vectors are
submitted to a classifier training. With the modified architecture,
the results of the model should not be interpreted as a probability
set of an input image related to a determined label but should be
interpreted as an information vector, which will be used by an
external classifier to compose the probabilities of predisposition
to alcoholism.

Figure 1 shows the fully connected layer after the removal of
the last convolutional layer. The outputs are concatenated and
then the vectors set that will be used to train and test the classifier
are created.

5. METHODOLOGY

In this paper, we propose the detection of a predisposition
to alcoholism comparing EEG signals from two subgroups:
alcoholism and control. Figure 2 illustrates the proposed
methodology step-by-step and it is divided into three main
stages: Acquisition of the EEG signals (A), Digital Signal
Processing (DSP) (B), and finally, extraction and classification of
the samples (C).

5.1. Pre-processing Step
Out of the 64 exam channels, only 11 were selected from the
mean-variance of each channel for all patients in the dataset. The

TABLE 1 | Number of features returned by each extractor.

Approach Extractor Number of features

Traditional

LBP 48

GLCM 14

Hu Moments 7

Transfer Learning

Densenet 121 1,024

Densenet 169 1,664

Densenet 201 1,920

InceptionResNetV2 1,536

InceptionV3 2,048

MobileNet 1,024

NASNetLarge 4,032

NASNetMobile 1,056

ResNet50 2,048

VGG16 512

VGG19 512

Xception 2,048

selected channels were: FP1, FP2, F7, F8, T8, T7, T7, CZ, C3, C4,
CP5, and CP6. These channels presented the highest values of
variance in their signals, which means more intense brain activity
in the regions where these channels were located.

Initially, stage A was performed out during the formation of
the Dataset. In stage B the data is prepared in step 3 (Figure 2B-
3) by removing any outliers, >73.3 and < −73.3 uV, which
represent possible head and eye movements (Zhang et al., 1995),
and then the set of signals is normalized within a range of 0–
1. In step 4 (Figure 2B-4), the interval is readjusted to 0–255,
in addition to turning all values into integers, which enables
the creation of an 8-bit image with 1,024 × 352 shape that
represents the concatenation of the exam channels, where each
of the selected channels are 1,024× 32 pixel regions, as shown in
Figure 3.

Finally, in stage C, the CNN technique is used as a feature
extractor combined with a Transfer Learning method. The
extracted features are classified in Alcoholic and Control, using
traditional classification models.
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Figure 3 shows the transformation process from a 1D EEG
signal to a 2D EEG signal, highlighting the distinction between
low and high-frequency. Step 1 (Figure 3-1) shows the 1D EEG
signals. The channels are transformed into a 2D image in step 2
(Figure 3-2) as previously described. Step 3 (Figure 3-3) shows
that high-frequency signals are represented by roughly textured
blocks, creating a surface with peaks and valleys due to the
high variation of the signals. On the other hand, low-frequency
signals are represented by smooth texture blocks, presenting a
flat surface due to the low variation of the signals. We found
such signals, high and low frequency, using the calculation of the
mean-variance of the exam channels.

Finally, Figure 4 shows a sample of the complete
transformation from the 1D channels to a 2D image. This
approach becomes a visual representation of brain activity in
different parts of the brain, rather than treating each channel
separately. This image corresponds to a heat map of the brain
activity in the regions measured by the electrodes. This image
clearly represents the variations of time-domain and reflect the
temporal variations of the channels through image texture, as
well as the EEG signal by the intensity of color. This approach
permits a visual analysis of the problem, as well as the use
of structural and textural analytical methods. Moreover, the
approach makes it possible to use recent methods of CV, DL, and
ML methods.

5.2. Feature Extraction
In Figure 2 stage 2-C, step 5 (Figure 2C-5), according to
section 4.1.3, this approach proposes the use of CNN techniques
as a feature extractor combined with a Transfer Learning

method for the two-dimensional signals. The image that
represents the EEG signals is processed by the first convolutional
layers of the neural network, and the output of the final
layer of the CNN is combined as a feature vector for
the classification stage. The traditional computational vision
extractors, such as GLCM, Hu Moments, and LBP were
evaluated. Table 1 shows the number of features generated by
each extractor.

5.3. Classification Healthy and Alcoholism
Patient
To evaluate the representativeness of the extracted features for
the classification of both sets, healthy patients and alcoholic
patients, the generated dataset is classified using five consolidated
ML techniques: Bayes (Theodoridis and Koutroumbas, 2008), k-
NN (Fukunaga and Narendra, 1975), RF (Breiman, 2001), MLP
(Haykin, 2008), and SVM (Vapnik, 1998).

In the classification process, Bayes classifier operated with the
Probability Density Function (PDF). MLP performed its training
using the Levenberg-Marquardt method, and with the neurons
varying from 2 to 1,000 in the hidden layer. The number of
neighbors for the k-NN classifier was determined through a
grid search, where the k value was varied using the odd values
from 3 to 15.

The SVM classifier used linear, polynomial and RBF kernels.
In all three configurations, the C hyperparameter was defined as
2−5, 2−4, 2−3, . . . , 215. For the RBF kernel, γ was varied from
2−15 to 23, while for polynomial kernel, the degree ranged using
the odd values from 3 to 9.

TABLE 2 | Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features with classical extractors.

Extractors Classifiers Accuracy Precision F1 Score Recall

GLCM

Naive Bayes 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56

MLP 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56

kNN 86.11 ± 3.23 87.70 ± 3.97 84.66 ± 3.69 83.55 ± 3.73

RF 87.22 ± 2.87 89.06 ± 3.40 85.86 ± 3.18 84.56 ± 3.12

SVM Linear 73.22 ± 3.12 78.87 ± 4.39 66.47 ± 4.96 66.71 ± 4.05

SVM Polynomial 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56

SVM RBF 72.22 ± 2.77 84.11 ± 1.14 62.83 ± 4.91 64.34 ± 3.62

HU

Naive Bayes 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

MLP 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

kNN 80.44 ± 3.19 81.64 ± 4.05 78.14 ± 3.85 77.19 ± 3.74

RF 80.67 ± 3.30 81.59 ± 4.08 78.51 ± 3.82 77.58 ± 3.78

SVM Linear 52.89 ± 3.79 55.34 ± 3.52 52.81 ± 3.78 55.38 ± 3.64

SVM Polynomial 51.89 ± 2.77 55.72 ± 2.91 51.75 ± 2.87 55.44 ± 2.84

SVM RBF 50.56 ± 4.28 57.97 ± 3.80 49.31 ± 5.34 56.17 ± 3.54

LBP

Naive Bayes 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

MLP 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

kNN 83.89 ± 2.87 84.81 ± 4.13 82.41 ± 2.89 81.47 ± 2.64

RF 87.33 ± 3.82 89.08 ± 3.99 85.96 ± 4.35 84.75 ± 4.49

SVM Linear 66.89 ± 3.33 65.00 ± 3.94 63.21 ± 3.81 63.09 ± 3.55

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 68.56 ± 2.33 71.01 ± 5.78 60.57 ± 3.66 61.70 ± 2.77

The bold values are mean and standard deviation, respectively.
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TABLE 3 | Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features with CNNs architectures.

Extractors Classifiers Accuracy Precision F1 Score Recall

DenseNet121

Naive Bayes 72.78 ± 1.88 80.75 ± 2.42 64.94 ± 3.36 65.57 ± 2.48

MLP 75.78 ± 2.37 79.59 ± 4.55 71.66 ± 4.66 71.51 ± 3.88

kNN 87.44 ± 2.44 89.13 ± 2.56 86.12 ± 2.86 84.90 ± 2.93

RF 85.22 ± 2.81 87.35 ± 3.09 83.44 ± 3.35 82.09 ± 3.35

SVM Linear 89.67 ± 3.65 90.21 ± 4.20 88.89 ± 3.90 88.17 ± 3.85

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 89.78 ± 3.51 90.32 ± 4.05 89.01 ± 3.74 88.31 ± 3.69

DenseNet169

Naive Bayes 71.00 ± 4.26 77.11 ± 7.90 62.22 ± 6.80 63.55 ± 5.00

MLP 72.56 ± 6.05 77.58 ± 8.26 65.86 ± 8.90 66.64 ± 7.39

kNN 87.22 ± 2.78 88.30 ± 3.10 86.04 ± 3.22 85.13 ± 3.38

RF 86.56 ± 3.67 89.05 ± 3.23 84.85 ± 4.48 83.44 ± 4.51

SVM Linear 89.11 ± 5.01 90.23 ± 5.05 88.05 ± 5.63 87.09 ± 5.84

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 91.33 ± 3.36 92.26 ± 3.50 90.60 ± 3.69 89.69 ± 3.82

DenseNet201

Naive Bayes 70.78 ± 2.11 83.49 ± 1.06 60.22 ± 4.06 62.48 ± 2.78

MLP 76.56 ± 4.83 81.34 ± 5.81 71.74 ± 7.26 71.42 ± 6.13

kNN 85.56 ± 4.04 86.63 ± 4.11 84.06 ± 4.61 82.99 ± 4.70

RF 84.56 ± 4.75 86.57 ± 4.47 82.58 ± 5.79 81.44 ± 5.84

SVM Linear 89.56 ± 2.95 89.89 ± 2.79 88.77 ± 3.34 88.29 ± 3.79

SVM Polynomial 43.44 ± 9.11 26.70 ± 18.37 30.29 ± 4.63 50.14 ± 0.43

SVM RBF 90.00 ± 2.58 90.30 ± 2.04 89.25 ± 3.00 88.86 ± 3.60

Inception ResNet V2

Naive Bayes 67.44 ± 5.86 65.54 ± 6.93 63.26 ± 6.85 63.18 ± 6.42

MLP 72.22 ± 5.07 72.82 ± 7.24 68.77 ± 5.37 68.49 ± 5.22

kNN 84.44 ± 4.22 85.55 ± 4.14 82.74 ± 5.04 81.77 ± 5.11

RF 83.00 ± 4.25 85.07 ± 4.02 80.72 ± 5.23 79.55 ± 5.26

SVM Linear 87.56 ± 2.52 88.16 ± 2.81 86.51 ± 2.76 85.66 ± 2.76

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 87.56 ± 2.71 88.37 ± 3.38 86.48 ± 2.92 85.51 ± 2.79

Inception V3

Naive Bayes 67.44 ± 5.94 67.49 ± 10.14 59.19 ± 8.36 60.58 ± 6.71

MLP 74.89 ± 5.02 79.19 ± 4.33 69.57 ± 9.75 70.26 ± 7.44

kNN 87.33 ± 4.16 89.20 ± 4.62 85.97 ± 4.59 84.70 ± 4.67

RF 87.33 ± 3.95 90.11 ± 3.74 85.71 ± 4.64 84.18 ± 4.68

SVM Linear 89.56 ± 2.23 90.87 ± 1.93 88.56 ± 2.60 87.51 ± 2.98

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 89.44 ± 2.24 90.87 ± 1.86 88.42 ± 2.61 87.31 ± 3.01

MobileNet

Naive Bayes 73.33 ± 4.87 74.70 ± 5.26 71.67 ± 5.27 71.60 ± 5.08

MLP 86.89 ± 3.47 88.41 ± 2.70 86.55 ± 3.60 86.70 ± 3.44

kNN 92.78 ± 1.88 93.01 ± 1.84 92.65 ± 1.93 92.53 ± 2.06

RF 87.00 ± 3.62 90.03 ± 2.74 86.20 ± 3.99 85.50 ± 4.02

SVM Linear 93.00 ± 2.33 93.16 ± 2.38 92.88 ± 2.38 92.73 ± 2.39

SVM Polynomial 93.89 ± 2.59 94.16 ± 2.64 93.78 ± 2.64 93.60 ± 2.66

SVM RBF 95.33 ± 1.47 95.68 ± 1.31 95.24 ± 1.52 95.00 ± 1.63

NASNetLarge

Naive Bayes 64.00 ± 2.73 69.64 ± 11.36 48.76 ± 3.90 54.60 ± 2.81

MLP 72.56 ± 4.79 77.21 ± 6.50 67.62 ± 8.29 68.92 ± 6.62

kNN 87.56 ± 4.30 88.54 ± 4.70 86.41 ± 4.67 85.40 ± 4.69

RF 86.33± 2.33 88.17 ± 2.31 84.80 ± 2.82 83.52 ± 2.94

SVM Linear 87.56 ± 3.10 88.61 ± 3.55 86.41 ± 3.59 85.45 ± 3.55

SVM Polynomial 43.33 ± 8.89 21.67 ± 4.44 29.99 ± 3.97 50.00 ± 0.00

SVM RBF 90.33 ± 2.72 91.70 ± 3.29 89.47 ± 2.95 88.35 ± 2.88

(Continued)
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TABLE 3 | Continued

Extractors Classifiers Accuracy Precision F1 Score Recall

NASNetMobile

Naive Bayes 71.58 ± 3.23 71.50 ± 3.73 69.66 ± 3.51 69.39 ± 3.38

MLP 86.74 ± 5.14 87.77 ± 4.81 86.12 ± 5.57 85.99 ± 5.46

kNN 90.53 ± 2.58 91.35 ± 2.58 90.08 ± 2.76 89.47 ± 2.84

RF 86.00 ± 2.54 86.92 ± 2.34 85.23 ± 2.87 84.64 ± 2.92

SVM Linear 93.89 ± 3.04 94.56 ± 2.89 93.63 ± 3.19 93.16 ± 3.42

SVM Polynomial 57.89 ± 0.00 28.95 ± 0.00 36.67 ± 0.00 50.00 ± 0.00

SVM RBF 92.74 ± 2.72 93.32 ± 2.74 92.44 ± 2.87 91.95 ± 2.94

The bold values are mean and standard deviation, respectively.

TABLE 4 | Continuation of Table 3.

Extractors Classifiers Accuracy Precision F1 Score Recall

ResNet50

Naive Bayes 63.16 ± 0.00 31.58 ± 0.00 38.71 ± 0.00 50.00 ± 0.00

MLP 66.32 ± 1.94 82.62 ± 0.68 47.17 ± 4.62 54.29 ± 2.63

kNN 87.68 ± 3.40 89.01 ± 3.97 86.07 ± 3.88 84.71 ± 4.00

RF 85.26 ± 4.16 86.81 ± 4.03 82.97 ± 5.35 81.61 ± 5.45

SVM Linear 81.47 ± 2.50 80.59 ± 1.95 80.52 ± 2.28 81.40 ± 1.83

SVM Polynomial 36.84 ± 0.00 18.42 ± 0.00 26.92 ± 0.00 50.00 ± 0.00

SVM RBF 79.16 ± 1.87 77.95 ± 1.97 77.36 ± 2.15 77.25 ± 2.45

VGG16

Naive Bayes 64.00 ± 2.09 77.81 ± 4.35 51.25 ± 3.95 57.39 ± 2.46

MLP 81.26 ± 4.34 82.14 ± 4.67 80.15 ± 4.66 79.66 ± 4.72

kNN 90.84 ± 1.94 91.54 ± 1.89 90.44 ± 2.08 89.94 ± 2.29

RF 87.79 ± 1.50 89.65 ± 1.70 87.00 ± 1.65 86.08 ± 1.75

SVM Linear 86.63 ± 3.71 87.01 ± 3.67 86.16 ± 3.85 86.07 ± 3.84

SVM Polynomial 57.89 ± 0.00 28.95 ± 0.00 36.67 ± 0.00 50.00 ± 0.00

SVM RBF 93.37 ± 2.45 94.00 ± 2.16 93.08 ± 2.60 92.64 ± 2.86

VGG19

Naive Bayes 65.11 ± 1.59 77.94 ± 7.05 49.10 ± 2.96 55.40 ± 1.79

MLP 78.56 ± 5.07 81.53 ± 5.42 74.76 ± 6.80 73.88 ± 6.19

kNN 91.11 ± 2.72 91.53 ± 3.04 90.51 ± 2.81 89.97 ± 2.66

RF 86.67 ± 3.51 88.90 ± 3.10 85.04 ± 4.27 83.69 ± 4.35

SVM Linear 85.44 ± 3.86 84.92 ± 4.11 84.63 ± 4.04 84.56 ± 4.05

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 91.89 ± 2.98 92.56 ± 2.89 91.24 ± 3.30 90.45 ± 3.51

Xception

Naive Bayes 66.00 ± 4.45 63.98 ± 5.23 63.02 ± 4.86 62.88 ± 4.76

MLP 74.78 ± 4.07 75.45 ± 4.92 71.32 ± 5.30 70.95 ± 5.15

kNN 88.11 ± 2.54 88.89 ± 3.24 87.11 ± 2.73 86.22 ± 2.72

RF 88.78 ± 2.96 90.36 ± 3.26 87.66 ± 3.32 86.45 ± 3.31

SVM Linear 90.78 ± 2.17 91.47 ± 2.52 90.06 ± 2.35 89.23 ± 2.38

SVM Polynomial 45.56 ± 10.18 22.78 ± 5.09 30.98 ± 4.55 50.00 ± 0.00

SVM RBF 92.56 ± 2.11 93.35 ± 2.14 91.97 ± 2.31 91.16 ± 2.49

The bold values are mean and standard deviation, respectively. Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features.

For the RF classifier, the criteria function was varied for Gini
and entropy, the minimum number of samples that is necessary
to split an internal node ranged from 1 to 6, the lowest amount
of samples requested to be at a leaf node also ranged from 1 to 6,
and the number of estimators was 3,000.

The training stage of the classification models considered the
cross-validation technique. Of the total samples, 77 represent
patients in the Alcoholic group, and 48 represent the control
group. The samples were divided into ten subsets with a
proportion of 80% for training and 20% for tests, randomly

chosen. The hyperparameters for MLP, SVM and RF were
determined through a 20-iterations random search over a cross-
validation process with 10-folds.

The classification stage completes the C stage of the
proposed methodology. The evaluation metrics and results are
discussed below.

5.4. Evaluation Metrics
To compare our classification results with results from other
methods, we use evaluation metrics based on the results obtained
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FIGURE 5 | A plot representation of the best metrics from Tables 2–4.

in the confusion matrix. The results of the confusion matrix
include True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN), some of which were used for
the evaluation metrics. The evaluation of this approach used the
following metrics:

Accuracy (Acc) (Fawcett, 2006) reveals the proximity of the
result to the gold standard and is given by the relationship
between the hits and the set of all predictions, and is presented
by Equation (7).

Acc =
TP + TN

TP + TN + FP + FN
(7)

The value of Precision (Fawcett, 2006) is the probability of
true positives relative to all results classified as positive and
is presented by Equation (8). Even if the test diagnosis is
positive, this metric calculates the probability that the test will be
consistent with the prior probability.

Precision =
TP

TP + FP
(8)

Recall (Rec) (Sokolova and Lapalme, 2009) represents the
proportion of the results classified as positive among all the
results that are really positive and is presented by Equation (9).

Recall =
TP

TP + FN
(9)

As a counterpoint to Precision, considering its risk of imbalance,
the F1 Score () calculates the weighted harmonic mean between
Precision and Recall and is presented by Equation (10). The F1
Score represents the performance of a method and although a
diagnosis may be classified accurately, it does not mean that the
method will perform the same for other data.

F1Score =
2 ∗ Rec ∗ Precision

Rec+ Precision
(10)

Except for the F1 Score index, all other evaluation measures were
investigated in previous studies with signs of EEG (Ehlers et al., T
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TABLE 6 | Accuracy, Precision, F1-Score, and Recall obtained by Acharya et al. (2012) and Mumtaz et al. (2016) proposed methods.

Method Classifiers Accuracy Precision F1 Score Recall

Acharya et al. (2012)

SVM Linear 50.67 ± 19.05 49.24 ± 23.82 46.67 ± 20.73 50.67 ± 19.05

SVM Polynomial 1 48.5 ± 11.51 46.49 ± 20.88 41.04 ± 12.04 48.5 ± 11.51

SVM Polynomial 2 49.83 ± 4.61 44.95 ± 26.64 35.34 ± 5.66 49.83 ± 4.61

SVM Polynomial 3 49.67 ± 2.33 34.91 ± 21.47 34.01 ± 2.69 49.67 ± 2.33

SVM RBF 50.17 ± 2.42 37.54 ± 21.67 34.76 ± 3.50 50.17 ± 2.42

Mumtaz et al. (2016) Logistic Regression 58.00 ± 10.18 60.10 ± 10.64 54.92 ± 12.18 58.00 ± 10.18

The bold values are mean and standard deviation, respectively.

1998; Acharya et al., 2012; Mumtaz et al., 2016; Rachman et al.,
2016; Patidar et al., 2017).

6. RESULTS AND DISCUSSION

The proposed approach was evaluated on a computer with
an Intel Core i7 microprocessor, 8 GB of RAM, a GeForce
GTX 1070 Graphics Processing Unit (GPU), and a Linux LTS
16.04 operating system. The results of this paper are presented
in three stages. In the first stage, the evaluation of the 21
combinations of the traditional methods for image feature
extraction and classifiers. The second stage is the evaluation
of the 84 combinations of CNNs as the feature extractors and
classifiers. Finally, the best results are compared to related works
in the last stage.

Average values and standard deviations of Accuracy, F1-
Score, Precision, and Recall are shown in Tables 2–4 for the
features extracted with traditional methods and CNN-based
methods, respectively.

Analyzing Table 2, GLCM-k-NN, GLCM-RF, HU-k-NN, HU-
RF, LBP-k-NN, and LBP-RF stand out as they achieved at least
80% in Accuracy. Also, the RF classifier can be highlighted,
since it achieved the highest Accuracy when combined with
all three traditional methods. The best combination (LBP-RF)
is highlighted in green. This combination reached the highest
values in all four metrics.

Tables 3, 4 show the results of features extracted using
CNNs, and then classified. The combinations that achieved a
minimum of 90% of Accuracy and Recall were: MobileNet-
k-NN, MobileNet-SVM Linear, MobileNet-SVM Polynomial,
MobileNet-SVM RBF, NasNetMobile-SVM RBF, VGG16-SVM
RBF, VGG19-k-NN, VGG19-SVMRBF, and Xception-SVMRBF.
The combinations that had at least 90% in Accuracy, but did not
achieve this value in Recall were disregarded since low values
of Recall are not desirable in order not to classify alcoholism
as healthy. The SVM classifier stands out when classifying deep
features. This classifier obtained the best metrics values for all
CNN extractors, except for ResNet50, in which the best classifier
was k-NN. Among the SVM kernels, RBF reached the highest
metric values for ten of the twelve CNN architectures evaluated.
The best combination (MobileNet-SVM RBF) is highlighted
in green.

Figure 5 compares the best combination of the traditional
methods and the CNN architectures. The features extracted

by the CNN-MobileNet and classified by SVM RBF achieved
an accuracy 8% higher than the features extracted by the
LBP and classified by RF. Also, the standard deviation for
MobileNet+SVM RBF is lower, contributing to greater reliability
for the system. Furthermore, even though the combination
LBP+RF has an accuracy of 87%, its recall is only 84%, while
the combination MobileNet+SVM RBF has accuracy and recall
of 95%.

The results show that the number of features, according to
Table 1, indicate that traditional feature extraction methods have
a low representative potential. On the other hand, the feature
extraction through CNN can extract more information, and this
contributed to improving the classification results. Besides, tests
in other bands with lower frequency channels, such as F5, TP7,
PO7, and O1, did not reach metrics with values higher than
95.33%, as we achieved with the channels proposed in this work.

Acharya et al. (2012), approach, the 4 HOS features were not
able to detect the most relevant features for class distinction,
reaching an average accuracy of 91.7%. While the works of
Ehlers et al. (1998), Kannathal et al. (2005), and Rachman et al.
(2016) used statistical analysis of EEG signals. However, the use
of the average value as a descriptor of the samples made the
classification sensitive to extreme values. In addition, the use of
descriptors with a fixed range of analysis makes it difficult to
generalize unknown samples. All of these studies presented an
average of <90%. Table 5 gives a summary of the characteristics
of these approaches.

The work of Faust et al. (2013) analyzed the signals using
a non-linear approach. Accumulating the HOS characteristics,
and combined the extractions with a Fuzzy Sugeno Classifier
reached 92.4%. However, an approach using fuzzy classification
imposes the need for prior knowledge of the data set for method
calibration, and this makes the approach semi-automatic. Our
approach does not require previous knowledge of EEG signals
since the extraction models use the transfer learning techniques
for feature extraction to achieve promising results.

We see in Table 6 the results obtained by the methods
proposed by Acharya et al. (2012) and Mumtaz et al. (2016).
We obtain the results using extractors and classifiers proposed
with the same parameters of cross-validation and dataset that we
used in our method. Thus, we show the efficiency of our method
within the set of EEG channels that we chose in our work. Both
compared to a method that uses non-linear features and against a
method that uses features in the frequency domain, respectively.
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Finally, the proposed approach presented superior results
to all the methods considered in this study. Our approach
achieved accuracy values equivalent to the work of Mumtaz
et al. (2016), considering the standard deviation. However, our
approach innovated by applying a 2D analysis of the EGG signal,
which allowed the application of CV techniques to overcome the
problem.Table 5 presents the results of the proposed approach of
this paper compared with other works available in the literature.

7. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a new method to detect a
predisposition to alcoholism from image-transformed EEG
signals using traditional and deep feature extractors. We used the
Learning Transfer method to extract deep image characteristics
and consolidated ML methods to classify EGG signals between
alcoholism and normal.

From the results presented, we can see that the CNN
architectures extracted more relevant features from the samples,
since the best values of Accuracy 95.33%, Precision 95.68%,
F1-Score 95.24%, and Recall 95.00% were obtained in the
MobileNet-SVM RBF combination. The best combination for
classic extractors was LBP-RF reaching 87.33, 89.08, 85.96, and
84.75% for the same metrics.

For future work, we will apply the Principal Components
Analysis (PCA) algorithm to select the most significant channels
after preprocessing in order to highlight the differences between
the features of each class. Another possibility is the application
of fuzzy logic as a method of filtering EGG signals after

preprocessing, as well as the application of mathematical

morphology to highlight the differences between image textures
after 1D to 2D transformation.
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The loss or absence of vision is probably one of the most incapacitating events that
can befall a human being. The importance of vision for humans is also reflected in
brain anatomy as approximately one third of the human brain is devoted to vision. It
is therefore unsurprising that throughout history many attempts have been undertaken
to develop devices aiming at substituting for a missing visual capacity. In this review,
we present two concepts that have been prevalent over the last two decades. The
first concept is sensory substitution, which refers to the use of another sensory
modality to perform a task that is normally primarily sub-served by the lost sense.
The second concept is cross-modal plasticity, which occurs when loss of input in
one sensory modality leads to reorganization in brain representation of other sensory
modalities. Both phenomena are training-dependent. We also briefly describe the history
of blindness from ancient times to modernity, and then proceed to address the means
that have been used to help blind individuals, with an emphasis on modern technologies,
invasive (various type of surgical implants) and non-invasive devices. With the advent of
brain imaging, it has become possible to peer into the neural substrates of sensory
substitution and highlight the magnitude of the plastic processes that lead to a rewired
brain. Finally, we will address the important question of the value and practicality of the
available technologies and future directions.

Keywords: blindness, cross-modal plasticity, sensory substitution device, visual prostheses, sensory substitution

HISTORY OF BLINDNESS

For most sighted people, the very thought of blindness awakens a deep fear: a fear of the
unknown, of an “endless night,” of being unable to move and orient oneself (Commend, 2001).
This fear has had repercussions throughout recorded history and on the conditions of people
living with blindness.

A Limiting Vision of Blindness: From Ancient World to
Enlightenment
Throughout the ages, blindness has long been associated with mythical or biblical beliefs to provide
lessons or even to give inspiration to the “common people.” In Ancient Greece, blindness was
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generally viewed as a punishment from the Gods. Indeed,
although Homer was rumored to be blind, the scarce reports
that remain of this period depict blindness as being associated
with accidents, war injuries and, importantly, punishment for
transgressions (Barasch, 2001). That preconception persisted
through the Middle Ages when blindness and other disabilities
were often viewed as acts of god and deliberate blinding was
the most dreaded of punishments (Wheatley, 2010). People
living with blindness were thus associated with misery and
were often depicted as beggars or as praying for a miracle of
the sort attributed to Jesus (Weygand, 2009). Because of this
prevailing attitude toward blindness, blind people long found
themselves objects of derision or charity, whose existence was
often reduced to their reliance on the help of others for daily
living (Barasch, 2001; Weygand, 2009; Wheatley, 2010; Margo
et al., 2013). This view role, however, began to change and
improve in Europe during the Enlightenment of the 17th and
18th centuries. The separation between blindness and biblical
beliefs found first expression in William Molyneux’s question
addressed in 1688 to John Locke, cited in An Essay Concerning
Humane Understanding:

“A Man, being born blind and having a Globe and a Cube [. . .],
Let us suppose his Sight Restored to Him; Whether he Could, by his
Sight, and before he touch them, know which is the Globe and which
is the Cube?” [from Ferretti and Glenney (2020)].

The question was later entertained by other early modern
philosophers such as Gottfried Leibniz, George Berkeley, Adam
Smith, and many others. While this purely philosophical question
did not directly address the inclusion or education of the blind,
it allowed further conjectures about perceptual learning, multi-
sensory integration and the capacity of the blind to learn without
the use of vision (Ferretti and Glenney, 2020).

Education Through Touch: From Diderot
to Braille and Howe
As education and writing assumed greater importance during the
Enlightenment, there arose many examples of blind individuals
who successfully educated themselves and accomplished
inspirational feats. Notably among them, Nicholas Saunderson
(1682–1739), a scholar at the University of Cambridge, became
a tutor in mathematics and physics and won the esteem of
Newton himself who judged him one of his few contemporaries
who truly understood the value of his work. There also were
Mélanie de Salignac (1744–1766), a musician who learnt by
herself how to read, write and correspond with friends using
cutout letters, and Maria Theresia von Paradis (1759–1824), who
was a talented singer and pianist (see Figure 1). Such individuals
became sources of inspiration for Denis Diderot (1713–1784)
in the writing of his 1749 essay The Letter on the Blind for the
Benefit of Those Who See, where he lauded the abilities of blind
people. According to Diderot, educating the blind in writing and
reading was possible through the sense of touch (Margo et al.,
2013). His philosophy offered a foundation for the efforts toward
the education of blind people in the centuries that followed,
being one of the first savants who truly focused on their ability
rather than disability. Indeed, Diderot’s philosophy was central

to Valentin Haüy’s work in founding the first school for the blind
in 1784 (now known as the Institut national des jeunes aveugles
or INJA). Valentin Haüy (1745–1822) was a French calligraphy
professor who proved that blind individuals could learn to read
embossed text with the use of their fingers. He invented the first
reading system of raised Roman letters which he successfully
taught for years. Haüy’s school later gave birth to the Braille
alphabet, a new tactile writing system invented by one of its
blind students: Louis Braille [reviewed in Jiménez et al. (2009)].
Louis Braille (1809–1852) was inspired by the Night Writing
(from French: écriture nocturne) system previously developed by
Charles Barbier de la Serre for the use of French soldiers who had
to read and write in the dark while on campaign. Barbier’s system
was based on phonetics and consisted of different combinations
of raised points on a two by six grid of twelve points. This
concept was deemed too cumbersome by Braille, who went
to create a two by three grid of six points representing the
alphabetical system that was simpler and easier to learn. In 1829,
then 15-year-old Louis Braille published his first version of the
system, which was officially adopted in the school and in France
in 1854. The eponymous Braille system was the first successful
sensory substitute for reading without vision and it is still in
wide use today. In fact, Braille and the capacity to read through
touch constituted a colossal step forward for the rehabilitation
of blind people in society, a concept that was promoted abroad
by 19th century reformers such as Samuel Gridley Howe, who
founded the New England Institution for the Education of the
Blind (now the Perkins School for the Blind). Figure 2 illustrates
the development stages of the embossed letter system. It is now
fully appreciated that blind people can be trained to substitute
their intact senses for vision, enabling them to become integral,
productive and autonomous members of society. Indeed, the
blind can even develop supra-normal sensory abilities through
the overtraining of other modalities.

Understanding Echolocation, the “Sixth
Sense” of the Blind
Supra-normal abilities of blind people in other sensory modalities
such as touch and audition are well known today, but were
first reported as soon as 1749 in Diderot’s work cited above.
Indeed, Diderot was among the first to report the blind’s use
of echolocation or, as he discussed, their ability to perceive
objects and estimate their distance via sensations manifesting
on perceived on the skin of the face. Diderot attributed this
phenomenon to the compression of air against the skin upon
approaching an object. According to Diderot, the facial nerves
and sensory end organs had increased sensitivity in the blind.
Thus, for many years it was held that the blind could feel changes
in air pressure with their forehead and cheeks (Burklen, 1924),
an ability that was named “perceptio facialis,” or “facial vision”
(Levy, 1872). At the start of the 20th century, authors began
to debate the nature of “facial vision” and on whether it was
due to the use of reflected sounds (Dresslar, 1893; Heller, 1904;
Truschel, 1906; Villey, 1930), air pressure (James, 1890), “ether
waves” (Javal, 1905) or even “vestigial Ranvier corpuscles” in the
skin of the forehead (Romains, 1924). This debate continued
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FIGURE 1 | Important individuals in the history of blindness. (A) Portrait of John Locke and cover and first page of his paper: An Essay on Humane Understanding;
(B) Portrait of Denis Diderot and cover and first page of his article: A Letter on the Blind for the Use of Those Who See; (C) Portrait of Nicholas Saunderson;
(D) Drawing of Maria Theresia Von Paradis; (E) Portrait of Louis Braille; and (F) Picture of Russell Williams (photo courtesy AER O&M Division Warren Bledsoe
Archives, American Printing House for the Blind).

until the period following World War II, and the conducting
of the Cornell Experiments, a series of notable experiments
where numerous authors systematically investigated the nature
of “facial vision” [reviewed in Thaler and Goodale (2016)].
It was then discovered that “facial vision” was not based on
atmospheric pressure cues felt on the face but rather that this
skill was attributable to the use of auditory cues. When the
ears of blind participants were plugged, they were no longer
able to use “facial vision” (Supa et al., 1944). This generation
of authors understood that blind individuals were using a form
of echolocation (as in bats and dolphins) to perceive reflected
sounds, sound shadows and changes in the sound (i.e., the
Doppler effect) in manners unavailable to sighted people (Supa
et al., 1944; Worchel and Dallenbach, 1947; Worchel et al.,
1950). It was subsequently concluded that these auditory abilities
were however, cross-modally experienced as tactile sensations
of pressure against the face (Kohler, 1964), at the conclusion
of the long-lasting debate on the nature of “facial vision.” The
capacity for echolocation was found to be present in 85% of
blind individuals and to correlate with the age of blindness onset
and its duration (Juurmaa, 1965). Congenitally blind individuals
(CB) proved to be more effective in the use of echolocation
than their sighted counterparts (Supa et al., 1944; Juurmaa, 1965;
Strelow and Brabyn, 1982; Boehm, 1986). However, it was soon
established that blindfolded sighted individuals could learn the
skill of echolocation as could individuals who acquired their

blindness later in life (Worchel and Ammons, 1953). Thus, “facial
vision” (properly echolocation) was and is still viewed as an
essential skill for the blind to learn to achieve a higher level
of independence. Indeed, in today’s orientation and mobility
(O&M) training, blind individuals are taught to use echolocation
and environmental sounds in conjunction with the white cane
and other technology to navigate safely and independently.

Toward Independent Travel: The White
Cane and O&M Training
O&M training, as we know it today, is still a developing field
that traces its roots to World War II (Sauerberger, 1996; Bledsoe,
2010). During those years, blind people were taught to use
“facial vision” and other orientation strategies (i.e., memorizing
lay-outs and landmarks) with instruction from “orientors” in
rehabilitation programs. However, this approach was often
prioritized over the cane and other tools that could contribute to
the perceived stigma of blindness (Bledsoe, 2010). The numerous
American soldiers blinded due to the vicissitudes of war were
sent to military hospitals such as Valley Forge and Dibble, where
they healed from their wounds and learned to navigate with a
cane before being transferred to the rehabilitation program in
Avon, Ohio. In order to treat the growing numbers of injured
and visually impaired, Valley Forge hired Richard E. Hoover
and Warren Bledsoe who had previously worked as teachers
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FIGURE 2 | The creation of Braille. (A) Portrait of Charles Barbier and
examples of his Night Writing system based on phonetics, which is the
system that inspired Louis Braille; (B) Portrait of Louis Braille and the early
version of the Braille writing system.

for blind individuals. Early in their postings at Valley Forge,
they quickly concluded that echolocation alone was insufficient
to support safe and efficient navigation during which obstacle
avoidance was necessary.

“[. . .] the first thing they need is to know how to get around. We’ve
been working on it, but not enough. [. . .] People say blind people in
this country do a good job of getting around. I don’t think they do
a good job. I think they do a hell of a poor job.” - Richard Hoover
[from Bledsoe (2010)].

While we know that canes and staffs have been used for
millennia, as attested by numerous examples from ancient Greece
and biblical texts (Levy, 1872), the internationally recognized
white cane was invented in 1921 and was first promoted
by the Lions Club International in 1931. However, Hoover
promoted the use of a more lightweight cane and developed the
foundations of cane techniques as taught today. Indeed, Hoover
blindfolded himself and, alongside Bledsoe and other instructors,
experimented with new and affective cane techniques. Based
on this experience, he established the “touch cane technique”
and trained other instructors in its proper use for the benefit
of blinded soldiers. One of those soldiers was Russel Williams,
who had lost his sight from injuries during the Normandy

invasion. Williams later transferred to the program in Avon,
Ohio, where he learned echolocation and orientation techniques,
and decided on his own accord to merge all his training
to achieve greater autonomy. In 1948, he was appointed as
the chief of the new rehabilitation program at the Veterans
Administration Hospital in Hines, Illinois. In that time, he
worked alongside Bledsoe to enroll and train new specialists in
the field of “foot travel,” which later became known as O&M
training (Sauerberger, 1996; Bledsoe, 2010). While World War
II had disastrous repercussions on the world, it enabled the
initiation of greatly improved rehabilitation services offered to
individuals with vision impairments, which remain in use to this
day. Proceeding from the experiments on echolocation to the
development of the touch cane technique, the work following
the war enabled the growth of O&M training which now plays a
pivotal role in the rehabilitation of visually impaired individuals
around the world seeking greater autonomy, confidence, and a
better quality of life.

Modern Technologies: Brain Interfaces
to Help the Blind “See”
Technologies and tools introduced in O&M training help blind
individuals to expand their perception of the environment and
thus extend their domains of action. To date, the white cane
remains the main compensatory tool utilized by blind individuals
worldwide. As an extension of the arm, the white cane provides
safety against obstacles by extending the range of detection and
provides additional information (auditory and tactile) on the
environment such as changes in floor texture and denivelation
[reviewed in Guth et al. (2010)]. However, the white cane, even
when used in conjunction with echolocation, has a significant
limitation; While it detects objects on the ground, the upper body
and head remain unprotected and blind individuals are still at
risk of dangerous collisions that they cannot anticipate (Suterko,
1967). Consequently, the blind suffer disproportionately more
injuries due to collisions to the head, and are likewise vulnerable
to the risk of falls (Manduchi and Kurniawan, 2011) which can
contribute to the feeling of anxiety about travels and, ultimately,
lead to social isolation (Beggs, 1992). Faced with this issue, it
is not surprising that many scientists began working on new
technologies aiming to enhance the corporal safety of individuals
living with blindness, most ambitiously in efforts to restore sight.
These efforts employ brain interface technologies that can tap
into the visually deprived brain’s potential of adaptation to new
stimuli and tasks. These new brain interfaces can expand the
perception of the blind beyond the capacities of the white cane
and Braille, thus affording more opportunities to learn, travel
safely, and participate as independent members of society.

Today, there are many kinds of brain interfaces aiming to help
the blind “see,” which we classified into two main categories of
devices. The first category consists of invasive brain interfaces
that require surgical implementation of the device in the visual
system, such as retinal and cortical implants, in order to restore
sight to those who lost it. The second category consists of non-
invasive brain interfaces, such as electronic and electromechanical
aids, that aim to complement the sensory abilities the blind
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already possess, along with sensory substitution devices (SSDs),
which aim to offer a “visual-like” experience by electronically
translating visual information into another modality, such as
touch and audition.

BRAIN INTERFACES FOR VISION
RECOVERY

Invasive Brain Interfaces
Researchers have tested many brain sites for electrical stimulation
aiming to restore vision with the use of implants. For example,
there have been attempts to electrically stimulate the visual
cortex and retinal cells of patients with blindness due to retinitis
pigmentosa (RP) or age-related macular degeneration (AMD). In
addition, other studies have shown that it is possible to evoke
sensory perceptions by stimulating the optic nerve (Delbeke
et al., 2001) or the lateral geniculate nucleus (Pezaris and
Reid, 2007) although these techniques are not widely used
because of the many challenges and risks associated with the
neurosurgical procedures to access such inner brain structures
(Allen and Ayton, 2020).

Cortical Visual Prostheses
Restoring vision has been of interest to scientists for several
centuries. Charles Le Roy, a French physicist, was interested
in curing diseases with electricity. In an attempt to cure a
patient of blindness, he developed a metal device that applied
to the head of the patient and connected it to a Leyden jar.
Surprisingly for the time, the patient reported perceiving flashes
of light during the electric shocks (LeRoy, 1755). This was the
first recorded demonstration of the electrical excitability of the
visual cortex, and was the inspiration of a series of attempts
for vision recovery. In the early 20th century, neurosurgeons
made use of the research opportunity presented by awake opened
skull patients to electrically stimulate their visual cortex, which
evoked the experience of retinotopically organized phosphenes.
The spatial representation of the visual field in the human
primary visual cortex was discovered using these techniques
(Holmes, 1918; Löwenstein and Borchardt, 1918). This approach
later prompted John C. Button to develop a device aiming to
restore vision to blind people by electrical stimulation of the
occipital cortex. In a test of the device, a blind patient reported
seeing flashes of light and was able to locate and assess the
brightness of a light source (Button, 1958). Some years later,
Brindley and Lewin (1968) produced a wireless prototype of a
cortical visual prosthesis, which consisted of 80 extracranial radio
receivers connected to 80 intracranial electrodes inserted inside
the calcarine fissure. The prototype did not support reading as the
authors had hoped, but did allow simple pattern discrimination.
At around the same time, William Dobelle developed a removable
visual neuroprosthesis that allowed him to stimulate the visual
cortex of patients undergoing brain surgery [reviewed in Lewis
et al. (2015)]. These pioneering studies set the stage for the
development of more sophisticated instrumentations and new
generation of cortical implants. In 2020, several projects are
in progress and clinical trials are underway or planned in the

coming years (for a review on neurobionics and cortical implants
see: Allen and Ayton, 2020; Chen et al., 2020; on retinal implants
see: Nowik et al., 2020).

CORTIVIS
The aim of the CORTIVIS project is to capture the visual scene
using a bioinspired artificial retina designed to emulate aspects
of the visual processing that occur in the retina. The CORTIVIS
project uses the Utah Electrode Array (UEA), which consists of
100 electrodes of 1.0–1.5 mm in length. It is designed to reach
the cortical layer 4c (the target of geniculate innervations) and
to limit damage to neurons. Early experiments showed that the
electrical stimulation of the implanted electrodes elicited visual
perception in monkeys (Normann et al., 2009) and preliminary
investigations were carried out in human patients with epilepsy
or brain tumors during brain surgery. Promising results were
obtained with safe implantation, high-quality visual cortex
recordings and induced perception of phosphenes (Fernandez
et al., 2015). Recently, a new system coined “The High-Channel-
Count Neuroprosthesis” has been successfully tested on monkeys.
It uses a high number of implanted electrodes (1,024 in total)
placed in the geniculate recipient layer of the primary visual
cortex (V1) and in area V4 of the ventral visual stream. Monkeys
equipped with such implants were able to recognize simple
shapes, motion and letters (Chen et al., 2020).

Orion
This system consists of a camera, a computer and a subdural
array of 60 surface electrodes applied to the medial occipital
lobe. After processing of the video image, the information is
transmitted wirelessly to the array. A preliminary study in one
blind patient demonstrated the safety and basic functional aspects
of the device. Ongoing clinical trials that started in late 2017
have so far included five blind patients with a follow-up planned
for 5 years (Niketeghad and Pouratian, 2019). Preliminary
results indicated that patients were able to perceive phosphenes
(Barry et al., 2020).

ICPV Project
The Intracortical Visual Prosthesis Project (ICVP) uses a
Wireless Floating Microelectrode Array (WFMA) consisting of
16 parylene-insulated iridium microelectrodes placed on the
surface of the visual cortex, an integrated circuit microprocessor
and a microcoil with wireless power and activation. A video
camera mounted on eyeglasses or a headband connects to the
video processor unit that converts images into a pattern that
maps to the array of electrodes. The signal is then transmitted to
the telemetry controller located on the head via the stimulation
modules that distribute signals and power wirelessly to each
WFMA module. Human clinical trials are ongoing (Troyk, 2017).

Gennaris
This setup consists of a camera mounted on eyeglasses to
capture the scene and transmit it to a “Pocket Processor”
that extracts useful information and then sends it to the tiles
(43 intracortical electrodes per tiles) implanted in layer 4 of
the primary visual cortex. Signals are broadcast by a wireless
transmitter located at the back of the head (Lowery et al.,
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2015). Safety tests on experimental animals have confirmed the
production of phosphenes, and histological examination reveals
minimal damage to the cortex after implantation and that long-
term stimulation is possible without adverse events (Lowery et al.,
2017; Rosenfeld et al., 2020). The first human clinical trials are
planned in the coming years.

Retinal Implants
Retinal prostheses have been developed as potential treatments
for retinal pathologies such as RP and AMD, which are the
leading causes of blindness. In these pathologies, the retinal
ganglion cell (RGC) layer is relatively unaffected, making such
patients good candidates for intraretinal implantation (Santos
et al., 1997; Medeiros and Curcio, 2001). Retinal prostheses
are classified according to the locus of the electrode array, i.e.,
epiretinal, subretinal, and suprachoroidal.

Argus Retinal Prostheses
The first retinal prosthesis was the Argus R© I, which is an epiretinal
array of 16 electrodes wirelessly connected to a computer
and a camera. Clinical trials with the implant indicated that
patients were able to accomplish simple visual detection and
discrimination tasks (Yanai et al., 2007). However, the spatial
resolution was inherently limited by the number of electrodes
and the distance between them (Caspi et al., 2009). To overcome
such limitations, the subsequently the Argus R© II that boasts an
epiretinal array of 60 (6 × 10) platinum electrodes and better
spatial resolution of the transmitted signal. Implanted patients
were able to discriminate and recognize 2D and 3D objects,
identify large high contrast letters (Stronks and Dagnelie, 2014)
localize targets (Ahuja et al., 2011) and detect motion (Arsiero
et al., 2011; Luo et al., 2014). Moreover, in a simple navigation
task, patients were able to follow a high contrast line on the
ground and find a door (Humayun et al., 2012).

Alpha-IMS
Alpha-IMS is a subretinal implant placed in an area devoid
of photoreceptors with the goal to act as a substitute for the
missing photoreceptors. It consists of a chip composed of 1,500
photodiodes that detect light, an amplifier circuit and penetrating
electrodes. The amplified signal activates the bipolar cells (Stingl
et al., 2013). Using this implant, patients were able to perceive and
localize a light source, and detect motion. The second-generation
of the device, the Retina Implant Alpha AMS is an improved
version with 1,600 photodiodes and increased durability, and is
now being tested (Edwards et al., 2018).

The Bionic Vision Australia
The Bionic Vision Australia (BVA) is a suprachoroidal implant
that reduces the surgical risks of causing damage to the retina.
Since the implant is far from the targeted retinal cells, patients
demonstrated very poor visual acuity (20/8397) with the device
(Ayton et al., 2014).

Figure 3 illustrates four types of invasive implants (retinal, in
the optic nerve, thalamic and cortical).

Non-invasive Brain Interfaces Through
Touch and Audition
While invasive interfaces require decisive surgery and have
not proven their efficacy, new attempts have been made in
developing non-invasive devices. Since the beginning of the 20th
century, researchers have developed sensory substitution systems
to replace vision with other senses like touch and audition.

Electronic Aids for Reading
As described in section “Education Through Touch: From
Diderot to Braille and Howe,” Braille brings to blind people a
universal writing and reading system. However, the blind people
must still rely upon sighted persons to translate printed texts into
Braille, or to provide audio transcripts. Several devices have been
designed to give the blind broader independence in reading.

The Optophone, developed in 1912, was one of the first
sensory aid systems to transduce light into sound. First designed
for enabling independent mobility, it later found application as a
reading aid. Equipped with the device, which applies mechanical
signals to the hand, some blind people were able to read at a
rate up to 60 words per minute (d’Albe, 1920). This early success
inspired some scientists to consider the incredible potential of
the tactile sense for sending “visual” information to the brain.
Indeed, Geldard (1957) developed a vibrotactile device based
on a communication code like Morse code that could transmit
individual letters to the reader (Geldard, 1957). Bliss et al. (1963)
took the idea one step further by using air puffs to the chest as
tactile stimulators, and found that (with training) blind subjects
could perceive apparent motion with good spatial and temporal
acuity (Bliss et al., 1963). In 1966, Bliss went on to design a
system of vibrotactile stimulators consisting of 96 piezoelectric
pins, each connected to photocells, which enabled the blind
to perceive printed texts. By placing their index finger on the
piezoelectric grid, users could feel the vibrations corresponding
spatially to the letters. After 50 h of practice, some participants
could read at a speed of 30 words per minute, thus one third
of the rate for skilled Braille readers (Linvill and Bliss, 1966).
This system became commercially available in the 1970s under
the name Optacon (Optical to Tactile Conversion), but did no
longer find great success in the 1990s since it was surpassed by the
advent of scanners equipped with optical character recognition
software that became generally less expensive, easier and faster
to use to access printed literature without vision (Stein, 1998;
Kendrick, 2005).

Electronic Travel Aids to Assist Mobility
To improve personal safety during navigation, electronic travel
aids (ETAs) mainly function on the echo principle of active
energy-radiating systems. Indeed, most ETAs are devices that
detect obstacles by emitting a form of energy and capturing
its reflection with a sensor. ETAs can deliver to the blind user
information about looming obstacles, communicated by easily
understandable auditory or tactile stimulations.

Electromagnetic Radiation
Electronic travel aid devices working on the emission of
electromagnetic radiation (light), often functioned through
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FIGURE 3 | Visual prostheses. In general, the scene is captured by a video camera, processed by a computer unit and sent to the electrical interface that stimulates
the visual pathways. Different anatomical locations were explored: (A) epiretinal (1), subretinal (2) and suprachoroidal (3); (B) the optic nerve; (C) the lateral geniculate
nucleus; and (D) the visual cortex. (modified from Fernandez, 2018; https://creativecommons.org/licenses/by/4.0/).

optical triangulation (Benjamin, 1974). The light rays reflected by
the tangible surface (or obstacle) enter the sensor (photodetector)
at various angles depending on the object’s distance. The incident
angle thus encodes distance information. The first effective ETAs,
known as Obstacle Detectors, enabled the detection of objects by
sending a single beam of light from a hand-held flashlight-like
source. They signaled the detected obstacle with a vibration of the
handle, thus permitting the users to detect and avoid obstacles
in various environments (maze, street, store) but users proved
to be slower than with their habitual white cane (Benjamin,
1968). Furthermore, these devices could not detect changes in
floor texture or elevation and participants, thus, preferred using
them in combination with their cane. This finding led to the
development of a system combining the cane and the light beam,
the laser cane, which was equipped with three laser sources
pointing at different angles (downward, forward, and upward),
thus aiming to extend the range of the cane while enabling
the detection of higher obstacles (Benjamin, 1974). The latest
prototype, the laser cane N-2000, was used in the 2000s, but is
no longer available because it was significantly more expensive
than similar ultrasonic ETAs (Roentgen et al., 2008; Li, 2015).

Scanning With Ultrasounds
Ultrasonic signals have a slower propagation speed than light,
which naturally leads to longer reflection delays, allowing for
more precise measurements of distances compared to optical
triangulation (National Research Council, 1986). For this reason,

contemporary ETAs still use ultrasounds. One of the first
successful ultrasonic ETAs was Russell’s Travel Pathsounder,
a pendant-like device that emitted a conical ultrasonic beam
for obstacle detection. It reduced collision risks by signaling
obstacles in the immediate navigational environment with simple
sounds and vibrations as warnings (Russell, 1967). A later device,
the Sonic Guide (successor to the Sonic Torch and Binaural
Sensory Aids), enabled some degree of object discrimination
and localization with more complex auditory cues (Kay, 1964).
The Sonic Guide technology became the foundation of the “K”-
Sonar (Penrod et al., 2009), a smaller compact sensor that can
be fixed to the white cane. Ultrasonic ETAs such as the “K”-
Sonar (BAT Technologies) and the Miniguide (GDP Research)
are still being manufactured (Smith and Penrod, 2010), notably
the UltraCane (Sound Foresight Technology), which combines
two ultrasonic sensors to a traditional white cane (Hoyle and
Waters, 2008), and the newer WeWALK smart cane (WeWALK,
2019), an innovative “all-in-one” primary aid. It combines the
traditional white cane with a single ultrasonic sensor, a touch pad
and a voice assistant for smart control of the user’s smartphone
without requiring the other hand. Examples of ETAs are depicted
in Figure 4.

Modern Sensory Substitution
Non-invasive sensory substitution endeavors to use a non-visual
sensory input to stimulate the visual cortex and other brain
areas related to vision, all via natural rerouting of existing
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FIGURE 4 | Non-invasive aids. On the upper row are historic ETAs that are no longer available (photo courtesy AER O&M Division Warren Bledsoe Archives,
American Printing House for the Blind). (A) Signal Corps Obstacle Detector; (B) C-4 laser cane; (C) Sonic Guide; (D) “K”-Sonar [from Penrod et al. (2009); with the
permission of W. Penrod]; (E) Miniguide (GDP Research); (F) UltraCane (from http://www.ultracane.com, with the permission of Sound Foresight Technology Ltd);
and (G) WeWALK smart cane (from https://wewalk.io/en/, with the permission of WeWALK Tech Co.).

sensory channels (Foulke et al., 1986). These methods thus
exploit the brain’s natural adaptation mechanisms. They offer
new possibilities to “restore” visual function in blind people, and
have attracted considerable interest since their inception. Paul
Bach-y-Rita did the pioneering work on sensory substitution in
the 1970s. At a time when most scientists believed the visual
areas of the blind to be atrophied and non-functional, Bach-
y-Rita argued that the visually deprived brain could readapt,
since it had only lost the peripheral systems (i.e., eye, retina).
In Brain Mechanisms in Sensory Substitution, Bach-y-Rita (1972)
recounted that the images captured by the eyes travel to the brain
in the form of neuronal signals. Therefore, sight is not mediated
by the eyes, but by the brain’s interpretation of incident electrical
signals, based on hard-wiring of the brain, but also informed by
memory, learning, contextual interpretations, and many other
factors (Bach-y-Rita and Aiello, 1996). According to Bach-y-
Rita, people living with blindness could regain access to the
missing visual input if only were made accessible via their intact
senses (Bach-y-Rita et al., 1969). With this idea in mind, Bach-
y-Rita designed the Tactile Vision Substitution System (TVSS), a
sensory substitution system for transmitting visual information
through the skin surface of the back. A camera captured visual
information that was then transmitted over an electro-tactile
grid which activated skin receptors that sent visual information
to the brain, where it is processed and perceived. Case study
investigations showed us that it is possible, with some learning,
to feel and interpret different patterns drawn on the skin of the
back and then to use that information to judge distances and
even catch moving objects. Several models of the TVSS were

manufactured with the goal of greater portability and increased
effectiveness in the visual domain. Bach-y-Rita investigated the
use of electrodes arrays on the fingers (Kaczmarek et al., 1994),
on the abdomen (Kaczmarek et al., 1985) and on the tongue
(Bach-y-Rita et al., 1998; Sampaio et al., 2001). He concluded
that the tongue was the best option based on several criteria.
First, the tactile sensitivity of the tongue is significantly greater
than that of the skin of the back or fingers. Second, the cortical
surface for the tongue is larger than the corresponding surface
for the entire back. Third, the tongue’s tactile receptors are
closer to its surface, while the saliva, which is an electrolytic
solution, assures electrical contact between the electrodes and the
tongue (Bach-y-Rita, 2004). Consequently, the tongue requires
significantly less voltage and current than does the fingertip in
order to perceive electrotactile stimulations (Bach-y-Rita et al.,
1998; Bach-y-Rita and Kaczmarek, 2002).

First Generation of SSDs: TDU, vOICe, and PSVA
The Tongue Display Unit (or TDU) transmits visual input to the
tongue in the form of electrotactile pulses. It is composed of a
20 × 20 matrix array of small circular electrodes that is placed
on the tongue, a laptop computer and a webcam attached to
eyeglasses. The visual image is translated into electrotactile pulses
and thus “drawn” in real time with the application of electrical
currents on the tongue. Several studies have shown that TDU
allows the blind to perceive light sources (Nau et al., 2013; Lee
et al., 2014), movement (Ptito et al., 2009; Matteau et al., 2010),
and to recognize shapes (Ptito and Kupers, 2005; Vincent et al.,
2014), objects (Williams et al., 2011; Nau et al., 2015b), and letters
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FIGURE 5 | Illustrations of SSDs. (A) Tongue Display Unit (TDU); (B) vOICe; (C) Prosthesis for Substitution of Vision with Audition (PSVA) [from Collignon et al. (2007);
with the permission of O. Collignon]; (D) Eyecane; (E) Sound of Vision (SoV) [adapted from Hoffmann et al. (2018)]; and (F) Guidance Sensory Substitution Device
(GSSD).

(Chebat et al., 2007b; Pamir et al., 2020). Users of the TDU are
even able to navigate in an obstacle course (Chebat et al., 2011).
Furthermore, the estimated “visual acuity” of the tongue attained
an acuity of 1/90 in trained users (Chebat et al., 2007b), which
meets the criterion of low vision that is sufficient to perceive
environmental shapes (Ptito et al., 2012) and useful for many
visual tasks [reviewed in Stronks et al. (2016)].

Since blind people are also able to perform certain spatial tasks
using sound cues (Kellogg, 1962; Bassett and Eastmond, 1964),
auditory SSDs have been developed to enhance this skill (Meijer,
1992; Capelle et al., 1998; Bronkhorst and Houtgast, 1999; Kay,
2000). The best known auditory-to-vision SSD was described by
Meijer (1992), who named their device the vOICe, where the
capitals O, I, and C represent the exclamation “Oh, I see!” The
system offers “functional vision” by converting images captured
by a video camera to different soundscapes. To do so, the
algorithm uses a scanning technique that divides the field of view
(FOV) into a matrix of pixels. Initially, the system used a 64 by
64 pixels matrix containing 4,096 elements, but has since evolved
to generate a much higher resolution of up to 25,344 pixels
(Striem-Amit et al., 2012b). The algorithm analyses every column
of pixels in a left to right sequence to translate vertical position to
the frequency domain and horizontal position to the duration of

the sound. As for colors, they are integrated in a scale of 16 shades
of gray so the system can convert luminosity to different sound
amplitudes (Meijer, 1992). Striem-Amit et al. (2012b) evaluated
the audio-visual acuity of the vOICe users after receiving 73 h of
training with the device, more than half of whom had attained
a visual acuity of 20/320 which outclasses the threshold of
blindness (20/400) defined by the World Health organization.
Moreover, several studies with the vOICe demonstrated that
blind individuals can learn to identify geometric forms and
shapes (Amedi et al., 2007), read (Striem-Amit et al., 2012a),
locate objects in space (Auvray et al., 2007) and even learn virtual
maps (Jicol et al., 2020). Since then, a new version of the vOICe
has been developed to add color information to the mixture of the
visual information given by the device. Named the Eyemusic, it
performs a spectral analysis of the image and links specific colors
with recordings of different musical instruments (Abboud et al.,
2013, 2014). Therefore, the device simultaneously conveys spatial
information and color, thus enhancing the user’s comprehension
of space. Furthermore, blind individuals trained with the device
were able to recognize facial expressions with the device (Abboud
et al., 2013; Arbel-Yaffe and Amedi, 2016).

Another auditory-to-vision SSD known as the prosthesis for
substitution of vision with audition (PSVA), has a field of view
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(FOV) divided in a differential resolution structure, in which
the center contains additional pixels for a higher resolution
thus mimicking the human retina and its fovea, which mainly
serves for pattern recognition while lower resolution in the
periphery allows spatial localization and movement detection
(Capelle et al., 1998). The PSVA offers a sonification strategy
similar to that of the vOICe by assigning each pixel a sinusoidal
tone at distinct pitches and modulated by the gray level intensity.
However, instead of scanning images, it uses binaural differences
and tone intensity to code for horizontal positioning, while
different frequencies are used for vertical positioning, thus,
exploiting the natural mechanisms of human hearing (Gulick
et al., 1989). Few behavioral studies have been done with this
device. However, studies in blind individuals have shown that the
PSVA imparts efficient pattern recognition (Arno et al., 2001),
spatial localization (Collignon et al., 2007), and depth perception
(Renier et al., 2005b).

New Generation of SSDs: Eyecane, SoV, and GSSD
The newer generation of SSDs is not designed to restore high
resolution vision, but rather to gather and transmit specifically
chosen cues to provide greater independence to the user in a
specific task such as navigation. The Eyecane, for example, is a
minimalist SSD that uses a “point-to-distance” technology as an
aid to navigate. In brief, the device uses infrared light sensors
to detect a single point in front of the user and calculate the
distance between the detected obstacle and its sensor. The device
then conveys this information in the form of tactile (vibrations)
and auditory cues such as, higher the vibrations and sounds, as
one approaches the object (Maidenbaum et al., 2014b). With its
small and handy structure, it is designed to bring greater freedom
than is afforded by the white cane while also providing superior
detection range (Buchs et al., 2014, 2017; Maidenbaum et al.,
2014c). This device enables quick and efficient perception of the
distance between the user and obstacles in the environment by
using sweeping motions, analogous to those with the white cane,
thus requiring minimal additional training. Using this device, CB
participants were able to navigate in a Hebb–Williams maze as
efficiently as sighted participants (Chebat et al., 2015), and were
able to transfer spatial information from a virtual environment to
the real world (Chebat et al., 2017).

Another promising navigational aid called the Sound of Vision
(or SoV) was recently developed. The SoV uses a combination of
sensors and a video camera (both mounted on the forehead) to
convey the 3D information of the environment, namely depth,
positioning, form, and size, via a hybrid audio-haptic signal. The
haptic signal is delivered on the skin of the abdomen to inform
the user of the closest obstacle (Caraiman et al., 2017). As for the
auditory signal, the system divides its FOV into a 3 by 5 matrix, in
which every sector of the matrix codes and translates depth and
direction information into spatialized “popping bubbles” sounds.
Thereby, the user can extract the form and the position of an
obstacle, while estimating its distance (Hoffmann et al., 2018).
Interestingly, the SoV system simplifies its signal by encoding
only the closest obstacles in the user’s path thus reducing the
cognitive demand placed on the user (Caraiman et al., 2017).

Since smartphones are increasing in popularity in the blind
community (Kacorri et al., 2017), SSDs have come to exploit
their accessibility and simplicity by making available useful
applications. Once such novel smartphone application called
the Guidance-Sensory-Substitution-Device (or GSSD) guides
users through obstacles, thus increasing their navigational
independence. The GSSD uses the cameras of smartphones to
capture the environment and bone-conducting earphones to
inform the individual of oncoming obstacles by broadcasting
horizontally spatialized sounds. The GSSD conveys a simple
auditory output based on the point-to-distance principle, while
signaling every potential obstacle with a singular sound source
that depicts the distance of closest edges from the user. By this
means, the user can associate each sound source to a specific
obstacle and then plan her/his route through space (Paré et al.,
2019). Illustrations of the SSDs are shown in Figure 5.

SENSORY SUBSTITUTION AND
CROSS-MODAL REWIRING OF THE
BRAIN IN CONGENITAL AND LATE
BLINDNESS

Sensory Substitution
Studies on sensory substitution in CB concur in showing their
superior spatio-cognitive skills, which again show that the blind
have come to possess certain supernormal skills for sound
localization (Lessard et al., 1998) and proprioception (Loomis
et al., 1993). In addition to spatial tasks, several other studies also
show a marked perceptual advantage for performing cognitive
tasks (Muchnik et al., 1991; Röder et al., 1999; Bavelier and
Neville, 2002; see also Kupers and Ptito, 2014), verbal memory
(Amedi et al., 2003), and attention (Muchnik et al., 1991; Röder
et al., 1996, 1999; Liotti et al., 1998). Since the pioneering work
demonstrating that the visual cortex of CB can, with training, be
recruited by tactile stimulation, i.e., training-induced plasticity
(Sadato et al., 1996; Ptito et al., 2005), the bulk of subsequent
studies has confirmed the activation of the visual cortex in
tactile, auditory, and olfactory tasks [reviewed in Kupers and
Ptito (2014) and Nau et al. (2015a)]. Interestingly enough, not
only is the visual cortex activated by tactile stimuli but the
tactile motion and shape information are funneled into the
dorsal (Ptito et al., 2009) and ventral visual pathways (Ptito
et al., 2012), respectively. This phenomenon has also been
shown upon auditory stimulation of encoded visual information
(Collignon et al., 2007; Striem-Amit and Amedi, 2014; Arbel-
Yaffe and Amedi, 2016). This recruitment of visual areas for
tactile and auditory tasks gives CBs an advantage for the use
of sensory substitution devices (Ptito et al., 2005), and allows
them to significantly increase their performance after only a
few hours of training (Sampaio et al., 2001). Moreover, the
brain areas activated when exploring a virtual maze using a
tactile-to-vision substitution device roughly matched the areas
activated when sighted people explored a virtual maze using
vision, but differed from those activated in blindfolded sighted
controls. We have previously shown that the occipital cortex
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and the hippocampal/parahippocampal complex are involved in
route recognition in CBs, similar to sighted people performing
the same tasks with opened eyes (Kupers et al., 2010; Chebat
et al., 2020). This network of brain regions is important for
navigational behavior in sighted people (Maguire et al., 1998,
2000; Schindler et al., 2004; Epstein, 2008; Browning et al., 2009;
Squire, 2009). These natural mechanisms of adaptation in the
blind brain should be used to guide the development of training
programs using SSDs, since they highlight the inherent ability
of the brain to recruit task-specific areas when using substituted
sense modalities (Chebat et al., 2018b).

Cross-Modal Plasticity
Since congenital blindness and early onset of vision loss alters
the retinofugal projections to the visual cortex, the blind
brain undergoes a massive anatomical reorganization leading
to cross-modal plastic reconfigurations of sensory pathways.
This is possible because the brain has a natural ability, called
neuroplasticity, to adapt itself in response to every perturbation
in the external and the internal environment. The first
structural/functional studies on the visual system of blind people
using magnetic resonance imaging (MRI) and positron emission
tomography (PET) found significant alterations not only in the
white matter tracts including the optic nerves, the optic chiasm
and the optic tracts (Breitenseher et al., 1998; Ptito et al., 2008)
but also relative reductions of the gray matter volume in the
visual thalamus (the lateral geniculate nucleus, and posterior
pulvinar), and striate and extra-striate visual cortices (Shimony
et al., 2006; Ptito et al., 2008; Cecchetti et al., 2016). Other
volumetric reductions were reported in the brain commissural
systems such as the splenium of corpus callosum (Ptito et al.,
2008; Tomaiuolo et al., 2014; Cavaliere et al., 2020), accompanied
by an enlargement of the anterior commissure (Cavaliere et al.,
2020). In addition, regions connected to the dorsal visual stream
such as the hippocampus were also reduced in volume (Chebat
et al., 2007a; Fortin et al., 2008). Cortical thickness is increased in
the primary visual cortex of the congenitally blind (Jiang et al.,
2009; Kupers et al., 2011) accompanied by a supra-metabolic
activity therein (De Volder et al., 1997; Kupers and Ptito, 2014).
Figure 6 shows the atrophy in various components of the visual
system of CB individuals.

Furthermore, magnetoencephalography has provided
evidence for increased functional connectivity of the occipital
cortex with auditory and somatosensory areas (Ioannides et al.,
2013; Kupers and Ptito, 2014; Müller et al., 2019), as likewise
shown in studies using transcranial magnetic stimulation
(Wittenberg et al., 2004; Kupers et al., 2006). Other functional
connectivity studies revealed stronger connections of the
visual cortex with somatosensory (Shu et al., 2009), auditory
(Watkins et al., 2013; Burton et al., 2014), and language areas
(Bedny et al., 2011; Butt et al., 2013). Finally, a recent resting state
functional magnetic resonance imaging (rsfMRI) study (Heine
et al., 2015) revealed increased functional connectivity within
both the ventral and the dorsal visual streams in congenitally
blind participants along with a stronger functional connectivity
between the occipital cortex and language areas, and regions
involved in tactile (Braille) processing such as the inferior frontal

FIGURE 6 | Atrophy of the components of the visual system in congenitally
blind individuals [from Ptito et al. (2008); with the permission of Springer
Nature, license # 4986491335589].

gyrus (Broca’s area), the thalamus, the supramarginal gyrus
and the cerebellum (Heine et al., 2015). Taken together, most
anatomical studies concur in showing that the tactile or auditory
information reach the visual cortex of the blind through both a
multi-synaptic cortico-cortical pathway (Ptito and Kupers, 2005)
and also through a direct thalamo-cortical pathway (Kupers
and Ptito, 2014; Murphy et al., 2016; Müller et al., 2019). The
cross-modal rewiring of the blind brain is illustrated in Figure 7.

Late Blindness
The study of late acquired blindness (LB) poses a completely
different challenge than early acquired blindness (Chebat et al.,
2018b). LB subjects have a visual system that has developed
normally until vision loss and basically, they possess a visual
brain similar to that of seeing people. Two important parameters
were and still are often neglected in studies on late blindness,
namely the onset and duration of blindness, which led to the
contradictory results reported in the literature. As of now, most
of the studies on sensory substitution only tested CB individuals
or a mix of LB subjects without considering onset and duration
of blindness. It is known that the neuroplastic processes that
accompany the onset of blindness are less strong in LB, taking
into account that plasticity is highly dependent on critical periods
of development (Sadato et al., 2002; Noppeney, 2007; Jiang et al.,
2009). One could therefore argue that once this critical period
is over, the brain is less likely to adapt itself to a new condition.
Nonetheless, a number of studies have reported neuroanatomical
differences between CB and LB, and LB and subjects with normal
vision, which challenges the rigidity of critical periods in the
brain (Heimler and Amedi, 2020). For example, cross-modal
plastic processes have been usually found in CB whose visual
cortex is activated by other senses like audition, touch and
even smell [reviewed in Kupers and Ptito (2014)]. These plastic
manifestations are also found in LB but in the extra-striate visual
areas (Sadato et al., 2004; Renier et al., 2005a; Amedi et al., 2007;
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FIGURE 7 | The rewired blind brain. A schematic representation of the reorganization of the blind brain. Four networks are presented: (1) Cortico-thalamic feedback
projections; (2) Thalamic reorganization; (3) Strengthened cortico-cortical connections; (4) V1-RTN feedback projections. Audit. Belt, auditory belt; A1, primary
auditory cortex; Cx, cortex; dLGN, dorsal lateral geniculate nucleus; LP, lateral pulvinar; MGN, medial geniculate nucleus; Post. Par. Cx.; posterior parietal cortex;
Post. Sup. Temp. Sulcus, posterior superior temporal sulcus; RTN, reticular thalamic nucleus; S1, primary somatosensory cortex; VPL, ventral posterolateral
nucleus; VPM, ventral posteromedian nucleus; V1, primary visual cortex.

Collignon et al., 2013) and in the splenium of the corpus callosum
(Shi et al., 2015; Cavaliere et al., 2020).

Moreover, only a handful of studies have been devoted
to the perceptual, cognitive and navigational abilities of late
blind individuals (Chebat et al., 2018b). Differences were shown
mainly in auditory capacities and navigational strategies when
compared to CB [reviewed in Kupers and Ptito (2014)]. For
instance, LB have inferior abilities than CB in using binaural
and monaural cues for localizing sound sources (Voss et al.,
2004) and in echolocation (Dufour et al., 2005) but have better
performances in auditory spatial bisection (Amadeo et al., 2019).
Moreover, before vision loss, subjects learn to navigate using
mostly allocentric strategies. Without vision, LB has to adapt their
strategies by transiting into egocentric point of views with only
tactile and auditory cues like CB individuals do. Although LB can
learn to use SSDs very efficiently (Lee et al., 2014; Chebat et al.,
2015, 2017; Paré et al., 2019), it is clear that they do not possess
the same skills as CB (Wan et al., 2010; Chebat et al., 2015, 2017).
This is probably due to the fact that the cross-modal changes
witnessed in the late blind are limited compared to that of CB
(Park et al., 2009; Reislev et al., 2017; Wen et al., 2018). Therefore,
the visual experience of LB seems to impair their ability to use
SSDs compared to CB and their visual experience seems to be
detrimental to cross-modal rewiring of the brain. Invasive devices
however, are geared specifically toward LB since their technology
requires visual experience (Castaldi et al., 2016).

DISCUSSION

Brain-Machine Interfaces to Assist the
Blind
In this chapter, we briefly described the history of blindness from
ancient to modern times. We then addressed the various means
that have been used to help blind individuals throughout history,
with an emphasis on modern technologies. We divided these
aids into two categories: invasive prostheses and non-invasive
brain interfaces.

Invasive Techniques and Their Limitations
The retina and the visual cortex have been the site of choice for
most of the visual prostheses employing electrical stimulation.
Located at both extremes of the visual pathways, they are
more surgically accessible than are deep brain structures such
as the optic nerve and the LGN. Targeting these terminal
sites presents certain advantages and challenges. In general, the
electrical stimulation of the visual pathways induces phosphenes.
In epiretinal prosthesis, the evoked phosphenes have proven
to be highly variable and dependent on the activation of
passing axon fibers by the implanted electrodes (Beyeler et al.,
2019). Moreover, the retina undertakes complex processing of
visual inputs, extending from the spatiotemporal integration
of light by the photoreceptors to the output of RGCs to the
deep visual relay centers (Demb and Singer, 2015). Therefore,

Frontiers in Human Neuroscience | www.frontiersin.org 12 February 2021 | Volume 15 | Article 63888784

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-638887 February 2, 2021 Time: 18:57 # 13

Ptito et al. The Revisited Blind Brain

stimulation strategies should take into account the structural
and functional properties of the retina in order to reproduce a
naturalistic activity in the RGC layer for downstream processing
in cortical visual areas (Nirenberg and Pandarinath, 2012). The
visual cortex is the primary recipient of the retino-geniculate
input, which is then processed further in higher order visual
areas. However, the neuronal and processing complexity is
much higher therein, making it difficult to obtain a meaningful
perception through electrical stimulation of the retina only.
A major limitation of this approach is that retinal neurons
activation affects the activation/inhibition balance that influences
the signal propagation to higher order cortical areas (Bosking
et al., 2017). While the visual cortex was the first site of
stimulation to be explored, it took longer time to reach the
safety standards required for human clinical trials, given the
obviously more invasive surgical procedures involved. This
is why most of the clinical trials have hitherto employed
retinal prostheses that lead to letter and object recognition and
navigation. Moreover, the best visual acuity offered to date by
visual prostheses still falls below the threshold of visual acuity
that defines blindness (20/400). For the present, the surgical
risks remain too great to justify the few benefits provided by
invasive prostheses. Indeed, major neurosurgical procedures are
inherently dangerous and can cause deleterious complications
such as infection, inflammation, and neurodegeneration along
with other neurological problems. Another element restricting
the use of these technologies is that they are not appropriate for
people who were deprived of vision since birth. Their efficacy
relies on the presence of a normally developed visual system
with a visual repertoire acquired through experience (Reich et al.,
2012). In CB, who were deprived of visual inputs since birth,

the visual system undergoes cross-modal rewiring that leads to a
massive reorganization of non-visual inputs to the visual cortex
(see Figure 8) [reviewed in Kupers and Ptito (2014)] which
disfavors the use of surgical prostheses.

Although electrical stimulation has been extensively used
in experimental setting, other stimulation strategies are under
investigation. The new technique of optogenetics uses viral
vectors to genetically modify cells to express rhodopsin, enabling
the modulation of neuronal population activity by light with
high spatiotemporal resolution. This technique has been explored
both for the retina and the visual cortex. Current clinical trials
are testing the feasibility of using optogenetics to render the RP
patients sensitive to light (Farnum and Pelled, 2020).

Non-invasive Devices
Sensory substitution and electronic aids have an advantage
over invasive technologies by virtue of exploiting the plasticity
mechanisms that naturally operate in the blind brain when
trained in other modalities. While some SSDs provide the blind a
“visual” perception that exceeds the World Health Organization
legal blindness threshold and with no health risks, several factors
limit their use outside laboratories. For instance, the spatial
resolutions of available devices are limited by the targeted sensory
modality. Indeed, since hearing and touch both have lesser spatial
bandwidth than natural vision (Bach-y-Rita et al., 1969; Bach-y-
Rita, 1972; Apkarian-Stielau and Loomis, 1975; Wiley et al., 1986;
Ashmead et al., 1990), a direct translation of visual information to
either touch or hearing inevitably results in loss of details (Loomis
et al., 2012). Moreover, SSDs are generally designed to assist
the blind without consideration of their opinions, contribution
and cooperation, and have only been validated in heterogeneous

FIGURE 8 | Technologies to assist the blind. (Left) Blind individuals can gain autonomy via a combination of the following fundamental and interlinked factors:
rehabilitation services, environment adaptation, and technology. (Right) A model of present and future technologies and therapies to substitute and restore vision. At
the bottom of the pyramid are simple devices, or tools, that are currently adopted by blind individuals to meet their fundamental needs. At each level, technologies
aim to enable more tasks toward the goal of full vision substitution or full vision restoration. However, due to limitations discussed in this review, the higher the
technology or therapy on the pyramid, the greater the obstacles to its application and adoption by blind individuals. ETAs, electronic travel aids; SSDs, sensory
substitution devices; UD, universal design.
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populations of late onset and congenitally blind individuals. This
obviously impacts the results on behavior [reviewed in Kupers
and Ptito (2014) and Chebat et al. (2018a)]. Important factors
that could influence the way SSDs are used and appreciated by
users have hitherto been underestimated (Elli et al., 2014). As
a consequence, numerous devices have proven to be either too
complex or too expensive to operate in real life situations. Indeed,
many devices require several hours if not days and months of
training that discourage the blind for using them (i.e., the vOICe).
This is a major impediment to their broader implementation
since most of the attentional resources of the users are focused
on decoding the SSD signal instead of understanding their
surroundings. This attentional misplacement leads to cognitive
overload and exhaustion in complex environments (Elli et al.,
2014; Pissaloux and Velázquez, 2018). Indeed, Consequently, the
blind community in general is not highly motivated to adopt
these apparatuses (Elli et al., 2014; Maidenbaum et al., 2014a;
Chebat et al., 2018a).

A more compelling solution for individuals living with
blindness is presented by the new minimalist SSDs (Eyecane,
GSSD) and ETAs (Miniguide, UltraCane, and WeWALK cane),
which are the mainstays of assistive mobility technologies
currently used and introduced in O&M training (Smith and
Penrod, 2010). Their broader application is favored by the
greater simplicity of their signals and ease of use, which makes
them acceptable supplementation aids. Furthermore, the advent
of computers and smartphones with accessible software (built
with universal design) allows more flexibility and opportunities
for individuals to share their experiences with the rest of the
population. As an example, screen-reading software, optical
character recognition software, and travel related applications
adapted for the blind can all be accessed through smartphones,
and have become increasingly popular amongst individuals with
blindness (Kacorri et al., 2017). As in the case of the GSSD
(Paré et al., 2019), sensory substitution could also benefit from
the processing capacities of smartphones by being designed
as downloadable smartphone applications. There is also scope
for adapting the urban environment better to suit the needs
of individuals living with disabilities, and to increase their
safety and autonomy as stated in American Disability Act

(ADA, 1990). Indeed, the increasing number of measures such
as the installation of tactile plates and auditory pedestrian
signals are good examples of such universal design. This
calls for the promotion of widespread standardization of such
enabling measures, and also calls for further research and
development of technologies, like presenting 3D printed tactile
maps in buildings and in public places. Moreover, artificial
intelligence is a promising venue as it can provide blind
individuals with devices or applications equipped with image
recognition software for text, faces, objects, and even larger
scale environments to enable more efficient interactions and
autonomous mobility (Morrison et al., 2017; Kelley, 2018; Zhao
et al., 2018). Our view is illustrated in Figure 8, which highlights
the present and future methodologies extending from simple
vision substitution to full vision restoration through highly
sophisticated interventions such as gene therapy, stem cell
technology or optogenetics.
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Ataxia is a kind of external characteristics when the human body has poor coordination
and balance disorder, it often indicates diseases in certain parts of the body.
Many internal factors may causing ataxia; currently, observed external characteristics,
combined with Doctor’s personal clinical experience play main roles in diagnosing ataxia.
In this situation, different kinds of diseases may be confused, leading to the delay
in treatment and recovery. Modern high precision medical instruments would provide
better accuracy but the economic cost is a non-negligible factor. In this paper, novel
non-contact sensing technique is used to detect and distinguish sensory ataxia and
cerebellar ataxia. Firstly, Romberg’s test and gait analysis data are collected by the
microwave sensing platform; then, after some preprocessing, some machine learning
approaches have been applied to train the models. For Romberg’s test, time domain
features are considered, the accuracy of all the three algorithms are higher than 96%; for
gait detection, Principal Component Analysis (PCA) is used for dimensionality reduction,
and the accuracies of Back Propagation (BP) neural Network, Support Vector Machine
(SVM), and Random Forest (RF) are 97.8, 98.9, and 91.1%, respectively.

Keywords: cerebellar ataxia, clinical recognition, microwave, sensory ataxia, wireless sensing technology

INTRODUCTION

“Ataxia” was initially used to describe various uncoordinated characteristics of different diseases,
such as gait, movement, heartbeat, etc. Now it is more specifically used to express the symptoms
of motor mismatching synchronization and balance disorder after the brain, cerebellum, deep
sensation (proprioception), vestibular and other systems are damaged (Bastian, 1997). Different
pathological locations often show different characteristics. Sensory ataxia is caused by the
impairment of somatosensory nerve, which leads to the interruption of sensory feedback signals
and therefore, the body incoordination is caused. For Cerebellar Ataxia patients, the Romberg’s
sign was positive, the typical symptoms include walking slowly, rolling, etc. Symptoms were
mild when eyes were open and aggravated when eyes were closed (Fadic et al., 1997; Donnelly,
2011). Cerebellar ataxia patients are more common, it is a loss of body muscle coordination
caused by cerebellar disease. Trunk ataxia often indicates cerebellar vermis lesions, and limb
ataxia often indicates cerebellar hemisphere lesions. The corresponding patients often have eye
tremor, low muscle tension, unclear speech, and other symptoms (Diener and Dichgans, 1992;
Bastian et al., 1996).
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In clinical testing, SA syndrome is very easy to be
misdiagnosed as CA syndrome, which leads to the inability
of patients with ataxia to get correct diagnosis and treatment
in time. At present, several international medical organizations
have formed to study ataxia (Klockgether and Paulson,
2011), and several ataxia assessment scales were developed,
such as “International Cooperative Ataxia Rating Scale for
pharmacological assessment of the cerebella syndrome (ICARS)”
(Trouillas et al., 1997), “Scale for the assessment and rating
of ataxia (SARA)” (Schmitz-Hübsch, 2006). Some scholars
have also done relevant research on the clinical detection and
differentiation of SA and CA symptoms, and given the clinical
diagnosis method (Chhetri et al., 2014). Both the assessment
scale and related research work have referred to two basic
indicators: Romberg’s sign and gait; which could be used for
Clinical detection and differentiation of SA and CA.

Romberg’s Sign
The maintenance of human balance mainly depends on
the coordination of vestibular system, visual system and
proprioceptive system (Maurer et al., 2001). In an upright
position, a normal person can stand steadily when the eyes
open and close; but when two or more systems are damaged,
the human body will not be able to maintain balance. For
example, when a patient is suffering from Sensory Ataxia, the
visual system can provide compensation information when the
eyes are open, so the patient can remain upright and stable;
Visual compensation would disappear when the eyes are closed,
patients will not be able to maintain upright stability. This is the
theoretical basis of Romberg’s sign has become an important part
of modern neurological clinical examination (Lanska, 2002).

In Romberg’s test, the patient’s feet are closed and arms are
placed on both sides of the body. Standing is divided into two
stages: opening eyes and closing eyes. Firstly, the patients are
allowed to open their eyes and stand for a certain time, then the
patients close the eyes and stand for a while, and the patients
are observed: whether their body have obvious shaking in two
stages. As long as there is a stage in which the patient shows
standing instability, the Romberg’s sign is positive (Pearce, 2005).
Before carrying out Romberg’s test, lower limb diseases or other
factors should be excluded. In order to prevent the patient from
falling down, protective pads should be laid around the patient’s
standing and medical staff should also take care of the patients.
During the experiment, normal people can keep their body stable
whether they open or close their eyes. Considering age, gender
and other factors, the normal performance of the minimum
standard should be that body balance can be maintained for 6 s
during eye closure (Hain and Cherchi, 2017). For sensory ataxia
and cerebellar ataxia, their Romberg’s signs are both positive, but
there are some differences. The patient can keep standing steady
during the eye-opening phase, and standing unsteadily, wobbling,
or even falling in the closed eye phase (Franchignoni et al., 1984),
as shown in Figure 1. The cerebellar ataxia patients were unstable
in the stage of closing eyes and opening eyes, and tend to tilt
toward the diseased side of cerebellum (Cazzato et al., 2016), as
shown in Figure 2. Romberg’s test is a simple and sensitive clinical
trial, the different performances of normal people, sensory ataxia

patients and cerebellar ataxia patients in the Romberg’s test are
given in Table 1.

Gait Detection
Abnormal gait can be caused by motor or sensory disturbance,
and its characteristics are related to the location of lesion. It
can be seen in many diseases in nervous and other systems;
some typical abnormal gaits have implications for certain diseases
(Thomann and Dul, 1996).

Sensory Ataxia Gait
When a normal person walks, the sensory nerve would be
stimulated when the sole of the foot touches the ground, then
the relevant information is transmitted to indicate the position
of the feet. Since the patients with sensory ataxia lose the input
of the stimulus, in order to know the time and place the feet
land, the patient would put his feet on the ground heavily. The
key to this gait is that when patients can’t see their feet (e.g., in
the dark), stepping will increase obviously. This gait is sometimes
referred to as stepping gait, because patients may lift their legs to
a very high position (Missaoui et al., 2013). The sensory ataxia
gait diagram is shown in Figure 3.

Cerebellar Ataxia Gait
This gait is common in cerebellar diseases and is often described
as a clumsy, tottering, and wide-base gait. Similar to the gait
after acute alcoholism, patients will not be able to walk straight.
Patients with greater trunk instability during walking are more
likely to have lesions in the midline vermis of the cerebellum
(Mochizuki and Ugawa, 2010). The cerebellar ataxia gait diagram
is shown in Figure 4.

At present, there are many related works on quantifying the
degree of swing in Romberg’s test.

One of the common ways is wearing facilities such as
pressure sensor, gravity acceleration sensor, etc. (Diener et al.,
1984; Lanska, 2002; Mcgough et al., 2018); other ways include
collecting videos via cameras (Havasi et al., 2007), etc.
Currently, many related works have been done for Romberg’s
test and gait detection purpose. Pressure sensors, gravity
acceleration sensors, videos, and some other approaches have
been applied in this domain (Diener et al., 1984; Lanska,
2002; Zongyi and Sarkar, 2006; Havasi et al., 2007; Afendi
et al., 2013; Umair Bin Altaf et al., 2015; Wang et al.,
2017; Mcgough et al., 2018). The methods in previous work
have their respective advantages; however, some issues like
self-consciousness enhancing, abnormal mood changes cannot
be ignored. Non-contact wireless sensing technology could
avoid these problems and by using omnidirectional antennas,
Romberg’s test and gait detection can be achieved.

The steps can be summarized as follows: firstly, the microwave
sensing system working at 4.8GHz was used to collect original
perception data; then, the data were preprocessed; finally, the
features are extracted and three machine learning algorithms
[Back Propagation (BP) Neural Network (Rumelhart et al.,
1995), Support Vector Machine (SVM) (Cortes and Vapnik,
1995) and Random Forest (RF) (Shi and Horvath, 2006)] were
applied to train the models. The experimental results show that
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FIGURE 1 | Comparison of different performance of patients with sensory
ataxia in Romberg’s test. (A) Eye opening stage and (B) eye closure stage.

FIGURE 2 | Comparison of different performance of patients with cerebellar
ataxia in Romberg’s test. (A) Eye opening stage and (B) eye closure stage.

TABLE 1 | Performance of different groups in Romberg’s test.

Groups Open eyes stage Close eyes stage

Normal Stable Stable

Sensory ataxia Stable Instable

Cerebellar ataxia Instable Instable

the accuracies of three algorithms are higher than 96% for
Roberg’s test and gait detection, demonstrating the feasibility and
effectiveness of the method.

The contribution of this paper can be summarized as follows:
(1) detection and distinguishing of sensory ataxia and cerebellar
ataxia can be achieved by using wireless sensing technology, and
the patients’ privacy can be protected; (2) Romberg’s test and gait
detection are validated, thus the accuracy of clinical diagnosis can
be improved; (3) various machine learning algorithms are used to
increase the stability and credibility of the results.

The rest of the paper is organized as follows: the principle
of wireless sensing is introduced in part II; in part III, the
experimental devices and scheme are described in detail; in part
IV, the data for Romberg’s test and gait detection are analyzed;
and the experimental results are discussed in part V; and in part
VI, the full paper is summarized.

FIGURE 3 | Sensory ataxia Gait.

FIGURE 4 | Cerebellar ataxia Gait.

PRINCIPLE OF C-BAND WIRELESS
SENSORY

In typical indoor environment, the wireless signal emitted by
the transmitter would be affected by the objects or the human
body; and the refraction, reflection and diffraction may cause
multipath effect. These homologous wireless signals in different
propagation paths show different physical characteristics at
the receiving end, such as the amplitude and phase of the
receiving signals, which contain rich information from the
external environment.

When the receiver detects that the signal changes, it indicates
that the external environment has been changed. By de-noising
the acquired data and further processing with classification
algorithm, we can reduce the environmental factors that
lead to the change of the received signal, so as to obtain

Frontiers in Human Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 63987194

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-639871 March 26, 2021 Time: 17:36 # 4

Zhang et al. Sensory Ataxia and Cerebellar Ataxia

the desirable information in the environment. In this work,
since the antennas were used for detection and monitoring
applications in a regular shape room, basic omnidirectional
monopole antennas were considered; for irregular shape space
and room, specially designed antennas would be necessary
to enhance the performance and accuracy of sensing. The
main differences between received signal strength and channel
state information are explained in Zhu and Zhang (2010) and
Zheng et al. (2013). CSI considers the number of antennas and
subcarriers, and can measure more fine-grained information,
the facility which confirms to the IEEE 802.11n standard was
used to collect the CSI data. The IEEE 802.11n standard
uses orthogonal frequency division multiplexing (OFDM) to
transmit a single data stream with 20 MHz bandwidth
through 56 orthogonal subcarriers, the signals transmitted
on each subcarrier have different signal strength and phase
(Lorincz and Begusic, 2006). The facility used in this paper
provides 30 available subcarriers to users. Next, we will further
explain the principle of C-Band wireless sensing measurement
from the formula.

It is known that the channel impulse response (CIR) is
generally used to describe the multipath effect in wireless
channels. Under linear time-invariant conditions, the CIR can be
expressed as follows,

h (τ) =

N∑
i=1

aie−jθiδ (τ− τi) (i = 1, 2, . . . ,N) (1)

In the formulas above, ai, θi and τi represent the attenuation
factor, phase shift, and time delay of the i-th path, respectively,
N is the total number of propagation paths, and δ (τ) is
Dirichlet pulse function.

Since the multipath propagation of signals can cause delay
and attenuation, we can also describe the channel by channel
frequency response (CFR), as shown in (2),

Y = HX + N(2) (2)

Where Y is the vector representation of receiving signal,
X is the vector representation of transmitting signal, N is the
noise matrix, H is the channel attenuation matrix and describes
the attenuation factor of signal on each transmission path, the
dimension of H can be expressed as:

DimH = RN × TN × SubN (3)

Where RN and TN are the number of receiving
antennas and transmitting antennas, respectively.SubN is
the number of subcarriers.

CSI is essentially a representation of the frequency response of
each subcarrier channel, as shown in (4),

h
(
fi , t

)
=
∣∣h
(
fi , t

) ∣∣× arg
(
h
(
fi , t

))
(i = 1, 2, . . . , 30) (4)

In (4),
∣∣h
(
fi , t

) ∣∣ , arg(h
(
fi , t

)
), and fi denote the amplitude,

phase, and central frequency of i-th subcarrier, respectively.

FIGURE 5 | Experiment scene for Romberg’s test and gait measurement. (A)
Romberg’s test measurement and (B) gait measurement.

Since the patient takes some time to perform Romberg’s test
and gait detection, we need continuous monitoring, and the
received CSI data can be expressed as:

D = [P1, P2, . . . , Pn] (5)

Where D represents the data stream received by the receiving
antenna, Pi (i = 1, 2..., n) represents packet. Each packet
contains 30 subcarriers, and n is the total number of received
packets. D constitutes the analysis data source for detecting
and distinguishing sensory ataxia and cerebellar ataxia. Since
the phase of subcarriers in each packet is random, this paper
will mainly use the amplitude information of subcarriers
(Yang et al., 2017).
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THE EXPERIMENT DESIGN

The experiment was carried out in an approximate ward room,
its size is 7 m× 5 m.

The experimental equipment includes two industrial
control computers equipped with facilities conforming to the
IEEE 802.11n standard. The transmitter is equipped with an
omnidirectional antenna, and the receiver is equipped with three
omnidirectional antennas. Since each antenna receives packets
containing 30 subcarriers, we will get 3× 30 subcarriers for each
packet at the receiving end, which greatly increases the data size.
The experimental scene is shown in Figure 5.

In the experiment, 10 subjects are considered; they are divided
into two groups with five people in each group. We set the
contract awarding frequency to 200 Hz. For Romberg’s test, we
collected a total of 12 s of data, including 6 s for the open eyes
stage and 6 s for the close eyes stage. For the gait detection
experiment, considering the site constraints and the walking
speed between different objects, we collected a total of 5 s of data,
the amount of data is enough to distinguish the abnormal gait.

For each subject, Romberg’s test and gait detection were
repeated 24 times. We collected three sets of data each day and
collected the complete data in about 1 week. There are 120 sets
of experimental data for each of the test items for sensory ataxia
and cerebellar ataxia. At the same time, we also collected 120
sets of Romberg’s test and gait detection data under normal
conditions as a reference.

THE DATA PROCESSING

Due to the noise in the environment, to ensure the credibility
and accuracy of the results, the data is processed considering the
following steps (Figure 6):

Data Preprocessing
Remove Outliers
In order to explain the method of removing outliers, we randomly
select a group of original experimental data from normal person
in Romberg’s test, and randomly select a subcarrier (No. 27). The
signal curve of the subcarrier is shown in Figure 7A. When a

FIGURE 6 | Data processing flow.

FIGURE 7 | Original signal and outliers for normal people in Romberg’s test.
(A) Original signal for normal people and (B) outliers for normal people.

normal person performs Romberg’s test, the body shake is within
a certain range, and the signal curve of subcarrier should be
relatively stable, but in Figure 7B, there are many burrs in the
signal curve and the volatility is large. We could also use the
Hampel function based on the Pauta criterion to complete the
removal of the outliers in the original signal (Li et al., 2016).

Signal Denoising
After removing the outliers from the original signal, the noise
contained in the original signal will be filtered out. Conventional
filters mainly include linear filters and nonlinear filters such
as mean filter and Wiener filter. The shortcoming of the
traditional denoising method is that the entropy after signal
transformation would increase, the non-stationary characteristics
of the signal cannot be characterized, and the correlation of the
signal cannot be obtained. To overcome these issues, the wavelet
transform is used.

Wavelet transform has the characteristics of low entropy,
multi-resolution, and flexible selection of wavelet basis functions.
In this paper, the wavelet soft threshold method is used
for signal denoising, which is simple to implement, and
very suitable for processing low SNR (Poornachandra, 2008).
We denoise the signal according to the following steps: (1)
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FIGURE 8 | Wavelet transform filtering effect.

Wavelet decomposition; (2) Threshold quantization of high-
frequency coefficients of wavelet decomposition; and (3) Wavelet
reconstruction. The wavelet function selected in this work is
sym8, and the signal is decomposed into 5 layers. At the
same time, in step 2, the threshold is dynamically adjusted
according to the noise level of different decomposition layers. The
experimental results show that the wavelet transform has smooth
denoising effect, which is shown in Figure 8.

Feature Extraction
Select Subcarrier
Before feature extraction, it is necessary to pick out the
appropriate subcarriers. We know that when the variance of a set
of data is larger, more information will be contained. According
to the principle of maximum variance, for Romberg’s test, we
select the 10th subcarrier of the third antenna; and for the gait
detection experiment, we select the 26th subcarrier of the second
antenna. The experimental data of selected subcarriers are shown
in Figures 9, 10, respectively.

Extracting Feature of the Romberg’s Test Data
As seen in Figure 9C, in Romberg’s test, the normal person
can maintain balance even if he blinks or closes his eyes; slight
fluctuations might be caused by the breathing of the object
and the noise in the environment. Patients with sensory ataxia
can maintain body balance during the blinking phase, and the
body violently shakes during the closed eyes stage, resulting in
a waveform that is basically stable in the blinking phase and
unstable in the closed eyes phase, as shown in Figure 9A. For
patients with cerebellar ataxia, whether they are blinking or
closing their eyes, the body is shaking sharply, and the waveform
fluctuates sharply, as shown in Figure 9B.

Since different groups in the Romberg’s test have different
time domain waveforms, in order to improve the efficiency
of the classification model training, only the time domain
characteristics are extracted and are shown in Table 2.

The physical significance of each time domain feature is as
follows: the mean value describes the stable component of the
signal, the mean square value reflects the energy of the signal,

FIGURE 9 | Signal amplitudes for sensory ataxia subject, cerebellar ataxia
subject and normal person in Romberg’s test. (A) Signal amplitudes for
sensory ataxia subject, (B) signal amplitudes for cerebellar ataxia subject, and
(C) signal amplitudes for normal person.

the standard deviation can represent the degree of dispersion
between the signal sampling points, the kurtosis reflects the
impact characteristics in the signal, and the skewness reflects
the asymmetry of the signal. The peak-to-peak value reflects the
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TABLE 2 | The extracted time domain features of the Romberg’s test data.

Features Calculation formula

Mean value YMV =
1
N

N∑
i=1

xi

Standard deviation YSD =
2

√
1

N−1

N∑
i=1

(xi − YMv)2

Root mean square YRMS =
2

√
1
N

N∑
i=1

x2
i

Peak to peak value YPPV = max(xi)−min(xi)(i = 1, 2, . . . , N)

Kurtosis YK =
1
N
∑N

i=1(|xi |−YMV )4

YRMS
4

Skewness YS =
1
N
∑N

i=1(|xi |−YMV )3

YRMS
3

Peak factor YP =
max(xi)
YRMS

(i = 1, 2, . . . , N)

Waveform factor YW =
N∗YRMS∑N

i=1 |xi |
(i = 1, 2, . . . , N)

signal amplitude range. The peak factor can be used to detect
whether there is an impact in the signal. The physical meaning
of the waveform factor in the electronic field can be understood
as the ratio of the DC signal of the same power to the original AC
signal, and its value is greater than or equal to 1.

Extracting Feature of the Gait Detection Data
As it can be seen in Figure 10, the time domain waveforms of the
three gaits have little discrimination. To ensure the accuracy of
the results, Principal Component Analysis (PCA) (Wold et al.,
1987) is adopted to reduce the dimensionality of the original
data, and the cumulative contribution rate of each principal
component is shown in Figure 11.

In order to avoid information loss in the original data
and to eliminate redundant information, the first 64 principal
components are extracted as features.

Classification
After these steps, we have obtained the dataset of Romberg’s test
and gait detection. Each dataset contains 360 samples, including
normal, sensory ataxia and cerebellar ataxia. To increase the
credibility and accuracy of the results, we adopted a four-fold
cross-validation (Demsar, 2006) method to divide the training set
and test set, and adopted three classification algorithms including
BP Neural Network, SVM, and RF.

EXPERIMENTAL RESULTS AND
DISCUSSION

Experimental Results
The confusion matrix for the results are shown in Tables 3, 4, and
the accuracies of each algorithm is shown in Figures 12, 13.

FIGURE 10 | Signal amplitudes for sensory ataxia subject, cerebellar ataxia
subject and normal person in gait test. (A) Signal amplitudes for sensory
ataxia subject, (B) signal amplitudes for cerebellar ataxia subject, and (C)
signal amplitudes for normal person.

Discussion
It can be seen from Figures 12, 13 that for Romberg’s test, only the
time domain features are extracted, and all the three algorithms
can achieve an accuracy of more than 96%; for gait detection,
PCA is used for dimensionality reduction; the accuracies of
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FIGURE 11 | Principal component cumulative contribution rate curve.

TABLE 3 | Confusion matrix for Romberg’s test.

Classification
algorithm

Actual type (Each
test set contains
3*30 samples)

Predict type (Number of sample)

Normal Sensory
ataxia

Cerebellar
ataxia

BP Neural
Network

Normal 29 1 0

Sensory ataxia 2 28 0

Cerebellar ataxia 0 0 30

SVM Normal 29 1 0

Sensory ataxia 1 29 0

Cerebellar ataxia 0 0 30

RF Normal 29 1 0

Sensory ataxia 1 29 0

Cerebellar ataxia 0 0 30

TABLE 4 | Confusion matrix for gait detection.

Classification
algorithm

Actual type (Each
test set contains
3*30 samples)

Predict type (Number of sample)

Normal Sensory
ataxia

Cerebellar
ataxia

BP Neural
Network

Normal 30 0 0

Sensory ataxia 0 28 2

Cerebellar ataxia 0 0 30

SVM Normal 29 0 1

Sensory ataxia 0 30 0

Cerebellar ataxia 0 0 30

RF Normal 24 1 5

Sensory ataxia 0 30 0

Cerebellar ataxia 0 2 28

BP Neural Network and SVM algorithm are above 97%. From
Table 4, the source of error rate of RF algorithm is mainly
used to identify the normal person between sensory ataxia and

FIGURE 12 | Accuracy of three algorithms in Romberg’s test.

FIGURE 13 | Accuracy of three algorithms in gait detection.

cerebellar ataxia; for gait recognition, BP Neural Network and
SVM are considered; for Romberg’s test, all three classification
algorithms are suitable.

From Table 3, we can see that in Romberg’s test, very high
precision is achieved, and the error rate is mainly due to the
misjudgment of normal and sensory ataxia. The reason for
this is that in Romberg’s test, cerebellar ataxia subjects are not
stable whether they open or close their eyes, while sensory
ataxia subjects and normal subjects remained stable during eye
opening; the only difference between the two is that sensory
ataxia subjects shake after closing their eyes, and closing eyes
have no effect on normal people. The time domain waveform
from Figure 9 can also give the corresponding conclusion. The
ability to maintain body balance is related to the age, gender
and the length of time for standing of the individual. Normal
people may have slight shaking in the Romberg’s test, symptoms
of patients with sensory ataxia may be mild, which may cause
confusion. It is worth mentioning that it’s difficult to distinguish
normal subjects from sensory ataxia subjects completely in
Romberg’s test, but cerebellar ataxia can be detected. In order
to ensure the experimental results more reliable, gait detection
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experiments are also performed, and the two experiments
confirmed reliability of the system.

CONCLUSION

Sensory Ataxia and Cerebellar Ataxia are neurological diseases
which affect the patients’ quality of life seriously; therefore, their
detection at early stage are very important and necessary. In
this paper, non-contact wireless sensing technology has been
proposed to discriminate symptoms between the two diseases.
The advantages include improvement of comfort, overcoming
self-consciousness enhancing, etc. The main merit of the system
lies in its convenience and price cost advantage. We firstly
preprocess the data by removing outliers, wavelet transform
filtering, then data features are extracted, finally, we use BP
Neural Network, SVM, RF machine learning algorithms to train
the model. The experimental results show that most of the
algorithms can achieve more than 96% prediction accuracy,
which can effectively discriminate between sensory ataxia and
cerebellar ataxia, and prove that the technical scheme described
in this paper is effective. Next, we will further explore the
application of C-Band wireless sensing technology in healthcare,
and propose more clinical application programs to make clinical
detection more accurate, reliable and smarter, so as to reduce the
burden on clinicians and patients.
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