PROTEIN MISFOLDING AND PROTEOSTASIS IMPAIRMENT
IN AGING AND NEURODEGENERATION: FROM SPREADING
STUDIES TO THERAPEUTIC APPROACHES

EDITED BY: Claudia Duran-Aniotz, Ines Moreno-Gonzalez,
Rodrigo Morales and Danilo Bilches Medinas

PUBLISHED IN: Frontiers in Aging Neuroscience and

Frontiers in Cellular Neuroscience

,frontiers Research Topics


https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience

:' frontiers

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the
property of their respective authors
or their respective institutions or
funders. The copyright in graphics
and images within each article may
be subject to copyright of other
parties. In both cases this is subject
to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the
property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under
the most recent version of the
Creative Commons CC-BY licence.
The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by
Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or eBook, as
applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the

CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those
materials. Any copyright notices
relating to those materials must be
complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the
elements in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers” Conditions for Website
Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88974-607-1
DOI 10.3389/978-2-88974-607-1

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a
pioneering approach to the world of academia, radically improving the way scholarly
research is managed. The grand vision of Frontiers is a world where all people have
an equal opportunity to seek, share and generate knowledge. Frontiers provides
immediate and permanent online open access to all its publications, but this alone
is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,
online journals, promising a paradigm shift from the current review, selection and
dissemination processes in academic publishing. All Frontiers journals are driven
by researchers for researchers; therefore, they constitute a service to the scholarly
community. At the same time, the Frontiers Journal Series operates on a revolutionary
invention, the tiered publishing system, initially addressing specific communities of
scholars, and gradually climbing up to broader public understanding, thus serving
the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely
collaborative interactions between authors and review editors, who include some
of the world’s best academicians. Research must be certified by peers before entering
a stream of knowledge that may eventually reach the public - and shape society;
therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding
research, evaluated with no bias from both the academic and social point of view.
By applying the most advanced information technologies, Frontiers is catapulting
scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals
Series: they are collections of at least ten articles, all centered on a particular subject.
With their unique mix of varied contributions from Original Research to Review
Articles, Frontiers Research Topics unify the most influential researchers, the latest
key findings and historical advances in a hot research area! Find out more on how
to host your own Frontiers Research Topic or contribute to one as an author by
contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers in Aging Neuroscience

1 September 2022 | Protein Misfolding and Proteostasis Impairment


https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/journals/aging-neuroscience
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact

PROTEIN MISFOLDING AND PROTEOSTASIS IMPAIRMENT
IN AGING AND NEURODEGENERATION: FROM SPREADING
STUDIES TO THERAPEUTIC APPROACHES

Topic Editors:

Claudia Duran-Aniotz, Adolfo Ibafiez University, Chile

Ines Moreno-Gonzalez, University of Malaga, Spain

Rodrigo Morales, University of Texas Health Science Center at Houston,
United States

Danilo Bilches Medinas, University of Chile, Chile

Citation: Duran-Aniotz, C., Moreno-Gonzalez, |., Morales, R.,

Medinas, D. B., eds. (2022). Protein Misfolding and Proteostasis Impairment

in Aging and Neurodegeneration: From Spreading Studies to Therapeutic
Approaches. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88974-607-1

Frontiers in Aging Neuroscience 2 September 2022 | Protein Misfolding and Proteostasis Impairment


https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/journals/aging-neuroscience
http://doi.org/10.3389/978-2-88974-607-1

Table of Contents

04

08

29

44

67

77

105

114

135

151

187

198

215

244

Editorial: Protein Misfolding and Proteostasis Impairment in Aging and
Neurodegeneration: From Spreading Studies to Therapeutic Approaches
Claudia Duran-Aniotz, Ines Moreno-Gonzalez, Danilo B. Medinas and
Rodrigo Morales

A Crucial Role for the Protein Quality Control System in Motor Neuron
Diseases

Riccardo Cristofani, Valeria Crippa, Maria Elena Cicardi, Barbara Tedesco,
Veronica Ferrari, Marta Chierichetti, Elena Casarotto, Margherita Piccolella,
Elio Messi, Mariarita Galbiati, Paola Rusmini and Angelo Poletti

Insight From Animals Resistant to Prion Diseases: Deciphering the
Genotype — Morphotype — Phenotype Code for the Prion Protein

Ryan Myers, Alessandro Cembran and Pedro Fernandez-Funez

Secreted Chaperones in Neurodegeneration

Kriti Chaplot, Timothy S. Jarvela and Iris Lindberg

Mechanisms of Pathogenic Tau and A Protein Spreading in Alzheimer’s
Disease

Paolo d’Errico and Melanie Meyer-Luehmann

On the Right Track to Treat Movement Disorders: Promising Therapeutic
Approaches for Parkinson’s and Huntington’s Disease

Paulina Troncoso-Escudero, Denisse Sepulveda, Rodrigo Pérez-Arancibia,
Alejandra V. Parra, Javiera Arcos, Felipe Grunenwald and Rene L. Vidal

The Mitochondrial Unfolded Protein Response: A Hinge Between Healthy
and Pathological Aging

Francisco Mufioz-Carvajal and Mario Sanhueza

Molecular Chaperones: A Double-Edged Sword in Neurodegenerative
Diseases

Jessica Tittelmeier, Eliana Nachman and Carmen Nussbaum-Krammer
Axonal Degeneration in AD: The Contribution of Ap and Tau

Natalia Salvadores, Cristian Geronimo-Olvera and Felipe A. Court

Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and
Promises

Luke McAlary, Yee Lian Chew, Jeremy Stephen Lum,

Nicholas John Geraghty, Justin John Yerbury and Neil R. Cashman
Cytoplasmic Expression of the ALS/FTD-Related Protein TDP-43
Decreases Global Translation Both in vitro and in vivo

Santiago E. Charif, Luciana Luchelli, Antonella Vila, Matias Blaustein and
Lionel M. Igaz

Impact of Chaperone-Mediated Autophagy in Brain

Aging: Neurodegenerative Diseases and Glioblastoma

Jaione Auzmendi-lriarte and Ander Matheu

Emerging Evidence Highlighting the Importance of Redox Dysregulation
in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS)

Cyril Jones Jagaraj, Sonam Parakh and Julie D. Atkin

The Potential Role of Protein Kinase R as a Regulator of Age-Related
Neurodegeneration

Nicolas W. Martinez, Felipe E. Gomez and Soledad Matus

Frontiers in Aging Neuroscience

3 September 2022 | Protein Misfolding and Proteostasis Impairment


https://www.frontiersin.org/research-topics/12422/protein-misfolding-and-proteostasis-impairment-in-aging-and-neurodegeneration-from-spreading-studies
https://www.frontiersin.org/journals/aging-neuroscience

l\' frontiers

in Aging Neuroscience

EDITORIAL
published: 09 February 2022
doi: 10.3389/fnagi.2021.830779

OPEN ACCESS

Edited and reviewed by:
Jorge Busciglio,

University of California, Irvine,
United States

*Correspondence:
Claudia Duran-Aniotz
claudia.duran@uai.cl

Specialty section:

This article was submitted to

Cellular and Molecular Mechanisms of
Brain-aging,

a section of the journal

Frontiers in Aging Neuroscience

Received: 07 December 2021
Accepted: 22 December 2021
Published: 09 February 2022

Citation:

Duran-Aniotz C, Moreno-Gonzalez |,
Medinas DB and Morales R (2022)
Editorial: Protein Misfolding and
Proteostasis Impairment in Aging and
Neurodegeneration: From Spreading
Studies to Therapeutic Approaches.
Front. Aging Neurosci. 13:830779.
doi: 10.3389/fnagi.2021.830779

Check for
updates

Editorial: Protein Misfolding and
Proteostasis Impairment in Aging and
Neurodegeneration: From Spreading
Studies to Therapeutic Approaches

Claudia Duran-Aniotz "?*, Ines Moreno-Gonzalez3*%¢, Danilo B. Medinas "%° and
Rodrigo Morales>*¢

" Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile, ? Center for Social and
Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile, ° Departamento Biologia Celular,
Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga,
Malaga, Spain, * Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain, ° Centro
Integrativo de Biologia y Quimica Aplicada, Universidad Bernardo O’Higgins, Santiago, Chile, ® Department of Neurology, The
University of Texas Health Science Center at Houston, Houston, TX, United States, ” Biomedical Neuroscience Institute,
Faculty of Medicine, University of Chile, Santiago, Chile, ® Center for Geroscience, Brain Health and Metabolism, Santiago,
Chile, ° Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences,
University of Chile, Santiago, Chile

Keywords: protein misfolding, proteostasis, aging, neurodegeneration, Alzheimer’s disease

Editorial on the Research Topic

Protein Misfolding and Proteostasis Impairment in Aging and Neurodegeneration: From
Spreading Studies to Therapeutic Approaches

Misfolding, aggregation, and deposition of proteins in the nervous system are common features
of several neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS),
and prion diseases, among others. Aging is the most relevant risk factor for all these diseases and
recent evidence suggests that the buffering capacity of the proteostasis network decreases with aging
and contributes to the etiology of these neuropathologies (Martinez et al., 2017). In this Research
Topic, we have compiled a list of interesting manuscripts which describe protein misfolding and
proteostasis impairment in aging and neurodegeneration.

AD is the most iconic disease associated with protein misfolding. This disease is the most
common form of dementia in the elderly population, affecting about 10% of individuals over
the age of 65, with its frequency increasing to nearly 40% by the age of 85. Pathologically, the
most prominent features of AD are the extracellular deposition of amyloid-f (AB) peptides and
the intracellular accumulation of hyper-phosphorylated tau (p-tau) proteins in the brain. These
features have been associated with a series of detrimental events, including exacerbated brain
inflammation and oxidative stress, leading to synaptic dysfunction and neuronal death. Recent data
has emerged suggesting that the progressive axonal degeneration in early stages of AD is associated
with AP and tau accumulation, which has been discussed by Salvadores et al.

Another pathological property of misfolded proteins involves their ability to spread or propagate
within different anatomical structures of the nervous system through prion-like mechanisms
(Gomez-Gutierrez and Morales, 2020). This has been particularly well-studied for Ap and tau
proteins involved in AD. Despite extensive research conducted in the last decade, the mechanisms
dictating the organized spread and neurodegeneration associated with these disease-associated
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proteins is not completely understood. In this line, d’Errico
and Meyer-Luehmann clearly summarized the current literature
involving the spreading mechanisms of AP and tau pathology in
AD. Their article focuses on evidence supporting the prion-like
model for AP and tau spreading and how those proteins can be
secreted and internalized by cells. They also highlight the need
for better understanding of these disease pathways and the design
of accurate and efficient intervention methods based on these
mechanisms (d’Errico and Meyer-Luehmann).

A comprehensive review by McAlary et al. further describes
evidence for the prion-like propagation of other proteins prone
to misfold. Their article specifically focuses on amyotrophic
lateral sclerosis (ALS), a fatal neurodegenerative disease affecting
motoneurons and leading to death due to respiratory failure
(Taylor et al, 2016). The authors cover literature involving
biochemical and seeding properties of major ALS-linked proteins
including superoxide dismutase 1 (SOD1), transactive response
DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS)
in different systems including invertebrate and mammalian
models. TDP-43-positive inclusions are detected in over 90%
of ALS patients and recent work has demonstrated its seeding
potential. TDP-43 and FUS contain prion-like low complexity
domains that can drive liquid-liquid phase separation forming
membraneless organelles such as stress granules. These structures
may link cellular stress responses to age-related proteostasis
collapse, driving neurodegeneration. Collectively, the literature
reviewed in this article supports the relevance of prion-like
propagation of toxic protein species to ALS pathogenesis.

Knowledge collected on infectious prions has been used
to explain relevant mechanisms associated with
neurodegenerative diseases. Importantly, prion diseases are
unique among other neurodegenerative disorders due to their
confirmed infectious etiology. Most mammals are susceptible to
prion diseases either naturally or under experimental conditions.
However, some animal species such as dogs, horses and rabbits
have proven to be resistant to a diverse array of prion isolates.
Several in vitro and in vivo studies have been conducted to
identify the elements in the prion protein sequence that provides
infection-resistance. These include the comparison of prion
protein structures from animals susceptible and resistant to
infection, in vitro prion conversion assays, and bioassays
using actual animals and transgenic systems (mice and flies).
Considering all these studies, few aminoacids in the prion
protein (PrP) sequence have been identified as key to provide
resistance to templated-conversion. This experimental evidence
is conscientiously summarized and discussed by Myers et al.
who hypothesize that these protective amino acids generate
more compact and stable structures in the C-terminal domain of
the prion protein, making it more resistant to acquire disease-
associated isoforms. Research in this area is key to understanding
the probability of certain animal species to get naturally infected
by infectious prions and may help to develop drugs stabilizing
specific domains involved in prion conversion.

Regarding mechanisms associated with ALS pathogenesis,
the review by Jagaraj et al. systematically describes alterations
of redox pathways in this disease. The authors present major
pathways controlling redox balance, including sources of

several

reactive oxygen species such as NADPH oxidases and defense
antioxidant systems. The paper highlights the protein disulfide
isomerases (PDIs), a class of oxidoreductases that promote
disulfide bond formation in the endoplasmic reticulum (ER),
as key components of the proteostasis network dysregulated in
ALS. According to the evidence discussed, redox modifications
such as S-nitrosylation and ALS-linked mutations in PDIs
impair their redox activity, resulting in protein misfolding and
disulfide-dependent aggregation. It will be of great importance
determining whether such disulfide-crosslinked proteins can
serve as templates to propagate toxic conformations along the
central nervous system (CNS). The failure of previous clinical
trials using redox-active compounds indicate that targeting redox
mechanisms in ALS depends on more specific targets.

The study by Charif et al. uncovers important evidence
involving TDP-43 toxicity. Under normal conditions, TDP-43
is localized in the nucleus. In ALS and other neurodegenerative
diseases, however, TDP-43 is mislocalized to the cytoplasm
where it may gain a toxic function (Taylor et al, 2016).
Employing cell culture and transgenic mouse models,
the authors show that cytoplasmic TDP-43 impairs the
proteostasis network by inhibiting translation, which was
monitored by puromycin labeling, in addition to preparation
of mRNA-ribosome complexes from brain tissue. According
to the authors, multiple mechanisms may be associated to
suppression of protein synthesis by TDP-43 that deserve further
investigation, including disruption of mRNA recruitment
by ribosomes, sequestration of ribosome components into
protein inclusions, aberrant formation of stress granules,
ER stress and activation of the unfolded protein response,
among others. Determination of the underlying pathogenic
mechanisms triggered by cytoplasmic TDP-43 can lead to
the design of novel therapeutics to restore translation rates
in ALS.

As mentioned, a reduction in the capacity of homeostatic
mechanisms during aging may increase the accumulation of
misfolded proteins leading to age-related neurodegenerative
diseases. One of the key pathways that mediates cell adaptation
is the integrated stress response (ISR), which promotes
translational arrest and induction of selected adaptive elements
through the phosphorylation of the eukaryotic translation
initiation factor 2 alpha (elF2a). However, under chronic
activation, ISR can also induce cell death, being considered an
important regulator of neural physio(patho)logical conditions.
With this focus, Martinez et al. (2021) reviewed evidence
linking protein kinase R (PKR), an ISR sensor, to physiological
conditions and neurodegenerative processes contributing to
age-related pathologies. The PKR-elF2a complex has been
involved in both long-term potentiation (LTP) and long-
term depression (LTD) in the hippocampus, physiological
mechanisms that have been proposed to correlate with
performance of mouse models in tasks of cognitive memory.
Martinez et al. also described the role of the PKR signaling
pathway in pathological conditions, including AD. Increased
PKR levels have been identified in mouse and human samples,
correlating with the severity of cognitive impairment. PKR
involvement in other neurodegenerative diseases including PD
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and HD has also been widely documented (Martinez et al.,
2021).

An emerging model explaining the impairment of cellular
homeostasis during aging leading to subsequent development
of neurodegenerative diseases involves mitochondrial
dysfunction. The mitochondrial unfolded protein response
(UPRMT),  which involves the transcriptional activation
of mitochondrial chaperones, proteases and antioxidant
enzymes, is a mechanism to repair defective mitochondria
relevant  for  neurological  disorders. = Muifioz-Carvajal
and Sanhueza summarized several lines of investigation
supporting this hypothesis, highlighting the factors that
influence mitochondrial homeostasis during normal and
pathological aging.

Similarly to ALS, spinal and bulbar muscular atrophy
(SBMA) is classified as a motor neuron disorder (MND),
with both diseases sharing common clinical manifestations and
pathological features marked by accumulation of misfolded
proteins in different areas of the nervous system involving
multiple anatomical regions and cell types. On one hand, the
different etiology of MNDs make the study of pathogenic
mechanisms and search for therapeutic approaches challenging.
On the other hand, both ALS and SBMA share a common
pathological feature: the imbalance of the protein quality
control system. The article by Cristofani et al. describe
the pathological mechanisms involved in ALS and SBMA,
specifically focused on the elements of the protein quality
control system that are altered in these diseases. These
include chaperones, protein degradation systems (the ubiquitin
proteasome system and the autophagy-lysosomal pathway),
the unfolded protein response, and the release of disease-
associated proteins through extracellular vesicles. Along this
line, the authors discuss how these different elements of
the protein quality control system may be manipulated for
therapeutic purposes.

Similarly, the review article by Troncoso-Escudero
et al. discusses the different therapeutic approaches under
development to treat the two most common movement
disorders associated with misfolded proteins: PD and HD.
Here, the authors focus on both preclinical approaches
and clinical trials involving pharmacological, cellular
replacement and genetic manipulation strategies, in addition
to the use of growth factors and electrical modulation
therapies. Pros and cons of each treatment avenue are
thoroughly discussed, serving as a reference for clinicians
and basic investigators.

Chaperones are relevant players in maintaining proper
protein folding, facilitating that proteins acquire their final
conformation. They are known as heat shock proteins (Hsp)
as they are crucial in stress response. The activity of the
molecular chaperones is compromised in chronic cellular
stress and age-related neurodegenerative diseases, including
AD, PD, and HD (Winklhofer et al., 2008). In fact, the
expression of some Hsp is decreased in AD (Winklhofer
et al, 2008). Overexpression of chaperones can decrease

neurodegeneration, whereas their reduction may accelerate
disease rate (Park et al., 2017). Tittelmeier et al. review the dual
role of molecular chaperones in neurodegenerative diseases.
On one hand, chaperones are necessary in maintaining cellular
proteostasis by folding proteins and assisting degradation
of those that are not properly folded. On the other hand,
they can also mediate in the progression of several protein
misfolding disorders, interfering in the aggregation and
spreading of different disease-related amyloids. In addition,
non-natively folded proteins can be degraded in lysosomes by
chaperone-mediated autophagy (CMA). Chaperones associated
with this specialized protein degradation machinery can
become dysfunctional during brain aging, neurodegenerative
disorders and even brain tumors.
Matheu (2021) review alterations observed in this autophagy
mechanism in healthy and disease conditions and propose the
development of CMA modulators to successfully intervene
in different brain disorders. Chaperones not only assist in
(re)folding of intracellular proteins, but they can also be
secreted to the extracellular space. Alterations in secreted
chaperones from neurons and glial cells have been lately
associated with neurodegenerative disorders, as evaluated
by Chaplot et al. This pathological mechanism may be
key in amyloid spreading and a therapeutic target for
prion-like disorders.

Overall, all the reports building this special issue further
our understanding on the mechanisms contributing to
protein misfolding processes, proteostasis impairment and

Auzmendi-Iriarte and

neuronal dysfunction in aging and neurodegeneration.
Considering normal and pathological aging as a
multifactorial condition, a deep understanding of the

cross-talk between protein misfolding, proteostasis and
neurodegeneration could be useful to establish promising multi
levels therapies.

AUTHOR CONTRIBUTIONS

CD-A, IM-G, DBM, and RM have contributed to manuscript
writing and editing. CD-A coordinated, reviewed, and checked
the final version. All authors have made a substantial intellectual
contribution to this manuscript and approved it for publication.

FUNDING

This work was funded by the following agencies: CD-A:
Alzheimer’s  Disease  Association = 2018-AARG-591107,
ANID/FONDEF 1D20110152, ANID/FONDECYT 1210622,
and ANID/PIA/ANILLOS ACT210096. IM-G: 27565 2018
NARSAD, R21 AG067311-01 NIH, RYC-2017-21879 Ramon
y Cajal and PID2019-107090RA-I00 Spanish Ministry of
Science, B1-2019_06, and UMA20-FEDERJA-104. DBM:
FONDECYT 1191538, Muscular Dystrophy Association 575897,
and ALS Association 19-ITA-456. RM: Alzheimer’s Association
AARGD-18-566576, and NIH/NIA RO1AI132695.

Frontiers in Aging Neuroscience | www.frontiersin.org

February 2022 | Volume 13 | Article 830779


https://doi.org/10.3389/fnagi.2020.581849
https://doi.org/10.3389/fnagi.2020.00191
https://doi.org/10.3389/fnagi.2020.571185
https://doi.org/10.3389/fnagi.2020.581374
https://doi.org/10.3389/fnagi.2020.00268
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Duran-Aniotz et al.

Editorial: Protein Misfolding and Proteostasis Impairment

REFERENCES

Auzmendi-Iriarte, J., and Matheu, A. (2021). Impact of chaperone-mediated
autophagy in brain aging: neurodegenerative diseases and glioblastoma. Front.
Aging Neurosci. 12:509. doi: 10.3389/fnagi.2020.630743

Gomez-Gutierrez, R., and Morales, R. (2020). The prion-like phenomenon in
Alzheimer’s disease: evidence of pathology transmission in humans. PLoS
Pathogens 16:¢1009004. doi: 10.1371/journal.ppat.1009004

Martinez, G., Duran-Aniotz, C., Cabral-Miranda, F., Vivar, J. P., and Hetz, C.
(2017). Endoplasmic reticulum proteostasis impairment in aging. Aging Cell
16, 615-623. doi: 10.1111/acel.12599

Martinez, N. W., Gémez, F. E., and Matus, S. (2021). The potential role of protein
kinase R as a regulator of age-related neurodegeneration. Front. Aging Neurosci.
13:148. doi: 10.3389/fnagi.2021.638208

Park, K. W, Eun Kim, G, Morales, R, Moda, F., Moreno-
Gonzalez, I, Concha-Marambio, L., et al. (2017). The endoplasmic

reticulum  chaperone = GRP78/BiP  modulates  prion  propagation
in  wvitro and in vivo. Sci. Rep. 7:44723. doi: 10.1038/srep4
4723

Taylor, J. P., Brown, R. H, and Cleveland, D. W. (2016). Decoding ALS:
from genes to mechanism. Nature 539, 197-206. doi: 10.1038/nature2
0413

Winklhofer, K. F., Tatzelt, J., and Haass, C. (2008). The two faces of protein
misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO
J. 27, 336-349. doi: 10.1038/sj.emb0j.7601930

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Duran-Aniotz, Moreno-Gonzalez, Medinas and Morales. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org

February 2022 | Volume 13 | Article 830779


https://doi.org/10.3389/fnagi.2020.630743
https://doi.org/10.1371/journal.ppat.1009004
https://doi.org/10.1111/acel.12599
https://doi.org/10.3389/fnagi.2021.638208
https://doi.org/10.1038/srep44723
https://doi.org/10.1038/nature20413
https://doi.org/10.1038/sj.emboj.7601930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

',\' frontiers

in Aging Neuroscience

REVIEW
published: 21 July 2020
doi: 10.3389/fnagi.2020.00191

OPEN ACCESS

Edited by:
Ines Moreno-Gonzalez,
University of Malaga, Spain

Reviewed by:

Anna Maria Colangelo,

University of Milano-Bicocca, Italy
Sarat C. Vatsavayai,

University of California,

San Francisco, United States

*Correspondence:
Angelo Poletti
angelo. poletti@unimi.it

Received: 24 March 2020
Accepted: 02 June 2020
Published: 21 July 2020

Citation:

Cristofani R, Crippa V, Cicardi ME,
Tedesco B, Ferrari V, Chierichetti M,
Casarotto E, Piccolella M, Messi E,
Galbiati M, Rusmini P and Poletti A
(2020) A Crucial Role for the Protein
Quality Control System in Motor
Neuron Diseases.

Front. Aging Neurosci. 12:191.

doi: 10.3389/fnagi.2020.00191

®

Check for
updates

A Crucial Role for the Protein
Quality Control System in Motor
Neuron Diseases

Riccardo Cristofani’, Valeria Crippa’, Maria Elena Cicardi’?, Barbara Tedesco’,
Veronica Ferrari’, Marta Chierichetti’, Elena Casarotto’, Margherita Piccolella’,
Elio Messi, Mariarita Galbiati’, Paola Rusmini’ and Angelo Poletti’%*

"Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza
2018-2022, Universita degli Studi di Milano, Milan, Italy, 2Department of Neuroscience, Jefferson Weinberg ALS Center,
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Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor
neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of
the spinal cord. While generally sporadic, inherited forms linked to mutant genes
encoding altered RNA/protein products have also been described. Several different
mechanisms have been found altered or dysfunctional in MNDs, like the protein quality
control (PQC) system. In this review, we will discuss how the PQC system is affected
in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral
sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which
accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will
discuss how the PQC system can be targeted to restore proper cell function, enhancing
the survival of affected cells in MNDs.

Keywords: motor neuron, protein quality control, CASA complex, HSPB8, BAG3, BAG1

INTRODUCTION

Motor neuron diseases (MNDs) are neurodegenerative diseases (NDs) characterized by the loss
of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of
the spinal cord; the consequence of motor neuron death is the lack of control on the skeletal
muscle fibers. While motor neurons are considered the primary target in MNDs, muscle and
glial cells may also be directly involved, and this affects motor neuron survival. MNDs are
generally fatal diseases, clinically characterized by severe loss of voluntary movements, muscle
weakness, spasticity, and atrophy. MNDs appear as sporadic or inherited forms, which have been
extensively studied in the last 30 years. The inherited forms are associated with gene mutations
that result in the production of altered RNA or proteins with reduced [loss-of-function (LOF)] or
aberrant neurotoxic [gain-of-function (GOF)] functions. Mixed LOF and GOF are also possible.
In LOF, the RNA or the protein affected are generally essential for motor neuron viability;
thus, their reduced activity often causes motor neuron death [e.g., in spinal muscular atrophy
(SMA); Lefebvre et al., 1995]. In these cases, the therapeutic intervention is aimed to restore
the proper activity of the missed/altered RNA or protein (Poletti and Fischbeck, 2020), and
successful therapies have been recently approved worldwide from regulatory agencies (Finkel
et al., 2017; Mendell et al., 2017; Mercuri et al., 2018). In GOF, different neurotoxic mechanisms
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have been reported to take place in a given mutant RNA or
protein. Unfortunately, this makes difficult to identify a common
therapeutic target for MNDs. Therefore, these approaches must
be specifically designed for each MND’s form. However, it is
now clear that many familial MND forms are characterized by
alterations of common intracellular pathways, which are often
also altered in sporadic MNDs. Thus, these pathways might serve
as potential therapeutic targets to reduce motor neuron death. In
this review, we will focus on one of the most common pathways
affected in MNDs, the protein quality control (PQC) system. In
fact, in several MNDs, which include spinal and bulbar muscular
atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), the
PQC system becomes unable to correctly handle misfolded
proteins (mainly produced by the mutant gene), letting them
become harmful to motor neurons and/or to glial and skeletal
muscle cells.

MISFOLDED PROTEINS ASSOCIATED
WITH MOTOR NEURON DISEASES

Spinal and Bulbar Muscular Atrophy

SBMA is the first MND for which a specific gene mutation has
been linked to the disease as the cause of neuronal cell death (La
Spada et al., 1991). SBMA, initially defined as a pure MND, is
presently also classified as a neuromuscular disease. In fact, in
SBMA, the primarily affected cell populations are lower motor
neurons localized in the bulbar region of the brain (brain stem
containing motor neurons of the lower cranial nerves) or in the
anterior horn of the spinal cord (Sobue et al., 1989; La Spada et al.,
1991; Brooks and Fischbeck, 1995; Li et al., 1995; Brooks et al.,
1997). Dorsal root ganglia (DRG) neurons may also be affected
in SBMA (Chua and Lieberman, 2013) and the combination of
motor and DRG neurons loss is responsible for the clinical signs
which include muscle fasciculations, weakness, and subsequent
atrophy, including dysphagia and dysarthria with atrophy of the
bulbar, facial, and limb muscles, as well as sensory disturbances
at distal extremities (Sobue et al., 1989). So far, there is no
evidence for the involvement of other brain cell types (e.g., glial
cells or microglia). In addition to neuronal cells, skeletal muscle
cells are also directly affected in SBMA (Chua and Lieberman,
2013; Cortes et al., 2014a; Lieberman et al., 2014; Rinaldi et al,,
2014; Rusmini et al., 2015; Cicardi et al., 2019). This specific cell
susceptibility is because the gene responsible for SBMA encodes
for the androgen receptor (AR), and this gene is highly expressed
in all the cell types described above (Poletti, 2004; Marron et al.,
2005). The same cells express high levels of androgen-activating
enzymes (Poletti etal.,, 1994, 1997,2001; Pozzi et al., 2003). SBMA
patients show mild endocrine alterations, like hypogonadism,
possibly due to modification of the gonadal-hypothalamic axis
or gynecomastia (Sobue et al, 1989; Kazemi-Esfarjani et al,
1995; Polo et al., 1996; Belsham et al., 1998; Piccioni et al.,
2001). These alterations are often associated with reduced
AR function.

Since the AR gene locus is on the X-chromosome, SBMA
exists only as X-linked inherited form, but only males are
affected (La Spada et al, 1991). Notably, the mutated AR
protein is inactive in the absence of androgens [testosterone or

its derivative 5a-dihydrotestosterone (DHT)], while it acquires
toxic properties upon agonist binding (Katsuno et al., 2002,
2003), and the presence of androgens is thus mandatory
for symptoms appearance and disease manifestation. This is
possible since the AR mutation found in SBMA is radically
different from those responsible for partial or complete
androgen insensitivity syndrome (PAIS or CAIS) or tumors
like prostate cancer (Brinkmann, 2001). In SBMA, the mutant
AR gene is characterized by an expansion of a CAG (cytosine,
adenine, guanine) tandem repeat (La Spada et al, 1991).
The CAG sequence is expressed in exon 1 of the mRNA
and then translated into a polyglutamine tract in the AR
N-terminus (ARpolyQ). In normal individuals, the polyQ
length of AR is highly polymorphic, ranging from 15 to
35 Qs (Edwards et al., 1992; Kuhlenbdaumer et al., 2001); in
SBMA patients the polyQ size becomes longer than 37 Qs
(to a maximum of 72; Fischbeck, 1997; Kuhlenbiaumer et al.,
2001; Grunseich et al, 2014; Madeira et al., 2018). CAG
repeat expansions coding for elongated polyQ tracts have
been found in other eight genes, which are unrelated to
AR; the mutant protein products of these genes cause other
similar NDs (Ross, 2002). The ARpolyQ retains approximately
30% of its transcriptional functions, which explains the
endocrine signs present in SBMA, but acquires a novel toxic
function that impacts neuronal and muscle cell viability. As
mentioned above, this toxic function of ARpolyQ appears after
its activation by androgens. These AR ligands (testosterone
or DHT) may induce aberrant protein conformations to
ARpolyQ (protein misfolding), which becomes highly prone
to aggregation (Stenoien et al., 1999; Simeoni et al., 2000;
Piccioni et al., 2002). Details of this pathological mechanism are
provided below.

Amyotrophic Lateral Sclerosis

ALS is a typical MND characterized by the loss of both the
cerebral motor cortex or brainstem (upper) motor neurons and
the cranial nerves and ventral horns of the spinal cord (lower)
motor neurons. Neurons located in the frontotemporal cortex
may be involved in some specific forms of ALS (Robberecht
and Philips, 2013), which may clinically manifest in a pure
MND form or be associated with a different extension to
frontotemporal dementia (ALS-FTD). Differently from SBMA,
the surrounding non-neuronal glial cells [astrocytes (Trotti et al.,
1999; Boillee et al., 2006; Nagai et al., 2007), oligodendrocytes
(Philips et al., 2013), and Schwann cells (Lobsiger et al., 2009;
Manjaly et al., 2010)] are indirectly or directly affected in ALS.
Reactive microglia are also present in ALS-affected tissues, but
not in SBMA (Philips and Robberecht, 2011), proving that
neuroinflammation and oxidative stress may play a significant
role in ALS (Ferraiuolo et al., 2011). As in SBMA, the striatal
skeletal muscle target cells can also be directly affected in ALS
(Dobrowolny et al., 2008; Onesto et al., 2011; Cicardi et al.,
2018; Meroni et al.,, 2019). Ninety percent of ALS cases appear
as sporadic (sALS) forms, and only 10% of cases are caused by
inherited mutations linked to familial (fALS) forms. The two
types of ALS are clinically indistinguishable. Up to now, more
than 30 genes have been found altered in fALS (Robberecht and
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Philips, 2013; Cook and Petrucelli, 2019; Mathis et al., 2019;
Mejzini et al., 2019), and each of these accounts for disease, which
mainly occurs as monogenic disease, even if disease modifier
genes might exist. It is noteworthy that several of the gene
products that cause a specific fALS have been reported to acquire
an aberrant behavior of their wild-type (wt) forms in sALS. This
suggests the existence of common pathways that lead to motor
neuronal death in both fALS and in sALS (Neumann et al., 2006;
Daoud et al., 2009; Bosco and Landers, 2010).

ALS has a very high variability in terms of both age of onset
and disease progression, and it seems to occur earlier in males
compared to females (Vegeto et al., 2020), with a male/female
ratio of 1-3 in the geographic region and population evaluated in
the study (Kurtzke, 1982; Haverkamp et al., 1995; Manjaly et al.,
2010). The two sexes also show different symptomatology, since
in males the disease predominantly begins in the lumbar tract
of the spinal cord, while in females ALS mainly begins in the
bulbar region (see Blasco et al., 2012 for an extensive review). It is
likely that hormonal sex steroids may influence the neurotoxicity
of factors involved in the pathogenesis of ALS (see Vegeto et al.,
2020 for an extensive review).

Historically, the superoxide dismutase 1 (SODI) gene is the
first gene associated with fALS. However, this mutation only
accounts for 15% of all fALS cases. SOD1 encodes a ubiquitously-
expressed antioxidant enzyme that acts as a free radical scavenger
enzyme (Bendotti et al., 2012). The most frequent fALS form
(almost 50% of all fALS) is due to a mutation in the C9orf72
(chromosome 9 open reading frame 72) gene; in particular, the
mutation consists of an expansion of a hexanucleotide (G4C,)
repeat located in the 5 -untranslated region of the C90rf72 gene.
Surprisingly, despite its location in an intronic sequence, the
G4C, expansion (which is transcribed in both directions) is
utilized by ribosomes as a starting point for translation; this
results in the production of five different dipeptides (DPRs; Ash
et al,, 2013; Gendron et al., 2013; Lashley et al., 2013; Mori et al.,
2013). The process has been identified as an unconventional
translation and named “repeat-associated non-ATG (RAN)
translation” (Zu et al., 2011). The five DPRs do not have a
physiological role, but they only exert toxicity in the expressing
cells of affected individuals. Other mutant genes are less
frequently represented in fALS: examples are the genes encoding
TAR DNA-binding protein 43 (TDP-43), the ALS-linked fused in
sarcoma/translocated in liposarcoma (FUS/TLS), the ubiquilin-2,
the optineurin, the valosin-containing protein/p97 (VCP/p97),
and others. These alterations occur in a few fALS families, but
the same proteins (even if in the wt form) can be dysregulated
in sALS, suggesting that their functions are crucial to maintain
neuronal homeostasis (a list of the most common gene mutations
identified so far in fALS is reported in Table 1). In particular,
TDP-43 is considered a hallmark for sALS since it mislocalizes
from nucleus to cytoplasm, where it aggregates in inclusions.
These inclusions are enriched by TDP-43 caspase-3-cleaved
fragments containing the C-terminal unstructured domain (Ratti
and Buratti, 2016).

A careful analysis of the gene products identified so far
suggests that several of their coded proteins have functions
that cluster in specific intracellular processes. One of the most

represented pathways is the PQC system (Table 1). In fact,
different ALS-associated proteins are directly involved in the
PQC system and others indirectly affect the PQC system due to
their mutation. Indeed, when mutated, they become unable to
properly reach the folded conformation and misfold. Misfolded
proteins must be cleared from cells, and with this mechanism
they may overwhelm the PQC system capability to handle
proteotoxic stresses. As in the case of ARpolyQ and in all other
elongated polyQ-containing proteins, which cause adult-onset
MNDs, the misfolded ALS proteins tend to segregate from the
nuclear or cytoplasmic compartments via a liquid-liquid phase
partitioning (Molliex et al., 2015; Patel et al., 2015; Ganassi et al.,
2016; Lee et al, 2016; Alberti et al., 2017; Boeynaems et al,,
2017; Freibaum and Taylor, 2017; Mackenzie et al., 2017). This
leads to an initial seed of aggregates with well-defined physical-
chemical properties, which then mature into aggresomes and
insoluble inclusions (Davies et al., 1997; DiFiglia et al., 1997; Li
et al., 1998; Lieberman et al., 1998; Kopito, 2000; Mediani et al.,
2019). The accumulating proteins may thus damage the PQC
system by saturating its functional capabilities or by clogging
the pathways devoted to protein clearance. For these reasons,
by forming aggregates, misfolded ARpolyQ or ALS-associated
proteins may perturb not only the PQC system, but also a series
of pathways that depend on the proper functioning of the PQC
system to maintain the correct cellular homeostasis.

THE PROTEIN QUALITY CONTROL
SYSTEM

Most cell types affected in MNDs are post-mitotic or generally
characterized by a poor mitotic index. This means that
these cells might accumulate aberrant proteins that cannot
be diluted by cell self-renewal or by simple partitioning into
duplicated intracellular compartments generated as a result of
cell division. Thus, these cells must develop a very sophisticated
system to maintain their proper protein homeostasis. Therefore,
post-mitotic non-dividing cells like neurons, motor neurons, or
skeletal muscle cells, as well as poorly replicating cells, like glial
cells, are highly prone to respond to misfolded protein species.
Misfolded species may be produced in response to different
cell stresses or as a consequence of gene mutations. These cells
are able to respond to these stresses in a very powerful way:
the overexpression of specific chaperones and co-chaperones,
paralleled by the potentiation of the degradative pathways. All
these factors are extremely well-coordinated to protect against
proteotoxicity, and their synergic activities constitute the PQC
system mentioned above. The PQC system thus acts as the
first line of defense and because of its protective action, its
selective modulation represents a valuable target for therapeutic
intervention in all protein misfolding diseases, including MNDs
like SBMA and ALS.

The PQC system is composed of a very large number of factors
clustered in specific families of proteins that work together to
define the fate of every single protein starting from its proper
folding after synthesis or denaturation, and it routes proteins to
degradation in case the folding fails.
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TABLE 1 | Gene mutations reported in familial amyotrophic lateral sclerosis (fALS).

Name [Gene symbol Protein function Aggregation PQC function Spora.d.lc (s)
prone / familial (f)
Spinal and bulbar muscular atrophy (SBMA)
- |AR |Steroid hormone receptor for androgens | o000 | |
Amyotrophic lateral sclerosis (ALS)
ALS1 SOD1 Superoxide dismutase 000 s/f
ALS2 ALS2 Rho Guanine Nucleotide Exchange Factor f
ALS3 ALS3 - - - -
ALS4 SETX DNA/RNA helicase s
ALSS SPG11 Ma?ntena nce of cytoskeleton stability/regulation of synaptic o £
vesicle transport
ALS6 ALS7 - - - -
ALS6 FUS RNA-binding protein o s/f
ALS8 VAPB ER-membrane protein o o f
ALS9 ANG Actin-binding protein; ribonuclease s/f
ALS10 |TARDBP RNA-binding protein 000 s/f
ALS11 |FIGa R‘egulates synthesis and turnover of phosphatidylinositol 3,5- s/f
bisphosphate
ALS12 |OPTN Autophagy adaptor 00 000 s/f
ALS13 |ATXN2 Endocytosis/RNA metabolism o s/f
ALS14 |VCP Ubiquitin segregase 000 s/f
ALS15 |UBQLN2 Protein degradation 000 000 s/f
ALS16 |SIGMAR1 Lipid transport from the endoplasmic reticulum 00 f
Component of the endosomal sorting required for transport
ALS17 |CHMP2B complex Il (ESCRT-11I); involved in sorting of endosomal 00 f
cargo proteins.
ALS18 |PFN1 Actin-binding protein 00 s/f
ALS19 |ERBB4 Member of the epidermal growth factor (EGF) receptor s/f
ALS20 |HNRNPA1 RNA-binding protein 00 s/f
ALS21 |MATR3 RNA-binding protein oo s/f
ALS22 |TUBA4A Microtubules subunit 00 s/f
ALS23 |ANXA1l Vesicle trafficking, apoptosis, exocytosis, and cytokinesis 00 00 s/f
FTD- C90RF72 Guanine nucleotide exchange factor—involved in autophagy 000 00 s/f
FTD- CHCHD10 Mitochondrial protein s/f
FTD- SQSTM1 Autophagy adaptor 000 000 s/f
FTD- TBK1 Inna.te im‘mune response, autophagy, inflammation and cell 00 s/f
ALS4 proliferation
LAHCDA |GLE1 Required for the export of mRNAs from the nucleus to the s/f
cytoplasm
Regulates the level of the neuromodulator D-serine in the
- DAO . f
brain
- ELP3 RNA polymerase Il component S
- EWSR1 RNA/DNA binding protein o s
- HNRNPA2/B1 [RNA-binding protein o s
- KIFSA Microtubule-based motor protein s
- CCNF Catalyzes ubiquitin transfer to substrates for UPS 000 s/f
- CFAP410 Regulation of cell morphology and cytoskeletal organization s/f
- DCTN1 Component of dynein motor complex s/f
- NEFH Cytoskeletal component 0o s/f
- NEK1 Cytoskeletal dynamics s/f
- TAF15 RNA-binding protein oo s/f
- TIA1 RNA-binding protein 000 s/f

The table shows the list of the most common mutated genes identified in fALS. The columns describe ALS name, gene symbol, protein function, aggregation propensity, involvement
in PQC and sporadic vs. familial form (0 = low; 00 = mid; 000 = high). Aggregation prone proteins are highlighted in brown, proteins involved in PQC system in orange, and those
that show both condiitions in yellow.
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The Chaperones often require the assistance of co-chaperones, which serve as
The family of intracellular chaperones and their co-chaperonesis  nucleotide exchange factors (NEFs), like the members of the
composed of more than 180 different proteins, some of which ~ BCL2-associated athanogene (BAG) protein family (Takayama
share a high degree of homology. These chaperones generally  and Reed, 2001; Figure 1).

act in a specific subcellular compartment: for example, some

chaperones localize exclusively in the endoplasmic reticulum, in ~ The Degradative Systems

the mitochondria, in the lysosomes, and/or in the cytoplasm,  Cells, including post-mitotic cells like neurons and skeletal
where they mainly exert their protective activities. Most  muscle cells, utilize two major degradative systems to
chaperones are also expressed in a cell- and tissue-specific ~ enzymatically destroy aberrant proteinaceous materials and
manner, with some chaperones localized exclusively in one tissue  recycle their components for other proteins production. This
(e.g., in the testis), while others are ubiquitously expressed.  process is assisted by chaperones (and their co-chaperones),
In addition, chaperones may be regulated in response to cell  which route aberrant proteins to degradative systems.

stresses. Indeed, chaperones have been discovered as proteins Proteins undergoing this degradation are damaged proteins
induced by heat shock, and found to protect cells against thermal ~ or regulatory proteins that ended their functions. The two
damages. Because of this, they have been named “heat shock  degradative systems are: (a) the ubiquitin proteasome system
proteins” or HSPs (DiDomenico et al., 1982). This name still ~ (UPS); and (b) the autophago-lysosomal pathway (ALP). Of note,
stands for many chaperones, even if they have been demonstrated ~ UPS acts both in the cytosolic and nuclear compartment, while
to possess much wider activities against a spectrum of variables  ALP acts only in the cell cytoplasm.

capable of damaging intracellular proteins (e.g., oxidative stress, (a) The UPS is a highly specific and very selective
hypoxia, DNA damage, aberrant translation, etc.). Based on their  proteolytic system mainly devoted to the clearance of short-
structure and functions, these factors have been classified in  lived proteins. The UPS inactivates proteins controlling cell cycle
subfamilies of chaperones. Originally, chaperones were grouped  progression, apoptosis, transcription, and cell differentiation.
based on their apparent molecular weight after their biochemical =~ Moreover, the UPS mediates the immune response and it
identification in SDS-PAGE (small HSPs, HSP40s, HSP60s, is responsible for the clearance of damaged monomeric
HSP70s, HSP90s, and HSP100), but this classification now  proteins. UPS is based on two subsequent steps: the protein
reflects their functions in the folding processes. Based on is labeled by a covalent binding to ubiquitin (a small protein
HUGO Gene Nomenclature Committee, a new nomenclature  of 76 amino acids), which is itself ubiquitinated forming a
has been adopted for the human HSP families: HSPB (small  poly-ubiquitin chain of several molecules of ubiquitin (Pickart,
HSP), DNA]J (HSP40), HSPD (HSP60), HSPA (HSP70), HSPC ~ 2001a,b); and this poly-ubiquitinated protein is degraded
(HSP90), and HSPH (HSP110; Kampinga et al., 2009; see also by the 26S proteasome. The recognition of the protein to
Kampinga and Craig, 2010) for an extensive review). Chaperones  be degraded is mediated by different chaperones of the

Slnmmu\., degradation
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ti x/// @& : q
non-native 4 : d
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FIGURE 1 | The role of heat shock proteins (HSP70) in the protein quality control (PQC) system. HSP70 plays an essential role in the protein folding process.
Through its interaction with HSP40, HSP70 is able to fold the proteins in non-native conformations. HSP70 and HSP40 are not the only HSPs involved. In fact, the
HSP90 system can assist protein folding in an independent way and the small HSPs respond to acute stress conditions. Notably, when necessary nucleotide
exchange factors (NEFs/BAGs) route HSP70 client proteins to degradative pathways (Ubiquitin-proteasome system and/or autophagy).
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HSP70/HSP40 families in a complex (Figure 1). HSP70 has
the ability to interact with specific E3-ubiquitin ligases (such
as the C-terminus HSP70 interacting protein, CHIP), which
selectively ubiquitinate misfolded proteins (Ciechanover, 1994;
Ciechanover and Brundin, 2003; Ciechanover and Kwon, 2015).
The ubiquitination cascade is rather complex. Ubiquitination
initially requires the activation of El enzymes that activate
ubiquitin; next, the activated ubiquitin is transferred to
E2 enzymes, which in concert with the E3-ubiquitin ligases
bind ubiquitin to a lysine residue of the substrate protein.
E3-ubiquitin ligases have slightly different functions (Jackson
et al., 2000; Joazeiro and Weissman, 2000). In addition,
deubiquitinating enzymes (DUBs) are involved in this process
(Amerik and Hochstrasser, 2004); DUBs maintain the cellular
pool of free ubiquitin by processing ubiquitin precursors and
recycling ubiquitin from poly-ubiquitinated substrates. Once
polyubiquitinated, the substrate protein is recognized by the
SQSTM1/p62, and other proteins of this class (Klionsky et al.,
2016) and routed to the proteasome for degradation. The
26S proteasome has a typical barrel shape constituted by a
large, multi-subunit protease complex: a 20S core complex
with catalytic activity and a 19S regulatory complex, the cap.
The cap receives the polyubiquitinated substrate, removes the
poly-ubiquitin chain and induces its translocation into the 20S
complex. Here, the substrate protein must enter the narrow
central 20S cavity for the enzymatic degradation to small
peptides. To this aim, folded proteins must be unfolded by the
19S subunit to reach a “linear” conformation. Thus, globular
or aggregated proteins are not processed by the proteasome
(Ciechanover and Brundin, 2003), and may even clog its catalytic
core. Molecular chaperones and co-chaperones cooperating
with the proteasomal-mediated degradation of ubiquitinated
substrates include the already mentioned HSP70/HSP40 (now
identified as HSPAs/DNAJs) and the HSP70/BAG1 complexes
(Figure 1; Demand et al., 2001; Alberti et al., 2002; Kampinga and
Craig, 2010; Kampinga and Bergink, 2016; Cristofani et al., 2017;
Cicardi et al., 2018, 2019). In the latter case, the HSP70/CHIP
complex, initially described as required for the substrate
ubiquitination, can associate to BAGI, and together with
SQSTM1/p62 it drives the ubiquitinated misfolded protein to
proteasomal degradation.

(b) The lysosomal-mediated system collects proteins
from various origins. The system is typically divided into
microautophagy, chaperone-mediated autophagy (CMA),
and macroautophagy (normally identified as autophagy).
These systems are evolutionarily well-conserved processes
required for the degradation of proteins or large cytosolic
components via the lysosome (Mizushima et al., 2008). In
the case of microautophagy, the cytosolic components are
directly engulfed into lysosomes via an invagination of its
membrane (Sahu et al., 2011). In CMA, only a specific subset
of proteins can be processed: those containing a pentapeptide
lysosome-targeting motif KFERQ or related consensus motifs
(also generated by specific post-translational modifications;
Orenstein et al.,, 2013; Kaushik and Cuervo, 2018; Kirchner
et al., 2019); the sequence allows the direct translocation
of cargo into lysosome. CMA requires the docking to the

lysosomal receptor lysosome-associated membrane protein 2A
(LAMP2A), as well as the protein unfolding by a chaperone
complex containing HSC70, BAG1, HSC70-interacting protein
(HIP), Hsp-organizing protein (HOP), and HSP40 (DNAJBI;
Kampinga et al., 2009; Kampinga and Craig, 2010; Kampinga
and Bergink, 2016). Instead, in macroautophagy (which the
general term “autophagy” usually refers to), the cytosolic
components are engulfed into the autophagosome, a double-
membrane vesicle that then fuses with the lysosome, in
order to deliver its content to the lysosome for degradation
(Xie and Klionsky, 2007). Initially considered as a sort of
non-specific degradation for long-lived proteins, organelles,
or protein aggregates, it is now clear that autophagy is tightly
regulated by several pro-autophagic factors (Mizushima
et al., 2008; Sardiello et al., 2009). In this latter form of
autophagy, it is also possible to distinguish between “in
bulk” autophagy and selective autophagy. While “in bulk”
autophagy is characterized by a very high clearance capability
but is rather non-specific since it entraps large portion of
cytoplasm, selective autophagy is highly specific and involves
specific molecular regulators (Kaushik and Cuervo, 2018).
Selective autophagy includes chaperone-assisted selective
autophagy (CASA; Arndt et al., 2010; Kettern et al, 2011;
Sarparanta et al, 2012; Ulbricht et al, 2013, 2015; Ghaoui
et al., 2016; Sandell et al., 2016; Cicardi et al., 2019; Cristofani
et al., 2019; Rusmini et al., 2019), organelles-specific types of
autophagy (mitophagy, lysophagy, ribophagy, granulophagy,
etc.), or processes aimed at removing large protein aggregates
(aggrephagy; Nivon et al, 2012; Stiirner and Behl, 2017;
Aparicio et al., 2020).

CASA has attracted large attention in the field of NDs,
specifically in MNDs, since this highly selective autophagy is
based on the recognition of misfolded substrates by a heteromeric
complex composed of a small HSP, the HSPBS, with its
co-chaperone BAG3. Once the misfolded protein is bound to
HSPB8/BAG3, the HSP70/CHIP dimer (already seen in the
UPS pathway) can be recruited. Here, the misfolded protein
is rapidly ubiquitinated by CHIP, allowing recognition by the
autophagy receptor SQSTM1/p62 (and related proteins) and
forming the CASA complex. Some studies include HSP40 or
DNAJ proteins in this complex (Sarparanta et al., 2012; Sandell
et al., 2016). In this context, the role of SQSTM1/p62 is different
from that exerted in association with BAGI/HSP70/CHIP,
which allows the use of the UPS pathway. When acting with
HSPB8/BAG3/HSP70/CHIP, the SQSTM1/p62 protein interacts
with the ubiquitinated misfolded proteins (or other cargoes)
and the lipidated form of the microtubule-associated proteins
1A/1B light chain 3B (LC3-II) anchored to the autophagosome
membrane. To allow SQSTM1/p62 and LC3-II-action, the
CASA complex takes advantage of a dynein binding motif
present in the BAG3 sequence. The CASA complex bound to
dynein is transported along microtubules to the microtubule
organizing center (MTOC). Ubiquitinated and SQSTM1/p62-
positive misfolded proteins are concentrated at MTOC to form
the aggresomes. Meanwhile, LC3-II decorated-autophagosomes
are generated, allowing aggresome insertion into a nascent
autophagosome. The autophagosome containing the CASA
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complex and the misfolded proteins fuses with the lysosome
to allow the degradation of the engulfed material following the
canonical autophagic pathway.

Selective autophagy is also involved in the degradation
of damaged organelles like mitochondria and lysosomes. In
mitophagy, the damaged mitochondria stabilize PINK1 on
its outer membrane. PINK1 recruits E3-ubiquitin ligases, like
Parkin, which amplify the ubiquitination of proteins in the
outer membrane mediating recruitment of the autophagic
receptors that interact with LC3-II present on the forming
autophagosome membrane (Youle and Narendra, 2011). Some
of the mitochondrial membrane proteins, like mitofusin, are
polyubiquinated with K48 ubiquitin chains. These proteins are
substrates of VCP/p97, an AAA*" ATPase, that segregates these
proteins from the mitochondria membrane and promotes their
degradation via UPS. The removal of these proteins is necessary
for mitochondria degradation (Tanaka et al., 2010; Tanaka, 2010;
Kimura et al.,, 2013). In lysophagy, ruptured lysosomes expose
galectins (Gal-3, Gal-8) as damage signals. Gal-8 is directly
recognized by autophagy receptors, while Gal-3 recruits and
binds TRIM16. Gal-3/TRIM16 complex promotes ubiquitination
of lysosomal proteins and recruits autophagy initiation factors
to trigger local phagophore formation (Thurston et al,
2012; Chauhan et al, 2016). Moreover, K63-ubiquitinated
proteins recruit autophagy receptors, while K48-ubiquitinated
proteins are targeted by VCP/p97 to UPS degradation.
VCP/p97 recruitment to lysosome membranes and functioning
are mediated by its cofactors and adaptors YODI, UBXDI,
and PLAA. The removal of K48 polyubiquitinated proteins is a
critical step to promote lysosome degradation (Fujita et al., 2013;
Akutsu et al., 2016; Papadopoulos et al., 2017).

The Unfolded Protein Response (UPR) and
the Endoplasmic Reticulum-Associated

Degradation (ERAD)

UPR and ERAD are two other key pathways devoted to the PQC
in cells. UPR is typically activated in the presence of an abnormal
excess of misfolded proteins, while ERAD mediates their
degradation by taking advantage of the cytosolic proteasome
mentioned above. In fact, the accumulation of misfolded proteins
in the endoplasmic reticulum (ER) activates the UPR. This action
is mediated by three different “sensors”—inositol requiring
enzyme 1 (IREla), PKR-like endoplasmic reticulum kinase
(PERK), and activating transcription factor 6 (ATF6; Hetz,
2012)—that signal to dedicated pathways to stimulate either
protein folding or protein degradation. During this process,
ribosomes are forced to attenuate protein translation. ERAD
has a specific function in PQC system since the ER is a major
site for protein folding. When aberrant ER-resident proteins
are processed by ERAD, they are released into the cytosol for
proteasomal (when these are still soluble) or for autophagic
clearance (when they are in an aggregated form; Hetz, 2012).
Even in the case of ERAD, the proteins are ubiquitinated by
specific E3-ubiquitin ligases, like HRD1 in the SELIL-HRDI
protein complex (where SEL1L acts as a cofactor). Ubiquitinated
misfolded proteins can be “retro-translocated” or “dislocated”

(extracted) from the ER membrane and transported to the cytosol
mainly by the activity of VCP/p97. VCP/p97 in complex with
UFD1-NPL4 first binds HRDI and the ubiquitinated proteins,
then addresses substrates to the proteasome via shuttle cofactors
(Ye et al.,, 2005; Senft and Ronai, 2015). Even in the case of
the UPR-ERAD, a central role is played by an HSP70, BiP (or
HSPA5 or GRP-78), which has low intrinsic ATPase activity,
enhanced by co-chaperones of the DNAJ-proteins (the same
class of the HSP40, like ERdj4 or DNAJBY). In addition to
protein folding, the ER controls the Ca*" homeostasis, being
the major intracellular Ca?* reservoir (Hetz and Mollereau,
2014). When misfolded proteins accumulate in the ER, the
depletion of ER Ca?" impacts on cell activity and enhances
stress. Store-operated Ca?* influx is activated in these conditions
to assure the replenishment of Ca?* levels (Szegezdi et al,
2006). If ER stress is prolonged, the ability of the UPR to
restore ER homeostasis is reduced and this may cause ER
stress-induced apoptosis by activation of caspase 12 (Yoneda
et al, 2001). Once activated, the UPR-ERAD converges on
the proteasome or to autophagy; therefore, in this review we
will only focus on the proper degradative pathways. Details on
UPR-ERAD can be found elsewhere (for an extensive review see
Hwang and Qi, 2018).

Release Mediated by Extracellular Vesicles
Emerging data strongly suggest that the extracellular secretion
may also play an important role in the maintenance of
intracellular protein homeostasis by cooperating with or
even being a part of the PQC system (Desdin-Mico and
Mittelbrunn, 2017; Xu et al., 2018; Guix, 2020). In fact, it has
been found that several NDs-related proteins are secreted in
double membrane spherical particles known as extracellular
vesicles. This is the case for the amyloid-beta peptide and
tau/phosphorylated tau for Alzheimer’s disease (Pérez et al.,
2019), alpha-synuclein for Parkinson’s disease (Longoni et al.,
2019), misfolded/mutant SOD1, TDP-43 and its pathological-
related C-terminal fragments (of 35 kDa and 25 kDa) and
FUS for ALS (Basso and Bonetto, 2016; Iguchi et al., 2016;
Hanspal et al., 2017; Sproviero et al., 2018), and progranulin,
TDP-43, and C9orf72 DPRs for FTD and ALS-FTD (Benussi
et al,, 2016; Iguchi et al., 2016; Westergard et al., 2016). The
extracellular vesicles are heterogeneous in size and are mainly
classified into three different types: exosomes, microvesicles, and
apoptotic bodies. These vesicles differ for size, proteins, and
lipids composition and intracellular origin. In fact, exosomes
are secreted membrane vesicles (approximately 30-120 nm in
diameter) formed intracellularly and released from exocytosis of
multivesicular bodies, whereas apoptotic bodies (approximately
1,000-4,000 nm in diameter) are released by dying/apoptotic
cells. Microvesicles (approximately 200-1,000 nm in diameter)
are shed from cells by an outward protrusion (or budding) of
the plasma membrane followed by fission of their membrane
stalk (for a detailed review see Akers et al., 2013; Colombo et al.,
2014; van Niel et al.,, 2018). A tight connection between PQC
and extracellular vesicles is particularly true for exosomes (Xu
et al., 2018). As stated above, exosomes are intraluminal vesicles
of the endosomal compartment that maturate into a structure
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called the multivesicular body after a very dynamic process. The
multivesicular body may release its content into the lysosome
for degradation or, under certain conditions, it may fuse with
the plasma membrane and secrete its intraluminal vesicles,
the exosomes. Interestingly, components of the CASA complex
may also affect/take part in extracellular vesicles pathway:
for example, STUB1/CHIP deficiency resulted in an increased
secretion of small extracellular vesicles that are enriched in
ubiquitinated and/or undegraded proteins and protein oligomers
(Ferreira et al., 2019), and BAG3 is found to be involved in
the exosome secretion of mutant Huntingtin upon proteasome
blockade (Diaz-Hidalgo et al., 2016). These evidences suggest
that extracellular vesicles have to be considered as new actors
in the proteostasis scenario, together with chaperones and the
degradative systems.

HOW THE PROTEIN QUALITY CONTROL
SYSTEM PROTECTS AGAINST
MISFOLDED PROTEIN TOXICITY IN SBMA
AND ALS

Data collected over the last 30 years suggest that ARpolyQ and
several ALS-associated proteins (listed in Table 1) may lead to
PQC system alterations (Kabashi and Durham, 2006; Voisine
et al., 2010; Rusmini et al., 2016, 2017; Cristofani et al., 2018,
2019). At the same time, the boost of key proteins involved in
PQC system regulation is protective in SBMA and ALS (Waza
et al., 2006; Yu et al.,, 2011; Giorgetti et al., 2015; Crippa et al,,
2016b; Rusmini et al., 2016, 2017, 2019, 2020; Cristofani et al.,
2018, 2019; Mandrioli et al., 2019).

Figure 2 summarizes how all the PQC system components
work synergistically to prevent misfolded protein accumulation
in these diseases.

Folding Process

The first line of PQC system intervention on the misfolded
protein is an attempt to restore the proper protein folding.
Even if the folding process is well-understood, many questions
still remain open in the case of disease-associated misfolded
proteins; in particular, to what extent the refolding of a
protein may occur after the first aggregation steps. The main
actors in the folding process are the HSP70s (also named
HSPAs), which are similar to nanomachines capable of switching
conformation using hydrolysis of ATP (Figure 1). This allows
HSP70 to change conformation in order to assist protein folding,
disaggregation, and degradation (see Kampinga and Craig,
2010; Kampinga and Bergink, 2016 for an extensive review).
HSP70 is a hub that requires the assistance of HSP40s (or
DNAJ proteins) in order to recognize the protein to be folded,
and of NEFs, like the BAGs, which exchange ADP/ATP during
the hydrolytic process (Sondermann et al., 2001; Rauch and
Gestwicki, 2014).

Misfolded proteins responsible for SBMA and ALS are able
to alter this finely-tuned process. These misfolded proteins
escape the correct folding and expose unstructured domains
highly prone to aggregate. Such domains are present in the

FOLDING

| PROTEIN QUALITY CONTROL SYSTEM |

#» KFERQ

(e ubiquitin LC3-Il w—Lamp2A |

FIGURE 2 | The PQC system. The fate of misfolded proteins is finely tuned
by the PQC system. This system is centered on a group of chaperones and
co-chaperones assisting proteins to reach their correct conformation or
directing proteins to degradative systems. Each pathway needs specific
proteins that assist the action of HSP70: () HSC70 interacting protein 1 (HIP)
and HSP70-HSP90 organizing protein (HOP) in the folding process; (i)
sequestosome 1 (SQSTM1/p62), E3-ubiquitin ligase C-terminus HSP70
interacting protein (CHIP), BAG family molecular chaperone regulator 3
(BAG3) and heat shock protein B8 (HSPB8, B8 in figure) in chaperone
assisted selective autophagy (CASA); (i) Lysosome-associated membrane
glycoprotein 2 (Lamp2A) in chaperone mediated autophagy (CMA); and (iv)
SQSTM1/p62, CHIP, BAG family molecular chaperone regulator 1 (BAG1) in
ubiquitin proteasome system (UPS). The HSP70 interactors at lysosome
membrane remain to be determined [indicated in figure as (?)] even if
coimmunoprecipitation and colocalization studies identified HSP90, HSP40,
HOP, HIP, and BAG1. Their role in CMA and microautophagy remains to

be determined.

ARpolyQ in its poorly structured N-terminus containing the
polyQ stretch, in the prion-like domains of TDP-43 and FUS
proteins, and maybe also in the five DPRs derived from
the C9orf72 mRNA, which do not possess tertiary structures.
These unstructured domains may clamp together in a liquid-
liquid partitioning of phases, forming membraneless organelles
attracting other compatible molecules (e.g., RNAs or proteins
which normally interact with these unstructured proteins). The
mutations in these proteins greatly enhance their capability
to generate liquid-liquid intracellular compartments, which
soon after their formation may mature into aggresomes, stable
aggregates, and even insoluble inclusions trapping specific
intracellular factors (Molliex et al., 2015; Patel et al., 2015;
Ganassi et al.,, 2016; Alberti et al., 2017; Boeynaems et al., 2017;
Mackenzie et al, 2017; Mateju et al., 2017; Marrone et al,
2018). Specific proteins are known to accelerate the conversion
of the aggregates formed after phase separation into stable
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insoluble aggregates. Conversely, chaperones and co-chaperones
may prevent this conversion, delaying the maturation into
stable structures and facilitating the disassembling of the newly
formed membraneless organelles. This activity of chaperones and
co-chaperones should permit the refolding process of a misfolded
protein even after its entrapping in the aggresomes when they
are still dynamic (Jaru-Ampornpan et al, 2013; Mattoo and
Goloubinoff, 2014; O’Driscoll et al., 2015; Zaarur et al., 2015;
Mathew and Stirling, 2017; Kitamura et al., 2018; Alexandrov
etal., 2019).

Alterations of UPS in SBMA and ALS

Evidence suggests that ARpolyQ, SOD1, TDP-43, and its ALS
associated fragments, as well as other ALS-proteins, including
at least one out of five DPRs of C9orf72, are processed via the
proteasome (Rusmini et al., 2007, 2010, 2011, 2013, 2019; Sau
et al., 2007; Crippa et al., 2010b, 2016a; Onesto et al., 2011;
Cristofani et al., 2017, 2018; Cicardi et al., 2018, 2019). However,
the large amounts of misfolded proteins formed when specific
gene mutations occur may overwhelm the UPS capability to
degrade them efficiently. This process is accentuated in aged
cells in which the chaperone and UPS activities are reduced
(Ciechanover and Brundin, 2003; Terry et al., 2004, 2006; Wang
K. et al.,, 2018; Hegde et al., 2019). It is also possible, as in the
case of the elongated polyQ tract of the AR, that the proteasome
proteolytic capability is unable to digest the long polyQ sequence
since no consensus cleavage sites for its enzymatic activity are
present between the Qs; thus, long uninterrupted polyQ size
might block the narrow catalytic site, where only a single protein
can enter and be degraded. We showed that while the wtAR
with a 23Q stretch can be cleared via the proteasome even
in presence of androgens (Rusmini et al., 2007), the mutant
ARpolyQ may impair the UPS function; in fact, by expressing the
ARpolyQ in basal condition (absence of androgens), we noted
an accumulation of the proteasome activity reporter GFP-CL1
(GFPu) as an indication that the elongated polyQ is poorly
processed by the UPS and interferes with the activity of this
degradative pathway. Interestingly, the inactivated ARpolyQ
does not play toxicity in all cell models tested. Surprisingly,
when the ARpolyQ is activated by androgens (which bound at
the AR C-terminus), the protein is thought to acquire toxic
conformations (Stenoien et al., 1999; Simeoni et al., 2000;
Piccioni et al., 2002; Poletti, 2004), but the UPS is fully functional
(Rusmini et al., 2007) since the GFPu reporter is fully degraded
by the UPS. An explanation for this unexpected phenomenon is
that by inducing the ARpolyQ toxic conformation, androgens
also induce its misfolding (possibly via a phase partitioning
phenomenon; Eftekharzadeh et al, 2019; Escobedo et al,
2019) and sequestration into subcellular compartments (the
aggregates), protecting the cell from this dangerous protein
conformation (Rusmini et al., 2007, 2010). The formation of
aggregates acts as a sink that permits UPS desaturation from the
excess of “free” polyQ to be processed. Meanwhile, aggregates
might stimulate autophagy for ARpolyQ clearance (see below). It
is thus expected that also autophagy alterations might contribute
to the accumulation of stable insoluble ARpolyQ aggregates
in cells (Rusmini et al., 2013; Giorgetti et al., 2015; Cristofani

et al., 2017; Cicardi et al., 2019). As will be discussed below,
the potentiation of CASA restores normal ARpolyQ clearance.
A similar UPS role has been found involved in the clearance
of ALS-misfolded proteins. Mutant SOD1 is mainly cleared by
the UPS, and its pharmacological inhibition with MG132 results
in an accumulation of ubiquitin-positive SOD1 aggregates in
cells (Crippa et al., 2010a,b, 2016a; Cicardi et al., 2018). This
aggregated SOD1 is poorly removed by autophagy but, as seen
for ARpolyQ, the induction of CASA restores complete clearance
of aggregating mutant SOD1 (Crippa et al., 2010a,b, see below).
TDP-43 and its 35 kDa and 25 kDa TDP-43 fragments follow the
same route of degradation identified for inactive ARpolyQ and
mutant SOD1 (Crippa et al., 2016a; Cicardi et al., 2018, 2019).
Even in this case, UPS inhibition results in an accumulation and
mislocalization of TDP-43 and fragments, aside from the 25 kDa
TDP-43 fragment. CASA induction reverts also this phenotype
(Crippa et al., 2016a; Cicardi et al., 2018). It is unclear whether
autophagy defects play a major role in the accumulation of
these TDP-43-related aberrant species and this may underline
differences in the type of toxicity exerted by these MNDs
proteins. Recent works have shown that TDP-43 inclusions and
TDP-43 hyperphosphorylation (typical hallmarks of ALS-motor
neurons) are also present in muscles in sALS patients. This
discovery raised a question: whether TDP-43 misfolded species
could accumulate and exert toxicity in muscle cells. We found
that the insoluble TDP-43 fragments also accumulate in muscle
C2C12 cells, but their aggregation is reverted by tuning the
expression of key components of the CASA complex. Whether
the accumulation of these fragments in muscle tissue is causative
of muscle atrophy is yet to be elucidated (Cicardi et al., 2018).

Also, the C9orf72 DPRs degradation is mediated by UPS and
autophagy, even with different behavior of the five DPRs, since
only the polyGP is efficiently degraded by the UPS (Cristofani
et al., 2018). PolyGP is also degraded via autophagy that is able
to efficiently remove polyPA, polyGR, and polyGA (Cristofani
et al., 2018). Conversely, only the polyPR seems to be resistant
to both degradative systems in basal condition. The reasons for
these differences are still unclear, but CASA activation prevents
the accumulation of all five DPRs (Cristofani et al., 2018), as will
be described below.

Collectively, these data suggest that several MND-associated
misfolded proteins can be cleared by the UPS system, possibly
in a monomeric state. It is expected that UPS overwhelming
will result in an accumulation of these species that, once
concentrated in specific subcellular compartments (liquid-liquid,
aggresomes, etc.), may reversibly aggregate. This mechanism
might protect from misfolded protein toxicity since these
species are sequestered, limiting their potential toxicity. If the
accumulation persists, the aggregates may mature to more stable
and potentially toxic species, and thus must be removed using
alternative strategies by the cells.

Alteration of Autophagy and CASA in
SBMA and ALS

Alteration of autophagy has been reported in animal and cell
models of SBMA (Montie and Merry, 2009; Yu et al,, 2011;
Doi et al,, 2013; Rusmini et al., 2013, 2015, 2019; Chua et al,,
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2014; Cortes et al., 2014b; Thellung et al., 2018; Cicardi et al.,
2019) and ALS (Kabuta et al., 2006; Morimoto et al., 2007;
Li et al, 2008; Wang et al, 2012; Crippa et al., 2013; Xiao
et al., 2015; Evans and Holzbaur, 2019; Nguyen et al., 2019).
Despite this, the complexity of the autophagic pathway makes it
difficult to fully understand which level of this multistep process
is affected by the presence of misfolded proteins. It is evident
from experimental data that autophagy activation has a beneficial
role in disease since pharmacological or genetic induction of
autophagy ameliorates disease phenotype (e.g., delaying disease
onset, slowing down its progression or ameliorating motor
behavior; Montie et al., 2009; Wang et al., 2012; Castillo et al.,
2013; Kim et al., 2013; Tohnai et al., 2014; Zhang et al., 2014;
Giorgetti et al., 2015; Li et al., 2015; Perera et al., 2018; Wang
Y. et al., 2018; Rusmini et al., 2019). Unfortunately, not all
studies agree with these observations (Zhang et al., 2011). By
focusing on CASA, which has already been mentioned above,
it must be noted that HSP70 chaperones and others require
the assistance of co-chaperones, like the member of the NEF
family (Kampinga and Craig, 2010), which includes the BAGs
(Takayama and Reed, 2001). Cells utilize different BAGs to
route misfolded proteins either to the UPS or to autophagy
(Figure 1). BAG1 associates to HSP70 and CHIP to route
misfolded proteins to the UPS, while BAG3, in association
with HSPBS, interacts with HSP70/CHIP to route misfolded
proteins to autophagy (Figure 2). This allows to select which
pathway has to be followed by misfolded proteins to be efficiently
cleared from cells; the perturbation of this equilibrium may
result in misfolded proteins accumulation (Cristofani et al.,
2017, 2019; Rusmini et al., 2017). The importance of the CASA
complex in cell protection against proteotoxicity is underlined
by the fact that mutations in the genes coding for almost all
components of the CASA complex have been associated with
human diseases. Indeed, mutations in HSPB8 cause diseases of
motoneurons and/or muscle cells [Charcot-Marie-Tooth (CMT)
type 2L disease, hereditary distal motor neuropathy type II
(dHMN-II), or distal myopathy; Fontaine et al., 2006; Irobi et al.,
2010; Ghaoui et al.,, 2016; Al-Tahan et al., 2019]. Mutations in
BAGS3 are causative of dilated cardiomyopathy (Arimura et al.,
2011), muscular dystrophy (Selcen et al., 2009), giant axonal
neuropathy, and late-onset axonal CMT neuropathy (Jaffer et al.,
2012; Shy et al., 2018). Interestingly, three BAG3 mutations
involve the Pro209 residue (Pro209Leu, Pro209Ser, Pro209Glu),
which falls in one of the two HSPBS8-interacting Ile-Pro-Val
(IPV) motifs. These Pro209 mutants still retain the ability
to bind to all CASA members but they impair HSP70 client
processing, and they accumulate at the aggresome preventing
target protein degradation and sequestering CASA members
(Meister-Broekema et al., 2018; Adriaenssens et al., 2020).
Mutation in STUB1/CHIP have been found in Gordon Holmes
syndrome (multisystemic neurodegeneration; Hayer et al., 2017)
and more recently in SCA48 (Genis et al., 2018), and a
destabilized CHIP (linked to six different variants) is present
in SCA16 (Pakdaman et al., 2017; Kanack et al., 2018); also,
a missense mutation in the CHIP-ubiquitin ligase domain was
reported as the cause of a form of spinocerebellar autosomal
recessive 16 (SCAR16; Shi et al., 2013, 2018). Mutations of

the SQSTM1/p62, which recognizes the CHIP-ubiquitinated
cargo inside the CASA complex (some authors include it as
a member of this complex), are responsible for fALS (Fecto
et al, 2011; Teyssou et al., 2013). Of note, it has been suggested
that in skeletal muscle, DNAJB6 of the DNAJ/Hsp40 family
(HSP70 co-chaperones) suppresses aggregation of misfolded
proteins involved in NDs (Hageman et al, 2010) and
participates to the formation of the CASA complex (Sarparanta
et al, 2012). Interestingly, a mutation in DNAJB6 causes
Limb-girdle muscular dystrophies (LGMDs), characterized by
aggregates of DNAJB6 sequestering CASA complex proteins
(Sandell et al., 2016).

The CASA complex is involved in mutant SOD1-associated
fALS (Crippa et al,, 2013). Indeed, mutant SOD1 induces a
robust autophagic response both in the spinal cord and in
muscle. BAG1, BAG3, HSPB8, LC3, and SQSTM1/p62 are
significantly upregulated in mutant SOD1 transgenic ALS mice
at the symptomatic stage (16 weeks). Notably, the autophagic
response is much higher in muscle than in spinal cord,
supporting the absence of high molecular weight insoluble
species of mutant SOD1 in muscle; this also suggests that the
toxicity exerted by mutant SODI1 in muscle cells is probably
not related to the classical mechanism of intracellular protein
aggregation (Galbiati et al., 2012, 2014). Interestingly, an analysis
performed in SBMA knock-in mouse model revealed that
the CASA complex is highly upregulated in skeletal muscle
after disease onset, while no variations were observed in the
spinal cord. In fact, HSPB8 and BAG3 mRNA and protein
levels are increased in SBMA mice at the symptomatic stage
compared to control, as well as the co-chaperone BAGI,
involved in routing misfolded proteins to UPS. The increased
BAG3 to BAGI ratio suggested that autophagy is the main
proteolytic pathway activated in muscle tissue during SBMA
progression and CASA complex is involved in reducing ARpolyQ
toxicity in skeletal muscle, which is a primary site of SBMA
pathogenesis (Rusmini et al., 2015). HSPB8 seems to be a
limiting factor for the CASA complex (Crippa et al., 2010a,b).
HSPB8 overexpression rescues from protein accumulation and
aggregation of mutant SOD1 and TDP-43 in cell models of ALS
(Crippa et al., 2010a,b), while its silencing has opposite effects
favoring misfolded proteins accumulation in motor neurons
(Crippa et al.,, 2010a,b). Overlapping data were obtained with
other misfolded proteins implicated in Alzheimer’s disease,
Parkinson’s disease, a form of spinal cerebellar ataxia, (SCA3),
SBMA, fALS, and FTID. In fact, HSPB8 enhances the autophagy
clearance of beta-amyloid, alpha-synuclein (a-syn), the polyQ
proteins huntingtin, ataxin-3, and ARpolyQ, as well as all
five DPRs from the C9orf72 mRNA (Chdvez Zobel et al,
2003; Wilhelmus et al., 2006; Carra et al, 2008a,b; Crippa
et al.,, 2010b, 2016a; Bruinsma et al., 2011; Seidel et al., 2012;
Rusmini et al, 2013, 2016; Giorgetti et al, 2015; Cicardi
et al., 2018), while HSPB8 downregulation has the opposite
effects (Crippa et al., 2010b, 2016a,b; Rusmini et al., 2013;
Cristofani et al., 2017).

Since HSPB8 may be a limiting factor of CASA complex
activity and its overexpression is sufficient to restore
autophagy, it is clear that this protein represents a valid
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therapeutic target for these NDs. It has been demonstrated
that HSPB8 expression is induced by estrogens and other
selective estrogen receptor modulators (SERMs; Sun et al,
2007; Piccolella et al., 2014, 2017; Meister-Broekema et al,
2018), and this could help to explain why gender differences
occur in the appearance of several NDs (Vegeto et al., 2020).
Recently, we set up a high throughput screening (HTS) using
a reporter luciferase gene under the transcriptional control
of the human HSPB8 promoter. With this system, we found
that colchicine [a Food and Drug Administration (FDA)-
and European Medicine Agency (EMA)-approved drug]
stimulates HSPB8 expression and enhances the autophagy
clearance of the insoluble TDP-43 species (Crippa et al., 2016a)
in models of ALS. The drug is presently in phase II clinical
trial for ALS (Mandrioli et al., 2019). Other HSPB8 inducers
are some disaccharides, like trehalose, melibiose, or lactulose
(Rusmini et al., 2013, 2019; Giorgetti et al., 2015). Trehalose
has been tested in mouse models of Huntington’s disease,
ALS, Parkinson’s disease, Alzheimer’s disease, succinate
semialdehyde dehydrogenase deficiency, and oculopharyngeal
muscular dystrophy, and found to be capable of ameliorating
disease course and symptomatology (Tanaka et al, 2004;
Davies et al., 2006; Rodriguez-Navarro et al., 2010; Perucho
et al.,, 2012; Schaeffer and Goedert, 2012; Castillo et al., 2013;
Du et al, 2013; Sarkar et al, 2014; Zhang et al, 2014; He
et al., 2016). The mechanism of action of trehalose and its
analogs, melibiose and lactulose, was recently uncovered. These
disaccharides induce transient lysosomal permeabilization
and possibly calcium release from lysosomes. These events
trigger the Transcription Factor EB (TFEB) pathway, mediated
by the calcium-dependent phosphatase PPP3/calcineurin,
which dephosphorylates TFEB. Trehalose-activated TFEB
migrates into the nucleus where it acts on CLEAR responsive
elements to enhance the expression of genes controlling
autophagy and lysosomal biogenesis. With this mechanism
trehalose/TFEB-mediated activation of autophagy promotes
the clearance of damaged lysosomes through lysophagy,
but in parallel exerts neuroprotection by promoting the
degradation of mutant and misfolded proteins from neurons
(Rusmini et al., 2019).

Both colchicine and trehalose also induce BAG3 expression
(Lei et al, 2015; Crippa et al., 2016b), indicating that these
compounds may act via a general potentiation of CASA. Other
drugs have been found able to stimulate BAG3 expression
(e.g., proteasome inhibitors, TNF-related apoptosis-inducing
ligand, fludarabine, cytosine arabinoside, and etoposide) but
unfortunately, these drugs are used in chemotherapy with
relevant side effects, and are thus not suitable for NDs (Romano
etal., 2003; Chiappetta et al., 2007; Rapino et al., 2014). However,
they might serve as molecule templates for the development of
safer and better tolerated derivatives.

Alteration of CMA in SBMA and ALS

Nothing is known so far about the involvement of CMA in
the degradation of ARpolyQ in SBMA. Instead, recent data
suggest that CMA may play a role in NDs, including ALS
(Ormerno et al., 2020). Indeed, CMA is essential in Parkinson’s

disease where its dysregulation modifies the onset or progression
of the disease (Arias and Cuervo, 2011; Cuervo, 2011; Alfaro
etal., 2018; Kaushik and Cuervo, 2018). Alpha-synuclein protein,
leucine-rich repeat kinase 2 (LRRK2), Parkinson disease protein
7 (PARK?7), and DJ-1, as well as myocyte-specific enhancer
factor 2D protein (MEF2D), which are dysregulated or mutated
in Parkinson’s disease, are CMA substrates (Vogiatzi et al,
2008; Yang et al., 2009; Arias and Cuervo, 2011; Cuervo,
2011; Orenstein et al., 2013; Murphy et al., 2015; Alfaro et al,,
2018; Kaushik and Cuervo, 2018). Alzheimer’s disease is also
associated with CMA since the beta-amyloid peptide (A),
the microtubule-associated protein Tau or the Regulator of
calcineurin 1 (RCANT1) are involved in Alzheimer’s disease and
are dysregulated when CMA is altered (Liu et al., 2009; Wang
et al., 2009, 2010; Park et al., 2016). CMA also plays a role in
Huntington’s disease (Koga et al., 2011; Qi et al,, 2012), and
mutant huntingtin can sequester LAMP2A and HSC70, two
major players of CMA (Alfaro et al., 2018).

In ALS, CMA has been involved in TDP-43 metabolism
(Huang et al, 2014). These data were recently corroborated
by a study of the group of Budini et al, who pointed out
that also TDP-43 can be a CMA substrate (Ormefo et al.,
2020). This study started from the observation that TDP-43
contains a KFERQ-like domain, the consensus sequence that
allows the interaction with HSC70 (Huang et al., 2014); mutation
in this domain blocks the ubiquitin-dependent binding of
TDP-43 with HSC70. Other authors have shown that LAMP2A
downregulation induces the intracellular accumulation of the
ALS-associated TDP-43 fragments of 35 and 25 kDa (Huang
et al., 2014), and TDP-43 can also be forced to be degraded
via CMA (Tamaki et al., 2018). Ormeno et al. (2020) showed
in vitro that a recombinant form of TDP-43 is processed by
isolated rat liver lysosomes, a process that can be reduced by
competition with the GAPDH protein, a typical CMA substrate.
Endogenous TDP-43 accumulates in CMA™" lysosomes of the
brain (Ormeno et al, 2020). By using an artificial TDP-43
aggregate-prone protein, Ormeno et al. (2020) demonstrated
its interaction with HSC70 and LAMP2A, which causes an
upregulation of CMA activity and lysosomal damage. These
data open up the question of how CMA is involved not only
in the few fALS forms associated with mutations of TDP-
43, but also in the vast majority of sALS forms characterized
by an intense mislocalization and accumulation of TDP-43 in
affected neuronal and motor neuronal cells of ALS patients. By
analyzing the two CMA regulators (LAMP2A and HSC70) in
peripheral blood mononuclear cells (PBMCs) of ALS patients,
it was found that the levels of the lysosome receptor LAMP2A
were similar in control and ALS PBMCs, while the expression
of the cytosolic chaperone HSC70 was found reduced, but
the total amount of insoluble TDP-43 protein was found
increased and accompanied by aberrant intracellular localization
(Arosio et al., 2020). In parallel, HSC70 downregulation
in human neuroblastoma cells correlates with the increased
accumulation of the TDP-43 protein (Arosio et al., 2020). These
data are in line with experimental observation showing that
HSC70 is reduced in motor neurons of TDP-43-based ALS
fly models, as well as in iPSCs C9orf72 models differentiated
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to motor neurons (Coyne et al., 2017). In addition to these
observations, in ALS-PBMCs, the ratio of the expression
levels and protein of BAGl and BAG3, which determines
the equilibrium between proteasome and autophagy (including
CASA), was also found altered (Arosio et al., 2020). Thus,
even if CMA is not directly affected in ALS-PBMCs, the
reduction of the CMA regulator HSC70 may be involved in
ALS pathogenesis.

Alteration of UPR-ERAD in SBMA and ALS

As mentioned above, proteasome and autophagy work together
in response to proteotoxic stimuli. Both pathways are also
involved downstream in the UPR occurring in the ER.
The UPR, activated in the ER lumen, generates a transient
translational inhibition along with the induction of chaperones
and the stimulation of the degradative pathways. Misfolding
proteins here are identified by BiP/GRP78 (an HSP70),
which assists the ERAD, also activating PERK and IREL.
The PERK receptor attenuates translation in response to
UPR involving oligomerization and autophosphorylation
of PERK with elF2alpha phosphorylation. In parallel, the
transcription factor XBP1 activated by alternative splicing
induces UPR stress genes, while cleaved activated ATF6 exits
the ER and moves to the nucleus to stimulate other UPR
genes. Collectively, this restores ER activities: in SBMA, an
ARpolyQ N-terminal fragment activates ER stress-inducible
promoter via ATF6, IREl, and PERK. Indeed, ARpolyQ
toxicity is enhanced by ATF6 blockage and reverted by
ATF6 overexpression. Also, stimulation of PERK increases
ARpolyQ toxicity (Thomas et al, 2005). Thus, ARpolyQ
induces UPR, while UPR stimulation is protective in
SBMA (Rusmini et al, 2016). In a SBMA knock-in mouse
model, the downregulation of transcription factor C/EBP
homologous protein (CHOP), involved in UPR-ERAD,
worsened muscle atrophy (Yu et al, 2011). In parallel, in
mouse embryonic stem cells (ESCs), ARpolyQ inclusions
sequester CHIP and BiP/GRP78, inducing ER stress and
apoptosis. UPR was found with the induction of the ER
chaperones BiP/GRP78 and GRP94 and the stress markers
ATF6, phosphorylated PERK, GADD153/CHOP, and spliced
XBP-1. Notably, BiP/GRP78 overexpression reverted this
phenotype, while BiP/GRP78 downregulation had the opposite
effect (Yang et al, 2013). As mentioned above, ER stress and
Ca®* homeostasis are tightly connected. In mouse model of
SBMA (Sopher et al., 2004; Malik et al., 2011; Montague et al,,
2014) alteration of Ca’* homeostasis has been reported in
embryonic motor neurons in response to ER stress causing
ER-stress-induced apoptosis (Montague et al., 2014). ARpolyQ
specifically depleted ER Ca?" levels and the store-operated
Ca?* influx (Hetz and Mollereau, 2014; Tadic et al., 2014),
possibly via the reduction of the sarcoendoplasmic reticulum
Ca%* ATPases (SERCA) 2b pump activity. This pump allows
ER Ca?" re-uptake (Foradori and Handa, 2008), and its
dysregulation activates caspase 12 (Montague et al, 2014).
Thus, ER stress is also involved in SBMA pathogenesis
and may represent an additional therapeutic target for
this disease.

ER morphology alterations occur both in ALS patients and
ALS mouse models (Dal Canto and Gurney, 1995; Dal Canto,
1995; Oyanagi et al., 2008; Lautenschlaeger et al., 2012), possibly
because of protein accumulation in ER causing ER stress (Sasaki,
2010). Also, the Golgi apparatus is affected in ALS (Fujita et al.,
2000; Stieber et al., 2000). Mutant SODI1 inclusions in ER are
positive for BiP/GRP78 and calnexin (Wate et al., 2005; Kikuchi
et al., 2006), while some ER chaperones are upregulated in
ALS patients and mice (Atkin et al., 2006). Notably, mutant
SOD1 specifically binds Derlin-1, which controls the ERAD
machinery, and triggers ER stress-induced apoptosis (Nishitoh
et al., 2008). ER stress in ALS may also result from altered
ER calcium homeostasis (Grosskreutz et al, 2010) or by
ER-mitochondria calcium cycle unbalance (Damiano et al., 2006;
Grosskreutz et al.,, 2010; Jaronen et al., 2014). In addition,
ATF6, phospho-PERK, and phospho-elF2a are elevated in ALS
mice and cell models (Atkin et al., 2006, 2008; Saxena et al.,
2009). In the spinal cord of ALS patients and mice, IRE1 is
increased (Atkin et al., 2006, 2008) and its phosphorylated form
correlated with spliced XBP1 in ALS mice (Kikuchi et al., 2006).
Notably, autophagy is induced in double knockout/transgenic
mice with mutant G86R-SOD1 and XBP1 blockage (Hetz et al,,
2008; Hetz, 2012; Hetz and Mollereau, 2014), suggesting that
autophagy may serve to protect when UPR/ERAD fails. A recent
study performed by the group of de Belleroche suggests that
at least 40 different target genes, associated with ERAD and
regulated by XBP1 or ATF6, are altered in spinal cord specimens
from ALS patients; this is paralleled by severe alterations and
activation of the IREla-XBP1 and ATF6 pathways (Montibeller
and de Belleroche, 2018). Among these genes, co-chaperones of
the DNAJ family (DNAJB9 and DNAJC10) modulating HSPA5
(BiP/Grp78, which is the only HSP70 in the ER; Kampinga and
Bergink, 2016) were increased in this dataset. Both DNAJB9 and
DNAJC10 are involved in ERAD (Behnke et al., 2015) and
may suppress cell death induced by ER stress (Kurisu et al,
2003). As occurs in SBMA, misfolded proteins also impact
ERAD-UPR in ALS, suggesting that similar strategies based on
the reinforcement of this pathway can contribute to restore
protein homeostasis in affected cells.

CONCLUSIONS

In conclusion, data accumulated over the past 30 years have
suggested that specific proteins cause MNDs by triggering
aberrant responses in neurons and other cells involved in this
group of diseases. The alteration of the PQC system is presently
thought to be one of the major factors responsible for both the
onset and progression rate of the disease. PQC systems failure
could be directly associated with a mutant protein involved in
one of the PQC pathways, or indirectly associated with effects
caused by the overproduction of misfolded proteins that saturate
or impair the PQC system activity. This leads to a reduced
PQC potential to maintain the proper cellular homeostasis,
especially during cell stresses. Notably, this system is presently
considered a potential druggable target, since it provides huge
numbers of players with activity that can be pharmacologically
or genetically enhanced or modulated. Indeed, several of the
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cooperative factors playing a role in the PQC system can be
specifically induced or downregulated, allowing the potentiation
of a single arm of this defense mechanism. In many cases, the
restoration of the proper function of one PQC arm has positive
effects on the other arms of the system; they together provide
a redundant mechanism capable of efficiently clearing most
of the aberrant aggregating proteins, thus reducing cell death.
Different approaches aimed to potentiate one or more arms of
the PQC system have already been preclinically tested and are
under investigation in clinical trials. Hopefully, these approaches
will identify new treatments to counteract neurodegeneration
in MNDs.
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Prion diseases are a group of neurodegenerative diseases endemic in humans and
several ruminants caused by the misfolding of native prion protein (PrP) into pathological
conformations. Experimental work and the mad-cow epidemic of the 1980s exposed a
wide spectrum of animal susceptibility to prion diseases, including a few highly resistant
animals: horses, rabbits, pigs, and dogs/canids. The variable susceptibility to disease
offers a unique opportunity to uncover the mechanisms governing PrP misfolding,
neurotoxicity, and transmission. Previous work indicates that PrP-intrinsic differences
(sequence) are the main contributors to disease susceptibility. Several residues have
been cited as critical for encoding PrP conformational stability in prion-resistant animals,
including D/E159 in dog, S167 in horse, and S174 in rabbit and pig PrP (all according
to human numbering). These amino acids alter PrP properties in a variety of assays,
but we still do not clearly understand the structural correlates of PrP toxicity. Additional
insight can be extracted from comparative structural studies, followed by molecular
dynamics simulations of selected mutations, and testing in manipulable animal models.
Our working hypothesis is that protective amino acids generate more compact and
stable structures in a C-terminal subdomain of the PrP globular domain. We will explore
this idea in this review and identify subdomains within the globular domain that may hold
the key to unravel how conformational stability and disease susceptibility are encoded
in PrP.

Keywords: prion disease, prion protein, disease susceptibility, animal models, protein structure, structure-
function, amino acid substitution

INTRODUCTION

The prion protein (PrP) is a 230 amino acid-long secreted glycoprotein anchored to the extracellular
aspect of the membrane by a C-terminal glycosylphosphatidylinositol (GPI) anchor. PrP is highly
expressed in brain neurons, but mice devoid of PrP (Prnp0/0) are viable and only show mild
behavioral perturbations (Bueler et al., 1992; Tobler et al., 1996; Schmitz et al., 2014). PrP plays
a central role in prion diseases in humans, a heterogeneous class of neurodegenerative disorders
with cognitive, movement, or sleep manifestations (Zlotnik and Rennie, 1965; Mathiason, 2017).
Prion diseases or transmissible spongiform encephalopathies (TSE) are fairly unique because they
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can present with sporadic, genetic, and infectious etiologies. The
transmissible agent is proposed to be a proteinaceous molecule
highly resistant to denaturing agents that contains misfolded
conformations of PrP (resistant PrP [PrP™°] or scrapie PrP
[PrP5¢]) and other factors (Prusiner, 1998). Although rare, these
are devastating diseases with an aggressive course of a few months
from clinical manifestation and no effective treatments.

Another unique feature of these disorders is that they
have direct pathological correlates in other animals, but are
limited to some mammals. The common pathological features of
human and animal TSEs are vacuolar (spongiform) degeneration
of the brain and accumulation of misfolded, aggregated PrP
conformations (Colby and Prusiner, 2011; Kraus et al.,, 2013;
Scheckel and Aguzzi, 2018). Other than humans, some ruminants
are the only mammals known to develop endemic prion
diseases: scrapie in sheep and goat, and chronic wasting
disease (CWD) in deer and moose (Mathiason, 2017). Several
mammals proved susceptible to TSE in the laboratory in early
transmission experiments following the discovery of kuru in
the 1950s: chimpanzee, mouse, hamsters, bank vole (Chandler
and Fisher, 1963; Zlotnik and Rennie, 1963, 1965; Chandler,
1971). Interestingly, one lab animal proved resistant to prions:
the rabbit (Gibbs and Gajdusek, 1973; Barlow and Rennie, 1976).
Decades later, a large-scale unintended experiment resulted in
the zoonotic transmission of prions to cattle, which developed
a new disease, bovine spongiform encephalopathy (BSE), or
mad-cow disease, that was traced back to the consumption of
scrapie-contaminated bone meal (Wells et al., 1987; Wilesmith,
1988; Winter et al., 1989). Shortly thereafter many domestic
and zoo animals exposed to BSE-contaminated prions - felines,
mustelids, and others — developed new prion diseases, expanding
the TSE universe (Kirkwood and Cunningham, 1994; Sigurdson
and Miller, 2003). Remarkably, a few animals exposed to the
same contaminated feed seemed to be resistant to prion diseases:
horse, domestic dog and other canids (wolf, coyote), and pigs
(Kirkwood and Cunningham, 1994). The unfortunate spread
of TSEs revealed a heterogeneous landscape of susceptibility to
prion diseases, with some animals suffering endemic disease,
others easily infected in the lab, and others showing a relatively
high or complete resistance to infection. This scenario presents
a unique opportunity to uncover the molecular mechanisms
mediating disease transmission and neurodegeneration.

ANIMALS RESISTANT TO PRION
DISEASE: INTRINSIC vs. EXTRINSIC
FACTORS

Prion diseases affect humans and other mammals, but not birds
or other vertebrates. The fact that distant mammals like humans
and ungulates develop sporadic and infectious forms of TSEs may
erroneously suggest that all mammals are equally susceptible to
TSEs. Early studies on TSEs assumed that these conditions were
caused by some type of small virus. The susceptibility to these new
infectious agents was tested by inoculating brain homogenates
from affected humans and sheep into several animals, including
apes, New- and Old-World monkeys, rats, guinea pigs, cats, and

rabbits (Gibbs and Gajdusek, 1973; Barlow and Rennie, 1976).
These animals received intracerebral injections from kuru or
Creutzfeldt-Jacob disease (CJD) human extracts or with ME7
scrapie from sheep. This intracerebral route accelerated the
disease course and shortened the incubation time, maximizing
the possibility of identifying positives by clinical or pathological
analysis. The first set of experiments showed that human
prions can be transmitted to apes, monkeys, and cats, but were
unsuccessful in rabbits (Gibbs and Gajdusek, 1973). A few years
later, ME7 scrapie was inoculated into the brains of rats, guinea
pigs, and rabbits. Whereas rats demonstrated a pattern of disease
progression similar to that seen in mice, guinea pigs and rabbits
showed no disease, although guinea pigs showed low level prion
replication (Barlow and Rennie, 1976). These two studies showed
that prions did not replicate in rabbits and the infectious agent
was quickly disposed of in rabbits.

Now that TSEs are well-characterized pathologically and
molecularly, including the key role of PrP as the disease-causing
agent, it is clear that few mammals suffer prion diseases under
natural conditions, suggesting underlying differences in their
susceptibility to TSE. The most significant animals lacking TSE
are rabbits, horses, dogs, and pigs. Of these four, only one is a
laboratory animal, the rabbit, and the rest are large and have
long lifespans, making them unsuitable for experimental work. At
this time, we only have positive or negative evidence for animals
directly exposed to BSE during the mad-cow epidemics in the
United Kingdom. Thus, animals not present in zoos nor fed the
same contaminated bone meal could theoretically be susceptible
or resistant within the known spectrum. Why is it important
to understand the risk of TSE transmission for other animals?
Because many domestic and wild animals are part of the human
food chain and even those not eaten by humans may shed prions
in the environment that could be transmitted to other animals.
Additionally, studying animals naturally susceptible or resistant
to TSE can contribute to decipher the molecular mechanisms
governing the pathogenesis of TSEs. Despite the clear challenges
of studying non-model animals, modern technologies provide
the ability to study the structure and biological properties of
PrP from many animals. These experiments can help better
understand the mechanisms responsible for the spectrum of TSE
susceptibility among mammals. Lastly, studying variations in a
protein for many animals allows us to infer the evolutionary
processes shaping PrP: natural selection or neutral genetic drift
with unintended consequences in post-reproductive age.

The different animal susceptibility to TSEs led to two
hypotheses to explain its underlying mechanisms: intrinsic
factors (sequence-structure) vs. extrinsic factors (cellular milieu,
cofactors) regulate TSE susceptibility. These two mechanisms
cannot be separated when highly resistant animals (rabbits)
are infected with prions. But PrP from these animals can
be studied in vitro, ex vivo, and in vivo in the cellular
context of susceptible animals and, vice versa, susceptible
PrP can be studied in the cell context of resistant animals.
Rabbit epithelial RK13 cells with low or undetectable levels
of endogenous PrP transfected with ovine PrP (Rov9) result
in high susceptibility to infection by sheep prions (Vilette
et al, 2001). Moreover, transgenic rabbit expressing ovine
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PrP are susceptible to disease (Sarradin et al., 2015). This is
evidence, along with other persuasive experiments, that rabbit
cells do not express co-factors that inhibit prion replication,
further supporting the idea that PrP conversion is mainly
encoded by intrinsic factors. Thus, natural variations in the
PrP sequence affecting its conformational dynamics is the likely
mechanism underlying disease susceptibility. Hence, identifying
the key residues conferring conformational stability/instability
to the globular domain of PrP will contribute to uncover the
molecular mechanisms mediating PrP neurotoxicity and disease
susceptibility. However important, sequence is not the only
intrinsic determinant of PrP aggregation dynamics and toxicity.
Recent studies reveal a key contribution of post-translational
modifications, particularly glycosylation, on the efficiency of
PrP aggregation, fidelity of strain replication, neurotropism,
and toxicity (reviewed in Baskakov et al., 2018). PrP contains
two facultative N-glycosylation sites leading to three co-existing
isoforms. Changes in PrP sequence can modulate the accessibility
to the glycosylation sites whereas the ratio of the three resulting
isoforms can restrict their possible quaternary assemblies due
to the steric limitations imposed by the large glycans. Although
glycosylation is a critical determinant of several properties of
prions, we will focus this review on the impact of sequence
variations in PrP conformational dynamics and toxicity.

PrP 3D STRUCTURE: NMR AND X-RAY
CRYSTALLOGRAPHY

The interest on PrP as an infectious agent responsible for
incurable neurodegenerative disorders led to significant work to
uncover its structure. The classic method for resolving the 3D
structure of biomolecules is X-ray crystallography due to its high
spatial resolution, but the limiting step is the crystallization of the
purified molecule. The first resolution of the PrP structure was
obtained by NMR (nuclear magnetic resonance) using solution
full-length and C-terminal domain from both mouse and Syrian
hamster PrP (Riek et al., 1996, 1997; James et al., 1997; Liu
et al., 1999). These studies revealed an unstructured N-terminal
fragment (23-124) and a C-terminal globular domain (125-
228) containing three a-helices and a short antiparallel B-sheet
between helices 1 and 2. Throughout the paper we identify amino
acids based on the human PrP sequence to avoid confusion
(Figure 1A). The structure of the globular domain is highly
conserved between mice and hamsters, and later structures for
human, sheep, bovine PrP and others showed that this basic
organization is highly conserved (Figure 1B) (Zahn et al., 2000;
Knaus et al., 2001). Contemporaneous studies established that
disease transmission and neurodegeneration were associated with
a loss of helical content and an increase of B-sheet content (f3-
state) (Telling et al.,, 1995). These studies assigned a key role
to a 3D domain in the C-terminal region consisting of the B2-
a2 loop and distal helix 3, the C-terminal 3D (CT3D) domain
(Figure 1B). Remarkably, this is a region of high sequence
variability (Figure 1A) and the proposed binding site of a
hypothetical protein (Protein-X) necessary for PrP conversion
(Telling et al., 1995; Kaneko et al., 1997).

The structure of PrP from several resistant animals (dog,
horse, rabbit, pig) were resolved during the 2010s to uncover
how PrP toxicity and replication ability are encoded (Lysek et al.,
2005; Khan et al., 2010; Perez et al.,, 2010; Wen et al., 2010).
Essentially, these studies showed that the basic structure of PrP
from these animals is very similar to that of animals susceptible
to TSEs (Figure 1C). The globular domains contain three helices,
but the B-sheet seems shorter in dog, horse, and rabbit PrP
(Figure 1D). Detailed analysis of these structures identified a
significant surface charge change in dog PrP due to the presence
of D159 instead of the common N159 (Lysek et al., 2005) and
increased organization of the 2-a2 loop in both horse and rabbit
PrP (Figure 1E) (Khan et al, 2010; Perez et al., 2010; Wen
et al., 2010). The stability of the B2-a2 loop is accompanied by
increased contacts with the distal portion of helix 3 in horse and
rabbit PrP, resulting in more stabilizing interactions within the
CT3D domain (Khan et al., 2010; Perez et al., 2010; Wen et al.,
2010). The X-ray crystal of rabbit PrP revealed a new feature
not observed by NMR: a helix-capping domain at the start of
helix 2 created by a double hydrogen bond (H-bond) between
N171 and S174 (Khan et al., 2010). This structure is not observed
in rabbit PrP-S174N, supporting the relevance of this finding.
Interestingly, pig PrP carries the same S174 residue, whereas most
mammals carry N174, suggesting a shared stabilizing domain
with rabbit PrP. However, the NMR structure for pig PrP does
not show the helix-capping domain (Lysek et al., 2005), making
this domain uncertain. The new structural features in rabbit PrP
offer a unique opportunity to examine genotype — morphotype -
phenotype correlations, but the structural and phenotypic impact
of other rabbit-specific substitutions needs to be considered as
well. Intriguingly, compared to rabbit PrP, the reported structural
changes in dog and horse PrP are subtle, suggesting that either
small changes are sufficient or several subtle changes cooperate
to stabilize PrP* and delay or prevent disease.

CONFORMATIONAL DYNAMICS OF PrP
PROBED BY MOLECULAR MODELING

Thanks to its relatively small size and to the abundance of
experimental structures, the globular domain of PrP has been
the subject of profuse computational studies. The Daggett
group showed that at low pH, the B-strand structures extend
beyond the short domain to include the N-terminus and almost
the entire p2-a2 loop (Alonso et al, 2001). Later, the same
group (DeMarco and Daggett, 2004) built a protofibril model
consistent with experimental data in which the extended f-
sheet formed the interface between PrP monomers. Simulations
performed by the Thirumalai group (Dima and Thirumalai,
2004) identified two main regions of instability in the protein:
the second half of helix 2 and the C-terminus of helix 3
(residues 213-223). Other works focused instead on the fibril-
forming capabilities of shorter peptide sequences of PrP (Kuwata
et al, 2003; Collu et al, 2018; Zheng et al., 2018b) and
on the stability of individual secondary structure domains
(Camilloni et al., 2012). Simulations of the mouse PrP showed
that the pathogenic mutation D178N associated with inherited
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FIGURE 1 | Sequence and structural alignments for the globular domains of mammalian PrP. (A) Sequence alignment for the structured domain of human, bovine,
deer, sheep, Syrian hamster, mouse, rabbit, horse, dog, and pig PrP. Amino acid numbering refers to human PrP. The secondary structure is overlaid on top. The
three key residues considered to be protective are circled. On the left, two inverse gradients indicate disease susceptibility and resistance. (B) Structure of the
globular domain of human PrP (1gm2). Three amino acids are highlighted: D167, N174, and Y225. (C-E) Alignment of the globular domain of human (cyan), rabbit
(salmon, 2fj3), horse (pink, 2ku4), and dog (purple, 1xyk) PrP. (C) Notice the overall similarity and the small differences around the CT3D domain. (D) The B-sheet
content is smaller in rabbit and horse PrP and it disappears in dog PrP. (E) Detail of the CT3D domain showing the position of D167 in horse PrP and S174 in rabbit
PrP. This figure contains published materials collated for illustrative purposes.
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CJD or fatal familial insomnia lowered the stability of the
B-sheet (Barducci et al., 2005) and another group attempted
to map the unfolding of the entire structured domain of
PrP (Chamachi and Chakrabarty, 2017; Singh et al., 2017).
Collectively, these contributions indicate that the PrP domain
encompassing the N-terminus, the f-sheet, the B2-a2 loop,
and the a-helix 3 C-terminus are regions of instability that
may be prone to unfolding and to protein aggregation. The
Caflisch group (Huang and Caflisch, 2015a,b) underlined the
critical role of Y169, a highly conserved residue in mammalian
PrP, in stabilizing the 3¢ helical turn involving residues 165-
168 within the P2-a2 loop. These findings were confirmed
by Parrinello (Caldarulo et al, 2017) employing advanced
sampling techniques.

Although most works focused on the protein, others pointed
out the relevance of the water structure and dynamics in the
stability of PrP (De Simone et al., 2005) and in the formation
of oligomers (Thirumalai et al., 2012). Other research has shown
that the correct modeling of electrostatic interactions (Zuegg and
Gready, 1999) is important to correctly describe the protein’s
stability, which is also affected by histidine protonation states
(Langella et al., 2004) and by pH (Campos et al., 2010). An
endeavor to systematically characterize the differences in the
secondary structure and in the flexibility of the protein for a large
number of PrP species through molecular dynamics simulations
was attempted by Zhang (2018). These studies identified a salt
bridge between R164 and D178 (Zhang and Wang, 2016) as
important for the f2-a2 loop stability.

PURIFIED AND IN VITRO MODELS OF
RESISTANT PRP MISFOLDING

Until the early 2000s, the evidence accumulated from highly
resistant animals consisted of laboratory experiments with rabbits
and negative epidemiological data for non-model animals:
horses, dogs and other canids, and pigs. Modern biological
and biochemical techniques enable the study of the intrinsic
properties of PrP from these animals: in vitro, ex vivo, and
transgenic animals. At the most basic level (sequence), the
key question is determining which amino acid changes are
responsible for altering PrP biological properties. At a deeper
level, the idea is to understand how specific amino acid changes
impact PrP conformation and dynamics by either enhancing or
suppressing PrP misfolding, propagation, and toxicity. This key
insight will shed light on the elusive genotype - morphotype -
phenotype correlation.

The focus on rabbit PrP brought forth a number of studies
to uncover the mechanisms mediating resistance to TSE.
Though over a decade apart, two studies emerged as highly
similar in goals (Vorberg et al, 2003; Erafa et al, 2017).
These studies identified 22 amino acid differences between
full-length rabbit and mouse PrP, and set out to determine
which residues impact prion transmissibility by complementary
approaches. These studies offer a unique opportunity to
analyze the impact of complementary amino acid substitutions
in either the mouse or rabbit PrP backbones. First, the

Priola group used a scrapie-infected mouse neuroblastoma
(Sc™-MNB) cell model persistently infected with a mouse-
adapted scrapie prion (RML) (Vorberg et al., 2003). The Sc*-
MNB cells express WT and recombinant mouse PrP (recPrP)
carrying rabbit PrP-specific amino acid changes. The assay
consisted on determining which substitutions inhibited the
ability of recPrP from replicating prions. More recently, the
Castilla group used recombinant rabbit PrP carrying mouse-
specific changes (Erana et al., 2017). Their approach was to
use the powerful cell-free PMCA (protein misfolding cyclic
amplification) technique (Saborio et al., 2001) to determine which
mouse-specific substitutions enabled conversion of the naturally
resistant rabbit PrP.

Of the 22 differences between mouse and rabbit PrP
(Figure 2), six reside in the unstructured N-terminal domain.
Previous studies have shown that residues 1-94 do not play any
significant roles in TSE resistance (Rogers et al., 1993; Fischer
et al., 1996; Lawson et al., 2001). Of the 16 remaining, Priola
introduced seven substitutions into mouse PrP, whereas Castilla
introduced the same seven plus an additional four located in
the C-terminal region into rabbit PrP (Figure 2) (Vorberg et al.,
2003; Erana et al., 2017). Of notice, both studies skipped the five
amino acid differences at the end of the C-terminal (Figure 2)
in part because their proximity to the GPI anchor makes them
less likely to contribute to the mechanism of misfolding. For
Priola, four of the seven residue replacements inhibited mouse
PrP™®. For Castilla, 8 of the 11 replacements enabled conversion
of rabbit PrP. These complementary studies agreed on two
effective replacements: N/G100 and L/M109. The studies describe
conflicting results for five residues, where the changes affected
one assay but not the other: N/S108, M/L138, Y/W145, N/S174
and I/V215 (Vorberg et al, 2003; Erana et al, 2017). The
Castilla group further tested the eight protective residues in
rabbit PrP with a new prion strain, but only three permitted
conversion this time: N/S108, M/L109, and V/1203. Moreover,
this group validated their observations by introducing 11 amino
acid replacements from rabbit on mouse PrP. Unexpectedly, all
11 changes decreased the propagation activity below WT, with
N100G completely inhibiting propagation (Erana et al., 2017).
Interestingly, both groups created the corresponding double
mutants N/S108 and M/L109 in the mouse and rabbit backbones.
Both experiments were negative, reversing the positive effect
of the single mutants. These studies highlight the asymmetric
impact of the reverse amino acid substitutions on rabbit and
mouse PrP, and lack of cooperativity of effective substitutions,
underscoring our limited understanding of the rules governing
PrP conformational dynamics.

Since the discovery that TSEs are caused by the conversion of
endogenous PrP from a primarily a-helical state into a mostly
B-sheet state (B-state) (Swietnicki et al., 1997; Baskakov et al,,
2001), extensive work has been invested to study the misfolding
propensity of PrP from different animals. Chakrabartty’s group
developed a method to test the structural state of recombinant
PrP using circular dichroism to measure the propensity of PrP
from various organisms to populate the B-state under favorable
conditions for PrP misfolding like low pH (Khan et al., 2010).
This group found that rabbit PrP had a much lower tendency to

Frontiers in Cellular Neuroscience | www.frontiersin.org

August 2020 | Volume 14 | Article 254


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Myers et al. Structural Determinants of PrP Toxicity

Hu PrP CKKRPKPG*GWNTGGSRYPGOGSPGGNRYPPOGGGGWGOPHGGGWGOPHGGGWG

Mo PrP  ———————- S Gmmmm e L J Ry S--

Ra PrP  ———————- Gmmmmmm e Semmm——————— L J SRR R SR G--

22 30 40 50 60 70

Hu PrP OPHGGGWGOPHGGGWGOGGGTHSOWNKPSKPKTNMKHMAGAAAAGAVVGGLGGY

Mo PrP ————- S G-—-N-J-}————- Ve

Ra PrP ————- G ®———N-J6-——-—— ¢ S —

80 920 100 110 120

Hu PrP MLGSAMSRPIIHFGSDYEDRYYRENMHRYPNOQVYYRPMDEY SNONNFVHDCVNI

Mo PrP ————- v-—ﬁ--—nﬁ -------- , — V—Q_"_:EI: -------

Ra PrP  ———————- ——-N-f} === Y- V-Q-———{8F ==

130 140 150 160 170 180

Hu PrP TIKOQHTVTTTTKGENFTETDVKMMERVVEQMCITOYERESQAYYQ® *RG

Mo PrP A-f-—mm e EIE ------- -—OR}————- DGR-S

Ra PrP |7/ NS 1 I ———— — ———A--ee-A

190 200 210 220 230
‘ By Priola and Castilla \ 4 By Castilla only |:| +Priola, +Castilla
H + Priola, -Castilla I:l -Priola, +Castilla D -Castilla I:I +Castilla

FIGURE 2 | Functional consequences of complementary amino substitutions in mouse and rabbit PrP. Sequence alignment of human, mouse, and rabbit PrP
highlighting the amino acids that were mutated in mouse PrP (arrows) (Vorberg et al., 2003) and those introduced in rabbit (arrows and arrowheads) (Erana et al.,
2017). The bracket indicates differences in the C-terminal that were not modified in these studies. Orange boxes: amino acid changes that worked in both assays.
Blue boxes: amino acid changes that worked in mouse but not in rabbit. Green boxes: amino acid changes that worked in rabbit but not in mouse. Gray boxes:
amino acid changes that worked in rabbit. Blank box: amino acid change that did not work in rabbit. This figure contains published materials collated for illustrative
purposes.

occupy the f-state than did hamster and mice PrP. Horse and
dog PrP were even less likely to occupy the B-state than rabbit
PrP, with dog PrP being the most resistant (Khan et al., 2010).
This resistance changed for rabbit PrP-S174N, which correlates
with the structural studies pointing to the key role of S174 in
the formation of the helix-capping domain. These results add
evidence to the stability of PrP from these animals and their
resistance to misfolding critical for prion diseases.

HIGHLY-RESISTANT TO PRION DISEASE,
NOT IMPERVIOUS

With the use of PMCA, researchers have explored the limits of
the resistance of rabbit, horse, and dog PrP. Recent experiments

showed that rabbit PrP can replicate in vitro and that rabbits
are susceptible to TSEs under highly favorable conditions. Using
PMCA with various prion strains as seeds, they showed that
rabbit PrP can be converted into PrP'® (Chianini et al., 2012).
Even unseeded rabbit PrPC was able to generate PK-resistant
PrP through several rounds of PMCA, indicative of spontaneous
conversion. It took at least three rounds of seeded PMCA to
accomplish conversion of rabbit PrP; in the case of unseeded
PrP, it took 13 rounds. When the novel rabbit PrP™ was
inoculated into three rabbits expressing WT PrP, one of the
rabbits developed prion disease. Upon second passage from this
positive animal, two out of 10 rabbits developed disease and
accumulated PrP™* (Chianini et al., 2012). These experiments
demonstrate that rabbits are not absolutely resistant to prions,
but they also underscore the difficulty of transmitting prions
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under highly favorable experimental conditions that are unlikely
to be found in nature. Overall, compared to other animals, rabbits
demonstrate a high degree of resistance to prion disease, a quality
that is mainly encoded in its unique sequence and structure.

Pigs have received less attention than other resistant animals
for two main reasons: they are large animals and no unique
structural features were identified in PrP by NMR despite sharing
the S174 substitution with rabbit PrP. Prior to the spread of
the mad cow epidemic to other animals, experimental study
of pigs was of little concern. Still, when they were challenged
with a strain of Kuru, they remained resistant (Dawson et al.,
1994; Jahns et al., 2006). When BSE came onto the scene, the
concerns for transmission grew because pigs are not only a
human food source but are also routinely fed scraps, including
scrapie-infected scraps at that time. Parenteral inoculations of
pigs with BSE successfully infected pigs, though they remained
resistant to the oral route of infection (Dawson et al., 1990;
Ryder et al., 2000; Wells et al., 2003; Konold et al., 2009). Despite
confirmed experimental transmission of TSE, there remains no
documented natural cases. Yet, because pigs for consumption are
typically slaughtered at around 6 months of age, development of
clinical TSE in pigs is unlikely because of the long-incubation
times. However, some pigs are aged and used for breeding and
still there are no observations of natural occurrence in that
population, supporting a natural resistance to prions.

TRANSGENIC ANIMALS EXPRESSING
HIGHLY-RESISTANT PrP

The in vitro and in vivo studies reviewed above support the
hypothesis that PrP conversion and TSE susceptibility are
primarily or solely dependent on intrinsic factors encoding the
conformational stability of PrP. However informative, in vitro
studies indirectly infer the pathological consequences of the
substitutions introduced on PrP. The next level is to study
PrP from TSE-resistant animals and their protective residues in
flexible animal models. The two genetic models used in the study
of PrP are fruit flies (Drosophila melanogaster) and mice. Fruit
flies are a powerful research tool that lacks endogenous PrP, which
is not conserved in invertebrates, providing an ideal environment
to study PrP behavior in a naive system. Moreover, generating
transgenic flies is economic and fast, enabling the generation
of multiple transgenes (Pfeiffer et al., 2010; Mohr et al., 2014).
Flies have a small but complex tripartite brain homologous to
the mammalian brain (Reichert, 2005) that contains 10° neurons,
an estimated 10° synapses, and well characterized centers that
control sophisticated behaviors, providing a robust system for
studying neurodegenerative diseases (Simpson, 2009; Bellen et al.,
2010; Zheng et al., 2018a). Mice are more time-consuming and
expensive but offer the best context for observing the disease
process in a mammal. Additionally, mice lacking PrP (Prnp0/0)
provide an empty genetic background to express heterologous
PrP from other animals (Bueler et al., 1992).

Transgenic flies expressing PrP from Syrian hamster,
mouse, or sheep show progressive neurodegenerative
changes accompanied by PrP misfolding into relevant toxic

conformations (Gavin et al., 2006; Fernandez-Funez et al., 2009;
Thackray et al, 2012). Additionally, flies demonstrate high
sensitivity to natural PrP sequence, resulting in a gradient of
toxicity: hamster > mouse > rabbit (Fernandez-Funez et al,
2010). In support of this observation, we described a similar
gradient in PrP misfolding and aggregation as demonstrated by
sucrose gradient. In a follow-up study, we generated transgenic
flies expressing WT rabbit, dog, and horse PrP. Neither
PrP caused neurodegeneration confirming the hypothesized
conformational stability of these disease-resistant PrPs (Sanchez-
Garcia and Fernandez-Funez, 2018). On the other extreme of
this continuum of PrP toxicity, expression of human PrP in flies
leads to extremely high toxicity, including a new eye phenotype
(Fernandez-Funez et al., 2017). Overall, these experiments
support that the spectrum of PrP toxicity is due to changes
in PrP sequence.

The Castilla group first used PMCA to produce PrP™ from
rabbit and dog PrP with BSE as seed, resulting in “adapted”
prion strains after several rounds: BSE-rabbit PrP™* and BSE-
dog PrP"®. These strains were then inoculated into bovine-PrP
mice. First passage showed similar incubation time as cattle
BSE-inoculated mice. Upon second passage, BSE-dog PrP™ and
BSE-rabbit PrP™* had significantly reduced incubation times. In
a different test against mice expressing human PrP, only BSE-
rabbit established infection upon first passage (Vidal et al., 2013a).
Often when a prion infects a new species, the incubation period
is long and infectivity is low (Vidal et al., 2013b). However,
once adapted to the new host, the incubation period is reduced
and infectivity increases. This concern was addressed above by
incorporating a second passage. The Castilla group further tested
the susceptibility of rabbit PrP in transgenic mice. Intracerebral
inoculation of transgenic mice overexpressing rabbit PrP with
misfolded PrP seeds achieved 100% transmission (Vidal et al.,
2015), a more efficient result than in wild type rabbits likely due
to the overexpression of rabbit PrP. In an in vitro assay against
several prion strains to demonstrate strain-specific susceptibility,
rabbit PrP converted to PrPS¢ in all cases (Vidal et al., 2015). The
story was different, though, in an in vivo test of those same strains
against rabbit PrP in transgenic mice. Some of the strains induced
infection to varying degrees, but others did not, including CWD
and SSBP/1 (Vidal et al., 2015).

Another group generated transgenic mice expressing WT
horse PrP (tgEq) at twice the levels that it is expressed
in the horse brain (Bian et al, 2017). These mice were
intracerebrally inoculated with various prion strains and
observed for development of prion disease. Out of ten different
strains, only strain SSBP/1 caused disease in tgEq PrP mice,
albeit in only two of the six mice. Interestingly, upon second
passage with brain homogenates from the infected mice into
tgEq PrP mice, there was neither disease nor accumulation of
PrP5¢ (Bian et al., 2017). However, transgenic mice expressing
ovine PrP did develop symptoms when inoculated with the
same homogenate from SSBP/1-tgEq PrP mice. In another part
of this study, PMCA was used to convert horse PrPC into
PrP5¢, but when it was inoculated into tgEq PrP mice, the mice
did not develop pathology. This report strongly supports the
stability of horse PrP and high resistance to misfolding and
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TSE infection, although a small number of cases were positive.
Considering that these tgEq PrP are inoculated by a non-
natural route (intracerebral) that directly exposes PrP€ to the
inoculum, horse PrP demonstrates high resistance to conversion
described in in vitro (Khan et al., 2010) and Drosophila models
(Sanchez-Garcia and Fernandez-Funez, 2018).

As with horse and rabbit PrP, researchers forced dog PrP®
to convert to PrPS¢, To test the stability of dog PrP, they once
again utilized the powerful PMCA to induce the misfolding of
dog PrP in a cell-free system (Fernandez-Borges et al., 2017). Dog
PrP proved to be incredibly resistant, but after several rounds of
PMCA, they were able to generate PrPS¢ only with two of the six
prion strains used as seeds: classical BSE and sheep BSE.

Pigs are critical in the human food chain and understanding
the risk of contracting prion diseases from other animals is a key
economic issue. Generation of transgenic mice expressing pig PrP
allowed for quicker experimental studies of pig PrP outside of its
normal host. The Torres group introduced pig PrP into Prnp0/0
mice (poTg001) in which pig PrP was expressed fourfold in the
mouse brain than in the pig brain (Castilla et al., 2004). The
poTg001 model was used in successive studies challenging the pig
PrP with an array of prion strains (Castilla et al., 2004; Espinosa
etal,, 2009, 2020). Only classic BSE and some BSE-derived strains
successfully infected the mice, but with a low attack rate. The
studies report conflicting results on the infectivity of one scrapie
strain: in one study it caused conversion - at a low attack rate —
while in a later study it did not cause PrP conversion. Similar
results were observed in in vivo experiments using PMCA with
the panel of prion strains (Espinosa et al., 2020).

PROTECTIVE ACTIVITY OF UNIQUE
RESIDUES FROM RESISTANT ANIMALS

After reviewing the evidence supporting the different
susceptibility of animals to TSEs, the main hypothesis is
that amino acid changes on PrP encode its conformational
dynamics and propensity to cause disease. The next step is to
determine how specific amino acids induce conformational
changes that result in high vs. low toxicity in animal models.
Fortunately, many PrP sequences and structures are available,
providing unparalleled resources for addressing this critical
question. The most N-terminal domain (residues 1-94) does
not appear to drive PrP conversion (Rogers et al., 1993; Fischer
et al., 1996; Lawson et al., 2001). Therefore, we will focus mainly
on the globular domain. Although the overall PrP sequence and
structure are highly conserved in mammals, several changes
are evident (Figures 1A,C). Sequence alignments identify
10-15 amino acid changes between human and other animals
only in the globular domain. Of these, many are conservative
changes not expected to largely impact the 3D conformation.
The alignment shows relatively high variation in the f2-a2 loop
(residues 166-170) and in the C-terminus of helix 3 (residues
219-229). Interestingly, these two regions are spatially close and
several contacts are confirmed by structural studies, indicating
that the B2-a2 loop and the C-terminus of helix 3 form a 3D
domain. The variability in the distal helix 3 has been traditionally

assumed to have less impact on the globular domain because
of its proximity to the GPI anchor, which may underestimate
the role of these variants. Combining sequence and structural
data revealed three prominent amino acid changes likely to
encode PrP conformational stability: D159 in dog, S167 in
horse, and S174 in rabbit and pig. Next, we will review the work
done in transgenic animals to examine the consequences of
altering these residues.

DOG PrP - D159

Most animals, including humans, have an asparagine (N) at
position 159, but dogs and other members of the Canidae family
(wolf, fox, coyote) have either an aspartic acid (D) or a glutamic
acid (E) at this position. Two mustelids, the wolverine and the
marten, also share this acidic residue at 159 (Stewart et al.,
2012; Fernandez-Borges et al., 2017). The NMR structure of dog
PrP shows a conserved globular domain with subtle changes.
The short B-sheet seems to be gone by NMR and the surface
charge is more negative around D159 due to its negative charge
and the increased solvent exposure (Lysek et al., 2005). This
change in the surface charge may affect the interactions with
other proteins like chaperones. Utilizing the versatile fruit fly, we
generated transgenic flies expressing mouse PrP with the N159D
substitution (Sanchez-Garcia et al., 2016). Expression of mouse
PrP-N159D showed improved locomotor performance compared
to flies expressing mouse PrP-WT, a change that correlated with
lower levels of pathogenic conformations of PrP (Sanchez-Garcia
et al., 2016). We recently conducted the reverse experiment by
introducing the D159N substitution in dog PrP in flies. Flies
expressing dog PrP-WT show no toxicity in behavioral and
anatomical assays. However, flies expressing dog PrP-D159N
exhibit progressive locomotor disfunction and degeneration of
brain neurons (Sanchez-Garcia and Fernandez-Funez, 2018). The
consistent results in the reverse substitutions in mouse and
dog PrP strongly support the critical role of D159 in encoding
higher PrP stability.

In continuation of their in vitro studies, the Castilla group
generated transgenic mice expressing mouse PrP carrying the
N159D substitution (Fernandez-Borges et al., 2017). When these
mice were inoculated with prions, they showed no clinical
signs nor accumulated PrP%¢. In a follow-up study, they found
that co-expression of mouse PrP-N159D with mouse PrP-WT
significantly increased survival, indicating that N159D has a
dominant-negative effect on the ability of PrP-WT to misfold
and induce disease (Otero et al., 2018). They next generated mice
expressing bank vole PrP carrying the same N159D substitution
with a polymorphism at residue 109 (1109) that further increases
the propensity of bank vole PrP to spontaneously misfold (Otero
et al,, 2019). Challenging the mice expressing bank vole PrP-
N159D with two prion strains resulted in a 100% attack rate,
but the disease onset was significantly delayed compared to mice
expressing a control bank vole PrP construct. A more recent
study compared transgenic mice expressing dog PrP-WT and -
D159N (Vidal et al., 2020). Of note, dog PrP-WT carried the E159
polymorphism instead of the typical D159. Mice expressing dog

Frontiers in Cellular Neuroscience | www.frontiersin.org

August 2020 | Volume 14 | Article 254


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Myers et al.

Structural Determinants of PrP Toxicity

PrP-WT[E159] and -D159N were challenged with various prion
strains: no prion strain propagated in dog PrP-WT[E159], but
did so in the D159N model. Overall, experiments conducted in
transgenic animals confirmed the protective activity of D/E159 in
the context of dog, mouse, or bank vole PrP.

HORSE PrP - S167

The NMR structure of horse PrP revealed increased structural
definition of the B2-a2 loop compared to mouse PrP (Perez
et al, 2010). The NMR structure of mouse PrP carrying
the horse substitutions D167S, QI168E, and N173K, along
with double mutants, showed that D167S conferred the $2-
a2 loop a well-defined structure and increased the long-
distance interactions between the loop and helix 3, similar to
those observed in horse PrP (Perez et al., 2010). Transgenic
mice expressing high levels of mouse PrP-D167S developed
spontaneous spongiform pathology, neurologic disease, and
PrP5¢ deposits, whereas a control line overexpressing mouse
PrP-WT (tga20) did not (Sigurdson et al, 2011). In contrast,
mice expressing moderate levels of mouse PrP-D167S were
similar to control mice, except for a lower fraction of insoluble
PrP. The reverse experiment was conducted in transgenic flies
expressing horse PrP-S167D. In contrast to flies expressing
horse PrP-WT, expression of horse PrP-S167D showed aggressive
locomotor dysfunction and degeneration of brain neurons
(Sanchez-Garcia and Fernandez-Funez, 2018). Remarkably,
horse PrP-S167D induced a form of neurodegeneration not
seen before with other PrP in which the cell bodies swelled
up causing a significant enlargement of the neuronal clusters
(Sanchez-Garcia and Fernandez-Funez, 2018). The same cellular
phenotype was described in flies expressing AB42 and linked
to aberrant autophagy (Ling et al, 2009). So far, these
limited studies show conflicting results regarding the protective
activity of S167.

RABBIT PrP - S174

S174 has been proposed as a key residue mediating the stability of
rabbit PrP based on structural, biochemical, cell culture, and cell-
free evidence (Vorberg et al., 2003; Khan et al., 2010; Wen et al.,
2010). The S174N substitution in rabbit PrP disrupted stability,
changed overall surface charge, and made the B2-a2 loop less
rigid and more flexible. Following on these studies, we generated
transgenic flies expressing rabbit PrP-S174N expecting to find an
increase in toxicity. However, flies expressing rabbit PrP-S174N
in brain neurons exhibited no changes in locomotion nor in brain
architecture (Sanchez-Garcia and Fernandez-Funez, 2018). These
experiments were conducted in parallel with the DI59N and
$167D mutants in dog and horse PrP, respectively, that increased
PrP toxicity. This puzzling result suggests that this single amino
acid change has a limited impact on PrP structural dynamics
in vivo inconsistent impact of S/N174 on in vitro PrP replication
were reviewed above (Figure 2) (Vorberg et al., 2003; Erana et al.,
2017). Taken together, these results suggest that multiple amino

acids contribute to the high stability of rabbit PrP and that no
single amino acid is sufficient to induce dramatic changes on PrP.
These observations still leave open the question about how is the
conformational stability of rabbit PrP encoded in its sequence
and structure. It is likely that multiple amino acids in the f2-a2
loop and helix 3 cooperate to increase the stability of the CT3D
domain, complicating the experimental demonstration.

LESSONS LEARNED: HOW IS DISEASE
SUSCEPTIBILITY ENCODED IN PrP
STRUCTURE?

The evidence discussed so far agrees that rabbit, horse, dog,
and pig PrP are comparatively more resistant to conversion and
less toxic than PrP from naturally susceptible animals. However,
under the right experimental conditions, rabbit, horse, dog, and
pig PrP can convert into PrP% and cause disease in vitro and
in vivo. In vitro systems like PMCA provide a highly flexible
environment that accelerates conversion by exploring high
energy states perhaps facilitated by the inhibition of protective
proteostasis mechanisms in cell-free systems. Conversion of
rabbit PrP in PMCA resulted in prions that infected wild type
rabbits, albeit with low efficiency, demonstrating the power of
PMCA to lower the species and strain barriers (Fernandez-Borges
etal., 2012). Mice expressing horse PrP seem to be permissive for
spontaneous prionopathy, whereas mice expressing horse, rabbit,
dog, and pig PrP were permissive to transmission of some prion
strains. However, this experimental work does not mean that
rabbits, dogs, horses, and pigs are naturally susceptible to TSE:
these animals do not develop spontaneous disease. In fact, the
experiments showed that these four PrPs are harder to convert
than PrP from naturally susceptible animals like mouse or bank
vole. Generating misfolded rabbit PrP required several rounds
of PMCA (Vidal et al., 2015); horse PrP needed 14 rounds of
PMCA (Bian et al, 2017) and dog PrP required a modified
protocol for PMCA because 10 rounds of standard PMCA drew
negative results (Fernandez-Borges et al., 2017). A previous
report described that using more than one round of PMCA
exceeds a natural test of the transmission barrier (Fernandez-
Borges et al, 2009). Furthermore, the transmission studies
were conducted by intracerebral inoculation, an unnatural and
favorable mode of infection that skips the less efficient peripheral
replication. It must be noted that transgenic mouse models
overexpress rabbit, horse, and pig PrPC multiple times the
levels of endogenous PrP (Vidal et al., 2015), a condition that
may further increase the likelihood of the mice developing
spontaneous TSE. Overall, these studies demonstrate four
important things. (1) The PrP from rabbits, dogs, horses, and
pigs exhibit a remarkable resistance to conversion. (2) PMCA
is a powerful tool to overcome the conversion-barrier. (3) PrP
from these resistant animals can indeed misfold, in other words,
they are not impervious to conversion. Thus, it is unlikely that
any animal is completely resistant to forming PrPS¢ given the
evolutionary constraints on PrP. (4) Although each of these
four highly resistant PrPs show low susceptibility to misfolding,
horse and dog PrP seem to be more resistant than rabbit and
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pig PrP under similar conditions, identifying two targets for
further research.

The impact of D/E159, S167, and S174 on PrP structure
has been tested in multiple systems (Table 1); of these three,
S174 is the only proposed to generate a new structural feature.
Unfortunately, the evidence for the protective activity of S174
is mixed: in some experiments, S/N174 modifications had the
expected effect and in others, it did not (Vorberg et al., 2003;
Khan et al, 2010; Erana et al, 2017; Sanchez-Garcia and
Fernandez-Funez, 2018). In contrast, D/E159 and S167 are
associated with subtle structural changes and the experimental
evidence is generally supportive for D/E159 being protective
but is mixed for S167. The contradictory results observed in
different assays add some confusion to the role of these three
residues but are not completely surprising. The hypothesis is
that amino acids with a determining protective role on PrP
structure will show opposite effects when eliminated from a
resistant PrP or introduced into a susceptible PrP. The lack
of consistent results for the S/N174 manipulations suggest
a relatively modest role, possibly in combination with other
rabbit-specific amino acids. The strong effects observed on
structural/biochemistry experiments are consistent with the
ability to modify protein structures when the environment

is controlled chemically (pH, urea). The most comparable
experiments altering multiple amino acids in mouse and
rabbit PrP are indeed quite different, one using cell culture
and the other a cell-free system (PMCA) (Vorberg et al,
2003; Erafa et al., 2017). The cell-free system is expected to
provide more flexibility by being subject to incubations and
sonications, whereas living cells provide a more restrictive
environment regulated by homeostatic mechanism. Rabbit PrP-
S174N expressed in flies behaves the same as WT, supporting
the buffering effect of the cellular environment (extrinsic factors)
in response to mild structural changes. Overall, these results
hint at a gradient of effects on PrP stability, with S174
having mild effects, followed by S167, and D/E159 having
the most drastic protective effects despite the lack of novel
structural perturbations.

To further test the in vivo protective activity of D159, S167,
and S174, we recently generated transgenic flies expressing
human PrP carrying these three variants: N159D, D167S, and
N174S alone and in combinations. Human PrP is highly
toxic in flies, making it an ideal model for testing putative
protective residues (Fernandez-Funez et al., 2017). These studies
will provide further evidence for the ability of these three
key amino acids to suppress the toxicity of the highly toxic

TABLE 1 | Summary of experimental manipulations of candidate protective residues 159, 167, and 174.

Residue Assay/model Result Source
D/E/N159 NMR/X-ray of dog PrP Change in area surface charge — more Lysek et al., 2005
negative
D/E/N159 Fruit flies expressing mouse PrP-N159D N159D reduced the amount of Sanchez-Garcia et al., 2016
PrPSc-like conformations
D/E/N159 Fruit flies expressing dog PrP-D159N D159N caused degeneration of brain Sanchez-Garcia and Fernandez-Funez, 2018
neurons
D/E/N159 Mice expressing mouse PrP-N159D N159D was protective against TSE Fernandez-Borges et al., 2017
D/E/N159 Mice co-expressing mouse PrP-WT and mouse Co-expression increased survival Otero et al., 2018
PrP-N159D
D/E/N159 Mice expressing bank vole PrP-N159D Disease onset was delayed Otero et al., 2019
D/E/N159 Mice expressing dog PrP-D159N vs. D159E (WT Prion strains were able to propagate in Vidal et al., 2020
polymorphism) dog PrP-D159N, but not in dog
Pre-wT
S/D167 NMR on mouse PrP-D167S B2-a2 loop more organized than mouse Perez et al., 2010
PrP-wT
S/D167 Fruit flies expressing horse PrP-S167D S167D caused degeneration of brain Sanchez-Garcia and Fernandez-Funez, 2018
neurons
S/D167 Mice expressing mouse PrP-D167S High expression increased susceptibility Sigurdson et al., 2011
to TSE. Moderate expression did not
S/N174 X-ray crystallography on rabbit PrP-WT vs. rabbit Helix-capping domain form interactions Khan et al., 2010
PrP-S174N of residues N171 and S174, eliminated
by S174N
S/N174 Rabbit PrP-WT vs. rabbit PrP-S174N treated with Rabbit PrP-S174N populated the Khan et al., 2010
urea beta-state, but rabbit PrP-WT did not
S/N174 Cell culture of mouse PrP-N174S N174S was protective against TSE Vorberg et al., 2003
S/N174 PMCA with recombinant rabbit PrP-S174N S1748S did not protect against TSE Erana et al., 2017
S/N174 PMCA with recombinant mouse PrP-N174S N174S was protective against TSE Erafa et al., 2017
S/N174 Fruit flies expressing rabbit PrP-S174N S174N did not cause Sanchez-Garcia and Fernandez-Funez, 2018
neurodegeneration
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human PrP. As we wait for those experiments, it is important
to consider the possibility that, based on the above results,
single amino acid changes are unlikely to introduce substantial
conformational changes in human PrP. Thus, it is likely that
even subtle changes in the size of the side chains can impact
the ability of the B2-a2 loop to interact closely with helix 3
and stabilize the CT3D domain. Therefore, double or triple
mutations should be introduced in coordinated combinations,
i.e., they need to come from the same animal to add the
cooperative effect of multiple small changes. Alternatively, it is
possible that we are still missing the key residues encoding PrP
conformation and toxicity, particularly those encoding the high
toxicity of human PrP. There are several areas of sequence and
structure divergence between human PrP and rabbit, dog, and
horse PrP in the CT3D domain (Figure 1A). It is likely that
substitutions in the p2-a2 loop and helix 3 work cooperatively
to increase the stability of this domain, but the distal helix
3 has received little attention in experimental studies thus
far. For instance, the tammar wallaby carries A225,A226 in
helix 3 instead of the common Y225,Y226 in human PrP and
other animals, two substitutions that replace bulky tyrosines
with the smaller alanines, possibly promoting closer contacts
between helix 3 and the B2-a2 loop (Christen et al., 2009).
However, little is known at this time about the susceptibility
of wallabies to TSEs. Interestingly, rabbit, horse, and pig PrP
carry relevant substitutions in these two positions that could
contribute to the stability of the entire CT3D domain in
combination with S167 and S174. We are currently examining
the protective effect of introducing Y225A in distal helix 3 into
human PrP, a first look at the role of distal helix 3 in the
conformation of human PrP.

DISCUSSION

The natural variability in susceptibility to TSE and the
exceptional resources to analyze PrP sequence and structure
provide unique opportunities to decipher the code governing
PrP misfolding, toxicity, and infectivity. The basic hypothesis
is that amino acid changes between susceptible and resistant
animals are responsible for the different conformational stability
of PrP. Sequence alignments and structural studies identified
three residues proposed to mediate the stability of dog (D159),
horse (S167), and rabbit and pig (S174) PrP. The studies
reviewed here show partial support for the protective activity
of these three residues. Although differences between assays
should be taken into consideration, the results discussed so
far suggest that D159, S167, and S174 alone are insufficient to
explain the different structural properties of highly resistant PrPs.
Beyond these three residues, two systematic studies demonstrated
the contribution of other resides to the differences between
mouse and rabbit PrP while disagreeing on the role of S174
(Vorberg et al., 2003; Erafna et al, 2017). Thus, cracking the
code of PrP toxicity requires expanding our focus to subtle
amino acid differences in combination with D159, S167, and
S174. Structural studies suggest that PrP stability is partially
encoded in a rigid B2-a2 loop and in strong interactions

between the loop and distal helix 3, resulting in a compact and
stable CT3D domain.

The next efforts should be focused on defining the
combinations of amino acids that achieve these structural
goals. Generating double, triple, and multiple mutants is time
consuming, particularly testing them in animal models. The
structural data is crucial to define the best candidates to
cooperatively stabilize the CT3D domain, which can be followed
by in silico predictions of the impact of these combinations
in molecular dynamics simulations. Remarkably, the main fold
of the globular domain is not affected by point mutations,
which instead appear to change the structure and dynamics
of protein subdomains. This observation, combined with the
small size of PrP, makes molecular dynamics simulations an
ideal tool to systematically probe the effects of mutations
on the conformational dynamics of PrP (van der Kamp
and Daggett, 2011). The work by Daggett (Alonso et al,
2001; DeMarco and Daggett, 2004), Caflisch (Huang and
Caflisch, 2015a,b), Parrinello (Caldarulo et al, 2017), and
others, has shown that computer simulations can enrich
experimental structural information by providing a description
of the conformational landscape accessible to a mutant. In
addition, provided appropriate sampling of the phase space,
simulations can determine the thermodynamic stability of local
conformations, the kinetics of their transitions, and validate
these data against experimental observables (Caldarulo et al.,
2017). Importantly, molecular dynamics simulations provide
an atomistic description of the interactions that stabilize or
destabilize a certain conformation, which allows to make
predictions about the effect of mutations, and to rapidly
test these predictions in silico (Huang and Caflisch, 2015a,b).
Combinations with a significant impact on simulations can
then be tested in transgenic animals, starting with fruit flies
due to the fast and economic process of determining the
toxicity of the mutants.

We still have extensive work to do to crack the complex
code regulating PrP toxicity, which seems to involve subtle
effects from multiple residues in the globular domain that,
combined, result in vastly different morphotypes and phenotypes.
Moreover, recent work focused on PrP glycosylation revealed two
mechanisms for glycans to impact PrP aggregation, replication,
and toxicity (Katorcha et al., 2014; Callender et al., 2020;
Makarava et al.,, 2020). One is steric limitations due to the
large size of the glycans. The second one can be even more
important: glycans can be terminally sialylated, which adds
a significant negative charge that prevents direct stacking of
monomers but is compatible with a rotation (Baskakov et al,
2018). Thus, post-translational modifications add significant
restrictions to the quaternary structures that misfolded PrP
can explore. These restrictions are imposed on top of the
tertiary conformations accessible based on the internal dynamics
of several sub-domains. Overall, variations in both sequence
and glycosylation limit and direct the generation of unique
prion strains, which are defined by biochemical properties
and phenotype (neurotropism and clinical symptoms). These
considerations also help explain how different phenotypes can
originate from the same sequence. Whereas there is clear
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experimental evidence that the PrP ordered domain adopts a
single well-defined structure, the structure of the pathogenic
misfolded monomers and aggregates may vary (Bessen and
Marsh, 1994; Caughey et al, 1998; Safar et al., 1998; Peretz
et al, 2002; Cobb and Surewicz, 2009). In other words,
different strains can be associated to different structures
of the aggregates. Different glycosylation patterns have also
been associated to different phenotypes (Cobb and Surewicz,
2009), which have been proposed to arise from intermolecular
contacts involving glycans in PrP%¢. In addition, it is plausible
that sequences showing high conformational dynamics of
the B2-a2 loop and high exposure of hydrophobic residues
may be more likely to generate multiple structures of the
aggregates and, in turn, multiple strains. In the nucleation-
polymerization model (Jarrett and Lansbury, 1993), a PrP
sequence characterized by a dynamic loop adopting many
conformations may be more prone to provide the right
template structure for a variety of aggregates’ structures (and
strains), whereas a sequence with limited conformational
polymorphism may be able to provide the template only for
one aggregate’s structure, and thus originate only one strain.
Ultimately, understanding the code mediating the phenotype -
morphotype — phenotype relationship for PrP may guide the
design of compounds that stabilize PrP and prevents disease
progression. Ultimately, similar rules may apply to prion-like
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Protein homeostasis, or proteostasis, is a combination of cellular processes that
govern protein quality control, namely, protein translation, folding, processing, and
degradation. Disruptions in these processes can lead to protein misfolding and
aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic
reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death.
A majority of neurodegenerative diseases involve the pathologic aggregation of proteins
that subverts normal neuronal function. While prior reviews of neuronal proteostasis
in neurodegenerative processes have focused on cytoplasmic chaperones, there is
increasing evidence that chaperones secreted both by neurons and other brain cells
in the extracellular — including transsynaptic — space play important roles in neuronal
proteostasis. In this review, we will introduce various secreted chaperones involved
in neurodegeneration. We begin with clusterin and discuss its identification in various
protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as
a potential biomarker and as a potential therapeutic. Our next secreted chaperone
is progranulin; polymorphisms in this gene represent a known genetic risk factor for
frontotemporal lobar degeneration, and progranulin overexpression has been found to
be effective in reducing Alzheimer’s- and Parkinson’s-like neurodegenerative phenotypes
in mouse models. We move on to BRICHOS domain-containing proteins, a family of
proteins containing highly potent anti-amyloidogenic activity; we summarize studies
describing the biochemical mechanisms by which recombinant BRICHOS protein might
serve as a therapeutic agent. The next section of the review is devoted to the secreted
chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together
with neuropeptides and released during synaptic activity. Since proteins can be secreted
by both classical secretory and non-classical mechanisms, we also review the small heat
shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular
environment and provide evidence for their involvement in extracellular proteostasis
and neuroprotection. Our goal in this review focusing on extracellular chaperones
in neurodegenerative disease is to summarize the most recent literature relating to
neurodegeneration for each secreted chaperone; to identify any common mechanisms;
and to point out areas of similarity as well as differences between the secreted
chaperones identified to date.
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INTRODUCTION

Protein homeostasis, or proteostasis, is a combination of events
that govern protein quality control, namely, protein translation,
folding, processing and degradation. Disruptions in these events
can lead to protein misfolding and aggregation. Proteostatic
disruptions can arise normally as a consequence of normal aging
or can be due to genetic mutations and environmental stressors
such as heat shock, altered energy demands, or pH changes, and
can lead to cellular changes such as ER and/or oxidative stress;
organelle dysfunction; and even cell death. Protein misfolding
and aggregation are central to several proteinopathies such as
neurodegenerative disease, various amyloidosis, cystic fibrosis
and sickle cell anemia, among others. Chaperones, ubiquitous
proteins dedicated to the management of protein homeostasis,
reside in every cellular compartment. For example, a well-
studied class of abundant chaperones known as HSPs, are
mostly cytoplasmic, are ATP-dependent, and often work in a
protein network or in a sequential pathway (reviewed in Hartl
et al, 2011; Klaips et al., 2018). Chaperones are responsible
for binding nascent protein chains, preventing them from
aggregating, and for promoting the formation of secondary
and tertiary structures to obtain the stable conformations
required for proper function. Chaperones also play a role
in regulating active and inactive functional protein states,
as well as in downstream protein processing events such as
proteolytic cleavage and post-translational modification. Finally,
chaperones are involved in unfolding and delivering proteins,
working closely with ubiquitin ligase complexes and proteases,
to degradative pathways.

Players in Secretory Pathway

Proteostasis

Typically, proteins destined for secretion pass through the
membrane-bound secretory pathway of the cell. Upon or during
translation, the pre-proteins are channeled into the ER with
the help of the signal sequence. Following chaperone-assisted
folding, proteins are then subject to further processing which
includes posttranslational modifications, and/or proteolytic
maturation cleavages. Protein modification occurs throughout
the secretory pathway, across the ER, ER-Golgi intermediate
compartment, Golgi complex, trans-Golgi network and finally,
secretory vesicles. Once secreted into the extracellular matrix,
proteins can be taken up by the neighboring cells through

Abbreviations: Abeta, amyloid beta; ACD, alpha crystallin domain; ACTH,
adrenocorticotropic hormone; AD, Alzheimer’s disease; ALS, amyotrophic
lateral sclerosis; APP, amyloid precursor protein; BiP, binding immunoglobulin
protein; CAA, cerebral amyloid angiopathy; CRED, chaperone/receptor-mediated
extracellular protein degradation; CSE, cerebrospinal fluid; ER, endoplasmic
reticulum; ERAD, ER-associated degradation; FAD, familial Alzheimer’s
disease; FBD, familial British dementia; FDD, familial Danish dementia;
FTD, frontotemporal dementia; GRN, granulin; GWAS, genome-wide association
studies; HSPGs, heparan-sulfated proteoglycans; HSPs, heat shock proteins; IDR,
intrinsically disordered regions; NRBPI, nuclear receptor binding protein 1;
PD, Parkinson’s disease; PP1, protein phosphatase 1; proPC2, pro-prohormone
convertase 2; proSP-C, prosurfactant protein C; sHSP, small heat shock proteins;
SNP, single nucleotide polymorphism; SPARC, secreted protein acidic and rich in
cysteine; TDP-43, TAR DNA-binding protein 43; TFEB, transcription factor EB;
UPR, unfolded protein response.

endocytosis and eventually subjected to lysosomal degradation.
Throughout this process, chaperones resident within these
various compartments aid in maintaining client protein stability
and localization.

The extremely high protein concentrations present in neurons
and endocrine cells, which possess both regulated (stimulus-
dependent) and constitutive (basal) secretory pathways, are
conducive to homo- and heterotypic aggregation, and ER-
resident chaperones, which assist the retro-translocation of
aggregated proteins to the cytosol, play an important role
in preventing misfolded proteins from causing a bottleneck
in the secretory pathway during stress. An example of an
ER stress-related chaperone is the ER-localized protein BiP,
a member of the HSP70 family. BiP chaperones ER-based
proteins under normal conditions; however, in the presence
of ER stress, it binds and retro-translocates misfolded proteins
from the ER to the cytoplasm for proteasomal degradation
as a member of the ERAD machinery (Pobre et al, 2019).
In another example, evidence has emerged linking the UPR
to the regulation of extracellular proteostasis. In response to
ER stress, the chaperone HSP40 (a.k.a ERdj3) is co-secreted
from the cell with unstable protein clients, which may assist in
prevention of cytotoxic aggregation (Genereux and Wiseman,
2015b; Genereux et al., 2015a).

Cytoplasmic Versus Secreted
Chaperones: The Challenge of the

Extracellular Space

The challenges faced by chaperones secreted from the cell are
markedly different than those of cytoplasmic chaperones. While
cytoplasmic chaperones deal with initial folding of nascent
chains of secretory proteins (and unfolding during degradation),
additional chaperone assistance is required during transport
through the secretory pathway - not only for stabilizing protein
folds, but also for proper localization of proteins in the secretory
pathway compartments, as well as aiding their secretion into the
extracellular matrix.

The extracellular space presents unique conditions such as
low pH, low protein density and low ATP availability that
affects client-chaperone interaction. The low pH of the secretory
pathway and the extracellular space directly affect protein
stability, necessitating chaperone action even under normal
conditions. While the concentration of chaperones such as
clusterin in the CSF is 30-50 nM [(Pfikrylova Vranova et al.,
2016); see section “Clusterin” below], the CSF concentration
of other chaperones such as 7B2 is even lower, in the
low nanomolar range (Iguchi et al., 1987a), rendering client
interaction even more challenging. It may be speculated that
the release of neuronally synthesized chaperones directly into
the synaptic space alleviates this scarcity. Another challenge
relates to the fact that cytoplasmic chaperones are mostly
ATP-dependent, enabling them to bind hydrophobic regions
of nascent proteins, and release folded proteins with ADP
conversion. Owing to low extracellular ATP, secreted chaperones
appear to act more as “holdases” rather than “foldases,
binding to exposed hydrophobic regions of misfolded proteins,
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thereby preventing protein self-assemblies and aggregation
(reviewed in Wyatt et al, 2013) (Hartl et al, 2011; Klaips
et al., 2018). Secreted chaperones may also deliver proteins to
cellular membrane receptors that aid in their internalization
and subsequent lysosomal degradation (Yerbury et al., 2005;
Wryatt et al., 2013).

Proteostasis in Neurodegeneration

A majority of neurodegenerative diseases involve the pathologic
aggregation of proteins that subverts normal neuronal function
(Soto and Pritzkow, 2018). These protein aggregates, which
include plaques composed of beta amyloid peptides, Lewy
bodies containing synuclein, tangles containing tau proteins,
and cytoplasmic aggregates of triple-repeat proteins, represent
physical hallmarks of neurodegenerative processes, and reflect
aberrant protein handling mechanisms that are predominantly
focused in neural tissues. These protein deposits arise from
aggregation-prone proteins that often possess intrinsically
disordered domains, allowing them to form self-replicating
structures that tend to oligomerize and form fibrillary or
non-fibrillary aggregates. The oligomeric species are most
often found to be the toxic form that interferes with normal
cellular function. Both extracellular and intracellular proteins
are at risk of aberrant aggregation, and new data suggest
that there is cross-talk between different disease processes
such that “seeds” from one aggregating species can cause
aggregate deposition of entirely different proteins (reviewed
in Peng et al, 2020). The demonstration of transsynaptic
propagation of a variety of misfolded proteins during
neurodegenerative disease progression suggests that extracellular
processes are critical to the process of neurodegeneration
(Peng et al., 2020). The significant co-morbidity of diabetes
with AD suggests a generalized risk to secretory tissues in
neurodegenerative disease, potentially from common metabolic
factors with increased susceptibility to errors in normal
protein handling (Shieh et al,, 2020). While most reviews of
neuronal proteostasis in neurodegenerative processes have
focused on cytoplasmic chaperones (Hartl et al., 2011; Kim Y.E.
et al., 2013; Balchin et al., 2016), there is increasing evidence
that chaperones secreted by neurons and other brain cells
play important roles in neuronal proteostasis (reviewed in
Wryatt et al., 2013).

In this review, we will summarize various secreted
chaperones and describe the evidence for their involvement in
neurodegenerative processes. We have necessarily omitted many
secreted proteins which may in future turn out to contribute
to proteostasis in neurodegenerative disease; examples include
SPARC/osteonectin, which exhibits extracellular chaperone
activity (Chlenski et al., 2011) and has repeatedly been linked
to neurodegeneration (reviewed in Chen S. et al, 2020;
Pedrero-Prieto et al, 2020). However, its general chaperone
activity against neurodegeneration-related aggregates has not
yet been documented. A variety of personal chaperones, for
example, PCSK9 (proprotein convertase subtilisin/kexin 9),
RAP (receptor-associated protein) and MESD (mesoderm
development), all of which accompany LDLR family members
through the secretory pathway, are not discussed, nor are the

many other personal chaperones that accompany other secretory
proteins to specific subcellular destinations, including COSMC
(core 1 B3GalT specific molecular chaperone), PPCA (protective
protein/cathepsin A), Praf/STMC6 (prenylated Rab acceptor
family members), and the iRhom (inactive rhomboid) proteins.
However, as found with the personal chaperones 7B2 and
proSAAS, it is possible that future work will reveal that other
secretory pathway personal chaperones have a wider client base
than previously suspected.

We have also not discussed Hsps and other chaperone
proteins resident within the secretory pathway which can under
specialized stress circumstances be secreted, such as ERDj3
(Genereux et al., 2015a); other ER-resident chaperones (Trychta
et al., 2018); cyclophilins (Hoffmann and Schiene-Fischer, 2014);
or ERAD-associated proteins such as Stch/HSPA13 (Chen et al,,
2009). While these proteins clearly function as chaperones within
the secretory pathway, strong evidence for their secretion during
neurodegeneration is still lacking (for example documented
presence within extracellular aggregates and/or altered CSF levels
associated with disease). Finally, in the interest of brevity, we
do not discuss well-known secreted chaperones such as a-2-
macroglobulin and transthyretin which, although abundant in
serum and able to cross the blood-brain barrier, are not highly
expressed by the brain, and have also been recently reviewed
in the context of neurodegeneration (Buxbaum and Johansson,
2017; Cater et al., 2019; Giao et al., 2020).

The secreted chaperones described in this review have all
been associated with neurodegenerative disease based on specific
features which include, among others, their physical presence
in protein deposits; and proteomics and transcriptomics studies
from human as well as animal models that highlight altered
levels in neurodegenerative disease. Many of these features are
summarized in Table 1. The presence of a given chaperone
within protein deposits is consistent with, but does not prove,
its propensity to sequester aggregation-prone protein clients; it
may, for example, simply be an easily aggregated bystander.
In addition, altered extracellular or intracellular levels seen in
disease might represent a disease-related response to combat
excessive misfolding, but also might point to a generally
dysregulated secretory pathway. However, the additional ability
of the secreted chaperones discussed here to profoundly reduce
the rate of protein oligomerization in vitro supports a likely role
in regulating disease pathogenesis.

In the following sections, select chaperones will be described
that have been clearly identified as causative agents in
neurodegenerative  diseases:  clusterin, progranulin, and
BRICHOS domain-containing proteins. Next, the neural
and endocrine-specific proteins, 7B2 and proSAAS, are
discussed with respect to their potent anti-aggregant activity and
association with neurodegenerative disease. We will then focus
on extracellular actions of certain secreted small Hsps (sHsps);
while sHsps have been extensively reviewed recently, most
reviews in neurodegeneration have focused on their cytoplasmic
actions (Muranova et al., 2019; Webster et al., 2019). Finally,
we will elaborate on possible biochemical and physiological
mechanisms of extracellular chaperones and discuss their
therapeutic potential in treating neurodegenerative disease.
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TABLE 1 | Extracellular chaperones implicated in neurodegenerative diseases - Human studies.

Name(s) Gene name(s) Disease link Location Method Citations
Clusterin, CLU AD - Associated with Abeta40 C IF/IHC Howlett et al. (2013)
Apo-J, plaques
SP40/40, CLI
Genetic risk factor GWAS Harold et al. (2009),
Lambert et al. (2009)
Increased protein levels CSF MS Reviewed in
Pedrero-Prieto et al.
(2020)
PD - Associated with Lewy bodies C IHC Sasaki et al. (2002)
CJD - Associated with protein CB IHC/IP Freixes et al. (2004)
deposits
Increased expression C/CB DNA micro-array Freixes et al. (2004)
ALS - Associated with TDP43 SC IF/IHC Gregory et al. (2017)
inclusions
Increased protein levels Serum MS Xu et al. (2018)
Progranulin GRN AD - Associated with Abeta plaques HC IF/IHC Gliebus et al. (2009),
Gowrishankar et al.
(2015), Mendsaikhan
et al. (2019a)
Genetic risk factor GWAS Chen et al. (2015)
High protein levels CSF ELISA Sudrez-Calvet et al.
(2018)
FTD - Null mutations Linkage analysis Baker et al. (2006)
Decreased protein levels CSF WB Wilke et al. (2017)
Bri2, Bri3 ITM2B, I[TM2C AD - Associated with Abeta40 and HC IF/IHC Del Campo et al.
Abeta42 plaques (2014), Dolfe et al.
(2018)
FBD and FDD - Read-through mutations C IF/IHC Reviewed in Rostagno
causing protein deposits et al. (2005)
ProSAAS PCSK1N AD - Associated with Abeta plaques HC IF/IHC Hoshino et al. (2014)
Decreased protein levels CSF MS Abdi et al. (2006),
Finehout et al. (2007),
Jahn et al. (2011), Choi
et al. (2013), Holtta
et al. (2015), Spellman
et al. (2015)
Increased mRNA levels C RNA-seq Mathys et al. (2019)
PD - Associated with Lewy bodies HC IF Jarvela et al. (2016)
Decreased protein levels CSF MS Rotunno et al. (2020)
FTD - Decreased protein levels CSF MS Davidsson et al. (2002)
DLB - Decreased protein levels CSF MS Van Steenoven et al.
(2020)
7B2 SCG5 AD - Associated with plagues HC IF/IHC Helwig et al. (2013)
Slightly increased protein levels C WB Iguchi et al. (1987a)
PD - Associated with Lewy bodies IF/IHC Helwig et al. (2013)
ALS - Increased protein levels CSF MS Ranganathan et al.
(2005)
FTD - Increased protein levels CSF MS Mattsson et al. (2008)
HspBI HSPB1 CMT - Causative mutations GWAS, NGS Muranova et al. (2019),
Vendredy et al. (2020)
AD - Associated with plaques HC IF/IHC Wilhelmus et al. (2006),
Ojha et al. (2011)
PD - Increased protein levels C IF/IHC Renkawek et al. (1999)
HspB3 HSPB3 CMT - Causative mutations GWAS, NGS Muranova et al. (2019),
Vendredy et al. (2020)
AD - Associated with plaques HC IF/IHC Wilhelmus et al. (2006),

Ojha et al. (2011)

(Continued)
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TABLE 1 | Continued

Name(s) Gene name(s) Disease link Location Method Citations
Increased protein levels HC, C, CG MS Koopman and Rudiger (2020)
MS - Increased protein levels Serum WwB Ce et al. (2011)
HspB5 HSPB5 AD - Increased protein levels HC, C, CG MS Koopman and Radiger (2020)
HspB6 HSPB6 AD — Increased protein levels HC, C, CG MS Koopman and Rudiger (2020)
HspB8 HSPB8 CMT - Causative mutations GWAS, NGS Muranova et al. (2019),
Vendredy et al. (2020)
AD — Associated with plaques HC IF/IHC Wilhelmus et al. (2006), Ojha
etal. (2011)
Increased protein levels HC, C, CG MS Koopman and Rudiger (2020)
CAA - Associated with amyloid C IF/IHC Wilhelmus et al. (2009)

plaques

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CAA, cerebral amyloid angiopathy, CMT, Charcot-Marie-Tooth, DLB, dementia with Lewy bodies; FBD, familial
British dementia; FDD, familial Danish dementia; FTD, frontotemporal dementia; CJD, Creutzfeldt-Jakob disease; PD, Parkinson’s disease; C, cortex; CB, cerebellum;
CG, cingulate gyrus; CSF, cerebrospinal fluid; HC, hippocampus; SC, spinal cord; ELISA, enzyme-linked immunosorbent assay; GWAS, genome wide association study;
IHC, immunohistochemistry; IF, immunofluorescence; IF, immunoprecipitation; NGS, next generation sequencing; MS, mass spectrometry; RNA-seq, RNA sequencing;

WB, Western blot.

CLUSTERIN

Clusterin is a heavily glycosylated ~60 kDa heterodimeric
protein (Kapron et al., 1997) derived from a single gene,
known as CLU, which represents both a potent as well as a
highly abundant extracellular ATP-independent chaperone. It
is able to block Abeta aggregation (Matsubara et al., 1996) as
well as amyloid formation from a variety of amyloidogenic
substrates (Yerbury et al, 2007) and has the ability to
prevent stress-induced precipitation of a wide range of protein
substrates (Humphreys et al, 1999; Poon et al., 2000). This
versatile chaperone plays many roles in homeostatic processes
throughout the body, including lipid transport (reviewed in
Park et al, 2014), tissue remodeling (Gobé et al., 1995),
cytoprotection at fluid/tissue interfaces (reviewed in Fini et al,,
2016), and endocytosis-mediated clearance of extracellular
debris (Bartl et al, 2001). Additionally, increased clusterin
expression is linked to cancer progression and treatment
resistance (reviewed in Peng et al, 2019). This versatility is
thought to derive from clusterin’s ability to interact with a
variety of different client misfolded proteins. As discussed
below, clusterin accumulation is found in many different
neurodegenerative diseases.

Structure and Expression

Clusterin is expressed in many cell types throughout the
body, most notably in specialized secretory cells and
epithelial cells (Aronow et al, 1993). Within the brain,
clusterin is ubiquitously expressed in neurons and glia, and
is especially abundant in astrocytes, while being absent from
microglia (Yao et al, 2020)'. Circulating clusterin levels
are very high in serum, predominantly derived from the
liver (Seo et al., 2020), and approximate 100 pg/ml (about
1.6 uM). Although at much lower levels than in plasma,
clusterin is also abundant in the CSE with normal levels
between 2-9 pg/ml (30-150 nM) (Sihlbom et al., 2008;
Prikrylovd Vranova et al., 2016).

Uhttps://celltypes.brain-map.org/rnaseq/human_m1_10x

Within the cell, as a signal-bearing protein, clusterin exists
primarily within the secretory pathway. Under various types
of stress conditions, cellular clusterin levels are increased
(Viard et al, 1999), and a portion of this increase may be
within the cytoplasm and/or nucleus (Nizard et al, 2007;
Prochnow et al., 2013). However, the origins of cytoplasmic
and nuclear clusterin are still unclear (reviewed in Rohne et al.,
2016) since current hypotheses to explain these subcellular
locations are discordant. Cytoplasmic clusterin may arise from
CLU transcripts translated directly into the cytosol; from
secretory clusterin that has prematurely exited the secretory
pathway; or from reuptake of secreted mature clusterin
(discussed in Foster et al., 2019). Alternatively, intracellular
and nuclear clusterin may be produced from rare distinct
mRNA transcripts that arise from alternative splicing and
different in-frame start sites (reviewed in Garcia-Aranda et al.,
2018). However, these transcripts make up less than 0.34%
of total clusterin mRNA (Prochnow et al., 2013), suggesting
that the vast majority of clusterin protein is produced from
the primary transcript. CLU expression is affected by histone
acetylation, DNA methylation, and a variety of transcription
factors and signaling molecules (Garcia-Aranda et al., 2018).
Additionally, clusterin expression responds to oxidative and
proteotoxic stress, through heat shock transcription factor-1 and
activator protein-1 elements in the CLU promoter (reviewed in
Trougakos, 2013).

For secreted clusterin, intracellular cleavage of the clusterin
precursor results in the production of a- and B-subunits
arranged in an anti-parallel fashion, linked by five disulfide
bridges. Heavy N-linked glycosylation accounts for ~30% of
its apparent mass (reviewed in Wilson and Easterbrook-Smith,
2000). Clusterin contains five conserved putative amphipathic
helices, with a large percentage of intrinsically disordered
structure (Bailey et al., 2001). The anti-parallel organization
of the two chains creates a polarized order-to-disorder motif
within the entire protein (Bailey et al, 2001) similar to that
of a partially folded, molten globule-like domain capable of
interacting with a wide variety of ligands. Clusterin has been
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shown to exist in various pH-dependent multimeric states
(Hochgrebe et al., 2000).

Function and Mechanism

Of the three major functions that protein chaperones
carry  out  (assisting  folding/refolding,  preventing
precipitation/aggregation, and preparation for degradation),
clusterin has been implicated in the latter two. In 1999,
clusterin was shown to be a proficient solubilizing chaperone
for heat-stressed glutathione-S-transferase by the Wilson
group, exceeding the client:chaperone molar ratios of sHSPs
(Humphreys et al., 1999). In the last two decades, clusterin has
been found to bind and solubilize a variety of heat-stressed
proteins (Poon et al., 2002), as well as to prevent the aggregation
and fibrillation of disease-associated aggregating proteins,
including: Abeta (Yerbury et al, 2007), a-synuclein (Yerbury
et al,, 2007), TAR DNA-binding protein 43 (TDP-43) (Gregory
et al., 2017), and transthyretin (Lee et al., 2009; Magalhaes and
Saraiva, 2011). Single-molecule characterization has shown that
clusterin can bind small Abeta40 oligomers at equimolar ratios
(Narayan et al., 2011); small a-synuclein oligomers at equimolar
ratios; and large oligomers at sub-stoichiometric ratios (Whiten
et al., 2018). Clusterin binding also appears to inhibit oligomer
interaction with lipid membranes and the production of reactive
oxygen species (Whiten et al., 2018). However, at low molar
ratios of clusterin to Abeta, clusterin promotes precipitation and
increases fibrillation (Yerbury et al., 2007). In vitro, clusterin
can sequester AP oligomers of various sizes (Narayan et al.,
2011). Taken together, these data show that clusterin is capable
of sequestering small oligomers, preventing both assembly into
fibrils as well as blocking downstream toxic events.

In vivo, clusterin promotes transcytosis of Abeta across
the blood-brain barrier through [lipoprotein-related protein 2
(LRP2)-mediated endocytosis] (Zlokovic, 1996; Wojtas et al,
2017). More broadly, clusterin has been shown to promote
internalization and degradation of cellular debris and misfolded
proteins in non-professional phagocytic cells through LRP2
(Bartl et al., 2001) and through HSPGs (Itakura et al., 2020).
Itakura et al. (2020) demonstrated that clusterin binds HSPGs
through an electrostatic interaction to promote co-degradation
of clusterin and client proteins. HSPGs are broadly expressed
and have been previously linked to the endocytosis of a variety
of ligands (reviewed in Sarrazin et al., 2011), including Abeta
(Kanekiyo et al.,, 2011), among others. Whether this endocytic
pathway represents a major functional contribution of clusterin
in neurodegenerative diseases remains to be established.

Disease Relevance and Therapeutic
Potential

Clusterin immunoreactivity has been identified within a variety
of proteopathic aggregates, including amyloid plaques (Howlett
et al., 2013; Craggs et al.,, 2016), perivascular amyloid deposits
(Craggs et al., 2016), cortical Lewy bodies (Sasaki et al., 2002), and
protease-resistant prion protein deposits in Creutzfeldt-Jakob
disease (Freixes et al., 2004). Clusterin shows a preference for
colocalization with Abeta40 over Abeta42 (Howlett et al., 2013;
Craggs et al., 2016). Clusterin levels are increased at synapses

in human post-mortem AD brains, where it colocalizes with
Abeta at presynapses near plaques (<10 pm). This increase is
greater in APOE4 carriers (Jackson et al., 2019), and may be
related to the increase in intracellular clusterin levels observed
after Abeta-induced stress (Killick et al., 2014).

Considerable genetic evidence connects clusterin to
neurodegenerative disease. After APOE and BINI, CLU is
the third largest genetic risk factor for late onset AD. Multiple
GWAS (Harold et al.,, 2009; Lambert et al., 2009) and meta-
analyses (Liu et al.,, 2014; Zhu et al, 2018) have confirmed a
strong correlation of the rs11136000T allele with decreased
AD risk in Caucasian populations; however, the evidence for
this genetic link is weaker in other ethnic groups (Han et al.,
2018). This protective allele is associated with increased clusterin
expression (Ling et al., 2012). Additional rare polymorphisms
have been identified in patients suffering from late onset AD,
in which secreted clusterin levels are reduced due to folding
abnormalities (Bettens et al., 2015). Six independent proteomics
studies show that CSF levels of clusterin are significantly
increased in AD patients (see meta-analysis in Pedrero-Prieto
et al., 2020); plasma levels also rise in ALS (Xu et al., 2018).
Additionally, while brain clusterin levels increase within the
brain during AD progression, the levels of Abeta increase to
a greater extent, resulting in a declining molar ratio between
clusterin and Abeta specifically within regions of the brain with
high Abeta deposition (Miners et al., 2017). Thus, while assessing
clusterin levels in CSF may eventually prove to be a powerful
diagnostic tool, these data suggest that brain clusterin levels
will need to be increased to a great extent in order to provide a
therapeutic benefit.

Animal studies of clusterin expression in neurodegenerative
disease have yielded paradoxical results. When crossed with
clusterin null mice, PDAPP AD model mice (which express
the human APP mutant V717F at ten times the level of
endogenous APP) show reduced levels of neuritic dystrophy and
fibrillary amyloid plaques within the brain, without an overall
change in levels of Abeta (DeMattos et al., 2002). Thus, this
phenotype exhibits less neuritic toxicity than in APP model
mice expressing clusterin. Another group who performed the
same clusterin null cross with a different APP mouse model
(APP/PSI1; PS1 = presenilinl), which expresses lower levels of
a mouse/human chimeric APP transgene found a reduction
in fibrillar Abeta plaques concomitant with a reduced Abeta
load (Wojtas et al., 2017). In this mouse model, Abeta deposits
are found as increased CAA deposits, and overall Abeta load
is decreased within the brain (Wojtas et al., 2017). These
paradoxical results were corroborated by another group who
showed that clusterin expression is required for Abeta toxicity
in human induced pluripotent stem cell (iPSC)-derived neurons
(Robbins et al., 2018). In agreement, in primary neurons, siRNA
silencing of clusterin expression provides protection against
Abeta toxicity (Killick et al, 2014). However, as shown by
Robbins et al. (2018), the loss of clusterin expression results in a
change in the expression of a variety of genes; thus, it is currently
unclear if the paradoxical effect is directly related to clusterin loss
or is due to pleiotropic effects. Adding to this complexity, in the
5xFAD (familial Alzheimer’s disease) model mouse background,
clusterin null mice showed fewer Abeta plaques and cognitive
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performance deficits compared to clusterin-expressing mice
at 5 months of age, though the differences disappeared by
10 months, suggesting that clusterin expression is only required
for early toxicity (Oh et al, 2019). We speculate that the
variation in results when using different mouse models may
be due at least in part to differences in the clusterin: Abeta
ratio inherent in the different experimental models. Alternative
explanations for the positive effects of clusterin null mutations on
neurodegenerative pathology include altered expression of other
genes, as observed in Robbins et al. (2018), and thus this paradox
remains unexplained.

Despite these controversial mouse studies, substantial
biochemical evidence supports the positive effects of clusterin
expression on Abeta load within the brain. Thus, several groups
have directly examined the effects of increased brain clusterin on
amyloid deposition in various mouse models of AD. Peripheral
administration of recombinant human clusterin, either in
complex with HDL or lipid-free, was shown to reduce the
levels of insoluble Abeta as well as CAA in AD model mice
(de Retana et al, 2019). Neuronal loss in the hippocampus
was also decreased; whether this positive effect was due to the
reduced damage from Abeta accumulation, or to clusterin’s
known anti-apoptotic effects (Koch-Brandt and Morgans, 1996)
is unclear. One caveat to this study is that recombinant clusterin
was not detected within the brain, though it was found in the
intrameningeal ventricle lumen. This is consistent with studies
that show that while clusterin can cross the blood-brain barrier
through interaction with LRP2 (Zlokovic, 1996), plasma levels
of endogenous clusterin are sufficient to saturate the transporter
(Shayo et al., 1997). These data suggest that the protective effects
provided by recombinant clusterin are greater than simple
blockade of Abeta accumulation and may possibly occur via
upregulation of microglial Abeta phagocytosis (Yeh et al., 2016).
Intraperitoneal (Montoliu-Gaya et al., 2018) or intraventricular
(Qi et al, 2018) administration of a short clusterin-derived
peptide can decrease Abeta deposition in mouse models, as well
as ameliorate cognitive defects (Qi et al., 2018). This peptide
corresponds to a D-amino acid version of one of clusterin’s
predicted amphipathic helices (Bailey et al,, 2001) and may
play a role in recognizing Abeta (Wyatt et al, 2009) or in
stimulating phagocytic activity, perhaps by upregulation of LRP2
(Qietal., 2018) and thereby impacting clearance of AP across the
blood-brain barrier.

In ALS patient tissues, immunoreactive clusterin is localized
within cytoplasmic inclusions of TDP-43 in motor neurons,
whereas in control tissues, clusterin staining is primarily found
in the ER (Gregory et al., 2017). Further, in ALS mismatch
cases — those patients with high TDP-43 burden but without
cognitive deficits — clusterin expression was increased in gray
matter neurons, compared to controls and ALS cases with
cognitive decline. Additionally, glial clusterin expression was
higher in cases of ALS with cognitive decline than in controls
or mismatch cases (Gregory et al., 2020). Importantly, this effect
could not be ascribed to general proteostatic differences, as the
levels of the cytoplasmic chaperone HSPB8 were unchanged
between controls and either disease case. These data suggest
that the specific increase in neuronal expression of clusterin
may be protective in an autologous fashion. It remains to be

determined if elevations in clusterin are a consequence of a
distinct disease progression that results in reduced cognitive
decline, or instead represent a homeostatic means to provide
neurological protection. It will also be important to assess
whether similar proteostatic pathway changes are found in
mismatch cases in other neurodegenerative diseases, such as AD,
in which some diagnosed patients are known to have low levels
of CSF Abeta, but no Abeta accumulation is visible in positron
emission tomography (Mattsson et al., 2015).

Single nucleotide polymorphisms in clusterin have also been
linked to early cognitive decline in PD (Gao et al, 2011;
Sampedro et al., 2020). Clusterin has also been investigated as a
potential therapeutic for PD. The preincubation of a-synuclein
oligomers with clusterin prevented cell death and the production
of reactive oxygen species, as well as TLR4 (toll-like receptor 4)
activation (Hughes et al., 2019).

Summary

It is clear that clusterin plays a variety of different roles
throughout the brain (Wilson and Zoubeidi, 2017). While we
do not yet fully understand the many mechanisms by which
the clusterin chaperone operates to provide such a strong
genetic link to AD, several common themes have emerged from
research during the past two decades. With a client ratio of 1:10
for blocking Abeta amyloid formation (Yerbury et al., 2007),
clusterin clearly represents a potent chaperone, and increasing
evidence indicates that its extracellular chaperone action may
directly impact the course of neurodegenerative disease. In
addition, extracellular clusterin appears to act as a positive
force in the endocytosis of (potentially toxic) aggregates and
oligomers. Lastly, clusterin expression influences clearance of
Abeta from the brain. Further research will be required to
determine whether a specific mechanism represents a dominant
phenotype, and whether other genes work together with clusterin
to provide neuroprotection.

PROGRANULIN

Progranulin (gene name: GRN), a secreted, cysteine-rich
glycoprotein, is highly expressed in cells of myeloid lineage
such as macrophages and microglia; in epithelial cells; in a
subset of neurons in the cortex, hippocampus, and cerebellum;
and in motor neurons. Unlike other chaperones discussed in
this review, progranulin functions as a personal chaperone for
lysosomal proteins (reviewed in Bateman et al., 2018); however,
it is secreted, suggesting extracellular action. Mammalian
progranulin contains seven and a half granulin (GRN) domains,
interspersed with variable length linkers. These GRN domains
contain repeats of a 12-cysteine motif which can fold into tight
beta-sheets linked by disulfide bonds, forming a “beads-on-a-
string” arrangement. Progranulin can be cleaved into individual
GRNs which can have functions independent of progranulin.

Structure and Expression

The GRNs are referred to alphabetically by order of discovery, or
numerically by order within progranulin, with “P” referring to the
partial GRN in each case. From the amino-terminus, the order of
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the GRNs is P-G(1)-F(2)-B(3)-A(4)-C(5)-D(6)-E(7). Progranulin
is secreted as a homodimer (Nguyen et al., 2013). Computational
algorithms to determine protein disorder predict a high-low
pattern where the more disordered GRN-G, GRN-B, GRN-C, and
GRN-E are separated by the more ordered GRN-E, GRN-A, and
GRN-D (Ghag et al., 2017). Further, recombinant GRN-B, while
predicted to be disordered, forms a highly thermodynamically
stable monomer, though when disulfide bonds are reduced,
it becomes completely disordered (Ghag et al, 2017). This
interspersing of order with disorder maybe be crucial to the
chaperone activity of progranulin.

In the brain, expression of the progranulin gene is strong in
microglia (Daniel et al., 2000; Baker et al., 2006; Ryan et al,
2009). GRN expression is also high in motor neurons in the spinal
cord (Ryan et al.,, 2009). Progranulin is secreted in an activity-
dependent manner at the synapse, with increasing neuronal
activity correlating with increased progranulin levels within
axons (Petoukhov etal., 2013). Thus, progranulin is appropriately
expressed in extracellular locations where aggregating proteins
and peptides are known to be released. At the transcriptional
level, expression of progranulin is regulated by the master
lysosomal biogenesis regulator transcription factor EB (TFEB)
(reviewed in Kao et al., 2017), allowing for increased expression
when increased degradative capacity is required.

Progranulin is found both in the lysosome and extracellular
space. It reaches the lysosome either directly from the trans-
Golgi, or after secretion and endocytosis via sortilin (Hu et al.,
2010). In neurodegenerative diseases, progranulin and/or GRNs
are detected within amyloid deposits (Gliebus et al., 2009;
Gowrishankar et al., 2015; Mendsaikhan et al., 2019b), suggesting
that progranulin may have additional extracellular roles in the
formation of neurodegeneration-related protein aggregates.

Function and Mechanism

Progranulin is known to exert a protective chaperone
function on certain lysosomal enzymes [cathepsin D and
beta-glucocerebrosidase (GCase)]. In vitro, progranulin added
to recombinant cathepsin D protects this protein from high
temperature-induced denaturation/degradation (Beel et al,
2017). Progranulin stabilizes the propeptide of cathepsin D,
promoting autocatalysis at the active site (Butler et al., 2019).
In the absence of progranulin, levels of cathepsin D (both pro
and mature) accumulate, although enzyme activity decreases, a
key indicator of lysosomal dysfunction (Gotzl et al., 2018). The
final 98 amino acids of progranulin, corresponding to GRN-E
plus a linker sequence, are required for binding GCase, and
also function to recruit non-canonically translocated HSP70 in
a ternary interaction (Jian et al., 2016). We speculate that the
intrinsic disorder predicted in both GRN-E and the C-terminal
tail is important for recognizing multiple client proteins and for
chaperone function.

A variety of in vitro and in vivo evidence supports a
chaperone role for secreted GRNs. Recombinant GRN-B potently
increases the fibrillation of Abeta in vitro, while reducing toxic
oligomer formation (Bhopatkar et al, 2019). Abeta incubated
under oligomerizing conditions with GRN-B at equimolar
concentrations exhibits reduced caspase activation compared to

Abeta incubated alone. However, GRN-B also seems to promote
the formation of insoluble TDP-43 inclusions, exacerbating TDP-
43 cytotoxicity (Bhopatkar et al., 2020); this is consistent with
effects observed in C. elegans during GRN-B overexpression
(Salazar et al., 2015). This aggregate promotion effect is increased
following reduction of GRN-B; Bhopatkar et al. (2020) have
speculated that the instability of reduced GRN-B can better
disrupt proper TDP-43 folding, thus promoting its aggregation.
Interestingly, known human mutations in GRN-B which disrupt
the predicted beta-hairpin stack structure are linked to FTD,
suggesting that the stacked structure is important for chaperone
activity (van der Zee et al., 2007). Similar studies with GRN-
C and TDP-43 show that GRN-C reduces thioflavin T-positive
fibrillation of TDP-43 and promotes TDP-43 liquid-liquid phase
separation in vitro (Bhopatkar et al., 2020). Taken together,
these results suggest that certain individual secreted GRNs
may function as sequestrase chaperones to remove aggregating
proteins from solution and prevent the accumulation of small
soluble toxic oligomers. The remaining GRNs and full-length
progranulin remain to be mechanistically studied for in vitro
chaperone activity.

Disease Relevance and Therapeutic

Potential

A variety of mutations in the progranulin gene are now
known to result in FTD; these diminish levels of secreted
progranulin either through reduced translation or via improper
folding (Baker et al., 2006; Cruts et al., 2006; Chen et al.,
2015). In FTD patients who lack GRN mutations (the more
common form of FTD), CSF progranulin levels are still reduced
as compared to healthy controls, suggesting that indirect
changes in progranulin levels might contribute to these forms
of FTD (Wilke et al., 2017). Loss of progranulin results
in degeneration of the frontal and temporal lobes, causing
dementia and finally death. Studies of rare individuals with
two faulty copies of GRN, and of mouse progranulin knockout
models, both support a severe impact of progranulin loss on
lysosomal function; in humans, the complete loss of progranulin
results in lysosomal storage disease (Ahmed et al, 2010;
Smith et al., 2012).

In brain samples from patients with AD, immunoreactive
progranulin colocalizes with Abeta deposits (Gowrishankar et al.,
2015). Progranulin immunoreactivity is interspersed within
most Abeta plaques in low pathology AD brains with fewer
and smaller plaques (Mendsaikhan et al., 2019a), suggesting
extracellular chaperone action. In a mouse model with mild
amyloid formation, reduced progranulin levels increase amyloid
deposition in the brain, while in the 5xFAD mouse model
with high amyloid formation, overexpression of progranulin
decreases Abeta plaque load (Minami et al, 2014). Genetic
evidence also links progranulin to AD; the rs5848 polymorphism
is linked to a 1.36-fold increased risk of late onset AD (Chen
et al,, 2015). This same polymorphism has been linked to
increased risk of hippocampal sclerosis, as well as to increased
CSF levels of tau (Fardo et al, 2017). As AD progresses,
CSF levels of progranulin increase in the same time frame as
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neurodegeneration and neurofibrillary tangle formation occur
(Sudrez-Calvet et al., 2018).

Given the genetic risks associated with low progranulin levels
in FTD and AD, increasing brain levels of progranulin via
recombinant protein, viral delivery, or small molecule regulators,
have all been proposed as potential disease treatments (reviewed
in Gass et al, 2012). Determining the appropriate dosage
will be critical, since adeno-associated virus- (AAV)-mediated
overexpression of progranulin can cause hippocampal toxicity
and neuronal degeneration via increased infiltration of T cells
into the brain (Amado et al, 2019). Increasing progranulin
expression can also induce ER stress in a variety of cell types
(Li et al, 2015), likely due in part to the large number of
disulfide bonds and complex folding. Nevertheless, a variety
of studies are currently ongoing which involve therapeutic
modulation of progranulin (recently reviewed in Cui et al., 2019).
Of these, lentivirus-mediated overexpression of progranulin has
likely been the most successful, and has been shown to reduce
plaque burden and synapse loss in a mouse model of AD (Van
Kampen and Kay, 2017). This same group had earlier shown
that viral progranulin delivery into the substantia nigra protects
dopaminergic neuronal health in a mouse model of PD (Van
Kampen et al., 2014). In a null GRN mouse background, AAV-
expressed progranulin rescues lysosomal function and reduces
lipofuscinosis (Arrant et al, 2018). Oral administration of
the disaccharide trehalose, an upregulator of autophagy, also
increases progranulin expression in a haploinsufficient mouse
model (Holler et al., 2016). Taken together, these data suggest
that upregulation of progranulin expression, while potentially
challenging to accomplish, may represent a promising treatment
for FID, AD, and PD.

Summary

Modulating progranulin levels as a therapy in neurodegenerative
disease shows great promise. However, achieving efficacious
progranulin upregulation will require therapeutic discrimination
between its various pro-growth, inflammatory, and chaperone
activities. To better understand the role of progranulin as a
general chaperone, in vitro assays of the effects of full-length
progranulin will be required to complement the current studies
of the individual domains on the aggregation and fibrillation of
a variety of toxic proteins. Experiments defining the interactions
between progranulin and/or individual GRNs with aggregating
proteins are only now being attempted with mechanistic scrutiny
(Bhopatkar et al., 2020).

THE BRICHOS DOMAIN

The BRICHOS domain was originally found in, and named
after, a set of chaperone proteins - Bri2, chondromodulin-1 and
proSP-C - which demonstrate anti-amyloidogenic properties.
Since its discovery in 2002, the BRICHOS domain has been
found in 12 different protein families, with expression in various
tissues. BRICHOS-domain proteins are ER membrane proteins
and contain the BRICHOS domain in the C-terminal region;
this domain is cleaved off by furin and other enzymes in the

secretory pathway lumen and can then be secreted out of the
cell. Interestingly, mutations in the genes encoding these proteins
act as causative disease agents, for example Bri2 in dementias,
chondromodulin-1 in cancer, and proSP-C in lung fibrosis.
Cleaved products of Bri2 and proSP-C are also prone to form
amyloid deposits. Abeta has been well studied as a client of the
BRICHOS chaperone domain (reviewed in Willander et al., 2011;
Buxbaum and Johansson, 2017).

Structure and Localization

BRICHOS-domain containing proteins are generally ER-based
type-II transmembrane proteins which contain a BRICHOS
domain connected to the N-terminal transmembrane domain
via a linker region. A 17-amino acid C-terminal luminal end
is cleaved off by proteases, such as furin, forming the mature
protein (Kim et al., 1999; Wickham et al., 2005). The luminal
domain of Bri2 is further cleaved by ADAM10, thereby releasing
the roughly 100-amino acid long BRICHOS domain into the
secretory pathway (Martin et al., 2008). The crystal structure
of recombinant human proSP-C BRICHOS domain shows beta
sheets flanked by two alpha helices, with a tendency to form
dimers and oligomers (Willander et al., 2012). All BRICHOS
domains contain three conserved amino acids, two cysteines
and one aspartic acid. The proteins also contain regions with
the non—polar residues valine, isoleucine, phenylalanine and
cysteine, which are prone to form beta-sheets with a tendency
to aggregate (reviewed in Buxbaum and Johansson, 2017).
While proSP-C (encoded by SFTPC) is expressed in the lungs,
Bri2 (encoded by ITM2B) is expressed ubiquitously, and Bri3
(encoded by ITM2C) is brain-specific; both Bri2 and Bri3 are
highly expressed in the hippocampus, cerebellum and cerebral
cortex (Akiyama et al., 2004). In neuronal cell lines, Bri2 and Bri3
have been localized to the ER and Golgi complex, as well as within
neurites (Martins et al., 2016). Localization of Bri2, but not its
proteolytic cleavage product, to the plasma membrane appears to
be regulated by glycosylation (Tsachaki et al., 2011).

Function and Mechanism
Bri2 physically interacts with several proteins involved in
membrane trafficking and the cytoskeleton (Martins et al., 2018).
Several different BRICHOS-containing proteins were identified
within the post-synaptic compartment in a mass spectrometry
study and implicated in vesicle recycling, neurite growth and
plasticity, neuronal differentiation, and signaling (Martins et al.,
2018). In particular, Bri2 and Bri3 have been found to be
physically complexed with, and be phosphorylated by, PP1,
which regulates its functions in neurite growth and neuronal
differentiation, as well as its proteolytic processing (Martins et al.,
2016, 2017). Bri2 and Bri3 bind to APP during biosynthesis,
shielding it from the secretases involved in APP cleavage,
and reducing the production of the aggregation-prone peptide
products Abeta40 and Abeta42 (Matsuda et al, 2005, 2011).
These studies indicate a role for Bri2 and Bri3 in the functional
regulation of APP processing under normal conditions.
Different in vitro studies point to a variety of possible
mechanisms proposed to explain how recombinant human
BRICHOS might modulate Abeta oligomerization, namely
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via blocking secondary nucleation and/or by blocking fibril
formation and elongation. In vitro, the various recombinant
BRICHOS domains of Bri2, Bri3 and proSP-C have all been
shown to reduce toxic Abeta oligomerization and fibrillation
(Biverstal et al, 2015; Dolfe et al., 2016). The assembly
state of the BRICHOS domain appears to dictate its specific
effect on amyloid oligomerization and fibrillation. Recombinant
BRICHOS monomers adopt different quaternary structures; they
also form dimers, which act as the subunits for oligomerization
(Chen et al.,, 2017). The monomeric and dimeric states have been
shown to be more potent at reducing Abeta fibril formation as
compared to oligomeric states (Cohen et al., 2015; Chen et al,
2017). Dimers also appear to be more potent than monomers
in reducing Abeta fibril elongation and secondary nucleation by
binding to Abeta fibrils (Cohen et al., 2015; Chen et al., 2017).

The BRICHOS domain mutations R221E and S95R, which
promote a stable monomeric state, were found to significantly
reduce secondary nucleation and to delay fibrillation in vitro,
respectively, as compared to mutant oligomeric states (Biverstal
et al, 2015; Chen G. et al, 2020). Immunogold electron
microscopy showed that formation of Abeta fibrils in vitro
was drastically delayed in the presence of recombinant Bri2
and proSP-C BRICHOS domains, likely due to the fact that
BRICHOS domain binds to Abeta fibrils, shielding it from
further surface nucleation (Willander et al., 2012). More recently,
cryo-EM studies showed that the process of Abeta fibrillation
consisted of both formation of free floating protofibrils as well as
fibrils with surface nucleation; in the presence of the BRICHOS
domain, a higher number of free-floating Abeta protofibrils
were found, while in its absence, secondary nucleation was
favored (Tornquist et al,, 2020). This supports the idea that
the possible mechanism of action is by reducing secondary
nucleation rather than prevention of de novo fibril formation.
Interestingly, BRICHOS domain oligomers are also able to reduce
non-fibrillar aggregation of Abeta (Chen et al, 2017). Taken
together, these biochemical studies strongly support a role for
the BRICHOS domain to act as an anti-aggregant for Abeta,
and additionally identify monomeric variants that could be
tested in cell culture and animal models to provide effective
neuroprotection against Abeta toxicity.

Disease Relevance and Therapeutic
Applications

Genetic evidence supports the association of BRICHOS domain-
containing proteins with neurodegenerative disease. Read-
through mutations in Bri2, leading to the expression and
cleavage of an additional 11 amino acids in the C-terminal
peptide product, result in the formation of amyloid protein
deposits in the brain, and are responsible for the familial British
and Danish dementias (FBD and FDD, respectively) (Rostagno
et al, 2005). Bri2 and Bri3 BRICHOS domains have been
found to be colocalized with amyloid plaques in AD patients
(Del Campo et al., 2014; Dolfe et al., 2018). Bri2 and Bri3
were also shown to be able to bind Abeta and/or APP in
the CAl region of the hippocampus in transgenic APP mice
(Dolfe et al., 2018). However, while levels of Bri2 levels were

increased in AD patient brains, levels of Bri3 were reduced
(Dolfe et al.,, 2018). In cell culture, Bri2, but not Bri3, has
been detected in the medium of overexpressing cell lines (Dolfe
et al., 2018). The dissimilarities between Bri2 and Bri3 levels and
localization support differences in mechanism of action between
the two chaperones. While the Bri2 BRICHOS-domain probably
interacts with Abeta extracellularly and/or upon reuptake, it is
likely that Bri3 BRICHOS-domain binds Abeta only within the
secretory pathway.

In vivo and ex vivo studies highlight the importance of
BRICHOS-containing proteins in combating Abeta toxicity.
Although in vitro, recombinant BRICHOS dimers exhibit
higher activity against Abeta fibrillation than monomers,
physiologically, it is the BRICHOS monomers rather than dimers
that reduce Abeta-induced damage to neuronal networks in
mouse hippocampal slices treated with Abeta. However, these
studies involve the use of BRICHOS domain protein at the
relatively high chaperone: client molar ratio of 1:1 (Chen et al.,
2017). Recombinant Bri2 BRICHOS domain and its monomeric
variant, R221E, were also able to reduce cytotoxic effects induced
by exposure of hippocampal slices to Abeta42 monomers, and
also partially to preformed Abeta fibrils (Poska et al., 2016; Chen
G. et al.,, 2020). In a Drosophila model of AD, coexpression of
Bri2 with Abeta42 reduced Abeta aggregation in adult brains
as well as Abeta-induced retinal degeneration; overexpressed
Bri2 also rescued lifespan and motor defects (Hermansson
et al., 2014). In the presence of Bri2, Abeta42 became diffusely
colocalized with Bri2 in the mushroom bodies, the seat of
cognition and learning in the adult Drosophila brain, instead
of exhibiting the punctate morphology observed in the absence
of Bri2 (Poska et al., 2016), providing evidence that Bri2 can
prevent Abetad2 deposition in vivo. In a mass spectrometry
screen, the ubiquitin ligase NRBP1 was recently found to be a
substrate receptor for Bri2 and Bri3, recruiting these proteins
during ERAD for ubiquitination by the Cullin-RING ligase
complex and thereby targeting them for proteasomal degradation
(Yasukawa et al., 2020). Transgenic mice expressing fused Bri2-
Abeta40/42 exhibited delayed formation of Abeta plaques, and
were devoid of cognitive or behavioral decline, supporting the
sequestering activity of Bri2 as a likely mechanism to prevent
the spread of toxic oligomers and reduce neuronal death (Kim
J. et al, 2013). Reduced cognitive decline in Bri2-Abeta40/42
expressing transgenic mice compared to controls suggests that
this specific mechanism normally serves to prevent or delay
processes that much later result in the development of AD
(Kim J. et al., 2013). A similar effect has not been identified
in AAV-mediated expression of Bri-Abeta40/42 in rats, which
developed pathological symptoms of AD (Lawlor et al., 2007).
Efforts to increase Bri2 and Bri3 expression could prove to be
therapeutic in AD by regulating events from Abeta processing to
fibril formation.

Summary

The data obtained to date indicate that BRICHOS domain-
containing proteins-while themselves susceptible to amyloid
formation-can effectively combat Abeta-mediated cytotoxicity
at various stages: by preventing APP cleavage and Abeta toxic

Frontiers in Aging Neuroscience | www.frontiersin.org

August 2020 | Volume 12 | Article 268


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Chaplot et al.

Secreted Chaperones in Neurodegeneration

peptide production, as well as by interacting with Abeta to
reduce fibrillation both within the secretory pathway and the
extracellular milieu.

7B2 AND PROSAAS

While all other secreted chaperones discussed in this review
are expressed ubiquitously in the body, there are two small
chaperone proteins, 7B2 and proSAAS, whose expression is
mainly restricted to cells containing a regulated secretory
pathway, namely neurons, neuroendocrine, and endocrine cells.
Both proteins are similar in size, around 250 amino acids, contain
functionally similar core segments, and are cleaved at least
once by the proprotein convertase furin, releasing about-20 kDa
N-terminal domains with chaperone functionality. However,
7B2 and proSAAS have no amino acid homology. Interestingly,
7B2 is an ancient protein, found in organisms as primitive as
flatworms and rotifers (see PFAM PF05281) while the proSAAS
protein is much more recent, first appearing only in vertebrates
(see PFAM PF07259).

Structure and Localization

The neuroendocrine chaperone 7B2 (gene name SCG5) was first
identified in neuroendocrine tissues by direct peptide sequencing
over 28 years ago (Hsi et al., 1982); it is predominantly expressed
in pituitary, all areas of the brain, pancreas, and adrenal (Iguchi
et al., 1984, 1985). Within the cell, 7B2 is concentrated within
regulated secretory granules, from which it is released following
stimulation (Iguchi et al., 1987b); see also review (Mbikay et al.,
2001). CSF concentrations approximate 3 ng/ml or 0.14 nM
(Iguchietal., 1987a) and decline with age (Natori et al., 1987).Ina
specific substrain of mice, loss of 7B2 results in a lethal phenotype
between 5 and 8 weeks of age owing to hypersecretion of ACTH
from the pituitary (Westphal et al., 1999; Laurent et al., 2002).
These data indicate a possible role for 7B2 in peptide hormone
storage. One early study indicates that the C-terminal peptide
can depolarize vasopressin- and oxytocin-containing neurons
in hypothalamic explants (Senatorov et al., 1993). However, no
other studies have shown neuropeptide-like actions for 7B2, and
no receptors for 7B2-derived peptides have been identified.

Full-length 27 kDa 7B2 is cleaved by Golgi-resident furin,
releasing a 21 kDa product (Ayoubi et al., 1990). Both 27 kDa
and 21 kDa 7B2 contain a central IDR, as indicated both by the
PONDR prediction algorithm and a lack of secondary structure
detected by circular dichroism, with the 27 kDa form being more
compact than 21 kDa form (Dasgupta et al., 2012).

ProSAAS (gene name PCSKIN) is an abundantly expressed
brain protein discovered 20 years ago using mass spectrometric
techniques applied to brain peptide extracts (Fricker et al., 2000).
Like 7B2, it is predominantly expressed within the brain as well as
in endocrine and neuroendocrine tissues (Lanoue and Day, 2001;
Sayah etal., 2001; Morgan et al., 2005), where, like 7B2, it is stored
within secretory granules (Wardman et al., 2011; Wardman
and Fricker, 2014). While the 7B2-encoding gene contains a
heat shock-responsive element (Martens, 1988; Mbikay et al.,
2001), the mouse or human proSAAS-encoding genes do not.

Interestingly, heat shock does increase the quantity of cellular
proSAAS in cell culture (Shakya et al., 2020). Expression of
the Pcskln gene in differentiating neural tube neurons was
observed in developing rat embryos as early as 12 days of
gestation, while proSAAS processing begins in mid-gestation
(Morgan et al., 2005). Due to the lack of an adequately sensitive
radioimmunoassay, the concentration of proSAAS in CSF and
in plasma is not yet known, but brain concentrations have been
estimated to be between 10 and 500 nM depending on region
(Jarvela et al., 2016).

Within the secretory pathway, basic residue pairs within the
amino- and carboxy-terminal portions of 27 kDa proSAAS are
cleaved by proprotein convertases and carboxypeptidase E to
produce various secreted peptide products (Fricker et al., 2000;
Mzhavia et al.,, 2001, 2002; Sayah et al.,, 2001; Wardman et al,,
2011), and specific proSAAS-derived peptides are thought to
have biological functions (Hatcher et al., 2008). The 21 kDa
N-terminal domain of proSAAS, separated from the carboxy-
terminal domain by a furin consensus sequence, harbors an
internal predicted coiled coil region as well as a predicted IDR
(Kudo et al,, 2009), through which it potentially interacts with
client proteins.

Function and Mechanism

Thirteen years following its discovery, 7B2 was identified as
an anti-aggregant chaperone for prohormone convertase 2
(proPC2) (Zhu and Lindberg, 1995; Lee and Lindberg, 2008),
functioning through an evolutionarily conserved PPNPCP motif
within a 36-residue region in the middle of the protein (Zhu
et al, 1996; Muller et al., 1999). The chaperone activity of
this anti-aggregant region is reminiscent of the a-crystallin-
like domain within soluble sHSPs (see below), although the
two types of proteins bear no sequence similarity. Like sHsps,
7B2 demonstrates tendencies to both dimerize and to exhibit
concentration-dependent polydispersity (Dasgupta et al., 2012);
we speculate that as in sHsps, the presence of IDRs as well
as the formation of oligomers may be important for binding
aggregation-prone proteins such as proPC2 (Lee and Lindberg,
2008), insulin-like growth factor (Chaudhuri et al., 1995), and
islet amyloid polypeptide (Peinado et al., 2013).

Like 7B2, proSAAS is also capable of reducing the fibrillation
of aggregating proteins. To date known proSAAS clients include
Abeta (Hoshino et al.,, 2014); a-synuclein (Jarvela et al., 2016);
and islet amyloid polypeptide (Peinado et al., 2013). Exciting new
results indicate that cytoplasmic expression of proSAAS results
in the formation of phase-separated proSAAS spheres which are
able to trap the aggregating protein TDP-43214~4!4 within their
cores (Peinado et al., 2020). Further structure-function analysis
should permit us to determine the self-associating domains of
proSAAS as well as the residues lining the sphere interior, which
clearly favor aggregate binding.

Disease Relevance and Therapeutic
Applications

Evidence of extracellular action for 7B2 is its colocalization
with Abeta plaques; immunoreactive 7B2 is also found in Lewy
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bodies in PD patient samples (Helwig et al., 2013). While levels
of 7B2 in the CSF were shown to decrease during normal
aging (Natori et al., 1987), three studies reported increased CSF
7B2 levels in FTD (Mattsson et al., 2008) and/or ALS patients
(Ranganathan et al., 2005; Jahn et al., 2011). However, among
AD patients, contradicting studies have reported either a slight
increase (Winsky-Sommerer et al., 2003) or no change (Iguchi
et al,, 1987a) in 7B2 levels. APP transgenic mouse brains also
do not show alterations in 7B2 levels, indicating that 7B2 is not
upregulated during the course of disease (Jarvela et al., 2018).
Majerova et al. (2017) showed increased levels of CSF 7B2 in
proteomic studies of a tauopathy transgenic rat model of AD.
While no genetic evidence directly implicates 7B2 in disease
processes, the potent chaperone action of 7B2, and the presence of
7B2 in a variety of extracellular protein deposits supports the idea
that brain 7B2 levels may be relevant to proteostatic processes in
neurodegeneration.

Immunofluorescence studies have similarly shown that
proSAAS co-localizes with aggregated proteins involved in
neurodegenerative disease, namely tau tangles in dementia
(Kikuchi et al., 2003); Abeta plaques in AD (Hoshino et al., 2014);
and Lewy bodies in PD (Helwig et al., 2013). Seven independent
proteomics studies have shown that the level of proSAAS in CSF
taken from AD and/or FTD patients is reduced as compared to
controls, suggesting possible cellular retention within the brain
(Davidsson et al., 2002; Abdi et al., 2006; Finehout et al., 2007;
Jahn et al., 2011; Choi et al., 2013; Holtta et al., 2015; Spellman
et al., 2015; reviewed in Pedrero-Prieto et al., 2020). Two very
recent CSF studies support this reduction (Rotunno et al., 20205
Van Steenoven et al., 2020).

The idea that proSAAS plays a role in neurodegenerative
proteostasis is further supported by human transcriptomics
studies, which indicate increased proSAAS expression during AD
progression (Mathys et al., 2019). Increased levels of proSAAS
have also been found in brain tissues of patients with CAA
(Inoue et al., 2017), as well as in models of neurodegenerative
diseases including horses (McGorum et al., 2016) and rats
(Chatterji et al., 2014). Lastly, recent data from our laboratory
indicate that cellular proSAAS levels are upregulated following
ER and even heat stress (Shakya et al., 2020); interestingly, in
parallel experiments, similar upregulation was not observed for
7B2. Lastly, in an experiment to determine which endogenous
CSF proteins bind to the amyloid fold, proSAAS was identified
(Juhl et al, 2019). Collectively, these data strongly support
the involvement of proSAAS in proteostatic mechanisms of
neurodegenerative disease.

Biochemical studies indicate possible similar mechanisms
of action for 7B2 and proSAAS with respect to their ability
to block aggregative processes in neurodegeneration. For
example, in vitro fibrillation studies demonstrate that both
chaperones potently reduce the oligomerization of aggregation-
prone proteins (Helwig et al., 2013; Hoshino et al., 2014; Jarvela
et al., 2016). Structure-function studies have revealed that for
both proteins, a conserved internal domain of about 100 residues
is responsible for anti-fibrillation chaperone activity (Helwig
et al, 2013; Jarvela et al, 2016). Both proteins act at sub-
stoichiometric client ratios; while both proSAAS and 7B2 are

able to reduce the fibrillation of Abeta at a 1:10 chaperone: client
molar ratio, proSAAS is able to efficiently diminish a-synuclein
fibrillation at a molar ratio of 1:70. While both chaperones reduce
Abeta and a-synuclein fibrillation, neither is able to disaggregate
preformed fibrils, and the addition of ATP and/or HSP70 has
no effect on their activity (Helwig et al., 2013; Jarvela et al,
2016). These results support the idea that these chaperones
act alone rather than in concert with other chaperones or
disaggregases. How these two chaperones are able to become
trapped within aggregates is unclear, but if lessons from small
cytoplasmic Hsps apply, then perhaps initial anti-aggregant
activity is transformed into a sequestrase function as client levels
progressively overwhelm chaperone levels (Mogk et al., 2019).

Limited studies in cell and animal models also support the idea
of extracellular anti-aggregant action for proSAAS and 7B2. Both
chaperones are cytoprotective in cell culture as well as in rodent
models of AD and PD (Helwig et al., 2013; Hoshino et al., 2014;
Jarvela et al., 2016). Application of recombinant 21 kDa proSAAS
was found to reduce cytotoxicity in a-synuclein-expressing
SH-SY5Y cells and in Abeta oligomer-treated Neuro2A cells,
indicating effective extracellular chaperone function against these
two aggregating proteins (Hoshino et al, 2014; Jarvela et al,
2016). Lentiviral expression of proSAAS increased the number
of tyrosine hydroxylase-positive cells in rat primary nigral cell
cultures expressing AAV-encoded a-synuclein (Jarvela et al.,
2016). Similarly, external application of recombinant 21 kDa
7B2, as well as AAV-mediated overexpression of intact 7B2 in
Neuro2A cells, were both cytoprotective against toxic Abeta
oligomers (Helwig et al., 2013).

Paradoxically, APP model mice lacking 7B2 expression (by
crossing with 7B2 knockout mice) exhibit a reduction rather
than an increase in Abeta plaques (Jarvela et al., 2018).
7B2 null APP model mice also do not exhibit alterations in
soluble Abeta, cognition, or memory compared to similar mice
expressing 7B2 (Jarvela et al., 2018). These results are reminiscent
of similar paradoxical results obtained in various crosses of
clusterin knockout mice with APP model mice (DeMattos
et al., 2002; Wojtas et al, 2017; Oh et al, 2019) which were
attributed to the dominance of clearance effects rather than
aggregate formation (Wojtas et al,, 2017). We speculate that
for both clusterin and 7B2, chaperone loss may directly result
in lower extracellular aggregate sequestration through some as-
yet undefined mechanism. However, as with clusterin, it is
also possible that the loss of 7B2 impacts the expression of
other genes, which indirectly causes the observed reduction
in plaques. Whether the expression of either proSAAS or 7B2
impacts brain Abeta clearance is not yet known. Similar studies
in proSAAS knockout mice (Morgan et al, 2010) have not
yet been performed.

Summary

Since proSAAS and 7B2 are secreted from neurons, are
associated with protein deposits extracellularly, and (in the
case of proSAAS), exhibit increased brain expression during
the development of neurodegenerative disease, it is feasible to
speculate that these chaperones act extracellularly to perform a
protective proteostatic function. Thus, overexpression of these
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chaperones represents a potential approach for slowing the
progression of AD and PD, and indeed our studies using a
rat model of PD support the idea that manipulation of brain
proSAAS levels is beneficial to disease outcome (Lindberg et al.,
2018). Additional in vivo studies to decipher the physiological
mechanisms involved in cytoprotection are needed to identify
the precise biochemical contribution of these chaperones in
disease processes. Similarly, additional in vitro structure-function
experiments will shed light on the precise regions within each
protein that contribute to anti-aggregant function.

SMALL HEAT SHOCK PROTEINS (sHsps)

The sHsp family of chaperones has been frequently reviewed
within recent years, even specifically within the context of
neurodegeneration (Kourtis and Tavernarakis, 2018; Muranova
et al, 2019; Webster et al., 2019; Vendredy et al, 2020).
These reviews have amply covered the clearly protective roles
of intracellular sHSPs. For the purpose of this review, we
will focus on studies relating to secreted sHsps in the context
of neurodegenerative disease. Studies implicating extracellular
mechanisms of sHsps in neurodegenerative disease fall into
the following three categories: disease-associated analyses of
biological fluids, such as CSF and plasma; demonstration
of immunohistochemical association with extracellular protein
aggregates; and direct cellular secretion experiments.

Structure and Localization

All ten members of this family of chaperones (HspBs 1-10) are
small proteins of less than 45 kDa and all possess a conserved a-
crystallin domain (“ACD”) which is both required for chaperone
action and responsible for the self-association phenomenon that
creates molecular mass polydispersity. This domain is almost
always flanked by two other domains; the N-terminal domain
is about 50 residues, while the C-terminal domain may be quite
short in some family members.

sHSPs are expressed in every tissue, but three family members
are especially abundant in brain: HspB1l, HspB5 and HspBS8;
HspB2, HspB3, HspB6, and HspB7 are also detected in brain
but at much lower levels (Quraishe et al., 2008; Kirbach and
Golenhofen, 2011). Interestingly, these abundant sHsps are
predominantly expressed by non-neuronal cells such as glia,
rather than by neurons (reviewed in Golenhofen and Bartelt-
Kirbach, 2016), where they are found associated with intracellular
aggregates in various tauopathies.

Within the cell sHSPs are predominantly located within the
cytoplasm but may under certain circumstances be released
from cells through various unconventional means that include
exosomal and/or endolysosomal secretion, other mechanisms
such as tunneling nanotubes, and even direct secretion (recently
reviewed in Reddy et al., 2018; Webster et al., 2019). Astrocytes
are able to release HspBl via exosomes (Nafar et al., 2016),
and retinal pigment epithelium cells also use exosomes to
secrete HspB5 (Sreekumar et al., 2010); indeed, the latter
chaperone may be required for exosome synthesis (Gangalum
et al, 2016). In contrast, unconventional secretion of this

chaperone from COS cells requires the autophagic pathway
and is controlled by phosphorylation (ID’Agostino et al., 2019).
A dynamic relationship between sHsp secretion and extracellular
proteostasis has not yet been established.

Function and Mechanism

sHsps are important ATP-independent holdase chaperones
that interact with monomers of aggregation-prone proteins
to stabilize them in preparation for refolding or disposal.
Most sHsps are found in homo-oligomers of 10-20 subunits,
composed of dimer subunits interacting via the ACD (Kim
et al., 1998). Through partial unfolding, sometimes in response
to environmental stressors (Kirbach and Golenhofen, 2011;
Alderson et al., 2020), they are able to interact with a variety
of client proteins (reviewed in Webster et al., 2019). Supportive
of an extracellular role in proteostasis, HspB5, also known as
alpha crystallin, aBC, and CRYAB, has long been known as a
potent anti-aggregant in vitro against a variety of fibrillating
proteins; these studies span the last two decades [recently
reviewed in Boelens (2020); see also Selig et al. (2020) and
Bendifallah et al. (2020) for recent results concerning Abeta and
synuclein, respectively].

Considerable evidence implicates sHsp family members in
extracellular proteostasis. sHsp chaperones are frequently found
associated with both intracellular as well as extracellular protein
deposits (reviewed in Hilton et al, 2013; Reddy et al., 2018).
Phosphorylation induces structural changes resulting in oligomer
dissociation, which can be associated with reduced chaperone
capacity (D’Agostino and Diano, 2010). The HspB1 chaperone
(also known as Hsp27 in humans and Hsp25 in rodents) is a
stress-responsive chaperone which both facilitates folding and
acts as an antioxidant; the secretion of this chaperone under
various cellular conditions - the majority of which are cancer-
related — has been nicely summarized in Reddy et al. (2018).
A large number of studies have demonstrated the presence
of HspB5 within extracellular brain aggregates, supporting its
secretion during proteostatic failure (recently comprehensively
reviewed in Muranova et al., 2019; Webster et al., 2019; Vendredy
et al., 2020). Extracellular chaperone action may occur through
facilitation of the sequestration of Abeta-related species rather
than by refolding attempts (Ojha et al., 2011). This phenomenon
illustrates the apparent paradox of chaperone trapping within
insoluble aggregates. Intracellularly, during stress when proteins
become unstable, sHsps form an outer shell composed of dimer
subunits that sequester early unfolded intermediates of these
proteins in order to preserve their partially folded structure,
thus preventing their interaction with one another (Mogk et al,,
2019). Intracellular sHsps commonly require ATP-dependent
chaperones to resolubilize unfolded “held” proteins; since these
same ATP-dependent chaperones are apparently not secreted
in sufficient quantities, secreted sHsps may operate mainly to
assist extracellular sequestration events rather than assisting
unfolding. The exact mechanism for extracellular sequestration is
as yet unclear but could be similar to intracellular sequestration.
However, client: chaperone ratios likely differ inside and outside
the cell, which could impact chaperone shell formation and
subsequent core sequestration. A high client: chaperone ratio
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may underlie chaperone trapping within protein deposits,
whereas a low ratio might result in trapping of toxic oligomers
inside the chaperone shell to prevent further aggregation.

In non-neuronal systems, secreted sHSPs appear to exert
other extracellular roles, for example as signaling peptides or as
peptides involved in immunity and inflammation (Arac et al.,
2011; discussed in Reddy et al., 2018); whether this also occurs in
brain, and how these other roles might interact with chaperone
functions has not yet been established.

Disease Relevance and Therapeutic
Applications

Evidence of the involvement of sHSPs in neurodegenerative
disease comes from studies of human mutations; for example,
mutations in the three family members most abundant in
brain, HspB1, HspB3, and HspB8, have been implicated in
certain forms of Charcot-Marie-Tooth neuropathy and/or
distal hereditary motor neuropathy (Muranova et al, 2019
Vendredy et al., 2020). Renkawek et al. (1999) found increased
expression of HspBl in PD; interestingly, this same group
showed that HspB8, also known as Hsp22, is upregulated in
brains from AD model mice (Wei, 2020). This chaperone
colocalizes with extracellular amyloid deposits found in CAA,
a common comorbid condition in AD (Wilhelmus et al,
2009). A recent meta-analysis of protein quality control
pathways in the AD brain clearly shows upregulation of sHSPs
(Koopman and Riidiger, 2020). Multiple immunohistochemical
studies have shown that sHsps are present within extracellular
amyloid plaques (Wilhelmus et al., 2006; Ojha et al, 2011;
see Reddy et al, 2018 for review). Coupled with multiple
reports of upregulation of sHsp expression in AD and
other neurodegenerative diseases (discussed further in
Webster et al, 2019) these findings support the idea that
sHsps may operate extracellularly within the brain to reduce
Abeta toxicity in AD.

With regard to other neurodegenerative diseases, elevated
serum levels of HspBl have been reported during attacks in
multiple sclerosis (Ce et al., 2011). However, in a large proteomics
meta-analysis of Alzheimer’s CSF biomarkers, no sHSPs were
identified as differentially expressed in any of the over 40
collated studies (Pedrero-Prieto et al., 2020) indicating that AD
progression does not involve alterations in the secretion of sHsps
into the CSF. The extracellular (blood) presence of HspB5 has
been demonstrated by inference in the form of autoantibodies
found in the sera of AD and PD patients (Papuc et al., 2016).

Many studies have shown that overexpression of HspB5 is
neuroprotective in a variety of cell and animal model systems
(reviewed in Kourtis and Tavernarakis, 2018; Muranova et al.,
2019; Webster et al., 2019; Vendredy et al., 2020).

With regard to therapeutic applications, the large number
of interacting client proteins renders the notion of specific
drug-induced enhancement of a specific aggregating target
problematic. However, Rothbard et al. (2019) have recently
demonstrated that administration of HspB5 was therapeutic
in animal models of multiple sclerosis, retinal and cardiac
ischemia, and stroke.

Summary

The sHsps are a group of small chaperones with no energetic
requirements for client binding which efficiently bind to a large
number of aggregated proteins involved in neurodegenerative
disease. While they are clearly secreted (mostly from glia)
under certain circumstances, we are only now beginning to
understand the non-canonical secretion mechanisms which
might allow these abundant cellular proteins to assist in
extracellular proteostasis. We clearly also need a more complete
understanding of the biochemical mechanisms underlying the
extracellular sequestration of aggregating proteins by sHSPs.

GENERAL DISCUSSION

In this review, we have attempted to summarize the available
information on select secreted chaperones associated with
neurodegenerative disease, using biochemical and genetic
evidence to focus on those proteins with the strongest
evidence for both proteostatic as well as extracellular actions in
neurodegeneration.

Common Mechanisms of Action?

A common theme in many of the chaperones discussed above
is the presence of a specific domain functionally similar to the
a-crystallin domain which is required for chaperone activity.
In sHsps, this is the ACD itself; for clusterin, this may involve
residues 286-343, which exhibit 25% similarity with a canonical
ACD (Wilson and Easterbrook-Smith, 2000). In BRICHOS
domain-containing proteins, and in 7B2 and proSAAS, an
interior segment of about 100 residues, with no sequence
similarity to a-crystallin, is required for chaperone activity.
A similar functional segment has not yet been identified in
progranulin. In sHsps, these same sequences also function to
promote self-association (Kim et al., 1998; Wyatt et al., 2009).
Clusterin, 7B2 and proSAAS also form polydisperse assemblies;
we speculate that similarly to sHsps, polydispersity results in the
exposure of a range of different intrinsically disordered surfaces,
permitting these chaperones to bind diverse clients.

None of the chaperones discussed in this review work
together with other ATP-dependent chaperones to refold
proteins, but instead appear to act as holdases to bind
unstable protein monomers and small oligomers, initially to
prevent aggregation/fibrillation, with evidence suggesting both
extracellular and intracellular scavenging action (Figure 1,
left panel). Presumably, when overwhelmed with client, these
chaperones act as sequestrases to bind and sequester toxic
oligomers, potentially leading to the formation of insoluble
protein deposits such as extracellular plaques and intracellular
Lewy bodies (Figure 1, right panel). These chaperones, like
their client counterparts, contain IDRs of varying degrees that
essentially enable the holdase and sequestrase activities, and
allows them to form functional multimers that can bind to toxic
protein species, preventing cellular damage. Support for this
mechanism has been presented for clusterin, BRICHOS proteins,
and cytoplasmic sHsps (Rohne et al., 2016; Chen et al., 2017;
Mogk et al.,, 2019) and recent work shows similar properties
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for GRN-C (Bhopatkar et al., 2020) and for proSAAS (Peinado
et al., 2020). In addition, the finding of reduced plaque number
in AD model mice lacking 7B2 expression (Jarvela et al., 2018)
or clusterin (DeMattos et al., 2002; Wojtas et al., 2017) suggests
possible roles for 7B2 and clusterin in sequestration events
(Figure 1, right panel).

Possible mechanisms of chaperone action downstream of
misfolded protein sequestration have been identified for clusterin
and could serve as plausible pathways for other chaperones.
Clusterin mediates the clearance from the plasma (via the liver
and kidney) and CSF (via transcytosis across the blood-brain
barrier (BBB) of a variety of client proteins (Figure 2, panel 1).
Clusterin also promotes endocytosis and degradation via non-
professional phagocytic cells, through binding cell surface HSPGs
(Ttakura et al., 2020) (Figure 2, panel 2) and via microglial cells
by binding the surface receptor TREM2 (Triggering Receptor
Expressed on Myeloid Cells 2) (Yeh et al., 2016) (Figure 2,
panel 3). Similar membrane receptors in brain cells promote
extracellular clearance of client-chaperone complexes. These
processes would essentially prevent the likely spread of toxic
oligomeric species across the blood-brain barrier (Figure 2,
panel 1) and between neurons (Figure 2, panel 4). Of note,
transsynaptic transmission of misfolded proteins is increasingly
recognized as a major source of spread of pathogenesis across
brain regions (Peng et al., 2020).

Remaining Questions

Much additional in vivo work is required to document the
protective role of each of these chaperones in vivo. For example,
while there is evidence that intravenous administration of

recombinant clusterin in mice can reduce insoluble Abeta
levels and diminish hippocampal neuronal loss, clusterin-
deficient mice models expressing human APP/presenilin-1
have decreased rather than increased numbers of hippocampal
Abeta plaques; similar results were found with 7B2-deficient
mice. While these paradoxical results may be partially
explained by predominant effects on Abeta clearance, no
direct evidence supports this idea; and overexpression of
other chaperones, including sHsps, has been shown to be
beneficial in animal models of neurodegenerative disease
(reviewed in Kourtis and Tavernarakis, 2018; Webster et al,,
2019). The cleaved BRICHOS domain has been shown to
be anti-amyloidogenic in vitro, and cytoprotective ex vivo
in hippocampal slices and in vivo in Drosophila models of
AD and likely also in transgenic mice expressing fused Bri2-
Abeta40/42. However, in vivo data from deficient or transgenic
mice crossed with mice modeling neurodegenerative disease
are lacking for many of the other chaperones discussed here,
including proSAAS, BRICHOS domain-containing proteins
and progranulin.

Recent studies have identified the transmission of pathological
protein aggregates between cells as an important mechanism
underlying the progression of a variety of neurodegenerative
diseases (reviewed in Peng et al., 2020). Thus, the role of
the chaperones discussed here should be examined using
experimental paradigms that can discern cell-to-cell transmission
in vivo (Figure 2, panel 4), which have now been published for
a-synuclein, Abeta, tau, and TDP-43 (reviewed in Peng et al,
2020). Experiments involving supplementation or depletion
of individual chaperones using these spread paradigms
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should provide new mechanistic insights of extracellular
chaperone function.

Another interesting question is the contribution of secreted
chaperones to neuronal health under normal conditions. The
lack of animal models for many of these chaperones represents
a gap in our understanding of their mechanisms of action
under healthy conditions. Alternative mechanisms of how these
chaperones protect against disease can be obtained by elucidating
their normal chaperone functions in vivo. Bri2 and Bri3, for
example, are known to suppress the cleavage of APP in order
to prevent formation of toxic peptides, potentially representing
an effective mechanism to delay AD pathology; this may or
may not occur during the normal lifespan. For progranulin, its

many other bioactivities (pro-growth and anti-inflammatory) are
not clearly related to its chaperone roles, which provides an
additional complication; however, attempts should be made to
tease out its specific chaperone contributions to neuroprotection.

Clear evidence of cytoprotective activity in cell culture
and animal disease models warrants the pursuit of many
of these chaperones as therapeutics, and indeed several of
the chaperones discussed are already being exploited as
pharmacologic agents. While different modes of administration,
using either gene therapy or peptide therapy (including
intravenous or intraperitoneal injections of viral vectors; more
targeted routes such as intracerebral inoculations; and nasal
sprays) have all been suggested, at present it is not clear which
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route might be most effective. In addition to directly increasing
chaperone levels, pharmacological agents that indirectly impact
either chaperone levels or activity could also be effective, albeit
with possible off-target effects.

In summary, while the last decade has resulted in an explosion
of information on the mechanism of action of many cellular
chaperones, we are only now beginning to understand the
biochemical mechanisms involved in extracellular proteostasis.
Future work in this area will provide us with a complete
appreciation of the likely many redundant mechanisms
brain cells employ to carry out extracellular proteostasis
over the lifetime.
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Alzheimer’s disease (AD) is pathologically defined by extracellular accumulation of
amyloid-B (AB) peptides generated by the cleavage of amyloid precursor protein (APP),
strings of hyperphosphorylated Tau proteins accumulating inside neurons known as
neurofibrillary tangles (NFTs) and neuronal loss. The association between the two
hallmarks and cognitive decline has been known since the beginning of the 20th century
when the first description of the disease was carried out by Alois Alzheimer. Today, more
than 40 million people worldwide are affected by AD that represents the most common
cause of dementia and there is still no effective treatment available to cure the disease.
In general, the aggregation of Af is considered an essential trigger in AD pathogenesis
that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading
to AD, tau and A first misfold and form aggregates in one brain region, from where they
spread to interconnected areas of the brain thereby inducing its gradual morphological
and functional deterioration. In this mini-review article, we present an overview of the
current literature on the spreading mechanisms of A and tau pathology in AD since a
more profound understanding is necessary to design therapeutic approaches aimed at
preventing or halting disease progression.

Keywords: Alzheimer’s disease, amyloid-, tau, propagation, spreading

THE SPREAD OF TAU

The tau protein is a phosphoprotein that is codified by alternative splicing of the microtubule-
associate protein tau (MAPT) gene (Goedert et al., 1988, 1989; Andreadis et al., 1992; Andreadis,
2005; Pittman et al., 2006) and is enriched in axons of mature neurons where it regulates
microtubule stability to ensure proper cytoskeletal organization and trafficking (Aamodt
and Williams, 1984; Aronov et al, 2001; Gonzalez-Billault et al., 2002; Zhang et al., 2004;
Bertrand et al., 2013). Of all different post-translational modifications that tau can undergo, the
phosphorylation is of particular interest because of its involvement in a group of neurodegenerative
disorders known as tauopathies (Goedert and Spillantini, 2011; Arendt et al., 2016), including
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Alzheimer’s disease (AD). Indeed, whereas phosphorylation is
fundamental for tau function under physiological conditions,
the affinity of tau for tubulin decreases under pathological
conditions, and the protein starts to accumulate in the cytosol
of the somatodendritic compartments where insoluble structures
are built. Those neurofibrillary tangles (NFTs) disturb the
microtubule network and alter the normal axoplasmatic flow,
which in turn compromises the functions and viability of
neurons (Brion et al., 1985; Wood and Zinsmeister, 1989; Gastard
et al,, 2003). In AD, the development of NFTs evolves in the
brain with a predictable and hierarchical distribution pattern that
starts from layer II of the entorhinal cortex, spreads through the
limbic and associations areas to finally reach the hippocampus
and neocortex (Braak and Braak, 1991). Pathological tau can
distribute from one cell to another thereby propagating the
pathology from affected to interconnected healthy areas of the
brain, implicating similar mechanisms than in prion diseases
(Liu et al., 2012; Jucker and Walker, 2013). A large number of
pieces of evidence support a prion-like model for tau spreading,
consisting of abnormal proteins with the capacity to convert
normal proteins into a pathological form. The inoculation of
brain extracts from mice or humans with tauopathy into the
brain of wild-type animals induced tau pathology in recipient
animals and its propagation from the site of injection along
neuronal connections (Clavaguera et al.,, 2009, 2013; Lasagna-
Reeves et al, 2012; Ahmed et al, 2014; Guo et al, 2016;
Gibbons et al., 2017; Narasimhan et al., 2017; Smolek et al,
2019a,b). Similar results were obtained when synthetic tau
fibrils were injected into young mice overexpressing mutant
human tau (P301S) which resulted as well in the formation of
NFT-like inclusions that propagated from the injected sites to
connected brain regions in a time-dependent manner (Iba et al.,
2013). Experiments of human tau viral induction in cortical
neurons in young vs old mice showed age- and brain region-
dependent misfolding and spreading of tau (Wegmann et al,,
2019). Furthermore, in vitro studies showed, that extracellular
aggregates of tau can be internalized by naive cells promoting
fibrillization of intracellular tau that can be transferred between
co-cultured cells (Frost et al., 2009; Guo and Lee, 2011,
2013) also via synaptic contacts between neurons that facilitate
pathology propagation (Calafate et al., 2015). Tau propagation
was extensively studied and different mechanisms involved
in trans-cellular diffusion were described. The prion-like
propagation implies an active and regulated passage of tau
in the extracellular space (secretion) and a mechanism of
tau uptake by an adjacent recipient cell, although the passive
release of tau from dying cells cannot be excluded as an
alternative scenario.

Tau filaments can exist in the brain as a variety of distinct
conformational strains associated with various tauopathy
phenotypes and different rates of network propagation
(Sanders et al., 2014; Guo et al, 2016; Kaufman et al,
2016; He et al., 2020). Although the distribution of tau with
different conformations can be suggested as cause also of AD
heterogeneity, high-resolution analysis of tau structures by
using cryo-electron microscopy recently revealed no significant
variation in tau filament structures within and between

Microglia

; i Astrocyte

6 AB plaques

Pre synapse

FIGURE 1 | Intercellular transmission of pathological amyloid-g (AB) and tau
proteins. Seeds of pathological proteins can be released at the presynaptic
level: (1) in exosomes after the fusion of Multivesicular bodies (MVBs) with
plasma membrane (PM); (2) in larger vesicles called ectosomes; (3) as naked
protein freely crossing the PM; or (4) can be transferred via tunneling
nanotubes. Mechanisms of up-take by recipient neurons include;

(5) receptors-mediated endocytosis; (6) bulk-endocytosis; (7) fluid-phase
translocation; (8) macropinocytosis mediated by heparan sulfate
proteoglycans (HSPGs); and (9) fusion of large tau-containing large vescicles
with PM. (10) Intraneuronal AB seeds can trigger or enhance the formation of
tau pathological aggregates. The transmission process can be modulated by
multiple factors, including glial cells.

the brains of individuals with AD (Fitzpatrick et al, 2017;
Falcon et al., 2018).

Tau can be actively secreted by neurons following three main
routes (Figure 1):

First, at the presynaptic level, tau can be packed into
microvesicles and further released by a process (Simén et al.,
2012; Fontaine et al, 2016), that is modulated by neuronal
electrical activity (Lachenal et al., 2011; Pooler et al., 2013;
Yamada et al., 2014; Sokolow et al., 2015; Wang et al., 2017).
Following this route, phosphorylated tau is internalized by
cytoplasmic exosomes, so-called intraluminal vesicles formed
in multivesicular bodies (MVBs) that are finally released into
the extracellular space after MVBs fusion with the plasma
membrane (PM; Saman et al, 2012). Alternatively, tau can
also be internalized in ectosomes, larger vesicles (100-500 nm
in diameter) that are formed by evaginations of the PM
incorporating tau (Dujardin et al, 2014). These routes are
unconventional secretion pathways since they do not involve
signal peptides and exclude the endoplasmic reticulum (ER)-
Golgi system. Extracellular vesicles containing phospho-tau were
found in the brains of transgenic mice (Baker et al., 2016;
Polanco et al,, 2016) and in peripheral fluids such as blood or
CSF of AD patients (Saman et al., 2012; Fiandaca et al., 2015;
Winston et al., 2016).

Second, the majority of tau is found extracellularly as a
membrane-free form. Soluble hyperphosphorylated tau can
translocate directly across the PM (Plouffe et al, 2012;
Pooler et al., 2012) upon interaction with phosphatidylinositol
4,5 phosphate PI(4,5)P, cholesterol and sphingolipids. The
penetration and release are facilitated by the binding with
heparan sulfate proteoglycans (HSPG) on the cell surface
(Katsinelos et al., 2018; Mari et al., 2018; Merezhko et al., 2018).
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Other studies suggested that tau is secreted via the fusion of
vesicles from ER or Golgi with the PM (Ponnambalam and
Baldwin, 2003). Tau was also shown to form pore-like structures
in the PM that operate like channels for the passage of pathogenic
proteins, a feature that can be regulated either by pathological
mutations, by tau oligomerization (Lasagna-Reeves et al., 2014;
Patel et al., 2015; Merezhko et al., 2018), or by specific sequences
of human tau that act as binding motifs to facilitate the secretion
of pathological tau (Sayas et al., 2019).

Third, another mechanism that has also been proposed
involves the passage through tunneling nanotubes, filamentous
actin-containing channels that connect adjacent cells, and
transport proteins intercellularly (Abounit et al., 2016; Tardivel
etal., 2016).

Once released, tau can be internalized by recipient cells
(Figure 1). Intracranial or peripheral administration of
pathological tau (Clavaguera et al, 2014; Mudher et al,
2017) together with in vitro experiments have shown that tau is
mainly internalized by active endocytic processes (Frost et al.,
2009; Wu et al.,, 2013). In particular, three kinds of endocytosis
were described:

Bulk-endocytosis represents the first one, where a large
portion of presynaptic PM is internalized in a dynamin-
dependent manner in form of vacuoles or endosomes from which
multiple synaptic vesicles can subsequently be generated (Takei
et al., 1996; Wu et al., 2013).

The second, actin-dependent macropinocytosis is mediated
by HSPGs on the cell surface (Holmes et al., 2013; Rauch
et al., 2018; Weisova et al., 2019). Recently, the silencing of
the low-density lipoprotein receptor-related protein-1 (LRP1),
which works in conjunction with HSPGs, was shown to block
the uptake of tau oligomers in vitro and reduced in vivo the
propagation of tau between neurons (Rauch et al., 2020). Other
receptors can also be involved in the uptake of pathogenic
tau, such as the extracellular portion of amyloid precursor
protein (APP; Takahashi et al., 2015) and muscarinic receptors
(Morozova et al., 2019). Recently, the cellular prion protein was
also shown to act as a receptor that facilitates the uptake of tau
aggregates by cultured cells (De Cecco et al., 2020).

Finally, clathrin-mediated endocytosis was also proposed as
mechanism (Evans et al., 2018), but is still under debate because
the use of specific clathrin inhibitors or its silencing resulted in
continued tau aggregate uptake (Calafate et al., 2016).

In general, the different mechanisms of secretion and
internalization depend largely on the cell types, the size, and
the different tau species involved (Dujardin et al., 2018; Evans
etal., 2018). Once tau is internalized, it can escape the endosomal
vesicles inducing their rupture (Calafate et al., 2016; Flavin et al.,
2017) and accumulates in the cytoplasm where it becomes a
potential template for the misfolding of tau (Clavaguera et al.,
2009; Guo et al, 2016; Figure 1). Although the biochemical
mechanisms driving the conversion of normal tau into the
pathological form are still unclear, different models of tau seeding
were proposed (Congdon et al., 2008; Mirbaha et al., 2018).

Glial cells such as astrocytes (Martini-Stoica et al., 2018;
Perea et al, 2019), oligodendrocytes (Narasimhan et al,
2017) and in particular microglia were implicated in tau

spreading (Asai et al.,, 2015; Maphis et al., 2015; Hopp et al,,
2018). Recently, a study demonstrated that microglia isolated
from AD cases and mouse models of tauopathy contain tau
seeds that can be released into the medium (Hopp et al,
2018), proposing that microglia can uptake tau but not to
completely digest it, thus representing a possible source for
tau spreading. The ability of microglia to engulf tau aggregates
was already documented by different in vitro and in vivo
studies (Luo et al.,, 2015; Bolds et al., 2016, 2017). Moreover,
microglia depletion was shown to prevent tau propagation.
Microglia phagocytosed and released tau-containing exosomes
whereas inhibiting exosome synthesis significantly reduced tau
propagation in vitro and in vivo (Asai et al, 2015). Finally,
increased microglial activation has been reported not only
to accelerate tau pathology and behavioral abnormalities in
the human Tau mouse model of tauopathy (Bhaskar et al.,
2010; Bemiller et al., 2017; Ising et al, 2019), but also its
propagation in the brain (Maphis et al., 2015). Together, these
studies highlight the involvement of microglia in spreading
tau pathology.

THE SPREAD OF A

AP is a proteolytic product of APP, that is highly expressed
in neurons and physiologically involved in many functions
such as regulation of neurite outgrowth and axonal guidance,
regulation of synaptic functions and plasticity, involvement in
early nervous system development and in neuroprotection (Van
den Heuvel et al, 1999; Leyssen et al., 2005; Priller et al,
2006; Young-Pearse et al., 2008; Mueller et al., 2018). APP can
be processed in two different ways: in the non-amyloidogenic
pathway, APP is cleaved first by a- followed by y-secretase that
cuts the protein within the AB domain. In the amyloidogenic
pathway, APP is consecutively cut by B- and y-secretase to
be finally released extracellularly as AP fragments of different
lengths, but mainly consist of 40 (AB1-40) or 42 (AP1-42)
amino acids (Haass et al., 2012). Once released, monomeric
AP can aggregate into different assemblies giving origin to
oligomers, protofibrils, and amyloid fibrils that are insoluble and
can further aggregate into amyloid plaques, while monomeric
and oligomeric forms of AP are soluble. These different states
of AP coexist in the AD brain making it difficult to dissect
the most relevant and toxic forms concerning pathogenesis.
Albeit in vivo studies demonstrated that AB plaques lead to
neuronal loss, neuronal dystrophy and alters their normal
neuritic functionality (Meyer-Luehmann et al, 2008, 2009;
Shah et al, 2010), different studies have identified soluble
oligomeric AP species as the toxic drivers responsible for
synaptic dysfunction, in particular in the early stage of the
disease (Lambert et al., 1998; Shankar et al., 2008; Koffie
et al., 2009; Forloni et al., 2016). The fact that the incidence
of senile plaques increases with age even in healthy subjects
and that the number of plaques often does not correlate
with neuronal loss and cognitive decline (Katzman, 1988;
Villemagne and Rowe, 2011) nourishes the hypothesis that
compact plaques may sequester toxic AP oligomers until they
reach a saturation point (Esparza et al., 2013; Selkoe and Hardy,
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2016). Although the ultimate proof for a causal relationship
between fibrillar aggregates and neurodegenerative diseases has
not been delivered yet, the “amyloid cascade hypothesis” is
still the most prevalent theory (Hardy and Higgins, 1992;
Hardy and Selkoe, 2002) with the constrain that Af alone is
most likely not able to cause the entire damage found in AD
patient brains (Ricciarelli and Fedele, 2017). In addition to their
different aggregation state, Ap was detected in the brain of AD
patients in distinct misfolded strains with specific propagation
properties (Qiang et al., 2017; Condello and Stoéehr, 2018),
suggesting that also these structural variations may modulate the
disease phenotype.

Unlike tau that spreads in a highly predictive pattern as
anticipated by computational systems (Fornari et al., 2019), Ap
deposition does not always follow a stereotypic spatio-temporal
pattern of progression. Nevertheless, amyloid plaques in general
first appear in the neocortex from where they spread into the
allocortex and the subcortical regions (Thal et al., 2002; Serrano-
Pozo et al,, 2011; Grothe et al., 2017). As has been described
above for tau, several studies on intracerebral injections of Ap-
rich brain extracts either from AD mice or patients propose
that AP aggregation can be initiated by prion-like seeding
(Kane et al., 2000; Meyer-Luehmann et al., 2006; Eisele et al.,
2009; Jucker and Walker, 2013; Ziegler-Waldkirch et al., 2018;
Friesen and Meyer-Luehmann, 2019; Katzmarski et al., 2020).
These misfolded protein assemblies act as seeds of aggregation
to accelerate the polymerization processes of normal proteins
(Harper and Lansbury, 1997) that can expand from the injection
site to distant regions as well as the contro-lateral side of the
brain, thus suggesting a possible spread of seeded pathology via
neuronal transport along axonally interconnected brain regions
(Walker et al., 2002; Ronnbéck et al., 2012; Domert et al., 2014;
Yeetal., 2015).

AP peptides are collected in intraluminal vesicles within
MVBs and, upon fusion with the PM, the intraluminal vesicles
are released into the extracellular space as exosomes (Rajendran
et al., 2006; Sharples et al., 2008; Hu et al., 2009; Figure 1).
Furthermore, a recent study reported that AP-rich exosomes
isolated from AD patients can act as vehicles for cell-to-cell
transfer of such toxic species in recipient cultured neurons (Sinha
etal., 2018). However, even though the cell-to-cell passage of Ap
represents a plausible hypothesis, substantiated by the fact that
the protein is found inside neurons (Wertkin et al., 1993; Turner
et al., 1996; Gouras et al., 2000; LaFerla et al., 2007), there is no
conclusive evidence for active transport of AP along neurons.
Transplantations of WT neurons into brains of pre-depositing
AD mice revealed that AB from the transgenic host tissue can
enter and deposit within WT grafts (Meyer-Luehmann et al,,
2003; Bachhuber et al., 2015; Espuny-Camacho et al., 2017), thus
suggesting a possible passive extracellular diffusion of AP from
the outside to the inside of the grafts. Although over the last
few years many different groups have described glial cells as an
alternative source of AB (Siman et al., 1989; Joshi et al., 2014) or
their involvement in the formation of amyloid plaque deposition
(Wisniewski et al., 1990; Venegas et al., 2017; Spangenberg
et al., 2019), there are to date no studies that implicate a direct
involvement of glial cells in AP trafficking across different areas

of the brain. Since AB40 and AB42 circulate in body fluids such as
plasma and CSF (Mehta et al., 2000), another potential route of
AP diffusion from the periphery to the brain may be constituted
by the vascular system. Indeed, intraperitoneal or intravenous
administration of Af-rich extracts in pre-depositing APP23 mice
promoted cerebral amyloid angiopathy (CAA; Eisele et al., 2010;
Burwinkel et al., 2018) pointing again to a vascular component
of circulating immune cell involvement in the spread of AP seeds
(Cintron et al., 2015).

PROTEIN CROSS-SEEDING

It is well known that different neuropathological lesions such
as AP, NFTs, or Lewy bodies can co-exist in the brains of AD
patients (Braak and Braak, 1997; Hamilton, 2000), predicting
cross protein interactions. Indeed, several studies have shown
that the interaction between AP and tau can exaggerate AD
pathology (Ribé et al., 2005; Bennett et al., 2017; He et al., 2018;
Vergara et al, 2019) and that amyloid deposition, preceding
the NFT formation, can actively influence tau spreading to
neocortical regions (Braak and Braak, 1997; Hardy and Selkoe,
2002; Jacobs et al, 2018; Vogel et al, 2020). Furthermore,
oligomeric forms of AB were found to be abundant in synapses
of AD patients early in the disease before the appearance of
phospo-tau at later stages, suggesting that soluble A oligomers
in synaptic terminals are associated with dementia onset and may
initiate a cascade that drives phosphorylated tau accumulation
and its synaptic spread (Bilousova et al., 2016).

Nevertheless, the finding that AB and tau deposition
starts in different brain areas and follows distinct temporal
sequences, argues against the idea that tau pathology may
be driven exclusively by the presence of amyloid and rather
speaks for an AP independent pathway (Raj et al., 2015;
Jack et al., 2019; van der Kant et al,, 2020). Tau aggregation
assays with tau isolated from patients containing both lesions
showed an enhanced ability to induce tau aggregates when
compared to tau isolated from human cases without plaques
(Bennett et al., 2017). Similar results have been obtained
in double-transgenic mice overexpressing both, mutated
APP and tau (Lewis et al, 2001; Hurtado et al, 2010).
Furthermore concurrent cortical amyloid deposition in
double transgenic mice strongly accelerated interneuronal
transfer of tau and boosted its spreading to distal brain
regions with an increase in neuronal loss (Hurtado et al., 20105
Pooler et al., 2015).

Intracerebral infusion of Af-rich extracts into tau-transgenic
mice resulted in significantly more NFT formation compared
to tau-rich or WT extracts (Gotz et al.,, 2001; Bolmont et al.,
2007; Vasconcelos et al., 2016) indicating that the presence
of AP triggers the formation of tau pathology and proposing
synergistic toxicity on the neuronal network. Inoculation of
human AD-tau extracts into the brains of APP transgenic mice
that normally do not form NFTs resulted in rapid fibrillization
of endogenous tau (Bennett et al, 2017; He et al, 2018).
Moreover, ipsi- and contralateral tau propagation was enhanced
in tau-injected 5xFAD mice compared to tau-injected WT mice
(Vergara et al., 2019).
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Transgenic APPPS1+Tau mice, that express WT human
tau within a mouse tau-deficient background showed that Af
and tau can synergistically cooperate to cause a hyperactivity
behavioral phenotype and resulted in a downregulation of genes
involved in synaptic function (Pickett et al., 2019). Treatment
strategies that aim at reducing tau levels in mice that co-express
AP and human tau prevented neuronal loss (DeVos et al,
2018) as well as excitotoxin-induced neuronal dysfunctions
(Roberson et al., 2007) and ameliorated the behavioral and gene
expression phenotypes (Pickett et al., 2019). Together, these
results demonstrate the therapeutic benefit of tau reduction with
a positive impact on the AB-induced cytotoxic effects.

Despite all these observational evidence, the mechanism of Af
and tau interplay remains largely unknown. Further studies are
necessary to unravel whether it is a direct interaction between the
two pathogenic proteins or instead mediated by other factors.

CONCLUSIONS AND FUTURE
PROSPECTIVE

Two of the most remarkable features of AD are: (i) the stereotypic
pattern of AP and tangle spreading through interconnected areas
of the brain (Braak and Braak, 1991) that is closely related to
cognitive decline years before the onset of clinical symptoms;
and (ii) the ability of pathogenic misfolded AB and tau to
serve as templates to convert their innocuous counterparts into
toxic forms in a prion-like manner (Clavaguera et al.,, 2009;
Jucker and Walker, 2011, 2013). These two aspects, together
with the fact that the two hallmarks often coexist in the
brain of AD patients and amplify each other’s toxic effects
downstream (Ittner and Gotz, 2011), make the development
of an effective therapy challenging. Currently, clinical trials
targeting AP have reported limited success, implying the notion
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Movement disorders are neurological conditions in which patients manifest a diverse
range of movement impairments. Distinct structures within the basal ganglia of the
brain, an area involved in movement regulation, are differentially affected for every
disease. Among the most studied movement disorder conditions are Parkinson’s (PD)
and Huntington’s disease (HD), in which the deregulation of the movement circuitry due
to the loss of specific neuronal populations in basal ganglia is the underlying cause
of motor symptoms. These symptoms are due to the loss principally of dopaminergic
neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the
striatum in PD and HD, respectively. Although these diseases were described in the 19th
century, no effective treatment can slow down, reverse, or stop disease progression.
Available pharmacological therapies have been focused on preventing or alleviating
motor symptoms to improve the quality of life of patients, but these drugs are not
able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic
advances have been achieved seeking a more efficacious and durable therapeutic effect.
Here, we will focus on the new advances of several therapeutic approaches for PD
and HD, starting with the available pharmacological treatments to alleviate the motor
symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore
specific neuronal populations or their activity. Among the discussed strategies, the use
of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in
these diseases will be described. We will highlight strategies that have been evaluated
in both Parkinson’s and Huntington’s patients, and also the ones with strong preclinical
evidence. These current therapeutic techniques represent the most promising tools for
the safe treatment of both diseases, specifically those aimed to avoid neuronal loss
during disease progression.

Keywords: Parkinson’s disease, Huntington’s disease, neurotrophic factors, pharmacological therapy, gene
modifiers, cellular replacement
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Therapeutic Approaches for Movement Disorders

INTRODUCTION

Movement disorders are characterized by disabilities in speed,
fluency, quality, and ease of motor execution, impairments that
could be due to an excess or lack of voluntary movements
(Shipton, 2012). Movement is produced by the coordinated
action of several cortical and subcortical brain structures such
as the spinal cord, brainstem, cerebral cortex, cerebellum,
and basal ganglia, which collectively fine-tune voluntary and
involuntary movements (Ferreira-Pinto et al., 2018). Particularly,
the basal ganglia structure comprises a group of subcortical
nuclei including the striatum (subdivided in most mammals
in caudate and putamen), internal globus pallidus (GPi) and
external globus pallidus (GPe), substantia nigra (SN) pars
reticulata (SNpr) and compacta (SNpc), and subthalamic nucleus
(STN), that together with the primary motor cortex and the
thalamus, comprise the motor circuit involved in the control
of voluntary movement (Albin et al, 1989; Obeso et al,
2008; Calabresi et al., 2014). The striatum is composed of
medium spiny neurons (MSNs), a type of GABAergic neurons
representing 90-95% of striatal neurons (Dubé et al., 1988),
cholinergic and GABAergic interneurons (Lapper and Bolam,
1992). MSNs are innervated by glutamatergic (excitatory) inputs
from the cortex and thalamus, together with dopaminergic inputs
from the SN (Pickel et al., 1992). In turn, MSNs differentially
express dopamine (DA) D1 or D2 receptors, which determine
their participation in two motor circuits: the direct or indirect
pathways. The direct pathway is composed of the striatum, GPj,
SNpr, thalamus, and motor cortex, promoting the activation of
movement through the inhibition of the GPj, in addition to the
consequent disinhibition of the thalamus. The indirect pathway,
formed by the striatum, GPe, STN, SNpr, thalamus, and motor
cortex favors the inhibition of movement by activating the STN
with the consequent inhibition of the thalamus (Figure 1A;
Calabresi et al., 2014). Alterations in these brain regions are
associated with a spectrum of abnormal movement disorders.
Among the most studied movement disorders are Parkinson’s
(PD) and Huntington’s disease (HD; Figures 1B,C), which are
the main focus of this review.

PD is the second most common chronic and progressive
neurological disorder with no effective cure (Emamzadeh and
Surguchov, 2018) PD incidence is currently around 200 in
100,000 persons (Ball et al., 2019) and the number of PD
patients is expected to reach 10 million by 2030 (Dorsey
et al, 2007; Ball et al, 2019). PD is mainly an idiopathic
disorder with multifactorial etiology, with aging being one of
its main risk factors (Hou et al., 2019). Nevertheless, genetic
factors have been associated with 5-10% of PD cases (Kim
and Alcalay, 2017). Clinical features of PD are a combination
of motor symptoms including muscle rigidity, gait difficulty,
postural instability, bradykinesia, and tremor at rest (Rees
et al.,, 2018). Also, non-motor symptoms include sensory and
sleep alterations, constipation, cognitive impairment, dementia,
anxiety, depression, and mood disorders at an early stage of the
disease (Munhoz et al., 2015).

One of the two neuropathological criteria required for the
diagnosis of PD is the progressive loss of dopaminergic neurons

within the SNpc of the basal ganglia (Figure 1B; Agid, 1991;
Hirsch et al., 1999). However, not all dopaminergic neurons are
equally vulnerable: those that project their axons to the putamen
are more vulnerable than those that project their axons to
cognitive areas. The second pathological criteria is the presence
of a-synuclein (a-syn)-positive inclusions accumulated in Lewy
bodies in neurons (Double, 2012). Although the main hallmarks
of PD are well described, diagnosis before classic clinical features
occur is not currently achievable. Motor symptoms are observed
when 70% of the striatal dopaminergic neurons terminals
are lost and half of the dopaminergic neurons in the whole
brain have degenerated (Double, 2012; Surmeier et al., 2017;
Fuetal., 2018).

The current PD treatment is a pharmacological therapy
that increases DA levels to provide symptomatic relief.
Unfortunately, this therapeutic strategy has limited efficacy.
However, new therapeutic alternatives under development
attempt to modify the pathology of PD by increasing DA
production or improving neuronal health. These approaches
efficiently delay neurodegeneration as well as PD symptoms
in preclinical models and patients. Currently, finding new
treatments that modify pathological PD progression, prevent
the dopaminergic neuronal loss, counteract aberrant neuronal
activity, and delay the appearance of motor symptoms is the
principal goal of many investigations.

HD is the world’s most common monogenic neurological
disorder (Huntington’s Disease Collaborative Research Group,
1993), characterized by its autosomal dominant inheritance,
midlife onset and progressive course with a combination of
motor, cognitive and behavioral features. HD is caused by a
mutation in the gene that encodes for the protein huntingtin
(HTT), which leads to an expanded CAG trinucleotide, causing
an abnormally long polyglutamine (polyQ) tract in HTT. This
repetition ranges between 6-35 glutamine units in the normal
population. When this tract is >40 glutamines long, the mutation
is highly penetrant, triggering a disease process that leads to the
onset of motor symptoms. Mutant HTT (mHTT) exhibits gain-
of-toxic properties, causing dysfunction and death of GABAergic
MSNSs of the striatum, which is particularly vulnerable to mHTT
toxicity (Figure 1C). Once signs and symptoms begin, they
progress inexorably throughout the illness, which is inevitably
fatal, with a median survival from motor onset of 18 years (Ross
etal., 2014).

We describe current pharmacological therapies for both
diseases, cellular replacement strategies to restore lost
neuronal populations, administration of Neurotrophic factors
(NTFs) to increase neuronal viability and health, electrical
neuromodulation to restore movement circuitry lost, and
genetic approaches to decrease mHTT and a-syn levels. We
focused on studies that have reached clinical testing, highlighting
preclinical evidence that supports those clinical trials. The
clinical trials mentioned throughout this review are summarized
in Tables 1, 2. For those strategies in which clinical trials
have not been performed, we present the current state of
investigations and remark the important drawbacks that must
be solved before these therapeutic approaches jump into
clinical trials.
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FIGURE 1 | | Schematic representation of the direct and indirect pathways in basal ganglia in physiological, Parkinson’s (PD), and Huntington’s disease (HD)
conditions. (A) Physiologically, the direct (green line) pathway participates in the activation of movement. This pathway is engaged when the activation of the cortex
produces a release of glutamate into the striatum, activating GABAergic medium spiny neurons (MSNs) of the direct pathway. By releasing GABA to the substantia
nigra pars reticulata (SNpr) and the internal globus pallidus (GPi), MSNs inhibit neurons of the SNpr/GPi that are also GABAergic. This causes activation of the
glutamatergic neurons present in the thalamus, which projects to the cortex, resulting in the activation of movements. On the contrary, the indirect pathway (red line)
participates in the inhibition of movement. When GABAergic MSNs that indirectly project to the SNpr through the external globus pallidus (GPe) and the subthalamic
nucleus (STN), release GABA into the GPe, inhibits GABAergic neurons present in the GPe. This leads to the disinhibition of the glutamatergic neurons of the STN,
which activates GABAergic neurons of the SNpr/GPi. These neurons inhibit neurons present in the thalamus, resulting in a reduction of movement. The selection and
execution of movement reflect a dynamic balance between both pathways. (B) In PD, the loss of dopaminergic neurons of the SNpc, induces an overactivation of
the indirect pathway and decrease of movement. Consequently, there is an increase of GABAergic activity of the GPi/SNpr over thalamic neurons that project to the
cortex, leading to loss of movement (hypokinetic disorder). (C) In HD (early stage), MSNs of the indirect pathway appear to be affected before the MSNs of the direct

pathway. This induces an increase of GABAergic (or inhibitor) activity of the GPe over the STN, which causes the loss of inhibitory activity of the GPi/SNpr over
thalamic neurons that project to cortex, leading to the appearance of choreic movements (hyperkinetic disorder).

CURRENT PHARMACOLOGICAL
TREATMENTS TO ALLEVIATE MOTOR
SYMPTOMS IN PD AND HD

Currently, no approved drugs can modify the progression of
either PD or HD. Available pharmacological therapies only
aim to treat motor symptoms to improve the quality of life
of patients but, ultimately, these drugs do not mitigate the
progressive neurodegeneration.

For PD, pharmacological approaches are designed to
reestablish DA levels through: (i) increasing DA availability
using DA precursors like levodopa (L-dopa) or dopaminergic
agonists like pramipexole, and (ii) inhibiting DA degradation
by monoamine oxidase B inhibitors [MAO-BI, like selegiline
(Eldepryl®) and rasagiline (Azilect®)] or catechol-O-methyl
transferase inhibitors [COMTI, like entacapone (Comtan®)]
and tolcapone (Tasmar®; Van de Schyf, 2015; Teijido and
Cacabelos, 2018; Carrera and Cacabelos, 2019). A caveat
in the chronic administration of anti-parkinsonian drugs is
the “wearing-off” phenomenon, which produces additional
psychomotor and autonomic complications, like levodopa-
induced dyskinesia (LID; Fahn et al., 2004; Stacy, 2009; Ammal
Kaidery et al, 2013; Cacabelos, 2017). Moreover, L-dopa
pharmacokinetics is unpredictable and commonly leads to
administration increase, complex regimens, and poor patient
compliance. Nevertheless, L-dopa remains as the gold standard
pharmacological intervention for motor symptoms in PD
patients (Oertel and Schulz, 2016; Fox et al., 2018). Although

the pathophysiology of wearing-off and dyskinesia is complex
and not completely understood, it appears to be linked to the
short plasma half-life of L-dopa, as short-acting dopaminergic
drugs can induce alterations in brain DA concentrations
which lead to motor dysfunction (Olanow et al., 2006; Rajan
et al,, 2017). To assess this problem, strategies that prolong
L-dopa plasma half-life have been developed, including the
administration of COMTI. A significant quantity of orally
administered L-dopa is metabolized to 3-O-methyldopa (a
useless metabolite) by COMT in the gastrointestinal tract. By
inhibiting COMT, more L-dopa will be absorbed, increasing
its bioavailability and extending its half-life (Oertel and Schulz,
2016). Some of these drugs are tolcapone, entacapone, and
opicapone (Parkinson Study Group, 1997; Rinne et al., 1998;
Poewe et al, 2002; Cacabelos, 2017). However, the FDA
has restricted the use of tolcapone due to hepatic necrosis
leading to death (Haasio et al., 2001). Common combinations
include L-dopa/carbidopa (an L-dopa decarboxylation inhibitor;
Sinemet®) and L-dopa/benserazide (Madopar®), looking
to prevent systemic adverse effects related to the peripheral
metabolism of L-dopa to DA, including nausea, dyskinesia,
motor fluctuations, hypotension, psychiatric symptoms
(especially hallucinations) and diaphoresis. Duodopa, an
intestinal gel form of L-dopa/carbidopa, provides a more
stable response to L-dopa. Stalevo® is a triple-drug, containing
carbidopa, L-dopa, and entacapone (Rezak, 2007). Another
strategy for prolonging L-dopa half-life is the inhibition of
MAO-B, the breakdown-enzyme of DA in the brain, increasing
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TABLE 1 | Parkinson’s disease (PD) therapies under clinical trials.

Sponsor CT Identifier Stage Administration Target Description Start-completion date
Cellular replacement
University of Cambridge NCT01898390 Phase1. Active, not Transplant Striatum TRANSEURO Open Label May 2012-March 2021
recruiting Transplant Study in Parkinson’s
disease (TRANSEURO)
Chinese Academy of NCT03119636 Phase 1-2. Recruiting Transplant (stereotaxis) Striatum Safety and Efficacy Study of Human May 2017-December 2021
Sciences ESC-derived Neural Precursor Cells
in the Treatment of Parkinson’s
disease
Hebei Newtherapy NCT03550183 Phase 1. Recruiting Intravenous infusion Not specified Umbilical Cord Derived January 2018-December
Bio-Pharma technology Mesenchymal Stem Cells Therapy 2022
Company Limited in Parkinson’s disease
Bundang CHA Hospital NCT01860794 Phase 1-2. Recruiting Transplant Striatum Evaluation of Safety and Tolerability May 2012-April 2022
of Fetal Mesencephalic Dopamine
Neuronal Precursor Cells for
Parkinson’s disease
Growth factors administration
North Bristol NHS Trust NCT03652363 Phase 2. Completed Bilateral Intraputamenal Striatum GDNF in ideopathic Parkinson’s October 2012-April 2016
Infusions of GDNF disease
Administered via
Convection enhanced
delivery
Herantis Pharma Plc. NCT03295786 Phase 1-2. Complete Intraputamenal DDS Striatum CDNF brain infusion in Parkinson’s September 2017-January
disease patients 2020
Herantis Pharma Plc. NCT03775538 Phase 1-2. Active, not Intraputamenal DDS Striatum Safety study of CDNF brain infusion December 2018-January
recruiting in Parkinson’s disease patients 2020
Newron Sweden AB NCT02408562 Phase 1-2. Complete Intracerebroventricular Not specified Safety and tolerability study of April 2015-January 2016
rhPDGF-BB in Parkinson’s disease
patients
Newron Sweden AB NCT01807338 Phase 1-2. Complete Intracerebroventricular Not specified PDGF-BB in Parkinson’s disease March 2013-October 2014
patients
Electrical stimulation
Northwell Health NCT04184791 Phase No aplica. DBS STN Study the effect of protocol a 60 HZ January 2020-December
Recruiting of STN-DBS in Parkinson’s patients 2021
with gait disorder
University of Miami NCT02022735 Phase No aplica. DBS Not specified Evaluation of different parameters of December 2013-December
Active, recruiting yet stimulation for the treatment of gait 2025
disorder in Parkinson’s patient
Boston Scientific Corporation NCT01221948 Phase 2. Completed. DBS STN Evaluation of effectiviness and safe October 2010-June 2018

of Boston scientific implantable
DBS Vercise system for treatment
of moderate to severe idiopathic
Parkinson’s disease

(Continued)
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ol 2 9 DA levels at synapses. Selegiline, through its metabolite
5 S 5 S 2 o desmethylselegiline, has also shown anti-apoptotic effects
5§ 2 S s 3 5 (Tatton et al., 1996; Parkinson Study Group, 2005; Cacabelos,
3 ) = & = z 2017). Rasagiline is a significantly more potent MAO-BI
£ S K 8 g < that reduces the motor symptoms in PD patients and has
t‘.’ <§ = <§ < 3 disease-modifying potentials (Parkinson Study Group, 2005;
= = [S}
g @ = @ g § Rascol et al,, 2005; Olanow et al, 2009). IPX066 (Rytary)
]
is an improved oral formulation of L-dopa approved in
= 2015 by the FDA containing both an immediate-release
2 o @ = Y S
S . 5 g < "g c and a sustained-release L-dopa. Published phase II and III
- 'é.’) £ §§ DEc (c/)sﬁ;é) < studies show that IPX066 improved Unified Parkinson’s
c 9 Q = . .
S é% 8 3 % 2z & @ Disease Rating Scale (UPDRS) motor scores compared to
Q2 2oz ELE 52 o lacebo in early PD patients and reduced wearing-off in
02c8c8 S Eg 22 59 P Y P 3
£eg8c28 2% g § §5038 advanced PD patients (Kestenbaum and Fahn, 2015). Before
o < [ 2] & o n
g % qg S F E Sxg58 25 % % o7 S L-dopa, anticholinergics were the treatment of choice for
= C - £ .
215 2 % % IS § § S % &5 g 5 ;5) qu 5 PD. However, MAO-BI and modern DA agonists have
= | = © i) T 8T @ %) . .
8 3953 £5 5873 LS 2ES 'é = largely replaced these drugs. Trihexyphenidyl (Artane®),
S 5 = £ = E= =
8 6285385558 SL£83¢8 benztropine (Cogentin®), and procyclidine (Kemadrin®) is
usually reserved for tremor resistant to dopaminergic agents.
The adverse effects of anticholinergics include blurred vision,
dry mucus membranes, urinary retention, and cognitive changes
(Rezak, 2007).
T T 2 Dopamine receptor (DR) agonists mimic DA actions in the
2 9 o ° g £ brain by directly stimulating DRs. Two common DR agonists
g E E (‘/é) % % are pramipexole (Mirapex®) and ropinirole (Requip®). These
directly stimulate post-synaptic D2 and D3 receptors in the
5 5 striatum and are prescribed as monotherapy or combined with
5 5 L-dopa. Potential side effects of pramipexole and ropinirole
5 32 i include hypotension, sleep, cognitive/psychiatric alterations,
= S S dyskinesias, and compulsive behavior. The latter is believed
® G = ] IS to be a result of DA dysregulation in the limbic and frontal
2 g g S .
€l o o %@ %@ circuits that are connected to the basal ganglia (Evans and
g 3 a ? hao ba Lees, 2004). Polyoxazoline (POZ) polymer conjugation for
continuous dopaminergic drug delivery may improve motor
- B © 3 symptoms while avoiding side effects. The in vitro and
2 2 3 é{ g in vivo pharmacokinetics of POZ-conjugated rotigotine (DA
g E I 8 s agonist) was characterized, demonstrating that the sustained
S 2 5 £ o N § o dopaminergic stimulation profile achieved by POZ-conjugated
ol 9 © = z E= © = rotigotine formulations, could represent a significant advance
12} w 3 o = 12} [
§ £ £3 £3 £ £3 in the treatment of PD. POZ polymer administration can
- - improve motor symptoms in a rat model of PD (Eskow Jaunarajs
et al, 2013; Fox et al, 2018). For HD, the only approved
pharmacological therapy for the treatment of motor symptoms
o ° 5 © 5 is tetrabenazine, a vesicular monoamine transporter 2 (VMAT-
g g g 8 3 g 2) inhibitor that reduces DA neurotransmission via its depletion
% S N S g 3 from presynaptic vesicles, resulting in a reduction of chorea
E E g E E 8 manifested by HD patients (Wyant et al, 2017). However,
oz z z z z its side effects, which include sedation, anxiety, depression,
and suicidality have limited its use (Wyant et al., 2017; Dean
g ] and Sung, 2018). In 2017, the FDA approved a deuterated
- © © g S 3 derivative of tetrabenazine, deutetrabenazine, with improved
S 2 2 < S £ pharmacokinetic profile, allowing a less frequent daily dosage
g 1S € k2 E%’ § with comparable systemic exposure of the drug, resulting in
[0}
© % % Z g ?3 less adverse events (Dean and Sung, 2018). No other small
il = = 2 88 (’/E) molecules are currently used for HD treatment, but several
o | 2 & & b . . . s s .
a3 5|¢ g % gg s therapeutic approaches are in clinical trials, which will be
a5 5 = G 3 2 discussed later.
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TABLE 2 | Huntington’s disease therapies under clinical trials.

Sponsor CT Identifier Stage Administration Target Description Start-completion date
Electrical stimulation
Heinrich-Heine University, NCT02535884 Phase Not Applicable. DBS GP Study of efficacy and safety of pallidal July 2014-October 2020
Duesseldorf Recruiting DBS in HD patients to improve motor
function. Device: ACTIVA® PC
neurostimulator (Model 37601)
DNA targeting approaches
lonis Pharmaceuticals, Inc. NCT02519036 Phase 1-2. Complete Intrathecal CNS Safety, Tolerability, Pharmacokinetics, August 2015-May 2019
and Pharmacodynamics of ISIS
443139 in Participants With Early
Manifest Huntington’s Disease
Hoffmann-La Roche NCT03342053 Phase 2. Complete Intrathecal CNS This study will test the safety, tolerability, November 2017-June 2020
pharmacokinetics and
pharmacodynamics of
RO7234292 administered intrathecally
to adult patients with Huntington’s
Disease
Hoffmann-La Roche NCT03761849 Phase 3. Recruiting Intrathecal CNS A Study to Evaluate the Efficacy and January 2019-September 2022
Safety of Intrathecally Administered
RO7234292 (RG6042) in Patients With
Manifest Huntington’s Disease
Wave Life Sciences Limited NCT03225833 Phase 1b—2a. Recruiting Intrathecal CNS Safety and Tolerability of WVE-120101 July 2017-December 2020
in Patients With Huntington’s Disease
(PRECISION-HD1)
Wave Life Sciences Limited NCT03225846 Phase 1b—2a. Recruiting Intrathecal CNS Safety and Tolerability of WVE-120102 July 2017-December 2020
in Patients With Huntington’s Disease
(PRECISION-HD2)
RNA targeting approaches
UniQure Biopharma B.V. NCT04120493 Phase 1-2. Recruiting Stereotaxic Striatum Safety and Proof-of-Concept (POC) September 2019-May 2026

Study With AMT-130 in Adults With
Early Manifest Huntington Disease
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FIGURE 2 | | Schematic representation of the different treatments for motor symptoms for PD and HD under clinical and preclinical phases. (A) Approaches
regarding cellular, neurotrophic, electrical, and gene-modifying therapies that are in clinical trials or stage of optimization for PD and HD patients. The lines indicate
the different brain structures that are the target of the therapeutic strategies mentioned. (B) Approaches regarding cellular, neurotrophic, electrical, and
disease-modifying therapies in the preclinical phase using rodent models of PD and/or HD. The lines indicate the different brain structures that are the target of the

CELLULAR REPLACEMENT THERAPIES
FOR PD AND HD

In 1967, in an important breakthrough, Cotzias et al. (1967)
demonstrated that the administration of a precursor of DA,
L-dopa, improved motor function in PD patients, leading to
the thought that the cure for PD was discovered. Also in the
1960s, tetrabenazine was introduced as an antipsychotic but also
showed beneficial effects for the treatment of hyperkinetic motor
symptoms, like chorea in HD patients (Dalby, 1969; Huntington
Study Group, 2006). To date, it is known that these drugs do not
reverse disease progression and in many cases do not have the
desired effects. This has brought the idea that local production
of DA and GABA, and therefore the replacement of the neurons
that produce it, would be the ideal treatment for these diseases.

The fact that the major symptoms present in PD and HD patients
are due to the loss of dopaminergic and GABAergic neurons in
specific brain regions, respectively, means that replacing these
specific cell types could help relieve some of the symptoms
present in patients. This has given rise to different branches
of investigations seeking cellular replacement-based therapies,
which have shown promising results in animal models for these
diseases as well as in affected patients (Figure 2).

Human Fetal Tissue as a Source of

Progenitor Cells

The first study demonstrating that dopaminergic neurons
could be replaced using fetal tissue was performed using
6-hydroxydopamine (6-OHDA)-lesioned rats that were
implanted with DA-rich ventral mesencephalic tissue from
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rat fetuses (Bjorklund and Stenevi, 1979; Perlow et al., 1979).
These studies were followed by the generation of the first
non-human primates PD model: monkeys lesioned with
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; Burns
et al., 1983). This model manifested several of the patient’s
symptoms, and transplanting primate fetal mesencephalic tissue
into their striatum showed to alleviate these symptoms (Bakay
et al., 1985; Sladek et al., 1987; Taylor et al., 1991). These studies
set foot for the first PD cell replacement therapy in humans.
These clinical trials were performed using dopaminergic neuron
precursors from human fetal tissue, which were transplanted
into the striatum of PD patients (Lindvall et al., 1989, 1992; Freed
et al., 1990, 1992). Transplanted tissue presented no negative
effects at the transplantation site, was functional and survived in
the transplanted brain region, but clinical benefits were variable
(Freed et al., 1992; Kordower et al., 1998; Hagell et al., 1999; Li
etal., 2016).

It is important to understand that dopaminergic neurons
engrafted in the striatum are deprived of their SNpc afferents.
Instead, when dopaminergic neurons are transplanted in the
striatum, they may form connections with cortical, intrastriatal,
and thalamic neurons, which are not normally connected with
nigral dopaminergic neurons. Moreover, considering the nature
of fetal tissue, possibly other types of neurons and glial cells
differentiate in the grafted brain area. Additionally, only a
portion of the grafted fetal tissue corresponds to cells that needed
restoration in the specific brain region. Another important
concern is the presence of a-syn aggregates and Lewy body
inclusions in the grafted cells in PD patients (Kordower et al.,
2008; Li et al., 2008). This highlights the necessity of using a
complementary strategy that allows donor cells to be resistant to
the spreading of a-syn.

On the other hand, by the mid-1980s, the first studies using
fetal tissue were performed in rat models of HD (Table 4).
These studies demonstrated that the grafted tissue survived,
was functional and recovered some of the behavioral alterations
present in HD rats (Deckel et al., 1983; Isacson et al., 1984,
1985; Sanberg et al., 1986). The in vivo functionality of the
grafted striatal fetal tissue was also assessed, showing GABA
release upon dopaminergic and glutamatergic inputs (Campbell
et al., 1993). Diverse studies further demonstrated the effect of
striatal fetal tissue transplantation in diverse pharmacological
models of HD (Hantraye et al, 1992; Nakao et al, 1999)
and by late 1990s, the first clinical trials in HD patients were
performed. HD patients were injected unilaterally or bilaterally
with fetal tissue, which was originated from various donated
embryos. Given the amount of tissue needed and their origin
from different embryos, this strategy causes immune rejection
by the patient’s immune system. Therefore, complementary
immunosuppression therapy is needed, which has shown no
adverse effects on patients (Freeman et al., 2000). After fetal cell
transplantation, patients presented improved cognitive function
and stabilization of motor functions, which worsen a few years
after the surgery (Kopyov et al., 1998; Gallina et al., 2008; also see
Table 1).

Although several clinical trials have been performed using
fetal tissue transplants to treat PD and HD patients, this

technique has a few but important limitations. First, is important
to consider that when using human fetal tissue, tumors can
develop, which could be explained by the presence of actively
dividing immature neuroepithelial cells (Keene et al., 2009).
Second, not only neuronal loss must be corrected, but also
the loss of glial cells. Astrocytes are the most abundant cell
type found in the brain (Miller, 2018) and play important
roles in maintaining brain homeostasis, supporting a neuronal
activity, and metabolism. In PD and HD, there is a deregulation
of astrocyte activity, including electrophysiological changes,
calcium homeostasis, glutamate reuptake, and metabolism,
among others (Booth et al., 2017; Garcia et al, 2019; Gray,
2019). Therefore, the replacement of the lost neurons should be
accompanied by a replacement or modification of the glial cells
that support them.

Pluripotent Stem Cells as a Source of
Differentiated Cell

Pluripotent stem cells (PSCs) are an unlimited source of cells
with the potential to give rise to any type of cell of the
body. Cells differentiated from embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs; Takahashi and
Yamanaka, 2006) are widely used as in vitro models for many
diseases, including neurodegenerative diseases, and also as a
source of cell-replacement therapies. Initial studies demonstrated
that, when midbrain-derived dopaminergic neurons where
grafted in the striatum of rodent models of PD (Table 3),
long-term survival of these cells was observed, which were
tyrosine hydroxylase (TH)-positive neurons, completely reversed
amphetamine-induced rotational behavior and lacked neuronal
overgrowth (Kriks et al., 2011). Importantly, midbrain human
dopaminergic neurons grafted in MPTP-lesioned non-human
primates survived in the grafted area, expressed TH, extended
fibers to the surrounding striatum, and did not present neuronal
overgrowth (Kriks et al., 2011).

However, one limitation regarding the use of PSCs-derived
neurons is the greater immune reaction observed with allogeneic
grafts compared with isogenic cells (Duan et al, 1995;
Morizane et al., 2013). Using both approaches, Hallett et al.
(2015) demonstrated that in a non-human primate PD model
autologous iPSCs-derived midbrain-like dopaminergic neurons
could successfully engraft and survive for as long as 2 years. This
led to improving motor function and complete re-innervation
in the striatum with extensive axonal outgrowth, and no graft
overgrowth, tumor formation or inflaimmation was observed
(Hallett et al., 2015). Also, as clinical trials are underway,
establishing the optimal and safest protocol for dopaminergic
neurons differentiation is necessary to obtain the adequate
number of neurons that permit improvements in patient’s
motor symptoms. Also, the characterization of the graft is
relevant, as the differentiation protocol could give rise to other
cell types that may alter the physiological conditions in the
grafted site. One important concern about the use of autologous
transplantation using iPSC-derived dopaminergic neurons of
PD patients is that these cells will carry any intracellular
dysfunction related to disease pathogenesis. It is important to
remember that dopaminergic neuron replacement is primarily
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TABLE 3 | Common animal models of Parkinson’s Disease.

Model

Characteristics

Reference

1. Mouse models
Pharmacological models
6-OHDA

MPTP

Rotenone

Reserpine

Genetically modified models
A53T
PINK1 transgenic mice (knockout)

Parkin transgenic mice (knockout)
DJ-1 transgenic mice (knockout)
LRKK2 transgenic mice (overexpression)

Recombinant adeno-associated viral vector (AVV) models
Human WT-a-synuclein

Human-A53T-a-synuclein

2. Rat models

Pharmacological models

6-OHDA

Haloperidol

Rotenone

Recombinant adeno-associated viral vector (AVV) models
Human WT-a-synuclein Human-A53T-a-synuclein

Human A30P-a-synuclein

3. Large models
Pharmacological models
MPTP rhesus monkey
MPTP squirrel monkey
MPTP marmoset monkey

Stereotaxic injection in medial forebrain bundle

IP injection induce loss of dopaminergic neurons of nigrostriatal pathway
Stereotaxic injection in parenchyma caused damage in dopaminergic
nigrostriatal pathway

Impairment in monoamines storage in intracellular vesicles disrupting motor
activity

Mutation leads formation of neuronal inclusions leading neurodegeneration
Display impaired dopamine release, but not dopaminergic neurons
degeneration

Display abnormalities in dopamine transmission, but not dopaminergic
neuron degeneration

Display abnormalities in dopamine transmission, but not dopaminergic
neuron degeneration

Display dopaminergic dysfunction and some behavioral deficits, but not
dopaminergic neurons degeneration

Direct injection in SN induce progressive loss of dopaminergic neuron
Direct injection in SN induce progressive loss of dopaminergic neuron

Direct administration in the brain (striatum, subtantia nigra or median
forebrain bundle) cause the loss of dopaminergic neurons

IP injection block striatal dopamine transmission

IV or IP administration cause nigrostriatal dopaminergic degeneration

Direct injection in SN induce progressive loss of dopaminergic neurons and
motor impairtment
Direct injection in SN induce progressive loss of dopaminergic neurons and
motor impairtment

IP injection induce loss of dopaminergic neurons of nigrostriatal pathway
IP injection induce loss of dopaminergic neurons of nigrostriatal pathway
IP injection induce loss of dopaminergic neurons of nigrostriatal pathway

Zigmond and Stricker (1984)

Sonsalla et al. (1987) and Sonsalla and Heikkila (1988)
Heikkila et al. (1985)

Spina and Cohen (1989) and Cooper et al. (2004)
Giasson et al. (2002)

Kitada et al. (2007)

Perez et al. (2005)

Goldberg et al. (2005)

Lin et al. (2009)

St. Martin et al. (2007)

Oliveras-Salva et al. (2013)

Ungerstedt (1968)

Sanberg (1980)
Betarbet et al. (2000)

Kirik et al. (2002a,b)

Klein et al. (2002)

Burns et al. (1983)
Langston et al. (1984)
Jenner et al. (1984)
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TABLE 4 | Common animal models of Huntington’s disease.

Model

Characteristics

Reference

1. Mouse models

Genetically modified models

R6/2
R6/1
N171-82Q

YAC128
BACHD
HdhQ111

HdhQ140
HdhQ150

Pharmacological models
Quinolonic acid (QA)

3-Nitropropionic acid (3-NP)

2. Rat models
Pharmacological models
Quinolonic acid (QA)

3-Nitropropionic acid (3-NP)

Kainic acid

Ibotenic acid (IBO)

3. Larger animal models
Pharmacological models
HD rhesus monkey

HD pigs (N208-105Q)

Expresses human exon 1 of HTT with ~150 glutamine repeats
Expresses human exon 1 of HTT with ~115 glutamine repeats
Expresses a 171 amino acid mutant HTT fragment with 82 glutamine
repeats

Expresses full length human HTT with 128 glutamine repeats
Expresess full lenght human HTT with 97 glutamine repeats
knock-in mouse having human HTT exon 1 sequence with
111 glutamine repeats

knock-in mouse having human HTT exon 1 sequence with
140 glutamine repeats

knock-in mouse having mouse HTT exon 1 sequence with
150 glutamine repeats

QA directly administered to the striatum induces striatal
neurodegeneration

Repeated injections of 3-NP produce excitotoxic-like lesions of the
striatum

QA directly administered to the striatum induces striatal
neurodegeneration

Repeated injections of 3-NP produce excitotoxic-like lesions of the
striatum

Intrastriatal injection produces selective degeneration of neurons
Central microinjections induce lesions in the striatum

Expresses mutant exon 1 HTT with 84 glutamine repeats
Expresses 208 N-terminal aminoacids of mutant HTT with

Mangiarini et al. (1996)

Mangiarini et al. (1996) and Naver et al. (2003)
Schilling et al. (1999)

Slow et al. (2003) and Van Raamsdonk et al. (2005)
Gray et al. (2008)

Wheeler et al. (2000)

Menalled et al. (2003)

Lin et al. (2001)

McLin et al. (2006)

Gould et al. (1985)

Bordelon et al. (1997)
Gould et al. (1985)
Coyle et al. (1978)

Smith et al. (1987)

Yang et al. (2008)
Yang et al. (2010)

105 glutamine repeats

focused on the treatment of motor symptoms. Patients in which
symptoms like dementia or other cognitive impairment are
also present may not be benefited completely with this type
of therapy.

One key issue for cellular transplantation into human brains is
the necessity of an important amount of cells. Fetal tissue cells not
only provide a limited number of cells but also come with ethical
and religious concerns. Therefore, the use of iPSCs obtained from
somatic cells of patients is excellent for personalized cell-based
therapy and to model HD in vitro. The first research group to
obtain striatal neurons from HD iPSCs-derived neuronal stem
cells (NSCs) was Zhang et al. (2010), who used iPSCs derived
from an HD patient (Park et al, 2008). These cells not only
express MSNs markers but also could be used as an excellent
model for drug screening in HD research (Zhang et al., 2010).
Using the same HD iPSCs, Zhang et al. (2010) demonstrated
that these cells can be corrected for the CAG mutation by
replacing the expanded 72 CAG repeat with a normal 20-21 CAG
repeat (An et al, 2012). Finally, the corrected iPSCs-derived
NSCs could be successfully differentiated into MSNs in vitro,
and when transplanted into the striatum of R6/2 mice (Table 4)
they differentiated into MSNs neurons (An et al., 2012). The
genetic modification of human iPSCs not only brings us closer
to the proper modeling of diseases but also provides a potential
therapy. It has been demonstrated that iPSCs-derived neuronal
cells from an HD preclinical model develop cellular features

of HD cells, which could be rescued by genetic suppression of
HTT and pharmacological treatment (Carter et al., 2014). Using
human ESCs (hESCs) or human iPSCs (hiPSCs) differentiated
into MSNs progenitors, it has been demonstrated that the
transplantation of these cells into the striatum of rodent HD
models can form functional connections with other cells, and
project their axons to other structures involved in the movement
circuitry, like the SN (Faedo et al., 2017; Adil et al., 2018).

As highlighted previously, since HD is caused by a genetic
mutation, and differentiated MSNs progenitors come from HD
patients, it is imperative to correct the mutation present in these
cells, along with the replacement of the target neurons and other
cell types, like interneurons and glial cells, as they may provide
a healthy and functional environment for the new neurons to
integrate to the local circuitry and survive. Currently, no clinical
trials are assessing the use of PSCs in HD patients.

Cellular Reprogramming for PD and HD

In the adult brain, NSCs are present in the subventricular
zone of the lateral ventricle and the subgranular zone of
the dentate gyrus. These NSCs are capable of generating
neuroblasts, which differentiate into mature neurons (Zhao
et al., 2008; Ma etal., 2009). Despite the presence of a niche
for the generation of new neurons, these cells have limited
migration to remote regions, like the SN and striatum. Hence,
the idea to generate new local neurons from preexisting
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cells has been studied for the last 10 years. Initial studies
have demonstrated that fibroblasts can be reprogrammed
to dopaminergic neurons through the ectopic expression of
transcription factors (Caiazzo et al, 2011; Kim et al, 2011;
Pfisterer et al., 2011). Considering the reprogramming of cells
for the treatment of neurodegenerative diseases, astrocytes
were initially considered as an attractive alternative and their
reprogramming to neurons forming functional synapses was
demonstrated (Berninger et al., 2007; Heinrich et al., 2010).

The first studies in which dopaminergic neurons were
generated by reprogramming human and mouse fibroblasts
using lineage-specific factors for the conversion to dopaminergic
neurons (Caiazzo et al., 2011; Kim et al., 2011). The converted
neurons were positive for several dopaminergic markers and
expressed genes related to the dopaminergic lineage rather than
with the fibroblast of origin (Caiazzo et al., 2011; Kim et al., 2011).
Converted dopaminergic neurons formed synapses, had synaptic
activity in culture, and showed electrophysiological properties
similar to dopaminergic neurons (Caiazzo et al, 2011). The
transplantation of these cells into the brain of wild type (Caiazzo
etal.,2011) and PD mice (Kim et al., 2011) showed that converted
neurons integrated with the host tissue expressed dopaminergic
markers and had electrophysiological responses, which led to an
improvement in mice behavior (Kim et al., 2011).

Also, Addis et al. (2011) were the first to demonstrate that
astrocytes could be reprogrammed into dopaminergic neurons
in vitro. The obtained neurons displayed an up-regulation
of genes expressed by dopaminergic neurons, along with
electrophysiological properties, including the spontaneous firing
of action potentials observed in dopaminergic neurons (Addis
et al,, 2011). A few years later, the first human astrocytes were
directly converted into functionally competent dopaminergic
neurons in vitro (Rivetti di Val Cervo et al., 2017) and it
was described for the first time the in vivo conversion of
astrocytes into dopaminergic neurons in the 6-OHDA mouse
model of PD (Rivetti di Val Cervo et al, 2017). These
converted dopaminergic neurons were excitable and expressed
dopaminergic neuron markers, which helped relieve the cycling
behavior observed in these animals. These and other reports
have shown that the cellular reprogramming relies on the
expression of lineage-specific transcription factors. However,
it has been shown that downregulation of PTB in mouse
and human fibroblasts, an RNA-binding protein negatively
controlling neuronal induction and maturation, induces the
conversion of these cells into functional neurons (Xue et al,,
2013, 2016). Considering these finding and that downregulation
of PTB occurs during neurogenesis (Hu et al, 2018), Qian
et al. (2020) recently demonstrated using the 6-OHDA mouse
model of PD that adeno-associated virus (AAV)-mediated
downregulation of PTB using an shRNA convert nigral astrocytes
into functional dopaminergic neurons. These converted neurons
integrate into the nigrostriatal pathway, extending their axons
into the striatum and other brain regions. These neurons
were electrophysiologically functional and restored the striatal
dopamine lost due to the 6-OHDA treatment, leading to a
reversal of the motor deficits observed in these mice (Qian et al.,
2020). Importantly, these results were also observed using an

antisense oligonucleotide against PTB, giving these findings a
potentially clinical approach for the treatment of PD in patients
(Qian et al., 2020).

Not only glial cells can originate dopaminergic neurons.
In an elegant work performed by Niu et al. (2018), authors
demonstrated that striatal neurons could be reprogramed
to dopaminergic-like neurons in the adult mouse striatum.
These neurons, although expressing both dopaminergic and
GABAergic markers, have electrophysiological properties like
endogenous dopaminergic but no MSNs neurons. These
dopaminergic-like neurons were also functionally connected
with surrounding neurons, confirmed by the presence of
spontaneous postsynaptic currents (Niu et al., 2018). Hence,
these results seem to be promising for converting MSNs into
dopaminergic neurons under pathological conditions.

Initial studies have shown that striatal astrocytes can be
reprogramed into proliferative neuroblasts in young, adult
and aged mice brains (Niu et al., 2013), which are interesting
especially for HD, a disease of adult-onset. Furthermore,
when these neuroblasts were treated with NTFs or histone
deacetylase inhibitor, they differentiated into mature neurons
with electrophysiological properties (Niu et al, 2013).
Using (AAV)-based conversion, striatal GABAergic, and
glutamatergic neurons could be originated after reprogramming
NG2 glial cells (Torper et al., 2015). Newly generated neurons
presented electrophysiological properties of functional neurons,
remained stable for a long period, and even integrated into
local neuronal circuitry (Torper et al, 2015). Consequently,
the use of endogenous glial cells for the regeneration of
neuronal population lost under neurodegenerative conditions
has emerged as an interesting source, avoiding the use of
differentiated external cells and therefore minimizing the
possible immunorejection of foreign cells (Li and Chen, 2016;
Srivastava and DeWitt, 2016; Barker et al., 2018).

Recently, using AAV-based reprogramming of striatal
astrocytes, Wu et al. (2020) demonstrated that astrocytes
could be converted to MSNs in the striatum of R6/2 and
YACI28 mice. Converted neurons expressed specific MSNs
markers, showed electrophysiological properties, and projected
their axonal terminals to the GP and SNpr. All these findings
were accompanied by a reduction in striatal atrophy, attenuation
of the phenotypic deficit, and an extended life span of R6/2 mice
with converted MSNs (Wu et al., 2020).

Nevertheless, it is important to complement these reprogram
therapies with a therapy that targets the mutation in the
HTT gene. Converted neurons will sooner or later express
and accumulate mHTT, which will eventually lead to
neurodegeneration. Therefore, in vivo reprogramming of
glial cells into healthy MSNs has an important clinical potential,
which must also be combined with gene therapy strategies to
reduce or ablate mHTT expression in these new neurons. Also,
the application of this approach in the clinic is challenging by
the lack of standardized protocols for cellular reprogramming,
as well as the efficiency of converted cells. This depends on the
donor cell, the type of cell that is needed, the characteristics of
patients that must be considered, i.e., age, the severity of the
disease, and treatment with other drugs, among others. Although
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challenging, in vivo cell reprogramming appears as the most
promising therapy candidate for cellular replacement for PD and
HD patients.

NEUROTROPHIC FACTORS-BASED
THERAPIES FOR PD AND HD

NTFs are molecules that promote the differentiation,
myelination, and survival of neurons, which are also involved
in the neuroinflammatory response (Fernandez and Torres-
Aleman, 2012; Labandeira-Garcia et al., 2017). A reduction
in the bioavailability of NTFs in the peripheral and central
system during aging suggests a role of these factors during
neurodegenerative disorders such as PD and HD (Zuccato and
Cattaneo, 2007; Gasperi and Castellano, 2010; Procaccini et al.,
2016; Salem et al., 2016). NTFs, like Glial cell-line Derived
Neurotrophic Factor (GDNF), Brain-Derived Neurotrophic
Factor (BDNEF), Cerebral Dopamine Neurotrophic Factor
(CDNF), Mesencephalic astrocyte-derived Neurotrophic Factor
(MANTF), Platelet-Derived Growth Factor (PDGF), Insulin-like
Growth Factors (IGFs), and others have been through preclinical
and clinical trials for PD and HD (Figure 2). Here, we
describe the recently therapeutic approaches based on the
restoration of NTFs levels in the brain to prevent and/or stop the
neurodegenerative process describe in PD and HD.

Glial-Derived Neurotrophic Factor (GDNF)

GDNEF is considered as a neuro-restorative therapeutic protein
that induces the regeneration of dopaminergic neurons given
that enhances dopaminergic cell survival and differentiation
in vitro (Lin et al., 1993; Zurn et al,, 2001). Besides, GDNF
has shown a protective effect on the survival of noradrenergic
neurons in the locus coeruleus (Arenas et al, 1995), an
affected region in neurodegenerative diseases such as PD
and HD (Zweig et al, 1992; Oertel and Schulz, 2016). The
neuroprotective effects of GDNF have prompted preclinical and
clinical studies. Chronic infusion of GDNF into the lateral
ventricle or the striatum promoted the restoration of the
nigrostriatal dopaminergic system and significantly improved
motor functions in a rhesus monkey PD model (Grondin
et al,, 2002). Moreover, GDNF protects nigral dopaminergic
neurons from degeneration and improves motor behavior in
6-OHDA rat models of PD (Tereshchenko et al., 2014). However,
GDNF has limited use due to its inability to cross the blood-
brain barrier (BBB), therefore new administration methods
have been explored, including: (1) the delivery of GDNF in
biodegradable microspheres (Garbayo et al., 2009); (2) gene
therapy using DNA nanoparticle (DNP) technology for the
expression of human GDNF (hGDNF) in the striatum (Fletcher
et al, 2011); (3) the use of intra-cerebroventricular (ICV)
catheters implanted into the basal ganglia (Gill et al., 2003; Nutt
et al., 2003); (4) the use of viral vectors (Kordower et al., 2000);
and (5) GDNF-producing fibroblasts (Grandoso et al., 2007).
ICV administration of recombinant hGDNF to non-human
primates showed to significantly improve locomotor activity after
4 months of treatment (Zhang et al., 1997). Also, intraputamenal
(Ipu) delivery of GDNF in MPTP-lesioned non-human primates

significantly increased DA release (Grondin et al., 2003). Despite
the positive results in the survival of dopaminergic neurons and
improvements in motor behavior (Gill et al., 2003; Patel et al.,
2005; Lang et al., 2006), the invasiveness of the delivery of GDNF
to the brain represents a limitation for its use.

The first attempt to probe the benefits of GDNF in PD
patients consisted of the ICV administration through catheter
implantation in 50 PD patients for 8 months. Patients presented
side effects after drug administration, mainly weight loss, nausea,
and vomiting. At the end of treatment, patients did not present
improvements in the UPDRS motor scores (Nutt et al., 2003).
Similarly, delivery through Ipu infusion of recombinant hGDNF
in 34 PD patients did not observe significant improvements
in UPDRS motor scores (Lang et al., 2006). Furthermore, in a
completed clinical study with 42 PD patients, bilateral Ipu GDNF
infusions every 4 weeks for 9 months showed that ¥ F-DOPA
analyzed through PET scan imaging had a significant increase
in the putamen, but no significant changes in UPDRS scores
were registered. However, the extended treatment for 18 months
showed significant improvements in the UPDRS motor scores
(Whone A. et al,, 2019; Whone A. L. et al., 2019). Additionally,
a phase I study showed an important improvement in UPDRS
motor scores after 1 year of GDNF Ipu therapy (Slevin et al., 2005,
2007). Completed clinical studies have demonstrated the safety
and potential efficacy of Ipu GDNF infusion, with no evidence of
GDNF-induced toxicity (Slevin et al., 2005). However, antibodies
were detected in some patients and device-related problems were
reported (Lang et al., 2006; Slevin et al., 2007). It has been shown
that the effect of GDNF in vitro and in vivo requires TGF-8
(Peterziel et al., 2002). The combined effect of GDNF-TGFp
showed a strong neuroprotective effect in rodent PD models
(Peterziel et al., 2002) and future therapies may include the
simultaneous use of both molecules. Finding a non-invasive and
safe way to deliver GDNF is key to evaluate this NTF as an
effective treatment for PD.

Preclinical studies in rat models of HD have demonstrated
the benefits of ICV injection of GDNF in restoring the
excitotoxic-induced damage in the striatum, amelioration of
amphetamine-induced rotational behavior (Araujo and Hilt,
1997) and locomotor activity improvement (Araujo and Hilt,
1998). However, no registered clinical trials are testing the
efficacy of GDNF in HD patients.

Cerebral Dopamine Neurotrophic Factor
(CDNF) and Mesencephalic
Astrocyte-Derived Neurotrophic Factor

(MANF)
In 2003, a protein called mesencephalic astrocyte-derived
neurotrophic  factor (MANF) was characterized and

demonstrated to promote survival of embryonic dopaminergic
neurons in vitro (Petrova et al., 2003). Then, a homologous
protein called CDNF was discovered with a protective role for
dopaminergic neurons. Several studies evidence the protective
role of CDNF and MANF in dopaminergic neurons against
the injury caused by a-syn oligomers (Latge et al., 2015). The
intrastriatal injection of CDNF prevents the loss of TH-positive
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neurons in a 6-OHDA-lesioned rat model of PD (Lindholm et al.,
2007), and protected dopaminergic neurons in 6-OHDA and
MPTP mouse models of PD (Lindholm et al., 2007; Voutilainen
et al.,, 2009). MANF has been tested in the 6-OHDA-lesioned
rat model showing beneficial effects (Voutilainen et al., 2009).
CDNF and MANF diffuse to the brain significantly better than
GDNF, and CDNF was more efficient in reducing amphetamine-
induced ipsilateral rotations in the 6-OHDA rat PD model in
comparison with GDNF treatment (Voutilainen et al., 2011). In
6-OHDA-lesioned monkeys, PET imaging showed a significant
increase of DA transporter (DAT) ligand-binding activity in
lesioned animals treated with CDNF (Garea-Rodriguez et al,
2016).

The first phase I-1I clinical trial using CDNF in PD patients
is being conducted since 2017. In this study, an implanted drug
delivery system (DDS) for Ipu of recombinant human CDNF
is used in patients with idiopathic mild-advanced PD (Table 1,
NCT03295786). Additionally, another phase I-II clinical trial to
evaluate the beneficial effects of CDNF in PD patients is still
on course (Table 1, NCT03775538). Currently, the delivery of
CDNF for HD treatment has not been described.

Brain-Derived Neurotrophic Factor (BDNF)
BDNF is the most abundant NTFs in the brain (Barde et al,,
1982), mostly involved in physiological processes including
morphological and functional synaptic plasticity, long-term
potentiation, learning and memory (Bramham and Messaoudi,
2005; Lu et al., 2014). In the CNS, BDNF binds specifically to
tropomyosin-related kinase receptors B (TrkB) receptors and
its signaling cascade is involved in neuronal survival (Kaplan
and Miller, 2000). Interestingly, MAOI (i.e., rasagiline and
selegiline) prevent dopaminergic neuron loss by increasing
BDNF expression and other NTFs (Weinreb et al., 2007;
Maruyama and Naoi, 2013).

Studies have demonstrated that a decrease of BDNF is
implicated in neurological disorders (Siegel and Chauhan,
2000; Takahashi et al., 2012; Lu et al., 2013). Thus, strategies
for developing quantification and modulation of BDNF levels
represent a viable approach for biomarker and treatment
development, respectively, being useful for a variety of
neurodegenerative diseases (Lu et al., 2013; Song et al., 2015).
Post-mortem studies reveal that BDNF is significantly reduced
in nigrostriatal dopaminergic neurons from PD patients (Mogi
et al., 1999; Parain et al, 1999; Howells et al., 2000). A
decrease of BDNF in serum from PD patients has also been
observed (Wang et al., 2016). Also, BDNF offers neuroprotection
of striatal neurons, and supporting studies have shown that
BDNEF levels are decreased in the brains of HD rodent models
(Conforti et al., 2008) and patients (Ferrer et al., 2000;
Zuccato and Cattaneo, 2007).

A study with 42 HD patients revealed that BDNF serum
concentrations were significantly lower in patients compared to
healthy controls (Ciammola et al., 2007). However, a later study
analyzed 398 blood samples, indicating that mRNA and protein
levels of BDNF between HD and healthy controls were not
significantly different, questioning its potential as a biomarker
for early diagnosis of HD (Zuccato et al., 2011).

Although the contribution of BDNF on PD and HD pathology
is robust, no clinical trials are currently testing its safety and
efficacy for the treatment of these diseases.

Platelet-Derived Growth Factor (PDGF)

Classic studies indicate that PDGF has diverse functions in
organs, including the stimulation of cell proliferation (Heldin
and Westermark, 1999). Different isoforms of PDGF can be
found in tissues, in which the PDGF-BB isoform has shown a
protective effect in cultured dopaminergic neurons (Pietz et al.,
1996). After the treatment of rats with 6-OHDA, PDGF-BB
was increased, suggesting a compensatory response (Funa et al.,
1996) and PDGEF-BB injections induced functional recovery and
provided neuroprotection of the nigrostriatal system in a PD
mouse model (Zachrisson et al, 2011). PDGF-BB might be
acting on neural progenitors and stem cells in the subventricular
zone, promoting neurogenesis (Zachrisson et al., 2011). A study
with 12 PD patients demonstrated that the administration of
PDGE-BB into the brain ventricles for 2 weeks was well tolerated
with no evident or aggressive side effects, and an increase in DAT
binding was noted in the putamen of PDGF-BB-treated patients
(Paul et al., 2015). Considering that PDGF-BB can stimulate
neurogenesis, it may be possible to evaluate the co-treatment with
PDGE-BB and other NTFs or drugs to restore the nigrostriatal
pathway and promote neuroprotection in PD.

Both in vitro (Nakao et al., 1994) and in vivo reports (Sjoborg
et al., 1998) have related the effect of PDGF in HD. PDGF-BB
exerts trophic effects in developing rat DARPP32-positive striatal
neurons in culture, suggesting the possibility that PDGF-BB
might participate in the development and maintenance of
striatal neurons in vivo, and could be used to modulate the
neurodegeneration in HD models (Nakao et al., 1994). Then,
the same group published the expression profile of PDGF in a
rat model of HD, generated by unilateral intrastriatal ibotenic
acid injections (Table 4). The evidence showed the accumulation
of PDGF in astrocytes, suggesting a role of PDGF in a repair
process in neurodegeneration (Sjoborg et al., 1998). Currently,
no PDGF-based clinical trials are in course for HD treatment.

Insulin-Like Growth Factor Family (IGFs)
The IGF system is composed of insulin, IGF1, and IGF2,
and its receptors: IR, IGFIR, and IGF2R, respectively (Cohen
et al, 1991). The use of IGFs as therapy might represent a
novel tool for the treatment of neurodegenerative disorders
(Ebert et al., 2008). Studies in vitro and in preclinical models
have demonstrated the neuroprotective effects of IGFs (Jarvis
et al., 2007). Administration of IGF1 after injury reduced
neuronal loss against several stressors such as oxidative stress,
excitotoxicity, hypoxia, hypoglycemia, among others (Suh et al,,
2013). Several studies using in vivo models of PD demonstrated
beneficial effects of IGF1 treatment by preventing dopaminergic
neuronal loss in the SN (Ebert et al., 2008), improving
motor performance in a rat model of PD (Guan et al., 2000;
Krishnamurthi et al., 2004).

IGFs have received interest due to its role in preventing and
rescuing striatal neuronal damage which is observed in HD
(Lewitt and Boyd, 2019). Increased IGF1 plasma levels were
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observed in the YAC128 mouse model of HD (Pouladi et al,,
2010). Similarly, high IGF1 plasma levels were observed in
HD patients and this was associated with cognitive impairment
characteristic in this disorder (Saleh et al., 2010), however,
the correlation between elevated IGF1 plasma levels and
the motor and cognitive impairment in HD remains to be
elucidated. Despite the high peripheral levels of IGF1, only
small amounts of IGF1 cross the BBB into the brain. In this
context, Lopes et al. (2014) showed that intranasal administration
of IGF1 significantly improve motor function and restores
metabolic changes in YAC128 mice model of HD, demonstrating
that intranasal administration allows for the direct delivery of
IGF1I into the CNS through the olfactory pathway.

In a recently published study, it has been demonstrated
that the AAV administration of IGF2 into the striatum of
YACI128 and R6/2 mice decreased the levels of mHTT and
increased the levels of DARPP-32, a marker used to assess striatal
neurons survival (Garcia-Huerta et al, 2020). Interestingly,
neuroprotective effects of IGF2 treatment have been described in
preclinical models of others neurodegenerative diseases such as
amyotrophic lateral sclerosis (Allodi et al., 2016), spinal muscular
atrophy (Brown et al., 2009) and Alzheimer’s disease (Pascual-
Lucas et al., 2014). However, today no clinical trials are studying
the safety and efficacy of IGF2 as a possible treatment for
PD or HD.

ELECTRICAL NEUROMODULATION
THERAPIES FOR PD AND HD

The cardinal motor symptoms of PD and chorea in HD are
caused by the progressive degeneration of dopaminergic neurons
in the SNpc (Figure 1B) and the loss of MSNs in the striatum
(Figure 1C), respectively. In both cases, the motor impairment is
attributed to alteration of functional connectivity of the striatum,
a principal input of the basal ganglia (Albin et al., 1989).
Hyperkinetic movement disorders are characterized by
uncontrollable and excessive motor activity, as chorea in HD.
Reports published between 1987 and 1989 showed that blocking
the activity of the STN produces hyperkinetic motor symptoms.
Similar results are observed when the GABAergic inputs from
the striatum are blocked, favoring the inhibitory (GABAergic)
modulation of the GPe over the STN (Crossman, 1987; Crossman
et al., 1988; Robertson et al., 1989). On the other hand,
hypokinetic disorders like akinesia and bradykinesia have been
described in PD. In this case, the decrease in striatal DA levels,
as a result of the decrease in its synthesis, release, and reuptake
(Lundblad et al., 2012) alter the corticostriatal balance causing an
increase in the activity of the indirect pathway and reducing the
activity of the direct pathway, that leads to a breakdown of the
internal balance of the basal ganglia, and consequently the loss of
movement control (Obeso et al., 2008; Galvan et al., 2015). These
symptoms, unlike hyperkinetic movements, are treated with DA
agonists as L-dopa (Cotzias et al., 1967, 1969). However, as stated
in previous sections, the chronic use of this pharmacological
therapy has a limited effect, which in the case of PD can induce
a motor complication known as LID and on-off phenomenon

(Fahn et al., 2004; Stacy, 2009; Ammal Kaidery et al., 2013;
Cacabelos, 2017).

Among the therapeutic alternatives proposed in recent
decades, electrical neuromodulation therapies, i.e., Deep
Brain Stimulation (DBS) and Spinal Cord Stimulation
(SCS) have emerged as interesting options for treatment of
neurodegenerative pathologies associated with movement
disorders such as PD and HD (Figure 2). The effect of
stimulation on different basal ganglia nuclei in patients is
described below.

Deep Brain Stimulation (DBS)

DBS is a neurosurgical strategy based on the implantation of
electrodes on subcortical nuclei that, through electrical signals,
can modulate the neuronal activity of different regions of the
brain. The use of DBS for the treatment of motor disorders was
first proposed in 1971 by Natalia Bekhtereva (Bekhtereva et al.,
1972; Hariz et al., 2010). But it was until 1996 when the FDA
approved the stimulation of the ventral intermediate nucleus
(VIM) of the thalamus for the treatment of essential tremor
and severe tremor in PD. Later in 2002, the stimulation of the
STN and GPi for the treatment of bradykinesia and rigidity
in advanced cases of PD was included (Strotzer et al., 2019).
It has been suggested that the stimulation of the STN induce
the suppression of aberrant oscillatory synchronization at low
frequency (13-35 Hz, beta band) and this contributes to motor
amelioration, mainly bradykinesia and rigidity. However, more
studies are necessary to understand the mechanisms involved.
Currently, a group at the University of Minnesota is performing a
clinical trial to investigate how the brain activity in PD patients is
related to DBS and pharmacological management, by the chronic
recording of local field potential (LFP) in the cortex (Table 1,
NCT02709148).

The underlying molecular and cellular mechanisms of DBS
are still not sufficiently identified and different assumptions
about functional principles have been proposed (Jakobs et al.,
2019). Studies in neurotoxin pre-clinical models of PD (Table 3)
have suggested that STN-DBS can induce neuroprotective effects
by reducing the loss of dopaminergic neurons (Maesawa et al.,
2004; Temel et al., 2006; Wallace et al., 2007; Harnack et al., 2008;
Spieles-Engemann et al.,, 2010; Wu et al., 2012). Additionally,
it has been described that STN-DBS induces an increase in the
striatal expression of BDNF (Spieles-Engemann et al., 2011),
which is described as a powerful anti-apoptotic factor that
favors the maintenance and survival of the nigral dopaminergic
population (Zhao et al., 2017). As stated before, BDNF would
exert its effect by signaling downstream of the TrkB receptor
(Fischer et al., 2017). Nevertheless, reports in a genetic model
of PD have revealed contradictory results. Musacchio et al.
(2017) have reported that DBS reduces the loss of dopaminergic
neurons, but it did not rescue the DA deficit. On the other side,
Fischer et al. (2017) revealed that STN-DBS cannot counteract
the axonopathy and dopaminergic loss progression induced
by a-syn overexpression, but the differences in the starting
time of application protocol must be considered. Moreover, the
application of STN-DBS in pre-clinical models of PD has shown
both metabolic and physiological effects on the nigrostriatal
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DA system, inducing an increase in the levels of striatal DA
and its metabolites (Bruet et al., 2001; Meissner et al., 2003;
He et al, 2014). Genetic screening has revealed that high
frequency-DBS can induce a differential expression of genes
involved in apoptosis, growth, and neuroplasticity (Lortet et al.,
2013). Studies also revealed that DBS increased the activity of
the enzyme TH (Meissner et al., 2003) and the expression of the
D1 receptor (Carcenac et al., 2015).

For this reason, different ongoing clinical trials are
assessing the long-term neurological, neurophysiological,
and neuropsychological effects of DBS treatment (Table 1,
NCT00053625, NCT03021031), as well as improving the
administration of the treatment (Table 1, NCT03021031).
The technical difficulty of STN-DBS in PD patients is that a
case-by-case parameter adjustment is necessary. Therefore,
different studies are looking for electrophysiology biomarkers
that can predict and improve the effectiveness of DBS therapy,
as well as new stimulation methodologies (directional DBS
system) by invasive and non-invasive recording (Table 1,
NCT03353688). Another limitation of DBS is the incapacity
to alleviate the freezing of gait (FoG), a symptom observed in
more than half of PD patients. Using electroencephalography
(EEQG) it is crucial to determine electrophysiological biomarkers
present in FoG episodes that can be modulated by GPi-DBS
or pedunculopontine nucleus stimulation (PPN-DBS, Table 1,
NCT02548897). Furthermore, studies are evaluating different
parameters of STN-DBS protocols to improve gait disorders
(Table 1, NCT04184791, NCT02022735).

DBS of the GP is a promising alternative target for the
treatment of chorea, motor symptoms classic in the early stages of
HD (Albin et al., 1990). DBS has been considered an alternative
to pallidotomy, a neurosurgical strategy for the treatment of
choreic movement published in 1952, showing good effects in
four HD patients (di Cianni et al., 1992). In 2004, Moro and
colleagues (Moro et al., 2004) reported the first case of a 43-
year-old patient with an 8-year history of HD submitted to
bilateral GP stimulation. They found that stimulation at 40 Hz
and 130 Hz improved motor symptoms, reducing chorea and
dystonia, although the high frequency worsened bradykinesia.
The improvement in the patient’s performance of a motor
task was associated with an increase of the activation of the
sensorimotor cortex, premotor cortex, supplementary motor
area, and anterior cingulate cortex, although high frequency
did not modulate the activity in premotor cortex (Moro et al.,
2004). Moreover, the simultaneous stimulation of the STN and
GPi has shown beneficial effects (Gruber et al., 2014), however,
if the simultaneous stimulation has an additive effect is not
clear. To date, two prospective, randomized, and double blind
studies have been posted. One published in 2015 (Wojtecki
et al., 2015), and others still on course (Table 2, NCT02535884).
In the first study, six patients, four with chorea-dominant and
two with Westphal-variant (rigid-hypokinetic syndrome, often
associated with juvenile-onset of HD), underwent DBS treatment
for 6 months and showed a reduction of chorea (Wojtecki
et al,, 2015). Nevertheless, the Westphal-variant patients did
not show any improvements, suggesting that GP-DBS cannot
ameliorate bradykinesia.

There is no doubt that optimizing DBS systems is a
great challenge. Furthermore, understanding the correlation
between abnormal brain activity and motor symptoms is
necessary to obtain major beneficial results. For a more
detailed review of this topic, we suggest some reviews published
elsewhere (Anderson and Lenz, 2006; Miocinovic et al., 2013;
Fasano and Lozano, 2015).

Spinal Cord Stimulation (SCS)

Generally used for the treatment of chronic pain since 1967
(Shealy et al., 1967; Dones and Levi, 2018), SCS consists of the
application of electrical pulses in the dorsal columns of the spinal
cord (directly in the epidural space). It has been suggested that
the mechanism of action is based on the antidromic activation
of the dorsal column fibers, which activate the inhibitory
interneurons within the dorsal horn (Yampolsky et al., 2012).
However, the exact mechanisms are not fully elucidated.

Currently, the use of this therapeutic strategy has gone beyond
nociceptive control. In 2009, Fuentes and colleagues (Fuentes
et al., 2009) proposed the use of SCS for the treatment of motor
symptoms in PD. Like this report, in the last decade several
studies have evaluated SCS effects in advanced cases of PD,
showing interesting effects in axial symptoms (gait and postural
dysfunction) both in preclinical (Santana et al., 2014) and clinical
studies. These benefits are not observed with other treatments
like DBS or L-dopa. The mechanism involved in the effects
of SCS in motor symptoms of PD is not fully understood. It
has been proposed that SCS, by releasing biphasic electrical
pulses of high frequencies (300 Hz), would increase locomotor
activity mainly through modulation of activity in the cortex and
basal ganglia (Fuentes et al., 2009; Santana et al., 2014). This
modulation would occur by activating the path of the dorsal
columns, which in turn would modulate the activity of the
thalamus, and from there to the cortex and striatum, causing
the breakdown of aberrant low-frequency oscillations [beta
(10-30 Hz)] observed in preclinical models (Fuentes et al., 2009;
Santana et al., 2014) and PD patients (Kuhn et al., 2006), similarly
as described for DBS treatment. Nevertheless, this does not
explain the effect of SCS on gait and postural dysfunction. The
participation of the brainstem, specifically the pedunculopontine
nucleus (PPN), has been suggested, given its connection with
different structures involved in the motor system, summarized by
Chambers et al. (2019).

SCS treatment application methodologies differ among
reports. The position of the electrodes varies between patients
depending on the study. Electrodes can be placed at the cervical
or thoracic level (Cai et al, 2020), showing that in general,
both strategies ameliorate motor impairments. The first studies
assessing SCS as a treatment for motor symptoms involved PD
patients with chronic pain as a primary indication. In most
cases, SCS reduced the pain and improved motor function,
which could reflect a synergistic effect (Thevathasan et al.,
2010; Fénelon et al, 2012; Hassan et al., 2013; Nishioka and
Nakajima, 2015; Kobayashi et al., 2018; Mazzone et al., 2019).
Recently, Samotus et al. (2018) showed the effectiveness of SCS
(300-400 ps/30-130 Hz) in the treatment of FoG and gait
in five patients without pain for 6 months. This evidence is
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encouraging for the search of treatments for symptoms that, to
date, have not been satisfactorily controlled. This is the case for
gait dysfunctions that affect nearly 40-60% of PD patients and
are not improved by dopaminergic therapy (Giladi et al., 2001).
Additionally, Pinto de Souza et al. (2017) reported the use and
effectiveness of SCS as a complementary strategy to rescue the
loss of efficacy of DBS and DA medication. But other studies
are currently in a course to evaluate the efficacy of SCS in gait
disorders (Table 1, NCT03079310).

To date, three studies in preclinical models have suggested
that SCS could counteract the progression of PD through a
neuroprotective effect. Shinko et al. (2014) showed in rats
that SCS applied regularly for 2 weeks (one session of 1 h
daily) starting 2 days before 6-OHDA injection, decreases
dopaminergic neuronal loss by 20-25%, and increase the
expression of VEGF, which could favor neuroprotection given
its ability to reduce dopaminergic neuronal death by suppressing
apoptosis (Yasuhara et al., 2004). Similarly, Yadav et al. (2014)
demonstrated that the application of an SCS protocol for 6 weeks
(two sessions of 30 min per week) that started a week post-
6-OHDA injection reduced the loss of dopaminergic neurons
by 10%. Furthermore, both studies showed a positive effect
in preserving the dopaminergic innervation of the striatum,
reducing its loss by 30-35%. Recently, an investigation showed
that continuous application of SCS (24 h ON SCS), starting
immediately after injection of 6-OHDA, reduced the loss of
dopaminergic neurons and their striatal projections by ~35%
and ~32% respectively, while a regular SCS protocol (8 h
SCS ON/16 h SVS OFF) counteracted the degeneration of the
nigrostriatal dopaminergic pathway only by ~23% (Kuwahara
et al., 2020). Thus, the periodicity of the treatment application
reflects on different degrees of neuroprotection (Kuwahara et al.,
2020). These data suggest that SCS could have a neuroprotective
effect that might contribute to the relief of the observed
motor symptoms in PD, given the relevance of dopaminergic
projections in modulating the functioning of the circuit of
the nuclei of the base through the regulation of cortical and
subcortical neuronal activity during movement (Gerfen and
Surmeier, 2011; Canessa et al., 2016). Nevertheless, additional
studies are necessary to understand the mechanism involved
in the beneficial effects associated with SCS in the long-term.
More detailed reviews on this topic can be found elsewhere (de
Andrade et al., 2016; Cai et al., 2020).

For HD, SCS treatment has not been suggested, probably
because SCS has better effects in alleviating gait and posture
problems, while DBS is still the best option for the treatment of
involuntary movements, such as chorea.

GENE THERAPIES FOR PD AND HD

For the development of new therapies for PD and HD, it is
important to include, especially for HD and genetic forms of
PD, genetic correction/editing of the mutated gene(s). Nowadays,
there are several gene silencing/editing technologies, including
RNA interference (RN A1), antisense oligonucleotides (ASO), and
clustered interspaced short palindromic repeats (CRISPR/cas9),
which can be used as therapies for the treatment of PD and HD.

For a more in-depth knowledge of gene therapy delivery systems
and other cellular targets, reviews are published elsewhere
(Sudhakar and Richardson, 2019; Chen et al., 2020).

As previously stated, PD is characterized by the selective
degeneration of dopaminergic neurons in the SN, thus
approaches aiming to revert this loss based on the delivery
of genes encoding for enzymes required for DA synthesis
could be useful. The first enzyme for DA synthesis is TH,
which requires the enzyme GTP-cyclohydrolase-1 (GCH-1) to
synthesize a cofactor for DA biosynthesis (Daubner et al., 2011).
TH converts tyrosine into L-dopa, which finally is converted
into DA by the aromatic L-amino acid decarboxylase (AADC;
Hadjiconstantinou and Neff, 2008). Therapies to deliver enzymes
involved in DA synthesis have been proved in preclinical and
clinical studies showing its benefits.

Initially, gene therapy was based on the delivery of separate
AAV vectors to transfer two or three enzymes critical for DA
biosynthesis. These strategies showed behavioral benefits in
rat and non-human primate PD models (Kirik et al., 2002a;
Muramatsu et al., 2002). Furthermore, a clinical study in patients
with moderate to advanced PD demonstrated the safety and
tolerability of a 6 months treatment with a bilateral Ipu of AAV
vector encoding for the human AADC gene (AAV-hAADCG;
Eberling et al., 2008). Importantly, PET scans using an AADC
tracer demonstrated an increase in gene expression throughout
the study. Similarly, administrating the AAV-hAADC vector in
the putamen of PD patients showed to be safe and tolerable
(Muramatsu et al., 2010). This study demonstrated the efficacies
of AAV vectors for gene delivery, which persisted up to
2 years with a 46% improvement of the UPDRS motor scores
(Muramatsu et al., 2010). Another completed study showed
that bilateral Ipu infusion of the AAV-hAADC vector improves
UPDRS mean scores by 30% in PD patients after 6 months
(Table 1, NCT00229736). However, this study reported 3 cases
in which surgical procedures caused intracranial hemorrhage,
showing an important limitation of the surgical procedure,
but not necessarily of the therapeutic strategy of gene delivery
(Christine et al., 2009). Consequently, a long-term evaluation
study of AAV-hAADC demonstrated stable transgene expression
over 4 years after vector delivery in PD patients (Mittermeyer
etal., 2012).

To potentiate the effects and benefits of the enzyme therapy
for DA synthesis, researchers have developed a strategy using
a simple vector, which carries the genes that encode for the
three key enzymes for DA biosynthesis. One of these strategies
uses a lentiviral-based vector derived from the equine infectious
anemia virus (EIAV; Azzouz et al, 2002). This tricistronic
lentivirus vector encodes TH, AADC and CHI1 (Lenti-TH-
AADC-CH]) in a single vector (ProSavin). Delivery of Lenti-TH-
AADC-CHI vector into the striatum of a non-human primate
PD model restored extracellular concentrations of DA and
improved motor function for up to 12 months (Jarraya et al,
2009). Furthermore, ProSavin was administered into the striatum
of PD patients, demonstrating a significant improvement in
mean UPDRS motor scores at 6 months post-treatment, with no
adverse effects detected (Table 1, NCT00627588). Additionally,
a long-term study of ProSavin showed that the treatment was
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well-tolerated and safe, but its clinical benefits are still under
observation after 4 years (Palfi et al., 2014).

Other alternatives using gene delivery for PD treatment are
focused on lowering a-syn levels in dopaminergic neurons.
One study used a ribozyme combined with an AAV vector
(rAAV-SynRz). Nigrostriatal injection of rAAV-SynRz in MPP+-
treated adult rats, which has increased expression of a-syn (Kithn
etal., 2003), resulted in down-regulation of a-syn, preventing its
accumulation in the SN, and significantly protected TH-positive
neurons (Hayashita-Kinoh et al., 2006). Despite these positive
results, no clinical trials using gene therapy for silencing a-syn
to treat PD are being conducted.

One important branch of investigation regarding HD
therapies is the reduction of HTT DNA, RNA, and/or
protein levels. Using a conditional transgenic mouse model
of HD, it has been demonstrated that the reduction of
mHTT ameliorates motor and psychiatric-like deficits, forebrain
weight loss, cortical and striatal volume decrease, presynaptic
and postsynaptic markers changes, and electrophysiological
changes in these mice (Wang et al, 2014). One possible
alternative to reduce mHTT levels is the use of DNA-targeting
strategies (Ambrose et al., 1994). Thus, permanent and selective
deletion of mHTT gene could be an interesting therapeutic
approach for HD with no negative effect on patient health.
The CRISPR/Cas9 system has been investigated for its utility
for HD therapy but is still in the preclinical stage. Using
fibroblasts (Shin et al., 2016; Monteys et al., 2017; Dabrowska
et al, 2018) and iPSCs-derived NPCs (Shin et al., 2016)
from an HD patient, it has been demonstrated that the
selective deletion of a fragment of the mHTT gene using
the CRISPR/Cas9 strategy is possible. This approach led to a
near-complete reduction of mHTT protein and left intact the
wild type HTT gene (Shin et al,, 2016). Furthermore, using
CRISPR/Cas9 and a transposon-based approach, the precise
correction of the CAG expansion in HD iPSCs has been
achieved (Xu et al, 2017). These cells retain pluripotency,
have a normal karyotype, and could be differentiated into
NPCs and MSNs-like neurons, which presented some electrical
properties of neurons. Interestingly, the corrected cells were
deprived of some phenotypic abnormalities observed in the
HD iPSC-derived neurons, including increased susceptibility to
growth factor withdrawal, impaired neural rosette formation,
and mitochondrial dysfunction (Xu et al., 2017).

Using BACHD mice (Table 4) it has been shown that mHTT
expression is reduced when Cas9 and a single guide RNA
(sgRNA) are delivered using AAVs in the striatum, causing the
deletion of a fragment around exon 1 (Monteys et al., 2017).
Likewise, AAV-mediated injection of Cas9 and 2 sgRNA into the
striatum of HD140Q-KI mice (Table 4) achieved a significant
reduction in mHTT levels, accompanied by improved motor
performance, decrease in reactive astrocytes and attenuation of
bodyweight reduction (Yang et al., 2017). Similar results have
been found using the R6/2 mice model, in which AAV-mediated
delivery of Cas9 and sgRNA into the striatum caused a near
40% reduction in mHTT inclusions and around a 50% decrease
in mHTT protein levels (Ekman et al., 2019). These mice
presented increased mean survival, better motor performance,

and decreased hindlimb clasping, an established indicator of
dystonia (Ekman et al., 2019).

Despite the promising results, there is still a need for
validation of this approach for human research. Given that
many studies use CRISPR/Cas9 technology based in the
recognition of short repeat sequences in the DNA, intensive
studies must be performed to find these short sequences in
the mHTT gene that is not present in another codifying
gene sequence, so off-target genomic removal could be
avoided. Moreover, single-nucleotide changes can occur in the
mHTT gene in every patient affected, therefore sequencing
of the mutant gene would be necessary for each patient.
Another important issue of using CRISPR/Cas9 technology
in humans is that the deletion of the mutated gene is
permanent and irreversible. Also, the transduction of Cas9,
a protein of bacterial origin, could activate the patients’
immune system and edited cells would be effectively eliminated
(Wignakumar and Fairchild, 2019). Despite this, CRISPR/Cas9-
mediated deletion of the mHTT gene could be perfectly
coupled with cell replacement strategies, with a correction of
the mutation.

A second strategy for lowering mHTT levels is based on
RNA-targeting strategies. One of the most studied methods
to achieve this is through RNAi. These include the use of
microRNAs (miRNAs) and short hairpin RNAs (shRNAs), all
using the Dicer-RISC machinery for the targeted degradation
of mRNAs (Ghosh and Tabrizi, 2017). Initially, using ShRNAs
and HD-N171-82Q HD mice (Table 4), it was shown a
partial reduction of mHTT mRNA by 50% and decreased
mHTT protein accumulation in the striatum, accompanied by
a significant improvement in motor performance (Harper et al.,
2005). Similarly, using R6/1 HD mice (Table 4), it has been
demonstrated that AAV-mediated delivery of shRNAs against
mHTT significantly reduces mHTT mRNA and protein levels
(Rodriguez-Lebron et al., 2005). shRNA-injected striatum had
smaller and less intense intranuclear mHTT inclusions, which
was accompanied by increased MSNs mRNA markers. However,
this group showed just a mild effect on the clasping phenotype
observed in these mice (Rodriguez-Lebron et al., 2005).

These and other studies have demonstrated that the reduction
of mHTT using RNAIi in the brain of HD mice decreases both
mHTT mRNA and protein levels, which is accompanied by
improved motor behavior. However, in these studies the RNAi
was designed to target human mHTT, leaving endogenous
mouse HTT unaltered. This represents a problem when we
think about patients’ treatment, given that both alleles differ in
the expanded polyQ in the mutated gene and different single
nucleotide polymorphisms (SNPs) present. Even though several
SNPs have been identified to be differentially present in the
mutant and wild type allele, this accounts just for 80% of the
population with HD, leaving an important number of patients
without a therapeutic alternative (Pfister et al., 2009). Therefore,
RNAI has been tested for the reduction of both mHTT and wild
type HTT mRNA. Using an HD mouse model that expresses
both mouse wild type and human mutant HTT, non-allele
specific miRNA-mediated knockdown of both mRNAs in
the striatum can significantly improve motor coordination
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(Boudreau et al., 2009). Notably, these mice survived and had
no phenotypic changes after a 75% reduction of wild type HTT
for 4 months (Boudreau et al., 2009). Using AAV-mediated
miRNA injection into the putamen of rhesus monkeys to target
both HTT and mHTT mRNAs, it has been demonstrated that
a 45% reduction of HTT mRNA did not induce motor deficits
in these animals, nor neurodegeneration, astrogliosis, microglial
activation or neuroinflammation (McBride et al, 2011).
These phenotypes were also maintained in rhesus monkeys
treated with AAV-shRNA for HTT mRNA for 6 months
(Grondin et al., 2012).

One important limitation of double-stranded RNAs (shRNAs
and miRNAs) is that they are not capable of crossing the BBB
and do not easily cross the plasma membrane of cells. Given that
they demonstrated positive effects when targeted to the brain,
methods to deliver these molecules are under study (Chernikov
et al., 2019). Despite this limitation, in 2019 the first clinical trial
using AAV5-mediated delivery of a miRNA against HTT was
initiated (Table 2, NCT04120493). Early manifest HD patients
will be assessed for motor and cognitive functions, with miRNA
and exploratory biomarkers measured in the CSF. The same
AAV5-miRNA was proven to lower mHTT mRNA specifically
in rat and minipig HD model. Suppression of mHTT mRNA
levels was associated with lower mHTT protein levels, inclusion
formation, and neuronal dysfunction (Miniarikova et al., 2017;
Evers et al., 2018).

Another strategy used for RNA targeting is through ASOs.
These are short, synthetic single-stranded DNA molecules that
are complementary to a pre-mRNA target sequence in the
nucleus, and have been widely studied for the treatment of
neurological disorders (Rinaldi and Wood, 2018). Using IONIS-
HTTRx against HTT mRNA, Tabrizi et al. (2019) reported
the first results obtained from a phase I-II multicenter clinical
trial in which this ASO was intrathecally administered in
early-manifest HD patients. IONIS-HTTRx demonstrated to be
safe and well-tolerated, and importantly, mHTT levels in the
cerebrospinal fluid (CSF) of patients treated with IONIS-HTTRx
decreased dose-dependently. In this trial, no changes in motor
and cognitive functions were observed between the placebo and
the treated group, which can be explained by the slow progression
of the disease and the narrow window of time in which these
changes were measured (Tabrizi et al, 2019). Some of these
patients participated in a 15-month extension study, which ended
by October 2019 (Table 2, NCT03342053). The original clinical
trial is now under phase III, with more than 900 patients in
101 locations around the world, which is expected to end by
September 2022 (Table 2, NCT03761849).

A second and third phase Ib/IIa clinical trials are underway
to evaluate single and multiple doses of two ASOs against
two specific SNPs found in the mHTT gene. PRECISION-HD1
clinical trial will evaluate the ASO WVE-120101 against the
SNP rs362307 (Table 2, NCT03225833) and PRECISION-HD2
clinical trial will use the ASO WVE-120102 against the SNP
rs362331 (Table 2, NCT03225846). These multicenter clinical
trials, in which 60 patients with early-manifest HD are
participating, started in 2017 and are expected to finish by the
end of this year.

The results of the IONIS-HTTRx clinical trial are encouraging
and bring us closer to therapy for HD. Given that ASOs
bind directly to the DNA sequence, it is less likely that
off-target suppression occurs. Moreover, as in the PRECISION
clinical trials, unique SNPs found specifically in the mHTT
DNA sequence allows for the design of specific ASOs,
avoiding off-target suppression. However, the use of ASOs has
disadvantages. In the PRECISION clinical trials, the ASOs
evaluated target specific SNPs found in the mHTT gene, but they
are not present in all HD patients. On the other hand, the IONIS-
HTTRx clinical trial targets both wild type and mHTT genes, so it
can be used in all HD patients. However, to date, there is no data
available on the possible effects of wild type HTT suppression
in patients. As mentioned before, non-human primates with
sustained suppression of wild type HTT did not show adverse
effects in motor and cognitive skills (McBride et al.,, 2011;
Grondin et al., 2012), results that could be escalated to humans.
Nevertheless, evaluation of long-term suppression of wild type
HTT is key in HD patients. Also, repeated administration of
ASOs could be necessary to maintain therapeutic benefits.

DISCUSSION

PD and HD are movement disorders characterized by the
presence of aberrant and unwanted involuntary movements.
The main cause for the variety of motor symptoms observed in
patients is the selective neuronal loss in brain areas implicated
in movement fine-tuning. Despite this knowledge, current
treatments are not able to stop, reverse, or slow down PD and
HD. Current treatments are directed to keep to line the motor
symptoms, but with limited efficacy. Thus, continuous strong
efforts are being made for the development of new therapeutic
strategies for both diseases. Moreover, the development of small
molecules for the treatment of these neurodegenerative diseases
has a particularly high failure rate. Thus, strong efforts are being
made for the development of new therapeutic strategies for
both diseases.

Currently, no approved drugs can modify the progression of
either PD or HD. Nevertheless, pharmacology provided therapies
to reestablish DA levels in PD patients and to reduce DA
neurotransmission in HD patients. Unfortunately, different and
aggressive side effects appear during these treatments. New
formulations have been developed to control the additional
psychomotor and autonomic complications produced by some
anti-parkinsonians drugs, however, it is important to reduce
all the events that can affect or deteriorate the quality life
of patients, and maybe the answers are out of the classical
pharmacology approach.

Among the first strategies used for the treatment of PD
and HD were cellular replacement therapies, in which fetal
tissue was transplanted into the patient’s brain. Even though
some functional recovery was observed, this strategy had several
limitations. The number of fetuses used generates important
religious and ethical concerns. Besides, in some cases, tumor
formation was observed in the site of transplantation, and most of
the studies required immunosuppressive therapy. Although new
strategies have been developed for obtaining dopaminergic and
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GABAergic neurons from ESCs and iPSCs, these have not yet
escalated into clinical trials.

Deregulation of NTFs’ levels has been reported in PD
and HD patients, and the administration of NTFs has shown
beneficial effects in patients with these diseases. The reported
neuroprotective effect can be explained by the prevention of
neurodegeneration, restoring, and delaying the occurrence of
motor symptoms. Moreover, therapy with NTFs has proven
to be effective not only in preclinical stages but has also
shown a positive effect in clinical trials. However, one main
limitation of NTFs therapy is its poor brain availability
after oral administration, which can only be solved by
direct administration to the brain. Clinical studies directly
administrating NTFs to the brain have reported side effects
such as nausea, vomiting, headache, as well as infection when
catheter implantation is used. Despite side effects, these studies
have observed promising effects with this therapy, however,
improvement and development of new delivery methods are key
for successful NTF-base treatments.

Without a doubt, the development of electrical
neuromodulatory therapies to treat motor symptoms in PD
and HD has brought encouraging news for patients, doctors,
and their families. Clinical reports carried out in recent decades
have validated the use of DBS or SCS as a complement to
classical pharmacological therapies that, due to their chronic
use, decrease their effectiveness or induce more complex motor
symptoms. Additionally, studies in PD patients have reported
that the simultaneous use of DBS and SCS would bring important
benefits, since DBS is effective in relieving motor symptoms
such as tremor, bradykinesia, and stiffness, while SCS has to
relieve symptoms associated with walking and posture. Although
this has not been validated in the clinic, it opens the discussion
about the possibility of using both strategies for the synergistic
treatment of cardinal and axial symptoms of PD. When it comes
to HD treatment, DBS has emerged as a promising alternative
after showing positive effects similar to pallidotomy, reducing
choreic movements and dystonia, but with the advantage of
being a flexible option that adjusts to the patient’s requirements.
Since the mechanisms by which both strategies exert their effect
have not been fully elucidated, their use requires personalized
patient-to-patient care throughout the treatment, complicating
its application in countries with weak health systems. Moreover,
given their surgical complexity and high monetary cost, these
therapies continue to be considered as a last option, even when
reports in pre-clinical models, particularly in the case of PD,
have reported encouraging results regarding their effect in
counteracting neurodegeneration processes.

Worldwide excitement among HD patients and their families
arose after the report of a promising potential therapy (IONIS-
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Aging is the time-dependent functional decline that increases the vulnerability to
different forms of stress, constituting the major risk factor for the development of
neurodegenerative diseases. Dysfunctional mitochondria significantly contribute to aging
phenotypes, accumulating particularly in post-mitotic cells, including neurons. To cope
with deleterious effects, mitochondria feature different mechanisms for quality control.
One such mechanism is the mitochondrial unfolded protein response (UPRMT), which
corresponds to the transcriptional activation of mitochondrial chaperones, proteases,
and antioxidant enzymes to repair defective mitochondria. Transcription of target UPRMT
genes is epigenetically regulated by Histone 3-specific methylation. Age-dependency
of this regulation could explain a differential UPRMT activity in early developmental
stages or aged organisms. At the same time, precise tuning of mitochondrial stress
responses is crucial for maintaining neuronal homeostasis. However, compared to other
mitochondrial and stress response programs, the role of UPRMT in neurodegenerative
disease is barely understood and studies in this topic are just emerging. In this review, we
document the reported evidence characterizing the evolutionarily conserved regulation of
the UPRMT and summarize the recent advances in understanding the role of the pathway
in neurodegenerative diseases and aging.

Keywords: mitochondrial unfolded protein response, neurodegenerative diseases, aging, mitochondria,
epigenetic regulation, stress response

UPRMT MACHINERY AND MITOCHONDRIAL HOMEOSTASIS
REGULATION

Mitochondria are the main energy producers within the cell and the coordinators of several
pathways that control essential metabolites, which include not only ATP and NAD®,
but also acetyl-CoA and S-adenosyl methionine for protein acetylation and methylation,
respectively (Teperino et al, 2010; Menzies et al., 2016). Mitochondria are unique in that
they have an independent genome (mtDNA), which encodes 2 rRNAs, 22 tRNAs, and
13 proteins that constitute the OXPHOS complexes (Wallace and Chalkia, 2013). Remaining
mitochondrial proteins are encoded in the nucleus, so the function of the organelle
heavily depends on the coordinated regulation of nuclear and mitochondrial genomes
(Couvillion et al., 2016). Imbalances in protein expression in any of these two sources activate
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an anterograde regulation of mitochondrial function (from
the nucleus towards mitochondria) that adjusts its activity
to match cellular needs (Cui et al., 2006; Kaarniranta et al.,
2018). Mitochondria can also control the expression of nuclear
genes through a retrograde regulatory mechanism (Lin and
Haynes, 2016). This bidirectional communication between
mitochondria and the nucleus forms a molecular network
that maintains cellular homeostasis. Part of the network that
synchronizes the cellular adaptation to a variety of stressors is
termed the mitochondrial unfolded protein response (UPRMT).
Thus, UPRMT s the transcriptional program that stabilizes
mitochondrial homeostasis and reduces misfolded protein
amount in the organelle, increasing the mitochondrial response
capability to stress stimuli (reviewed in Jensen and Jasper,
2014; Shpilka and Haynes, 2018; Gomez and Germain, 2019;
Tran and Van Aken, 2020). Known activators of UPRMT
include the impairment of the Electron Transport Chain
(ETC), alteration of mitochondrial dynamics, accumulation of
unfolded proteins, deletion of mitochondrial DNA (mtDNA),
inhibition of mitochondrial chaperones or proteases, and the
increase of reactive oxygen species (ROS) levels (Nargund
et al, 2012; Pimenta de Castro et al, 2012; Runkel et al,
2013; Qureshi et al., 2017). Despite the mechanisms underlying
the UPRMT are less understood than endoplasmic reticulum
UPR (Hetz et al., 2020), this mitochondrial stress pathway
is emerging as an important response that guarantees the
organelle function.

UPRMT  was originally observed in mammalian cells,
where mitochondrial stress was induced by mtDNA deletions
(Martinus et al., 1996) and by aggregation of mutant ornithine
transcarboxylase (AOTC) (Zhao et al, 2002). Both stress
stimuli upregulated the expression of mitochondrial chaperones
Hsp60, Hspl0 under the control of the transcription factor
CHOP (Zhao et al, 2002; Horibe and Hoogenraad, 2007).
Three nuclear components were then identified in C. elegans as
UPRMT regulators: ATES-1, DVE-1, and UBL-5. These proteins
are part of the UPRMT-ATF5 axis, an ATFS-1/ATF5 dependent
response that is the most characterized UPRM? pathway (Table 1,
Kenny and Germain, 2017; Ji et al., 2020). ATFS-1, a leucine
zipper protein, carries a nuclear localization sequence and a
mitochondrial targeting sequence. Under mitochondrial stress,
ATFS-1 normal transport towards mitochondria is blocked
and translocates instead to the nucleus where it interacts with
DVE-1 and UBL-5 (Figure 1; Nargund et al, 2012, 2015).
In mammals, the CHOP target ATF5 was identified as the
functional ortholog for ATFS-1, which also contains targeting
sequences for mitochondria and nucleus and upregulates
UPRMT genes (Teske et al,, 2013; Fiorese et al., 2016). On the
other hand, DVE-1 is a DNA binding protein that together
with its coregulator UBL-5, interacts with chromatin regions to
maintain an ATFS-1-dependent active transcription of UPRMT-
related genes (Benedetti et al.,, 2006; Haynes et al., 2007; Tian
et al., 2016). The coordinated action of these three proteins
upregulates the expression of mitochondrial chaperones hsp-60,
hsp-6, and protease clpp-1 (Table 1, Haynes and Ron, 2010).

Two other pathways have been associated with this stress
response (Figure 1). The UPRMT-ERq axis, a pathway dependent

on the activation of the estrogen receptor o (ERa), was
described as associated with the accumulation of proteins in
the mitochondrial intermembrane space (Papa and Germain,
2011). Mitochondrial stress and ROS production trigger the
phosphorylation of the protein kinase AKT and consequently,
the activation of ERa. This cascade increases the transcription
of protease HTRA2 and the mitochondrial biogenesis regulator
NFR1, which translates in an increased proteasome activity
independent of activation of the UPRMT-ATF5 axis (Table 1,
Papa and Germain, 2011). Finally, the UPRMT-SIRT3 axis is
based on the activation of Sirtuin 3 that modulates the expression
of SOD1, SOD2, and catalase, through activation of FOXO
(Papa and Germain, 2014; Kenny et al., 2017). The UPRMT.
SIRT3 axis has been validated also in worms and mammalian
cells, supporting the high evolutionary conservation of the
pathway (Mouchiroud et al., 2013). Importantly, both ERa-
and SIRT3-UPRMT axes work independently of CHOP (Papa
and Germain, 2014), upholding the idea of three parallel paths
coordinating the same stress response (Figure 1).

Chromatin remodeling has been shown to play a central
role in UPRMT regulation. Histone 3 is a target for methylation
catalyzed specifically by methyltransferase MET-2 in C. elegans
(ortholog of human SETDBI1). Activation of UPRMT requires the
dimethylation of lysine 3 of histone 3 (H3K9), which translates
into a compacted and overall silenced chromatin state. At the
same time although, other chromatin portions remain loose,
favoring the binding of UPRMT regulators such as DVE-1
(Tian et al, 2016). Also required for UPRMT activation are
the conserved demethylases JMJD-3.1 and JMJD-1.2, which
reduce the chromatin compaction by removing methylation from
H3K9 and H3K27 (Figure 1; Merkwirth et al., 2016; Sobue et al.,
2017). Interestingly, chromatin remodeling acts independently
of ATFS-1, as its downregulation does not affect the nuclear
localization of DVE-1 (Tian et al., 2016). It is known that besides
genes encoding chaperones and proteases, UPRMT activation
increases the expression of glycolysis and amino acid catabolism
genes, and represses TCA-cycle and OXPHOS encoding genes
(Nargund et al., 2015; Gitschlag et al., 2016; Lin and Haynes,
2016). To date, it is not clear whether UPRMT can activate any
other quality control mechanism such as mitochondrial fission,
fusion, and mitophagy. It has been reported, however, that
the same mitochondrial stressors can activate mitophagy and
UPRMT (Nargund et al., 2012; Pimenta de Castro et al., 2012; Jin
and Youle, 2013; Runkel et al., 2013; Lin et al., 2016). Organisms
that have adapted after constant exposure to low doses of these
stressors (misregulation of ETC components and low doses of
the UPRMT activator paraquat) exhibit a hormetic phenotype as
they show increased longevity despite their mild mitochondrial
dysfunction (Yoneda et al., 2004; Owusu-Ansah et al., 2013). This
homeostatic regulation is particularly important in post-mitotic
cells such as neurons.

THE ROLE AND REGULATION OF UPRMT
IN AGING

Aging is defined as the time-dependent functional decline that
increases vulnerability to different forms of stress, ultimately
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TABLE 1 | Mitochondrial UPR regulators and their function in conserved species.

Name CE DM MM HS Function References
UPRMT-ATF5 axis
Activating Transcription Factor 5 Atfs-1 crc Atf5 ATF5 Transcription factor with basic leucine zipper domain. Yoneda et al. (2004),
Carries an MTS in the N-term and an NLS in the C-term. Nargund et al. (2012),
Fiorese et al. (2016) and Wu
et al. (2018)
Special AT-Rich Sequence-Binding dve DVE Satb2 SATB2 DNA binding protein. Stabilizes open chromatin for Haynes et al. (2007) and
Protein 2 UPRMT-associated transcription. Tian et al. (2016)
Ubiquitin Like 5 UBL-5 ubl Ubls UBL5S Protein binding. Binds DVE to activate transcription of Benedetti et al. (2006)
Hsp60
ATP Binding Cassette Subfamily B haf-1 CG3156 ABCB10 ABCB10 Mitochondrial inner membrane transporter. Exports Haynes and Ron (2010)
Member 10 peptides from the matrix. and Yano (2017)
Caseinolytic Mitochondrial Matrix clpp-1 ClpP ClpP CLPP Mitochondrial ATP-dependent protease. Its attenuation Haynes et al. (2007) and
Peptidase Proteolytic reduces the UPRMT activation and the formation of the Al-Furoukh et al. (2015)
UBL/DVE complex.
Translocase of Inner Mitochondrial timm-23 Tim23 Timm23 TIMM23 Protein transmembrane transporter. Required for full Rainbolt et al. (2013)
Membrane 23 induction of UPRMT mediated by ATFS-1.
Lon Peptidase 1 , lonp-1 Lon Lonp1 LONP1 Mitochondrial protease. Degrades ATFS-1 when imported Nargund et al. (2012)
to mitochondria under stress conditions.
Heat Shock Protein Family D hsp-60 HspBOA Hspd1 HSPD1 Mitochondrial heat-shock protease. Upregulated upon Zhao et al. (2002), Yoneda
(Hsp60) Member 1 Hsp60B mitochondrial stress. et al. (2004), Haynes et al.
Hsp60C (2007) and Owusu-Ansah
etal. (2013)
Heat Shock Protein Family A hsp-6 Hsc70-5 Hspa9 HSPA9 Mitochondrial heat-shock protease. More sensitive to Yoneda et al. (2004),
(Hsp70) Member 9 oxidative stress than unfolded protein stress. Benedetti et al. (2006) and
Merkwirth et al. (2016)
UPRMT- ERo axis
Estrogen Receptor 1 nhr-107 ERR Esr1 ESR1 Ligand-activated transcription factor. Regulates the Papa and Germain (2011)
expression of Htra2 and NRF1 after Akt phosphorylation. and Riar et al. (2017)
HtrA Serine Peptidase 2 psmd-9 HtrA2 HtrA2 HTRA2 Serine protease. Protein import checkpoint in IMS. Papa and Germain (2011)
Increased expression upon stress.
Nuclear respiratory factor 1 - - Nrf1 NRF1 Transcription factor. Papa and Germain (2011)
UPRMT. SIRT3 axis
Sirtuin 3 Sir-2.1 Sirt2 Sirt3 SIRT3 NAD* dependent deacetylase. Regulates the activity of Mouchiroud et al. (2013);
FOXO3 upon oxidative stress in the mitochondria. Papa and Germain (2014);
Gariani et al. (2016) and
Kenny et al. (2017)
Forkhead box daf-16 foxo Foxo3 FOXO3 Transcription factor. Translocate to the nucleus to activate Mouchiroud et al. (2013);
transcription of SOD1, SOD2, and Catalase. Gariani et al. (2016) and
Kenny et al. (2017)
Superoxide dismutase 1 sod-1 Sod Sod1 SOD1 Superoxide dismutase. Soluble cytoplasmic isoenzyme. Mouchiroud et al. (2013);
Gariani et al. (2016) and
Kenny et al. (2017)
Superoxide dismutase 2 sod-2 Sod2 Sod2 SOD2 Superoxide dismutase. Mitochondrial isoenzyme. Mouchiroud et al. (2013);

Gariani et al. (2016) and
Kenny et al. (2017)
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leading to death (Kennedy et al., 2014). Aging has particularly
severe consequences for organs composed mostly by post-mitotic
cells, such as the heart and brain (Kowald and Kirkwood, 2000;
Terman et al,, 2010). For instance, aging is the major risk factor
for the onset of chronic, brain-related, and neurodegenerative
diseases (ND). Current studies in the field introduced critical
questions aiming to understand the physiological sources of
time-dependent damage, the compensatory cellular responses
that reestablish homeostasis, and their interconnection to
find potential targets to intervene and delay aging. Seven
cellular pillars of aging have been described, including among
others, alterations to proteostasis, epigenetics, metabolism, and
adaptation to stress (Kennedy et al, 2014). Mitochondrial
dysfunction is a common factor for these events, suggesting a
role of mitochondrial reparative machinery in aging progression.
Furthermore, it is accepted that aging in model organisms is
functionally associated with mitochondrial decline, contributing
to the time-dependent tissue malfunction (Chistiakov et al., 2014;
Kim et al., 2018). Therefore, activation of UPRMT as one of
the mitochondrial mechanisms against different forms of aging-
causing damage, could be in part bridging the adaptation to stress
and other pillars of aging as proteostasis and epigenetics.

Current evidence highlights an age-dependent effect of
UPRMT on lifespan. For instance, activation of UPRM! triggered
by downregulation of ETC complexes I and IV promotes
longevity (Dillin et al., 2002; Durieux et al., 2011; Mouchiroud
et al, 2013). Histone demethylases JMJD-1.2 and JMJD-
3.1 mediate in part that extension, as their overexpression is
sufficient to extend the lifespan of worms (Merkwirth et al.,
2016). On the other hand, reducing the expression of nuclear
effectors ATFS-1, UBL-5 and DVE-1, or demethylases JMJD-
1.2 and JMJD-3.1, suppresses the lifespan extension (Table 1,
Durieux et al., 2011; Houtkooper et al., 2013; Merkwirth et al.,
2016; Lan et al,, 2019). It is interesting that UPRMT activation
after exposure to mitochondrial stress is strongly responsive
only during development and not in later stages of the lifespan
(Dillin et al., 2002; Copeland et al., 2009; Durieux et al., 2011;
Houtkooper et al., 2013). UPRMT appears less active in adult
organisms, so there is no increased lifespan as a response to
mitochondrial stressors, as observed in developmental stages in
worms and flies (Dillin et al., 2002; Owusu-Ansah et al., 2013;
Jensen et al., 2017).

Decreased chromatin accessibility of target UP genes in
aged organisms is a potential explanation for the differential
UPRMT activation. This was recently confirmed in a study
where the methyltransferase SET-6 and the neuronal epigenetic
reader BAZ-2, mediated specifically an age-dependent regulation
of UPRMT, Both proteins when overexpressed in aged worms
increased the levels of H3K9Me3, the triple methylated state
of the protein, thus inhibiting UPRMT activation in the
H3K9-protected loci (Figure 1). Loss of function of SET-6 or
BAZ-2 increased healthspan but not longevity, a phenotype that
was inhibited downregulating UBL-5 or ATFS-1 (Yuan et al,
2020). Histone 3 methylation appears then as a key epigenetic
mediator for UPRMT throughout the lifespan (Merkwirth et al.,
2016; Tian et al., 2016; Ono et al., 2017). Longitudinal studies
have proved that H3K9Me3 increases during aging in mice

Tian et al. (2016)
Tian et al. (2016)
Yuan et al. (2020)
Merkwirth et al. (2016)
Yuan et al. (2020)

References

Nuclear co-factor. Highly unstructured protein involved in
chromatin remodeling. Necessary for the incorporation of
MET-2 to the nucleus.

Histone methyltransferase. Upregulated during aging to

inhibit UPRMT activation.
upregulated during aging acting with SAT-6 to inhibit the

Histone demethylase. Positive regulator of lifespan upon
mitochondrial stress. Needed to activate the UPRMT
UPRMT during aging by regulating methylation of H3K9.

H3K9 contains genes upregulated upon mitochondrial
Transcription factor. Neuronal Epigenetic Reader

Histone methyltransferase. Loci protected by
stress.

Function

HS
SETDB1
EHMTA
KDM6BA
BAZ2B

MM
Setdb1
Ehmt1
KdmBA
Baz2b

DM
eggless
CG4565
Utx

tou

RMT

CE
met-2
lin-65
SET-6
JMJD-3.1
Baz-2

CE, Caenorhabditis elegans; DM, Drosophila melanogaster; MM, Mus musculus; HS, Homo sapiens; MTS, mitochondrial targeting sequencing; NLS, nuclear localization signal; IMS, mitochondrial intermembrane space.

Bromodomain Adjacent to Zinc

SET Domain Bifurcated Histone
Finger Domain 2B

UPRMT epigenetic regulators
Lysine Methyltransferase 1
Euchromatic Histone Lysine

Abnormal cell lineage.65
Methyltransferase 1

TABLE 1 | Continued
Lysine Demethylase 6A

Name
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FIGURE 1 | Mitochondrial unfolded protein response (UPR) and its regulation in aging and neurodegeneration. Insults to mitochondria (top left) activate three
different axes of the UPRMT program. The SIRT3-UPRMT axis (green arrow) increases the transcription of superoxide dismutases and catalase, after the activation of
DAF-16/FOXO3 by the deacetylase SIR-2.1/SIRT3. In the ATF5-UPRMT axis (red arrow), the transcription factor ATFS-1/ATF5 relocalizes from mitochondria to
nucleus to upregulate mitochondrial proteostasis related genes (red box) after the interaction with the chromatin stabilizers DVE-1 and UBL-5. In the ERa-UPRMT axis
(blue arrow) the estrogen receptor is activated by the kinase Akt, to increase the expression of the protease HTRA2 and mitochondrial biogenesis regulator NRF1. On

a healthy state (center right), ATF5-UPRMT activation requires chromatin reorganization. Dimethylation of Histone 3 by MET-2, and presence of demethylases
JMJD-1.2 and JMJD-3.1, allow the binding of DVE to facilitate the ATFS-1-dependent expression of UPRMT genes and improve mitochondrial proteostasis. In
neurodegenerative states triggered by accumulation of AB4» (AD), a-syn (PD) or SOD189%A (ALS, top right), UPRMT could be persistently activated, affecting
mitochondria proteostasis and neuron viability. In aging cells (bottom right), Histone 3 is preferentially trimethylated, which blocks DVE and ATFS-1 biding to
compacted DNA. Lack of expression of UPRMT -related genes decreases mitochondrial response to aging-causing damage. All protein names are taken from
C. elegans, except the ones from the ERa axis, which has only been described in mammalian cells.

hippocampus, and inhibition of this methylation state was
sufficient to block aging-associated cognitive decline in mice
(Snigdha et al., 2016). Advanced knowledge of the loci carrying
UPRMT genes on them, will contribute to further understand the
lack of UPRMT activation during aging.

UPRMT IN AGING NEURONS AND
NEURODEGENERATIVE DISEASES

Several factors influence mitochondrial homeostasis in neurons
during aging, such as oxidative damage, neuronal localization,
and quality control mechanisms. Compared to mitotic cells,
neurons are more sensitive to the accumulation of oxidative
damage and defective mitochondria (Kowald and Kirkwood,
2000; Terman et al., 2010). Neuronal unique shape, on the
other hand, generates a differential mitochondrial distribution
required to provide energy at specific compartments (Obashi and
Okabe, 2013). Indeed, evidence shows that at nerve terminals,
mitochondria are more prone to age-related dysfunction and
oxidative damage compared to non-synaptic mitochondria
(Lores-Arnaiz et al, 2016; Olesen et al.,, 2020). Importantly,
aging aggravates the difference between these two populations
of mitochondria (Borrds et al, 2010; Lores-Arnaiz et al,
2016). The decreased ability of neurons to renew their pool

of healthy mitochondria and the lower activity of quality
control mechanisms, act synergistically to trigger deleterious
consequences in neurons not only in aging but also at earlier
stages. In the etiology of the most prevalent ND, shared
critical mitochondrial stressors include misfolded and aggregated
proteins, impaired mitophagy, and oxidative stress (Niedzielska
et al., 2016; Bakula and Scheibye-Knudsen, 2020; Weidling and
Swerdlow, 2020). Considering also the number of ND-causative
genes associated with mitochondrial dysfunction (Masters et al.,
2015; Hardiman et al, 2017; Poewe et al, 2017), quality
control mechanisms such as UPRMT emerge as key intervention
targets for age-related diseases. However, compared to other
mitochondrial response programs (Pellegrino and Haynes, 2015;
Pernas and Scorrano, 2016; Misgeld and Schwarz, 2017) or even
UPRER (Hetz et al., 2020), the studies linking UPRMT and NDs
are just emerging.

Parkinson’s disease (PD) is caused by decreased dopamine
secretion from damaged dopaminergic neurons (reviewed
in Poewe et al, 2017). PD pathomechanism is strongly
connected to mitochondrial dysfunction and only recently
to UPRMT (Franco-Iborra et al., 2018; Chen et al., 2019). Two
proteins encoded by PD-causative genes, serine-threonine kinase
PINKI and E3 ubiquitin ligase Parkin, work together to unclutter
dysfunctional mitochondria through mitophagy. PINK1 or
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Parkin downregulation induces decreased mitochondrial
respiration and ATP synthesis, degeneration of dopaminergic
neurons, and reduced lifespan (Zhu et al., 2013; Moisoi et al.,
2014; Tufi et al, 2014; Choi et al, 2015). In C. elegans, the
downregulation of their orthologs (pink-1 and pdr-1) activates
UPRMT as a mitigation mechanism. Without atfs-1 dependent
UPRMT activation, lifespan decreases, and dopamine neurons
degenerate (Cooper et al., 2017).

PINKI1 also interacts with the ERa target HTRA2, mediating
its phosphorylation and activation (Plun-Favreau et al., 2007).
Interestingly, mutant alleles of HTRA2 were found in PD patients
(Strauss et al., 2005; Unal Gulsuner et al., 2014).

PD pathogenesis is strongly connected to the accumulation
of a-synuclein (Poewe et al., 2017). aSyn®>T preferentially
accumulates in the mitochondria and interacts with the
UPRMT _regulator ClpP, suppressing its peptidase activity.
Overexpression of the protease is sufficient to decrease aSyn*>3T -
associated pathology in mice (Hu et al, 2019). Despite the
previous evidence, reports are suggesting a toxic role of UPRMT
over-activation. Expression in dopaminergic neurons of an
active form of ATFS-1 lacking the mitochondrial target sequence
mimics stress conditions with a constant nuclear expression
of UPRMT targets. Over-activation of UPRMT shortens
lifespan and promotes faulty mitochondria accumulation, a
phenotype synergistically increased overexpressing mutant
aSyn3T (Martinez et al., 2017). From the epigenetic point
of view, a-synuclein expression in Drosophila led to an
upregulation of the methyltransferase EHMT2, with an overall
H3K9 dimethylation effect (Sugeno et al., 2016). It would be
interesting to study whether chromatin remodeling linked to the
H3K9Me2 epigenetic mark in this PD model modifies UPRM?
activation as previously reported (Merkwirth et al., 2016; Tian
etal., 2016).

Amyotrophic lateral sclerosis (ALS) is the most common
motor neuron disease and its complex etiology is explained
by the almost 30 causative genes that have been linked to
familial cases (reviewed in Hardiman et al., 2017). Among these
genes, mutations in the superoxide dismutase SODI initially
unveiled a link between ALS and mitochondrial dysfunction
(Rosen et al., 1993). Post-mortem samples of ALS patients
show the altered activity of ETC complexes (Bowling et al,
1993), while SOD1 overexpression in transgenic mice causes
dysregulated ETC activity, increased ROS production, and
diminished mitochondrial Ca?*-buffering (Mattiazzi et al,
2002; Brookes et al., 2004). Mutant SOD15%34 localizes in the
mitochondrial intermembrane space, which is sufficient to
activate two axes of UPRMT in vivo (Gomez and Germain,
2019). CHOP is transiently activated in mice’s spinal cord,
followed by Akt-dependent phosphorylation of ERa that
upregulates NRF1 and proteasome activity (Riar et al,
2017; Gomez and Germain, 2019). This is consistent with
recent reports showing that UPRMT activation precedes the
onset of ALS and its activity increases throughout disease
progression (Pharaoh et al, 2019). Dysregulation of TDP-
43, another ALS causative gene, impairs mitochondria
in ALS patients, suppresses ETC complex I and activates
UPRMT in cellular and animal models. Downregulation

of the UPRMT protease LonPl increased TDP-43 levels,
mitochondrial damage and neurodegeneration (Wang et al.,
2019). A third ALS-linked mitochondrial protein is CHCHD10,
which has an unknown function but its mutant aggregates
in mitochondria causing proteotoxic stress, mitochondrial
dysfunction and upregulation of the UPRMT regulators CHOP
and ATF5 (Anderson et al, 2019). These reports suggest
that the accumulation of ALS-associated mutant proteins
in mitochondria persistently over activates UPRMT, which
could be triggering detrimental effects on already stressed
neurons (Figure 1).

Alzheimer’s disease (AD) is characterized by key
neuropathological hallmarks such as the abnormal accumulation
of the amyloid-p (AB) peptide (reviewed in Masters et al., 2015).
Evidence indicates that oxidative damage and mitochondrial
dysfunction have a key role in AD pathogenesis (Butterfield
and Halliwell, 2019; Weidling and Swerdlow, 2020), but the
relationship between UPRMT and AD has only been recently
explored. AP accumulation activates UPRMT in human cells
and mice (Shen et al., 2020). In C. elegans, the sirtuin-activator
resveratrol reduced the AP-induced toxicity on a Ubl-5
dependent manner, decreasing the amount of AP aggregates
(Regitz et al., 2016). Further characterization of this finding could
provide clues of a potential connection between the two UPRMT
axes, and their association to AD. On the other hand, deficiency
of the mitochondrial protease PITRMI induces UPRMT,
increased AP accumulation, and triggered AD-like phenotypes.
These were exacerbated by pharmacological inhibition of UPRMT
suggesting a protective role of the pathway on AB-associated
toxicity (Pérez et al., 2020). The expression of UPRMT _related
genes appear highly increased in post mortem samples of the
prefrontal cortex of AD patients (Beck et al., 2016). It would
be noteworthy to determine the temporality of this increased
expression to understand whether it is an early program
persistently activated throughout the disease progression, or a
late response triggered by an overall mitochondrial dysfunction.
This is especially relevant considering that the expression of
the epigenetic regulators of UPRMT EHMT1 and BAZ2B, and
therefore inhibition of UPRMT, correlates positively with the
progression of AD (Zhang et al, 2013; Yuan et al, 2020).
Therefore, future studies should try to clarify whether both
inhibition and persistent activation of UPRMT contribute to
ND pathomechanisms.

FUTURE PERSPECTIVES

Mitochondrial dysfunction is a hallmark of aging and age-related
neurodegenerative diseases (Kennedy et al, 2014). As
UPRMT  activation extends mitochondrial function, further
characterization of the pathway will provide stronger hints to
understand neuronal homeostasis and healthspan extension. So
far, it seems that UPRMT activation is partially modulated by
the age-dependent methylation levels of Histone 3. As H3K9 is
differentially methylated in specific brain regions (Snigdha
et al., 2016), regulation of the UPRMT could differ in distinct
neuronal types. This fact raises concerns when thinking about
therapeutic approaches since systemic inhibition of UPRMT
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could be beneficial for cell types with a dysregulated activation of
UPRMT, but detrimental for another that requires its activation.
Therefore, the fine-tuning of UPRMT in different pathogenic
contexts will be a crucial consideration for future studies. In
the case of PD, AD and ALS, incipient evidence has emerged
in the last years highlighting also an over-activation of UPRMT
as contributors of the ND pathomechanisms. Future studies
on this topic should focus on determining whether known
ND causative genes are associated to UPRMT components on
an early neurodegenerative stage, or whether UPRMT is only
activated on a late, non-reversible stage as a consequence
of an overall neuronal decay. Precise pharmacological
modulation of the mitochondrial stress response could bring
new alternatives to restore compromised neuronal functions,
with a prospective increase in the life quality of ND patients and
the elderly population.
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Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in
many age-related neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS). Pathological inclusions and the associated toxicity appear to spread through the
nervous system in a characteristic pattern during the disease. This has been attributed
to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the
pathological conformation, intercellular transfer, and the subsequent seeding of native
forms of the same protein in the neighboring cell. Molecular chaperones play a major
role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to
ensure their function or by promoting the degradation of terminally misfolded proteins to
prevent damage. With increasing age, however, the capacity of this proteostasis network
tends to decrease, which enables the manifestation of neurodegenerative diseases.
Recently, there has been a plethora of studies investigating how and when chaperones
interact with disease-related proteins, which have advanced our understanding of the
role of chaperones in protein misfolding diseases. This review article focuses on the
steps of prion-like propagation from initial misfolding and self-templated replication to
intercellular spreading and discusses the influence that chaperones have on these
various steps, highlighting both the positive and adverse consequences chaperone
action can have. Understanding how chaperones alleviate and aggravate disease
progression is vital for the development of therapeutic strategies to combat these
debilitating diseases.

Keywords: neurodegenarative diseases, prion-like spreading, proteostasis, molecular chaperones and Hsps,
disaggregation

INTRODUCTION

A common feature in many neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and
prion diseases is the age-related formation of amyloid deposits (Chiti and Dobson, 2017). Each
disorder is characterized by the misfolding of one or more specific proteins: amyloid-p (AB) and
Tau (MAPT) in AD, a-synuclein (a-syn/SNCA) in PD, Huntingtin (HTT) in HD, superoxide
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dismutase 1 (SOD1), TAR DNA binding protein 43 (TDP-
43/TARDBP), FUS RNA-binding protein (FUS) and
dipeptide repeat proteins (DPRs) translated from C9orf72-
SMCRS8 complex subunit (C90rf72) in ALS, and the prion protein
(PrP/PRNP) in prion diseases (Dobson, 2017; Eisenberg and
Sawaya, 2017). Despite having different structures and functions
under physiological conditions, under disease conditions, these
proteins adopt a P-sheet-rich conformation with a strong
tendency to form highly ordered amyloid fibrils. These fibrils
can act as pernicious templates for the native monomeric form of
the respective protein to misfold into the amyloid conformation
and incorporate into the growing fibrils, which eventually
accumulate into large intra- and/or extracellular deposits
characteristic for the respective neurodegenerative diseases
(Jucker and Walker, 2013).

Protein aggregates usually arise from the failure of the
protein quality control (PQC) machinery that maintains cellular
protein homeostasis (proteostasis). Molecular chaperones are
key components of the PQC network and support cellular
proteostasis by regulating the folding of nascent polypeptides, the
re-folding of aberrant proteins, or their removal by degradation
via the ubiquitin-proteasome system (UPS) or autophagy (Bukau
et al, 2006; Kampinga and Craig, 2010). When a protein
escapes these (re)-folding or clearance mechanisms, misfolded
forms accumulate and eventually aggregate (Hartl et al., 2011).
An age-related decline in the capacity of the PQC machinery
appears to result in a proteostasis collapse (Ben-Zvi et al., 2009),
which in turn allows the manifestation of diseases associated
with protein misfolding, such as the diseases mentioned
above. On a positive note, the age-dependent accumulation of
amyloid deposits in neurodegenerative diseases suggests that in
younger individuals there are PQC pathways active that can
prevent aggregation. Chaperones are key regulators of amyloid
formation since they monitor and prevent the misfolding
and aggregation of proteins (Kampinga and Bergink, 2016;
Wentink et al, 2019). Here, we will highlight the complex
ways in which chaperones influence the different stages of
prion-like propagation of proteins associated with the most
prevalent neurodegenerative diseases. This will contribute to
a better understanding, not only of which chaperones could
be selected for drug development, but also of when to target
these chaperones.

PRION-LIKE PROPAGATION OF PROTEIN
MISFOLDING IN NEURODEGENERATIVE
DISEASES

The propensity of a protein aggregate to act as a template or
“nucleus” or “seed” to promote the aggregation of its native
form is central to the prion hypothesis (Prusiner et al., 1998).
Prions (proteinaceous infectious particles) are the causative agent
in prion diseases including bovine spongiform encephalopathy
(BSE), chronic wasting disease (CWD), and scrapie (Prusiner
et al, 1998). In prion diseases, disease-associated PrP¢ can
propagate itself by templating the conversion of the endogenous
PrPC from its normal helical into a B-sheet-rich amyloid

conformation (Prusiner, 1998; Glynn et al, 2020). These
diseases are truly infectious as they can spread within and
between species. While misfolded proteins associated with
other neurodegenerative diseases do not seem to be naturally
transmitted between individuals, they share many properties
of prions, such as the ability to self-propagate, spread from
cell to cell, and subsequently induce aggregation of the same
protein in neighboring cells (Walker and Jucker, 2015). They
are often referred to as “prion-like” to differentiate them
from truly infectious prions, but to emphasize the strong
similarities concerning the propagation process (Jaunmuktane
and Brandner, 2019).

The formation and propagation of amyloids involve several
critical steps. The initial conformational rearrangement to an
abnormal p-sheet-rich fold favors the assembly of individual
proteins into an oligomer (Figure 1). The generation of a
propagon, a unit with a seeding-competent conformation and
size that can self-replicate, is considered the rate-limiting event
in amyloid formation (Cox et al, 2003; Iljina et al, 2016;
Meisl et al., 2017). Elongation of protofibrillar species, or the
templated addition of misfolded proteins, proceeds relatively fast.
Although an amyloid fibril is energetically very stable, there is still
an equilibrium between different oligomeric, protofibrillar, and
fibrillar protein species (Carulla et al., 2005; Baldwin et al., 2011).
Fibril growth is further accelerated by secondary nucleation
events along the fibril surface and by fragmentation (T6rnquist
et al, 2018). The latter event promotes amyloid growth by
producing more fibril ends to which monomers can be added
(Knowles et al,, 2009). Also, propagons are further able to
spread via multiple routes outlined in Figure 2 and template the
aggregation of like proteins in neighboring cells.

This intra- and intercellular propagation of aggregated
material seems to underlie the characteristic progressive
spreading of pathology in prion and prion-like diseases (Jucker
and Walker, 2013). Since molecular chaperones can protect cells
from harmful protein aggregates, at least at a young age, they
are gaining increasing attention in current research to develop
intervention strategies.

THE ROLE OF CHAPERONES IN
PRION-LIKE PROPAGATION

Molecular chaperones, first identified as heat shock proteins
(Hsps), help fold newly synthesized proteins, inhibit and reverse
the misfolding and aggregation, and assist in the degradation
of terminally misfolded proteins, thereby maintaining cellular
proteostasis under physiological and stress conditions (Klaips
et al, 2018). Chaperones recognize hydrophobic motifs in
misfolded proteins that are usually hidden in their native folded
state. A mere binding activity is considered a holdase function
that does not require ATP. However the folding and refolding of
proteins often rely on an ATP-dependent cycle that allows the
repeated binding and release of chaperones, thereby facilitating
(re)-folding processes (Mayer and Bukau, 2005; Liberek et al.,
2008). The latter activity is performed by ATP-dependent
chaperones, which often require specific co-chaperones that are
responsible for regulating the ATP cycle (binding, hydrolysis,
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and release) and in turn influence substrate specificity and
fate (Kampinga and Craig, 2010). Molecular chaperones are
classified into different families that were originally named for
the molecular weight of the founding member. The four main
chaperone families in metazoans are Hsp60s, Hsp70s, Hsp90s,
and small Hsps (sHsp).

sHsps lack an ATPase domain and therefore generally act as
classical holdases (Webster et al., 2019). They can be found in
inactive oligomeric complexes that keep them poised to combat
an early misfolding event (Santhanagopalan et al.,, 2018). Stress
conditions can activate sHsps to sequester misfolding proteins
and protect the substrates from further aggregation and facilitate
their re-folding (Biswas and Das, 2004), often in concert with
other chaperones, such as Hsp70s (Mogk et al., 2019).

The Hsp70 family consists of heat shock-inducible
(e.g., HSP70-1/HSPA1A) and constitutively expressed (e.g.,
HSC70/HSPA8) members and has highly assorted functions,
including the folding of newly synthesized proteins, refolding
of misfolded proteins, disaggregation, membrane translocation,
endocytosis, and degradation of terminally misfolded proteins.
This functional diversity is provided by a myriad of co-
chaperones. The Hsp70 core chaperone typically cooperates
with a member of the J-domain protein (DNAJ) family
and a nucleotide exchange factor (NEF) that regulate the

Hsp70 ATPase cycle (Mayer and Bukau, 2005). The DNAJ family
expanded from six DNAJs found in E. coli to 49 in Homo sapiens
(Finka and Goloubinoff, 2013; Bar-Lavan et al., 2016). This
increase in complexity may reflect the evolutionary selection
pressure for greater versatility of Hsp70 machines. After
being processed by Hsp70s and their co-chaperones, clients
can be subsequently handed over to chaperonins and Hsp90
family members.

The ATP-dependent Hsp60 family, also commonly referred
to as the chaperonins, is divided into two groups: Group I
is generally found in eubacteria, but also in evolutionarily
derived mitochondria, and Group II is found in archaea and
in the eukaryotic cytosol (Hartl and Hayer-Hartl, 2002). The
eukaryotic chaperonin, also known as t-complex 1 (TCP1), or
chaperonin containing TCP1 (CCT), is a multiprotein complex
composed of two rings with eight different but similar subunits.
Driven by ATP-binding and hydrolysis, the subunits open and
close a central folding chamber that encapsulates substrate
proteins. It is essential as it supports the folding of ~10% of
all newly synthesized proteins, in particular actin and tubulin
(Yam et al., 2008).

The members of the Hsp90 family are highly conserved
and exist in all kingdoms of life except archaea. Similar
to the Hsp70 family, there are inducible (e.g., HSP90AA1)
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and constitutively expressed variants (e.g., HSP90BI1) that
interact with more than 20 co-chaperones and adaptors thereby
regulating a multitude of cellular processes (Taipale et al., 2010;
Biebl and Buchner, 2019). Since kinases and steroid hormone
receptors are major clients of Hsp90s, they are key regulators of
many signaling pathways.

In addition to these main chaperone classes, there are several
other types of metazoan chaperones for which a relationship
with a particular prion-like protein has been established.

Details about these chaperones are given in the respective
individual sections.

At first, the role of chaperones in prion-like propagation of
misfolded proteins might seem obvious, as the main task of
chaperones is to support the correct folding of proteins and
protect them from misfolding and aggregation. While this is
often the case, there are nonetheless also conflicting results where
chaperones have been shown to aggravate protein misfolding or
toxicity. Although chaperones may interact with the native state
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of prion-like proteins also under physiological conditions, we will
focus here on the interaction with pathological forms, discussing
both the beneficial and detrimental impact chaperones may have
on the progression of protein misfolding diseases.

Prion Diseases

Prion diseases or transmissible spongiform encephalopathies
(TSEs) are fatal neurodegenerative diseases that affect humans
and animals, including BSE (also known as mad cow disease)
in cattle, CWD in deer and elk, scrapie in sheep and goats,
and Creutzfeldt-Jakob disease (CJD) in humans (Imran and
Mahmood, 2011; Collinge, 2016; Scheckel and Aguzzi, 2018).
All prion diseases are characterized by the accumulation of
PrP% in the central nervous system. Cellular PrP® is a
glycosylphosphatidylinositol (GPI)-anchored membrane protein
and has the highest expression in neurons of the brain
and the spinal cord (Stahl et al., 1987; Harris et al,, 1993;
Tichopad et al., 2003). Proposed functions of PrP® include
the maintenance of synapses and neuroprotective signaling
(Westergard et al., 2007).

While the exact function of PrP® remains unclear, it is,
however, crucial for the propagation of PrP%, as mice lacking
the PRNP gene are resistant to prion infection (Biieler et al,
1993; Sailer et al., 1994; Brandner et al., 1996). Since PrP¢ is
localized on the cell surface, the first interaction and conversion
into pathological PrP% likely occur at the plasma membrane
(Goold et al., 2011). Also, PrP€ is endocytosed in a clathrin-
dependent manner and delivered from early endosomes and
late endosomal multivesicular bodies (MVBs) to lysosomes for
degradation. Blocking PrPC endocytosis inhibits the formation of
PrP%¢, suggesting that conversion also occurs along the endocytic
pathway (Borchelt et al., 1992). PrP%¢ is rapidly truncated into
a C-terminal PrP27-30 protease-resistant core, which is very
stable and accumulates in MVBs and lysosomes. Intercellular
transmission proceeds via exosomes that are derived from
intraluminal vesicles (ILVs) of MVBs and are released into
the extracellular space through their fusion with the plasma
membrane (Fevrier et al., 2004). In tissue culture cells, PrPS¢
was also shown to be able to spread within endocytic vesicles
through tunneling nanotubes (TNTs), long membranous tubules
that connect the cytosol of two cells (Gousset et al., 2009; Zhu
et al., 2015).

Hsp70 family genes are upregulated in CJD patients and
prion-infected mice (Kenward et al., 1994; Kovacs et al., 2001).
Furthermore, several models have shown that manipulation
of chaperone levels can influence disease progression, which
underlines the relevance of chaperones for prion diseases.
When mice that lack heat shock factor 1 (HSF1), the
primary transcription factor for the expression of numerous
chaperones, are exposed to prions, they succumb to the disease
about 20% faster than wildtype animals (Steele et al., 2008).
Prion disease progression was also accelerated if cytosolic
or endoplasmic reticulum (ER) Hsp70s levels were reduced
(Park et al., 2017; Mays et al, 2019). In the opposite
direction, the data are less clear. While the induction of
HSP70 expression slowed the progression of prion phenotypes
in Drosophila (Zhang et al., 2014), overexpression of HSP70 had

no impact on survival times of prion-infected mice (Tamgiiney
et al, 2008). Thus, further research is necessary to gain
insights into the exact mechanisms by which chaperones
influence the course of prion diseases to identify effective
therapeutic approaches.

Parkinson’s Disease and Other

Synucleinopathies

Accumulation of aggregated a-syn/SNCA is a hallmark of
PD and other synucleinopathies (Uversky, 2003, 2011). In
PD, Lewy bodies containing aggregated a-syn, occur in a
predictable manner, which is classified into six distinct stages
based on the location of a-syn inclusions seen in postmortem
brains (Braak et al., 2003). These observations have led to
the hypothesis, that pathological a-syn may propagate like
prions. This idea has gained momentum through observations
in PD patients who underwent embryonic neuronal cell
transplantation. When examined several years later, these
patients showed signs of disease development in the grafted
tissue, indicating that pathological a-syn had spread from
diseased to healthy tissue (Kordower et al., 2008; Li et al,
2008). Various animal and cell culture models have confirmed
the existence of such intercellular dissemination of a-syn
(Jucker and Walker, 2013; Vasili et al., 2019).

The presence of numerous different chaperones in Lewy
bodies suggests a central role of these proteins in a-syn pathology
(McLean et al., 2002). Moreover, the importance of chaperones
and in particular J-domain proteins in the disease is also evident
through the discovery of respective mutations in genome-wide
association studies. For instance, DNAJC6 mutations have been
linked to juvenile parkinsonism (Lin and Farrer, 2014), while
DNAJC13/RME8 mutations have been associated with familial
forms of PD (Vilarino-Gtiell et al., 2014).

Prevention of o-syn aggregation has been shown with
multiple sHsps (HSPB1, HSPB2, HSPB3, HSPB5, HSPB6, and
HSPBS), the J-domain proteins DNAJB6 and DNAJB8, and
with Hsp70s (Rekas et al., 2004; Outeiro et al., 2006; Bruinsma
et al., 2011; Cox et al., 2016; Aprile et al., 2017; Bendifallah
et al, 2020; Vicente Miranda et al., 2020). Hsp90s also
prevent a-syn aggregation but by specifically interacting with
oligomeric species rather than monomers or fibrils (Falsone
et al., 2009; Daturpalli et al., 2013). The constitutively expressed
HSC70, along with HSPB1 and HSPB5, can also bind a-syn
fibrils, and coating of the fibrillar surface reduced toxicity
(Waudby et al., 2010; Pemberton et al., 2011; Redeker et al., 2012;
Cox et al., 2018).

Chaperones not only interfere with early nucleation and fibril
elongation events but are also able to depolymerize mature
a-syn fibrils (Duennwald et al., 2012; Gao et al., 2015). This
disaggregation function is dependent on the specific cooperation
of the core HSC70 with a class B J-domain protein, DNAJBI1,
and an Hspl10-type NEF, HSPA4/APG-2 (Gao et al,, 2015).
HSPB5/aB-crystallin can assist in the depolymerization of
a-syn fibrils by stimulating the Hsp70 disaggregase (Duennwald
et al., 2012). These in vitro observations indicated that a-syn
disaggregation might be beneficial and cytoprotective since
fibrillar a-syn was eventually dissolved. However, a recent study
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reported the opposite effect in vivo. Diminishing disaggregation
activity by knocking down the only cytosolic Hsp110-type
NEF, HSP-110 significantly reduced the accumulation of
toxic a-syn species in C. elegans (Tittelmeier et al., 2020).
Moreover, a-syn particles generated by the Hsp70 disaggregase
were preferred substrates for intercellular transfer. Hence, the
Hsp70 disaggregation machinery seems to be involved in
the prion-like propagation of a-syn by generating seeding-
competent a-syn species, and blocking this activity is beneficial
with regard to amyloidogenic substrates (Tittelmeier et al,
2020). While this result seems counterintuitive at first, it is
reminiscent of the crucial role of Hsp104 in the propagation of
yeast prions, where depletion of Hsp104 leads to a rapid loss
of yeast prions (Chernoff et al., 1995). Hsp104 cooperates with
the Hsp70 chaperone system and promotes prion replication
by extracting monomers from prion fibrils, which leads to
their fragmentation and the increased generation of propagons
(Jones and Tuite, 2005; Tessarz et al., 2008; Tipton et al., 2008).
Hexameric AAA+ Hsp100-type disaggregates such as Hsp104 are
absent in metazoans, but the Hsp70 system has evolved to
provide this function (Shorter, 2011; Rampelt et al., 2012).
While chaperone-mediated disaggregation seems to significantly
contribute to the toxicity associated with pathological a-syn, it is
essential for the maintenance of cellular proteostasis, as reducing
HSP-110 levels compromised the overall cellular protein folding
environment (Tittelmeier et al., 2020). For this reason, complete
inhibition of this activity is not a suitable intervention strategy.
Rather, the modulation of individual isoforms or more specific
components may be a promising therapeutic approach. The
observed adverse side effects could be minimized, e.g., by the
only temporary intake of drugs that inhibit the machinery. Also,
the human chaperome is more redundant (there are e.g., three
Hsp110-type NEFs compared to only one in C. elegans, Brehme
et al., 2014) and the reduction of a single-player would probably
reduce rather than eliminate disaggregation activity and result
in fewer side effects. Nevertheless, more studies are needed to
explore the usefulness of this approach.

Another way in which chaperones can help prevent the
spreading of a-syn is by facilitating the elimination of aberrant
species. Turnover of a-syn can be mediated by the UPS,
with the HSC70 co-chaperone carboxyl terminus of Hsp70-
interacting protein (CHIP) governing this degradation pathway
(Shin et al., 2005). Another process, described as chaperone-
mediated autophagy (CMA), also involves HSC70, which targets
misfolded a-syn and translocates it into lysosomes
for degradation (Cuervo et al, 2004). However, CMA
and lysosomal degradation are often impaired in PD
(Pan et al., 2008; Chu et al., 2009).

The exact mechanisms of intercellular transfer of a-syn
are not yet fully understood, but current research suggests
several parallel transmission routes (Brundin and Melki, 2017;
Vasili et al., 2019). First, a-syn must exit the donor cell. As
a cytosolic protein, a-syn is not released by the conventional
secretory pathway via the ER and Golgi apparatus. Instead,
there is growing evidence that the endo-lysosomal system is
involved in a-syn spreading in addition to its role in the
degradation of the protein. Endosomal a-syn can be either

directly transported to neighboring cells via TNTs (Abounit
etal., 2016; Rostami et al., 2017; Victoria and Zurzolo, 2017), or it
can eventually be released via unconventional secretion pathways
involving secretory lysosomes or exosomes (Emmanouilidou
et al., 2010; Danzer et al., 2012; Ngolab et al., 2017; Tsunemi
et al, 2019). Another recently described mechanism for the
release of aberrant protein species is the misfolding-associated
protein secretion (MAPS) pathway (Lee et al., 2016). Here the
ER-associated deubiquitinase USP19 recruits misfolded cytosolic
proteins, such as a-syn, to the ER surface and then transfers
them to DNAJC5 and HSC70 localized at late endosomes (LEs),
which finally fuse with the plasma membrane and release their
content to the extracellular space (Fontaine et al, 2016; Xu
et al., 2018). Spreading also relies on the uptake of extracellular
a-syn into the recipient cell. To this end, clathrin-mediated
endocytosis is involved in the uptake of free or exosomal a-syn
(Oh et al,, 2016; Ngolab et al., 2017). As part of this process,
HSC70 cooperates with DNAJC6/Auxillin and an Hsp110-type
NEF to disassemble clathrin coats (Sousa and Lafer, 2015).
After uptake, misfolded a-syn species must enter the cytosol
to be able to template the aggregation of native a-syn in
the recipient cell. Indeed, a-syn has been shown to escape
from endocytic vesicles by rupturing the endosomal membrane
(Flavin et al., 2017).

Alzheimer’s Disease and Other
Tauopathies

Tau
More than 20 different neurodegenerative diseases are associated
with the progressive accumulation of Tau inclusions in different
brain areas and cell types which are collectively referred to
as tauopathies, including AD and frontotemporal dementia
(FTD; Goedert et al., 2017a). The sequential appearance of Tau
aggregates in the brain during disease progression follows a
stereotypic distribution pattern, categorized into six “Braak
stages” according to the prevalence of Tau pathology in different
brain regions (Braak and Braak, 1991; Jucker and Walker,
2013). Intriguingly, the extent of Tau deposition in the different
brain regions is a good correlate for the disease stage (Jucker
and Walker, 2013). Tau’s capacity to propagate in the brain
is further supported by extensive research in mouse models.
Injection of recombinant or patient-derived Tau aggregates
into mouse brains causes the formation of Tau inclusions both
at the injection site and in distant interconnected brain areas
(Narasimhan and Lee, 2017). Therefore, it is assumed that
seeding-competent Tau material is transported to other parts of
the brain in a connectivity-dependent manner where it induces
the aggregate formation of native Tau (Goedert et al., 2017a).

Although we are mainly focusing here on the effect of
chaperone action on pathological Tau species, it is worth
mentioning that under healthy conditions, various chaperones
control the homeostasis of native Tau, such as its loading onto
microtubules or degradation via the proteasome and autophagy
pathways (Miyata et al., 2011; Young et al., 2018).

NMR studies with monomeric Tau have identified binding
sites for various chaperones that are either close to or within
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the repeat domains that contribute to the p-sheet structures in
amyloid Tau fibrils (Jinwal et al., 2013; Mok et al., 2018). By
interacting with this region chaperones can stabilize soluble Tau
and thereby prevent its assembly into amyloid fibrils. Several
Hsp70 family members, their co-chaperones DNAJA1 and
DNAJA2, chaperonin, various sHsps, as well as the extracellular
chaperone clusterin (CLU) delay the aggregation of wildtype
and aggregation-prone Tau mutants in vitro (Patterson et al,
2011; Mok et al., 2018). Additionally, it has been shown that
Hsp70s suppress Tau aggregation by stabilizing Tau oligomers to
inhibit further seeding (Kundel et al., 2018) and by preventing
fibril elongation into larger assemblies (Patterson et al., 2011;
Baughman et al., 2018). This prevention of Tau aggregation and
fibril growth observed in vitro presumably delays disease onset
and progression, as supported by studies in in vivo models, in
which the absence of particular chaperones led to accelerated
Tau aggregation and toxicity (Eroglu et al., 2010). In line with
this, HSPB1 overexpression decreased Tau levels and rescued the
Tau mediated damage in a mouse model (Abisambra et al., 2010).
Interestingly, HSP90 stabilizes aggregation-prone conformations
of Tau and promotes oligomer formation in vitro (Weickert et al.,
2020). However, the fate of Tau is highly dependent on the
specific HSP90 co-chaperone (Shelton et al., 2017). For instance,
overexpression of the co-chaperone FKBP prolyl isomerase 5
(FKBP51) in a mouse model increases Tau oligomers at the cost
of fibril formation and at the same time enhances neurotoxicity
(Blair et al., 2013).

Chaperones do not only suppress or delay the initial
aggregation of monomeric and oligomeric Tau species but
are also capable of dissolving Tau fibrils. The aforementioned
trimeric human Hsp70 disaggregation machinery (HSC70,
DNAJB1, HSPA4) readily disassembles a variety of amyloid Tau
aggregates ranging from in vitro assembled fibrils to aggregates
extracted from a cell culture model to brain material of AD
patients (Nachman et al., 2020). Thus, the Hsp70 disaggregation
machinery is capable of disaggregating pathologically
relevant forms of Tau. Although mainly monomers were
released the liberated Tau species were nevertheless seeding-
competent and induced self-propagating Tau aggregates in a cell
culture model (Nachman et al., 2020). In subsequent research,
it needs to be determined whether disaggregation of amyloid
Tau fibrils may exacerbate neurotoxicity in vivo. However, it is
tempting to speculate that chaperone-mediated disaggregation
might promote the prion-like propagation of amyloid Tau
aggregates and eventually increase the overall amyloid burden
in vivo, especially considering its effect on a-syn aggregation and
toxicity in C. elegans discussed above (Tittelmeier et al., 2020).
Interestingly, the co-chaperone DNAJB4 can substitute for
DNAJBLI in the Hsp70 disaggregase, while class A J-domain
proteins are unable to support disaggregation of Tau,
indicating specificity, but also a certain redundancy in
the recognition of amyloid Tau (Nachman et al, 2020).
Interfering with the specific interaction between these
class B J-domain proteins and amyloid fibrils could be
an effective treatment strategy to reduce unfavorable
amyloid disaggregation without affecting the processing of
other substrates.

As Tau is a cytoplasmatic protein that deposits intracellularly,
the spreading of Tau requires release and uptake of seeding-
competent Tau material from the cytosol of donor and receiving
cells. Similar to a-syn, Tau is also a substrate of the MAPS
pathway (Fontaine et al., 2016; Lee et al., 2016; Xu et al., 2018),
where HSC70 together with its co-chaperone DNAJC5 promotes
the release of Tau into the extracellular space both in cell culture
and in a mouse model. However, it remains unknown which
Tau species get released via this pathway and whether this
material can then seed the aggregation of native Tau molecules
in recipient cells. Following its release, extracellular Tau can then
be taken up by neighboring cells by similar routes described for
a-syn (Goedert et al.,, 2017b). However, it is not yet clear to
what extent clathrin-mediated endocytosis and the chaperones
involved could contribute to Tau propagation (Yoshiyama et al.,
2007; Holmes et al., 2013; Calafate et al., 2016).

AB

AD is characterized by the deposition of both intracellular Tau
aggregates and extracellular senile plaques consisting of the
AP peptide in the brain (Goedert and Spillantini, 2006). The
AP peptide is generated by endoproteolytic cleavages within
the transmembrane protein amyloid-p precursor protein APP
(De Strooper and Annaert, 2010). Similar to the stereotypical
deposition of Tau and a-syn aggregates, the appearance of AP
plaques follows a predictable pattern that sequentially affects
certain areas of the brain during disease progression (Jucker
and Walker, 2013). The prion-like behavior of AB has been
confirmed in numerous rodent models (Meyer-Luehmann et al.,
2006; Eisele et al., 2010). Moreover, it has been shown that
cadaveric pituitary-derived human growth hormone, which was
contaminated with AP seeds, caused a plaque-like pathology in
treated patients, suggesting an iatrogenic transmission of AP
pathology (Jaunmuktane et al., 2015; Purro et al., 2018).

In vitro studies have identified several cytosolic chaperones,
such as the sHsps HSPB1, HSPB5, HSPB6, and HSPBS, the
J-domain protein DNAJB6, as well as chaperonin that suppress
AP aggregation, either by inhibiting initial aggregation or
recruiting oligomeric species into larger structures (Lee et al.,
2006; Wilhelmus et al., 2006; Shammas et al., 2011; Mansson
et al., 2014a; Mangione et al,, 2016; Vilasi et al, 2019). As
the sequestration of oligomers reduces the number of particles
that can act as seeds this mechanism could help to limit the
incorporation of monomers by templated misfolding. Almost
all amino acids in the AP peptide are incorporated into its
amyloid fold (Kollmer et al., 2019). In contrast, larger proteins,
such as a-syn and Tau have N- and C-terminal extensions
forming a fuzzy coat around their amyloid cores (Scheres et al.,
2020; Schweighauser et al., 2020). The lack of available binding
sites flanking the amyloid core is probably the reason why
the canonical Hsp70 chaperone machinery does not interact
with AP assemblies (Kakkar et al., 2014; Wentink et al., 2019).
In contrast, the mitochondrial chaperonin HSPD1 can bind
to AP oligomers, which reduces AP-mediated neurotoxicity
by preventing AP oligomers from interacting with membranes
(Marino et al, 2019; Vilasi et al, 2019). It is tempting
to speculate that this function might be conserved by the
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homologous cytosolic chaperonin CCT, which could help to
reduce AP toxicity by preventing disruption of intracellular
membranes (Julien et al., 2018). Yet, the physiological relevance
of these findings regarding cytosolic chaperones remains to be
investigated. AP aggregates form in the endosomal-lysosomal
pathway and plaques deposit in the extracellular space (Peric
and Annaert, 2015). However, a contribution of cytoplasmic
AP oligomers to amyloid toxicity and transmission has been
demonstrated in cell culture models (Nath et al, 2012). It
will be interesting to test whether cytosolic chaperones directly
interact with these cytoplasmic AP species and modulate their
properties in vivo.

The amyloid formation can also be accelerated by secondary
nucleation events on amyloid surfaces as their interaction with
monomers catalyzes the formation of new seeds (T6rnquist et al.,
2018). By shielding such surfaces, the BRICHOS domain inhibits
AP aggregation in vitro by interfering with oligomerization and
secondary nucleation (Willander et al., 2012). The BRICHOS
domain is found in the proteins Bri2 and Bri3 that co-localize
with extracellular AP plaques in the early stages of disease
(Del Campo and Teunissen, 2014; Dolfe et al., 2018), which
hints to a potential role of these proteins in containing the
spreading of pathology by shielding the plaques. The extracellular
chaperone CLU is a well-established genetic risk factor for AD
(Foster et al,, 2019). CLU prevents AP aggregation in vitro by
sequestering and stabilizing oligomeric species (Narayan et al.,
2012; Beeg et al., 2016). While several studies have found CLU
reduces the uptake of A oligomers and fibrils into neurons and
microglia in cell culture models (Nielsen et al., 2010; Mulder
et al., 2014), others have observed enhanced AB uptake in the
presence of CLU (Yeh et al., 2016). A contribution of CLU to
cellular uptake of AB would directly impact AP transmission.
Thus, to be able to exploit CLU as a potential therapeutic target,
it is essential to further explore its role in the intercellular
dissemination of Ap.

Polyglutamine Diseases

There are nine different adult-onset autosomal dominantly
inherited diseases that are caused by an expansion of a
trinucleotide (CAG) repeat encoding a polyglutamine (polyQ)
tract, including HD and six forms of spinocerebellar ataxia
(Lieberman et al., 2019). The disease-associated proteins are not
related to each other, but they all contain a polyQ tract with
a length of 10-35 glutamine repeats in healthy individuals. A
stretch of 40 or more glutamines will eventually cause disease,
with a longer expansion correlating with an earlier age of onset
(Scherzinger et al., 1999). PolyQ expansion is associated with the
formation of amyloid aggregates, which can be localized in the
nucleus or in the cytoplasm (Scherzinger et al., 1997; Reddy et al.,
1999). HD is the most prevalent of these diseases, where polyQ
expansion occurs in HTT.

Genetic screens for modifiers of polyQ aggregation have
identified several chaperones (Krobitsch and Lindquist, 2000;
Nollen et al., 2004; Silva et al., 2011). Furthermore, activation
of HSF1 ameliorates the toxicity of polyQ in vivo (Fujikake
et al., 2008; Kumsta and Hansen, 2017). Many sHsps, including
HSPB1, HSPB4, HSPB6, HSPB7, HSPBS, and J-domain proteins,

including DNAJB1, DNAJB2, DNAJB6, and DNAJBS, were
shown to prevent the initial aggregation of polyQ (Kazemi-
Esfarjani and Benzer, 2000; Willingham et al., 2003; Carra et al,,
2005; Hageman et al., 2010; Vos et al., 2010; Labbadia et al., 2012;
Mansson et al., 2014b), while the chaperonin CTT prevented
polyQ aggregation by capturing smaller oligomeric species (Tam
et al., 2009; Shahmoradian et al., 2013). DNAJB6 emerges as a
key protective co-chaperone for polyQ containing sequences and
has been shown to very efficiently inhibit the primary nucleation
step in polyQ amyloid formation by directly binding to the
polyQ tract (Gillis et al., 2013; Kakkar et al., 2016). Moreover,
recent research revealed that during differentiation of pluripotent
stem cell lines from HD patients into neurons, there is a loss
of expression in DNAJB6, which leads to aggregation of polyQ
(Thiruvalluvan et al., 2020). This could explain why pathological
aggregates are predominantly present in neurons and why stem
cells are protected.

The Hsp70 system plays a multifaceted role in polyQ
aggregation and toxicity. HSP70 is involved in the prevention
of polyQ aggregation alone (Muchowski et al., 2000; Monsellier
et al., 2015), as well as in collaboration with the J-domain
protein DNAJB1 (Wacker et al., 2004). HSP70 is also capable of
sequestering smaller polyQ species into larger non-toxic fibrillar
structures thereby preventing their toxic interaction with other
cellular components (Behrends et al., 2006). This function is
mediated by HSP70 with the help of CCT and a J-domain
protein (Behrends et al., 2006). Short Q-rich peptides can also
shield the interactive surfaces of polyQ proteins, altering the
interaction of other prion-like proteins, directing them into
nontoxic aggregates (Ripaud et al., 2014).

The HSC70-DNAJB1-HSPA4 disaggregation machinery is
not only able to disintegrate a-syn and Tau fibrils as described
above (Gao et al, 2015; Nachman et al, 2020), but also
disentangle polyQ fibrils (Duennwald et al., 2012; Scior et al,
2018), which demonstrates the high versatility of this chaperone
machinery. Similar as in the case of a-syn, compromising
this disaggregase leads to fewer aggregates and rescues the
toxicity of polyQ in C. elegans (Tittelmeier et al., 2020). This
is in agreement with observations in yeast, where deletion
of the yeast disaggregase Hspl04 also leads to a decrease
in polyQ aggregates (Krobitsch and Lindquist, 2000). These
data imply that chaperone-mediated disaggregation can handle
many different types of amyloid aggregates and as a result,
it could play a central role in the prion-like propagation of
aggregates in many diseases, rendering it a highly attractive
therapeutic target.

While polyQ aggregates can replicate by inducing the
aggregation of native proteins through a templated seeding
mechanism, like the other prion-like proteins, the relevance
of intercellular spreading of protein aggregates in disease
pathogenesis is unclear, especially because of the strong genetic
component of these diseases. There is currently also no evidence
for the involvement of chaperones in the intercellular spreading
of polyQ proteins besides a potential indirect effect on vesicle
trafficking.

However, multiple studies are implying non-cell-autonomous
effects in these diseases, such as excitotoxicity, where neurons
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die as a result of disturbances in the surrounding supporting
cells. Models, where polyQ is expressed exclusively in the most
vulnerable neurons, fail to elicit many disease symptoms, which
are seen when polyQ is expressed not only in neurons but
also in glial cells (Gu et al, 2005; Sambataro and Pennuto,
2012). This suggests that some aspects of disease pathology
are due to non-cell-autonomous toxicity. For example, the
selective vulnerability of neurons has been linked to aberrant
activation of glutamate. Normally, this is regulated by the
uptake of glutamate into glial cells, however, this process
is altered in glial cells expressing disease-associated polyQ
proteins (Liévens et al., 2001). Targeting this interconnection
seen between neurons and glial cells may be a practical goal
in the treatment of these diseases. Recently, this idea was
explored using a Drosophila model with polyQ expressed in
neurons and DNAJB6 expressed in glial cells. The exclusive
expression of DNAJB6 in glial cells results in the non-
cell-autonomous protection against neurodegeneration and
prolongs lifespan (Bason et al., 2019). A deeper understanding
of how chaperones could alleviate the non-cell-autonomous
effects of prion-like proteins could reveal an exciting new
therapeutic approach.

Amyotrophic Lateral Sclerosis

ALS is a fatal, rapidly progressing disease characterized by the
degeneration of upper and lower motor neurons. Typically,
motor symptoms manifest at mid-adulthood and begin in a
restricted part of the body, which varies from patient to patient
and then spreads to neighboring areas. This implies a prion-like
pathomechanism based on neuronal connectivity (Ravits and La
Spada, 2009; Sibilla and Bertolotti, 2017). The speed at which
symptoms spread from one area to another correlates with
disease duration (Ravits, 2014).

In motor neurons of patients with both familial and sporadic
forms of the disease, protein inclusions have been found
postmortem that usually contains either SOD1 or ubiquitinated
TDP-43 (Kwong et al, 2007). Moreover, various missense
mutations have been identified in SODI1, TDP-43, and FUS,
as well as a hexanucleotide repeat expansion in C9orf72,
which increase the aggregation propensity of these proteins and
are associated with familial ALS (fALS) accounting for 10%
of all ALS cases (Sibilla and Bertolotti, 2017). Also, exome
sequencing of a large ALS patient cohort identified several
mutations in the J-domain protein DNAJC?7 that led to reduced
protein levels in patient-derived fibroblasts (Farhan et al., 2019).
This finding directly links chaperone activity to ALS etiology.
Although further work is required to elucidate how the loss of
DNAJC7 function causes ALS, this underlines the importance of
the PQC system for these protein misfolding diseases.

SOD1

The prion-like behavior of SOD1 has been established over the
last decade employing in vitro and cell culture systems as well
as mouse models. Recombinant SOD1 aggregates act as seeds
accelerating the aggregation of natively folded SOD1 in vitro
(Chattopadhyay et al., 2008). In cell culture, SODI1 aggregates
can spread intercellularly within exosomes or via direct release

into the extracellular space (Miinch et al., 2011; Grad et al., 2014;
Silverman et al., 2016). The released SOD1 species are taken up
from the medium by the receiving cells via micropinocytosis
(Miinch et al., 2011). Subsequently, the SOD1 aggregates escape
into the cytoplasm where they seed aggregation of the native
SOD1 molecules forming self-propagating foci (Miinch et al.,
2011). Also, SOD1 aggregate pathology can be transmitted
between mice through the injection of brain homogenate
(Ayers et al., 2014).

Members of the Hsp70 family and their J-domain partner
protein and sHsp chaperones have been found to colocalize
with SOD1 inclusions in patient tissues and rodent ALS models
and to interact with mutant SOD1 in cell culture models,
indicating that aggregated SOD1 is recognized as a substrate by
the PQC system (Shinder et al., 2001; Watanabe et al., 2001;
Howland et al., 2002; Liu et al., 2005; Matsumoto et al., 2005).
However, even though the sHsps HSPB1 and HSPB5 reduce
SOD1 aggregation in vitro (Yerbury et al., 2013), overexpression
of HSPB1 in a SOD1%%* mouse model only delayed the onset of
motor symptoms and did not affect the overall survival of these
mice (Sharp et al., 2008), suggesting that increasing the levels
of individual chaperones does not always lead to a beneficial
outcome. Accordingly, while increased levels of Hsp70 family
members reduced SOD1 aggregation and toxicity in cultured
mouse primary motor neurons expressing SOD1%%34 (Bruening
et al., 1999), this had no impact on either survival or onset
of motor symptoms in several SOD1 mutant mouse models,
including SOD1%%*A (Liu et al., 2005). Interestingly, Serlidaki
et al. (2020) have recently demonstrated in cell culture that the
effect of Hsp70s on the aggregation of the SOD144V mutant
depends on the particular Hsp70 variant, which is overexpressed.
While HSPA1A suppresses SOD1 aggregation, its close homolog
HSPAIL enhances aggregate formation. The differences in
client fate seem to result from the fact that Hspl10-type
co-chaperones prefer to interact with HSPA1A rather than
HSPAIL (Serlidaki et al,, 2020). More specifically, HSPA1A
requires the NEF HSPA4 (APG-2) to inhibit SOD1 aggregation,
while the aggregation promoting activity of HSPAIL does
not depend on this NEF. However, it remains unknown
which specific molecular mechanisms determine the affinity
of Hspll0 family members for different Hsp70s in the
cellular context.

It is therefore not surprising that NEF overexpression has also
varying consequences. Overexpression of BAG1 in SOD16%34
transgenic mice did not improve their survival or the onset
of ALS-like phenotypes (Rohde et al, 2008). In contrast,
overexpression of the Hspll0-type NEF HSPA4L (APG-1)
in SOD16%R transgenic mice extended the lifespan of these
animals (Nagy et al., 2016). However, the molecular mechanism
underlying the beneficial effect of HSPA4L overexpression
remains unclear. While the authors speculate that elevated levels
of HSPA4L might lead to an increase in Hsp70 disaggregation
capacity, the opposite is also conceivable. It has been shown that
excessive concentrations of NEFs can poison the Hsp70 system
(Nollen et al., 2000; Kampinga and Craig, 2010; Gao et al., 2015).
Usually, NEFs function in sub-stoichiometric amounts relative to
Hsp70, and increasing their concentrations beyond this optimal
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ratio will overstimulate the ATPase cycle and consequently
lead to too rapid dissociation of the substrate. As a result, the
client protein would be released prematurely. Consequently,
NEF overexpression would disrupt rather than promote the
Hsp70 function. Further research is, therefore, necessary to shed
light on this important aspect.

Currently, there is no evidence that chaperones are directly
involved in the intercellular transmission of SOD1. However,
chaperones are capable of modulating SOD1 aggregation and
toxicity, which could at least indirectly affect the spreading.
Moreover, since it has been shown that the sHsp HSPB8 together
with HSC70, BAG3, and CHIP, mediates the autophagic
degradation of misfolded SOD1 and thus directs it into the
endo-lysosomal pathway (Crippa et al., 2010), this could promote
the dissemination of SOD1 assuming that it follows similar routes
as a-syn and Tau (Uemura et al., 2020).

Future research is needed to gain a more comprehensive
picture of which sets of chaperones and co-chaperones act
together to suppress or enhance SOD1 aggregation. Furthermore,
it is necessary to evaluate the effect of modifying individual
chaperone levels in in vivo models to predict the overall effect
on SOD1 pathology.

TDP-43

TDP-43 is the main component of the characteristic protein
inclusions in the central nervous system (CNS) of patients
suffering from sporadic ALS (sALS) (Neumann et al., 2006).
TDP43 pathology can be observed in about 95% of all SALS cases
but is also frequently found in other neurodegenerative diseases,
such as frontotemporal lobar degeneration (FTLD), in which
ubiquitin-positive Tau-negative TDP-43 inclusions occur. These
diseases are collectively referred to as TDP-43 proteinopathies
(Arai et al., 2006).

Although the disease-associated aggregation and spreading of
TDP-43 have not yet been studied in as much detail as other
prion-like proteins, such as Tau or a-syn, there is nevertheless
strong indication for a prion-like pathomechanism of TDP-
43. The progressive spreading of TDP-43 pathology between
interconnected brain areas upon injection of patient-derived
pathological TDP-43 was demonstrated in a mouse model (Porta
et al,, 2018). In cell culture models, both recombinant TDP-43
aggregates and patient-derived detergent-insoluble TPD-43 are
taken up from the medium and seed the aggregation of
endogenous TDP-43 in the cytoplasm (Furukawa et al., 2011;
Nonaka et al., 2013). The intercellular transmission of seeding-
competent TDP-43 species in these model systems occurs at least
in part via exosomes (Nonaka et al., 2013; Iguchi et al., 2016).
Intriguingly, exosomes containing seeding-competent TDP-43
are also present in the cerebrospinal fluid (CSF) of ALS patients,
which could contribute to the spreading of pathology during
disease progression (Iguchi et al., 2016).

TDP-43 is a client of chaperone families.
Consequently, enhanced chaperone expression due to
HSF1 activation reduces TDP-43 aggregation and restores
TDP-43 solubility (Chen et al., 2016; Wang et al., 2017). While
Chen et al. (2016) attributed this observation to the induction of
Hsp70s and the co-chaperone DNAJB2a, a similar approach by

several

Wang et al. (2017) identified DNAJB1 and HSPB1 as the major
downstream factors of HSF1. In vitro assays will be required to
identify the specific molecular mechanisms by which each of
these chaperones interact with TDP-43 and at what stage during
TDP-43 aggregation they act.

Also, TDP-43 is degraded by chaperone-assisted selective
autophagy (CASA), where the sHsp HSPB8 works together with
HSC70, BAG3, and CHIP to deliver substrates to autophagy.
Inducing HSPB8 in a cell culture model increases TDP-43
turnover and overexpression of the Drosophila HSPB8 ortholog
suppresses TDP-43-mediated neurotoxicity (Crippa et al., 2010,
2016; Gregory et al., 2012). The presence of TDP-43 in the
lysosomal fraction isolated from the rodent brain also indicates
autophagy-mediated turnover (Ormeno et al., 2020). Moreover,
both recombinant wildtype TDP-43 and an aggregation-
prone mutant are degraded by isolated lysosomes in vitro and
TDP-43 is a substrate of CMA interacting with the major CMA
components in cell culture (Huang et al., 2014; Ormerfio et al,,
2020). Although TDP-43 aggregation upregulates CMA, it
simultaneously disturbs the membrane integrity of LAMP2A-
positive lysosomes compromising the autophagolysosomal
pathway (Ormeiio et al., 2020). It is therefore highly likely that
the disruption of lysosomal membranes leads to the release
of seeding-competent TDP-43 species and thus contributes to
TDP-43 spreading similarly as previously shown for a-syn and
Tau (Flavin et al.,, 2017). In addition to a-syn and Tau, TDP-43
is also a client of the MAPS pathway (Fontaine et al., 2016),
but whether this HSC70/DNAJC5-dependent release of TDP-43
contributes to the spreading of TDP-43 pathology in ALS and
FTD patients remains to be shown.

Taken together, TDP-43 shares significant characteristics of
a prion-like protein, and chaperones are involved at several
key steps of TDP-43 turnover, which could be critical for
the propagation of TDP43 pathology. However, to obtain a
comprehensive picture of the specific mechanisms by which
individual chaperones or combinations of chaperones influence
TDP-43 aggregation, in vitro studies investigating the direct
effect of chaperones on TDP-43 aggregation kinetics using
recombinant proteins are required. This would be of great value
for the discovery of potential drug targets.

FUS and C9orf72

While for the other ALS-related proteins such as SODI and
TDP-43 a prion-like behavior is well established, data indicating
an intercellular spreading mechanism for FUS and C9orf72-
derived DPRs is only recently emerging (Nomura et al., 2014;
Feuillette et al., 2017; Zhou et al., 2017; Mordén-Oset et al., 2019).
However, since chaperones are known to be able to modulate
the toxicity of FUS and C9orf72 (Deng et al., 2015; Cristofani
et al.,, 2018), it is highly likely that they would also affect their
transmission in one way or the other.

The Role of Chaperones in the Homeostasis of
Membraneless Compartments

Over the last decade, it has become increasingly clear that
there is a relationship between neurodegenerative diseases,
in particular ALS and FTD, and abnormal formation of

Frontiers in Aging Neuroscience | www.frontiersin.org

October 2020 | Volume 12 | Article 581374


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Tittelmeier et al.

Chaperones in Neurodegenerative Diseases

membraneless cellular compartments (Alberti and Dormann,
2019). Prion-like proteins, including TDP-43 and FUS, contain
intrinsically disordered domains that can undergo liquid-liquid
phase separation (LLPS), which is crucial for the formation
of membraneless cellular compartments, such as nucleoli and
stress granules (SGs; Alberti and Dormann, 2019). During phase
separation a homogenous solution of macromolecules partitions
into two distinct phases; specific macromolecules accumulate
to form a denser phase, while the remaining phase is depleted
of these components (Hyman et al., 2014). This dense phase
is not solid but behaves liquid-like, i.e., it can undergo droplet
fusion and is characterized by high internal dynamics as the
enriched components rapidly move in and out of this phase
(Alberti et al., 2019).

Under healthy conditions, TDP-43 and FUS co-localize with
RNA-containing SGs, which are normally formed transiently
upon cellular stress and rapidly dissolve as the stress subsides
(Aulas and Velde, 2015). However, disease-associated mutations
in these proteins alter their phase separation characteristics
towards more solid states, which has been shown to impede SG
dissociation and promote the maturation from liquid droplets
into immobile aggregates both in vitro and in cell culture
models (Patel et al., 2015). Moreover, non-RNA-binding proteins
implicated in other proteinopathies, such as Tau (Wegmann
etal,, 2018) and a-syn (Ray et al., 2020) may also undergo LLPS,
suggesting that this could represent a pathway for the formation
of amyloid aggregates in general.

Since reduced dynamics and a more rigid consistency within
phase-separated compartments ultimately promote amyloid
fibril assembly, their formation and disintegration need to be
tightly controlled by the cellular PQC machinery (Alberti and
Dormann, 2019). Several in vitro and cell culture studies have
shown that molecular chaperones are recruited into SGs and
regulate SG formation and stability (Figure 3).

Under normal conditions, DNAJB6 and HSPAIA bind to
TDP-43 and control its accumulation into SGs (Udan-Johns
et al, 2014). However, upon heat shock, the availability of
these chaperones becomes limited, which favors the formation
of insoluble TDP-43 aggregates. DNAJB6 also helps to resolve
nuclear TDP-43 SGs which form under healthy conditions in
response to a heat shock (Stein et al, 2014). In this study, a
DNAJB6 harboring a mutation in the G/F domain is unable to
promote SG dissolution, leading to the persistence of TDP-43
aggregates. The fact that a mutation in DNAJBG6 is associated with
limb-girdle muscular dystrophy which in turn is accompanied
by pathological TDP-43 aggregates, indicates a protective
function of DNAJB6 against dysregulated TDP-43 SG formatio
(Harms et al., 2012).

In addition to TDP-43, aggregation-prone SODI1 variants
can also cause SGs to transition to a more solid state (Mateju
et al., 2017). In this study, Hsp70 family members and the
sHsp HSPB1 were enriched in SOD1 containing SGs. Likewise,
HSPB1 regulates the LLPS behavior of FUS depending on
the cellular stress state, thus preventing aberrant FUS amyloid
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Solubilization

FIGURE 3 | Chaperones maintain SG dynamics. Proteins containing intrinsically disordered domains can undergo phase separation upon cellular stress, such as
heat stress, and form liquid-like SGs. Under healthy conditions, the SGs are dissolved when the stress subsides. Chaperones (green hexamer) such as Hsp70s,
sHsps, and DNAJBS6 are involved in the resolubilization process and thus regulate SG homeostasis. Disease-associated mutations in SG associated proteins, the
accumulation of DRIiPs, or prolonged exposure to stress conditions reduce the fluidity of SGs, leading to a more solid-like structure that promotes amyloid formation
over time. The HSPA1A-BAG3-HSPBS8 chaperone network (orange hexamer) targets aberrant SGs for degradation. SG, stress granule.
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formation within SGs (Liu et al., 2020). Moreover, defective
ribosomal products (DRiPs), i.e., prematurely terminated
nascent polypeptides, accumulate in cytosolic SGs leading to
a reduction in SG fluidity (Seguin et al.,, 2014; Ganassi et al.,
2016). A chaperone complex consisting of HSPA1A, BAG3, and
HSPB8 monitors SG composition and mediates the degradation
of DRiPs to restore SG dynamics (Ganassi et al., 2016).

The involvement of chaperones in regulating the dynamics
of membraneless compartments is further supported by their
function in the nucleolus. The phase-separated nucleolus serves
as a PQC compartment which sequesters misfolded protein
species (Mediani et al, 2019). Prolonged exposure to stress
or a failure to dissolve the liquid-like phase causes proteins
in the nucleolus to transition into an amyloid state (Azkanaz
et al., 2019; Frottin et al., 2019; Mediani et al., 2019). Their
resolubilization during the recovery period depends on the
refolding activity of Hsp70 family members that re-localize to the
nucleolus (Audas et al., 2016; Azkanaz et al., 2019; Frottin et al.,
2019; Mediani et al., 2019).

In addition to conventional chaperones, several other proteins
exhibit chaperone-like activity as they suppress abnormal phase
separation of certain RNA-binding proteins. For example, the
nuclear import receptor transportin-1 (TNPO1) shifts disease-
associated FUS variants to a more dispersed state thus preventing
their assembly into granules that inhibit local mRNA translation
within the axonal compartment (Qamar et al., 2018).

Taken together, chaperones control properties of phase-
separated compartments by modulating their internal dynamics
during physiological and stress conditions. They are vital
to maintaining their liquid-like state by mediating their
disassembly or autophagic degradation (Alberti et al.,, 2017).
This surveillance mechanism prevents abnormal aggregation and
amyloid formation within membraneless organelles and thus
serves as a cellular defense strategy in protein folding diseases to
delay disease onset.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The main task of molecular chaperones is to maintain cellular
proteostasis. Interactions of chaperones with abnormal protein
species are therefore aimed to remove them. In principle, the
following basic mechanisms of action of chaperones during
prion-like propagation of disease proteins can be distinguished
(Figure 4). On the one hand, chaperones can stabilize misfolded
protein species, thus preventing their further accumulation
(Hartletal., 2011). Also, they can dissociate protein aggregates by
extracting individual monomers (Mogk et al., 2018). Both these
processes can eventually help the substrates to regain their native
folding state. If this does not succeed, chaperones can control the
sequestration of misfolded protein species in a way that prevents
harmful interactions with the rest of the proteome (Miller et al.,
2015). Finally, they can also mediate their degradation by the
UPS (Kastle and Grune, 2012) or autophagy (Menzies et al,
2017). Besides their role in eliminating abnormal protein species,
chaperones are also involved in multiple cellular processes, such
as endocytosis (Sousa and Lafer, 2015).

Although all chaperone activities are generally “well-
intentioned” and many of them have purely positive effects,
some also have disadvantages. For instance, the action of
the Hsp70 disaggregation machinery can have two outcomes,
one beneficial and one harmful. This chaperone system is
supposed to dissolve protein aggregates and in the case of
amorphous aggregates that are not seeding-competent, it usually
accomplishes their dissociation (Rampelt et al., 2012; Tittelmeier
et al,, 2020). In the case of amyloid substrates, however, this
activity seems to liberate more toxic and seeding- and spreading-
competent species (Nachman et al., 2020; Tittelmeier et al., 2020),
which accelerates prion-like propagation. Also, delivery to the
UPS or autophagy is intended to degrade misfolded proteins,
but if this fails, these pathways could also generate seeding- and
spreading-competent fragments of disease proteins or, in the case
of autophagy, facilitate their delivery to neighboring cells. The
respective outcome might depend on the state of the cellular
proteostasis network. While in young individuals the proteostasis
capacity is high and e.g., the products of the disaggregation
reaction can either be refolded or degraded, in older individuals
the proteostasis capacity is increasingly impaired and the
disaggregated material can no longer be efficiently removed.
Moreover, chaperones are also involved in trafficking pathways,
which are linked to the intercellular spreading of prion-like
proteins. Thus, chaperones can also contribute indirectly to
the dissemination of propagons by sustaining the cellular
pathways required for cell-to-cell spreading, which are hijacked
by disease proteins.

A cautionary note is advised when interpreting results
from investigating the impact of chaperones. Due to the
interconnectivity of the proteostasis network, manipulating
expression levels of one chaperone can have unforeseen effects.
On the one hand, inhibition of a central chaperone can lead
to compensatory upregulation of other chaperones within the
network (Sannino et al, 2018). On the other hand, high
concentrations of certain chaperones can also have an inhibitory
effect. For example, both in vitro and in vivo work suggest that
not only low levels of the HSP110 NEF, but also too high levels
can poison the HSP70 disaggregation activity (Nollen et al., 2000;
Kampinga and Craig, 2010; Rampelt et al., 2012). Therefore, it
would be very beneficial for future studies to characterize not
only the expression level of the protein of interest but also the
fluctuations of the entire chaperone network; this would allow a
more differentiated interpretation of the results.

Taken together, the studies discussed here show that
chaperones play an ambivalent role in neurodegenerative
diseases. When considering chaperone therapy, it is therefore
important to bear in mind that chaperone action is not
per se beneficial in the context of proteinopathies. Nevertheless,
the recent literature established a strong relationship between
molecular chaperones and the propagation and spreading
of prion-like proteins, suggesting that chaperones are a
promising therapeutic target to interfere with the progression of
neurodegenerative diseases. While boosting chaperone activity
to prevent the initial aggregate formation in early phases
of the disease would be the most effective strategy, this
might not be feasible as these initial aggregation events
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FIGURE 4 | Chaperone interactions during prion-like propagation of disease proteins. The folding and refolding activity of chaperones helps destabilized or
misfolded protein species to resume their native state. These transient interactions with misfolded proteins or small oligomers prevent the formation of a
seeding-competent propagon (green hexamer). In contrast, the Hsp70 disaggregation machinery can fragment large fibrils leading to the formation of smaller
seeding- and spreading-competent species (red hexamer). Chaperones also recognize and sort terminally misfolded forms (orange hexamer) and either mediate their
sequestration into an inert deposit (purple hexamer) or deliver them to degradation pathways. Sequestration may reduce the accessibility of fibril ends and thus
prevent the further incorporation of native proteins into the amyloid fibril. Extracellular chaperones can also sequester amyloidogenic proteins into large deposits
making uptake into receiving cells more difficult. The delivery of amyloidogenic proteins to macroautophagic isolation membranes for their selective clearance is
mediated by HSC70 and an sHsp, HSPBS, together with the NEF BAG3 (Gamerdinger et al., 2009). In microautophagy, constitutively expressed HSC70 targets
substrates to LEs/MVBs (Sahu et al., 2011). In CMA, HSC70 translocates clients directly across the lysosomal membrane (Tekirdag and Maria Cuervo, 2018).
Lysosomes and MVBs can fuse with the plasma membrane releasing either free proteins or exosomes to the extracellular space. In the receiving cell, HSC70 and
DNAJCE are involved in the internalization of misfolded proteins via clathrin-mediated endocytosis by uncoating clathrin-coated vesicles (light blue hexamer;
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FIGURE 4 | Continued

Sousa and Lafer, 2015). By rupturing the endosomal membrane,
disease-associated proteins are released from the endocytic vesicle into the
cytosol (Flavin et al., 2017), which might be prevented by lysosomal or
cytosolic Hsps (yellow hexamer). In the cytosol of the receiving cell,
chaperones can finally interfere with the seeding of naive species by the
released propagon (dark blue hexamer). CMA, chaperone-mediated
autophagy; LE, late endosome; MVB, multivesicular body; NEF, nucleotide
exchange factor; UPS, ubiquitin-proteasome system.

usually remain undetected for a long period. During more
advanced disease stages, when the proteostasis capacity is
already significantly impaired, it might therefore be more
effective to interfere with specific chaperone activities to prevent
the dissemination or generation of propagons. Since it is
not yet fully understood which aggregate species (oligomers,
prefibrillar assemblies, or amyloid fibrils) mediate neurotoxicity
and which specific variants spread from cell to cell during
disease progression (and whether these are the same or distinct
species; Ries and Nussbaum-Krammer, 2016), more research
is needed to determine which specific chaperone actions are
overall beneficial or detrimental in vivo as this will determine
therapeutic strategies.

Another important aspect to consider in chaperone therapy is
that the fate of a certain amyloidogenic protein species depends
not only on a single chaperone but also on its interactions
with various co-chaperones. Furthermore, it is also determined
by the cellular environment. These findings emphasize the
complexity within the chaperone network in vivo, which cannot
be inferred easily from in vitro data. More research using
in vivo models is therefore required to fully understand how
chaperone cooperation ultimately determines the fate of certain
aggregate species.

Finally, proteinopathies are characterized by disease-specific
patterns of neurodegeneration, which mainly affect certain
cell types and brain regions during the disease, while others
are spared (Jackson, 2014; Fu et al, 2018). There is growing
evidence that not only prions but also other prion-like proteins
can form fibrils with different conformations, so-called strains,
which can affect different brain regions to different degrees
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