

[image: image]





Frontiers eBook Copyright Statement

The copyright in the text of individual articles in this eBook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers.

The compilation of articles constituting this eBook is the property of Frontiers.

Each article within this eBook, and the eBook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this eBook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version.

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or eBook, as applicable.

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with.

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question.

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-88974-168-7
DOI 10.3389/978-2-88974-168-7

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact





DRUG REPURPOSING IN NEURODEGENERATIVE AND NEUROPSYCHIATRIC DISORDERS

Topic Editors: 

Anna R. Carta, University of Cagliari, Italy

Nigel H. Greig, National Institutes of Health (NIH), United States

Cesar V. Borlongan, University of South Florida, United States

Citation: Carta, A. R., Greig, N. H., Borlongan, C. V., eds. (2022). Drug Repurposing in Neurodegenerative and Neuropsychiatric Disorders. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88974-168-7





Table of Contents




Efficacy of THN201, a Combination of Donepezil and Mefloquine, to Reverse Neurocognitive Deficits in Alzheimer’s Disease

Marine Droguerre, Adeline Duchêne, Christèle Picoli, Benjamin Portal, Camille Lejards, Bruno P. Guiard, Johann Meunier, Vanessa Villard, Nicole Déglon, Michel Hamon, Franck Mouthon and Mathieu Charvériat

Oxiracetam Offers Neuroprotection by Reducing Amyloid β-Induced Microglial Activation and Inflammation in Alzheimer’s Disease

Heng Zhang, Longfei Jia and Jianping Jia

PT320, Sustained-Release Exendin-4, Mitigates L-DOPA-Induced Dyskinesia in a Rat 6-Hydroxydopamine Model of Parkinson’s Disease

Seong-Jin Yu, Shuchun Chen, Yung-Yung Yang, Elliot J. Glotfelty, Jin Jung, Hee Kyung Kim, Ho-Il Choi, Doo-Sup Choi, Barry J. Hoffer, Nigel H. Greig and Yun Wang

Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment

Giovanna Menduti, Daniela Maria Rasà, Serena Stanga and Marina Boido

Levodopa Improves Cognitive Function and the Deficits of Structural Synaptic Plasticity in Hippocampus Induced by Global Cerebral Ischemia/Reperfusion Injury in Rats

Wenzhu Wang, Xu Liu, Zhengyi Yang, Hui Shen, Lixu Liu, Yan Yu and Tong Zhang

Repositioning of Immunomodulators: A Ray of Hope for Alzheimer’s Disease?

Antonio Munafò, Chiara Burgaletto, Giulia Di Benedetto, Marco Di Mauro, Rosaria Di Mauro, Renato Bernardini and Giuseppina Cantarella

Fisetin Regulates Gut Microbiota and Exerts Neuroprotective Effect on Mouse Model of Parkinson’s Disease

Tian-Jiao Chen, Ya Feng, Te Liu, Ting-Ting Wu, Ya-Jing Chen, Xuan Li, Qing Li and Yun-Cheng Wu

Zonisamide for the Treatment of Parkinson Disease: A Current Update

Chengqian Li, Li Xue, Yumei Liu, Zhengjie Yang, Song Chi and Anmu Xie

Long-Acting Glucagon-Like Peptide-1 Receptor Agonists Suppress Voluntary Alcohol Intake in Male Wistar Rats

Vincent N. Marty, Mehdi Farokhnia, Joseph J. Munier, Yatendra Mulpuri, Lorenzo Leggio and Igor Spigelman

Farnesyl Transferase Inhibitor Lonafarnib Enhances α7nAChR Expression Through Inhibiting DNA Methylation of CHRNA7 and Increases α7nAChR Membrane Trafficking

Tingting Chen, Chengyun Cai, Lifeng Wang, Shixin Li and Ling Chen

Drug Repurposing for Parkinson’s Disease: The International Linked Clinical Trials experience

Simon R. W. Stott, Richard K. Wyse and Patrik Brundin

Drug Repurposing in the Treatment of Traumatic Brain Injury

Michael K. Ghiam, Shrey D. Patel, Alan Hoffer, Warren R. Selman, Barry J. Hoffer and Michael E. Hoffer

Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders

Yoo Jin Jung, David Tweedie, Michael T. Scerba, Dong Seok Kim, Maria Francesca Palmas, Augusta Pisanu, Anna R. Carta and Nigel H. Greig

Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer’s Disease

Verónica Vidal, Alba Puente, Susana García-Cerro, María Teresa García Unzueta, Noemí Rueda, Javier Riancho and Carmen Martínez-Cué

Emulated Clinical Trials From Longitudinal Real-World Data Efficiently Identify Candidates for Neurological Disease Modification: Examples From Parkinson’s Disease

Daphna Laifenfeld, Chen Yanover, Michal Ozery-Flato, Oded Shaham, Michal Rosen-Zvi, Nirit Lev, Yaara Goldschmidt and Iris Grossman

Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success?

Ezio Carboni, Anna R. Carta, Elena Carboni and Antonello Novelli

Repurposing of Anti-Diabetic Agents as a New Opportunity to Alleviate Cognitive Impairment in Neurodegenerative and Neuropsychiatric Disorders

Qian Chen, Ting Cao, NaNa Li, Cuirong Zeng, Shuangyang Zhang, Xiangxin Wu, Bikui Zhang and Hualin Cai

Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap?

Melinda Hersey, Amanda K. Bacon, Lydia G. Bailey, Mark A. Coggiano, Amy H. Newman, Lorenzo Leggio and Gianluigi Tanda

Methylprednisolone Induces Neuro-Protective Effects via the Inhibition of A1 Astrocyte Activation in Traumatic Spinal Cord Injury Mouse Models

Hong-jun Zou, Shi-Wu Guo, Lin Zhu, Xu Xu and Jin-bo Liu

Role of Plant-Derived Natural Compounds in Experimental Autoimmune Encephalomyelitis: A Review of the Treatment Potential and Development Strategy

Yu-Xin Guo, Yuan Zhang, Yu-Han Gao, Si-Ying Deng, Li-Mei Wang, Cui-Qin Li and Xing Li

Berberine Reduces Aβ42 Deposition and Tau Hyperphosphorylation via Ameliorating Endoplasmic Reticulum Stress

Yue Wu, Qingjie Chen, Bing Wen, Ninghua Wu, Benhong He and Juan Chen












	 
	ORIGINAL RESEARCH
published: 16 June 2020
doi: 10.3389/fnins.2020.00563





[image: image]

Efficacy of THN201, a Combination of Donepezil and Mefloquine, to Reverse Neurocognitive Deficits in Alzheimer’s Disease

Marine Droguerre1, Adeline Duchêne1, Christèle Picoli1, Benjamin Portal2, Camille Lejards2, Bruno P. Guiard2, Johann Meunier3, Vanessa Villard3, Nicole Déglon4,5, Michel Hamon1, Franck Mouthon1 and Mathieu Charvériat1*

1Theranexus, Lyon, France

2Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France

3Amylgen, Montferrier-sur-Lez, France

4Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center (CRN), University of Lausanne, Lausanne, Switzerland

5Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neuroscience (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland

Edited by:
Anna R. Carta, University of Cagliari, Italy

Reviewed by:
Giuseppina Cantarella, University of Catania, Italy
Vinod Tiwari, Indian Institute of Technology (BHU), India

*Correspondence: Mathieu Charvériat, mathieu.charveriat@theranexus.com

Specialty section: This article was submitted to Neuropharmacology, a section of the journal Frontiers in Neuroscience

Received: 23 March 2020
Accepted: 07 May 2020
Published: 16 June 2020

Citation: Droguerre M, Duchêne A, Picoli C, Portal B, Lejards C, Guiard BP, Meunier J, Villard V, Déglon N, Hamon M, Mouthon F and Charvériat M (2020) Efficacy of THN201, a Combination of Donepezil and Mefloquine, to Reverse Neurocognitive Deficits in Alzheimer’s Disease. Front. Neurosci. 14:563. doi: 10.3389/fnins.2020.00563

Donepezil (DPZ) is an acetylcholinesterase inhibitor used in Alzheimer’s disease to restore cognitive functions but is endowed with limited efficacy. Recent studies pointed out the implication of astroglial networks in cognitive processes, notably via astrocyte connexins (Cxs), proteins involved in gap junction intercellular communications. Hence, we investigated the impact on cognition of pharmacological or genetic modulations of those astrocyte Cxs during DPZ challenge in two rodent models of Alzheimer’s disease–like memory deficits. We demonstrated that the Cx modulator mefloquine (MEF) significantly enhanced the procognitive effect of DPZ in both models. In parallel, we determined that MEF potentiated DPZ-induced release of acetylcholine in hippocampus. Finally, local genetic silencing of astrocyte Cxs in the hippocampus was also found to enhance the procognitive effect of DPZ, pointing out the importance of Cx-dependent astrocyte networks in memory processes.
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INTRODUCTION

Alzheimer’s disease (AD) is characterized by the loss of cognitive functions especially learning, working, and spatial memory (Mattila et al., 2012). Brains from AD patients are notably distinguished by senile plaques composed of amyloid β (Aβ) protein and a marked deficit in acetylcholine (ACh) notably in the hippocampus (Shinotoh et al., 2000). Donepezil (DPZ), a potent acetylcholinesterase (AChE) inhibitor, is currently one of the most widely used for AD in the world (Adlimoghaddam et al., 2018). Through its reversible binding to AChE, DPZ promotes cholinergic neurotransmission, thereby alleviating cognitive impairments. However, only modest improvements were found in patients, and the development of novel therapeutic approaches is eagerly needed (Deardorff et al., 2015).

Numerous studies have shown that astrocytes modulate neuronal activity (Dallerac and Rouach, 2016; Charvériat et al., 2017). These glial cells highly express gap junction proteins (Bennett et al., 2003), named connexins (Cxs), responsible for the organization of astrocytes into dynamically networks, which play key roles in the regulation of brain functions (Han et al., 2014; Dallerac and Rouach, 2016; Clasadonte et al., 2017). Connexin 30 and Cx43 are principal constituents of astroglial gap junctions (Nagy and Rash, 2000). As Cxs are dysregulated in AD, it has been suggested that they might be relevant targets to improve cognitive performances (Giaume et al., 2017). In this study, we postulate that Cx-based astroglial networks might modulate DPZ pharmacological effects, and use validated mouse models for assessing our hypothesis. Mefloquine (MEF) was selected as a pharmacological tool to modulate astroglial Cxs, as previously reported both in vitro and in vivo (Picoli et al., 2012, 2019; Jeanson et al., 2016; Droguerre et al., 2019).

The pharmacological profile of DPZ alone or combined with MEF at low dose (combination THN201) was investigated on cognitive performances in scopolamine and Aβ mouse models of AD to assess learning, working, and spatial memories. In parallel, pharmacokinetic and pharmacodynamic interactions of DPZ and MEF were investigated using bioanalytical determinations of both drugs in serum and brain and in vivo microdialysis at hippocampal level. Finally, the implication of astroglial Cxs was further investigated using recombinant lentiviruses to specifically silence hippocampal expression of astroglial Cx30 and Cx43. To our knowledge, this study is the first to address the role of astrocyte Cxs as new therapeutic targets to enhance DPZ efficacy and provides new insights in the importance of glial cells in memory function.



MATERIALS AND METHODS


Animals

All experiments were conducted in strict conformity with the Policies of the French Ethics Committee. Animal surgery and experimentations conducted in this study were authorized by the French Direction of Veterinary Services (APAFIS#12311-2017071816217821 v3). Swiss and C57BL/6 male mice (age 5 weeks; 30–35 g) were purchased from Janvier Labs (Le Genest-Saint-Isle, France) and Envigo (Gannat, France), respectively. Sprague–Dawley (8-week-old) male rats were purchased from Janvier Labs. During all of the experimental period, rodents were group-housed (six per cage) and maintained under controlled environmental conditions (12-h light/12-h dark cycle; temperature of 23°C ± 2°C; humidity of 50 ± 10%) with food and water ad libitum.



Drugs and Administration Procedures


Acute Treatments in Mice

Mefloquine (Sigma-Aldrich, L’Isle d’Abeau Chesnes, France) and DPZ (Sigma-Aldrich) were dissolved in 2% dimethyl sulfoxide (DMSO) and administered acutely either intraperitoneally (i.p.) (5 mL/kg) or by oral gavage (p.o.) (10 mL/kg). Scopolamine (Sigma-Aldrich) was administered subcutaneously (s.c.) (5 mL/kg) in saline solution (0.9% NaCl).



Repeated Treatments in Mice and Rats

For daily administration for 14 days, animals received the drugs at various doses p.o. (see section “Results”) in a volume of 10 mL/kg. Control groups received the vehicles only under the very same conditions (volume, time, route of administration) as tested drugs.



Intracerebroventricular Injection of Aβ25–35

Both peptides Aβ25–35 and Sc.Aβ (scramble Aβ25–35) were purchased from PolyPeptides (Strasbourg, France). Swiss male mice were anesthetized with isoflurane 2.5% and administered intracerebroventricularly (i.c.v.) with 9 nmol of Aβ25–35 peptide or Sc.Aβ peptide in a volume of 3 μL per mouse, as previously described (Maurice et al., 1996; Villard et al., 2011b).



Stereotaxic Injection of Lentiviral Vectors

MOKOLA pseudotyped lentiviral vectors (LVs) encoding an shRNA directed against either Cx30, Cx43, or GFP (control) mRNA within astrocytes were generated as previously described (Colin et al., 2009; Quesseveur et al., 2015). The viruses were suspended in phosphate-buffered saline (PBS, 0.1 M, pH 7.4) containing 1% bovine serum albumin (BSA) to reach a final concentration of 150,000 ng/p24 for sh-Cx30 and 100,000 ng/p24 for both sh-Cx43 and sh-GFP. Mice were anesthetized with ketamine 75 mg/kg i.p., (Sigma-Aldrich) and xylazine 10 mg/kg i.p., (Sigma-Aldrich) and received two intrahippocampal injections (one per side) of either LV suspension in a total volume of 1 μL per injection, at a rate of 0.1 μL/min. The stereotaxic coordinates for the bilateral injections into the hippocampus were anteroposterior: −2.2, lateral: ±2.5, and ventral: −2.5 (in mm from bregma, according to Franklin and Paxinos (2007). After completion of the injection, the needle was left in place for 5 min before being slowly removed. Animals were allowed to rest under a warming lamp until full recovery from anesthesia and then returned back to their home cage under standard environmental conditions.



Memory Behavioral Testing


Y-Maze

Mice were placed at the end of one arm of a Y-maze and allowed to move freely through the maze during an 8-min session. Spontaneous alternation was defined as entries into all three arms on consecutive occasions. The percentage alternation was calculated as the ratio of the [number of alternations] over the [total arm entries −2] × 100. The number of total arm entries during the 8-min session was used to quantify locomotor activity. Animals showing an extreme alternation percentage (<20 or >90%) were discarded from the analysis (Villard et al., 2011a).



Object Recognition/Location Test

Both novel object recognition (NOR) and novel object location (NOL) tests were carried out in an open-field arena during three phases (Leger et al., 2013; Vogel-Ciernia and Wood, 2014; Lueptow, 2017). (i) For the habituation phase on the first day, mice were allowed to freely explore the empty apparatus. (ii) On the second day, two identical objects were placed at two opposite edges of the arena. Time spent by the mouse exploring the two objects was recorded. (iii) Twenty-four hours later, one of the two familiar objects was replaced by a novel one (NOR) or displaced (NOL). Mice were allowed to explore the whole arena during 10 min for each of the three phases. The preference index was calculated as the ratio of the duration of contacts with the novel/displaced object over the total duration of contacts with the two objects. Locomotion was recorded using EthoVision software (Noldus, Paris, France).



Morris Water Maze

Mice were placed in a circular pool with external cues in the room. A transparent platform was immersed under the water surface during learning phases (Konsolaki et al., 2016). Training consisted of three swims with 20-min intertrial time each day for 5 days, performed between days 11 and 15 after Aβ25–35 peptide or Sc.Aβ peptide i.c.v. injection. Random starting positions were selected each day, and each animal was allowed a 90-s swim to find the platform. Probe test was performed 24 h after the last swim (day 16 after peptide injection). The platform was removed, and each animal was allowed a free 60-s swim. The time spent in each quadrant was determined. Swimming was recorded using EthoVision software (Noldus).



Microdialysis Procedure and Quantification of ACh

Mice were anesthetized with isoflurane, placed in a stereotaxic frame and bilaterally implanted with probes in both left and right hippocampi. The stereotaxic coordinates for the bilateral injections into the hippocampus were anteroposterior: −2.4, lateral: ±2.7, and ventral: −3 (in mm from bregma, according to Franklin and Paxinos (2007). Microdialysis experiments were conducted with artificial cerebrospinal fluid (aCSF) in freely moving mice 24 h after surgery as previously described (Guiard et al., 2005). Dialysate samples were collected each 20 min and analyzed for ACh contents using an ultrahigh-performance liquid chromatography (UHPLC) method (see below). Basal values were determined for each mouse, and changes in ACh outflow induced by acute administration of vehicle, DPZ alone, or in combination with MEF were expressed as percentage of these basal values.

Concentrations of ACh in the microdialysis samples were analyzed by the Pronexus Analytical AB company (Stockholm, Sweden) using UHPLC tandem mass spectrometry (MS/MS). Briefly, the UHPLC-MS/MS system included a PAL autosampler (CTC Analytics, Zwingen, Switzerland), an Advance UHPLC pump, and an EVOQ Elite triple quadrupole mass spectrometer (Bruker Daltonics, Fremont, CA, United States) equipped with electrospray ionization source operating in a positive mode at +4,500 V. The source parameters were as follows: probe gas flow: 50, nebulizer gas flow: 60, probe temperature: +300°C, cone gas flow: 30, cone temperature: +200°C, CID gas: Ar 1.5 mTorr. A Titan PFP column (100 × 2.1 mm, 1.9 μm, 120 Å pore size) purchased from Sigma-Aldrich (Sweden) was used for UHPLC. Deuterated ACh (acetylcholine-1,1,2,2-d4 bromide; ACh-d4), used as internal standard, was purchased from C/D/N Isotopes (QMX Laboratories, Dunmow CM6 2PY, United Kingdom). Typically, 10 μL of aCSF or hippocampal microdialysate was mixed with 20 μL of ACh-d4 internal standard (50 nM, in aCSF), and 5 μL of the mixture was injected into the column. The mobile phase A was 0.1% (vol/vol) formic acid in water; the mobile phase B was acetonitrile with 0.1% formic acid. The linear elution gradient was as follows: 0–0.5 min: 5% B; 3.5 min: 55% B; 3.6 to 4.0 min: 70% B; 4.1 min, 5% B. The flow rate was 400 μL/min, and the total run-to-run time was 4.8 min. The calibration curve was linear in the range of 0.1 to 409.6 nM ACh (R2 = 0.999); the estimated limit of detection was 0.05 nM, and the lower limit of quantification was 0.15 nM.



AChE Activity

Acetylcholinesterase activity was quantified using a cholinesterase activity assay kit according to manufacturer’s recommendations (MAK119; Sigma, St. Louis, MO, United States). Briefly, mouse hippocampus was homogenized (10 μL/mg) in 0.1 M Na/K phosphate buffer (PB) (pH 7.5) at 4°C followed by centrifugation at 30,000 × g for 5 min. Aliquots of the cleared supernatants were added to the kit reaction mixture containing various concentrations of DPZ (1–50 nM) and/or MEF (0.5–4 μM), and the reaction proceeded at room temperature. Absorbance at 415 nm was quantified using VICTOR plate reader (Perkin–Elmer Inc., Waltham, Massachusetts, United States) at 2-min intervals from time 0 (tissue sample addition) up to 10 min. Acetylcholinesterase activity was expressed as units/L. One unit of AChE is the amount of enzyme that catalyzes the production of 1.0 μmol of thiocholine per minute at room temperature at pH 7.5.



Pharmacokinetics of DPZ and MEF in Serum and Brain

These experiments had to be performed in rats because blood volume in mice was too low to allow collection of serial serum samples for studies over 24 h after drug administration.


Experimental Procedure

Rats were randomly assigned to one of three experimental groups: (i) DPZ 0.25 mg/kg; (ii) THN201: DPZ 0.25 mg/kg + MEF 1 mg/kg; (iii) DPZ 1 mg/kg per day. Drugs were administered p.o., once per day for 14 days.



Tissue Preparation

Blood was collected on the 14th treatment day, just prior to drug administration (T0) and then 30 min, 1, 2, 4, 8, and 24 h later. Blood was collected by retro-orbital puncture except for the last collection, which was made by intracardiac puncture. After coagulation, blood samples were centrifuged at 3,000 × g for 15 min, and serum was collected and stored at −80°C. Rats were sacrificed by decapitation immediately after the last blood collection, and their brains including brainstem and cerebellum were removed as one piece, placed on tinfoil precooled on dry ice and stored at −80°C until drug quantifications.



DPZ and MEF Quantification

One volume of brain or serum samples was added to three volumes of human serum EDTA K3, and the mixture was homogenized under magnetic stirring for 15 min for analysis using a Sciex API4000 Qtrap mass spectrometer coupled to a Shimadzu HPLC system (Shimadzu Corporation, Marne-la-Vallée, France). Liquid chromatography–MS procedures yielded detection ranges for DPZ from 0.1 to 100 ng/mL in serum and 0.1 to 100 ng/g in brain, and for MEF from 0.5 to 500 ng/mL in serum and 0.5 to 500 ng/g in brain.



Immunohistochemistry and Quantification of Cx30 and Cx43 Expression

Mice were deeply anesthetized and transcardially perfused with a 4% paraformaldehyde solution in Na/K PB (0.4 M, pH 7.4). Brains were removed, and series of one in twelve 30-μm-thick coronal sections were cut at hippocampal level, rinsed in PBS, and then incubated 1 h in a blocking solution containing 10% of normal donkey serum (Bio-Rad, Marnes-la-Coquette, France) and 0.1% BSA (Euromedex, Souffelweyersheim, France) in PBS supplemented with 0.25% Triton-X100 (PBST). Primary antibodies were goat anti-GFAP (1:500, Abcam, Paris, France), mouse anti-Cx43 (1:250, BD transduction, Le Pont de Claix, France), and rabbit anti-Cx30 (1:250, ThermoScientific, Les Ulis, France) and diluted in blocking solution and applied overnight at 4°C. Sections at the very level of injection sites and displaying signs of lesions were discarded. After several rinses in PBST, sections were incubated for 120 min at room temperature in a mixture of Alexa Fluor® 488–conjugated highly cross-adsorbed donkey anti-rabbit, Alexa Fluor® 555–conjugated donkey anti-mouse, and Alexa Fluor® 647–conjugated donkey anti-goat antibodies (all at 1:500; Life Technologies, ThermoScientific) in blocking solution. Sections were then rinsed extensively and finally mounted onto glass slides, cover slipped using Mowiol® + Hoechst (1:10,000), and stored at 4°C.

Immunolabeled hippocampi from LV-injected mice were pictured using an Olympus BX-51 microscope equipped with Mercator Software (Explora Nova, La Rochelle, France). The area of interest was framed at ×20 magnification lens for each injection site and visualized on DAPI-labeled sections. Quantifications of DAPI, GFAP, Cx30, and Cx43 were conducted with the FIJI software (ImageJ 2; National Institutes of Health, Bethesda, MD, United States). Gray values for the GFAP, Cx30, and Cx43 immunolabeling in the area of interest were determined in each series of hippocampus sections.



Statistical Analysis

All data are expressed as mean ± SEM, and normality of data distribution was evaluated using the Shapiro–Wilk normality test. Alternation performance and object exploration time were converted to percentage of alternation or preference index, respectively. Spontaneous alternation results were analyzed by two-way ANOVA followed by Tukey multiple-comparisons test. Novel object recognition or location results were analyzed using one-sample t-test vs chance level. Morris water maze (MWM) task was analyzed using two-way repeated-measures ANOVA followed by Tukey multiple-comparisons test (place-learning) and one-sample t-test vs chance level (probe test). Hippocampal ACh outflow was analyzed by two-way ANOVA followed by Fisher least significant difference post hoc test. Serum and brain levels of DPZ and MEF were analyzed by two-way ANOVA followed by Bonferroni post hoc test and Kruskal–Wallis test followed by Dunn post hoc test, respectively. Connexin 30 and Cx43 expressions were analyzed by two-way ANOVA followed by Tukey multiple-comparisons test. Significance level was set at 0.05.



RESULTS


Mefloquine Potentiated the Effects of DPZ on Working Memory After a Scopolamine Challenge

Different cohorts of mice were tested using the Y-maze alternation task after i.p., or p.o., administration of DPZ either alone or in combination with MEF (Figure 1A, left panel). Regardless of the route of administration, scopolamine significantly impaired spontaneous alternation compared to vehicle-treated mice (P < 0.0001; Figures 1B,C). Whereas DPZ at 0.1 mg/kg (DPZ0.1) i.p., exerted no effect (P = 0.69; Figure 1B), DPZ 0.5 mg/kg (DPZ0.5) significantly reversed the scopolamine-induced deficit (P < 0.0001; Figure 1B). DPZ0.1, when combined with MEF at 1 or 3 mg/kg (DPZ0.1 + MEF1 and DPZ0.1 + MEF3), restored spontaneous alternation up to the control group (Figure 1B). Similar observations were made in mice that received treatment of DPZ0.25 p.o., which did not reverse scopolamine-induced deficit (P = 0.69; Figure 1C), but the same low dose of DPZ combined with MEF at 3 or 10 mg/kg p.o., significantly reversed the alternation deficit (both at P < 0.0001; Figure 1C), up to that noted in vehicle-treated controls, suggesting a potential synergistic effect of MEF and DPZ on working memory after a scopolamine challenge.
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FIGURE 1. Behavioral performances in scopolamine-treated mice. Effects of donepezil and/or mefloquine (MEF). (A) Experimental design. (B,C) Spontaneous alternation task. (B) Mefloquine (0.1, 0.3, 1, 3 mg/kg), donepezil (DPZ, 0.1, 0.5 mg/kg), or vehicle (veh, DMSO 2%, NaCl 0.9%) was administered i.p., 40 min before the task. (C) Mefloquine (1, 3, 10 mg/kg), DPZ (0.25, 1 mg/kg), or veh (DMSO 2%) was administered p.o., 40 min before the task. (B,C) Scopolamine (scopo, 0.5 mg/kg) was administered s.c. 20 min after each treatment, that is, 20 min before the task. One-way ANOVA followed by Tukey multiple-comparisons test: ####P < 0.0001 vs scopo/veh, $$$$P < 0.0001 vs scopo/DPZ0.1 (B) and vs scopo/DPZ0.25 (C). (D,E) Novel object recognition task. Mefloquine (1 mg/kg), DPZ (0.25 or 1 mg/kg), or veh (DMSO 2%, NaCl 0.9%) was administered i.p., 40 min before the familiarization phase. Scopolamine (scopo, 0.5 mg/kg, s.c.) was administered 20 min after each treatment, that is, 20 min before the task. Preference index was determined (see section “Materials and Methods”) for the familiarization phase (D) and the novel object recognition test phase (E). One-sample t-test: *P < 0.05; **P < 0.01; ***P < 0.001; vs chance level. (B–E) Bars in black indicate combination treatments. Data are expressed as mean ± SEM, n = 8 to 20 mice per group. Each experiment was performed using different cohorts.


When subjected to the NOR task (Figure 1A, right panel), all mice spent the same amount of time exploring both identical objects during the familiarization session (all, P > 0.05; Figure 1D). In contrast, during the NOR test session, scopolamine administration abolished the increase in exploration time of the novel object observed in control group. Neither MEF1 i.p., nor DPZ0.25 i.p., prevented the scopolamine effect (P = 0.57 and P = 0.52, Figure 1E). However, the combination of drugs (DPZ0.25 + MEF1) was as efficient as DPZ at 1 mg/kg to restore exploration preference of the novel object in scopolamine-treated mice (Figure 1E).



Mefloquine Potentiated the Effects of DPZ on Working Memory in a Mouse AD Model

Mice were i.c.v., injected with Aβ25–35 peptide or Sc.Aβ on day 0 and chronically treated with DPZ and/or MEF from days 1 to 16 (Figure 2A). Familiarization phase demonstrated that these treatments had no effect on the time spent in exploring identical objects (all, P > 0.05; Figure 2B). In contrast during the NOR test phase, Aβ administration abolished the increase in exploration time of the novel object (P = 0.25; Figure 2C). While MEF1, DPZ0.25, or the combination DPZ0.25 + MEF0.1 did not reverse the Aβ-induced impairment, mice treated with DPZ0.25 + MEF0.3 or DPZ0.25 + MEF1 demonstrated a marked improvement in preference index (P = 0.021 and P = 0.0017, respectively) up to that obtained with DPZ at 1 mg/kg.
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FIGURE 2. Behavioral performances in Aβ25–35 or scramble-Aβ peptide-injected mice. Effects of donepezil and/or mefloquine (MEF). (A) Experimental design. (B–F) Mefloquine (0.1, 0.3, 1 mg/kg), donepezil (DPZ, 0.25, 1 mg/kg), or vehicle (veh, DMSO 2%) was administered p.o. daily, from the day after i.c.v. injection (day 1) of Aβ25–35 peptide (Aβ) or scramble-Aβ peptide (Sc.Aβ) until the last day of experiment (day 16). From days 8 to 10, the preference index for identical objects (B) and novel object (C) in the open field was recorded for 10 min. One-sample t-test: ∗P < 0.05 and ∗∗P < 0.01 vs chance level. (D,E) Swim latency to reach an immerged platform was assessed in the Morris water maze test from days 11 to 15. Two-way repeated-measures ANOVA followed by Tukey multiple-comparisons test: ###P < 0.001, ####P < 0.0001 vs Aβ/veh, $$P < 0.01, $$$P < 0.001, $$$$P < 0.0001 vs Aβ/DPZ0.25. (F) Time spent in target quadrant during the probe test (day 16). One-sample t-test: *P < 0.05 and **P < 0.01 vs chance level. (B–F) Bars in black indicate combination treatments. Data are expressed as mean ± SEM, n = 10 mice per group.


From days 11 to 16, mice were challenged with the MWM test. Amyloid β i.c.v., injection induced a significant memory deficit (from learning days 3–5) in comparison with Sc.Aβ injection (for all days, P < 0.0001; Figure 2D). DPZ0.25 or MEF1 showed no effect, whereas DPZ1 significantly reversed the Aβ-induced memory deficits from learning days 2 to 5 (P < 0.001 and P < 0.0001 for day 2 and days 3–5, respectively; vs Aβ/VEH; Figure 2D). In addition, DPZ0.25 combined with MEF0.3 or MEF1 showed a significantly superior learning memory activity (from learning days 2–5) when compared to DPZ0.25 alone.

On experimental day 16 (probe phase), the time spent in each of the four quadrants of the circular pool was measured during a 60-s session (Figure 2F). Interestingly, data highlighted the significantly superior cognitive activity of DPZ1 and DPZ0.25 + MEF1 groups (P = 0.013 and P = 0.0063. respectively; Figure 2F) as those treatments restored performance up to the level noted in Sc.Aβ-injected control mice (P = 0.011).



Mefloquine Increased DPZ-Induced ACh Overflow in the Hippocampus but Did Not Alter DPZ-Inhibition of AChE Activity

The effects of DPZ alone or combined with MEF on ACh outflow in the hippocampus were assessed using intracerebral microdialysis in awake freely moving mice. Intraperitoneal administration of DPZ1 alone or DPZ0.25 in combination with MEF1 caused a transient ACh overflow (P < 0.01, Figure 3A). Twenty minutes after injection, hippocampal ACh levels were increased by up to 2.5-fold in DPZ1 and DPZ0.25 + MEF1 groups and were significantly higher than in mice treated with the vehicle (both P < 0.01, Figure 3A) or DPZ0.25 alone (both, P < 0.05, Figure 3A). Administration of DPZ0.25 or MEF1 alone did not significantly modify ACh outflow.
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FIGURE 3. Effects of mefloquine (MEF) on donepezil-induced acetylcholine outflow (A) or donepezil (DPZ)-induced inhibition of acetylcholinesterase (AChE) activity (B). (A) Acetylcholine (ACh) levels in 20-min collected microdialysate samples are expressed as percentages of the basal level calculated as the mean value of the three samples collected prior to administrations of MEF (1 mg/kg, i.p.), DPZ (0.25; 1 mg/kg, i.p.), or vehicle (NaCl 0.9%). Values are expressed as means ± SEM, n = 4–7 per group. Two-way ANOVA followed by Fisher least significant difference: *P < 0.05, **P < 0.01 vs Vehicle; $P < 0.05, $$$P < 0.001 vs DPZ0.25. (B) Concentration-dependent inhibition by DPZ (0, 2, 13, 30, 40, and 50 nM), in the absence or presence of MEF (0.5–4 μM), of mouse hippocampus AChE activity. Acetylcholinesterase activity is expressed as percent of that determined in the absence of drugs. Each data point represents the mean ± SEM of triplicate determinations in two independent experiments.


In vitro assays were used to quantify the inhibitory effect of DPZ alone or combined with MEF on AChE activity in brain extracts. The addition of MEF (0, 0.5, 2, and 4 μM) did not modify the potency of DPZ to inhibit AChE activity (Figure 3B).



Mefloquine Did Not Affect Brain and Serum Accumulation of DPZ

Donepezil (0.25 or 1 mg/kg) alone or in combination with MEF (1 mg/kg) was administered p.o., daily for 14 days, and the drugs were quantified in serum using an LC-MS method. The daily coadministration of MEF1 did not change the serum concentration of DPZ determined after 14-day treatment with 0.25 mg/kg p.o., daily of the latter drug (P > 0.05; Figure 4A). Brain concentration of DPZ was dose-dependent (DPZ0.25: 13.00 ± 2.17 ng/g, DPZ1: 78.1 ± 11.5 ng/g, P = 0.0036; Figure 4B). No significant difference was found between the brain concentrations of DPZ comparing DPZ0.25 + MEF1 (26.20 ± 5.26 ng/g) and DPZ0.25 groups (P = 0.33; Figure 4B). Mefloquine concentration in serum ranged between 78 and 113 ng/mL all along the 24 h after the last drug administration on the 14th treatment day (Figure 4C). In brain, MEF concentration reached 229.0 ± 19.5 ng/g 24 h after the last drug administration (Figure 4D).
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FIGURE 4. Serum and brain levels of donepezil and mefloquine after chronic treatments in rats. (A–D) Donepezil (DPZ, 0.25, 1 mg/kg) alone or in combination with mefloquine (MEF, 1 mg/kg) was administered p.o. daily for 14 days. (A,C) Blood samples were collected before treatment (T0) and then at 0.5, 1, 2, 4, 8, and 24 h after the last administration on day 14. (B,D) Brain samples were collected on day 15, 24 h after the last drug administration. Donepezil and MEF concentrations in rat serum [ng/mL, (A,C)] and brain [ng/g, (B,D)] are the means ± SEM of n = 4 to 10 animals per group. Two-way ANOVA followed by Bonferroni post hoc test, ****P < 0.0001 vs DPZ0.25 (A). Kruskal–Wallis followed by Dunn post hoc test: **P < 0.01 vs DPZ0.25 (B). No statistical analysis applicable (C,D). Bars in black indicate combination treatments.




Inhibition of Cx30 or Cx43 in Hippocampal Astrocytes Improved the Capacity of DPZ to Prevent Scopolamine-Induced Memory Deficit

Lentiviral vectors expressing shRNA against Cx30 or Cx43 (or control) were bilaterally injected into the hippocampus. Mice were tested in the NOL task after a 14-day recovery period (Figure 5A).
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FIGURE 5. Behavioral effects of donepezil (DPZ) on scopolamine (Scopo)–induced deficits in mice with down-regulated hippocampal shCx43 or shCx30. (A) Experimental design: novel object location task. Recombinant lentiviruses aimed at locally down-regulating either Cx30 (sh-Cx30) or Cx43 (sh-Cx43) expression or that of GFP (sh-GFP, as control) specifically in astrocytes were administered into the hippocampus, on both sides. Two weeks later, DPZ (0.25, 1 mg/kg, i.p.) or vehicle (veh, DMSO 2%, NaCl 0.9%, i.p.) was administered 40 min before the familiarization phase (day 16) of the task. Scopolamine (0.5 mg/kg, s.c.) was administered 20 min later, that is, 20 min before the familiarization phase. [(B), from left to right] Representative fluorescence microscopy images of hippocampal nuclei (DAPI, blue), GAFP (green), Cx30 (light blue), and Cx43 (purple) labeling (square boxes on DAPI-labeled sections correspond to the four series of images on the right). Scale bar: 100 μm. (C) Relative hippocampal expression of GFAP, Cx43, or Cx30 in sh- GFP-, sh-Cx43- and sh-Cx30-injected mice. Data are expressed as mean ± SEM, n = 7 to 10 mice per group. Two-way ANOVA followed by Tukey post hoc test, ∗∗∗P < 0.001, significantly different from the corresponding group injected with sh-GFP. (D,E) Preference index for the similar objects (D) and the displaced object (E). One-sample t-test: ∗P < 0.05;**P < 0.01; ∗∗∗P < 0.001; ****P < 0.0001 vs chance level. Data are expressed as mean ± SEM, n = 7 to 12 mice per group.


DAPI labeling and GFAP immunolabeling showed that the hippocampal density of all cell types, and especially astrocytes, did not differ between the groups of LV-injected mice (Figures 5B,C). Quantification of brain sections confirmed that Cx30 and Cx43 hippocampal expression was significantly decreased in sh-Cx30– and sh-Cx43–injected mice (P = 0.0007), respectively, compared to sh-GFP–injected group (Figure 5C).

During the familiarization phase of the NOL task, LV-injected mice examined the two identical objects for a similar exploration time (all groups, P > 0.05 vs chance level; Figure 5D). The duration of exploration of the displaced object was similarly enhanced in each LV-injected group given vehicle (P < 0.0001 for sh-GFP and sh-Cx30; P = 0.034 for sh-Cx43; Figure 5E). In contrast, all the LV-injected mice treated with scopolamine presented a preference index close to 50% showing clear-cut memory impairment. In all groups, a DPZ1 was able to prevent NOL memory deficits induced by scopolamine (P = 0.0027 for sh-GFP; P = 0.0066 for sh-Cx30 and P = 0.0001 for sh-Cx43 mice; Figure 5E). Interestingly, although DPZ0.25 was unable to prevent the memory deficit caused by scopolamine in sh-GFP injected mice (P = 0.28), this dose significantly reduced the scopolamine effect in both sh-Cx30 and sh-Cx43 groups (P = 0.0033 and P = 0.019, respectively; Figure 5E).



DISCUSSION

Astroglial Cxs play a central role in physiological functions and notably in neuronal modulations (Han et al., 2014; Dallerac and Rouach, 2016; Clasadonte et al., 2017). Previous studies proposed that astroglial networks may contribute to strengthen neuronal signaling in CNS disorders (Duchêne et al., 2016; Jeanson et al., 2016; Charvériat et al., 2017; Vodovar et al., 2018; Sauvet et al., 2019). Interestingly, expression of both Cx43 and Cx30 was found to be upregulated in AD mice models (Mei et al., 2010) and brains from AD patients (Nagy et al., 1996), supporting the idea that Cxs may also play a role in neuronal dysfunction in AD (Orellana et al., 2009; Giaume et al., 2017). It has also been reported that intense Cx blockade alleviated memory impairments in an AD mouse model (Takeuchi et al., 2012). Taken together, these data led us to investigate how Cx modulations influence the procognitive action of DPZ. In our studies, pharmacological modulation of Cxs was achieved using MEF, a widely used and potent Cx blocker (Cruikshank et al., 2004; Picoli et al., 2012; Jeanson et al., 2016) able to cross the blood–brain barrier (Baudry et al., 1997). In addition, LV-induced down-regulation of hippocampal Cx was also used to evaluate Cx-modulation of DPZ procognitive effects.

Effects of DPZ alone or combined with MEF on memory and learning performances were quantified using two mouse AD models. Scopolamine-treated animals were evaluated using Y-maze test and object recognition tests as commonly used to evaluate immediate or long-term spatial working memory and episodic memory (de Bruin et al., 2010; Hamlin et al., 2013). As second chronic model, we used mice that had been infused with amyloid-β25–35) (i) producing a significant neuronal loss (Maurice et al., 1996) and (ii) exhibiting a marked deficits in long-term learning and memory in NOR and MWM tasks (Fang and Liu, 2006; Tsunekawa et al., 2008). Our data showed that neither MEF nor DPZ at a low dose was able to reverse the memory deficits in those models but that the procognitive effect resulting from their combination fully compensated for these impairments, as efficiently as a high dose of DPZ.

We first investigated potential pharmacokinetic interactions between both drugs. Our data showed that concomitant MEF administration did not interfere with serum or brain accumulation of DPZ after a 2-week treatment. On the other hand, we found that MEF at low concentration (<4 μM) failed to affect DPZ-induced inhibition of AChE activity in brain extracts. Interestingly, under our conditions, MEF was devoid of any effect on AChE activity, and even at 10 times the concentration reached in the brain, in agreement with previous studies (Mcardle et al., 2005). Accordingly, the promoting effect of MEF on DPZ procognitive actions could not be ascribed to some additive inhibitory effects on AChE activity as brain concentration of MEF after 1 mg/kg treatment remains below micromolar range [Baudry et al. (1997) and in the present study]. Therefore, it can be proposed that the enhancing effect of MEF on DPZ-induced ACh overflow could not be underlain through pharmacokinetic mechanisms or direct effect on the AChE enzyme.

In addition to inhibiting AChE, DPZ also activates sigma-1 receptor (Maurice et al., 2006). However, at a concentration as high as 1 μM, MEF does not interfere with sigma-1 receptor (Eurofins CEREP test, data not shown), which makes very unlikely any potential implication of this receptor in the effects of THN201 vs DPZ.

On the other hand, MEF has been reported to have low affinity for various serotonin receptors notably 5-HT1A, 5-HT2C, and 5-HT3 receptors (Thompson et al., 2007; Janowsky et al., 2014) and noradrenaline transporters (Janowsky et al., 2014). However, MEF affinity for these monoaminergic targets was probably too low, with Ki values always greater than 1 μM, to allow any significant participation of them in mechanisms underlying MEF-induced potentiation of DPZ action. Indeed, under our in vivo treatment conditions, the brain concentration of MEF hardly reached 0.5 μM.

In sharp contrast with that noted about these aforementioned targets, MEF efficiently reduces Cx-mediated astroglial cellular coupling at the same concentration range as that reached under our treatment conditions (Jeanson et al., 2016). Furthermore, previous studies reported that global deletion of Cx43 (Frisch et al., 2003) and Cx30 (Dere et al., 2003) in astrocytes affected exploration, emotionality, and behavior; additionally, DPZ was previously shown not to significantly alter astrocyte Cx expression levels by itself (Biswas et al., 2018). This led us to examine the possible role of these gap junction proteins in the enhancement by MEF of the procognitive action of DPZ. To this goal, we selected a regional and incomplete inhibition of astroglial Cx expression in the hippocampus, a region concerned in the action of DPZ (Okamura et al., 2008). Accordingly, Cx30 or Cx43 expression was down-regulated specifically in hippocampal astrocytes using a pseudo-typed recombinant LV (Colin et al., 2009; Quesseveur et al., 2015). We thus showed that selective inhibition of astroglial Cx30 or Cx43 expression in the hippocampus did not induce any memory impairment and did not interfere with scopolamine-induced cognitive deficits in the object location task in mice. However, this selective inhibition was found to promote the capacity of DPZ at a low dose to counteract scopolamine-induced cognitive deficits in mice. These data closely resembled those found previously with the Cx inhibitor MEF, supporting the idea that astroglial Cx43 and Cx30 constitute new non-neuronal key proteins implicated in the pharmacological action of DPZ.



CONCLUSION

Our study is the first addressing the role of astroglial Cxs as new therapeutic targets to enhance DPZ pharmacodynamic actions. We demonstrated that the Cx inhibitor MEF at a low dose enhanced the procognitive action of DPZ in mouse models ofAD. In addition, we provided clear-cut evidence that astroglial Cx30 and Cx43 exerted a regulatory influence on the capacity of DPZ to counteract scopolamine-induced memory deficits. Our present data with THN201 open promising perspectives toward improved treatments of cognitive impairments in AD patients.
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Background: Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) accumulation in the brain, which triggers the activation of microglia; in turn, microglia release neuroinflammatory factors capable of damaging neurons. Thus, a therapeutic approach targeting this sustained microglia-induced inflammatory response deserves investigation. Here, we examined whether oxiracetam (ORC), a nootropic of the racetam family, can indirectly prevent Aβ-induced neurotoxicity by attenuating microglial activation.

Methods: Aβ42 oligomers were used to stimulate BV2 microglial cells, and the morphological changes and phagocytic capacity of BV2 cells were evaluated using fluorescence microscopy. We used quantitative reverse transcription polymerase chain reaction to assess the inhibitory effects of ORC on Aβ-induced mRNA levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α); enzyme-linked immunosorbent assay was used to examine the productions of these cytokines. We also assessed the mRNA level of inducible nitric oxide synthase and the production of nitric oxide (NO). The conditioned medium from BV2 cells was used to culture hippocampal HT22 cells to assess indirect toxicity using the MTT assay.

Results: ORC prevented the Aβ-induced activation of BV2 cells, as reflected by reduced morphological changes and phagocytic ability. In addition, ORC downregulated the expression of Aβ-induced cytokines (IL-1β, IL-6, and TNF-α) and the production of NO in BV2 cells. Furthermore, ORC protected HT22 cells from indirect damage evoked by Aβ-treated BV2 cell-conditioned medium, but not from direct Aβ-induced toxicity.

Conclusions: ORC suppressed the activation of BV2 cells, decreased the production of Aβ-induced inflammatory molecules and NO in BV2 cells, and protected HT22 cells against indirect toxicity mediated by Aβ-treated BV2 cell-conditioned medium. Thus, ORC may exert a protective role in AD through attenuating the damage caused by inflammation and oxidative stress.
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INTRODUCTION

Alzheimer's disease (AD) is a chronic, progressive neurological disorder associated with a decline of cognitive function (1). Histopathologically, the brain of the patients with AD has two hallmarks: the extracellular accumulation of amyloid-β (Aβ) to form senile plaques and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (2). Aβ peptides, particularly Aβ oligomers, play a primary role in the pathogenesis of AD (3). Aβ oligomers are considered the most toxic form of Aβ peptides; they can trigger neuroinflammation (4), cause neuronal death (5), and impair synaptic plasticity (6).

Multiple studies suggest that there is a sustained inflammatory response, oxidative stress, and activated microglial clustering around Aβ accumulations in the brain of patients with AD (7, 8). Evidence has emerged to suggest that this sustained inflammatory response is another core feature of AD and that microglia are important mediators of Aβ-induced neuroinflammation and oxidative stress. When stimulated with Aβ, microglia are activated and release pro-inflammatory and neurotoxic factors such as interleukin-1β (IL-1β), IL-6 tumor necrosis factor-α (TNF-α), and nitric oxide (NO). In turn, these factors promote neuronal degeneration, ultimately inducing reactive microgliosis (9–11). Other evidence supports the idea that activated microglia can directly damage neurons (e.g., microglia can mediate the loss of synapses by engulfing synaptic components via the complement system) (12); they can also exacerbate the phosphorylation, aggregation, and spread of misfolded tau (13, 14). Thus, preventing Aβ-induced microglial activation, neuroinflammation, and oxidative stress may be a promising therapeutic strategy to improve the symptoms of AD pathology.

Oxiracetam (ORC) is a nootropic of the racetam family; it has been examined for its potential use in the treatment of cognitive impairment (15), cerebrovascular diseases (16), and multi-infarct dementia (17), because it can readily pass through the blood–brain barrier (BBB) and act selectively on the cortex and hippocampus (18). Recent reports have suggested that ORC improves memory in a rat model of vascular dementia and promotes recovery of cognitive function in a rat model of cerebral hypoperfusion (19). Furthermore, ORC remarkably reverses cognitive decline in older human subjects (20). Another study has suggested that ORC reduces the release of inflammatory cytokines in a rat model of stroke (21). However, whether ORC improves cognitive decline by preventing Aβ-induced inflammation and oxidative stress in AD models remains unknown; moreover, the mechanisms underlying its effects should be explored in more detail.

Here, we aimed to investigate whether ORC can prevent Aβ-induced microglial activation, inflammation, oxidative stress, and protect against Aβ neurotoxicity.



MATERIALS AND METHODS


Materials

Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY, USA). ORC was supplied by Shijiazhuang Pharmaceutical Group Ouyi Pharma Co., Ltd. (Shijiazhuang, China). Enzyme-linked immunosorbent assay (ELISA) kits were supplied by Cusabio Biotech (Wuhan, China). The NO assay kit was obtained from Jiancheng Bioengineering Institute (Nanjing, China). Dimethyl sulfoxide (DMSO), MTT, and latex beads were supplied by Sigma-Aldrich (Saint Louis, Missouri, USA). Aβ42 oligomer powder was obtained from ChinaPeptides Co., Ltd. (Suzhou, China). The RNA extraction kit was obtained from Sangon Biotech (Shanghai, China). TB Green® Premix Ex Taq™ II and PrimeScript™ RT reagent kits were obtained from Takara (Beijing, China). ActinRed was purchased from KeyGEN BioTECH (Nanjing, China).



Preparation of Aβ42 Oligomer Solution

Briefly, 1 mg of Aβ42 oligomer powder was dissolved in DMSO to obtain 1 mM of stock solution, which was further diluted with DMEM to a final concentration of 5 μM. The soluble fraction was stored at −80°C.



Cell Culture and Treatments

Murine microglial cells (BV2) were supplied by the National Infrastructure of Cell Line Resource (Beijing, China). The hippocampal neuronal cell line HT22 was obtained from LMAI Bio (Shanghai, China). Cells were maintained in DMEM containing 10% FBS at 37°C and 5% CO2.

All experimental procedures involving BV2 cells were conducted after overnight seeding and subsequent serum starvation for 0.5 h. For the phagocytosis assay and for assessing changes in microglial morphology, cells were cultured in 24-well plates (2.5 × 104 cells/well). For analysis of pro-inflammatory cytokine and inducible nitric oxide synthase (iNOS) mRNA levels, cells were cultured in six-well plates (2 × 105 cells/well). Cells were pretreated with ORC for 2 h after serum starvation and then co-cultured with Aβ for 10 h. For the analysis of pro-inflammatory cytokine and NO production, cells were pretreated with ORC for 2 h after serum starvation and then co-cultured with Aβ for 22 h. For the experiments mentioned above, four groups were classified as follows: (1) control BV2 cells; (2) Aβ-stimulated BV2 cells; (3) Aβ-stimulated BV2 cells treated with ORC; and (4) control BV2 cells treated with ORC.

For examination of indirect toxicity, conditioned media were obtained from three groups: (1) control BV2 cells; (2) Aβ-stimulated BV2 cells; and (3) Aβ-stimulated BV2 cells treated with ORC. BV2 cells in six-well plates were pretreated with ORC for 2 h and then co-cultured with Aβ for 10 h. After intervention, the medium was replaced with fresh medium without Aβ or ORC; 12 h later, the supernatant was collected as the conditioned medium.

For the MTT assay, 3 × 103 HT22 cells were cultured in 96-well plates and then treated with conditioned medium for 24 h. For the direct toxicity experiments, HT22 cells were treated with different concentrations (5, 10, 20, and 100 μM) of ORC for 2 h after serum starvation for 2 h and finally co-cultured with Aβ for another 22 h.



MTT Assay

Cell viability was examined using the MTT assay. After relevant incubations, cells were exposed to MTT for 4 h, after which DMSO (150 μl per well) was added, and optical density at 570 nm was recorded. The data are represented as a percentage of the viability in the control groups.



Microglial Phagocytosis Assay and Morphological Characterization

The procedures for the microglial phagocytosis assay were referenced from the study by Lian et al. (22). Latex beads were pre-incubated in FBS for 1 h at 37°C at a ratio of 1:5 before dilution to a final concentration of 0.01% (v/v) and 0.05% (v/v) in DMEM. After BV2 cells were treated with Aβ with/without ORC, the BV2 cell culture medium was replaced by bead-containing DMEM, and cells were incubated at 37°C for 1 h. Thereafter, cells were washed and fixed in 4% paraformaldehyde for 15 min. The cytoskeleton was then probed using ActinRed (1:50) to obtain composite images that would allow the counting of phagocytic cells. The number of phagocytic cells/the total cell number was calculated to show the scale of activation of BV2 cells. Phagocytic efficiency, which was calculated based on a weighted average of engulfed beads per cell, was also determined to evaluate phagocytic ability as previously described (23): phagocytic efficiency (%) = (1 × X1 + 2 × X2 + 3 × X3 + 4 × X4 + 5 × X5 + 6 × X6)/(total number of cells) × 100%, where Xn represents the number of cells containing n beads. We chose distinct single BV2 cells to analyze the relevant morphological characteristics. The parameters quantified were as follows: morphology, area, perimeter, and Feret's diameter using Image J (Version 1.53a).



Quantitative Reverse Transcription Polymerase Chain Reaction

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate levels of IL-1β, IL-6, IL-10, TNF-α, and iNOS mRNA. Total BV2 cell RNA was extracted and then reverse-transcribed into cDNA using the PrimeScript™ RT Reagent Kit. Quantitative PCR was performed using TB Green® Premix Ex Taq™ II, as follows: pre-incubation at 95°C for 30 s followed by 40 cycles of denaturation at 95°C for 5 s and annealing at 60°C for 30 s. The oligonucleotide primer sequences are shown in Table 1.


Table 1. Primers used for quantitative reverse transcription polymerase chain reaction.
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ELISA Analysis

ELISA kits were used to evaluate the effects of ORC on the levels of IL-1β, IL-6, and TNF-α. In brief, after the corresponding treatments, the levels of pro-inflammatory factors in the cell supernatant were measured following the manufacturer's instructions.



Nitric Oxide Assay

The concentrations of NO in culture supernatants were examined by measuring nitrate and nitrite, the major products of NO, following the manufacturer's instructions of the NO assay kit. The optical density was assessed at 550 nm.



Statistical Analysis

For all group comparisons, one-way analysis of variance followed by Tukey's post-hoc test was performed. GraphPad Prism V8.0 (GraphPad Software Inc., California, USA) was used to analyze the data and images. All results are represented as the mean ± standard deviation. p < 0.05 was considered to be statistically significant.




RESULTS


Oxiracetam Is Not Toxic to BV2 or HT22 Cells, Even at the Maximum Concentrations Tested

The cytotoxicity of various concentrations of ORC on BV2 (0.1–100 μM) and HT22 (1–100 μM) cells was assessed using the MTT assay. Compared with controls, none of the concentrations of ORC exerted significant cytotoxic effects on BV2 and HT22 cells (p > 0.05 for all comparisons; Figures 1A,B). Therefore, the maximum concentration (100 μM of ORC) was used in further experiments.


[image: Figure 1]
FIGURE 1. Cytotoxicity of oxiracetam (ORC) to BV2 microglial cells (A) and HT22 hippocampal cells (B). The results are presented as the percentage of cell viability vs. controls, with control viability regarded as 100% (n = 6 for all groups). ns, not significant (p > 0.05).




Oxiracetam Inhibits Aβ-Induced Morphological Changes and Increase in Phagocytosis in BV2 Cells

On stimulation with Aβ, the morphology of BV2 cells changed from a short and compact state to an extended and elongated one (Figure 2A); however, ORC treatment reduced the ratio of elongated cells (Figure 2B). We further quantified three other parameters of BV2 morphology: cell area, perimeter, and Feret's diameter. As the results reveal, when BV2 cells were stimulated with Aβ, the cell area, perimeter, and Feret's diameter increased significantly. However, ORC treatment significantly reversed these morphological changes (Figures 2C–E). Given that activated microglia proliferate and concentrate around Aβ plaques and respond to neuroinflammation via phagocytosis, we further analyzed the morphological alterations of activated BV2 cells using the phagocytosis assay. To investigate the effect of ORC on the number of phagocytic cells and the weighted average of ingested beads per cell, which reflect the scale of BV2 cell activation and the phagocytic efficiency, respectively, a microglial phagocytosis assay was performed (Figure 3A). Fluorescence analysis shows that, compared with that of the control group, the percentage of phagocytic cells in the Aβ-treated BV2 cell group was increased by approximately 15% (26.90 ± 4.15% vs. 40.09 ± 1.34%, p < 0.001; Figure 3B). Moreover, ORC treatment significantly reduced the number of phagocytic cells by approximately 20% than did Aβ treatment alone (21.16 ± 6.88% vs. 40.09 ± 1.34%, p < 0.001; Figure 3B). We also analyzed the phagocytic efficiency of Aβ-treated BV2 cells with or without ORC treatment. Compared with Aβ treatment only, ORC treatment significantly reduced the phagocytic efficiency of BV2 cells by approximately 25% (50.89 ± 3.50% vs. 24.96 ± 9.30%, p < 0.001; Figure 3C). These results demonstrated that ORC can inhibit the activation and phagocytic ability of Aβ-treated BV2 cells.


[image: Figure 2]
FIGURE 2. Oxiracetam (ORC) inhibits morphological changes induced by Aβ. The morphological changes in BV2 cells were assessed using ActinRed, and the “short” and “long” morphological phenotypes within BV2 cell populations were observed. Scale bar: 50 μm (A). Stimulation with Aβ led to an increased ratio of cells with the “long” phenotype. ORC attenuated this change (B). ORC modulated Aβ-induced BV2 cell morphological alterations in terms of cell area (C), perimeter (D), and Feret's diameter (E). *p < 0.05, **p < 0.01, and ***p < 0.001.



[image: Figure 3]
FIGURE 3. Inhibitory effects of oxiracetam (ORC) on Aβ-induced phagocytosis by BV2 microglial cells. (A) Representative immunofluorescence images of latex beads phagocytosed by ActinRed-marked BV2 cells. Scale bar: 50 μm. (B) Quantitative analysis of the percentage of phagocytic BV2 cells treated with Aβ and/or ORC. (C) Quantitative analysis of the phagocytic efficiency of BV2 cells based on a weighted average of ingested beads per cell. Data represent the mean ± standard deviation (n = 6 for all groups). ***p < 0.001.




Oxiracetam Downregulates the Expression of Inflammatory Cytokines

It has been proved that Aβ oligomers stimulate the secretion of inflammatory molecules from microglial cells. Thus, to further investigate whether ORC has any inhibitory effects on the Aβ-induced increase in pro-inflammatory cytokine levels, we assessed the mRNA levels of IL-1β, IL-6, and TNF-α using qRT-PCR. The results showed that expression of IL-1β, IL-6, and TNF-α was significantly upregulated following treatment with Aβ compared with control. However, treatment with ORC downregulated the mRNA level of IL-1β (fold over control, Aβ = 1.25 ± 0.18; Aβ + ORC = 1.02 ± 0.08, p < 0.05; Figure 4A), IL-6 (fold over control, Aβ = 1.50 ± 0.20; Aβ + ORC = 1.14 ± 0.26, p < 0.05; Figure 4B), and TNF-α (fold over control, Aβ = 2.19 ± 0.10; Aβ + ORC = 1.68 ± 0.16, p < 0.001; Figure 4C). We also analyzed the mRNA level of IL-10, considered as a major anti-inflammatory cytokine, under Aβ stimulation, in the presence or absence of ORC. The results showed that Aβ did not significantly affect the mRNA level of IL-10 and that ORC did not affect the levels of this anti-inflammatory cytokine (fold over control, Aβ = 1.18 ± 0.2, p > 0.70 vs. control; Aβ + ORC = 0.98 ± 0.24, p > 0.60 vs. Aβ; Supplementary Figure 1).


[image: Figure 4]
FIGURE 4. Inhibitory effects of oxiracetam (ORC) on pro-inflammatory cytokine mRNA and protein levels. BV2 microglial cells were treated with Aβ in the presence or absence of ORC. The mRNA levels of IL-1β (A), IL-6 (B), and TNF-α (C) were determined using qRT-PCR (n = 6 for all groups). The levels of IL-1β (D), IL-6 (E), and TNF-α (F) proteins were examined using ELISA (n = 7 for IL-1β and TNF-α, n = 9 for IL-6). All values are presented as the mean ± standard deviation. *p < 0.05, **p < 0.01, and ***p < 0.001.


In addition, we used ELISA to examine the expression of these proteins in the supernatant of BV2 cells stimulated with Aβ. Consistent with the results of the mRNA level analyses, the production of IL-1β (1,256.80 ± 248.48 vs. 395.28 ± 35.95 pg/ml, p < 0.001), IL-6 (87.11 ± 12.84 vs. 24.62 ± 0.50 pg/ml, p < 0.001), and TNF-α (933.80 ± 125.90 vs. 240.80 ± 14.01 pg/ml, p < 0.001) was increased upon Aβ induction than in the control group (Figures 4D–F). Pretreatment with ORC attenuated the production of IL-1β (p < 0.05), IL-6 (p < 0.001), and TNF-α (p < 0.001) by ~ 20, 23, and 25%, respectively, than did Aβ treatment only. These results show that ORC suppresses Aβ-triggered secretion of pro-inflammatory cytokines.



Oxiracetam Inhibits Aβ-Induced Overproduction of Nitric Oxide

Previous studies have demonstrated that Aβ can increase the levels of iNOS, which promotes the production of NO, in microglial cells. Oxidative stress is another damaging pathway that can lead to neuronal apoptosis via the overproduction of NO. Therefore, we next examined whether ORC has any effect on the levels of iNOS and NO. The results showed that level of iNOS mRNA was significantly upregulated upon stimulation with Aβ compared with that with control. However, treatment with ORC downregulated the iNOS mRNA level (fold over control, Aβ = 1.48 ± 0.06; Aβ + ORC = 1.01 ± 0.05, p < 0.05; Figure 5A). Furthermore, we showed that Aβ-stimulated BV2 cells significantly overproduced NO. However, ORC treatment reduced NO production significantly vs. Aβ alone (30.14 ± 7.2 vs. 53.09 ± 6.3 μM/L, p < 0.001; Figure 5B). Thus, ORC can inhibit Aβ-induced overproduction of NO in BV2 cells.


[image: Figure 5]
FIGURE 5. Inhibitory effects of oxiracetam (ORC) on the oxidative stress induced by Aβ in BV2 cells. BV2 microglial cells were treated with Aβ in the presence or absence of ORC. (A) The inducible nitric oxide synthase (iNOS) mRNA level was determined using qRT-PCR (n = 3 for all groups). (B) The level of nitric oxide (NO) in supernatants was examined using the NO assay (n = 5 for all groups). *p < 0.05 and ***p < 0.001.




Oxiracetam Protects HT22 Cells Against Aβ-Induced Neurotoxicity Indirectly

To determine whether the decreased production of pro-inflammatory cytokines and NO in Aβ-induced BV2 cells in the presence of ORC exerted a neuroprotective role, we next tested whether ORC could prevent the indirect toxicity of Aβ-stimulated BV2 cells on HT22 cells (Figure 6A). The viability of HT22 cells in the conditioned medium from Aβ-stimulated BV2 cells significantly decreased by almost 16% (vs. control, p < 0.01; Figure 6B). However, the viability of HT22 cells in conditioned medium from Aβ-induced BV2 cells co-cultured with ORC was increased (Aβ conditioned medium, 84.49 ± 5.44%; Aβ + ORC conditioned medium, 96.02 ± 9.86%, p < 0.05; Figure 6B). Thus, ORC protected HT22 cells against indirect Aβ-triggered toxicity. Next, we investigated whether ORC protected HT22 cells against direct Aβ toxicity. The results of the MTT assay revealed that treatment of HT22 cells with Aβ significantly reduced their viability (p < 0.001; Figure 6C). However, we did not find any direct protective effects ORC on Aβ-treated HT22 cell viability (p > 0.05; Figure 6C).


[image: Figure 6]
FIGURE 6. Neuroprotective effects of oxiracetam (ORC) against indirect toxicity of microglia-conditioned medium but not direct toxicity of Aβ. (A) Schematic of the experimental procedure to test the indirect toxicity of Aβ-induced BV2 cells in the presence or absence of ORC. (B) The results of the MTT assay revealed that ORC rescued the reduction of HT22 cell viability induced by conditioned medium from Aβ-induced BV2 cells. (C) The Aβ-induced decrease in HT22 cell viability was not affected by ORC (n = 8 for all groups). There was no significant difference between Aβ and Aβ + ORC groups. ns, not significant; *p < 0.05, **p < 0.01, and ***p < 0.001.





DISCUSSION

Accumulating clinical evidence indicates that ORC is beneficial for patients with cognitive impairment resulting from primary degenerative or multi-infarct dementia (20, 24). However, a previous study has shown that ORC does not significantly reduce cognitive impairment due to AD (25). Therefore, it is important to confirm whether ORC could play a protective role in AD. In our present study, we found that ORC inhibited Aβ-induced activation of microglia and attenuated the release of pro-inflammatory markers and NO. In addition, ORC protected hippocampal (HT22) against indirect toxicity from BV2 microglial cells. These findings are in line with the previously reported anti-inflammatory effects of ORC.

As the most important factor correlated with AD, activated microglia have been suggested to be related to amyloid plaque types and to contribute to neuroinflammation (26). Alterations in the phagocytic activity of microglia reflect the dynamic changes in microglial activation. During early AD pathogenesis, extracellular Aβ oligomers trigger a series of cascade reactions that lead to neuronal apoptosis and loss of neurons. Some studies have demonstrated that microglia can protect the brain by phagocytic clearance of damaged cells, debris, and Aβ aggregates, in part because this phagocytosis reduces inflammation (27). However, the deleterious role of phagocytosis in AD has also been reported. Recent studies investigated whether neuronal death mediated by Aβ-activated microglia resulted from the phagocytosis of viable neurons (28, 29). Activated microglia release TNF-α or other oxidants that cause the exposure of “eat-me” signals on the surface of live neurons, which evoked their phagocytosis by microglia (28, 30). In a mouse model of early phase AD, soluble Aβ oligomers induced the engulfment of synapses to contribute to cognitive decline in a CR3 pathway-dependent manner (12). Furthermore, microglia actively contribute to the amplification of tau aggregates via phagocytosis during AD pathogenesis (14). In the present study, we observed Aβ-induced BV2 phagocytosis of latex beads, which conceivably mimics the early microglial phagocytosis process; this process was significantly suppressed by ORC. To the best of our knowledge, no studies have explored the effects of ORC on the activation and phagocytosis of microglia in models of AD. Our results illustrate that ORC modulates Aβ-enhanced microglial phagocytosis. This modulation might be beneficial to the survival of neurons and synapses in AD.

As a response to Aβ stimulation, cultured microglial cells increase the expression of various cytokines, including IL-1β, IL-6, and TNF-α, as well as nitrogen species, some of which promote the sustained production of Aβ and subsequent continuous microglial activation in a vicious cycle that can cause deteriorative neuronal damage (31, 32). IL-1β, considered as a key modulator of the inflammatory response that can promote the release of other cytokines, including IL-6 (33), has been shown to exacerbate the typical pathologies of Aβ and tau accumulation (34, 35). In clinical practice, IL-6 has also been shown to be increased in the cerebrospinal fluid (36). A cohort study reported that individuals with elevated IL-6 level are at a greater risk of cognitive impairment (37). Anti-TNF-α drugs can reduce Aβ deposition and inflammation and rescue the behavioral performance in mouse models of AD, which suggests that TNF-α has an adverse effect on the progress of AD (38). Moreover, in response to Aβ, the overproduction of NO by activated microglia has also been verified in the progression of AD. NO can trigger inflammation and induce neuronal death via oxidative stress (39); therefore, reducing the levels of pro-inflammatory cytokines and NO released by activated microglia would be a promising strategy for the treatment of AD. In our study, ORC inhibited the elevation of IL-1β, IL-6, TNF-α, and NO levels in Aβ-stimulated BV2 cells; however, the levels were not restored to the baseline levels of control cultures. These results suggest that ORC may interfere with only a few inflammatory signaling pathways to block Aβ-induced increase in microglia-expressed cytokine levels. Other molecular mechanisms underlying the effects of ORC in AD models should be explored. For example, studies indicate that Aβ-induced prolonged activation of the toll-like receptor (TLR) pathway may be responsible for not only the aberrant phagocytosis process of microglia (28, 29, 40) but also the threatening oxidative stress and inflammatory responses (41). In addition, several studies have demonstrated the activation of PI3Kδ inhibited pro-inflammatory cytokine secretion through inhibition of TLR-mediated inflammation (42–45). A study has also demonstrated that S-ORC can reduce neuronal apoptosis by activating the PI3K signaling pathway (46). Collectively, we hypothesized that ORC may suppress Aβ-induced phagocytosis, microglial activation, and inflammation via modulating the TLR and/or PI3K signal pathway. We will verify this hypothesis in a further study.

Memantine and four cholinesterase inhibitors are the only approved symptomatic treatment drugs available for the treatment of AD. In particular, drugs meant to target Aβ pathology have faced setbacks again and again. This should serve as a reminder that the indirect toxicity caused by the Aβ cascade, involving phenomena such as inflammation and oxidative stress, deserved more attention. In the present study, ORC demonstrated the protective capacity to suppress the secondary damage derived from Aβ-induced activation of microglia, which indicates that ORC may also have a positive effect on indirect toxicity in complex in vivo systems. In addition, many previous studies have also reported that ORC improves abnormal mitochondrial oxidative phosphorylation and subsequent ATP metabolism (19, 47). ORC has also been shown to alleviate middle cerebral artery occlusion/reperfusion-induced BBB dysfunction, another pathology observed in patients with AD. So ORC may exert neuro-protection via multi-target strategies, such as improving energy metabolism, protecting the integrity of the BBB, and reducing inflammatory response, in AD. The mechanisms by which ORC confers neuroprotection should be further explored in vivo models of AD.
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PT320, Sustained-Release Exendin-4, Mitigates L-DOPA-Induced Dyskinesia in a Rat 6-Hydroxydopamine Model of Parkinson’s Disease
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Background: We previously demonstrated that subcutaneous administration of PT320, a sustained-release (SR) form of exendin-4, resulted in the long-term maintenance of steady-state exenatide (exendin-4) plasma and target levels in 6-hydroxydopamine (6-OHDA)-pretreated animals. Additionally, pre- or post-treatment with PT320 mitigated the early stage of 6-OHDA-induced dopaminergic neurodegeneration. The purpose of this study was to evaluate the effect of PT320 on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the rat 6-OHDA model of Parkinson’s disease.

Methods: Adult male Sprague–Dawley rats were unilaterally lesioned in the right medial forebrain bundle by 6-OHDA. L-DOPA and benserazide were given daily for 22 days, starting from 4 weeks after lesioning. PT320 was co-administered weekly for 3 weeks. AIM was evaluated on days 1, 16, and 22 after initiating L-DOPA/benserazide + PT320 treatment. Brain tissues were subsequently collected for HPLC measurements of dopamine (DA) and metabolite concentrations.

Results: L-DOPA/benserazide increased AIMs of limbs and axial as well as the sum of all dyskinesia scores (ALO) over 3 weeks. PT320 significantly reduced the AIM scores of limbs, orolingual, and ALO. Although PT320 did not alter DA levels in the lesioned striatum, PT320 significantly attenuated 6-OHDA-enhanced DA turnover.

Conclusion: PT320 attenuates L-DOPA/benserazide-induced dyskinesia in a 6-OHDA rat model of PD and warrants clinical evaluation to mitigate Parkinson’s disease in humans.

Keywords: Parkinson’s disease, levodopa, L-DOPA-induced dyskinesia, glucagon-like peptide-1, exendin-4, PT320, PT302, exenatide


INTRODUCTION

Levodopa, also known as L-3,4-dihydroxyphenylalanine (L-DOPA), is the precursor of dopamine (DA) and is currently the most commonly used medication for Parkinson’s disease (PD). The use of L-DOPA elevates dopamine (DA) synthesis in the lesioned substantia nigra and restores motor functions in PD patients. However, chronic administration of L-DOPA is often associated with abnormal involuntary movements (AIMs), also called levodopa-induced dyskinesia (LID) in PD patients. Early clinical studies have shown that 20–50% of PD patients developed dyskinesia within 5 years after the initiation of L-DOPA treatment (Rascol et al., 2000; Manson et al., 2012; Bjornestad et al., 2016). The severity of dyskinesia positively correlates with disease duration, Hoehn–Yahr stage, and duration of L-DOPA treatment (Nicoletti et al., 2016). Other studies also suggest that the disease severity and dose of L-DOPA are more important than the duration of L-DOPA treatment for the development of LID (Nutt et al., 2010; Espay et al., 2018).

LID has also been established in experimental animals. Chronic administration of L-DOPA to unilaterally 6-OHDA-lesioned rats has been widely used to examine AIMs (Lundblad et al., 2002). Similar to the PD patients, LID in the lesioned rats significantly correlates with the dose of L-DOPA and the magnitude of DA depletion (Putterman et al., 2007).

DA is a key neurotransmitter modulating normal movement. DA, released from the A9 neurons of the substantia nigra pars compacta (SNc) DA-ergic neurons, interacts with GABA-ergic medium spiny neurons (MSNs) within the dorsal striatum mainly comprised of caudate and putamen. There are two classical striatopallidal pathways (Figure 1). DA differentially inhibits the indirect GPe (external segment of globus pallidus) pathway through D2 receptors (D2R)-expressing MSNs, while it activates the direct GPi (internal segment of globus in primates or entopeduncular nucleus in rodents) pathway through D1R-expressing MSNs (Durieux et al., 2011; Gerfen and Surmeier, 2011). These interactions result in activation of GPe and suppression of neuronal activity in subthalamic nucleus (STN) and GPi, which further regulates thalamic neuronal activity and facilitates movement (Nambu et al., 2002). In pathological conditions, such as PD, reduction of dopaminergic innervation to caudate and putamen leads to overactivity of GABA-ergic inputs to GPe, which then suppresses the inhibitory outputs from the GPe to STN (Petri et al., 2013), activates STN and GPi neurons, and reduces neuronal firing in the thalamus. DA denervation also activates the GPi neurons through the direct striatopallidal pathway. Lesioning the STN or GPi induces marked functional improvement in 6-OHDA-lesioned rats (Touchon et al., 2004), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -treated monkeys (Bergman et al., 1990), and PD patients (Baron et al., 2000). On the other hand, L-DOPA or DA agonists can overstimulate DA receptors in the direct and indirect pathways in the lesioned brain, reduce neuronal firing in the STN and GPi while activating the thalamus, and result in increasing involuntary movements in MPTP-treated monkeys (Papa et al., 1999) and PD patients (Merello et al., 1999). Besides the interaction with the striatopallidal pathway, several other mechanisms have been suggested for LID (Jenner, 2008).


[image: image]

FIGURE 1. Two classical striatopallidal pathways of external segment of globus pallidus (GPe) and internal segment of globus (GPi) regulate neuronal activity in STN and thalamus as well as movement. MSN, medium spiny neurons; STN, subthalamic nucleus.


Since AIM is mainly induced after chronic administration of L-DOPA or DA-ergic agonists, agents that are non-DA-ergic molecules that possess less L-DOPA side effects are being increasingly studied for PD treatment (Fox et al., 2008). We and others previously demonstrated that the endogenous incretin glucagon-like peptide-1 (GLP-1) as well as exendin-4 (also known as exenatide), a long-acting GLP-1 receptor (GLP-1R) agonist approved for the treatment of type 2 diabetes mellitus (T2DM) (Drucker, 2018; Gentilella et al., 2019), protect tyrosine hydroxylase immunoreactivity (TH-IR) in primary ventromesenchephalic neurons from 6-OHDA lesioning. Infusion of exendin-4 into the lateral ventricle also mitigated the loss of TH-IR, preserved DA levels in the SNc, and improved the behavioral function of mice receiving MPTP (Li et al., 2009). Such GLP-1R-mediated protection has been broadly found across animal models of PD (Kim et al., 2017; Athauda and Foltynie, 2018; Holscher, 2020) as well as in other neurodegenerative disorders (Glotfelty et al., 2019). Importantly, clinical studies have demonstrated that PD patients taking exendin-4 for 1 year had better motor skills than those on placebo (Athauda et al., 2017, 2019). Besides its neuroprotective effects, exendin-4 has been reported to reduce LID in rats, with repeated administration of exendin-4 starting from the seventh day after 6-OHDA-lesioning resulting in lowering L-DOPA (10 mg/kg/day)-mediated AIM scores in 6-OHDA-lesioned rats (Abuirmeileh et al., 2012). These data suggest that activation of the GLP-1R can reduce the progression of DA degeneration and LID.

Major limitations of GLP-1R agonists, such as GLP-1, for clinical use are their relatively short half-life and, as peptide-based drugs, limited brain uptake (Glotfelty et al., 2020). A key amino acid change at the N-terminal of GLP-1 prevents breakdown by dipeptidyl peptidase-4 (DPP4) to extend its half-life from 1.5 min to 2.4 h for exendin-4 (Drucker, 2018). This results in the twice-daily clinical formulation Byetta that is considered the short-acting drug version. In contrast, the application of sustained-release (SR) technology to exendin-4 provides the capability to continuously release the same peptide present in Byetta over weeks to months after a single acute subcutaneous (s.c.) administration, resulting in the longer-term formulations PT320 (1 or 2 weeks) and Bydureon (1-week administration). Such technology provides the opportunity to optimize the beneficial potential of drug treatment for a chronic disorder by maintaining steady-state plasma levels as a source to maintain the brain target concentration (Li et al., 2019).

We recently reported that systemic administration of PT320 (also called PT302), SR exendin-4, given once every 2 weeks to unilaterally 6-OHDA-lesioned rats, provides sustained plasma exendin-4 levels (Chen et al., 2018). Pre- and post-treatment with PT320 significantly reduced methamphetamine-induced rotation and increased TH-IR in the lesioned SNc and striatum in these unilaterally 6-OHDA-lesioned rats. Furthermore, there was a significant correlation between exendin-4 plasma levels and TH-IR in the 6-OHDA-lesioned side SNc and striatum. These data suggest that PT320 provides long-lasting exendin-4 release and reduces dopaminergic neurodegeneration in this experimental model of PD. The use of PT320 in LID, however, has not been examined previously.

The purpose of this study was to evaluate the effect of PT320 on the L-DOPA/benserazide-mediated dyskinesia in a rat 6-OHDA model of Parkinsonism. Three doses of PT320 were administered over 3 weeks together with daily L-DOPA/benserazide (a peripherally acting aromatic L-amino acid decarboxylase inhibitor). We found that PT320 normalized DA turnover in the striatum and reduced LID behavior in these lesioned animals. Our data support the future clinical use of PT320 as a co-treatment with L-DOPA for PD.



MATERIALS AND METHODS


Animals

Adult male Sprague–Dawley rats were used for this study. Experimental procedures followed the guidelines of the “Principles of Laboratory Care” (National Institutes of Health publication No. 86-23, 1996) and were approved by the Animal Care and Use Committee. Rats were fed with a regular chow diet and kept on a 12 h light/dark cycle at 25 ± 2°C. Animals were randomly assigned into four groups: Group 1 (sham operated); Group 2 (6-OHDA lesioned, no L-DOPA); Group 3 (lesioned + L-DOPA/benserazide + vehicle); and Group 4 (lesioned + L-DOPA/benserazide + PT320).



PT320

PT320 (previously termed PT302) is an SR formulation of exendin-4 (exenatide). Powdered PT320 used in our study (Lot PT3025014) was of clinical-grade material, similar to that used in prior human studies (Gu et al., 2014), and contained a mixture of polymers (98%) and exendin-4 (2%). Specifically, exendin-4 was incorporated into poly(lactic-co-glycolic acid) (PLGA) microspheres of 20 μm diameter utilizing a proprietary ultrasonic spray drying process (SmartDepotTM, Peptron Inc, 2020) together with the use of an L-lysine coating to regulate the initial release burst of peptide (Li et al., 2019). The composition of the diluent used to prepare the PT320 suspension was 0.5% carboxymethylcellulose sodium, 5.0% D-mannitol, and 0.1% Tween 80 (pH 6.66) in sterile, double-distilled water as also used when PT320 was administered to humans. PT320 was freshly prepared in diluent within an hour of administration, maintained on wet ice (4°C), and thoroughly mixed (by vortex) immediately before each injection.



6-OHDA Lesioning and Drug Treatment

Thirty minutes prior to surgery, rats were given desipramine intraperitoneally (25 mg/kg; i.p.) to block noradrenergic uptake of 6-OHDA. Animals were anesthetized with 3% isoflurane. 6-OHDA (3 μg/μl × 2.5 μl dissolved in 0.1% ascorbic acid) was stereotactically injected into the right medial forebrain bundle (coordinates: −3.6 mm rostral and 1.6 mm lateral to bregma, 7.5 mm below the skull) at 0.25 μl/min over a 10 min period. Animals were allowed to recover for 3 weeks following the 6-OHDA lesion and then received drug treatment. Specifically, L-DOPA, dissolved in saline together with benserazide (15 mg/kg), was administered i.p. at a dose of 6 mg/kg/day for 22 days. PT320 (100 mg/kg, containing 2 mg/kg exendin-4 clinical-grade material) was administered subcutaneously once a week (three times in total) at 1 h before L-DOPA/benserazide administration. The timeline of the experiment is shown in Figure 2.
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FIGURE 2. Timeline of drug treatment. Animals were screened by a stepping test at 3 weeks (W3) after unilateral 6-hydroxydopamine (6-OHDA) lesioning in the right medial forebrain bundle (Rt MFB). L-3,4-dihydroxyphenylalanine/benserazide was administered daily (i.p., L-DOPA: 6 mg/kg/day + benserazide 15 mg/kg/day) for 22 days. PT320 (100 mg/kg containing 2 mg/kg exendin-4) was administered subcutaneously once a week (W4, W5, and W6). Behavioral (Beh) evaluations of AIMs were examined on day 1 (D1), D16, and D22 after initiating L-DOPA/benserazide treatment (D0).




Behavioral Tests

(1) A “Stepping test” was used to screen the success of lesioning at 3 weeks following the surgery. This was used rather than using methamphetamine-induced rotation to avoid baseline shifts due to sensitization. Briefly, the experimenter took the rat with one hand holding both hindlimbs and the other hand holding one of the forelimbs. The free paw was placed in contact with a flat surface. The experimenter then moved the animal slowly sideways in forward and backward directions. The number of adjusting steps taken by the rat was counted for both paws in the backward and forward direction. All animals displaying limb hypokinesia contralateral to the lesion were selected for subsequent study.

(2) L-dopa/benserazide-induced dyskinesia (LID) was examined by the abnormal involuntary movements (AIMs) test. Animals were placed in clear Perspex boxes (22 cm × 34 cm × 20 cm). Each rat was observed for 1 min at 30 min intervals following L-DOPA/benserazide administration over a 3 h period. Three subtypes of AIMs were assessed: (i) limb – random uncontrollable movements of forelimb contralateral to the lesion; (ii) orolingual – excess chewing and jaw movements with protrusion of the tongue; and (iii) axial – dystonic postures or choreiform twisting of the neck and upper body toward the contralateral side. The ALO score is the sum of all AIMs (axial, limb, and orolingual) scores. The severity of each AIM was scored non-parametrically between 1 and 4, based upon the following criteria:

1 = present for less than 30 s

2 = present for more than 30 s

3 = present throughout a minute but suppressed by external stimuli

4 = present throughout a minute but not suppressible by external stimuli



HPLC Analysis and Electrochemical Detection

After final behavioral testing, animals were euthanized; their brains were quickly removed, placed in an ice-cold glass dish, and rapidly dissected on ice. Both lesioned and non-lesioned side striata were dissected, placed in an Eppendorf tube, frozen on dry ice, and stored at < −70°C before HPLC analysis. On the day of biochemical analysis, tissues were homogenized in 200 μl of 0.1 N perchloric acid (HClO4), sonicated, and centrifuged at 13,000 rpm for 30 min at 4°C. Aliquots (50 μl) of the supernatants were diluted in HCLO4 (1:4 v/v) before the injection into the HPLC system. The tissue concentrations of DA and metabolites were measured by HPLC coupled to the coulometric detection system. The mobile phase of the HPLC system was composed of methanol (7%), NaH2PO4 (70 mM), triethylamine (100 μl/L), EDTA (0.1 mM), and sodium octyl sulfate (100 mg/L) diluted in deionized water (pH 4.2, adjusted with orthophosphoric acid). It was filtered (0.22 μm) before its introduction in the system. The mobile phase was delivered through the HPLC column (Hypersyl, C18, 15 cm × 4.6 mm, particle size 5 μm) at a flow rate of 1.2 ml/min using an HPLC pump. The column was protected by a Brownlee–Newgard precolumn (RP-8, 15 × 3.2 mm, 7 μm.). The injection of the samples (10 μl) was carried out by a manual injection valve (Rheodyne, model 7725i) equipped with a loop of 20 μl. The compounds exited the column at different retention times and passed into the coulometric detection cell (Cell 5014, ESA) equipped with two electrodes. The potential of these two electrodes was fixed via the coulometric detector at + 350 mV (oxidation) and −270 m (reduction), respectively. The calibration curves were performed once the peaks in a standard solution (1 ng/10 μl) were well separated in the chromatogram. Calibration curves were performed using three concentrations of DA, DOPAC, and HVA injected three times each with an acceptable r = 0.99. Standard solutions were used before each series of 10/12 samples to verify the correspondence of the chromatographic conditions to both the elution time and quantities calculated from the calibration curves. The overall sensitivity for the compounds ranged from 2 pg/10 μl for DA to 18 pg/10 μl for HVA with a signal/noise ratio of 3:1.



Statistical Analysis

Data are presented as mean ± s.e.m. Linear regression, one or two-way ANOVA, and post hoc Newman–Keuls tests were used for statistical comparisons, with a significance level of p < 0.05.



RESULTS


PT320 Reduces L-DOPA/Benserazide-Induced Abnormal Involuntary Movements

A total of 24 rats received unilateral 6-OHDA lesioning. Of these, 12 rats received daily L-DOPA/benserazide only, and the other 12 rats received daily L-DOPA/benserazide + weekly PT320 for 3 weeks. LID was examined on days 1, 16, and 22 after the initiation of L-DOPA/benserazide treatment (Figure 3). A significant correlation was found between the duration of L-DOPA/benserazide treatment and overall AIM scores(Figure 3A1: ALO, p = 0.018, R = 0.398). The AIMs on limb (p = 0.018, R = 0.398) (Figure 3B1) and axial (p = 0.026, R = 0.370) (Figure 3C) were also significantly correlated with days of L-DOPA/benserazide treatment. In contrast, in the animals receiving PT320, the AIM score was not significantly correlated with the duration of L-DOPA/benserazide treatment (Figure 3A1, ALO, p = 0.081; B1: limb, p = 0.068; C: axial, p = 0.051). These data suggest that L-DOPA/benserazide treatment time-dependently increased dyskinesia, which was attenuated by PT320.
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FIGURE 3. PT320 reduces L-DOPA/benserazide-induced abnormal involuntary movements (AIMs) in unilaterally 6-OHDA-lesioned rats. (A) The dyskinesia (A1: ALO; B1: limbs; and C: axial) significantly correlates with the duration of L-DOPA/benserazide treatment. PT320 administration significantly reduced (A2) ALO, (B2) limb, and (D) orolingual AIM scores.


Next, the interaction of PT320 and AIMs was analyzed by a two-way ANOVA with a Newman–Keuls post hoc test. The ALO was significantly reduced by PT320 [p = 0.031, F(1, 66) = 4.858] (Figure 3A2). PT320 also significantly reduced limb [p = 0.036, F(1, 64) = 4.582] (Figure 3B2) and orolingual AIM scores [p = 0.008, F(1, 66) = 7.418] (Figure 3D).



PT320 Normalized DA Turnover in the Lesioned Striatum

Lesioned and non-lesioned side striata were collected from 46 rats for HPLC analysis (sham, n = 10; lesioned, n = 12; lesioned + L-DOPA/benserazide, n = 12; and lesioned + L-DOPA/benserazide + PT320, n = 12). An averaged 84.6 ± 5.7% reduction of DA was found in the lesioned striatum (n = 36). DA levels were significantly reduced in the lesioned side striatum, compared to the non-lesioned side striatum of rats receiving L-DOPA/benserazide (p < 0.001) (Figure 4A), L-DOPA/benserazide + PT320 treatment (p < 0.001), or without L-DOPA/benserazide treatment (p < 0.001). In contrast, no difference was found in the control animals receiving sham surgery (p = 0.930). DA levels on the lesioned (right) side striatum of all 6-OHDA-lesioned animals were further analyzed by a two-way ANOVA. L-DOPA/benserazide or L-DOPA/benserazide + PT320 treatment did not alter DA levels in the lesioned striatum (L-DOPA/benserazide + 6-OHDA vs. 6-OHDA: p = 0.844; L-DOPA/benserazide + PT320 + 6-OHDA vs. 6-OHDA, p = 0.491; L-DOPA/benserazide + PT320 + 6-OHDA vs. L-DOPA/benserazide + 6-OHDA, p = 0.649) (Figure 4A). DOPAC and HVA levels were also significantly reduced on the lesioned side striatum after 6-OHDA lesioning (p < 0.001). PT320 or L-DOPA/benserazide treatment did not significantly alter DOPAC or HVA levels in the lesioned side striatum (p > 0.399).
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FIGURE 4. Dopamine (DA) and DA turnover in the striatum. (A) 6-OHDA lesioning significantly reduced DA levels (*p < 0.001) in the lesioned striatum (red bars). L-DOPA/benserazide or L-DOPA/benserazide + PT320 treatment did not alter DA after lesioning (p = 0.844, 6-OHDA vs. L-DOPA/benserazide + 6-OHDA; p = 0.491, 6-OHDA vs. L-DOPA/benserazide + PT320 + 6-OHDA). (B) DA turnover was examined by comparing DA metabolite levels (DOPAC + HVA) with DA. DA turnover was enhanced by the 6-OHDA lesion (*p < 0.001, sham vs. 6-OHDA). PT320 significantly reduced DA turnover in the lesioned striatum (*p = 0.028, 6-OHDA + L-DOPA/benserazide vs. 6-OHDA + L-DOPA/benserazide + PT320). 6-OHDA lesioning significantly increased (C) DOPAC/DA (#p = 0.019, lesioned vs. non-lesioned striatum) and (D) HVA/DA ratio (#p < 0.001, lesioned vs. non-lesioned striatum; *p < 0.001, sham vs. 6-OHDA). HVA/DA ratio was significantly reduced by PT320 in the lesioned animals receiving L-DOPA (*p = 0.006, 6-OHDA + L-DOPA/benserazide vs. 6-OHDA + L-DOPA/benserazide + PT320). #Significant difference between the lesioned and non-lesioned side striatum; *significant difference among groups. Two-way ANOVA + post hoc Newman–Keuls test.


DA turnover was examined by comparing 3,4-dihydroxyphenylacetic acid (DOPAC) + homovanillic acid (HVA) with DA (Figure 4B). 6-OHDA lesioning significantly increased DA turnover in the striatum (sham vs. 6-OHDA, p < 0.001). A similar response was found in animals receiving L-DOPA/benserazide (sham vs. 6-OHDA + L-DOPA/benserazide, p = 0.004). Importantly, PT320 significantly reduced DA turnover in the lesioned striatum (p = 0.028, 6-OHDA + L-DOPA/benserazide vs. 6-OHDA + L-DOPA/benserazide + PT320) (Figure 4B). 6-OHDA lesioning significantly increased DOPAC/DA (p = 0.019, lesioned vs. non-lesioned striatum) (Figure 4C) as well as the HVA/DA ratio (p < 0.001, lesioned vs. non-lesioned striatum; p < 0.001, sham vs. 6-OHDA) (Figure 4D). Similar to the DA turnover noted above, the HVA/DA ratio was significantly reduced by PT320 in the lesioned striatum (∗p = 0.006, 6-OHDA + L-DOPA/benserazide vs. 6-OHDA + L-DOPA/benserazide + PT320).



Interaction of AIM and DA Turnover

All lesioned animals receiving L-DOPA/benserazide (with or without PT320) were pooled for the correlation analysis. ALO score on day 22 was significantly correlated with lesioned side DA turnover [ALO = 3.384 + (12.465 ∗ DA turnover), p = 0.023, R = 0.471, n = 23].



DISCUSSION

LID was examined in unilaterally 6-OHDA−lesioned rats during a 22-day L-DOPA/benserazide treatment. L-DOPA/benserazide or PT320 was administered to animals with an 84% reduction in DA. We found that L-DOPA/benserazide increased AIMs on limbs and axial parameters as well as ALO, the sum of all dyskinesia scores, over 3 weeks. Treatment with PT320 reduced the ALO AIM score and normalized DA turnover. The main finding of this study is that PT320 attenuates LID in PD-like animals.

PT320 is a new SR formulation that provides controlled, continuous release of clinical-grade exendin-4 following s.c. administration across mice (Bader et al., 2019), rats (Chen et al., 2018), non-human primates (Li et al., 2019), and humans (Gu et al., 2014). In this regard, a regulated, initial rapid-release burst provides therapeutic levels of drug in plasma within a few hours, as exendin-4 is liberated from the surface of the injected PLGA microspheres. This is followed by slower secondary and tertiary release phases associated with microsphere hydration that creates an in situ matrix drug reservoir from which hydrolysis and erosion of the PLGA polymer subsequently occurs, and results in steady-state exendin-4 release and the long-term maintenance of therapeutic drug levels (Schwendeman et al., 2014; Wan and Yang, 2016).

The continuous release of exendin-4 from SR formulations, such as PT320, as a mechanism to maintain therapeutic drug levels, differs from long-acting GLP-1R agonists that are either covalently linked or bind to large proteins, such as the Fc fragment of human IgG4 (dulaglutide) or human albumin (albiglutide and semiglutide) to reduce clearance and, thereby, maintain GLP-1R agonist levels in plasma. Whereas the brain uptake of Exendin-4 has been reported as approximately 1–2% of its concomitant plasma level across rodent and human studies (Athauda et al., 2017; Chen et al., 2018; Bader et al., 2019; Mullins et al., 2019), that of protein-linked GLP-1R agonists remains unknown but is likely exceedingly low (Kim et al., 2010). Notably, PT320 is currently in Phase IIa clinical trials to evaluate its efficacy and safety in patients with early Parkinson’s disease (ClinicalTrials.gov Identifier: NCT04269642), as exendin-4 provided via PT320 s.c. administration resulted in substantially greater brain penetration than twice-daily administration of immediate-release exendin-4 (Chen et al., 2018; Bader et al., 2019).

We previously reported that PT320, given before or 6 days after 6-OHDA lesioning, significantly improved TH-IR in the lesioned striatum and SNc, and attenuated methamphetamine-induced rotation (Chen et al., 2018). In this study, PT320 was given at 4 weeks after 6-OHDA lesioning. Using HPLC analysis, we found that delayed PT320 treatment did not alter DA levels in the lesioned striatum when the lesion was close to complete. These data suggest that while PT320 reduces the progression of DA degeneration, the protective response to PT320 requires early treatment in this PD model and, on translating this to humans, should best be initiated during the early disease course.

In contrast to its protective effect against DA degeneration in the early stages of PD (Chen et al., 2018), PT320 reduces L-DOPA/benserazide-induced AIMs at 7 weeks after lesioning. Chronic L-DOPA/benserazide treatment for 3 weeks significantly increased AIM (LID). PT320 significantly reduced the AIM score and its correlation with L-DOPA/benserazide treatment in these 6-OHDA rats. We found that the increase in ALO scores significantly correlated with reduced DA turnover, but not DA or its metabolites in the lesioned striatum. Similar findings have been reported in that PD patients with dyskinesia had higher DA turnover in the putamen (Lohle et al., 2016) and HVA/DA in cerebrospinal fluid (Lunardi et al., 2009) than those without dyskinesia. Associated with the reduction of the AIM score, animals receiving PT320 here also had lower DA turnover. Taken together, these data support the interaction of AIM and DA turnover. DA turnover, but not the levels of DA, HVA, or DOPAC, may be a good biomarker for AIM. The mechanisms underlying DA turnover and LID, however, require further investigation.

Besides LID, DA graft-induced dyskinesia (GID) has been reported in selective PD cases (Ma et al., 2002) and in animals receiving amphetamine injection (Smith et al., 2012). However, GID was not found in MPTP-treated monkeys receiving intraputamenal grafts of fetal dopaminergic cells (Kordower et al., 2017). Furthermore, embryonic dopamine neuronal grafts improved L-DOPA-mediated AIM and normalized preproenkephalin and prodynorphin expression in the indirect and direct pathway in 6-OHDA-lesioned rats (Lee et al., 2000). These data suggest that differential mechanisms of dyskinesia may be involved in LID and GID. The use of PT320 in preventing GID requires further investigation. In the light of the positive actions of PT320 on LID in the current study, the evaluation of PT320 in preventing GID warrants investigation as our understanding and present treatment options of GID are strictly limited (Tronci et al., 2015; Lane, 2019).

PT320 significantly reduced DA turnover in the 6-OHDA-lesioned striatum. On the other hand, PT320 or L-DOPA/benserazide did not alter DA, DOPAC, or HVA levels in the lesioned striatum. The “normalization” of DA turnover in the 6-OHDA lesioned animals treated with PT320 suggests increased conversion of extracellular DA to DA metabolites in these animals. The presynaptic terminals of nigrostriatal DA fibers have D2 autoreceptors whose stimulation by extracellular DA inhibits DA synthesis and release, and subsequent metabolism to HVA and DOPAC. The reduction in turnover implies more extracellular DA availability in response to activation of these inhibitory D2 autoreceptors by DA after PT320 treatment. This would be readily reflected in DA turnover or the HVA/DA ratio, but not in DA levels.



CONCLUSION

In conclusion, our data support the notion that PT320 reduced the L-DOPA/benserazide−mediated AIM in a 6-OHDA rat model of PD, likely through the modulation of DA turnover in the lesioned brain. Our studies further emphasize the potential utility of PT320 in the treatment of clinical PD, for which clinical trials are ongoing, and highlight the opportunity to mitigate LID, a common and disabling feature of L-DOPA treatment that can reduce its beneficial effects.
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 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary movements; ALO, sum of all AIMs (axial, limb, and oro-lingual) score; DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; GID, graft -induced dyskinesia; GLP-1, glucagon-like peptide-1; GLP-1R, GLP-1 receptor; GPe, external segment of globus pallidus; GPi, internal segment of globus; HVA, homovanillic acid; L-DOPA, L-3,4-dihydroxyphenylalanine; LID, levodopa-induced dyskinesia; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MSNs, medium spiny neurons; PD, Parkinson’s disease; s.c., subcutaneous; SR, sustained-release; STN, subthalamic nucleus; T2DM, type 2 diabetes mellitus; TH-IR, tyrosine hydroxylase immunoreactivity.
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Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen—Spinraza; Onasemnogene abeparvovec or AVXS-101—Zolgensma; Risdiplam—Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Keywords: survival motor neuron, motor neuron disease, therapy, cell death and degradation, mitochondria, cytoskeleton dynamics, neurotransmitter modulation, neuromuscular junction stabilization
INTRODUCTION TO SPINAL MUSCULAR ATROPHY AND AVAILABLE THERAPIES
Spinal Muscular Atrophy Pathogenesis
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder affecting children and young adults with an incidence of one in 3,900–16,000 live births. In Europe, 4,653 patients were genetically diagnosed between 2011 and 2015, with 992 diagnosed in 2015 alone (Verhaart et al., 2017). SMA is characterized by brainstem and spinal motor neuron (MN) degeneration, due to mutation/deletion of survival motor neuron 1 (SMN1) gene. In physiological conditions, the encoded SMN protein has many important roles such as in the assembly of the spliceosome, biogenesis of ribonucleoproteins, mRNA trafficking and local translation, cytoskeletal dynamics, cellular bioenergetics, endocytosis and autophagy (for an extensive review on SMN functions, see Chaytow et al., 2018). In SMA, its lack determines motor impairment, muscle atrophy and premature death. However, the ubiquitous deficiency of SMN protein leads to consider SMA a multisystemic disorder, since its depletion can dramatically affect many other organs/systems (including heart, pancreas and immune system) (Bottai and Adami, 2013).
More in details, in humans there are two SMN genes i) the telomeric form SMN1, which translates for a ubiquitous protein (full-length SMN or FL-SMN), and ii) its centromeric homologous SMN2 which mostly generates a truncated and rapidly degraded protein delta7-SMN (SMNΔ7) and only about 10% of FL-SMN (Lorson et al., 1999). Therefore, in SMA, the production of functional SMN protein depends only on SMN2 gene and the degree of the disease severity is based on SMN2 copy number. Indeed, there are four types of SMA (reviewed by D’Amico et al., 2011; Boido and Vercelli, 2016; Vaidya and Boes, 2018). SMA 1, also known as Werdnig-Hoffmann disease, is diagnosed within 6 months of age: it is the most severe and the most common type (60% of all SMA cases) and it is generally fatal early on in life. SMA one babies show severe muscle weakness and trouble breathing due to spared diaphragm and feeble intercostal muscles; they also have difficulties in coughing, swallowing and feeding. SMA two is usually diagnosed between 6 months and 2 years of age, and the life expectancy is reduced. SMA type 2 babies show significant delay in reaching motor milestones or fail to meet milestones entirely: they can sit up without help, though they may need assistance getting into a seated position, but they are unable to walk and require a wheelchair. SMA 3, also called Kugelberg-Welander disease or juvenile SMA, is usually diagnosed after 18 months of age. Individuals affected by SMA three can be divided in two subgroups depending on the disease onset: i) patients with onset before 3 years of age are initially able to walk, but have increasingly limited mobility as they grow due to scoliosis and many need to use a wheelchair; and ii) patients with onset after 3 years of age might continue to walk and show slight muscular weakness. Finally, SMA type 4 is very rare and usually appears in adulthood (after 18 years of age), leading to mild motor impairment and no respiratory and nutritional problems.
Spinal Muscular Atrophy Approved Drugs
Despite the disease severity and its well-known genetic causes, until 2017 no treatment was available for SMA. Indeed, the efforts of the scientific, pharmaceutical, academic and clinical communities led to the discovery of effective drugs able to restore SMN1 or to increase the expression of SMN2 gene, in order to compensate the lack of FL-SMN protein.
Nusinersen (Spinraza) from Biogen is the first drug approved by the Food and Drug Administration (FDA) (in December 2016) and by the European Medicines Agency (EMA) (in June 2017) for both infants and adults with SMA. It is a modified 2′-O-methoxyethyl antisense oligonucleotide (ASO) designed to increase the expression of the SMN protein (Chiriboga et al., 2016). Nusinersen increments the capability of SMN2 to produce FL-SMN by binding to the intron-splicing silencer region N1 in the SMN2 pre-messenger RNA (pre-mRNA) promoting exon seven inclusion (Singh et al., 2006). Since the drug cannot pass through the blood brain barrier (BBB), it must be intrathecally administered. On May 2019, another drug, AVXS-101 (Zolgensma) from AveXis, a Novartis company, has been approved by the FDA, after the publication of the positive results of the phase one study called START (Identifier: NCT01547871) on its safety and efficacy after a one-time infusion in SMA one patients with symptoms before 6 months of age. In March 2020, it also received a conditional marketing authorization and it has been approved in May 2020 from EMA (Zolgensma, 2020a; Novartis, 2020).
AVXS-101 is the non-replicating recombinant AAV9 containing the complimentary DNA of the human SMN gene under the control of the cytomegalovirus enhancer/chicken-β-actin-hybrid promoter. The phase 3, open-label, single-arm and single-dose study delivering AVXS-101 by intravenous infusion called STR1VE (Identifier: NCT03306277) has been concluded in November 2019. On March 2020, the company showed the results of the concluded study STR1VE-US: “nine of 22 patients in the completed pivotal study demonstrated the ability to thrive, a stringent composite endpoint remarkable compared to untreated children with SMA type 1; the study showed that patients achieved rapid and sustained improvement in motor function” (for the complete press-release see Zolgensma, 2020b). Up to now, different studies are still ongoing: START Long Term Follow Up (Identifier: NCT03421977) aims to estimate the long-term safety on patients who completed the study START; whereas SPR1NT (Identifier: NCT03505099), a phase 3 open-label, single-arm, multi-center trial has been designed to evaluate the safety and efficacy of a one-time intravenous infusion in pre-symptomatic patients with SMA 1. The overall expected advantage of the AAV9 is that by a single administration patients could have a systemic and long-term lasting expression of SMN1(Al-Zaidy et al., 2018). A recent review, which compared all the published data and clinical trials on AVXS-101, confirmed that it represents an effective therapy for younger pediatric patients with SMA 1 (Stevens et al., 2020).
Risdiplam (Evrysdi), from Genentech, a member of the Roche Group, has been approved by the FDA on August 7th, 2020 for the treatment of children from 2 months of age on of adult (FDA Approves Genentech’s Evrysdi (risdiplam) for Treatment of Spinal Muscular Atrophy (SMA) in Adults and Children 2 Months and Older, 2020). Risdiplam is a mRNA splicing modifier which increases SMN protein expression. It is a liquid medicine, which can be administered orally without the need for hospitalization. Risdiplam is currently under study in four open-label trials: i) FIREFISH (Identifier: NCT02913482) and ii) SUNFISH (Identifier: NCT02908685) to investigate safety, tolerability, pharmacodynamics and kinetics and Efficacy in SMA 1 or SMA2 and 3, respectively; iii) JEWELFISH (Identifier: NCT03032172) and iv) RAINBOWFISH (Identifier: NCT03779334) to reveal the long-term efficacy of Risdiplam in patients who previously received another SMA treatment and infants from birth till 6 weeks of age, respectively.
Besides the ascertained data reporting the safety profile of these treatments and their significant benefits for some cohorts of SMA patients, it is necessary to take into account also their limitations, not only from the medical point of view but also from the socio-economical side.
Limits of Current Therapies and the Need of New Targets
One important limit of the current available treatments for SMA is that such approaches are merely SMN-dependent strategies and overlook other molecular pathways contributing to SMA pathogenesis (see beyond). To overcome this problem, combinatorial therapies should be considered, in order to redefine the timing and parameters of administration of the SMN-enhancing therapies currently in use, and to consider the synergistic effects with other drugs. Overall, combinatorial treatment strategies are required to face the SMN-independent features of SMA pathology. Moreover, the efficacy of the available treatments strictly depends on the age/type of patients: indeed, the effects induced by SMN-enhancing therapies are most consistent in the early-treated patients, whereas delayed interventions lead to less efficient or none rescue of motor neuron defects (Hoolachan et al., 2019; Hensel et al., 2020; Poletti and Fischbeck, 2020). In fact, SMN-restoring approaches seem particularly effective when the MNs are still alive and muscle functions not irreversibly compromised, as in the early phase of SMA disease. Depending on the age at the beginning of the therapy, Nusinersen and AVXS-101 can significantly extend the survival of babies with SMA 1, allowing motor milestone achievement; similarly, young patients with SMA two also show progresses on different motor scales after treatment. However, when Nusinersen is administered in adults patients with SMA type 2 and 3 (20–68 years old), improvements did not reach similar significant levels and could just support the stabilization of motor functions and the reduction in the symptom worsening (Jochmann et al., 2020; Mercuri and Sansone, 2020). While on one hand this piece of evidence strongly encourages the improvement of newborn screening methods, on the other hand it explains the growing pressure from late-symptomatic patients and caregivers for accessing to additional treatments (Richelme, 2019; Ramdas and Servais, 2020). Furthermore, prospective studies with larger patient numbers as well longer follow-up durations are required to better define the safety and efficacy of the treatments (Lee et al., 2019; Malone et al., 2019; Zuluaga-Sanchez et al., 2019).
To note, the current therapies present important limits such as i) the invasiveness of the administration route (in the case of Nusinersen), ii) more or less severe side effects, and iii) their cost and commercial accessibility. Indeed, Nusinersen administration requires hospitalization since it is administered intrathecally at least three times per year, for the entire life of the patient. Moreover, SMA patients generally develop severe scoliosis and spinal deformities, which in turn complicate or hinder this way of administration. These limitations can be circumvented by the development of systemically (as AVXS-101) or orally administered drugs able to cross the BBB (as Risdiplam) (Poletti and Fischbeck, 2020). To date, other orally delivered compounds are in final phases of clinical development and trials (Ramdas and Servais, 2020): these include a mRNA splicing corrector, branaplam (LMI070, Novartis), and a fast-skeletal muscle troponin activator, reldesemtiv (CK-2127107, Cytokinetics) (Rao et al., 2018). These alternative administration routes can also assure peripheral SMN-restoration, complementing the SMN central effects.
Additionally, the available treatments can also cause important side effects such as headache, back pain (Nusinersen), acute liver damage, bleeding, and heart damage (AVXS-101) (Gidaro and Servais, 2019). Moreover, about 5% of AVXS-101-treated patients can develop anti-AAV9 antibodies (viral titer greater than 1:50) this can increase the risk for immune response to gene therapy and reduce its therapeutic benefit (Al-Zaidy and Mendell, 2019). Finally, Nusinersen and AVXS-101 are listed among the most expensive drugs in the world: the relative cost-effectiveness ratio data reports, constantly updated, must be considered (Rao et al., 2018; Hoot, 2019; Malone et al., 2019).
Considering the limitations of the approved drugs for SMA, it is evident that the search for other potential therapies is necessary.
Below, we firstly describe two common methods to find new drugs: drug screening (DS) and drug repositioning (DR). Secondly, we make a comprehensive review of DS and DR studies conducted specifically in the SMA field, describing procedures, models, drug-targeted signaling pathways and results.
DRUG SCREENING AND DRUG REPOSITIONING FOR SMA
DS is a process by which a huge amount of compounds can be relatively quickly tested and selected as effective, by means of appropriate experimental models. On the contrary, DR (also currently referred as drug repurposing, reprofiling, retasking, or therapeutic switching) consists in a strategy to attribute new uses to drugs (generally already FDA approved) that are outside the scope of the original medical indications reducing risks and costs associated with time consuming new drug development programs. Briefly, the two approaches, eventually in combination, exploit the availability of large compound libraries, which include thousands of chemical and natural compounds and/or FDA-approved substances: Prestwick Chemical Library, MicroSource Discovery Systems, ComGenex, National Institute for Neurological Disorders and Stroke, TimTec, IBS, and ChemBridge are just few libraries that have been used to find new SMA therapies during the last years (Kelley et al., 2004; Sleigh et al., 2011; Konieczny and Artero, 2020). Afterward, once screened in search of specific cellular/molecular readouts, the substances can be firstly tested on “simplified” SMA models (cell cultures and/or invertebrates models), and then (or directly, in some cases) on SMA mice and/or patient-derived iPSCs (Figure 1).
[image: Figure 1]FIGURE 1 | DS and DR methods as powerful approaches in SMA therapeutic research. The two approaches, eventually in combination, can pave the way for rapid identification of drugs for novel SMA treatments. The compounds (present in large screening libraries) can be tested for primary outcomes (continuous arrow, in the middle) firstly on “simplified” SMA models (cell cultures and/or invertebrates models), and then on SMA mice and/or patient-derived iPSCs (differentiated in neurons, MNs and muscle cells, eventually cocultured) to achieve secondary outcomes. In some cases (dotted arrow, in the middle) the hit compounds can be directly tested on murine models and iPSCs. Created with BioRender software. DR, drug repositioning; DS, drug screening; MN, motor neuron; SMA, spinal muscular atrophy.
Many kinds of DS approaches exist since a long time, including High-throughput, Focused, Fragment, Structural aided drug design, Virtual, Physiological, and Nuclear Magnetic Resonance screens (for an extensive review, see Hughes et al., 2011). These methods can be also extended to DR research, when FDA-approved drugs (already employed for the treatment of other pathologies) are investigated. Notably, High-throughput, Virtual and Physiological screenings are those ones mainly used in the SMA field.
High-throughput and Virtual screening are two rapid methods that allow wide-scale assays (by omics studies), in particular during the first screening phase to identify hit-compounds. As reviewed in Fox et al., (2006), to date, the High-throughput approaches, based on phenotypic screening of entire compound libraries, are commonly used in drug discovery processes, including different phases: target validation, assay development, secondary screening, ADME/Tox, and lead compound optimization (Fox et al., 2006). As an example, in SMA drug discovery, the 3,6-disubstituted pyridazine was identified through High-throughput screening in the NSC-34 cell line containing a SMN2 minigene reporter, and was then chemically modified leading to the synthesis of Branaplam (nowadays in clinical trial phase 2 for SMA treatment) (see section Direct and Indirect Modulation of Survival Motor Neuron 2 Transcription) (Cheung et al., 2018). On the other hand, virtual screening methods (such as ligand-based/structure-based virtual screening; as reviewed by McInnes, 2007), which exploit docking of new compounds that could bind known targets, are widely and successfully used to identify novel drugs for the treatment of neurodegenerative diseases (Makhouri and Ghasemi, 2017). Although these virtual screening paradigms have been poorly carried out in the SMA field, some successful applications of these methods have been reported: in particular, molecular docking studies highlighted both the binding mode of the C5-substituted quinazolines against a RNA metabolism regulator (the scavenger decapping enzyme, DcpS), and the binding mode of E-resveratrol, suberoylanilide hydroxamic acid and valproic acid against HDAC8 (see section Direct and Indirect Modulation of Survival Motor Neuron 2 Transcription) (Dayangaç-Erden et al., 2008; Singh et al., 2008; Makhouri and Ghasemi, 2017). Some of these compounds identified by DS (e.g., RG3039 and valproic acid) underwent clinical trial studies for SMA treatments (Kissel et al., 2011; Gogliotti et al., 2013). Moreover, molecular docking studies represent a rapid and cheap strategy to test FDA-approved drugs, paving the way to DR (Hughes et al., 2011; Pushpakom et al., 2018). Finally, as reviewed by Hughes et al., (2011), in the last stage of DS process, the Physiological screening is generally exploited to assay only hit-compounds (Hughes et al., 2011): indeed, this screening, based on tissue specific analyses and readouts (as muscular tissues in case of SMA), can require complex experimental models, such as transgenic mice (Le et al., 2005).
In the last years, DS/DR methods allowed both an in depth understanding of SMA pathological mechanisms and the identification of therapeutic approaches, including enhancing SMN function and regulating the SMN exon seven splicing. Furthermore, new targets mainly related to the rescue of the downstream effects of SMN protein depletion have been also highlighted. With this purpose, DR strategies have been applied in SMA field, allowing either the usage of established approaches on new targets, or the development of novel approaches on established targets (Ashburn and Thor, 2004). Indeed, the advantages of this approach can be summarized in three main features: i) it provides a lower risk of drug failure; ii) it reduces time frame for drug development, by skipping several clinical trial steps; and iii) it needs lower investment in clinical trials. This is due to pre-existing proofs of safety and efficacy for the repurposed drugs. In fact, the success rates for a repurposed drug to the market are significantly higher compared to specific de novo clinical trials (more than 15% in phases II–III clinical trial) (Hoolachan et al., 2019). For this reason, DR became a helpful approach in orphan diseases (designation granted by FDA) such as SMA (Hoolachan et al., 2019). In addition, the development costs related to DR are estimated to be thousands folds lower than those of a new chemical compound (Lotfi Shahreza et al., 2018; Pushpakom et al., 2018).
To date, albeit successfully, the process of DR has been largely opportunistic and serendipitous, often lacking a systematic approach aimed at the identification of a drug off-target or new target effects, suggesting its repositioning (Lotfi Shahreza et al., 2018; Lipinski and Reaume, 2020). During the early stages of the DR process (hypothesis generation phase), a potential repurposable drug can be identified with a high level of confidence thanks to a systematic approach and by exploiting different types of data coming from modern DS methods (i.e., computational and experimental approaches).
The computational approaches, as reviewed in detail by Lotfi Shahreza et al. (2018), involve the main in silico methods, based on docking simulation and machine learning (drug-based/disease-based). These methods allow to evaluate new indications on chemical ligands and protein targets or to discover repositioning opportunities (Lotfi Shahreza et al., 2018). Furthermore, as a natural evolution of these studies, promising results have been achieved in network-based computational biology, which attempts to identify pharmacological targets by reconstructing the biological network in different pathologies, simulating its interactions and highlighting correlations between drug targets (Lotfi Shahreza et al., 2018; Sam and Athri, 2019; Singh et al., 2020). In this way, the integration of “big data” generated by high-performance DNA and RNA sequencing, mass spectrometry, metabolomics and transcriptomic studies leads to the generation of different types of network-based association studies (Lotfi Shahreza et al., 2018; Pushpakom et al., 2018; Álvarez-Machancoses et al., 2020).
DR computational methods have already been exploited in the SMA field. In particular, Artero’s group using the Prestwick Chemical Library drug database (constituted by almost 1,280 compounds) (Prestwick Chemical, 2013) discovered a repurposed FDA-approved small molecule, the antibiotic Moxifloxacin, with the potential to become a new therapy for SMA (see section Direct and Indirect Modulation of Survival Motor Neuron 2 Transcription) (Konieczny and Artero, 2020). However, DR is a complicated process in which the computational approach per se is not sufficient to achieve satisfactory results. Indeed (as reviewed by Pushpakom et al., 2018; Lipinski and Reaume, 2020), the intertwining of computational and experimental methods achieves the reliability of DR approach. Data from large-scale drug screens, combined with genomic data, binding assays and High-throughput phenotypic screening, can be used to identify novel targets of known drugs (Pushpakom et al., 2018; Lipinski and Reaume, 2020). As an example, in vivo phenotypic screenings have been also exploited in the SMA field, allowing the discovery of small molecules able to target the RNA splicing specifically enhancing the exon seven inclusion of SMN2 transcript and the SMN protein levels. Indeed, in 2014, Naryshkin and coll. published the first report of a phenotypic screen yielding selective SMN2 splice modulators, leading to Risdiplam (RG7916), a recently FDA-approved drug for SMA treatment (Naryshkin et al., 2014; FDA Approves Genentech’s Evrysdi (risdiplam) for Treatment of Spinal Muscular Atrophy (SMA) in Adults and Children 2 Months and Older, 2020), while in 2015, Palacino’s group identified the splicing modulator Branaplam (LMI070) (see section Direct and Indirect Modulation of Survival Motor Neuron 2 Transcription) (Palacino et al., 2015). Most importantly, DR phenotypic screening allowed uncovering novel SMN-independent targets and drug paradigms, such as Olesoxime (see section Mitochondria-Related Pathways). This compound has been identified as potential therapeutic agent for both SMA and ALS (Calder et al., 2016; Swalley, 2020), since it is able to preserve mitochondrial function and protect MNs from degeneration (Calder et al., 2016; Blasco et al., 2018; Rovini et al., 2019). Indeed, a successful repositioning strategy in SMA treatment may be to identify drugs that are currently used to treat other neuromuscular diseases [such as ALS, hereditary spastic paraplegia (HSP) and Duchenne dystrophy (DD) (Patten et al., 2014)]: FDA-approved drugs modulating the pathogenetic pathways shared by these diseases have been proposed for SMA patients, as riluzole (Rilutek™ or Teglutik™) (see section Neurotransmitters’ Modulation), commonly administered for ALS (Calder et al., 2016; Hoolachan et al., 2019; Hensel et al., 2020). Also other drugs originally developed for different neurodegenerative diseases (such as rasalgiline and masitinib) could potentially represent promising SMA treatments (Hoolachan et al., 2019; Hensel et al., 2020).
Overall, we will focus here on the different DR and DS approaches employed to screen and identify candidate molecules for SMA treatment. Typically, in vitro phenotypic screenings exploit a wide range of cell-based assays in a 96-well format, including cellular disease models, highly engineered immortalized cell lines or different kind of induced Pluripotent Stem Cells (iPSCs); moreover, whole-organism phenotypic assays (using C. elegans, Drosophila, zebrafish, and mouse models) are also very important for their physiological relevance.
EXPERIMENTAL MODELS FOR DRUG SCREENING/DRUG REPOSITIONING STUDIES IN THE SPINAL MUSCULAR ATROPHY FIELD
Over the years, several experimental models have been developed to identify and improve SMA therapies. In vitro models are needed for High-throughput screenings where hundreds or thousands of compounds must be tested, while animal models are more indicated for the final study phases to assess phenotypical effects of hit compounds (Figure 1).
To perform large High-throughput screenings for SMA therapy, different cell lines can be used, including NSC-34 (murine MNs), HEK-293 (human embryonic kidney cells) and C33A (human cervical squamous cell carcinoma) (Zhang et al., 2001; Sumner et al., 2003; Jarecki et al., 2005). A more recent approach consider the use of patient fibroblasts and iPSC models, allowing the possibility to tailor the medical treatments as personalized medicine (Lai et al., 2017; Wang et al., 2019).
These experimental models, to apply High-throughput screening systems, are pivotal for the rapid validation of compound libraries. For example, Jarecki and coll. used a SMN2 promoter β-lactamase reporter gene test in NSC-34 cell line (Jarecki et al., 2005), while Zhang and collaborators developed a wide-scale screening approach based on the insertion of SMN2-luciferase or SMN2-GFP mini-gene reporters into HEK-293 and C33A (Zhang et al., 2001). These cellular models allowed to easily identify compounds that interfere with SMN2 gene expression and, to date, SMN2-luciferases mini-gene reporter is the most used one (Son et al., 2019). In 2013, Letso’s group developed a High-throughput screening test, to evaluate through ELISA assays the endogenous SMN protein levels in SMA patient fibroblasts (GM03813, GM09677, and GM00232) (Letso et al., 2013). More recently, Wang and collaborators tested a small library of 980 compounds, using the HEK293 cell line in which human SMN2-GFP gene reporter was targeted by CRISPR/Cas9–mediated homologous recombination (Wang et al., 2019).
Cellular models can also be used to evaluate hit-compounds during the final screening phases; the most used are SMA patient fibroblast lines (GM03813, GM03814, and GM22592) (Cherry et al., 2013; Wang et al., 2019), human iPSCs-derived neurons (Lai et al., 2017) or MNs (Wang et al., 2019), and co-culture of human MNs and skeletal muscle cells (Santhanam et al., 2018). Very recently, a promising (but not yet tested for DS/DR) tool has been developed: it consists in an on-chip 3D neuromuscular junction (NMJ) model, with optogenetically controllable human iPSCs-derived MNs and skeletal muscle cells (Osaki et al., 2020).
However, in the majority of cases, the final screening phase to assess effectiveness of selected hit-compounds is carried out using animal models. The percentage of identity and evolutionary divergence among different species can be evaluated through the amino acid differences of SMN protein. Homo sapiens, Mus musculus, Danio rerio, Xenopus laevis, Caenorhabditis elegans, Drosophila melanogaster, and Schizosaccharomyces pombe have wide evolutionary distances, with range of SMN protein conservation from 83 to 18.9% identity. However, the N-terminal Gemin2 binding domain, the central Tudor domain, and the C-terminal YG box are highly homologous among all species (Osman et al., 2019). Among the invertebrate models, C. elegans, together with D. melanogaster, represents the most exploited animal model for High-throughput screening studies for in vivo, allowing to study the mechanisms of MN degeneration underlying SMA and to test compounds. Its small size, short life cycle, body transparency, ease to generate transgenic animals, and low maintenance costs contribute to its large use in experimental studies. Moreover its nervous and locomotor systems are well known, since its 302 neurons and 95 body wall muscles are all identified (C. elegans Sequencing Consortium, 1998; Dimitriadi and Hart, 2010; Wolozin et al., 2011; Cáceres et al., 2012; Lee et al., 2013; de Carlos Cáceres et al., 2018). To date, several C. elegans Smn mutants have been developed, such as smn-1(ok355) (null-mutant form) and smn-1(cb131). The first one bears a wide deletion of most Smn coding region, leading to growth and fertility defects, MN loss and to early death (Briese et al., 2009; Dimitriadi and Hart, 2010; Grice et al., 2011). On the other hand, smn-1(cb131) model shows a point mutation in N-terminal domain and, while displaying a similar MN degeneration to smn-1(ok355), it survives longer allowing screening progression (Grice et al., 2011; Sleigh et al., 2011). Neuromuscular and motor defects can be analyzed in the worm by the “thrashing assay,” a test to measure the number of lateral swimming movements (Buckingham and Sattelle, 2009). These evaluations can be also correlated to MN degeneration analysis. To this aim, the most recent automated system has been developed by de Carlos Cáceres group: it employs microfluidic and image analysis that assess worm phenotypes analyzing D-type ventral MN degeneration through a quick genetic screening technique (De Carlos Cáceres et al., 2018).
Another invertebrate animal, used for both DS and DR, is Drosophila melanogaster: it shares some advantages of C. elegans, as a rapid life cycle, an easy husbandry and a simple genetic manipulation (Cauchi and Van Den Heuvel, 2007; Lessing and Bonini, 2009; McGurk et al., 2015; Aquilina and Cauchi, 2018). Different D. melanogaster Smn mutants have been set up: smn73Ao (smnA) and smnB mutants bear point mutations in C-terminal YG box (Chan et al., 2003; Chang et al., 2008; Grice et al., 2011); smnf05960 (smnC) and smnf01109 (smnD) mutants carry a transposon insertion respectively downstream and inside the Tudor domain. All these mutant models display impaired motor behavior, neuronal transmission and NMJ defects, leading to early death at larval moult stage (Grice et al., 2011). Finally, the EY14384 (smnE33) mutant fly carries a transposon insertion upstream of putative transcription start site and, while showing similar motor defects to the other mutants, it has a higher survival (Rajendra et al., 2007; Chang et al., 2008; Grice et al., 2011). However, the most recent fly SMA model has been developed by inserting the human SMN2 minigene reporter, fused to luciferase, into the Drosophila genome, in order to easily obtain the exon 7-inclusion during SMN2 splicing process. This cheap and feasible model allows to rapidly screen thousands of chemicals, possibly increasing FL-SMN protein levels (Konieczny and Artero, 2020).
Danio rerio, also known as zebrafish, is another useful invertebrate model to screen many compounds by DS/DR approaches. It is commonly used because of its high gene homology with human species and low maintenance costs (Howe et al., 2013; Patten et al., 2014). However, it has been mainly employed for ALS and HSP studies, whereas few SMA zebrafish models exist. One SMA model was developed by injecting an antisense morpholino oligonucleotide against Smn gene. Other zebrafish models bear the following gene mutations: smnG264D, smnY262X and smnL265X and are all similarly characterized by muscle weakness and atrophy, with halved lifespan compared to WT controls (Boon et al., 2009; Patten et al., 2014). To further increase the fish survival, the human SMN2 gene has been inserted in the genome of smnY262X fishes: such insertion increased SMN protein levels and slightly improved the animal survival (Hao et al., 2011).
Among the vertebrate models, Mus musculus is the most valuable one, especially for the Phenotypic screening. Murine and human genes display 90% of homology, even though mouse has just 20 chromosome pairs, while humans 23. Mouse genome has been widely manipulated to develop several neuromuscular disease models (transgenic, knockin, chimeras, and knockout), including SMA (Mouse Genome Sequencing Consortium et al., 2002; Fisher and Bannerman, 2019), taking into account that mice possess only one Smn gene and none SMN2 gene copies (Monani, 1999). Some of the SMA murine models recapitulate the human severe disease form (type I), such as SMN− and FVB.SMN2;Smn− (referred also as Burghes’ severe model incipient congenic); other ones (such as FVB.SMNΔ7 model) mimic the intermediate disease form (type II); milder forms (type III and IV) have been also developed [respectively, Smn A2G (also referred as Burghes type III model incipient congenic) and Smn1c, and FVB.Cg-Smn1<tm1Msd> Tg (SMN2)566Ahmb/J] (Osborne et al., 2012; Edens et al., 2015; Eshraghi et al., 2016). Moreover there is also the “SMA-like” murine model, mainly referred as Taiwanese model: these animals, carrying the Smn−/−SMN2 genotype, are classified into the three pathological SMA form groups (type 1, 2 or 3) based on their phenotypes (Hsieh-Li et al., 2000).
The most used SMA murine model for DS/DR is certainly the SMNΔ7 mouse: it is a triple homozygote, characterized by selective spinal MN degeneration, progressive muscle atrophy, reduced body weight, early (from postnatal day 5, P5) motor performance impairment, and premature death (around P14) compared to WT littermates (Edens et al., 2015; Simon et al., 2017; Kannan et al., 2018; Rimer et al., 2019; Tejero et al., 2020). The other available SMA models are generally excluded from DS/DR studies, since they die too early (by P5, or even embryonic, respectively in the case of FVB.SMN2;Smn− and SMN−) or too late [Smn A2G and Smn1c, and FVB. Cg-Smn1<tm1Msd> Tg (SMN2)566Ahmb/J], hence making difficult to evaluate the tested compound efficacy or requiring excessively extended observational studies.
PATHWAYS TARGETED BY DRUG SCREENING AND DRUG REPOSITIONING APPROACHES IN SPINAL MUSCULAR ATROPHY
As stated, only three drugs are currently authorized for administration to patients. To further increase the available therapeutic options, DS/DR approaches can be pivotal since they can identify new or repurposed effective drugs.
Obviously, the attention is primarily focused on targeting pathways involved in SMN-specific transcription regulation. However, current expert opinions suggest not neglecting SMN-independent cascades and different cell targets, such as pathways involving degradation processes, cytoskeletal modulation, cell signaling and oxidative mechanisms (Figure 2). Below we describe natural, chemical and/or FDA-approved compounds, which have been discovered and tested through DS/DR studies, classifying them on the basis of their molecular mechanisms of action. The entirety of the described compounds are also resumed in Table 1.
[image: Figure 2]FIGURE 2 | Involved and converging pathways targeted by DS and DR. The drugs identified by DS and DR influence and converge on a limited number of cellular and molecular pathways, that in turn act on specific districts, in particular involving MNs, NMJs and skeletal muscles. Created with BioRender software. DR, drug repositioning; DS, drug screening; MN, motor neuron; NMJ, neuromuscular junction; SMN, survival motor neuron.
TABLE 1 | List of compounds discovered by DS or DR approaches for SMA treatment.
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During the last years, many studies are aiming to identify new SMN-dependent approaches, more effective and less invasive than the available ones.
SMN2 pre-mRNA splicing modulators (as Nusinersen) can significantly improve child health status. In this context, Branaplam is the first small compound orally administered and it is currently in phase II clinical trial (involving SMA type 1 patients; ClinicalTrials.gov identifier NCT02268552). It was developed by improving effectiveness, bioavailability and safety of pyridinazine, discovered as hit compound by High-throughput screening in NSC34 cell line with SMN2 mini-gene reporter inclusion (Palacino et al., 2015; Cheung et al., 2018). In detail, it stabilizes U1 snRNP binding with 5′ splice site, leading to exon seven inclusion in SMN2 mRNA, thus increasing SMN2-derived FL-SMN level (Palacino et al., 2015; Shorrock et al., 2018). Another small molecule, known as RG7800, was discovered using a similar screening. PTC Therapeutics, in collaboration with Roche, identified RG7800, then tested in the MOONFISH clinical trial. However, the trial was preventively stopped between phase I and II because of a RG7800-dependent eye toxicity observed in a long-term concomitant treatment study performed in monkeys (Identifier: NCT02240355) (Naryshkin et al., 2014; Kletzl et al., 2019). Therefore, RG7800 was optimized developing a new oral drug, RG7916, known as Risdiplam, which was tested in different cell lines and animal models (mice, rats, and monkeys) (Poirier et al., 2018; Ratni et al., 2018). Risdiplam is currently under evaluation in the four clinical studies mentioned above in Spinal Muscular Atrophy Approved Drugs (Kletzl et al., 2019; Haniff et al., 2020).
From the beginning of 21st century until now, other synthetic, inorganic and natural compounds were discovered via DS approaches, acting as splicing modifiers and up-regulators of SMN2-derived FL-SMN. Among them, the 2,4-diaminoquinazoline class was found by Jarecki and coll., after the remarkable screening of 550,000 synthetic compounds using NSC-34 cell line containing the SMN2 promoter β-lactamase reporter gene (Jarecki et al., 2005). The quinazoline analog compound RG3039 is a DcpS inhibitor that assured an overall improvement of disease phenotype when tested on Taiwanese and 2B/− and on SMA2B/− mice (Gogliotti et al., 2013). Based on this experimental evidence, Repligen conducted a clinical trial which initially provided successful results, but, following the take-over by Pfizer, the phase I trial was suspended on June 2014, because of a limited SMN increase in SMA children blood (Pfizer Pulls Plug on Repligen SMA Collaboration, 2015).
In addition, SMN2 modulators such as Sodium vanadate, small molecules (LDN-76070 and LDN-75654) and Brucea Javanica extract were originally identified via cell-signaling assays, but they gave insufficient results to be tested in SMA mice (Zhang et al., 2001; Cherry et al., 2013; Baek et al., 2019). In particular, Sodium vanadate showed to be effective in Taiwanese type III SMA mice when administered in combination with the detoxification agent L-ascorbic acid: however, their effects remain to be confirmed in more severe mouse models of SMA (Zhang et al., 2001; Liu et al., 2013; Seo et al., 2013). While Brucea Javanica has been recently tested on SMAΔ7 mice and the available preliminary results still require more detailed studies, LDN-76070 and LDN-75654 administration in the same mouse model increased lifespan, motor functions and SMN protein levels (Cherry et al., 2013; Baek et al., 2019).
In addition, histone deacetylase (HDAC) inhibitors, revealed by DR studies, could be promising also in case of SMA. Several FDA-approved HDAC inhibitors (sodium phenylbutyrate, valproic acid, Vorinostat, trichostatin A, and Panobinostat) or not yet approved (sodium butyrate) have been investigated for SMA treatment (Chang et al., 2001; Sumner et al., 2003; Andreassi et al., 2004; Hahnen et al., 2006; Avila et al., 2007; Garbes et al., 2009). In addition to promoting SMN2 transcription, they can affect the expression of many other genes (Calder et al., 2016; Poletti and Fischbeck, 2020). In combination with Nusinersen, HDAC inhibitors exerted synergistic effects, further enhancing the expression of SMN2 in human SMA fibroblasts (Pagliarini et al., 2020). Importantly, this combinatorial strategy could lead patient benefits, hypothesizing lower or less frequent Nusinersen doses, and consequently reducing repeated intrathecal administrations and high costs (Poletti and Fischbeck, 2020; Ramdas and Servais, 2020).
Other FDA-approved drugs arisen from DR studies and able to modulate SMN2 are celecoxib and Hydroxyurea; they are both important enzymatic inhibitors. Celecoxib is a non-steroidal anti-inflammatory cyclo-oxygenase two inhibitor, mainly used to treat rheumatoid arthritis and osteoarthritis (Seibert et al., 1994; Lipsky and Isakson, 1997). Its potential role in SMA therapy was deepened by Farooq’s lab, which focused on p38 MAPK pathway and showed that it upregulates cytoplasmic HuR protein, in turn able to stabilize mRNA-binding, also involving SMN (Farooq et al., 2013). Celecoxib, tested on Human neuron-committed teratocarcinoma (NT2) and mouse motor neuron-derived (MN-1) cell lines and on SMAΔ7 mice, induced the SMN2-derived FL-SMN mRNA stabilization. In addition, since it crosses the BBB, celecoxib is an optimal candidate for SMA therapy; indeed, it is currently in phase II clinical trial (Identifier: NCT02876094 (Farooq et al., 2013; Wadman et al., 2020). Instead, Hydroxyurea, a ribonucleoside diphosphate reductase inhibitor, prevents the exit from cell cycle G1/S phase and promotes fetal hemoglobin production. For these reasons, it is used to treat many neoplasias such as melanoma, chronic myelogenous leukemia, polycythemia vera, cervical and ovarian cancers, head and neck tumors, and sickle cell anemia (Rodgers et al., 1990; Madaan et al., 2012). Due to its gene interaction ability, Hydroxyurea was evaluated as therapeutic candidate for SMA, showing excellent results in lymphoblastoid cell lines isolated from type I, II, and III SMA patients (Grzeschik et al., 2005). However, three clinical trials (Identifiers: NCT00568698, NCT00568802, and NCT00485511) did not confirm its efficacy in improving motor functions of SMA types II or III (Wadman et al., 2020).
Although DS and DR are often carried out separately, their combination allowed to discover unusual drugs for neurodegenerative disease treatment. For example, Aclarubicin, an oligosaccharide anthracycline antineoplastic antibiotic, used in case of Acute Myeloid Leukemia treatment (Mitrou, 1990), was identified in 2001 via High-throughput screening on SMA type I fibroblast cell line and NSC-34 cell line containing SMN2 minigene reporter: Aclarubicin increases SMN2 exon seven inclusion, upregulating FL-SMN expression. Indeed, Aclarubicin seems to act as a transcriptional activator, inducing by indirect pathways SMN2 exon seven inclusion (Morceau et al., 1996; Andreassi et al., 2001). Likewise, Moxifloxacin, a synthetic fluoroquinolone antibiotic used to treat several infections, was identified by performing High-throughput screening study in a Drosophila SMN2 minigene reporter model, as described above (Konieczny and Artero, 2020). Moxifloxacin modulates SMN2 splicing by promoting exon seven inclusion and crosses the Drosophila BBB; moreover, it increases FL-SMN expression in HeLa cell lines. The authors showed that Moxifloxacin exerts a dose-dependent increase of Serine/arginine Rich Splicing Factor 1 (SRSF1) levels promoting the SMN2 exon seven inclusion (Konieczny and Artero, 2020).
Finally, Rigosertib and Indoprofene have been also proposed for SMA therapy, after DS identification. Rigosertib is a synthetic benzyl styryl sulfone analogue currently in phase III clinical trial for chronic myelomonocytic leukemia care (Garcia-Manero et al., 2016); it acts as a SMN2 splicing modifier, as suggested by a screening of small molecules carried out on C33A cell lines containing a SMN2-luciferase minigene reporter and SMA type I fibroblast cell lines (Son et al., 2019). Similarly, Indoprofene is a cyclooxygenase (COX) inhibitor, used as analgesic and anti-inflammatory drug (Paeile et al., 1989): it can increase SMN levels both in SMN2-luciferase cells and in type I SMA patient fibroblasts, and enhance the viability of a transgenic Type I SMA mouse model (Monani, 2000). Moreover, while showing also positive effects mediated by PDK1/AKT pathway on muscle wasting as demonstrated in aged mice (Kim et al., 2020), up to now it was never tested in clinical trials for SMA.
Cell Death and Degradation Pathways
The above-mentioned approaches are merely SMN-dependent strategies, but there are numerous studies suggesting that further cellular mechanisms can affect the severity of SMA. Indeed, DS and DR approaches represent a valid strategy to identify molecules also acting on SMN-independent pathways.
Recent studies suggest that the lack of SMN increases the cleavage of caspase-3, and triggers the apoptotic pathway and MN degeneration (Piras et al., 2017; Maretina et al., 2018; Schellino et al., 2018). In this context, the repositioning of the anti-epileptic drug Levetiracetam (trade name Keppra) decreased the cleaved-caspase three expression in SMA-iPSCs-MNs (Ando et al., 2019). Likewise, Bax and Bcl-xL proteins, respectively mediating anti- and pro-apoptotic pathways, seem to be influenced by SMN lack, with consequent downstream effects. The expression levels of Bax are significantly increased in the spinal cord of SMA mice, and the overexpression of Bcl-xL increases SMN-reduced MN survival (Garcera et al., 2011) and can extend SMA mice lifespan (Tsai et al., 2006; Tsai et al., 2008). Moreover, a decrease in the levels of Bcl2 in postmortem spinal cord from SMA I fetuses and SMAΔ7 mice was reported (Soler-Botija et al., 2003; Tsai et al., 2008; Piras et al., 2017). Based on this evidence, some authors proposed the repositioning of the water extract of Liuwei dihuang (LWDH-WE): despite not being FDA approved, it is a herbal formula widely used in the traditional Chinese medicine as treatment for kidney and liver disorders, asthma and geriatric diseases (Sangha et al., 2012; Tseng et al., 2014). When tested on Parkinson’s disease (PD) mouse models, it improved their motor activity, suggesting its use also for SMA treatment (Tseng et al., 2014; Tseng et al., 2017). Indeed, LWDH-WE was able to attenuate SMN deficiency-induced down-regulation of Bcl-2 and decreased cytosolic cytochrome c and cleaved caspase-3; the drug also counteracted cell death in NSC34 cells thanks to its SMN-promoting and antiapoptotic activities (Tseng et al., 2017).
Moreover, the ubiquitin/proteasome system is also altered in SMA, due to SMN lack (Powis et al., 2016). DS-based comparative proteomics revealed a significantly decrease of ubiquitin-like modifier activating enzyme 1 (UBA1) level in SMA mice. Since SMN directly influences UBA1 level, and its overexpression in SMA mice improves motor functions and increases their survival (Wishart et al., 2014; Powis et al., 2016), several works suggest to pharmacologically modulate its levels to influence SMA progression (Patten et al., 2014; Maretina et al., 2018). On the other hand, by using repositioning strategy involving the use of proteasome inhibitors, it was showed that the chemotherapy drug Bortezomib blocks SMN degradation in peripheral tissues and improves motor functions in SMAΔ7 mice (Kwon et al., 2011; Foran et al., 2016).
Other degradation pathways have been recently investigated. Wang and collaborators tested different drugs from a small library and demonstrated the involvement of both non-lysosomal (calpain 1/2) and lysosomal cysteine proteases (CTSL/CTSB) in degrading SMN proteins (Wang et al., 2019). In particular, establishing a versatile SMN2-GFP reporter cell line, they identified a novel role of the cysteine protease inhibitor Z-FA-FMK: this compound increased the level of functional SMN by inhibiting the protease-mediated degradation of both FL-SMN and delta7 SMN. Z-FA-FMK and the analogous compound E64days, previously used as Alzheimer’s disease (AD) and brain injury treatments, rescued MN degeneration in SMA, suggesting that inhibiting protease-mediated degeneration could be a potential therapeutic for SMA (Wang et al., 2019).
Finally, the repositioning of Edaravone and the Acetyl-L-carnitine (both drugs effective in oxidative stress modulation) has been also evaluated. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, showed efficacy in acute brain infarction and in ALS, and worldwide it is now approved for the treatment of both these pathologies in several countries (Jackson et al., 2019; Sun et al., 2019). Edaravone reversed oxidative stress-induced apoptosis and inhibited mitochondrial reactive oxygen species upregulation in SMA-iPSCs-derived spinal MNs (Ando et al., 2017). Instead, the L-carnitine is an anti-oxidant natural compound involved in cellular lipid peroxidation and known to inhibit mitochondrial damage and mitochondrial-mediated apoptosis both in vitro and in vivo (Bigini et al., 2002). Its exogenous administration in the acetylated form (Acetyl-L-carnitine, ALC), alone (Merlini et al., 2002, 2010; Wadman et al., 2020) or in combination with the valproic acid (Swoboda et al., 2010; Kissel et al., 2011; Wadman et al., 2020), was tested in two different SMA trials. However, on one hand, although the administration of ALC alone seemed effective, it did not allow to draw a final conclusion due to a too small cohort of SMA patients (Merlini et al., 2010); on the other hand, the combinatorial treatment of ALC with valproic acid compared to placebo did not reach significant improvements of motor function and muscle strength (Swoboda et al., 2010; Kissel et al., 2011; Wadman et al., 2020).
Mitochondria-Related Pathways
Mitochondria are organelles highly impacted at the very early stage of many neurodegenerative diseases, to the point to be considered as a possible unifying trait in the pathogenesis of these disorders (for an extended review see Stanga et al., 2020). Mitochondrial dysfunctions are reported as important pathological mechanisms in MN disorders (Patten et al., 2014). In SMA, mitochondrial impairment occurs in many tissues, both at the level of central and peripheral nervous system. This is probably due to the fact that i) mitochondria are particularly present in axons of neuronal cells, heart cells and skeletal muscles, and ii) SMN is ubiquitously expressed in the body. Indeed, SMN deficiency has been correlated to oxidative stress, mitochondrial dysfunction and deregulation of bioenergetic pathways. Therefore, treatments targeting mitochondria could represent a new promising solution not only for SMA, but also for many other disorders (Panuzzo et al., 2020).
Also in the case of mitochondria-related pathways, DR and DS approaches helped in the identification of promising drugs targeting mitochondria in SMA. Drugs targeting mitochondrial proteins and channels, such as the Na+/Ca2+exchanger (Annunziato et al., 2020), could be promising in the SMA treatment: the modulation of NCX2 (sodium calcium exchanger isoform 2) expression, by microRNA-206 administration in SMAΔ7 mice, delayed the disease progression and improved behavioral performance in mice (Valsecchi et al., 2020).
Another example is Olesoxime, originally evaluated for diabetes since able to promote the survival of the pancreatic β-cells, which are particularly rich in mitochondria. Interestingly, DR studies revealed important positive effects also for SMA. Indeed, Olesoxime is able to bind proteins of the outer mitochondrial membrane: there, it reduces its permeability when exposed to stress (Pruss et al., 2010) preventing, in turn, apoptosis by reducing release of pro-apoptotic factors and maintaining energy production (Kariyawasam et al., 2018). In this way, Olesoxime can preserve the integrity of MNs (Bordet et al., 2007). Moreover, Olesoxime showed neuroprotective and neuroregenerative effects in several animal models of motor nerve degeneration and in a transgenic mouse model of severe SMA (SmnF7/F7; NSE-Cre mice; mutant mice carrying a deletion of Smn exon seven directed to neurons): daily administrations of Olesoxime extended the survival of the treated mice (Bordet et al., 2010). Taken together, these data suggest that Olesoxime might maintain MN function and might be a therapeutic drug in the treatment of SMA. However, unfortunately, oral administration of Olesoxime in phase II trial for SMA (and phase III for ALS) failed, because it did not show sufficient efficacy (Bordet et al., 2007; Swalley, 2020).
Cytoskeleton Dynamics, Endocytic Pathway and Channel Modulators
The exploitation of modern DS and DR approaches also allowed to identify new treatments aimed at improving or maintaining integrity and functionality of SMA axons/NMJs. In this context, perturbations of cytoskeleton dynamics, known to impair SMA MN neurogenesis, have been studied (Bowerman et al., 2007); therefore, the overexpression or inhibition of cytoskeletal remodeling modulators represent intriguing therapeutic strategies.
One of the main actin dynamics regulator is the RhoA-ROCK pathway. ROCK is a serine-threonine kinases and a downstream effector of the RhoA small GTPase. The RhoA/ROCK pathway is mainly involved in shape regulation and neuronal cells movement (extension and branching), by acting on the cytoskeleton dynamics (growth, differentiation, and retraction) and critically influencing MN synapse functions. An aberrant upregulation of RhoA/ROCK pathway was observed in SMA neuronal cell models and in SMA patients fibroblasts (Bowerman et al., 2007; Bowerman et al., 2010; Nölle et al., 2011; Koch et al., 2018). Moreover, the profilin IIa upregulation (due to SMN-deficiency) causes an upstream dysregulation of RhoA/ROCK pathway (Maretina et al., 2018). This evidence suggests that ROCK inhibition can induce beneficial effects in SMA, as already demonstrated for several neurodegenerative diseases (Hensel et al., 2015), including SMA: indeed, Y-27632 and Fasudil are two RhoA/ROCK inhibitors, able to extend lifespan and improve motor functions in Taiwanese and SMN2B/− SMA mice (Bowerman et al., 2010; Bowerman et al., 2012; Bowerman, 2014; Hensel et al., 2017).
Hensel tested the combination of Y-27632 with an ERK pathway inhibitor, using an automated MN cell-bodies High-throughput detection screening on primary spinal cord cultures. The simultaneous inhibition of both pathways induced synergistic beneficial effects, significantly increasing MN viability, with respect to the single inhibition of one of them (Hensel et al., 2017).
Fasudil is a vasodilator drug, used for the treatment of cerebral vasospasm and delayed cerebral ischemic symptoms after aneurysmal subarachnoid hemorrhage. In Japan its use has been approved by the Pharmaceuticals and Medical Devices Agency since 1995 (Shibuya and Suzuki, 1993; Zhao et al., 2006) and is currently tested in clinical studies for disorders such as the Raynaud phenomenon, atherosclerosis and ALS (ROCK-ALS trial, NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Interestingly, Fasudil improved survival and promoted skeletal muscle development in SMA Smn2B/− mice, restoring the correct function of actin in MNs and supporting the formation of functional NMJs (Bowerman et al., 2012; Koch et al., 2018). Therefore, while Y-27632 is mainly used as an experimental biochemical tool in the study of ROCK signaling pathways, the ongoing clinical study of Fasudil for ALS patients could pave the way for the therapeutic evaluation of ROCK inhibitors in MN diseases by strengthening its DR in SMA field (Bowerman et al., 2017).
In addition, several SMA modifiers have been proposed as SMA therapy in combination with SMN-enhancing treatments. In particular, the contribution to SMA pathogenesis of Plastin 3 (PLS3) and Neurocalcin Delta (NCALD) proteins has been deeply evaluated. PLS3 is a Ca2+-dependent actin-binding protein, important for axonogenesis by increasing F-actin levels, and acting as positive regulator of endocytosis process. PLS3 is a powerful modifier of SMA: high levels of PLS3 have been reported in unaffected subjects carrying SMN1 mutations; moreover PLS3 overexpression increased cell survival, supported neurite overgrowth and restored impaired endocytosis in vitro and in vivo SMA models (Oprea et al., 2008; Hosseinibarkooie et al., 2016a; Alrafiah et al., 2018; Maretina et al., 2018). PLS3 overexpression, combined with the subcutaneous injection of ASOs, has been recently confirmed to improve the survival of SMA mice, motor functions and NMJ size. Since their beneficial synergistic effects were greater than those obtained with ASO administration alone, further DS studies are recommended to better define effective therapeutic combinatorial strategies (Hosseinibarkooie et al., 2016b; Kaifer et al., 2017).
Analogous positive results have been obtained by combining NCALD and ASO treatment (Riessland et al., 2017). Riessland’ group identified NCALD as a potential SMA modifier by Genome-Wide Linkage and Transcriptome-Wide differential expression analysis performed on samples of SMA type 1 patients and fully asymptomatic people, both carrying homozygous SMN1 deletions (Riessland et al., 2017). Furthermore, this work demonstrated the role of NCALD as negative regulator of endocytosis, since its knockdown effectively ameliorated these dysfunctions, supporting motor axon development and improving MN circuitry and NMJ presynaptic function in SMA models (worm, zebrafish, and mice) (Riessland et al., 2017). Given this evidence, DS and DR approaches confirmed their important contribution in revealing potential SMA disease modifiers involved in the modulation of different signaling pathways.
Another important example comes from Sleigh’s group, that in 2011, using a SMA type III C. elegans model, screened 1040 FDA-approved compounds of the NINDS library, to identify effective drugs targeting nerve/muscle activity (Sleigh et al., 2011). The results of this analysis suggested 4-aminopyridine (4-AP) as a candidate drug for SMA treatment: it is a dose-dependent potassium channel blocker, able to restore demyelinated neuron conductance and enhance synaptic transmission (by increasing pre-synaptic calcium influx into neurons). Administration of 4-AP rescued mutant C. elegans motility (Sleigh et al., 2011). Interestingly, 4-AP is the active ingredient of Fampiridine drug, also named Ampyra or Fampyra respectively in United States and Europe, and approved by FDA and EMA in 2011. It is already administered to multiple sclerosis and Lambert-Eaton myasthenic syndrome patients; but it has been also tested for spinal cord injury and PD (Jensen et al., 2011; Pérez Luque et al., 2015; Acorda Therapeutics Inc., 2017).
Therapeutic strategy of drug targeting signaling pathways involving Ca2+ influx modulation has been developed specifically to enhance muscle functions, as suggested by Citokinetics-Astellas ongoing trial of Reseldemtiv. Reldesemtiv, previously known as CY 5021 and CK-2127107, is a selective small-molecule fast skeletal muscle troponin activator, to date in trials for chronic obstructive pulmonary disease and ALS treatment (Shefner et al., 2018; Rossiter et al., 2019). It improves muscle contractility by increasing the affinity between troponin C and Ca2+, providing a therapeutic target for several skeletal muscle-related diseases, including SMA. Indeed, FDA attributed to Reldesemtiv the orphan drug designation as potential SMA therapeutic (Orphan designation: Reldesemtiv, Treatment of SMA, 2019). Its efficacy and tolerability in increasing muscle contraction force was demonstrated respectively in preclinical studies and phase one SMA trials (Calder et al., 2016). The following phase 2 trial (Identifier: NCT02644668) confirmed Reldesemtiv efficacy, when orally administered to patients with SMA types II, III, and IV, without observing dose-limiting safety or tolerability issues. A confirmatory phase 3 study is planned in the next years (Rudnicki et al., 2018; Ramdas and Servais, 2020).
Hormone Signaling Pathways
The negative effects of SMN-deficiency, although mainly involved in MN impairment, also extend, as multisystem pathologies, to other components of the motor circuits and modulators of skeletal muscle development and function (Zhou et al., 2016). Among the others, the pharmacological modulation of various hormones and their signaling pathways is being studied in order to minimize muscle atrophy and injury by acting on neuronal regeneration, peripheral reinnervation and muscle growth (Tuffaha et al., 2016; Lopez et al., 2019). In addition, these drugs, mostly already approved by the FDA, could quickly be suitable for clinical translation.
For example, the administration of hypothalamic and pituitary hormones [growth hormone (GH) and thyrotropin releasing hormone (TRH)] or synthetic glucocorticoids (e.g., prednisolone), administered in case of several neuromuscular diseases can exert beneficial effects on muscle functions (Wadman et al., 2020). Indeed, GH induces insulin-like growth factor-1 (IGF-1) secretion at muscle and liver level: then, IGF-1 stimulates the physiological growth of long bones and soft tissues and muscle development, whereas in case of trauma, it supports muscle regeneration by promoting myogenic differentiation and myocyte hypertrophy (Tritos and Klibanski, 2016). GH administration is already clinically employed in chronic renal failure, Turner and Prader-Willi syndromes, growth disorders; furthermore, it has been studied for its beneficial effects in enhancing nerve regeneration and muscle reinnervation, following peripheral nerve injuries (Tuffaha et al., 2016; Lopez et al., 2019). Therefore, a DR for these natural or synthetic hormones can be suggested for SMA treatment.
Indeed, several studies have shown that intracerebral injections of IGF-1 in SMA mice supported survival and improved motor functions, preventing muscle atrophy and preserving NMJs (Bosch-Marcé et al., 2011; Shababi et al., 2011; Tsai, 2012; Tsai et al., 2014; Wadman et al., 2020); however, similar results have not yet been obtained in SMA patients (Kirschner et al., 2014).
Beneficial effects of TRH tripeptide, Glu-His-Pro-NH2, have been also observed in SMA skeletal muscles (Wadman et al., 2020). The TRH, in addition to stimulate the release of thyroid-stimulating hormone, seems involved in neuronal activity by its association with serotonin (Tzeng et al., 2000). Its synthetic analogs, i.e., Protirelin and Taltirelin hydrate, have been used to treat epilepsy, spinal cord injury, spinocerebellar ataxia, and neonatal respiratory distress (Shimizu et al., 1989; Tzeng et al., 2000; Urayama et al., 2002). Since TRH has been found in the spinal MNs, its role in the pathogenesis of MN diseases has been suggested, even if a TRH-based trial in ALS was unsuccessful (Brooks et al., 1987). However, its beneficial effects on motor functions and electromyographic results of SMA type II/III patients have been reported in different studies (small groups of infants with SMA type I in children with types II and III) and in a clinical trial (Takeuchi et al., 1994; Tzeng et al., 2000; Wadman et al., 2020).
Also the repositioning of a synthetic glucocorticoid drug prednisolone, currently used for Duchenne muscular dystrophy treatment, has been recently suggested for SMA therapy (Hoolachan et al., 2019). Prednisolone is also employed for the treatment of a wide spectrum of inflammatory conditions, involving allergies, autoimmune disorders and cancers (Gambertoglio et al., 1980; Frey, 1987). The beneficial effects of intermittent dosage of prednisolone in recovering skeletal muscles from injury, promoting sarcolemmal repair and limiting atrophic remodeling have been showed in the treatment of Duchenne muscular dystrophy patients and also in other neuromuscular diseases models (such as acute muscle injuries and muscular dystrophy mouse models) (Beenakker et al., 2005; Matthews et al., 2016; Quattrocelli et al., 2017). Moreover, prednisolone promotes the expression of Klf15, a transcription factor involved in muscle homeostasis and deregulated in pre-symptomatic SMA mice: this can further justify the positive effects, observed in SMA mice, including the improvement of muscle trophism and functioning and lifespan extension. Thus, this suggests that further investigations on the possibility of prednisolone repositioning as SMA therapy (Walter et al., 2018; Hoolachan et al., 2019).
Nevertheless, the studies were not completely free of bias, and further evaluations are required, in particular regarding TRH (Wadman et al., 2020). However, SMA-specific DS and DR studies concerning such hormone-based therapies still seem to be promising, as suggested by different works on SMA models reporting the benefits of their administration and recommending further related screenings (Kato et al., 2009; Ohuchi et al., 2016; Wadman et al., 2020).
Neurotransmitters’ Modulation
Impairment of synaptic transmission has been also widely reported in SMA, suggesting that the pharmacological modulation of synaptic plasticity mechanisms could represent another therapeutic target and sustain the survival of MNs.
Different studies aimed at characterizing alterations of neurotransmission and abnormalities in SMA spinal circuitries both in vitro and in vivo models revealed hyperexcitability and loss of afferent proprioceptive synapses on MNs (Mentis et al., 2011; Gogliotti et al., 2012; Zhou et al., 2016; Bowerman et al., 2018), suggesting an impairment of glutamatergic synaptic transmission (Bowerman et al., 2018; Sun and Harrington, 2019). Impaired glutamate transport and excitotoxicity are involved in the pathogenesis of many MN diseases, as already well known for ALS (Rothstein et al., 1995). Such perturbations can also contribute to SMA disease, by enhancing MN death: thus, Riluzole and ceftriaxone, two different kind of drugs able to influence glutamatergic signaling and both FDA-approved for ALS (albeit with modest efficacy), have been proposed as repurposed compounds in clinical SMA trials. Riluzole exerts its anti-glutamatergic action, by enhancing the uptake of glutamate into astrocytes and by inhibiting its release blocking voltage-gated Na+ currents, thus preventing the neurotransmitter accumulation in the extracellular space and degeneration of MNs by excitotoxicity. When administered to SmnF7/F7; NSE-Cre mice SMA mice, Riluzole significantly attenuated disease progression (Haddad et al., 2003). Similarly, in a small phase I clinical study with enrolled SMA type I infants, Riluzole was proved to be safe and able to mitigate the natural course of the disease (Russman et al., 2003; Wadman et al., 2020). Although some aspects of Riluzole mechanism of action still need to be clarified in SMA, Dimitriadi and coll. proved that the drug acts on Ca2+-activated K channels, thus determining the improvement of MN functionality in several SMA models (Dimitriadi et al., 2013).
Ceftriaxone (a β-lactam antibiotic, also known as Rocephin) is used for the treatment of a number of bacterial infections (Koster, 1986; Schito and Keenan, 2005). Given its potential to reduce glutamate toxicity by modulating glial glutamate transporters (GLT1, EAAT2) (Calder et al., 2016; Ramalho et al., 2018), ceftriaxone efficacy has been tested in several MN disease models. Its administration in SMNΔ7 mice provided neuroprotective effects by modulating the glutamate transporter GLT1, the transcription factor Nrf2 and SMN protein levels, improving neuromuscular phenotype and increasing animal survival (Nizzardo et al., 2011). Therefore, also considering the safety and tolerability of ceftriaxone administration in ALS patients, the potential repositioning of β-lactam antibiotics as a treatment for SMA has been suggested (Nizzardo et al., 2011; Cudkowicz et al., 2014; Calder et al., 2016).
Another successful DR concerns the glutamate inhibitor Lamotrigine, commonly used for the treatment of various neuropsychiatric disorders and epilepsy. Its prolonged administration to adult type II and III SMA patients (Ng et al., 2008; Naguy and Al-Enezi, 2019) prevented the deterioration of motor functions for almost 5 years of treatment (Nascimento et al., 2010; Wadman et al., 2020).
Moreover, the imbalance in excitatory/inhibitory signaling have been also speculated in SMA. In particular, the enhancement of GABAergic neurotransmission in C. elegans SMA models was able to correct the locomotor dysfunctions (Wu et al., 2018). Moreover, in the work of Sleigh et al., a chemical library DS highlighted the rescuing of phenotypic dysfunction by Gaboxadol, a potent agonist of a specific extrasynaptic GABAA receptor subtype (Sleigh et al., 2011). Gaboxadol has been proposed for the treatment of insomnia (Mathias et al., 2005; Roth et al., 2010) and two neurological development disorders, Fragile X syndrome and Angelman syndrome (Identifier: NCT04106557), in which it improves behavioral and motor dysfunctions by enhancing GABAergic transmission (Cogram et al., 2019; Keary et al., 2020). Its repositioning for SMA treatment could be also suggested. Likewise, Gabapentin (Neurontin), a FDA-approved drug whit a molecular structure similar to GABA, acts by inhibiting calcium channels. Gabapentin is used for the treatment of different forms of neuropathic pain, for anxiety disorders and alcoholism (Field et al., 1997; Caraceni et al., 2004; Pfizer Inc., 2009; Moore et al., 2011; Levine et al., 2019). Considering the neuroprotective effect of gabapentin in nerve damage-induced chronic neuropathic pain (Wiffen et al., 2017), two different clinical trials were conducted enrolling SMA type II and III patients (Miller et al., 2001; Merlini et al., 2003). These trials confirmed a significant gabapentin-dependent improvements in the so-called “leg megascore” (calculated by summing knee flexion, knee extension and foot extension scores) and muscle strength, recommending further studies to evaluate prolonged administration of the drug in SMA patients (Merlini et al., 2003; Wadman et al., 2020).
Neuromuscular Junction Stabilization
The NMJ represents the interaction core between the motor nerve terminal and the skeletal muscle fiber. SMN, neurotrophic factors (Stanga et al., 2016), “auxiliary proteins” (as neuregulins, dystrophin-glycoprotein complex, ErbB receptors, Wnts), miRNAs (as miRNA-9 and miRNA-206) and agrin (a heparan sulfate proteoglycan) seem to contribute to maturation and/or stabilization of NMJs (Valsecchi et al., 2015; Boido and Vercelli, 2016; Boido et al., 2018; Guarino et al., 2020). Given this evidence, DS and DR approaches have been proposed to improve NMJ development/stabilization in SMA patients.
To this purpose, Amifampridine, a FDA-approved drug used to treat Lambert-Eaton myasthenic syndrome, is a promising compound. Its efficacy has been also tested in Myasthenia Gravis (MG) patients: indeed, although Amifampridine acts on presynaptic terminal blocking K+ channels regulating ACh release, its positive effects were also observed in postsynaptic disorder such as MG (Bonanno et al., 2018). Since NMJs show both presynaptic and postsynaptic defects in SMA, Amifampridine can be considered a possible candidate to improve overall conditions of SMA patients (Hoolachan et al., 2019): to this aim, the recruiting-phase II clinical trial NCT03781479 is currently ongoing (Maddison et al., 1998; Hoolachan et al., 2019).
Similar effects are expected from Tideglusib, a glycogen synthase kinase 3 beta (GSK-3β) inhibitor, not yet FDA-approved, mainly investigated for AD and progressive supranuclear palsy treatments (Lovestone et al., 2015; Stamelou et al., 2016). However, Tideglusib was also proposed for a clinical trial on congenital myotonic dystrophy (Identifier NCT02858908, completed in January 2018) in whom excellent results were obtained with improvement in muscle growth (Horrigan et al., 2018); moreover, another trial is ongoing (Identifier NCT03692312). In addition, an image-based screening of chemical libraries showed that GSK-3β chemical inhibitors and short hairpin RNAs increase SMN protein levels and block cell death (Makhortova et al., 2011). Altogether, these data suggest that Tideglusib, likewise Amifampridine, could be a valuable drug candidate for SMA treatment (Hoolachan et al., 2019).
DS also allowed the development and identification of myostatin-follistatin modulators. Myostatin, a member of the transforming growth factor β (TGFβ) superfamily of growth factors, is primarily expressed by skeletal muscle cells, where acts as a negative regulator of muscle mass. Follistatin binds and inhibits myostatin and other members of the TGFβ family, contributing to the correct balance of muscle protein metabolism (Lee and McPherron, 2001). Dysregulation of myostatin-follistatin signaling pathway has been studied in several neuromuscular diseases, including SMA (Mariot et al., 2017; Shorrock et al., 2018). Myostatin expression is impaired in serum and muscle biopsies of SMA patients (Mariot et al., 2017), and its inhibition with intramuscular injection of AAV1-follistatin or muSRK-015P monoclonal antibody ameliorated muscle mass functions in different models of SMA mice (Feng et al., 2016; Long et al., 2019). Therefore, preventing myostatin activation has been widely suggested as therapeutic approach in SMA. To this aim, Scholar Rock developed several laboratory-made monoclonal antibodies against myostatin: by carrying out a phenotypic screening on a dexamethasone-induced muscle atrophy murine model, the SRK-015 antibody was proved as able to fully prevent muscle function loss (Pirruccello-Straub et al., 2018). Given this evidence, it has been tested in two groups of SMNΔ7 mice (which received different pharmacologic restoration of SMN, to reflect early or late therapeutic intervention) leading to positive effects by increasing muscle mass and function (Long et al., 2019). The efficacy of SRK-105 is currently evaluated in a phase 2 trial (TOPAZ, Identifier: NCT03921528) involving type II and III SMA patients (see Scholar Rock Reports First Quarter, 2020). Finally, another FDA-approved drug, successfully repositioned for SMA therapy, is Salbutamol (also known as albuterol; brand name Ventolin), widely used to reduce bronchospasm in some respiratory pathological conditions (i.e., asthma and chronic obstructive pulmonary disease). As a short-acting compound with selective agonist activity on β2-adrenergic receptors, Salbutamol has been evaluated for its possible beneficial effects on impaired SMA neuromuscular synaptic transmission and NMJ functions. It has been shown that Salbutamol determines a rapid and significant increase of FL-SMN mRNA and protein in SMA fibroblasts, predominantly by promoting exon seven inclusion in SMN2 transcripts (Angelozzi et al., 2008): these results were further confirmed in peripheral blood leukocytes of SMA type II–III patients (Tiziano et al., 2010). Moreover, when administered to SMA type II and III patients, Salbutamol induced an overall improvement of motor performances and lung/inspiratory functions and a reduction of the perceived fatigue, suggesting further studies on the molecular mechanisms underlying these effects and its influence on muscles and NMJs (Pane et al., 2008; McCullagh et al., 2011; Giovannetti et al., 2016; Khirani et al., 2017; Frongia et al., 2019; Wadman et al., 2020).
CONCLUSION
The traditional process for drug discovery (starting from preclinical testing to several clinical trial phases) is a time and money consuming procedure that, possibly, after 10–15 years could bring to a new potential molecule for the targeted disease (Kraljevic et al., 2004). In the last years, DS and DR became powerful strategies for finding new molecules and/or for giving a new birth to drugs already in use for other purposes. For sure, the development of potent computational approaches, the collection of omics data (genomics, proteomics or metabolomics) and the availability of databases, in combination with new biological experimental approaches, represent the key for DS and DR success and exploitation worldwide. Altogether, DS and DR represent a challenging field, which requires constant technological update but is extremely promising.
In this work, we reviewed both the models used for the screenings and the molecules identified by DS/DR in the context of SMA; exploring these approaches could represent a potential interesting market, especially for rare disorders such as SMA.
Moreover, interestingly, we highlighted that the molecules until now identified by DS/DR are involved and act on a limited number of molecular pathways (Figure 2). This indirectly contributes to shed light on the pathogenesis of SMA, clarifying which molecular cascades, organelles and cellular structures (including cell degradation, cytoskeletal dynamics, neurotransmitter and channel modulation) are particularly affected by SMN lack, and may represent therapeutic targets in combination or alternative to the SMN-dependent approaches.
Unexpectedly, pathways involving the transcription factor nuclear factor-κB (NF-κB), calpains and autophagy are not still be directly targeted by DR/DS studies, although they are known to be strongly related to SMA pathogenesis and their direct modulation already demonstrated to be effective. Indeed, NF-κB, it is known to play a fundamental role in the survival of neuronal cells (Bhakar et al., 2002) and is able to induce the release of different neurotrophic factors which are decisive for the survival of cultured MNs (Mincheva et al., 2011). In severe SMA mice, it has been observed that NF-κB is less expressed and its inhibition, by lentiviral delivery, causes the decrease of SMN protein levels (Arumugam et al., 2018). Calpains, a family of calcium-dependent proteases, are able to regulate the expression of SMN protein by direct cleavage. This has been observed both in muscle cells (Walker et al., 2008; Fuentes et al., 2010) and in MNs cells (de la Fuente et al., 2020): indeed, calpains’ activation induces SMN cleavage in MNs, while its knockdown or inhibition increases SMN level and prevents neurite degeneration. In vivo, the treatment with calpeptin, a calpain inhibitor, improves both lifespan and motor function of SMA mice (de la Fuente et al., 2019). Interestingly, calpain levels and activity are linked to autophagy, a finely tuned process which is fundamental for the maintenance of cellular homeostasis and which has already been observed as altered in SMA (Piras et al., 2017). Calpain reduction by lentiviruses in SMA cultured MNs can induce the expression of LC3-II, a well-known marker of autophagy (Periyakaruppiah et al., 2016). The activation of autophagy has also been observed after SMN reduction, underlining its important role in SMA pathophysiology (Garcera et al., 2013; Custer and Androphy, 2014). Although, current DS/DR studies did not yet identify molecules or drugs directly acting on NF-kB, calpain and autophagy.
Furthermore, the research field of biomarkers, besides supporting diagnosis it is important i) for evaluating the efficacy of new molecules, and ii) for revealing both specific and cross-disease pathological mechanisms: for this reason, it is largely exploited for neurodegenerative disorders such as SMA, ALS, and AD (Lanni et al., 2010; Stanga et al., 2012; Kariyawasam et al., 2018; Stanga et al., 2018a; Stanga et al., 2018b).
However, besides the positive aspects deepened in this review, it is evident that DS/DR methodologies still need to be further improved. Indeed, sometimes, the promising molecules identified in preclinical studies then fail to assure an equivalent efficacy in human patients or, if effective, can encounter difficulties in the patenting phase (Cagan, 2016; Mohs and Greig, 2017; Pushpakom et al., 2018): a higher methodological standardization together with more stringent parameters could further implement the validity and the success of these powerful screening approaches.
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The cognitive impairment caused by cerebral ischemia/reperfusion is an unsolved problem in the field of international neural rehabilitation. Not only ameliorates the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment, but levodopa also improves the symptoms of neurological deficits in rats with global cerebral ischemia-reperfusion injury. However, Levodopa has not been widely used as a brain protection drug after cardiopulmonary resuscitation, because of its unclear repair mechanism. Levodopa was used to study the neuroplasticity in the hippocampus of global cerebral ischemia/reperfusion injury rat model, established by Pulsinelli's four-vessel occlusion method. Levodopa was injected intraperitoneally at 50 mg/kg/d for 7 consecutive days after 1st day of surgery. The modified neurological function score, Morris water maze, magnetic resonance imaging, Nissl and TH staining, electron microscopy and western blot were used in the present study. The results showed that levodopa improved the neurological function and learning and memory of rats after global cerebral ischemia/reperfusion injury, improved the integrity of white matter, and density of gray matter in the hippocampus, increased the number of synapses, reduced the delayed neuronal death, and increased the expression of synaptic plasticity-related proteins (BDNF, TrkB, PSD95, and Drebrin) in the hippocampus. In conclusion, levodopa can improve cognitive function after global cerebral ischemia/reperfusion injury by enhancing the synaptic plasticity in the hippocampus.

Keywords: levodopa, hippocampus, global cerebral ischemia reperfusion injury, structural synaptic plasticity, cognitive function


INTRODUCTION

Sudden cardiac arrest is caused by organic diseases of the heart or other reasons that stop the ejection function of the heart, and the arterial pulsation, which in turn interrupts the blood circulation (Myerburg and Goldberger, 2017). This causes loss of consciousness and will subsequently result in serious hypoxia and ischemia of vital organs such as the heart, brain, and lungs. With the improvement of emergency treatment, the survival rate has increased up to 12%, but the rate of survival with good neurological function is <10% (Grasner et al., 2016; Writing Group et al., 2016). More than 45–70% of patients with global cerebral ischemia/reperfusion injury (GCI/R injury) have cognitive impairments, while serious cases among them are in persistent vegetative states (Fujioka et al., 1994; Lee et al., 2015), and milder cases exhibit memory dysfunctions such as the retrograde amnesia and amnesia (Benjamin et al., 2018). Cognitive impairment after the cardiopulmonary resuscitation, especially learning and memory dysfunction, is a major problem that needs to be urgently elucidated in the field of brain functional rehabilitation after cardiopulmonary resuscitation.

So far, the accepted treatment measures for the cerebral resuscitation are to minimize the time of early circulation interruption and cerebral hypoperfusion as well as cryotherapy and hyperbaric oxygen therapy (Geocadin et al., 2017; Ge et al., 2019). In 2017, the American Neurological Society issued clinical practice guidelines on reducing brain injury after cardiopulmonary resuscitation in which the main treatment option is still cryotherapy (Geocadin et al., 2017). Despite this, no brain protection drugs have so far proven to be effective (Geocadin et al., 2017). In recent years, NMDAR blockers were extensively studied for the repair of cognitive impairment caused by neuropsychiatric diseases such as stroke and Alzheimer's disease. However, due to their severe neurological side effects, most NMDAR blockers (such as MK801) ended in the failures related to the clinical studies (Zheng et al., 2017). At present, there are few brain protection drugs suitable for the early-stage treatment after clinical brain resuscitation. The development of brain protection drugs after cardiopulmonary resuscitation has thus become a hot spot within the international neuroscience research field.

The brain is the organ most sensitive to ischemia and hypoxia. Ischemia and hypoxia followed by cardiac arrest for more than 15 min usually lead to primary damage, aggravated structural damage, and functional damage to the brain tissue after the restoration of blood flow under certain conditions, that is, GCI/R injury (Schultz et al., 1996).

The central nervous system demonstrates selective vulnerability to the factors of ischemia and hypoxia. Even after a short period of ischemia, certain brain regions will be damaged. The hippocampus, which is closely related to cognition and memory, is one of the brain regions most vulnerable to ischemic damage (Cho et al., 2019).

Levodopa, as a precursor of dopamine, can penetrate the bloodbrain barrier, while dopamine itself cannot. Levodopa, therefore, is usually used to increase dopamine concentrations in the treatment of Parkinson's disease. Levodopa can improve learning and memory deficits in a mouse model of Alzheimer's disease (Ambree et al., 2009). Previous studies have shown that levodopa or piribedil can significantly improve the unconsciousness of patients with persistent coma after resuscitation (Lixu Liu and Shi, 2006). Moreover, levodopa can effectively improve the learning and memory of rats with cerebral ischemia/reperfusion injury (Wang et al., 2017) and reduce the death of hippocampal neurons caused by glucose and oxygen deprivation and reoxygenation injury (Wang et al., 2016). However, it is still unclear how levodopa repairs the cerebral ischemia/reperfusion injury. Currently, levodopa administration is mainly used as a conventional therapy for the supply of dopamine to the brain of patients with Parkinson's disease. But it is not yet used as a routine drug for the protection of the brain after CPR.

Although the hippocampus does not contain dopaminergic neurons and cannot produce dopamine, the fiber bundles can project dopamine from dopaminergic neurons and locus coeruleus (LC) in the ventral tegmental area (VTA) of the midbrain to the ventral and dorsal sides of the hippocampus (Fanselow and Dong, 2010; Kempadoo et al., 2016; McNamara and Dupret, 2017; Duszkiewicz et al., 2019). Dopamine, whether being projected on the ventral or dorsal side of the hippocampus, is involved in the regulation of learning and memory functions in the hippocampus (Tuesta and Zhang, 2014; Hagena et al., 2016; Kempadoo et al., 2016; Duszkiewicz et al., 2019). After dopamine innervation of the cerebral cortex neurons is lost, the length of the basal dendrites of the fifth-layer pyramidal neurons in the pre-frontal lobe will be shortened, and the density of dendritic spines in the pre-frontal and hippocampal CA1 neurons decreased (Wang and Deutch, 2008; Kasahara et al., 2015).

Our hypothesis is that the administration of levodopa can restore the dopamine content in the hippocampus, which improves the plasticity of neurons and repairs the learning and memory functions after GCI/R injury. In this study, we tried, from multiple perspectives, including behavioral science, magnetic resonance imaging, morphology of neurons and synapses in the hippocampus, and expression of molecules related to synaptic plasticity, to explore the repairing mechanism of levodopa to the learning and memory functions after GCI/R injury. We explored a new approach for the rehabilitation of brain function after cardiopulmonary resuscitation.



METHODS


Experimental Animals

The animal experimental protocol (AEEI-2018-096) was approved by the ethics committee of Capital Medical University. Male Sprague-Dawley rats, weight 250–300 g, age 7–8 weeks, SPF (Specific pathogen Free) grade, were purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd. [license number: SCXK (Beijing) 2012-0001] and raised in the Animal Laboratory at the Chinese Academy of Rehabilitation Sciences. The random number table method was used to divide the experimental animals into three groups, i.e., the sham-operated group, the GCI/R injury model group (the model group), and the levodopa administration group.



Preparation of GCI/R Injury Model

A modified Pulsinelli's four-vessel occlusion method was used to prepare the model. The bilateral vertebral arteries of the rats were electrocoagulated, and the bilateral carotid arteries were clamped with non-invasive vascular clamps for 20 min before the vascular clamps were released (Wang et al., 2019). The above method was used to prepare models in the model group and the levodopa administration group. In the sham-operated group, the bilateral vertebral arteries were not electrocoagulated and the common carotid arteries were not clamped, but other procedures were the same as the model group.



Levodopa Intervention

Rats in the levodopa administration group were intraperitoneally injected with levodopa (50 mg/kg/d) for 7 consecutive days after the model was established. Levodopa (Sigma-Aldrich) and benzhydrazine hydrochloride (Sigma-Aldrich) were dissolved in normal saline at 4:1 (Levodopa is administered with benzhydrazine hydrochloride to prevent its peripheral conversion to DA.). Rats in the sham-operated group and model group were injected with an equal dose of normal saline.



Modified Neurological Severity Scores

The modified neurological severity scores(mNSS) are made up of motor, sensory, reflex, and balance tests. Neurological function was graded on a scale of 0–18 (normal score, 0; maximal deficit score, 18). The mNSS test was performed at 3, 7, and 14 days after global cerebral ischemia/reperfusion. This study used the double-blind method for the scoring to achieve the final average value.



Morris Water Maze

The water maze (Hong Kong Friends Honesty Life Sciences Co., Ltd., model XR-XM101) consists of a circular water tank with a diameter of 160 cm. The pool was divided into four quadrants. Each rat received three training trials per day for 5 consecutive days. The time to search for hidden platforms was 120 s. Once the rat found the submerged platform, it was allowed to stay on it for 10 s, and the time of absconding was recorded. On the 6th day, the platform was removed for space exploration experiment, and the rats swam freely for 120 s. The time of staying in the target quadrant and the frequency of rats crossing the platform were recorded.



Magnetic Resonance Examination


MRI Scan

Magnetic resonance imaging was performed on rats in each group on 3, 7, and 14 days after GCI/R injury. The equipment was 7.0 T MRI scanner (PharmaScan, Bruker Biospin, Rheinstetten, Germany). T2WI and DTI of rat brain were acquired, and the specific series of parameters are as follows. T2: The sequence type was RARE Slice thickness: 0.3 mm, Gap: 0 mm, Slice: 90 layers, TR = 10,700 ms, TE = 36 ms, Flip Angle = 180°, the phase-encoding direction was from left to right, and the number of superimposed layers was four times. DTI: The sequence type was single-shot EPI (echo-planar imaging), Slice: 60 layers, TR = 15,000 s, TE = 22.4 ms, flip angle = 90°, b value 1 = 0, b value 2 = 1000 s/mm2, 30 gradient directions, the phase-encoding direction was from left to right, and the number of superimposed layers was one time.



Voxel-based Morphometry (VBM) Analysis

The VBM was used to analyze the magnetic resonance images of the rat brain structure. The function of Segment in the SPM12 official software based on the MATLAB9.3 platform was used to perform color unevenness correction, spatial standardization, and tissue segmentation as well as to divide the entire image into gray matter, white matter, cerebrospinal fluid, and non-cerebral voxels. After segmentation, the voxel size was 0.125 × 0.125 × 0.125 mm3. The segmented gray matter image modulated by the deformation field was used to compare the gray matter density between groups. A Gaussian kernel with a full width at the half maximum (FWHM) of 0.3 mm was used for spatial smoothing to increase the effectiveness of the parameters and to reduce the noise caused by registration errors. The two-sample t-test was used to compare different voxel groups, and a method based on the random field theory was used to correct for multiple comparisons. The threshold value was P = 0.05, and a cluster size of more than 200 was regarded as a statistically significant difference. ITK-SNAP3.8.0 and MIPAV8.0.2 were used to display the results of analysis.

In order to clearly display the anatomical position of the difference zone, we used the MIPAV8.0.2 software to carry out three-dimensional drawing of the difference zone in the hippocampus. First, the Marching Cube algorithm was used to extract the surface of the rat brain tissue, the surface of the difference-side hippocampus, and the surface of the difference zone. Then, the surface of the brain tissue and the surface of the hippocampus were set to be translucent to show the relative spatial position between the difference zone and the hippocampus.



Analysis of DTI Data

In the MRI laboratory, two experimental staffs collected diffusion tensor imaging (DTI) data, selected the largest area of the hippocampus in the rat coronal MRI image, and took bilateral hippocampus as the regions of interest. FA was calculated in the regions of interest in the hippocampus, and the average values of both sides were analyzed.




Nissl and Tyrosine Hydroxylase (TH) Staining

A total of 3, 7, and 14 days after reperfusion, the perfusion fixation with paraformaldehyde was carried out for six rats in each group. Brains were taken out and placed in 4% paraformaldehyde solution in a 4°C refrigerator for 24 h. Dehydration and embedding were carried out according to the conventional method to make wax blocks of hippocampus tissues. A total of 3um paraffin sections were made and treated with Nessler staining. The sections were stained with aniline blue staining solution for 5–10 min. After being washed with distilled water, they were mounted transparently. At the same time, paraffin sections were immunostained with the anti-TH antibody (1:1,000, Wuhan Servicebio Technology Co., Ltd., China). The TissueGnostics tissue analysis system (TissueGnostics, Vienna, Austria) was used to scan the stained pathological sections.

For Nissl staining and immunostaining, serial sections from Bregma −2.2 to −4.2 mm were selected at intervals of every sixth section from each rat for quantification. The CA1 and CA2 areas of the hippocampus were examined at 20× magnification using Tissue FAXS Viewer software (TissueGnostics, Vienna, Austria). The number of survival neurons with intact membranes and nuclei in the hippocampal CA1 and CA2 regions were manually counted within three non-overlapping fields under the area 220 × 350 μm2. There were four rats in each group and three sections were chosen from each rat. The number of survival neurons was calculated as the average neuron number per field on each section.

For TH immunohistochemical stained sections, the average optical density (OD) was quantified by measuring intensity in hippocampus using Image J software. Data were analyzed from three sections of one sample, and there were four samples in each group.



Synapse Ultrastructure

A total of 7 and 14 days after reperfusion, perfusion fixation was carried out for the rats in each group. Specimens of hippocampal CA1 region 1 mm3 in size were taken out quickly and placed in 2.5% glutaraldehyde for 2 h and washed with 0.1 mol/L PB buffer. The specimens were then fixed with 1% osmium acid solution for 2 h and washed, dehydrated with graded ethanol, and embedded with resin. Tissue sections were made and stained with uranyl acetate and lead citrate. Finally, under the HT7700 Transmission Electron Microscope (HT7700, Hitachi, Japan), ultrastructural pictures of neuronal synapses in the hippocampal CA1 region were collected, the number of synapses at 6,000× magnification, and the number of single synaptic vesicles at 20,000× magnification was counted. Statistical analysis was then conducted.



Western Blot

After decapitation of the rat, the hippocampus tissue was quickly taken out, weighed, added with cell lysate, and ground. It was then thoroughly homogenized and centrifuged, and treated with protein electrophoresis. The extracted protein was separated using 10% SDS-PAGE, and then electro-transferred to a polyvinylidene fluoride membrane. Subsequently, at room temperature, the membrane was blocked in 5% skim milk powder dissolved in TBST for 1 h. It was then incubated with rabbitanti-caspase 3 antibody (1:1,000, Cell Signaling Technology), anti-bax antibody (1:1,000, Cell Signaling Technology), and anti-bcl2 antibody (1:1,000, Cell Signaling Technology) overnight at 4°C. The membrane was then incubated with IRDye-conjugated goat anti-rabbit antibody (Thermo Scientific, USA) for 2 h to develop color. The BIO-RAD confocal laser scanning imaging system (Bio-Rad Laboratories, Inc, USA) was used for scanning. The Image J software was used to obtain the gray value of the target band for statistical analysis.



Statistical Analysis

SPSS22.0 software was used for the statistical analysis of the data in the present study. GraphPad prism7 software was used to make statistical graphs. The data are expressed as mean ± standard deviation, and we tested that whether the data meet normal distribution and homogeneity of variance. One-way analysis of variance (ANOVA) was used to compare the data between the three groups at the same time, repeated measures analysis of variance was used for the analysis of modified NSS scores and the escape latency in the water maze. If the variances were homogeneous, the LSD test was used as a post-hoc test. If the variances were not homogeneous, the Dunnett's T3 test was used as a post-hoc test. In this study, a significance level of 0.05 was adopted.




RESULTS


Levodopa Reduced the Neurological Function Score of Rats After GCI/R Injury

At 3, 7, and 14 days after reperfusion, the mNSS scores of the sham-operated group, the GCI/R injury model group, and the levodopa administration group was recorded (Figure 1A). The scores were statistically compared using two-way analysis of variance. The variance was not homogeneous (p < 0.001), and there were differences between the three groups [F(8, 57) = 45.366; p < 0.001]. The Dunnett's T3 test was used as a post-hoc test. The mNSS scores of the sham-operated group were all 0 points. The results showed that, compared with the mNSS scores at 7 and 14 days, the mNSS score at 3 days was the highest (p < 0.001), and the mNSS scores at 7 and 14 days continued to decline (Figure 1A). Compared with the sham-operated group and the levodopa administration group, the mNSS score of the GCI/R injury model group was the highest (p < 0.001), and the mNSS score of the drug administration group was lower than that of the model group (p < 0.001).


[image: Figure 1]
FIGURE 1. Levodopa improves cognitive impairment after GCI/R injury. (A) mNSS of the rats at 3, 7, and 14 days after GCI/R injury in each group. (B) Experimental timeline for Morris water maze. Administration of levodopa 7 consecutive days after GCI/R injury produces learning and memory recovery in rats as assessed in Morris water maze. Each rat received three training trials per day for 5 consecutive days. On the 11th day, the place navigation was carried out. Next day, the platform was removed for spatial probe trial. (C) Swimming paths of the rats in each group during the Morris water maze. (D) The escape latency during the training period of 5 consecutive days. (E) The time spent in target quadrant. (F) The frequency of crossing platform. Data are shown as means ± SD. ##p < 0.01 vs. the sham-operated group, **p < 0.01 vs. the GCI/R model group. #p < 0.05 vs. the sham-operated group, *p < 0.05 vs. the GCI/R model group.




Levodopa Improved the Cognitive Function of Rats With GCI/R Injury

In the test of place navigation, the data of 5 consecutive days of escape latency in the sham-operated group, the GCI/R injury model group and the levodopa administration group was analyzed by two-factor repeated measures ANOVA, and the results did not meet the test of sphericity (p = 0.001). After applying the Greenhouse-Geisser correction, it was found there were differences between groups at different time points [F(14, 100) = 26.704, p < 0.001]. Multivariate analysis of variance showed that compared with the sham-operated group and the drug administration group, rats in the model group had the longest escape latency (p < 0.001), and rats in the drug administration group had shorter escape latency than the model group (p < 0.001), though it was still higher than the model group (p < 0.001) (Figure 1D).

In the space exploration experiment, the data of the time of rats spending in the target quadrant and the frequency of rats crossing the platform met the homogeneity of variance (p > 0.05) (Figure 1E). Single-factor analysis of variance was used for statistical analysis, and the LSD test was used as a post-hoc test. The results showed that there were statistical differences between the three groups during the time rats spent in the target quadrant and the frequency of rats crossing the platform [F(2, 20) = 12.948, p < 0.001; F(2, 20) = 14.379, p < 0.001]. The time of rats at the target quadrant and the frequency of rats crossing the platform in the model group were less than those in the sham-operated group (p < 0.001). The time of rats at the target quadrant and the frequency of rats crossing the platform in the levodopa administration group were more than those in the model group (p < 0.001) (Figure 1F). The swimming trajectory of rats in the space exploration test showed that rats in the model group appeared mainly to swim along the periphery of the pool and the time of rats spending in the target quadrant was less, while the swimming trajectories of rats in the sham-operated group and the drug administration group were very close within the target quadrant around the platform (Figure 1C).



Levodopa Improved the Integrity of White Matter of Rat Hippocampus After GCI/R Injury

DTI can reflect the diffusion of water molecules and the integrity of white matter fiber bundles. In this study, MRI-DTI was used to detect the FA value of hippocampus in three groups at 3, 7, and 14 days after reperfusion injury. One-way analysis of variance was used to compare the FA values of rats in the sham-operated group, the model group, and the drug administration group at the same time. The results of the three groups at three time points showed homogeneity of variance (p > 0.05), and the LSD test was used as a post-hoc test. The FA values at different time points were different between the sham-operated group, model group, and drug administration group [F(2, 16) = 30.383, p < 0.01; F(2, 12) = 42.802, p < 0.01; F(2, 17) = 9.791, p < 0.01], and the FA values of the drug administration group at three time points were higher than those of the model group (p < 0.01; p < 0.01; p < 0.05) (Figure 2A).


[image: Figure 2]
FIGURE 2. MRI imaging data. (A) Comparison FA value in hippocampus among groups. The mean gray matter density of hippocampal CA1 (B) and CA2 (C) subfield. (D) A three-dimensional (3D) rendering of regions with significant differences in gray matter density among groups. Data are shown as means ± SD. ##p < 0.01 vs. the sham-operated group, **p < 0.01 vs. the GCI/R model group. #p < 0.05 vs. the sham-operated group, *p < 0.05 vs. the GCI/R model group.




Levodopa Improved the Gray Matter Density of Rat Hippocampus After GCI/R Injury

This study used voxel-based morphology to analyze the changes of each voxel in the MRI images of hippocampal CA1, CA2, CA3, and DG subregions on the third, seventh, and 14th days after reperfusion injury. One-way analysis of variance was used to determine the gray matter density of hippocampal CA1, CA2, and CA3 subregions in three groups. The gray matter densities of hippocampal CA1 and CA2 subregions in the model group were higher than those in the sham-operated group [F(2, 15) = 6.849, p < 0.01; F(2, 15) = 3.353, p < 0.05], but lower than those in the drug administration group (p < 0.01; p < 0.05) (Figures 2B,C). The gray matter densities of the CA1 and CA2 subregions in the drug administration group were not different from those in the sham-operated group. There were no differences in the gray matter densities of the hippocampal CA3 and DG subregions between the three groups [F(2, 15) = 4.008, p > 0.05; F(2, 15) = 1.900, p > 0.05]. However, we found out a different region of voxel 249 in the hippocampal CA3 subregion and detected that the average gray matter density of this region in the drug administration group was 1.02, in the control group it was 1.023, and in the model group it was 1.072 (Figure 2D). The results of the VBM study showed that the gray matter density of the hippocampus after levodopa administration was closer to that of the sham-operated group. The overall repair was significant in the hippocampal CA1 and CA2 subregions and the partial repair was significant in the hippocampal CA3 subregion.



Levodopa Improved the Neuronal Morphology of Rat Hippocampus After GCI/R Injury

In the sham-operated group, pyramidal cells in the hippocampus were arranged neatly and densely, with clear nucleoli, abundant cytoplasm, and complete cell morphology and structure. There were numerous deep-colored Nissl bodies with large particles. Compared with the sham-operated group, the pyramidal cells in the hippocampus of rats in the model group were arranged disorderly, the number was reduced, the structure was indistinct, the neurons showed nuclear shrinkage, the Nissl bodies in the cytoplasm were light-colored with the reduced number, the neurons were vacuolated significantly, and some pyramidal cells indicated neuronal damage in the hippocampus. The neuronal morphology of the levodopa administration group was closer to that of the model group, the neurons were arranged more neatly, and the nuclear shrinkage of the neurons was reduced.

The hippocampal CA1 region was selected under 20× objective lens for neuron counting. The sham-operated group, the model group, and levodopa administration group were counted at the same time, and the result was analyzed by single factor analysis of variance. The result showed that 3, 7, and 14 days after reperfusion, neuron counts in the hippocampus of the three groups all showed homogeneity of variance (p > 0.05), and the LSD test was used as a post-hoc test. There were statistical differences between the three groups [F(2, 9) = 51.947, p < 0.001; F(2, 9) = 75.078, p < 0.001; F(2, 9) = 72.771, p < 0.001], the number of normal neurons in the global ischemia/reperfusion injury model group and the levodopa administration group were significantly smaller than that in the sham-operated group (p < 0.01). Compared with the model group, the number of neurons in the drug administration group increased significantly (p < 0.01) (Figure 3).


[image: Figure 3]
FIGURE 3. Nissl staining of hippocampal CA1 subfield. (A–J) Representative section for Nissl staining at 3, 7, and 14 days after GCI/R injury. Scale bar 500 μm for Magnification 4×, Scale bar 20 μm for Magnification 20×. (K) The mean number of survival neurons in the hippocampal CA1 at 3, 7, and 14 days after GCI/R injury. Data are shown as means ± SD. ##p < 0.01 vs. the sham-operated group, **p < 0.01 vs. the GCI/R model group. *p < 0.05 vs. the GCI/R model group.


The hippocampal CA2 region was selected under a 20x objective lens for neuron counting. The sham-operated group, model group, and levodopa administration group were counted at the same time. The result was analyzed by single factor analysis of variance. The result showed that 3, 7, and 14 days after reperfusion, neuron counts in the hippocampus of the three groups all showed homogeneity of variance (p > 0.05), and the LSD test was used as a post-hoc test. There were statistical differences between the three groups [F(2, 9) = 42.789, p < 0.001; F(2, 9) = 31.132, p < 0.001; F(2, 9) = 75.197, p < 0.001], the number of normal neurons in the global ischemia/reperfusion injury model group and the levodopa administration group were significantly smaller than that in the sham-operated group (p < 0.01). Compared with the model group, the number of neurons in the drug administration group increased significantly (p < 0.01) (Figure 4).


[image: Figure 4]
FIGURE 4. Nissl staining of hippocampal CA2 subfield. (A–J) Representative section for Nissl staining at 3, 7, and 14 days after GCI/R injury. Scale bar 500 μm for Magnification 4×, Scale bar 20 μm for Magnification 20×. (K) The mean number of survival neurons in the hippocampal CA2 at 3, 7, and 14 days after GCI/R injury. Data are shown as means ± SD. ##p < 0.01 vs. the sham-operated group, **p < 0.01 vs. the GCI/R model group. #p < 0.05 vs. the sham-operated group, *p < 0.05 vs. the GCI/R model group.




Levodopa Reduced the Delayed Neuronal Death of Rat Hippocampus After the GCI/R Injury

One-way analysis of variance was used to analyze the ratios of Caspase-3 and Bcl-2/Bax protein expression in the rat hippocampus of the sham-operated group, model group and drug administration group at 3, 7, and 14 days after reperfusion (Figure 5). The data of Caspase-3 protein expression in the rat hippocampus of the sham-operated group, model group and administration group at 3, 7, and 14 days of reperfusion all showed homogeneity of variance (p > 0.05), and the LSD test was used as a post-hoc test. The expression levels of Caspase3 in the rat hippocampus of the three groups at three time points were statistically different [F(2, 6) = 9.571, p < 0.05; F(2, 6) = 54.494, p < 0.01; F(2, 6) = 12.007, p < 0.01]. The expression levels of Caspase3 protein of the model group was higher than that of the sham-operated group, and the difference was statistically significant (p < 0.05). The expression level of Caspase3 protein of the drug administration group was lower than that of the model group, and difference was statistically significant (p < 0.05) (Figure 5B).


[image: Figure 5]
FIGURE 5. Western blot analysis of the expression of Caspase 3, Bcl 2, BAX proteins in hippocampal tissues. (A) The expression of Caspase 3, Bcl 2, BAX proteins in hippocampus. (B) The expression of Caspase 3 in the hippocampus at 3, 7, and 14 days after GCI/R injury. (C) The ratio of Bcl 2/Bax in the hippocampus at 3, 7, and 14 days after GCI/R injury. Data are shown as means ±SD. ##p < 0.01 vs. the sham operated group. #p < 0.05 vs. the sham operated group, *p < 0.05 vs. the G CI/R model group.


The data of Bcl2/Bax ratio in the rat hippocampus of the sham-operated group, model group and drug administration group at 3, 7, and 14 days after reperfusion showed homogeneity of variance (p > 0.05), and the LSD test was used as a post-hoc test. The results of post-hoc test showed there was significant differences between the three groups in the Bcl2/Bax ratio in rat hippocampus at 3, 7, and 14 days after reperfusion [F(2, 6) = 41.772, p < 0.001; F(2, 6) = 14.888, p < 0.01; F(2, 6) = 26.534, p < 0.01]. The Bcl2/Bax ratio in the rat hippocampus of the model group was lower than that of the sham-operated group (p < 0.05). The Bcl2/Bax ratio in the rat hippocampus of the drug administration group was significantly higher than that of the model group (p < 0.05) (Figure 5C).



Levodopa Increased the Level of Dopamine in the Rat Hippocampus After GCI/R Injury

TH is a rate-limiting enzyme for dopamine synthesis. This study detected the TH content in brain tissue sections, which can indirectly reflect the content of dopamine in neurons (Figure 6). One-way analysis of variance was used to analyze the mean optical density of TH-stained sections in the hippocampus of rats in the sham-operated group, the model group and levodopa administration group at the same time. The results of comparisons between the three groups at three time points showed homogeneity of variance (p > 0.05). One-way analysis of variance was used for statistical comparison, and the LSD test was used as a post-hoc test. The results showed that at different time points, the TH expressions in the rat hippocampus of the sham-operated group, the model group and drug administration group were statistically different [F(2, 9) = 80.217, p < 0.001; F(2, 9) = 302.717, p < 0.001; F(2, 9) = 196.7, p < 0.001] (Figures 6D,K,R). Compared with the sham-operated group, the average optical density values of TH in the hippocampus of the model group and the drug administration group decreased significantly (p < 0.001). The expression of TH in the hippocampus of the levodopa administration group was significantly higher than that of the model group (p < 0.001). The results showed that levodopa can up-regulate the optical density of TH-stained sections in the rat hippocampus after GCI/R injury.


[image: Figure 6]
FIGURE 6. TH immunohistochemical staining of hippocampus. (A–U) Representative section for TH immunohistochemical staining at 3, 7, and 14 days after GCI/R injury. Scale bar 500 μm for Magnification 4×, Scale bar 20 μm for Magnification 20×. (D) The mean density of TH in hippocampus at 3 day after GCI/R injury. (K) The mean density of TH in hippocampus at day 7 after GCI/R injury. (R) The mean density of TH in hippocampus at day 14 after GCI/R injury. Data are shown as means ± SD. ##p < 0.01 vs. the sham-operated group, **p < 0.01 vs. the GCI/R model group.




Levodopa Improved the Synaptic Plasticity in the Rat Hippocampus After GCI/R Injury


Analysis of Synapse Ultrastructure in the Rat Hippocampus

In this study, transmission electron microscopy was used to observe the ultrastructure of synapses in the hippocampal CA1 region at different time points in three groups, and the number of synapses was counted (Figure 7). In the sham-operated group, the front and rear boundaries of the synapse was clearly demarcated, the contours were complete, and there were many round and clear synaptic vesicles in the presynaptic terminal, which were densely and evenly distributed. In the model group, the presynaptic membrane in the hippocampal CA1 subregion was not clear, the synaptic vesicles were reduced, the membrane was split, and the synaptic space was blurred. In the levodopa administration group, the structure of synapse was closer to the control group, the boundary between the presynaptic membrane, and the synaptic space was clear, and the synaptic vesicles were densely distributed.


[image: Figure 7]
FIGURE 7. Ultrastructure of synapses in hippocampus. (A–F) Representative section for synaptic ultrastructure at 7 and 14 days after GCI/R injury. Scale bar 500 μm for Magnification 20,000×. (G) The number of synapses in hippocampal CA1. Magnification 6,000×. (H) The number of vesicles per synapse in hippocampal CA1. Data are shown as means ± SD. ##p < 0.01 vs. the sham-operated group, **p < 0.01 vs. the GCI/R model group. #p < 0.05 vs. the sham-operated group, *p < 0.05 vs. the GCI/R model group.


The numbers of synapses at different time points in the rat hippocampal CA1 subregion of the three groups were analyzed by using two-factor analysis of variance, all of which showed homogeneity of variance, there were differences between the three groups [F(5, 39) = 14.123, p < 0.001], and the LSD test was used as a post-hoc test (Figure 7G). The post-hoc analysis showed that the number of synapses in the hippocampal CA1 subregion of the model group was significantly reduced compare with the sham-operated group (p < 0.01). The number of synapses in the drug administration group was significantly increased compared with the global cerebral ischemia/reperfusion in the model group (p < 0.01).

The numbers of synapses at the same time in the rat hippocampal CA1 subregion of the sham-operated group, the model group and levodopa administration group were analyzed by one-way ANOVA, all of which showed homogeneity of variance (p > 0.05), and the LSD test was used as a post-hoc test. The results showed that the numbers of synapses in the rat hippocampal CA1 subregion were significantly different at 7 and 14 days between the sham-operated group, the model group and the drug administration group [F(2, 27) = 21.874, p < 0.001; F(2, 12) = 16.062, p < 0.001]. Compared with the sham-operated group, the average optical density values of TH in the hippocampus of the model group and the drug administration group decreased significantly (p < 0.001). The expression of TH in the hippocampus of the levodopa administration group was significantly higher than that of the model group (p < 0.001). The results showed that levodopa can improve the structure and number of synapses in the rat hippocampal CA1 subregion after GCI/R injury.



Analysis of the Expression of Synaptic Plasticity-Related Proteins in Hippocampus

The data of PSD95 protein expression in the hippocampus of rats in the sham-operated group, model group, and drug administration group at 3, 7, and 14 days after reperfusion all showed homogeneity of variance (p > 0.05), which were analyzed using one-way analysis of variance, and the LSD test was used as a post-hoc test. The results showed there were significant differences in the PSD95 protein expression in the rat hippocampus between the three groups at 3, 7, and 14 days after reperfusion [F(2, 6) = 5.121, p = 0.05; F(2, 6) = 6.568, p < 0.05; F(2, 6) = 8.598, p < 0.05]. The PSD95 protein expression in the hippocampus of the model group was significantly lower than that of the sham-operated group (p < 0.05). At 7 days after reperfusion, the PSD95 protein expression in the hippocampus of the drug administration group was significantly higher than that of the model group (p < 0.05) (Figure 8B).
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FIGURE 8. Western blot analysis of the expression of synaptic plasticity related proteins in hippocampal tissues. (A) The expression of PSD95, BD NF, TrkB, Drebrin proteins in hippocampus. (B) The expression of PSD95 (B), BDNF (C), TrkB (D), and Drebrin (E) in the hippocampus at 3, 7, and 14 days after GCI/R injury. Data are shown as means ± SD. ##p < 0.01 vs. the sham operated group. #p < 0.05 vs. the sham operated group, *p < 0.0 5 vs. the GCI/R model group.


The data of BDNF protein expression in the hippocampus of rats in the sham-operated group, model group and drug administration group at 3, 7, and 14 days after reperfusion all showed homogeneity of variance (p > 0.05), which were analyzed using one-way analysis of variance, and the LSD test was used as a post-hoc test. The results showed there were significant differences in the BDNF protein expression in the rat hippocampus between the three groups at 3 and 7 days after reperfusion [F(2, 6) = 11.504, p < 0.01; F(2, 6) = 11.151, p < 0.05]. At 3 days after reperfusion, the BDNF protein expression in the hippocampus of the model group was higher than that of the sham-operated group (p < 0.01). At 7 days after reperfusion, the BDNF protein expression in the hippocampus of the model group was significantly lower than that of the sham-operated group (p < 0.01). At 7 and 14 days after reperfusion, the BDNF protein expression in the hippocampus of the drug administration group was significantly higher than that of the model group (p < 0.05) (Figure 8C).

The data of TrkB protein expression at different time points in the rat hippocampus of the sham-operated group, model group and drug administration group showed homogeneity of variance (p > 0.05), which were analyzed using one-way analysis of variance, and the LSD test was used as a post-hoc test. The results showed there were significant differences in the TrkB protein expression in the rat hippocampus between the three groups at different time points [F(2, 6) = 46.664, p < 0.01; F(2, 6) = 8.902, p < 0.05; F(2, 6) = 11.665, p < 0.01]. The TrkB protein expression in the hippocampus of the model group was significantly lower than that of the sham-operated group (p < 0.05). The TrkB protein expression in the hippocampus of the drug administration group was significantly higher than that of the model group (p < 0.05) (Figure 8D).

The data of Drebrin protein expression in the hippocampus of rats in the sham-operated group, the model group, and drug administration group at 3, 7, and 14 days after reperfusion all showed homogeneity of variance (p > 0.05), which were analyzed using one-way analysis of variance, and the LSD test was used as a post-hoc test. The results showed there were significant differences in the Drebrin protein expression in the rat hippocampus between the three groups at 3 and 7 days after reperfusion [F(2, 6) = 17.105, p < 0.01; F(2, 6) = 8.526, p < 0.05]. At 14 days after reperfusion, there was no statistically significant difference in the Drebrin protein expression between the three groups [F(2, 6) = 1.882, p > 0.05]. At 3 and 7 days after reperfusion, the Drebrin protein expression in the hippocampus of the model group was significantly lower than that of the sham-operated group (p < 0.05), and the Drebrin protein expression in the hippocampus of the drug administration group was significantly higher than that of the model group (p < 0.05) (Figure 8E).





DISCUSSION

Global cerebral ischemia/reperfusion causes delayed death of neurons in the hippocampus, unbalanced dopamine content, and decreased synaptic density, which eventually leads to learning and memory disorders. The results of this study show that after levodopa administration, the neurological function and the learning and memory functions of rats with GCI/R injury were improved, the white matter integrity and gray matter density in the hippocampus were improved, the delayed death of neurons in the hippocampus was decreased, and the number of synapses and the expression of neuronal plasticity-related proteins were increased. Levodopa can repair the impaired learning and memory functions after GCI/R injury by improving synaptic plasticity in the rat hippocampus.

After cerebral ischemia/reperfusion occurs, there is secondary failure of cellular energy metabolism. The ATP in the brain is reduced and the function of the glutamate transporter is inhibited, which results in the accumulation of glutamate in the synaptic gap, cause excitotoxicity and excessive activation of the post-synaptic glutamate receptor, N-methyl-D-aspartate receptor (NMDAR), induce calcium influx and abnormal mitochondrial function, release more free radicals, and initiate apoptosis, which leads to delayed cell death (Jakaria et al., 2018). At the same time, the expression levels of post-synaptic density protein of 95 kDa (PSD-95) and BDNF-TrkB decrease, and the loss of hippocampal synapses and dendritic spines causes significant changes in the morphology of neurons and their synapses (Jakaria et al., 2018).

GCI/R injury causes not only delayed death of neurons but also delayed destruction of the dopamine system and imbalance of the dopamine content in the hippocampus. The change of dopamine content after cerebral ischemia/reperfusion injury was observed by using microdialysis technology. It was found that the dopamine content in the brain decreased rapidly after reperfusion for 80–120 min (Li et al., 2010). Li Bing et al. found that the content of dopamine neurotransmitters in the hippocampus increased significantly 6 h after GCI/R injury, which was 336.1% of the control group's dopamine content, but the dopamine content in the hippocampus started to decline 1 day after GCI/R injury, and, 3 days later, the dopamine content in the hippocampus was significantly lower than that of the control group (Li Bing et al., 2006).

Tyrosine hydroxylase is a catalytic enzyme and rate-limiting enzyme for dopamine synthesis. The content of tyrosine hydroxylase in neurons can indirectly reflect the level of dopamine in neurons. The result of tyrosine hydroxylase in this study is consistent with those of other studies, that is, the dopamine level in the hippocampus decreased and was lower than the normal level after cerebral ischemia/reperfusion injury. After intervention with levodopa, the level of dopamine in neurons increased, which indicated that levodopa could reduce the decrease of dopamine in the hippocampus after cerebral ischemia/reperfusion to a certain extent. Enhancing the activity of tyrosine hydroxylase and increasing the synthesis of endogenous dopamine can effectively improve the nerve function of rats after cerebral ischemia/reperfusion injury (Zhong et al., 2019). Obi et al. found that activation of the dopaminergic nervous system contributes to functional recovery in the chronic phase of stroke (Obi et al., 2018). Scheidtmann et al. also pointed out that levodopa combined with physical therapy is beneficial to the recovery of neurological function in patients with stroke (Scheidtmann et al., 2001). Earlier studies of our research group also showed that patients with persistent coma after resuscitation could have significant improvement in their disorders of consciousness after using levodopa or piribedil (Lixu Liu and Shi, 2006).

After cerebral ischemia, there will be structural changes in the relevant brain area, such as the increase or decrease of gray matter density and volume. It was reported that the VBM assessment of stroke patients showed a significant decrease in the gray matter volume of ipsilateral pre-central gyrus, paracentral gyrus, and contralateral cerebellum lobule VII and a significant increase in the gray matter volume of contralateral orbital frontal cortex and inferior frontal gyrus at the chronic stage of stroke (Cai et al., 2016). Drobyshevsky et al. found, in animal models of pre-natal ischemia and hypoxia, that microstructural changes occurred in multiple brain regions, FA decreased, and white matter volume decreased (Drobyshevsky, 2017).

BDNF is involved in the structural regulation of synapse production, maintenance, enlargement, and modification, as well as in the functional regulation of neurotransmission and receptor activity, and promotes the growth of dendrites and axons (Chen et al., 2018). Dopamine can increase the expression of BDNF in the hippocampus by activating dopamine receptors (Berton et al., 2006; Hasbi et al., 2011), thereby improving learning and memory functions (Kowianski et al., 2018). TrkB is a receptor with a high affinity for BDNF, which is expressed in both the pre-synapse and post-synapse. BDNF-TrkB can increase the plasticity of hippocampal neurons by regulating the expression of PSD95 and Drebrin as well as regulating the learning and memory at the cellular level (Li et al., 2018). Studies on DTI showed that the content of BDNF is related to the FA value in the hippocampus; the lower the BDNF content, the lower the FA value and the worse the integrity of white matter in the hippocampus (Chen et al., 2016). The results of this study showed that the administration of levodopa after GCI/R injury increased the number of synapses, and the density of vesicles in the hippocampus, while also increasing the expression of PSD95 and Drebrin, promoted the repair of white matter and gray matter of the hippocampus and enhanced the synaptic plasticity. This may be related to the increase of BDNF and TrkB protein expression in the rat hippocampus after levodopa administration.

This study has certain limitations, and only detected the effect of levodopa on synaptic plasticity in the hippocampus after GCI/R injury. The ventral tegmental area can project dopamine not only to the hippocampus but also to the pre-frontal lobe (Tuesta and Zhang, 2014), and the pre-frontal-hippocampal circuit participates in the learning and memory process (Shin et al., 2019). Injury of the pre-frontal-hippocampal circuit results in impaired functional integrity of nerve conduction pathways, which leads to working memory impairment in patients consequently (Lundeberg et al., 2007). In future studies, we will continue to explore the effect of levodopa on the pre-frontal-hippocampal circuit after GCI/R injury.

To conclude, our study shows levodopa can improve the learning and memory functions after GCI/R injury occurs, by enhancing the synaptic plasticity in the hippocampus. Levodopa is the most commonly used medicine in the therapy of Parkinson's disease, and its safety has been proven. A new approach was proposed in this study for brain functional rehabilitation therapy after cardiopulmonary resuscitation.
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Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder characterized by cognitive decline and by the presence of amyloid β plaques and neurofibrillary tangles in the brain. Despite recent advances in understanding its pathophysiological mechanisms, to date, there are no disease-modifying therapeutic options, to slow or halt the evolution of neurodegenerative processes in AD. Current pharmacological treatments only transiently mitigate the severity of symptoms, with modest or null overall improvement. Emerging evidence supports the concept that AD is affected by the impaired ability of the immune system to restrain the brain’s pathology. Deep understanding of the relationship between the nervous and the immune system may provide a novel arena to develop effective and safe drugs for AD treatment. Considering the crucial role of inflammatory/immune pathways in AD, here we discuss the current status of the immuno-oncological, immunomodulatory and anti-TNF-α drugs which are being used in preclinical studies or in ongoing clinical trials by means of the drug-repositioning approach.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia worldwide, characterized by highest clinical unmet need and huge overall disease burden (Citron, 2010; Lo et al., 2014). AD manifests as a devastating neurodegenerative disorder that, inexorably upset memory, cognitive functions, and the ability to carry out common daily activities (Fischer et al., 2008). The presence in the brain of amyloid beta (Aβ) plaques, composed of Aβ protein and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein, are the two cardinal pathological hallmarks of AD (Querfurth and LaFerla, 2010; Edler et al., 2017; Bulk et al., 2018). Several other hypotheses have been suggested on the pathogenesis of AD, such as neuronal loss, axonal injury, and dysfunction of cholinergic neurotransmission (Hardy and Selkoe, 2002; Haam and Yakel, 2017).

Recent GWAS studies, demonstrating the role of specific genetic variance affecting APP and Aβ processing, showed, at the same time, a tight correlation between immune gene expression and the progression of AD, confirming the crucial role of neuroimmune interactions (Kunkle et al., 2019).

Chronic neuroinflammation is one of the main leitmotiv driving current hypotheses in support of the pathogenesis of AD (Scuderi et al., 2020). Such phenomenon largely derives from aberrant activation of microglia, the brain resident mononuclear phagocytes physiologically involved in central immune surveillance and clearance of pathogens (Burgaletto et al., 2020; Ní Chasaide and Lynch, 2020).

Neuroinflammatory foci in AD localize in close vicinity of Aβ plaques and it is associated with glia activation (Bronzuoli et al., 2016) and the consequent release of inflammatory/immune mediators (Chakraborty et al., 2010), including pro-inflammatory cytokines (Griffin, 2013; Cantarella et al., 2015). In AD, neuroinflammation, instead of being a mere bystander activated by emerging senile plaques and neurofibrillary tangles, substantially contributes to the pathogenesis, synergistically to either Aβ plaques or neurofibrillary tangles (Zhang et al., 2013).

There is also a great deal of evidence suggesting a role of relevance for systemic inflammation in the pathogenesis of AD (Heneka et al., 2015; Ardura-Fabregat et al., 2017; Paouri and Georgopoulos, 2019). Systemic inflammation in AD is associated with an exacerbation of sickness behavior symptoms due to the increased central release of pro-inflammatory cytokines but, importantly, it also acts to accelerate disease progression due to the augmented production of reactive oxygen species and prominent neuronal death (Perry et al., 2010).

In addition to the central nervous system (CNS) resident immune cells, emerging evidence has supported the hypothesis of a relevant role to the peripheral immune system in maintenance of brain homeostasis (Kipnis et al., 2004; Ziv et al., 2006; Filiano et al., 2016) and in disease pathogenesis (Raposo et al., 2014; Baruch et al., 2015; Zenaro et al., 2015; Di Benedetto et al., 2019).

Immune checkpoints are crucial factors in regulating systemic immune homeostasis and tolerance. Selective blockade of some immune checkpoints, such as the Programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, enhances anti-tumor immunity by resetting into motion the immune response (Lesokhin et al., 2015). Notwithstanding poor evidence is currently available about the influence of peripheral immune response upon AD brain pathology and related clinical outcomes (Trapnell et al., 2009; Heinz et al., 2010), more recent data suggest that, not only peripheral immunocytes can enter the brain, but also their modulation impacts on its progression (Schwartz and Baruch, 2014; Di Benedetto et al., 2019). Immune modulation in animal models of AD and dementia achieved through treatment with anti-PD-1 or anti–PD-L1 antibodies approaches, resulted in disease modification, manifested by milder pathology paralleled by cognitive improvement (Baruch et al., 2016; Rosenzweig et al., 2019; Castellani and Schwartz, 2020).

Despite the wide number of clinical trials (Cummings et al., 2020), there are currently only four approved pharmacotherapies for AD. Three acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) are recommended as options in the treatment of patients with mild to moderate AD; and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is licensed for the management of patients with moderate to severe AD. These agents represent symptomatic treatments, and they do not act as disease modifying drugs, as they only temporarily ameliorate cognitive dysfunction, with relatively modest clinical impact (Cummings et al., 2016).

Drug repositioning represents a valid approach for drug discovery, consisting of finding new indications for currently available drugs used in different clinical settings whose safety and tolerability have already been confirmed (Pillaiyar et al., 2020). For all the above-mentioned reasons, drug repurposing represents a useful tool in searching new treatments for AD (Ihara and Saito, 2020).

Keeping in mind the central role of neuroinflammation, various anti-inflammatory compounds have been re-proposed in AD treatment.

In the wake of several preclinical studies, clinical trials carried out to verify the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) as curative drugs for AD have failed to show promising results (Ali et al., 2019).

In addition, several drugs indicated for multiple myeloma or leukemia, including daratumumab (anti-CD38 antibody) (Blacher et al., 2015), dasatinib (tyrosine kinase inhibitor) (Zhang et al., 2019), lenalidomide (thalidomide analog; TNF-alpha inhibitor) (He et al., 2013), and sargramostim (granulocyte macrophage colony stimulator) (Kiyota et al., 2018), have been explored for efficacy in AD, based on their immunomodulatory properties assessed in cellular or animal models of AD (Ihara and Saito, 2020).

Considering the key role of the immune/inflammatory response in the development of AD, in the present review we summarize information available concerning the most promising immunomodulatory agents already used in other disease settings for repurposing in AD. In the following sections we will discuss the preclinical evidences underlying possible positioning of each drug in the AD frame. In another section, we will reason about some of the agents which are being studied in ongoing clinical trials.



PRECLINICAL EVIDENCE


Immuno-Oncologic Drugs: A Therapeutic Breakthrough in Cancer With a Regard to Neurodegeneration?

Growing body of evidence from multiple studies focus on an inverse epidemiological relationship between AD and cancer. In fact, patients with previous history of cancer have a lower risk of developing AD, otherwise patients suffering from AD show less risk of developing cancer (Rogers et al., 2020).

Research also proved that chemotherapy-treated breast cancer survivors have shown a lower risk of AD compared to healthy control (Monacelli et al., 2017).

Common biological and genetic mechanisms deregulated in opposite directions could explain the phenomenon of mutual protection between AD and cancer (Houck et al., 2018; Okereke and Meadows, 2019). Chronic neuroinflammation related to AD could protects against cancer, otherwise cancer development induces a persistent state of immune tolerance that protects against AD (Rogers et al., 2020). Deep understanding of these mechanisms could represent a trail to follow for designing disease-modifying therapeutic interventions and many anti-cancer agents are the path of repurposing for the treatment of AD. Immunotherapy, helping the immune system to ward off disease, has revolutionized the landscape of cancer treatment and may offer new hope for AD (Figure 1).
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FIGURE 1. Therapeutic potential of immuno-oncologicals in Alzheimer’s Disease. Immuno-oncological drugs could mark the beginning of a new era for treatment of AD-related neurodegeneration aimed to revitalize the body’s immune-mediated repair mechanisms by addressing multiple pathophysiological factors. As in cancer scenario, controlled trafficking of healing immunocytes to the injured brain could be considered as a mean to overcome immune escape mechanisms and to modify AD progression. Breaking regulatory T cell (Treg)-mediated systemic immune suppression and blocking inhibitory immune checkpoints, such as PD-1/PD-L1 with specific antibodies represents a crucial approach to enhance recruitment of pro-healing immunocytes to the brain parenchyma, culminating in attenuation of the disease-associated pathological features (e.g., dysfunction of lymphoid organs, increase of exhausted T cells, neuroinflammation, production of toxic proteins, neuronal damage and death). Moreover, release of proinflammatory factors that occurs in the brain during aging and AD, results in augmented expression of CD38 in glial cells, amplifying the neurodegenerative cycle. In turn, targeting CD38 with Daratumumab may represent a novel therapeutic approach for modulation of both AD-related neuroinflammation and Aβ production.



Immune Checkpoints Inhibitors: PD1 and PD-L1

Programmed cell death protein-1, an inhibitory immune checkpoint receptor (ICR) expressed by immune cells such as T cells, and its broadly expressed ligand PD-L1, have emerged as critical inhibitory signaling pathway that assumes a critical role in maintaining immune homeostasis and self-tolerance preventing autoimmune reaction (Riella et al., 2012; Zhao and Ji, 2019).

In pathological conditions, such as cancer and viral infection, persistent antigen stimulation and inflammation increase the expression level of these ICRs at the T cell surface and its interaction with its ligand on antigen presenting cells (APCs) limit T cell activation, by inducing a hypofunctional state called “exhaustion” (Chamoto et al., 2017; Curdy et al., 2019). This mechanism has emerged as a conceivable therapeutic target for either enhancing or dampening the immune response. Immunosuppressive regulatory T cells (Treg), recruited by abnormal cancer cell chemotactic activity, would have a pivotal role in this process (Baruch et al., 2015).

The development of monoclonal antibodies that target immune checkpoints represents a revolutionary milestone in the field of immuno-oncology (Darvin et al., 2018; Havel et al., 2019) for their ability to modulate the immune response against cancer (Saibil and Ohashi, 2020).

Anti-PD-1/PD-L1 based immunotherapy used as an effective treatment strategy for a wide variety of cancers, including those traditionally considered non-immunogenic (Santarpia et al., 2015), has been recently considered also in animal model of AD as it boosts immune response against the harmful proteins that cause neurodegeneration (Schwartz et al., 2019). Consistently, Cantarella et al. (2003, 2015) have shown that immunoneutralization of Tumor necrosis factor-related apoptosis inducing ligand (TRAIL), a pleiotropic proinflammatory cytokine which also modulates Treg cell functions, results in an improvement of neuroinflammation in a mouse model of AD (Di Benedetto et al., 2019).

Breaking immune tolerance by PD-1 immune checkpoint blockade elicited a stronger interferon (IFN)-γ–dependent systemic immune response, which is followed by the recruitment of monocyte-derived macrophages (MΦ) to the brain, leading to clearance of cerebral Aβ plaques and improved cognition in mice with advanced amyloid pathology (Baruch et al., 2016; Rogers et al., 2020). More recently, it was demonstrated that PD-L1 blockade have efficacy comparable to that of PD-1 blocking in disease modification in AD animal models. In particular, modification of the immunological milieu of the brain mediated by blockade of the PD-1/PD-L1 axis in a mouse model of tau pathology culminates in mitigation of cognitive deficits and cerebral pathology (Rosenzweig et al., 2019).

Consistently with these results, it has been demonstrated that functional PD-1 is expressed in hippocampal neurons and that anti-PD-1 treatment acts also as a neurotherapy potentiating learning and memory by rescue of synaptic transmission and plasticity (Zhao and Ji, 2019).

Conversely, several pharmaceutical companies, that were developing PD-1 antibody inhibitors for other pathologies, pursued this strategy with their own compounds in several Aβ-plaque transgenic models. As expected, PD-1 immunotherapy boosted activation of the peripheral immune system but failed to affect monocyte−derived macrophage infiltration and progression of brain Aβ pathology in three different models of AD (Latta-Mahieu et al., 2018; Obst et al., 2018).

In addition, another research group reports only a modest improvement of locomotor activity without any effect on cognition or tau pathology in a transgenic AD model (Li et al., 2020) by using the same PD-1 checkpoint blockade approach (Baruch et al., 2016; Rosenzweig et al., 2019).

Although the immune checkpoint blockade based-therapy represents a promising therapeutic strategy for AD and age-related dementia, further research is needed before PD-1/PD-L1 based clinical trials are conceived for these disorders.



Daratumumab (CD38)

Daratumumab is a first-in-class humanized monoclonal antibody that targets the CD38 epitope approved for multiple myeloma patients who are refractory to conventional therapy (van de Donk, 2018).

Given its role in regulation of neuroinflammatory and brain repair processes, the effect of depletion of CD38, a NAD glycohydrolase expressed by neurons, astrocytes and microglial cells, by daratumumab has been evaluated in the AD context (Guerreiro et al., 2020).

Deletion of CD38 results, in turn, in a significant reduction of Aβ plaque load and soluble Aβ levels and this correlated with improved spatial learning (Blacher et al., 2015).

While direct evidence implicating CD38 in neurodegenerative disorders is still lacking, targeting CD38 may provide a novel therapeutic approach for modulation of both neuroinflammation and Aβ production related to AD.



Immunomodulating Agents

Immunomodulatory drugs have revolutionized the treatment protocols of various immune-related diseases. These compounds act through modification of the immune response, for example by increasing (immunostimulators) or decreasing (immunosuppressives) the production of serum antibodies (Bascones-Martinez et al., 2014).

Given that the multifactorial pathophysiological mechanism of AD is not restricted to the neuronal compartment, as relevant role has been attributed to the tight interactions of immunological mechanisms within the brain, the repositioning of immunomodulatory drugs could represent an attractive therapeutic strategy in the fight against AD (Figure 2).
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FIGURE 2. Snapshot of the main preclinical evidences for the implications of immunomodulatory drugs repositioned for Alzheimer’s disease. Summary of the most compelling preclinical evidences of the beneficial effects of immunomodulatory agents in the pathophysiological processes of Alzheimer’s disease, in view of possible future clinical development of immunomodulatory drug-based therapeutic strategies.



Glatiramer Acetate (Copaxone)

Glatiramer acetate (GA) (Copaxone) is the first disease-modifying and worldwide-approved drug for the treatment of relapsing-remitting multiple sclerosis (MS), an autoimmune disorder of the CNS (Arnon and Aharoni, 2019). GA is a synthetic analog of myelin basic protein (Scott, 2013), one of the autoantigens implicated in the pathogenesis of MS, which can be used to safely boost T-cell responses without the risk of autoimmune disease, as it weakly cross-reacts with myelin-derived autoantigens (Chen et al., 2015). While the mechanism of action of GA remains a matter of ongoing debate, several evidences suggest that it stimulates Th2 response possibly by suppressing the inflammatory Th1 response (Vieira et al., 2003), increases frequency and function of Treg cells, modulates CD8+ T cells and exerts an immunomodulatory effect on B cells (Lalive et al., 2011).

Immunization of APPSWE/PS1dE9 double-transgenic mice with GA enhances cerebral recruitment of pro-healing, highly phagocytic monocytes (Mo) and MΦ, deeply alleviating cerebral Aβ burden, reducing microgliosis and astrocytosis, finally leading to improved hippocampal-based cognitive functions (Koronyo et al., 2015). Moreover, T cell-based vaccination with GA in the same animal model of AD leads to enhanced neurotrophic support and hippocampal neurogenesis (Butovsky et al., 2006).

Moreover, nasal vaccination with a proteosome-based adjuvant plus GA leads to activation of pro-healing microglia, strongly correlated with a decrease in Aβ fibrils in APP-Tg mice (Frenkel et al., 2005).

Recently, it has been demonstrated both in in vivo and in vitro studies that GA-stimulated MΦ protect neurons from Aβ-mediated synaptotoxicity through enhanced ability to eliminate Aβ42 oligomers and induce synaptic preservation (Li et al., 2020). Moreover, GA immunomodulation enhanced cerebral recruitment of Mo-derived MΦ and reversed loss of cortical and hippocampal excitatory synapses in mouse models of AD.

Consistently, it has been demonstrated that GA immunization significantly increases expression of hippocampal early growth response protein 1 (Egr1), protein required for synaptic plasticity and memory formation, which was negatively correlated with hippocampal Aβ plaque burden (Bakalash et al., 2011).

GA-based vaccination could provide a new avenue for immune therapy that might prove efficacious in the treatment of AD.



Rapamycin

Rapamycin is a macrolide antibiotic and inhibitor of the mechanistic target of rapamycin (mTOR) that exhibits potent anti-cancer and immunosuppressive activity (Law, 2005) originally used to prevent organ transplant rejection (Richardson et al., 2015).

Currently, this drug represents the most effective pharmacological approach for directly targeting hallmarks of the aging process in order to increase lifespan in several animal models.

In addition to its efficacy at mitigating physiological aging, this drug has been shown to have a beneficial effect in models of neurodegeneration and aging, including mouse models of AD (Kaeberlein and Galvan, 2019).

The positive outcomes of rapamycin treatment probably stand up on its ability to rescue molecular pathways associated with aberrant mTOR phosphorylation, responsible to speed up the age-related neurodegenerative process and increase the risk of developing AD (Caccamo et al., 2010).

In fact, it has been demonstrated that restoring mTOR signaling with rapamycin ameliorates Aβ and tau pathology in several mouse models, preserves blood brain barrier (BBB) integrity, restores cerebral blood flow and brain vascular density and rescues cognitive deficits(Lin et al., 2013; Van Skike et al., 2018; Gureev et al., 2020).

Rapamycin is also able to regulate cholesterol biosynthesis, essential for synaptic formation and to reverse ribosomal dysfunction in hippocampus and temporal lobe of APP/PS1 mouse (Wang et al., 2019). In addition, rapamycin protects hippocampal neurons from synaptotoxicity induced by Aβ oligomers by increasing presynaptic activity (Ramírez et al., 2014).

Similarly, chronic treatment with the rapamycin derivative temsirolimus, a recently developed compound used for renal cell carcinoma treatment, promotes autophagic Aβ clearance, reduces neurofibrillary tangle density and attenuates apoptosis in hippocampus, leading to a substantial improvement in spatial learning and memory abilities (Jiang et al., 2014).

Conversely, one study revealed that rapamycin can only prevent, but not rescue, the accumulation of amyloid plaques and tangles, as well as cognitive deficits (Majumder et al., 2011).

Current preclinical data reveals that rapamycin may be valuable for preventing the onset or early AD neuropathology, and, however, cannot represents a treatment option in people with overt clinical signs of dementia. Altogether, it is plausible to propose rapamycin as an agent that, if used in the prodromic stages of AD, would probably demonstrate effectiveness in delaying progression of dementia.



Thalidomide and Its Derivatives

Thalidomide and its derivatives, referred to as immunomodulatory imide drugs (IMiDs), are a class of drugs that target the 3′-untranslated region (3′-UTR) of Tumor necrosis factor alpha (TNF-α) mRNA, inhibiting TNF-α cytokine production. Preclinical studies on currently marketed IMiDs, indicate improved BBB permeability and bioavailability when compared to similar anti-inflammatory agents, supporting the concept of their development as drugs for neurological disorders (Jung et al., 2019).

Thalidomide is a potent immunomodulator and a TNF-α inhibitor, originally used for treatment of multiple myeloma and erythema nodosum leprosum (Jung et al., 2019) and evaluated for repurposing across numerous neurological disorders due to its multipotent pleiotropic characteristics.

Chronic thalidomide administration significantly blunts both astrocytes and microglia activation, and Aβ generation in brains of APP23 transgenic mice through inhibition of beta-secretase (BACE1) (He et al., 2013; Decourt et al., 2017).

Moreover, 3,6′-dithiothalidomide (3,6′-DT) effectively lowers TNF-α, nitrite and secreted amyloid precursor protein (sAPP) levels in vitro in LPS-activated macrophage-like cells, while it significantly reduces central and systemic TNF-α production, neuroinflammatory markers and restores hippocampal neuronal plasticity in LPS-challenged rats (Tweedie et al., 2012). Chronic 3,6′-DT administration reduces multiple hallmark features of AD, including glia activation, phosphorylated tau protein, APP, Aβ peptide and Aβ-plaque number along cognitive dysfunction in 3×Tg-AD mice, and leads to synaptic preservation (Gabbita et al., 2012; Tweedie et al., 2012). As a matter of fact, 3,6’-DT ameliorates Aβ-induced neuroinflammation and microglial activation, preventing neurodegeneration and improving memory in AD mouse model of stereotaxic intracerebroventricular Aβ1-42 (Russo et al., 2012).

Recently, it has been demonstrated that also Pomalidomide (Pom), an immunomodulatory amino-thalidomide analog, and Pom analog 3,6′-dithioPom (DP), significantly mitigate Traumatic brain injury (TBI)-induced cell death, neurodegeneration, astrogliosis, microglial activation, neuroinflammation and behavioral impairments in TBI which represents a process tightly associated with the later development of dementia (Lin et al., 2020).

Taken together, these preclinical studies using IMiDs have shown promising profiles, indicating a potential for the promotion of this therapeutic class from the bench to clinical trials and eventually, to the bedside of AD patients.



Minocycline

Minocycline is a member of tetracycline family antibiotic with anti-inflammatory and immunomodulatory properties, largely used in the treatment of acne vulgaris and various sexually transmitted diseases (Garrido-Mesa et al., 2013). Based upon its ability to cross the BBB and to inhibit microglial cells, minocycline has been regarded as a repurposing candidate for evaluation in AD (Shamim and Laskowski, 2017).

Minocycline prevents Aβ fibrillization and Aβ-induced microglial activation in vitro (Familian et al., 2006) leading to attenuation of inflammatory response and microgliosis, as well as to a significant improvement of cognitive deficit (Fan et al., 2007). Similar beneficial effects on cognitive functions were obtained in a Aβ1-42-infused rat model and Tg2576 mice treated intraperitoneally with minocycline (Choi et al., 2007).

Moreover, it has been reported that minocycline has different effects on Aβ plaque deposition depending upon the age of administration, due to its action on microglial function (Fu et al., 2019). In addition, minocycline is able to significantly restrain the early, pre-plaque neuroinflammatory response, and also to reduce APP expression; moreover, it inhibits BACE1 activity in McGill-Thy1-APP mice (Ferretti et al., 2012).

Minocycline is able to reduce microglia reactivity in the dentate gyrus, as well as inducible nitric oxide synthase protein levels and reactivity of Aβ plaque-associated CD11b+ microglia in the hippocampus of APP/PS1 mice (Biscaro et al., 2012).



Cyclosporine and Tacrolimus

Inhibitors of calcineurin such as Cyclosporine and Tacrolimus, are immunosuppressive agents used for the prophylaxis of post-transplant organ rejection and to treat autoimmune diseases (Khanna, 2000).

In the AD scenario, these agents downregulate the expression of APP mRNA and protein in primary cultures of neonatal rat astrocytes (Lee et al., 1999).

Furthermore, short-term treatment with tacrolimus ameliorates dendritic spine density deficits in plaque-bearing AD model mice (Rozkalne et al., 2011).

More recently, it has been demonstrated that Tacrolimus significantly attenuated both Aβ- and LPS-stimulated secretion of pro-inflammatory cytokines and increased microglial uptake of fibrillar Aβ in vitro, while it led to decreased spleen cytokine levels, microgliosis and Aβ plaque burden in APP/PS1 mice (Rojanathammanee et al., 2015). Cyclosporine and Tacrolimus treatment significantly attenuates Streptozocin-induced biochemical and histopathological alterations and age-related memory deficits. This evidence demonstrates the potential of these agents in cognitive dysfunctions, probably related to their anti-amyloid, anti-oxidative and anti-inflammatory properties (Kumar and Singh, 2017).



TNF-α Blocking Agents

TNF-α is a potent proinflammatory cytokine that plays a central role in setting into motion and sustaining the inflammatory response.

TNF-α signaling exerts both homeostatic and pathophysiological roles in the CNS.

In the healthy CNS, TNF-α has regulatory functions on synaptic plasticity, control of microglial activation and astrocyte-induced synaptic strengthening, and regulation of glutamatergic transmission (Belarbi et al., 2012; Olmos and Lladó, 2014).

In pathological conditions, microglia release large amounts of TNF-α that represents a critical mediator of neuronal dysfunction and cognitive impairment consequent to chronic neuroinflammation (Olmos and Lladó, 2014).

TNF-α contributes to disease onset and progression in transgenic mouse models of AD (Chang et al., 2017).

Clinical involvement of TNF-α in AD has been evidenced by the observation of elevated TNF-α levels in the plasma and in the cerebrospinal fluid (CSF) of AD patients and by the co-localization of TNF-α with Aβ plaques in the brain, both correlated with disease severity (Steeland et al., 2018).

Several TNF-α–specific monoclonal antibodies (e.g., infliximab, adalimumab) and recombinant fusion proteins (etanercept), often developed for peripheral inflammatory conditions including Crohn’s disease and rheumatoid arthritis, have been tested on AD rodent models using both central and peripheral routes of administration (Chang et al., 2017; Decourt et al., 2017). Treatment with TNF-blocking agents in patients with rheumatic disorders is associated with lower risk for AD development (Zhou et al., 2020).

Nevertheless, limited BBB penetration of these agents is the main drawback for their development (Chang et al., 2017). Thus, peripheral targeting of TNF-α activity and reengineering of the TNF-α inhibitors able to cross BBB represent two methods to reasonably overcome such limitations (Yiannopoulou and Papageorgiou, 2020).

However, targeting TNF-α synthesis with inhibitors (Figure 3) has also been proposed to have a great potential for the long-term prevention and treatment of AD (Belarbi et al., 2012).
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FIGURE 3. Targeting TNF-α signaling with TNF-α inhibitors in Alzheimer’s Disease pathology. Peripheral Tumor Necrosis Factor-α (TNF-α) enters the brain through the Blood-Brain Barrier (BBB) via transcytosis, upsetting its structural integrity and the permeability. TNF-α affects brain resident cells by binding Tumor Necrosis Factor Receptors (TNFRs), thus triggering activation of different intracellular cascades which redundantly lead to increased release of TNF-α. In addition, TNF-α leads to increased peripheral amyloid-β (Aβ) influx and generation of amyloid deposits into the brain parenchyma, which supplement the local amyloid burden, causing further production of TNF-α. Targeting membrane bound and/or soluble TNFα with small molecule inhibitors could represent a potential effective therapeutic approach acting at earliest steps of the AD-related neuroinflammatory vicious cycle, resulting in neuroprotection.



Etanercept

Etanercept, a bio-engineered, anti-rheumatoid, anti-TNF-α fusion protein that binds both soluble and membrane-bound forms of TNF-α, has been re-evaluated also as a treatment to hold off central and peripheral immune/inflammatory response in AD (Butchart et al., 2015).

Peripheral administration of etanercept counteracts Aβ-induced memory impairment and attenuates hippocampal levels of TNF in a non-transgenic mouse model of amyloid induced cognitive deficits (Detrait et al., 2014; Chang et al., 2017).

Recent evidence reports that etanercept leads to a decrease of plaques burden and neurofibrillary tangles and improves cognitive outcomes in streptozocin-treated rats, widely used to mimic an AD-like condition in animal models (Kübra Elçioğlu et al., 2015).

Although there are many evidences for the beneficial effect of etanercept, it still remains to be explored whether this drug is able to alter AD-like neuropathology in AD chronic models.



Infliximab

Infliximab is a monoclonal antibody against TNF-α approved for treatment of rheumatoid arthritis, Crohn’s disease and other immune-mediated inflammatory disorders (Melsheimer et al., 2019).

Intracerebroventricular injection of Infliximab, beside reducing levels of TNF-α, induced rapid and transient decline in Aβ loads and tau phosphorylation in the APP/PS1 double transgenic mice (Shi et al., 2011).

Recently, it has been also demonstrated that infliximab dramatically improves visual recognition memory impaired by Aβ oligomers and reverses the noxious effect of Aβ on muscarinic acetylcholine receptor–dependent long-term depression of synaptic transmission in Tg2576 mice (Kim et al., 2016; Chang et al., 2017). Kübra Elçioğlu et al. (2015) reported also that infliximab, as demonstrated for etanercept, led to a significant improvement of cognitive functions in rat models of dementia.

Peripheral inhibition of TNF-α with infliximab in the context of arthritis, modulates the amyloid pathology by regulating blood-derived and local brain inflammatory cell populations involved in β-amyloid clearance in the brain of double-transgenic 5XFAD/Tg197 AD/TNF mice that develop amyloid deposits and inflammatory arthritis induced by human TNF-α expression (Paouri et al., 2017).

Despite these favorable evidences, other preclinical studies in mouse AD models with TNF-α inhibitors failed to reproduce such beneficial effects (Giuliani et al., 2009; Chang et al., 2017).



Adalimumab

Adalimumab, another anti-TNF-α monoclonal antibody, binds directly to TNF-α or to soluble and membrane-TNF-α receptors blocking ligand-receptor interactions (Scheinfeld, 2005). Adalimumab has demonstrated efficacy and tolerability in patients with a wide range of inflammatory conditions (Lapadula et al., 2014).

Adalimumab treatment leads to significantly attenuated neuronal damage and neuroinflammation, decreased beta secretase-1 protein expression and Aβ1-40 plaques, and to improvement of cognitive functions in Aβ1-40-injected mice (Park et al., 2019; Anwar and Rivest, 2020), supplying a rationale for a hypothesis of clinically meaningful outcomes in patients with AD.



XPro1595

XPro1595 is a second-generation TNF-α inhibitor, which, unlike etanercept and other non-selective TNF-α inhibitors, solely targets the soluble form of TNF-α, preserving the neuroprotective transmembrane TNF-α signaling pathways (Steed et al., 2003).

Preclinical XPro1595 evaluation has been reported in three different mouse models of AD. Peripheral administration of the soluble TNF-α inhibitor XPro1595 is able to reduce brain amyloid deposition, age-dependent increase in activated immune cells and to improve synaptic function (Cavanagh et al., 2016; MacPherson et al., 2017). Local administration of XPro1595 leads to reduced pre-plaque Aβ pathology in 3×TgAD mice (McAlpine et al., 2009), and, consistently, it reduces microglia activation and improves synaptic and cognitive functions in aging rats (Sama et al., 2012).



CLINICAL EVIDENCES

Based on preclinical data, in recent years, numerous clinical trials have been conducted aimed to deepen the therapeutic potential of the above-mentioned drug classes for AD. However, most have failed to demonstrate promising results, probably because of the still incomplete understanding of the role of neuroinflammation in the development of AD combined to the lack of apposite diagnostic tools to determine stages of the disease (Cummings et al., 2020).

In this section, we report ongoing clinical trials that employ the drug-repositioning method for drug discovery of AD (Table 1).


TABLE 1. Ongoing clinical trials that use the drug-repositioning method for drug discovery of AD.
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Daratumumab (NCT04070378)

Currently Daratumumab is the only monoclonal antibody in study for drug repositioning in AD. The rationale behind the use of this drug lies in its immunomodulatory action against CD38+ cells.

As mentioned above, CD38 is a multifunctional protein with both a receptor and an enzyme-mediated function involved in several important reactions for the physiological neuronal development (Guerreiro et al., 2020).

CD38 expression increases during neuroinflammation and neurodegeneration, suggesting its potential modulating role in brain cells regulation. Experiments on CD38 knockout mice (Roboon et al., 2019), demonstrated a decreased release of pro-inflammatory cytokines and chemokines (Kou et al., 2009), while its overexpression was found after treatment with drugs-induced neuroinflammation (Guerreiro et al., 2020).

Interestingly, CD38 expression on CD8+ T-cells is significantly increased in AD patients as compared with age-matched controls (Gate et al., 2020) and these activated T-cells are able to infiltrate into the CNS exerting toxic effects.

The objective of the clinical trial has been to explore whether treatment with Daratumumab, an agent able to cross the BBB, may have a clinically meaningful effect on patients with mild to moderate AD.

The study includes patients with diagnosis of AD, without a clinical history of other neurological or psychiatric disorders, according to NIA-AA criteria, a MMSE score between 15 and 26 and positive instrumental with MRI and amyloid PET scan, on a stable dose of cholinesterase inhibitor for at least 12 weeks. Patients in treatment with anti-Aβ or anti-tau protein, vaccine with live/live-attenuated bacterial or virus in the latest 3 months, immunosuppressant and corticosteroids in the latest 2 months, anticoagulant, estrogens have been excluded, as well as patients with HCV, HBV, HIV infections or malignancy in the previous 2 years. The primary endpoint is an improvement of at least 4 points at ADAS-cog/11 after 24 weeks of treatment. Secondary endpoints include unchanging or improvement at ADAS-cog/12, MMSE, CDR-SB, ADCOMS after 24 weeks of treatment from baseline. Adverse and serious adverse effects will be assessed after 35 weeks from initial treatment. Study is estimated to be completed within the end of 2021.



Rapamycin (NCT04200911)

In light of preclinical evidence, rapamycin is an effective inhibitor of AD-related neurodegeneration (Cai et al., 2012). The most important suggested mechanisms include enhancement of autophagy and the consequent increase of the clearance of Aβ aggregates (Santos et al., 2011), and attenuation of tau hyperphosphorylation (Liu et al., 2013).

The combination of these elements supported the running of the study Cognition, Age, and RaPamycin Effectiveness–DownregulatIon of the mTOR-pathway (CARPE DIEM), an early phase 1 clinical trial, involving 10 patients, in a single group, finalized to evaluate the effect of oral Rapamycin in older adults with AD and mild cognitive impairment (MCI). It represents an open-label pilot study that, once established the feasibility and safety of the treatment, should constitute an initial proof-of-concept for a larger Phase 2 clinical trial.

In this study, Sirolimus 1 mg has been administered per os once a day for 8 weeks. The primary endpoint measures the penetration of Rapamycin across BBB, by means of lumbar puncture at baseline and after the final dose, while the secondary endpoints include changes in AD progression through evaluation of AD biomarkers, as well as cognitive and physical tests.

The 10 patients recruited, between 55 and 85 years, present a diagnosis of MCI, Clinical Dementia Rating Scale between 0.5 and 1, HVLT-R < 5% and normal blood cell counts. Patients must also be on a stable dose of AD medication since at least 3 months.

People with diabetes, with a history of skin ulcers, in therapy with anti-platelet agents, anti-coagulant medications or other drugs affecting cytochrome CYP3A4, have been excluded. Furthermore, people with recent history of cardiovascular, major disorders, significant neurological disorders, active inflammatory, autoimmune, infectious, hepatic, malignant or psychiatric disease have been cut off. The primary completion date is estimated for July 2021. This study could be the first approach to a phase 2 clinical trial of rapamycin.



Lenalidomide (NCT04032626)

Lenalidomide, used for multiple myeloma and myelodysplastic syndromes, acts as immunomodulator, anti-cancer and anti-angiogenic drug (Quach et al., 2010). The pleiotropic anti-inflammatory activity of the drug, combined with evidence from previous clinical trials with thalidomide, led to the construction of the study MCLENA-1 (Decourt et al., 2020) a clinical trial for the assessment of Lenalidomide in patients with MCI. The investigators designed an 18-month, Phase II, double-blind, randomized, two-armed, parallel group, placebo controlled clinical trial aimed to test the hypothesis that lenalidomide reduces inflammatory and AD-associated pathological biomarkers, thus improving cognition. Estimated enrollment counts of 30 participants, aged between 50 and 90 years with MCI diagnosed, that have been randomized into two arms: one with lenalidomide (10 mg/day orally administered for 12 months followed by 6 months of washout) and one with placebo (orally administered for 12 months followed by 6 months of washout).

Primary endpoints will evaluate the change in cognition by ADAS-Cog, ADCS-ADL, CDR-SOB, MMSE. Secondary endpoints include the AEs assessment and blood toxicity in terms of platelets falling below 50000/μL and neutrophils falling below 1000/μL. The effects on amyloid loads, CNS neurodegeneration and on blood inflammatory markers will also be assessed.

Investigators expect to first complete within September 2023. Estimated study completion date is on September 2024.



Tacrolimus (NCT04263519)

Recent studies, which suggest a protective action of tacrolimus in countering the synaptotoxic cascade associated with Aβ (O’Neal et al., 2018), represent the basis of a phase 2, pilot, open labeled study, aimed to investigate the neurobiological effect of tacrolimus in subjects with MCI and AD-related dementia. The twelve patients enrolled have been randomized into two arms, in which, a different concentration of the drug will be collected (2–5 ng/ml vs. 5.1–10 ng/ml). Primary endpoint includes the effects of tacrolimus on CSF biomarkers (IL-2, IL-6, INFβ, YKL-40), deposition of Aβ, p-tau, and neurodegeneration. Parameters will be assessed at baseline and after 12 weeks of treatment. Effects on structural neuroimaging (MRI), electroencephalograms (EEG), on cognitive functions assessed by different inventory (MoCA, NPIQ, FAQ) will be explored as secondary outcomes. The study is planned to be completed within December 2021.



XPro1595 (NCT03943264)

Preclinical studies have shown that selective anti-TNF biologic, XPro1595, ameliorates neurologic dysfunction in mouse models of amyloid pathology (MacPherson et al., 2017).

On the basis of such preclinical evidence, in June 2019, a multicentre phase 1b open-label trial aimed to determine the safety, tolerability, and efficacy of XPro1595 in 18 patients with mild to moderate AD and evidence of peripheral inflammation by way of elevated blood C-reactive protein has got started. Participants have received weekly injections of 0.03, 1.0, or 3.0 mg/kg XPro1595 for 12 weeks. The primary endpoint is safety, while secondary endpoints include change from baseline in biomarkers of neuroinflammation, such as blood and CSF C-reactive protein, TNF-α, interleukin-1, and interleukin-6. CSF, Aβ and tau, and cognitive and psychiatric endpoints will also be measured. The estimated study completion date is December 2020.



CONCLUSION

The clinical experience gained in the arena of pharmacological treatment of inflammatory diseases represents a remarkable source of potential candidates to treat diseases with high unmet clinical need, such as AD, which may achieve considerable benefits from advantageously repositioning an array of pharmacological agents with known safety profile. Thus, unraveling inflammatory aspects of AD and compare them to mechanisms already known in other inflammatory disorders, becomes of primary relevance to reduce the disease burden in one of the most diffused dementia. In addition, the growingly shared perspective that AD not only involves activation of the immune/inflammatory response in the brain, but also depends upon peripheral immunological disturbances, helps to strengthen the concept that some of the immunomodulating drugs commonly used in inflammatory and/or proliferative diseases, might contribute to achieve meaningful clinical benefits also in AD patients. For these reasons, drug repositioning represents an appealing choice for diseases with poor therapeutic options, with the further advantage of conveniently reduced research and development costs, with special regard to clinical trials.

To date, there are no disease-modifying therapies available for AD, and the main goals of actually active trials are to detect the stage of AD at which the treatment should be more appropriately initiated, along with a durability of the treatment itself that would prevent patients from undergoing cognitive decline progression (if at all). In a clearer preclinical scenario which offers an increasing array of immune/inflammatory targets in the brain and in periphery and considering the quite wide panel of drugs which may interfere with these mechanisms, in analogy with their approved use in peripheral immune disorders, an innovative, disease modifying, treatment option(s) for AD may not be far away from the patient’s bedside.
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Fisetin Regulates Gut Microbiota and Exerts Neuroprotective Effect on Mouse Model of Parkinson’s Disease
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Previous studies have reported the anti-oxidant, anti-inflammatory, and anti-cancer effects of fisetin. However, the therapeutic efficacy of fisetin in Parkinson’s disease (PD) is unclear. In this study, we demonstrated that fisetin could markedly alleviate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in mice. To confirm the reported correlation between gut microbiota and PD, the bacterial DNA in the fresh feces of mice from each group was subjected to 16S rRNA (V3 and V4 regions) sequencing. The results revealed that fisetin changed the number, diversity, and distribution of gut microbiota in MPTP-induced mice model of PD. The alpha and beta diversity analyses showed that the fisetin intervented MPTP group gut microbiota exhibited a significantly higher abundance of Lachnospiraceae and a significantly lower abundance of uncultured_bacterium_g_Escherichia-Shigella and uncultured_bacterium_g_Bacillus than the MPTP group gut microbiota. These findings indicated that fisetin exerts a neuroprotective effect on neurodegeneration by altering the composition and diversity of gut microbiota. Thus, fisetin could be a potential novel therapeutic for PD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly (Kalia and Lang, 2015). In addition to exhibiting motor symptoms, such as bradykinesia, resting tremors, and rigidity, patients with PD exhibit non-motor symptoms, such as gastrointestinal dysfunction, sleep disorders, autonomic dysfunction, and sensory disturbances (Schapira et al., 2017). The main pathological feature of PD is the accumulation of alpha-synuclein, which results in the degeneration of dopaminergic neurons in the substantia nigra (SN) (Michel et al., 2016). However, the molecular mechanism underlying PD has not been fully elucidated and there are no known effectively neuroprotective therapies for PD (Kalia and Lang, 2015).

Oxidative stress, mitochondrial dysfunction, autophagy impairment, and inflammation are reported to be involved in the pathophysiological progression of neuronal degeneration in PD. However, the detailed mechanism underlying neurodegeneration in PD is still not fully elucidated. Based on the premotor symptoms of PD, such as gastrointestinal (GI) disorders, it was hypothesized that the site of disease origin may be outside the central nervous system (CNS), such as the gastrointestinal tract (Braak et al., 2006). Recent evidence suggests a correlation between gut microbiota and CNS disorders. The microbiota-gut-brain axis plays an important role in maintaining homeostasis (Fung et al., 2017). Previous studies have reported that gut microbiota can help to maintain the integrity of the blood-brain barrier (BBB), regulate the expression of brain-derived neurotrophic factor (BDNF) (Braniste et al., 2014), and affect the growth and function of immune cells in CNS (Erny et al., 2015). Recent studies have also reported that gut microbiota imbalance is related to many neurodegenerative diseases, such as PD, Alzheimer’s disease (AD), and multiple sclerosis (MS) (Cryan et al., 2019). The patients with PD and healthy control subjects exhibit differential gut microbiota composition. Moreover, the differentially abundant taxa are reported to markedly vary between patients with PD and healthy control subjects. Compared to the healthy control subjects, patients with PD exhibit alterations in the gut microbial community, including a decreased abundance of the Prevotellaceae family, and an increased abundance of Akkermansia genus, Verrucomicrobiaceae family, Bifidobacterium genus and Lactobacillaceae family (Aho et al., 2019). The relative abundance of Enterobacteriaceae family in PD patients is reported to be positively correlated with the severity of postural instability and gait difficulty (Scheperjans et al., 2015). Sun et al. (2018) revealed fecal microbiota transplantation (FMT) can protect PD mice by inhibiting neuroinflammation. Another study also demonstrated that germ-free mice can develop PD symptoms by receiving FMT from PD patients (Sampson et al., 2016). This suggests that gut microbiota imbalance is involved in PD pathogenesis and affect brain function. Thus, drugs or compounds targeted at modulating the gut microbiota could be a potential therapeutic strategy for PD.

Fisetin, a bioactive flavonoid, is abundant in various vegetables and fruits (Adhami et al., 2012). Fisetin is an effective metal chelating agent, free radical scavenger, and enzyme inhibitor. Additionally, fisetin is used for treating various chronic diseases, such as cardiovascular disease and diabetes. Recent studies have demonstrated the neurotrophic activity of fisetin. Additionally, fisetin is reported to promote the differentiation of PC12 cells by activating the Ras-ERK pathway (Ahmad et al., 2017). It has been reported that flavonoids. inhibits Aβ25–35-induced neuronal death by changing the electrophysiological characteristics of potassium channels and voltage-gated sodium (Wang et al., 2019). Furthermore, fisetin can alleviate rotenone-induced behavioral deficits, mitochondrial dysfunctions, and aberrant dopamine levels in the rat model of PD (Alikatte et al., 2020). Fisetin is also reported to increase the dopamine level in the striatum of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) mouse model of PD (Maher, 2017). However, the mechanism underlying the neuroprotective effect of fisetin on dopaminergic neurons has not been elucidated.

In this study, we used the MPTP mouse model of PD to investigate the neuroprotective effects of fisetin and examined the potential mechanisms associated with the gut microbiota imbalance.



MATERIALS AND METHODS


Modeling PD in Mice

Twelve-week-old male C57BL/6 mice were purchased from Modelorg (Shanghai Model Organisms Company, Shanghai, China). The mice were randomly divided into three groups with each group comprising eight mice as follows: F group (fisetin + MPTP), orally administered with fisetin (100 ng/kg bodyweight) (Sigma-Aldrich, St Louis, United States) for 30 consecutive days; MPTP group (PBS + MPTP), orally administered with phosphate-buffered saline (PBS PH7.4) for 30 consecutive days; normal control group, simultaneous intragastric and intraperitoneal administration of PBS. On day 25 post-PBS/fisetin administration, the F and MPTP groups were intraperitoneally injected with MPTP (30 mg/kg bodyweight) (Sigma-Aldrich, St Louis, United States) once a day for five consecutive days. During administration of MPTP, mice of the fisetin + MPTP group were also given fisetin. All traumatic operations were performed under anesthesia after intraperitoneal injection of pentobarbital sodium (50 mg/kg bodyweight). Every effort was made to minimize the suffering of the animals. This study was approved by the Ethics Committee of Shanghai Model Organisms Company (IACUC No.2018-0005). All experiments were performed in compliance with China’s National Science and Technology Commission Laboratory Animal Regulations.



Behavioral Assessments


Open Field Test

The behavioral experiments were performed on day 1 after the last MPTP administration. The open field test is a useful method to assess spontaneous locomotor activity (Asakawa et al., 2016). Before the experiment, the mice were allowed to adapt to the experimental environment for half an hour. The mice were placed in an experimental box (40 cm × 40 cm) and their movement was recorded using the open field working station (MED Associates, Georgia, VT, United States). The total distance and mean velocity of the movement were analyzed over a period of 15 min.



Pole Test

The pole test is often used to measure bradykinesia in mouse model of PD (Ogawa et al., 1985). Before MPTP injection, the mice are trained to climb the pole with their head pointing toward the top of the pole (height 100 cm with a diameter of 1 cm). The mice are then trained to turn around and climb down to the bottom of the pole three times. On day 1 after the last administration of MPTP, the time taken by the mice to turn around and the total time taken to climb from the top to the bottom of the pole were recorded. Each mouse was tested three times at 1 h intervals.



Hanging Wire Test

The hanging wire test is used to evaluate the coordination ability of mice. The front paw of the mouse was placed at the center of the horizontal wire (2 mm in diameter, 50 cm in length, 35 cm from the bottom). The mice tend to support themselves using their hind claws to avoid falling and walk along the wire to the platform. The number of times the mice drops from the wire (up to 10 times) and the number of arrivals (up to 10 times) in 180 s were recorded. The total score for falls and arrivals was obtained using the following formula: (10 falls + arrivals) (Klein et al., 2012).



Nissl Staining

Brain samples were collected and fixed overnight in 4% paraformaldehyde at −4°C for the preparation of paraffin-embedded sections. The paraffin-embedded sections were dewaxed, hydrated, stained with 0.1% Cresyl violet solution buffer for 10 min, soaked in absolute ethanol for 5 min, and cleared in xylene for 5 min. The paraffin sections were sealed with neutral gum and observed under a light microscope (BX51, Olympus, Tokyo, Japan).



Protein Extraction and Western Blotting Analysis

The mice were sacrificed on day 1 after the last administration of MPTP. The brain tissues of the striatum were isolated and stored at −80°C. The brain tissues were homogenized in 1X RIPA lysis buffer containing 1 mM phenylmethylsulfonyl fluoride (PMSF) and phosphatase inhibitor cocktail (Roche, Basel, Switzerland). The lysate was centrifuged at 4°C and 12,000 g for 15 min. Equal amounts of protein from all groups were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 12% gel. The resolved proteins were transferred to a 0.45-μm polyvinylidene fluoride (PVDF) membrane. The membrane was blocked using 5% (w/v) skimmed milk to inhibit non-specific binding. Next, the membrane was incubated overnight at 4°C with the following primary antibodies: mouse anti-tyrosine hydroxylase (TH) (Sigma, 1:000) and mouse anti-β-actin (Proteintech, 1:1000) antibodies. The membrane was then incubated with the HRP-conjugated goat anti-mouse (CST, United States 1:1000) secondary antibodies for 1 h. The proteins were visualized using the enhanced chemiluminescence (ECL) test kit and Invitrogen iBright 1,500 system.



Gut Microbiota Analysis

The fresh fecal samples of all mice were collected on days 3 and 5 post-MPTP administration and stored at −80°C. The fecal bacterial composition was determined by amplifying and sequencing the V3 and V4 regions of the bacterial 16S rRNA. The sequence of the primers used for polymerase chain reaction (PCR) amplification is as follows: F primer, 5′-ACTCCTACGGGAGGCAGCA-3′; R primer, 5′-GGACTACHVGGGTWTCTAAT-3′. The Illumina HiSeq platform was used for high-throughput sequencing of bacterial 16S rRNA. The valid sequence data were classified as operational taxonomic units (OTUs) at 97% similarity level using the UCLUST (Edgar, 2010) software. Based on the results of OTUs, the genetic relationship among bacterial species and the differences among species were analyzed to obtain the relationship between bacterial classification, bacterial relative abundance, and bacterial community. The α diversity index of the samples was evaluated using the Mothur software (version, v.1.30). The α diversity index indicates the species richness and diversity within a sample. To compare the diversity index among samples, the number of sequences contained in each sample was standardized. The indicators, including rarefaction, OTU rank, and Shannon curves, and the ACE, Shannon, Chao1, and Simpson indices were calculated. The QIIME (Caporaso et al., 2010) software was used for beta diversity analyses, including unweighted pair-group method with arithmetic mean (UPGMA), NMDS (Looft et al., 2012), PCoA (Sakaki et al., 1994), PCA, and heatmaps of redundancy analysis (RDA)-identified key OTUs, to compare the similarity of species diversity of different samples. The significant biomarkers were determined by line discriminant analysis (LDA) effective size (LEfSe). The biomarkers and rich flora were determined using the LDA threshold >4.



Statistical Analysis

The data are expressed as mean ± standard error (SEM). The data across groups were compared by one-way analysis of variance (ANOVA), followed by the least significant difference (LSD) multiple comparison test. All statistical analyses were performed in Prism 6.0 (GraphPad Software, Inc., San Diego, CA, United States). The difference was considered statistically significant when the p-value was less than 0.05.



RESULTS


Fisetin Alleviates MPTP-Induced Behavioral Impairments in Mice

The mice were intraperitoneally injected with MPTP to establish the PD model. And changes of body weight between groups at different time point was presented as Supplementary Data 1. The effect of fisetin on MPTP-induced behavioral impairments was assessed using the open field, pole, and hanging wire tests. The open field test is often used to evaluate the spontaneous behavior of mice, which indicates the inactivity of mice. The total distance and mean velocity of movement of the MPTP group were significantly lower than those of the control group. The administration of fisetin significantly attenuated the MPTP-induced locomotor activity impairments in mice (Figures 1B,C). Further, we evaluated the effect of fisetin on MPTP-induced bradykinesia and coordination deficits in mice by the pole and hanging wire tests, respectively. The administration of MPTP prolonged the turn time and total time spent on the pole, which was attenuated by fisetin treatment (Figures 1D,E). The score of MPTP group in the hanging wire test was lower than that of the control group. The administration of fisetin attenuated the MPTP-induced coordination impairments in mice (Figure 1E). The results of behavioral experiments revealed that fisetin treatment can improve the MPTP-induced motor behavior impairments in mice.
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FIGURE 1. Fisetin attenuates 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced behavioral impairments in mice. (A) Experimental procedure time line; (B) The total distance, and (C) the mean velocity of mouse movement in the open field test; (D) The total time taken to climb the pole, and (E) the turn time in the pole test; (F) The score of wire hanging test. Data are expressed as mean ± standard error of mean (SEM). ∗∗p < 0.01 and ∗∗∗p < 0.001 compared with the control group; ##p < 0.01 and ###p < 0.001 compared with the MPTP group (n = 8).




Fisetin Attenuates MPTP-Induced Dopaminergic Neurodegeneration in SN and Striatum

The protein level of TH was estimated by western blotting. Treatment with MPTP significantly decreased the TH levels in mice. The F group exhibited improved TH levels when compared to the MPTP group (Figures 2A,B). The dopaminergic neurodegeneration was assessed by TUNEL staining, Nissl staining and immunofluorescence staining. As shown in Figure 2C, treatment with MPTP increased the number of TUNEL-positive (apoptotic) neurons. Contrastingly, the fisetin group exhibited a significantly lower number of TUNEL-positive neurons than the MPTP group. Nissl staining is used to stain the Nissl body located in the cytoplasm of neurons. The MPTP group exhibited a significantly higher amount of Nissl-stained dark neurons than the control group. The administration of fisetin attenuated the MPTP-induced increase in the number of Nissl-stained dark neurons (Figure 2D). Next, we used immunofluorescence staining to detect TH positive neurons in SN of mice. We observed the decrease of dopaminergic neurons in MPTP group, while the number of TH positive neurons increased in fisetin and MPTP group (Supplementary Figure 2). These results indicated that fisetin can alleviate MPTP-induced dopaminergic neurodegeneration in the SN-striatum axis of PD mice.
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FIGURE 2. Fisetin attenuates 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration (A,B) The expression levels of tyrosine hydroxylase (TH) in the striatum; (C) TUNEL staining to assess apoptosis. Scale bar = 100 μm; (D) Nissl staining to assess neuronal injury. Scale bar = 20 μm.




Fisetin Affects the Number and Composition of Gut Microbiota in MPTP-Treated Mice

The feces of mice from normal mice (CON), MPTP-treated mice from the PBS intervention group (MPTP), and MPTP-treated mice from the fisetin intervention group (F) were collected. The composition and specific distribution of gut microbiota were evaluated by sequencing the bacterial V3 and V4 regions of the 16S rRNA. In total, 3,127,202 pairs of reads were obtained by sequencing 24 samples. Of these, 2,793,501 clean tags were generated after splicing the paired-end reads and filtering. An average of 116,396 clean tags was obtained with at least 86,445 clean tags obtained from each sample. The sequences were clustered into OTUs with 97% sequence similarity using the QIIME (version 1.8.0) UCLUST software. We generated the OTU rank table, Shannon index curves, rarefaction curves, Simpson curves, Chao1 curves, and ACE curves, the results showed that there were no significant differences in the number of OTUs among the three groups, and the sequencing data of each sample was enough to reflect the species diversity (Figures 3A,C–E). Chao1 and Ace index were used to measure species richness, and Shannon and Simpson index to measure species diversity. As shown in the Figures 3F–I, there were no significant differences in chao1 index, Simpson index, Ace index and Shannon index of α-diversity among groups. The results showed that there was no significant difference in α-diversity among the three groups. However, the Venn diagram showed that there were no significant differences in the number of OTUs between the control and F groups. The number of OTUs in the MPTP group was two more than that in the control and F groups (Figure 3B). The two bacterium are Kozakia_baliensis belonging to the family Acetobacteraceae and uncultured_bacterium_g_Bacillus belonging to the family Bacillaceae. The Venn diagram revealed that one bacterium (uncultured_bacterium_g_[Eubacterium]_ruminantium_group belonging to the family Lachnospiraceae) was detected in the F and control groups, which was not detected in the MPTP group. The administration of fisetin affected the abundance and composition of gut microbiota in MPTP-treated mice.
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FIGURE 3. The alpha diversity analysis of gut microbiota isolated from the feces of mice of each group via 16S rRNA (V3 and V4 regions) sequencing. (A) Operation taxonomic unit (OTU) statistic results; (B) OTU-Venn comparison results; (C) OTU rank abundance curve statistic results; (D) OTU rarefaction curve statistics; (E) OTU Shannon index statistics; The alpha diversity statistics of OTUs based on Shannon index (F), Chao1 index (G), Simpson index (H), and ACE index (I).




Fisetin Alters the Distribution and Diversity of Gut Microbiota in MPTP-Treated Mice

Each OTU can be classified into a species by comparing the microbial reference sequence data and representative sequences of OTUs. The community composition of each sample was determined. The species abundance tables at different classification levels (phylum, class, order, family, genus, and species) were generated using the QIIME software. The community structure of samples at different taxonomic levels was plotted using the R software. Compared to the MPTP group, the F group exhibited a significantly higher relative abundance of Lachnospiraceae family and a significantly lower relative abundance of Bifidobacteriaceae, Enterobacteriaceae and Bacillaceae families (Figure 4A). The differential microbiota was further analyzed at the genus and species levels. At the genus level, the F group exhibited a higher relative abundance of uncultured_bacterium_f_Lachnospiraceae, [Eubacterium]_ruminantium_group, and Marvinbryantia, while a significantly lower relative abundance of Bifidobacterium, Escherichia_Shigella and Bacillus than the MPTP group (Figure 4B). Analysis at the species level showed that compared with Group MPTP, the relative abundance of uncultured_bacterium_f_Lachnospiraceae, uncultured_ bacterium_g_Marvinbryantia, uncultured_bacterium_g_ [Eubacterium]_ruminantium_group (all of them belonging to the family Lachnospiraceae) was significantly increased in the guts of individuals in Group F, while the relative abundance of uncultured_bacterium_g_Bifidobacterium (family Bifidobacteriaceae), uncultured_bacterium_g_Escherichia_ Shigella (family Enterobacteriaceae) and uncultured_bacterium_ g_Bacillus (family Bacillaceae) were significantly decreased (Figures 4C,D and Supplementary Table 1). The Binary-Jaccard algorithm was used to analyze the differences in the microbial communities among the three groups. The analyses mainly include non-metric multi-dimensional scaling (NMDS), principal component analysis (PCA), and principal coordinate analysis (PCoA). The results of these analyses revealed that there were significant differences in the distribution of microbial communities among the three groups (Figure 4E). The hierarchical UPGMA cluster analysis revealed that the gut microbiota of the Groups F and CON had high homology and closer genetic relationship (Figures 5A,B).
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FIGURE 4. Fisetin alters the distribution and diversity of gut microbiota in MPTP mice. Community clustering analysis of operational taxonomic units (OTUs) at the family (A), genus (B), and species (C) levels; (D) Phylogenetic analysis of OTUs; (E) Beta diversity analysis of OTUs based on Unweighted UniFrac.
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FIGURE 5. Hierarchical clustering analysis of the 16S rRNA (V3 and V4 regions) sequencing results. (A) Unweighted pair-group method with arithmetic mean (UPGMA) analysis. (B) Heatmap analysis of samples from various groups based on the distance algorithm (unweighted).


The samples of each group can be clustered hierarchically in Python language to reveal the characteristics of the microbial population of each group using the combination of UPGMA cluster tree and histogram plots. The integrated analysis revealed that uncultured_bacterium_f_Lachnospiraceae was the dominant bacteria in F group, while the abundance of Bifidobacterium was relatively lower than the MPTP group (Figure 6A). These results are consistent with those of the species abundance table generated by the QIIME software. Line Discriminant Analysis (LDA) Effect Size (LEfSe) was used to find high-dimensional significant biomarkers among different groups. The LDA score is used to represent the influence of different species. The LDA scores greater than 4 are considered important biomarkers. The LDA score distribution and Cladogram analysis revealed that the fisetin group gut microbiota had a significantly higher abundance of Lachnospiraceae family and a significantly lower abundance of Bifidobacterium and Escherichia_Shigella than the MPTP group gut microbiota (Figures 6B,C). The distribution of the abovementioned microbiota was opposite in the MPTP group.
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FIGURE 6. The analysis of differences in gut microbiota from feces of mice from each group. (A) Combined unweighted pair-group method with arithmetic mean (UPGMA) cluster tree and histogram analysis; (B) Line discriminant analysis (LDA) effect size (LEfSe) analysis of samples from various groups; (C) Phylogenetic branches from the LEfSe analysis.




Fisetin Can Alter the Expression of 16S Functional Genes and Metabolic Signaling Pathways in Intestinal Microbes of PD Mice

The KEGG metabolic pathway analysis revealed differences in the effect of microbes on the metabolic pathways among the three groups. The analysis revealed that the F group gut microbiota can upregulate metabolic pathways, such as carbohydrate metabolism and environmental information processing (such as membrane transport) and downregulate translation, replication, and repair of genetic information (Figure 7A and Supplementary Table 2) when compared to the MPTP group gut microbiota.
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FIGURE 7. Fisetin can alter the expression of 16S functional genes and metabolic signaling pathways in intestinal microbes of Parkinson’s disease (PD) mouse model. (A) KEGG functional prediction analysis. (B) Clusters of orthologous groups (COGs) of proteins functional prediction analysis.


The analysis of clusters of orthologous groups (COG) of proteins enables the identification of distribution and abundance of homologous protein clusters in the microbiota (Figure 7B and Supplementary Table 3). The abundance of proteins associated with carbohydrate transport and metabolism in the F group gut microbiota was significantly higher than that in the MPTP group gut microbiota. However, the abundance of proteins associated with replication, recombination and repair, translation, ribosomal structure, and biogenesis in the fisetin group gut microbiota was significantly lower than that in the MPTP group gut microbiota.



DISCUSSION

Several studies have reported the vital role of non-motor symptoms, including hyposmia, gastrointestinal dysfunction, and constipation, which precede the onset of motor symptoms, in PD (Klingelhoefer and Reichmann, 2017; Pereira et al., 2017). Among the non-motor symptoms, gastric motility disorders, especially constipation, are reported in 70–100% of patients with PD (Fasano et al., 2015; Li et al., 2017). Additionally, some studies have confirmed the presence of Lewy bodies in the enteric nervous system (Keshavarzian et al., 2015). Liao et al. had shown that oral Lactobacillus plantarum PS128 attenuates oxidative stress and neuroinflammation in the nigra-striatum pathway induced by MPTP and inhibits the increase of Enterobacteriaceae and lipopolysaccharide and peptidoglycan biosynthesis-related microbial modules induced by MPTP (Liao et al., 2020). Pu et al. (2019) confirmed that antibiotic-induced microbiome depletion can significantly improve the decrease of dopamine transporter (DAT) immunoreactivity in the striatum and TH immunoreactivity in the SN. These findings indicate the involvement of the microbiota-gut-brain axis (MGBA) in the pathophysiology of PD, which can be a potential therapeutic target for PD. Fisetin, a flavanol from fruits and vegetables, exerts anti-oxidant, anti-inflammatory, and anti-aging effects in MPTP induced mice model of PD (Mukhtar et al., 2015; Si et al., 2019). However, the underlying mechanism is unclear. In this study, the effects of orally administered fisetin on MPTP-induced PD were examined in mice and explored its association with gut microbiota. Previous study demonstrated the neuroprotective effect of fisetin in the MPTP model of PD, which may be closely related to attenuation of α-synuclein expression. The mechanisms study showed the potential inhibition of apoptotic and inflammatory pathways (Patel et al., 2012). Consistent with previous study, in our experiment, the behavioral test results suggested that fisetin could attenuate MPTP-induced behavior impairments in mice. The results of western blotting, Nissl staining, and TUNEL staining also confirmed the role of fisetin on MPTP-induced dopaminergic apoptosis. Next, the bacterial DNA in the fresh feces collected from the three groups were subjected to 16S rRNA (V3 and V4 regions) sequencing to assess the composition of gut microbiota and the differences in the distribution of specific flora. In addition to affecting the diversity and distribution of microbiota, fisetin treatment affected the abundance and composition of gut microbiota in the MPTP mouse model of PD. The alpha and beta diversity analyses revealed that the F group gut microbiota exhibited a significantly higher abundance of Lachnospiraceae and a significantly lower abundance of uncultured_bacterium_g_Bacillus and uncultured_bacterium_g_Escherichia-Shigella than the MPTP group gut microbiota. Consistent with these results, a recent study also reported that patients with PD exhibited a lower abundance of Lachnospiraceae than healthy control (Hill-Burns et al., 2017). Additionally, Lin et al. have demonstrated that compared with healthy control, the abundance of Lachnospiraceae was reduced by 42.9%, while that of Bifidobacteriaceae was enriched in patients with PD (Lin et al., 2018). Therefore, we hypothesized that there is a strong correlation between Lachnospiraceae and pathogenesis of PD and that targeting this microbe could be a new therapeutic strategy for PD.

Lachnospiraceae is a beneficial butyrate-producing bacterium that is associated with gut health. Butyrate is an energy source for the gut epithelium, which inhibits NF-KB activation to reduce gut inflammation (Lin et al., 2018). Srivastav et al. (2019) had shown that the application of probiotics can significantly increase the metabolite BHB of butyrate and confirmed that butyrate can protect against MPTP neurotoxicity by preventing dopaminergic neuronal loss and dopamine depletion, reducing gliosis proliferation in SN and up-regulating neurotrophic factors. The results of this study indicated that fisetin may exert its neuroprotective effect by increasing the abundance of Lachnospiraceae, which alleviates gut inflammation and reduces the production of toxic substances. This allows the spread of Lachnospiraceae from the gut to the brain. Moreover, several studies have reported that the depletion of short-chain fatty acids (SCFA) contributes to the pathogenesis of PD because it could potentially induce inflammation and microglial activation, which results in gastrointestinal disorders, such as leaky gut and constipation (Barcenilla et al., 2000; Duncan et al., 2002; Unger et al., 2016; Lin et al., 2018). Interestingly, SCFA is produced by gut bacteria (mainly Lachnospiraceae) that mainly metabolize carbohydrates. This is consistent with the results of Hill-Burns who reported that the abundance of intestinal Lachnospiraceae in patients with PD decreased with a concomitant decrease in the SCFA levels (Hill-Burns et al., 2017). Several studies have reported the vital role of SCFA in the development of PD. Thus, replenishing the microbiome with SCFA-producing bacteria could be a potential preventive strategy for PD. This was consistent with the results of this study, which demonstrated that the F group gut microbiota exhibited a higher abundance of Lachnospiraceae and higher carbohydrate metabolism than the MPTP group. The increased abundance of Lachnospiraceae may produce enhanced SCFA levels and exert neuroprotective effects. Additionally, Lachnospiraceae can promote the aggregation of regulatory T cells in the colon and reduce the immunoglobulin E level (Wu et al., 2013; Stiemsma et al., 2016), while regulatory T cells can delay the dopaminergic neurodegeneration in PD (Christiansen et al., 2016).

In addition to the association of the Lachnospiraceae family with PD development, some studies have reported the negative correlation between the abundance of Lachnospiraceae and PD duration (Scheperjans et al., 2015; Hill-Burns et al., 2017). Li et al. reported that patients with PD exhibited a significantly high abundance of the intestinal conditional pathogens, such as Enterococcus, Escherichia-Shigella, and Proteus. Additionally, the abundance of these pathogens was positively correlated with PD duration and unified Parkinson’s disease rating scale (UPDRS) score (Li et al., 2017). Gut microbiota can produce and secrete extracellular amyloid proteins, which can not only promote bacterial colonization, adhesion and biofilm formation, but also promote tissue invasion, infectivity, and induce misfolding of aggregation-prone proteins in the host (Taylor and Matthews, 2015; Chen et al., 2016). Bacillus and Escherichia-Shigella secrete amyloid protein and promote the occurrence of diseases. Amyloid proteins can induce oxidative stress, activate microglia, and release inflammatory factors such as TNF-α, IL-1 and IL-6 to increase to increase permeability of intestinal epithelial and BBB (Harach et al., 2017; Van Gerven et al., 2018). Escherichia-Shigella can cause diarrhea and produce Shiga toxin, which can cause functional damage to the CNS of rabbits and rodents (Lee and Tesh, 2019). It is suggested that Shigella, a conditional pathogen, can produce endotoxin, promote intestinal inflammation, and damage the CNS in patients with PD. A recent study indicated that colonization of curli-producing Escherichia coli accelerates aSyn pathology in the gut and brain. Escherichia coli needs Curli expression to exacerbate α-Syn-induced intestinal and motor disorders (Sampson et al., 2020). Moreover, epigallocatechin gallate, a plant-derived dietary polypheno can prevent pathology and motor symptoms in Thy1-SNCA mice by blocking amyloidogenic subunit of curli fibers (CsgA) amyloidogenesis and repressing CsgA transcript expression in Escherichia coli (Sampson et al., 2020). This is consistent with the results of this study, which reported that the fisetin group gut microbiota exhibited a lower abundance of Escherichia-Shigella, Bacillus and proteins associated with genetic information processing than the MPTP fisetin group. This indicated that fisetin may inhibit inflammation and alleviate dopaminergic neurodegeneration by inhibiting the growth of harmful microorganisms.

What’s more, several studies have confirmed the antioxidant activity of fisetin and its ability to maintain GSH level under stress through inducing the expression of Nrf2 and ATF4 (Maher, 2017). Whether fisetin can still exert the mentioned effect in PD model still need further studies.

In summary, this study demonstrated that fisetin can protect MPTP-induced dopaminergic neurodegeneration. The potential mechanism underlying the neuroprotective effect of fisetin involves the regulation of the distribution and abundance of Lachnospiraceae, uncultured_bacterium_g_Escherichia-Shigella and uncultured_bacterium_g_Bacillus in the MPTP-induced mouse PD model. And in our further experiments, we would like to explore other possible mechanisms of fisetin for PD, such as antioxidant and anti-inflammatory effect.
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Zonisamide has been used as an add-on treatment in order to overcome the deficiencies of the general therapies currently used to resolve the motor complications and non-motor symptoms of Parkinson disease. Various trials have been designed to investigate the mechanism of action and treatment effects of zonisamide in this condition. Most clinical trials of zonisamide in Parkinson disease were from Japan. The vast majority of studies used changes in the Unified Parkinson’s Disease Rating Scale (UPDRS) scores and daily “OFF” time as primary endpoints. Based on adequate randomized controlled trials, zonisamide is considered a safe and efficacious add-on treatment in Parkinson disease. The most convincing proof is available for a dosage of 25–50 mg, which was shown to lead to a significant reduction in the UPDRS III score and daily “OFF” time, without increasing disabling dyskinesia. Furthermore, zonisamide may play a beneficial role in improving non-motor symptoms in PD, including impulsive–compulsive disorder, rapid eye movement sleep behavior disorder, and dementia. Among the various mechanisms reported, inhibition of monoamine oxidase-B, blocking of T-type calcium channels, modulation of the levodopa–dopamine metabolism, modulation of receptor expression, and neuroprotection are the most often cited. The mechanisms underlying neuroprotection, including modulation of dopamine turnover, induction of neurotrophic factor expression, inhibition of oxidative stress and apoptosis, inhibition of neuroinflammation, modulation of synaptic transmission, and modulation of gene expression, have been most extensively studied. This review focuses on structure, pharmacokinetics, mechanisms, therapeutic effectiveness, and safety and tolerability of zonisamide in patients with Parkinson disease.
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INTRODUCTION

After Alzheimer disease, Parkinson disease (PD) is the most prevalent neurodegenerative disorder (de Lau and Breteler, 2006; Yang and Perry, 2009). The primary pathological manifestation of PD is the reduction of dopamine-producing cells in the nigrostriatal pathway, which causes a significant reduction in the dopamine levels of the striatal cells (Greenamyre and Hastings, 2004; Liu et al., 2020). However, the etiology of and the mechanisms underlying the decrease in dopaminergic neurons remain unclear. At the moment, dopamine replacement drugs, such as dopamine agonists and levodopa, are generally efficacious in PD patients (Chen and Swope, 2007). Nevertheless, the effectiveness of levodopa and dopamine agonists is gradually lost, and disabling motor complications worsen as time passes, as the current drugs do not slow or halt the progression of neurodegeneration (Bonuccelli and Del Dotto, 2006; Lew, 2007). Non-motor symptoms also appear and threaten patients’ quality of life as the disease progresses (Schapira, 2007). Therefore, there remains a need for new therapeutic strategies (Miwa, 2007). Zonisamide (ZNS) may be an effective therapeutic agent, with varied mechanisms of action relevant to the treatment of PD.

ZNS is a sulfonamide developed in Japan (Uno et al., 1979; Murata, 2004; Bermejo and Anciones, 2009). It has been approved for the treatment of seizures in Japan since 1989 and is commercially available worldwide (Miwa, 2007). Thereafter, ZNS has been authorized as an add-on treatment, along with levodopa, for PD patients in Japan since 2009 (Yang and Perry, 2009). In 2000, Murata et al. (2001) serendipitously discovered that ZNS was efficacious for both epileptic seizures and Parkinsonian symptoms in a single patient. Since then, dozens of preclinical and clinical studies have been performed to clarify the mechanisms and therapeutic effectiveness of ZNS, and the related research has progressed rapidly over the last 10 years. Since the last review was published in 2013 (Grover et al., 2013), there has been a need to summarize the studies reported in the interim. This review focuses on the structure, pharmacokinetics, mechanisms, therapeutic effectiveness, and safety and tolerability of ZNS in patients with PD.



STRUCTURE

ZNS is a sulfonamide drug (Uno et al., 1979). Its chemical name is 1,2-benzisoxazole-3-methanesulfonamide, and molecular weight is 212.227 g/mol. The chemical structure of ZNS is shown in Figure 1.
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FIGURE 1. Structure of zonisamide.




PHARMACOKINETICS

The pharmacokinetics of ZNS has been well investigated and summarized previously (Sills and Brodie, 2007; Yang and Perry, 2009) and are shown in Table 1, based on preclinical or clinical trials, prescribing information, and previous reviews (Ito et al., 1982; Matsumoto et al., 1983; Miwa, 2007; Bermejo and Anciones, 2009).


TABLE 1. Properties of zonisamide.

[image: Table 1]
It has been demonstrated that the P450 enzyme CYP3A4 is primarily responsible for the metabolism of ZNS, whereas CYP3A5 and CYP2C19 may also be involved (Nakasa et al., 1998; Ohmori et al., 1998; Morita et al., 2005). All ZNS derivatives, including 2-sulfamoylacetylphenol, N-acetyl ZNS, and unaltered ZNS, are excreted in the urine and feces (Stiff et al., 1992). Notably, potential interactions between ZNS and other medications for PD also need to be taken into account (Sills and Brodie, 2007; Bermejo and Anciones, 2009).



MECHANISMS OF ACTION

The antiparkinsonian mechanism of ZNS is complicated. As the treatment dosage of ZNS in PD is 25–50 mg/day, which is markedly lower than that for the treatment of epilepsy (200–400 mg/day), the mechanism involved is likely to be different (Murata et al., 2007). Here, we will review possible mechanisms, with a particular focus on advances in the last several years, involving both dopaminergic and non-dopaminergic mechanisms.


Inhibition of Monoamine Oxidase-B

ZNS is capable of inhibiting monoamine oxidase-B (MAO-B) (Uemura et al., 2017). Sonsalla et al. (2010) reported that ZNS regulates MAO-B activity, reversibly, with an IC50 of 25 μM in vitro.

Previous studies have demonstrated that the metabolism of dopamine by MAO-B produces reactive oxygen species (ROS), which contribute to nigrostriatal degeneration (Alborghetti and Nicoletti, 2019). ZNS prevents the formation of 1-methyl-4-phenylpyridinium [MPP(+)], which is derived from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via MAO-B, and thereby inhibits the oxidation of dopamine to hydrogen peroxide and the related neurotoxic effects (Siebert et al., 2000; Sonsalla et al., 2010).



Blocking of T-Type Calcium Channels

Previous experimental studies have suggested that patterns of neural firing activity in the basal nuclei in MPTP-induced mice or PD patients are switched to a bursting discharge pattern (Wang et al., 2006; Wichmann and DeLong, 2006; Bermejo and Anciones, 2009). This activity could be reduced by ZNS as this drug blocks the voltage-gated Na+ channels and voltage-gated Ca2+ channels (T-type calcium channels), resulting in improvement in PD symptoms (Yang et al., 2014; Kunisawa et al., 2018). Additionally, Yurekli et al. (2013) demonstrated that ZNS decreased the level of cytosolic free Ca2+ in an MPP-induced neuronal cell model of PD.



Modulation of Levodopa-Dopamine Metabolism

Nishijima et al. (2018) demonstrated that the effect of ZNS is primarily due to the modulation of levodopa-dopamine metabolism in the striatum. They found that levodopa-induced dyskinesia (LID) was significantly enhanced by prescription of ZNS. On the contrary, apomorphine-induced dyskinesia was not affected by prescription of ZNS. ZNS may enhance dopamine synthesis (Miwa, 2007). ZNS increases the intracellular dopamine concentration when the drug is administered at 25 or 50 mg/kg daily for 3 weeks (Okada et al., 1995). Murata et al. (Murata, 2004) demonstrated that enhanced expression of tyrosine hydroxylase (TH) mRNA contributed to increased dopamine synthesis. They found that levels of TH mRNA were increased in the rat striatum when ZNS was administered at 20 or 50 mg/kg daily for 2 weeks. However, Nishijima et al. (2018) found that a single administration of ZNS did not induce dyskinesia, and TH was not involved in levodopa metabolism. Thus, the enhanced expression of TH cannot fully explain the increased levodopa effect. Further studies are required to demonstrate this mechanism.

It has also been reported that ZNS increases the extracellular dopamine concentration, suggesting that suppression of dopamine reuptake may explain the increased extracellular dopamine concentration (Nishijima et al., 2018). It has been reported that ZNS could increase the release of dopamine (Gluck et al., 2004; Miwa, 2007). However, a recent study showed that ZNS could not elevate striatal expression of vesicular monoamine transferase-2 and dopamine decarboxylase by Western blot analyses, suggesting that it may not be the main mechanism underlying the antiparkinsonian effects of ZNS (Nishijima et al., 2018).



Modulation of Receptor Expression

Recently, Oki et al. (2017) reported that ZNS could ameliorate LID by modulating the expression of receptors. They designed different models of levodopa-ZNS administration in four groups, namely, intermittent ZNS and levodopa injection, intermittent levodopa injection, continuous levodopa infusion, and no medication. Two weeks after the treatment, they analyzed the mRNA expression of endocannabinoid CB1 receptor, D1 and D2 receptors, and adenosine A2A receptor in the striatum of PD model rats in each group. Their results indicated that intermittent prescription of levodopa induced LID, which was related to the upregulation of dopamine D1 and adenosine A2A receptors. ZNS injection improved LID by downregulation of adenosine A2A and endocannabinoid CB1 receptors.



Neuroprotection

It has been reported that ZNS could inhibit the reduction of dopamine-producing cells in neurotoxin-induced animal models of PD (Willmore, 2005; Rosler et al., 2010; Sonsalla et al., 2010; Ikeda et al., 2018). There are indeed a growing number of studies that have explored its neuroprotective effects (Bermejo and Anciones, 2009; Santos, 2012). Below, we review the possible mechanisms. A diagrammatic illustration of the neuroprotective mechanisms of ZNS is shown in Figure 2.
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FIGURE 2. Neuroprotective mechanisms of zonisamide.



Modulation of Dopamine Turnover

Choudhury et al. (2011, 2012) reported that ZNS protected dopamine-producing cells in MPTP-treated models of PD, which may be related to increased S100beta secretion by astrocytes. ZNS also increased dopamine turnover, as surviving dopaminergic neurons recovered the production of dopamine after ZNS prescription (Choudhury et al., 2011). Yokoyama et al. (2010) reported that treatment with ZNS significantly prevented the dopaminergic neuronal damage and proliferation of microglia and increased TH protein levels. Furthermore, they found that ZNS significantly attenuated the motor syndrome a week after MPTP treatment in the behavioral study. Additionally, Ikeda et al. (2018) demonstrated that ZNS treatment delayed the reduction of striatal presynaptic dopamine transporter levels, suggesting that ZNS may play an essential role in slowing the deterioration of early stage PD. They examined the average specific binding ratio (SBR) of dopamine by dopamine transporter single-photon emission computed tomography at the baseline. The SBR decline rate was significantly reduced in the ZNS group, whereas the SBR was significantly reduced in the placebo at the endpoint.

Notably, Yano et al. (2009) mentioned that ZNS could prevent MPTP-induced increases in the levels of glial fibrillary acidic protein in striatal neurons, but Choudhury et al. (2011) came to the opposite conclusion. Further studies are needed to resolve this contradiction.



Induction of Neurotrophic Factors

Sano et al. (2015) reported that ZNS could reduce the death of nigrostriatal dopamine-producing neurons via signal transduction by neurotrophic factors. There were increased levels of brain-derived neurotrophic factors in the substantia nigra and striatum in the ZNS group compared with placebo. Choudhury et al. (2012) found that ZNS increased the expression of neurotrophic factors in astrocytes.

An experimental study has reported that ZNS could enhance neurite elongation after nerve injury in primary motor neurons in vitro (Yagi et al., 2015). They also found that ZNS could enhance neurite regeneration and protect primary motor neurons against oxidative stress by inducing increased expression of neurotrophic factors (neurotrophin-4/5, brain-derived neurotrophic factors, and nerve growth factors) and their receptors. Further studies are needed to demonstrate whether ZNS has similar effects in nigrostriatal dopaminergic cells.



Inhibition of Oxidative Stress and Apoptosis

Some findings have suggested that ZNS exerts neuroprotective effects mainly via antioxidant action. Ueno et al. (2018) reported that long-chain acylcarnitine (LCAC) levels were raised in PD patients after ZNS treatment. As an increase in LCACs implies improvement in mitochondrial beta-oxidation, ZNS may have antioxidant properties. Condello et al. (2013) reported that ZNS could reduce intracellular ROS levels and restore mitochondrial membrane potential. Costa et al. (2010) found that ZNS could protect the striatum against irreversible mitochondrial impairment through a γ-aminobutyric acid (GABA)–mediated mechanism. Choudhury et al. (2012) and Kawajiri et al. (2010) reported that ZNS could increase levels of manganese/copper/zinc superoxide dismutase (Mn/Cu/Zn-SOD) in astrocytes. Yurekli et al. (2013) demonstrated that ZNS could induce modulating effects that increased glutathione (GSH) and glutathione peroxidase levels. Concentrations of cytosolic free Ca2+ and lipid peroxidation were also lower in ZNS treatment groups (Yurekli et al., 2013; Ueno et al., 2018). Asanuma et al. (2008, 2010) found that ZNS prevented levodopa-induced dopamine quinone formation in the striatum. They also found that ZNS treatment significantly increased GSH levels by enhancing the expression of cystine/glutamate exchange transporter (xCT). However, Bentea et al. (2017) reached the opposite conclusion. In their experiments, ZNS did not alter GSH levels or influence the expression of xCT both in vivo and in vitro. More experiments are needed to resolve the contradiction. Moreover, ZNS exerted antiapoptotic effects, as demonstrated by increased cell viability and attenuated caspase-3 activity in human neuroblastoma (SH-SY5Y) cells (Kawajiri et al., 2010; Condello et al., 2013).Tsujii et al. (2015a,b) reported that ZNS had neuroprotective effects against endoplasmic reticulum (ER) stress. ZNS inhibited SH-SY5Y cell death in vitro and suppressed ER stress–related cell death in vivo via inhibiting the expression of ER stress–induced factors. Furthermore, ZNS suppressed ER stress–related neuron death by inhibiting caspase-3 activation (Yurekli et al., 2013; Tsujii et al., 2015b). Omura et al. (2012, 2013) reported that ZNS inhibited caspase-3 activation via increases in HMG-CoA reductase degradation 1 protein levels. These studies demonstrated that inhibition of ER stress, especially the mechanism via caspase-3, was involved in the neuroprotective actions of ZNS.



Inhibition of Neuroinflammation

Hossain et al. (2018) reported that ZNS may potentially modify the disease by inhibition of microglial voltage-gated sodium channels 1.6 (Nav1.6), as well as neuroinflammation. Nav1.6 is expressed in microglial cells of MPTP-induced PD mice and postmortem PD brains, and it contributes to neuroinflammation. ZNS also inhibited the MPTP-induced expression of tumor necrosis factor α and gp91 (phox). Together, these findings suggest that ZNS can reduce neuroinflammation and has neuroprotective potential.



Modulation of Synaptic Transmission

It is also possible that ZNS has an effect on synaptic transmission. Experimental studies have suggested that ZNS affects synaptic transmission related to the kynurenine pathway in astroglia (Fukuyama et al., 2014). ZNS could increase the release of metabotropic glutamate-receptor (mGluR) agonists from astrocytes, and activated mGluR agonists inhibited neurotransmission in both direct and indirect pathways, which may explain the efficacy and tolerability of ZNS in PD (Fazio et al., 2012; Copeland et al., 2013; Fukuyama et al., 2014). Yamamura et al. (2009) found that ZNS could influence the level of extracellular neurotransmitters in a dose-dependent manner. Striatal perfusion of ZNS increased the extracellular levels of dopamine in striatal cells and attenuated extracellular levels of GABA in both the subthalamic nucleus and globus pallidus. Extracellular levels of glutamate in the substantia nigra pars reticulata (SNr) were also decreased. Furthermore, they demonstrated that ZNS inhibited the indirect pathways of movement. Sano and Nambu (2019) examined neuronal activities in the SNr and found that ZNS administration showed longer inhibition and reduced late excitation, which suggested that ZNS may enhance the direct pathway, while inhibiting the indirect pathway (Tachibana et al., 2008; Sano et al., 2013).



Modulation of Gene Expression

Arawaka et al. (2014) demonstrated that ZNS had neuroprotective effects in a genetic model of PD by attenuating A53T α-synuclein–induced neurotoxicity. They found that ZNS could prevent the loss of dopamine-producing cells by inhibiting a cell death pathway or cellular damage caused by α-synuclein. Furthermore, Ueda et al. (2012) found that ZNS upregulated the expression of several genes associated with nervous system function and development, such as Gpr143 and Bdnf, and of some genes associated with metabolism, including Aldh1a7, Akr1b7, Dhdh, and Agmat. Moreover, ZNS downregulated the expression of a few genes associated with inflammation and the immune system.

Recently, Cha et al. (2020) identified a ZNS-responsive gene in PD patients. Carriers of mouse double-minute 4 (MDM4) gene had higher ZNS sensitivity, improved motor fluctuation, and reduced “OFF” time. Inhibition of p53 is associated with upregulation of MDM4. The association between higher MDM4 expression and “OFF” time reduction suggested that p53 downregulation may prevent the reduction of dopamine-producing cells and deterioration of PD.



Other Possible Mechanisms

Recently, some studies have investigated cell replacement therapy using induced pluripotent stem cells (iPSCs) for the treatment of PD (Freed et al., 2001; Olanow et al., 2003; Mendez et al., 2005; Hargus et al., 2010; Rhee et al., 2011). Yoshikawa et al. (2013) reported that ZNS administration improved the survival and differentiation of iPSC-derived dopaminergic neuronal in murine brains. ZNS improved the efficacy of cell replacement therapy for treating PD. Indeed, cell replacement therapy using iPSCs might be a novel therapy strategy for PD in the future.



CLINICAL EFFECTIVENESS OF ZONISAMIDE

Murata et al. (2001) incidentally found that ZNS was effective in treating PD patients. Since then, several clinical trials have been performed to explore the effectiveness of ZNS for the treatment of PD. Based on adequate randomized controlled trials (RCTs), ZNS is efficacious and safe as an adjunctive therapy in patients with PD (Janszky, 2009; Matsunaga et al., 2017). Additionally, the 2018 guideline has supported the use of ZNS for motor symptoms, especially for treating motor fluctuations (Fox et al., 2018). We review the clinical trials below; further details are summarized in Table 2.


TABLE 2. Clinical trials on zonisamide effectiveness in the treatment of PD.
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De novo/Early Stage PD

A preliminary, open-label (OL) trial (Ikeda et al., 2015) conducted in Japan suggested that a single administration of ZNS was efficacious in improving motor and sleep dysfunction in treatment-naive patients with early stage PD. Moreover, ZNS was recommended as adjunctive therapy in early stage/stable PD according to 2018 guidelines (Fox et al., 2018).



Advanced-Stage PD

The largest area of the potential use of ZNS is as adjunctive therapy for motor fluctuations (Fox, 2013). ZNS improved the motor functions and wearing-off phenomenon without worsening dyskinesia in advanced-PD patients (Murata, 2009; Fox et al., 2018). Four clinical trials by published in 2001, 2007, 2015, and 2016 Murata et al. (2001, 2007, 2015, 2016), have examined the efficacy of ZNS in 974 advanced-PD patients.


Phase 2 Trials

An OL trial on nine patients with advanced PD showed that ZNS has beneficial effects in improving the primary symptoms of PD, including motor fluctuations (Murata et al., 2001). The Unified Parkinson’s Disease Rating Scale (UPDRS) score, Hoehn and Yahr stage (H-Y stage), and “OFF” time per day were assessed after 12 weeks of ZNS treatment. Both the UPDRS score and H-Y stage (ON/OFF) improved, and unexpectedly, the duration of the “OFF” time markedly improved. These effects continued for more than a year, even for advanced-PD patients. Additionally, ZNS has a long half-life (25 mg: 90 h), and its beneficial effects could be maintained throughout a day with a single dose of the drug per day (Murata et al., 2015).



Phase 2b/3 Trials

Murata et al. (2007) conducted an RCT in Japan to assess the efficacy of a daily dose of 25, 50, and 100 mg of ZNS in 347 advanced-PD patients. ZNS 25 and 50 mg resulted in significant decreases in UPDRS III total scores from baseline (ZNS 25 mg, −6.3 ± 0.8; ZNS 50 mg, −5.8 ± 0.8, as compared with −2.0 ± 0.8 in placebo; P = 0.001 and P = 0.003, respectively; Dunnett test). Likewise, the percentage of responders, defined as patients with a reduction of ≥ 30% in UPDRS part III scores, was significantly higher with ZNS 50 mg (38.8%, P = 0.018) than with placebo (22.0%). ZNS 50 mg and ZNS 100 mg groups achieved significant improvements in reducing the total “OFF” time [the mean changes were −1.30 h (P = 0.014) and −1.63 h (P = 0.013), respectively] compared with the placebo group. Importantly, ON time with annoying dyskinesia did not increase in any ZNS group as compared with placebo; in contrast, a reduction in disabling dyskinesia was observed in the ZNS 50 mg group.



Phase 3 Trials

Two phase 3 multicenter RCTs (Murata et al., 2015, 2016) have investigated the efficacy of ZNS among 618 advanced-PD patients: the Murata et al. (2015) and Murata et al. (2016) studies.

The Murata, 2015 study (Murata et al., 2015) examined the effectiveness of ZNS in the reduction of “OFF” time in advanced-PD patients with motor fluctuation as compared with placebo. The primary endpoint was the variation in daily “OFF” time from baseline to the end of a 12-week prescription, according to diarized information at the final assessment. ZNS 50 mg met the primary endpoint and had the most significant efficacy, having a significantly longer decrease in daily “OFF” time at week 12 than placebo (ZNS 50 mg daily “OFF” time decrease: −0.719 ± 0.179 h, compared with placebo: −0.011 ± 0.173 h; P = 0.005). Moreover, the percentage of participants with a reduction in “OFF” time ≥ 20% (responders) from the beginning of treatment to week 16 was markedly higher in those receiving ZNS 50 mg than those receiving placebo (40.5% for ZNS 50 mg vs. 20.9% for placebo; P < 0.001). ZNS 50 mg also resulted in statistically significant improvements in the UPDRS II (OFF) score (P = 0.021) and UPDRS III score at week 12 vs. placebo. However, UPDRS I, UPDRS II (ON), UPDRS IV, and Parkinson’s Disease Questionnaire-39 scores did not show statistically significant differences in improvements between ZNS 50 mg and placebo. Moreover, the increase in the dyskinesia duration at week 12 was not statistically significant in those receiving ZNS 25 mg and 50 mg as compared with placebo (P = 0.103 and P = 0.235, respectively). This study demonstrated that ZNS 50 mg could significantly reduce the “OFF” time and improve the “OFF” status of activity in advanced-PD patients who exhibited the “wearing-off phenomenon.”

The Murata, 2016 study (Murata et al., 2016) explored the effectiveness and safety of ZNS 25 and 50 mg taken orally once daily, as compared with placebo. The primary endpoint was the variation from the beginning of the treatment to the final assessment in UPDRS part III scores. ZNS 25 mg met the primary endpoint at the final assessment, showing a marked reduction in UPDRS III scores than placebo at week 14 (−5.09 ± 0.9 for ZNS 25 mg vs. −2.9 ± 0.9 for placebo, P = 0.029). Likewise, ZNS 50 mg resulted in a significant reduction in UPDRS III total scores at week 12 (−6.1 ± 1.0, P = 0.049). The percentage of participants with a reduction in UPDRS III scores ≥ 30% from baseline to week 14 (responders) was markedly higher with ZNS 50 mg than with placebo (45.8% for ZNS 50 mg vs. 27.0% for placebo; P < 0.038). Furthermore, the UPDRS II (OFF) scores were significantly improved with ZNS 25 mg than with placebo (P = 0.039).



Late-Stage PD

Patients with late-stage PD (LSPD) refer to those whose H-Y stage ≥ 4 while in the “ON” time (Fabbri et al., 2018). In a phase 2 OL study (Murata et al., 2001) by Murata, 4 of 10 patients fulfilled the LSPD definition. Two patients reached significant improvements in the UPDRS and H-Y stage, whereas the other two did not. In another two phase 3 RCTs (Murata et al., 2007, 2015), further analyses of H-Y stage 4–5 patients were not available.

For safety data of the clinical studies above, see Safety and Tolerability.



Effect on PD-Related Tremors

ZNS may have an effect on intractable tremor (Bermejo and Anciones, 2009; Mochio et al., 2012; Kaplan and Tarsy, 2013). A preliminary OL trial (Nakanishi et al., 2003) performed by Nakanishi et al. reported a potentially valuable role of ZNS in PD patients with residual resting tremor. Seven of nine patients (P < 0.0017) had a decrease in the scale of tremor with ZNS administration. Iijima et al. (2011) also reported a case where ZNS was efficacious against re-emergent and residual resting tremor in PD. Both re-emergent and intractable resting tremors markedly decreased with a dosage of 100 mg/day. ZNS was well-tolerated, although mild sleepiness was observed. As previously suggested, ZNS had a beneficial effect on essential tremor (ET) (Ondo, 2006, 2007; Zesiewicz et al., 2007; Bermejo et al., 2008). Another study conducted by Bermejo et al. suggested that ZNS was beneficial to patients with comorbid ET and PD (Bermejo, 2007). In fact, ZNS is effective in controlling symptoms of both disorders. ZNS could thus be a good therapeutic option as adjunctive therapy in PD-related tremor (Freitas and Fox, 2016).



Effects on Non-motor Symptoms


Impulsive–Compulsive Disorders

Impulse control behaviors (ICBs) belong to impulsive–compulsive disorders, which are associated with dopamine replacement therapy in PD (Evans et al., 2006; Raja and Bentivoglio, 2012). Recently, Kon et al. (2018) found that patients who developed ICB at final evaluation were prescribed ZNS earlier and at a higher dosage than other patients, suggesting that ZNS may be associated with ICB. In another study, ZNS increased novelty-seeking behaviors in mice, which were risk factors for ICB (Voon et al., 2011; Uemura et al., 2017). Thus, ZNS might be related to the development of impulsive–compulsive disorders (ICDs) in PD. However, an OL trial (Bermejo et al., 2010) performed by Bermejo et al. suggested that ZNS could play an essential positive role in ICDs. The severity of ICBs was significantly reduced, from −5.8 to −4.8 (mean change). It is important that further RCTs estimate the effectiveness of ZNS on ICDs in patients with PD.



Rapid Eye Movement Sleep Behavior Disorder

Rapid eye movement sleep behavior disorder (RBD) is considered one of the most prevailing non-motor symptoms in PD patients (Mollenhauer et al., 2016). It may occur several years before the first symptoms of PD or during the progression of PD (Claassen et al., 2010). Recently, Kataoka and Ueno (2012) reported a case in which treatment with ZNS resolved dream-enacting behaviors and vivid nightmares in an early stage PD patient, suggesting that ZNS might be efficacious for the management of RBD. Further studies are required to estimate the effectiveness of ZNS on RBD in early- and advanced-stage PD patients.



Dementia

Dementia is described as an essential complication in PD (Iwaki et al., 2019). Iwaki et al. (2019) and Murata et al. (2007) demonstrated that ZNS may reduce the development of cognitive impairment better than other antiparkinsonian drugs. Although the vast majority of trials were performed in the Japanese population, Tombini et al. (2013) reported the case of a 78 years old Caucasian male patient with PD and dementia, who later developed epilepsy. ZNS significantly improved his seizure and extrapyramidal symptoms without affecting his cognitive status. Further RCTs are needed to evaluate the efficacy of ZNS in preventing cognitive decline among PD patients of different ethnicities (Grover et al., 2013; Tombini et al., 2013).



SAFETY AND TOLERABILITY

Generally, the therapeutic dose of ZNS for epilepsy (300–600 mg/day) is much higher than that needed for PD (Arzimanoglou and Rahbani, 2006; Ohtahara, 2006). We believe that ZNS is a safe treatment for PD as it has been applied for seizures in Japan for more than 30 years and is well-tolerated.

By now, ZNS has been prescribed to 974 PD patients in four clinical trials by Murata et al. (2001, 2007, 2015, 2016) these studies have suggested that ZNS has high safety without a dose-response relationship for common adverse events. Incidences of adverse events associated with ZNS treatment are summarized in Table 3.


TABLE 3. Side effects related to ZNS therapy that appear in more than 3% of participants.
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In a phase 2 trial, the reported side effects were dry mouth (n = 1) and the exaggeration of dyskinesia (n = 4) (Murata et al., 2001). Notably, doses of ZNS in that study were as high as 50–300 mg/day, and the exaggeration of dyskinesia could disappear with a reduction of levodopa dosage.

In a phase 2b/3 trial, the most frequently reported adverse effects in the total ZNS group, as compared with placebo, were apathy (8.5%), constipation (6.5%), weight loss (6.9%), and somnolence (10.9%) (Murata et al., 2007). Although the incidences of some adverse events for ZNS 50 mg and 100 mg were higher than those for the placebo, there were no statistical differences in the incidences of dyskinesia and hallucination, which are both mostly observed adverse effects of antiparkinsonian drugs, between ZNS groups and placebo, indicating that ZNS is well-tolerated in PD patients at doses of 25–100 mg/day.

In the phase 3 Murata et al. (2015) trial, ZNS 25 mg and 50 mg were well-tolerated in PD patients (Murata et al., 2015). The incidences of total adverse events reported in ZNS 25 mg (57.7%) and 50 mg (60.9%) were not statistically different from those in placebo (49.6%; P > 0.05). The incidence of somnolence and that of constipation for ZNS 50 mg were higher than that for placebo (somnolence: 2.3% for placebo, 3.1% for ZNS 25 mg, 6.3% for ZNS 50 mg; constipation: 1.5, 1.5, and 3.1%, respectively). Hallucination and dyskinesia did not occur more frequently for ZNS 25 mg or 50 mg than for placebo.

In the phase 3 Murata et al. (2016) trial, ZNS 25 mg and 50 mg were also well-tolerated in PD patients (Murata et al., 2016). The incidences of adverse events reported in the ZNS 25 mg (55.6%) and 50 mg (60.3%) groups were not statistically different from that in placebo (65.1%; P = 0.363 and P = 0.713, respectively). The incidence of adverse events that occurred in more than 5% of participants was similar in all three groups. As in the Murata et al. (2015) study, dyskinesia and hallucination did not occur more frequently in ZNS 25 and 50 mg compared with placebo. The incidences of abnormal changes in vital signs, 12-lead resting electrocardiogram, and laboratory tests were low in all groups.

Moreover, a large-scale study in Japan compared ZNS with other antiparkinsonian drugs by analyzing the associations between the administration of eight different varieties of antiparkinsonian drugs and the incidence of PD-relevant symptoms (Iwaki et al., 2019). Iwaki et al. conducted this study based on real-world data from Japan for 2008 to 2014. They demonstrated that ZNS had lower incidences of insomnia, gastric ulcers, and dementia than three of seven other anti-PD drugs (P < 0.05).

It is important that medical doctors should remember to ask patients about sulfa-allergies before prescribing ZNS because it is a sulfonamide (Yang and Perry, 2009).



DISCUSSION

The sulfonamide ZNS exhibits both dopaminergic and non-dopaminergic mechanisms. It is a T-type calcium-channel antagonist and a reversible MAO-B inhibitor. It could modulate levodopa-dopamine metabolism and expression of various receptors. Most importantly, it has the potential for neuroprotection via various mechanisms, such as modulation of dopamine turnover, induction of neurotrophic factors, inhibition of oxidative stress and apoptosis, inhibition of neuroinflammation, modulation of synaptic transmission, and modulation of gene expression. ZNS has a dose-dependent pharmacokinetic profile and has high bioavailability. It interacts with CYP3A4.

The current studies show that ZNS is effective and safe at 25–50 mg/day as an adjunctive therapy in patients with PD. Given the general beneficial effect and safety profile, we recommend initiating this drug at 25 mg/day and titrating it to 50 mg/day when needed. ZNS 50 mg could reduce the “OFF” time, while not increasing troublesome dyskinesia in PD patients with the “wearing-off phenomenon.” ZNS is well-tolerated, with few associated adverse events.

There are still a few limitations in the administration of ZNS. The vast majority of clinical trials of ZNS have been conducted in Japan, and the antiparkinsonian mechanism of ZNS remains incompletely clarified. Further RCTs are needed to estimate the effectiveness of ZNS in PD patients of different ethnicities. Moreover, further in-depth research on the antiparkinsonian mechanism of ZNS is needed.
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Alcohol use disorder (AUD) is a chronic relapsing condition characterized by compulsive alcohol-seeking behaviors, with serious detrimental health consequences. Despite high prevalence and societal burden, available approved medications to treat AUD are limited in number and efficacy, highlighting a critical need for more and novel pharmacotherapies. Glucagon-like peptide-1 (GLP-1) is a gut hormone and neuropeptide involved in the regulation of food intake and glucose metabolism via GLP-1 receptors (GLP-1Rs). GLP-1 analogs are approved for clinical use for diabetes and obesity. Recently, the GLP-1 system has been shown to play a role in the neurobiology of addictive behaviors, including alcohol seeking and consumption. Here we investigated the effects of different pharmacological manipulations of the GLP-1 system on escalated alcohol intake and preference in male Wistar rats exposed to intermittent access 2-bottle choice of 10% ethanol or water. Administration of AR231453 and APD668, two different agonists of G-protein receptor 119, whose activation increases GLP-1 release from intestinal L-cells, did not affect voluntary ethanol intake. By contrast, injections of either liraglutide or semaglutide, two long-acting GLP-1 analogs, potently decreased ethanol intake. These effects, however, were transient, lasting no longer than 48 h. Semaglutide, but not liraglutide, also reduced ethanol preference on the day of injection. As expected, both analogs induced a reduction in body weight. Co-administration of exendin 9-39, a GLP-1R antagonist, did not prevent liraglutide- or semaglutide-induced effects in this study. Injection of exendin 9-39 alone, or blockade of dipeptidyl peptidase-4, an enzyme responsible for GLP-1 degradation, via injection of sitagliptin, did not affect ethanol intake or preference. Our findings suggest that among medications targeting the GLP-1 system, GLP-1 analogs may represent novel and promising pharmacological tools for AUD treatment.

Keywords: glucagon-like peptide-1, liraglutide, semaglutide, alcohol intake, GPR119, dipeptidyl peptidase-4, rat


INTRODUCTION

Alcohol use disorder (AUD) is a chronic relapsing condition characterized by compulsive alcohol-seeking, loss of control in limiting alcohol intake, and the emergence of a negative emotional state that leads to dependence on alcohol and serious detrimental health consequences (Rehm et al., 2009; Koob, 2015). The Food and Drug Administration (FDA) approved medications to treat AUD have shown efficacy, but their effect sizes are sub-optimal. Therefore, there is a critical need for investigating new pharmacotherapies targeting alternative pathways involved in the neurobiology of AUD (Klein, 2016; Farokhnia et al., 2019a; Witkiewitz et al., 2019).

Glucagon-like peptide-1 (GLP-1) is a gut neuropeptide hormone involved in the regulation of food intake and glucose homeostasis via GLP-1 receptors (GLP-1Rs). GLP-1 is produced both in the periphery, mainly by intestinal L-cells (Novak et al., 1987), and in several brain regions including the nucleus tractus solitarius (NTS), mainly by preproglucagon (PPG) neurons (Larsen et al., 1997; Merchenthaler et al., 1999). In vivo, the half-life of GLP-1 is very short (1.5 min following intravenous dosing and 1.5 h following subcutaneous dosing in humans), mainly due to degradation by the dipeptidyl peptidase-4 (DPP-4) enzyme (Deacon et al., 1995a, b). GLP-1R is a member of the secretin-like class B family of G-protein coupled receptors (GPCRs) expressed in various peripheral tissues, including vagal afferents, hepatic portal system and pancreatic β-cells, where they regulate food intake and glycemia by delaying gastric emptying, decreasing glucagon release and glucose-dependent stimulation of insulin secretion (Orskov et al., 1988; Flint et al., 2001; Kanoski et al., 2011). The critical role of GLP-1 in glucose homeostasis, food intake, and energy metabolism has led to the development of multiple FDA-approved GLP-1 analogs, such as exenatide, liraglutide, and semaglutide, for type 2 diabetes treatment (Agersø et al., 2002; Estall and Drucker, 2006; Eng et al., 2014; Lau et al., 2015). Liraglutide is also approved for the treatment of obesity. To overcome the rapid enzymatic degradation of GLP-1 and to prolong GLP-1R activation, liraglutide and semaglutide were designed by adding fatty-acid chains to the GLP-1 peptide, enhancing their binding affinity to albumin and protecting them against DPP-4 enzymatic degradation and renal filtration, while preserving their GLP-1R potency (Knudsen and Lau, 2019). Due to their prolonged half-lives, liraglutide and semaglutide are referred to as long-acting GLP-1 analogs, and are prescribed once daily and once weekly, respectively (Knudsen and Lau, 2019).

In the central nervous system (CNS), GLP-1Rs are expressed in several brain regions involved in regulating metabolism and energy balance, with preferential localization in inhibitory GABAergic neurons over excitatory glutamatergic neurons (Hayes et al., 2010; Cork et al., 2015; Fortin et al., 2020; Graham et al., 2020). In the hypothalamus, activation of GLP-1Rs has been shown to regulate food intake, glycemia, and stress responses (Kinzig et al., 2003; Sandoval et al., 2008; Hayes et al., 2010; Ghosal et al., 2017). GLP-1Rs are also found in reward-related brain regions that regulate appetitive and consummatory behaviors, such as the nucleus accumbens (NAc), ventral tegmental area (VTA), and amygdala (Göke et al., 1995; Alvarez et al., 1996; Merchenthaler et al., 1999; Cork et al., 2015; Graham et al., 2020). Recently, rodent studies have shown that GLP-1 analogs reduce the rewarding effects of several drugs of abuse, including alcohol, primarily via activation of central GLP-1Rs (Egecioglu et al., 2013a, b; Shirazi et al., 2013; Suchankova et al., 2015; Sirohi et al., 2016; Vallöf et al., 2016, 2019b). In humans, genetic variation in GLP-1R was found to be associated with increased risk of AUD, increased alcohol self-administration in a laboratory setting, and brain activity when being notified about the receipt of a monetary reward (Suchankova et al., 2015). Hence, GLP-1 analogs, already deemed to have a favorable safety profile in humans, are increasingly gaining attention as a novel therapeutic approach to treat AUD.

Recent studies have also renewed interest in the G protein-coupled receptor 119 (GPR119), a member of the class A of rhodopsin-like GPCRs, for its role in glucose homeostasis (Fredriksson et al., 2003; Soga et al., 2005). GPR119 is expressed in limited tissues, including the pancreatic islets and gastrointestinal tract. Activation of GPR119 via both direct actions on pancreatic β-cells and indirect actions on intestinal L-cells results in increased glucose-dependent insulin release and increased gene expression of proglucagon, a biosynthetic precursor of GLP-1, with subsequent release of endogenous GLP-1, glucose-dependent insulinotropic peptide, neurotensin, and peptide YY, leading to improvement of glucose tolerance in rodents and humans (Overton et al., 2006; Chu et al., 2007, 2008; Hansen et al., 2011; Katz et al., 2011; Lan et al., 2012; Chepurny et al., 2013; Mandøe et al., 2015; Hassing et al., 2016; Han et al., 2018; Matsumoto et al., 2018). Its restricted tissue distribution, relative selectivity in enhancing GLP-1 release, and tolerability of its agonists have made GPR119 an attractive therapeutic target for developing orally bioavailable agonists for type 2 diabetes treatment (Terauchi et al., 2018; Yang et al., 2018), and potentially for other related disorders.

In the present study we investigated the effects of different pharmacological manipulations of the GLP-1 system on escalated voluntary ethanol intake and preference, water intake, and body weight in male Wistar rats, in order to determine the potential utility of these compounds in the treatment of AUD. Specifically, we tested two GPR119 agonists, AR231453 and APD668, two long-acting GLP-1 analogs, liraglutide and semaglutide, a blocker of DPP-4, sitagliptin, and another peptide putatively working as a GLP-1R antagonist, exendin 9-39 (Ex9-39).



MATERIALS AND METHODS


Animals

All experiments were performed in accordance with the guidance of the National Institutes of Health on animal care and use and the University of California, Los Angeles, Animal Research Committee. All rats were housed individually in the vivarium under a 12h light/dark cycle (lights on at 6AM) and had ad libitum access to food and water during the entire experiment. Two distinct cohorts of rats were used. Rats were included in the analyses only if the average ethanol preference from the last 3 presentations prior to vehicle administration reached 45% or higher. In the first cohort, 12 out of 17 rats reached this criterion. Thus, a total of 12 male Wistar rats (Envigo) weighing 260–300 g at the start of the experiment were used in the first cohort to study the effects of AR231453, APD668, liraglutide and semaglutide (administered alone and in combination with exendin 9-39), and sitagliptin. In the second cohort, 13 out of 15 rats reached the criterion mentioned above. However, one rat was identified as an outlier (water intake), using the ROUT method combining robust regression and outlier removal with Q = 1% (Motulsky and Brown, 2006), and therefore was removed from the study. Thus, a total of 12 male Wistar rats weighing 270–290 g at the start of the experiment were used in the second cohort to study the effects of exendin 9-39 alone.



Intermittent Access 2-Bottle Choice Drinking Paradigm

Ethanol (EtOH, 95%, Decon Labs Inc., King of Prussia, PA, United States), meeting the United States Pharmacopeia (USP) specifications, was used to make all EtOH-containing solutions. The intermittent access to 2-bottle choice (IA2BC) drinking paradigm has been previously described (Simms et al., 2008; Meyer et al., 2013). This model leads rats to gradually escalate EtOH intake to high levels (4–6 g/kg/24h) without resorting to sucrose fadeout procedures or forced EtOH administration (Wise, 1975; Cippitelli et al., 2012). The IA2BC paradigm provides a platform to address multiple aspects of alcohol abuse in a rat model, including transition from social-like drinking to excessive alcohol consumption, binge drinking, alcohol seeking, relapse, and neuroadaptations related to excessive alcohol intake (Carnicella et al., 2014). Although some labs, including ours, report minimal alcohol deprivation effects (Simms et al., 2008; Meyer et al., 2013), others report marked withdrawal behaviors, such as anxiety-like symptoms and hyperalgesia after withdrawal from > 8 weeks of IA2BC (Kang et al., 2019; Li et al., 2019; Fu et al., 2020). Peak plasma EtOH concentrations obtained following 30 min of IA2BC 20% EtOH range between 4 and 93 mg/dL in Wistar rats (Simms et al., 2008); with a blood EtOH concentration of > 80 mg/dL meeting the criteria of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) for binge drinking in humans. The model also has some predictive validity, e.g., the FDA-approved medication acamprosate attenuates drinking in the IA2BC but not in continuous access models (Simms et al., 2008; Cippitelli et al., 2012). All fluids were presented in 250-ml graduated plastic bottles with stainless steel low-leak drinking spouts accessible to rats through the top of their home cage. Rats were given access to 1 bottle of drinking water and 1 bottle of EtOH (10%, w/v) solution for a 24-h period on Mondays, Wednesdays, and Fridays. Bottles were weighed at the beginning of each 24-h drinking period, at approximately 1 h before the dark cycle (pre-injection). Measurements were taken to the nearest 1/100 g. The weight of each rat was also measured at the start of the 24-h drinking period and used to calculate the grams of solution consumed per kilogram of body weight per 24-h drinking session (g/kg/day). Preference for EtOH was calculated as the ratio of EtOH-containing solution over the total fluid consumed in a 24-h drinking session. Experimental EtOH-containing solutions were prepared in drinking water provided by UCLA veterinary staff. Upon completion of each drinking session, the EtOH-containing solution was replaced with a second water bottle until the next presentation. The rats had unlimited access to 2 bottles of water over the weekend after the 24-h measurements were taken on Saturday. Bottle placement was alternated each drinking session to control for side preferences. EtOH presentations were made until after the rats had reached a steady high level of drinking before drug administration. After reaching steady high level of drinking, rats were habituated to be immobilized in a plastic cone (DC 200, Braintree Scientific, Inc., Braintree, MA, United States) for about 5 s, just prior to EtOH presentation, in order to habituate them to the condition experienced during drug or vehicle injection. For injections, rats were immobilized in a plastic cone for the entire duration of the injection (∼5 s). Effects of drugs on body weight were determined by comparing the body weight measured during the day of injection (pre-injection) to the body weight measured at subsequent post-injection time-points.



Study Drugs

All drugs were injected intraperitoneally between 4 and 5 PM, just before the start of the IA2BC EtOH presentation. Doses were chosen based on each drug’s EC50/IC50 or their reported effectiveness at modulation of EtOH intake. Vehicle was composed of DMSO:Tween 80:saline at 1:1:10 ratio. Two different GPR119 agonists, AR231453 (Millipore Sigma, Burlington, MA, United States) and APD668 (AOBIOUS, Gloucester, MA, United States), were used to stimulate GLP-1 release (Semple et al., 2008, 2011). AR231453 was dissolved in vehicle to a final dilution of 4 mg/ml and was injected at a concentration of 3 mg/kg. To overcome potential solubility issues, APD668 was dissolved in two different vehicles (DMSO or polyethylene glycol 400 – PEG-8) to a final dilution of 8 mg/ml and was injected at a concentration of 6 mg/kg. Two long-acting GLP-1 analogs, liraglutide (Cayman Chemical, Ann Arbor, MI, United States) and semaglutide (MedChem Express, Monmouth Junction, NJ, United States) were used (Larsen et al., 2001; Lau et al., 2015). Liraglutide and semaglutide were dissolved in vehicle to a final dilution of 1 mg/ml and injected at a concentration of 0.1 mg/kg. Exendin 9-39 (Ex9-39; Bachem, Torrance, CA, United States), a GLP-1R antagonist (Schepp et al., 1994), was dissolved in saline to a final dilution of 0.13 mg/ml and was injected at a concentration of 0.1 mg/kg. When co-administered with liraglutide (0.1 mg/kg) or semaglutide (0.1 mg/kg), Ex9-39 was injected at a concentration of 0.15 mg/kg or 0.19 mg/kg, respectively. Sitagliptin phosphate (Millipore Sigma, Burlington, MA, United States), an inhibitor of DPP-4, was dissolved in saline to a final dilution of 33.3 mg/ml and was injected at a concentration of 25 mg/kg.



Statistical Analysis

Statistical analyses were performed using Prism 7 (GraphPad Software Inc., La Jolla, CA, United States) and data were expressed as mean ± standard error of the mean (SEM). All data sets were tested for outliers using the ROUT method (Motulsky and Brown, 2006). Two-way repeated-measures analyses of variance (RM ANOVA) was used to assess significance of the effects of treatment (vehicle vs. drug), time-point (baseline, injection day, + 2 days) and treatment × time-point interaction on EtOH intake, EtOH preference, and water intake. Given that the treatment × time-point interaction effect was our primary outcome of interest, when the interaction term was found to be significant, Tukey’s post hoc test was used to further identify statistical significance between treatments and/or time-points. For the two-way RM ANOVAs, the baseline time-point represents the average of 3 presentations prior to vehicle/drug injection. The injection day time-point represents the value of EtOH intake, EtOH preference or water intake measured 24-h post-injection. The detailed two-way RM ANOVA tables, including treatment, time-point, and treatment × time-point interaction effects are presented in Supplementary Tables 1–3. Statistical power was calculated each time a two-way RM ANOVA revealed a significant treatment × time-point interaction effect, using G∗Power (version 3.1.9.6, Ute Clames), and was reported only when the value was below 0.8. We found two instances where the statistical power was lower than 0.8 (EtOH intake under APD668 (DMSO) and Ex9-39), and report these results as potentially false positives. Because body weight was consistently increasing as the cohort’s aged, we used one-way RM ANOVAs, followed by Dunnett’s post hoc tests, to assess the effect of each drug on body weight. For these one-way RM ANOVAs, the pre-injection time-point represents the body weight measured 1 h prior to vehicle/drug injection on the day of injection, which was compared to the body weight measured at subsequent post-injection time-points. For AR231453 and APD668 experiments, the pre-injection body weight was compared to two post-injection time-points (+ 2-day and + 5-day). For liraglutide and semaglutide experiments (with and without Ex9-39), the pre-injection body weight was compared to five post-injection time-points (+ 2-day, + 5-day, + 7-day, + 9-day, and + 12-day) to assess the time course of recovery from the drug-induced weight loss. For sitagliptin experiments, the pre-injection body weight was compared to two post-injection time-points (+ 2-day and + 7-day; body weights measured from the + 5-day time-point were accidently lost). For the Ex9-39 alone experiment, the pre-injection body weight was compared to two post-injection time-points (+ 2-day and + 5-day). A value of p < 0.05 was considered statistically significant (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).




RESULTS


Activation of GPR119 Does Not Affect Ethanol Intake

Activation of GPR119 can increase the release of plasma GLP-1 in rodents and humans (Chu et al., 2008; Hansen et al., 2011; Katz et al., 2011; Lan et al., 2012; Mandøe et al., 2015; Han et al., 2018; Matsumoto et al., 2018). Since GLP-1R activation has been shown to modulate EtOH consumption (Shirazi et al., 2013; Vallöf et al., 2016), we first investigated whether activation of GPR119 alters EtOH intake and preference, as well as water intake and body weight, using two different GPR119 agonists, AR231453 (3 mg/kg) or APD668 (6 mg/kg) (Figures 1A–D). For AR231453, the two-way RM ANOVAs did not find significant treatment × time-point interaction effects on EtOH intake (F(2,22) = 1.89, p = 0.17) (Figure 2A), EtOH preference (F(2,22) = 0.14, p = 0.87) (Figure 2D), or water intake (F(2,22) = 0.18, p = 0.83) (Figure 2G). For APD668 dissolved in DMSO, a significant treatment × time-point interaction effect was observed on EtOH intake (F(2,22) = 5.75, p = 0.0098) (Figure 2B), but due to low statistical power (power = 0.51), these results were concluded to be potentially false positive. Moreover, APD668 (DMSO) did not affect EtOH preference (treatment × time-point interaction: F(2,22) = 2.49, p = 0.11) (Figure 2E), or water intake (treatment × time-point interaction: F(2,22) = 2.85, p = 0.08) (Figure 2H). Consistent with these findings, APD668 dissolved in PEG did not affect EtOH intake (treatment × time-point interaction: F(2,22) = 2.79, p = 0.083) (Figure 2C), EtOH preference (treatment × time-point interaction: F(2,22) = 1.77, p = 0.19) (Figure 2F), or water intake (treatment × time-point interaction: F(2,22) = 2.44, p = 0.11 (Figure 2I).
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FIGURE 1. Overall measurements of EtOH intake, EtOH preference, water intake, and body weight during the experiment. (A–D) Dashed lines represent the time of injection of each drug. Vehicle was injected at day 36. AR2314553 (light green circle) was injected at day 43. APD668 (DMSO) (green circle) was injected at day 68. APD668 (PEG) (dark green circle) was injected at day 92. Liraglutide (Lira, light blue circle) was injected at day 108. Semaglutide (Sema, lavender circle) was injected at day 122. Liraglutide + Ex9-39 (Lira + Ex9-39, blue circle) was injected at day 143. Semaglutide + Ex9-39 (Sema + Ex9-39, purple circle) was injected at day 171. Sitagliptin (Sitag, yellow circle) was injected at day 199. (A) Time course of the average EtOH intake (g/kg/day) (n = 12 rats). EtOH intake was measured on Mondays, Wednesdays, and Fridays from day 1 to 206. From day 1 to 29, rats progressively drank higher amounts of EtOH 10% (v/w) until reaching a plateau. (B) Time course of the average EtOH preference (%/day) (n = 12 rats). EtOH preference was calculated as the ratio of EtOH-containing solution over the total fluid consumed in a 24-h drinking session (see section “Materials and Methods”). EtOH preference progressively increased until reaching a plateau. (C) Time course of the average water intake (g/kg/day) (n = 12 rats). Water intake progressively decreased until reaching a plateau. (D) Time course of the average body weight (g) (n = 12 rats). The average body weight was 280 ± 2.96 g at day 1, and progressively increased throughout the experiment to reach an average of 623 ± 22.56 g at day 206.
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FIGURE 2. Effects of GPR119 agonists [AR231453, APD668 (DMSO), and APD668 (PEG)], compared to vehicle, on EtOH intake, preference, water intake, and body weight. Bars and circles represent the mean and individual data points, respectively. (A–I) Baseline represents the average of 3 presentations prior to vehicle/drug injection. (A–C) No significant treatment × time-point interaction effects on EtOH intake were found (note: the interaction term for APD668 (DMSO) was statistically significant, but due to low power, these results were concluded to be potentially false positive). (D–F) No significant treatment × time-point interaction effects on EtOH preference were found. (G–I) No significant treatment × time-point interaction effects on water intake were found. (J,K) Significant increases in body weight were observed under vehicle and AR231453, as shown by significant increases in body weight measured at 2-day (+ 2d) and 5-day (+ 5d) post-injection compared to the body weight measured on the day of injection (pre-injection). (L,M) No significant changes in body weight were observed under APD668 (DMSO) or APD668 (PEG), as shown by the lack of significant increases in body weight measured at 2-day (+ 2d) and 5-day (+ 5d) post-injection compared to the body weight measured on the day of injection (pre-injection). ***p < 0.001.


As expected, and consistent with the overall trend as the rats aged (Figure 1D), body weight gain was observed following vehicle injection at 2-day (+ 2d) and 5-day (+ 5d) post-injection (F(2,22) = 67.27, p < 0.001; post hoc test, pre-injection vs. + 2d, p < 0.001; pre-injection vs. + 5d, p < 0.001) (Figure 2J). Similarly, increases in body weight was found at + 2d and + 5d following AR231453 injection (F(2,22) = 29.17, p < 0.001; post hoc test, pre-injection vs. + 2d, p < 0.001; pre-injection vs. + 5d, p < 0.001) (Figure 2K). In contrast, rats injected with APD668 (dissolved in either DMSO or PEG) did not gain weight following injections (APD668 (DMSO): F(2,22) = 0.7, p = 0.45; APD668 (PEG): F(2,22) = 1.1, p = 0.33) suggesting a putative effect of APD668 in body weight regulation (i.e., prevention of weight gain in this case) (Figures 2L,M).



Activation of GLP-1 Receptor Reduces Ethanol Intake

GLP-1R agonists have been shown to decrease voluntary EtOH intake in rodents suggesting a role for these ligands in the treatment of AUD (Shirazi et al., 2013; Vallöf et al., 2016). We found that both liraglutide (0.1 mg/kg) and semaglutide (0.1 mg/kg), two long-acting GLP-1 analogs, produced significant decreases in EtOH intake (liraglutide: treatment × time-point interaction: F(2,22) = 47.5, p < 0.001; post hoc test, baseline vs. liraglutide injection day: p < 0.001; semaglutide: treatment × time-point interaction: F(2,22) = 65.75, p < 0.001; post hoc test, baseline vs. semaglutide injection day: p < 0.001). Of note, the effects of liraglutide and semaglutide were transient, lasting no longer than the 2-day post-injection time-point (liraglutide: baseline vs. + 2d: p = 0.89; semaglutide: baseline vs. + 2d: p = 0.35) (Figures 3A,B).
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FIGURE 3. Effects of GLP-1 analogs (liraglutide and semaglutide), compared to vehicle, on EtOH intake, preference, water intake, and body weight. Bars and circles represent the mean and individual data points, respectively. (A–F) Baseline represents the average of 3 presentations prior to vehicle/drug injection. (A) A significant treatment × time-point interaction effect on EtOH intake was found for liraglutide; under liraglutide, EtOH intake at the injection day was lower than baseline and 2-day post-injection (+ 2d). (B) A significant treatment × time-point interaction effect on EtOH intake was found for semaglutide; under semaglutide, EtOH intake at the injection day was lower than baseline and + 2d. (C) A significant treatment × time-point interaction effect on EtOH preference was found for liraglutide; under liraglutide, EtOH preference at + 2d was lower than baseline. (D) A significant treatment × time-point interaction effect on EtOH preference was found for semaglutide; under semaglutide, EtOH preference at the injection day was lower than baseline and + 2d. (E) A significant treatment × time-point interaction effect on water intake was found for liraglutide; under liraglutide, water intake at + 2d was higher than baseline and the injection day. (F) No significant treatment × time-point interaction effect on water intake was found for semaglutide. (G) Significant changes in body weight were observed under liraglutide; body weight at + 2d, + 5d, + 7d, and + 9d was lower than the body weight measured prior injection on injection day (pre-injection). (H) Significant changes in body weight were observed under semaglutide; body weight at + 2d was lower, and at + 12d was higher, than the body weight measured prior injection on injection day (pre-injection). *p < 0.05, **p < 0.01, ***p < 0.001.


Statistical analyses also showed a significant treatment × time-point interaction for the effects of liraglutide on EtOH preference (F(2,22) = 4.29, p = 0.03). However, post hoc testing only found a significance difference between baseline and 2-day post-injection time-points (baseline vs. liraglutide injection day: p = 0.18; baseline vs. + 2d: p = 0.011; liraglutide injection day vs. + 2d: p = 0.38) (Figure 3C). We also found that liraglutide significantly altered water intake with a significant increase at the 2-day post-injection time-point (treatment × time-point interaction: F(2,22) = 17.78, p < 0.001; post hoc test, baseline vs. + 2d: p < 0.001; liraglutide injection day vs. + 2d: p < 0.001) (Figure 3E). These data suggest that liraglutide-induced increase in water intake at + 2d, while not altering EtOH intake at this time-point (i.e., EtOH intake returned back to baseline), may be responsible for the decrease in EtOH preference observed at 2-day post-injection, rather than a direct effect on alcohol preference. By contrast, semaglutide significantly decreased EtOH preference at the injection day time-point (treatment × time-point interaction: F(2,22) = 14.01, p < 0.001; post hoc test, baseline vs. semaglutide injection day, p < 0.001; semaglutide injection day vs. + 2d, p < 0.001), without affecting water intake (treatment × time-point interaction: F(2,22) = 2.03, p = 0.16) (Figures 3D,F). These data suggest that while both GLP-1 analogs can reduce EtOH intake, semaglutide appears to be more selective for EtOH as it also reduced EtOH preference without affecting water intake.

Body weight was influenced by both GLP-1 analogs. Liraglutide induced long-lasting decreases in body weight up to 9 days post-injection (+ 9d) (F(5,55) = 101.2, p < 0.001; post hoc test, pre-injection vs. + 2d, p < 0.001; pre-injection vs. + 5d, p < 0.001; pre-injection vs. + 7d, p = 0.0012; pre-injection vs. + 9d, p = 0.014) (Figure 3G). By contrast, semaglutide induced only a transient decrease in body weight lasting no longer than 48 h, with a significant increase observed at 12 days post-injection (F(5,55) = 19.4, p < 0.001; post hoc test, pre-injection vs. + 2d, p = 0.005; pre-injection vs. + 12d, p = 0.02) (Figure 3H).



GLP-1 Receptor Antagonism Does Not Prevent the Suppressing Effects of Liraglutide or Semaglutide on Ethanol Intake

Ex9-39 has been shown to antagonize the effects of GLP-1R activation in rodents and humans (Thorens et al., 1993; Wang et al., 1995; Edwards et al., 1999; Vallöf et al., 2019a). Blockade of GLP-1R by co-administration of Ex9-39 did not prevent the decrease in EtOH intake induced by liraglutide (treatment × time-point interaction: F(2,22) = 49.22, p < 0.001; post hoc test, baseline vs. liraglutide + Ex9-39 injection day, p < 0.001; liraglutide + Ex9-39 injection day vs. + 2d, p < 0.001) (Figure 4A). Similarly, co-administration of Ex9-39 did not prevent the decrease in EtOH intake induced by semaglutide (treatment × time-point interaction: F(2,22) = 62.89, p < 0.001; post hoc test, baseline vs. semaglutide + Ex9-39 injection day, p < 0.001; baseline vs. + 2d, p = 0.005; semaglutide + Ex9-39 injection day vs. + 2d, p < 0.001) (Figure 4B).
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FIGURE 4. Effects of GLP-1 analogs (liraglutide and semaglutide) co-administered with a GLP-1R antagonist (Ex9-39), compared to vehicle, on EtOH intake, preference, water intake, and body weight. Bars and circles represent the mean and individual data points, respectively. (A–F) Baseline represents the average of 3 presentations prior to vehicle/drug injection. (A) A significant treatment × time-point interaction effect on EtOH intake was found for liraglutide + Ex9-39; under liraglutide + Ex9-39, EtOH intake at the injection day was lower than baseline and 2-day post-injection (+ 2d). (B) A significant treatment × time-point interaction effect on EtOH intake was found for semaglutide + Ex9-39; under semaglutide + Ex9-39, EtOH intake at the injection day was lower than baseline and + 2d, and EtOH intake at + 2d was higher than baseline. (C) A significant treatment × time-point interaction effect on EtOH preference was found for liraglutide + Ex9-39; under liraglutide + Ex9-39, EtOH preference at + 2d was lower than baseline. (D) A significant treatment × time-point interaction effect on EtOH preference was found for semaglutide + Ex9-39; under semaglutide + Ex9-39, EtOH preference at the injection day was lower than baseline and + 2d. (E) A significant treatment × time-point interaction effect on water intake was found for liraglutide + Ex9-39; under liraglutide + Ex9-39, water intake at + 2d was higher than baseline and the injection day. (F) No significant treatment × time-point interaction effect on water intake was found for semaglutide + Ex9-39. (G) Significant changes in body weight were observed under liraglutide + Ex9-39; body weight at + 2d, and + 7d was lower than the body weight measured on injection day (pre-injection). (H) Significant changes in body weight were observed under semaglutide + Ex9-39; body weight at + 2d was lower than the body weight measured on injection day (pre-injection). *p < 0.05, **p < 0.01, ***p < 0.001.


Similar to liraglutide alone, liraglutide + Ex9-39 significantly decreased EtOH preference only at 2-day post-injection (treatment × time-point interaction: F(2,22) = 3.75, p = 0.04; post hoc test, baseline vs. + 2d, p = 0.03) (Figure 4C), which was concomitant with significant increase in water intake (treatment × time-point interaction: F(2,22) = 12.04, p < 0.001; post hoc test, baseline vs. + 2d, p < 0.001, liraglutide + Ex9-39 vs. + 2d, p < 0.001) (Figure 4E). Co-administration of Ex9-39 did not prevent the decrease in EtOH preference induced by semaglutide (treatment × time-point interaction: F(2,22) = 3.83, p = 0.037; post hoc test, baseline vs. semaglutide + Ex9-39, p = 0.009; semaglutide + Ex9-39 vs. + 2d, p = 0.015) (Figure 4D). Semglutide + Ex9-39 did not affect water intake (treatment × time-point interaction: F(2,22) = 1.1, p = 0.35) (Figure 4F).

Liraglutide + Ex9-39 induced a transient decrease in body weight (F(5,55) = 30.65, p < 0.001; post hoc test, pre-injection vs. + 2d, p < 0.001; pre-injection vs. + 7d, p = 0.02) (Figure 4G). Similarly, semaglutide + Ex9-39 induced a reduction in body weight at 2-day post-injection (F(5,55) = 18.5, p < 0.001; post hoc test, pre-injection vs. + 2d, p = 0.01) (Figure 4H).



Inhibition of DPP-4 Does Not Affect Ethanol Intake

Next, we investigated whether increasing endogenous GLP-1 levels by preventing its enzymatic degradation via DPP-4 could decrease EtOH intake and preference. Here, we found that sitagliptin did not affect EtOH intake (treatment × time-point interaction: F(2,22) = 0.95, p = 0.40) (Figure 5A), EtOH preference (treatment × time-point interaction: F(2,22) = 0.55, p = 0.58) (Figure 5B), or water intake (treatment × time-point interaction: F(2,22) = 1.32, p = 0.29) (Figure 5C). In addition, no changes in body weight were observed with sitagliptin (F(2,22) = 1.44, p = 0.26) (Figure 5D).
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FIGURE 5. Effects of a DPP4 inhibitor (sitagliptin), compared to vehicle, on EtOH intake, preference, water intake, and body weight. Bars and circles represent the mean and individual data points, respectively. (A–C) Baseline represents the average of 3 presentations prior to vehicle/drug injection. No significant treatment × time-point interaction effects on EtOH intake, EtOH preference, or water intake were found. (D) No significant changes in body weight were observed.




GLP-1 Receptor Antagonism Does Not Affect Ethanol Intake

A previous study showed that a single dose of the GLP-1R antagonist Ex9-39 increased voluntary EtOH intake in rats (Shirazi et al., 2013). Considering these data and our findings that co-administration of Ex9-39 did not block the effects of liraglutide or semaglutide on EtOH intake, we investigated, in a different cohort of rats, whether injection of Ex9-39 alone, compared to vehicle, would affect EtOH intake, preference, water intake, and/or body weight (Figures 6A–D). A significant treatment × time-point interaction effect of Ex9-39 on EtOH intake was observed (F(2,22) = 3.8, p = 0.038) (Figure 6E), but due to low statistical power (power = 0.57), there results were concluded to be potentially false positive. Moreover, Ex9-39 did not affect EtOH preference (treatment × time-point interaction: F(2,22) = 0.19, p = 0.82) (Figure 6F), or water intake (treatment × time-point interaction: F(2,22) = 0.01, p = 0.99) (Figure 6G). We also found that body weight significantly increased at 2- and 5-day post-injection of Ex9-39 (F(2,22) = 8.56, p = 0.01; post hoc test, pre-injection vs. + 2d, p = 0.04; pre-injection vs. + 5d, p = 0.02) (Figure 6H).
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FIGURE 6. Overall measurements of EtOH intake, EtOH preference, water intake, and body weight for the second cohort of rats (n = 12). (A–D) Dashed lines represent the time of injection of vehicle (day 45) and Ex9-39 (day 52). (E–G) Effects of Ex9-39, compared to vehicle, on EtOH intake, preference, water intake; bars and circles represent the mean and individual data points, respectively. Baseline represents the average of 3 presentations prior to vehicle/drug injection. No significant treatment × time-point interaction effects on EtOH intake, EtOH preference, or water intake were found (note: the effect of the interaction term on EtOH intake was statistically significant, but due to low power, these results were concluded to be potentially false positive). (H) Effects of Ex9-39 on body weight. Significant changes in body weight were observed; body weight at + 2d and + 5d was higher than the body weight measured on injection day (pre-injection). *p < 0.05.





DISCUSSION

Increasing evidence points to an important role of gut-brain peptides, including GLP-1, in modulating the biobehavioral correlates of alcohol use (Thorsell and Mathé, 2017; Jerlhag, 2018; Farokhnia et al., 2019b; von Holstein-Rathlou and Gillum, 2019; Hopf, 2020). Here, we found that GLP-1 analogs, liraglutide and semaglutide, potently, albeit transiently, decreased voluntary EtOH intake. Notably, semaglutide also reduced alcohol preference. Administration of Ex9-39, an inhibitor of GLP-1R, failed to prevent liraglutide- and semaglutide-induced decreases in EtOH intake. Sitagliptin, a blocker of DPP-4, the enzyme responsible for GLP-1 degradation, did not affect EtOH intake or preference. Similarly, activation of GPR119, which has been shown to promote endogenous GLP-1 release, had no effect on EtOH intake. Altogether, our findings support the hypothesis that direct pharmacological agonism of the GLP-1 receptor may represent an effective approach for AUD treatment.

Several recent studies in rodents have highlighted the role of the GLP-1 system in regulating addictive behaviors related to different drugs of abuse, including nicotine, cocaine, opioids, and alcohol, suggesting a new and promising pharmacotherapeutic target for drug addiction (Egecioglu et al., 2013a, b; Graham et al., 2013; Shirazi et al., 2013; Harasta et al., 2015; Suchankova et al., 2015; Sørensen et al., 2015; Sirohi et al., 2016; Vallöf et al., 2016, 2019b, 2020; Fortin and Roitman, 2017; Tuesta et al., 2017; Bornebusch et al., 2019; Zhang et al., 2020). Here, we described, for the first time, that liraglutide and semaglutide had similar transient inhibitory effects on EtOH intake, but different effects on EtOH preference. In humans, liraglutide and semaglutide have an estimated half-life of 13 and 165 h, respectively (Agersø et al., 2002; Kapitza et al., 2015). Because of its longer half-life and long-acting properties, semaglutide is injected once weekly, as opposed to liraglutide which is injected once daily (Hall et al., 2018). In animals, liraglutide and semaglutide have an estimated half-life of 23 and 64 h, respectively, after subcutaneous administration (Lau et al., 2015). Although previous studies have investigated acute administration of liraglutide, they only reported its effects over a 24-h period, leaving room for speculation about possible time course and persistence of its effect on EtOH intake (Shirazi et al., 2013; Sirohi et al., 2016; Vallöf et al., 2016). The lack of long-lasting effects of GLP-1 analogs on EtOH intake after acute injection could be due to a faster metabolism of GLP-1 analogs in EtOH drinking animals and/or the need for repeated injections. In support of this hypothesis, long-lasting effects of liraglutide and dulaglutide on EtOH intake have been demonstrated after their daily administration for several consecutive weeks (Vallöf et al., 2016, 2020). However, relatively long-lasting effects of GLP-1 analogs on body weight were observed in the present study. Altogether, these findings suggest that the suppressing effects of GLP-1 analogs on EtOH intake and body weight may be mediated through different mechanisms – a question beyond the scope of the present study.

Malaise and nausea are common side effects of GLP-1 analogs (Buse et al., 2009; Hall et al., 2018), and could be, at least partially, responsible for their effects on EtOH intake, food intake, and body weight. Indeed, concentration higher than 50 μg/kg (i.p.) of liraglutide induces conditioned taste aversion (CTA) (Kanoski et al., 2012). However, lower dose of liraglutide (10 μg/kg, i.p.) has been found to reduce chow consumption without inducing CTA, suggesting that nausea does not solely account for the effects of higher concentration of liraglutide on food intake (Kanoski et al., 2012). In this study, we found that liraglutide significantly decreased EtOH intake without affecting EtOH preference on the day of injection. However, liraglutide significantly decreased EtOH preference at 2-day post-injection, while concomitantly increasing water intake at this time-point. These data tentatively suggest that liraglutide’s effects may not be selective for EtOH. Indeed, liraglutide has been shown to affect water intake after peritoneal injection (McKay et al., 2011). In contrast to liraglutide, semaglutide significantly decreased EtOH preference and did not affect water intake, suggesting that its effects are more selective for EtOH. Consistent with our findings, previous studies suggest that the effects of GLP-1 analogs in reducing EtOH intake are due to reduced EtOH rewarding properties rather than nausea, which is a common side effect of GLP-1 analogs (Buse et al., 2009; Egecioglu et al., 2013b; Shirazi et al., 2013; Sirohi et al., 2016; Vallöf et al., 2016, 2019a, 2020; Hall et al., 2018). Altogether, our results suggest that semaglutide is more specific for alcohol than liraglutide, and given its more favorable prescription dosing (i.e., once a week), may be better suited for use in patients with AUD. However, clinical trials will be needed to test and compare the safety, efficacy, and patients’ compliance to semaglutide and liraglutide as AUD treatment options.

Previous findings that the inhibitory effect of exendin-4 on EtOH intake was blunted in mice lacking GLP-1Rs in the CNS suggest that central GLP-1Rs play a key role in mediating the effects of GLP-1 analogs on EtOH intake (Sirohi et al., 2016). A recent study demonstrated that microinjection of Ex9-39 into the NTS was able to prevent the suppressing effect of exendin-4 on EtOH-induced increase in locomotor activity (Vallöf et al., 2019a). Here, we showed that co-administration of Ex9-39 with liraglutide or semaglutide did not prevent the reduction in EtOH intake and weight. The lack of inhibitory effects of Ex9-39 on GLP-1 analog actions could be due to differences in the half-lives of the drugs. While the exact metabolism profile of Ex9-39 is unclear, it is expected that its half-life would be similar to that of its parent peptide, exendin-4 (Göke et al., 1993), which is 33 min after intravenous and 2.5 h after subcutaneous administration in humans (Edwards et al., 1999; Kolterman et al., 2005). The putatively shorter half-life of Ex9-39, compared to both liraglutide and semaglutide (see above), could provide an explanation for the lack of effectiveness of Ex9-39 in blocking the effects of GLP-1 analogs in this study. The lack of inhibitory effect of Ex9-39 could also be due to insufficient blockade of central GLP-1Rs, which are critical in mediating reduced EtOH intake (Sirohi et al., 2016). Because Ex9-39 was administered intraperitoneally, it is possible that Ex9-39 had limited access to the brain leading to insufficient inhibition of central GLP-1Rs. A previous study showed that Ex9-39 administration increased EtOH intake (Shirazi et al., 2013). Here, we found that Ex9-39, administered alone, did not affect EtOH intake, which may also suggest a lack of relative effectiveness of the drug, at least in the context of our experiments. The discrepancy in the effects of Ex9-39 in Shirazi et al. (2013) and our study could also be due to differences in experimental designs. In our study, each rat was its own control (within-subject design); therefore, the EtOH/water intake over the 24-h period after injection was directly compared to each subject’s basal intake. In contrast, the between-subject comparisons performed by Shirazi et al. (2013) compared EtOH/water intake from two different groups of animals. The within-subject design of this study allowed us to control the potential confounding factors and account for individual differences in baseline EtOH consumption. Additional studies are needed to further investigate the effects of systemic GLP-1R antagonism and its effectiveness in blocking central GLP-1R-mediated effects on alcohol consummatory behaviors.

Several studies have started to unravel the putative neuronal networks and cellular pathways underlying the beneficial effects of GLP-1 analogs in reducing alcohol intake. Initially, GLP-1 analogs were thought to cross the blood brain barrier (BBB), but increasing evidence suggest that this may not be the case, and instead, they may reach the CNS via the circumventricular organs (CVOs), characterized by loose and permeable BBB (Kastin and Akerstrom, 2003; Hunter and Hölscher, 2012; Secher et al., 2014; Ast et al., 2020; Gabery et al., 2020). The effects of GLP-1 analogs on alcohol-related behaviors have been attributed to the activation of central, not peripheral, GLP-1Rs (Sirohi et al., 2016). GLP-1Rs are expressed in brain areas involved in the development and maintenance of AUD, such as NAc, VTA, amygdala, and paraventricular nucleus of the hypothalamus (PVN) (Cork et al., 2015; Graham et al., 2020). Activation of GLP-1Rs has been shown to modulate the increased activity of the mesolimbic dopamine system induced by alcohol (Egecioglu et al., 2013b; Vallöf et al., 2016, 2019a). Peripheral administration of liraglutide prevents alcohol-induced increase in dopamine release in the NAc in rats (Vallöf et al., 2016), while microinjection of exendin-4 into the NAc shell was shown to reduce EtOH intake and block EtOH-induced increase in locomotor activity (Vallöf et al., 2019b). These findings suggest that the effects of GLP-1 analogs on alcohol consumption may result from decreased alcohol-induced dopamine release in the NAc, which in turn, attenuates the rewarding properties of alcohol.

Recent studies have highlighted the importance of NTS GLP-1Rs in mediating the effects of GLP-1 analogs. Selective knockdown of NTS GLP-1Rs attenuates liraglutide-induced decreases in food intake and body weight (Fortin et al., 2020). Moreover, local activation of NTS GLP-1Rs decreases EtOH intake and prevents EtOH-induced accumbal dopamine release (Vallöf et al., 2019a). Located in the brainstem, the NTS is a key regulator of the gut-brain axis, the immune system, and the integration of autonomic functions (Andresen and Kunze, 1994; Marty et al., 2008; Zoccal et al., 2014). The NTS is the primary source of GLP-1-producing neurons, also known as preproglucagon (PPG) neurons, in the CNS, which are believed to play a critical role in addictive behaviors, as they project to and receive inputs from several regions involved in reward processing and consummatory behaviors (Larsen et al., 1997; Merchenthaler et al., 1999; Llewellyn-Smith et al., 2011; Holt et al., 2019). Selective activation of NTS PPG neurons, using chemogenetic techniques, has been shown to mimic the suppressing effects of GLP-1 on food consumption (Gaykema et al., 2017; Holt et al., 2019). Additional optogenetic studies found that the NTS-to-PVN GLP-1 neural pathway is critical for anorectic properties of PPG neurons (Liu et al., 2017). Altogether, these findings suggest that the effects of GLP-1 analogs on alcohol intake may be mediated by NTS GLP-1R-expressing neurons, while their effects on food intake may be mediated by NTS PPG neurons, which could also explain the transient vs. long-lasting effects of liraglutide and semaglutide on EtOH intake vs. body weight, respectively.

Due to the difficulties in developing orally bioavailable non-peptide agonists at GLP-1Rs, and class B GPCRs of the secretin family in general, numerous studies have focused their interest on identifying novel class A rhodopsin-like GPCRs with similar pancreatic β-cells expression and G-protein coupling to GLP-1R. From this effort, GPR119 emerged as a promising therapeutic target for the development of orally active, non-peptide, small-molecule agonists to treat type 2 diabetes and obesity (Koole et al., 2010; Yoshida et al., 2010; Semple et al., 2011, 2012; Melancon et al., 2012; Hothersall et al., 2015; Spasov et al., 2017; Fang et al., 2020a). Administration of GPR119 agonists has been shown to increase plasma GLP-1 and insulin, resulting in improved glucose homeostasis in rodents and humans (Chu et al., 2008; Hansen et al., 2011; Katz et al., 2011; Mandøe et al., 2015; Han et al., 2018; Matsumoto et al., 2018). Here, we tested two different synthetic GPR119 agonists. In contrast to GLP-1 analogs, GPR119 agonists failed to reduce EtOH intake and body weight. Several explanations could account for the lack of effectiveness of GPR199 agonists in the present study. Since we did not measure blood GLP-1 levels, it is possible that the injections of GPR119 agonists did not lead to physiologically relevant increases in blood GLP-1. Because of the relatively short half-lives of AR231453 and APD668, estimated at around 1 h after oral and intravenous administration, respectively, it is also possible that GPR119 agonists may not be able to produce sustained increases in endogenous GLP-1 levels necessary to mimic the effects of GLP-1 analogs (Chu et al., 2008; Semple et al., 2008, 2011). In support of this hypothesis, studies have demonstrated that co-administration of GPR119 agonists with a DPP-4 inhibitor, to prevent rapid degradation of GLP-1, allows for a greater and sustained increase in blood GLP-1 and enhanced effects on glucose homeostasis (Chu et al., 2008; Bahirat et al., 2017; Park et al., 2017). Although we showed that inhibition of DPP-4 with sitagliptin did not affect EtOH intake, co-injection of DPP-4 with GPR119 agonists could be more effective in increasing endogenous GLP-1 levels (Chu et al., 2008) and potentially influencing EtOH drinking. Future studies will be needed to investigate the effects of newly developed compounds with both potent DPP-4 inhibition and GPR119 agonistic activity (Fang et al., 2020b; Li et al., 2020). It is also possible that exposure to alcohol via the IA2BC paradigm may damage GLP-1 producing intestinal L-cells. Alcohol administration was shown to induce intestinal hyperpermeability and endotoxemia (Keshavarzian et al., 2009), which could result in deficient release of endogenous GLP-1 and subsequently blunt the potential effects of endogenous GLP-1 stimulators on alcohol-related outcomes.

In summary, findings of the present study suggest that, among different classes of drugs with modulatory effects on the GLP-1 system, GLP-1 analogs hold the strongest promise to be effective in reducing alcohol consumption, and semaglutide may overall be a better drug candidate than liraglutide in this regard. Preclinical studies are still needed to further characterize the cellular mechanisms and neuronal circuitry which mediate the suppressant effects of GLP-1 analogs on alcohol intake. It is also important to note that chronic exposure to alcohol and alcohol dependence lead to dysregulation of several neural circuits, such as the mesolimbic dopamine and the corticotropin releasing factor systems (Diana et al., 1993; Weiss et al., 1996; Volkow et al., 2007; Roberto et al., 2010; Marty and Spigelman, 2012; Liang et al., 2014a, b; Herman et al., 2016; Marty et al., 2020), which could alter the beneficial effects of GLP-1 analogs observed in non-dependent subjects – an important question that should be explored in future studies. Overall, the present study adds to the growing literature suggesting that the GLP-1 receptor could be a novel and promising pharmacotherapeutic target for AUD. If the results are confirmed in proof-of-concept human studies, repurposing of the readily available FDA-approved medications acting on the GLP-1 system would allow for a quick and efficient medication development process to add new options to the armamentarium of pharmacotherapies for AUD.
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Inhibition of Ras farnesylation in acute has been found to upregulate the α7 nicotinic acetylcholine receptor (α7nAChR) activity. This study was carried out to investigate the effect of chronic administration for 7 days of farnesyl transferase inhibitor lonafarnib (50 mg/kg, intraperitoneally injected) to male mice on the expression and activity of α7nAChR in hippocampal CA1 pyramidal cells. Herein, we show that lonafarnib dose dependently enhances the amplitude of ACh-evoked inward currents (IACh), owning to the increased α7nAChR expression and membrane trafficking. Lonafarnib inhibited phosphorylation of c-Jun and JNK, which was related to DNA methylation. In addition, reduced DNA methyltransferase 1 (DNMT1) expression was observed in lonafarnib-treated mice, which was reversed by JNK activator. Lonafarnib-upregulated expression of α7nAChR was mimicked by DNMT inhibitor, and repressed by JNK activator. However, only inhibited DNA methylation did not affect IACh, and the JNK activator partially decreased the lonafarnib-upregulated IACh. On the other hand, lonafarnib also increased the membrane expression of α7nAChR, which was partially inhibited by JNK activator or CaMKII inhibitor, without changes in the α7nAChR phosphorylation. CaMKII inhibitor had no effect on the expression of α7nAChR. Lonafarnib-enhanced spatial memory of mice was also partially blocked by JNK activator or CaMKII inhibitor. These results suggest that Ras inhibition increases α7nAChR expression through depressed DNA methylation of CHRNA7 via Ras-c-Jun-JNK pathway, increases the membrane expression of α7nAChR resulting in part from the enhanced CaMKII pathway and total expression of this receptor, and consequently enhances the spatial memory.
Keywords: lonafarnib, α7 nicotinic acetylcholine receptor, DNA methylation, c-Jun, c-Jun N-terminal kinase, membrane trafficking
INTRODUCTION
Statins as inhibitors of de novo cholesterol biosynthesis can also prevent the production of isoprenoids (Mans et al., 2010), including farnesyl-pyrophosphate (FPP) and geranylgeranyl-pyrophosphate (GGPP). Evidence has indicated that the statins can increase the expression of α7 nicotinic acetylcholine receptor (α7nAChR) in neuroblastoma cells (Roensch et al., 2007), SH-SY5Y cells, and PC12 cells (Xiu et al., 2005). Our previous studies have established that statins can enhance the α7nAChR expression under chronic administration (Chen et al., 2016a) through reducing FPP.
α7nAChR is a ligand-gated ion channel and widely distributed in the central nervous system (e.g., the cerebral cortex and hippocampus). Especially, α7nAChR is highly expressed in the cognition-relevant regions, including the CA1, CA3, dentate gyrus of the hippocampus, and layers I and VI of the cortex; thus, it plays an important role in the memory formation (Hogg et al., 2003; Gotti et al., 2006). More recently, α7nAChR has been found to have a high expression in the interneurons of cortical and pyramidal cells in the hippocampus (Deardorff et al., 2015). α7nAChR can regulate the plasticity of neural circuit, neuronal diﬀerentiation, proliferation, apoptosis, and clearance of aged neurons (Orr-Urtreger et al., 2000). α7nAChR dysfunction plays an important role in the pathogenesis of Alzheimer’s disease (AD). Studies have shown that the α7nAChR expression in the brain changes with age. Interestingly, α7nAChR expression substantially decreases in AD patients (Lykhmus et al., 2015). The disordered expression of CHRNA7, the gene encoding α7nAChR, is associated with neuropsychiatric disorders (Gyure et al., 2001; Deutsch et al., 2016). Previous study reported that the cognitive deficits deteriorated in the APP-α7 KO animals when α7nAChR was absent, and the decreased α7nAChRs expression was associated with synaptic damage in AD patients (Pchitskaya et al., 2018); upregulation of α7nAChR expression was able to improve the cognitive deficits (Ma and Qian, 2019).
DNA methylation is an important epigenetic control over different functional genes of the genome (Razin and Cedar, 1991). Canastar et al. (2012) first reported that DNA methylation in the promoter of CHRNA7 was related to the CHRNA7 mRNA expression in human cells from various tissue types. They found that SH-EP1 cells with high methylation had no CHRNA7 expression, and the treatment with methylation inhibitor, that is, 5-aza-2-deoxycytidine, reversed the CHRNA7 gene silencing in SH-EP1 cells; another methylation inhibitor, that is, zebularine, increased the CHRNA7 mRNA expression in SH-EP1 and HeLa cells. An inverse correlation between DNA methylation and CHRNA7 expression has also been reported in human temporal cortical tissues (Dyrvig et al., 2019). This indicates that DNA methylation is crucial for the transcriptional regulation of human CHRNA7 gene.
DNA methylation is catalyzed by methyltransferases, which are responsible for the formation of 5-methylcytosine (5-mC) from cytosine in the 5′-CpG-3′ dinucleotide (Nowak et al., 2017; Dan et al., 2019). It is catalyzed by DNA methyltransferases (DNMT) and can lead to the mitotic propagation of the modified sequence, resulting in the binding of regulatory proteins such as transcription factors (Calvanese et al., 2009). In mammalian cells, DNMT includes two important classes, DNMT1 and DNMT3 (DNMT3A, DNMT3B, and DNMT3L) (Calvanese et al., 2009; Ions et al., 2013). Different from DNMT3 (Kaneda et al., 2004; Dodge et al., 2005; Drini et al., 2011), DNMT1 is the main type of mammalian DNMT and responsible to maintain the methylation patterns in daughter cells. DNMT1 can be found in almost all somatic cells, but it is highly expressed in proliferating cells (Gruenbaum et al., 1982; Flynn et al., 1996). DNMT3A and -3B are involved in the de novo methylation, and highly expressed in embryonic stem cells and early embryos (Kaneda et al., 2004; Dodge et al., 2005); DNMT3L lacks the methyltransferase catalytic domain (Aapola et al., 2001) and is thought to facilitate the action of others (Jia et al., 2007). Rouleau et al. (1995) and MacLeod et al. (1995) found, in Y1 cells derived from a naturally occurring adrenocortical tumor in LAF1 mice, Ras-activator protein 1 (AP-1) (c-Jun) pathway could regulate the activity of DNMT, then influencing DNA methylation (Rouleau et al., 1995). AP-1 is a transcription factor composed of homo- and/or heterodimers of Jun and Fos proteins (Li et al., 2019). The phosphorylation of AP-1 can induce their activation, and then they have transcriptional activity into the nucleus, and c-Jun is activated through phosphorylation by the c-Jun N-terminal kinase (JNK) (Gupta et al., 1996; Kallunki et al., 1996). A recent study reported that hyperactivated Ras can mediate the elevation of phosphorylated-JNK in imaginal discs (Ray and Lakhotia, 2019).
The FPP and GGPP are lipid attachments for the small GTPase (i.e., Ras, Rho, and Rab) superfamily, regulating their prenylation to lead the activation (McTaggart, 2006). The Ras superfamily (e.g., H-Ras, K-Ras, and N-Ras) is a group of representative farnesylated proteins (Kho et al., 2004; McTaggart, 2006), and its functional activity requires farnesylation in the case of FPP, which is catalyzed by the rate-limiting enzyme farnesyl transferase (FTase). Numerous studies have revealed the involvement of Ras signaling pathway in the synaptic plasticity and memory formation (Manabe et al., 2000; Ye and Carew, 2010). Mans’s study and our previous study have reported that reducing FPP (but not GGPP) could upregulate the α7nAChR-dependent long-term potentiation (LTP) (Mans et al., 2010; Chen et al., 2016a) and learning memory, and acute inhibition of Ras farnesylation also could enhance the α7nAChR activity (Chen et al., 2018).
In this study, the FTase inhibitor (FTI) lonafarnib was used to inhibit Ras activation by blocking its farnesylation, and the effects of chronic administration of lonafarnib on the activity and expression of α7nAChR in hippocampal CA1 pyramidal cells were investigated. Our results indicated that chronic Ras inhibition by lonafarnib enhanced α7nAChR expression through inhibiting DNA methylation of CHRNA7, which was due to the reduction of DNMT1 via Ras-c-Jun-JNK pathway; and increased the membrane expression of α7nAChR, which was mediated in part by CaMKII pathway and enhanced total expression of this receptor, and consequently enhanced the spatial memory of mice.
MATERIALS AND METHODS
Experimental Animals
The present study was approved by the Animal Care and Ethical Committee of Nantong University and Nanjing Medical University. All animal-handling procedures followed the guidelines of Institute for Laboratory Animal Research of the Nantong University and Nanjing Medical University. The procedures involving animals and their care were conducted in conformity with the ARRIVE guidelines of Laboratory Animal Care (Kilkenny et al., 2012). Postnatal 28- to 32-day male mice (C57BL/6J mice, SLAC Laboratory Animal Co., Ltd. Shanghai, China) were maintained in a constant environmental condition (temperature, 23 ± 2°C; humidity, 55 ± 5%; 12:12 h light/dark cycle) in the Animal Research Center of Nantong University and Nanjing Medical University. Animals were given ad libitum access to food and water.
Drug Administration
Ftase inhibitor lonafarnib was purchased from MedChem Express (MCE, NJ, United States). For in vivo experiment, lonafarnib was dissolved in DMSO, which then diluted in saline containing 20% (2-hydroxypropyl)-beta-cyclodextrin (Chaponis et al., 2011). Lonafarnib was intraperitoneally injected at different doses of 10, 30, 50, and 80 mg/kg (Chen et al., 2016b) for 7 days. Control mice were intraperitoneally treated with an equal volume of vehicle.
Trans, trans-farnesol (FOH, 96%), and geranylgeraniol (GGOH, 85%) were purchased from Sigma (St. Louis, MO, United States). For in vivo experiment, FOH was mixed with 5% Tween 80 to produce an emulsion 30 min prior to lonafarnib administration, and then intraperitoneally injected at 50 mg/kg once daily (de Oliveira Junior et al., 2013). Control mice were intraperitoneally treated with an equal volume of vehicle.
The α7nAChR agonist acetylcholine (ACh) and α7nAChR antagonist methyl lycaconitine (MLA) were purchased from Sigma. The drugs were dissolved in DMSO and diluted by ACSF to a final 0.1% concentration of DMSO, and applied in patch-clamp recording.
CaMKII inhibitor KN93 and DNMT inhibitor RG108 were purchased from MCE. They were dissolved in DMSO, diluted with normal saline, and then injected intracerebroventricularly. Control mice were treated with an equal volume of vehicle. JNK activator anisomycin was purchased from MCE and was dissolved in HCl (1 M), and the concentration was diluted with normal saline to 22 μg/μl; the pH value was adjusted to 7.4 with NaOH (5 M). The vehicle was 1 M HC1 in saline, which was adjusted to pH 7.4 with NaOH.
For repeated intracerebroventricular (i.c.v.) injection of KN-93 (1 μg/5 μl/mouse) and RG108 (20 nmol/5 μl/mouse) (Dong et al., 2019) and anisomycin (110 μg/5 μl/mouse) (Kameyama et al., 1986; Stennett et al., 1989; Robinson and Franklin, 2007), a 28-G stainless steel guide cannula (Plastics One, Roanoke, VA) was implanted into the right lateral ventricle (0.3 mm posterior, 1.0 mm lateral, and 2.5 mm ventral to bregma) and anchored to the skull with three stainless steel screws and dental cement (Wang et al., 2015).
Electrophysiological Analysis
Preparation of Hippocampal Slices
Slice preparation and whole cell patch clamping were performed as previously described (Chen et al., 2018). The mice were anesthetized with isoflurane and sacrificed. Then, the skulls were removed rapidly and sliced with a vibrating microtome (Microslicer DTK 1500, Dousaka EM Co, Kyoto, Japan) in ice-cold cutting solution (in mM: 94 sucrose, 30 NaCl, 4.5 KCl,1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 D-glucose). The solution was oxygenated with a gas mixture (95% O2/5% CO2), and the pH value was adjusted to 7.4. The hippocampal slices were then incubated in artificial cerebrospinal fluid (ACSF) containing different concentrations of compounds (in mM: 126 NaCl, 1 CaCl2, 2.5 KCl, 1 MgCl2, 26 NaHCO3, 1.25 KH2PO4, and 20 D-glucose, pH 7.4), which was oxygenated with a gas mixture (95% O2/5% CO2) at 32–34°C using an in-line heating device (Warner Instruments, Hamden, CT).
Whole Cell Patch-Clamp Recording
After 1-h recovery in the incubating ACSF, the brain slices were transferred to a recording chamber for whole cell patch-clamp recording. During this process, the slice was continually perfused with oxygenated ACSF. To block muscarinic acetylcholine receptors, atropine (0.5 μM) was added to the external solution. In addition, 10 μM bicuculline, 20 μM AP-5, 10 μM NBQX, and 0.1 μM TTX were applied extracellularly. The patch-clamp recording was performed in pyramidal cells of the hippocampal CA1 region using IR-DIC optics (BX51WI with a ×20 water immersion objective lens, Olympus). Access resistance was monitored continuously during the recording, and the obtained data were discarded if the access resistance fluctuated more than 20%. The glass pipette (4–5 MΩ resistance) was filled with an internal solution (in mM: 120 Cs-gluconate, 2 NaCl, 4 MgCl2, 4 Na2-ATP, 10 HEPES, and 10 EGTA) at pH 7.2. The holding potential was −70 mV. The a7nAChR-activated current (ACh-evoked inward currents, IACh) was induced by adding ACh (0.1–5 mM) via a rapid drug delivery system to make sure of the direct application of ACh on the recorded neurons (Colon-Saez and Yakel, 2011; Li et al., 2013). IACh was recorded using an EPC-10 amplifier (HEKA Elektronik, Lambrecht/Pfalz, Germany) and analyzed using pCLAMP 10 software (Molecular Devices), Origin (OriginLab Corp., Northampton, MA, USA), and Sigmaplot10, including peak currents, decay kinetics, and curve fitting. Concerning the varying cell or membrane size, we use the current density, current intensity (pA)/membrane capacitance (pF), to represent the amplitude of IACh. IACh (pA/pF) recording from different groups was normalized to IACh (pA/pF) evoked by 5 mM ACh in control to produce dose–response curve. The data were fitted to logistic equation in which I = Imax/[1+(EC50/C)n], with n being Hill coefficient and EC50 being the concentration producing 50% maximal response. α7nAChRs desensitization was calculated by the half-time of desensitization that was required for 50% decay of peak IACh amplitude (Gay et al., 2008).
Slice Biotinylation and Cell Surface Protein Extraction
Hippocampal slices were placed on a six-well plate and washed with frozen ACSF for 5 min. Then, the hippocampal slices were incubated with ACSF containing EZ-link Sulfo-NHS-SS-Biotin (0.5 mg/ml, Pierce, Northumberland, United Kingdom) for 25 min at 4°C. These slices were washed with ACSF containing 50 mM NH4Cl thrice (5 min for each) at 4°C to remove excess biotin. After biotinylation, the hippocampal CA1 region was isolated and homogenized with lysis buffer (50 mM Tris–HCl [pH 7.4], 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 0.5 mM DTT, 50 mM NaF, 2 mM sodium pyruvate, 25% glycerol, 1% triton X-100, 0.5% sodium deoxycholate, and 1% protease inhibitor cocktail, Sigma). The supernatant was centrifuged at 20,000×g for 20 min at 4°C. The resultant supernatant was collected, and the protein concentration was determined by Bradford protein assay. The biotinylated proteins (50 mg) were incubated with streptavidin-coated magnetic beads (30 ml) for 45 min at room temperature. The streptavidin beads containing biotinylated proteins were washed thrice with lysis buffer containing 0.1% SDS and separated with a magnet. The biotinylated proteins were eluted in a sample buffer (62.5 mM Tris–HCl, 2% SDS, 5% glycerol, 5% 2-mercaptoethanol) at 100°C for 5 min. The protein lysates were denatured with the same method. Then, the protein lysates (cytoplasmic proteins) and biotinylated proteins (cell surface proteins) were stored at −20°C until analysis.
Immunoprecipitation and Western Blotting
Animals were anesthetized, and the brain was harvested, followed by the separation of the hippocampus. The hippocampal tissues or brain slices were homogenized in the lysis buffer containing 50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 10 mM NaF, 1 mM sodium orthovanadate, 1% Triton X-100, 0.5% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride, and protease inhibitor cocktail (Complete; Roche, Mannheim, Germany), followed by incubation for 30 min at 4°C. After cracking with the ultrasonic pulverizer, the samples were centrifuged at 12,000 rpm for 15 min at 4°C, and the supernatant was harvested. The protein concentration was determined with BCA Protein Assay Kit (Pierce Biotechnology Inc., Rockford, IL, United States). Then, equal amount of proteins was mixed with loading buffer and heated in boiling water for 5 min.
For immunoprecipitation assays, total proteins (500 μg) were incubated with rabbit anti-α7nAChR antibody (1:1,000; Chemicon, CA, United States) overnight at 4°C. Then, 40 μg of protein A/G agarose gel (GE Healthcare, Sweden) was added, followed by incubation at 4°C for 1 h. The obtained immunocomplexes were centrifuged at 4°C for 5 min at 1,000 g and washed four times with homogenization buffer (Contreras-Vallejos et al., 2014). The supernatants were collected and subjected to Western blotting.
Equal amount of protein (20 μg) was separated by SDS-polyacrylamide gel electrophoresis (SDS–PAGE), and then transferred onto polyvinylidene fluoride (PVDF) membrane, which was subsequently incubated with blocking solution (5% nonfat milk) for 60 min at room temperature. After washing thrice, the membrane was incubated overnight at 4°C with following antibodies: rabbit polyclonal anti-α7nAChR (1:1,000; Abcam, Cambridge, United Kingdom), DNMT1 (1:1,000; Abcam, Cambridge, MA, USA), DNMT3A (1:1,000; Abcam), DNMT3B (1:1,000; Abcam), anti-phospho-c-Jun (1:1,000; Millipore, MA, United States), anti-phospho-JNK (1:1,000; Millipore, MA, United States), anti-phospho-Ser (1:1,000; Santa Cruz, CA, United States), anti-phospho-Thr (1:1,000; Santa Cruz, CA, United States), anti-phospho-PKA (1:1,000; Millipore, MA, United States), anti-phospho-PKC (1:1,000; Abcam, Cambridge, United Kingdom), and anti-phospho-CaMKII (1:1,000; Cell Signaling Technology, MA, United States). After washing, the membrane was incubated with HRP-labeled secondary antibodies at room temperature for 1–2 h, and visualization was done with the ECL Detection Kit (Millipore, MA, USA). The blots were stripped by incubation in stripping buffer (Restore, Pierce) for 5 min, blocked with 5% nonfat milk at room temperature for 60 min, and then incubated with anti-c-Jun, anti-JNK (1:1,000; Millipore), anti-PKC (1:1,000; Abcam), anti-PKA (1:1,000; Millipore), and anti-CaMKII (1:1,000; Abcam). Internal control was GAPDH or β-actin (1:2000; Cell Signaling Technology). The biotinylated membrane surface a7nAChR protein was normalized by surface GluR2 protein (John et al., 2015; Chen et al., 2018). We used two methods of exposure, traditional darkroom exposure or using the exposure machine, for α7nAChR and phospho-CaMKII/CaMKII, and the traditional one seemed more suitable. ImageJ (NIH Image, Bethesda, MD, USA) was used to determine the protein expression which was normalized to the expression of internal control.
Reverse Transcription–Polymerase Chain Reaction (RT-PCR)
Real-time RT–PCR was performed as described previously (Albers et al., 2014). Total RNA was isolated from the hippocampus with TRIzol reagent (Invitrogen, Camarillo, CA) and reverse-transcribed into cDNA using a Prime Script RT Reagent Kit (Takara, China) for quantitative PCR (ABI Step One Plus, Foster City, CA) in the presence of fluorescent dye (SYBR Green I; Takara, China). The relative expression of genes was determined using the 2−ΔΔct method with GAPDH as an internal control. The primers used for PCR were as follows: DNMT1, 5′-CGT​TGT​GGT​GGA​TGA​CAA​GA-3′ and 5′-GAA​CCA​GGA​CAG​TGG​CTC​T-3′; DNMT3A; 5′-GTG​CAG​AAA​CAT​CGA​GGA​CA-3′ and 5′-ATG​CCT​CCA​ATG​AAG​AGT​GG-3′; DNMT3B, 5′-ACA​ACC​GTC​CAT​TCT​TCT​GG-3′ and 5′-GTG​AGC​AGC​AGA​CAC​CTT​GA-3′ (Miozzo et al., 2018); α7nAChR, 5′-CAC​ATT​CCA​CAC​CAA​CGT​CTT-3′ and 5′-AAA​AGG​GAA​CCA​GCG​TAC​ATC-3′ (Albers et al., 2014); α4nAChR, 5′-CAG​CTT​CCA​GTG​TCA​GAC​CA-3′ and 5′-TGG​AAG​ATG​TGG​GTG​ACT​GA-3′ (Ghedini et al., 2012); β2nAChR, 5′-GAG​GTG​AAG​CAC​TTC​CCA​TTT-3′ and 5′-GCC​ACA​TCG​CTT​TTG​AGC​AC-3′ (Albers et al., 2014); and GAPDH, 5′-TGG​GTG​TGA​ACC​ACG​AG-3′ and 5′-AAG​TTG​TCA​TGG​ATG​ACC​TT-3′.
Morris Water Maze (MWM)
Morris water maze test was conducted for 8 consecutive days to detect the spatial cognitive function of mice (Tong et al., 2012). Morris water maze consists of a circular pool (made of black plastic and 120 cm in diameter) that is artificially divided into four quadrants and marked on the wall with entry points for each quadrant. The water temperature was maintained at 23 ± 2°C, and an appropriate amount of white food additives was added into the water. Swim paths were analyzed using a computer system with a video camera (AXIS-90 Target/2; Neuroscience). During the experiment, the reference outside the maze should remain unchanged, and the indoor environment should be kept quiet to avoid interfering with the experiment. In the first two days of training (visible platform test), a cylindrical dark-colored platform (7 cm in diameter) was placed 0.5 cm above the surface of water. During training days 3–7 (hidden platform test), the acquisition testing phase, the platform was submerged 1 cm below the water surface. Mice were given 90 s in the pool to search the platform. Latency to reach the visible or the hidden platform, and the swim distance were measured. During the training, if the mouse failed to find the platform within 90 s, it would be guided to the platform, and the trial was terminated. Each mouse started from one of the four quadrants randomly, with its head toward the wall. Four trials were conducted every day with an interval of 30 min. On day 8, the retention of spatial reference memory was recorded by a probe trial with the platform being removed from the pool, and the percent time spent in each quadrant was assessed.
Data and Statistical Analysis
All statistical analyses were performed with GraphPad Prism 8. Data are presented as mean ± s. e.m unless stated otherwise. Differences among means were analyzed using Student’s t-test and analyses of variance (ANOVA) with or without repeated measures, followed by post hoc analysis. P- and F-values of ANOVAs are given in the results or figure legends section. Differences at P < 0.05 were considered statistically significant. Repeats for experiments and statistical tests carried out are indicated in the figure legends and in the main text, respectively.
RESULTS
Effects of Lonafarnib on α7nAChR Activity in Hippocampal CA1 Pyramidal Cells
To investigate the effect of lonafarnib on the α7nAChR activity, the ACh-evoked inward current (IACh) was recorded in mouse brain slices after 7 days of lonafarnib treatment at different doses of 10, 30, 50, and 80 mg/kg (Chen et al., 2016b). IACh of hippocampal CA1 pyramidal cells was examined by whole cell patch-clamp recording. Compared with control mice, the administration of lonafarnib increased the amplitude of IACh (pA/pF) in a dose-dependent manner (F4,35 = 7.393, P = 0.0002, one-way ANOVA; Figure 1A). According to this result, the influence of lonafarnib (50 mg/kg) treatment for 7 days on the sensitivity of α7nAChR to agonists was further investigated. ACh dose–response curves were delineated to evaluate the response of α7nAChR to different concentrations of ACh (Figure 1B). As shown in the dose–response curves, a concentration-dependent increase of IACh amplitude was observed in both groups (F5,70 = 83.94, P < 0.0001, repeated measure ANOVA). Lonafarnib significantly increased the IACh amplitude compared to control mice (F1,14 = 23.28, P = 0.0003, repeated measure ANOVA; Figure 1B). In addition, EC50 and Hill coefficient were comparable between Lonafarnib-treated mice (EC50 = 407.4 μM; Hill coefficient = 1.864) and control mice (EC50 = 430.7 μM; Hill coefficient = 2.021). Lonafarnib had no influence on the desensitization half-time (ms) of IACh (t-test as t 14) = 0.7632, P = 0.4580; Figure 1C). Then, lonafarnib at 50 mg/kg and ACh at 3 mM were used in the following experiments. In addition, α7nAChR antagonist MLA (10 μM) was also used to confirm that the recorded current and upregulation by lonafarnib were attributed to α7nAChR, but not other cholinergic receptor. As shown in Figure 1D, IACh was sensitive to MLA (vs. control mice or lonafarnib-treated mice: P < 0.0001, n = 8, two-way ANOVA with Tukey’s test; Figure 1D) in 5 min in both groups. However, mice treated with FOH had no influence in the currents (vs control mice: P = 0.9998, or lonafarnib-treated mice: P = 0.9742, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 1D). These results showed that lonafarnib (50 mg/kg) treatment for 7 days potentiated the a7nAChR activity, without changing the agonist sensitivity and the kinetics of desensitization.
[image: Figure1]FIGURE1 | Administration of lonafarnib enhances a7nAChR activity in hippocampal CA1 pyramidal cells. (A) Evoked IACh by ACh (3 mM) in the slices of control mice treated with vehicle and mice treated with lonafarnib at 10, 30, 50, and 80 mg/kg for 7 days. Dose–response curves were constructed by the amplitude of IACh (the value of current density as pA/pF) (means ± SEM) that expressed as percent of control with vehicle (100% VS control). **P < 0.01 vs. slices of control mice (10 mg/kg: P = 0.9999, 30 mg/kg: P = 0.9998; 50 mg/kg: P = 0.0062; 80 mg/kg: P = 0.0032, n = 8, one-way ANOVA, followed by Dunnett’s multiple comparison test). (B) The CA1 pyramidal cells were subjected to consecutive 1 s applications of 0.1, 0.4, 0.8, 1, 3, and 5 mM ACh in control and lonafarnib-treated mice (50 mg/kg). Dose–response curves were constructed by the amplitude of IACh (means ± SEM) that were normalized by a control value evoked by ACh (5 mM). Representative traces of IACh evoked by 3 mM ACh. *P < 0.05, **P < 0.01 vs. slices of control mice (1 mM: P = 0.0298, 3 mM: P = 0.0043, 5 mM: P = 0.0025, n = 8, repeated-measure ANOVA, followed by Sidak’s multiple comparison test). (C) Influence of lonafarnib administration (50 mg/kg) on the desensitization half-time of a7nAChR. (D) Sensitivity of evoked IACh to farnesol (FOH) that converts farnesyl-pyrophosphate and a7nAChR antagonist MLA. Mean percent reduction in the amplitude of IACh evoked by ACh (3 mM) following application of MLA (10 μM) in slices from control and lonafarnib-treated mice. Amplitude of IACh were normalized by the value of control group with vehicle. **P < 0.01 vs. slices of control mice; ##P < 0.01 vs. slices of lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test).
Influence of Lonafarnib on the Expression of Hippocampal nAChR
Among the various forms of nAChRs, only two subtypes are highly expressed in the central nervous system, α7-subunit containing homomer (α7nAChR) and α4β2 heteromer (α4β2nAChR) (Ma and Qian, 2019). To investigate the effect of lonafarnib (50 mg/kg) on the expression of α7nAChR and α4β2nAChR, RT-PCR and Western blotting were employed to detect the mRNA and protein expression, respectively. Our results showed the mRNA expression of α4/β2nAChR was similar between lonafarnib-treated mice and control mice (P > 0.9999, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 2A). By contrast, α7nAChR mRNA expression (P = 0.0019, n = 8; two-way ANOVA, followed by Tukey’s multiple comparisons test; Figure 2B) and α7nAChR protein expression (P < 0.0011, n = 8; Figure 2C) in the lonafarnib-treated mice increased significantly as compared to control mice. Moreover, the enhanced mRNA and protein expression of α7nAChR were not affected by FOH (50 mg/kg) (mRNA: P = 0.9991, n = 8; protein: P = 0.6837, n = 8) or GGOH (50 mg/kg) (mRNA: P > 0.9999, n = 8; protein: P = 0.9789, n = 8), which can be metabolized into FPP or GGPP (Chen et al., 2016a). These results indicated that the lonafarnib-induced upregulation of α7nAChR expression may be connected to gene transcription, for not only the a7 protein increased but also the a7 mRNA (Xiu et al., 2005). Lonafarnib could completely inhibit the farnesylation of Ras because of no influence of FOH or GGOH.
[image: Figure 2]FIGURE 2 | Lonafarnib administration increases the expression of hippocampal α7nAChR, but not α4/β2nAChR. (A) Levels of α4/β2nAChR mRNA in the hippocampus of control mice and lonafarnib-treated mice administrated with vehicle, FOH, or GGOH. (B) Level of α7nAChR mRNA in the hippocampus of control mice and lonafarnib-treated mice treated with vehicle, FOH, or GGOH. **P < 0.01 vs. control mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (C) Level of α7nAChR protein in the hippocampus. **P < 0.01 vs. control mice (two-way ANOVA, followed by Tukey’s multiple comparison test). CO: control mice, LO: lonafarnib-treated mice. The expression of mRNA and protein were normalized by the values of control group with vehicle.
Effect of Lonafarnib on DNA Methylation of CHRNA7
Studies have reported the correlation between CHRNA7 (a gene encoding α7nAChR) mRNA and DNA methylation in the promoter of CHRNA7 in various types of tissue (Razin and Cedar, 1977; Razin and Shemer, 1999; Canastar et al., 2012; Dyrvig et al., 2019). Activation of c-Jun has been reported to result in hyper-induction of DNMT promoter, then influencing DNA methylation (Rouleau et al., 1995). To explore the mechanism underlying the lonafarnib-induced enhancement of α7nAChR expression, the c-Jun-JNK pathway was examined, and the expression of DNMT was detected in the presence of lonafarnib treatment.
Our results showed significantly decreased phosphorylation of c-Jun (phospho-c-Jun) and JNK (phospho-JNK) in the lonafarnib-treated mice as compared to control mice (phospho-c-Jun: t-test as t 14) = 2.910, P = 0.0114; phospho-JNK: t-test as t 14) = 2.960, P = 0.0103; Figures 3A,B). Meanwhile, the protein and mRNA expression of DNMT1, DNMT3A, and DNMT3B were detected. Results showed lonafarnib reduced the mRNA (P = 0.0023, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 3C) and protein (P = 0.0020, n = 8, Figure 3D) expression of DNMT1, which both could be reversed by anisomycin, an activator of JNK (mRNA: P = 0.0078, n = 8; protein: P = 0.0004, n = 8; Figures 3C,D). However, the mRNA (DNMT3A: P = 0.7928, n = 8; DNMT3B: P = 0.9092, n = 8) and protein (DNMT3A: P = 0.9570, n = 8; DNMT3B: P = 0.4325, n = 8) expressions of DNMT3A and DNMT3B remained unchanged. Few studies have reported the methylation of CHRNA7 promoter in mice, and we predicted the presence of CpG island in the CHRNA7 gene promoter by using MethPrimer. As shown in Figure 3E, two CpG islands were found in the promoter region of CHRNA7 at 1843–2,257 bp and 2,314–2,430 bp, the GC content is more than 50%, and observed CpG to expected CpG dinucleotide ratio (ObsCpG/ExpCpG) was more than 0.60. In addition, previous study has demonstrated the CHRNA7 proximal promoter CpG island in human cells, including SH-EP1, HeLa, SH-SY5Y, and SK-N-BE cells (Canastar et al., 2012). These findings indicated the possibility of the regulation by DNA methylation in the CHRNA7 promoter in mice, and lonafarnib might decrease DNA methylation through reducing the expression of DNMT1, which was regulated by the c-Jun-JNK pathway.
[image: Figure 3]FIGURE 3 | Lonafarnib administration downregulates the phosphorylation of C-Jun and JNK pathway and, in this way, decreases DNMT1 in the hippocampus. (A and B) Levels of phospho-Jun and phospho-JNK in control and lonafarnib-treated mice, *P < 0.05 vs. control mice (t-test). (C) Levels of DNMT1/3A/3B mRNA in the hippocampus of control mice and lonafarnib-treated mice treated with vehicle or anisomycin. **P < 0.01 vs. control mice; ##P < 0.01 vs. lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (D) Levels of DNMT1/3A/3B proteins in the hippocampus of control mice and lonafarnib-treated mice treated with vehicle or anisomycin, **P < 0.01 vs. control mice; ##P < 0.01 vs. lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (E) Prediction of CpG island in the promoter region of CHRNA7 gene. The expression of mRNA and protein were normalized by the values of control group with vehicle.
The Role of DNA Methylation Alteration in the Lonafarnib Induced Upregulation of α7nAChR, and the Alteration of Membrane Expression and Phosphorylation of α7nAChR in Lonafarnib-Treated Mice
To explore the role of DNA methylation in the lonafarnib-induced upregulation of α7nAChR expression and activity, mice were treated with JNK activator anisomycin and DNMT inhibitor RG108. Interestingly, results showed RG108 inhibited the DNA methylation in control mice, which mimicked the effect of lonafarnib and could induce an increase of α7nAChR expression (P < 0.0001, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 4A); however, RG108 slightly upregulated IACh as compared to control mice, with no significant difference (P = 0.5197, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 4B). Anisomycin significantly inhibited lonafarnib-induced increase of α7nAChR expression (P = 0.0001, n = 8, Figure 4A) and induced a smaller inhibition of IACh in lonafarnib-treated mice (P = 0.0266, n = 8, Figure 4B). The different effects of DNA methylation inhibitor and lonafarnib on the expression and activity of α7nAChR suggest other mechanisms underlying the lonafarnib-induced upregulation of α7nAChR activity. As a membrane receptor, the functional expression of α7nAChR is affected by its membrane expression and phosphorylation (Cho et al., 2005; Gillentine et al., 2017). Then, whether lonafarnib also affected the membrane trafficking and phosphorylation of α7nAChR and their relationships with the increased α7nAChR expression were further explored. Results showed lonafarnib significantly upregulated the membrane expression of α7nAChR (P < 0.0001, n = 8, vs control mice, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 4C), which was partially inhibited by anisomycin (P = 0.0141, n = 8, vs lonafarnib-treated mice, Figure 4C). In control mice, DNMT inhibitor RG108 had no significant effect on the membrane expression (P = 0.9548, n = 8, vs control mice, Figure 4C). However, phosphorylation of α7nAChR remained unchanged in the control and lonafarnib-treated mice (P = 0.7695 n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 4D).
[image: Figure 4]FIGURE 4 | Role of DNA methylation in the lonafarnib affected activity, total expression, membrane expression, and phosphorylation of a7nAChR. (A) Levels of a7nAChR total proteins in the hippocampus of control and lonafarnib-treated mice treated with vehicle, DNMT inhibitor RG108 or anisomycin. **P < 0.01 vs. control mice, ##P < 0.01 vs. lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (B) Evoked IACh by ACh (3 mM) in the slices of control and lonafarnib-treated mice treated with vehicle, RG108, or anisomycin, **P < 0.01 vs. control mice; #P < 0.05 vs. lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (C) Levels of biotinylated a7nAChR (membrane surface) protein in the hippocampus of control and lonafarnib-treated mice treated with vehicle, RG108, or anisomycin. Surface a7nAChR was normalized by surface GluR2 protein, which was again normalized by vehicle-treated control group. **P < 0.01 vs. control mice; #P < 0.05 vs. lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (D) Levels of phospho-a7nAChR in the hippocampus of control and lonafarnib-treated mice treated with vehicle, RG108, or anisomycin. The expression of protein and the amplitude of evoked IACh were normalized by the values of control group with vehicle.
Pathways Related to the Upregulated Membrane Expression in Lonafarnib-Treated Mice
A large body of evidence indicates that the activation of small GTPases may alter their interactions with intracellular molecules to regulate downstream effectors including PKC, PKA, and CaMKII (McTaggart, 2006). The membrane trafficking of α7nAChR is regulated by PKC and CaMKII signaling pathways (Komal et al., 2015), and the phosphorylation of α7nAChR is modulated by PKA and PKC (Huganir and Greengard, 1990; Moss et al., 1996). Our previous study showed that acute perfusion with statins and FTI-277 could upregulate the membrane trafficking of α7nAChR through CaMKII or PKC pathway (Chen et al., 2018). Therefore, we further explore whether chronic administration with lonafarnib also affected these pathways to upregulate the membrane expression of α7nAChR. The effects of lonafarnib, RG108, and anisomycin on the phosphorylation of PKCε (phospho-PKCε), CaMKII (phospho-CaMKII), and PKA (phospho-PKA) were examined. Notably, lonafarnib elevated the expression of phospho-CaMKII (P < 0.001, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 5C), but not phospho-PKCε (P = 0.8099, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 5A) or phospho-PKA (P = 0.9615, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 5B). Neither RG108 in control mice nor anisomycin in lonafarnib-treated mice had influence on the expression of phospho-CaMKII (RG108: P = 0.9597, n = 8; anisomycin: P = 0.7383, n = 8), phospho-PKCε (RG108: P = 0.9366, n = 8; anisomycin: P = 0.9885, n = 8), or phospho-PKA (RG108: P = 0.7382, n = 8; anisomycin: P = 0.9998, n = 8 Figures 5A–C). Furthermore, lonafarnib-induced increase of membrane expression could be partially inhibited by KN93, an inhibitor of CaMKII pathway (P = 0.0119, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 5D). However, the increased total expression in lonafarnib-treated mice was not altered by KN93 (P = 0.7528, n = 8, two-way ANOVA, followed by Tukey’s multiple comparison test; Figure 5E). These results indicated that lonafarnib stimulated membrane trafficking of α7nAChR partially through CaMKII pathway, but not PKC or PKA pathway, and the DNA methylation had no influence in the pathways. Besides, upregulated CaMKII pathway had no effect on the total expression of α7nAChR.
[image: Figure 5]FIGURE 5 | Lonafarnib administration affects CaMKII signaling pathways, partially modulating the membrane expression of a7nAChR. (A and B) Levels of phospho-PKC and phospho-PKA in the hippocampus of control and lonafarnib-treated mice treated with vehicle, RG108, or anisomycin. (C) Levels of phospho-CaMKII in the hippocampus of control and lonafarnib-treated mice treated with vehicle, RG108, or anisomycin. **P < 0.01 vs. control mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (D) Levels of biotinylated a7nAChR (membrane) protein in the hippocampus of control and lonafarnib-treated mice treated with vehicle or CaMKII pathway blocker KN93. Surface a7nAChR was normalized by surface GluR2 protein, which was again normalized by vehicle-treated control group. **P < 0.01 vs. control mice; #P < 0.05 vs. lonafarnib-treated mice (two-way ANOVA, followed by Tukey’s multiple comparison test). (E) Levels of a7nAChR total proteins in the hippocampus of control and lonafarnib-treated mice treated with vehicle and KN93, and total a7nAChR was normalized by GAPDH, which was again normalized by vehicle-treated group. **P < 0.01 vs. control mice (two-way ANOVA, followed by Tukey’s multiple comparison test). The expression of protein was normalized by the values of control group with vehicle.
The Influence of Lonafarnib in the Spatial Memory
Then, we carried out behavior test by Morris water maze to examine the influence of lonafarnib in the spatial memory, and the involvement of α7nAChR. In the MWM test, the latency in visible platform can reflect the search behavior or visual acuity; latency in hidden platform is used to judge the spatial learning and memory. As shown in Figure 6A (upper), the latency to reach the visible platform was affected by training days (F1,28 = 182.0, P < 0.0001, repeated measure ANOVA; Figure 6A); however, there is no difference between four groups (F3,28 = 0.2525, P = 0.8589). The escape latency to reach the hidden platform was progressively decreased with training days in four groups (F4,112 = 211.2, p < 0.0001). Repeated measures ANOVA revealed a difference between four groups in the latency to reach the hidden platform (F3,28 = 3.390, P = 0.0317, followed by Tukey's multiple comparison test), and the latency of lonafarnib-treated mice was reduced compared with control mice (P = 0.0358). Mice treated with lonafarnib take less time to reach the hidden platform on days 5–6 after training than the control mice (day 5: P = 0.0078; day 6: P = 0.0306). Compared with lonafarnib-treated mice, mice treated by lonafarnib + KN93 showed reversed effect on the time to reach the hidden platform at day 6 (P = 0.014, n = 8), and mice with lonafarnib + anisomycin treatment presented increased time to reach hidden platform at day 5 (P = 0.0256, n = 8). KN93 and anisomycin treatment seemed to have a tendency to reverse the reduced latency in lonafarnib-treated mice; however, no overall significant difference was found in the lonafarnib + KN93-treated mice (P = 0.2806, n = 8) or + anisomycin mice (P = 0.4503, n = 8) compared with lonafarnib-treated mice. There was no significant difference in swimming speed during the training days (visible and hidden) between four groups (F6,168 = 0.2207, P = 0.9445, repeated measures ANOVA; Figure. 6A, bottom). A probe trial was performed at 24 h after the hidden platform test, in which the swimming time spent in four quadrants (platform, opposite, right, and left adjacent quadrants) was measured to estimate the memory trace strength. The swimming time spent in the target quadrant was longer than that in other quadrants in control mice (F3,28 = 6.846, P = 0.0033, repeated measures ANOVA, followed by Dunnett's multiple comparisons test; PQ VS R-AQ: P = 0.0151; VS OQ: P = 0.0196; VS L-AQ: P = 0.0101; n = 8; Figure 6B). Notably, lonafarnib-treated mice showed more swim time in platform quadrant than in control mice (P = 0.0087, n = 8, one-way ANOVA, followed by Tukey’s multiple comparison test). The enhancement of swim time in platform quadrant in lonafarnib-treated mice was blocked by the KN93 treatment (P = 0.0208, n = 8) and anisomycin treatment (P = 0.0124, n = 8). The results indicate the due spatial memory improvement in lonafarnib-treated mice, which is partially influenced when using KN93 or anisomycin to inhibit the activation of α7nAChR.
[image: Figure 6]FIGURE 6 | Lonafarnib treatment improves spatial learning memory. (A) Latency (sec) to reach visible platform and hidden platform of Morris water maze in control mice (control), lonafarnib-treated mice (lonafarnib), lonafarnib + KN93-treated mice (lonafarnib + KN93), and lonafarnib + anisomycin-treated mice (lonafarnib + anisomycin). Tracings of typical swim patterns in hidden platform task (upper panels). Black circles indicate the position of platform. *P < 0.05, and **P < 0.01 vs. control mice, #P < 0.05 vs. Lonafarnib + anisomycin-treated mice, $P < 0.05 vs. lonafarnib + KN93-treated mice (repeated-measure ANOVA, followed by Tukey’s multiple comparison test). (B) Percentage of swim time (%) in quadrants of platform (PQ), opposite (OQ) and right/left adjacent (R-AQ, L-AQ) in Morris water maze. Tracings of typical swim patterns in probe task (upper panels). **P < 0.01 and *P < 0.05 vs. swim time in PQ (comparison within group, repeated-measure ANOVA, followed by Dunnett’s multiple comparison test), ##P < 0.01 vs. control mice, +P < 0.05 vs. lonafarnib + KN93-treated mice or + anisomycin-treated mice (one-way ANOVA, followed by Tukey’s multiple comparison test).
[image: Figure 7]FIGURE 7 | The hypothesis of molecular mechanism underlying the lonafarnib-upregulated α7nAChR. ↑: increase; ↓: decrease; dotted line meant hypothesis need to be confirmed.
DISCUSSION
To our knowledge, the present study, for the first time, provided evidence that Ras inhibition by lonafarnib could enhance the total expression of α7nAChR through inhibiting DNA methylation of CHRNA7 promoter by decreasing DNMT1, and increase the membrane trafficking of α7nAChR which was mediated in part by CaMKII pathway and the enhanced total expression, leading to an upregulation of α7nAChR activity in hippocampal CA1 pyramidal cells, and consequently improved the spatial memory of mice.
Homomeric α7 and heterometric α4β2 receptors are most abundant in the nervous system; each subtype has its unique activation, agonist selectivity, channel conductance, and desensitization properties (Houchat et al., 2020). Activation of α4β2nAChRs triggers slowly decaying nicotinic currents (Matsubayashi et al., 2004), while α7 subtype is distinguished by its rapid desensitization (Couturier et al., 1990; Seguela et al., 1993). In addition, a7nAChRs can be fully activated by agonists such as choline, nicotine, and ACh, and inhibited reversibly by MLA and irreversibly by α-bungarotoxin (α-BGT). For α4β2nAChRs, they are activated by ACh and nicotine, but not by choline, inhibited by dihydro-berythroidine (DHβE), but not by a-BGT or MLA (Alkondon and Albuquerque, 2001). As previous study has reported in hippocampal neurons (Alkondon and Albuquerque, 1993), based upon the decay kinetics of the currents elicited by 3 mM ACh, the neurons were shown to exhibit different current types; among them, type IA currents (rapidly decaying currents) were the most frequent and were found in 83% of the neurons tested, mediated by α7nAChR, and completely inhibited by MLA or α-BGT, or κ-BGT alone. 10% of the neurons had mixed responses (named type IB), which were mediated by α7nAChR and α4β2nAChR, partially blocked by MLA or DHβE alone, completely blocked by combination of the two agents. α4β2nAChR mediated (type II) currents shown in 5% of neurons, which could be inhibited by DHβE, but not α-BGT. This classification was very similar to that found in nigral neurons as previously described (Matsubayashi et al., 2004). In our experiments, when analyzing the currents mediated by α7nAChR, we chose IACh with typical fast desensitization, and then the chosen ones were also confirmed by the complete inhibition of MLA. The electrophysiological analysis revealed that lonafarnib treatment for 7 days increased the maximal α7nAChR response, without altering the half-time (ms) of α7nAChR desensitization, EC50, and Hill coefficient of the dose–response curve. These findings suggest that lonafarnib treatment enhances the activity of α7nAChR, but not the affinity of α7nAChR. FOH had no effect on the lonafarnib-upregulated IACh, which indicates that when the rate-limiting enzyme FTase is inhibited by lonafarnib, supplement of FPP fails to rescue the activation of Ras. This finding was also confirmed by the receptor expression detection. Our results showed lonafarnib treatment for 7 days significantly increased the expression of mRNA and protein of α7nAChR, but failed to affect the expression of α4β2nAChR. Consistent with the electrophysiological results, FOH had no influence on the lonafarnib-induced increase of α7nAChR expression.
In the mammalian genome, DNA methylation is an epigenetic mechanism which can regulate gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA (Moore et al., 2013). A link between promoter DNA methylation and tissue-specific transcription of CHRNA7 has been reported by Canastar et al. (2012). They found that CHRNA7 expression was silenced in the SH-EP1 cells with a region corresponding high methylation level. However, in the SH-SY5Y and HeLa cells with demethylated regions, the expression of CHRNA7 was significantly higher, suggesting the crucial role of DNA methylation in the transcriptional regulation of human CHRNA7 gene. Moreover, Dyrvig et al. (2019) found that DNA methylation at three promoter regions was involved in the regulation of CHRNA7 transcription. In our study, a significant reduction of DNMT1 was observed in the lonafarnib-treated mice. RG108, an inhibitor of DNMT, could mimic the effect of lonafarnib on the α7nAChR expression. This finding reveals that lonafarnib-induced enhancement of α7nAChR expression is related to the downregulation of DNA methylation through reducing DNMT1. Patra (2008) reported that Ras could regulate DNMT1 and DNA-methylation, which also interacted with many proteins during cell cycle progression. A 106-bp sequence (at -1744 to -1,650) of DNMT gene bearing three AP-l sites was responsible for the induction of DNMT promoter activity (Rouleau et al., 1995). In Y1 cells, the activation of DNMT promoter is controlled by the Ras-AP-1 (c-Jun) signaling pathway (MacLeod et al., 1995; Rouleau et al., 1995). Expression of a down-modulator of Ras activity, or a trans-dominant negative mutant of Jun in Y1 cells, decreases the mRNA expression, enzymatic activity, and DNA-methylation of DNMT. In our study, lonafarnib-induced Ras inactivation reduced the phosphorylation of both c-Jun and JNK, and decreased the DNMT1 expression; furthermore, the reduced DNMT1 expression could be rescued by anisomycin, an activator of JNK. Our results suggest that lonafarnib inhibits Ras activation to decrease DNMT1 expression via c-Jun-JNK pathway, which consequently reduces DNA-methylation, resulting in the increase of α7nAChR expression. However, other mechanisms may be also involved in the effect of lonafarnib on the DNA methylation, since the link between DNA methylation and histone markers has been reported (Ooi et al., 2007; Kelly et al., 2010), and inhibition of histone deacetylases (HDACs) induces global DNA hypomethylation (Arzenani et al., 2011). A recent study also showed treatment with HDAC inhibitor Valproate immediately induced effective demethylation and significantly increased the CHRNA7 promoter gene expression in HeLa cells (Dyrvig et al., 2019). In our previous study, results showed simvastatin could reduce FPP to upregulate the histone acetylation (Chen et al., 2016b). Cellular histone acetylation is maintained by the histone acetyltransferases (HAT) and HDAC (Kramer et al., 2001), and inhibition of HDAC may enhance the histone acetylation. However, little is known about the relationship between Ras signaling and HDAC, which may need further investigation.
Our results showed anisomycin, an activator of JNK, significantly reduced lonafarnib-upregulated expression of α7nAChR, but partially inhibited the current of α7nAChR increased by lonafarnib. Similarly, DNMT inhibitor RG108 increased the expression of α7nAChR, but slightly elevated IACh with no significance. These results remind that other mechanisms may be also involved in the lonafarnib-upregulated activity of α7nAChR besides the increased expression of α7nAChR. As an integral membrane receptor, α7nAChR must be folded and assembled in the endoplasmic reticulum (ER), followed by membrane trafficking of assembled receptors (Gillentine et al., 2017). In this way, the membrane expression of α7nAChR may reflect the activity of α7nAChR (Drisdel et al., 2004; Ma and Qian, 2019). Phosphorylation at serine/threonine also modulates α7nAChRs activity (Huganir and Greengard, 1990). Cho et al. (2005) reported that the amount of functional cell surface α7nAChR was controlled indirectly via processes involving phosphorylation. However, in our study, results showed lonafarnib upregulated the membrane expression of α7nAChR, but had no effect on the phosphorylation of α7nAChR. A large body of evidence indicates that activation of small GTPases may alter their interactions with intracellular molecules to regulate downstream effectors including PKC, PKA, and CaMKII (McTaggart, 2006). Although studies have reported the role of PKC, PKA, and CaMKII in the membrane trafficking and phosphorylation of α7nAChR (Moss et al., 1996; Kanno et al., 2012a; Kanno et al., 2012b), our results showed chronic lonafarnib treatment enhanced the phosphorylation of CaMKII, but not PKC or PKA, and lonafarnib upregulated membrane expression was partially inhibited by CaMKII inhibitor KN93. This was consistent with our previous finding that FTase inhibitor (FTI-277) acute incubation for 4 h increased the membrane trafficking of α7nAChR through CaMKII pathway but not PKC or PKA. Interestingly, chronic lonafarnib treatment induced enhancement of membrane trafficking of α7nAChR was also partially reduced by JNK activator anisomycin, which decreased lonafarnib-upregulated α7nAChR expression. This indicates the involvement of increased total expression in the enhanced membrane trafficking in the lonafarnib-treated mice. It has been revealed that long-term treatment with neuregulin may enhance the expression and function of α7nAChR in the hippocampal cells (Liu et al., 2001; Kawai et al., 2002). The normal translocation of α7nAChR from intracellular pools to the surface is clearly an important but not well-defined process (Dineley and Patrick, 2000). Cho et al. (2005) reported that brief exposure of rat hippocampal interneurons to genistein potentiated α7nAChR responses, which was related to the enhanced expression of surface α7 subunits, resulting from the increased expression of α7nAChRs. However, in other cases, they thought that in chromaffin cells, when the total expression was enhanced, most upregulated nAChRs were stored in an intracellular pool, while surface receptors might actually be depressed (Peng et al., 1997; Warpman et al., 1998; Ridley et al., 2001; Sala et al., 2008). Based on our findings, lonafarnib enhanced the total expression of α7nAChR through reducing DNA methylation of CHRNA7 promoter via c-Jun-JNK pathway, and this increased expression was attributed to the enhanced membrane trafficking of the receptor, which was also regulated by the CaMKII pathway. The mechanism underlying the interaction between lonafarnib-enhanced α7nAChR expression and activity is not completely understood and worth further exploring.
α7nAChR is highly expressed in the cognition-relevant regions, playing a crucial role in memory formation (Hogg et al., 2003; Gotti et al., 2006). Cholinesterase inhibitors (ChEIs), which can recover the level of acetylcholine (activator of α7nAChR) in the central nervous system in AD brain, is one of the two types of medications for AD treatment approved by the Food and Drug Administration (Uddin et al., 2020). From our previous study, statins could significantly enhance the spatial cognitive performance as assessed by Morris water maze and Y-maze in adult mice through reducing FPP (Chen et al., 2016a). And the enhancement resulted from statins in synaptic plasticity assessed by LTP, a cellular model of learning and memory (Bliss and Collingridge, 1993), could be mimicked by FTI-277 (Mans et al., 2012). In our study, we due found an enhancement of lonafarnib treatment in the spatial memory as tested by Morris water maze. In the hidden platform test, the latency was significantly changed by lonafarnib treatment, especially on days 5 and 6. This enhancement was decreased to certain extent by KN93 or anisomycin, and mice treated by lonafarnib + KN93 showed an inverse of latency on day 6, and those treated by lonafarnib + anisomycin showed an inverse on day 5; however, both two groups had no significance in latency with lonafarnib-treated mice overall. In the probe trial, lonafarnib-treated mice exhibited an obvious increase in the time spent in platform quadrant than control mice, which was partially inhibited by KN93 or anisomycin. From the results of MWM, we can see that KN93 or anisomycin could not completely block the improvement in the spatial memory induced by lonafarnib. There may be other mechanisms involved in the benefit of spatial memory resulted from lonafarnib treatment. Foregoing results showed that affecting Ras-c-Jun-JNK or CaMKII pathway in part altered α7nAChR activity, which might explain the incomplete inhibition of the two drugs. Moreover, FTI-277 treatment enhanced the activity of NMDA receptor (Chen et al., 2016b), which played a crucial role in the learning and memory. In this way, inhibition of α7nAChR might not totally inverse the enhancement of spatial memory resulted from lonafarnib.
However, these evidences observed in our study do provide a support to the memory benefits of lonafarnib through the activation of α7nAChR, which also can predict the feasibility of Ras inhibitors in the anti-dementia treatment in AD patients.
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The international Linked Clinical Trials (iLCT) program for Parkinson’s to date represents one of the most comprehensive drug repurposing programs focused on one disease. Since initial planning in 2010, it has rapidly grown – giving rise to seven completed, and 15 ongoing, clinical trials of 16 agents each aimed at delivering disease modification in Parkinson’s disease (PD). In this review, we will provide an overview of the history, structure, process, and progress of the program. We will also present some examples of agents that have been selected and prioritized by the program and subsequently evaluated in clinical trials. Our goal with this review is to provide a template that can be considered across other therapeutic areas.
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INTRODUCTION

In April 1973, the U.S. Food and Drug Administration (FDA) approved the use of amantadine for alleviating the symptoms of Parkinson’s disease (PD). The story of how a single anecdotal patient-doctor interaction resulted in this antiviral therapy being approved for PD represents an excellent example of successful drug repurposing (Schwab et al., 1969; Hubsher et al., 2012). However, as with all of the currently available medications for PD, amantadine only provides symptomatic relief for individuals affected by the condition, temporarily alleviating the motor related features (bradykinesia, rigidity, and a resting tremor). Successful identification and widespread availability of disease-modifying agents that can slow or stop the slow progression of the disease represents a huge unmet worldwide need for the affected community of 6–10 million individuals, and for their families who are also greatly impacted by the condition. Drug repurposing currently shows promise for being able to identity therapeutics that will make a profound difference to the rate of progression of the disease.

Drug repurposing – sometimes referred to as drug repositioning, reprofiling or re-tasking – is a strategy of identifying novel uses for approved or investigational drugs that are beyond their original medical indication (Pushpakom et al., 2018). It is an efficient and appealing approach as it reduces number of required steps for clinical development, and thus lowers the amount of time and expense for taking a medicine through to regulatory approval. Given that the clinical profile and pharmacokinetics/dynamics of most approved drugs are already very well characterized, in many cases researchers can move directly into Phase II evaluations to explore signs of efficacy in the new indication of interest. With over 3,600 drugs available (US FDA, 2019), each of which is biologically active on one, or often more than one, biological targets, there is abundant opportunity for cross-indication testing. Numerous commercial and academic organizations around the world have now employed drug repurposing to accelerate drug development for their medical conditions of interest. Sophisticated drug evaluation processes have been established by key stakeholders; a successful and effective example of this is the international Linked Clinical Trials (iLCT) program which focuses on PD.

In 2010, The Cure Parkinson’s Trust (CPT) began planning the Linked Clinical Trials initiative, which later was renamed “the international Linked Clinical Trials” program. Initially the initiative was greatly influenced by the pioneering efforts of the 2003 “Committee to Identify Neuroprotective Agents for Parkinson’s” (CINAPS) program launched by Walter Koroshetz and colleagues (Ravina et al., 2003). CPT sought to assemble an international committee of experts of diverse, relevant skills at an annual 2-day meeting to examine agents suitable for repurposing that exhibit potentially disease-modifying properties in pre-clinical models of PD. The iLCT initiative involved the drafting of dossiers for each agent that was being considered for repurposing and, as detailed further below, contained information on the properties of the drug and the scientific and clinical basis of why it was potentially interesting to test in PD. Every year, over 20 different agents were presented to the members of iLCT committee (Table 1) who would then be tasked to prioritize them and thereby determine which of the evaluated therapeutics were most suited to move forward into clinical testing. Following this process, CPT was mandated to explore practicalities and mastermind the upcoming clinical trials of the prioritized treatments as selected by the iLCT committee. This approach has worked well and, to the present day, has largely maintained its structure, with regular committee expansion, since its initial formation. The iLCT program has now run for 9 years and has launched clinical trials exploring agents that target many different individual biological mechanisms that might modify the neurological decline in PD. In this review, we will briefly discuss the process of prioritization and present some examples of ongoing iLCT projects.


TABLE 1. The international Linked Clinical Trials Committee.
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THE iLCT PROCESS

The CPT research team and iLCT committee members continually review ongoing PD research and collect information on molecules that suggests that they might offer disease-modifying properties based on experiments in pre-clinical models of PD and sometimes also on information from epidemiological studies (Figure 1). Preceding the annual iLCT meeting in September, dossiers are written describing each drug, outlining potential strengths and weaknesses. Ideally, the agent has previously been tested in humans, with clear safety descriptions, pharmacokinetics, and pharmacodynamics data already available. There should also be evidence of acceptable bioavailability and CNS penetrance, unless the mode of action is proposed to involve a peripheral compartment such as the immune system or gut (although of course most manifestations of PD are related to changes in CNS pathology). In addition to promising results in models of PD (preferably in more than one model, and derived from multiple laboratories), any epidemiological data that may link exposure to the drug (when treating patients in the drug’s original therapeutic indication) with reduced incidence of PD, will be considered supporting evidence.


[image: image]

FIGURE 1. A flow chart of the process used in the iLCT scientific committee meetings.


Each dossier is divided into separate sections (Figure 2). The first section provides a table summarizing necessary background information for the agent (including brand name, drug class, biological target, etc.). Next, there is an introductory section of 3–4 paragraphs that outlines the hypothesis and primary arguments justifying the clinical testing of this molecule in PD patients. In addition, a statement orientating committee members as to who was involved in generating the dossier, and what kind of clinical study, or PD patient subpopulation, might be considered. This section is followed by one that describes the main pre-clinical evidence and the clinical rationale that supports why the candidate drug should be considered. This starts with the “scientific background” section providing the reader with an overview of the biological pathway that is being discussed and how it relates to PD. The “summary of the intervention” delves into the nature of the agent (molecular weight, mechanism of action) and provides a history of its development. The “preclinical data” and “clinical development” sections outline experiments and clinical trials using the agent (or associated molecules where data are limited). The “summary” briefly explains why the agent deserves to be clinically tested in PD, and may include a note as to if the trial should focus on a specific type (e.g., genetic), symptom (e.g., cognitive dysfunction), or stage (early or late) of PD.
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FIGURE 2. The layout of an iLCT dossier for each agent.


The dossiers are delivered electronically to the iLCT committee 2–3 weeks prior to the annual meeting, and they are tasked with providing a preliminary score for each dossier. These scores are used to triage the 20–25 dossiers down to the 15 that will be openly discussed amongst the committee members at the meeting itself. The iLCT meeting is held over 2 days at the Van Andel Institute in Grand Rapids (MI, United States) or at Cumberland Lodge, Windsor, United Kingdom. The Van Andel Institute partnered with CPT in 2012 to help coordinate the iLCT process. During each annual meeting, the final 15 dossiers that emerge from the triage process are presented individually by two designated committee members, then discussed by the whole committee, and then ranked alongside the other therapeutic candidates using a different scoring system (as compared with the triage stage). The average scores are calculated, and the top three-five drugs are considered prioritized to move forward into consideration for possible Phase II trials in PD patients.

The list of dossiers and the deliberations of the iLCT committee are not made publicly available. This is primarily for safety reasons, as some of the agents may have harmful effects if used incorrectly. In addition, some of the information discussed in the meeting can be sensitive (unpublished data) and not in the public domain. While the iLCT meeting is a closed-door meeting, an important aspect has always been a sense of inclusion. To this end, representatives of many of the major stakeholders are invited to attend the meeting (from major PD research charities to government organizations like NIH and NINDS). In addition, patient members of the PD research advocate community are also invited and actively engaged for their views on each dossier. All attendees of the meeting can provide feedback and comment on each dossier/agent being presented, but only the iLCT committee members provide scores.

Once a drug is prioritized, The Cure Parkinson’s Trust, Van Andel Institute, and partner organizations are then mandated to initiate clinical testing of that therapeutic. This process has led to seven completed trials and 15 molecules now being tested in 16 ongoing trials (one of which is a Phase III trial). In the following sections, we provide examples of drugs that have been prioritized by the iLCT committee. Specifically, we describe the history of the agent, the supporting evidence for its prioritization by the committee, and the current status of its clinical development for PD.


GLP-1 Receptor Agonists

The first agent given top priority by the iLCT committee in 2012 was the long acting glucagon-like peptide-1 (GLP-1) receptor agonist exenatide (Bydureon; Brundin et al., 2013). This once-a-week, widely used injectable therapy for type 2 diabetes, stimulates glucose level–dependent release of insulin and β islet cell proliferation, whilst, at the same time, reduces β islet cell apoptosis (Buse et al., 2004). In addition to their insulinotropic actions, GLP-1 receptor agonists exhibit beneficial neuroprotective properties in both neurotoxic and synucleinopathy PD models (Harkavyi et al., 2008; Li et al., 2009; Liu et al., 2015; Chen et al., 2018; Yun et al., 2018; Zhang et al., 2019). GLP-1 receptors are present throughout the CNS, and exenatide can access the brain (Kastin and Akerstrom, 2003).

A randomized, single-blind Phase II study of exenatide in people with PD was initiated in 2010 at University College London, Institute of Neurology. Over 12 months of treatment, exenatide was found to be safe and well tolerated in people with moderate PD. In this unblinded study, the treatment also improved PD symptoms (based on the MDS-UPDRS) by an average of 2.7 points. This improvement was compared to a decline of 2.2 points in a parallel group of control patients who were on conventional PD treatment only (Aviles-Olmos et al., 2013). More remarkable; however, was a follow-up assessment of some of the participants in this first study which suggested that the observed beneficial effects persisted for at least 12 months after exenatide treatment had been terminated (Aviles-Olmos et al., 2015).

Following prioritization by the iLCT committee, a second Phase II study of exenatide in PD patients was initiated. This study was configured as a randomized, double-blind, placebo-controlled trial involving 60 individuals with PD. After 48 weeks of treatment, the exenatide-treated group exhibited a statistically significant reduction in the progression of their MDS-UPDRS III motor features compared to the placebo treated control group (Athauda et al., 2017). In doing so, the treatment met the predefined primary outcome of this trial. Additional post hoc analyses provided hypothesis-generating insights into clinical characteristics of the best responders to exenatide, and suggested that they tended to be younger at the time of disease onset and had a disease duration of less than 10 years at the time of the trial (Athauda et al., 2019b). A second post hoc analysis explored the use of neuronal-derived exosomes as a method of demonstrating target engagement and revealed changes in brain insulin, Akt, and mTOR signaling pathways consistent with increased stimulation of the GLP-1 receptor (Athauda et al., 2019a).

These results generated excitement within the PD community and a Phase III clinical trial has now been initiated (ClinicalTrials.gov, n.d. g). A total of 200 people with PD are now being recruited and randomized to be treated in a double-blind fashion with weekly administration either of exenatide or placebo, and being followed for 96 weeks, much longer than the previous studies mentioned above. The results are expected in 2024. In addition to this Phase III study, two other GLP-1 receptor agonists (that are each already approved for use in treating diabetes type II) are also in clinical trials in specific PD patient subgroups, and as a direct consequence of the iLCT program. A Phase II study of Liraglutide is currently being conducted in California (ClinicalTrials.gov, n.d. l), and involves 60 participants with PD and insulin resistance. A nationwide Phase II trial of Lixisenatide in 158 people with early stage PD is also being conducted in France (ClinicalTrials.gov, n.d. o). The results of these studies will be available in 2021/22.

One encouraging by-product of a large, robust drug repurposing program – such as the iLCT program – can be the stimulating effect that it can have on the wider research community. This phenomenon has demonstrated itself with the development of other GLP-1 receptor agonists that are currently being clinically developed for PD. For example, the biotech firm Neuraly is currently testing their novel pegylated long-acting GLP-1 receptor agonist, called NLY01 in a Phase II trial in PD (ClinicalTrials.gov, n.d. a). Other commercial companies are also evaluating their GLP-1 receptor agonists in Phase II trials for PD [these include the South Korean company Peptron’s PT320 (ClinicalTrials.gov, n.d. m)] and Novo Nordisk’s longer acting GLP-1 receptor agonist Semaglutide (ClinicalTrials.gov, n.d. h). One can conclude that as a result of the initial iLCT clinical trial involving exenatide, GLP-1 receptor agonists now represent a novel yet important class of potentially disease-modifying drugs for PD and, in the coming years, we will know more about their true potential and whether they are particularly suitable for long term disease-modifying use in certain subgroups of PD patients.



Ambroxol

In 2009, the expectorant ambroxol hydrochloride (Ambroxol) was identified as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCase) in a screening study of FDA-approved drugs – (Maegawa et al., 2009). Ambroxol has been widely used in Europe as a treatment for respiratory diseases associated with mucus hypersecretion, and this new finding suggested that it could potentially be repurposed for PD. Genetic variations in the GBA1 gene – which encodes GCase – are some of the most common genetic risk factors associated with PD (Sidransky et al., 2009). Functionally, GCase is a lysosomal enzyme, but the mutated form of it becomes trapped in the endoplasmic reticulum, and is proteasomally degraded (Maor et al., 2013). This is the mechanism believed to result in lysosomal dysfunction in conditions (such as PD and Gaucher disease) that are associated with certain GBA1 variants. In GBA1-associated PD, carriers present a similar phenotype to idiopathic PD, but they generally have an earlier onset of symptoms and there is an increased risk of cognitive impairment (Beavan and Schapira, 2013).

Following the discovery of its GCase chaperone function, Ambroxol was shown to raise CNS levels of GCase in transgenic PD mouse models, fibroblasts from patients with GBA-associated PD, and in the brains of non-human primates (McNeill et al., 2014; Migdalska-Richards et al., 2016, 2017). Ambroxol also improves the translocation of mutant GCase from the endoplasmic reticulum to the lysosome, increasing GCase activity in cells carrying GBA1 mutations (Maor et al., 2016). Furthermore, in mice overexpressing human α-synuclein, ambroxol treatment was found to decrease both α-synuclein and phosphorylated α-synuclein levels in the brain (Migdalska-Richards et al., 2016).

Based on these positive preclinical results, in 2014 the iLCT committee prioritized ambroxol for clinical evaluation in PD, and the “AiM-PD” (ClinicalTrials.gov, n.d. d) trial was initiated. This Phase IIa study involved 18 participants with PD given an increasing dose of ambroxol (up to 1260 mg per day) for 6 months. The results of the AiM-PD study were recently published (Mullin et al., 2020), demonstrating that ambroxol was safe and well tolerated in the PD cohort over 6 months of treatment, and that it significantly raised GCase protein levels in cerebrospinal fluid samples by approximately 35%, thereby providing evidence of target engagement. Clinical assessments indicated some benefit but, given the open label nature of the study and its shortness of duration (6 months), interpretations of those results must be handled with caution. A larger Phase III study is now being planned to assess the efficacy of ambroxol in PD.

Following the initiation of the iLCT study, additional clinical trials of ambroxol have been started. A Phase II study in London (Canada) is exploring ambroxol in 70 people with PD dementia (ClinicalTrials.gov, n.d. c; Silveira et al., 2019). In addition, the “Ambroxol in New and Early Dementia with Lewy Bodies (ANeED)” study is set to start in Norway this year (Rongve et al., 2020). This study will be a Phase IIa, multi-center study of ambroxol in prodromal and mild dementia with Lewy bodies. Ambroxol is also being evaluated over 12 months in 60 individuals with Gaucher disease in a Phase II trial (ClinicalTrials.gov, n.d. e).



Ursodeoxycholic Acid

Ursodeoxycholic acid (or UDCA) is a secondary bile acid that is naturally synthesized in the liver and used medically – under the name ursodiol – for the treatment of gallstone disease and primary biliary cholangitis. A 2013 drug screening experiment – evaluating 2000 molecules for their rescue effect on mitochondrial dysfunction in Parkin (PARK2) patient-derived fibroblasts – highlighted UDCA and associated molecules for their ability to improve mitochondrial membrane potential and normalize ATP levels (Mortiboys et al., 2013). It was also reported to have a beneficial effect on the mitochondrial dysfunction associated with LRRK2 (G2019S) variants both in fibroblasts from variant PD carriers, and also in transgenic drosophila (Mortiboys et al., 2013, 2015). Additional models of PD have also revealed neuroprotective properties of UDCA (Amaral et al., 2009; Chun and Low, 2012; Abdelkader et al., 2016; Carling et al., 2020). A recent study suggested that unconjugated bile acids are increased in plasma from PD patients, tentatively suggesting that perturbations in bile acid metabolism are part of the underlying disease process (Yakhine-Diop et al., 2020).

In 2015, the iLCT committee gave UDCA top prioritization and a clinical trial was initiated by researchers at The University of Sheffield (Payne et al., 2020). The “UDCA in Parkinson’s study” (UP study) is a randomized double-blind, placebo-controlled study that began in early 2019. The trial involves 48 weeks of daily UDCA administration (30 mg/kg) in patients with early PD (less than 3 years since diagnosis). The results of this study are expected in 2021.

The UP study is not the only clinical trial exploring UDCA in PD – a small open-label, prospective, multiple-ascending-dose study of oral UDCA in five individuals with PD was recently completed (Sathe et al., 2020). The study found that the treatment was safe and well tolerated by PD patients, and that it was associated with modest increases in ATP and decreases in ATPase activity (based on MRS imaging which is also being explored in the UP study).



Simvastatin

Statins are inhibitors of HMG-CoA reductase – the rate-limiting enzyme in cholesterol biosynthesis – but they have also exhibited neuroprotective properties, particularly in terms of the CNS-penetrant statin, simvastatin (Tong et al., 2018; Yan et al., 2018; Mattii et al., 2019; Simchovitz et al., 2019; Hanan et al., 2020; reviewed in Carroll and Wyse, 2017). It was also recently suggested that simvastatin treatment can reduce the risk of developing progressive supranuclear palsy and potentially delaying onset of symptoms (Bayram et al., 2020). Given the substantial supportive data available at the time, simvastatin was prioritized at the first iLCT committee meeting in 2012 and was put into clinical trial in a large nationwide Phase II study in the United Kingdom, called PD-STAT. This study involved recruiting 230 individuals with moderate PD, and daily administration of either simvastatin or placebo for 24 months (Carroll et al., 2019). The preliminary results of this trial were announced in September 2020 and indicated that simvastatin is safe in PD, but does not modify its course.



Iron Chelation

In addition to the aggregation of α-synuclein, PD is also associated with the accumulation of iron in certain brain areas (Mochizuki et al., 2020). These elevated levels of iron may accelerate α-synuclein aggregation (Ostrerova-Golts et al., 2000), as well as directly cause oxidative stress and neurodegeneration (Deas et al., 2016). Given these associations, iron chelation has been considered as a therapeutic option for PD, with preclinical data providing a strong case for support (Finkelstein et al., 2016; Carboni et al., 2017; Das et al., 2017). The iron chelator deferiprone is another drug prioritized at the 2012 iLCT meeting. It is now in two large Phase II studies for PD (ClinicalTrials.gov, n.d. f, n.d. n). In addition, a second iron chelator was recently prioritized in the 2019 iLCT committee meeting. That compound is called ATH434, and it is being developed by Alterity Therapeutics (in collaboration with Takada Pharmaceuticals). Preclinical data for ATH434 suggest that the drug improves motor performance in multiple PD models (Finkelstein et al., 2017). Furthermore, Phase I safety, tolerability, and pharmacokinetics data in healthy human volunteers (Alterity Therapeutics, n.d.; ANZCTR, n.d.), support that the drug is safe and well tolerated. CPT and iLCT are now exploring ways to get this agent into a clinical trial in PD patients.




ADDITIONAL CONSIDERATIONS

The molecules discussed above represent a selection of the agents that have been prioritized by the iLCT committee and are now already in clinical evaluation for repurposing to PD. The process has not been without its challenges, however, and below we discuss some of the obstacles that can arise with drug repurposing.


Right Target, Wrong Drug?

It might be easy to identify a biological pathway of interest and a drug to target it for a particular indication, but details like drug specificity, optimal dosing and CNS penetrance (in the case of PD) can impact drug repurposing efforts. An example of this has been inhibition of the non-receptor tyrosine kinase Abelson (c-Abl) for PD. cAbl is a ubiquitous kinase with a wide range of physiological functions (Hantschel and Superti-Furga, 2004). It becomes activated by DNA damage and cellular stress, and preclinical data indicated that not only was cAbl kinase activated in models of PD, but cAbl-inhibitors are effective in the laboratory at rescuing the neurodegeneration and associated motor issues (Hebron et al., 2013; Imam et al., 2013; Karuppagounder et al., 2014; Mahul-Mellier et al., 2014; Lee et al., 2018). Based on these preclinical findings, the iLCT committee prioritized the cAbl inhibitor nilotinib in 2013. However, before a trial was initiated, the results of a small, unblinded pilot study evaluating nilotinib in seven individuals with advanced PD dementia were presented at the 2016 Society for Neuroscience meeting. The results suggested potential benefits, and were later published (Pagan et al., 2016). These findings generated a great deal of excitement in the media, and also amongst patients. Given the enormous worldwide publicity of those initial open-label results, and the availability of the (albeit very expensive) drug which large numbers of PD patients had started to take off-label, large Phase II trials were set up to evaluate Nilotinib in PD: the PD-Nilotinib study (ClinicalTrials.gov, n.d. i) and Nilo-PD (ClinicalTrials.gov, n.d. j). The results of these studies have now been reported (Pagan et al., 2020; Simuni et al., 2020), and they suggest that not only did the agent have no effect on the progression of PD, but also that only a very limited amount of the drug actually reached the brain (CSF/serum ratio was 0.2–0.3%). cAbl may be an important target for PD, but it can be argued that nilotinib was probably not the best agent to evaluate this pathway in PD. Fortunately, cAbl inhibitors that access the brain more efficiently are now being clinically tested (for example, Sun/SPARC Pharma Advanced Research Company cAbl inhibitor K-0706 (ClinicalTrials.gov, n.d. k) and the Inhibikase Therapeutics cAbl inhibitor IkT-148009 (ClinicalTrials.gov, n.d. b).



Dosing and Formulation

Another challenge of repurposing is the determination of dosing, which may differ significantly from that when used to treat the disease the drug was originally designed for. Preclinical models and non-human primate testing can aid in this process, but establishing potentially effective doses for humans can still impede rapid translation. Likewise, a new indication may require a novel formulation of (or method of administration for) the repurposed agent. We have experienced this with the ambroxol clinical trial program. The Phase II study discussed above required participants to self-administer 21 pills per day, on top of their current treatment regime of symptomatic medication. Heavy treatment requirements can affect compliance, especially in long-term studies. In such cases, reformulation may be required before further clinical progress can be effectively made.



Intellectual Property

Expiration of patents can be a blessing and a curse for repurposing programs. In the absence of intellectual property (IP), initiating a repurposing clinical trial can become a more challenging undertaking. Manufacturing and, if necessary, encapsulation of clinical grade drug and placebo will add highly significant additional costs to a trial. However, if there is still life in a patent for a particular therapeutic, there is often a reason for interest from the holder of the IP. This can potentially result in financial support, or at least, access to drug and placebo to undertake a clinical trial for a new indication. The interest for the IP holder is in conducting a study, which may provide the proof-of-concept required for justifying investment in future derivatives of the agent. Such a path-finding study also provides the opportunity to evaluate and validate biomarkers for novel pathways that could be used to test the next generation molecules that are designed even more closely to match the requirements best suited to treat the disease.



Repurposing ≠ Old Drugs

Drug repurposing should not be considered as limited just to clinically approved agents. New agents are continually entering the clinical trial process, providing a stream of novel therapies that could be “repurposed” for a disease area of interest. While IP holders may have very specific indications that they are focused on for economic reasons, drug repurposing programs like the iLCT can aid in catalyzing interest in these molecules in other indications. Biotech companies may have limited shareholder resources for conducting expensive clinical trials, but they often have enough clinical grade drug (and placebo) to consider additional medical areas if third parties (such as research charities) can organize funds for conducting a trial.



Importance of the Patient Community Input

The primary task for the iLCT committee is appropriate drug selection. An important part of the deliberation is focused on safety and considerable thought is also given to patient wellbeing. At every iLCT meeting, patient advocates are invited as representatives for the PD community, and their input to the discussion is sought-after and greatly valued. For all drugs considered, special consideration must be given to whether any particular therapy is appropriate as a potential treatment for the cohort of interest – taking into account the practicalities of mobility and the predominant age bracket of the patients. Factors such as drug formulation and frequency of dosing are sometimes discussed. Unique insights can be gained from the lived experience provided by the patient advocates, and this can impact which of the agents considered by the committee are eventually selected to enter clinical trials.




CONCLUSION

Drug repurposing has previously provided useful symptomatic therapies for the treatment of PD, and it is our hope that this approach will also provide a long-awaited means of delivering disease modifying treatments to the PD community. The iLCT initiative has been running for 9 years now, and while some of the drugs being tested may not necessarily be the ideal agent for each individual biological target being addressed, the drug repurposing approach does allow for a more rapid method of clinically evaluating the disease relevance of particular biological pathways/processes. As has been seen with the GLP-1 agonist examples, initiating such clinical trials can stimulate others to design and develop more appropriate molecules. It is our hope that these activities will result in novel disease-modifying therapies reaching the PD community sooner than the traditional approach to drug development.
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Traumatic brain injury (TBI) is the most common cause of morbidity among trauma patients; however, an effective pharmacological treatment has not yet been approved. Individuals with TBI are at greater risk of developing neurological illnesses such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The approval process for treatments can be accelerated by repurposing known drugs to treat the growing number of patients with TBI. This review focuses on the repurposing of N-acetyl cysteine (NAC), a drug currently approved to treat hepatotoxic overdose of acetaminophen. NAC also has antioxidant and anti-inflammatory properties that may be suitable for use in therapeutic treatments for TBI. Minocycline (MINO), a tetracycline antibiotic, has been shown to be effective in combination with NAC in preventing oligodendrocyte damage. (−)-phenserine (PHEN), an anti-acetylcholinesterase agent with additional non-cholinergic neuroprotective/neurotrophic properties initially developed to treat AD, has demonstrated efficacy in treating TBI. Recent literature indicates that NAC, MINO, and PHEN may serve as worthwhile repositioned therapeutics in treating TBI.
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BACKGROUND

Traumatic brain injury (TBI) is a major public health issue with 69 million cases globally each year and plays a role in approximately one-third of all injury-related deaths in the United States (Faul et al., 2010; Dewan et al., 2018). North America has the highest reported incidence of TBI in the world with 1299 cases per 100,000 individuals at an estimated cost of $3.84 billion (Faul et al., 2007, 2010; Dewan et al., 2018). TBI cases are commonly classified as: mild (awake and oriented); moderate (significantly confused but able to follow commands); and severe (prolonged impaired consciousness and inability to follow commands) based on parameters of the Glasgow Coma Scale (Jennett et al., 1981). Most cases are mild in severity, allowing for the opportunity to recover from initial symptoms. However, despite initial recovery, patients remain at risk of developing late secondary neurodegenerative disorders such as Alzheimer’s disease (AD) (e.g., memory loss) and Parkinson’s disease (PD) (e.g., tremor and shuffling gait) (Goldman et al., 2006; Tagliaferri et al., 2006; Chauhan, 2014; Djordjevic et al., 2016; Mendez, 2017). Drugs utilized in treating TBI may work to protect brain areas that are at increased risk in the acute and delayed setting (Du et al., 2016). The mechanisms of injury following cortical impact involve neuroinflammatory pathways, apoptotic cell death, and glutamic toxicity (Ray et al., 2002). The multifaceted and undefined nature of TBI makes it difficult, time consuming, and expensive to develop novel treatment strategies. Drug repurposing can provide a fast-tracked route toward developing effective therapies for TBI. Several drugs under investigation include N-acetyl cysteine (NAC), minocycline (MINO), (−)-phenserine, progesterone, propranolol, and valproic acid (Eakin et al., 2014; Xiong et al., 2015; Hoffer et al., 2017). NAC and MINO have been approved by Federal and Drug Administration for the treatment of acetaminophen induced hepatotoxicity and bacterial infections, respectively (Adminstration, 1971; Prescott et al., 1979).



PATHOPHYSIOLOGY OF TRAUMATIC BRAIN INJURY

Primary TBI occurs as a result of physical trauma to the head, causing neuronal damage, and neuroinflammatory events. The manipulation of neuronal membranes dysregulates ion flow. Neuroinflammation is induced by increased microglial activity and depletion of mitochondrial glutathione (GSH), a key antioxidant compound. GSH reduction combined with increased intracellular calcium ion induces mitochondrial dysfunction leading to caspase activation and eventual apoptosis (Xiong et al., 1999; Pearn et al., 2017). Secondary, or delayed, injury following TBI is believed to occur due to multiple physiologic processes including free radical injury, inflammation, and glutamatergic excitotoxicity (Lenzlinger et al., 2001; Morganti-Kossmann et al., 2002; Yi and Hazell, 2006; O’Connell and Littleton-Kearney, 2013).



CURRENT THERAPIES UNDER INVESTIGATION


N-Acetyl Cysteine

N-acetyl cysteine has been shown to have significant neuroprotective effects in various animal models, particularly in ameliorating the effects of secondary neuronal injury as a result of TBI. Experimental rat models have confirmed the beneficial antioxidant properties of NAC when used to treat brain injury. NAC acts by upregulating the level of GSH, a combination of L-glutamic acid, L-cysteine, and glycine, within the brain. Administration of NAC maintains high GSH levels in the brain which acts as a free radical scavenger and as an antioxidant itself (Ellis et al., 1991; Xiong et al., 1999; Chen et al., 2008). The underlying pathophysiologic processes resulting from TBI lead to increased risk of neurodegenerative illnesses such as AD and PD (Ikonomovic et al., 2004; Acosta et al., 2013; Franzblau et al., 2013; Chauhan, 2014; Pearn et al., 2017; Gardner et al., 2018). NAC provides a source of cysteine, a precursor to GSH, which can be used to alleviate reactive oxygen species (ROS)-mediated complex I damage in mitochondria of the substantia nigra in PD (Jha et al., 2000; Martínez Banaclocha, 2000; Banaclocha, 2001). NAC also reduces tau and beta-amyloid deposition and acts as an anti-inflammatory agent in treating AD via the upregulation of GSH, displaying its efficacy in not only treating TBI itself but also subsequent neurodegenerative conditions that are associated with TBI in rat and mice models (Tucker et al., 2005; Acosta et al., 2013; Franzblau et al., 2013; Joy et al., 2018; Tardiolo et al., 2018). A double-blind placebo-controlled human trial was used to evaluate efficacy of NAC in patients with blast-induced mild TBI (Hoffer et al., 2013). The treatment group received 2 g of NAC twice daily for the first 4 days followed by 1.5 g of NAC twice daily for 3 days. All patients were evaluated for dizziness, headache, hearing loss, memory loss, sleep disturbances, and neurocognitive dysfunction following 7 days of treatment. Significant improvement (p < 0.01) with regards to these symptoms were seen 7 days post-treatment in those receiving NAC within 24 h of injury. Additionally, the treatment group had 86% chance of recovery. Outcomes from this study warrant further investigation on long-term outcomes of NAC treatment in TBI (Table 1).


TABLE 1. Summary of human trials for repurposed drugs in TBI.
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Treatment with NACA in rats has also been shown to protect the blood-brain barrier (BBB) and maintain brain homeostasis by alleviating oxidative stress caused by blast overpressure induced TBI (Kawoos et al., 2019). NACA promoted an antioxidant effect via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) – antioxidant response element (ARE) pathway. NACA also displayed antiapoptotic properties following TBI. Both antioxidant and antiapoptotic effects are induced by modulation of the ubiquitin protease system via activation of the Nrf2-ARE pathway (Ding et al., 2017; Zhou et al., 2018). It is important to note that these studies utilized blast overpressure techniques. Additional studies investigating NACA using “true” blast models as described by Rubovitch et al. (2011) rather than a “blast tube” may provide further insight into the protective effects of NACA.



Minocycline

Minocycline (MINO), a tetracycline antibiotic, has been shown to offer neuroprotective properties on its own and in combination with NAC and NACA. Rat models have supported the efficacy of MINO in treating neurological impairment arising from TBI (Haber et al., 2018; Zhang et al., 2020). In a mild controlled cortical impact model, MINO + NAC improved memory and cognition in rats and repaired white matter damage by protecting oligodendrocytes (Haber et al., 2018). In a controlled head injury (CHI) model of TBI, loss of oligodendrocytes was also observed. MINO + NAC provided protection against oligodendrocyte apoptosis during days 2–14 when dosed at 12 h post-TBI. MINO alone did not protect against initial oligodendrocyte damage when dosed 12 h post-TBI; however, full recovery was seen on day 14, suggesting that MINO alone operates via a different mechanism than MINO + NAC (Sangobowale et al., 2018). MINO alone acts by temporarily inhibiting microglial activation and reducing TBI-induced locomotor activity leading to improved long-term outcomes post-TBI (Homsi et al., 2010). Despite MINO proving to be safe in treating TBI in phase 1 trials, a human study on 15 patients greater than 6 months post moderate/severe TBI, receiving 100 mg MINO two times daily, indicated inhibition of chronic microglial activation which may have reparative effects but ultimately resulted in increased neurodegeneration indicated by increased levels of plasma neurofilament light chain (Scott et al., 2018; Meythaler et al., 2019). Though MINO alone may not be efficacious in treating TBI, human trials involving MINO and NAC together may be warranted.



(−)-Phenserine

Phenserine is an anti-acetylcholinesterase agent with additional non-cholinergic properties that was originally developed to treat AD (Greig et al., 1995). However, PHEN has the potential to be repurposed for treating TBI. PHEN anti-acetylcholinesterase activity has been shown to reduce neuroinflammation, alleviate amyloid deposition, and prevent apoptosis as well as mitigate multiple different mechanisms of secondary injury (Kadir et al., 2008; Poole and Agrawal, 2008; Hsueh et al., 2019; Lecca et al., 2019).

A study by Lecca et al. (2019) investigated the effects of PHEN (5 mg/kg) in mitigating apoptosis and neuroinflammation in both wild-type (WT) and amyloid-precursor protein (APP)/presenilin 1 (PSEN1) expressing AD mice (APP/PS1 mice) when exposed to mild TBI (mTBI). PHEN was found to be well tolerated in exposed mice. Exposure to mTBI resulted in increased size of microglial cell bodies and increased production of IB1A1 and TNF-α. PHEN reduced inflammation by decreasing the production of IB1A1 and TNF-α in microglial cells in a dose-dependent manner after exposure to mTBI in both WT and APP/PS1 mice. This anti-inflammatory action was observed in both hippocampal and cortical areas in WT and APP/PS1 mice. An increase in glial fibrillary acidic protein IR (GFAP IR), an astrocyte marker, was also noted in hippocampal in cortical areas. PHEN was shown to fully reverse the increase in GFAP IR in both WT and APP/PS1 mouse models (Lecca et al., 2019). PHEN has demonstrated both anti-apoptotic effects through upregulation of Bcl-2 and BDNF expression while also decreasing pro-apoptotic factors such as caspase-3, APP, and GFAP (Chang et al., 2017). Similar data was also seen following controlled cortical impact injury in moderate TBI. In addition to treating cell death, PHEN has also had positive effects on reducing intracranial pressure, measured with lateral ventricle size, and contusion volume. Treatment of 2.5 mg/kg twice daily for 5 days post controlled cortical impact injury in mice reduced both contusion volume and intracranial pressure (Hsueh et al., 2019).

Phenserine administration post mTBI not only alleviates primary cellular damage but also shows efficacy in treating secondary TBI syndromes such as AD (Ikonomovic et al., 2004; Acosta et al., 2013; Franzblau et al., 2013; Chauhan, 2014). Treatment with PHEN in WT mice exposed to mTBI displayed significant dose-dependent recovery of both visual and spatial memory (Lecca et al., 2019). Levels of APP and alpha-synuclein, which are present in AD and PD, respectively, were decreased by treatment of PHEN (Marutle et al., 2007; Mikkilineni et al., 2012; Chang et al., 2017).

While many studies have demonstrated the protective effects of PHEN due to its anti-cholinergic activity, recent studies have also shown that many of the protective effects of PHEN maybe mediated by multiple non-cholinergic mechanism. A study by Tweedie et al. (2016) evaluated the non-cholinergic actions of PHEN on mTBI mice following a 2 days wash out when cholinergic actions were no longer present. PHEN dosed at 2.5 and 5.0 mg/kg twice daily for 5 days mitigated oxidative stress as measured by activity and protein levels of superoxide dismutase and glutathione peroxidase. Furthermore, PHEN was shown to reverse hippocampal gene expression associated with lipid peroxidation and development of AD in mTBI mice (Tweedie et al., 2016). Thus therapeutic benefits of PHEN in mitigating effects of TBI are likely related to both non-cholinergic features unique to PHEN as well as cholinergic properties shared by other anticholinesterases.



OTHER DRUGS UNDER INVESTIGATION

Many drugs are currently being evaluated as potential treatments for TBI. Though the exact mechanism is unknown, amantadine appears to act as an NMDA receptor antagonist and an indirect dopamine agonist. Placebo-controlled studies involving amantadine as a potential therapeutic agent have shown efficacy in accelerating recovery time and functional improvement following TBI (Meythaler et al., 2002; Giacino et al., 2012). Neurosteroids have also been considered to be repurposed to treat TBI. Progesterone, a neurosteroid, has been shown to promote neurogenesis by increasing the release of BDNF, NGF, and IGF (Stein and Sayeed, 2019). In a randomized controlled trial, progesterone administration lowered mortality 3 months post-TBI. Though it did not show significant benefit 6 months post-TBI, administration in combination with other drugs may support its utility (Pan et al., 2019). A summary of ongoing human clinical trials for the aforementioned repurposed drugs can be found in Table 2.


TABLE 2. Ongoing human clinical trials.
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CONCLUSION

While effective pharmacological treatments have not yet been approved for the treatment of TBI, drug reproposing may help accelerate identification of effective pharmacological therapies. Limited human trials investigating NAC have shown promise and demonstrated neuroprotective effects in mTBI patients. Additional pre-clinical animal studies on NACA, MINO, and PHEN have also demonstrated efficacy in neuroprotection and mitigating delayed sequela from TBI. Future studies, particularly those involving human trials, are needed to elucidate the benefit of these reproposed drugs in mitigating the acute and delayed effects of TBI.
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Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
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INTRODUCTION

Chronic neuroinflammation is a common feature across numerous neurological disorders, including neurodegenerative diseases, myelin disorders, and several psychiatric disorders (Goldsmith et al., 2016; Han et al., 2019; Jung et al., 2019; Yuan et al., 2019). Whereas it is a recognized pivotal player in the progression of neurodegeneration in Parkinson’s disease (PD) and in Alzheimer disease (AD), neuroinflammation also appears to be heavily involved in the pathophysiology of psychiatric disorders, including major depressive disorder (MDD) and bipolar disorder (BD) (Beurel et al., 2020). Therefore, although the origin of neuroinflammation may vary depending on the neurological illness and is often poorly understood, modulation of the inflammatory response may represent a wide target to mitigate neurological disorders. Neuroinflammation is chiefly mediated by cytokine-releasing reactive microglia within the CNS (Clark et al., 2010). Cytokines are secreted and regulated in cascades, acting to increase the downstream production of other cytokines and to amplify the inflammatory response (Kronfol and Remick, 2000). Among the many inflammatory cytokines that play a part in propagating neuroinflammation, tumor necrosis factor-alpha (TNF-α) acts as a master regulator of downstream inflammatory pathways (Parameswaran and Patial, 2010). Importantly, central cytokine levels can be affected by peripheral levels, as the blood-brain barrier (BBB) may be disrupted or become more permeable in the progression of neurological disorders (Benatti et al., 2016; Menard et al., 2017; Sweeney et al., 2018).

Based on the pivotal role of neuroinflammation in neurological disorders, anti-inflammatory and immunomodulatory agents, as well as anti-TNF agents, have been considered and have shown potential to prevent or alleviate symptoms of psychiatric or neurodegenerative disorders (Martinez and Peplow, 2018; Beurel et al., 2020). In the quest of identifying candidate agents with immunomodulatory and neuroprotective activity, the repositioning of immunomodulatory imide drugs (IMiDs) has raised great interest in the last decade. In this review article, we overview IMiDs, the source of a series of close analogs with potent anti-inflammatory activity that have proved hugely valuable in the treatment of multiple myeloma, addressing both their promise as well as Achilles heel. We summarize evidence of inflammation and elevated cytokine levels in neuropsychiatric and neurodegenerative disorders, with an emphasis on TNF-α. We then discuss current preclinical and clinical evidence of potential beneficial effects of IMiDs in neurodegenerative disorders, and propose IMiDs as a prospective new treatment strategy for neurodegenerative and neuropsychiatric disorders. Although IMiDs have yet to be studied in the context of neuropsychiatric disorders, they may offer a revolutionary therapy in light of the newly recognized role of inflammation in these illnesses.



IMMUNOMODULATORY IMIDE DRUGS (IMiDs)

Immunomodulatory imide drugs are analogs of the drug thalidomide that possess pleiotropic anti-myeloma actions. These comprise of anti-proliferative, anti-angiogenic, immune-modulatory and, in particular, potent anti-inflammatory effects, with the latter due to their ability to inhibit the production of the proinflammatory cytokine TNF-α. TNF-α plays a central role in microglial activation and in the propagation of the inflammatory response that, when dysregulated, may lead to neurotoxicity or neuronal dysfunction (Sriram and O’Callaghan, 2007; Baker et al., 2011; Figure 1).
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FIGURE 1. Immunomodulatory imide drugs interactions with cereblon (CRBN) and TNF-α mRNA. IMiDs destabilize the 3′-untranslated region (3′-UTR) of TNF-α mRNA, inhibiting TNF-α protein synthesis and inhibiting inflammatory pathways (Moreira, 1993; Zhu et al., 2003). The glutarimide moiety of the thalidomide backbone catalyzes E3 ubiquitin ligase complex formation, targeting proteins for proteolysis (Chamberlain et al., 2014; Fischer et al., 2014; Petzold et al., 2016; Steinebach et al., 2018).


Aside from their TNF-α inhibiting properties, most IMiDs, excluding apremilast and N-adamantyl phthalimidine, bind cereblon (CRBN), a protein involved with cellular protein degradation that is critically engaged in many of thalidomide and analog’s actions (Mendy et al., 2012; Chamberlain et al., 2014; Ito and Handa, 2016; Millrine and Kishimoto, 2017; Shi and Chen, 2017; Hsueh et al., 2021; Figure 1). CRBN forms an E3 ubiquitin ligase complex with DNA damage-binding protein-1 (DDB1), Cullin 4 (Cul4A/B), and regulator of Cullins 1 (RoC1). The CRBN component of this complex targets proteins for degradation via a ubiquitin-proteasome pathway, ultimately decreasing neuronal excitotoxicity and metabolic dysfunction when used to target dysfunctional proteins in the neural environment (Shi and Chen, 2017). IMiDs are known to recruit several neo-substrates of CRBN to the E3 ubiquitin ligase complex, and this results in the diverse biological and pharmacological actions of IMiDs (Lu et al., 2015; Winter et al., 2015; Donoghue et al., 2020; Yang et al., 2020; Figure 1). In particular, this CRBN-binding capability underlies the actions of IMiDs in the treatment of multiple myeloma. Specifically, the glutarimide moiety of the thalidomide backbone binds to CRBN, which modulates the molecular environment of its substrate binding surface preference to target proteins such as the Ikaros zinc finger family proteins Ikaros (IKZF1) and Aiolos (IKZF3) (Chamberlain et al., 2014; Fischer et al., 2014; Petzold et al., 2016; Steinebach et al., 2018). IMiD treatment leads to degradation of IKZF1/3 that, in turn, leads to upregulation of IL-2, an inflammatory cytokine, stimulating T cells to attack myeloma cells (Haslett et al., 2005; Gandhi et al., 2014).

Although useful in underpinning the anticancer actions of IMiDs in multiple myeloma, their binding to CRBN unpins the Achilles’ heel of this drug class, specifically the notorious teratogenic effects. Marketed in 1957 by Chemie-Grunenthal as a non-addictive, non-toxic, non-barbiturate sedative, thalidomide was widely prescribed to treat morning sickness in pregnant women. This resulted in over 10,000 children born with a range of severe and debilitating malformations – now considered one of the biggest ever man-made medical disasters (Vargesson, 2015). Extensive recent studies have linked this to CRBN-binding and subsequent targeted interaction with and ubiquitination of the Cys2/His2-type (C2H2) zinc finger transcription factor Sal-like protein 4 (SALL4) (Donovan et al., 2018; Matyskiela et al., 2018). The degradation of SALL4 associated with IMiD-linked teratogenicity aligns with independent studies demonstrating that mutations in SALL4 result in a number of human conditions that share striking similarities to thalidomide embryopathy. These include Duane-Radial ray syndrome, Acro-Renal-Ocular syndrome and IVIC syndrome (sometimes known as Oculo-oto-radial syndrome) (Vargesson, 2019). As a consequence, thalidomide-like drugs carry a “boxed warning” in relation to teratogenicity, requiring the use of two reliable forms of birth control beginning 4 weeks prior to drug treatment and ending 4 weeks after treatment termination. This duality of IMiDs has, in part, been attributed to the racemization of IMiDs around their chiral center (the C3-carbon atom of the glutarimide ring), into a mixture of R- and S-enantiomers. It has been reported that whereas the S-enantiomer is primarily responsible for the teratogenic effects of this drug class, the R-enantiomer enables its pharmacological activity (Ríos-Tamayo et al., 2017). However, when generated and administered as a chirally pure enantiomeric form, interconversion of the enantiomers occurs under physiological conditions (chiral switching), unavoidably resulting in a racemic mixture (Mori et al., 2018). Nevertheless, it has been possible to evaluate configurationally stable forms of thalidomide and analogs, which can be achieved by replacing the acidic H atom on the chiral (α) carbon with a more stable F that is a poor leaving group. This effectively inhibits racemization, as described for 3-fluoro thalidomide (Takeuchi et al., 1999; Man et al., 2003; Lee et al., 2011; Tokunaga et al., 2017; Mori et al., 2018). S- and R- chirally stable analogs of thalidomide and analogs have shown different binding to CRBN, resulting in different downstream actions on IKZF1/3 and SALL4 (Mori et al., 2018).

Multiple crystallographic studies involving human, mouse as well as chick CRBN have characterized the means through which thalidomide and analogs interact with CRBN. This involves a shallow pocket (sometimes termed the thalidomide-binding domain) that is formed by three conserved surface tryptophan (Trp) residues on the central β-sheet relatively close to the surface of CRBN (Chamberlain et al., 2014). The glutarimide ring of thalidomide and analogs docks into grooves created by Trp383, Trp403, Trp389, and His381 side chains, and with an approximately 10-fold greater potency for the S-enantiomeric form (Mori et al., 2018). In all cases, the phthalimido portion of the compound protrudes out of the binding domain to allow interaction with neo-substrates, such as SALL4, with the R-enantiomeric form having a slight twist to mitigate steric clashes but, nevertheless, it still interacts with CRBN and generates teratogenicity, albeit at higher necessitated concentrations than those associated with the S-enantiomer (Mori et al., 2018). Thalidomide’s S-enantiomeric form fits more readily in CRBN’s binding domain with a relaxed conformation, and induces teratogenicity at an approximately 10-fold lower concentration (Asatsuma-Okumura et al., 2020).

Together with a lack of teratogenicity studies that are now required by regulatory agencies across the world, species-specific actions of thalidomide and analogs may have contributed to the thalidomide birth defect tragedy. In rodents, thalidomide-induced teratogenic effects are not observed (Fratta et al., 1965; Gemechu et al., 2018). Whereas murine CRBN is approximately 95% homologous to the human protein and readily binds thalidomide and clinical analogs, subsequent ubiquitination and degradation of neo-substrates, exemplified by IKZF1/3 and SALL4, does not occur consequent to two key amino acid differences between rodent and human CRBN (Asatsuma-Okumura et al., 2020). In this regard, human CRBN 377 glutamic acid (E377) is replaced by a valine (V), and human 388 valine (V388) by an isoleucine (I). Notably, the CRBN substitution V388I eliminates thalidomide-mediated interaction with IKZF1 as well as with protein kinase CK1α (Gemechu et al., 2018; Asatsuma-Okumura et al., 2020). Furthermore, a recent study using human induced pluripotent stem cells demonstrated that CRBN V388I mutation abolished thalidomide-induced degradation of SALL4, and that this involved a specific interaction with SALL4 416 glycine (G416) whose mutation (G416A), likewise abrogated SALL4 breakdown (Belair et al., 2020). Such studies provide an insight as to how select actions of thalidomide and clinical analogs are mediated via CRBN, but have yet to fully explain the development of teratogenicity whose resistance in rodents remains enigmatic (Vargesson, 2015, 2019; Asatsuma-Okumura et al., 2020).

A non-C2H2 zinc finger-type protein that potentially is also a thalidomide-mediated CRBN neo-substrate is the tumor protein p63, which is a member of the p53 family of transcription factors and has pleiotropic function that include roles in cell proliferation, survival, apoptosis, differentiation, development, tumorigenesis, senescence and aging (Soares and Zhou, 2018). In excess of 10 isomers of p63 have been isolated and two key ones, ΔNp63α and TAp63α, have been identified as thalidomide-dependent CRBN neo-substrates in zebrafish – with ΔNp63α being essential for limb development, whereas TAp63α appears critical for cochlea development and hearing (Asatsuma-Okumura et al., 2019). The expression of both p63 forms was reduced on thalidomide exposure (Asatsuma-Okumura et al., 2020).

The anti-inflammatory mechanisms of thalidomide and its derivatives does not appear to require binding to CRBN. Studies investigating the activity of IMiDs in relation to CRBN binding and anti-inflammatory effects have demonstrated the anti-inflammatory activity of some IMiDs in the absence of CRBN binding. A good example of this is the recently developed adamantyl thalidomide compound, N-adamantyl phthalimidine (NAP), shown to mitigate LPS-induced elevations in proinflammatory cytokines in cellular and animal models and provide anti-inflammatory effects in models of TBI without binding to CRBN (Hsueh et al., 2021). In this regard, the three-dimensional cage-like structure of its adamantyl-like moiety that replaces the relatively flat glutarimide ring is too large to fit into the thalidomide binding domain of CRBN (Peach et al., 2020). As would be predicted in its lack of binding affinity to CRBN, NAP exposure does not result in SALL4 degradation in cellular studies (Hsueh et al., 2021), and studies on p63 and in vivo models of teratogenicity are awaited with interest.

As discussed, currently marketed IMiDs have prescription limitations and a boxed warning for females within child-bearing age. Given that anxiety and mood disorders disproportionately affect women over men and are one of the greatest causes of global disease burden in women, the development of IMiDs that do not bind to CRBN is highly warranted and will greatly enhance the repurposing capabilities of IMiDs (Nolen-Hoeksema, 2001; Slavich and Sacher, 2019). On this basis, NAP has been recently proposed as a promising IMiD for targeting neuroinflammation in neurological conditions of female patients within child-bearing age that warrants further investigation and, importantly, toxicological evaluation with a focus on teratogenicity (Hsueh et al., 2021).

As IMiDs are multi-potent, several IMiDs - such as thalidomide (Thalidomid), lenalidomide (Revlimid), pomalidomide (Pomalyst), and Apremilast (Otezla) - have been repurposed as drug treatments for diseases such as multiple myeloma and psoriatic arthritis, and more recently, Kaposi Sarcoma (Bristol Myers Squibb, 2020). Moreover, thalidomide remains a treatment choice for erythema nodosum leprosum (ENL), an inflammatory complication of leprosy, which was first described in Sheskin (1965) and FDA approved in 1998 (Melchert and List, 2007; Asatsuma-Okumura et al., 2020). Preclinical studies of FDA approved IMiDs, as well as novel IMiDs such as 3,6′-dithiopomalidomide (3,6′-DP) and adamantyl thalidomide derivatives, support repurposing of IMiDs as therapeutics for neurological diseases with inflammatory components, such as AD, PD, stroke, traumatic brain injury and multiple sclerosis (Russo et al., 2012; He et al., 2013; Yoon et al., 2013; Eitan et al., 2015; Wang et al., 2016; Boi et al., 2019; Casu et al., 2020; Lin et al., 2020; Hsueh et al., 2021; Figure 2). Compared with classical immunosuppressants and TNF-α-targeting drugs such as Etanercept and Infliximab, the pharmacokinetic features of IMiDs offer several advantages that make them more suitable for treating chronic neurological disorders. Notably, they are orally deliverable, highly bioavailable, and permeable to the BBB. In contrast, Etanercept and Infliximab, which are macromolecules, rely on subcutaneous and intravenous administration, respectively. Despite their high specificity, limited off-target toxicity and relatively long serum half-life, in comparison to small molecule drugs, their uptake across the BBB is minimal. They routinely attain brain levels 0.2% or less than concomitant plasma levels, posing a substantial challenge to drug development and treatment of neuroinflammation (Pardridge, 2012; Karaoglu Hanzatian et al., 2018). Elegant preclinical and clinical studies by Tobinick (2010, 2016, 2018) have utilized perispinal injection together with Trendelenburg positioning (inverting the subject for a few minutes immediately post-drug administration) to augment macromolecule central nervous system (CNS) delivery. Nonetheless, the availability of brain penetrant small molecular weight orally bioavailable drugs would likely have wider utility.


[image: image]

FIGURE 2. Chemical structures of IMiDs: (A) Thalidomide comprises of conjoined phthalimide and glutarimide moieties – with a chiral center. (B) Clinically approved (lenalidomide, pomalidomide and apremilast) and experimental IMiDs: IMiDs can be structurally altered to enhance function, increase bioavailability, and reduce adverse side effects (Zhu et al., 2003; Luo et al., 2011, 2018). For instance, the CNS MPO Score of thionated Pomalidomide, 3,6′-Dithiopomalidomide (3,6′-DP), is 5.5, making it higher than that of Pomalidomide, which has a score of 4.8; CNS MPO Scores predict drug BBB permeability calculated by Chemicalize using BBB penetration factors such as molecular weight and topological polar surface area (see Table 1).



In this regard, most IMiDs have high CNS MPO (multiparameter optimization) scores (Table 1), which quantify predictions of drug BBB permeability based on factors such as molecular weight, hydrogen bond donors and acceptors, and topological polar surface area (Wager et al., 2010; Jung et al., 2019). A high BBB permeability allows IMiDs to be delivered to the brain at clinically relevant oral doses. IMiDs also follow the Lipinski rule of five, predicting their successful delivery to their drug target under physiological conditions (Banks and Greig, 2019; Table 1). Confirming in silico data, in vivo pharmacokinetic studies of IMiDs have shown that IMiDs such as 3,6′-DP readily enter the brain from plasma (with brain/plasma concentration ratios of approximately 0.85, i.e., close to unity; Lin et al., 2020).


TABLE 1. Calculated CNS MPO score, log P-value and related factors that impact drug pharmacokinetics and brain entry under physiological conditions: Molecular weight, Log P-value, the quantity of hydrogen bond donors and acceptors, the topological polar surface area value, and the pKa were computed with Chemicalize for several clinically approved and available IMiDs as well as for the recent analogs 3,6′-dithio-pomalidomide (3,6′-DP), -thalidomide (3,6′-DTT) and the adamantyl moiety containing agent N-adamantyl pththalmidine.

[image: Table 1]Furthermore, Pomalidomide, one of the most recently FDA-approved and potent IMiDs currently on the drug market, has lately been reported to effectively suppress inflammatory factors and inflammation-induced neuronal injury in cell and animal models of neurological diseases and cellular stress (Wang et al., 2016; Tsai et al., 2018, 2019). In this regard, pomalidomide has demonstrated TNF-α inhibitory action of up to 50,000-fold greater than that of thalidomide (Mahony et al., 2013; Wang et al., 2016) and has a favorable BBB permeability in mice, achieving a brain/plasma concentration ratio of 0.71 (Tsai et al., 2019). Additions and substitutions on the chemical structure of pomalidomide have been performed in recent years to augment drug efficiency and have yielded novel analogs with enhanced biological activity, exemplified by thionated 3,6′-DP. Recent studies have demonstrated the efficacy of 3,6′-DP in rodent TBI models at one fifth (i.e., 20%) of the dose required by pomalidomide; with 3,6′-DP providing more potent and broader inhibitory effects on inflammatory cytokines and cellular stress molecules such as nitric oxide and COX-2 (Lin et al., 2020).



NEUROINFLAMMATION IN NEUROLOGICAL DISORDERS

Neuroinflammation is initiated in response to stimuli such as cranial impact or pathogen infiltration, by activation of microglia, the immune cells of the brain. Although neuroinflammation serves to repair and reinstate the neural environment to normal conditions and ensure homeostasis, an exaggerated neuroinflammatory response can result in the chronic production and release of an elevated amount of proinflammatory cytokines by microglia, triggering a self-fueling loop that can perpetuate neuroinflammation and contribute to neuronal death or neuronal dysfunction (Frankola et al., 2011; Heneka et al., 2015).

Among proinflammatory cytokines produced by microglia, systemic expression of the inflammatory cytokine TNF-α holds important physiological functions in CNS development and homeostasis, as well as in the homeostasis of peripheral systems, such as the cardiovascular system (Haider and Knöfler, 2009; Mizrahi and Askenasy, 2014; Urschel and Cicha, 2015). In the neuronal environment, physiological levels of TNF-α regulate synaptic connectivity and dendritic pruning in the context of neurodevelopment and CNS homeostasis (Gilmore et al., 2004; Kaneko et al., 2008; Lewitus et al., 2016; Liu et al., 2017; Yee et al., 2017). Moreover, TNF-α acts as a neuromodulator by regulating neurotransmission. For example, TNF-α regulates AMPA receptor expression that, in large part, controls the neuronal excitability upon glutamatergic stimulation, and, more generally, the glutamatergic mechanisms underlying synaptic plasticity (Beattie et al., 2002; Stellwagen and Malenka, 2006). Glia-released TNF-α has been observed to enhance synaptic neurotransmission via AMPA receptor trafficking, whereas blocking TNF-α has been shown to have the opposite effect. Although TNF-α is widely considered to have no substantial effect on long-term potentiation (LTP) or long-term depression (LTD), TNF-α expression does alter synaptic scaling in the hippocampus and striatum to ensure the homeostasis of neuronal activity and to prevent hyper or hypoactivity (Liu et al., 2017; Rizzo et al., 2018).

In the context of injury, TNF-α is a potent activator of the immune system, and a pivotal trigger of inflammation pathways, as a protective measure against infection, viral attack and neurotoxins (Kraft et al., 2009). Although inflammation is an essential healing response, the production of TNF-α together with other proinflammatory factors can be detrimental when dysregulated (McCoy and Tansey, 2008). Extended, excessive TNF-α expression has been associated with chronic inflammation and gliosis, glutamatergic toxicity-induced apoptosis, and synaptic loss (Clark et al., 2010). Many neurological disorders appear to share a neuroinflammatory component, and chronic TNF-α expression has been observed in neurodegenerative disorders such as multiple sclerosis, amyotrophic lateral sclerosis, PD, AD, ischemia, as well as in various forms of dementia (Lee Y. J. et al., 2010; Decourt et al., 2016; Hu et al., 2019). Similarly, TNF-α increases have been observed in several neuropsychiatric disorders, including MDD, BD, and schizophrenia, and potentially contributes to the neuropathology of these disorders (Bandelow et al., 2017; Kopschina Feltes et al., 2017).

As the excessive, prolonged or chronic release of TNF-α and related inflammatory responses are neurotoxic, they themselves can become self-amplifying and make the neural environment more prone to further genomic and proteomic dysfunction and dysregulation, TNF-α may therefore represent an ideal drug target for mitigating neurological conditions with underpinning inflammatory components, such as neuropsychiatric and neurodegenerative disorders (Husain et al., 2017; Ramos-Cejudo et al., 2018; Köhler-Forsberg et al., 2019).


Neuropsychiatric Disorders

There is an increasing need for effective drug development for neuropsychiatric disorders, which continue to be an enormous health burden worldwide, especially as patient responsiveness to existing drugs, particularly antidepressants, remains as low as 30-50% (Dowlati et al., 2010). Meta-analyses on FDA-approved antidepressants have revealed that existing antidepressants have low modulatory effects on neurotransmitter dysregulation underlying depression and anxiety disorders. This is evident on a macro level, with 30% of MDD patients and nearly half of BD patients experiencing refractory depressive episodes in response to current antidepressants (Tondo et al., 2014; Hashimoto, 2019). Placebos and cognitive therapy methods (i.e., psychotherapy, exercise) have been reported to be just as effective and safer than antidepressants for MDD and depressive phases of BD (Kirsch, 2019). Furthermore, antidepressants have been reported to be poorly effective in preventing suicidal behavior in patients under the age of 25 (Grunebaum and Mann, 2007), stressing the need for more effective drug treatments. On the other hand, long-term treatment of psychiatric disorders with antipsychotic drugs is often accompanied by severe adverse effects, such as movement or metabolic disorders (Dold et al., 2015; Hirsch et al., 2017), indicating yet a further need for more effective and less harmful drugs for these disorders.

During the last decade, the role of inflammation in neuropsychiatric disorders has gained increasing support (Miller and Raison, 2016; Jeon et al., 2019; Momtazmanesh et al., 2019; Felger and Miller, 2020). Meta-analyses of systemic cytokine concentration in patients with acute bipolar mania and MDD demonstrated significantly increased serum TNF and IL-6 compared with controls (Goldsmith et al., 2016). Similarly, a cross-disorder study on meta-analyses of 8 different psychiatric disorders, including MDD, BD, and Post-traumatic stress disorder (PTSD), showed significant changes in several inflammatory markers in the blood or cerebrospinal fluid (CSF), with factor clustering based on disorder type and stage (Yuan et al., 2019). Within the CNS, neuroinflammation and reactive glial cells have often been reported in neuropsychiatric conditions (Uranova et al., 2004; Brietzke and Kapczinski, 2008; Rege and Hodgkinson, 2013). Peripheral cytokines can cross the BBB and interact with central immune cells to support neuroinflammatory responses. The cytokine passage rate of the BBB has been associated with symptoms of psychiatric disorders such as MDD, suggesting that monitoring and targeting elevated cytokines may be a viable option for psychiatric disorder intervention (Yarlagadda et al., 2009). Within the CNS, cytokines may affect the function of neuronal circuitry involved in psychiatric symptoms, leading to changes in mood and behaviors such as sleep, reward, motivation, and to depressive and cognitive symptoms (Mössner et al., 1998; Yarlagadda et al., 2009; Donegan et al., 2014; Watkins et al., 2014). It is interesting to note that stress and trauma, which are associated with the onset of psychiatric disorders such as BD and PTSD, increase the release of cytokines and cortisol. In this regard, inflammatory cytokines can interact with the hypothalamus, pituitary, and adrenocortical (HPA) axis, altering neurotransmitter and hormone release by the neuroendocrine system (Kim et al., 2007).


Major Depressive Disorder

Major depressive disorder is highly associated with a neuroinflammatory condition, and inflammation has been classically suggested to play a role in the pathophysiology of this disorder (Smith, 1991; Beurel et al., 2020). Meta-analyses have shown an upregulation of several inflammatory factors, including TNF-α, IL-6, IL-1β, IL-10, and C-reactive protein, in the context of MDD (Howren et al., 2009; Haapakoski et al., 2015). Several meta-analyses of cross-sectional studies have confirmed the increase in circulating inflammatory cytokines in MDD patients (Howren et al., 2009; Dowlati et al., 2010; Haapakoski et al., 2015; Goldsmith et al., 2016), while some longitudinal studies have suggested that elevated cytokine levels are observed before the onset of depressive symptoms and may be directly involved in depression pathophysiology (Kohler et al., 2016; Kopschina Feltes et al., 2017). Some genetic variants of IL-1β have been associated with decreased function of the amygdala and anterior cingulate cortex, which can lead to difficulties in emotional processing and worse outcome for MDD patients (Baune et al., 2010). In patients affected by major depressive disorder, signs of microglial activation such as increased translocator protein (TSPO) volume, a positron emission tomography (PET) scan marker of microglial activation (previously referred to as peripheral benzodiazepine receptors (PBR)), have been reported in comparison with healthy controls (Setiawan et al., 2015). The positive correlation between depressive episode severity and TSPO volume indicate that microglia activation and neuroinflammation may contribute to depression severity (Setiawan et al., 2015). Additionally, the involvement of neuroinflammation in MDD is supported by correlative observation studies on inflammation-related conditions (epitomized by rheumatoid arthritis and atherosclerosis) in relation to depression, and the high prevalence of depression in post-menopausal women who produce less estrogen, which has anti-inflammatory properties (Bruce-Keller et al., 2000).

Interestingly, several antidepressants seem to have anti-inflammatory effects, which might contribute to their effectiveness; for instance, fluoxetine (Prozac) and citalopram (Celexa), the top-most prescribed SSRI for depression, have been observed to decrease TNF-α levels in patients, and have been successful in treating inflammatory conditions such as rheumatoid arthritis in preclinical studies (Sacre et al., 2010; Almeida et al., 2020). Of note, a link has been found between inflammatory gene variants and antidepressant resistance. Carriers of an IL-1β allele that causes reduced IL-1β levels are more resistant to antidepressants, supporting the notion that antidepressants reduce depressive symptoms partially via inflammation modulation (Bufalino et al., 2013). Accordingly, some anti-inflammatory drugs, such as NSAIDs, have been shown to decrease depressive symptoms in preclinical studies and clinical trials (Kopschina Feltes et al., 2017). Minocycline, a tetracycline antibiotic capable of lowering microglial activation and TSPO volume in rodents, has also been shown to attenuate rodent behaviors indicative of depression (Henry et al., 2008). The anti-TNF-α drugs etanercept, adalimumab, infliximab and tocilizumab have produced a significant reduction in depressive symptoms in randomized controlled trials. This effect was not related to sex, age, or study duration, indicating a causal relationship between inflammation and MDD and the possibility for MDD treatment using inflammation-targeting compounds (Kappelmann et al., 2018). In a clinical trial, treatment of osteoarthritis patients, who are 2-3 times more prone to depression than age-matched controls, with celecoxib or ibuprofen and naproxen induced an improvement of depressive symptoms (Iyengar et al., 2013).

Additionally, natural anti-inflammatory agents such as curcumin and fish oil have shown promising results in preclinical models of MDD, by decreasing nuclear factor-kappa B (NF-κB) signaling and TNF-α production (Lichtman et al., 2008; Eng et al., 2011; Smith et al., 2011; Burhani and Rasenick, 2017; Lopresti, 2017; Maki et al., 2018; Liu T. et al., 2019; Nerurkar et al., 2019). A recent study showed attenuation of anxiety and depressive behavior and inflammation in mouse models of chronic stress through treatment with probiotics and polyphenol-rich prebiotics, or synbiotics (Westfall et al., 2021). Synbiotic-derived metabolites appear to combat inflammation by decreasing inflammasome pathway activation and immune cell recruitment to the brain and resetting peripheral T cell ratios (Westfall et al., 2021). These results offer insight on methods for decreasing peripheral inflammation through control of the gut-brain axis to consequently enhance mood and combat stress-related mood disorders.

The relationship between inflammation and depression remains largely unclear, but there are two main mechanisms through which inflammation can contribute to depression: (1) an imbalance in serotonin, norepinephrine, and epinephrine production following hypothalamic–pituitary adrenal (HPA) axis activation; (2) increased activity of the inflammation by-product indoleamine-2,3-dioxygenase (IDO), resulting in serotonin depletion and increases in quinolinic acid (Kopschina Feltes et al., 2017). MDD patients have reported depression ratings directly correlating with levels of cortisol, the resulting product of HPA axis activation (Gibbons and McHugh, 1962). Moreover, abnormal cortisol responses have been associated with anxiety and depression symptoms following stress induction in non-patients, further supporting the former mechanism (Carpenter and Bunney, 1971; Pearson Murphy, 1991; Fiksdal et al., 2019). Additionally, chronic stress-induced inflammation has been shown to lead to increased levels of kynurenine metabolites, which are catabolized by IDO1 and are associated with alterations in brain regions involved in emotional regulation, supporting the latter mechanism (Kim and Won, 2017; Hornyák et al., 2018). In this light, it is likely that both pathways could underlie MDD progression and neurotransmitter imbalances that lead to various comorbid symptoms such as mood and behavioral alterations (Mössner et al., 1998; Donegan et al., 2014; Watkins et al., 2014; Figure 3). If a causal relationship between inflammation and MDD stands true, MDD patients may benefit from immunomodulatory treatment and the development of BBB permeable drugs within the IMiD family would become an important therapeutic goal.
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FIGURE 3. The potential role of inflammation in MDD. The relationships between inflammation and depression are still unclear, but there are two main mechanisms through which inflammation can contribute to depression: chronic stress or systemic inflammation can lead to microglial activation, which can lead to the production of proinflammatory cytokines such as TNF-α, IL-1β, IL-6, and IFN-γ. This leads to the propagation of inflammatory pathways, which can (1) activate the hypothalamic–pituitary adrenal (HPA) axis to produce cortisol and cause an imbalance in serotonin, norepinephrine, and epinephrine; (2) increase in the production of indoleamine-2,3-dioxygenase (IDO), resulting in serotonin depletion and increased quinolinic acid and contributing to cell death (Kopschina Feltes et al., 2017). It is likely that both pathways could underlie MDD progression and neurotransmitter imbalances that lead to various comorbid symptoms such as mood, behavioral, or cognitive impairments such as sleep, concentration, and cognition (Mössner et al., 1998; Donegan et al., 2014; Watkins et al., 2014).




Generalized Anxiety Disorder (GAD)

Anxiety disorders are the most prevalent psychiatric disorder type, affecting around 28.8% of Americans throughout their lifetime, with an estimated 40 million adults experiencing prolonged anxiety. Anxiety disorders can cause not only psychological but also physical symptoms such as chest pain or muscle tension (Sansone and Sansone, 2010). Generalized anxiety disorder treatments include selective serotonin inhibitors (SSRI) (i.e., fluoxetine, escitalopram), anxiolytics, and beta-blockers to treat physical symptoms that follow anxiety attacks. Regrettably, anxiolytic drugs treatment may be accompanied by severe long-term adverse effects such as gastrointestinal, neurological, and cardiac impairments, particularly for patients comorbid with MDD (Shankman et al., 2017). In this light, treatment strategies directed towards different targets that may not adversely interfere with pathways underlying psychiatric disorder and essential homeostatic mechanisms must be investigated.

Treatment of anxiety with anti-inflammatory drugs shows promise in that anxiety symptoms are commonly associated with inflammatory diseases like diabetes and inflammation-induced pain (Felger, 2018; Hu et al., 2019). In preclinical rodent studies of comorbidity, both anxiety and inflammatory symptoms were ameliorated by TNF-α-inhibiting drugs (Chen et al., 2013; Klimov et al., 2018; Fourrier et al., 2019). Similar to MDD, the molecular mechanisms underlying the positive correlation and, perhaps, synergy of anxiety and inflammation are hypothesized to revolve around HPA axis activation and the nervous system response to cortisol-releasing hormone secretion from the paraventricular nucleus of the hypothalamus in response to stress or injury. This activates the locus coeruleus, which ultimately stimulates the sympathetic nervous system and simultaneously deactivates the parasympathetic nervous system. This then leads to elevated levels of norepinephrine and epinephrine and a decrease in acetylcholine, supporting immune cell activation and, in the long run, leading to persistently high proinflammatory cytokine levels in response to prolonged stress (Spengler et al., 1994; Bandelow et al., 2017; Michopoulos et al., 2017). This pathway underlying anxiety could therefore lead to comorbidity of systemic inflammatory diseases with anxiety disorders.



Post-traumatic Stress Disorder (PTSD)

Within the category of anxiety disorders is post-traumatic stress disorder, or PTSD, which is characterized by intrusive dreams, thoughts, or hallucinations in response to environmental stimuli that represent traumatic events experienced by individuals (Gill et al., 2009). PTSD affects about 8% of the population, and can lead to long-term consequences such as memory impairments associated with hippocampal inflammation (Lee and Yang, 2019). SSRIs are the only drugs currently approved for the treatment of PTSD and provide inadequate treatment, indicating a great need for drug development in this area (Ebenezer et al., 2016).

Post-traumatic stress disorder has been associated with inflammation and a heavy involvement of the immune system (Miller et al., 2017; Speer et al., 2018; Kim et al., 2020). A highly controlled clinical assessment of combat-exposed patients and non-patients of PTSD showed elevated levels of the inflammatory cytokines TNF-α and INF-γ in the incidence of PTSD, as compared to patient controls (Lindqvist et al., 2014). Several studies have also shown upregulation of C-reactive protein, IL-6, TNF-α, and IFN-γ in PTSD patients when compared with healthy controls (Tursich et al., 2014; Cavalcante Passos et al., 2015). This elevation in inflammatory cytokines has been linked to PTSD development in response to traumatic experiences as a result of HPA axis and cortisol regulation failures (Gill et al., 2009; Haroon et al., 2012). Also observed in PTSD is a decrease in GABA, for which low levels can contribute to glutamatergic toxicity and inflammation, revealing another potential reason to target inflammation in such patients (Crowley et al., 2016).

Although there has yet to be evidence of the clinical effects of anti-inflammatory agents in PTSD patients, preclinical studies have shown promising amelioration of cognitive dysfunction by an herbal extract in a PTSD rat model partially through an anti-inflammatory mechanism (Lee and Yang, 2019). Blueberries, which have antioxidant and anti-inflammatory properties, have also been shown to decrease PTSD-associated inflammatory cytokine levels and increase serotonin in a PTSD rat model (Ebenezer et al., 2016). Lastly, there is currently a clinical trial being undertaken at UCSF to investigate the role of chronic and acute inflammation in exaggerated threat sensitivity in individuals with PTSD; this study may ultimately help us to better understand inflammation involvement in PTSD and provide more efficient inflammation targeting strategies (O’Donovan, 2020).



Bipolar Disorder (BD) and Schizophrenia

Bipolar disorder affects 2% of the global population, ranking 2nd among all health conditions in length of severe individual role impairment (Alonso et al., 2011). Suicide rates of BD patients are 20-30 times higher than that of the general population (Pinto et al., 2017). BD is characterized by manic and depressive episodes, with depressive symptoms presenting at a greater severity than manic symptoms. Anxiety disorder symptoms, especially panic attacks, are the most common comorbid condition (Merikangas et al., 2011). Progressive impairment of cognitive processes, such as attention and executive function, has also been observed in BD patients (Vieta et al., 2013).

Increased levels of systemic inflammatory factors and glial cell activation in the hippocampus have been observed in patients with BD (Kim et al., 2007; Munkholm et al., 2013; Dong and Zhen, 2015). In line with this, biomarkers of astrocyte activation have likewise been described in key brain areas of BD patients (Webster et al., 2005; Pinto et al., 2017). Higher plasma levels of soluble TNF-Receptor 1 (Hope et al., 2009) and proinflammatory cytokines such as IL-6, IL-1β, and TNF-α have also been reported in BD patients compared to controls (Stertz et al., 2013). Moreover, a study of a cohort of BD patients found high comorbidity with metabolic and autoimmune-allergic diseases associated with systemic inflammation, such as diabetes mellitus, psoriasis and irritable bowel syndrome (almost 50%) compared with the general population (Perugi et al., 2015). Schizophrenia patients and BD patients may experience autoimmune diseases prior to disorder onset and similar alterations in inflammatory cytokines (Potvin et al., 2008; Hope et al., 2009; Eaton et al., 2010).

Few clinical trials have tested the effects of anti-inflammatory drugs in BD patients. A meta-analysis on the antidepressant effects of anti-inflammatory agents such as pioglitazone, nonsteroidal anti-inflammatory drugs, and omega-3 polyunsaturated fatty acids tested in randomized trials for bipolar depression showed a significant reduction in depressive symptoms when used in conjunction with antidepressant medication, when compared to conventional therapy without anti-inflammatory agents (Rosenblat et al., 2016). Additionally, a Danish longitudinal study has shown that continued use of low-dose aspirin, statins and angiotensins decreased the rate of incident BD (Kessing et al., 2019), again pointing to the potential repurposing of anti-inflammatory drugs for BD. In a controlled and randomized trial, schizophrenia patients benefitted from treatment with celecoxib, an anti-inflammatory agent (Akhondzadeh et al., 2007).

The role of inflammation in BD progression can be considered to be almost inevitable (Muneer, 2016), as neuronal damage resulting from acute BD episodes can prime microglia to respond to future episodes of excessive proinflammatory cytokine production. This could thereby leave microglia in a consistently activated state (Tay et al., 2018; Benedetti et al., 2020), which coupled with neuronal production of DAMPs and the possibility of peripheral cytokine infiltration, can result in continuous inhibition of neurogenesis (Stertz et al., 2013), potentially leading to further behavioral and cognitive impairments - as described in Figure 3.

If we effectively treat neuropsychiatric disorders highly influenced by inflammation with anti-inflammatory agents, we may be able to reduce the adverse effects of antipsychotics and antidepressant drugs typically used for the treatment of many psychiatric disorders. Taking schizophrenia as a brief example, supplementary treatment of schizophrenia with anti-inflammatory drugs like aspirin, statins, and minocycline has largely proven to be effective in reducing clinical schizophrenic symptoms, as compared to sole treatment with antipsychotics. Schizophrenia patients have been shown to have high levels of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, as well as high microglial activation throughout the brain as shown by PET scans and postmortem biopsies (Hong and Bang, 2020). Furthermore, there are many forms of evidence suggesting a role for adaptive immunity in schizophrenia patients. Schizophrenia patients appear to have an increased risk for autoimmune disorders such as chronic active hepatitis and thyrotoxicosis, suggesting association of schizophrenia and immune dysregulation (Eaton et al., 2006). NMDA autoantibody encephalitis, which is characterized by brain swelling caused by autoantibody production against NMDA receptors, is a further disorder that provides us with insight into a potential role for immunity in psychosis. Although patients of sporadic schizophrenia do not typically have antibodies against NMDA receptors, NMDA autoantibody encephalitis can present as schizophrenia (Dalmau, 2016), implicating the inflammatory components of either disorder as a potential cause of their psychotic symptoms (Lennox et al., 2017; Chaudhry et al., 2020; Pollak et al., 2014). Other non-neuronal autoimmune disorders, such as psoriasis, have also been reported to be associated with psychosis, with a 45% increased risk for schizophrenia for patients of any autoimmune disease (Eaton et al., 2006; Cullen et al., 2019).

Two recent reviews focused on cytokine imbalances in schizophrenia that detail those that generally become elevated (i.e., TNF-α, IL-1β, IL-6, and IL-12) vs. those that largely are unaltered (e.g., IL-2, IL-4, and IL-17) are by Momtazmanesh et al. (2019), Reale et al. (2021). By and large, there appear to be variable changes in cytokine levels across the different categories of schizophrenia, disease duration and symptom severity, and these may be modified by antipsychotic and/or other treatments. Despite the heterogeneity in data available across studies and the complex association between cytokine levels and clinical status that warrants further clarification, changes in key cytokine levels supports an immunological component in schizophrenia pathogenesis.

In this regard, a recent clinical trial evaluated “low dose” methotrexate plus folic acid in schizophrenia (Chaudhry et al., 2020), as a means to provide an immune-suppressant effect by acting on cell-mediated adaptive immunity with indirect anti-inflammatory actions on the innate immune system. This, in part, mirrors low dose methotrexate’s relatively routine use to treat and reset immune signaling dysfunctions of regulatory T cells in autoimmune disorders, epitomized by rheumatoid arthritis and psoriasis (Friedman and Cronstein, 2019). In the study of low dose methotrexate in schizophrenia (Chaudhry et al., 2020), patients with early schizophrenia spectrum disorders within 5 years of onset were evaluated, as neuroinflammation was considered to still be active and such patients would have less exposure to antipsychotic drugs. Methotrexate treatment provided a selective improvement on positive symptoms in early schizophrenia, without effect on negative symptoms or on cognitive performance. Although the study was not designed to evaluate efficacy, methotrexate proved well tolerated and, largely, exerted an overall improvement in total symptoms and general functioning (Chaudhry et al., 2020). This study, together with others, supports the premise for anti-inflammatory drugs to potentially alleviate psychiatric symptoms or prevent inflammation-related pathways associated with psychiatric disorders. Similarly, several clinical trials have shown anti-inflammatory drugs to improve antidepressant performance in MDD and BD patients, who have similar inflammatory profiles to schizophrenia patients in terms of disorder progression or severity (Husain et al., 2017; Köhler-Forsberg et al., 2019), further supporting the possibility of anti-inflammatory drug use for psychiatric disorder treatment.



Neurodegenerative Disorders and Neuroinflammation


Parkinson’s Disease

Parkinson’s disease is the second most common age-related neurodegenerative disease, affecting 0.1-0.2% of the world’s population (de Lau and Breteler, 2006). PD encompasses both motor and non-motor symptoms. While classical motor symptoms include bradykinesia, resting tremor and rigidity, a number of non-motor symptoms may be prodromal or appear in late stages of the disease. Among them, anosmia, constipation and sleep disorders can appear early and precede motor symptoms (Jankovic, 2008), while depression, anxiety, dementia or mild cognitive impairment/cognitive decline may appear later during the disease course (Barone et al., 2009; Aarsland et al., 2017). Histologically, PD is classically characterized by the degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNc) within the brain and by the presence of Lewy bodies, proteinaceous aggregates enriched in α-Synuclein (α-Syn), in affected areas (Spillantini et al., 1997). Moreover, a neuroinflammatory reaction is consistently reported in the brain of diseased patients, and the pivotal involvement of neuroinflammation in the disease pathogenesis has gained unanimous consensus (Kuter et al., 2020).

Recently, the recognition of the complex motor and non-motor symptomatology and the underlying pathology is changing the view of PD as a SNc-centric disease, in favor of a systemic disease affecting both the CNS and peripheral organs. In line with this multisystem interpretation of the disease and based on the increasing evidence of inflammation not only within the CNS, but also in the blood and peripheral tissues, there is increasing convergence in defining PD as a systemic inflammatory condition (Pajares et al., 2020).

Several studies have demonstrated an imbalance in levels of proinflammatory and anti-inflammatory cytokines and of chemokines in the brain parenchyma and CSF of PD patients. Increased levels of inflammatory cytokines TNF-α, IL-1β, IL-2, IL-6, and IL-4, IFN-γ, but also of the anti-inflammatory cytokine IL-10 and the chemokine CXCL12, have been described to correlate with the clinical course of the disease (Sawada et al., 2006; Mogi et al., 2007; Shimoji et al., 2009; López González et al., 2016; Karpenko et al., 2018). Moreover, epidemiological studies have suggested a link between polymorphisms in the genes encoding for TNF-α and IL-6 and increased risk for developing PD (Krüger et al., 2000). Accordingly, several histological studies in PD patients have reported an overactivation of microglial cells, the main cytokine source in the brain. Microgliosis, characterized by reactive morphology of microglia and the upregulation of inflammatory markers including MHC-II, CD68, ICAM-1, and Toll-like receptors (TLRs), has been observed in many PD patient studies to date (Rozemuller et al., 2000; Imamura et al., 2003; Croisier et al., 2005; Orr et al., 2005; Dzamko et al., 2017). In parallel with these histopathological investigations, PET imaging studies using TSPO showed a chronically increased signal in both subcortical and cortical regions in PD patient brains, signifying chronic elevation of activated microglia (Banati et al., 1997; Ouchi et al., 2005; Gerhard et al., 2006; Bartels et al., 2010; Edison et al., 2013; Iannaccone et al., 2013; Terada et al., 2016). Altogether, these studies suggest that microglia in PD are early and chronically activated in a reactive phenotype, contributing to neurodegeneration via the unremittent release of proinflammatory cytokines (Kuter et al., 2020).

More recent analyses of PD patient serum and peripheral organs has extended the findings of neuroinflammation associated with PD to the whole organism, supporting the concept that PD is a multisystem inflammatory condition (Pajares et al., 2020). Dysregulated cytokine content and higher levels of both proinflammatory and anti-inflammatory cytokines have been reported in the serum of PD patients (Brodacki et al., 2008; Qin et al., 2016). Of note, in a study examining a patient cohort with incident parkinsonism, the unbalanced ratio of increased proinflammatory cytokines versus decreased anti-inflammatory cytokines correlated positively with faster disease progression and cognitive deterioration (Williams-Gray et al., 2016). This study highlighted two important concepts. First, the peripheral inflammatory condition may play a role in the CNS pathology, or at least reflect the course of it, and second, inflammation may be associated with and, perhaps, underlie non-motor symptoms of PD (Williams-Gray et al., 2016). A more recent study questioned whether peripheral immune changes causally contribute to the progression of PD, reporting that serum levels of cytokines do not correlate with CSF content, and suggesting that central and peripheral cytokine levels may partially behave independently, and may be driven by different factors (Wijeyekoon et al., 2020). Additional evidence of a chronic and systemic inflammatory state comes from studies showing the altered profile of immune cell composition in the blood of PD patients as compared to healthy individuals, reporting for instance, an increase in monocyte number and a decrease in the CD4+ T cell to CD8 cytotoxic T cell ratio (Bas et al., 2001; Grozdanov et al., 2014).

As previously noted, constipation is a prodromal symptom of PD (Abbott et al., 2001). Interestingly, an early increase in many proinflammatory cytokines including TNF-α, IFN-γ, IL-6 and IL-1β, has been observed in the gastro-intestinal tract of PD patients (Devos et al., 2013), which has led to the suggestion that gut inflammation may contribute to and even represent an early event in PD pathogenesis (Chen et al., 2019). Of note, a retrospective cohort study of a population diagnosed with inflammatory bowel disease (IBD) revealed a higher incidence of PD among IBD patients compared to healthy subjects, and exposure of these patients to anti-TNF-α therapy was associated with reduced PD incidence (Peter et al., 2018).

At the molecular level, α-Syn is a major component of Lewy bodies and a key player in PD pathogenesis. Diffusible aggregates of α-Syn have been described in damaged areas of PD brains (Sharon et al., 2003; Karpinar et al., 2009) as well as in biological fluids of PD patients (Tokuda et al., 2010; Majbour et al., 2016). α-Syn aggregates have also been observed within the enteric nervous system in the submucosal tissue from the sigmoid colon of PD patients (Beach et al., 2016; Visanji et al., 2017) and enteric α-Syn expression may drive intestinal inflammation (Stolzenberg et al., 2017).

Toxic mechanisms underpinning the damage of α-Syn wrought in the brain are still largely unknown, but α-Syn may impact multiple targets by interacting with neuronal and immune cells. In this light, several findings suggest that α-Syn interaction with microglia is a key event in the neurodegenerative process (Liu C.Y. et al., 2019), driving the shift of these cells to unremittent proinflammatory phenotypes (Villar-Piqué et al., 2016). α-Syn-microglia interaction occurs mainly through TLR2 and TLR4, resulting in NF-κB nuclear translocation and induction of the proinflammatory functions of these cells (Liu C.Y. et al., 2019); leading ultimately to increased production and release of inflammatory cytokines (Stefanova et al., 2011; Fellner et al., 2013; Doorn et al., 2014). Which form of α-Syn is most toxic among intermediates of the aggregation process is still highly debated. However, several studies have shown that the interaction of α-Syn with TLRs is conformation-dependent, and short soluble aggregates such as oligomers display a greater inflammatory and neurotoxic potential than the native monomeric protein (Zhang et al., 2005; Klegeris et al., 2008; Lee E. J. et al., 2010; Rojanathammanee et al., 2011; Fellner et al., 2013; Kim et al., 2013; Daniele et al., 2015; Boi et al., 2020).

Within the enteric nervous system, local inflammation may be triggered by α-Syn to promote systemic and brain inflammation via the production of pro-inflammatory cytokines (Lubomski et al., 2020). Studies aimed at investigating the link between α-Syn and immune responses in PD have suggested a direct involvement of circulating abnormal α-Syn in the dysregulated inflammatory T cell profiles observed in PD, demonstrating the potential for abnormal circulating α-Syn to stimulate cytokine production in peripheral CD4 and CD8 T cells (Sulzer et al., 2017).

Besides its notorious pathological role in the neurodegenerative process, neuroinflammation has recently been under investigation as a possible player in mechanisms underlying the dyskinesia that develops as a consequence of long-term L-DOPA therapy in PD patients (Pisanu et al., 2018). In preclinical studies, an increased production of proinflammatory cytokines such as TNF-α and IL-1β has been associated with a robust activation of glial cells in the DA-denervated striatum of 6-OHDA-infused hemi-parkinsonian rats that developed dyskinesia after L-DOPA treatment (Barnum et al., 2008; Bortolanza et al., 2015; Mulas et al., 2016). Of note, the subcutaneous administration of L-DOPA through osmotic pumps, that maintains a long-term stable plasma concentration of the drug, was not associated with neuroinflammation nor with dyskinetic movements in the 6-OHDA rat model of PD (Mulas et al., 2016). Given the well-characterized neuro-modulatory function of cytokines (Pousset, 1994), and the regulatory action of TNF-α in synaptic plasticity and neuronal excitability (Clark et al., 2010; Clark and Vissel, 2018), it has been suggested that cytokines may contribute to the impairment of cortico-striatal synaptic plasticity that drives the development of abnormal involuntary movements (Carta et al., 2017).

An increasing number of studies strongly indicate that several components of the inflammatory response may represent valuable targets for neuroprotection in PD. Epidemiological and clinical studies have investigated the use of anti-inflammatory NSAIDs in relation to PD incidence, reporting a reduced risk in individuals taking NSAIDs (Chen et al., 2003; Tansey and Goldberg, 2010; Becker et al., 2011). However, more recent meta-analyses have challenged this conclusion (Ren et al., 2018; Poly et al., 2019) or have shown a positive association of PD risk reduction with the use of ibuprofen only (Gao et al., 2011).

In the last decade, clinically available immunosuppressive and immunomodulatory drugs have been successfully tested for their neuroprotective activity in preclinical models of PD (Martinez and Peplow, 2018). Fingolimod and tacrolimus are immunosuppressant agents approved for refractory multiple sclerosis and for prevention of post-transplantation organ rejection, and have been proposed for repositioning in PD following evidence of neuroprotective and anti-inflammatory activity in rodent PD models (Van der Perren et al., 2015; Manocha et al., 2017; Ren et al., 2017; Zhao et al., 2017; Komnig et al., 2018; Motyl et al., 2018). Another immunomodulatory drug, Glatiramer acetate, has a broad effect on cells of both the innate and adaptive immune system. It is used as a first-line agent for the treatment of refractory multiple sclerosis, and has shown neuroprotective properties in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of PD (Churchill et al., 2019). Unfortunately, despite the promising results of preclinical studies, pharmacokinetic and toxicological caveats limit the clinical translation of these drugs to PD trials. Serious limitations include the systemic adverse effects together with the narrow therapeutic window, and the limited BBB permeability. The immunomodulatory agent Sargramostim (Leukine) has been tested in PD models, displaying a positive effect on circulating regulatory T cell proliferation and neuroprotective and anti-inflammatory effects in the brain (Gendelman et al., 2017). Sargramostim is a human recombinant Granulocyte-macrophage colony-stimulating factor (GM-CSF) that is clinically used for cancer or post-transplantation therapy and is currently in an early-phase clinical investigation for PD (NLM Identifier: NCT03790670).

Other classes of drugs have shown neuroprotection in PD models with mechanisms at least partially involving an inhibitory activity of inflammatory responses. Between them, anti-diabetic drugs are amongst the most promising treatments currently being prioritized for repositioning in these disorders. Oral hypoglycemic glitazones such as pioglitazone and rosiglitazone, which act as peroxisome proliferator receptor (PPAR)-γ agonists, have been proven neuroprotective and anti-inflammatory in a number of different PD models (Escribano et al., 2010; Glass and Saijo, 2010; O’Reilly and Lynch, 2012; Carta, 2013; Papadopoulos et al., 2013; Pisanu et al., 2014; Croasdell et al., 2015; Pinto et al., 2016; Lecca et al., 2018; Machado et al., 2019). Antidiabetic compounds such as sitagliptin, saxagliptin and vildagliptin, which act as glucagon-like peptide (GLP)-1 level enhancers, or exenatide and liraglutide, which are long-acting direct GLP-1 receptor agonists, have shown neuroprotective properties that were at least partially mediated by anti-inflammatory mechanisms in preclinical studies (Kim et al., 2009; Li et al., 2009, 2018; Shiraishi et al., 2012; Abdelsalam and Safar, 2015; Nassar et al., 2015; Badawi et al., 2017). Supporting preclinical results, a recent retrospective study has reported that glitazone use was associated with a significantly lower incidence of PD in diabetic patients (Brakedal et al., 2017), although the single clinical trial testing pioglitazone on PD progression failed to report any improvement in disease symptoms (NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators, 2015). Moreover, A recent clinical trial of exenatide repositioning for PD has produced positive outcomes in motor and cognitive measures, and possibly delayed disease progression (Aviles-Olmos et al., 2014; Athauda et al., 2018).

Raloxifene is a selective estrogen receptor modulator (SERM) prescribed for osteoporosis treatment, and was recently suggested for repurposing in PD following studies showing the neuroprotective and anti-inflammatory activity of this drug in the MPTP mouse model of PD (Bourque et al., 2014; Poirier et al., 2016).

Finally, corticosterone and the PPAR-γ agonist rosiglitazone have shown beneficial effects in parkinsonian rats by attenuating the development of L-DOPA-induced dyskinesia (LID) (Barnum et al., 2008; Martinez et al., 2015). Notably, antiangiogenic compounds such as vandetanib and candesartan also reduce LID in parkinsonian rats, in line with the causal relation linking angiogenesis with neuroinflammation (Ohlin et al., 2011; Muñoz et al., 2014). More recently Exenatide, administered in a sustained-release form that guarantees steady-state plasma levels (PT320), attenuated LID in the 6-OHDA rat model (Yu et al., 2020).



Alzheimer’s Disease

Parkinson’s disease is the most common form of dementia, affecting more than 40 million of the world’s population (GBD 2016 Neurology Collaborators, 2019). Pathology is characterized by a progressive cognitive decline that usually starts in the form of a Mild Cognitive Impairment (MCI) prior to developing into full-onset dementia. Neuropathology of AD is notoriously characterized by the presence of two main hallmarks: extracellular plaques containing aberrant forms of β amyloid (Aβ), and neurofibrillary tangles (NFT) containing hyperphosphorylated tau protein in the intracellular compartment. These neuropathological hallmarks are accompanied by accelerated atrophy in the brain’s gray matter cortex, such as in the hippocampus and in parietal lobes. Alongside these two core pathologies, in recent years several authors pointed to neuroinflammation as the third characteristic feature of the pathology (Heneka et al., 2014). Some of the first evidences of the involvement of neuroinflammatory processes in the pathogenesis of AD date back to the 80s, when several studies reported the presence of immune-related proteins in the proximity of Aβ plaques (Rogers et al., 1988; Griffin et al., 1989).

Although this relationship was established several years ago, it is still unclear whether neuroinflammatory processes are a cause or a consequence of the disease (VanItallie, 2017). Nevertheless, proinflammatory cytokines seem to play a pivotal role in AD pathology. Both central and systemic signs of inflammation have been observed in AD patients and in animal models of AD. A meta-analysis of 40 studies measuring peripheral blood cytokine concentrations and 14 measuring CSF cytokine concentrations revealed that peripheral cytokines as IL-6, TNF-α, IL-1β, TGF-β, IL-12, and IL-18 are higher in patients with AD (Swardfager et al., 2010). Post-mortem and in vivo TSPO measurements of AD brains have shown greater TSPO density in later stages of AD, correlating AD-associated cognitive decline with microglial activation (Edison et al., 2018; Xu et al., 2019). Activated microglia have been consistently observed in post-mortem brain tissue of AD patients (Heneka et al., 2015), further validating the involvement of neuroinflammation throughout AD pathology. Moreover, several genetic factors known to affect AD risk, such as APOE-ε4, PIN1, and BACE1, have been associated with proinflammatory pathways (Sambamurti et al., 2004; Clark and Vissel, 2018; Fernandez et al., 2019). PET imaging of astrocytes using a monoamine oxidase B inhibitor, 11C-deuterium-L-deprenyl (11C-DED), has shown elevated astrocytosis in early AD and MCI brains as well (Carter et al., 2012), highlighting the potential use of inflammatory biomarkers as a diagnostic tools, and the use of anti-inflammatory or immunomodulating drugs as a therapy for AD.

APP processing and tau phosphorylation, which can lead to Aβ plaque and tau tangle accumulation if dysregulated, are heavily interconnected with inflammatory pathways. Inflammatory cytokines such as TNF and IFN-γ are linked with several signal transduction pathways (Kitazawa et al., 2005; Griffin et al., 2006; Yamamoto et al., 2007; Shaftel et al., 2008). For instance, inflammation activates the cyclin-dependent kinase 5, NF-κB, and mitogen-activated protein kinase (MAPK) pathways, which causes further tau phosphorylation in the hippocampus, a main brain region affected in AD (Kitazawa et al., 2005; Griffin et al., 2006). This strong involvement of cytokines in AD pathogenesis has led to the “damage signals hypothesis” of AD, which postulates that injury or age-related cell stress, via activation of chronic neuroinflammation, is a main cause of neurodegeneration (Maccioni et al., 2009).

Epidemiological studies have examined NSAID use in relation to AD risk (Rich et al., 1995; Chen et al., 2003; Becker et al., 2011)and have suggested slower progression of AD pathology in NSAID users (Stewart et al., 1997; Shankman et al., 2017; Rivers-Auty et al., 2020). In preclinical studies, dimethyl fumarate, an immunomodulatory compound used to treat multiple sclerosis, seems to have neuroprotective effects, reducing neuroinflammation and improving cognitive performance in rats infused with streptozotocin (Majkutewicz et al., 2016). Currently, several immune-oncological and anti-TNF-α compounds are under preclinical and clinical investigation as neuroprotectants in AD, as elegantly reviewed elsewhere in this issue (Munafò et al., 2020). Of note, recent preclinical data have shown that a checkpoint inhibitor against the programmed death-1 (PD-1) protein, clinically used in cancer immunotherapy, resulted in improved clearance of cerebral Aβ plaques and cognitive performance in an animal model of AD (Baruch et al., 2016). The 3 × Tg-AD mouse model shows increased levels of peripheral and CNS inflammatory markers including TNF-related apoptosis inducing ligand (TNFSF10), a potent pro-apoptotic member of the TNF superfamily, which are reverted by treatment with an anti-TNF antibody (Cantarella et al., 2015; Di Benedetto et al., 2019). An increasing number of studies have suggested that modulating inflammation through physical exercise or anti-inflammatory medications is beneficial for preventing AD pathology or mitigating AD symptoms, such as cognitive dysfunction, in various preclinical models of AD (Frankola et al., 2011; Gabbita et al., 2012; Russo et al., 2012; Tweedie et al., 2012; Decourt et al., 2016).

On the other hand, a recent meta-analysis has compared six different antidiabetic compounds for the treatment of AD (i.e., intranasal insulin, pioglitazone, rosiglitazone, metformin, sitagliptin and liraglutide), showing an improvement in cognition in subjects treated with these agents compared with placebo. Notably, among these, pioglitazone demonstrated the greatest efficacy compared with placebo (Cao et al., 2018).

To the present, AD therapeutics have commonly targeted the most well-known hallmarks of the disease - Aβ and tau. However, this approach has failed to produce a drug capable of slowing or preventing AD progression. As a consequence, the currently approved marketed drugs for AD are solely symptomatic. As neuroinflammation seems an early event of AD and is linked to many pathways involved in AD pathogenesis, treating neuroinflammation with TNF-α inhibitors may be a viable way of preventing or slowing AD progression.



IMiDs AND NEURODEGENERATIVE DISORDERS: PRECLINICAL AND CLINICAL EVIDENCE


Parkinson’s Disease

An increasing number of preclinical studies suggest that IMiDs provide beneficial effects on neurodegeneration in preclinical models of PD. The first evidence of the protective potential of thalidomide was reported by Ferger et al. (2004), who showed thalidomide efficacy in counteracting the MPTP-induced decrease of striatal dopamine (DA). Thalidomide and its analog lenalidomide were tested subsequently in mice overexpressing α-Syn. While these mice developed a deterioration of motor performance associated with loss of dopaminergic striatal fibers, increased cytokine production and microgliosis in the striatum, IMiDs improved all pathological parameters, with lenalidomide being more effective than thalidomide (Valera et al., 2015). Interestingly, IMiDs decreased the α-Syn-induced inflammatory response also in non-motor regions of the brain such as the hippocampus, an area involved in cognitive deficits of PD, supporting a role of neuroinflammation in these non-motor symptoms (Valera et al., 2015; Williams-Gray et al., 2016). A recent study demonstrated the pomalidomide efficacy in a drosophila LRRK2 WD40 mutant PD model, with LRRK2 being a common genetic cause of PD (Casu et al., 2020; Dues and Moore, 2020). These flies develop motor impairment and gradually lose dopaminergic neurons with age (Casu et al., 2020). Dietary administration of pomalidomide prevented age-dependent motor impairment and neuronal loss in motor-related dopaminergic clusters (Casu et al., 2020). The pomalidomide derivative 3,6′-DP has also been shown to reduce cell loss in primary dopaminergic neuron cultures exposed to α-Syn oligomers (Lin et al., 2020). Additional studies are warranted to further test the efficacy of IMiDs in mammalian models of PD neuropathology, to investigate potential use for non-motor symptoms of PD, and to understand the systemic drug effect on inflammatory markers and immune cell activation in PD models.

Immunomodulatory imide drugs have also been tested for effectiveness against LID in a preclinical PD model, as LID is acommon complication following dopamine-replacement therapy in PD. Thalidomide and its more potent analog, 3,6-DTT, significantly attenuated the severity of LID in a rat model of PD (Boi et al., 2019). This effect was associated with a reduction of L-DOPA-induced striatal inflammatory cytokines, including TNF-α, and with the restoration of pro-inflammatory/anti-inflammatory cytokines ratio (Boi et al., 2019). A normalization of the L-DOPA-induced expression of AMPA receptor subunit GluR1, which is modulated by TNF-α levels and contributes to the synaptic abnormalities underlying dyskinesia, was also observed in this study (Boi et al., 2019; Konitsiotis et al., 2000). Furthermore, thalidomide was able to inhibit the angiogenesis characteristic of LID, in accord with the potent antiangiogenic activity of this drug (Boi et al., 2019), and with the antidyskinetic properties of anti-angiogenic compounds (Ohlin et al., 2011; Kuter et al., 2020).



Alzheimer Disease

The neuroprotective role of IMiDs has been evaluated in different preclinical models of AD. In this regard, in two different studies, Elçioglu et al. (2013), Kübra Elçioğlu et al. (2015) observed that thalidomide was able to provide neuroprotection from memory deficits and neuronal damage induced by intracerebroventricular (ICV) infusion of streptozotocin. Moreover, the anti-inflammatory properties of thalidomide have been evaluated in Aβ1-42 peptide-infused rats, where a reduction of both microgliosis and astrogliosis in the hippocampus was observed after thalidomide administration (Ryu and McLarnon, 2008).

Thalidomide derivatives have been tested in both in vitro and in vivo models of AD. Tweedie and colleagues have evaluated the efficacy of different thalidomide-derivatives, including several newly characterized compounds, in an in vitro mouse macrophage-like cellular screen, where RAW 264.7 cells were exposed to lipopolysaccharide (LPS) in order to induce a rapid concentration-dependent cellular release of TNF-α (Tweedie et al., 2009). The authors observed that some derivatives, such as 3,6′-dithiothalidomide (3,6′-DTT), dithioglutarimide and dithiopthalimide, displayed a more potent TNF-α lowering activity when compared with thalidomide (Tweedie et al., 2009). These results have been confirmed in vivo by Gabbita et al. (2012), Tweedie et al. (2012), who evaluated the effects of thalidomide and 3,6′-DTT in the 3 × Tg-AD mouse model. In fact, a significant decrease in TNF-α levels was observed in animals treated with 3,6′-DTT, whilst a milder effect was observed in the thalidomide-treated group (Gabbita et al., 2012). Moreover, even though both agents were effective at reducing the total number of microglial cells, only 3,6′-DTT increased the ratio of resting to activated microglia, resulting in a morphological profile of microglia in the hippocampus similar to Non-Tg mice (Gabbita et al., 2012), and only 3,6′-DTT mitigated cognitive impairments (Gabbita et al., 2012; Tweedie et al., 2012). Likewise, dithiopthalimide (Zhu et al., 2003; Tweedie et al., 2009) has demonstrated the ability to mitigate markers of neuroinflammation and lowered tau and amyloid accumulation as well as cognitive deficits in a 3 × Tg-AD mouse model – as evaluated under the compound name of isoindolin-1,3 dithione (Gabbita et al., 2015), without reference to its original synthesis (Zhu et al., 2003).

In view of this promising evidence, a clinical trial was recently designed to assess the tolerability and the beneficial effects, in terms of cognitive symptoms, of escalating doses of thalidomide in a cohort of mild to moderate AD patients (Decourt et al., 2017). Unfortunately, many patients reported very poor tolerability for thalidomide at the dose selected to provide anti-inflammation, and terminated the study early or did not reach the therapeutic dose. Without reaching the predefined efficacious dose, not surprisingly there were no beneficial effects on cognition, leading to the failure of the study (Decourt et al., 2017). A clinical trial is currently ongoing to evaluate the beneficial effect of Lenalidomide in patients with Mild Cognitive Impairment and AD (Decourt et al., 2020).


Acute Neurodegenerative Disorders – Traumatic Brain Injury and Ischemic Stroke

Traumatic brain injury represents a major cause of death and long-term disability in the developed world, with an excess of 10 million people suffering such injury worldwide annually (Hyder et al., 2007). Although the vast majority of TBIs are mild to moderate and account for 80–95% of cases, with severe TBI comprising the remains (LoBue et al., 2019), recovery is generally incomplete and significant and lifelong cognitive, physical, and behavioral deficiencies routinely occur and require long-term access to health care and disability services (LoBue et al., 2019; Pavlovic et al., 2019). It is now recognized that TBI represents a time-dependent process activated at the instance of injury, rather than a single event, and whether clinically manifested or asymptomatic, TBI is one of the most powerful environmental risk factors that leads to the later development of dementia; in particular PD and AD (Barnes et al., 2014; Gardner and Yaffe, 2015; LoBue et al., 2019). A further major risk factor leading all causes of dementia is ischemic stroke (Kuźma et al., 2018), the second leading cause of death worldwide (Donkor, 2018).

It is widely recognized that inflammatory cytokines and chemokines play significant roles in the pathophysiology of both TBI and stroke. Although initiation of an inflammatory response can be indispensable to initiate reparative processes in brain following a physiological challenge, should this be unregulated and excessive, inflammation can drive neuronal dysfunction and degeneration by inducing a self-propagating pathological cycle (Morganti-Kossmann et al., 2002; Frank-Cannon et al., 2009; Frankola et al., 2011). Minutes after TBI or stroke, extensive generation and liberation of proinflammatory cytokines ensues from microglia and astrocytes. In particular, TNF-α protein and mRNA levels rise remarkably acutely, preceding the appearance of ensuing cytokines, and leading to their induction and release (Shohami et al., 1997; Frugier et al., 2010; Yoon et al., 2013; Tuttolomondo et al., 2014; Baratz et al., 2015).

Lowering but, nevertheless, retaining the early-phase release of TNF-α following a TBI or stroke has been achieved in preclinical animal models of mild and moderate TBI, and stroke by thalidomide analogs. Specifically, 3,6′-DTT mitigated TBI-induced cognitive impairments when administered up to 12 h post-mild concussive injury, and reduced neuronal cell loss and apoptosis, glial cell activation and brain TNF-α levels (Baratz et al., 2011, 2015). 3,6′-DTT, likewise, in a rat model of moderate to severe (controlled cortical impact (CCI)) TBI reduced the cortical contusion volume and number of apoptotic neurons associated with it, mitigated microglial activation and lowered protein and mRNA levels of TNF-α as well as IL-1β and IL-6, lowered markers of oxidative stress and mitigated TBI-induced behavioral impairments (Batsaikhan et al., 2019). 3,6′-DP has similarly been evaluated in a rat CCI model of TBI, and compared to equimolar pomalidomide (Wang et al., 2016; Lin et al., 2020). Both demonstrated efficacy, reducing the TBI-induced contusion volume and multiple key markers of neuronal cell death, microglial and glial cell activation, cytokine levels and behavioral impairments, but with 3,6′-DP proving to be approximately 5-fold more potent than pomalidomide (Lin et al., 2020). Finally, NAP has been evaluated in a mouse CCI TBI model and, similarly, proved efficacious by mitigating neuronal and synaptic loss, neuroinflammation and behavioral deficits (Hsueh et al., 2021).

With regard to ischemic stroke, 3,6′-DTT and thalidomide have been evaluated, side-by-side, in the classical middle cerebral artery occlusion/reperfusion (MCAO/R) mouse stroke model (Yoon et al., 2013). 3,6’-DTT administration following stroke reduced infarct volume, neuronal cell death and neurological deficits, whereas thalidomide was effective only when administered prior to stroke induction. 3,6′-DTT neuroprotection was accompanied by decreased inflammation, reduced TNF-α and IL-1β brain levels, decreased microglial and astrocyte activation, and attenuation of BBB disruption. Notably, treatment with 3,6’-DTT did not decrease ischemic brain damage in mice lacking TNF receptors (Yoon et al., 2013). This is consistent with a critical role for suppression of TNF-α production and signaling in the therapeutic action of 3,6’-DTT and related IMiDs, and suggests that anti-inflammatory mechanisms largely underlie the therapeutic actions of this drug class.

Finally, thalidomide has been evaluated in a rodent traumatic spinal cord injury (SCI) model, when combined with rolipram - a phosphodiesterase type 4 inhibitor that was developed as an antidepressant, but discontinued due to its narrow therapeutic window. This SCI model reproduces the elevated TNF-α and IL-1β generation and release evident in the previously described TBI and stoke models, and alike human conditions (Koopmans et al., 2009). The combination of a high thalidomide dose and rolipram attenuated TNF-α and IL-1β levels, augmented white matter sparing at the lesion epicenter and, thereby, improved behavioral outcome (Koopmans et al., 2009). Thalidomide alone, however, failed to provide efficacy (Koopmans et al., 2009; Reyes-Alva et al., 2009), except when administered as a particularly high dose in a mouse compression injury study involving a slightly different form of trauma (Genovese et al., 2008).

In closure, both 3,6′-DTT and 3,6′-DP have demonstrated efficacy in a bilirubin toxicity-induced mouse model of hearing loss (Schiavon et al., 2018). In line with hyperbilirubinemia (jaundice) that can occur in premature newborns and lead to brain damage and/or hearing loss (Shapiro et al., 2006; Haustein et al., 2010), the exposure of mice to an acute high bilirubin dose resulted in hearing loss, ataxia and kernicterus via mechanisms that encompassed neuroinflammation, NF-κB activation, endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) (Schiavon et al., 2018). Interestingly, there was considerable overlap between the bilirubin-induced toxicity in the auditory pathway with hallmarks induced by exposure to LPS – the well-characterized inducer of neuroinflammation – and hearing loss was mitigated by both 3,6′-DTT and 3,6′-DP (Schiavon et al., 2018).



CONCLUSION

As a rule, the development and use of animal models of complex human diseases is valuable for studying the biological bases of these disorders and for identifying new drug targets to provide more effective future treatment. Preclinical models potentially permit the evaluation and monitoring of disease progression more rapidly than is feasible in humans, and allow invasive studies to characterize molecular, biochemical and structural changes during disease progression to, thereby, support testing of new therapeutic strategies and potential drugs. Certainly, the human disease is invariably far more complicated than the animal model. However, for neurological disorders, the complexity of the human brain, as compared to that of a rodent or even of a non-human primate, is extreme. For neuropsychiatric disorders, such as schizophrenia, common symptoms such as paranoid delusions and auditory hallucinations are uniquely human and make interpretation of results acquired from animal models particularly challenging (Canetta and Kellendonk, 2018). Although imperfect, there are multiple available models of schizophrenia (Winship et al., 2019), depression (Planchez et al., 2019), and other neuropsychiatric (Nestler and Hyman, 2010) as well as neurodegenerative disorders (Dawson et al., 2018; Carta et al., 2020) that, to varying degrees, possess face validity (observed characteristics/symptoms that have clinical correlates in the human patient population), construct validity (key neurobiological/pathological bases of the human disorder), and/or predictive validity (expected pharmacological response to efficacious drugs currently used to treat the human disorder). Each animal model has its advantages and caveats (Fisher and Bannerman, 2019), and evaluation of hypotheses as well as potential drugs across models undoubtedly provides better predictive value for translation to human studies, particularly when repurposed drugs (such as IMiDs) are evaluated at a clinically translatable dose (Becker and Greig, 2010; Seeman et al., 2019).

To date, IMiDs have largely been evaluated in animal models of neurodegenerative disorders (AD, PD, TBI, SCI, ischemic stroke, and hyperbilirubinemia-induced neural damage), although some have been evaluated in models of multiple sclerosis (Contino-Pépin et al., 2009; do Amaral Corrêa et al., 2010; Karlik et al., 2012; Eitan et al., 2015) that, too, possess aspects of neurodegeneration. These IMiD studies have shown consistent signals of biochemical and immunohistochemical efficacy, and improved behavioral outcomes. Second, third and later generation agents have demonstrated improved efficacy over the first generation drug, thalidomide, which is the only agent for which human clinical trial data in neurodegenerative disorders is currently available and, as noted, is compromised by adverse, dose-limiting actions prior to reaching and maintaining a predicted anti-neuroinflammatory dose. The most promising IMiDs from these preclinical neurodegenerative disorder studies should now be evaluated in animal models of schizophrenia, depression and other neuropsychiatric disorders in which a neuroinflammatory component has been documented.



FUTURE STUDIES

Normalizing levels of proinflammatory cytokines appears to provide a rational approach to effectively treat inflammatory aspects of neurological disorders. Key among the targets is TNF-α as a master regulator of the inflammatory process, and whose targeting in the treatment of rheumatoid arthritis and a broad number of autoimmune disorders has provided a huge improvement in the management of these illness (Feldmann et al., 1998, 2010; Feldmann and Maini, 2008; Shepard et al., 2017). Anti-TNF-α monoclonal antibodies are among the most widely used medicines worldwide (Pharmaceutical Technology, 2019; Urquhart, 2020). Unfortunately, these biological drugs are not best suited for treating neurological disorders due to their limited BBB permeability. In this context IMiDs, with their ability to effectively decrease TNF-α and, in general, proinflammatory cytokines levels provide a promising alternative option for the treatment of neurological disorders. IMiDs have shown beneficial effects on neurodegenerative disorders by targeting inflammation. Several of the early generation, FDA approved IMiDs, including thalidomide, lenalidomide and pomalidomide, have been tested in pre-clinical studies as potential therapies for neurological conditions such as AD and PD. Preclinical studies have suggested that therapeutic effects of IMiDs may cover both motor symptoms in PD and cognitive symptoms in both AD and PD. Clinical trials for testing IMiDs in PD have not been designed yet, while one clinical trials in AD patients is in progress (Jung et al., 2019; Decourt et al., 2020). Moreover, the first clinical trial in AD patients was terminated prematurely due to drug toxicity and tolerability issues (Decourt et al., 2017), indicating a need for the development of more potent and less toxic IMiDs. In particular, research of more potent IMiDs against TNF-α synthesis, and for agents that do not racemize from R to S-enantiomers and/or do not bind to CRBN would yield important results in the search of novel neuroprotective immunomodulatory drugs. Although IMiDs have yet to be tested in other neurological conditions, such as psychiatric disorders and MDD, it is quite possible that this drug class would ameliorate neurological disorder phenotypes associated with an inflammatory setting. There is substantial evidence that such an inflammatory microenvironment is associated with both neuropsychiatric and neurodegenerative disorders, and hence the application of IMiDs to this critical and unmet area of medicine provides a treatment avenue worthy of exploration. Who to treat; when to treat; how to best treat; which drug(s) to evaluate and which markers of response to follow are critical questions to now carefully consider?
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All individuals with Down syndrome (DS) eventually develop Alzheimer’s disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
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INTRODUCTION
Down syndrome (DS), the most common genetic cause of intellectual disability, is caused by a partial or complete triplication of the human chromosome 21 (Antonarakis et al., 2020). The cognitive alterations found in DS are primarily caused by prenatal changes in central nervous system growth and differentiation (Contestabile et al., 2007; Guidi et al., 2008; Haydar and Reeves, 2012; Lott, 2012; Rueda et al., 2012; Hibaoui et al., 2014; Stagni et al., 2018). Furthermore, these alterations are aggravated in later life stages. By the fourth decade of their lives, all individuals with DS develop Alzheimer’s disease (AD) neuropathology, including the accumulation of amyloid plaques comprising β-amyloid (Aβ) peptides, neurofibrillary tangles (NFTs) formed by insoluble deposits of abnormally hyperphosphorylated tau, synaptic and neuronal loss, reduced neurogenesis, regional atrophy, and chronic microglial-driven inflammatory response, which leads to dementia (Teipel and Hampel, 2006; Sabbagh et al., 2011; Cenini et al., 2012; Lott, 2012; Wilcock and Griffin, 2013; Moreno-Jiménez et al., 2019).
There is currently no effective treatment for AD neuropathology and/or to delay the associated cognitive impairment in demented patients with or without DS. There is, therefore, a pressing need to search for new strategies to prevent or delay the course of this disease. In this context, DS emerges as a valuable optimal model to study AD pathology. Importantly, the knowledge obtained in animal models of DS will help to foster a better understanding of the causes of neurodegeneration and dementia, both in DS and in sporadic AD, and assist in the development of new therapeutic strategies to treat them.
Several mouse models of DS have been developed (Antonarakis et al., 2020). However, none of them completely reproduces DS pathophysiology, probably due to the incomplete synteny between Hsa21 and homologous mouse regions (Gupta et al., 2016; Antonarakis et al., 2020). Among these mouse models, the one that has been most characterized and which best reproduces DS cognitive and neurobiological phenotypes is the partially trisomic Ts65Dn (TS) mouse (Sturgeon and Gardiner, 2011; Rueda et al., 2012; Gupta et al., 2016). Consequently, this mouse model is the most commonly used in preclinical studies to test the ability of different pharmacotherapies to rescue these phenotypes (Sturgeon and Gardiner 2011; Gupta et al., 2016); which allows a comparison of the relative efficacy of the different therapeutic strategies in similar circumstances. Among the most relevant DS phenotypes that TS mice replicate are alterations in behavior, learning, and memory, brain morphology and hypocellularity, neurogenesis, neuronal connectivity, and electrophysiological and neurochemical processes (Bartesaghi et al., 2011; Rueda et al., 2012). As in DS, many of these phenotypes appear at prenatal stages, and during adulthood, the TS mouse also exhibits increased levels of APP, Aβ peptides, tau hyperphosphorylation, and neurodegeneration (Lockrow et al., 2009; Shichiri et al., 2011; Corrales et al., 2013, 2014; García-Cerro et al., 2017). However, these animals do not present amyloid plaques or NFTs, as occurs in DS (Seo and Isacson, 2005; Netzer et al., 2010; Millan Sanchez et al., 2012; Rueda et al., 2012). TS mice also exhibit increased neuroinflammation due to microglial activation that alters the expression of inflammatory cytokines in the brain (Hunter et al., 2004; Lockrow et al., 2011; Roberson et al., 2012; Rueda et al., 2018).
Several pharmacotherapies have been reported to rescue the neuromorphological and cognitive deficits in murine models of DS (Malberg et al., 2000; Clark et al., 2006; Bianchi et al., 2010a, 2010b; Contestabile et al., 2013; Martínez-Cué et al., 2013; Guidi et al., 2014; Stagni et al., 2015, 2016, 2017, 2019; Navarro-Romero et al., 2019; Zhou et al., 2019). However, some of these drugs did not demonstrate any clinical benefit when tested in humans, or cannot be safely administered to individuals with DS (Gardiner, 2014; Tayebati et al., 2019).
Based on the hypothesis that the accumulation of Aβ aggregates in the brain might trigger the AD neurodegenerative cascade, many strategies that promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease (Golde et al., 2010). In AD brains, one of the causes of the accumulation of Aβ aggregates is their defective clearance from the brain, a process normally facilitated by apolipoprotein E (ApoE). Indeed, the major genetic risk factor for sporadic AD is a polymorphism of ApoE (Bu, 2009; Liu et al., 2013). ApoE contributes to the maintenance of brain homeostasis through numerous pathways, including the regulation of cholesterol, glucose metabolism, synaptic plasticity, neurogenesis, inflammatory responses, and Aβ metabolism (Bu, 2009; Huang and Mucke, 2012; Liu et al., 2013). In humans, there are three ApoE isoforms: E2, E3, and E4. The different ApoE isoforms induce different effects on Aβ clearance and cytoskeleton stability (Mahley et al., 2006). In the AD population, the presence of the ApoE4 isoform correlates with a higher probability of developing dementia and an earlier onset of cognitive decline (Bu, 2009). Furthermore, healthy ApoE4 carriers display reduced cognitive function during aging when compared to individuals carrying other ApoE isoforms (Zehnder et al., 2009; Reinvang et al., 2010).
The expression of ApoE is regulated by the ligand-activated nuclear receptors Peroxisome Proliferator-Activated Receptor-c (PPARγ), the Liver X Receptor (LXR), and the Retinoid X Receptor (RXR) (Liang et al., 2004; Zhao et al., 2014). These receptors regulate ApoE expression by forming heterodimers with each other or with other nuclear receptors such as Retinoid Acid Receptor (RAR), Thyroid Hormone Receptor (TR), or Vitamin D Receptor (VDR) (Chawla et al., 2001; Szanto et al., 2001; Sussman and de Lera, 2005; Evans and Mangelsdorf, 2014).
It has been suggested that agonism of PPARγ, LXR, and RXR could promote the clearance of Aβ (Koldamova and Lefterov, 2007). In mouse models of AD, LXR and RXR agonists ameliorate memory deficits and decrease the Aβ load due to the up-regulation of ApoE (Koldamova et al., 2005; Jiang et al., 2008; Fitz et al., 2010; Cramer et al., 2012), and the two PPARγ agonists used for the treatment of diabetes, Pioglitazone and Rosiglitazone, reduce Aβ levels and improve cognitive functions in AD mice (Mandrekar-Colucci and Landreth, 2011). Thus, drugs modulating the activity of these receptors and the expression of ApoE appear to be promising strategies in the treatment of AD.
The activation of RARs and RXRs receptors by Vitamin A (retinol) and its derivatives (retinoids) regulates the expression of different genes involved in essential cellular processes, such as chromatin remodeling, protein metabolism, intracellular signaling, synaptic homeostasis, and inflammation (Lane and Bailey, 2005). In AD, retinoid signaling is altered (Sodhi and Singh, 2014), which could be responsible for the disruption in protein metabolism, synaptic alterations, and activated astroglia, which are hallmarks of this disease. This data suggests the potential efficacy of retinoids to reduce AD neuropathology by modulating Aβ, reducing neuroinflammation, and preventing synaptic and neurotransmitter alterations.
Bexarotene is a member of a subclass of retinoids that selectively activates RXRs. Bexarotene selectively binds and activates retinoid X receptor subtypes (RXRα, RXRβ, RXRγ). As previously mentioned, these receptors can form heterodimers with other nuclear receptors, which after being activated could function as transcription factors that regulate the expression of genes that control multiple cellular functions which are altered in AD (de Urquiza et al., 2000; Chai et al., 2008).
Bexarotene is approved by the FDA for the treatment of cutaneous lymphoma (Henney, 2000; Farol and Hymes, 2004), and has beneficial effects in several models of neurodegenerative diseases including Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis (ALS), ischemic and hemorrhagic stroke, and epilepsy (McFarland et al., 2013; Bomben et al., 2014; Certo et al., 2015; Riancho et al., 2015; Dickey et al., 2017; Liu et al., 2019; Martín-Maestro et al., 2019; Zuo et al., 2019; Chang et al., 2020; Muñoz-Cabrera et al., 2020).
Bexarotene modulates several pathways essential for cognitive performance, inflammatory response, and Aβ clearance (Lefterov et al., 2015; Riancho et al., 2016). However, the effects of bexarotene in AD are discordant. The first study of the effects of bexarotene in a mouse model of AD reported a reduction in the number of Aβ plaques, in the levels of soluble Aβ, and facilitation of Aβ clearance, through the ApoE related mechanism. Significantly, these changes were accompanied by cognitive improvement (Cramer et al., 2012). However, subsequent investigations failed to completely reproduce these findings (Fitz et al., 2013; Landreth et al., 2013; Price et al., 2013; Tesseur et al., 2013; Veeraraghavalu et al., 2013). None of the subsequent studies was able to replicate the bexarotene-induced reduction of Aβ plaques (Fitz et al., 2013; Landreth et al., 2013; Price et al., 2013; Tesseur et al., 2013; Veeraraghavalu et al., 2013). However, some studies demonstrated the facilitation of the clearance of soluble Aβ peptides by ApoE, the reversal of cognitive deficits (Cramer et al., 2012; Fitz et al., 2013; Muñoz-Cabrera et al., 2020), and the prevention of the effect of ApoE4 on tau hyperphosphorylation (Boehm-Cagan and Michaelson, 2014) after bexarotene administration to mouse models of AD. Recently, it has been reported that OAB-14, a bexarotene derivative, reduces cognitive impairments by increasing β-amyloid clearance in APP/PS1 mice (Yuan et al., 2019). Finally, regarding the use of bexarotene in patients with cognitive impairment, two clinical trials in healthy volunteers and patients with mild to moderate AD were conducted (NCT01782742 and NCT02061878), reporting that this retinoid agonist exerted cognitive benefits in these patients (Cummings et al., 2016; Pierrot et al., 2016).
Thus, although bexarotene presents as a very interesting potential drug against AD, its role and efficacy in the treatment of AD remain unclear. In this study, because DS is a useful model for investigating sporadic AD and potential pharmacotherapies to treat this disorder, we aimed to evaluate the effects of chronic bexarotene administration to aged TS mice, which display many hallmarks of AD, on their cognitive and behavioral abilities and their brain Aβ loads. Because the effects of this drug on the cognitive performance of these mice after bexarotene administration were the opposite of the expected effects, we hypothesized that this result might have been due to the induction of hypothyroidism, and we therefore evaluated thyroid hormones levels in TS and CO mice.
METHODS
Animals and Treatments
This study was approved by the Cantabria University Institutional Laboratory Animal Care and Use Committee and performed in accordance with the Declaration of Helsinki and the European Communities Council Directive (86/609/EEC).
TS mice were generated and karyotyped as previously described in Rueda et al. (2018).
A total of 39 TS and CO mice were assigned to one of four experimental groups: TS-Bexarotene (TS Bx, n = 8), TS-vehicle (TS Vh, n = 12), CO-Bexarotene (CO Bx, n = 11), and CO-vehicle (CO Vh, n = 8).
When the mice were 10 months old, the pharmacological treatments were initiated. For nine weeks, TS and CO mice were subcutaneously treated daily with 100 mg/kg of bexarotene (Targretin®, Eisai Inc. Woodcliff Lake, NJ, United States), or the same volume of vehicle (saline). After completing the behavioral studies, the animals were euthanized by cervical dislocation. The brains of seven animals from each group were used for the analyses of Aβ1-40 and Aβ1-42 levels, and serum samples from five animals per group were used to determine Thyroid-stimulating hormone and thyroxine levels.
Behavioral Analyses
All the behavioral analyses were performed 1 h after the administration of the treatments.
Spatial Learning and Memory: Morris Water Maze
To evaluate spatial learning and memory, a modified version of the Morris water maze (MWM) using the same apparatus, experimental conditions, and protocol described by Martínez-Cué et al. (2013) was used (Figures 1A–C).
[image: Figure 1]FIGURE 1 | Schematic drawing of the MWM protocol (A), and representative image of the apparatus during the training (B), and cued (C) sessions. Mean ± S.E.M of the latency to reach the platform during the twelve acquisition sessions (D), during each trial of the first eight acquisition sessions (E), and mean latencies to reach the platform during the four cued sessions (F), of the number of crossings over the platform position (G), the number of entries in the trained quadrant (H), and the mean percentage of time spent in the trained quadrant vs. the mean time spent in the rest of the quadrants (I), during the probe trial by TS and CO mice under bexarotene or vehicle treatment. *: p < 0.05, **: p < 0.01, ***: p < 0.001: TS Vh vs. CO Vh or TS Bx vs. CO Bx; #: p < 0.05, ##: p < 0.01, ###: p < 0.001 TS Bx vs. TS Vh; ϕϕ: p < 0.01 trained quadrant vs. rest of the quadrants. Fisher’s LSD post-hoc tests. On the right side of the A and B figures, the p-value of the difference between the TS Bx and the TS Vh, and between the TS Vh and CO Vh learning curves across the twelve sessions (RM ANOVAs) is shown. In the B figure, the dotted lines and the p-values beside them represent the significance of the change in latency across the trials (RM ANOVA ‘trial’ of each learning curve). The dotted lines in figure C represent the chance level, i.e. a probability equal to 25%.
The animals were submitted to sixteen consecutive daily sessions: 12 acquisition sessions (platform submerged in a different position in each session), four acquisition sessions (platform submerged in the same position), a probe trial, and four cued sessions (platform visible). This protocol allows discrimination between reference memory (between-session performance), working memory (within-session performance), and spatial memory (probe trial). The Anymaze computerized tracking system (Stoelting, Wood Dale, IL, United States) was used to analyze the mouse trajectories and to measure the escape latency for each animal in each trial.
Fear Conditioning Test
For the Fear Conditioning experiment, the procedure was performed as described by Vidal et al. (2018) (Figure 2A). Contextual and tone-cued fear conditioning tests were performed using the Fear Conditioning apparatus (Stoelting) and the AnyMaze Video Tracking System. The mice underwent three days of testing: a training day, a tone-cued-in-a-novel-context testing day, and a contextual testing day. In the training session, each mouse received five tone-shock pairings. The shock (0.5 mA, 50 Hz, 2 s) was delivered 18 s after the end of the tone (70 dB, 2 kHz, 20 s). In the following session (the tone-cued testing day), each mouse was placed in a novel context for 3 min and they were exposed to three tones identical to the ones of the training day, but they did not receive any shock. In the last session, each mouse was placed in a context identical to the one used in the training day for 5 min, but they were not exposed to any tone or shock. The time that the animals spent freezing in the testing sessions was used as a measure of the memory of the association between the tones and shocks, and the tone and the environment, respectively.
[image: Figure 2]FIGURE 2 | Schematic protocol of the Fear Conditioning Test (A). Mean ± S.E.M of the time that TS and CO mice under bexarotene or vehicle treatment spent freezing during the training session, and in the tone-cued and the contextual memory tests sessions in the Fear Conditioning test (B). **: p < 0.01; ***: p < 0.001 TS Vh vs. CO Vh, #: p < 0.05 TS Bx vs. TS Vh; Fisher’s LSD post-hoc tests.
Anxiety and Motor Activity
Plus Maze
To analyze anxiety and motor activity, the same apparatus and protocol described in Martínez-Cué et al. (2013) was used. During a single 5-min trial, the initial freezing time, the distance traveled, and the time spent in the open and closed arms, and the number of risk assessment behaviors (Stretch-Attend Postures (SAPs) and Head Dippings (HDs)) were assessed using the Anymaze computerized tracking system.
Open Field
Exploratory behavior and anxiety were assessed in the Open field test using the same apparatus and protocol previously described in Martínez-Cué et al. (2013). During a single 5-min trial, the distance traveled in the center and periphery of the field, and the speed and the number of rearings performed by each animal were assessed with the computerized tracking system Anymaze.
Exploratory Activity: Hole Board
The apparatus and the protocol employed in this test were identical to those previously described in Martínez-Cué et al. (2013). The number of explorations, the time spent exploring the holes, the number of rearings, and the distance traveled in the apparatus by each mouse over a 5-min period were quantified. To evaluate attention, the repetition or the exploration of recently explored holes (ABA index) was calculated, and this index was corrected by dividing the ABA index by the total number of explorations (ABA/number of explorations).
β-amyloid Assays
Aβ1-40 and Aβ1-42 levels were assessed in the hippocampi and cortices of the four groups of animals (n = 7 per group) by ELISA (kits KMB 3481, and KMB 3441, respectively; Invitrogen, CA, United States) following the protocol described by the manufacturer.
Determination of TSH and T4
TSH and free T4 were measured in serum obtained from five animals per experimental group by electrochemiluminescence immunoassay (ECLIA) direct sandwich assay, and competitive assay, respectively, automated in an Elecsys e411 (Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim). Overall intra-assay and inter-assay coefficients of variation were <3% and <7%, and <6% and <10%, respectively. Assay sensitivity was 0.014 microUI/ml and 0.42 ng/dl, respectively.
Statistics
Shapiro–Wilk tests were used to test the normality of the data sets. Because all the datasets were normally distributed, parametric tests were used. The water maze data from the acquisition sessions (sessions 1–12) was analyzed using two-way Analysis of Variance (ANOVA) with Repeated Measures (RM) (‘session’ x ‘karyotype’ x ‘treatment’ or ‘trial x karyotype x treatment’). The rest of the data was analyzed using two-way (‘karyotype’ x ‘treatment’) ANOVA. The mean values of each experimental group were compared post hoc using Fisher’s LSD (Least Significant Difference) tests. The differences between groups were considered to be statistically significant when p < 0.05. All analyses were performed using IBM SPSS Statistics 22 (Armonk, New York, United States) for Windows. .
RESULTS
Learning and Memory
Morris Water Maze
Reference Memory
During the 12 acquisition sessions, all mice reduced their latency to reach the platform across sessions (RM ANOVA ‘session’: p < 0.001). TS mice under both treatments exhibited impaired performance with respect to their CO littermates (‘session x karyotype’: p = 0.003), and bexarotene treatment diminished the performance of TS but not of CO mice (‘session x treatment’: p = 0.016; ‘session x karyotype x treatment’: p = 0.041; Figure 1D). When TS and CO mice under both treatments were analyzed separately, it was found that TS mice treated with bexarotene presented diminished performance when compared to their vehicle-treated littermates (‘treatment’: p = 0.003), while no significant differences were found between CO mice under bexarotene or vehicle treatment (‘treatment’: p = 0.94).
Working Memory
RM ANOVA revealed a significant temporal effect when all groups were taken into account (RM ANOVA ‘trial’: p = 0.003). However, this effect was due to a reduction in the latency to reach the platform in CO mice, which was not evident in TS mice (‘trial x karyotype’: p = 0.001). Bexarotene treatment impaired the working memory of TS mice (‘trial x treatment’: p = 0.003; ‘trial x karyotype x treatment’: p = 0.050; Figure 1E).
When the four learning curves were analyzed separately, it was found that TS mice under bexarotene (RM ANOVA ‘trial’: p = 0.54) or vehicle (p = 0.37) did not reduce their latency to reach the platform across trials. Also, TS mice under bexarotene treatment presented higher latencies than TS mice under vehicle treatment (p = 0.001). However, both groups of CO mice learned the platform position across trials, as they significantly reduced their latency to reach it within each session (CO Bx: p = 0.012; CO Vh: p = 0.012; Figure 1E).
Cued Sessions
During the cued sessions, no significant differences were found in the latency to reach the platform between both groups of TS and CO mice (‘karyotype’: p = 0.11). However, bexarotene treatment increased the latency to reach the visible platform in TS mice (‘treatment’: p = 0.23; ‘karyotype x treatment’: p = 0.16; Figure 1F).
Spatial Memory
TS mice demonstrated diminished spatial memory as demonstrated by the fewer times that they crossed over the place where the platform was located in previous sessions (ANOVA ‘karyotype’: p = 0.002; Figure 1G), and entered into the trained quadrant fewer times (‘karyotype’: p = 0.043; Figure 1H).
Bexarotene treatment reduced the number of crossings over the platform position (‘treatment’: p = 0.032; ‘karyotype x treatment’: p = 0.67; Figure 1G), and the number of entries into the trained quadrant (‘treatment’: p = 0.038; ‘karyotype x treatment’: p = 0.48; Figure 1H) performed by TS mice.
The only group that spent significantly more time in the training quadrant than in the rest of the quadrants was the CO Vh group (ANOVA ‘quadrant’: CO Vh: p = 0.010; CO Bx: p = 0.40; TS Vh: p = 0.53; TS Bx: p = 0.83; Figure 1I).
Fear Conditioning
No significant differences were found in the time that the four groups of animals spent freezing during the training session (‘karyotype’: p = 0.13; Figure 2B). However, TS mice spent less time freezing during the tone-cued test (‘karyotype’: p = 0.005) and during the contextual test session (‘karyotype’: p = 0.002; Figure 2B). Bexarotene treatment did not exert any effect in the training session (‘treatment’: p = 0.45; ‘karyotype x treatment’: p = 0.69), or in the tone-cued test session (‘treatment’: p = 0.35; ‘karyotype x treatment’: p = 0.23), but it increased the time that TS, but not CO mice spent freezing during the contextual testing session (‘treatment’: p = 0.17; ‘karyotype x treatment’: p = 0.029; Figure 2B).
Plus Maze
In the Plus Maze test, vehicle-treated TS mice tended to be hyperactive, since they traveled a longer total distance than the rest of the animals, and bexarotene treatment normalized the locomotor activity of TS mice, although this effect only reached statistical significance when the total distance was taken into account (open arms: ‘karyotype’: p = 0.19, ‘treatment’: p = 0.53, ‘karyotype x treatment’: p = 0.22; closed arms: ‘karyotype’: p = 0.52, ‘treatment’: p = 0.21, ‘karyotype x treatment’: p = 0.22; total distance: ‘karyotype’: p = 0.10, ‘treatment’: p = 0.018, ‘karyotype x treatment’: p = 0.030; Figure 3A).
[image: Figure 3]FIGURE 3 | Mean ± S.E.M. of the distance traveled in the open and closed arms, and of the total distance (A), of the percentage of time spent in the open arms (B), and of the number of risk assessment behaviors (C), performed by the four groups of mice in the Plus maze; and of the total distance traveled during the open field test (D), of the speed displayed in the different areas of the apparatus, and the mean speed during the test (E), and of the total number of rearings (F), performed by the four groups of mice. *: p < 0.05; **: p < 0.01 TS Vh vs. CO Vh, or TS Bx vs. CO Bx; #: p < 0.05, ##: p < 0.01; ###: p < 0.001 TS Bx vs. TS Vh, or CO Bx vs. CO Vh. Fisher’s LSD post-hoc tests.
The four groups of mice did not differ in the percentage of time that they spent in the open arms (‘karyotype’: p = 0.18, ‘treatment’: p = 0.85, ‘karyotype x treatment’: p = 0.63; Figure 3B). Finally, TS mice performed fewer risk assessment behaviors than CO mice (‘karyotype’: p = 0.006), and bexarotene treatment reduced the number of these behaviors in TS mice when compared to their vehicle-treated TS littermates (‘treatment’: p = 0.027, ‘karyotype x treatment’: p = 0.59; Figure 3C).
Open Field
In the Open Field test, vehicle-treated TS mice presented marked hyperactivity in all zones of the apparatus, and bexarotene treatment reduced the distance traveled by TS and CO mice when compared to vehicle-treated mice of the same karyotype (distance in the periphery: ‘karyotype’: p = 0.11, ‘treatment’: p < 0.001, ‘karyotype x treatment’: p = 0.008; distance in the center: ‘karyotype’: p = 0.10, ‘treatment’: p < 0.001, ‘karyotype x treatment’: p = 0.031; total distance: ‘karyotype’: p = 0.09, ‘treatment’: p < 0.001, ‘karyotype x treatment’: p = 0.006; Figure 3D). In addition, bexarotene-treated TS mice showed marked hypoactivity when compared to vehicle-treated CO mice (Figure 3D).
Vehicle-treated TS mice were faster in all areas of the open field than the rest of the groups of mice, while bexarotene treatment reduced the speed of TS and CO mice with respect to their vehicle-treated littermates of the same karyotype (speed in periphery: ‘karyotype’: p = 0.091, ‘treatment’: p = 0.002, ‘karyotype x treatment’: p = 0.040; speed in center: ‘karyotype’: p = 0.18, ‘treatment’: p = 0.002, ‘karyotype x treatment’: p = 0.037; mean speed: ‘karyotype’: p = 0.09, ‘treatment’: p = 0.002, ‘karyotype x treatment’: p = 0.030; Figure 3E).
TS and CO mice did not differ in the number of rearings performed (‘karyotype’: p = 0.67; Figure 3E), while bexarotene treatment reduced the number of rearings performed by mice of both karyotypes (‘treatment’: p = 0.002, ‘karyotype x treatment’: p = 0.68; Figure 3E).
Hole Board
Vehicle-treated TS mice traveled a longer total distance than the rest of the groups of animals, bexarotene treatment normalized the activity of TS mice but did not have any effect in CO mice (‘karyotype’: p = 0.091, ‘treatment’: p = 0.002, ‘karyotype x treatment’: p = 0.040; Figure 4A).
[image: Figure 4]FIGURE 4 | Means ± S.E.M. of the distance traveled (A), the number of rearings (B), the number of explorations (C), the time spent exploring the holes (D), the number of repetitions of previously explored holes (ABA index, E), and the ratio of the number of repetitions of the exploration and the total number of explorations (ABA index/number of explorations (F), performed by TS and CO mice under bexarotene or vehicle treatment in the hole board test. **: p < 0.01 TS Vh vs. CO Vh; #: p < 0.05, ##: p < 0.01 TS Bx vs. TS Vh. Fisher’s LSD post-hoc tests.
Bexarotene treatment also reduced vertical activity (‘karyotype’: p = 0.89, ‘treatment’: p = 0.25, ‘karyotype x treatment’: p = 0.039; Figure 4B), the total number of explorations (‘karyotype’: p = 0.10, ‘treatment’: p = 0.006, ‘karyotype x treatment’: p = 0.85; Figure 4C), and the total exploration time (‘karyotype’: p = 0.48, ‘treatment’: p = 0.005, ‘karyotype x treatment’: p = 0.084; Figure 4D) in TS, but not in CO mice.
Bexarotene treatment reduced the number of repetitions of recently explored holes that TS and CO mice performed (ABA index: ‘karyotype’: p = 0.072, ‘treatment’: p = 0.006, ‘karyotype x treatment’: p = 0.90; Figure 4E). We corrected the ABA index by dividing it by the total number of repetitions and no significant differences were found between the four groups of mice (‘karyotype’: p = 0.58, ‘treatment’: p = 0.59, ‘karyotype x treatment’: p = 0.93; Figure 4F).
β-amyloid Peptides
TS mice presented higher levels of Aβ1-40 than CO mice in the cortex (‘karyotype’: p < 0.001) and in the hippocampus (‘karyotype’: p < 0.001; Figure 5A). Bexarotene reduced these levels in the hippocampi of TS, but not CO mice (‘treatment’: p = 0.63; ‘karyotype x treatment’: p = 0.020). No significant effect was found after bexarotene treatment in Aβ1-40 levels in the cortices of TS or CO mice (‘treatment’: p = 0.11; ‘karyotype x treatment’: p = 0.11; Figure 5A).
[image: Figure 5]FIGURE 5 | Means ± S.E.M. of the levels of Aβ1-40 (A), and Aβ1-42 (B) in the cortices and hippocampi of TS and CO mice under bexarotene or vehicle treatment and of the levels of TSH (C), and T4 (D) in the four groups of mice. *: p < 0.05, **: p < 0.01; ***: p < 0.001 TS Vh vs. CO Vh, or TS Bx vs. CO Bx; #: p < 0.05; ##: p < 0.01; ###: p < 0.001 TS Bx vs. TS Vh, or CO Bx vs. CO Vh. Fisher’s LSD post-hoc tests.
Aβ1-42 levels were higher in TS mice than in CO mice, although this effect only reached statistical significance in the hippocampus (karyotype’: hippocampus: p = 0.006; cortex: p = 0.053; Figure 5B). Bexarotene treatment did not modify Aβ1-42 levels in the hippocampi (‘treatment’: p = 0.31; ‘karyotype x treatment’: p = 0.11) or cortices (‘treatment’: p = 0.27; ‘karyotype x treatment’: p = 0.11; Figure 5B) of TS or CO mice.
Thyroid Hormones
No significant differences were found in the levels of T4 between TS and CO mice (‘karyotype’: p = 0.71). However, bexarotene treatment produced a marked reduction in T4 levels in all animals (‘treatment’: p < 0.001, ‘karyotype x treatment’: p = 0.83; Figure 5D). In addition, vehicle-treated TS mice showed lower levels of TSH than vehicle-treated CO mice, and bexarotene increased the levels of this hormone in TS mice, while it reduced them in CO mice (‘karyotype’: p = 0.64; ‘treatment’: p = 0.37, ‘karyotype x treatment’: p = 0.002; Figure 5C).
DISCUSSION
Administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the MWM. Bexarotene treatment increased the freezing time in the contextual memory test and produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Although the administration of bexarotene reduced Aβ1-40 levels in the hippocampi of TS mice, it did not significantly modify these levels in the cortices, or the levels of Aβ1-42 in the cortices or hippocampi of TS or CO mice. Chronic bexarotene administration increased TSH levels in TS mice and reduced TSH levels in CO mice, while animals of both karyotypes displayed reduced T4 levels after bexarotene administration. Finally, chronic bexarotene treatment did not significantly modify the weight of the animals throughout the treatment. The mean weight of both groups of TS mice was lower, while bexarotene-treated CO mice displayed higher body weights.
In the present study, bexarotene administration impaired the cognitive abilities of aged TS mice with AD-like neuropathology in the MWM. In the fear conditioning test, bexarotene increased the freezing time of TS mice in the contextual memory test, which could be indicative of enhanced memory of the association between the context and the aversive stimuli. Previous studies on the effect of bexarotene in different mouse models of AD, including APP/PS1, APP/PS1ΔE9, APP/E3 and APP/E4, APP/PS1-21, Tg2576, Tg, and 3xTg-AD mice concluded that this molecule enhanced the cognitive abilities of these animals in different cognitive tests (i.e. the fear conditioning task, nest building, novel object recognition, the Radial-arm Water Maze task (RWM) and the MWM) (Cramer et al., 2012; Fitz et al., 2013; Landreth et al., 2013; Tesseur et al., 2013; Muñoz-Cabrera et al., 2020).
Cramer et al. (2012) proposed that the cognitive improvements exerted by bexarotene were due to the ApoE–dependent clearance of soluble Aβ peptides from the brain and the reduction of amyloid plaques. However, none of the aforementioned studies (Fitz et al., 2013; Landreth et al., 2013; Tesseur et al., 2013; Boehm-Cagan and Michaelson, 2014) were able to replicate this reduction in plaque burden. There is also controversy regarding the ability of bexarotene to reduce the Aβ load in the brains of these animals. While some studies found no reduction of Aβ levels after bexarotene treatment (Price et al., 2013; Tesseur et al., 2013), others (Fitz et al., 2013; Veeraraghavalu et al., 2013) found reductions similar to the ones reported by Cramer et al. (2012), indicative of the ability of this compound to enhance the clearance of these peptides. In the present study, we found a reduction of Aβ1-40 in the hippocampi of TS animals and a similar tendency in their cortices which did not reach statistical significance. No changes were induced by bexarotene in the levels of Aβ1-42 in the cortices or hippocampi of CO mice. Consistent with these results, O’Hare et al. (2016) did not find changes in any of these peptides in the cortices of a mouse model of AD. Furthermore, Veeraghavalu et al. (2013) reported a reduction of soluble Aβ1-40, but not of Aβ1-42 expression in the brains of APP/PS1 mice. It is possible that the different models used and differences in the methods of assessing Aβ load, the doses, the duration of the treatments, and the ages of the animals are responsible for these discrepancies.
Different mechanisms might also be responsible for the changes in the Aβ burden in those studies where it was evident. All of them reported that bexarotene acted on astrocytes inducing the expression of ApoE and ABCA1. Landreth et al. (2013) proposed that because the induction of these genes increases the production of ApoE-containing high-density lipoprotein (HDL) particles, which causes the proteolytic degradation of Aβ peptides, this thereby facilitated their clearance. These effects could be partially responsible for the cognitive benefits found after bexarotene administration in some studies.
Another putative mechanism for the bexarotene-induced cognitive improvement could be its beneficial effects on synaptic integrity. Tachibana et al. (2016) found that several key synaptic proteins that regulate plasticity (i.e., PSD95, Glutamate Receptor 1 (GluR1), and N-methyl-d-aspartate Receptor NR1 subunit (NR1)), which are reduced in aged animals, are restored in the brains of wild-type mice after bexarotene treatment. In addition, Muñoz-Cabrera et al. (2020) reported a recovery of basal synaptic transmission and synaptic plasticity in 3xTg-AD mice after bexarotene administration.
Neuroinflammation has been demonstrated to be both an inducer and a result of amyloid pathology in AD (Martínez-Cué and Rueda, 2020). Also, TS mice have an enhanced neuroinflammatory response; thus, changes in the levels of pro-inflammatory cytokines could play a role in the AD phenotypes present in these animals. Bexarotene has been demonstrated to reduce numerous pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-10, IL-12, IFN-γ, TNF-α, G-CSF, GM-CSF), while not affecting the levels of IL-17 A or IL1A in mice (Janakiram et al., 2012). A recent study demonstrated that TS mice present increased levels of IL-1β, IFN-γ, G-CSF, and IL-17A. The administration of an antibody against IL17-A normalized the levels of these cytokines, improved their cognitive abilities, reduced cellular senescence, and normalized Aβ-42 levels in the hippocampi of aged TS mice, but did not affect Aβ1-40 levels in the cortices or hippocampi of these animals (Rueda et al., 2018). Because of its ability to induce on its own or to work synergistically with IL1β and IFNγ to induce the expression of other pro-inflammatory cytokines (Korn et al., 2009; Meares et al., 2012; Zimmermann et al., 2018), IL-17A plays a prominent role in the induction of the neuroinflammation implicated in the onset of different hallmarks of AD, including the increase in Aβ load. Thus, the inability of bexarotene to reduce the expression of IL-17A may be partially responsible for its lack of effects on Aβ1-42 levels and/or to its failure to improve the cognitive abilities of TS mice found in the present study.
Several studies have also failed to find positive effects of bexarotene administration on the cognitive abilities of different models of AD. O’Hare et al. (2016) did not find any difference in the MWM between bexarotene- and vehicle-treated APPSwFILon, PSEN1*M146L*L286V, or between bexarotene- or vehicle-treated rats after the administration of Aβ species. Also, in these animals bexarotene did not exert any effect on their long-term potentiation. These results are partially consistent with our results. As mentioned above, in this study, chronic bexarotene treatment diminished the reference, working, and spatial learning and memory in aged TS mice, while it did not exert any effect on reference or working memory in CO mice and only diminished their spatial memory in the probe trial in the MWM. In agreement with these results, various different studies have failed to find any positive effect of bexarotene in different cognitive tasks performed in normal rodents such as the odor recognition test in C57Bl6 mice (Cramer et al., 2012), or the MWM for either B6SJ mice (O’Hare et al., 2016), or aged CD1 mice (Monroy et al., 2020). A putative explanation of the inconsistencies between these results and the ones reporting pro-cognitive effects of bexarotene was proposed by Tesseur et al. (2013). These authors stated that some side-effects of bexarotene may confound the interpretation of the cognitive tests. In their study, social recognition memory was improved after bexarotene treatment but in the retention test of the passive avoidance task, bexarotene-treated hAPP/PS1 mice showed longer step-through latency. This effect could be due to the reduced exploratory activity that they found in hAPP/PS1 mice after bexarotene treatment. Similarly, in the present study, we observed a marked reduction in the activity of bexarotene-treated TS mice in the open field, hole board, and plus maze tests. This hypoactivity might be responsible for the increased latency to reach the platform in the MWM during the acquisition sessions, and the increased freezing time in the fear condition test displayed by TS mice after bexarotene administration. Bexarotene-treated aged CO mice only presented reduced activity in the hole board and in the open field tests, which might be indicative of a slighter hypoactivity effect that could explain why their performance was not affected during the acquisition sessions in the MWM or the fear conditioning test. Monroy et al. (2020) did not find any effect of bexarotene on the locomotor activity of aged CD1 mice in a novel environment. Altogether, this might indicate that hypoactivity in normal rodents might be less marked and/or only detected in specific experimental conditions.
The percentage of time spent in each quadrant during the probe trial is a measure of spatial memory which is not dependent on the animals’ level of activity. The present study demonstrated a reduction of this type of memory in both TS and CO mice. Because PPARγ, LXR, and RXR receptors regulate ApoE expression by forming heterodimers with each other or with other nuclear receptors including Thyroid hormone receptor (TR) (Chawla et al., 2001; Szanto et al., 2001; Sussman and de Lera, 2005; Evans and Mangelsdorf, 2014), the modulation of these receptors induced by bexarotene might have induced alterations in thyroid regulation in those mice treated with bexarotene. Indeed, according to the Federal Drug Administration’s (FDA) approval status (Lowednthal et al., 2012), bexarotene can induce hypothyroidism. Thus, bexarotene-induced thyroid disorders may represent a putative mechanism for the cognitive deterioration observed in these animals after its chronic administration.
Individuals with DS have a higher incidence of thyroid dysfunction, including subclinical hypothyroidism, congenital hypothyroidism, and thyroid autoimmunities (such as Hashimoto’s disease or Grave’s disease) than the normal population (Whooten et al., 2018). Up to 24% of individuals with DS have subclinical hypothyroidism and are more likely to progress to overt hypothyroidism (Whooten et al., 2018). In the present study, although TS and CO mice under vehicle treatment showed similar levels of T4, TS animals presented lower levels of TSH than CO mice, which might indicate that under basal conditions, trisomic mice have subjacent thyroid alterations but not hypothyroidism. However, bexarotene increased the levels of TSH and reduced the levels of T4 in TS mice when compared to their vehicle-treated TS littermates, indicating that bexarotene was inducing primary hypothyroidism in these animals. In contrast to this data, the vast majority of studies in the literature had associated chronic administration of bexarotene with central hypothyroidism (Makita et al., 2019). In this regard, in the case of CO mice, bexarotene reduced the levels of both hormones, which suggests that these animals might be suffering from secondary hypothyroidism. Taken together, this suggests that thyroid disorders related to bexarotene administration may have different pathogenic mechanisms. Thus, differences in thyroid function might be partially responsible for the higher deterioration of cognition and behavior found in TS when compared with CO mice. Because hypothyroidism is associated with fatigue and attentional and memory dysfunctions, this side effect of bexarotene is a likely explanation for the diminished performance in the behavioral and cognitive tests found in the treated animals in this study.
Finally, another common symptom of hypothyroidism is weight gain, which could also have compromised the performance of the experimental animals. In rodent studies, bexarotene has been associated with weight loss (Tesseur et al., 2013; Tachibana et al., 2016), weight gain (Riancho et al., 2015), or lack of change in body weight (Fitz et al., 2013). In the present work, bexarotene did not significantly modify the bodyweight of TS or CO mice (data not shown). The different animal models used, their ages, the doses of bexarotene as well as the duration of its administration could be responsible for these discrepancies.
In conclusion, the administration of bexarotene diminished the performance of TS and CO mice in the MWM and produced a marked hypoactivity in the rodents. These effects are likely to be due to the induction of hypothyroidism, demonstrated by the reduced levels of T4 in TS and CO mice. Although the administration of bexarotene reduced Aβ1-40 levels in the hippocampi of TS mice, it did not significantly modify these levels in their cortices, or the levels of Aβ1-42 in the cortices or hippocampi of TS or CO mice. These results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
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GLOSSARY
Aβ β- amyloid;
AD alzheimer’s disease
ALS amyotrophic lateral sclerosis
ANOVA analysis of variance
ApoE apolipoprotein E
Bx bexarotene
CO control
CO Bx control bexarotene
CO Vh control vehicle
DS down syndrome
ECLIA electrochemiluminescence immunoassay
FDA federal drug administration
GluR1 glutamate receptor 1
HD head dippings
HDL high-density lipoprotein
LSD least significant difference
LXR liver X receptor
MWM morris water maze
NFT neurofibrillary tangles
NR1 N-methyl-D-aspartate receptor subunit 1 (NR1)
PPARγ Peroxisome Proliferator‐Activated Receptor‐c
RAR retinoid acid receptor
RM repeated measures
RXR retinoid X receptor
SAP stretch-attend postures
T4 thyroxine
TR thyroid hormone receptor
TS Ts65Dn
TS Bx Ts65Dn bexarotene
TSH Thyroid-stimulating hormone
TS Vh Ts65Dn vehicle
VDR vitamin D receptor
Vh vehicle
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Real-world healthcare data hold the potential to identify therapeutic solutions for progressive diseases by efficiently pinpointing safe and efficacious repurposing drug candidates. This approach circumvents key early clinical development challenges, particularly relevant for neurological diseases, concordant with the vision of the 21st Century Cures Act. However, to-date, these data have been utilized mainly for confirmatory purposes rather than as drug discovery engines. Here, we demonstrate the usefulness of real-world data in identifying drug repurposing candidates for disease-modifying effects, specifically candidate marketed drugs that exhibit beneficial effects on Parkinson’s disease (PD) progression. We performed an observational study in cohorts of ascertained PD patients extracted from two large medical databases, Explorys SuperMart (N = 88,867) and IBM MarketScan Research Databases (N = 106,395); and applied two conceptually different, well-established causal inference methods to estimate the effect of hundreds of drugs on delaying dementia onset as a proxy for slowing PD progression. Using this approach, we identified two drugs that manifested significant beneficial effects on PD progression in both datasets: rasagiline, narrowly indicated for PD motor symptoms; and zolpidem, a psycholeptic. Each confers its effects through distinct mechanisms, which we explored via a comparison of estimated effects within the drug classification ontology. We conclude that analysis of observational healthcare data, emulating otherwise costly, large, and lengthy clinical trials, can highlight promising repurposing candidates, to be validated in prospective registration trials, beneficial against common, late-onset progressive diseases for which disease-modifying therapeutic solutions are scarce.
Keywords: real-world, Parkinson’s disease, artificial intelligence, causal inference, rasagiline, zolpidem, disease modifying therapeutics, repurposing
INTRODUCTION
Repurposing of marketed drugs, i.e., the identification of novel indications for existing compounds, also known as drug repositioning, is an increasingly attractive prospect for drug developers and patients alike, given the ever-increasing costs of de novo drug development (Ashburn and Thor, 2004). The rationale underlying the practice of drug repurposing is supported by the demonstration, in a multitude of disease areas, of a drug’s mechanism of action and clinical utility for multiple indications, ranging from migraine to autoimmune diseases (Xiao et al., 2008; Yong and D’Cruz, 2008; Cha et al., 2018). While the majority of repurposed drugs have been identified through serendipity, recent years have witnessed growth in systematic efforts to identify new indications for existing drugs. These efforts include experimental screening approaches (Buckley et al., 2010; Deshmukh et al., 2013; Najm et al., 2015) and in silico approaches in which existing data are used to discover repurposing candidates [see (Cha et al., 2018) for in depth review of these methods]. Yet, key challenges in translating repurposing ideas into clinical applications have hampered progress along this otherwise promising avenue.
Assessing the efficacy of a drug for any indication requires a series of independent analyses reporting data from humans treated with said drug, traditionally acquired through clinical trials. In the last decade, new opportunities have emerged for acquiring clinical evidence in manners complementing clinical trials, with the growing availability of real-world data (RWD), specifically electronic health records (EHRs) and medical insurance claims data, together with the advent of state-of-the-art computational methodologies. EHRs record multiple health-related data types over time, including drug prescriptions, lab test results of varying nature, physician visits, and symptomology, allowing the relationships between these different features to be assessed. Medical insurance claims data, another form of health related RWD, capture complementary and partially overlapping information, including medical billing claims, enabling research of hospitalizations, doctor’s visits, drug prescription and purchasing, and clinical utilization. In the context of drug repurposing, there have been isolated attempts to use RWD in a confirmatory capacity, to support clinical incidental findings. For example, EHRs have been used to demonstrate an association between metformin and decreased cancer mortality (Xu et al., 2014), and combined EHRs and claims data have been used to support the protective potential of L-DOPA against age-related macular degeneration (AMD) (Brilliant et al., 2016). Here, we propose a novel approach in which, for the first time, retrospective RWD is used to “industrialize serendipity”. We therefore systematically emulate phase IIb studies for all concomitant medications used in a disease (for other than disease modifying purposes), in order to identify potential unexpected beneficial effects. Further, investigating the effects of related drugs, e.g., sharing target profile or mechanism of action (MoA), allows the extraction of mechanistic explanations for drug effect. These effects, once validated in multiple independent sources of RWD, provide robust evidence on drug effectiveness, tolerability, and safety, as well as mechanistic insight on disease modification. It is therefore envisaged that drug candidates identified in this manner will leapfrog into the registration trial phase, confirming aims stated in the United States 21st Century Cures Act (21st Century Cures Act, Pub. L. No. 114-255, 2016), and extending the European Medicines Agency (EMA) current use of RWD as an external control arm in rare disease clinical trials (Cave et al., 2019).
The complex nature and organ-inaccessibility of diseases related to the central nervous system (CNS) render them particularly attractive for an RWD-based approach of drug repurposing. For most CNS disorders, our understanding of pathology and underlying etiology is still limited, resulting in poor availability of appropriate, mechanistically relevant, animal models. Furthermore, clinical trials testing disease-modifying agents require lengthy and large studies, burdening the patient population and incurring high costs of development. Together, these limitations constrain the ability of field experts to rationally design drugs that target these devastating diseases. Thus, using RWD to robustly explore the relationship between various drugs and co-morbidities for which they are not prescribed can help mitigate the risk of lack of predictive animal models, alongside the lengthy clinical studies required to determine outcome in the human setting. An example of such an approach is described in Mittal et al. (2017). The authors used the Norwegian Prescription database to demonstrate that individuals prescribed salbutamol (Beta2-adrenoceptor agonist) had a lower incidence of Parkinson’s disease (PD), while those prescribed propranolol (Beta2-antagonist) exhibited higher PD incidence. However, investigation of disease progression or severity was not pursued.
PD is one of the most common neurodegenerative disorders, affecting one to two in 1,000 individuals worldwide and 1% of the population above 60 years of age (Tysnes and Storstein, 2017). To-date, no disease-modifying agents are approved for PD (Lang and Espay, 2018), highlighting the need and potential for novel approaches utilizing RWD to bring new therapies to late development stages, and thus quickly and effectively to PD patients. One of the hallmark clinical pathologies of PD progression is PD dementia (PDD) (Hely et al., 2008). An estimated 30–80% of PD patients experience dementia as their disease progresses, typically within 10 years of disease onset (Hely et al., 2008; Aarsland and Kurz, 2010; Hanagasi et al., 2017). It is therefore imperative to identify effective disease-modifying therapeutic agents (Aarsland and Kurz, 2010; Meireles and Massano, 2012). In this study, we used, for the first time, RWD from both EHRs and claims data to identify drugs associated with decrease in progression into PDD, as candidates for disease modification of PD. We applied a novel analytical framework of multiple, hierarchical “emulated PhIIb clinical trials”, an approach that inherently proposes mechanistic rationale for these drugs.
METHODS
Study Design
We used the drug repurposing framework (Ozery-Flato et al., 2020), emulating a PhIIb randomized controlled trial (RCT) for each candidate drug, combining subject matter expertise with data-driven analysis, and applying a stringent correction for multiple hypotheses. Specifically, each emulated RCT compared PD patients who initiated treatment with either the studied drug (treatment cohort) or an alternative drug (control cohort). We follow the target trial emulation protocol described by Hernán and Robins (2016), which includes the following steps: define the study eligibility criteria; assign patients to treatment and control cohorts; list and extract a comprehensive set of per-patient baseline covariates; list and extract follow-up disease-related outcome measures; and, finally, use causal inference methodologies (Hernan and Robins, 2020) to retrospectively estimate drug effects on disease outcomes, correcting for confounding and selection biases. We next elaborate on each of these protocol components.
Data Sources
We analyzed two individual-level, de-identified United States-based medical databases. The IBM Explorys Therapeutic Dataset (“Explorys”; freeze date: August 2017) includes medical data of >60 million patients, pooled from multiple healthcare systems, primarily clinical EHRs. The IBM MarketScan Research Databases (“MarketScan”; freeze date: mid 2016) contain healthcare claims information from employers, health plans, hospitals, Medicare Supplemental insurance plans, and Medicaid programs, for ∼120 million enrollees between 2011 and 2015.
Eligibility Criteria
Patients were included in the PD cohort based primarily on diagnosis codes (Supplementary Table S1), using the International Classification of Diseases (ICD) system (ICD-9 and ICD-10). We required a repeated PD diagnosis on two distinct dates and excluded patients with secondary parkinsonism or non-PD degenerative disorders. We further excluded early onset (age <55 years) PD, as their disease trajectory and clinical profiles are different than those of late-onset patients (Laperle et al., 2020), and patients with metastatic tumors or those ineligible for prescription drugs through their medical insurance plans. PD initial date was set to the earliest date of first PD diagnosis or a levodopa (an approved symptomatic therapy for PD, compensating for the depleted supply of endogenous dopamine; as levodopa is indicated for PD only, an earlier levodopa prescription suggests that PD diagnosis has already been assigned and is supposedly missing in our dataset) prescription within the year preceding the first diagnosis of the disease. Since PD is likely present and could have been diagnosed before the first diagnostic or prescription record, we retracted the disease date by additional six months. We only included patients whose PD initial date preceded the date of treatment assignment, which we termed index date. To ensure accurate characterization of a patient’s clinical state, we required data history of at least one year prior to the index date. Finally, we excluded from the control cohort patients who were prescribed the trial drug.
Treatment Assignment
For both treatment and control cohorts, we demanded the assigned treatment to have at least two prescriptions at least 30+ days apart. To avoid confounding by indication, we considered alternative drugs that shared the same (or similar) therapeutic class. Specifically, we first compared each studied drug to drugs taken from its second level Anatomical Therapeutic Chemical (ATC) (World Health Organization, 2020) class. Then, for each drug candidate showing a significant beneficial effect across the two databases, we expanded the analysis to control cohorts corresponding to ATC classes of all levels.
Outcomes and Confounders
The primary endpoint was newly diagnosed dementia during a follow-up period of two years (starting at the index date), censoring patients when their assigned treatment ended (e.g. follow-up time in MarketScan data was, on average, 14.3 and 10.3 months for rasagiline and zolpidem respectively). Patients with a dementia-related diagnosis at baseline were excluded. Other supporting endpoints considered were falls and psychosis prevalence (see Supplementary Table S3 for defining ICD codes). We extracted hundreds of pre-treatment patient characteristics (Ozery-Flato et al., 2017) (throughout the one year preceding the index date), covering those identified by a subject matter expert as potentially associated with confounding or selection bias. These included demographic attributes, comorbidities (Clinical Classifications Software (CCS), 2015; Charlson et al., 1987) PD-related diagnoses, PD-related drugs, non-PD drugs, healthcare services utilization and socioeconomics parameters (Table 1). The extracted covariates provide a multifaceted view of a patient’s PD status at the index date, as manifested in the medical records of the patient prior to RCT initiation.
TABLE 1 | Pre-treatment patient characteristics (considered as potential confounders).
[image: Table 1]Statistical Analysis
The effect of the trial drug on disease progression was evaluated as the difference between the expected prevalence of the outcome event for drug-treated patients and that in control patients during a complete follow-up period. Briefly, we corrected for potential confounding and selection biases, using two conceptually different causal inference approaches: 1) balancing weights, via Inverse Probability Weighting (IPW) (Austin, 2011), which reweighs patients to emulate random treatment assignment and uninformative censoring; and 2) outcome model, using standardization (Hernan and Robins, 2020) to predict counterfactual outcomes. We considered a confounder as balanced if the standardized mean difference between (weighted) treatment and control cohorts was below 0.2. We analyzed Explorys and MarketScan separately and focus here on the overlapping, statistically significant, candidates. This stringent approach bypasses the need to arbitrarily set aside one database as “confirmatory” and it extends more straightforwardly to >2 data resources. Finally, we used Benjamini and Hochberg's (1995) method to correct for multiple hypothesis testing and considered adjusted p-values ≤ 0.05 as statistically significant. For a full description of the RWD-based drug repurposing framework see our methodological paper (Ozery-Flato et al., 2020). Ground truth effects (that is, RCT-validated) are typically unavailable for drug repurposing candidates; notably, however, the estimated effects showed significant correlation across different algorithms and data sources (adjusted p-value < 0.05 for all comparisons across outcomes, databases, and causal inference algorithms), attesting to the robustness of the framework.
RESULTS
We first extracted cohorts of late-onset PD patients comprising approximately 106,000 and 89,000 patients in MarketScan and Explorys, respectively, representing 0.09 and 0.15% of the total databases and consistent with recent epidemiological surveys (Tysnes and Storstein, 2017). Key characteristics of these separate cohorts (Table 2) exhibit high similarity in the average and range of age at PD initial date, the percentage of women, the fraction of patients with public insurance, and the baseline Charlson comorbidity index (Charlson et al., 1987). Notable dissimilarities between the two cohorts include the average total patient time in database, which was more than double in Explorys compared to MarketScan (Table 2). This dissimilarity stems from the different timespan covered in general by the two databases (average total patient timeline of 4.7 ± 17.4 years in Explorys vs. 2.2 ± 1.6 years in MarketScan). We note that for most patients, PD initial date does not correspond to disease onset, which is often unknown and may precede the observed time period. Nevertheless, ascertainment of PD status at the index date can be reliably characterized by triangulation of the patient’s history of PD-related diagnoses, PD medications, and healthcare utilization. In our two PD cohorts, dementia was the most prevalent PD-related diagnosis (7.6–9.2%) at PD initial date, followed by fall and psychosis (1.4–4.1%).
TABLE 2 | PD cohort characteristics.
[image: Table 2]Overall, we tested all (n = 218) drugs whose treatment and control cohorts had each at least 100 PD patients in both MarketScan and Explorys. We used this lower bound since many phase IIb and III clinical trials, including those pursued in neurological indications, find 100 or less patients per arm to be satisfactory. Of these, we were able to balance all observed confounding biases between the treatment and control cohorts (using IPW, see Methods) for 205 drugs (94%). Consequently, for each such drug we emulated a two-year RCT, estimating its effect on the population-level prevalence of newly diagnosed dementia, in comparison to the level-2 Anatomical Therapeutic Chemical (ATC) control cohort. Using two independent causal inference methods, outcome model and balancing weights, our analysis identified, in both data sources, two candidate drugs estimated to significantly reduce dementia prevalence: rasagiline and zolpidem (see cohort characteristics in Supplementary Tables S4–S7).
Details of the emulated RCTs, estimating the effect of these drugs compared to their corresponding control ATC level-2 class, are shown in Supplementary Tables S8, S9. Figure 1 shows the prevalence of newly diagnosed dementia in the treatment and control cohorts throughout the follow-up period. Consistently, rasagiline is estimated to decrease the prevalence of newly diagnosed dementia during a follow-up period of two years by 7–9%, compared to symptomatic PD drugs. Similarly, zolpidem, compared to the class psycholeptics drugs, reduces dementia prevalence by 8–12%. Moreover, for both rasagiline and zolpidem, drug effect increases as a function of treatment duration (Figure 1). We emphasize that in these emulated RCTs, as well as the ones discussed below, the causal methodology we applied successfully balanced the treatment and control cohorts with respect to all hypothesized confounders (Table 1), suggesting that important characteristics of these cohorts, including age and proxies of disease stage, are now similar.
[image: Figure 1]FIGURE 1 | Rasagiline and zolpidem significantly delay the onset of dementia in PD patients in two independent datasets. Kaplan-Meier plots comparing the prevalence of newly diagnosed dementia in the treatment and control cohorts, corrected with inverse probability weighting (IPW, dark color), or uncorrected (light color). Red and blue lines show the expected percentage of patients not yet diagnosed with dementia at each time point among the patients who take the drug and among the patients who take other ATC level 2 drugs (N04: symptomatic PD drugs; N05: Psycholeptics), respectively. The difference between each pair of red and blue lines correspond to the expected effect of the drug.
Next, we expanded the analysis to consider all four ATC levels that include each drug, corresponding to anatomical main group (level 1), therapeutic subgroup (level 2), pharmacological subgroup (level 3), and chemical subgroup (level 4). Specifically, we compared each drug against all its encompassing ATC classes and additionally, each encompassing ATC class against all upper-level classes in the ATC hierarchy. The resulting set of RCTs estimates the effect of a target drug against drugs sharing its MoA e.g., rasagiline vs. other monoamine oxidase (MAO) B inhibitors, ATC class N04BD), as well as drugs conferring different MoAs, (e.g. MAO B inhibitors, N04BD, vs. other dopaminergic agents, N04B), thus testing a set of related mechanistic hypotheses. This can also be viewed as sensitivity analyses for the effect of a target drug. Supplementary Table S11 shows the complete results of these emulated RCTs.
ATC level-4 class N04BD, MAO B inhibitors, included only two drugs: rasagiline and selegiline. Therefore, the rasagiline vs. N04BD emulated trial is essentially a head-to-head comparison between these two drugs. The results of the emulated trials in both MarketScan and Explorys suggest that the use of rasagiline reduces the prevalence of dementia compared to selegiline (Table 3; estimations using outcome model are significant). When compared to higher level ATC classes – specifically, dopaminergic agents, symptomatic PD drugs, and nervous system medications – all dominated by levodopa (77–82% of first prescriptions), rasagiline is estimated to significantly decrease dementia prevalence by 5–9% in both databases, using either causal inference approach (Table 3, and Supplementary Table S8). We also estimated the effect of rasagiline on the prevalence of falls and psychosis: In MarketScan, rasagiline is estimated, by both causal inference algorithms, to decrease the population prevalence of falls compared to all its encompassing ATC classes; in Explorys, rasagiline is estimated to have a beneficial effect on the prevalence of psychosis (but only a subset of these estimands were significant).
TABLE 3 | Rasagiline significantly attenuates PD progression.
[image: Table 3]Zolpidem was estimated to have significant and beneficial effects on the prevalence of dementia only in comparison to its level-2 ATC class, psycholeptics (Table 4, and Supplementary Table S9). The analysis in MarketScan suggests that zolpidem has a beneficial effect compared to other hypnotics and sedatives (N05C), but the different composition of the N05C control cohort in Explorys (dominated by midazolam) hinders conclusive results. Zolpidem was also estimated to have beneficial effects on the prevalence of falls and psychosis, compared to psycholeptics, but these effects were not significant.
TABLE 4 | Zolpidem significantly attenuates PD progression.
[image: Table 4]DISCUSSION
The present study used both EHRs and insurance claims data to assess the effects of hundreds of concomitant drugs on the emergence of PD-associated dementia as one of the more common hallmarks of PD progression. Only those drugs for which a statistically significant effect was found independently in both EHR and claims data were further considered for their repurposing potential. Given the different nature of the data collected with each health data source and stringent statistical approach, the resultant repurposing candidates have a high likelihood of success in a phase III prospective study. Our analysis unraveled therapeutic benefits of two drugs in decreasing the population-level incidence of PDD, representing slowing of PD disease progression. Thus, long-term treatment (24 months) with rasagiline, a MAO-B inhibitor narrowly indicated for PD motor symptoms, or with zolpidem, a gamma-aminobutyric acid (GABA)-A receptor modulator indicated for insomnia, is strongly associated with decreased PDD incidence in two separate large cohorts (N = 195,262 in total). Indeed, the mechanistic, and at times clinical, support for the identified associations, as described below, not only reinforces the approach in identifying new drug repurposing candidates, but also serves as a vehicle to bolster otherwise ambiguous results from RCTs. We note that in a similar analysis we also found azithromycin and valsartan to significantly decrease the prevlence of falls and psychosis, respectively, in PD patients, but without significantly reducing the rate of dementia onset; discussion of these drug repurposing candidates is beyond the scope of the current publication.
Cognitive impairment is highly prevalent in patients with progressive stages of PD and is associated with adverse health outcomes and increased mortality (Bäckström et al., 2018). Slowness in memory and thinking, stress, medication, and depression can contribute to these changes. Cognitive deficits vary in quality and severity in different stages of disease progression in PD, ranging from subjective cognitive decline to mild cognitive impairment and to subsequent PDD. The latter is defined as acquired objective cognitive impairment in multiple domains, including attention, memory, executive and visuospatial ability (Emre et al., 2007), and results in adverse alteration of activities of daily life (American Psychiatric Association, 2013). In a study of 224 Norwegian PD patients (Aarsland et al., 2003), for whom disease duration was 9 years on average, the estimated 4-years and 8-years prevalence of dementia was 51.6 and 78.2% respectively. In another study that followed 136 newly diagnosed PD patients for 20 years (Hely et al., 2008), dementia was present in 83% of 20-years survivors. A single choline esterase inhibitor, rivastigmine, is approved by the United States Food and Drug Administration (FDA) for the treatment of PDD, with modest efficacy (Meng et al., 2018) resulting in a significant unmet medical need for additional pro-cognitive therapies (Green et al., 2019).
Our finding that rasagiline slows PD progression is consistent with mechanistic evidence and extends prior clinical data. Clinical trials of rasagiline in PD patients implied possible disease-modifying effects, albeit inconclusively. Indeed, none of the studies reported to-date had the statistical power to support or refute slowing the progression of the disease. The largest study to assess disease-modifying effects of rasagiline was ADAGIO (Olanow et al., 2009), which failed to demonstrate a dose-dependent effect on the Unified Parkinson’s disease Rating Scale (UPDRS) scores. This failure may be partly due to insufficient statistical power: the total number of participants in the ADAGIO study was N = 1,176, much smaller than in our study (N = 13,562 in Explorys; N = 13,373 in MarketScan; See Table 3). Additionally, the ADAGIO study did not directly assess effects of rasagiline on cognition, and the follow up study (Rascol et al., 2016), which compared early vs. delayed start of rasagiline, evaluated cognitive decline through UDPRS and clinical milestone proxies rather than confirmed dementia. A secondary analysis of the NET-PD Long-term Study-1 (LS1) (Hauser et al., 2017) identified significant association between longer duration of MAO-B inhibitor exposure (rasagiline monotherapy, N = 586) and less clinical decline, supporting the possibility of slowing clinical disease progression. The study did not observe any effect on the Symbol Digit Modalities Test for cognitive function, and the authors speculated this could be explained by the fact that incidence of cognitive impairment and progression was generally limited. Several recent studies addressed this hypothesis more directly, but were small (N = 34-151) and short (3–6 months), yielding mixed results (Hanagasi et al., 2011; Frakey and Friedman, 2017). A larger study (N = 289 completers) assessed similar, but distinct effects of rasagiline as add-on therapy (Hauser et al., 2014), reporting a statistically significant improvement when added to dopamine agonist therapy over 18 months of therapy. Another study, MODERATO (N = 170) (Weintraub et al., 2016), concluded that rasagiline treatment in PD patients already diagnosed with mild cognitive impairment was not associated with cognitive improvement. Importantly, many of the prior reports sought to demonstrate disease prevention/protection in as-yet-to-be-diagnosed patients, while we studied patients with confirmed PD diagnosis, but no dementia. Due to this important distinction, it can be expected that the class and specific agents reported, e.g., by Mittal et al. (2017), to decrease (or increase) PD incidence did not show, in our analysis, similar effects. Overall, inadequate power and diverse study designs reported to-date hampered conclusive therapeutic interpretation of the role of rasagiline, and the monoamine B class, as PD disease modifiers. Indeed, our approach directly resolved these shortcomings, dramatically increasing sample size and follow-up duration by virtue of the use of RWD, facilitating the discovery of rasagiline’s robust and consistent disease-modifying effects. Importantly, our analysis of proxy parameters supports the beneficial effects of rasagiline on PD progression beyond PDD, as reflected by a decrease in the population prevalence of falls and the trend reduction of psychosis (data not shown).
Mechanistically, rasagiline has been suggested to have neuroprotective effects mediated by its ability to prevent mitochondrial permeability transition (Naoi and Maruyama, 2009). In addition, rasagiline induces anti-apoptotic pro-survival proteins, Bcl-2 and glial cell-line derived neurotrophic factor (GDNF) and increases expression of genes coding for mitochondrial energy synthesis, inhibitors of apoptosis, and the ubiquitin-proteasome system. Finally, systemic administration of selegiline and rasagiline increases neurotrophic factors in cerebrospinal fluid of PD patients and non-human primates (Naoi et al., 2007). These rasagiline-induced effects may constitute endogenous compensatory mechanisms that delay or reverse disease progression, a previously suggested approach for disease modification in PD in general, and specifically in the context of rasagiline therapy (Brotchie and Fitzer-Attas, 2009).
The association between zolpidem, a non-benzodiazepine hypnotic drug used for the treatment of sleeping disorders, and decreased PDD incidence identified herein is a novel finding. In fact, a single prior report published more than 2 decades ago speculated that zolpidem would not be efficacious for PD, based on the limited clinical experience with the drug at the time, without specific consideration for cognition (Lavoisy and Marsac, 1997). However, recent publications demonstrate zolpidem’s ability to treat a large variety of neurologic disorders, most often related to movement disorders and disorders of consciousness, and suggest zolpidem induces transient effects on UPDRS (Bomalaski et al., 2017). Of note, several cross-sectional reports have raised concerns for increased risk of reversible dementia or Alzheimer’s diseases in the general population when exposed to zolpidem (Shih et al., 2015; Lee et al., 2018), and several others raised a concern for PD emerging after long-term zolpidem treatment (Yang et al., 2014; Huang et al., 2015). However, these reports considered only a handful of potential confounding biases, observed seemingly conflicting dose effects and applied regression-based methods, which unlike IPW, do not allow one to determine whether treatment and control biases were successfully eliminated (Austin, 2011). Furthermore, neither report assessed impact on specific patient subsets, such as those diagnosed with PD. Indeed, a proof-of-concept clinical study is currently recruiting subjects in order to assess the benefits of low-dose zolpidem in late-stage PD (NCT03621046), supporting the findings reported herein. Yet again, the limited sample size (N = 28) in the recruiting study, together with the inclusion of cognition as a secondary (rather than primary) endpoint both pose a high risk for insufficient power and thus inconclusive results. Finally, latest literature reports on beneficial effects of zolpidem on renal damage and akinesia (Bortoli et al., 2019) support a high benefit-risk profile of repurposing zolpidem for slowing or reversal of PD.
Mechanistically, zolpidem is unique compared to other sedative-hypnotics and has been found to be a selective agonist of the ω1 receptor subtype of the GABA A receptor complex. Areas rich in these receptors include the output structures of the basal ganglia and striatum to the thalamus and motor cortices, key areas implicated in PD (Bomalaski et al., 2017). In addition, a structural relationship between the antioxidant melatonin and zolpidem suggests possible direct antioxidant and neuroprotective properties of zolpidem. García-Santos et al. (2004) demonstrated that zolpidem prevented induced lipid peroxidation in rat liver and brain homogenates, showing antioxidant properties similar to melatonin. Bortoli et al. (2019) investigated in silico the antioxidant potential of zolpidem and identified it as an efficient radical scavenger similar to melatonin and trolox. Although the mechanisms involved in the pathogenesis and progression of PD are not fully understood, there is overwhelming evidence that oxidative stress plays an important role in dopaminergic neuronal degeneration. Since the maintenance of reduction-oxidation reaction potential is an important determinant of neuronal survival (Puspita et al., 2017), its disruption ultimately leads to cell death. Accumulating evidence from patients and disease models indicate that oxidative and nitrative damage to key cellular components is important in the pathogenesis of PD progression (Vera et al., 2013). Oxidative stress plays an important role in dopaminergic neuronal degeneration, triggering a cascade of events, including mitochondrial dysfunction, impairment of nuclear and mitochondrial DNA, and neuroinflammation, which in turn cause more reactive-oxygen species (ROS) production (Guo et al., 2018), evident also by genetic forms of PD, caused by mutations in PARK7, PINK1, PRKN, SNCA and LRRK2 (Vera et al., 2013). Thus, the protective effects of zolpidem on the development of dementia could be explained by the antioxidant and neuroprotective capacities of the drug.
Rasagiline and zolpidem are supported here as promising candidates for disease-modifying treatment in PD, likely through neuroprotective effects constituting compensatory mechanisms in the disease. It is anticipated that use of such drugs will require subsequent supplemental symptomatic therapy for motor symptoms, depending on the specific patient manifestation.
In a preliminary method development study (Ozery-Flato et al., 2020), we validated the drug repurposing framework used here. We had demonstrated that treatment effects estimated across different data sources and causal methodologies showed a high degree of agreement (p-value < 0.05 for all comparisons). Yet, the retrospective design of the study, combined with the use of RWD, introduces some limitations. Specifically, identifying phenotype cohorts based on ICD codes is likely to be incomplete (sensitivity <1) and noisy (positive predictive value, PPV <1). None withstanding, it is considered a fairly accurate and practical approach to “rule in” patients with PD (Noyes et al., 2007). Corroborating these assignments by medical history and drug prescriptions further substantiated patients’ eligibility. Additionally, proxies with reliable representation in the data are required to emulate the endpoints otherwise used in prospective clinical trials and need to be further assessed and refined in a controlled clinical environment (Shivade et al., 2014). Still, automatic mapping of EHR data to phenotypes and medical concepts needed for clinical research has gained much attention, yielding multiple studies that demonstrate the increasing ability of machine learning and artificial intelligence to provide accurate solutions for this challenge (Hripcsak and Albers, 2013; Ho et al., 2014; Beaulieu-Jones and Greene, 2016; Lipton et al., 2017). Conversely, the mechanistic nature of the drug effects, and therefore potential utility in combination therapy for synergistic effects, require further assessment in a dedicated prospective study, consistent with the drug development paradigm. In addition, while RWD used in a retrospective manner enables the assessment of chronic processes, without the need for lengthy studies, they are bound by the length of follow-up data per individual. Finally, local healthcare practice may at times confound the analysis and requires in-depth understanding of such practices in data interpretation (Hersh et al., 2013).
Notwithstanding these limitations, discoveries stemming from RWD of large, well-characterized patient populations can provide valuable clues to effective mechanisms and existing medications that may be beneficial in slowing disease progression, or potentially preventing it altogether. In the realm of CNS-related diseases, the extensive follow-up integral to medical-record tracking presents a well-suited setting for investigating the effects of concomitant interventions. Our two-year follow-up period is longer compared to most PD clinical trials, including the ones discussed above, and can be further prolonged in Explorys (see timeline statistics in Table 2). The EMA has already employed RWD in lieu of control arms to support regulatory decisions either at authorization or for indication extension, in the context of rare, orphan diseases (Cave et al., 2019). Similarly, the 21st Century Cures Act (21st Century Cures Act, Pub. L. No. 114-255, 2016) requires that the FDA establish a framework to evaluate the potential use of RWD in support of approval of new indications for approved drugs. In fact, successful examples are already being implemented (Baumfeld Andre et al., 2019). Accordingly, the FDA allotted $100 million to build an EHR database of 10 million people as a foundation for more robust postmarketing studies. The current study provides evidence in support of such uses for RWD, accelerating the availability of solutions for patients in need.
In conclusion, we demonstrate that emulating clinical trials based on observational healthcare data identifies promising repurposing drug candidates, efficiently relieving the societal burden of costly, large, and lengthy clinical trials. This approach is particularly relevant as a therapeutic discovery engine for common, late-onset progressive CNS diseases for which disease-modifying therapeutic solutions are scarce. As the PD population is heterogenous, refining the inclusion/exclusion criteria of the targeted sub-populations to focus on responder populations, compared to matched controls, will further increase the power of future analyses (Ozery-Flato et al., 2018). The two drugs identified herein, rasagiline and zolpidem, both hold great promise as disease-modifying agents for PD, in general, and specifically in addressing aspects of cognitive impairment in PD. Further, these cognitive benefits may extend to other neurodegenerative diseases. The ability to systematically compare effects between various drug classes, as well as within classes, in patients in real-world settings is a significant step in accelerating patients’ access to safe and efficacious therapies.
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Repurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience. This article provides a comprehensive overview of the actions of ketamine and intends to cover: (i) the evaluation of its clinical use in the treatment of depression and suicidal behavior; (ii) the potential use of ketamine in pediatrics; (iii) a description of its mechanism of action; (iv) the involvement of specific brain areas in producing antidepressant effects; (v) the potential interaction of ketamine with the hypothalamic-pituitary-adrenal axis; (vi) the effect of ketamine on neuronal transmission in the bed nucleus of stria terminalis and on its output; (vii) the evaluation of any gender-dependent effects of ketamine; (viii) the interaction of ketamine with the inflammatory processes involved in depression; (ix) the evaluation of the effects observed with single or repeated administration; (x) a description of any adverse or cognitive effects and its abuse potential. Finally, this review attempts to assess whether ketamine’s use in depression can improve our knowledge of the etiopathology of depression and whether its therapeutic effect can be considered an actual cure for depression rather than a therapy merely aimed to control the symptoms of depression.
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INTRODUCTION

Ketamine was originally used as an anesthetic drug in the 60s (Domino et al., 1965), but soon after, its widespread diffusion as a recreational drug posed a serious and continuing concern (Liao et al., 2017). At the beginning of this century ketamine was brought to general attention for its capacity to overcome the delay of the therapeutic action of standard antidepressants, which is one of the major problems in depression therapy (Berman et al., 2000). The fast action of ketamine has produced a vast number of reports that have tried to scrutinize several aspects of the intriguing mechanism of action of this drug on depression. Undoubtedly, the repurposing of ketamine in the therapy of depression has opened up a whole new arena in a field where the monoamine reuptake blockers have, for about 50 years, represented the go-to therapy for depression and correlated illnesses such as anxiety and post-traumatic stress disorder (PTSD).

On the other hand, the still poorly understood etiopathology of depression is reflected in the incomplete knowledge of the delayed therapeutic effect of conventional antidepressants, as well as by the poor results in a high percentage of patients, in fact, approximately only two-thirds show a marked decrease in depressive symptoms (Rush et al., 2006). Above all, the lack of an adequate animal model of depression has largely hindered the research in this field. In such a scenario, understanding ketamine’s mechanism of action has the potential to markedly improve the knowledge of the etiology of depression and may lead the way to selecting new, more efficacious and safer antidepressants (Harmer et al., 2017; Chaki, 2017). Understanding the role of reduced glutamate (NMDA) transmission in the antidepressant effects of ketamine is not an easy task because this transmission plays a key role in most brain areas and involves several other neurotransmitters (Murrough et al., 2017); this picture is complicated by the fact that also ketamine metabolites may play a role in its rapid antidepressant action (Zanos and Gould, 2018; Yang C. et al., 2018). In addition, it is necessary to consider that other pathways, whether or not directly related to NMDA receptor-mediated transmission, such as AMPA, BDNF, eEF2, glycogen synthase kinase 3 (GSK-3β), and mammalian target of rapamycin complex 1 (mTORC1), may be specifically implicated in the antidepressant actions of ketamine (Strasburger et al., 2017). Among the effects that ketamine induces, it seems possible to distinguish very early effects that may be common to the stimulating actions of ketamine, and enduring effects that may be more easily framed in its antidepressant actions. These effects may acquire relevance in depressed patients because they occur in a background of altered synaptic connectivity (Duman et al., 2019). In this review we will discuss ketamine’s mechanism of action in relation to the brain areas that may be targeted to produce antidepressant effects. We will specifically discuss the relationship between ketamine and brain circuitry involved in stress and in depression therapy, with the aim of shedding light, not only on the etiology of depression, but also on the development of potential new therapies for its treatment.



BRIEF INTRODUCTORY NOTE ON DEPRESSION

Major depression is a frequent psychiatric disorder depicted as a subjective multifactorial distress; it affects overall 6% of population and has a high societal cost (Malhi and Mann, 2018). Although the etiology of depression is still undefined, the view that it may emerge from the interaction of genetic and epigenetic factors is widely accepted (Lopizzo et al., 2015). Despite this, the way this interaction could functionally affect neuronal circuitry is still debated, as is the precise role that specific neurotransmitters and mediators play in depression (Feder et al., 2009). Among epigenetic factors, juvenile traumas, adolescent stress and family frictions, and their interaction with genetic predisposition, may trigger the appearance of depression disorder (Mandelli et al., 2015). Alternatively, a genetic susceptibility can be maintained submersed by family and environmental protective conditions; likewise a genetic resilience predisposition can compensate for a genetic susceptibility (Han and Nestler, 2017; Uchida et al., 2018). Although an enduring effort has been accomplished to identify one or more specific brain areas that govern the development of depression, the complexity of its pathogenesis and the limited response to classic antidepressants have hindered the achievement of fully satisfactory results. Nevertheless, the investigations on the role of excitatory neurotransmission in brain (Thompson et al., 2015) and the rapid increase in reports evaluating the antidepressant actions of ketamine (Ionescu et al., 2021) have definitively improved the knowledge about the brain areas and circuitry involved in depression and the effects of antidepressants. In separate paragraphs, below we will discuss the role of the main brain areas involved in depression and in the actions of ketamine, the mechanism of action of ketamine and some differences between ketamine’s effects and that of classic antidepressants.



BRIEF KETAMINE’S HISTORY AND FEATURES

Ketamine is an arylcycloexylmine (Figure 1) that has been synthetized in the 60s as a derivative of phencyclidine (McCarthy et al., 1965); approved as an anesthetic drug in the 70s, ketamine has soon encountered a wide abuse as an illegal drug (Liao et al., 2017). Later, ketamine’s use has been extended to analgesia for acute, chronic pain and cancer pain, and to the treatment of addiction (Jonkman et al., 2017; Jones et al., 2018). The typical dissociative effect of ketamine, observed in patients and street users, encouraged scientists to explore its complex mechanism of action and its interaction with the CNS (Tyler et al., 2017). Ketamine is water-soluble anesthetic approved for specific pediatric procedures and for adult patients at risk for hypotension (Dahmani et al., 2011; Marland et al., 2013); this indication may be justified by the fact that ketamine increases the blood pressure, heart rate and cardiac output, although an action mediated by central and peripheral catecholamine reuptake inhibition is debated (Graf et al., 1995; Liebe et al., 2017; Szarmach et al., 2019). Ketamine rapidly produces a hypnotic state, profound analgesia and anesthesia, without reducing breathing act. Ketamine is a bronchodilator and is particular indicated for patients at risk for bronchospasm (Golding et al., 2016). Moreover, it produces amnesia, although the eyes may stay open, and may cause spontaneous limb movement, causing a condition defined “dissociative anesthesia” (Marland et al., 2013). Moreover, ketamine can interact with the opioid system reducing the development of tolerance induced by the long-term use of morphine (Jones et al., 2018).
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FIGURE 1. Chemical structure of ketamine stereoisomers and metabolites that can be formed following ketamine infusion in humans.


The use of ketamine is associated with several side effects that make the patient evaluation unsatisfactory; among them can be observed hallucinations, intense dreams, delusions and emergence delirium that can respond to benzodiazepine treatment, (Molero et al., 2018). Overall, ketamine is considered a satisfactory anesthetic; therefore the repurposing of ketamine as a fast-acting antidepressant has been a true breakthrough (remarkably, significant antidepressants effects are observed within 24 h). However, ketamine’s approval by FDA has been the culmination of an extensive research that has investigated the role of glutamate transmission in depression pathophysiology and therapy for more than 20 years (Murrough et al., 2017). Interestingly, as early as 1999, ketamine has been shown to possess effects overlapping those of imipramine in animal model of depression (Chaturvedi et al., 1999); these antidepressant-like effects in rodents were widely reproduced later and 10 mg/kg of (R,S)-ketamine was the most frequently used dose (Polis et al., 2019). The first report demonstrating the rapid antidepressant effect of ketamine dates back in 2000 (Berman et al., 2000); in particular, these authors reported a significant improvement in depressive symptoms within 72 h after infusion of ketamine, but not placebo, in drug-free patients who had not taken any medication for at least 2 weeks. Later, the safety and the efficacy of repeated ketamine i.v. infusion (0.5 mg/kg, 40 min), were demonstrated by several studies in TRD patients (e.g., aan het Rot et al., 2009; Murrough et al., 2013). Similar results were obtained in a randomized controlled trial by administering intranasal ketamine (50 mg), (Lapidus et al., 2014). Given this unique property of ketamine, its approval has provided an alternative or a complementary treatment to classic antidepressant drugs in the therapy of depression. In fact, classic antidepressants, mostly monoamine reuptake inhibitors, are characterized by a delay of several weeks to months before clinical improvement is observed; in addition, a substantial proportion of major depression disorder (MDD) patients do not respond to reuptake inhibitors (Ferrari and Villa, 2017). Patients who do not respond to two or more antidepressant treatments are classified as treatment resistant depression (TRD), and are considered the patients of choice for ketamine’s therapy (Mrazek et al., 2014).



ESKETAMINE: CLINICAL USE IN DEPRESSION

Accumulating evidence implies that N-methyl-D-aspartate (NMDA) receptor antagonism by ketamine produces rapid and sustained antidepressant activity in TRD patients (Sattar et al., 2018). Ketamine preparations (e.g., ketalar®, ketavet®) are a mixture of two enantiomers, and were approved for any use by FDA in 1970. Interestingly, the (S) enantiomer displays 4 times higher affinity for the NMDA receptor (White et al., 1985). Although most of the available data on ketamine are referred to the racemic preparations, recent preclinical and clinical studies have shown a difference in the activity of the S and R form of ketamine. Masaki et al. (2019) found that (S)- and (R)-ketamine induce completely different functional magnetic resonance imaging response pattern in conscious rats and in particular, (S)-ketamine produced a significant positive functional magnetic resonance imaging response in the cortex, nucleus accumbens (NAc), and striatum; in general (S)-ketamine parallels the effect of racemic ketamine and that of the NMDA antagonist MK-801. In addition, a recent report has shown that (S)-ketamine (15 mg/kg) produced a dose dependent activation of pyramidal medial prefrontal cortex (PFC) neurons, assayed using a genetically encoded calcium indicator (GCaMP6f) in mice (Hare et al., 2020); in particular the effect of (S)-ketamine, that has a higher affinity for the NMDA receptor channel, was similar to that produced by a 30 mg/kg dose of (R,S)-ketamine while compounds with low NMDA affinity, such as (R)-ketamine (15 mg/kg) and the ketamine metabolite (2R,6R)-HNK (30 mg/kg), had little or no GCaMP6f measured activity in pyramidal medial PFC neurons (Zanos et al., 2016). In this regard it should be mentioned that this activity is considered necessary for the rapid antidepressant response to ketamine in rodents and humans (Hare and Duman, 2020). Interestingly, several years after the first observation of the antidepressant effects of ketamine infusion (Berman et al., 2000), a pilot study by Paul et al. (2009) observed that the S-ketamine isomer did not cause the psychomimetic side effects that were observed with the racemic ketamine infusion. Later an elegant double-blind, placebo-controlled study involving 30 patients observed a rapid (within 2 h) and robust antidepressant effect of esketamine (0.2 and 0.4 mg/kg 40 min infusion), although no clear dose dependence was observed (Singh et al., 2016). Based on this evidence, (S)-ketamine, approved by FDA with the name of Esketamine, was selected for the treatment of TRD patients, (Yang et al., 2019a). The use of esketamine (commercialized in the United States with the name of Spravato), is only available within a restricted distribution system and is reserved for TRD patients. Intranasal esketamine determines a significant rapid improvement of symptoms of depression when it is given in addition to a standard antidepressant. It also reduces suicidal ideation in depressed patients at imminent risk for suicide (Canuso et al., 2018). FDA approval (Turner, 2019) recommends that patients who receive esketamine must be monitored for at least two hours, to assess eventual adverse reactions to the drug. In fact, patients may be at risk for sedation, reduced attention, dissociation (i.e., judgment and thinking alteration, depersonalization and de-realization), misuse or abuse, or even suicidal thoughts after the administration of the drug. However, it should be noted that the dissociative effects of ketamine appear with less intensity when ketamine is administered repeatedly (Singh et al., 2016). Therefore, patients should not leave the health center without the approval of the health care provider, or take the nasal spray home, nor should they drive, or operate heavy machinery for the remainder of the day of drug administration.

Overall, the rapid and sustained antidepressant effect, of ketamine (Berman et al., 2000; aan het Rot et al., 2009; Murrough et al., 2013; Lapidus et al., 2014) and esketamine (Paul et al., 2009; Singh et al., 2016) have been clearly demonstrated in drug free patients. Nevertheless, most of recent clinical trials have tested the efficacy of adjunctive intranasal esketamine in MDD or TRD patients who continued (or started) the oral antidepressant therapy (Canuso et al., 2018; Ochs-Ross et al., 2020; Citrome et al., 2020; Singh et al., 2020). In particular the efficacy of intranasal esketamine was evaluated in three short term (four week) clinical trials and one long-term maintenance-of-effect trial, in which patients received a new oral antidepressant that was continued throughout the trial (Daly et al., 2018). In one short-term trial, esketamine reduced significantly the severity of depressive symptoms. In the long-term trial, patients in stable remission upon continuation of esketamine in association with an oral antidepressant experienced a statistically significant longer interval without depressive symptoms, when compared with patients who received the placebo nasal spray plus the oral conventional antidepressant (Daly et al., 2018). In summary, as reported by a recent meta-analysis, of placebo controlled trials in MDD/TRD patients, intranasal esketamine determined a rapid antidepressant effect and was relatively safe and tolerable, although the long-term therapeutic effect and safety need further confirmation (Wei et al., 2020).

On the other hand, evidence of an antidepressant action of (R)-ketamine and (2R,6R)-HNK (hydroxynorketamine) has been provided; in particular (R)-ketamine, although four-fold less potent as NMDAR antagonist than (S)-ketamine, has shown more marked and longer-lasting antidepressant-like effects than the (S)-enantiomer in several animal models of depression (Yang et al., 2019a). In addition, preclinical studies assessing locomotor activity, prepulse inhibition and conditioned place preference, have suggested that (R)-ketamine would be a safer antidepressant than (R,S)- or (S)-ketamine (Chang et al., 2019). The mechanisms involved in the antidepressant action of (R)-ketamine have been reviewed recently (Hashimoto, 2020; Jelen et al., 2021); these authors outlined, among others, the role of transforming growth factor β (TGF-β), ERK activation, tropomyosin kinase B signaling, mTORC1, the beneficial role on alterations in the gut microbiota, and spleen, concluding that (R)-ketamine has fewer harmful side effects than (R,S)-ketamine or (S)-ketamine in rodents, monkeys, and humans. Interestingly, Leal et al. (2020), in a pilot study in TRD patients observed that (R)-ketamine (arketamine) might produce a fast (60 min) and sustained antidepressant effect (7 days). On the other hand, Passie et al. (2021) in an interesting placebo-controlled study in healthy volunteers (n = 10), found no significant difference between the neuropsychological and psychopathological effects of two equivalent doses of (R,S)-ketamine and (S)-ketamine. Therefore, on the basis of this consideration it is likely that the choice of the right ketamine’s enantiomer for the treatment of TRD or other forms of depression will be further debated (Hashimoto, 2019).



KETAMINE AND SUICIDAL BEHAVIOR

Suicide is a relevant cause of death among people worldwide, in particular amid those suffering of psychiatric disorders. Suicidal behavior is a composite and multifactorial occurrence, mostly generated by extreme distress (Nugent et al., 2019); it can be triggered by a sudden event, not linked to a psychiatric pathology (e.g., economic desperation) or can be the result of an escalating behavior that occurs within a mental illness, such as depression or schizophrenia (Bachmann, 2018).

A distinctive feature of MDD is the frequent manifestation of suicidal thoughts and attempts; it can be quantified in a suicide risk of 55%, although other concomitant psychiatric disorders, such as borderline and antisocial personality and violent behavior can contribute to the appearance of suicidal behavior (Olfson et al., 2017). Unfortunately, no validated biochemical markers can predict suicide and although a failed attempt is a strong suggestion of a further attempt, few behavioral signs can be truly predictive as they often overlap with depression symptoms (Sudol and Mann, 2017). Yet, a systematic review (Miná et al., 2015) reported that inflammatory cytokines can be useful markers of suicidal ideation; in particular IL-6 appears to be elevated in the cerebrospinal fluid of suicide attempters and even peripheral blood levels have been proposed as a biological suicide marker. On the other hand, the only FDA approved drug for suicide prevention is clozapine, an antipsychotic drug used in the therapy of schizophrenia (Vermeulen et al., 2019), although lithium also has a clear preventive effect when used in mood disorders (Cipriani et al., 2013). This evidence highlight two main gaps: (i) a better understanding of the brain circuitry responsible for the formation of suicidal ideas and the execution of suicidal acts is needed; ii) there is an enormous need of new drugs to be used for controlling or preventing suicidal ideation. In particular the distinction of risk factors associated with suicidal ideation or suicidal attempts would be a useful tool in preventing suicidal attempts (Klonsky et al., 2018).

In this context, the idea of using ketamine to treat the disorders that underlie suicidal ideation has been shown to be more than a working hypothesis and could represent a real preventive therapy. In fact, although ketamine’s mechanism of action has not been fully clarified, there is no doubt that ketamine is effective in reducing suicidal ideation and attempts. Several studies demonstrated that either 0.5 mg/kg of ketamine infused over 40 min versus placebo (Zarate et al., 2012a; Burger et al., 2016; Hu et al., 2016) or versus midazolam (Price et al., 2014; Murrough et al., 2015; Fan et al., 2017; Grunebaum et al., 2018, 2017), definitively reduced suicidal ideation and depressive symptoms. A recent report showed that also intranasal esketamine (84 mg twice a week for 4 weeks), in addition to comprehensive standard of care treatment, may result in a significant reduction of depressive symptoms and suicidal ideation (Canuso et al., 2018). In this regard, it is intriguing to consider the role of nightmares in the prediction of suicidal behaviors; in fact, nightmares have been associated with suicidal behavior separately from concomitant psychiatric diseases such as depression, anxiety and PTSD (Titus et al., 2018). Therefore, it is of great interest understanding whether the dissociative effect of ketamine triggers some mechanism that interfere with the generation of nightmares in the CNS, or interferes in the transition process between the ideation of suicide and its realization; the understanding of these mechanisms would be of great help in the search of a therapy to prevent suicide. In this regard, Vande Voort et al. (2017) reported that among patients who received a single ketamine infusion (0.5 mg/kg over 40 min), those who showed an anti-suicidal response had significantly reduced nocturnal wakefulness the night after ketamine infusion, when compared with those not showing an anti-suicidal response. Considering that the effect of ketamine on suicidal ideation is intimately related to the antidepressant effect, it is stimulating to think that the effect of ketamine on nightmares and on the reduction of wakefulness may be somehow related to the dissociative effects of ketamine. In fact it has been reported that dissociation could predict a robust and sustained antidepressant effect (Luckenbaugh et al., 2014; Niciu et al., 2018). However, one must consider that the latter correlation is debated (Ballard and Zarate, 2020) and that dissociative effects and sleep effects occur at different times (Vande Voort et al., 2017). Furthermore it is possible that ketamine may produce different effects in depressed and suicidal patients than in individuals without these conditions; in fact, ketamine can cause unpleasant dreams in healthy volunteers over the three post-administration nights (Blagrove et al., 2009) and has not decreased delirium in older adults undergoing negative experiences after major surgery (Avidan et al., 2017).

In general, and probably because of the extent of glutamate transmission in the brain, it can be suggested that the response to ketamine is closely related to the emotional state of the individual and therefore both rapid and prolonged effects can be very different between individuals; in this regard, Aust et al. (2019) with an interesting study, have shown that the state of anxiety induced by ketamine in depressed patients is predictive (inversely proportional) of the antidepressant response of ketamine. In addition, the different individual response could still be different following the administration of (R-S)-, (S)-, or (R)-ketamine administration (Passie et al., 2021). In contrast with the two most used drugs for preventing suicidal behavior (i.e., clozapine and lithium), which require weeks for producing their beneficial effect, ketamine can reduce suicidal ideation rapidly (Vermeulen et al., 2019). Moreover, although ketamine shows a common antidepressant effect with the monoamine reuptake blockers, these drugs reduce risk of suicidal ideation in old but not in young patients (Carpenter et al., 2011); this suggests that ketamine’s effect on suicidal behavior may involve peculiar brain mechanisms. Regrettably, despite the great interest in the fast-antidepressant and anti-suicidality effect of low ketamine doses, very little is known on the brain circuitry involved in ketamine’s effect. Several interesting reports highlighted the involvement of opioid receptors. In particular it was shown that naltrexone reduces the antidepressant effect of ketamine (Williams et al., 2018) as well as the anti-suicidality effect (Williams et al., 2019). Although these studies did not differentiate among opioid receptors MOR, DOR or KOR, in the light of the anti-suicidality effect of buprenorphine, the authors speculated that a partial or a brief period of activation of the opioid system by ketamine is associated with an anti-suicidality effect, whereas full and chronic opioid system activation is associated with an increase in suicidality.

One interesting aspect of suicidal behavior is the passage between the ideation to execution; the last requires the involvement of the decision-making brain area and the activation of the related neurotransmitter release. Interestingly, suicide is more prevalent among men, whereas non-fatal suicidal attempts are more prevalent among women, young people, and generally among individuals unmarried or bearing psychiatric disorders (Nock et al., 2008). Consistent with this evidence, assessment of decision-making in preclinical and clinical studies revealed a difference between genders; in particular, female rats perform better and improve less during sessions than males, when tested through the Iowa gambling task (Georgiou et al., 2018). In addition, this study demonstrated the relevance of dopaminergic pathways in the gender difference and suggested that female are less able to cope with stress during the test, leading to maladaptive decision-making, (Georgiou et al., 2018). It might be generally summarized that women under stress have their decision making more damaged, and thus may be more prone to act for committing suicide under stress, but interestingly, at the same time, are more responsive to the pharmacological antagonism of CRF-induced activation of the hypothalamic-pituitary-adrenal axis (HPA) (Webster et al., 1996) or to anxiolytic drug (Zorrilla et al., 2002). On the other hand, stress negatively affects decision making differently for men and women; men’s performance in the IOWA test deteriorates as stress levels increase, whereas the performance of women improved to a point and then deteriorates as stress levels increase (van den Bos et al., 2009; Wemm and Wulfert, 2017). In addition decision-making has been found altered in suicide attempters (Jollant et al., 2005, 2007). Overall, considering that according the WHO, in 2015 800,000 suicides occurred worldwide, and that suicides account for 1.4% of premature deaths worldwide (Bachmann, 2018), the proved efficacy of ketamine in reducing suicidal behavior is a breakthrough in managing this worldwide public health concern.



CURRENT USE AND POTENTIAL FOR KETAMINE USE IN RESISTANT DEPRESSION IN ADOLESCENCE AND CHILDHOOD

Depression and anxiety are common conditions in childhood and adolescence; globally the prevalence of these two disorders in the 5–17 age group is 6.16% and 3.2% respectively (Erskine et al., 2017). Additionally, the suicidal rate among adolescent aged 12–17 years was 5.2/100 000 in 2014 (Sheftall et al., 2016) and suicide represents the second leading cause of death in the United States among individuals aged 10–24 (Kim et al., 2020). Pediatrics depression is also associated with poor academic performance, social disease, early pregnancy, physical illness and substance abuse (Fergusson and Woodward, 2002; Keenan-Miller et al., 2007). When depression is diagnosed in elementary school, the therapeutic approach is a complex problem to deal with, as it is not possible to predict the evolution of the disease and the influence of environmental conditions that can change its course. It has been recently suggested that preschool depression was a highly salient predictor of prepubertal and mid-to-post pubertal MDD (Gaffrey et al., 2018); these authors, in an elegant study observed that children with a history of preschool depression continued to show clear depressive symptoms from childhood to adolescence, highlighting the clinical significance and public health outcome of an early diagnosis and cure of depression at childhood and prepubertal age. Generally, the efficacy of antidepressant therapy in children and adolescents has been established (Walkup, 2017); the TADS (Treatment for Adolescents with Depression Study) study revealed that over a 6 – 9 months treatment period [fluoxetine, cognitive behavior therapy (CBT) or their combination], 80% of participants experienced symptom improvement (March et al., 2007) while the TORDIA (Treatment of Resistant Depression in Adolescents) study showed that more than 60% of participants remitted when selective serotonin reuptake inhibitors (SSRI), venlafaxine, CBT or their combination were administered (Vitiello et al., 2011). Hereafter, the first line for moderate to severe youth depression recommends a multimodal approach that consists of a combination of psychotherapy and pharmacotherapy [i.e., selective serotonin reuptake inhibitors (SSRI)], (Clark et al., 2012). Although SSRI are clearly efficacious, in the case of non-responders, a switch to an antidepressant with a different mechanism (e.g., venlafaxine) and a cognitive behavioural therapy (CBT) resulted in a higher rate of clinical response than switching to another medication without CBT (Brent et al., 2008). Nonetheless, a consistent number of adolescent patients that do not respond even after two medications treatments with CBT, can be categorized as TRD; they require diagnostic careful evaluation, clinical attention and innovative therapies (Dwyer et al., 2020). Among new therapies, several studies investigated the efficacy of ketamine in children and adolescent with TRD (Papolos et al., 2013; Dwyer et al., 2017; Cullen et al., 2018; Zarrinnegar et al., 2019). In particular Cullen et al. (2018) administered ketamine (0.5 mg/kg; six i.v. infusion in 2 weeks) to 13 TRD adolescents aged 12–18; overall they observed that 5 subjects responded and remained in remission at a 6 week check-up, while 2 were still in remission after 6 months. Cullen et al. (2018), further reported that dissociative symptoms vanished within 1 h after ketamine administration and that the drug was generally well tolerated. In a retrospective study Papolos et al. (2013) observed that intranasal ketamine administration in 12 treatment resistant youths (ages 6–19 years) with bipolar disease-fear of harm (a pediatric onset phenotype o bipolar disease, BD-FOH) was well tolerated and produced a significant improvement in mood, anxiety, and behavioral symptoms such as mania and aggression. In an another report, Papolos et al. (2018) observed that the administration of intranasal ketamine in 45 youths with refractory BD-FOH was efficacious and well tolerated supporting the potential effectiveness of ketamine therapy; nevertheless these authors underlined that the date presented were preliminary, neither blind nor placebo-controlled, therefore must be interpreted with caution (Papolos et al., 2018). An interesting case-report on the use of repeated ketamine i.v., in a 16-year old male with psychiatry history of resistant major depressive disorder (MDD), has been reported by Dwyer et al. (2017); the patient experienced an immediate reduction (within 1 day) of depression symptoms, suicidal ideation and hopelessness, that lasted for the hospitalization period (8 weeks), which allowed the discharge of the patient, after psychiatric stabilization, with a plan to receive further ketamine infusion every 3–6 weeks, along with a pharmacotherapy and psychotherapy support. Repeated ketamine i.v. infusion was also proved to be efficacious in a 15-year-old adolescent female with TRD, generalized anxiety disorder and PTSD secondary to sexual trauma (Zarrinnegar et al., 2019); even in this case, ketamine (0.5 mg/kg; six i.v. infusion in 2 weeks) reduced significantly depressive symptoms, and suicidal ideation and the girl could be dismissed with a pharmacotherapy support because a resolution of depressive and psychotic symptoms was achieved and maintained for several months.

A systematic review of these and other studies was elegantly provided by Kim et al. (2020); these authors suggested that ketamine generally shows the potential to be effective in reducing depressive symptoms, acute suicidal behavior and mood lability in the youth with TRD and bipolar disease, being well tolerated in the pediatric cohort with minimal side effects. However, these authors also acknowledged that a number of subjects did not respond to ketamine administration and highlighted that the American Academy of Child and Adolescent Psychiatry (AACAP) does not officially endorse the utilization of Esketamine for youth TRD (Kim et al., 2020). In conclusion, the extension of ketamine administration to youth TRD is needed and desirable, but it needs further and urgent evaluation; in particular the potential effect of this drug on the developing brain of children or adolescents must be carefully evaluated. In fact, the possible reduction of excitatory input on the parvalbumin interneurons of the PFC may lead to impaired cortical function (Thomases et al., 2013) in adulthood, with the potential risk of long-term adverse cognitive and emotional changes (Zimmermann et al., 2020). Of note, broadening the regimen of ketamine administration after discharge, from two or three times a week to only once every 3–6 weeks, drastically lowers the risk of long-term cognitive effects. From another point of view, in the cost-benefit assessment, we have to take into account the hypothetical damage, that symptoms of anxiety, depression, or nightmares due to a PTSD, or even suicidal thoughts or attempts, can cause to the process of brain maturation and personality formation that occurs in adolescence and pre-adult age.



MECHANISM OF ACTION AND METABOLISM OF KETAMINE


Interaction With Glutamate Receptors Interaction

Since 1994 it is known that chronic treatment with antidepressants or electroshock resulted in an adaptive response of cortical glutamate NMDA receptors (Paul et al., 1993, 1994). Although this evidence led to targeting glutamate signaling for developing new antidepressants (Murrough et al., 2017) and in particular to ketamine use (Berman et al., 2000), almost 30 years have not been enough to fully unveil the mechanism of action of ketamine in producing the rapid and sustained antidepressant effects. The yet inadequate knowledge of depression etiopathology, and the wide distribution of glutamatergic innervation in mammalian brain, greatly complicates the identification of a preferential site of action for ketamine, both in terms of brain area and cell type. Moreover, the variable interaction of the two enantiomers of ketamine and respective metabolites with glutamate receptors, i.e., NMDA and AMPA, and the relative receptor affinity, adds complexity to the comprehension of the mechanism of action.

The metabolism of ketamine is complex and involves an initial N-demethylation by liver microsomal cytochrome P450 into norketamine (Figure 1), with CYP3A4 being the principal metabolizing enzyme (Hijazi and Boulieu, 2002); subsequently, norketamine is further metabolized to the hydroxynorketamine (HNK) and dehydronorketamine (DHNK) (Zanos et al., 2018). Among the various stereoisomers that can be formed following ketamine infusion in human, the predominant species in plasma are (2R,6R;2S,6S)-HNK and (2S,6R;2R,6S)-HNK (Moaddel et al., 2010). Of note, norketamine, DHNK, and (2R,6R;2S,6S)-HNK were detected as early as 40 min after 0.5 mg/kg i.v. ketamine infusion for 40 min. Moreover, different concentrations of metabolites have been described in MDD or bipolar depression (Zarate et al., 2012b). Although ketamine metabolism does not occur in the brain, both ketamine and its metabolites easily pass the blood-brain barrier via a non-enantiomer-selective transport (Zanos et al., 2018).

Ketamine is a non-competitive antagonist of the NMDA receptor (Martin and Lodge, 1985; Zorumski et al., 2016), which binds to the phencyclidine site within the channel in the open state, preventing ion flow (Pham and Gardier, 2019). Among (S) and (R) enantiomers, (S) ketamine displays four-fold higher affinity for the NMDA receptor (White et al., 1985). Therefore, the administration of the (S) enantiomer is expected to produce less adverse effects than the racemic mixture (Muller et al., 2016). In addition to NMDA antagonism, Zanos et al. (2016) found that the metabolite (2R,6R)-HNK exerts behavioral, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice, via the activation of AMPA receptor and independently from NMDA receptor, which may account for the lack of ketamine-associated side effects observed with this metabolite (Zanos et al., 2016).

Established that ketamine and its metabolites can interact with glutamate transmission, either directly through NMDA receptor blockade or indirectly through an enhancement of glutamate transmission at AMPA receptors, it becomes challenging to evaluate the consequences of such interaction and where in the brain it may occur. It is noteworthy that ketamine’s antidepressant action is generally associated with a significant increase of brain derived neurotrophic factor (BDNF), and ketamine activity on glutamate transmission may be instrumental to this effect. In a mouse model of depression, Autry et al. (2011) found that ketamine and other NMDA antagonists inducing a fast antidepressant-like behavioral effect, inhibited the eukaryotic elongation factor2 (eEF2) kinase, resulting in reduced eEF2 phosphorylation and increased BDNF translation. On the other hand, the increase in BDNF expression in the hippocampus is a typical feature of standard antidepressants (Harmer et al., 2017; Monteggia et al., 2004; Kraus et al., 2017; Björkholm and Monteggia, 2016), while it is widely acknowledged that chronic stress causes a down-regulation of BDNF protein and mRNA in the hippocampus (Zaletel et al., 2017), an effect that is strictly linked with depression (Duman and Monteggia, 2006). Interestingly, postmortem studies have shown that depressed patients have a lower brain volume and neuron density in the dorsolateral PFC (Rajkowska et al., 1999; Drevets, 2000), and a lower expression of synaptic-function related genes (Kang et al., 2012). On this basis it is reasonable that ketamine, via a glutamate-mediated effect, may improve the synaptic connectivity and trigger the functional recovery of damaged neuronal network, which is typical of depression (Duman et al., 2019; Deyama and Duman, 2020). Notwithstanding, the underlying mechanism is puzzling given the overall ketamine effect in reducing, rather than activating glutamate transmission. To this regard, a current view proposes that the initial blockade of presynaptic NMDA receptors located on GABA interneuron terminals in the medial PFC is of pivotal importance (Figure 2). GABA interneurons innervate the glutamate terminals of this region, therefore their inhibition via NMDA blockade would result in a reduced GABA release, and a consequent rapid glutamate burst acting on AMPA receptors located on pyramidal neurons that project to subcortical areas, or on other pyramidal cells (Lett et al., 2014; Deyama and Duman, 2020). Such activation leads to the opening of voltage-dependent calcium channels (VDCC) that stimulate BDNF and vascular endothelial growth factor release. BDNF and vascular endothelial growth factor induce the translation and synthesis of key synaptic proteins in synaptogenesis and maturation of dendritic spines, including GluA1 and postsynaptic density protein 95 (PSD95), via the TrkB/Flk-1 - mTORC1-signaling pathway (Duman and Aghajanian, 2012). In agreement with this evidence, Deyama and Kaneda (2020) reported that a single BDNF infusion in the medial PFC produced antidepressant-like effects that lasted up to 8 days, with an outcome very similar to the rapid and sustained antidepressant effect produced by ketamine (Björkholm and Monteggia, 2016). Adding complexity to the issue, Pham and Gardier (2019) recently suggested that ketamine may block postsynaptic NMDA receptors in the hippocampus, leading to increased BDNF production with a mechanism involving eEF2, similar to that proposed by Autry et al. (2011). They also suggested that ketamine metabolite HNK may play antidepressant activity via a direct activation of post-synaptic AMPA receptors, leading to increased extracellular glutamate and GABA levels in the medial PFC (Pham and Gardier, 2019). While this explanation is linear and satisfactory, other brain regions enriched on NMDA and AMPA receptors are likely involved in the actions of ketamine and its metabolites, given the complexity and wideness of brain glutamate innervation.
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FIGURE 2. Schematic representation of some potential mechanisms involved in the antidepressant actions of ketamine. (1): Ketamine reduces NMDA receptor mediated stimulation of GABA interneurons reducing the inhibitory action on presynaptic glutamatergic neuron; (2) the reduced inhibition produces a rapid glutamate burst acting on AMPA receptors located on pyramidal neurons; (3) Such activation leads to the opening of voltage-dependent calcium channels (VDCC) that stimulate BDNF; (4) BDNF induce the translation and synthesis of key synaptic proteins in synaptogenesis and maturation of dendritic spines, including GluA1 and PSD95), via the TrkB/Flk-1 - mTORC1-signaling pathway; (5) ketamine acting as NMDA inhibited the eukaryotic elongation factor2 (eEF2) kinase, resulting in reduced eEF2 phosphorylation and increased BDNF translation and protein synthesis; (6) ketamine metabolite can stimulate AMPA receptors independently of NMDA receptor blockade by ketamine; (7) kainate receptor can contribute to Na+ and Ca++ entry, neuronal depolarization and postsynaptic responses.




Pharmacokinetic Considerations

An important aspect of ketamine’s mechanism of action is its ability to induce an antidepressant effect whose duration extends beyond the presence of a relevant plasma concentration (Berman et al., 2000). Therefore, it is of interest to evaluate the temporal correlation between the onset of behavioral effects of ketamine with plasma or brain concentration and the corresponding temporal variation in NMDA receptor occupancy after administration in different animal species (Shaffer et al., 2014). However, this correlation is complex because most of the preclinical and clinical experimental observations have been obtained by administering racemic ketamine, which is composed of two enantiomers that have different effects and give rise to a total of four different metabolites (see section “Interaction With Glutamate Receptors Interaction”). The single infusion of 0.5 mg/kg of (R,S)-ketamine can determine a very rapid appearance of dissociative and psychotomimetic effects that gradually disappear in 60–120 min (Krystal et al., 1994). The time interval required for the psychotomimetic effects of ketamine to appear, allows some consideration to be made.

From a pharmacokinetic and pharmacodynamic perspective, the appearance of acute psychotic symptoms, including visual and auditory hallucinations, thought disorders and apathy, within 5 min from starting S-ketamine infusion, with a reported serum concentration of this drug of 2.26 μM (539 ng/ml) (Vollenweider et al., 1997) could be attributed to the occupation > 60% of the NMDA receptor by S-ketamine. According to the elegant study by Shaffer and coll. on ketamine receptor occupancy normalization (Shaffer et al., 2014), we should consider: (1) a similar free plasma unbound concentration of (±) ketamine in rats and humans; (2) ketamine rapid and high penetration in the brain; (3) ≈60% receptor occupancy reported by Shaffer and coll. for a similar concentration of (±) ketamine in rats; (4) a 40% higher concentration of S-ketamine (Vollenweider et al., 1997) with respect to its content in the racemic mixture utilized in the receptor occupancy normalization study. This latter point is particularly important when considering the higher affinity for NMDA receptors reported for S-ketamine (Ki ≤ 0.7 μM) vs R-ketamine (Ki ≤ 2.6 μM) (Hashimoto, 2019), and the reported absence of significant psychotic symptoms following the injection of the same dose of R-ketamine (Vollenweider et al., 1997). According to the receptor occupancy normalization study, a plasma concentration of 204–229 ng/ml (0.86 – 0.96 μM) (±) ketamine generates a 31–33% receptor occupancy both in healthy volunteers and MDD patients, and such concentrations of (±) ketamine have been reported to be associated with transient psychotomimetic and dissociative symptoms, resolved within 2 h, without delusions or hallucinations (Singh et al., 2016).

As previously reported, the metabolite of ketamine (2R,6R)-HNK may contribute to neuronal firing stimulation by activating AMPA receptors (Zanos et al., 2016). Although the authors claim that the metabolite is “necessary and sufficient” to produces ketamine’s antidepressant actions, we suggest that the contribution of ketamine acting at the NMDA receptor may be more relevant than they claim. In fact, the reported concentration of brain ketamine is between two and three times that of the metabolite (2R,6R)-HNK acting as a possible AMPA agonist and the density of AMPA and NMDA receptors varies in the different regions of the brain (Can et al., 2016; Scheefhals and MacGillavry, 2018). Moreover, evidence of a AMPA receptor-activation independent role for S-norketamine has been published (Yang C. et al., 2018). Overall, pharmacokinetic and mechanistic considerations together with the likely change of receptor expression upon repeated drug treatment indicate that unveiling the relative contribution of glutamate receptors in the ketamine’s effects is a puzzling question. The BDNF-mediated increase in AMPA receptors, occurring in prolonged ketamine treatment, may strengthen the action of ketamine on these receptors, creating the conditions for the sustained effect of ketamine. While the murine model of depression does not replicate the complexity of TRD in humans, the results of an ongoing clinical trial, investigating the effect of the non-competitive AMPA receptor antagonist perampanel in TRD patients treated with ketamine, might greatly improve the understanding of this issue (ClinicalTrials.gov Identifier: NCT03973268).



BRAIN AREAS AND NEURONAL CIRCUITRY INVOLVED IN KETAMINE’S EFFECTS

Depression is now acknowledged as a complex disorder characterized by the involvement of many brain areas, neuronal circuits (Figure 3), neurotransmitters and intracellular mechanisms. Although it was reductive to think that the alteration of a single area could be sufficient for the generation of such a complex disorder, the search for such an area has represented a challenge for many researchers, whose ultimate goal was to better understand the etiopathogenesis of depression and thus improve the chances of developing new effective antidepressants. Moreover, the identification of a such an area would have favored the development and characterization of animal models of depression to test antidepressant drugs by ascertaining the reversibility of the changes observed. Among the areas that have been associated with depression, the hippocampus and the prefrontal cortex certainly stand out, but recently the NAc has also been involved in consideration of its role in anhedonia (inability to feel pleasure), (Keedwell et al., 2005). In particular, the study of neurogenesis in the hippocampus has been used to correlate the effects of drugs on growth factors (e.g., BDNF) with their antidepressant potential (Masi and Brovedani, 2011). The effect of ketamine in the hippocampus, PFC, NAc, and lateral habenula (LHb) will be discussed below in order to recognize changes that might be related to its antidepressant effect.
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FIGURE 3. Schematic representation of several major glutamatergic input pathways on mammalian brain nuclei where ketamine might interact with glutamate transmission by interacting with NMDA and/or AMPA receptors. Abbreviation: PFC, prefrontal cortex; Cg25, subgenual cingulate region; Th, thalamus; Hipp, hippocampus; LHb, lateral habenula; Amy, amygdala; VTA, ventral tegmental area; DR, dorsal raphe; BFCS, basal forebrain cholinergic system; LC, locus coeruleus; GP, glubus pallidus. Glutamate (Glu), dopamine (DA), GABA, acetylcholine (Ach), norepinephrine (NA) and serotonin (5-HT) neurons and axons are represented.



Hippocampus

The reduction of hippocampus volume was identified as a sign of major depression and since the first report (Magariños and McEwen, 1995a, b), most studies have confirmed this observation, although few negative reports raised some controversy (Sheline et al., 2019). Interestingly, ketamine exerts antidepressant effects in TRD patients who have a relatively smaller hippocampus (Abdallah et al., 2015). The decline of hippocampal neurogenesis, a process by which normally, 700 new born hippocampal granule cells are added daily (Spalding et al., 2013), has been considered the second important biomarker of major depression, although some limits should be pondered (Miller and Hen, 2015). It has been repeatedly reported that chronic stress decreases hippocampal neurogenesis, while classic antidepressants can reverse this decrease (Czéh et al., 2002; Pham et al., 2003; Alonso et al., 2004). In addition, the reduction of neurogenesis can result in neuronal atrophy, as observed by neuroimaging and post-mortem studies in depressed patients (Bremner et al., 2000; Frodl et al., 2007; Huang et al., 2013; Wise et al., 2017).

The delay in the appearance of the antidepressant effect, after starting the therapy with standard antidepressants, has often been attributed to the time needed to fully stimulate hippocampal neurogenesis. It is therefore interesting to discuss the association between the antidepressant effects of ketamine and its neurotrophic actions. This issue has been very recently reviewed by Deyama and Duman (2020); these authors suggested that the neurogenesis might be involved in the sustained but not in the fast actions of ketamine, though further studies are required to fully clarify the effect of ketamine on hippocampal neurogenesis. Interestingly, Yamada and Jinno (2019) reported that ketamine, two days after the administration of single dose, elevated the density of neuronal progenitors and new-born granule cells in the ventral but not in the dorsal hippocampus in adult mice, although the densities of neuronal stem cells were not affected by ketamine in both areas. The evidence that ketamine affects neurogenesis only in the ventral hippocampus (vHipp) appears highly relevant because of its link with emotional processes, while the dorsal part is related to spatial memory (Bannerman et al., 2014). Noteworthy, ketamine may have a prophylactic efficacy against stress-induced depressive-like behavior, by altering the hippocampal neural activity (Mastrodonato et al., 2018). This study showed that a single injection of ketamine, administered to mice before the exposure to social defeat stress, selectively increased Δ-FosB expression in the vHipp (Mastrodonato et al., 2018).



Prefrontal Cortex

A reduced volume of several PFC subregions has been observed in patients suffering major depression and/or exhibiting suicidal thoughts and behaviors (Schmaal et al., 2020). The ventral PFC system may be important in reducing the positive while amplifying the negative internal states that can induce suicidal ideation, while the dorsal PFC and the inferior frontal gyrus may facilitate suicidal attempts. Ketamine displays a rapid effect on neuronal plasticity in the PFC (for a detailed review see Deyama and Duman, 2020). In particular, Li et al. (2010) reported that a single low dose of ketamine rapidly activated the mammalian target of rapamycin (mTOR) signaling, resulting in sustained elevation of synapse-associated proteins and spine number in the PFC, an effect, that is the opposite of that caused by the exposure to stress. A confirmation of the involvement of PFC in ketamine’s effect has been recently provided in mice models of chronic stress and chronic corticosterone exposure (Moda-Sava et al., 2019). These authors demonstrated that a depression-related behavior was associated with branch-specific elimination of postsynaptic dendritic spines on PFC projection neurons, and that antidepressant doses of ketamine reversed these effects by selectively rescuing spines. In addition, Moda-Sava et al. (2019) highlighted that corticosterone and ketamine are both able to regulate spine remodeling at the molecular level, directing spine formation and removal through both transcription-dependent processes and rapid non-genomic-mechanisms. They also suggested that synaptogenesis could be required for the enduring antidepressant effects of ketamine, but not for rapid effects (Moda-Sava et al., 2019). These data are somehow in contrast with the report by Li et al. (2010), who observed increased levels of synaptic proteins (i.e., PSD-95, synapsin-1, and GluA1) as early as 2 h after ketamine administration. Overall, these data indicate that medial PFC pyramidal neurons and the local activity-dependent synaptogenesis play a crucial role in the antidepressant actions of ketamine (Deyama and Duman, 2020). Interestingly, Carreno et al. (2016) investigated the role of the vHipp – medial PFC pathway in the antidepressant response to ketamine, as evaluated by the forced swim test in Sprague-Dawley rats. This study observed that inactivation of the vHipp with lidocaine prevented the sustained, but not the acute antidepressant effect of ketamine, and suggested that the activity in the vHipp-medial PFC pathway is both necessary and sufficient for the antidepressant-like effect of ketamine (Carreno et al., 2016). Interestingly, Chen et al. (2019), through the assessment of the resting functional connectivity magnetic resonance imaging (fcMRI) in TRD patients, observed that ketamine (0.5 and 0.2 mg/kg) could modify fcMRI in different regions of the PFC and in particular, the increase of the functional connectivity between the right dorsolateral PFC and the left superior parietal region was correlated with the reduction of suicidal ideation in the low-dose group. Resting fcMRI was also evaluated in a study by Gärtner et al. (2019); the authors observed that a single dose of ketamine (0.5 mg/kg), administered to depressed patients, increased resting fcMRI between right PFC and sgACC and this increase is positively related to treatment response while a low baseline of functional connectivity between these regions predicts treatment outcome. In addition, recently Abdallah et al. (2018), observed that ketamine increased glutamate-glutamine cycling in the PFC of MDD patients that was correlated with a rapid antidepressant effect, an effect that could be representative of an increased neurotransmission strength in the PFC.



Nucleus Accumbens

The NAc has been implicated in the etiology of depression because of its role in brain’s reward circuits, anhedonia and aberrant reward-associated perception (Russo and Nestler, 2013). The glutamatergic afferences that NAc receives from medial PFC, vHipp and basolateral amygdala support its crucial role in regulating the individual susceptibility to depression, and point to NAc as a target area for the antidepressant effects of ketamine. In addition, the NAc receives a GABAergic innervation from the lateral habenula and a dopaminergic innervation from the ventral tegmental area (VTA) (Russo and Nestler, 2013; Bagot et al., 2015). In particular, the central dopaminergic circuitry is acknowledged, as a crucial station for motivated behavior, hedonic appraisal and mood regulation; therefore, its potential involvement in the antidepressants effect of ketamine is more than likely. Witkin et al. (2016) have recently shown that ketamine and LY341495 [a potent and selective antagonist of group II metabotropic glutamate receptor (Kingston et al., 1998)] but not the selective serotonin reuptake inhibitor (SSRI) citalopram, increased the number of spontaneously active dopamine neurons in the VTA, and the extracellular dopamine levels in the NAc and in the PFC. These authors have shown that the effects of ketamine and LY341495 on dopamine transmission were AMPA-dependent effects. Other studies have suggested that the effects of ketamine on dopamine transmission cannot be attributed either to a direct ketamine action on dopamine reuptake, or to an interaction with dopamine receptors (Can et al., 2016). A further support of the involvement of the NAc in the effects of ketamine has been provided by Yao et al. (2018), who have demonstrated that a single injections of a low dose of ketamine induced the impairing of long-term potentiation in the NAc; this effect was maintained for 7 days and was not associated with any alteration of basal synaptic transmission mediated by AMPARs and NMDA receptors. These results were somehow anticipated by Réus et al. (2013) who reported that ketamine but also imipramine, decreased histone deacetylation in the NAc; this function, that is important for long-term changes related to stress and antidepressant treatment, has been found increased in the NAc but not in the PFC, hippocampus, and amygdala in maternally deprived adult Wistar rats. A further confirmation of NAc involvement in ketamine’s actions, has been provided by Abdallah et al. (2017), who have shown that in a MDD subgroup of patients displaying an enlarged bilateral NAc volume, ketamine treatment normalized NAc volume in patients who achieved remission.



Lateral Habenula

The fourth area that we will consider is the LHb, an area that has been implicated in anxiety, stress, pain, avoidance learning, attention, human reward processing, psychosis and depression (Proulx et al., 2014; Gold and Kadriu, 2019). In particular, LHb has been proposed as a source of negative reward-related signals for dopamine neurons (Matsumoto and Hikosaka, 2007), on the basis of recorded neuronal activity in rhesus monkeys during visually guided saccade task, and of the strong inhibition of dopamine neurons after weak electrical stimulation of the LHb. The crucial role of LHb is further strengthened by the observation that acute stress can transform LHb reward responses into punishment-like neuronal signs (Shabel et al., 2019). Based on this evidence, it is likely that mood improvement could be produced through the inactivation of this so-called “anti-reward center,” and therefore it is possible that ketamine could produce its rapid antidepressant actions through modulating LHb activity. In this regard, Yang Y. et al. (2018) reported that the blockade of NMDA receptor-dependent burst activity in the LHb, operated by ketamine, could mediate its rapid antidepressant actions in rat and mouse models of depression, by disinhibiting a downstream monoaminergic reward center. These authors also showed that burst-evoking photo-stimulation of LHb drive despair and anhedonia. Concordant results, obtained in late adolescent male rats, have shown that early life stressors such as maternal deprivation, can produce LHb intrinsic excitability and LHb bursting activity, that were associated with increased immobility in the forced swimming test; in this model, ketamine was able to persistently reverse maternal deprivation-induced changes in LHb neuronal excitability and firing patterns up to 72 h post injection (Shepard et al., 2018).

Summarizing the above, it emerges that the LHb could play a relevant role either in the depression or in the effects of ketamine. In particular, with its peculiar intrinsic activity and connections with the other brain areas involved in depression, the LHb has been proposed as the site through which the rapid action of ketamine occurs (Cui et al., 2019).



Subgenual Cingulate Region

The subgenual cingulate cortex (sgACC) also known as subgenual cingulate region or Broadman area 25 (Cg25) is one of the most implicated regions in MDD; it has an important role in emotion regulation, cognition, reward anticipation and anhedonia (Stevens et al., 2011; Rudebeck et al., 2014; Alexander et al., 2019). This area corresponds to the infralimbic cortex in rodent models, although a precise functional homology cannot be demonstrated (Sousa, 2016). Several fundamental information on the brain areas involved in the effects of ketamine can be obtained by evaluating PET (positron emission tomography) or functional magnetic resonance brain imaging of TRD patients undergoing ketamine therapy; correlation between the activation of specific areas and the therapeutic improvements of the patients examined, may allow to include or exclude specific brain areas. Similarly, by examining the therapeutic outcomes or the behavioral effects observed in TRD patients undergoing deep brain stimulation (DBS) it is possible to associate the activation of highly specific brain regions with the magnitude of the clinical improvement (Drobisz and Damborská, 2019). Consequently, the combination of the information obtained with these two approaches can support the role of a specific brain area in depression and allow to understand more deeply the role of specific areas in the antidepressant effects of ketamine. The application of DBS to the Cg25 of TRD patients produced a reduction in the metabolic hyperactivity in this area (observed by PET) and an evident and sustained clinical outcome; these results were described in a seminal report (Mayberg et al., 2005). Similarly, clinical improvement following pharmacotherapy and psychotherapy did correlate with a decrease in Cg25 metabolic activity and interestingly, transient sadness increases Cg25 metabolic activity (Mayberg et al., 1999; Auer et al., 2000; Mirza et al., 2004; Seminowicz et al., 2004). Cg25 has very robust connections with many brain areas implicated in normal and abnormal emotion processing and memory such as NAc, hippocampus, amygdala, hypothalamus, and orbitofrontal cortex (Lozano et al., 2008; Zeredo et al., 2019). Notably, the DBS that was applied to the white matter tracts adjacent to the subgenual cingulate gyrus, induced metabolic changes in various regions; in particular PFC activation and orbitofrontal cortex inhibition were concomitant with a striking and sustained remission of depression in four of six patients at 6 months after DBS (Mayberg et al., 2005; Johansen-Berg et al., 2008). In addition, the SgACC/Cg25 could be a target for ketamine, because of the relevant role of Cg25 in regulating the glutamatergic hypofunction of hippocampus in high trait anxiety (Zeredo et al., 2019) and the ability of ketamine of modulating sgACC connectivity (Wong et al., 2016). In particular the combination of intracerebral microinfusion with cardiovascular and behavioral monitoring in marmoset monkeys showed that overactivation of sgACC blunts appetitive anticipatory, but not consummatory arousal (Alexander et al., 2019); interestingly these authors showed that ketamine treatment ameliorates the blunted anticipatory arousal and reversed the associated metabolic changes in sgACC. Interestingly, S and R ketamine induced metabolic changes in the brain of healthy volunteers receiving a sub-anesthetic intravenous dose (1.0 mg/Kg) (Vollenweider et al., 1997). In particular, S-ketamine treatment increased glucose cerebral metabolic rate (CMRglu) in cortical brain regions 2–3 times more than in subcortical regions (Vollenweider et al., 1997); likewise, frontal regions were stimulated about twice as much as posterior regions (Vollenweider et al., 1997).

The score for psychiatric alterations such as hallucinatory-disintegration, ego-dissolution and mood changes did positively correlate with CMRglu in the occipital cortex, cingulate cortex, frontomedial, temporomedial and frontolateral cortex. A recent study, based on glucose metabolism assessment (18F-FDG/PET) in TRD patients, 40 min after intravenous injection of ketamine at 0.2 and 0.5 mg/Kg, reported a significant increase in the metabolic activity of the anterior cingulate area, posterior central gyrus, supplementary motor area and prefrontal cortex (Li et al., 2016). Therefore, based on this evidence, it may be concluded that S-ketamine amelioration of depressive symptoms, may be highly complex as it involves many areas when compared to the equally effective localized activation of the dorsolateral prefrontal cortex by DBS. It may be worth noting that a similar pattern of metabolic stimulation has been observed with psilocybin, a drug that has been recently used in TRD patients (Carhart-Harris et al., 2017). The metabolic and psychotic effect of ketamine and psilocybin has been suggested to be due to their action on a common pathway processing sensory and cognitive information (Vollenweider et al., 1997). A comparison of the neuropsychological effects in healthy subjects and in patients with MDD or TRD and the study of the therapeutic response in the latter, observed after administration of (R,S)-, (R)-, or (R)-ketamine, might help to understand the importance of ketamine-activated brain areas that are not relevant to remission of depression. As suggested above (see sections “ESKETAMINE: CLINICAL USE IN DEPRESSION” and “KETAMINE AND SUICIDAL BEHAVIOUR”), the effect of ketamine may differ depending on the mood state of the individual. On this basis, we can speculate that the rapid response of ketamine in responsive patients suggests that it is capable of activating brain circuits that may be only temporarily deactivated, and that this type of response may not be observed when ketamine is taken by healthy volunteers; reversibly circuits that are activated in the latter may not be available in MDD or TRD individuals. Interestingly, different enantiomers of ketamine might produce different effects and these effects might interact when (R,S)-ketamine is administered as reported by Passie et al. (2021) who suggested that (S)-ketamine and (R,S)-ketamine differ somewhat regarding their psychopathological effects. This observation may be relevant when evaluating the effects of ketamine in patients with TRD.

Deep brain stimulation of other brain areas such as the NAc, has produced immediate and unprompted clinical improvement in major depression with no adverse effects (Schlaepfer et al., 2008); metabolic changes similar to those observed during stimulation of Cg25 were observed following 1 week of stimulation. This effect was not surprising because supported by the connection between the Cg25 and the NAc and those between NAc and other brain areas (Schlaepfer et al., 2008); in particular in the amygdala and in the NAc itself, the metabolism was also increased. The improvement of the clinical ratings in TRD following stimulation of the NAc may help understanding how ketamine may modulate brain activity, since it is unclear how the inhibition of NMDA receptors function may produce a widespread increase of CMRglu. However, it has been suggested that the block of NMDA receptor on inhibitory interneurons by S-ketamine, may facilitate pyramidal cells firing leading to CMRglu cortical increase (Hashimoto, 2019) more elements must be considered. The gabaergic medium spiny neurons of the NAc receive inputs from dopaminergic neurons located in the VTA and from glutamatergic neurons originating in the amygdala, the hippocampus the paraventricular nucleus of thalamus and the medial PFC (Pinto et al., 2003; Pierce and Kumaresan, 2006). In turn, the NAc projects indirectly to several regions including Cg25, ventral pallidum, thalamus, hypothalamus, and feeds back on the amygdala and the medial PFC (Schlaepfer et al., 2008), generating a sophisticated circuitry where the unbalance of one component may unsettle many other brain regions.

The amelioration of depression by either DBS or ketamine in TRD patients shares the activation of peculiar brain areas, whereas it is conceivable that synaptic long-term depression may be more abundant than in healthy subjects. On the other hand, brain areas of TRD subjects have been found to be hyperactive (e.g., Cg25) and their activity resulted decreased upon therapeutic intervention. At this regard, Morris et al. (2020), through an elegant fMRI study, have shown that MDD patients had higher sgACC activation to positive and negative monetary incentives compared with controls, and that ketamine reduces sgACC hyper-activation to positive incentives (associated with anhedonia) but not negative incentives (associated with anxiety). Furthermore, in TRD subjects, an open-label PET study performed before and 2 h after ketamine infusion reported a reduction of anhedonia correlated with increased glucose metabolism in the hippocampus and dorsal anterior cingulate cortex (dACC) and decreased metabolism in the inferior frontal gyrus and orbitofrontal cortex (OFC) (Lally et al., 2015). It may possible that in hyper active brain areas, the overactive NMDA receptors might be the target of low therapeutic doses of ketamine because their affinity for ketamine might be higher (Shaffer et al., 2019). While little differences in the affinity for ketamine were reported for the four subtypes of NMDA receptors (Yamakura et al., 2000), it is also possible that in TRD subjects, the receptors undergoing turnover may acquire higher affinity for S-ketamine as a consequence of an editing process (Barbon and Magri, 2020). It has been reported that the turnover of AMPA receptors may be stimulated by ketamine and by its metabolites (2R,6R)-HNK and (2S,6S)-HNK (Zanos et al., 2016; Ho et al., 2018). Editing at this receptor is well known to occur to provide calcium permeability (Wright and Vissel, 2012) and it would be interesting to know whether the activation of AMPA receptors is a phenomenon that occurs preferentially on the known edited version or on a different version that occurs in TRD patients before or after ketamine exposure.



KETAMINE AND HPA AXIS

It is well known that depression is generated by the combination of genetic and environmental factors; among these, chronic stress has a pivotal role in humans and in animal models of depression (Czéh et al., 2016). Although the consequences of chronic stress on parameters such as hippocampal neurogenesis, BDNF levels, monoamine transmission and neuroinflammation are well known (Kubera et al., 2011; Kim and Won, 2017), it is somewhat less clear the relationship between the above mentioned parameters and the dysfunction of the HPA axis, and the correlated increase of cortisol, generated by chronic stress (Juruena et al., 2018).

In general it is known that chronic stress is closely related with depression (Hammen, 2005). One wonders how the activation of the HPA system and changes in cortisol levels and glucocorticoid receptors in many brain areas are related to the manifestation of depression (Pariante and Miller, 2001; Farrell and O’Keane, 2016; McEwen and Akil, 2020; Rothe et al., 2020) and what the role of mineralcorticoids might be (de Kloet et al., 2016). Interestingly, the individual response to HPA activation differs in the two sexes and especially differs between susceptible and resilient individuals (Kokras et al., 2019; Homberg and Jagiellowicz, 2021). These differences manifest in a different propensity to develop depression, and in particular, the depression that occurs may be differently correlated with cortisol levels or glucocorticoid receptors levels. Patients affected by MDD commonly have the HPA system activity set at a higher point, therefore, both the glucocorticoid receptor signaling and the activity of corticotrophin releasing hormone (CRF) neurons are more elevated than in physiological condition (Ströhle and Holsboer, 2003). In particular, levels of cortisol have been considered for assessing the condition of depression and for predicting the result of the antidepressant therapy. The severity of depressive symptoms is generally correlated with cortisol levels (Zobel et al., 2001), but different subtypes of depression may also be associated with higher baseline cortisol levels (Keller et al., 2006). Interestingly there is a difference in HPA-axis activation between melancholic and atypical depressive subtypes; in particular hypercorticolism is associated with melancholia while normal or decreased HPA-axis function should be primarily associated with atypical depression (Juruena et al., 2018). In should also be noted that the response to antidepressant therapy varies differently and correlates differently with HPA-axis activation (Anacker et al., 2011; Ventura-Juncá et al., 2014; Jain et al., 2019). However, understanding the correlation between the type of depression, and the activation of the HPA system, could allow us to predict individual’s response to antidepressants and help to identify the most appropriate antidepressant to achieve a therapeutic response (Nandam et al., 2020; Nikkheslat et al., 2020). The meaning of cortisol levels in depression and in the response to antidepressant therapy has been recently reviewed elegantly by Nandam et al. (2020); these authors, examining the role of HPA activation in animal models of depression, concluded that there is no convincing relationship between cortisol level and therapeutic response, in either preclinical or clinical setting. As far as regards the correlation between the antidepressant effects of ketamine and changes in cortisol levels, no clinical or experimental results are yet available. However, an interesting work has pointed to Mg2+, as a link between ketamine antidepressant actions and cortisol levels (Murck, 2013); this study compared the action of ketamine with that of high doses of Mg2+ in animal models of depression, observing that both led to synaptic sprouting and strengthening. In addition, it was observed that neuroendocrine changes (i.e., increased cortisol and aldosterone) were associated with low levels of Mg2+ and that patient with therapy refractory depression appeared to have lower CNS Mg2+ levels in comparison to healthy controls (Murck, 2013). On the other hand, it is interesting to observe that chronic corticosterone treatment provides a useful animal model of depression, and that multiple classes of antidepressants can reverse the neurogenic effects observed in this model (Levinstein and Samuels, 2014). On this basis, and considering that acute and chronic ketamine can reverse the effects of chronic mild stress (CMS) and the increased levels of circulating corticosterone and ACTH, it is likely that ketamine might have similar effects in humans and in the corticosterone model of depression. Nevertheless, the exact mechanism by which ketamine might correct dysfunctions in the HPA system has not yet been identified.



ROLE OF BNST IN THE ANTIDEPRESSANT EFFECT OF KETAMINE AND STANDARD ANTIDEPRESSANTS

The preclinical studies on the possible use of ketamine in the therapy of depression have been mainly based on animal models of depression that have been validated over the years, through the use of classic antidepressants (Czéh et al., 2016; Planchez et al., 2019). Although the mechanism of action of ketamine (Zanos and Gould, 2018; Deyama and Duman, 2020; McIntyre et al., 2020) differs substantially from that of standard antidepressants (Feighner, 1999; Patel et al., 2017), it might be hypothesized that they share common target areas that therefore could be involved in the etiology of depression. This hypothesis might be considered to explain the antidepressant effect produced by selective serotonin reuptake inhibitor (SSRIs), and by selective norepinephrine reuptake inhibitor (SNRI), which, although acting on two different transmission systems, can produce equivalent antidepressant effects (Artigas, 2015; Gałecki et al., 2018; Wagner et al., 2018). In addition to the brain areas discussed above, the bed nucleus of stria terminalis (BNST) should be considered as a target of antidepressant action. The BNST has been included in the extended amygdala and plays a relevant role in the acquisition of emotions and in motivated behavior (Alheid et al., 1998); in this regard a diminished motivation is an essential feature of depression (Nestler and Carlezon 2006). BNST also plays a role in the integration of stress and reward information (Carboni et al., 2000; Walker et al., 2003; Choi et al., 2008) and in stress-induced relapse of drug seeking (Erb et al., 2001; Sahuque et al., 2006; Jadzic et al., 2021). In addition, BNST is implicated in the regulation of fear, anxiety and aversion (Davis et al., 2010; Kim et al., 2013; Jennings et al., 2013); noteworthy the electrical stimulation of BNST produces both excitatory and inhibitory responses in VTA neurons in vivo (Georges and Aston-Jones, 2001). Therefore, based on the strict connection of BNST with brain areas involved in depression and anhedonia, it might be assumed that BNST plays a relevant role in depression etiology, as well as in the mechanism of action of antidepressants. This hypothesis is supported by the observation that patients affected by TRD could benefit from DBS of the BNST (Fitzgerald et al., 2018), although a larger clinical study will be needed to confirm the results of this pilot study. Remarkably, BNST receives a very dense noradrenergic innervation that originates from the A2 region of the nucleus of solitary tract, and the A1 region of the caudal brainstem, with a small contribute from the locus coeruleus (Aston-Jones et al., 1999; Delfs et al., 2000), all these areas being involved in acute and chronic stress response (Forray et al., 1997) and in arousal (Herman et al., 2018). A role of this brain area in depression is also supported by the serotoninergic innervation of the BNST; specifically, it has been reported that the availability of serotonin transporters in this area is positively correlated with individual differences in anxiety behavior (Oler et al., 2009). We have previously observed that classic antidepressants (Cadeddu et al., 2014) and ketamine (Cadeddu et al., 2016) shared the ability to increase catecholamine output (i.e., extracellular concentration) in the BNST; intriguingly, the SSRIs citalopram and fluoxetine increased the output of norepinephrine and dopamine similarly to the selective blockers of norepinephrine reuptake such as desipramine and reboxetine, suggesting a converging pathway of activation of catecholamine transmission in this brain area. On the other hand, a sub-anesthetic dose of ketamine (i.e., 10–40 mg/kg i.p.), dose dependently increased the output of norepinephrine and dopamine up to about 180% of basal values. Remarkably, Tso et al. (2004) observed that S and R ketamine at 100 μM, similarly increased norepinephrine efflux and the t1/2 uptake in rat BNST slices although it should be noted that 100 μM is well above the therapeutic concentration of ketamine in humans, and this concentration might interact with other receptors besides NMDA. In general, norepinephrine and dopamine innervations make synaptic contacts on CRF-neurons, which in turn influence glutamate release from afferents on GABA BNST neurons, producing a disinhibition of VTA neurons (Kudo et al., 2012; Silberman and Winder, 2013). In addition, the output neurons of the ventral BNST are under norepinephrine tone (Forray and Gysling, 2004), whose increase by the administration of the α-2 antagonist yohimbine contributes to the activation of HPA (Zheng and Rinaman, 2013). In synopsis, it is likely that BNST plays a role in the antidepressant effects of ketamine. The fact that both ketamine and classic antidepressants increase catecholamine output in the BNST suggests that this effect is necessary for the generation of the antidepressant effect, although it might not be sufficient for the generation of the fast antidepressant effect of ketamine. In addition, the selective effect of ketamine in specific brain regions could also be an important for its rapid antidepressant properties.



KETAMINE’S EFFECTS: GENDER AND DEVELOPMENT

When discussing about depression and antidepressants, the attention is focused on the relative low response of depressed patients, and the lag-time in the response. In addition, some attention has been given to the higher incidence of depression in women as compared with men, and to the different responses of women to the antidepressant therapy. We will consider here the background underlying women’s different response to ketamine. MDD, assessed by DSM-IV criteria has a lifetime prevalence of 11%, or 7.5% when referred to the past year (Avenevoli et al., 2015). Depression has a higher prevalence (2:1) in women (Kuehner, 2017), both when assessed in adulthood and in adolescence; in particular, non-severe and severe MDD in adolescents reached 12% and 5% in girls and 7% and 2% in boys, respectively (Avenevoli et al., 2015). Although social and cultural factors could have a role in generating these differences, several studies have attempted to elucidate the neurobiological bases potentially implicated. In addition to being affected by depression to a greater extent, women attempt or complete suicide with higher incidence (Mergl et al., 2015). Whether the origin of this difference is genetic, environmental, or is due to the interaction of these two factors is an important open question. Moreover these two factors may be additive; in fact, women have a higher sensitivity to stress (Slavich and Sacher, 2019) but are also more frequently victims of stressful situations such as domestic violence, unsatisfactory employment conditions and home keeping burden (Beydoun et al., 2012). Looking at the neurochemical bases of women’s different susceptibility to depression, we can underscore differences in the brain systems involved in stress handling, in the release of CRF, and in general, in the norepinephrine circuitry, as compared with men (Bangasser et al., 2016; Bangasser and Wiersielis, 2018). While the acute stress response can be considered an adaptive response, and usually does not lead to any hampering dysfunction, persistent activation of stress circuits can lead to a pathologic hyper-arousal which can evolve in a stress-related psychiatric disorder (Gold, 2015). In particular, the locus coeruleus neurons in rat respond with greater activation to stressors when they have been previously sensitized by CRF release during stress; remarkably in non-stressed situations, there is no tonic CRF release (Curtis et al., 2006).

The different gender sensitivity that is observed in the prevalence of depression also extends to the response to antidepressant therapy. In fact, women respond differently to antidepressants, and in particular, they respond better to SSRI than men, while men respond better to tricyclic antidepressants (LeGates et al., 2019). Such a response of women to SSRI is not seen in old women, who improve their response when a hormonal replacement therapy is administered (Thase et al., 2005). At present there is no clear evidence of a gender difference with regard to fast acting antidepressant therapy because it is use is currently limited, but based on animal studies, one should expect a better response in women (Freeman et al., 2019). In the forced swimming test, naïve females show an antidepressant response (Carrier and Kabbaj, 2013) to a lower ketamine dose than males; this response was shown to be estrogen- and progesterone- dependent. Remarkably, these authors found that the higher sensitivity of female to low doses of ketamine was not mediated by the phosphorylation of mTOR in the medial prefrontal cortex, or by the eEF2 in the hippocampus. Additionally, Ardalan et al. (2020) observed that (S)-ketamine, one hour after administration (15 mg/kg i.p.), induced a substantial alteration of morphology of the hippocampal astrocytes only in females of a genetic animal model of depression, the Flinders Sensitive Line rats. In this regard, it is interesting to note that, in female mice, both estrogen and progesterone increase spine density in the hippocampus, a brain area that expresses high levels of receptors for these hormones (Li et al., 2004). Furthermore, Thelen et al. (2019) observed that the repeated administration of ketamine (10 mg/kg, 21 days) to C57BL/6 mice, produced an increase in the synaptogenic response in the hippocampus of female mice, while ketamine induced a sex-specific “glutamate burst” in the male medial PFC. On this basis, it can be summarized that women have a higher susceptibility to stress and therefore are exposed to a higher grade of anxiety and other depressed mood-related disorders, because their brain structure is under the influence of hormonal fluctuation during the reproductive years, and in the midst of hormonal transition period that occurs later in life. At the same time, women are at great risk for developing inflammatory-related depressed mood because the sex differences in the human immune response (Slavich and Sacher, 2019). Therefore, it is not surprising that women can respond differently to ketamine therapy.



KETAMINE AND INFLAMMATION

There is strong evidence that inflammation is implicated in the pathophysiology of depression, and although the heterogeneity of the results on its role, it appears that managing inflammation might provide an overall therapeutic benefit, regardless its origin (Beurel et al., 2020). A recent meta-analysis study revealed that several cytokines such as IL-6, tumor necrosis factor (TNF)-α, IL-10 were elevated in MDD patients, while Interferon-γ was reduced (Köhler et al., 2017). The inflammatory markers such as IL-6 and CRP/hsCRP (C reactive protein/high sensitivity CRP) have been suggested as markers for the prediction of treatment-response in TRD patients (Yang et al., 2019b). A second component of central inflammation is the activation of brain microglia cells which, through the release of IL-1 and TNF-α, IL-1β and other inflammatory mediators, can directly modulate the glutamate transmission (Riazi et al., 2015). At the same time, central inflammation may interact with other neurotransmitters and neurocircuits, leading to behavioral changes (i.e., sleep, motivation, reward and anhedonia) and depressive symptoms; therefore, targeting inflammatory mechanisms can offer new therapeutic and diagnostic opportunity (Roman and Irwin, 2020). Noteworthy untreated depressed individuals had elevated plasma and cerebrospinal fluid levels of CRP, elevated levels of glutamate in basal ganglia and showed increased anhedonia and psychomotor retardation (Haroon et al., 2016; Felger et al., 2020). Moreover, lipopolysaccharide mediated inflammation induced depressive-like behavior that was ameliorated by the administration of low doses of ketamine (Walker et al., 2013). In another study it was shown that a single dose of ketamine restored the lipopolysaccharide-induced depressive-like behavior (increased anxiety and reduced self-care), reduced the cytokine production, the microglial activation and the microglial quinolinic acid production (Verdonk et al., 2019). These authors also showed that in TRD patients, the kynurenic to quinolinic acid ratio is a predictor of ketamine response, and the reduction of quinolinic acid after ketamine infusion, is a predictor of the reduction of MADRS (Montgomery-Asberg Depression Rating Scale) score, thus supporting the hypothesis that microglia is involved in the pathophysiology of depression (Verdonk et al., 2019). A further support of this hypothesis has been provided by Ho et al. (2019), who have shown that in HMC3 human microglial cells, either ketamine or its active metabolites (2R,6R;2S,6S)-HNR, can regulate type I interferon pathway. Furthermore, these authors suggested that signal transducer and activation of transcription factor 3 (STAT3) may play a role in the antidepressant effects of ketamine, mediating the increase of BDNF expression and promoting the synthesis of synaptic proteins such as PSD95 and synapsin-1 (Ho et al., 2019).

The involvement of inflammation in the etiopathogenesis of depression has aroused considerable interest and has extended the search for possible interactions between other conditions that are generally associated with inflammation and depression, such as obesity and type 2 diabetes. Wang F. et al. (2019) examined this issue in a systematic review, concluding that the prevalence of major depressive disorder in people with type 2 diabetes was elevated and significantly higher than that in the general population. A further factor that correlates obesity with inflammation and depression is the reduced physical activity, which is a common denominator of obesity, metabolic syndrome and depression (Schmidt et al., 2020). In particular, Dutheil et al. (2016) observed that an increase in inflammatory cytokines (IL-6, IL-1β, TNF-α) was associated with an increase in anxiety and anhedonia symptoms in mice subjected to a high-calorie, high-fat diet; these authors also highlighted the mechanisms involved, showing that the behavioral changes observed were associated with a disrupted insulin signaling in the hippocampus, combined with elevated serum corticosterone. In addition, they showed that high-fat diet caused an altered energy homeostasis and an altered insulin/mTORC1-signaling pathway, that is involved in synaptic plasticity; interestingly, they also observed that ketamine rapidly reversed the behavioral deficits that were caused by long-term exposure to high-fat diet (Dutheil et al., 2016). Curiously, the relationship between depression and inflammation is most evident in TRD patients (Haroon et al., 2018); in particular these authors found a significant relationship between number of failed treatment-trials and inflammation markers such as TNF-α, soluble TNF receptor 2 and IL-6. Considering that these patients are those who show a better therapeutic response to ketamine, it is interesting to evaluate whether the action of ketamine occurs through neuronal mechanisms or directly through the modulation of inflammatory processes (Roman and Irwin, 2020).

In general, antidepressant treatment significantly decrease peripheral levels of IL-6, TNF-α and IL-10, but this reduction, as evaluated by a meta-analysis, is not associated with treatment response (Köhler et al., 2018). Remarkably, elevated levels of circulating markers of inflammation predict a positive response to tricyclic antidepressants, ketamine and electroconvulsive therapy and a poor response to selective SSRI (O’Brien et al., 2007; Yoshimura et al., 2009; Carvalho et al., 2013); in particular, patients with SSRI resistant depression had significantly higher production of the pro-inflammatory cytokines IL-6, TNFα, and IL-6R compared with healthy controls. On the other hand, ketamine administration in TRD patients can reduce plasma levels of the pro-inflammatory adipokines and resistin, supporting the view that ketamine’s anti-inflammatory effects may directly contribute to its rapid antidepressant effects (Machado-Vieira et al., 2017). Moreover, in this study it was observed that low levels of the anti-inflammatory and insulin sensitivity promoter adiponectin, significantly predicted ketamine’s antidepressant efficacy. Overall it can be stated that TRD patients have elevated plasmatic levels of inflammatory cytokines such as IL-6, and this may predict a positive response to ketamine treatment. However, although ketamine does lower IL-6, such a reduction does not always correlate with the antidepressant response (Kiraly et al., 2017), suggesting that further studies are needed to fully elucidate the interaction between ketamine, inflammation and the antidepressant response.



KETAMINE’S EFFECTS: SINGLE VERSUS REPEATED ADMINISTRATION, GENERAL SIDE EFFECTS, COGNITIVE EFFECTS AND POTENTIAL ADDICTIVE EFFECTS

Several studies have shown the effectiveness of a single administration of ketamine (usually 0.5 mg/kg over 40 min infusion) in reducing, either depressive symptoms or suicidal thoughts for a review see De Berardis et al., 2018; Phillips et al., 2020). Although this evidence has an enormous potential of innovation in the therapy of depression, the real manageability of this potential can be fully verified only through further studies and clinical trials. Furthermore, these studies have shown that the antidepressant effect of ketamine, can be assessed up to 10 days from the single administration but how depression symptoms evolve months or years later, in terms of intensity and frequency remain largely to be ascertained because this was not among the objectives of these studies. In general, because a single dose ketamine is short lived, 50% of patients relapse within one week, although 20% remain in remission up to 30 days (Salloum et al., 2020). Therefore, it is pivotal to evaluate the effect of repeated ketamine treatment with the final goal of developing a chronic treatment that does not produce addictive or psychotropic effects, or in general, significant side effects. The most common dose of i.v. ketamine is 0.5 mg/kg (0.25 for S-ketamine) over 40 min but some patients respond to doses as low as 0.1, while others may require up to 0.75 mg/kg (Andrade, 2017). The recommended intranasal dose of esketamine is 28 mg/device; each device delivers 2 sprays for a total 28 mg, to be administered twice per week; the bioavailability has been reported to be about 45% (Yanagihara et al., 2003) or almost complete (Andrade, 2017). The bioavailability of oral ketamine is low (8% for esketamine and 24% for ketamine) thus a dose of about 2.0-2.5/kg is equivalent to the i.v. 0.5 mg/kg dose (Andrade, 2019). A thorough description of the pharmacokinetics of ketamine is beyond the scope of this review and we refer to excellent work of other authors (Yanagihara et al., 2003; Fanta et al., 2015). The peak plasma concentration (min) of the two ketamine enantiomers (a) or of the two nor-metabolites (b) was detected and reported as a:b) in min is about: 0:30, 30:90, 20:80, 30:60, 20:30 after injection, intranasal administration, sublingual tablets, tablets and suppository, respectively (Yanagihara et al., 2003). An early study (Shiroma et al., 2014) reported that the repeated administration of ketamine over a period of 12 days (i.v. infusion of 0.5 mg/kg over 40 min, thrice a week) determined 100% of response and about 60% of remission; in addition, it was shown that 50% of patients relapse (i.e., improvement less than 50% in baseline, as evaluated by the MADRS score at visit). Another study (Vande Voort et al., 2016), although of small size (12 subjects), has shown that 7 subjects (58.3%) responded to ketamine treatment during the acute phase (0.5 mg/kg over 100 min i.v. infusion) and 5 subjects (41.7%) remitted; these 5 subjects were then administered with further 4 week ketamine infusions (thrice a week) and experienced further depressive symptom improving, during the continuation phase treatment, as evaluated through MADRS score. Interestingly, Vande Voort et al. (2016) reported that four subjects lost remission status during the drug free post-continuation phase, but they maintained a MADRS total score not different from that evaluated 24 h after the first acute infusion suggesting an enduring ketamine effect. A recent meta-analysis of 20 randomized and controlled studies evaluated the efficacy of a single or repeated ketamine dose in different subgroups of patients with MDD and bipolar depression (Kryst et al., 2020); the authors reported that a single dose of ketamine, reduced depressive symptoms, producing the largest antidepressant effect at 24 h, however, a significant effect was seen up to 7 days after ketamine administration. In addition, ketamine’s effect could be observed in TRD patients, who received ketamine in monotherapy, but also when ketamine was used as adjunctive to the current antidepressant therapy, in both unipolar and bipolar depression. Several studies evaluated the efficacy of ketamine repeated treatments; importantly, serial ketamine administration (twice or thrice a week for three weeks) produced a significant and sustained antidepressant effect over placebo at three weeks, both in terms of depression symptoms and in terms of remission (Kryst et al., 2020).

On the basis of this evidence it is possible to predict that the repeated administration of ketamine represents a concrete therapeutic response to depression and suicidal ideation. However, it remains to be evaluated whether the oral or intranasal route of administration could be a valid alternative to the intravenous one; moreover, the consequences of long-term exposure to ketamine remain to be monitored. The efficacy and safety of esketamine nasal spray was evaluated when added to a newly initiated oral antidepressant in TRD patients, in a randomized double-blind active controlled study (Popova et al., 2019); the authors observed a clinically meaningful improvement in the esketamine plus antidepressant group, while the most common side effects (dissociation, nausea, dysgeusia and dizziness) were observed shortly but were resolved by 1.5 h after dosing. Similar results have been reported by Daly et al. (2019) in a clinical trial, involving 297 randomized TRD patients, aimed at assessing relapse prevention; the authors observed that, among patients administered with 56-84 mg of esketamine nasal spray plus an oral antidepressant, 80% of patients who achieved stable response were without relapse 11 weeks after the first administration (versus 58% in the oral antidepressant/placebo nasal spray group), whereas after 70 weeks the percentages were 65 and 35 respectively. Finally, a very recent study (Ionescu et al., 2021) evaluated the efficacy of esketamine nasal spray [84 mg or placebo + standard of care (SC)], administered twice a week for four weeks; at day 25 the authors observed a 47% of remission, in patients who received ketamine + SC, versus 37% in the placebo + SC group. In addition, the authors observed that the most frequently reported adverse effects, in ketamine + SC were: dizziness (41.2%), dissociation (38,6%), nausea (33.3%), dysgeusia (25.4%), somnolence (22.8%), and headache (21.9%); interestingly the majority of adverse effects in the esketamine + SC group (89%) and placebo + SC group (68%) were reported on intranasal dosing days and most of these events (94.9% and 84.9%), resolved on the same day they began (Ionescu et al., 2021). A recent study has evaluated the oral administration route of esketamine, as add-on to regular antidepressant medication, in a randomized controlled trial (Smith-Apeldoorn et al., 2019); oral esketamine administration to TRD patients (10 to 30 mg, three times a day over 40 days) was effective and well tolerated. In this regard it should be remarked that the absorption of oral ketamine appears to vary substantially both between and within patients and that ketamine undergoes extensive first-pass metabolism resulting in low and variable bioavailability if compared with IV administration route (Smith-Apeldoorn et al., 2019). A meta-analysis of studies that evaluated the use of oral ketamine for bipolar and unipolar depression (Rosenblat et al., 2019), observed that ketamine administration has significant antidepressant effect with good overall tolerability although antidepressant effects were not as rapid as those associated with IV ketamine; in addition, the author concluded that a reduction of suicidal behavior and efficacy in TRD patients have yet to be demonstrated. On this basis, it appears that ketamine oral administration could represent the easiest and less expensive route of administration, but the limited number of studies does not allow predicting whether the problems associated with this route of administration will be overcome. In particular, the problems of pharmacokinetic and the development of a formulation that can prevent abuse are difficult challenges; in fact, the brain concentration of ketamine needed to achieve the antidepressant effects at the moment it is not known. Overall it can be acknowledged that the repeated administration of esketamine nasal spray in addition to an oral antidepressant is certainly effective and safe, while the side effects are acceptable and short-lived.

Among the CNS adverse effects of ketamine, the most disturbing are the risk of abuse and the effects on cognitions. This issue is stimulating because it is acknowledged that depression is frequently associated with impairments in cognition (i.e., memory and learning) and executive functions (i.e., planning, decision making and mental flexibility) see Culpepper et al. (2017) for a review. Interestingly, TRD patients with low neurocognitive performance level, benefit from a better antidepressant effect of ketamine, and do not exhibit cognitive impairments whereas, TRD patients with elevated cognitive performance, were more likely to show cognitive deficits in working memory and processing speed (Murrough et al., 2015). Furthermore, very recently Shiroma et al. (2020) reported that most, although not all, short-term neurocognitive functions remained stable or improved after repeated (six infusions) or single ketamine administration; in particular, the authors found that there was a greater differential effect of treatment on speed of processing, set shifting and spatial working memory that favors subjects in the six ketamine infusion group (Shiroma et al., 2020). The issue of the safety of repeated ketamine administration has been elegantly reviewed by Strong and Kabbaj (2018); interestingly, the authors suggested that men are more sensitive to the psychomimetic effects of ketamine than women while adolescent and adult female subjects may be more sensitive to the addictive effects of ketamine.



KETAMINE AND DEPRESSION THERAPY: CURE OR TREATMENT?

An essential consideration in the therapy of depression is understanding whether treatment with antidepressants only induces the regression of symptoms or whether it can activate a process of brain neuronal rewiring which, when completed, can lead to a proper healing of the illness. In this process there are two important factors to take into account: (a) the level of influence of the genetic component; (b) the influence of environmental factors. If the effect of the genetic component is sufficient to cause a state of depression, as in fact can occur in late adolescence in absence of other apparent causative factors, it is unlikely that a period of therapy would be sufficient to ameliorate or eradicate symptoms of depression; and even if this were to happen, it is hard to predict whether or not there would be a relapse after the suspension of therapy. Therefore, in cases where there is a lack of response to standard antidepressant therapy and following careful evaluation of a patient’s history, ketamine therapy can be considered as an add-on drug, although a careful assessment of the possible consequences of long-term treatment administration must be carried out.

On the other hand, we know that although insufficient to trigger symptoms, the genetic component plays a significant role in causing depression; in such cases, the tipping point to reaching the threshold for the onset of depression symptoms could be induced by a trauma or by a moderate but chronic stress. Thus, it is possible that the condition of TRD manifests as a result of ineffective standard antidepressant therapy for the removal of traumatic memories or by the persistence of the stressful environmental conditions that have triggered depression symptoms. The use of ketamine as an add-on drug can help to erase memories of traumas and thus eliminate or attenuate nightmares, reduce the insomnia associated with the occurrence of nightmares (Wang X. et al., 2019), and assist recovery from depression. It has in fact been observed that ketamine infusion can increase total sleep time and reduce waking during the first and second night post infusion (Duncan and Zarate, 2013); ketamine can also reduce nocturnal sleeplessness in depressed patients with suicidal tendencies (Vande Voort et al., 2017). Interestingly, it has also been observed that baseline insomnia can be a predictor of the efficacy of ketamine when it is repeatedly administered intravenously for the treatment of unipolar and bipolar depression (Liu et al., 2020). Additionally, repeated ketamine infusions, in a comorbid population with PTSD and TRD, have proven to be an effective treatment (Albott et al., 2018). Overall, although repeated administration of ketamine is very promising for the treatment of PTSD, additional studies are needed to evaluate whether ketamine might enhance the efficacy of psychotherapy in individuals with chronic PTSD (Feder et al., 2020).

On the other hand, although ketamine can produce significant improvements in alleviating chronic stress-associated depression, there is little guarantee that the curative effect will persist once ketamine administration is suspended. In fact, if conditions such as financial hardship, job loss, and/or permanent family or health problems do not find a solution, it is unlikely that depression will miraculously vanish and make any further AD administration unnecessary. There is a shared belief that the therapeutic effects of antidepressants are mediated by the stimulation of neurotrophic factors and synaptogenesis in several brain areas, and can counteract the stress-induced synaptic loss that is considered a root cause of depression (Serafini et al., 2014). In the light of the above, it does seem a concrete prospect that depressed patients will find repeated treatment with ketamine beneficial, even though the cause that generated the chronic stress is still present; nevertheless, it should be taken into account that the administration of ketamine may be necessary until the cause of stress is eliminated, or the environmental situation responsible for depression has significantly improved (Deyama and Duman, 2020). It has in fact been observed that ketamine can induce significant stress resilience in several mice models of depression (i.e., chronic stress, social defeat, learned helplessness) and chronic corticosterone) (Brachman et al., 2016); in view of this, the authors suggested that ketamine may be useful in protecting against stress-induced disorders. In addition, ketamine can generate rapid restoration of synaptic homeostasis, through re-equilibration of glutamate/GABA release and dendritic BDNF mediated reversal of synaptic and brain circuit impairments in stress vulnerable rats (Tornese et al., 2019). Overall, there are tangible possibilities that ketamine or new drugs developed on the basis of ketamine’s mechanism of action, could represent a cure for PTSD and stress related depression disorders, although further clinical data is necessary. This topic has been discussed in a recent review by Abdallah and Krystal (2020), who presented evidence of a synaptic-based chronic stress pathology in depression and other psychiatric disorders.



CONCLUSION AND FUTURE DIRECTIONS

This review has shown that ketamine can make a genuine leap forward in the therapy of depression. Its clear effectiveness in reducing symptoms of depression and suicidal ideation, either after a single administration, or especially when administered repeatedly in addition to another antidepressant, is an extremely promising factor in the treatment of depression (Wilkinson et al., 2018; McIntyre et al., 2020). Furthermore, research on new molecules designed to reproduce the rapid and sustained antidepressant effects of ketamine, without its adverse effects, allows us to assume that a new era in the pharmacology of antidepressants has already begun (Chaki, 2017). From a pharmacological point of view, the rapid antidepressant effect and the sustained antidepressant effect of ketamine are both intriguing and puzzling; the former because unlike other antidepressant drugs, it manifests within a matter of hours of infusion; the latter because it continues to be observed well beyond the point when the concentration of ketamine in the plasma is pharmacologically irrelevant. A sustained antidepressant effect has important clinical relevance and has made it possible to schedule repeated treatment at relatively long intervals (48–72 h), which in addition to avoiding any accumulation of the substance, is associated with the appearance of adverse effects only for a short period of time (about 1–2 h) after administration. Existing research on the rapid and sustained action of ketamine has made it possible to broaden our knowledge of the brain areas and circuits involved in the etiopathology of depression and in mood control. Furthermore, these studies have shed light on the role that the lateral habenula plays in the limbic brain circuit that controls motivated behavior (Yang Y. et al., 2018) and on the influence of stress on this circuit. On the other hand, FDA approval of esketamine use in the treatment of depression will probably soon make it possible to ascertain whether ketamine can actually be a cure for depression, at least in a significant number of patients, and at the same time, will allow us to illustrate the risk of its abuse. Finally, the different response of women to ketamine may enable us to better understand the role of hormonal fluctuations in mood control and why depression is highly prevalent in women. On the whole, the repurposing of ketamine in depression therapy and the extensive literature on ketamine’s actions will soon allow not only the identification of new and effective molecules that can be used in depression therapy, but also a greater understanding of mood control, motivated behavior and the role of stress in the expression of these fundamental physiological functions in human beings.
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Cognitive impairment is a shared abnormality between type 2 diabetes mellitus (T2DM) and many neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease (AD) and schizophrenia. Emerging evidence suggests that brain insulin resistance plays a significant role in cognitive deficits, which provides the possibility of anti-diabetic agents repositioning to alleviate cognitive deficits. Both preclinical and clinical studies have evaluated the potential cognitive enhancement effects of anti-diabetic agents targeting the insulin pathway. Repurposing of anti-diabetic agents is considered to be promising for cognitive deficits prevention or control in these neurodegenerative and neuropsychiatric disorders. This article reviewed the possible relationship between brain insulin resistance and cognitive deficits. In addition, promising therapeutic interventions, especially current advances in anti-diabetic agents targeting the insulin pathway to alleviate cognitive impairment in AD and schizophrenia were also summarized.
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INTRODUCTION
Cognitive deficits can be observed in neurodegenerative and neuropsychiatric disorders, such as AD and schizophrenia with demonstratable brain pathology(Taber et al., 2010). Brain functional and structural abnormalities are related with cognitive deficits. Furthermore, brain changes could be a common biomarker for treatment-related cognitive improvement across neuropsychiatric disorders(Ott et al., 2019). Recent findings demonstrate that brain is a further important site of insulin resistance and brain insulin resistance is associated with cognitive dysfunction(Kullmann et al., 2016). Insulin resistance has been recognized as a mechanism of cognitive dysfunction in T2DM(Kim, 2019). Additionally, in AD, the impaired brain insulin signaling may contribute to cognitive decline via impaired hippocampal neuroplasticity, increased tau protein concentration, neuroinflammation and mitochondrial dysfunction(Biessels and Reagan, 2015). Given the relationship between brain insulin resistance and cognitive impairment, repurposing of already marketed anti-diabetic medications has attracted growing attention as a potential treatment in cognitive decline diseases. Specifically, both preclinical and clinical studies have demonstrated the neuroprotective effects of glucagon-like peptide 1 (GLP-1) receptor agonists, which are used for diabetes and obesity treatment(Mansur et al., 2018).
Accumulating studies have attracted profound scientific and public attention to the greater metabolic comorbidity of T2DM in schizophrenia patients(Mizuki et al., 2020), which is partly owing to overlapping genetic risk factors, environmental susceptibility and antipsychotic drugs-related mechanisms(Suvisaari et al., 2016; Hackinger et al., 2018). Even first-episode drug-naïve patients with schizophrenia exhibited greater insulin resistance compared with normal subjects(Pillinger et al., 2017). Glucose metabolic disturbances may be an inherent part of schizophrenia, and brain insulin resistance is a risk factor for cognitive deficits in this brain disorder(Wijtenburg et al., 2019). Meanwhile, the efficacy of current antipsychotic drugs on cognitive deficits are limited(Hill et al., 2010), making it urgent to develop pro-cognitive strategies. But few investigations have been done to illuminate the precise mechanisms linking insulin resistance and cognitive deficits in schizophrenia. In addition, whether pro-cognitive strategies used in AD via their anti-diabetic effects or other mechanisms in the brain could be generalized to schizophrenia is uncertain. It is of utmost importance to develop and promote effective interventions to ameliorate cognitive deficits in individuals with schizophrenia, further understanding the underlying mechanisms behind cognitive dysfunction and improving the quality of life and clinical outcomes of patients.
This review briefly summarized the mechanisms linking brain insulin resistance and cognitive impairment. In the next section, we provided an overview of preclinical and clinical studies with the aim to explore the potential cognitive enhancement of some anti-diabetic agents in treating AD and schizophrenia.
MECHANISMS CONNECTING BRAIN INSULIN RESISTANCE AND COGNITIVE DEFICITS
Insulin is a peptide hormone secreted by β cells of pancreatic islets, playing a crucial role in metabolism and cognitive function. Insulin resistance refers to a pathological condition of decreased insulin sensitivity of insulin-targeting cells and issues. In periphery, it has been recognized as a main feature of metabolic syndrome and T2DM. The brain is a further important site of insulin resistance, which is an extremely important organ to regulate energy metabolism, body weight, memory and cognition. Insulin receptor expression and action have also been found in neuronal populations and glial cells, and the disruption of insulin signaling in the brain is related to abnormal neuronal function(Kleinridders et al., 2014). In the brain, insulin resistance is associated with impaired neuroplasticity, raised inflammation process and mitochondrial dysfunction, underlining the significant role of brain insulin resistance in cognitive deficits (Figure 1).
[image: Figure 1]FIGURE 1 | Mechanisms connecting brain insulin resistance and cognitive deficits.Insulin receptors are distributed throughout the brain and their expression and action have also been found in neurons and glial cells. Brain insulin resistance impairs cognitive deficits via multiple ways. For instance, brain insulin resistance affects normal neuronal structure and function, resulting in decreased dendritic spines and BDNF levels and inducing impaired synaptic plasticity and transmission. Brain insulin resistance also exhibits cognitive decline with brain mitochondrial dysfunction with increased oxidative stress, leading to increased ROS and decreased ATP production. Additionally, brain insulin resistance induces raised inflammatory progress: microglia activation and increased cytokine levels, contributing to cognitive deficits. BDNF: brain derived neurotrophic factor; ROS: reactive oxygen species.
Brain Insulin Resistance and Abnormal Neuronal Structure and Function
Neurons are the structural and functional units of nervous system and brain insulin resistance-induced neuronal injury leads to cognitive deficits. Brain insulin resistance is associated with reduced dendritic spines, decreased level of BDNF and impaired synaptic plasticity(Biessels and Reagan, 2015; Park et al., 2019).
Dendritic spines are small postsynaptic protrusive structures from a dendritic, which are essential for synaptic transmission, and ultimately for learning and memory function(Nakahata and Yasuda, 2018). Hippocampal dendritic spines are also regulated by BDNF and brain insulin resistance decreases hippocampal dendritic spine density and disrupts the production of BDNF(Ding et al., 2017), leading to reduced LTP in the hippocampus and impaired cognitive function(Xiang et al., 2015). The decreased level of BDNF in insulin resistant brain would affect mitochondrial and protein synthesis, influencing synaptogenesis and neuronal health(Tome-Carneiro et al., 2018). BDNF is secreted in response to stimulations and is dependent on calcium influx through voltage gated calcium channels or N-methyl-d-aspartate (NMDA) receptors(Brigadski and Leßmann, 2020). Insulin resistance in the brain disrupted the NMDA receptor phosphorylation and final the production of BDNF(Ding et al., 2017). Besides, neuronal insulin resistance induced the down-regulation of cyclic element binding protein (CREB) and the expression of BDNF(Mi et al., 2017). And the decreased insulin resistance could stimulate the increased release of BDNF into the serum(Śmieszek et al., 2017).
Synaptic plasticity refers to numeral, structural and functional modifications of synapses under various stimulations, leading to the corresponding changes of the transmission efficacy(Citri and Malenka, 2008). In addition to resulting in decreased dendritic spines and reduced hippocampal BDNF levels, insulin resistance can cause deficits in brain synaptic plasticity, which together leading to impairment of cognitive function. Rats with specific downregulation of hippocampal insulin receptors by using a lentiviral vector exhibited impaired spatial learning and memory function through alterations in the expression and phosphorylation of glutamate receptor subunits(Grillo et al., 2015). Disruption of IRS-2 in the mice hippocampus impaired NMDA receptor-dependent LTP of synaptic transmission(Martin et al., 2012). Additionally, insulin resistance impaired synaptic plasticity and memory function through the hyper-palmitoylation of α-amino-3-hydroxy-5methyl-4-isoxazole propionic acid (AMPA) glutamate receptor subunit GluA1 in the hippocampus(Spinelli et al., 2017). An impaired insulin signaling in the brain also changed integrin-linked kinase glycogen synthase kinase (GSK) 3β signaling and reduced the trafficking and function of postsynaptic glutamate receptors, thereby impairing synaptic plasticity and contributing to cognitive decline(Shonesy et al., 2012).
Brain Insulin Resistance and Inflammation
Inflammation is the defensive response to stimuli occurring in the body and brain. In neuropathological disorders, raised inflammatory process (microglia activation and elevated cytokine levels) impairs cognitive performance through disrupting neurobiological mechanism: synaptic plasticity, neurogenesis, neurotrophic factors, the HPA axis and the kynurenine pathway(Fourrier et al., 2019). For instance, pro-inflammatory cytokines induce the activation of hippocampal indoleamine 2,3-dioxygenase, a tryptophan-catabolizing enzyme in the kynurenine pathway, which participates in learning and memory function(André et al., 2008; Too et al., 2016). The raised inflammatory process may promote the production of kynurenine, the NMDA antagonist, resulting in glutamatergic transmission dysregulation and eventually leading to cognitive impairment in schizophrenia(Müller, 2008). Additionally, immune-mediated imbalance of tryptophan catabolism via the kynurenine pathway is also associated with neuroinflammatory neurological disorders including AD(Maddison and Giorgini, 2015). The activation of the kynurenine pathway induced by inflammatory cytokines may generate neurotoxic metabolites including quinolinic acid and kynurenic acid, which are likely to play a role in the pathogenesis of AD(Gong et al., 2011).
Brain insulin resistance is associated with inflammation. High fat diet (HFD) rodents showed cognitive impairment with elevated Interleukin-1β (IL-1β)(Almeida-Suhett et al., 2017) and tumor necrosis factor α (TNFα) in the hippocampus(Boitard et al., 2014). Meanwhile, proinflammatory cytokines such as TNFα promoted the development of insulin resistance via interference with intracellular pathways(Shoelson et al., 2006). TNFα induced the activation of NF-κβ signaling pathway and caspase 3 was associated with diabetic-induced cognitive deficits and insulin combination with tocotrienol exhibited promising cognitive enhancement in the diabetic rats(Kuhad et al., 2009). The dysregulated insulin signaling in the hippocampus activated microglia and astrocyte, decreased BDNF levels, and inhibited neurogenesis, leading to cognitive deficits(Liu et al., 2018).
Brain Insulin Resistance and Mitochondrial Dysfunction
Mitochondria are essential for neuronal activity and plasticity, and mitochondrial dysfunction leads to cortical under-connectivity: reduced dendrite, axon and synapse growth(Fernandez et al., 2019). Meanwhile, abnormalities in mitochondrial structure and function have been observed in psychiatric disease(Clay et al., 2011), and cell-free mitochondrial DNA fragment could be used as a biomarker for cognitive deficits in schizophrenia(Suárez-Méndez et al., 2020).
Insulin resistance is related with mitochondrial dysfunction and mitochondria-dependent high level of free radicals also induce insulin resistance(Yaribeygi et al., 2019). Rodents with brain-specific knockout of the insulin receptors exhibited brain mitochondrial dysfunction and dopamine dysfunction leading to behavioral disorder(Kleinridders et al., 2015). HFD-induced brain insulin resistance reduced mitochondrial ATP production rate and oxidative enzyme activities, increased ROS emission and oxidative stress(Ruegsegger et al., 2019). The decreased insulin signaling in the hippocampus resulted in cognitive decline accompanied with decreased mitochondrial oxidative phosphorylation complex proteins(Petrov et al., 2015). Additionally, the activation of insulin receptors and subsequent activation of the α submit of AMP-activated protein kinase (AMPK) improved brain mitochondrial biogenesis(Barhwal et al., 2015).
Although the basic pathologies of AD and schizophrenia are diverse, they still have some symptomatic similarities in addition to cognitive deficits(White and Cummings, 1996), suggesting a complex relationship between the two diseases(Youn et al., 2011). Moreover, new findings support a genetic liability between schizophrenia and psychosis in AD(Creese et al., 2019). For instance, various psychiatric symptoms such as positive and negative symptoms are highly prevalent in both AD and schizophrenia(White and Cummings, 1996). Additionally, some brain morphological data indicate that the neurodegenerative features like progressive brain tissue loss can also occur in patients with schizophrenia(Rund, 2009). The clinical and pathophysiologic analogies of AD and schizophrenia suggest that there are maybe some shared pathological underpinnings between these disorders, which may provide additional insights into the mechanisms underlying both disorders(White and Cummings, 1996). Brain insulin resistance may be one of the referred underpinnings. Compared with the general population, patients with AD are more vulnerable to T2DM(Janson et al., 2004). The Mayo Clinic Alzheimer Disease Patient Registry revealed that 81% of AD patients had either T2DM or an impaired fasting glucose level(Janson et al., 2004). Meanwhile, there is a 2- to 5-fold higher risk of T2DM in people with schizophrenia than in the general population(Ward and Druss, 2015). Although the original causes for cognitive impairment in AD and schizophrenia are somewhat different, similar disturbances in glucose metabolism and insulin signaling will undoubtedly have further negative impact on the cognitive function of both disorders. A study demonstrated that insulin sensitivity as indexed by HOMA value was negatively coupled with verbal fluency performance, brain size and temporal lobe gray matter volume in regions known to be involved in speech production in cognitively healthy, nondiabetic elderly men and women(Benedict et al., 2012). Furthermore, higher level of insulin resistance was an independent predictor of poor verbal fluency performance(Ekblad et al., 2017). As mentioned above, it is plausible that brain insulin resistance contributes to cognitive deficits in schizophrenia. A systematic review supported that metabolic syndrome including insulin resistance were associated with cognitive impairment in schizophrenia(Bora et al., 2016). Meanwhile, higher levels of glucose and insulin resistance were found in first-episode drug-naïve patients with schizophrenia who showed cognitive deficits and disruption of white matter structure(Zhang et al., 2019). The level of insulin resistance was elevated and correlated with the severity of cognitive impairment in first-episode drug-naïve patients with schizophrenia(Tao et al., 2020). However, lack of studies directly detects whether individuals with schizophrenia show brain insulin resistance. Recently, a study demonstrated the insulin signaling abnormalities in neuronal cells in first-episode drug-naïve patients with schizophrenia(Kapogiannis et al., 2019). Another study using magnetic resonance spectroscopy (MRS) to detect brain glucose metabolism found a relationship between lower brain glucose utilization and decreased memory measures in schizophrenia patients compared to controls(Wijtenburg et al., 2019). They also detected brain insulin resistance by blood Extracellular Vesicle (EV) biomarkers to verify the association between neuronal insulin resistance and brain glucose metabolism(Wijtenburg et al., 2019). It suggests that brain insulin resistance and glucose metabolism alteration play a part in the pathophysiological of cognitive dysfunction in schizophrenia. Central insulin action is relevant to cognition and cognitive dysfunction in schizophrenia could be linked to central insulin defects(Agarwal et al., 2020). Furthermore, drugs that can act as insulin sensitizers and/or bypass insulin resistance in the brain offer a unique opportunity to address cognitive deficits and improve lives of the patients with schizophrenia(Agarwal et al., 2019).
REPURPOSING OF ANTI-DIABETIC AGENTS AS A POTENTIAL TREATMENT TARGETING COGNITIVE FUNCTION IN AD AND SCHIZOPHRENIA
Current findings suggest that brain insulin resistance is associated with the development of cognitive deficits and anti-diabetic agents boosting insulin action in the brain present promising cognitive enhancement in T2DM and neurodegenerative diseases. Based on this opinion, targeting brain insulin resistance may have therapeutic potential to alleviate cognitive deficits in individuals with schizophrenia (Figure 2). Therefore, we summarized several anti-diabetic drugs targeting the insulin pathway to improve cognitive function which could be pro-cognitive therapeutic interventions in AD and schizophrenia. Literature research (Figure 3: Flowchart of study selection) was conducted on PubMed (last: 8 April 2021) with the combinations of the key words: antidiabetic agents, cognitive impairment, Alzheimer disease, schizophrenia, neurodegenerative disorders, and neuropsychiatry. Inclusion criteria were: (1) animal models or patients with cognitive deficits; (2) under the treatment or supplement treatment of antidiabetic agents; (3) outcomes involved in cognitive function. Exclusion criteria were: (1) a review or a letter; (2) non-English language; (3) streptozocin-induced diabetic animal models. Totally, 38 preclinical and 21 clinical studies were selected for this review (see Table 1 and Table 2 for details).
[image: Figure 2]FIGURE 2 | The insulin signaling and the potential pro-cognitive effects of anti-diabetic agents. Insulin binds to insulin receptor to play its part, which promotes PI3K and Akt, the major downstream nodes of insulin signaling. The downstream targets of Akt such as mTOR, GSK3, CREB as well as FOXO play a role in cognitive function. Insulin stimulated phosphorylation of Akt also affects the translocation of the insulin-sensitive glucose transporter GLUT4 to the plasma membrane. In addition to the PI3K/Akt cascade above, insulin activates the MAPK pathways. Anti-diabetic agents boosting insulin signaling exhibit promising pro-cognitive effects. Metformin inhibits mitochondrial complex Ⅰ, thereby increasing AMP/ATP ratio and activating AMPK to protect neurons from oxidative stress. Metformin also upregulates the expression of BDNF via the activation of AMPK and CREB. GLP-1 agonists increase cAMP levels followed by activating PI3K/Akt signaling and PKA signaling pathways. Pioglitazone and rosiglitazone activate PPAR γ, resulting in gene transcription and neuroprotective effects. Sulforaphane exhibits promising neuroprotective effects which is known for an activator of Nrf2-antioxidant response element pathway. Quercetin also enhances cognitive function through its AMPK activity and modulating Akt signaling. IRS: insulin receptor substrate; PI3K: phosphoinositide 3-kinase; Akt: protein kinase B; CREB: cAMP response element binding protein; FOXO: forkhead box transcription factors of the class O; mTOR: mammalian target of rapamycin kinase; GSK3: glycogen synthase kinase 3; GLUT: glucose transporter; MAPK: mitogen-activated protein kinase; AMPK: AMP-activated protein kinase; GLP: glucagon-like peptide; PKA: protein kinase A; VGCCs: voltage gated calcium channels; PPAR: peroxisome proliferator-activated receptors.
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TABLE 1 | Preclinical studies: targeting insulin pathway to improve cognitive deficits
[image: Table 1]TABLE 2 | Clinical studies: targeting insulin pathway to improve cognitive deficits
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The reductions in the integrity of blood brain barrier may also be a contributing factor to the pathologic cascade leading to cognitive decline in neurodegenerative and neuropsychiatric disorders(Haar et al., 2016). Under the circumstances, intranasal insulin provides an advantageous and non-invasive technique to directly supply the brain with insulin to better target and bypass the blood brain barrier without significant influences on plasma insulin or glucose levels(Renner et al., 2012). Furthermore, intranasal insulin had a faster time course of absorption compared with subcutaneous insulin and the bioavailability of intranasal insulin was 8.3% compared with an intravenous bolus injection(Drejer et al., 1992). Studies demonstrated that intranasal insulin could improve memory function in cognitively impaired humans(Freiherr et al., 2013), providing the possibility that intranasal insulin was potentially a promising strategy to treat cognitive deficits.
Preclinical Studies
Fourteen consecutive days of intranasal insulin treatment could prevent the severe memory and learning impairment induced by intracerebroventricular administration of Aβ, which was a rat model of AD(Farzampour et al., 2016). In transgenic mouse model of AD, intranasal insulin improved cognitive impairment through promotion of neurogenesis, alleviation of Aβ pathology and enhancement of insulin signaling(Mao et al., 2016). Intranasal delivery of insulin for 7 days restored insulin signaling, increased synaptic protein expression and reduced Aβ levels and microglial activation in the brains of AD mouse model(Chen et al., 2014). These studies suggested that the beneficial effects of intranasal insulin on cognitive deficits could be partially due to the enhancement of insulin signaling and synaptic plasticity and the reduction of Aβ level and neuroinflammation in the brain.
Clinical Studies
In healthy subjects, intranasal intake of insulin improved consolidation of words and general mood, indicating intranasal insulin as a potential treatment in patients showing cognitive deficits in conjunction with a lack of insulin(Benedict et al., 2004). Acute administration of intranasal insulin enhanced functional connectivity between the dorsal medial prefrontal cortex of the default-mode network and the hippocampus in healthy lean, overweight and obese adults, although this study missed examination on cognitive function(Kullmann et al., 2017).
Previous research studies have evaluated the cognitive beneficial effect of intranasal insulin therapy in non-schizophrenia patients. Adjunctive intranasal insulin administration was safe, well tolerated, and effective on a measure of executive function in bipolar disorder(McIntyre et al., 2012). Systematic reviews also suggested that intranasal insulin administration might have a beneficial effect on cognitive function in amnestic mild cognitive impairment and AD(Lu and Xu, 2019), probably modified by apolipoprotein (APOE) 4 allele carrier status(Avgerinos et al., 2018). A pilot clinical trial demonstrated that 4 months intranasal insulin treatment stabilized or improved cognition, function and cerebral glucose metabolism for adults with amnestic mild cognitive impairment and AD(Craft et al., 2012). Other studies showed sex and APOE genotype differences in treatment response to different doses of intranasal insulin in adults with mild cognitive impairment or AD(Reger et al., 2008; Claxton et al., 2013). There may be a fundamental difference in central insulin sensitivity in sex and APOE genotype differences(Claxton et al., 2013). Long acting intranasal insulin detemir also provided cognitive benefit for individuals diagnosed with mild cognitive impairment and AD dementia, and in particular for memory-impaired adults who were APOE-Ɛ4 carriers(Claxton et al., 2015). More recently, a randomized clinical trial demonstrated that insulin modulated aspects of brain function relevant to AD and could be delivered into the brain using intranasal devices, although this study failed to confirm the cognitive benefit of intranasal insulin(Craft et al., 2020). A clinical trial did not demonstrate statistically significant improvements on overall mood, aspects of emotional processing, neurocognitive function, or self-reported quality of life patient reported outcomes in major depressive disorder either(Cha et al., 2017).
The cognitive benefit of intranasal insulin in healthy subjects and AD may not generalize to schizophrenia. Single-dose intranasal insulin treatment (40 IU) did not have significant beneficial effect on verbal memory and sustained attention in patients with schizophrenia(Fan et al., 2011). This trial excluded diabetic patients and the negative findings might be explained by the small sample size, the dosing of insulin, the severity of baseline cognitive deficits in study subjects and the timing of posttreatment cognitive assessment(Fan et al., 2011). Another 8-week clinical trial also failed to demonstrate any significant beneficial effect of intranasal insulin on cognition in patients with schizophrenia(Fan et al., 2013). Likewise, there were no significant differences in body metabolism between the adjunctive therapy of intranasal insulin (40 IU 4 times per day) group and the placebo group for schizophrenia patients(Li et al., 2013). However, these studies excluded diabetes mellitus subjects and it was possible that the adjunctive intranasal insulin treatment was not able to mitigate the side effect of antipsychotic treatment that patients received before(Fan et al., 2013; Li et al., 2013). Another challenge is the uncertainty of how efficient the drug is delivered into the brain via intranasal insulin. Larger sample size and multi-site studies considering dose, course and nasal-to-brain insulin delivery efficiency are expected to investigate whether intranasal insulin treatment shows beneficial effect in schizophrenia patients with cognitive deficits.
Metformin
Metformin, a biguanide anti-diabetic drug, is recommended as first line treatment in T2DM. The main effect of metformin is to acutely decrease hepatic glucose production through the inhibition of mitochondrial respiratory chain complex Ⅰ and subsequent the activation of AMPK(Viollet et al., 2011). Metformin is also known to have numerous nonglycemic effects. Metformin could activate AMPK pathway to protect neurons from oxidative injury(Zhao et al., 2019), produce antidepressant effects(Fang et al., 2020), and prevent neuroinflammation and neurodegeneration (Paudel et al., 2020).
Preclinical Studies
Chronic hyperinsulinemia in Neuro2a cells leaded to reduction of phosphorylation of IRS-1, PI3K, translocation of glucose transporter (GLUT) 4 and expression of GLUT3, and metformin could directly reverse such neuron insulin resistance status(Gupta et al., 2011). Metformin protected rats against from methamphetamine-induced neurodegeneration via the modulation of Akt/GSK3 or CREB/BDNF signaling pathway, and the amelioration of behavioral changes such as anxiety, depression and cognitive deficits(Keshavarzi et al., 2019). Metformin attenuated spatial memory deficits, neuron loss in the hippocampus, decreased Aβ plaque load and chronic inflammation in the hippocampus and cortex, and enhanced neurogenesis in the APP/PS1 mice, mouse model of AD(Ou et al., 2018; Chen et al., 2021). Metformin also restored spine density, surface AMPA subunit GluA1 trafficking, LTP expression and spatial memory in the APP/PS1 mouse by inhibiting cyclin-dependent kinase 5 hyper-activation and cyclin-dependent kinase 5-dependent tau hyperactivation(Wang et al., 2020). Furthermore, metformin could activate AMPK and insulin-degrading enzyme in the brain of APP/PS 1 mice, which might be the key neuroprotection mechanism of metformin(Lu et al., 2020). Metformin treatment for 8 weeks improved memory in the SAMP8 mouse model of sporadic AD, which was associated with the decreased levels of APPc99 and pTau404(Farr et al., 2019). In MK801-induced schizophrenia-like rats, metformin attenuated the olanzapine- and risperidone-induced metabolic dysfunctions without reducing the therapeutic effects of the antipsychotics(Luo et al., 2020). Furthermore, in MK-801-induced schizophrenia-like models, metformin ameliorated the pre-pulse inhibition deficits, alleviated hyperactivity, the anxiety-like behaviors, recognition and spatial memory impairment through normalizing the phosphorylation of Akt and GSK3β in the cerebral cortex of rats(Wang et al., 2019).
Clinical Studies
At present, the relationship between metformin and cognitive performance is controversial in clinical studies. In patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism, a year metformin treatment was effective in improving cognitive function, especially in terms of performance function(Lin et al., 2018). Metformin also produced cognitive and glucose metabolism improvement among depressed patients with diabetes mellitus(Guo et al., 2014). In patients with amnestic mild cognitive impairment or non-diabetes subjects with mild cognitive impairment or mild dementia due to AD, metformin treatment was associated with promising cognitive enhancement(Luchsinger et al., 2016; Koenig et al., 2017). However, a population-based Mayo clinic study of aging observed that metformin was associated with an increased risk of mild cognitive impairment and was not associated with cognitive test performance(Wennberg et al., 2018). In schizophrenia, evidence suggested that metformin treatment resulted in significant reduction in weight gain and insulin resistance in patients treated with antipsychotics(Wu et al., 2008a; Wu et al., 2008b; de Silva et al., 2016). A clinical trial recruited 120 participants to investigate the impact and the related mechanism of metformin treatment on cognitive deficits of schizophrenia co-morbid metabolic syndrome (clinicaltrials.gov: NCT03271866). More longitudinal studies are needed to verify the cognitive outcomes of metformin and more works are expected to investigate whether metformin treatment is effective in enhancing cognitive performance in schizophrenia patients.
GLP-1 Receptor Agonists
GLP-1, an incretin hormone from the enteroendocrine L-cells, increases insulin secretion and reduces glucose excursion and glucagon secretion to regulate glucose metabolism. Endogenous GLP-1 is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) enzyme. Therefore, the DPP-4 inhibitor (vildagliptin or sitagliptin) and the DPP-4 resistant GLP-1 analogues (exenatide, liraglutide, dulaglutide and lixisenatide) are developed to overcome the short hart-life of endogenous GLP-1(Sharma et al., 2018). The activation of GLP-1 receptors in periphery and central nervous system both mediate GLP-1’s food intake inhibitory and glycemic effects(Hayes, 2012). Additionally, the activation of GLP-1 receptors in the brain related to cognition exhibits neuroprotection effects, involving neuronal excitability, survival and proliferation(Mansur et al., 2018). The DPP-4 inhibitors, vildagliptin or sitagliptin, also exhibited cognitive enhancement effects(Pipatpiboon et al., 2013; Gault et al., 2015).
Preclinical Studies
In preclinical studies, GLP-1 receptor agonists protected PC12 cells from apoptosis involving EGFR transactivation and subsequent activation of the PI3K/Akt/mTOR signaling pathway(Kimura et al., 2013), and glucose metabolic aberration involving Sirt1-dependent deacetylation and Akt-dependent phosphorylation of Forkhead box O (FoxO) 1(Chen et al., 2019a). Liraglutide could reverse deleterious effects of insulin resistance in neuronal cells by improving the phosphorylation status of insulin receptor, IRS-1 and Akt(Jantrapirom et al., 2020). Exendine-4, a long-acting GLP-1 receptor agonist, inhibited glucose-induced apoptosis and oxidative stress in neurons(Chen et al., 2012), and ameliorated cognitive impairment(Chen et al., 2012) involving its metabolic, anti-inflammatory and anti-oxidant effects(Solmaz et al., 2015; Abdelwahed et al., 2018). The activation of GLP-1 receptor could attenuate neuroinflammation and improve neurogenesis and insulin sensitivity in AD(Bae and Song, 2017). For example, dulaglutide, a novel GLP-1 receptor agonist, ameliorated STZ induced AD-like impairment of learning and memory ability by modulating hyperphosphorylation of tau and neurofilaments through improving the PI3K/AKT/GSK3β signaling pathway(Zhou et al., 2019). Liraglutide reversed cognitive impairment in mice and attenuated insulin receptor and synaptic pathology in a non-human primate model of AD(Batista et al., 2018). Specifically, in mice, 7 days liraglutide treatment prevented the loss of brain insulin receptors and synapses, and reversed memory impairment caused by intracerebroventricular administration of Aβ oligomers, while systemic treatment on non-human primates with liraglutide indicated partial neuroprotection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions(Batista et al., 2018). Moreover, in AD mouse models, administration of liraglutide could reduce Aβ plaques, decrease tau hyperphosphorylation and neurofilament proteins, ameliorate chronic inflammation, attenuate oxidative/nitrosative stress, and improve cognitive function (McClean et al., 2011; Xiong et al., 2013; Hansen et al., 2015; McClean et al., 2015; Duarte et al., 2020). The combination of exenatide and insulin was associated with better memory and normal expression of insulin receptor pathway genes in a mouse model of AD(Robinson et al., 2019). And exenatide could improve cognitive decline through inhibiting apoptosis and promoting the BDNF-TrkB neurotrophic axis in adult wild-type mice(Bomba et al., 2018). Exenatide was reported to improve cognitive impairment by reducing Aβ1-42 deposition, alleviating synaptic degradation, and improving hippocampal mitochondrial morphology and dynamics in the mouse model of AD(An et al., 2019). However, another study suggested that exenatide could enhance BDNF signaling and reduce inflammation in AD mouse model, but it failed to promote changes in cognitive function(Bomba et al., 2019). DPP-4 inhibitors, sitagliptin and saxagliptin, also protected learning and memory function in AD mouse model through increasing the O-Glycosylation and decreasing abnormal phosphorylation of tau and neurofilaments (NFs), reducing intercellular Aβ accumulation and alleviating neurodegeneration related to GLP-1 signaling pathway(Chen et al., 2019b). Additionally, saxagliptin and vildagliptin reduced inflammation in streptozotocin-induced AD mice(Kosaraju et al., 2013a; Kosaraju et al., 2013b). Linagliptin mitigated cognitive deficits, improved brain incretin levels and attenuated Aβ, tau phosphorylation as well as neuroinflammation in mouse model of AD(Kosaraju et al., 2017). In Sprague–Dawley rats undergoing antipsychotics treatment, liraglutide ameliorated glucose metabolism dysregulation and improved cognitive deficits(Babic et al., 2018). In specific, from the start of antipsychotics treatment, liraglutide co-treatment prevented olanzapine-induced working and recognition memory deficit and obesity side-effect, and clozapine-induced reductions in recognition memory and hyperglycemia(Babic et al., 2018).
Clinical Studies
A systematic review demonstrated that GLP-1 receptor agonists induced a weight loss and improved fasting glucose and HbA1c in schizophrenia patients on treatment who were overweight or obese(Siskind et al., 2019). Treatment with liraglutide once-daily subcutaneous injection for 16 weeks improved glucose tolerance and weight gain in clozapine- and olanzapine-treated schizophrenia patients who were overweight and prediabetes compared with controls(Larsen et al., 2017). And liraglutide exhibited pro-cognitive effects in individuals with mood disorder in a 4-week, open-label study(Mansur et al., 2017).While 3 months treatment with exenatide 2 mg once weekly failed to improve cognition in obese antipsychotics-treated schizophrenia patients(Ishoy et al., 2017). However, the study excluded patients with diabetes and the dosage, duration and statistical power may contribute to the negative results(Ishoy et al., 2017). In mid-life individuals at risk of AD, there was an inverse correlation between insulin resistance and connectivity between bilateral hippocampal and anterior medial frontal structures(Watson et al., 2019). However, the enhancement in connectivity after liraglutide treatment was not accompanied with improved cognitive function(Watson et al., 2019). It is necessary to consider disease differences, sample size and duration of treatment when explore the effects of GLP-1 receptor agonists in cognitive function.
Peroxisome Proliferator-Activated Receptors (PPAR) γ Agonists
PPAR γ is a member of the nuclear receptor family that regulates gene expression by binding to DNA sequence elements termed PPAR response elements, involving in adipocyte biology, insulin action, cardiovascular disease, inflammation, renal function, and tumor biology(Lehrke and Lazar, 2005). Specific PPAR γ ligands are divided into two major groups: endogenous or natural agonists and synthetic agonists. Evidence suggested that Thiazolidinediones, synthetic high PPAR γ-selective ligands, may constitute a potentially novel and innovative treatment approach for cognitive deficits by means of salutary effects on altered inflammatory and metabolic networks(McIntyre et al., 2007). PPAR γ agonists may be a possible therapeutic target in neuropathological conditions, showing anti-inflammatory and anti-oxidation effects, protective action on cerebral glucose and glutamate metabolism and inducing neuronal growth factor and BDNF production(Garcia-Bueno et al., 2010).
Preclinical Studies
In neuronal seipin knock-out mice, rosiglitazone rescued the hippocampal LTP induction and ameliorated spatial cognitive deficits(Zhou et al., 2016). Pioglitazone also exhibited learning and memory improvement in alcohol-induced neuronal damage rats(Cippitelli et al., 2017). Monotherapy or combination of pioglitazone and exenatide improved cognitive function, decreased hippocampal neurodegeneration and reduced microglia overexpression in insulin resistant rats(Gad et al., 2016). In a mouse model of AD, pioglitazone and fenofibrate combined treatment ameliorated memory and cognitive impairment via modulation of the Wnt/beta catenin pathway, accompanied with a reduction in neuronal damage(Assaf et al., 2020). Pioglitazone could rescue impaired synaptic deficits and spatial memory in AD transgenic mice through inhibiting cyclin-dependent kinase 5 activity and reversing Aβ-induced dendritic spine loss(Chen et al., 2015). The chronic treatment of AD transgenic mice with pioglitazone or rosiglitazone for 4 months improved spatial learning, enhanced AKT signaling and attenuated tau hyperphosphorylation and neuroinflammation(Yu et al., 2015). Rosiglitazone rescued AD pathology and restored the hippocampal function, leading to a rescue of memory impairment in 9-month-old AD transgenic mice(Escribano et al., 2010). Rosiglitazone showed cognitive improvement through multiple ways such as regulating extracellular signal-regulated protein kinase MAPK signaling transduction(Denner et al., 2012), and affecting neuronal ion channel and synaptic plasticity in the brain of Tg2576(Nenov et al., 2014; Hsu et al., 2017), an extensively characterized AD mouse model.
Clinical Studies
Anti-diabetic agents, PPAR γ agonists, might have the pro-cognitive effects in subjects with AD/mild cognitive impairment with good acceptability(Cao et al., 2018). In patients with mild AD or amnestic mild cognitive deficits, 6-months treatment of rosiglitazone exhibited cognitive improvement compared with placebo(Watson et al., 2005). Pioglitazone also ameliorated glucose metabolism and cognitive function in AD(Hanyu et al., 2009; Sato et al., 2011). However, a systematic review including nine eligible studies suggested that there was insufficient evidence to support the cognitive benefits of rosiglitazone in AD and amnestic mild cognitive impairment patients although the efficacy of pioglitazone was promising in patients with comorbid diabetes(Liu et al., 2015). A study demonstrated that among antipsychotics-treated patients with schizophrenia, there was a significant association of PPAR γ gene in altered glucose levels and psychosis profile(Liu et al., 2014). Arulmozhi suggested a possible role of PPAR agonists in antipsychotic-induced insulin resistance rodents(Arulmozhi et al., 2006), and such medications were related with BDNF levels in schizophrenia, which might play a part in the management of this illness(d'Angelo et al., 2019). In a small pilot clinical trial, rosiglitazone treatment for 8 weeks failed to show the potential cognitive benefit in schizophrenia patients treated with clozapine(Yi et al., 2012). It is not clear whether PPAR γ agonists improve cognitive function in schizophrenia and disease and medicine differences should be considered at the same time. More works with larger sample size and longer treatment duration are needed.
Others
SGLT2 Inhibitors
Sodium-glucose co-transporter (SGLT) inhibitors are one of the newly developed medications used to treat T2DM(Chao and Henry, 2010). SGLT 2 inhibitors, such as dapagliflozin and empagliflozin, decrease renal glucose reabsorption, resulting in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations(Nauck, 2014). SGLT2 inhibitors could improve insulin sensitivity and glucose homeostasis via reducing glucotoxicity, improving β cell function, reducing oxidative damages and inflammatory processes and inducing caloric disposition and weight loss(Yaribeygi et al., 2020). Dapagliflozin could improve brain insulin sensitivity, alleviate brain mitochondrial dysfunction, attenuate brain apoptosis and brain inflammation, and preserve hippocampal synaptic plasticity(Sa-nguanmoo et al., 2017). However, no sufficient preclinical and powered clinical studies have elucidated the cognitive benefit of SGLT2 inhibitors in AD and schizophrenia.
Quercetin
As a natural pigment, quercetin is a flavonoid with abundant biological activities such as antiviral, anticancer, antioxidation, anti-inflammatory, and antidiabetic activity(Batiha et al., 2020). The antidiabetic effects of quercetin involve the inhibition of intestinal glucose absorption, insulin secretory and insulin-sensitizing activities as well as the enhancement of glucose utilization in peripheral tissues(Eid and Haddad, 2017). A meta-analysis supported that the flavonoid quercetin lowered the serum glucose level at dose of 10, 25 and 50 mg/kg in diabetic animals(Bule et al., 2019). Additionally, quercetin could suppress endoplasmic reticulum stress and tau phosphorylation through its AMPK activity to provide potential cognitive benefit(Chen et al., 2016). Quercetin exhibited neuroprotection through its effects on sodium channels of neurons(Yao et al., 2010), and modulating Akt signaling pathway to inhibit neuronal apoptosis(Pei et al., 2016). Quercetin ameliorated cognitive and emotional impairment, reversed brain levels of β-amyloidosis and tauopathy, attenuated mitochondrial dysfunction and alleviated astrogliosis and microgliosis in AD mice model(Wang et al., 2014; Sabogal-Guáqueta et al., 2015). Quercetin exhibited spatial learning and memory improvement in Parkinson’s Disease model via its antioxidant effect resulting in the promotion of neuron survival(Sriraksa et al., 2012). Quercetin also improved the chronic unpredicted stress-mediated memory dysfunction through normalizing metabolic aberration, attenuating insulin resistance, elevating hippocampal GLUT4 levels, and maintaining neuronal integrity(Mehta et al., 2017). In a ketamine model of schizophrenia, quercetin showed the potential to improve cognitive deficits, partly owing to its ability to scavenge free radicals and its high antioxidant capacity(Mert et al., 2019). However, a clinical study failed to demonstrate the effects of a 12-week quercetin supplementation program on cognitive function(Broman-Fulks et al., 2012). There may exist some gaps when translate in vitro studies and in vivo experiments into clinical situation and more clinical studies are needed to determine whether quercetin shows cognitive benefits.
Sulforaphane
Sulforaphane is a compound with multiple bioactivities such as antidiabetic and antioxidant effects. Sulforaphane could improve glucose tolerance through up-regulation of insulin signaling involving IRS-1/Akt/GLUT 4 pathway in muscle(Xu et al., 2018). Sulforaphane also attenuated glucose intolerance and affected GLUT3 expression in the cerebral cortex and hypothalamus(Souza et al., 2013). Sulforaphane mitigated cognitive decline which was associated with an upregulation of the nuclear accumulation and transcriptional function of the nuclear factor erythroid 2-related factors (Nrf2) and an enhancement of the antioxidative response in the hippocampus(Pu et al., 2018). The transcription factor Nrf2 functions at the interface of cellular redox and intermediary metabolism(Dinkova-Kostova et al., 2018), which modulates the expression of defensive genes encoding detoxifying enzymes and antioxidant proteins(Kaspar et al., 2009). In addition to regulating the expression of antioxidant genes, Nrf2 has also been shown to exhibit anti-inflammation effects and modulate mitochondrial function and biogenesis(Brandes and Gray, 2020). Sulforaphane prevented olanzapine-induced glucose and lipid metabolism dysregulation in preclinical studies(Isaacson et al., 2020). In phencyclidine administration mice, sulforaphane ameliorated hyperlocomotion and pre-pulse inhibition deficits(Shirai et al., 2012). Additionally, sulforaphane exhibited prophylactic and therapeutic effects in phencyclidine-induced cognitive deficits, which was substantiated by the results of Novel Object Recognition test(Shirai et al., 2015). A small open label clinical research suggested that sulforaphane had the potential to improve some domains of cognitive function in schizophrenia, although it failed to detect any statistical differences of the serum level of BDNF after taking sulforaphane for 8 weeks to baseline(Shiina et al., 2015). A 6-month clinical trial was conducted to evaluate whether adding sulforaphane treatment would benefit the negative symptoms and cognitive function in individuals with schizophrenia (clinicaltrials.gov: NCT04521868). Larger randomized, double-blind, placebo-controlled trials conducted over longer periods are needed to determine the efficacy and safety of sulforaphane.
CONCLUSION
Cognitive deficits occur in neurodegenerative and neuropsychiatric diseases including AD and schizophrenia. Insulin resistance is a shared metabolic comorbidity of these two chronic diseases. The disruption of insulin action in the brain is considered as a potentially important pathophysiological mechanism of cognitive impairment via deficits in neuronal structure and function, impaired synaptic plasticity, brain mitochondrial dysfunction, increased oxidative stress and inflammation. Intrinsic abnormal glucose metabolism would predispose AD and schizophrenia patients to cognitive deficits and current therapeutic measures cannot achieve expected therapeutic efficacy. Therapeutic interventions may be effective if both the periphery and brain glucose metabolic disruptions are alleviated for effective results. Antidiabetic agents have gained public and scientific attention for its potential as a cognitive enhancement drug and is currently being examined in in vitro experiment, in preclinical animal studies and in clinical trials around the word. The molecular mechanism and preclinical animal models suggest that the repositioning of antidiabetic drugs is a promising opportunity to alleviate cognitive deficits in AD and schizophrenia. However, there may exist some gaps when translate experimental results into application. Drugs specifically designed to target brain insulin resistance may exert beneficial effects on cognition. Furthermore, the pathogenesis and clinical heterogeneity of cognitive impairment remain complex. A better understanding of the relationship between brain insulin resistance and cognitive impairment will help us to design future research. More works are urgent to explore the nature and corelates of brain insulin resistance and cognitive deficits in schizophrenia. For example, preclinical models are expected to discover the molecular and cellular mechanisms of cognitive deficits in schizophrenia, such as cerebral organoids derived from human embryonic stem cells and patient-derived induced pluripotent stem cells from schizophrenia, which are able to clarify the pathogenesis of cognitive deficits and the role of brain insulin resistance to exclude the effects of antipsychotics on this relationship. Additionally, radiotracer or detection methods are expected to clarify the central insulin action in patients with schizophrenia. Some anti-diabetic agents may fail as cognitive enhancement strategies for a number of reasons, such as poor penetrance of the blood–brain barrier and ineffectiveness in reducing brain insulin resistance in vivo. Therefore, works are needed to examine the effect of drugs that are able to increase the sensitivity of insulin receptors in the brain. Besides, multi-site large-scale randomized controlled trails are needed to examine the effects of antidiabetic medications on cognition in schizophrenia. In the future, more works are expected to elucidate the relationship between brain insulin resistance and cognitive dysfunction in schizophrenia leading to the development of novel interventions to alleviate cognitive deficits in schizophrenia to benefit patients.
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The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
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INTRODUCTION

Psychostimulant use disorder is a complex disease defined by DSM-5 which includes both former (DSM-IV) diagnoses of abuse and dependence on a psychostimulant, such as cocaine or amphetamines. While illicit drugs have long been a societal concern, drug use rates have been growing in recent years. Globally, stimulants such as cocaine and amphetamines are used by approximately 0.35–0.4% and 0.7–0.77% of the population, respectively (Peacock et al., 2018; Farrell et al., 2019). Of these subpopulations, 16% are dependent on cocaine, while 11% are dependent on amphetamines (Farrell et al., 2019). In the United States, it was estimated that about 5.5 million people age 12 and older used cocaine in 2018 (2% of the United States population) (SAMHSA, 2018) and 1.9 million people age 12 and older used METH in 2018 (0.7% of the United States population) (SAMHSA, 2018). A major issue with substance use disorders is the risk of overdose. Recent data show that between 2012 and 2018, drug overdoses involving cocaine more than tripled, and drug overdoses involving abused psychostimulants increased nearly five-fold (Hedegaard et al., 2020).

Classically, the neurobiology underlying PSUD has focused on the neurotransmitter dopamine (DA) for its role in reward processing (Wise and Rompre, 1989; Wise, 2008; Arias-Carrión et al., 2010; Taber et al., 2012). Indeed, commonly abused stimulants exert effects on brain DA levels through their interactions with the neuronal membrane DAT (Das, 1993; Nestler, 2005). Increased DA levels after psychostimulant administration lead to arousal and euphoria, which facilitate the transition from the initial recreational use to continued excessive use, and parallel the potential clinical development of addiction in patients with the most severe form of the disorder (Compton et al., 2018).

The clinical severity of PSUD can be often worsened by medical and mental health comorbidities, e.g., mood and sleep disorders (Mahfoud et al., 2009; Gould, 2010; Torrens and Rossi, 2015). Furthermore, PSUD may be associated with cognitive impairment, which in turn lead to higher treatment dropout rates (Sofuoglu et al., 2013, 2016; Nuijten et al., 2016). These indicate a potential treatment avenue to ameliorate some of the effects of PSUD, which may contribute to increased abstinence rates overall.

Treatment of PSUD relies primarily on behavioral remedies, which may include 12-step facilitation, contingency management, relapse prevention, motivational enhancement therapy, and CBT (for a review, see: Vocci and Montoya, 2009). However, these approaches are time- and resource-intensive and their effect sizes are sub-optimal: integration with effective pharmacotherapies would be likely to improve outcomes and success rates. However, to date there are no approved pharmacologic treatments for PSUD (Phillips et al., 2014). Medications such as antidepressants, DA agonists/partial agonists, mood stabilizers, neuro-protectives, and agonist-like replacement therapy (de Lima et al., 2003; Elkashef et al., 2005; Diana, 2011; Phillips et al., 2014; Jordan et al., 2019) have all been tested with minimal success. The lack of pharmacological treatments for PSUD is a driving force for research toward the development of novel medications.

Among the potential pharmacotherapeutic options for PSUD is MOD, a clinically available medication that inhibits the uptake of DA by blocking DAT (Mignot et al., 1994; Loland et al., 2012). This pharmacological effect is shared with abused psychostimulants but, in spite of that, MOD shows behavioral and neurochemical actions that suggest limited, if any, potential for misuse (Jasinski, 2000; Deroche-Gamonet et al., 2002; Myrick et al., 2004; Food and Drug Administration, 2007; Vosburg et al., 2010; Mereu et al., 2020). Currently, this agent is prescribed for its wake-promoting effects (Czeisler et al., 2005; Kumar, 2008), consistent with its approval for narcolepsy, shift work sleep disorder, and obstructive sleep apnea/hypopnea syndrome. Off-label, MOD has been used for its pro-cognitive effects, especially in patients with cognitive impairment associated with psychiatric disorders (Peñaloza et al., 2013; Turner et al., 2014). During the last two decades, MOD has been tested as a potential medication to treat some of the primary (dependence) and secondary (cognitive and sleep disorders) symptoms of PSUD, representing a potential additional treatment option for selected populations affected by PSUD.

In this review, we will mainly focus on preclinical studies showing how MOD and R-MOD (its R-enantiomer) interact with DAT, the DAergic system, and the reinforcing actions of abused psychostimulants. We will also review clinical studies where MOD efficacy as a potential treatment for PSUD has been evaluated, including for related symptoms such as alteration of sleep and cognitive dysfunction.



MODAFINIL PHARMACOLOGY RELATED TO PSUD

Modafinil [2-(Diphenylmethyl) sulfinyl acetamide; Alertec, Modavigil, Provigil] and its long-acting, enantiopure form, R-MOD (Nuvigil, Artvigil) (Wong et al., 1999), are clinically available and prescribed as wake-promoting agents for narcolepsy and sleep disorders (Bastoji and Jouvet, 1988; Broughton et al., 1997; US Modafinil in Narcolepsy Multicenter Study Group, 1998, 2000). Early evidence suggested that MOD had a weak, low μM affinity, but relatively good selectivity, for DAT (Mignot et al., 1994), confirmed by more recent studies (Madras et al., 2006; Loland et al., 2012). Thus, the main mechanism of action for MOD appears predominantly driven by actions at neural membrane DATs to stimulate catecholamine neurotransmission (Wisor et al., 2001; Madras et al., 2006). DAT knockout mice were used to confirm the importance of DAT in the mechanism of action of MOD, as studies have found that the pharmacological wake-promoting effects of MOD administration were abolished in those mutant mice (Wisor et al., 2001). Volkow et al. (2009) used PET to show that, after oral administration, MOD (200 to 400 mg) occupies and blocks DAT in the human brain (caudate, NAcc, and putamen). The latter effect was also shown for the enantiomer, R-MOD (Spencer et al., 2010). Further, as a result of the DAT inhibition induced by administration of MOD or R-MOD, increased brain DA levels can be observed in several dopaminergic nerve terminal regions (Ferraro et al., 1996c; Wisor et al., 2001; Volkow et al., 2009; Loland et al., 2012). Further, DAT trafficking could be affected by psychostimulants. Administration of DAT substrates like METH and amphetamine decreases the trafficking of DAT to the cell surface (Saunders et al., 2000; Zahniser and Sorkin, 2009), while DAT inhibitors like cocaine have been shown to increase DAT trafficking to the cell surface (Daws et al., 2002; Little et al., 2002; Zahniser and Sorkin, 2009). Although the effects of MOD administration on DAT trafficking have yet to be fully elucidated, it has been shown that MOD prevents METH-induced decreases in DAT immunoreactivity 6 days after treatment (Raineri et al., 2012).

Beyond DAT, MOD does not show significant affinity for other important pharmacological brain targets. For example, MOD affinity for the NET falls in the 100 μM range (Madras et al., 2006), and it is still unclear if the increases in brain NE levels induced by MOD are the result of its interaction with NET (see for review Mereu et al., 2013). These effects on brain NE levels in PFC and rostro-medial hypothalamus (de Saint Hilaire et al., 2001) could be of interest due to a well-documented role for NE in wakefulness and arousal (reviewed in Mitchell and Weinshenker, 2010). Interestingly, MOD did not show direct activity on trace amine-associated receptor 1 (TAAR1) (Madras et al., 2006), in contrast to amphetamines (Xie and Miller, 2009; Liu et al., 2020). MOD has been shown to have indirect actions on TAAR1 through activation of DAT, which can augment TAAR1 activation (Madras et al., 2006). TAAR1 has been implicated in wakefulness, which represents a predictable effect given the receptor’s ability to modulate the activity of other monoamine systems (Revel et al., 2013; Liu et al., 2020). In a recent report, deletion of TAAR1 receptor in mice did not produce substantial effects on MOD-induced wakefulness as compared to WT mice (Schwartz et al., 2018). In the same report, reductions in MOD-induced gamma-band activity in EEG studies in TAAR1 KO mice were found, and the authors suggest that TAAR1 may regulate neurophysiological factors related cortical and cognitive functions (Schwartz et al., 2018).

Regardless of its affinity for pharmacological targets, MOD has been reported to affect the levels of several neurotransmitters. MOD stimulates brain glutamate levels in the hypothalamus (medial preoptic area and posterior hypothalamus), thalamus (ventromedial and ventrolateral regions), and hippocampus (Ferraro et al., 1997b, 1999), and it has been shown to decrease the levels of GABA in the NAcc, hypothalamus (medial preoptic area and posterior hypothalamus), striatal, and pallidal regions (Ferraro et al., 1996b, 1997a, 1999). MOD induced stimulation in brain serotonin levels in the PFC (Ferraro et al., 2000; de Saint Hilaire et al., 2001), increases in histamine levels and/or activation in the tuberomammillary nucleus and the anterior hypothalamus (Scammell et al., 2000; Ishizuka et al., 2003, 2008), and limited activation of orexin/hypocretin neurons in the perifornical areas and lateral hypothalamus (Chemelli et al., 1999; Scammell et al., 2000; Willie et al., 2005) has also been observed (reviewed in Kumar, 2008; Minzenberg and Carter, 2008; Mereu et al., 2013).

In addition to its effects on neurotransmitter levels, MOD administration affects the induction and inhibition of hepatic cytochrome P450 isoenzymes (Robertson et al., 2000). In vitro, MOD competitively inhibits CYP2C19 and suppresses CYP2C9, as well as moderately induces CYP1A2, CYP3A4, and CYP2B6 (Robertson et al., 2000). Pharmacokinetic studies in vivo with warfarin and ethinylestradiol, which react with CYP2C9 and CYP3A4 respectively, have not shown the same magnitude of effect as in vitro studies (Robertson and Hellriegel, 2003). Through MOD’s induction and inhibition of the P450 isoenzymes, MOD co-administration may decrease or prolong plasma concentrations of other drugs metabolized through these enzymes (Schwartz, 2005). There have been clinical reports of MOD interactions with medications, for example, cyclosporine and clomipramine. Specifically, the immunosuppressive effect of cyclosporine decreased after 200 mg/day MOD, which appeared to be from CYP3A4 induction (for a review, see e.g., Robertson and Hellriegel, 2003). A patient treated with clomipramine was found to lack functional CYP2D6, and the ancillary CYP2C19 pathways inhibited by MOD contributed to increased clomipramine levels in the blood (Robertson and Hellriegel, 2003). MOD also has notable effects as a facilitator of electrotonic coupling in neurons and astroglia through actions at gap junctions (Garcia-Rill et al., 2007; Urbano et al., 2007; Liu et al., 2013; Duchêne et al., 2016; Mereu et al., 2020). In particular, it has been shown that the gap junction inhibitor carbenoxolone blunted the ability of MOD to potentiate self-administration of cocaine in rats (Mereu et al., 2020). These properties are likely important for the agent’s pharmacological actions, as well as interactions with other drugs and biomolecules.


Modafinil, DAT Inhibition, and Potential Abuse Liability

As a result of inhibition of DAT, it is not surprising that MOD activities could overlap with some of those observed after administration of commonly abused psychostimulants. However, as reported in Table 1, some of its actions seem directed to improve specific symptoms observed in patients with a PSUD diagnosis, i.e., impairments in cognition, sleep, cardiovascular function, and mood disturbances, as well as elevated neuroinflammation. Moreover, MOD fails to display the abuse potential (Jasinski, 2000; Deroche-Gamonet et al., 2002; Myrick et al., 2004; Food and Drug Administration, 2007; Vosburg et al., 2010) or the withdrawal symptoms (Hermant et al., 1991; Myrick et al., 2004) observed with typical psychostimulants. Indeed, to our knowledge, only a very few anecdotical reports of MOD abuse and dependence have been reported in the literature (Kate et al., 2012; Ozturk and Deveci, 2014; Krishnan and Chary, 2015) despite the climbing rates of its non-medical use as a cognitive enhancer in schools and at the workplace (Sharif et al., 2021). Further, important behavioral and neurochemical differences between MOD, or R-MOD, and typical abused psychostimulants have been found in preclinical studies, suggesting they have a unique pharmacological, psychostimulant profile. Taken together, these actions highlight the potential for MOD to reduce the harm associated with the complexity of the symptoms in PSUD. In the next sections, we will briefly highlight some of the pharmacological actions of MOD, i.e., increased wakefulness, improved cognition and cardiovascular function, that could play a potential role in its therapeutic activity against PSUD (summarized in Table 1).


TABLE 1. Symptoms related to PSUD and potential therapeutic actions of MOD.
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Modafinil Interactions With Sleep and Wakefulness Activities

Modafinil was introduced as a wake-promoting agent in the 1990s and approved by the US FDA to treat excessive sleeping (narcolepsy, shift work sleep disorder, obstructive sleep apnea/hypopnea syndrome) (Bastoji and Jouvet, 1988; Broughton et al., 1997; US Modafinil in Narcolepsy Multicenter Study Group, 1998, 2000). In addition to its approved uses, MOD is often used off-label for the treatment of fatigue symptoms in neurological, psychiatric, and excessive fatigue disorders (reviewed in Kumar, 2008). Like amphetamines, the molecular mechanism by which MOD imposes wakefulness has been largely debated. The mechanism is suspected to be linked to the inhibition of monoamine transport by plasma membrane transporters like DAT. In particular, studies have shown that DAT and DA regulation in key areas involved in wakefulness/sleep (i.e., medial preoptic area and posterior hypothalamus) is crucial in the wake-promoting effects of amphetamines and MOD (Jones et al., 1977; Nishino and Mignot, 1997; Nishino et al., 1998; Wisor et al., 2001). Further, researchers have shown that DA activity fluctuates with arousal state (Trulson, 1985). MOD’s effects on other neurotransmitters are also suspected to play a role in the wakefulness-promoting properties of this agent (Boutrel and Koob, 2004). For example, changes in brain NE neurotransmission have been suggested to play a role in wakefulness and arousal (reviewed in Mitchell and Weinshenker, 2010), and MOD stimulation of brain NE levels in PFC and rostro-medial hypothalamus (de Saint Hilaire et al., 2001) could be related to its effect on sleep disturbances. While it is still unclear if NET blockade is the mechanism of action related to MOD stimulation of brain NE levels, some studies have suggested that NET inhibition is less efficacious in the promotion of wakefulness than DAT inhibition (Nishino and Mignot, 1997; Nishino et al., 1998). It is of interest to note that MOD, as highlighted above, interacts with other key neurotransmitters and systems that could play a role in the regulation of sleep, including glutamate, GABA, serotonin, histamine, and orexin/hypocretin (reviewed in Monti, 2013). There is also evidence that MOD increases glutamine synthetase in the rat brain, an enzyme that converts glutamate to glutamine for storage, which may be important for the wakefulness effects of MOD (Touret et al., 1994). The orexin system has a well-established role in sleep-wake regulation (Espana et al., 2001; Sakurai, 2007). MOD administration increases the expression of c-Fos (a marker of neuronal activation) in orexin neurons in the hypothalamus (Chemelli et al., 1999; Scammell et al., 2000). Orexin neuronal projections can activate histamine release in the hypothalamus as well (Huang et al., 2001; Ishizuka et al., 2002). Histamine also has a well-documented role in regulating sleep-wake cycle (Haas et al., 2008). Interestingly, MOD administration produced activation of histaminergic cells (Scammell et al., 2000) but only in the presence of an intact orexin system (Ishizuka et al., 2010). Further, decreases in histamine or loss of histamine neurons blunted MOD-induced increases in locomotion (Ishizuka et al., 2008) as well as the drug’s wake-promoting actions (Yu et al., 2019). On the other hand, orexin-null mice displayed heightened wakefulness following MOD administration compared to wild-type mice (Willie et al., 2005). These findings suggest impaired regulation of the arousal system following removal of orexin, but they also suggest that orexin is not necessarily required for MOD’s wake-promoting actions, or that in those mice possible neuronal adaptations would substitute for removal of orexin.



Modafinil Interactions With Cognitive Functions

Enhancements in cognitive functions have been reported following MOD administration in rodents and humans (Turner et al., 2003; Minzenberg and Carter, 2008; Cope et al., 2017). MOD produces dose-dependent improvements in working memory (Béracochéa et al., 2001; Ward et al., 2004; Piérard et al., 2006), speed of learning (Béracochéa et al., 2002, 2003; Ward et al., 2004), and sustained attention (Morgan et al., 2007) in animals. In humans, MOD produces similar effects, improving memory and attention (reviewed in Minzenberg and Carter, 2008). Importantly, MOD heightens attention independently of its effects on wakefulness/arousal (Cope et al., 2017). MOD administration elicits changes in activation of brain regions associated with cognition, including the hippocampus (Ferraro et al., 1997b; Shuman et al., 2009; Brandt et al., 2014; Yan et al., 2015) and the PFC (Müller et al., 2004; González et al., 2014, 2018). Thus, improvements in cognitive functions associated with MOD’s actions on the dopaminergic system may underlie those specific changes in DA transmission (reviewed in Minzenberg and Carter, 2008; Mereu et al., 2013), for example in the PFC, that have been recognized for their role in working memory (Sawaguchi and Goldman-Rakic, 1991, 1994). Further, DA receptors can be found on glutamatergic pyramidal cells (Tseng and O’Donnell, 2004) and GABAergic neurons (Tseng and O’Donnell, 2007) in the PFC where they can gate glutamatergic and GABAergic transmission linked to cognition (reviewed in Minzenberg and Carter, 2008). MOD’s effects on brain NE may also affect cognition due to NE’s established role in modulation of cognitive function (reviewed in Chamberlain and Robbins, 2013). Stimulation of NE neurotransmission following MOD administration is also implicated in cognition (Minzenberg and Carter, 2008), while MOD actions on the acetylcholine system have been shown to have effects on learning and memory (reviewed in Mereu et al., 2013). It has also been shown that MOD produced increased motivation, likely by activating D1 receptors (Young and Geyer, 2010). Importantly, MOD is an appealing candidate to target cognitive dysfunction associated with ADHD and psychiatric disorders (Ballon and Feifel, 2006), as well as PSUD. Specifically, treatment with MOD has been shown to improve cognition in PSUD patients (Dean et al., 2011) (see also the “Human studies” sections below).

The pro-cognitive effects of MOD have stimulated a debate about an ethical dilemma and potential concern regarding its rapidly increasing off-label, non-medical use in healthy individuals to improve attention, focus, memory, and cognitive functions (Cakic, 2009; Sahakian and Morein-Zamir, 2011; Peñaloza et al., 2013).



Modafinil/DAT Inhibition and Inflammation

Additional potential actions of MOD include the ability to act as an anti-inflammatory agent. Specifically, MOD has been shown to reduce neuroinflammation via suppressing inflammatory cytokines (Han et al., 2018), T-cell differentiation (Brandao et al., 2019), monocyte recruitment/activation (Zager et al., 2018), and activation of glial cells (Raineri et al., 2012). This MOD-induced immune activation may be essential for decreasing the neurotoxic and inflammatory consequences of many diseases including PSUD, an exceptionally important effect given that many stimulants are pro-inflammatory in nature. METH administration is marked by increases in TNF-α, IL-1β, and IL-6 expression, as well as elevated microglial activation (Cadet et al., 1994; Lai et al., 2009; Gonçalves et al., 2010). Cocaine has similarly been associated with increases in TNF-α, IL-6, IL-8, activator protein 1 (AP-1), and nuclear factor kappa B (NFκB) (Zhang et al., 1998; Gan et al., 1999; Lee et al., 2001; Dhillon et al., 2008). Nicotine is marked by increases in TNF-α, IL-18, IL-1β, and chemokines, including CCL2, CCL8, and CXC3CL1 (Bradford et al., 2011). Pro-inflammatory agents, such as stimulants, have also been associated with deterioration of the natural obstacle that protects the brain; the blood brain barrier, further magnifying their neurotoxic effects (Czub et al., 2001; Nath et al., 2002). MOD has been shown to counteract the toxic and neuroinflammatory effects of METH in mice (Raineri et al., 2012), but effects against other drugs of abuse have yet to be reported.

Modafinil administration has also been shown to exert effects on histamine, a common marker of inflammation and neurotransmitter involved in sleep/wakefulness (Haas et al., 2008). Using in vivo microdialysis, an increased histamine release in the anterior hypothalamus was observed following MOD administration (Ishizuka et al., 2003).




PRECLINICAL STUDIES ON MOD AS A PHARMACOTHERAPEUTIC TREATMENT FOR PSUD


Neurochemical Studies

In this section, we will review the neurochemistry of MOD as it relates to PSUD. The main pharmacologic activity of MOD is due to its affinity and inhibitory actions at DAT, which result in stimulation of brain extracellular DA levels. DAT and the DA system also play a major role in the abuse liability of psychostimulants. Thus, we will start this section with a brief background about DAT and DA roles in PSUD.


DA and DAT, Their Role in Drug Abuse, Dependence, and as Potential Targets for Pharmacotherapy of PSUD

Dopamine’s role in the brain’s reward circuit has been extensively studied (Wise and Rompre, 1989; Di Chiara et al., 1993a, 1998; Wise, 2008; Arias-Carrión et al., 2010; Taber et al., 2012), however its role in drug abuse and dependence is still not fully clarified (Volkow et al., 2011; Wise and Robble, 2020). Following acute administration of drugs of abuse, including central stimulants and depressants, opiates, cannabinoids, and cholinergic agonists, increased levels of extracellular DA have been reported in the brain regions that are the projection fields of dopaminergic neurons, specifically the NAcc and caudate (Di Chiara and Imperato, 1988; Koob, 1992; Pontieri et al., 1995, 1996; Tanda et al., 1997a; Di Chiara et al., 1999). Acute administration of psychostimulants, in particular, has been shown to increase DA levels in a dose dependent manner in the NAcc shell and core, and in the striatum (Di Chiara et al., 1993b; Pontieri et al., 1995; Tanda et al., 1997b). These effects are likely related to the initial positive experience of drug use that could also lead to acquisition of drug-seeking behaviors and to the desire to repeat behaviors that lead to a pleasurable experience (Pettit and Justice, 1989; Woolverton and Johnson, 1992; Koob et al., 1998), but do not account for all neurological aspects of substance use disorder (Salamone et al., 2003; Robinson and Kolb, 2004; Russo et al., 2009; Golden and Russo, 2012). Repeated drug use has been shown to cause synaptic changes, allowing for the development of a different regulation of neurotransmission and other neuronal activities, which is believed to be the driving force behind drug addiction (Thomas et al., 2008; Luscher and Malenka, 2011). Indeed, addictive drugs consistently elicit neurological changes that are indicative of potential targets for better understanding and treating the development of specific patterns of drug use and dependence.

Regulation of expression and trafficking of presynaptic DATs by synaptic DA levels has been proposed as a pharmacological target involved in the development of PSUD (Zahniser and Sorkin, 2004). Indeed, both acute and chronic cocaine exposure increases DAT density in the NAcc and DS (Zahniser and Sorkin, 2004), while other psychostimulants such as amphetamine and METH decrease DAT expression in the same regions (Saunders et al., 2000; Sandoval et al., 2001; Barr et al., 2006; Kahlig et al., 2006). Despite varying levels of transporter presence, a primary result of psychostimulant use is an increase in synaptic DA levels by inhibiting its presynaptic neuronal reuptake or by interacting with the VMAT2, releasing DA into the cytoplasm and then releasing DA into the synapse by reversing its transport direction through DAT (Sulzer et al., 2005; Xie and Miller, 2009; Calipari et al., 2013). The regulation of DAT expression allows the formation of a feedback loop between DAT abundance and psychostimulant presence in the brain (Verma, 2015). The resulting changes in DAT density after drug use perpetuates a need for consistent amounts of the drug to avoid withdrawal and to maintain significant levels of DA and DAT expression.



DA and DAT as Potential Pharmacologic Target for the Therapeutic Actions of MOD Against PSUD

The use of MOD as a therapeutic agent for PSUD is largely based on its mechanistic actions that, in part, overlap with those of other abused psychostimulants. For instance, abused psychostimulants increase mesolimbic extracellular DA, often by interacting with DAT (Mortensen and Amara, 2003; Zhu and Reith, 2008), and MOD has been shown to stimulate DA levels in the same dopaminergic areas related to psychostimulant actions (Ferraro et al., 1996c; Zolkowska et al., 2009; Loland et al., 2012; Rowley et al., 2014; Bobak et al., 2016; Mereu et al., 2020). Even though the pharmacological actions of MOD have been mainly explained by its affinity for DAT, its unique psychostimulant profile has been shown to differ from that of typical DAT inhibitors, as shown in behavioral, neurochemical and molecular pharmacology studies (Schmitt and Reith, 2011; Loland et al., 2012; Mereu et al., 2013, 2017, 2020). For example, MOD binding to DAT differs from that of other typical, cocaine-like, DAT blockers (Schmitt and Reith, 2011). In contrast to cocaine, MOD prefers to bind to, or stabilize the DAT protein in a more inward-facing occluded conformation (Schmitt and Reith, 2011; Loland et al., 2012) that still inhibits uptake and results in increases in extracellular DA in the NAcc (Ferraro et al., 1996c; Zolkowska et al., 2009), the NAcc shell (NAS) (Loland et al., 2012; Mereu et al., 2020), and the striatum (Rowley et al., 2014). MOD also increases electrically evoked DA in the DS and VS (Bobak et al., 2016) (summarized in Table 2) like abused psychostimulants (Nisell et al., 1994; Pontieri et al., 1996; Munzar et al., 2004; Kohut et al., 2014). However, while acute administration of MOD (Mereu et al., 2017, 2020) or its enantiomers (Loland et al., 2012; Keighron et al., 2019a, b) increases extracellular NAcc DA levels in rodents, these effects, even at very high doses, elicited a limited stimulation of DA in striatal areas compared to the stimulation elicited by abused psychostimulants (Loland et al., 2012; Mereu et al., 2017, 2020). This limited efficacy of MOD to increase DA levels, as compared to abused psychostimulants, also predicts a limited potential for abuse.


TABLE 2. Neurochemical actions of MOD.
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Cocaine psychostimulant actions and its abuse liability have been related to its ability to slow DA reuptake by inhibiting DAT and stimulating DA neurotransmission (Wise and Bozarth, 1987; Kuhar et al., 1991). It is interesting to note that administration of MOD (10–32 mg/kg, i.p.) prior to cocaine produced no further increase in extracellular NAS DA levels beyond that produced by cocaine alone (Mereu et al., 2020). This effect varied with the additive effects on DA levels obtained with combinations of cocaine and typical DAT blockers like methylphenidate or WIN 35,428 (Tanda et al., 2009; Mereu et al., 2020), but similar to the effects shown by combinations of cocaine and an atypical DAT blocker like JHW007 (Tanda et al., 2009), suggesting a potential atypical DAT inhibitor effect for MOD in these tests.

Another abused psychostimulant, METH, is transported into DA neurons and its nerve terminals as a DAT substrate, like DA, where it has also been shown to affect the VMAT2 function. As a consequence, decreased vesicular DA concentrations and increased cytoplasmic DA levels result, via reverse transport of DA through DAT (Kahlig and Galli, 2003; Sulzer et al., 2005; Howell and Kimmel, 2008), resulting in dramatic increases in extracellular DA levels and robust stimulation of behavioral activities (Munzar et al., 2004). When administered prior to METH, MOD significantly attenuated the stimulatory effects of METH on extracellular NAcc DA levels (see Table 2) (Zolkowska et al., 2009). This effect suggests the possibility that blockade of DAT by MOD pretreatment could affect the ability of METH to be transported by DAT as its substrate into the DA nerve terminal, thus reducing its ability to enhance extracellular DA levels. Reducing the dopaminergic effects of METH could play a role in the therapeutic effects shown by MOD in some preclinical behavioral reports and in clinical studies on METH dependent subjects.

Nicotine, the key addictive component in tobacco, exerts indirect actions on DAT. Voltammetry studies revealed that nicotine slows DA clearance (Hart and Ksir, 1996), in addition to nicotine’s actions in modulating dopaminergic transmission via activation of nicotinic acetylcholine receptors on DA neurons (Clarke and Pert, 1985; Picciotto et al., 1998; Laviolette and Van Der Kooy, 2004). When administered prior to nicotine, MOD produced a reduction in nicotine-induced stimulation of extracellular NAcc DA levels (see Table 2) (Wang et al., 2015).

These preclinical actions of MOD as an atypical DAT inhibitor suggest a strong potential for its therapeutic use in PSUDs (see Table 2).



Modulation of Brain Glutamate Levels by MOD Plays a Role in Its Therapeutic Actions on PSUD

The excitatory neurotransmitter, glutamate, has long been associated with many brain physiological functions and brain diseases including addiction (Meldrum, 2000; Kalivas, 2009). Interestingly, the effects of MOD administration on glutamate levels varies by brain region (reviewed in Gerrard and Malcolm, 2007; Mereu et al., 2013). It is predicted that this could be due, in part, to corresponding activation/inactivation of the inhibitory neurotransmitter, GABA. MOD produced increases in glutamate in the medial preoptic areas (Ferraro et al., 1996b), posterior hypothalamus (Ferraro et al., 1996b), thalamus (Ferraro et al., 1997a), hippocampus (Ferraro et al., 1997a), and striatum (Ferraro et al., 1996a, 1998). It was only at high does (300 mg/kg MOD) that increases in glutamate were observed in the substantia nigra or the pallidum (Ferraro et al., 1998). MOD also shows agonist activity at some glutamate receptors (group II metabotropic; mGlu2/3) (Tahsili-Fahadan et al., 2010), although this is likely not due to direct receptor activation. Behaviorally, the impaired reinstatement of extinguished CPP for opiates following MOD administration was blunted with an mGlu2/3 antagonist pretreatment (Tahsili-Fahadan et al., 2010). Neurochemically, cystine-glutamate exchange or voltage dependent calcium channel antagonist administration blocked increases in glutamate in the NAcc following MOD, in rats chronically trained to self-administer cocaine (Mahler et al., 2014).

The effects of MOD on glutamate can be directly linked to many of the agent’s biological effects. For example, MOD-produced increases in synaptic plasticity and long-term potentiation of glutamatergic connections to orexin neurons in the lateral hypothalamus is linked to improved wakefulness and cognition (Rao et al., 2007), but it is also linked to drug reinforced behaviors (Boutrel et al., 2013).




Effects of MOD on Behavioral Models of PSUD

Herein, we will review animal preclinical data on behavioral tests, mainly in rodents, used to model specific aspects of human substance use disorders, especially PSUD. Importantly, we will compare results from reports analyzing the effects of psychostimulants alone, MOD alone, and MOD in combination with psychostimulants, as summarized in Table 3.


TABLE 3. MOD effects on preclinical behavioral animal models related to PSUD.
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Locomotion, Stereotypy, and Behavioral Sensitization

Acute administration of psychostimulant drugs of abuse generally produces a dose-dependent stimulation of exploratory behaviors, including locomotion and stereotyped movements in rodents (Sahakian et al., 1975). Repeated administration of psychostimulants might result in behavioral sensitization (Kalivas and Duffy, 1993; Mereu et al., 2015), a phenomena related to neurobiological adaptations (Ghasemzadeh et al., 2009; Bowers et al., 2010), which lead to a heightened behavioral response to a psychostimulant. The potential of novel drugs to cause sensitization can be indicative of their potential neurological long-term effects that could be related to the development of drug dependence (Kauer and Malenka, 2007).

Modafinil administered alone induced dose-dependent changes in locomotion and stereotyped movements in rats (Zolkowska et al., 2009; Chang et al., 2010; Alam and Choudhary, 2018) and mice (Paterson et al., 2010; Wuo-Silva et al., 2011, 2016; Young et al., 2011), with similar results found in response to R-MOD (Zhang et al., 2017). However, a report by Shuman et al. (2012) found no significant change in locomotion in mice treated with both low and high doses of MOD (Shuman et al., 2012). In rhesus monkeys, nighttime locomotion increased, but daytime locomotion had no significant effect (Andersen et al., 2010), calling into question whether the behaviors measured in these assays are due to the same mechanisms as psychostimulant drugs, or if it is a by-product of the primary wake inducing effects of MOD (Chang et al., 2010). In another report, when locomotion was tested relative to time spent awake in rats, the time awake increased, but locomotor activity only increased for the lowest dose administered (30 mg/kg) (Wisor et al., 2006).

The locomotor activating effects of MOD have also been tested in combination with several psychiatric medications and abused psychostimulants that affect brain neurotransmission at different levels. Haloperidol, a DA D2 receptor antagonist and a commonly prescribed antipsychotic medication, decreased MOD induced locomotion in rats (Alam and Choudhary, 2018), indicating a potential interaction between MOD-induced stimulation of DA levels by blockade of DAT, and inhibition of DA transmission due to blockade of DA D2 receptors by haloperidol. Further, these effects suggest the potential interactions of medications for mental disorders and addiction, which are often found comorbidly. A pretreatment with MOD did not produce significant alteration in cocaine-induced locomotion in mice (Shuman et al., 2012), but MOD significantly decreased METH induced locomotion in rats (Zolkowska et al., 2009), indicating a lack of compounding effects on locomotor activities of MOD in the latter report, which could be dependent on differences in the specific mechanisms of action between different stimulants: cocaine is a DAT blocker, while METH is a DAT substrate and a blocker of the vesicular VMAT2 transporter.

It has been reported that repeated MOD exposure in rats (Chang et al., 2010) and mice (Paterson et al., 2010; Wuo-Silva et al., 2011) would induce behavioral sensitization of locomotion and stereotyped movements, which is further enhanced by exposure to stress (Alam and Chaudhary, 2020). Also, clear individual differences in responses of mice to MOD-induced sensitization have been found (da Costa Soeiro et al., 2012), indicating the importance of better understanding how these differences may lead to individualized treatment. Rapid-onset sensitization was decreased by DA antagonists SCH23390 and sulpiride (Wuo-Silva et al., 2019), and behavioral cross-sensitization was induced between MOD and apomorphine, a direct DA agonist (Chang et al., 2010). MOD administered with cocaine (Wuo-Silva et al., 2011, 2016; Shuman et al., 2012) or METH (da Costa Soeiro et al., 2012) also caused bidirectional sensitization in mice, indicating similar neurological effects of these drugs. While these results require further validation, they may indicate possible neuronal plasticity, which for some drugs has been suggested to have a role in their dependence producing actions (Kauer and Malenka, 2007).



Conditioned Place Preference

Drug CPP paradigms consist of classically conditioning an animal to associate a contextually unique location (chamber) with administration of a drug reinforcer, while a different chamber is associated with administration of the reinforcer’s vehicle. After training, animals are given the opportunity to freely explore the distinct locations previously associated with administration of the reinforcer or its vehicle. Assessing the difference in time spent by animals in the two chambers would provide an index of their preference (potentially drug-seeking behavior), indifference, or even aversion toward the chamber associated with the reinforcer (Tzschentke, 2007). Induction of CPP can be obtained by administration of specific doses of drugs of abuse, for example psychostimulants, such as cocaine (Mueller and Stewart, 2000; Itzhak and Martin, 2002) and METH (Itzhak and Martin, 2002), but can also be obtained through illicit drugs (Liu et al., 2008) and other natural reinforcers such as palatable foods (Velázquez-Sánchez et al., 2015). Therefore, CPP is a common preclinical assay that could be used to assess the potential pleasurable effects of a novel medication and to evaluate its potential for abuse.

Modafinil administered alone was unable to induce CPP in rats when administered orally (Deroche-Gamonet et al., 2002), or by intraperitoneal injection (Tahsili-Fahadan et al., 2010; Quisenberry et al., 2013), in contrast with results found in mice (Nguyen et al., 2011; Wuo-Silva et al., 2011; Shuman et al., 2012). These results indicate a minimal, if any, pleasurable effect of MOD, resulting in a low abuse liability for naïve subjects. However, the results in mice indicate a potential species difference, thus further investigation into various model species is required to thoroughly understand the effects of MOD.

The CPP assay can also be applied to understand whether MOD can reinstate seeking of the pleasurable effects of an extinguished behavioral response to a drug of abuse (Napier et al., 2013). Practically, the chamber previously associated with administration of the reinforcer is no longer associated to it, leading the subjects to forget the learned association and return to spending equal amounts of time in both chambers. Reinstatement of CPP occurs quickly following a single administration of the reinforcer. Administration of MOD alone has been shown to reinstate cocaine induced CPP in rats (Bernardi et al., 2009). In contrast to psychostimulants, opioid CPP is not reinstated by MOD treatment (Tahsili-Fahadan et al., 2010). These studies indicate a potential relapse inducing effect of MOD, which may be detrimental to PSUD target subjects. Further investigation is required to determine the varying effects of MOD on reinstatement of drug seeking for different drugs of abuse.



Self-Administration

The abuse potential of a substance can be assessed by using animal models of self-administration behavior, which could also model the transition from sampling or recreational use of a substance to its compulsive intake (Ator and Griffiths, 2003; Edwards and Koob, 2013). Compulsive self-administration behavior in animals has been observed under specific experimental operational conditions when selected doses of psychostimulant drugs of abuse such as cocaine or amphetamines were made available (Deneau et al., 1969). In these models, the rate at which subjects would self-administer a substance could indicate the potential for abuse of a novel medication.

Modafinil (0.28–1.7 mg/kg/inj) (Deroche-Gamonet et al., 2002), alone did not promote intravenous self-administration behavior in naïve rats, indicating a lack of MOD reinforcing effects at the doses tested. Further, MOD alone (0.1–10 mg/kg/inj) did not maintain self-administration behavior in rats previously trained with intravenous doses of cocaine (Mereu et al., 2020), and similarly R-MOD was not self-administered in rats trained with nicotine (Wang et al., 2015). However, administration of MOD increased behavioral response rates for at least one dose for each subject in Rhesus monkeys previously trained to self-administer cocaine (Gold and Balster, 1996). This contradiction may be due to species differences or other procedural variables and requires further investigation.

Acute MOD treatment prior to psychostimulant self-administration sessions might indicate whether MOD would affect the reinforcing effects of those drugs. MOD or R-MOD pretreatment did not affect intravenous cocaine self-administration in rats (Deroche-Gamonet et al., 2002; Zhang et al., 2017). In contrast, a more recent study showed increased cocaine self-administration behavior at low cocaine doses (Mereu et al., 2020). Such effect was surprisingly not accompanied by enhancement of cocaine-induced stimulation of NAS DA levels, but it was reversed by pretreatments with carbenoxolone, an inhibitor of electrotonic coupling (Mereu et al., 2020). In rats, R-MOD has been shown to decrease METH (Tunstall et al., 2018) and nicotine self-administration behavior (Wang et al., 2015). Moreover, when MOD was administered chronically, it decreased cocaine self-administration responding in Rhesus monkeys (Newman et al., 2010).

After animals acquire and maintain self-administration behavior induced by abused psychostimulants, these behaviors can be extinguished by stopping drug-injections or eliminating conditioned stimuli associated with the availability or the injection of the drug. After extinction, it has been shown that non-contingent injections of the training drug or reintroduction of its associated cues can reinstate the operant behavior required to deliver the drug, suggesting a potential for relapse. These procedures could also assess the potential effects of test compounds, administered alone or as a pre-treatment, on the likelihood of relapse. Using these procedures, MOD administered alone, either acutely (Reichel and See, 2010; Holtz et al., 2012) or chronically (Reichel and See, 2012), did not reinstate behavior in rats initially trained to self-administer METH. Similar results were found with administration of R-MOD (Wang et al., 2015). However, in rhesus monkeys previously trained to self-administer cocaine, a high dose (10 mg/kg) induced reinstatement of cocaine responding (Andersen et al., 2010), which may indicate a species difference could be a factor in the obtained results. In METH-primed reinstatement tests, both acute (Reichel and See, 2010) and chronic (Reichel and See, 2012) MOD pretreatments attenuated reinstatement of drug-seeking behavior in both male and female rats (Holtz et al., 2012). MOD pretreatments did not significantly modify likelihood for reinstatement of cocaine self-administration behavior in rats (Deroche-Gamonet et al., 2002), but R-MOD reduced cocaine seeking at high doses (Zhang et al., 2017). Additionally, in rats, R-MOD pretreatment reduced nicotine-induced reinstatement of self-administration behavior (Wang et al., 2015). These results indicate that, in contrast to abused psychostimulants, MOD and R-MOD do not induce self-administration behavior, suggesting limited, if any, abuse liability. Also, they may diminish the potential for abuse of psychostimulants or reduce the drive to obtain them, and, finally, attenuate drug-induced reinstatement of drug seeking behaviors, suggesting a potential therapeutic effect in the prevention of relapse to drug use.



Intracranial Self-Stimulation

Intracranial self-stimulation is another indicator of the potential abuse liability of a substance. In this procedure, electrodes are placed in the medial forebrain bundle, and electrical stimulation is given when the subject performs the required operant task, for example nose-poking or pressing a lever. In comparison to self-administration studies, where the drug itself acts as the reinforcer, the electrical stimulation is the reinforcer in ICSS studies, allowing the assessment of whether the drug causes increased sensitivity to rewarding stimuli by altering the self-stimulation rates (Negus and Miller, 2014). Cocaine, METH, and other monoamine releasers have been found to facilitate ICSS (Bauer et al., 2013; Negus and Miller, 2014) with a correlation between facilitation rates and DA selectivity (Bauer et al., 2013; Negus and Miller, 2014), further implicating DA and DAT in the rewarding effects of these drugs.

Modafinil has been shown to facilitate ICSS responses in rats when administered orally (Lazenka and Negus, 2017) and intraperitoneally (Burrows et al., 2015). R-MOD shows a trend toward ICSS facilitation at high doses (150 mg/kg) in rats, without reaching significance (Burrows et al., 2015). However, when compared with commonly abused psychostimulants, such as methylphenidate or cocaine, MOD shows significant changes in ICSS rates only when administered at very high doses, while abused drugs show effects at significantly lower doses (Burrows et al., 2015; Lazenka and Negus, 2017). These dose differences may indicate that MOD abuse liability, if any, might require specific conditions, including very high doses, as compared to commonly abused psychostimulants. Indeed, MOD shows very low, if any, abuse liability in humans, and the benefits offered by MOD treatment against PSUD seem to outweigh the possibility of dependence.



Drug Discrimination

Administration of drugs, especially those abused by humans, would induce specific interoceptive stimuli that could be perceived and recognized by human subjects as well as animals (Kamien et al., 1993). The ability of subjects to discriminate between interoceptive stimuli elicited by a specific drug and those elicited by the drug’s vehicle could be assessed in drug discrimination procedures (Porter et al., 2018). Indeed, the presence or absence of the drug stimulus could result in different operant responses, for example pressing a lever associated to the drug stimulus or that associated to the drug vehicle. Correct responses are usually rewarded with delivery of food pellets. After training with a specific drug, tests can be performed with administration of, for example, novel compounds. It is important to note that drugs belonging to the same pharmacological class (i.e., opioids, cannabinoids, psychostimulants) usually share a common discriminative stimulus specific for their drug class. Thus, while the drug-discrimination procedure does not measure the reinforcing/rewarding effects of drugs of abuse, similarities between subjective effects of a known abused psychostimulant and novel compounds might suggest their potential for abuse (Katz and Goldberg, 1988; Berquist and Fantegrossi, 2018). Thus, several drug-discrimination studies have tested the possibility that administration of MOD produced subjective effects similar to the discriminative stimulus effects of cocaine.

Modafinil doses below 100 mg/kg produced saline only responses when administered 30 min prior to testing, and higher doses partially substituted for cocaine in rats (Gold and Balster, 1996), but later studies found full cocaine substitution (Paterson et al., 2010). In Rhesus monkeys, MOD dose dependently substituted for cocaine in three of four animals at the highest doses when administered immediately prior to testing (Newman et al., 2010) and in mice, MOD fully substituted for cocaine (Loland et al., 2012; Mereu et al., 2017) when administered 5 or 60 min prior to testing. These results indicate that the subjective effects of MOD are similar to those of cocaine. However, there was a significant difference in potency for those effects, and MOD was found about 10 (Loland et al., 2012; Mereu et al., 2017) to 25 times less potent than cocaine (Gold and Balster, 1996). Further, MOD discrimination responses in rats were lower than that of ephedrine, a common over-the-counter decongestant and bronchodilator (Gold and Balster, 1996). These findings might indicate that high doses of MOD and R-MOD could have abuse potential, but the lower doses which would aid in reducing the likelihood of relapse have little abuse potential, as shown by lack of consistent reinforcing effects in the self-administration studies above.



Behavioral Tests Related to Cognitive Functions

Cognitive impairments, such as memory deficits, decision making abilities, and learning rates are a potential concern as a consequence of persistent psychostimulant use (Block et al., 2002). While acute administration of psychostimulants has been found to positively affect cognitive functioning when given immediately prior to testing (Grilly, 2000; Del Olmo et al., 2007), long-term, repeated exposure to these drugs may produce detrimental cognitive effects. For example, in animal models, impairment of cognitive function has been reported in response to chronic administration of METH (Rogers et al., 2008) and cocaine (García-Pardo et al., 2017), among others (Marston et al., 1999; Dalley et al., 2005). MOD has been found to reverse some of the impairments induced by phencyclidine in rats (Redrobe et al., 2010), and by METH in rats and mice (González et al., 2014; Reichel et al., 2014). However, it has been reported that MOD administration had no effect on the object recognition of animals not pretreated with psychostimulants (Reichel et al., 2014), or spatial memory acquisition in rats not treated with DMSO (Shanmugasundaram et al., 2017), indicating a potential restoration of the cognitive impairments induced by drugs of abuse.

Modafinil has also been shown to improve decision making skills by decreasing impulsive responses in rats (Heyer-Osorno and Juárez, 2020), and both acute and chronic administration increases learning and memory abilities in mice (Béracochéa et al., 2002, 2003; Shuman et al., 2009) and rats (Ward et al., 2004; Morgan et al., 2007; Shuman et al., 2009). However, chronic MOD decreased long-term visuo-spatial memory errors, but increased operant conditioning learning errors, indicating an overall benefit for hippocampus dependent tasks in rats (Burgos et al., 2010). in a different study, an enhanced hippocampus dependent memory performance was reported after low doses of MOD (0.75 mg/kg), but not high doses (75 mg/kg), indicating a bell-shaped response curve (Shuman et al., 2009). Further, no effects on impulsive response rates were reported in healthy rats (Waters et al., 2005), however, these findings were explained later when improvements on a response rate task were only present in subjects previously showing slow or impaired response rates (Eagle et al., 2007). In general, these findings indicate that MOD has the potential to enhance cognitive abilities, especially when treating drug of abuse induced impairments, which may influence treatment engagement and likelihood of relapse in PSUD patients (Sofuoglu et al., 2013; Nuijten et al., 2016).





HUMAN STUDIES ON MOD AS A POTENTIAL PHARMACOTHERAPY FOR PSUD

Modafinil has shown therapeutic efficacy for treatment of individuals affected by narcolepsy and sleep disorders (Czeisler et al., 2005; Kumar, 2008), and its off-label uses have shown beneficial effects in improving cognitive function in patients with neuropsychiatric disorders, e.g., Parkinson’s disease, ADHD or PSUD (Peñaloza et al., 2013; Turner et al., 2014). Even though MOD has been suggested as a potential therapeutic agent for the treatment of PSUD (Mereu et al., 2013; Tanda et al., 2021), initial concerns related to its potential abuse liability due to its effects on the central dopaminergic system, akin to those associated with many abused psychostimulants (Jasinski, 2000; Stoops et al., 2005; Volkow et al., 2009). Concerns about its potential for abuse have also been raised by the non-medical use of MOD by healthy individuals to enhance their cognitive function, attention, learning, and memory, in order to improve academic or work-related performance (Fond et al., 2016), leading to a significant debate about potential ethical issues related to a so called “cosmetic neurology” (Cakic, 2009; Sahakian and Morein-Zamir, 2011). However, the increased non-medical use of MOD to potentially improve cognitive performance in school or work settings (Sharif et al., 2021) supports the very low risk, if any, of abuse liability (Kate et al., 2012; Ozturk and Deveci, 2014; Krishnan and Chary, 2015).


Potential Therapeutic Effects of MOD for PSUD

As summarized in Table 4, clinical studies testing MOD as a potential treatment for PSUD have generated different and sometime inconsistent results.


TABLE 4. Results of clinical studies on MOD as a pharmacological therapy for PSUD, including studies on sleep disorders and cognitive dysfunction in PSUD patients.
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In an early double-blind, placebo-controlled 8-week study with 62 cocaine dependent patients, MOD 400 mg daily, combined with CBT, significantly improved BE (benzoylecgonine - a cocaine metabolite) negative urine samples over placebo, and significantly increased abstinence rate (3 or more weeks) (Dackis et al., 2005). That study also indicated the safety of MOD administered to cocaine-dependent individuals (Dackis et al., 2005), a finding consistent with previous experimental safety studies that indicated the safety of the co-administration of MOD and intravenous cocaine (Dackis et al., 2003; Malcolm et al., 2006). More recently, another double-blind, placebo-controlled study with cocaine dependent patients (N = 94), over an 8-week period, showed that patients treated with 300 mg MOD daily, combined with weekly individual therapy, were significantly more likely to be abstinent than those treated with placebo and weekly individual therapy (Kampman et al., 2015). Furthermore, MOD-treated patients reported significantly lower craving levels compared to those treated with placebo (Kampman et al., 2015). Other experimental human laboratory studies have investigated the potential role of MOD in modulating cocaine’s subjective effects, such as self-reported decreases in ‘good effects,’ ‘stimulation’ and ‘high’ (Malcolm et al., 2006; Hart et al., 2008; McGaugh et al., 2009; Verrico et al., 2014). Further, a decrease in cocaine-associated cardiovascular effects was reported after treatments with both 200 and 400 mg MOD doses, showing an objective physical response, as well as decreased self-administration of high cocaine doses (25 and 50 mg) (Hart et al., 2008).

While the safety of MOD treatments has also been observed in METH-dependent individuals (McGaugh et al., 2009), clinical studies on METH-dependent subjects are less promising than those in cocaine-dependents, although METH studies have been conducted in significantly smaller samples. For example, in a small trial of 13 METH-addicted patients treated with 200 mg of MOD, the authors did not find any significant differences versus placebo, although they reported trends of lowering METH choice by 25% in 3 days of treatment (De La Garza et al., 2010). In a different study, MOD, 200 mg daily, was tested over a 7-day inpatient period on 19 METH abstinent subjects, but no differences, compared to placebo, were found for abstinence, reported craving, or sleep measures (Lee et al., 2013). In another study, METH-dependent patients were assigned to placebo or 200 mg of MOD daily for 10 weeks (Shearer et al., 2009), resulting in no difference in retention and medical adherence between placebo and MOD in self-reported use and urine analysis. The study limitations of relying on self-reported measures and small sample size may confound the results and explain some of the variability among clinical studies for the efficacy of MOD in PSUD (Karila et al., 2010).



Efficacy of MOD Treatments in Subpopulations of Patients With Cocaine or METH Use Disorder but Without Comorbid Dependences From Other Substances

With inconsistencies plaguing the results of MOD clinical studies, future research should be focused on the specific patient groups who showed beneficial effects from MOD treatment. While Shearer et al. (2009) didn’t find significant differences between placebo and MOD treatments in the entire subjects sample, a post hoc analysis showed greatest reductions in METH use compared to placebo with MOD treatments in patients with only METH dependence (removing comorbid opioid dependent patients) (Shearer et al., 2009). MOD didn’t increase the number of non-cocaine use days compared to placebo in a trial of cocaine-dependent patients, but post hoc analysis of data found that MOD was superior to placebo in patients without an alcohol codependency (Anderson et al., 2009). Similar outcomes were also reported in a more recent study, 8-week double-blind, placebo-controlled clinical trial in cocaine-dependent subjects without comorbid alcohol dependence, where MOD (300 mg daily) treated patients were more likely to be abstinent from cocaine than patients treated with placebo (Kampman et al., 2015). In another trial on cocaine-dependent patients, no difference was reported between retention or abstinence for MOD treatment compared to placebo, but post hoc analysis revealed a significant gender difference with males taking 400 mg MOD showing a greater estimate of abstinence (Dackis et al., 2012).

In a double-blind, placebo controlled trial, MOD, 400 mg daily over 12 weeks, increased retention, while decreasing METH use, depression symptoms, and cravings in those with high METH use and low CBT attendance (Heinzerling et al., 2010). In a different study, it was found that escitalopram, a selective serotonin reuptake inhibitor and commonly prescribed antidepressant, decreased MOD’s effects, raising concern of MOD’s effect on populations of patients treated for depressive disorders alongside drug addiction (Verrico et al., 2014).

Reduced METH use in patients with an abuse diagnosis that included HIV+ participants was found in a 12-week 200 mg MOD study (McElhiney et al., 2009). In the same study, the patients using METH on average 2.2 days per week reported better MOD effects on fatigue due to withdrawal, as well as maintaining abstinence, than patients who used meth 6 days per week (McElhiney et al., 2009). As clinical research on MOD continues, it is increasingly important to study the groups of individuals that do and do not respond to treatment in order to provide critical information toward precision medicine.



MOD Effects on Sleep Disorders Related to Psychostimulant Use

The relationship between sleep disorders and substance abuse is only loosely understood, but shows some relation with sleep problems reinforcing substance use disorders, as well as substance use leading to sleep disturbances (Angarita et al., 2016). In their review, Angarita et al. (2016) characterized several sleep disturbances produced by alcohol, cocaine, cannabis, and opioid short-term and long-term abstinence, suggesting that substantial research into the effectiveness of sleep agents for addiction treatment is needed. A more recent review links the effects of neurotransmitters on sleep during intoxication and withdrawal from a variety of drugs, but notes the lack of research depth on these neurological interactions and their bearing on drug abuse and dependence (Valentino and Volkow, 2020). Also, gender differences regarding the relationship between drug abstinence and sleep have been described (Coffey et al., 2000; Morgan et al., 2009). A study of short-term METH abstinence found a positive correlation between wanting a nap and craving METH (Mahoney et al., 2012). The study found that a single dose of MOD 200 mg decreased daytime sleepiness, supporting the potential use of MOD as an adjunct treatment for PSUD.

Modafinil has been shown to increase and normalize slow wave sleep to healthy patterns in abstinent cocaine users (Morgan et al., 2010). It was also recently found that while increasing slow wave sleep did not lead to complete, continued abstinence, 400 mg MOD treatment was associated with higher daily rates of abstinence and more consecutive days of abstinence (Morgan et al., 2016). Further, is has been reported that 200 mg MOD improved the sleep quantity and pattern in patients during METH withdrawal (Moosavi et al., 2019).



MOD Effects on Cognitive Impairment Produced by Psychostimulant Use

Addiction brings changes to the brain beyond the reward pathway. Mental processing dysfunction can hamper rehabilitation attempts and, thus, a drug that can attenuate these risks would be beneficial to the addicted population (Gould, 2010). Cocaine-dependent patients in abstinence showed lower activation compared to healthy controls in areas associated with motor and cognitive functions (Kjome et al., 2010). There have been quite a few studies into MOD’s effects on working memory. In a double-blind, placebo controlled study, it was shown that 400 mg MOD improved working memory in 11 METH-dependent subjects, with poor performance at baseline, after 3 days of treatment (Kalechstein et al., 2010). The same group later showed, in a placebo controlled study, that MOD at 200 mg improved visual and working memory in a group of 61 cocaine-dependent patients, as well as attention and impulsivity, with 5 days of treatment (Kalechstein et al., 2013). While promising, these studies also hold some limitations, in particular the short-term period of treatment and the small samples.

Even though not directly related to PSUD, effects of MOD on performance related to cognitive function were shown in a randomized, double-blind, placebo controlled, crossover study, where 200 mg of MOD administered acutely improved cognitive control in alcohol-dependent patients, but not in the healthy control group (Schmaal et al., 2013). Also, the same researchers showed that administration of 200 mg of MOD improved impulsive decision making in alcohol dependent patients compared to healthy controls (Schmaal et al., 2014). The alcohol dependent group had poor baseline performances compared to the healthy group. This difference could imply that MOD normalizes the brain’s engagement to improve cognition to normal levels in lower performing groups, and the authors suggest that there was likely no room for improvement by MOD in the healthy controls (Schmaal et al., 2014). Further, it has been shown that MOD improved response inhibition in alcohol dependent patients whose initial response was poor (Schmaal et al., 2013). Similar effects related to PSUD were shown in METH-dependent patients in a double-blind, placebo controlled, crossover study, where 200 mg of MOD increased poorly cognitive performance in METH-dependent patients to the same level as the healthy control (Ghahremani et al., 2011). Post hoc analysis also revealed that MOD produced larger effects in lower performing participants. Similar findings were also reported in METH-dependent patients where MOD treatments showed larger effects on inhibitory control, processing speed/attention, and motor speed in subject using higher levels of METH compared to those with lower METH usage (Dean et al., 2011). In another study, it was shown that cocaine dependent participants had lower Balloon Analog Risk Task (BART) scores but MOD treated cocaine-dependent participants had higher BART scores, which were comparable to the healthy placebo, showing a normalization of risk taking while on MOD (Canavan et al., 2014).

In a study combining MOD with CBT, it was found that crack cocaine-dependent patients with lower baselines of impulsivity (self-reported) had higher CBT retention and lower crack cocaine use (Nuijten et al., 2016). However, MOD treatment in these patients did not improve CBT retention or outcomes, which is likely as a result of the low MOD adherence during this trial. This study weakness was reported by the same researchers showing that only 10% adherence was reported during a 12 week CBT and MOD trial (Nuijten et al., 2015).




BEYOND MOD: DRUG DEVELOPMENT OF MOD ANALOGS AS PHARMACOTHERAPEUTICS FOR PSUD

The effectiveness of MOD as a medication for PSUD has been shown to reach significance in sub-populations of patients without comorbid dependencies from other drugs. In recent years, this important limitation of MOD efficacy has stimulated the development of new structural analogs of MOD to extend therapeutic actions to a broader population and, thus, maximize the effects of the parent drug for use in treatment of PSUD. Some of these novel agents showing atypical DAT blocker properties, have been highlighted in recently published reviews (Newman et al., 2021; Tanda et al., 2021). Among them, some have been shown to bind with high affinity to DAT, and those that promote an inward facing conformation of DAT have shown behavioral and neurochemical preclinical activities different from those of typical abused psychostimulants (Cao et al., 2010, 2016; Okunola-Bakare et al., 2014). Such effects suggest an atypical DAT blocker profile (Keighron et al., 2019a; Newman et al., 2019, 2021; Tanda et al., 2021) and their potential as novel agents for use in the treatment of PSUD.

The effects of MOD analogs on DA neurochemistry have shown varying results (see Table 5). One of the tested analogs, JJC8-016, was unable to stimulate extracellular levels of DA after systemic administration (Zhang et al., 2017; Keighron et al., 2019b), in contrast to other MOD analogs, like JJC8-088 that significantly increased DA levels in a cocaine-like manner, or like JJC8-091 that elicited significant, but less efficacious, increases in DA levels. It is worth noting that the varying effects on stimulation of DA levels were not a result of an altered efficacy as DAT blockers. Indeed, all of these compounds were able to block and reduce DA uptake, an effect highly correlated to their affinity to DAT, as demonstrated by voltammetry studies in rats and mice (Keighron et al., 2019b; Newman et al., 2019). Moreover, their varying ability to enhance the stimulation of elicited DA release in voltammetry studies was unrelated to their affinity for DAT (Keighron et al., 2019b; Newman et al., 2019). These effects once more suggest that compounds that prefer or stabilize an inward facing conformation of DAT would produce limited, if any, cocaine-like effects (Keighron et al., 2019a, b; Giancola et al., 2020; Slack et al., 2020). The same MOD analogs have been tested in behavioral activities related to the reinforcing effects of psychostimulants, and those showing very low stimulation of DA output in microdialysis and voltammetry studies were also among those that produced limited stimulation of ambulatory activities (Keighron et al., 2019a, b; Giancola et al., 2020; Slack et al., 2020). Also, while they did not elicit acquisition or maintenance of self-administration behavior, these MOD analogs blunted cocaine or METH reinforcing and drug-seeking behaviors (Zhang et al., 2017; Tunstall et al., 2018; Newman et al., 2019), suggesting once more that their atypical DAT blocker profile and potential therapeutic activity could be useful as PSUD medications.


TABLE 5. Behavioral and neurochemical effects of MOD analogs.
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CONCLUSION

Modafinil is clinically approved for narcolepsy and other sleep disorders (Bastoji and Jouvet, 1988; Broughton et al., 1997; US Modafinil in Narcolepsy Multicenter Study Group, 1998, 2000), but its off-label use for treatment of several psychiatric disorders has been repeatedly reported (Ballon and Feifel, 2006; Peñaloza et al., 2013; Turner et al., 2014). During the last two decades, there have been several preclinical and clinical studies that suggested potential efficacy of MOD as a treatment for PSUD, but also contrasting results from other studies which limited its progression (Lee et al., 2013; Schmitz et al., 2014). Among the positive results, it is interesting to note that after many years of clinical use, there are only a few reports of abuse in MOD-treated patients (Kate et al., 2012; Ozturk and Deveci, 2014; Krishnan and Chary, 2015), a result in agreement with clinical and preclinical studies showing its limited, if any, potential for abuse (Jasinski, 2000; Deroche-Gamonet et al., 2002; Myrick et al., 2004; Food and Drug Administration, 2007; Vosburg et al., 2010). On the other hand, disappointing results of clinical trials testing MOD as a treatment for PSUD have been obtained in the general population of drug-dependents. However, based on results from several of those reports, positive treatment outcomes have been found when the population sample included only subjects with psychostimulant dependency, without concurrent alcohol or other drug dependencies (Anderson et al., 2009; Shearer et al., 2009; Kampman et al., 2015). These studies underscore the importance of pursing personalized treatment approaches for PSUD, similarly to other medical disorders (Hamburg and Collins, 2010; Schork, 2015). It is clear that the complexity of PSUD, the huge differences in how PSUD develops among the population, and the presence of many other individual, genetic, or environmental variables, suggest it is unlikely that there will ever be a “silver bullet” medication to treat all individuals with PSUD. Thus, personalized medicine approaches, together with behavioral cognitive treatments, might be the most effective path to reduce the harm produced by PSUD. While MOD has been shown to improve several emerging pathological conditions related to psychostimulant use, i.e., dependence, sleep, and cognitive impairments, its overall limited success has triggered medicinal chemistry research toward discovery of structural analogs of MOD, that might hold more robust efficacy in PSUD. In conclusion, while MOD could be an effective pharmacological treatment already available for subpopulations of individuals suffering from PSUD, new pharmacological tools derived from MOD show promising preclinical efficacy and could help to provide more efficacious future treatment opportunities for PSUD.
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Traumatic spinal cord injury (TSCI) leads to pathological changes such as inflammation, edema, and neuronal apoptosis. Methylprednisolone (MP) is a glucocorticoid that has a variety of beneficial effects, including decreasing inflammation and ischemic reaction, as well as inhibiting lipid peroxidation. However, the efficacy and mechanism of MP in TSCI therapy is yet to be deciphered. In the present study, MP significantly attenuated the apoptotic effects of H2O2 in neuronal cells. Western blot analysis demonstrated that the levels of apoptotic related proteins, Bax and cleaved caspase-3, were reduced while levels of anti-apoptotic Bcl-2 were increased. In vivo TUNEL assays further demonstrated that MP effectively protected neuronal cells from apoptosis after TSCI, and was consistent with in vitro studies. Furthermore, we demonstrated that MP could decrease expression levels of IBA1, Il-1α, TNFα, and C3 and suppress A1 neurotoxic reactive astrocyte activation in TSCI mouse models. Neurological function was evaluated using the Basso Mouse Scale (BMS) and Footprint Test. Results demonstrated that the neurological function of MP-treated injured mice was significantly increased. In conclusion, our study demonstrated that MP could attenuate astrocyte cell death, decrease microglia activation, suppress A1 astrocytes activation, and promote functional recovery after acute TSCI in mouse models.

Keywords: traumatic spinal cord injury, methylprednisolone, A1 astrocyte, AQP4, C3


INTRODUCTION

Approximately half a million individuals worldwide are affected by traumatic spinal cord injury (TSCI) each year. The high prevalence is associated with significant personal and socio-economic impacts (Singh et al., 2014). After TSCI, tissues in the spinal cord induce self-destructive mechanisms termed secondary damage (Romanelli et al., 2019; Pelisch et al., 2020). The main mechanisms of secondary damages after TSCI are excitotoxicity, excessive free radical production, inflammation, and apoptosis (Diaz-Ruiz et al., 2009; Novgorodov et al., 2019). Studies that have focused on reducing neuroinflammation by promoting neuron survival and axon outgrowth have shown some satisfactory therapeutic efficacy (Sun et al., 2018; Lima et al., 2019). Methylprednisolone (MP) is a glucocorticoid drug that has been used in the clinical treatment of SCI due to its highly effective anti-inflammatory properties (Hall and Braughler, 1981). Studies have demonstrated that MP has neuro-protective properties against SCI by inhibiting microglia/macrophage accumulation, reducing calcium influx, increasing blood flow, and protecting glia from dysmetabolic insults (Tang et al., 2015; Keles et al., 2019; Samano and Nistri, 2019).

Astrocytes make up the majority of glial cells in the central nervous system (CNS). Astrocyte activation supports neuronal cells by secreting neurotrophic factors under different physiological conditions. However, the function of MP on astrocyte activation has been controversial. Astrocyte activation after nerve injury initiates the scarring process, which results in a long-lasting physical and chemical barrier to axonal regrowth during the chronic SCI phase (Wanner et al., 2008). MP has been shown to promote neurite outgrowth after excitotoxic insult through the glucocorticoid receptor-mediated downregulation of astrocyte reactivation and inhibition of CSPG expression (Liu et al., 2008). Astrocyte activation after TSCI has also been shown to be involved in the development of spinal cord edema, and MP may function in alleviating edema. The mechanism of astrocyte function is to decrease AQP4 expression and inhibit apoptosis (Lu et al., 2016). Recent studies have demonstrated the presence of two subtypes of astrocytes after CNS injury, i.e., A1 type astrocytes (A1s) and A2 type astrocytes (A2s) (Zamanian et al., 2012). A1s have lost normal glial cell function. They function to secrete neurotoxins to eliminate axonal injured neurons (Liddelow et al., 2017). A1s have been shown to migrate to the injured area after SCI (Wang et al., 2018, 2021) and participate in the neurotoxin process of nerve injury. Studies have shown that activated microglia could induce the transformation of naïve astrocytes into A1 astrocytes.

We hypothesized that MP could effectively suppress microglial activation and suppress astrocyte transformation to the A1 phenotype. To support our hypothesis, we analyzed the expression levels of IBA-1 (a specific marker of activated microglia) and complement C3 (a specific marker of A1 astrocytes), as well as the expression levels of TNFα (a pro-inflammatory cytokine) and IL-1α (a pro-inflammatory cytokine), which are essential for inducing A1 astrocytes. Our results demonstrated that MP could reduce astrocyte cell death, inhibit microglial activation, suppress A1s activation, and regulate axonal regeneration, resulting in the functional recovery of mice after TSCI.



MATERIALS AND METHODS


Experimental Animals

BALB/c mice, 6–8 weeks old, were purchased from the Changzhou CAVENCE experimental center and maintained in SPF level conditions. Water and food were provided ad libitum. All experiment procedures followed the ethical guidelines for animal research developed by the science and technology department of China and were approved by the ethics committee for animal research, Third Affiliated Hospital of Soochow University.



Astrocyte Primary Culture and Identification

Based on the Institutional Animal Care and Use Committee guidelines of Soochow University, primary astrocytes were isolated from BALB/c mice on postnatal days 1–3. Astrocytes were harvested as follows: Newborn BALB/c mice (within 72 h) were disinfected by soaking in 75% alcohol for several seconds. Afterward, the mice were decapitated with tissue scissors and the whole brain was excised using ophthalmic curved tweezers. The brain tissues were then placed in precooled serum-free medium Dulbecco’s Minimum Essential Medium (DMEM) and the meninges, blood vessels, and hippocampus were removed under a stereomicroscope to obtain complete cerebral cortex tissue. The tissues were then minced using a scalpel and then incubated and digested with type I collagenase and 0.25% pancreatin separately for 15 min, with gentle mixing every 5 min, and vortexing at 2000 r/min for 90 s. The suspension was then passed through a 70 μm nylon mesh, and 10% FBS complete medium was added to the cell suspension. Purification was performed by shaker. The purifiedcell was then cultured in a 35 mm plastic petri dish with growth media [DMEM containing 10% fetal bovine serum, penicillin (10 units/ml), streptomycin (10 mg/ml), and L-glutamine (29.2 mg/ml)]. The media was changed every 3 days.

Cell growth was observed under an inverted phase-contrast microscope and photographed. After 3–4 weeks of continuous culture, a portion of the cells was washed in PBS buffer three times, fixed in 4% polyformaldehyde for 30 min, washed in PBS buffer three times, and permeabilized in 0.25% TritonX-100 at room temperature for 15 min. Afterward, the cells were washed in PBS buffer three times and incubated with 3% BSA at room temperature for 2 h. Cells were then incubated in rabbit anti-GFAP polyclonal antibody (1: 100) or rabbit anti-S100β polyclonal antibody (1: 100) overnight at 4°C. The next day, the primary antibody was removed, and the cells were washed in PBS buffer three times. Cells were then incubated with secondary anti-sheep anti-rabbit FITC-IgG (1: 100) at 37°C for 30 min. Cells were stained with DAPI for 20 min and then sealed with glycerol film and observed and photographed using a fluorescence microscope.



Astrocyte Apoptosis Assays

Astrocytes were incubated with or without 10 μg/ml of MP (Pfizer Inc., New York, NY, United States) after treatment with hydrogen peroxide (H2O2; 100 mM) for 24 h (Vieira et al., 2008). Cells were digested with trypsin without EDTA. Afterward, the incubation was terminated, and the cells were collected, centrifuged at 1,000 rpm at 4°C for 5 min, and the supernatant was discarded. The cells were washed twice with pre-cooled PBS, centrifuged at 1,000 rpm at 4°C for 5 min each time, and the supernatants were discarded. Cells were then resuspended and incubated in Annexin V-PE (Vazyme) and 7-AAD for 5 min at room temperature in the dark. The cells were then washed in PBS three times before being analyzed using a FACSVerse flow cytometer (BD Biosciences) running the FACSuite software. Data analysis was performed using the FlowJo software (Treestar).



Western Blot Analysis

Western blot analysis was performed as previously described (Zou et al., 2015). Astrocytes were rinsed in cold PBS and then lysed in Radio-Immunoprecipitation Assay (RIPA) lysis buffer at 4°C for 10 min. Cell lysates were then centrifuged at 4°C, 12,000 r/min for 15 min, and protein concentration was determined in the supernatants using the BCA method. Equal amounts of proteins were separated using a 10% or 12% Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis (SDS–PAGE). Separated proteins were then transferred to a Polyvinylidene Fluoride (PVDF) membrane and blocked with 5% non-fat milk powder for 1 h at room temperature. Membranes were incubated with the following primary antibodies: cleaved caspase-3 (1:1,000, rabbit IgG; Cell Signaling Technology, BSN, United States), B-cell lymphoma 2 (Bcl-2; 1:1000, rabbit IgG; Cell Signaling Technology, BSN, United States), Bcl-2–associated X protein (Bax; 1:1,000, rabbit IgG; Cell Signaling Technology, BSN, United States), C3 (1:2,000, rabbit IgG; Abcam, United Kingdom), or beta-Actin (β-actin; 1:1,000, mouse IgG; Cell Signaling Technology, BSN, United States). The membranes were then washed and incubated with secondary antibody (1:2,000; Thermo Pierce, MA, United States) for 120 min at RT. β-actin was used as the loading control (Thermo Pierce, MA, United States).



Traumatic Spinal Cord Injury Mouse Model and Animal Care

BALB/c mice were anesthetized (i.p) using Nembutal (pentobarbiturate sodium, 0.25% W/V). The surgical procedure was performed at 38°C. Laminectomy was performed on the T9–10 vertebrate and the T10 spinal cord was injured using a 5-gram rod dropped from 12.5 mm using the NYU Impactor (New York University, New York, NY, United States). The wound was closed using 3-0 silk thread (Figure 1) (Young, 2002). After the procedure, mice were placed in warm cages with food and water. Post-injury bladder management was performed twice a day until bladder reflex recovery. Mice in the MP group were administered MP via the tail vein (30 mg/kg) and an equal volume of 0.09% saline was administered to the control group.
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FIGURE 1. Mouse traumatic spinal cord injury. (A) Laminectomy was performed at the T9-10 vertebrate, and the exposed spinal cord (T10) was impacted with a 5-gram rod dropped 12.5 mm by NYU Impactor. Following removal of the rod, the muscles and skin were sutured in layers. (B) The operation schematic diagram. (C) Gross morphology and representative hematoxylin-eosin staining sagittal sections. Scale bar: 500 μm. N = 10 for each experiment. Sham group, which underwent laminectomy without TSCI; SCI group, which underwent laminectomy followed by TSCI and received saline i.v. immediately after injury; MP group, which underwent laminectomy followed by TSCI and received a 30 mg/kg dose of MP (Pfizer Inc., United States) i.v. immediately after TSCI via the tail vein injection.




Experimental Groups

Thirty mice were used in this study. Mice were randomly allocated into three groups (n = 10): The sham group underwent laminectomy without TSCI; the SCI group underwent laminectomy followed by TSCI and received saline i.v. immediately after injury; and the MP group underwent laminectomy followed by TSCI and was administered 30 mg/kg dose of MP (Pfizer Inc., United States) i.v. immediately after TSCI via the tail vein. MP was dissolved in phenylcarbinol and further diluted in physiological saline. On days 1, 3, 7, 14, 21, and 28 following trauma, five mice from each group were used for the analysis of functional recovery, i.e., determined using Basso Mouse Scale (BMS) scores and Footprint Tests. At 3 days and 28 days post-surgery, tissues from five mice per group were used for immunohistochemical and immunofluorescence staining.



Immunohistochemical and Immunofluorescence

The immunohistochemical staining procedure was followed as previously described (Ge et al., 2013). Immunofluorescence staining was used to measure expression levels of NF-200 and GAP43 in the injured spinal cord at 3 days and 28 days post-injury. In addition, expression levels of IBA1, AQP4, IL-1α, and TNFα and C3 positive cells in the injured spinal cord were determined at 3 days post-injury. Mice were perfused transcardially with saline, then with 4% paraformaldehyde in phosphate-buffered saline (0.1 M PBS, pH 7.4). One cm long segments of the cord at the injury area were fixed for further study. The fixed cords were coated with paraffin and then axially sliced. Slices were then deparaffinized and treated with 3% H2O2 for 15 min to block endogenous peroxidase. After blocking with serum for half an hour, the slices were incubated with the following primary antibodies overnight at 4°C: rabbit polyclonal anti-AQP4 antibody (Cell Signaling Technology, Inc.), anti-NF-200 antibody (Cell Signaling Technology, Inc.), anti-TNFα antibody (Servicebio, Inc.), anti-IL-1α antibody (Proteintech, Inc.), anti-GAP43 antibody (Cell Signaling Technology, Inc.), and anti-C3 antibody (Abcam, Inc.). The slices were then washed with PBS three times and incubated with the appropriate secondary antibody (Boster, China) at 37°C for 15 min. Cell nuclei were stained with DAPI (Life Technologies). Stained cells were observed using an inverted fluorescence microscope (Leica, Germany).



In vivo Apoptotic Assays (TUNEL Staining)

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to measure neuronal cell apoptosis in the TSCI area based on the manufacturer’s instructions. Briefly, cells were stained with TUNEL reaction mixture (Servicebio, Inc.) at 37°C for 30 min in the dark and then the nuclei were counterstained with DAPI for 5 min. The proportion of TUNEL-positive neurons was counted from randomly selected fields of view under a fluorescence microscope (Leica, Germany).



Fluoro-Jade B Staining

Spinal cord sections were stained with Fluoro-Jade B to observe neuronal degeneration after TSCI (Anderson et al., 2003; Ahn et al., 2019). The spinal cord was immersed in 1% sodium hydroxide, transferred to 0.06% potassium permanganate, placed in 0.0004% F-J B (Servicebio, Inc.), and then dried using a slide warmer (approximately 50°C) for at least 5 min.



Quantitative and Qualitative Analyses

For quantitative analyses, immunohistochemical counts generated by two technicians were averaged to obtain the final counts per section. The percentage of positive cells was rated as follows: 2 points, 11–50% positive cells; 3 points, 51–80% positive cells; and 4 points, > 81% positive cells. The staining intensity was rated as follows: 1 point, weak intensity; 2 points, moderate intensity; and 3 points, strong intensity. Points for expression and percentage of positive cells were added, and tissue samples were attributed to four groups based on their overall scores: negative, ≤10% of cells stained positive, regardless of intensity; weak expression, 3 points; moderate expression, 4–5 points; and strong expression, 6–7 points (Goh et al., 2008).

The number of positive cells or the mean optical density (mean optical density = integrated optical density [IOD]/area) as measured using Image J (version 1.48) was used for quantitative analyses for immunofluorescence. The number of IBA1 positive cells or the normalized mean optical density of IL-1α, TNFα, and C3 in the central canal of the spinal cord adjacent to the injury site was calculated.

For qualitative analyses of AQP4 polarity distribution, immunofluorescence staining for the water channels AQP4 and GFAP were used as described previously (Liddelow et al., 2017). Robust AQP4 protein localization to astrocytic endfeet on blood vessels was termed polarity distribution, while the loss of AQP4 immunoreactivity on astrocytic endfeet on blood vessels with increased staining in other regions of the astrocyte was termed loss of polarity.



Functional Evaluation

The BMS scale was used as described in previous publications (Basso et al., 2006). Using this scale, specific components of functional behavior, such as ankle movements, stepping pattern, coordination, paw placement, trunk instability, and tail position, were measured and quantitated, with a minimum score of 0 (no movement) to a maximum score of 9 (normal locomotion). A 100 × 100 cm transparent plexiglass box was used to determine BMS scores. Two blinded observers were used to record movements for 5 min (Song et al., 2018).

For the Footprint Test, a 50 cm runway was used to evaluate mouse walking. The hind paws were marked with red ink during the footprint test. The stride length on each side and stride width between the two sides of the prints were recorded.



Statistical Analyses

Comparison between the SCI and MP groups was performed using Student’s unpaired t-test or one-way ANOVA. p-values < 0.05 were considered statistically significant. Values in graphs are shown as mean ± standard error of the mean (SEM).



RESULTS


Methylprednisolone Reduces in vitro Astrocyte Cell Death

Primary cultured astrocytes generally adhere to the cell culture dish in approximately 2–3 days, and gradually form protrusions from the cell body. Cellular impurities can be removed by shaking uniformly and forcefully during cell culture media change. After 7 days of cell culture, the number of astrocytes increased significantly and formed protrusions that increased in length. Multiple protrusions made contact to form a neural network. Subsequently, mature astrocytes were formed that were large, irregular in shape, and rich in cytoplasm. Primary cultured astrocytes were identified using astrocyte markers GFAP and S100β. DAPI was used to counterstain the nuclei. The purity of the culture was calculated as the percentage of GFAP positive cells in the total number of cells (based on DAPI staining). Astrocytes accounted for about 95% of the total culture (Figure 2A). Previous studies have demonstrated that H2O2 could induce astrocyte cell death, while our study demonstrated that 10 μg/ml of MP could reduce astrocyte cell death after H2O2 exposure. Cells were stained with Annexin V-PE/7-AAD and run on a flow cytometer to assess early and late apoptosis rates. As shown in Figure 2B, exposure to H2O2 dramatically increased apoptosis compared to the control group, whereas administration of MP significantly attenuated the apoptotic effect of H2O2 in neuronal cells. Western blotting demonstrated that the level of apoptotic related proteins, Bax, and cleaved caspase-3 were reduced, while Bcl-2 was increased upon co-treatment with MP after 24 h (Figure 2C).
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FIGURE 2. MP alleviates H2O2-induced astrocyte apoptosis in vitro. (A) Primary culture of astrocytes. GFAP and S100ß are used as astrocyte markers. DAPI is used for counterstaining the nuclei of living cells. The purity of the culture was calculated as the percentage of GFAP positive cells in the total number of cells (based on DAPI staining). Astrocytes account for about 95% of the total culture. (B) Astrocytes apoptosis induced by H2O2 together with or without MP (10 μg/ml) administration was assessed through Annexin V/7-AAD double staining with flow cytometric analysis. Quantitative results of apoptotic astrocytes with and without treatment by MP. *P < 0.05. (C) Western blot analysis of apoptosis-related proteins (Bax, Bcl-2-associated X protein; Bcl-2, Bcell lymphoma 2; cleaved caspas-3) in astrocytes incubated with MP treatment after H2O2-induced oxidative damage. Semiquantification of relative expression levels of apoptosis-related proteins in primary astrocytes normalized to ß-actin. Scale bar: 100 μm. One-way ANOVA. Values are all expressed as mean ± SD. *P < 0.05. **P < 0.01. ***P < 0.001.




Methylprednisolone Promotes Functional Recovery in TSCI Mouse Models

Methylprednisolone attenuates neuronal cell death and promotes functional recovery after TSCI. The locomotor function of the hind limbs in the sham group recovered to a score of 21 at 3 days post-injury. In comparison, the BMS scores for the other groups were <2. Functional recovery was observed from days 7 to 28 post-injury. MP-treated mice showed significantly greater improvement in neurological function compared to mice administered saline (Figure 3A). Furthermore, mice treated with MP had significantly higher scores compared to mice administered saline from day 14 to the end of the study. A footprint test was performed 4 weeks after TSCI. The footprint distance could not be measured consistently because some of the mice dragged their legs. From the footprint images, we found that the motor function of the hind limbs in the MP group was significantly improved compared to the SCI group (Figure 3B).
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FIGURE 3. MP promoted functional behavioral recovery. (A) BMS grading scale was used to functionally grade the mice in both groups up to 28 days post-injury. (B) Footprint data in false-color mode. The footprint distance could not be measured consistently because the animals dragged their legs. Scale bar: 2.5 cm. MP group consistently exhibited significantly higher BMS scores compared with the SCI groups. Student’s unpaired t-test. Values are all expressed as mean ± SD. *P < 0.05. **P < 0.01.




Methylprednisolone Suppresses Microglial Activation and Attenuates in vivo Neuronal Cell Death After TSCI

To evaluate the effects of MP on microglial activation after TSCI, we performed immunofluorescence staining for IBA-1 (a specific marker of activated microglia) adjacent to the injury lesion site. On day 1 after TSCI, the cell body of microglia was enlarged, the number of processes, and the number of IBA-1 positive cells increased (Figures 4A,B). The SCI group was administered a 30 mg/kg dose of MP i.v. immediately after TCI via tail vein injection. A significant reduction in IBA-1 expression was observed in the SCI group. In addition, the number of IBA-1 positive cells was lower compared to the SCI group. Neuronal cell apoptosis in the TSCI area was measured using TUNEL assays. On the first day after injury, the number of TUNEL-positive (apoptotic) cells in the MP group was significantly lower compared to the SCI group (Figures 4C,D). In vivo TUNEL assays further demonstrated that MP could effectively protect neuronal cells from apoptosis after TSCI, which was consistent with our in vitro experiments. Fluoro-Jade B staining was used to detect the presence of degenerative neurons. Our results showed that the number of Fluoro-Jade B cells in the MP group was significantly lower compared to the SCI group, while no Fluoro-Jade B positive cells were observed in the sham group (Figures 4E,F).
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FIGURE 4. MP suppresses the activation of microglia and attenuates neuronal cell death in spinal cord injury in vivo. (A) Representative immunohistochemical staining images of IBA1 (red) in injured spinal cord tissue of the Sham, TSCI, and MP groups at day 1 post-injury. Nuclei of all cells were stained with DAPI (blue). (B) Analysis of the number of IBA1+ microglia in the traumatic lesion area. (C) Representative images of TUNEL-positive apoptotic cells (green) in sagittal spinal cord sections at day 1 post-injury. Nuclei of all cells were stained with DAPI (blue). (D) Comparison of the number of TUNEL-positive cells. (E) Representative images of Fluoro-Jade B cells (green) in sagittal spinal cord sections at day 1 post-injury. Nuclei of all cells were stained with DAPI (blue). (F) Comparison of the number of Fluoro-Jade B-positive cells. Scale bar: 50 μm. Student’s unpaired t-test. Values are all expressed as mean ± SD. *P < 0.05. **P < 0.01.




Methylprednisolone Promotes in vivo Neuron Axonal Outgrowth

Immunohistochemistry was used to investigate the effect on neurons and axons after MP treatment at 3 days and 28 days after TSCI (Figure 5). Previous studies have demonstrated a strong association between neurite outgrowth and GAP-43 expression levels (Zou et al., 2015). Hence, we measured GAP-43 levels to evaluate axons. Our results showed that the axons retreated from the edges of the lesion site over time after TSCI. The MP group showed higher GAP-43 expression levels compared to the SCI group (Figures 5C,D). To investigate the pathological changes and the effect of MP on neurons after TSCI, we measured NF-200 expression levels at the edges of the lesion site at 3 days and 28 days after TSCI (Figures 5A,B). However, NF-200 expression levels were not significantly different between the two groups.
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FIGURE 5. MP promotes neuron axonal outgrowth in vivo. (A,C) GAP-43 and NF-200 expression in the Sham group, SCI group, and MP group at day 3 and day 28. The number of GAP-43 positive cells in MP group was upregulated compared with that of TSCI group at 28 days after injury. However, the expression of NF-200 did not show significantly changes same as GAP-43. (B,D) The quantification of IHC results. Scale bar: 50 μm. Student’s unpaired t-test. Values are all expressed as mean ± SD. *P < 0.05. N.S.: none significance.




Methylprednisolone Suppresses A1 Astrocyte Activation

Astrocytes could be divided into two different subtypes, termed “A1” and “A2” (Zamanian et al., 2012). Previous studies have demonstrated that A1 astrocytes are induced by activated microglia to produce inflammatory factors to kill neurons. A1 astrocytes have been shown to cluster in the human brain of patients with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. A1 astrocytes can be identified by the distribution of AQP4 and expression of C3 (Liddelow et al., 2017). In this study, we demonstrated that administration of MP suppressed the activation of microglia. Hence, we measured the distribution of AQP4 and expression of C3 to determine whether MP could suppress A1 astrocyte activation. Administration of MP suppressed neuronal apoptosis and promoted functional recovery after SCI. As shown in Figure 6, AQP4 protein retained polarization in astrocytes after MP administration compared to SCI mice. Furthermore, the number of C3-positive astrocyte cells was significantly lower in MP-treated mice compared to mice in the SCI group at day 3 post-injury. A previous study showed that Il-1α, TNFα, and C1q together are sufficient to induce the A1 phenotype (Liddelow et al., 2017). To determine whether MP could inhibit the formation of A1 astrocytes, we measured the expression levels of Il-1α and TNFα. We demonstrated that MP treatment could reduce the expression levels of Il-1α and TNFα.
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FIGURE 6. MP suppressed activation of A1 neurotoxic reactive astrocytes. (A) A1 astrocytes were identified by distribution of AQP4. The AQP4 (green) retained polarization localization in astrocytes GFAP (red) after MP injected compared to TSCI mice at day 3 (marked with arrow). (B) Representative immunohistochemical staining images of IL-1α (red) and TNFα (green) in the injured spinal cord tissues of TSCI and MP groups at day 3. (C,D) Quantitative results of the mean immunofluorescence density for IL-1α and TNFα with and without treatment by MP. (E) Representative immunohistochemical staining images of C3 (green)and GFAP (red) in the injured spinal cord tissues of Sham, TSCI, and MP groups at day 3 (marked with arrow). (F) Quantitative results of the mean immunofluorescence density for C3 in each group. Scale bar: 50 μm. Student’s unpaired t-test. Values are all expressed as mean ± SD. **P < 0.01. ***P < 0.001.




DISCUSSION

In this study, we demonstrated the mechanism by which MP could have beneficial effects in TSCI mouse models. MP was shown to reduce oxidative damage in astrocyte cells and attenuate neuronal cell death after TSCI in vivo. Furthermore, MP could inhibit microglial activation, suppress astrocyte activate to A1sand promote mice TSCI functional recovery.

The glucocorticoid drug MP has been used clinically as an effective therapy for acute TSCI. It alleviates secondary injury by reducing inflammation and ischemic reaction, as well as inhibiting lipid peroxidation (Hall, 2011). The use of MP remains controversial, in part, due to the side effects of infections, bleeding, and femoral head necrosis (Hurlbert and Hamilton, 2008; Miekisiak et al., 2014; Liu et al., 2019). However, the use of MP for the treatment of TSCI has been very effective. MP has been shown to inhibit early inflammatory processes and lipid peroxidation, reduce edema and cell apoptosis, maintain neuronal excitability, and improve microcirculation after TSCI (Rabchevsky et al., 2002; Baltin et al., 2021). The results on the use of MP in animal models have been promising; however, human clinical trials have produced mixed results. MP has been recommended to be administered within 8 h post-injury for the clinical treatment of TSCI (Druschel et al., 2013). Previous studies have demonstrated that MP therapy in TSCI models has a very short therapeutic window. Delayed treatment has shown no effects compared to the saline-treated group (Bracken et al., 1997). MP has been shown to improve neurologic outcomes up to 1-year post-injury if administered within 8 h of injury and in a dosing regimen of bolus 30 mg/kg over 15 min, with maintenance infusion of 5.4 mg/kg per hour infused for 23 h in the clinic (Bracken, 2012). Unfortunately, using this dose also increased the incidence of complications and adverse events (Miekisiak et al., 2014). In the present study, MP was initially administered immediately after TSCI via the tail vein to provide an effective concentration immediately after TSCI. The dose regimen used in this study was bolus 30 mg/kg without maintenance infusion. We observe that the MP group had an increase in GAP-43 expression (axon maker) compared to the SCI group. Fluoro-Jade B staining also showed that the number of degenerated neurons in the MP group was significantly lower compared to the SCI group. These results confirmed that early administration of a single MP pulse therapy (30 mg/kg) immediately after TSCI was effective in promoting functional recovery in our mouse model. However, we did not observe changes in NF-200 expression levels during MP treatment after TSCI. The probable reason may be that NF-200 is an intermediate filament found in the cytoplasm of a neuron. In the adult nervous system, the nerve filaments in small unmyelinated axons contain more peripheral proteins and lower levels of NF-200, while the nerve filaments in large myelinated axons contain more NF-200 and lower levels of peripheral proteins (Molliver et al., 1995; Letournel et al., 2006). In addition to the loss of neurons and astrocytes after TSCI, oligodendrocytes that form the myelin are effectively inhibited, which consequently affects the formation of neuronal myelin. Hence, NF-200 expression levels may not change.

Recent studies have shown that neuroinflammation induced by A1 astrocytes and ischemia promotes the generation of A2 astrocytes (Zamanian et al., 2012). A1 astrocytes are neurotoxic leading to neuronal death, synapse disassembly, and oligodendrocyte death. LPS treatment has been shown to activate microglia to induce the transformation of naïve astrocytes into A1 astrocytes. This is through the secretion of Il-1α, TNF, and C1q cytokines, all of which are essential for inducing A1 astrocytes (Liddelow et al., 2017). In the present study, we demonstrated that administration of MP effectively suppressed the activation of microglia. This was demonstrated by IBA1 immunostaining (represents active microglia). Having demonstrated that A1 astrocytes are activated by microglia, we then investigated whether MP was able to suppress A1 neurotoxic reactive astrocyte activation. A1 reactive astrocytes were observed by immunostaining for C3, an A1 marker. We found that the number of C3-positive astrocytes in the MP group was markedly decreased compared to the TSCI group.

Methylprednisolone is a synthetic anti-inflammatory glucocorticoid classified as a steroidal anti-inflammatory drug. In this study, we demonstrated that MP plays an anti-inflammatory role in TSCI by inhibiting microglial activation, reducing the expression levels of Il-1α, TNFα, and suppressing A1 neurotoxic reactive astrocyte activation in TSCI mouse models. Although C3-positive astrocytes were identified as A1 neurotoxic reactive astrocytes, previous publications have shown that an abnormal expression and distribution of AQP4 protein could indicate the formation of A1 neurotoxic reactive astrocytes (Liddelow et al., 2017). AQP4 is a water channel protein that is highly expressed in peri-micro vessel astrocyte foot processes, glia limits, and ependymal that typically raise the osmotic permeability of the plasma cell membrane (Tait et al., 2008; Saadoun and Papadopoulos, 2010). Overexpression of AQP4 leads to astrocyte swelling and the generation of cytotoxic edema during the early phases of TSCI. Saadoun et al. demonstrated that deletion of AQP4 could reduce spinal cord edema measured 48 h after TSCI and markedly improved neurological outcomes in compression TSCI mouse models (Saadoun et al., 2008). However, AQP4-knockout mice exhibited numerous olfactory and auditory defects, underscoring its importance (Lu et al., 1996, 2008). Recent studies have demonstrated that the polarity distribution of AQP4 could maintain the osmotic permeability of astrocytes (Kitchen et al., 2020). We hypothesize that restoring the polarity distribution of AQP4 protein in astrocytes could promote TSCI repair. Our study demonstrated that the nonpolar distribution of AQP4 protein after TSCI and MP could effectively promote AQP4 protein polarity distribution.

In conclusion, our findings suggest that MP could attenuate astrocyte cell death, decrease microglia activation, and promote functional recovery after acute TSCI in mouse models. We believe that MP promotes the survival of astrocytes to secrete neurotrophic factors and inhibit the surviving astrocytes to transform into the A1 phenotype. MP has several beneficial effects for the treatment of TSCI. However, it is unclear which of these are responsible for its therapeutic effect. Studies have suggested that non-coding RNAs, such as miRNAs and lncRNAs, could inhibit inflammatory diseases (Stagakis et al., 2011; Liu et al., 2020) and MP has been shown to regulate the expression of non-coding RNAs to inhibit specific proinflammatory targets (Davis et al., 2013; Mirzadeh et al., 2019).
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Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that is mainly mediated by pathological T-cells. Experimental autoimmune encephalomyelitis (EAE) is a well-known animal model of MS that is used to study the underlying mechanism and offers a theoretical basis for developing a novel therapy for MS. Good therapeutic effects have been observed after the administration of natural compounds and their derivatives as treatments for EAE. However, there has been a severe lag in the research and development of drug mechanisms related to MS. This review examines natural products that have the potential to effectively treat MS. The relevant data were consulted in order to elucidate the regulated mechanisms acting upon EAE by the flavonoids, glycosides, and triterpenoids derived from natural products. In addition, novel technologies such as network pharmacology, molecular docking, and high-throughput screening have been gradually applied in natural product development. The information provided herein can help improve targeting and timeliness for determining the specific mechanisms involved in natural medicine treatment and lay a foundation for further study.
Keywords: multiple sclerosis, anti-inflammatory, BBB, neuroprotective, nature product
INTRODUCTION
Multiple sclerosis (MS) is an autoimmune disease that occurs in the central nervous system (CNS) (Alroughani et al., 2020). Experimental autoimmune encephalomyelitis (EAE) is an animal model used to study the pathogenesis or treatment of MS (Orefice et al., 2020). T-cell-mediated inflammation at the cellular level occurs in EAE and involves abundant inflammatory cell infiltration into the CNS when the blood-brain barrier (BBB) is damaged (Bagnoud et al., 2020). Also, the death of oligodendrocytes and the lack of neurotrophic factor production lead to further deterioration of the patient and disease advancement (Li et al., 2016).
The therapeutic effects of natural compounds have long been known (Maior and Dobrotă, 2013). Nearly 30% of the pharmaceuticals developed over the past 20 years have been derivatives of natural compounds (Patridge et al., 2016). For instance, the plant-derived compound artemisinin has been widely used in the treatment of malaria. In 2015, Youyou Tu was awarded the Nobel Prize in Physiology or Medicine for her contribution to this antimalarial drug (Di Nardo and Gilardi, 2020).
Traditional Chinese medicine (TCM) includes plants, animals, fungi, and minerals, with plants accounting for the largest proportion of therapeutic agents (Wang et al., 2014). There have been many studies of the treatment of EAE by TCM monomers containing flavonoids, phenol, and glycosides, among others (Ciumărnean et al., 2020; Ikram et al., 2020; Yang L. et al., 2020). Moreover, many researchers have studied the effect of chemical monomers by molecular docking, high-throughput screening, and network pharmacology (Chen et al., 2020; Liu J. et al., 2020; Xu et al., 2020a). Over the past 8 years, glycosides have been the most commonly studied compounds, and have been examined and developed with the intent of using them as a potential treatment for EAE (Giacoppo et al., 2013; Yin et al., 2014; Haghmorad et al., 2017; Madhu et al., 2019; Yang L. et al., 2020). Additionally, many studies of EAE and flavonoids have been conducted during the last 5 years (Chen et al., 2017; Xie et al., 2018; Cree et al., 2020a). By contrast, there have been few studies on phenols and triterpenes and their potential for EAE treatment. Therapeutic studies of EAE mainly concentrate on identifying traditional TCM monomers that have the ability to protect BBB integrity and possess anti-inflammatory or neuroprotective properties. Indeed, natural products have considerable therapeutic potential to ameliorate EAE for the treatment of MS (Cree et al., 2020b). At the cellular level, the deep mechanisms of TCM monomers that act during the treatment of diseases have been explored. However, the mechanism used by TCM monomers during the treatment of EAE is still not clear. The purpose of this review is to provide a theoretical basis and potential targets for natural small molecule compounds that can successfully treat EAE.
NATURE PRODUCTS
Flavonoid
Kurarinone
Kurarinone is a flavonoid that is extracted from the roots of shrubby sophora (Sophora flavescens) and is used to treat fever, acute dysentery, gastrointestinal hemorrhage, and eczema (Yang et al., 2018). Ethyl acetate is used to isolate kurarinone from S. flavescens roots (Yamahara et al., 1990). It has been reported that kurarinone can inhibit the development of tumors via promoting pathological cell apoptosis (Chung et al., 2019). Kurarinone is also an anti-inflammatory agent (Nishikawa et al., 2020) that plays an essential role in the immune regulation of Th1/Th17/Th2 when the i.p. injection dose is 100 mg/kg, which leads to a balance between pro-inflammatory cells and anti-inflammatory cells in the EAE model (Xie et al., 2018).
Naringenin
Naringenin is rich in fruits and can be extracted from dried navel orange (Citrus sinensis) peel powder by soaking it in 70% ethanol solution for 3 days (Ahmed et al., 2019). Several studies have shown that naringenin has a beneficial effect on Alzheimer’s disease, type 2 diabetes, and cancer (Aroui et al., 2020; Syed et al., 2020; Wu et al., 2020). Experiments have been conducted by adding 5% naringenin to the diet of mice or administering a therapeutic dose of 20–80 mg/kg naringenin by injection (Ahmad et al., 2014; Wang J. et al., 2018). Naringenin controls immunomodulatory functions, and it can regulate Tregs and balance the proportion of Th1/Th2, resulting in reduced inflammation in autoimmune arthritis (Ahmad et al., 2014). Moreover, naringenin inhibits the expression levels of transcription factors such as T-bet, PU.1, and RoR-γt that drive the differentiation of Th1, Th9, and Th17 and block the polarization of pathogenicity subsets of CD4+ T cells in the EAE model (Wang J. et al., 2018).
Hesperidin
The flavanone hesperidin is derived from citrus species, and it has demonstrated neuroprotective effects accompanied by reduced infiltration of leukocytes (Ciftci et al., 2015; Gandhi et al., 2020). The extraction agent referred to as a deep eutectic solvent is a green solvent that is effective for the extraction of hesperidin (Liu et al., 2019a). The therapeutic effect of hesperidin has been shown to be beneficial for neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis (Khan et al., 2020). In animal models, doses of hesperidin up to 50 mg/kg through subcutaneous injection resulted in obvious disease-relieving effects (Ciftci et al., 2015). Correspondingly, hesperidin can ameliorate clinical symptoms and suppress disease development via decreasing inflammatory factors, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, which results in a reduction of inflammation in the lesion sites in the EAE model (Ciftci et al., 2015). Hesperidin can adjust T cells to balance the ratio of pro-inflammatory and anti-inflammatory phenotypes, which is manifested by reduced expression of IL-6, IL-17, and TNF-α and subsequent enhanced levels of IL-10 and transforming growth factor (TGF)-β (Haghmorad et al., 2017).
Luteolin
Luteolin (Lut), a flavonoid obtained from various plants, has been shown to confer anti-inflammatory, anti-oxidative, and neuroprotective effects (Zhou W. et al., 2020). The methods for Lut extraction involve maceration, Soxhlet, reflux, ultrasound-assisted, enzyme-assisted, and supercritical fluid extraction (Manzoor et al., 2019). Lut is neuroprotective in various diseases including epilepsy, autism spectrum disorders, Alzheimer’s disease, Parkinson’s disease, traumatic brain injury, and MS (Nabavi et al., 2015a). Oral administration and intraperitoneal injection are the main administration routes for Lut for a number of disorder models (El-Deeb et al., 2019; Imran et al., 2019). The dosages of Lut range from 1.2 to 50 mg/kg, and in vivo studies have verified that it has a significant effect in alleviating various diseases such as cancer and MS (El-Deeb et al., 2019; Imran et al., 2019). Lut promotes ciliary neurotrophic factor (CNTF) expression and has the ability to increase cAMP and the total antioxidant capacity. Also, Lut can decrease TNF and IL-1 expression through the NF-κb signaling pathway in EAE (El-Deeb et al., 2019).
Icariin
Epimedium, commonly known as barrenwort or bishop’s hat (Epimedium brevicornu Maxim), is primarily used as a tonic, anti-rheumatic, and anti-cancer agent and is also is involved in neuroplasticity (Dietz et al., 2016; Tan et al., 2016). Epimedium A, B, and C, similar to icariin (ICA), are beneficial for osteoporosis and confer immunoregulatory effects (Meng et al., 2005). They are obtained by boiling extraction and Soxhlet extraction, as well as a new method known as ultrasound-assisted extraction (Zhang et al., 2008). Epimedium flavonoids, primarily containing ICA and epimedin A, regulate cells and inflammatory response to relieve the symptoms of EAE via a host of mechanisms such as reducing the level of Iba-1 and GFAP, which indicate reduced astrogliosis and decreased production of various inflammatory factors (Yin et al., 2012). Up to 300 mg/kg of ICA can be delivered to mice by gavage and at high doses (Wei et al., 2016). ICA relieved the inflammation of EAE induced by the MOG35-55 peptide (Wei et al., 2016). In addition, ICA alleviated the severity of relapsing-remitting EAE induced by PLP139–151via the inhibition of microglial activation (Cong et al., 2020). ICA also decreases the number of Th17 and Th1 cells and protects the BBB (Shen et al., 2015).
Baicalin
Chinese/Baikal skullcap (Scutellaria baicalensis Georgi) contains flavonoids, terpenoids, and glycosides with anti-cancer, anti-oxidative, and anti-inflammatory effects (Shen et al., 2021). Baicalin (Ba) and aglycon baicalin are the principal flavonoid derivatives obtained from the roots of S. baicalensis, and they possess structural similarities (de Oliveira et al., 2015). Ba, with anti-inflammatory and immunomodulatory properties, plays a tremendous role in neuroinflammatory diseases (Li et al., 2020a). At present, the latest technology used to extract baicalin is the deep eutectic solvent ultra-high pressure method (Hao et al., 2020). The study has shown that intraperitoneal administration of Ba at a dose of 100 mg/kg can effectively alleviate the development of EAE in mice (Zhang et al., 2015). There is additional evidence that Ba inhibits the development of Th17 cells via promoting the expression of SOCS3 and reducing the production of pro-inflammatory factors IFN-γ and IL-17, leading to amelioration of EAE severity (Zhang et al., 2015; Li et al., 2020b).
Eriodictyol
Eriodictyol (EDT) is a flavonoid that is obtained from various fruits and possesses several bioactive activities, including anti-inflammatory, neuronal protection, and anti-oxidation (He et al., 2018; Habtemariam, 2019). EDT is usually extracted by ultrasound-assisted methods (Chotphruethipong et al., 2019). EDT has demonstrated a wide range of therapeutic effects, with an apparent pharmacological effect at doses from 0.25 to 100 mg/kg (He et al., 2018; Islam et al., 2020; Yang T. et al., 2020), and intraperitoneal injection is the primary mode of administration (He et al., 2018; Islam et al., 2020). Specifically, the anti-inflammatory effect of EDT is achieved via multiple signaling pathways, such as p38 mitogen-activated protein kinases (MAPK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 (Lee et al., 2013). In addition, EDT inhibits the development of EAE by decreasing the polarization of Th17 and Th1 cells and increasing the number of Treg cells (Yang T. et al., 2020). Further research showed that EDT directly entered into the binding pocket of ROR-γt and prompted a conformational alteration that led to the suppression of the receptor's activity (Yang T. et al., 2020).
Quercetin
Quercetin, a flavonoid found in apple (Malus domestica) peel and vegetables, is obtained by ultrasonic-assisted extraction and the application of natural deep eutectic solvents (Vasantha Rupasinghe et al., 2011; Wei et al., 2020). Quercetin possesses anti-inflammatory, antioxidant, and neuroprotective properties (Costa et al., 2016; Marunaka et al., 2017; Xu et al., 2019). Besides, it can increase the survival rate of neural precursor cells (Ichwan et al., 2021). In a variety of mouse animal models, quercetin has shown prominent immunomodulatory activity. For example, based on a dose of 50 mg/kg daily i.p., quercetin significantly reduced clinical scores and prevented leukocyte infiltration in mice with acute EAE (Hendriks et al., 2004). It had been previously shown that quercetin exhibits inflammatory, inhibitory, and demyelinating blockade functions in EAE mice, following treatment with 2.5 or 5 mg/kg (Muthian, 2004). After analysis, it was determined that it alleviates the disease by blocking Th1 differentiation (Muthian, 2004).
Glycoside
Glucosinolates
Glucosinolates can be hydrolyzed as sulforaphane, which is widely used to treat acute and chronic neurodegenerative diseases (Tarozzi et al., 2013). The usual dose is 10 mg/kg administered intraperitoneally (Foti Cuzzola et al., 2013; Galuppo et al., 2013; Giacoppo et al., 2013). A practical method to extract glucosinolates consists of grinding seed material and adding it to columns with petroleum ether and 10.8-fold water to extract the effective ingredients and then using 70% ethanol precipitation to separate the glucosinolates (Chen et al., 2019). Glucosinolates, which are obtained from Brassicaceae, can relieve inflammatory response and regulate various inflammatory factors. By significantly preventing the loss of axons, demyelination, and neurodegeneration via regulating the signaling pathways of NF-κB and IkB-α, glucosinolates slow the progression of EAE (Giacoppo et al., 2013).
Ginsenoside
Ginsenosides are extracted from Asian ginseng (Panax ginseng) and notoginseng (Panax notoginseng), which are commonly consumed as herbs, functional food, and health supplements (Zhu et al., 2014; Piao et al., 2020; Sharma and Lee, 2020). Several novel widely used technologies for ginsenoside extraction include a deep eutectic solvent-salt aqueous two-phase system, microwave-assisted extraction, ultra-high-pressure, and aqueous ionic liquid-based ultrasonic methods (Zhang et al., 2006; Liang et al., 2019; Zhao et al., 2019). Different types of ginsenosides have various pharmacological effects. Administration methods include gavage, tail vein injection, and intraperitoneal injection (Li X. et al., 2020). The doses used in various animal experiments range from 5 to 400 mg/kg (Li X. et al., 2020). With multiple pharmacological activities, ginsenoside Rd possesses anti-inflammatory, antioxidative, antiapoptotic, and neuroprotective abilities. It decreases the differentiation of Th1 cells, increases the polarization of Th2 cells, promotes trophic factor production, and protects BBB integrity, resulting in amelioration of EAE development (Zhu et al., 2014; Nabavi et al., 2015b). Moreover, ginsenoside Rg1 can prevent and treat inflammatory disease (Li X. et al., 2020), and ginsenoside Rh2 possesses anticancer properties (Li X. et al., 2020).
Astragaloside IV
Astragaloside IV (ASI) is abundant in astragalus/milkvetch (Astragalus membranaceus (Fisch.) Bunge) (He et al., 2013; Wang et al., 2017). The extraction method for ASI is ultrasonic-assisted liquid extraction (Qin et al., 2011). Doses of ASI ranging from 25 to 50 mg/kg have produced markedly therapeutic pharmacological effects (Wang et al., 2017; Yang L. et al., 2020). ASI is administered intraperitoneally (Wang et al., 2017), and anti-inflammatory properties that benefit diabetes treatment have been observed (Xie and Du, 2011; Tan et al., 2020; Zhou X. et al., 2020). In addition, in the EAE model, ASI inhibits the differentiation and maturation of dendritic cells by inhibiting CD11c, CD86, CD40, and MHC II activation. At the molecular level, ASI reduces the RNA expression levels of cytokines IL-6, IL-12p35, and IL-12p40 by regulating the NF-κB signaling pathway (Yang L. et al., 2020).
Paeoniflorin
Paeoniflorin (PF), which is derived from Chinese peony (Paeonia lactiflora), has demonstrated effective anti-inflammatory regulation of rheumatoid arthritis and systemic lupus erythematosus (Tu et al., 2019). The processes used to extract PF include ultrasonic and reflux extraction (Ji et al., 2020). PF also exhibits positive actions on liver cancer via hepatic, cholestatic, and liver fiber attenuation, and prevents nonalcoholic fatty liver disease (Ma X. et al., 2020). PF is administered orally, intraperitoneally, and intravenously, and specific pharmacological effects have been observed for the dose range of 5–200 mg/kg (Zhang et al., 2017; Ma X. et al., 2020; Zhou Y. et al., 2020). PF regulates the activity of B lymphocytes, T cells, and dendritic cells (DCs) and decreases IL-1, TNF-α, IL-17, and IFN-γ expression (Baldwin, 2001; Zhou Y. et al., 2020). It also induces activation of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways and thus confers anti-inflammatory and immunoregulatory effects (Baldwin, 2001; Zhou Y. et al., 2020). Also, PF efficiently blocks the activation of pro-inflammatory cells and balances pro-inflammation and regulatory cells in various inflammatory diseases (Zhang and Wei, 2020). Similarly, PF inhibits the progression of EAE by decreasing Th17 cell polarization and DC cell activation, which can be induced by IKK/NF-κB and JNK (Zhang et al., 2017).
Anemoside A3
In mouse models, the mice were dosed with anemoside (AA3) at 30–300 mg/kg (Ip et al., 2015; Ip et al., 2017; Wang C. et al., 2019). AA3 is usually administered intraperitoneally and orally (Ip et al., 2015; Ip et al., 2017). AA3 is the primary effective component from pulsatilla (Pulsatilla chinensis), and it offers neuroprotection and (Ip et al., 2015) inhibits inflammation via modulation of toll-like receptor 4 (TLR4)/myeloid differential protein-88 (MyD88) (He et al., 2020). In addition, AA3 reduced the infiltration of inflammatory cells, regulated Th1 and Th17 cells, and decreased the expression of transcription factors STAT4 and STAT3 in the EAE model (Ip et al., 2017). AA3, with anti-tumor, neuroprotective, and immunomodulatory effects, can be regarded as a possible drug for the treatment of neurodegenerative and autoimmune diseases (Yoo and Park, 2012; Li et al., 2020c).
Triterpenoid
Ursolic Acid
Ursolic acid (UA) is a triterpenoid that plays an important role in neurodegenerative disease (Yoo and Park, 2012). The sources of UA are extensive, and it can be extracted from plants, fruits, and vegetables (Khwaza et al., 2020). Ultrasonic extraction, microwave extraction, and supercritical fluid extraction are the primary techniques used for UA extraction (Xia et al., 2011; Alves Monteath et al., 2017; López-Hortas et al., 2018). Furthermore, conventional maceration, Soxhlet extraction, and heat reflux extraction can be applied to extract UA. At present, UA is known to have various pharmacological effects such as anti-inflammatory, anti-cancer and anti-oxidation (Mlala et al., 2019). UA treatment at 5–150 mg/kg is usually given to rats by gavage or intraperitoneally (Xu et al., 2011; Shin et al., 2012; López-Hortas et al., 2018; Zhang Y. et al., 2020). In terms of the differentiation of CD4+ T cells, UA suppresses the expression of pro-inflammatory cytokine IL-17, mainly through inhibiting the function of transcriptional factor ROR-γt, which results in the blockage of Th17 cell differentiation in EAE (Xu et al., 2011). Additionally, UA induced ciliary neurotrophic factor production in astrocytes through peroxisome proliferation activated receptor γ (PPARγ)/CREB signaling and enhanced the level of myelin-related gene by activating PPARγ during the maturation of oligodendrocytes (OLG) (Zhang Y. et al., 2020).
Carnosol
Carnosol (CA) is a diterpene derived from rosemary (Rosmarinus officinalis) that possesses anti-oxidative and anti-inflammatory properties (de Oliveira, 2015). Supercritical fluid extraction, ultrasound, microwave, or deep eutectic solvents can be used to isolate CA (Jacotet-Navarro et al., 2015; Jakovljević et al., 2021; Lefebvre et al., 2021). Nicole et al. reported that CA attenuated dendritic cell glycolysis and spare respiratory capacity under the stimulation of lipopolysaccharide (LPS) (Campbell et al., 2019). Effects were noted in mice when intraperitoneal injection of CA was administered at doses of 10 and 50 mg/kg (Rodrigues et al., 2012; Li X. et al., 2018). Furthermore, CA displayed a significant therapeutic effect on active and passive EAE. CA decreased the differentiation of Th17 cells by suppressing signal transducer and activator of transcription 3 (STAT3) phosphorylation and blocking transcription factor NF-κB nuclear translocation. Also, CA switched the phenotypes of microglia, and it was observed that M1-type microglia transformed to M2-type (Li X. et al., 2018).
Cornel Iridoid Glycosides
Cornel iridoid glycoside (CIG), which is obtained from Japanese cornelian dogwood (Cornus officinalis), reduced inflammatory cell infiltration and expression of proinflammatory factors from pathogenic Th1 and Th17 cells in the EAE model (Yin et al., 2014). In addition, microglial cells are closely associated with inflammation and can affect the progression of MS (Pinto and Fernandes, 2020). CIG treatment markedly decreased the number of M1-type microglial cells, which are characterized by pro-inflammatory effects, and increased the number of M2-type microglial cells, which possess anti-inflammatory characteristics (Qu et al., 2019). CIG promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are neurotrophic factors that control survival, differentiation, and growth of neurons (Qu et al., 2016). Intragastric administration of CIG at 30–120 mg/kg resulted in significant therapeutic activity (Yin et al., 2014; Qu et al., 2019).
Glycyrrhizic Acid
Glycyrrhizic acid (GA), isolated from Chinese licorice (Glycyrrhiza uralensis), exhibits anti-viral, anti-bacterial (Wang et al., 2015), anti-inflammatory, and neuroprotective activities (Kao et al., 2014). Hot water extraction and microwave extraction are used to isolate GA (Sun et al., 2008; Shabkhiz et al., 2016). GA has been used to treat COVID-19 (Bailly et al., 2020) and liver disease (Li et al., 2019). And therapeutic effects have been observed when it is orally and intraperitoneally administered at a dose of 2–80 mg/kg (Liu et al., 2011; Akman et al., 2015). GA decreases the expression of high-mobility group box protein 1 (HMGB1), which subsequently ameliorates neuroinflammation in the EAE model (Li J. et al., 2018). This beneficial effect may be attributed to GA downregulating Iba1 expression and inhibiting microglial activation (Song et al., 2013; Zhou et al., 2015). Significantly, GA induces oligodendrocyte precursor cell (OPC) differentiation via regulation of the glycogen synthase kinase-3 (GSK-3β) signaling pathway and promotion of remyelination in EAE (Tian et al., 2020).
Others
Matrine
Matrine (MAT), an alkaloid derived from Sophora flavescens, possesses multiple pharmacological activities, including anti-cancer (Cao and He, 2020), anti-inflammatory, and immunosuppressive (Oveissi et al., 2019). Molecularly imprinted solid-phase and ultrasound-assisted enzymatic methods are used to extract MAT (Guo et al., 2011; Wang H. et al., 2018), which has been used to treat Alzheimer’s disease, spinal cord injury, and rheumatoid arthritis (Zhang H. et al., 2020). MAT is injected intraperitoneally at 10–250 mg/kg, and within this range, the injected drugs may have corresponding pharmacological effects (Wang M. et al., 2019; Balkrishna et al., 2020; Sun N. et al., 2020). In the development of EAE, astrogliosis played a significant role (Hibbits et al., 2012; Moreno et al., 2013). Correspondingly, MAT inhibits astrogliosis by downregulating the expression of S1P, leading to alleviation of the severity of EAE (Ma W. et al., 2020). Otherwise, MAT can inhibit OLG apoptosis, resulting in decreased demyelination in the EAE model (Wang M. et al., 2019). Apart from this, Wang et al., also showed that MAT upregulated autophagy-related protein Beclin1 and enhanced mitochondrial autophagy, thereby alleviating demyelination (Wang M. et al., 2019).
Scopoletin
Scopoletin, a phenolic coumarin derived from various medical or edible plants, possesses various medical properties and exhibits anti-inflammatory, anti-hypotensive (Balkrishna et al., 2020), anti-diabetic (Choi et al., 2017), and anti-aging activities (Nam and Kim, 2015). Supercritical extraction and a new modern pressurized cyclic solid-liquid method are used for scopoletin extraction (Jokić et al., 2016; Zarrelli et al., 2019). Under the inflammatory condition of EAE, DCs and antigen-presenting cells play an important role in disease occurrence, which can activate T cells after antigen presentation (Zozulya et al., 2010). Intraperitoneal injection of scopoletin at 50 mg/kg decreases the expression of MHC class II, CD80, and CD86 costimulatory molecules and inhibits NF-κB phosphorylation (Banihani, 2018). Scopoletin also downregulates the pathogenic Th1/Th17 inflammatory cell response after the suppression of the activation of DCs, which alleviates EAE severity (Zhang et al., 2019a).
6-Gingerol
6-Gingerol (6-Gin), the main active compound from ginger (Zingiber officinale)(Banihani, 2018), possesses anti-tumor and immunomodulatory properties (Chen et al., 2018; Liu et al., 2019b). The ultrasonic-assisted water method and subcritical water are used to extract 6-Gin (Syed Jaapar et al., 2017; Ko et al., 2019). Mice have been treated with 0.25–15 mg/kg 6-Gin, which is administered orally and intraperitoneally (Kawamoto et al., 2016; Han et al., 2019; Zhang et al., 2019b; Tsai et al., 2020). 6-Gin effectively inhibits the development of neurodegenerative diseases, such as Alzheimer’s disease (Halawany et al., 2017). It has been reported that 6-Gin reduces inflammatory response via the inhibition of T cell activity (Kawamoto et al., 2016). Additionally, 6-Gin suppresses lipopolysaccharide-induced DC activation and induces tolerogenic DCs. Furthermore, 6-Gin blocks the function of DCs by inhibiting the phosphorylation of NF-κB and mitogen-activated protein kinase (MAPK), therefore ameliorating the severity of inflammation in the CNS and reducing the progression of EAE (Han et al., 2019).
Ellagic Acid
Ellagic acid, a polyphenolic compound, is endowed with anti-tumor and anti-angiogenic activity, and it promotes humoral immunity (Zhao et al., 2013; Ceci et al., 2018). It can be extracted from various fruits and bacteria, such as pomegranate (Punica granatum L.) and strawberry (Fragria ananassa Duch.) (Ceci et al., 2018). EA can be extracted by ultrasound-assisted method (Zhang et al., 2010; Assunção et al., 2017). The therapeutic dose range for EA is 0.1–300 mg/kg, and it can be orally and intraperitoneally administered (Baradaran Rahimi et al., 2020). In the animal model of EAE, EA reduced inflammation, and blocked myelin loss and axonal damage (Kiasalari et al., 2021). EA also promotes neuroprotection by decreasing GFAP and Iba1 immunoreactivity (Busto et al., 2018; Kiasalari et al., 2021).
NOVEL STRATEGIES USED FOR DEVELOPING NEW NATURAL PRODUCTS
Network Pharmacology
The development of new valuable natural products is becoming more and more difficult, so new technologies need to be applied in this field. In this part of the content, we will briefly introduce the application of Network pharmacology, molecular docking, and high-throughput assay for screening technology in the field of natural medicine (Figure 1).
[image: Figure 1]FIGURE 1 | Novel strategies applied to developing nature product medicine.
Network pharmacology is an interdisciplinary subject that integrates biological networks, analyzes the relationship between drugs and nodes or network modules, and accelerates the identification of drug targets and the discovery of new biomarkers (Kibble et al., 2015). Our understanding of the biological basis of TCM treatment can be attributed to network pharmacology (Wang et al., 2020)
A study was performed that used network pharmacology to research the molecular mechanisms of Lian Hua Qing Wen (a mix of 13 herbs) in novel coronavirus disease, and the results showed that its mechanisms are closely related to modulating inflammation, antiviral action, and protecting the lungs (Zheng et al., 2020). Network pharmacology was also applied in identifying the active compounds from Kai-Xin-San, which is a TCM that consists of 1) ginseng (Panax ginseng), 2) snakeroot (Polygala tenuifolia Wild.), 3) Shi-Chang-Pu (Acorus tatarinowii Schott), and 4) Poria mushroom (Wolfiporia extensa Ginns.). Additionally, network pharmacology was used to determine which genes correlated with Alzheimer’s disease, for the purpose of finding potential signaling pathways and novel compounds (Yi et al., 2020). Network pharmacology analysis was also used to find various active compounds for treating ulcerative colitis that contained formononetin, kushenol N, and kuraridin, to lay the foundation for studying the disease (Chen et al., 2020). Overall, the study of network pharmacology can preliminarily predict the component monomers and disease targets of TCM to lay a foundation for elucidating the therapeutic mechanism of TCM, and it also can be applied in the study of EAE.
Here, we have summarized multiple online databases of Chinese herbal medicines or small molecule drugs. NPASS (http://bidd2.nus.edu.sg/NPASS) integrates species sources of natural products and connects natural products to biological targets via experimental-derived quantitative activity data (Zeng et al., 2018). TCMSP (http://tcmspw.com/tcmsp.php) contains chemicals, target, and drug-target networks, and is a pharmacology platform for Chinese herbal medicines (Ru et al., 2014). DrugBank (http://www.drugbank.ca) combines chemical and pharmacological drug data with comprehensive drug targets, including sequence, structure, and pathway (Law et al., 2014). STITCH (http://stitch.embl.de/) is a database of compound-protein interactions and can also be used for compound target prediction (Szklarczyk et al., 2016). ChEMBL (http://www.ebi.ac.uk/chembldb) contains 6,900 compounds and provides structure, function, and compound targets (Mendez et al., 2019). Moreover, there are disease databases, such as DisGeNET (http://www.disgenet.org/), which is a comprehensive database of gene-disease associations (Pinero et al., 2020). The MalaCards (http://www.malacards.org/) database includes therapeutic compounds, disease categories, profiles, and related genes (Rappaport et al., 2017). For greater insight, the disease databases can be combined with the active compound target databases via genetic and protein sequences.
Molecular Docking
Molecular docking is a drug design method based on the characteristics of receptors and the interaction mode between receptors and drug molecules. It is mainly a theoretical simulation method used to study the interaction between molecules (ligand and receptor), predict their binding ability and affinity, and verify the experimental results by assay (Liu J. et al., 2020).
Molecular docking analysis plays a significant role in predicting new drugs and medicinal repurposing (Chatterjee et al., 2020). Molecular docking can be widely used in the study of the interaction between various small molecule compounds and protein. A typical example is the use of molecular docking to promote the study of UA’s target molecules. Molecular docking revealed that UA could combine with caspase-3 protein and inhibit caspase-3 activity. Additionally, experiments in vivo and in vitro demonstrated that UA could block hepatocellular apoptosis and relieve liver injury via suppressing apoptotic caspase-3 protein (Morales Torres et al., 2020). Correspondingly, molecular docking has been used to identify a novel ligand of the aryl hydrocarbon receptor (Ahr), namely, garlic acid. Garlic acid regulates the increase in the number of Treg cells and the decrease in pro-inflammatory cytokines in EAE, which clarifies the mechanism used by garlic acid to block Ahr and subsequently achieve disease remission (Abdullah et al., 2019). Molecular docking involves the preliminary prediction of signaling pathways to treat the disease and experimental verification. For confirmation, molecular docking technology can be combined with network pharmacology to identify novel natural compounds in TCM. Cytospace and SwissDock (http://www.swissdock.ch/) can also be used to simulate the interaction between proteins and small molecule compounds (Grosdidier et al., 2011).
High-Throughput Assay For Screening
High-throughput assay for screening (HTS) technology is based on molecular and cellular levels of the experimental method. It is a rapid, sensitive, and accurate method that is used to simultaneously test thousands of novel compounds from natural products (Xu et al., 2020b). Simply, it processes a large amount of information through HTS and finds valuable information from it.
HTS can be used to identify active components of natural products and also small molecular chemical compounds. Some effective flavonoids (Tian et al., 2019), and terpenoids (Jackson et al., 2013) have been identified using Selleckchem’s products, which are helpful in the treatment of diseases (Morales Torres et al., 2020). For example, procyanidin B2 (PCB2) is a natural flavonoid that is found in common foods, and it can activate PPARγ and induce M2 polarization in mouse macrophages that inhibit the activation of inflammation in the lung tissue of rats (Tian et al., 2019). Otherwise, in immune disease, pteryxin, a coumarin derivative, is found via this website, and it can inhibit the production of LPS-induced peritoneal macrophages in mice, with the potential to be used for the treatment of Alzheimer’s disease (Orhan et al., 2017). Therefore, we can use this website to build a dedicated compound library and efficiently identify effective compounds by HTS.
CONCLUSIONS AND PROSPECTS
Flavonoids, glycosides, triterpenes, and other monomers of TCMs can alleviate EAE through different mechanisms of action, including suppressing inflammatory response, promoting neural protection, and protecting BBB integrity. These data can help formulate a specific theoretical basis for the natural-product treatment of MS diseases.
According to this review, many monomers in TCMs have a significant effect on EAE amelioration. In the EAE model, most of these Chinese herbal monomers can inhibit the production of inflammatory factors such as IL-1β and IL-17; promote anti-inflammatory factors such as IL-10, TGF-β, and others; and regulate pro-inflammatory and anti-inflammatory balance. Among them, ASI, PF, scopoletin, and 6-Gin can inhibit DC proliferation and differentiation. CA, CIG, and GA can promote the transformation of M1-type microglia into M2-type microglia and exert anti-inflammatory action. MAT counteracts inflammation by inhibiting astrocytes. In terms of BBB protection, glucosinolates and ginsenoside Rd can protect the BBB from damage, thereby reducing the severity of EAE. In addition, UA and GA promote OPC maturation and myelin regeneration. Therefore, monomer components derived from natural products have excellent prospects for the treatment of EAE, and finding monomers through the methods mentioned above represents the latest strategy. Overall, in EAE, different TCM monomers can act on various inflammatory cells or other related cells, including DCs, macrophages, T cells, microglia, and astrocytes. TCM monomers were also protective of neural cells and maintained BBB integrity. A summary of these agents is shown in Figure 2 and Table 1.
[image: Figure 2]FIGURE 2 | Different monomers of TCM act on various objects in EAE.
TABLE 1 | Natural products act on the target cells of EAE.
[image: Table 1]It is also worth noting that there is great significance in the elucidation of the molecular mechanisms of TCM monomers. However, in performing research on the mechanism of TCM in the treatment of diseases, there are many components in each type of Chinese medicine, and because of this complexity, coupled with the existence of multiple targets, the identification of practical components is a lengthy process. Thus, network pharmacology, molecular docking, and high-throughput screening, with targeting and timeliness, can be applied to the study of TCM and used for the treatment of EAE. All of these methods can be used to identify TCM monomers and play an essential role in the elucidation of how greater effectiveness in EAE treatment can be obtained from the molecular mechanisms of TCM.
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Alzheimer’s disease (AD) is tightly related to endoplasmic reticulum stress (ER stress), which aggravates two dominant pathological manifestations of AD: senile plaques and neurofibrillary tangles. Berberine is widely applied in the clinical treatment of many diseases and is reported to have anti-AD effects. In the present study, berberine was shown to ameliorate ER stress and cognitive impairment in APP/PS1 mice. We found ER stress plays a role as a central hub for signal transduction, which was evidenced by the hyperactivation of glycogen synthase kinase 3β (GSK3β) to phosphorylate tau and the activation of PRKR-like endoplasmic reticulum kinase (PERK) subsequently to phosphorylate eukaryotic translation initiation factor-2 α (eIF2α). Also, eIF2α has regulated the expression of beta-site APP cleaving enzyme-1 (BACE1), which cleaves APP into pro-oligomerized amyloid beta 42 (Aβ42), the main component of senile plaques, proven by using siRNA targeting at eIF2α. Mechanically, berberine can reduce GSK3β activity, contributing to the downregulation of tau phosphorylation. Berberine also suppressed Aβ42 production via inhibiting the PERK/eIF2α/BACE1 signaling pathway. Taken together, these findings indicated that berberine had the potential to ameliorate two major pathological manifestations of AD mainly by suppressing ER stress. Our work provided knowledge on the pharmacological intervention of AD and the possible targets for future drug development.
Keywords: berberine, Alzheimer’s disease, endoplasmic reticulum stress, Aβ42 production, tau hyperphosphorylation
INTRODUCTION
Alzheimer’s disease (AD) is the most common neurodegenerative disease that induces progressive dementia and worsens life quality, causing heavy burden to the family as well as society (Alzheimer’s, 2016). The dominant pathological manifestations associated with AD include extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) (Long and Holtzman, 2019). The senile plaques are considered as deposits of aggregated amyloid beta (Aβ), which in turn is produced by subsequent cleavage of amyloid precursor protein (APP) by β-secretases and γ-secretases (Long and Holtzman, 2019). NFTs comprise hyperphosphorylated tau protein, and the tau protein is phosphorylated by several kinases, including glycogen synthase kinase 3b (GSK3β), forming matured and stable microtubules (Tiwari et al., 2019). The production of senile plaques and hyperphosphorylated tau is triggered by different signals, wherein the recent studies have indicated several overlapping manifestations between these two (Chauhan and Chauhan, 2006; Long and Holtzman, 2019), which also includes endoplasmic reticulum stress (ER stress) (Salminen et al., 2009; Guix et al., 2019).
Increasing studies have revealed that ER stress is observed in the postmortem brains of patients as well as animal models with AD (Katayama et al., 2004; Hoozemans et al., 2005; Hoozemans et al., 2009; Mota et al., 2015). The accumulation of unfolded proteins could disrupt the homeostasis of the ER, inducing ER stress (Yoshida, 2007). A variety of signaling proteins are activated under ER stress; therefore, it is regarded as a critical process in the etiology of AD (Salminen et al., 2009; Huang et al., 2015). But the precise mechanisms of how ER stress promotes the production of senile plaques and hyperphosphorylated tau are still not fully elucidated. Relieving ER stress might affect the delay of progression and prevent the deterioration of AD. Meanwhile, there are few studies that reported amelioration of cognitive defects in AD mice by inhibiting the downstream sensors of ER stress (Axten et al., 2012; Ma et al., 2013; Sidrauski et al., 2013). So, it is necessary to find if there is any solution to the key signaling hub in patients with AD.
Berberine (BBR) is a natural isoquinoline alkaloid that is purified from the traditional Chinese medicine Coptis chinensis, and it has been widely used as a commercialized drug for treating various diseases. The neuroprotective role of BBR has been discovered recently (Ji and Shen, 2011). Several evidences have demonstrated that BBR can alleviate cognitive impairment through varied effects, including antioxidant, anti-inflammatory, and alleviating hyperphosphorylation of tau as well as reducing Aβ production (Ji and Shen, 2011; He et al., 2017; Cai et al., 2018; Chen et al., 2020). Our previous studies have confirmed that BBR has a good curative effect in relieving the cognitive impairment caused by diabetes (Chen et al., 2017; Wang et al., 2018; Wang et al., 2019). However, the underlying mechanism of neuroprotective function of BBR still remains to be unclear till date. Meanwhile, studies have revealed that BBR inhibits ER stress in several diseases, except AD (Wang et al., 2010; Li et al., 2018; Liu et al., 2019), and whether BBR affects ER stress in AD has not been investigated.
Hence, in this study, the APP/PS1 transgenic mice and mouse hippocampus neuron cell line HT22 with APP stably expression were utilized to investigate AD-related pathological changes both in vivo and in vitro, and explore the detailed underlying mechanism associated with the protective effects of BBR. Our results showed that BBR can alleviate ER stress in the AD model both in vivo and in vitro mainly by inhibiting tau hyperphosphorylation and Aβ42 production and deposition.
MATERIALS AND METHODS
Animals and Treatments
Six-month-old male APP/PS1 transgenic mice: Mo/HuAPP Swedish mutations (K595N/M596L) +Hu PS1 delta E9 and age/sex-matched wild-type C57BL/6 mice were purchased from Beijing Vital River Laboratory Animal Technology Co. Ltd. The mice were housed in the Experimental Animal Center of Tongji Medical College in specific pathogen-free environment. All experimental procedures were approved by the Animal Care and Use Committee of the Huazhong University of Science and Technology (No. 2019S2126) and were performed in compliance with the National Institutes of Health Guidelines on the ethical use of animals. The mice were housed three to five per cage in a room maintained at consistent ambient temperature (22 ± 2°C) and humidity (50 ± 5%), with an alternating 12-h light–dark cycle. Mice were allowed free access to food and water ad libitum. The APP/PS1 mice and controls were randomly assigned into four groups, with n = 15 mice in each group: wild-type (WT) group, WT+BBR group, APP/PS1 group, and APP/PS1+BBR group.
The dose of BBR for mouse is 260 mg/kg and was added into the diet. The WT+BBR group and APP/PS1+BBR group received BBR diet for 3 months, and other groups were given standard diet. Behavioral testing was performed prior to one week of sacrifice.
Morris Water Maze Test
The cognitive function of the mouse was assessed using a Morris water maze (MWM) test as reported previously (Shi et al., 2018). Briefly, the water maze was divided into four equal quadrants. A hidden square platform was submerged below 1 cm water level and placed in the third quadrant of the pool. The mice were allowed for 2 days to adapt to the pool environment. The training trial was then conducted for six consecutive days. The escape latency, distance, and time were recorded by an automated video tracking system and software (NoldusEtho Vision 2.3.19, Netherlands). The behaviors of the mice were tracked using EthoVision 3.0.
Cell Cultures and Treatments
The mouse hippocampal neuron cell line HT22 was cultured in Dulbecco’s modified eagle’s medium containing 10% fetal bovine serum (Gibco, United States) in a humified incubator under 5% CO2 at 37°C. HT22/APP (HT22 cells stably transfected with Swedish mutant form of APP) cell line was constructed by transfecting APPswe plasmid into HT22 cells using Lipofectamine 2000 and selecting the single-cell clones with G418. The HT22/APP cells were pretreated with or without BBR (5 μM, Solarbio), 4-phenylbutyrate (PBA, 1 mM, Aladin), and SB216763 (the GSK3β inhibitor) (10 μM, Abcam) for 1 h, and then stimulated with thapsigargin (TG, 1 μM, Aladin) for 8 h. siRNA-eukaryotic translation initiation factor-2 α (eIF2α) (SANTA CRUZ, sc-78173) was transfected with Lipofectamine 2000 reagent for 24 h to silence the expression of eIF2α.
Western Blotting
Western blotting was conducted as reported previously (Shi et al., 2018). Briefly, the cells or hippocampal tissues were lysed by RIPA lysis buffer with a protease inhibitor PMSF followed by the addition of phosphatase inhibitor cocktail and incubation on ice for 15 min with vortex for 30 s for 5 min. After centrifugation at 12,000 rpm for 15 min at 4°C, the supernatant was collected and quantified via BCA Assay Kit (Thermo, #23225). The proteins were mixed with 5X loading buffer and boiled for 10 min at 100°C. Next, the proteins were separated in SDS-PAGE gel and then transferred on to the PVDF membrane (Millipore, CA). The membrane was blocked with 5% bovine serum albumin (BSA) in TBS/Tween20 (1%) for 1 h at room temperature (RT), and then incubated overnight with primary antibodies at 4°C. Horseradish peroxidase–conjugated secondary antibody was used to visualize the targeted band by Bio-Rad GelDocTM XR and ChemiDocTM XRS System. The primary antibodies used were as follows: β-actin (AB clonal, AC028, 1:3000), tau/ps404 (Abcam, ab30666, 1:1,000), tau/ps202 (Abcam, ab108387, 1:1,000), binding-immunoglobulin protein (Bip) (AB clonal, A0241, 1:1,000), p-GSK3β Y216 (AB clonal, AP0261, 1:1,000), GSK3β (CST, #12456,1:1,000); eIF2α (Abcam, ab169528, 1:1,000), p‐eIF2α Ser51 (CST, #3398, 1:1,000), PRKR-like endoplasmic reticulum kinase (PERK) (Abcam, ab65142, 1:1,000), p-PERK T980 (CST,#3179, 1:1,000), APP (AB clonal, A16265, 1:1,000), APP-C-terminal fragment 99 (CTF99) (AB clonal, A11019, 1:1,000), and beta-site APP cleaving enzyme-1 (BACE1) (AB clonal, A5266, 1:1,000).
Immunofluorescence Staining and Immunohistochemical Staining
Cells were fixed with 4% paraformaldehyde for 10 min at RT and then subsequently were permeated by 0.1% Triton X-100 for 10 min at RT. After that, 5% BSA was used to block nonspecific signals for 30 min. The cells were then incubated with primary antibody at 1/200 dilution for overnight at 4°C. Paraffin sections were deparaffinized, rehydrated, and antigen retrieved for immunofluorescence staining. The sections were blocked by 5% BSA followed by overnight incubation in primary antibody at 4°C. The anti-rabbit fluorescence secondary antibody was then incubated at 1/1,000 dilution for 1 h at RT by avoiding light. Finally, 4’,6-diamidino-2-phenylindol was used to stain the nuclei. The images were acquired at ×40 magnification by using Olympus microscopy.
The sections were pretreated and the slips were incubated with Aβ42 primary antibody (CST,#24090, 1:200) and tau ps 404 antibody for overnight at 4°C. On the next day, the slips were incubated with secondary antibody for 2 h at RT, and 3,3’-diaminobenzidine (DAB) was added to show positive signal. The section was counterstained with Mayer’s hematoxylin. Finally, the DAB-stained slips were visualized under Olympus AX-70 microscope equipped with a motorized stage.
Transmission Electron Microscope
TEM (Hitachi, Japan) was used to observe the ultrastructure changes. In advance, the tissue blocks were fixed with glutaraldehyde. The tissues were then embedded and sliced with ultramicrotome after rinsing and dehydrating in ethanol. TEM was used for observing the morphology of the ER and obtaining pictures.
Enzyme-Linked Immunosorbent Assay
Aβ42 levels were quantified by ELISA kit (ElabScience) according to the manufacturer’s instructions. After incubation, the optical density values were detected at 450 nm using a spectrophotometer (Synergy2, United States) after a period of reaction. The Aβ42 contents were calculated according to the standard curve drawn and by using the reference substance in the same system.
Statistical Analysis
Data were expressed as means ± standard error of mean (SEM) and analyzed by Graph Pad Prism 5.0 software. One-way ANOVA following Tukey’s post hoc test was used to assess significant differences among the groups. p-values of <0.05 were considered to be statistically significant.
RESULTS
Berberine Alleviates Endoplasmic Reticulum Stress in Amyloid Precursor Protein/PS1 Mice
It is widely accepted that Bip is a distinguished marker of ER stress occurrence (Lee, 2005). Immunofluorescence (Figures 1A,B) and Western blotting (Figure 1C) results revealed that Bip was significantly upregulated in the CA1 region of the hippocampus of APP/PS1 mice. It is quite interesting that the upregulated Bip expression in APP/PS1 mice was almost completely reversed after treatment with BBR. Also, TEM was used to observe the ultrastructure of hippocampal tissue. As shown in Figure 1D, the ER lumen was compacted and elongated in WT mice and WT mice that underwent BBR treatment. However, in APP/PS1 mice, the ER morphology was apparently swollen, losing normal morphology. With BBR treatment, the morphology of the ER returned to normal in APP/PS1 mice, which further supported that BBR treatment could alleviate ER stress.
[image: Figure 1]FIGURE 1 | Berberine alleviates ER stress in APP/PS1 mice. (A) Representative immunofluorescence images of Bip in the CA1 region of the hippocampal tissue sections. Scale bar is 100 μm. (B) Quantification of IF intensity of Bip. (C) Western blot detection of Bip expression in the hippocampal tissues of the mice and quantitative analysis. (D) Representative TEM images of the endoplasmic reticulum structure in the CA1 region of hippocampal tissues and quantitative analysis. Scale bar is 0.5 μm. Data were presented as means ± SEM. ****p < 0.0001 vs. WT; #p < 0.05, ##p < 0.01 vs. APP/PS1 without BBR.
Berberine Ameliorates Cognitive Impairment in Amyloid Precursor Protein/PS1 Mice
To determine whether BBR could ameliorate cognitive impairment in APP/PS1 mice, MWM test was performed to appraise learning and memory abilities of mice (Figure 2A). The results revealed that APP/PS1 mice had diminished reference, procedural spatial learning ability (Figures 2B–D) but had increased the escape latency, while APP/PS1+BBR groups showed a gradual narrowing of time slot after training. The results also revealed that APP/PS1 mice spent much shorter time to stay in the target quadrant, and BBR administration obviously increased the time (Figure 2E). However, the swimming distance in all animals remained consistent (Figure 2F).
[image: Figure 2]FIGURE 2 | Berberine improves the cognitive ability of APP/PS1 mice. (A) MWM schematic. (B,C) Escape latency analysis in the navigation training trials. (D) The trajectory of mice in MWM. (E) The percent of time spent in the target quadrant during the space exploration experiment. (F) Analysis of swimming distances during trials. Data were presented as means ± SEM. *p < 0.05, **p < 0.01 vs. WT; #p < 0.05 vs. APP/PS1 without BBR.
Berberine Reduces Amyloid Beta 42 Production and Deposition in Amyloid Precursor Protein/PS1 Mice
The amount of Aβ42 was detected in the hippocampal tissue of the mice by the IHC assay. The results revealed brown spot that indicated positive signal for Aβ42, which was more in APP/PS1 mice when compared with WT mice, while BBR treatment significantly reduced the density of positive signal (Figure 3A). Quantification of Aβ42 by ELISA showed similar results (Figure 3B).
[image: Figure 3]FIGURE 3 | Berberine reduces Aβ42 production and deposition in APP/PS1 mice. (A) Representative IHC staining images and quantification of Aβ42 in the CA1 region of the hippocampal tissue of mice. Scale bar is 100 μm. (B) The contents of Aβ42 in the supernatant of hippocampal tissue homogenate of APP/PS1 mice were detected by ELISA. (C) Western blot detection of APP and CTF99 expression in the hippocampal tissues of the mice, and quantitative analysis. (D–G) Western blot detection of p-PERK, PERK, p-eIF2α, eIF2α, and BACE1 in the hippocampal tissues of mice, and quantitative analysis of p-PERK, p-eIF2α, and BACE1. Data were presented as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 vs. WT; #p < 0.05, ##p < 0.001 vs. APP/PS1 without BBR.
It is well known that Aβ42 is the cleaved fragment of APP by BACE1, and CTF99 is the byproduct of APP cleavage. Hence, the amount of APP and CTF99 in the mice hippocampal tissue was determined. The results revealed that higher amounts of APP and CTF99 were observed in APP/PS1 mice, but BBR treatment significantly reduced the amount of APP and CTF99 (Figure 3C). This might explain the reason for less production of Aβ42.
ER stress could regulate several protein translational regulatory activities including eIF2α (Guan et al., 2014). So, it is hypothesized whether ER stress-activated eIF2α might be related to this process. The results showed that the phosphorylation levels of eIF2α as well as PERK, and the kinase that phosphorylated eIF2α were significantly increased in APP/PS1 mice, which represented its activation, while BBR treatment could effectively reduce its phosphorylation level (Figures 3D–F). Several studies have demonstrated that eIF2α could regulate the expression of BACE1 that could cleave APP to produce Aβ42 (O’Connor et al., 2008; Mouton-Liger et al., 2012; Devi and Ohno, 2014). Also, BACE1 was shown to be obviously upregulated in APP/PS1 mice, while returning to normal expression after BBR treatment (Figures 3D,G).
Berberine Suppresses Glycogen Synthase Kinase 3β Activity and Decreases Tau Phosphorylation
Another important feature of AD involves the hyperphosphorylation of tau. Several key kinases could phosphorylate tau, and GSK3β among these is thought to be the most important one (Medina et al., 2011). Hence, the activity of GSK3β in the hippocampus was tested. The results showed that the activity of GSK3β was obviously upregulated due to the phosphorylation of GSK3β at Y216 site, which is the active site, showing a significant increase in APP/PS1 mice (Figures 4A,B). As a result, phosphorylation of tau was also significantly increased in APP/PS1 mice (Figures 4A, C, D). It is quite exciting to find that BBR treatment significantly attenuated GSK3β activation as well as tau hyperphosphorylation. Similar results could be found in the mouse hippocampus after using the antibody against phosphorylated tau at 404 site (Figures 4E,F).
[image: Figure 4]FIGURE 4 | Berberine suppresses GSK3β activity and decreases tau hyperphosphorylation in APP/PS1 mice. (A) Western blot detection of p-GSK3β Y216, GSK3β, tau ps 202, and ps 404 in the hippocampal tissues of mice. (B–D) Quantification of Western blotting results of p-GSK3β Y216, tau ps 202, and ps 404 in the hippocampal tissues of mice. (E) Representative IHC staining images of tau ps 404 in the CA1 region of mice hippocampal tissues. Scale bar is 100 μm. (F) Quantification of IHC staining. Data were presented as means ± SEM. *p < 0.05, **p < 0.01 vs. WT; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. APP/PS1 without BBR.
Taken together, these data indicated that BBR treatment could significantly ameliorate ER stress in APP/PS1 mice and attenuate two dominant pathological changes of AD, which include the production and deposition of Aβ42 and tau hyperphosphorylation.
Berberine Alleviates Thapsigargin-Induced Endoplasmic Reticulum Stress in HT22/Amyloid Precursor Protein Cells
After confirming ER stress in APP/PS1 mice, the HT22/APP cells were used as a cell model for conducting in vitro investigations. Thapsigargin (TG) is a classical drug that induces ER stress (Zhang et al., 2014). TG 1μM was selected to treat HT22/APP cells for 8 h to induce ER stress in the mouse cell model after tittering for treatment time period (Figure 5A). Under ER stress, the phosphorylation of PERK was upregulated, while BBR downregulated Bip expression and phosphorylation of PERK, which was similar to the results of PBA, a classical ER stress protector (Figure 5B). Similar results were confirmed by immunofluorescence of Bip in cell model (Figures 5C,D) as well as by TEM (Figure 5E).
[image: Figure 5]FIGURE 5 | Berberine mitigates ER stress induced by thapsigargin in HT22/APP cells. (A) Western blot detection of Bip in TG-induced HT22/APP cells at different treatment time points and quantitative analysis. (B) Western blot detection of Bip, p-PERK, and PERK in TG-induced HT22/APP cells with or without PBA or BBR and quantitative analysis. (C) Representative immunofluorescence images of Bip in TG-induced HT22/APP cells. Scale bar is 50 μm. (D) Quantification of IF of Bip. (E) Representative TEM images of the endoplasmic reticulum structure in TG-induced HT22/APP cells. Scale bar is 1 μm. Data were presented as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. Blank; #p < 0.05, ##p < 0.01 vs. TG.
Endoplasmic Reticulum Stress Contributes to Amyloid Beta 42 Production, and Berberine Decreases Beta-Site APP Cleaving Enzyme-1 Expression by Suppressing Endoplasmic Reticulum Stress
BACE1 is tightly related to the formation of Aβ42, and so the expression of BACE1 in HT22/APP cells was detected. The results showed that after treatment with TG 1 μM, the expression of BACE1 was shown to be significantly increased, while BBR as well as PBA interference reversed its upregulation (Figure 6A). As a potential regulator of BACE1, phosphorylation of eIF2α was found to be upregulated in TG stimulated cells, mimicking the in vivo results, and hyperphosphorylation of eIF2α was attenuated by BBR and PBA treatment (Figure 6A). These data indicated that BBR plays a role as a ER stress protector like PBA did.
[image: Figure 6]FIGURE 6 | Berberine inhibits tau hyperphosphorylation, as well as BACE1 production and eIF2α activation. (A) Western blot detection of p-eIF2α, eIF2α, and BACE1 in TG-induced HT22/APP cells with or without PBA or BBR and quantitative analysis. (B) Western blot detection of p-GSK3β Y216, GSK3β, tau ps 202, and tau ps 404 in TG-induced HT22/APP cells with or without PBA or BBR and quantitative analysis. Data were presented as means ± SEM. *p < 0.05, **p < 0.01 vs. Blank; #p < 0.05 vs. TG.
Endoplasmic Reticulum Stress Contributes to Tau Hyperphosphorylation by Activating Glycogen Synthase Kinase 3β, and Berberine Reverses This Process
The phosphorylation of GSK3β and tau protein was significantly upregulated under TG stimulation (Figure 6B). Interestingly, BBR treatment perfectly reversed tau hyperphosphorylation induced by TG stimulation, which was similar to that of PBA. This indicated that BBR indeed attenuated ER stress caused by TG. In summary, these data strongly supported the idea that BBR could alleviate ER stress in HT22/APP cells, reducing the pathological phenotypes of AD in the cell model.
Berberine Decreases Amyloid Beta 42 Production by Inhibiting Eukaryotic Translation Initiation Factor-2 α Activation, While Eukaryotic Translation Initiation Factor-2 α Shows Little Effect to Glycogen Synthase Kinase 3β
As shown above, BBR attenuates ER stress in the AD model both in vivo and in vitro. It has been reported that eIF2α can be phosphorylated by activated PERK in the ER stress signal transduction pathway. As a translation regulator, eIF2α might contribute to the regulation of numerous protein biosyntheses (Schroder and Kaufman, 2006). This led us to think whether eIF2α might be the key in regulating ER stress downstream signal transduction. Hence, by using siRNA targeting at eIF2α, the ability to silence eIF2α as well as its activity in HT22/APP cells was confirmed (Figure 7A). After eIF2α was successfully silenced, TG treatment in APP stably expressed HT22 cells were used to mimic ER stress in AD mice, and then investigate the changes on Aβ42 and tau phosphorylation. As shown in Figure 7B, si-eIF2α significantly decreased BACE1 expression, while showing little effect to GSK3β activation. BACE1 downregulation decreased the concentration of Aβ42, confirming the effect of BBR in reducing Aβ42 production (Figure 7C). Although si-eIF2α had great effect in attenuating BACE1 expression and Aβ42 production, which showed no effect on tau phosphorylation (Figure 7D). Hence, this indicated that interference with only one pathological process of AD might not be considered useful in treating AD. In contrast, BBR treatment can significantly downregulate BACE1 expression as well as GSK3β phosphorylation (Figure 7E) similar to that of SB216763, which is a specific GSK3β inhibitor. This led to decreased production of Aβ42 and tau phosphorylation, showing comprehensive ability in ameliorating ER stress effects in the AD model.
[image: Figure 7]FIGURE 7 | Berberine decreases Aβ42 production by inhibiting eIF2α activation, but eIF2α had little effect to GSK3β. (A) Western blot detection of eIF2α and p-eIF2α in HT22 cells with si-eIF2α (siRNA eIF2α) or scramble and quantitative analysis. (B) Western blot detection of BACE1, p-GSK3β Y216, and GSK3β in TG-induced HT22/APP cells with or without si-eIF2α (siRNA eIF2α) or BBR and quantitative analysis. (C) The contents of Aβ42 in TG-induced HT22/APP cells with or without si-eIF2α (siRNA eIF2α) or BBR were detected by ELISA. (D) Western blot detection of tau ps 202 and tau ps 404 in TG-induced HT22/APP cells with or without si-eIF2α (siRNA eIF2α) or BBR and quantitative analysis. (E) Western blot detection of p-GSK3β Y216, GSK3β, tau ps 202, and tau ps 404 in TG-induced HT22/APP cells with or without SB216763 (GSK3β inhibitor) or BBR and quantitative analysis. Data were presented as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. Blank; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. TG, &p < 0.05 vs. BBR.
DISCUSSION
Recently, ER stress is gaining more and more attention in investigating the etiology of AD (Gerakis and Hetz, 2018). In our recent study, evidences with regard to BBR showed alleviation of tau hyperphosphorylation and Aβ42 deposition. Most importantly, it has been confirmed that the effect of BBR mainly depended on attenuation of ER stress.
Under pathological stimulation, numerous newly synthesized proteins could not be folded into correct construction, and this might be delayed in the ER lumen, causing unfolded protein response and leading to upregulation of Bip, which is an important molecular chaperone that helps protein folding into correct structure (Yoshida, 2007). In our research, a significant elevation of Bip was found in vivo model of AD, which could be perfectly reversed by BBR treatment. This strongly indicated that BBR could effectively attenuate ER stress, as it is a central hub of cellular signal transduction in AD.
As one of the major kinases that phosphorylate tau protein (Hernandez et al., 2012), GSK3β has drawn much attention in the field of AD. Interestingly, several studies have indicated that the activity of GSK3β could be modulated by ER stress (Liu et al., 2017). It is reported that the abnormality in GSK3β activity could trigger numerous intercellular dysfunctions (Nie et al., 2016; Zaouali et al., 2017; Li et al., 2020). Our study provided evidence that the activity of GSK3β was upregulated in the AD model, which in turn resulted in the hyperphosphorylation of tau in the hippocampus. This led us to consider whether the inhibitory effects of tau hyperphosphorylation by BBR in the AD mice model was also related to the inhibition of GSK3β activity. The subsequent data of our study clearly supported the hypothesis. Liu et al. also have reported that the ER stress marker Bip protein could enhance the association of GSK3β with tau protein, which might explain the reason for tau hyperphosphorylation (Liu et al., 2012). In another cell model of AD, in which Aβ was applied to stimulate the cell, the occurrence of ER stress and tau hyperphosphorylation have been found (Resende et al., 2008; Hoozemans et al., 2009). It is worthy to observe that BBR could attenuate Bip expression, which might be the mechanism behind its inhibitory effect to GSK3β.
As the major component of β-secretase, BACE1 is considered responsible for APP cleavage to regulate its appropriate amount (O’Brien and Wong, 2011). However, under several stress stimulations, BACE1 is shown to be upregulated (Penke et al., 2017). The physiological function of BACE1 to cleave APP, in other words, to degrade APP might be responsible for its upregulation to maintain the intracellular homeostasis (Salminen et al., 2013). What turns the situation more worse is that BACE1 tends to cleave APP into pro-oligomerized Aβ42 rather than the soluble form of Aβ40 (Li et al., 2006). Also, BACE1 expression was also shown to be upregulated, accompanied by elevation of Aβ42 in APP/PS1 mice as well as TG-stimulated HT22/APP cells. BBR showed excellent ability in reducing BACE1 expression as well as Aβ42 formation both in vivo and in vitro. This led us to think whether this is related to the alleviation of ER stress.
PERK is activated under ER stress, and then subsequentially phosphorylates the downstream eIF2α and modulates the process of translation initiation (Li et al., 2015). It has been reported that eIF2α could modulate transcription of several key molecules in other diseases, including abdominal aortic aneurysm (Ni et al., 2018), nonalcoholic fatty liver disease (Gao et al., 2016), and drug-induced liver dysfunction (Wang et al., 2016). Indeed, eIF2α was significantly activated under ER stress both in vivo and in vitro. Also, siRNA was used to downregulate the expression of eIF2α and found a significant decrease in Aβ42 production by downregulating BACE1 expression. The results of this study demonstrated that eIF2α was vital for abnormal upregulation of BACE1 and Aβ42, as well as for the formation of senile plaques. However, only silencing of eIF2α showed little effect to GSK3β, indicating that different signaling pathways might be involved in the formation of senile plaques and hyperphosphorylated tau. Hence, interference with one of the pathways could obtain limited benefits, and a central signaling hub such as ER stress should be mentioned instead.
In the present study, the evidences that ER stress could be the central signaling hub in the development of AD, and BBR treatment showed excellent protective effects to ER stress, make it possible to be used in the treatment of AD. In fact, BBR is now widely used in the treatment of several diseases (Ji and Shen, 2011; Ruan et al., 2017; Feng et al., 2019). Also, one of the advantages of BBR in treating dementia is that it could travel through the blood–brain barrier, showing the effects to the central nervous system (Kumar et al., 2015). Additionally, BBR shows very low toxicity and gastrointestinal side effects and mildly upset stomach after oral administration (Chen et al., 2014). Taking this advantage, BBR was shown to be effective in inhibiting the hippocampal ER stress occurrence as well as downstream signaling pathways, including GSK3β activation and BACE1 overexpression.
In recent years, too many drugs including BACE1 inhibitor, receptor for advanced glycation end-product inhibitor, and Aβ vaccine have shown good therapeutic potential in early clinical trials, but turn out to be with largely disappointing results. Up-to-date, only two new pharmacological therapies have been licensed for the treatment of AD: memantine and oligomannate; the latter is only licensed in China, but no pharmacological treatments have become available for use in individuals with mild cognitive impairment (Ballard et al., 2020). Although research concerning AD is moving away from the inhibitor development of targeting the traditional senile plaques and NFTs to new monoclonal antibody drugs, such as Gantenerumab (Roche), Solanezumab (Lilly), and Aducanumab (BiogenInc), still have few interesting results. So, enhanced traditional drug repositioning and repurposing may accelerate the identification of new treatments for individuals with AD dementia and mild cognitive impairment (Ballard et al., 2020).
In conclusion, our work demonstrated that BBR acts as an effective agent in relieving AD both in vivo and in vitro. The anti-AD effect of BBR relies on the amelioration of ER stress, which can inhibit the overactivation of GSK3β to prevent the hyperphosphorylation of tau, as well as inhibit eIF2α activation to reduce BACE1 expression (Figure 8). Also, the evidence that ER stress acts as the central hub in the etiology of AD, which links the formation of senile plaques and hyperphosphorylation of tau, provides new insights for future drug development in treating AD.
[image: Figure 8]FIGURE 8 | A functional model of berberine-protecting effects against ER stress induced production of senile plaques and hyperphosphorylation of tau in AD. In the APP/PS1 AD model, ER stress was induced, and subsequently activated GSK3β cascade and the PERK/eIF2α/BACE1 signaling pathway. Tau hyperphosphorylation and Aβ42 deposition were attenuated by BBR, which is mainly attributed to its ability to suppress ER stress in the AD model.
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Characteristic

Characteristics related to PD severity
PD-related diagnoses (Supplementary
Table S3)

PD-related drugs

General characteristics
Age
Gender
Socioeconomics
Co-morbidities

Other drugs
Healthcare senices utiization

Description

Dementia, measuring progression along the cognitive axis; falls, as a proxy to advanced motor impairment and
dyskinesia; and psychosis, measuring progression along the behavioral axis

Indicators for prescriptions of PD indicated drugs (Supplementary Table $2) during the baseline period, excluding
the index date; indicators for anti-cholinergic (ATC NO4A), dopaminergic (AT N04B), anti-psychotics (ATC NOSA) and
anti-dementia (ATC NOBD) drugs

Atindex date

Male, female, unknown

Indicators for commercial, medicare-supplemental, and medicaid insurance (MarketScan only)

Charlson comorbiity index (Charison et al., 1987); aniindicator per each ofits underlying comorbidity category; and an
indicator per each diagnoss class, using the clinical classification software (Clinical Glassifications Software (CCS)
2015)

Indicators for level 2 ATC class of all prescribed drugs

Counts of distinct visit dates per provider place and type (MarketScan only); total days of admission per encounter type
(explorys only); indicator for index date drug prescription during inpatient hospitalization (explorys only)
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MarketScan

Patient count 106,395
Patient timeine (years)

Total® 3.0 (1.6) [1.7; 30; 5.0)

Before PD initial date® 0.7 (1.1) [0.0; 00; 1.0]

Adter PD initial date® 2.3(1.4)[1.1;20;3.2)

No. of unique prescribed drugs® 14.5 (10.4) [7.0; 13.0; 20.0)
insurance

Medicare, medicaid, other public 90,280 (84.9%)

Commercial, private only 16,115 (15.1%)

Other or unknown 0%
Baseline characteristics (during <1 year before PD initial date)

Age at PD inital date® 74.8 (10.0) [66.2; 75.6; 82.7)

Women 49,693 (46.7%)

Gharlson's comorbidity index® 0.7 (1.6) [0.0; 0.0; 1.0)
PD-related diagnoses (oefore PD inital date)

Falls 1746 (1.6%)

Psychosis 2,368 (2.2%)

Dementia 9761 (9.2%)
Follow-up characteristics (during <2 years following PD initial date)

Dementia® 43,806, 45% (41.2%)

Charison's comorbidity index™ 2.8(28)[1.0; 20; 4.0)

*Mean, standard deviation (in parentheses), and the first, second (median), and third quartile (in brackets).

Explorys
88,867

76 (5.7) [29; 6.5 11.6]

43 (6.0 [0.0; 2.4; 7.3)

33271 4.7]
131 (18.7) [0.0; 5.0; 19.0]

65,146 (73.3%)
10,810 (12.2%)
12,911 (14.5%)

743 (8.1) [68.6; 75.3; 80.7]
37,958 (42.7%)
06 (1.3) [0.0; 0.

0

3,604 (4.1%)
1,209 (1.4%)
6,716 (7.6%)

25,446, 32% (28.6%)
1.8 (2.4) (0.0 1.0: 3.0]

bPopulation-level follow-up prevalence of dementia comesponds 1o the Kaplan-Meier estimator. which adiust for censoring, with the non-adiusted prevalence giver in parentheses.
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Effect’

Control cohort*  Control cohort index date N (adjusted p-value)

(ATC, level) drugs® Treatment® Outcome

Weight balancing O

‘MarketScan

Monoamine 3,094 428 -0.009

oxidase B Selegiline 99%

mg‘l’)"‘ A (100%)  (100%) (0.386)

Dopaminergic Levodopa 81%, Ropinirole 3,004 10,279
Agents (NO4B, 3) 7%, Pramipexole 7% a00%  (100%)

Anti-Parkinson Levodopa 80%, Ropinirole 3,094 10,289
Drugs (N04, 2) 7%, Pramipexole 7% (100%) (100%)

Nervous System  Levodopa 77%, Pramipexole 3,022 3469

N, 1) 8%, Ropinirole 7% ©8%) ©%)

Monoamine 414 -0.06

io:;lfl:mi Selegiline 100%

(NO4BD, 4) (78%) (0.131)

Levodopa 80%, Ropinirole 896 12,666
Dopaminergic 10%, Pramipexole 10%,
Agents (NO4B, 3)  Entacapone 7%, Amantadine — (440,) (©6%)
6%

Levodopa 78%, Ropinirole 885 12,408
Anti-Parkinson  10%, Pramipexole 9%,
Drugs (N04,2)  Entacapone 7%, Amantadine 5 9
o (3%) (64%)

Levodopa 81%, Aspirin 14%, 887 5,909
Nervous System  Pramipexole 12%, Ropinirole
N, 1) 12%, Acetaminophen 11%, i "
Entacapone 10% @ 6%

Each row corresponds to an emulated RCT estimating the effect of rasagiine on population-level prevalence of newly diagnosed dementia, serving as proxy for PD progression, in PD
patients in the MarketScan (top panel) and Explorys (bottom pane)) cohorts.

*Control cohorts comprise patients prescribed any drug sharing rasagiine’s (ATC) class at various levels.

“Distribution of index date drugs within the ATC class control cohort; shown are at most the six top drugs, prescribed to =5% of the cohort patients. For the complete distribution, see
Supplementary Table S10.

“Patient counts in each cohort, as well as their percentage out of the corresponding initial cohorts (prior to positivity enforcement; see Methods for details).

“Eflects (and FDR-adjusted p-values), estimated using either weight balancing or an outcome model, are green-shaded if beneficial and significant (adjusted p-value 0.05). The reported
effect is the difference between the expected prevalence of dementia in the treatment and control cohorts: see Outcomes and Confounders for more details.
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‘Compound Structure Sources EAE Target cell Effect Ref

model
=
o Allum cepa L
Quercetin o Asparagus officinalis L PP-EAE i Inhiit  Muthian and Bright
Lactuca sativa L (2004), Costa et al.
wd 3 (2016)
Th17
Baicalin Scuteleria baicalensis  PP-EAE Inhioit  Zang et al. (2015)
i
Flavonoid
DC
PP-EAE T
Icarin Epimedium brevicomu —————Inhibt  Shenetal. (2015),
Wei et al. (2016)
7
RR-EAE  Microgia
o o’
Th Inhibit
N o OH
Kurarinone Q Sophora flavescens  PP-EAE Thi7 Xie et dl. (2018)
HO oH 7
e Enhance
i
.
Flavonoid Naringenin Chrysanthemum ~ PP-EAE 7 Inhibit Wang J.etal. (2018),
Morifolum EE—— LiuT. et al. (2020)
oo Tho
OH
T s _
Eriodictyol OH Camelfa sinensis  PP-EAE ™7 Inhiit  Lin etal. 2020, Yang
T.etal (2020
Glycoside Astragaloside Astragalus PP-EAE oo} Inhibit Yang L. et a. (2020)
% membranaceus
DC
Paeonifiorin Paeonia lactifiora PP-EAE Inhibit Zhang et al. (2017)
Th17
i
Anemoside A3 Pulsatila chinensis  PP-EAE Inhioit  Haghmorad et al.
frae (017)
OPC Enhance
Ursolic acid Gardenia Jasminoides  PP-EAE Sun Q. et al. (2020),
7 Inhibit Zhang Y. et al. 2020)
7
. . Camosol Rosmarinus officanalls ~ PP-EAE Inhioit  LiX. et al. (2018)
Titerpenoi Microgia
OYOH
;Qfm oPC Enhance
T oom
Giyoyrhizic H Glyoymhiza uralensis  PP-EAE Zhou et al. (2015)
acid O on Microglia Inhibit
o%on
Matrine Sophora flavescens  PP-EAE  Astroglosis  Inhibit  Moreno et dl. (2013)
Others
HyCO. s /\l oo
Scopoletin HO™ o S0 Eryoybe obtusitlia  PP-EAE Inhiit  Zhang et al. (2019b)
ol
7
N W
6-Gingerol W,T,J Zingiber offcanale  PP-EAE o Inhioit  Han et d. (2019)
P
o
oH
Others Elagic acid Ho A i Punica Grantum L;  PP-EAE  Astrogloss  Inhibit  Kiasalari et al. (2021)
i Fragria Ananassa Duch microglia
HO' = o

o

P-EAE represents MOGss.ss peplide-induced primary progressive EAE, and RR-EAE represents PLP 13151 peplide-induced relapsing-remitting EAE. This table lists the structure,
source, animal mode, and target cells of some Chinese herbal monomers. Based on the PP-EAE model, flavonoids mainly target inflammatory cells Th and Th17. While giycosides
astragaloside N and pasoniflonin target DC cells. Tritarencid glveyrrhizic acid and wreolic acid could target OPC cels.





OPS/images/fphar-12-639651/fphar-12-639651-g002.gif





OPS/images/fphar-12-639651/fphar-12-639651-g001.gif





OPS/images/fphar-12-639651/crossmark.jpg
©

|





OPS/images/fnins-15-628917/fnins-15-628917-g006.jpg
AQP4

Sham

DAPI

MP

TNFo DAPI C3 DAPI
Sham I Sham
: .
. 7
SCI SCI
MP MP






OPS/images/fnins-15-628917/fnins-15-628917-g005.jpg
e

5
.,
)
-
.
« 9
’
.
-
N
-
-
K
~‘ v
whd'y
v"l
4
v
’l
J
>
-» <
-4
-
> o
g
g A4
a ’ »
)
v
) '
2l
.

The histochemuistry

score of NF-200

10+

%
: .
-~ .‘
>
-
- S
-
-
N
o‘.
-4 ¥y A
o d
|
o
*
3 B
& -
& |
2
- ' >
3 &
Wl =
’
o s
.
-
»
»
‘ -
.
. » W «
.
-»
; 50 pma
4
-E e \
' o -
- - »
v
. . P
. s >
v "\ L)
" Y .
. -
.,
-
|
» N
3 X : .
-
-
. 4
>
4
L4
-

B Sham
mm SCl
mm MP

-
\l
Ly
m o
< -
.
»
5 .
.
L4
L -
9

-
.
. 50 pym
. .
L :&;J
~ M
-
.6 4 -
.
L]
- .
. k4
7
- -
¢
- %
) 50 pm
.
™ »
- ‘ ’ .
‘. ."
p
g S -
Y .
ju
!‘ e
”~ "‘ ? .
*® .‘ S ua
pe <
. ™ ‘.
-0, 4
A y »
- R~ .
» ® ] » \
&
-w -~
g
» _ L
5 -
e " {9
" .50 pm.
e —

P T -

- M
[ . v

- > . .
. '~ T v’ - > ® ik
$ 3\‘ » N L e 5 ' 2

e\ ’ ay v

APl S, | 'S .
” » el y . & e
» & y
- -~ "'
: » ' a
B -~
Y W i » R .
: . ¥ e
B . -
< - o9 > <« . . S >
o . - > )
- T T - .
. . A
LA .~ " & ” - -
- - " . hd . - -
~ - - '
4 e <.
- $ o » -~
. $ @o - Lo 8
- o 6 .
- ) . 4 . -
- P t’ 3
o .
d\ ﬂ. O e .
., : o /e &
N - .
- -
r. - ar
TN . L . 3 &9
- e o .
.
. - . " e et
» r - i
‘ 2 - >
- . - ) . y - K ¢
. ® . ’ > * -
- - E . L B
. ./ - . . L] . '
. - . »e & ’ K
. ’ ; ¢ s ®
e - ' » - 1 .
- ~ . » v »
- .
- - 2 v -
» ’ "
\ . . > -
- -
- .
- x ’ -
/ . . » | =
> g s
- ., . .
- - . ¢ :
. ’ . -
. 9 a ' °
. ™ L 4 . R 2 L}
. ; . ‘ »
’ . ’ s g f »
- - e '
. s e L
. - - ”
v Y . 5 . - - ~ . 3
- a v
- g y* ¥ .
» \ .
.
L] - 4 -
! »
. .J - # # \h
v o .
™ B
) v
’ 50 pm ' ! 50 pym
-. - »
= . -
. . . — -\
. . ‘. - - - - » ‘v
.- . - (3 &
. - ° o 0; g A
: : T
- _ , .
.
- ) .
L ” -
" % . ”~
3 .
- 2 - o ’ ¢ " .
- é » P \‘
’ o - . ) ~ El
oW ~ ‘
. . ° - = ] m » P - N
]
- » - L > s y
® o ’ ? % . ° » a v
» » . . - L ~ f . 3
.
' - » LK - =, v . f 8
. -® - »
. - - - o
e ’ . % N
- ', . ~ . : .
- N $ o
» . o -
N : %
.o . . ~
’ - . .
- . ’ .
. . . b
iy ! RS N \ ;
.\ 9 ® . . . - . .
- - . - » s
~ - é -~ % . .
- . & Py . e
- 1
-J - :
29 - . '
.
» . - ‘
- o ¢
- o _
' b
*
‘o 50 pm « ' 50 ym
- L e -
10-

The histochemistry
score of GAP-43






OPS/images/fnins-15-628917/fnins-15-628917-g004.jpg
IBA1/

Sham Sham Sham
SCI " e SCI SCI
MP MP ; MP
)
1 4 _
< i < 1
[ 2 s
O : Py O 1 —{ =
i N )






OPS/images/fnins-15-628917/fnins-15-628917-g003.jpg
-

19} Juud-j004

*k
T

T T T T T T T 7T
DO~ O WO TO”AN T O

SINg 40 81008 8y

P14 P21 P28

P7





OPS/images/fnins-14-00785/fnins-14-00785-g002.jpg
L-DOPA+ benserazide

6-OHDA PT320 PT320 PT320
lesioning Stepping ; ‘
at Rt MFB test
l l Beh (D1) Beh (D16) Beh (D22)

—o—o—o—oLo—oLoL

W1 W2 W3 w4 W5 W6 W7





OPS/images/fnins-14-00785/fnins-14-00785-g003.jpg
A1

ALO score

B1

Limb score

Axial score

NN
o

w
o

N
o

-2
o

14 -
12 -
10 -

14 -
12 -

A2

o N A~ O O

o N B~ O ®

® L-DOPA —@— L-DOPA
O L-DOPA+PT320 —d=- L-DOPA+PT320
30
® 9 25
8 : .
$ g S 20
o o
5 ® L-DOPA h 15 -
& ) % P=0.018 @) % P=0.031
O :f 10 -
L-DOPA+PT320
P=0.081 5 -
0 - ' .
1 16 22
B2 Days
10 -
° ¢ 8 -
O O
o o
® O
. S 6-
o ° o L-DOPA 2
O O * P=0.018 c 47
O
° L-DOPA+PT320 5
l m P=0.068 2 .
0 ' .
1 16 22
1 16 22
Days D Days
10 -
© o
= (o)
o
o O o N
O —_ 6
O o [oo]
® O
5 e L-DOPA —4 *P=0.008
| 0 * P=0.026 e 47
/ P=0.051 o 2
O O
0 .
1 16 22 1 16 29

Days Days





OPS/images/fnins-14-00785/fnins-14-00785-g004.jpg
20000 -
15000 -
=)
£
g 10000 -
<
'
5000 -
0 -
Sham 6-OHDA Veh PT320
L-DOPA+60HDA
<L
Q
O
<
n
O
-

Sham 6-OHDA Veh PT320

L-DOPA+60HDA

(DOPAC+HVA)/DA

HVA/DA

B Non-lesioned
B Lesioned

2.0 1

1.5 -

1.0 -

0.5 -

0.0 -
Sham 6-OHDA Veh PT320

L-DOPA+60HDA

1.4 -

1.2 -

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -
Sham 6-OHDA Veh PT320

L-DOPA+60HDA






OPS/images/fneur-11-00623/fneur-11-00623-g006.gif
H‘Nm

onvaulam o

L gt
BV2microgia cells e 1 Conrol __AB__AB+ORC

TeEat ‘Condtionod modium
contugate

apolgomers

W ot

Mgaﬁ L

3 8
@

HT22 cell viabily (%)

ControlAB §__10_20 100
"AB + ORC (nM)





OPS/images/fneur-11-00623/fneur-11-00623-t001.jpg
Name. Sequence

IL-1p forward primer &-TTTCCTCCTTGCCTCTGATGGG-3'
IL-1B reverse primer &'-CCACACGTTGACAGCTAGGTTC-3
IL-6 forward primer 5-CTTGGGACTGATGCTGGTGACA-3'
IL-6 reverse primer &-GCCTCCGACTTGTGAAGTGGTA-3"
TNF-a forward primer &-GTGGTCAGGTTGCCTCTGTCTC-3"
TNF-a reverse primer &-TGGCTCTGTGAGGAAGGCTGTG-3"
iNOS forward primer 5'-GGACGAGACGGATAGGCAGAGA-3'
iNOS reverse primer &'-TCTTCAAGCACCTCCAGGAACG-3'
IL-10 forward primer 5'-CCCAGAAATCAAGGAGCATT-3'

IL-10 reverse primer &'-TCACTCTTCACCTGCTCCAC-3'
GAPDH forward primer 5'-GAAGGGCATCTTGGGCTACAC-3'
GAPDH reverse primer & -GTTGTCATTGAGAGCAATGCCA-3'

IL-1, interleukin-18; IL-6, interleukin-6; TNF-a, tumor necrosis factora; iNOS,
inducible nitric oxide synthase; IL-10, interleukin-10; GADPH, glyceraldehyde 3-
phosphate dehydrogenase.
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Farzampour et al.
(2016)

Chen et al. (2014)

Mao et al. (2016)

Gupta et al. (2011)

Keshavarzi et al.
(2019)

Ou et al. (2018)

Lu et al. (2020)

Farr et al. (2019)

Wang et al. (2020)

Wang et al. (2019)

Chen et al. (2012)

Zhou et al. (2019)

Batista et al. (2018)

McClean et al. (2011)

Xiong et al. (2013)

Hansen et al. (2015)

McClean et al. (2015)

Duarte et al. (2020)

Robinson et al. (2019)

Bomba et al. (2018)

Anet al. (2019)

Bomba et al. 2019)

Chen et al. (2019b)

Kosaraju etal. (20132)

Kosaraju et al.
(2013b)

Kosaraju et al. (2017)

Babic et al. (2018)

Jantrapirom et al
(2020)

Gad et al. (2016)

Chen et al. (2015)

Yu et al. (2015)

Escribano etal. (2010)

Sabogal-Guéqueta

et al. (2015)

Wang et al. (2014)

Sriraksa et al. (2012)

Mehta et al. (2017)

Mert et al. (2019)

Shirai et al. (2012)

Shirai et al. (2015)

Drug

Intranasal insulin

Intranasal insulin

Intranasal insulin

Metformin

Metformin

Metformin

Metformin

Metformin

Metformin

Metformin

GLP-1 or
exendin-4

Dulaglutide

Liraglutide

Lraglutide

Liraglutide

Liraglutide

Liraglutide

Liraglutide

Insulin
‘combination with
exenatide

Exenatide

Exenatide

Exenatide

Sitagliptin and
saxagliptin

Saxagliptin

Vidagiiptin

Linagiptin

Liraglutide

Liraglutide

Piogitazone and
exenatide

Piogitazone

piogltazone or
rosigitazone

Rosigitazone

Quercetin

Quercetin

Quercetin

Quercetin

Quercetin

Sutforaphane

Sulforaphane

In vitro/vivo models,
dose used, and
intervention period

Ap-induced rat model of AD received
normal saline o insuiin (0.1, 0.2, and
031U) for 14 consecutive days.
9-month-old 3xTg-AD mice received
intranasal insulin 1.75 U/17.5 pl or
vehicle for 7 days.

APP/PS1 mice received intranasal
insulin 1 U/day or vehicle for 6 weeks.

Neuro-2a cells exposed to
hyperinsuiinemic condition before
treatment with metformin (0-3.2 mM)
for 24 h or 48 h,

Male Wistar rats received normal
saline or methamphetamine

(10 mgkg), or methamphetamine
(10 mgkg) plus metformin (50, 75,
100, 150 mg/kg).

APP/PS1 female mice received
200 mg/kg metformin .p. for 14 days
and wild type ttermates were
injected with saline.

7-month-old male APP/PS1 mice
(C57BLG) received (200 mg/kg p.0)
metformin for 8 weeks.

SAMP8 mouse received dally
injections of metformin at 20 mg/kg/
SC or 200 mg/kg/sc for 8 weeks.

APP/PS1 mouse were injected
intraperitoneally with metformin
(200 mg/kg/day) or saline for
10 days.

Male SD rats received normal saline or
MK-801 (0.1 mg/kg, twice-daily,
i.p.. 2 weeks) and then the MK-801
group randormly received vehicle,
metformin (300 mg/kg) or olanzapine
(4 mg/kg), .., for 4 weeks.

PC12 cells were treated with high
glucose or hydrogen peroxide for 96 h
before treatment with GLP-1 or
exendin-4 (50, 100, 200, and 1,000
M) for 96 h.

STZ-induced AD-lie mice or control
mice received vehicle, dulaglutide
(0.6 mg/kgiweek i), or dulagutide
and exendin (9-39) (0.67 mg/kg/
week i.p) for 4 weeks.

Male Swiss mice received daily .p.
injections of raglutide (25 nmol/kg) or
vehicle (PBS) for 7 days before
received the injection of AB oligomers
(A O) (10 pmol) or vehicie into the
lateral ventricle; Four Ap O-injected
non-human primates, two AB
O-injected non-human primates that
received liragiutide treatment and
three controls

7-month-old APP/PS 1 mice and wid
type controls received saline or
liraglutide (25 nmol/kg body weight
i.p. once daily) for 8 weeks.

STZ-induced AD-like memory and
learning impairment mice received
liraglutide (300 ug/kg s.c. for

30 days.

6-month-old senescence-
accelerated mouse prone 8 (SAMPS)
mice received liraglutice (100 or

500 ug/kg/day, 5.C.) or vehicle once
dally for 4 months.

2-months-old APP/PS1 mice
received liraglutide (25 nmvkg bw ip)
or vehicle for 8 months.

10-month-old 3xTg-AD female mice
received liraglutide (0.2 mg/kg, once/
day) for 28 days.

Tg2576 mice received 8-month
intranasal administration of insulin and
exenatide (0.43x10° IU + 0.075 pg
exenatide + 5 g BSA per mouse
once daily).

10 months age adult mice received
exenatide (500 mg/kg, bw, i.p.) or
vehicle 5 days per week for 2 months.

5-month-old male 5xFAD transgenic
AD mice received exenatide s.c. for
16 weeks (100 ug/kg twice per day).

6-month-old 3xTg-AD mice received
control or HFD before treatment with
exenatide (500 ug/kg body weight,
ip., 5 days per week) or vehicle for
3 months.

3xTg mice received sitagliptin
(35 mg/kg 5.) and saxagliptin
(2.6 mg/kg s.C) for 56 days.

Streptozotocin-induced rat model of
AD received saxagiiptin (0.25, 0.5 and
1 mg/kg p.o) for 60 days

Streptozotocin-induced rat model of
AD received vidagliptin (2.5, 5 and
10 mg/kg p.) for 30 days.

The 3xTg-AD mouse model of AD
received linaglptin orally (5, 10, and
20 mg/kg) for 8 weeks.

SD rats were randomly treated with
olanzapine (2 mg, tid), clozapine

(12 mg/kg, tid), liraglutide (0.2 mg/kg,
tid), olanzapine + liraglutide co-
treatment, clozapine + liraglutide co-
treatment or vehicle for 6 weeks.

SH-SY5Y cells incubated with or
without high level of insuiin (100 n)
for 48 h before treatment with
liragluticle (500 nM) for 24 h.

Male Wistar albino rats received
fructose to induce insuiin resistance
before treatment with pioglitazone
(10 mgkg), exenatice (10 or

20 g/kg), piogitazone pius
exenatide or vehicle for 8 weeks.

12-month-old APP/PS1 mice
received piogitazone ip. (10 mg/kg/
day) for 15 days.

3xTg-AD mice and wild type control
mice received an experimental diet

containing piogiitazone hydrochioride
orrosigltazone maleate for 4 months

9-month-old transgenic mice
overexpressing human amyloid
precursor protein (NAPP) received
rosigitazone p.o. 5 mg/kg/day for
4 weeks.

3xTg-AD mice received quercetin
(25 mgkg i.p.) o vehicle every
48 hours for 3 months.

APPswe/PS1dEQ mice received
quercetin (20, 40 mg/kg bw, once
daily) or Aricept (2 mg/kg once dail)
o vehicle for 16 weeks.

Male Wistar rats received quercetin
(100, 200, 300 mg/kg bw, once daiy)
orally or vehicie or levodopa or vitamin
C for 14 days before and 14 days
after the unilateral lesion of right
substantia nigra induced by 6-OHDA
Swiss albino mice were subjected to
an array of unpredicted stressors for
21 days during which 30 mg/kg
quercetin treatment was given orally.

40 Balb-C received com ol + saline or
quercetin 50 mg/kg/day + saline or
com oil + ketamine or quercetin

25 mg/kg/day+ ketamine or
quercetin 50 mg/kg/day + ketamine
for 21 days.

Male Std: ddy mice received
sulforaphane (3, 10 and 30 mg/kg,
i.p.) after administration of PCP

(@ mg/kg, s.c).

Schedule 1: male ICR mice received
vehicle + saline, or sulforaphane

(30 mg/kg/day, i.p) + saline, or
vehicle + PCP (10 mg/kg/day, 5.6.) or
sulforaphane (30 mg/kg/day, ip) +
PCP (10 mg/kg/day, s.c.) for

10 days. Schedule 2: After schedule
1, sulforaphane (30 mg/kg/day, ip)
or the vehicle was administered once
daily for 14 days.

Key Findings

i: Biochemical test;
ii: Gene and protei
expression analysis;

iii: Immunohistochemistry and
image analysis;

iv: Electrophysiology analysis;
v: Behavioural assessment;

v: (0.2 and 0.3 1U) T working and reference
memory: MWM;

i restored the insulin signaling in the brain:
IR, IGF-1R, IRS-1, PI3K, PDK1 and AKT;
the level of synaptic proteins: synapsint,
PSDY5, synaptophysin; | AB40 level and
microglia activation;

ii:improved aberrant insulin signaling in the
brain : IRB, IGF1R, IRS1, PDK1, AKT; | the
activation of JNK;

i | the area of AB plaque n the brain; T the
number of doublecortin-immunoreactive
cells;

v: | anxiety and 1 spatial leaming and
memory function: OFT, MWM;

i: 1 glucose uptake: T 2-DOG uptake
(maximum 1.6 mM);

ii:7 phosphorylation of IR, IRS1, PI3K, Akt
(1.6mM}; | tau phosphorylation, tau kinase,
GSK3p, ERK 1/2, FAK phosphorylation,
amyloid-B; insulin-stimulated PKCY
phosphorylation; | Ache activity; | NF-«B
translocation to the nucleus; T AMPK
phosphorylation (1.6 mM);

In methamphetamine treated rats

iz | the activity of antioxidant enzymes:
SOD, GPx and GR (75, 100, 150 mg/kg);
ii: 1 CREB, BONF expression/level (75, 100,
150 mg/kg), 1 Akt expression and inhibited
GSK3 expression/level (100, 150 mg/kg), |
the level of inflammatory biomarkers: TNF-a
and IL-1B (100, 150 mg/kg) in the
hippocampus;

v: protected rats from anxiety, depression,
cogrition impairment and motor activity
disturbances: OFT, FST, EPM, TST,

OFT, MWM;

In APP/PS1 mice:

ii: | brain Ap deposition and A levels; |
inflammatory cytokine levels (IL-1p and
TNF-a); T the levels of AMPK, | p-mTOR,
p-S6K, p-PESNFKB and BACE 1;

iz | neuronal cell death, T neurogenesis, |
inflammatory reaction (astrocytic and
microglia reactivity);

v: rescued spatial memory deficits: MWM;
In APP/PS1 mice

iz | brain oxidative stress and inflammation:
MDA and SOD; IL-1§ and IL-6;

iiz | brain A accumulation; Tinsulin-
degrading enzyme, neprilysin, and p-AMPK
expression;

ii: 1 brain function: 118F-
Fluordeoxyglucose uptake (microPET-CT);
v: ameliorated learning and memory
dysfunction: MWM and Y-maze tests;

In SAMP8 mouse:

it T PKC (20 mg/kg);

ii: T PGSK-3pser (200 mg/kg); | AP

(20 mg/kg); | pTau and APPCA9 (20 and
200 mg/kg);

v: 1 learning and memory: T-maze

and NOR;

ii: prevented Cdks hyperactivation (|
phosphorylation level of histone H1);
inhibited cleavage of p35 into p25;

iiz corrected the dendritic spine density to
control level; rescued AMPA submit GIuAT
expression;

iv: reversed the decreased f EPSP input-
output; rescued LTP defects;

v: rescued spatial memory deficits: MWM;
ii: (metformir) | the MK-801 induced higher
phosphorylation of Akt and GSK3p;

v: (metformin or olanzapine) alleviated MK-
801 induced PPI deficits, hyperactivity
(OFT), cognition memory and spatial
learning deficits (MWM); (metiormin)
alleviated MK-801 induced anxiety like
behaviors (elevated plus maze test);

100 M GLP-1 or exendin-4

ii: | the elevated Bax/Bol-2 ratio in high
glucose-induced neurotoxicity;

i 1 cel viabilty in H,0; triggered
oytotoxicity;

iz no effects on blood glucose; dulaglutide |
body weight;

ii:dulaglutide | the phosphorylation levels of
tau and neurofiaments; dulaglutide T the
expression of GLP-1 and GLP-1R
expression; dulaglutide T PIBK/AKT/GSK3p
pathway in the STZ mice brain;

v: dulaglutide T learning and memory
impairment of AD-like mice: MWM;

In AB O-injected mice:

ii: T PKA activity; preserved hippocampal
level of IRa MRANA;

v prevented memory impairment: NOR, the
abject location memory test;

In AB O-injected non-human primates:

ii: 1 IRa and IR B in the frontal cortex; TIRain
the hippocampus; attenuated Ap
O-induced AD-like tau phosphorylation;

iii: 1 synaptosin, PSD 95 and density of
synapse inthe hippocampus, frontal cortex
and amygdala;

In APP/PS1 mice:

iii: | Ap formation; | microglia activation; T
synaptophysin levels; | AB oligomer and
total brain APP levels;

iv: 1 induction and maintenance of LTP;

v: prevented memory impairment: object
recognition; MWM;

iz no effects on blood sugar levels;

ii | hyperphosphorylation of
neuroflaments in the brain; |
hyperphosphorylated tau in the brain;
microtubule binding tau impaired by STZ;
ameliorated ERK and JNK signaling;

v: 1 learning and memory

impairment: MWM;

In SAMP8 mice:

iz no effects on body wight, food intake;

i preserved hippocampal GA1 pyramidal
neurons;

v: T memory retention: active-avoidance.
T-maze task; no effects on NOR tests;

In APP/PS1 mice:

iz no effects on body wight and plasma
glucose;

i | plaque load and infiammatory response
(microglia activation); T synaptophysin
levels;

v: 1 LTP;

v: 1 cognition: MWM; maintained
recognition memory: NOR; no effects on
the open field tests;

In 3xTg-AD mice:

i normalized plasma inflammatory markers;
promoted brain glucose metabolism;

iiz | brain ABy.42, APy-a0 and p-tau; partly
normalized brain levels of estradiol and
GLP-1-related signaling; rescued brain
oxidative/nitrosative stress markers;
v:limited signs of cognitive changes: MWM;
The combination of insulin and exenatide:
ii: normalized expression of insulin receptor
pathway genes; no effects on AB levels;

v: 1 spatial learning but did not reach
significance: MWM;

iz no effects on body wight, fasting glycemia;
ii: T expression of BONF and
phosphorylation of BDNF, TrkB, ERK5 and
PSDY5 in the hippocampus; | the
expression of pro BDNF, p75NTR, and
phosphorylated ERK1,2 (pERK1,2) and
JINK (p JNK);

ii: 1 denditic spine density in hippocampal
neurons;

v: 1 long-term memory

ii: | MDAleveland T SOD activity; T ATP level
and respiratory chain complex lactiity;

iii | Ap deposition in the hippocampal CAT
region; alleviated synaptic degradation in
the hippocampus; T mitochondrial
morphology in the hippocampus;
normalized mitochondrial dynamics;

v: 1 leamning ability and spatial memory
ability: MWM;

In 3xTg-AD mice HFD mice:

i: no effects on body wight, glucose
metabolism;

ii: no effects on the levels of A and tau; T
the level of BDNF, pERKS, pCREB, pSyn,
PSD95 and pTrkB; reverted the HFD-
induced activation of proBDNF/p75NTR
signaling;

v: no effects on learning and memory
function: MWM;

In 3xTg-AD mice HFD mice:

i 1 the level of GLP-1 and GLP-1R in the
brain; T the synapse protein level and
activated CREB; modulated the
phosphorylation and O-Glycosylation of tau
and neurofilaments protein; T GLP-1
signaling;

v: 1 spatial learning and memory

ability: MWM;

i: 1 the level of GLP-1;

ii: | AB1.42 in the hippocampus; | total tau
and p-tauin the hippocampus; | the level of
TNF-a and IL-1 in the hippocampus;

i 1 cresyl violet-positive neurons in the
hippocampus;

v: 1 learning and memory: radial arm maze
task; hole-board task;
ii: T the level of GLP-1; | Az in the brain; |
p-tau in the brain; | the level of TNF-a and
IL-1 in the brain;
ii: T cresyl violet-positive neurons in the
brain;

v: 1 learning and memory: radial arm maze
task; hole-board task;

it T the level of GLP-1 and GIP in the brain
but had no effect on plasma glucose level;
ii | ABaz in the brain; | p-tau in the brain; |
neuroinflammation;

iz | thioflavin S positive plaques n the brain;
v: T cognitive performance: MWM; Y-maze;
i: 1 clozapine-induced glucose intolerance;
1 olanzapine-induced weight gain,
adiposity;

v: prevented olanzapine- and clozapine-
induced deficits in recognition memory: |
the NOR test discrimination ratio; partially
reversed olanzapine-induced working
memory (T-Maze test) and voluntary
locomotor activity deficits;

ii: T the phosphorylation of IR, IRS-1, Akt
and GSK3; | the formation of Alzheimer's
markers and plaque (amyloid plaque and
tau phosphorylation); | BACE-1 activity in
insulin resistant neurons;

Monotherapy or combination of
piogitazone and exenatide

iz | blood glucose levels, insulin level and
HOMA-IR index; | serum advanced
glycated end products; | serum lipids: TG,
TG, LDL levels;

iii: | percent of hippocampal pycnotic cells;
| hippocampal AB expression; |
hippocampal microglia expression;

v: 1 cognition: eight-arm radial maze test;
In AD mouse model:

ii: | Calks activity by decreasing p35 protein
level;

iii: reversed AB-induced dendritic spine
loss;

iv: rescued LTP defects;

v: T spatial memory: MWM;

In 3xTg-AD mice

i: pioglitazone and rosiglitazone: | the body
weight;

ii: pioglitazone and rosiglitazone: | tau
phosphorylation in the hippocampus; T
AKT signaling in the brain; |
neuroinflammation;

v: pioglitazone improved leaming

ability: MWM;

ii: | brain AB levels and A plaque
deposition; | p-Tau aggregates;

v: | memory deficits: object recognition
and MWM;

ii: | p-amyloidosis, pA 1-40 and pA 142 in
the brain; |tauopathy in the brain; |
astrogliosis and microgliosis in the brain;
ii: 1 the cell density in the subiculum;

v: 1 spatial learning and memory
performance: MWM; exerted aniolytic
effect: EPM tests

ii: | plague pathology; attenuated
mitochondrial damage: mitochondrial
membrane potential, ATP levels; | ROS
produation; T AMPK activity;

v: 1 recognition memory, learing and
memory function: novel object recognition
and MWM;

ii | Ache activity (300 mg/kg); | MDA levels
(300 mg/kg); T SOD, CAT and GPx activity
in the hippocampus (300 mg/kg);

i 1 density of survival neuron in the
hippocampus;

v: 1 learning and memory: MWM;

iz normalized chronic unpredicted stressors
mediated elevated blood glucose level,
elevated serum corticosterone level, serum
insulin and insulin sensitivity;

ii: 1 the expression of IR and GLUT4;

i alleviated chronic unpredicted stressars
mediated neuronal damagein hippocampus;
v: alleviated chronic unpredicted stressors
mediated cognitive dysfunction:

NOR, MWM;

ii: quercetin (50 mg/kg) | the level of MDA T
the levels of GPx and SOD in both the
hippocampus and prefrontal cortex in
ketamine-administered mice;

v: improved ketamine induced cognitive
deficits;

v Suforaphane (30 mg/kg, i.p) attenuated
hyperlocomotion in mice after PCP
administration;

Suiforaphane (3, 10 and 30 mg/kg, i.p.)
attenuated PPI deficits in mice after PCP
administration;

ii: schedlule 1: pretreatment with
sulforaphane attenuated PCP-induced
reduction in the spine density, protected
against the PCP-induced increase in the 8-
ox0-dG-positive cells and decrease in PV-
positive cels in the mPFC and
hippocampus;

v: NOR: schedlle 1: pretreatment with
sulforaphane attenuated POP-induced
cognitive deficits in mice;

schedule 2: suiforaphane attenuated PCP-
induced cognitive deficits in mice;

Brief Conclusions

Intranasal insuiin treatment improved
memory and leaming in a rat amyloid-
beta model of Alzheimer's disease.
Daily intranasal insulin into 3xTg-AD
mice for 7 days restored insulin
signaling, increased synaptic proteins,
and reduced AB4O level and microglia
activation in the brain.

Intranasal insuiin treatment for 6 weeks
could decrease anxiety-related
behaviors, ameliorate cogritive deficits,
enhance the impaired brain insulin
signaling, alleviate of AB pathology and
promote neurogenesis.

Metformin ameliorated neuronal insuiin
resistance and AD-neuropathological
changes; activated AMPK.

Metformin protected the brain against
from methamphetamine-induced
neurodegeneration through mediating
CREB/BDNF or AKU/GSKS signaling
pathway.

Metformin could alleviate
amyloidogenesis and inflammatory
responses, and improve spatial
memory, neuroprotection,
neurogenesis of the hippocampus in
APP/PS1 mice.

Metformin could refieve learning and
memory dysfunction and improve brain
function in APP/PS1 mice.

Metformin at 20 and 200 mg/kg
improved memory in 12-month-old
SAMPS mice.

Metformin could inhibit Cdks activity to
restore spine density, surface GIuAT
trafficking, LTP expression and spatial
memory to those of normal level in the
APP/PS1 mice.

Metformin reversed MK-801 induced
schizophrenia-ike symptoms (PPI
deficits, hyperactivity, anxiety-like
symptoms, recognition and spatial
memory impairment).

GLP-1 and exendin-4 inhibited high
glucose-induced apoptosis and
oxidative stress in neurons.

Dulaglutide ameliorated STZ-induced
AD-like impairment of learning and
memory ability by moduiating
hyperphosphoryiation of tau and
neurofiaments through PIBK/AKT/
GSKapsignaling pathway.

Liraglutice reversed cogitive
impaiment and IR loss caused by ABOs
in mice, and it also exerted partial
neuroprotective actions in non-human
primates.

Liraglutide prevented
neurodegenerative development in
mouse model of AD.

Liraglutide exhibited neuroprotection
effects on STZ-induced AD-like memory
and learning impairment mice by
modulating the hyperphosphorytation of
tau and neurofiament proteins and
insuiin signaling.

Liraglutide delayed o partially halted the
progressive deciine in memory function
associated with hippocampal neuronal
loss in SAMP mice.

Liraglutide reduced AD progressive
neurodegeneration in the APP/PS1
mouse model,

Liraglutide partially attenuated brain
estradiol and GLP-1 and activated PKA
levels, oxidative/nitrosative stress and
inflammation in these AD female mice.

Combination of insuiin with exenatide
was associated with better memory and
normal expression of insuin receptor

pathway genes inamouse model of AD.

Exenatide improved age-dependent
cognitive deciine through promoting the
BDNF-TrkB neurotrophic axis and
inhibiting apoptosis by activating
decreasing p7SNTR-mediated
signaling.

Exenatide treatment could improve
cognitive impairment, reduce A;.«z
deposition, alleviate synaptic
degradation, improve mitochondrial
morphology, relieve oxidative stress,
correct the crisis of mitochondial
energy production and normalize
mitochondrial morphology in 5XFAD
transgenic AD mice.

Exenatide reverted the adverse changes
of BDNF signaling and
neurainfiammation status of 3xTg-AD
mice undergoing HFD without affecting
systemic metabolism or promoting
changes in cognitive performances.

DPP-4 inhibitors improved the impaired
spatial learning and memory, decreased
tau and NFs aggregation, increased AB
degradation and reversed AD-like
neurodegeneration through partial
improvement of GLP-1 signaiing
pathway including PIK-Akt and MAPK.

Saxagliptin attenuated A burden, tau
phosphorylation, inflammation and
reversed behavioural deficits in
streptozotocin-induced rat model of AD.

Vidagliptin exhibited improvement
memory retention and attenuation of AB,
tau phosphorylation and inflammatory
markers and increased GLP-1 level.

Linaglptin, a dipeptidyl peptidase-4
inhibitor, mitigates cognitive deficits and
pathology in the 3xTg-AD mouse model
of AD.

Liraglutide co-treatment improved
aspects of cognition, prevented obesity
side effects of olanzapine, and the
hyperglycemia caused by clozapine.

Liraglutide restored neuronal insulin
resistance and ameliorated AD markers.

The combination of piogiitazone and
exenatide offered hippocampal
neuroprotection and produced pro-
cogritive effect in insuiin resistant rats.

Piogltazone inhibited Caks activity by
decreasing p35 protein level and
rescued impaired synaptic plasticity and
spatial memory in AD mouse models.

The chronic treatment of 3xTg-AD mice
with pioglitazone or rosigitazone for

4 months improved spatial learning and
attenuated tau hyperphosphorylation
and neuroinfiammation.

Rosigitazone reduced AD pathology
and restored hippocampal function,
leading to a rescue of memory
impairment in APP transgenic mice.

Quercetin amelorated cognitive deficts,
reversed brain levels of p-amyloidosis
and tauopathy and ameliorated astroglia
and microgia reactiviy in the 3xTg-AD
mice.

Quercetin ameliorated cognitive deficits,
reduced sensie plaques, and
ameliorated mitochondrial dysfunction.

Quercetin enhanced spatial memory
partly because of decreased oxidative
damage resulting in decreased neuron
density.

Quercetin improved chronic
unpredicted stressors mediated
cognitive dysfunction by modulating
hippocampal insulin signaling.

Quercetin improved ketamine induced

cognitive deficits in mice partly owing to
its abilty to scavenge free radicals and
its high antioxidant capacity.

Sulforaphane attenuated
hyperiocomotion and PPI deficits in
mice after PCP administration in a dose-
dependent manner.

Sulforaphane had prophylactic and
therapeutic effects on PCP-induced
cognitive deficits in mice.

IGF1R: type 1 insulin-like growth factor receptor; PDK 1 3-phosphoinositce-dependent protein kinase-1; 2-DOG: [3Hj2-deoxyglucose; AMPK: AMP activated protein kinase; IR: insuln
receptor; IRS: insulin receptor substrate; PI3K: Phosphatidy! inositol 3-kinase; Akt: protein kinase B; GSK3: glycogen synthase kinase 3; ERK: extracellular regulated kinase; FAK: focal
achesion kinase; Ache: Acetylcholinesterase; NF-xB: nuciear factor xB; ROS: reactive oxygen species; OFT: Open Field Test; FST: forced Swim Test; EPM: Elevated Plus Maze; TST: Tai
Suspension Test; MWI: Morris Water Maze; SOD: superoxide dismutase; CAT: catalase; GPx: superoxide dismutase; GR: glutathione reductase; TNF-a: tumor necrosis factor-aipha; IL-
1p:interleukine- 1beta; CREB: cAMP response element binding protein; BONF: brain-derived neurotrophic factor; PPI: pre-pulse intensity; ROS: reactive oxygen species; EGFR: Epidermal
Growth Factor Receptor; Sirt1: silent information regulator 2 homolog 1; BACE-1: Beta Secretase 1; PS1: presenilin1; APP: amyloid precursor protein; NOR: Novel Object Recognition;
RAGE: receptor for advanced glycation end products; ICV: intracerebroventricular; LA: L-arginine; L-NAME: nitro-L-arginine methyl ester; ORT: the object recognition test; STZ:

streptozotocin; TrkB: tropomyosin-related kinase B receptor; p7SNTR: p75 neurotrophin receptor; PAL: The passive avoidance leaming; Mash?: Mammalian achaete-scute homologue 1;
GIPR: gastric inhibitory polypeptice receptor; VEGF: vascular endothelial growth factor; T-AOC: total antioxidant capabilty; GSH: glutathione; GSHPx: Glutathione peroxidase; PCP:
phencydidine: RNS: reactive nitrogen species: Cdk5: Cyclin-dependent kinase 5.
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“The reported effect is the difference between the expected prevalence of dementia onset, used as proxy for PD progression, in the treatment and control cohorts. See Table 3 footnotes

for move detaiis.

Effect (p-value)*
Control cohort N N
Control cohort index date drugs
(ATC, level) Treatment Control “weiont balancing Outcome model
‘MarketScan
Benzodiazepine 847 107 0,03 0.1
related drugs  Eszopiclone 64%, Zaleplon 33%
(NOSCF, 4) (100%)  (100%) (0391) (0.189)
';;’;:::’““ and o nazepam 56%, Scopolamine 13%, 47 203
A Eszopiclone 12%, Zaleplon 7% o o
(N0SC, 3) (100%)  (100%)
- Alprazolam 23%, Lorazepam 20%, 847 3,116
"S{]‘;“‘;“P"“ Quetiapine 19%, Diazepam 9%,
(05,2) Temazepam 5% (100%)  (100%)
Nervous System  Levodopa 48%, Rasagiline 9%, 847 6,501 0.04
™, 1) Acetaminophen 7%, Pramipexole $% (100se)  (100%) ©.109
Explorys
Benzodiazepine 1828 98
related drugs Control cohort too small
(NOSCF, 4)
Hypnotiesand o Temuzepam 12%, L8285 3992 001 0.006
Sedatives o 76%: g
(NOSC, 3) Melatonin % (100%)  (100%) (0.281) (0.386)
: Midazolam 30%, Lorazepam 21%, 1,828 9,067
%@h‘;‘)‘"““ Alprazolam 12%, Quetiapine 10%,
i Zolpidem 8%, Diazepam 7% (100%)  (100%)
‘Acctaminophen 43%, Levodopa 37%, 1,804 3,321 0.02 001
Ty U SYSIEM Midazolam 25%, Lorazepam 23%,
o5 Fentanyl 22%, Aspirin 21% ©9%)  (1%) (0.180) (0:295)
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Compound Molecular weigh Log P Topological polar Number of hydrogen Number of hydrogen Most basic center acidity* CNS MPO

Compound (g/mol) surface area (AZ) bond donors bond acceptors (calculated pKa) score
Thalidomide 258.2 0.02 83.55 1 4 11.59* 4.8
(Thalidomid)

Lenalidomide 259.3 =0.71 92.50 2 4 2.31 5.4
(Reviimid)

Pomalidomide 273.2 -0.16 109.57 2 5 1.56 4.8
(Pomalyst)

Apremilast (Otezla) 460.5 1.31 119.08 1 7 12.98* 3.1
3,6'- 305.4 0.97 75.43 2 3 2.33 5.5
Dithiopomalidomide

(3,6'-DP)

3,6'- 290.4 1.80 49.41 1 2 9.8** 4.9
Dithiothalidomide

(3,6'-DTT)

N-adamanty! 295.4 3.86 20.31 0 1 -1.04 3.7
phthalimidine (NAP)

Dithiophthalimide 179.3 2.47 12.03 1 0 14.31* 3.6

Such IMiDs largely are in accord with the Lipinski rule of five, which predicts the likelihood of a drug being delivered to its target under human physiological conditions
based on its physical properties (Banks and Greig, 2019). A CNS MPO Score, that provides an estimate of a drug’s BBB permeability, was computed using parameters
described by Wager et al. (2010), with a greater score value associating with a higher drug BBB permeability. *Obtained from Chemicalize as the calculated “Strongest
Basic pKa” and presumably as if the parent molecule were to function as a base. When such a value was not computed or available from the software, the Strongest
Acidic pKa value was utilized instead. **Indicates the Strongest Acidic pKa value, subsequently used for MPQO calculation.
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Reference (study

design)
N-acetyl Hoffer et al., 2013
cysteine (phase )

Amen et al., 2011
(Prospective)

Minocycline  Meythaler et al., 2019
(phase lla)

Koulaeinejad et al.,
2019 (phase Il)
Scott et al., 2018
(cross sectional)

N (%
male)

81(99%)

30 (100%)

15 (80%)

34 (88%)

15 (87%)

Mean age
(range)

22 years
(18-43)

NR

43 years
@1-71)

42.5 years
(18-79)
423 years
(23-61)

Control

Placebo

Self-matched

Self-matched

Placebo

Control (no treatment)

2gBID for
4days1.59
BID for 3 days

NR

Tier 1: 200 mg
BID for 7 days
Tier 2: 400 mg
BID for 7 days

100 mg BID for
7 days

100 mg BID for
12 weeks

‘Outcome measures

1. Controlled oral world
association test, animal
naming test, trail
making test 2. Clinical
assessment for hearing
loss, headache,
balance

1. SPECT image
analysis 2. MicroCog
Assessment of
Cogpitive Functioning
1. Disabilty rating scale
2. Neurocognitive
outcome measures 3.
Serum biomarkers,
laboratory analysis

1.5100B 2. NSE 3.
acs

1.PET2. MRI 3.
Plasma axonal protein
NFL

Findings

1. Improved cognitive
function 2. Amelioration
of mild TBI symptoms

1. Increased cerebral
blood flow 2. Improved
cognitive function

1. Trend toward
improved DRS for
higher dose 2. Safe for
usein TBI at 2x dose
recommended for
infection

1. Significant reduction
$100B and NSE

1. Reduced chronic
microglial activation 2.
Increased plasma NFL
3. Microglial activation
has reparative effects in
late stage TBI

TBl, traumatic brain injury; BID, twice daily; NR, not recorded; SPECT, single photon emission computed tomography; DRS, disability rating scale; NSE, neuron specific
enolase; GCS, Glasgow Coma Scale; PET, positron emission tomography; MR, magnetic resonance imaging; NFL, neurofiament light.
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cysteine and vitamins in
the treatment of TBI in
geriatric patients

care)

Clinical trial identifier Title Study design Drug Intervention arms Primary outcome
measure

PET-MRI and the effect Non- NAC 1. Dietary arm 2. IV/PO FDG-PET to measure
of N-acetyl cysteine randomized, arm 3. Control arm inflammation and
and anti-inflammatory crossover oxidative damage in the
diet in TBI brain

Active, not recruiting  Prospective analysis of Randomized, NAC and oral 1. Experimental 2. Determine
the use of N-acetyl prospective multivitamins Non-treatment (routine improvement in

somatic, cognitive, and
emotional
post-concussion
symptoms

NAC, N-acetyl cysteine; TBI, traumatic brain injury; IV, intravenous; PO, per os; FDG-PET, fluorodeoxyglucose-positron emission tomography.
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v Induction of a process by Zonisamide

% Inhibition of a process by Zonisamide

Reduction of dopamine transporter X
Dopamine decarboxylase

Levodopa Dopamine

Prevent

— Reactive oxygen species*

Mn, Cu, Zn-SOD synthesis in astrocyteV

Lipid peroxidationx C/EBO homologous proteinx

Mitochondrial beta-oxidationx Endoplasmic reticulum stressx

Nav1.6, TNF-alphax
Oxidate stress and apoptosis*

Increased concentration of cytosolic free calciumx

neuroinflammationx

Dopaminergic neurons deathx

Blockade of T-type calcium channels¥

Prevent Prevent

Astrocyte-derived neurotrophic factory S100beta protein secretion by astrocytesy

MnSOD, manganese superoxide dismutase; CuSOD, copper sup: ide di ZnSOD, zinc sup ide dismutase; Nav1.6, voltage-gated sodium channels 1.6; TNF-alpha, tumor necrosis factor alpha;
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Zonisamide

Alternative names AD-810, Zonegran®

ATC code NO3A (antiepileptic drugs), NO4
(antiparkinsonian drugs)

Mechanisms See Figure 2

Prescription

Route Orally

Recommended dosage 25, 50 mg

Administration mode Once daily

Indication

Recommended as add-on treatment in patients with Parkinson disease
Pharmacokinetics (Uno et al., 1979; Ito et al., 1982; Matsumoto et al., 1983;
Stiff et al., 1992; Nakasa et al., 1998; Ohmori et al., 1998; Sills and Brodie, 2007;
Yang and Perry, 2009)

Mean maximum 2.3-12 mg/ml
plasma concentration (Cmax)

Median time (tmax) 2.4-36h
Absolute bioavailability Nearly 100%
Apparent volume of distribution 1.1-1.7 Lkg
Clearance 1.91 Lh
Elimination half-life 49.7-62.5h
Pivotal trials See Table 2
Common adverse events See Table 3

ATC, Anatomical Therapeutic Chemical.
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Type

Open-label
trial

Open-label
trial

Double-blind
RCT

Double-blind
RCT

Double-blind
RCT

Authors (year)

Ikeda et al. (2015)

Murata et al.
(2001)

Murata et al.
(2007)

Murata et al.
(2015)

Murata et al.
(2016)
Registration
number:
JapicCTI-101198

Phase Length of trial

Phase 2 3 months

Phase 2 12 weeks

Phase 2/3b  UP to 16 weeks,
including a 2 week
run-in period

Phase 3 16 weeks, including
a 4 week run-in
period

Phase 3 14 weeks, including

a 2 week run-in
period

Enrolled/
completed
(%)

10/10
(100%)

9/9 (100%)

347/279
(80.4%)

422/354
(83.9%)

196/166
(84.7%)

Inclusion/exclusion
criteria

H-Y stage l or Il
Untreated (De Novo)
patients

Advanced-PD patients

Advanced-PD patients

Advanced-PD patients
Presence of motor
complications (> 2 h
“OFF” time/day)

Advanced-PD patients
Deterioration of
response to levodopa

Dosage

25 mg/day for 1
month and

50 mg/day for the
next 2 months

50-200 mg/day

25, 50, 100 mg/day
or placebo

25, 50 mg/day or
placebo

25, 50 mg/day or
placebo

Endpoints

UPDRS I-IV

Tremor-related UPDRS (items
16, 20, and 21)

Sleep condition

UPDRS I-IV (ON and OFF)
H-Y stage (ON and OFF)
“OFF” time

Primary: Variation in UPDRS Il
Others: Variation in the
percentage of patients

with > 30% reduction in
UPDRS IlI (responders)
Variation in “OFF” time

Primary: Variation in daily “OFF”
ime

Others: Variation in UPDRS and
PDQ-39

Variation in the percentage of
patients with > 20% reduction
in “OFF” time (responders)
Primary: Variation in UPDRS Ill
scores

Others: Variation in the
percentage of patients

with > 30% reduction in
UPDRS Ill (responders)
Variation in UPDRS Il scores

Results

.UPDRS IIl and trem
markedly decreased

patients with RBD

(3.8-2.8, P < 0.01)
II. “OFF” time: signifi
(6.9-1.2h, P < 0.00

diminishing UPDRS |

was markedly higher
II. ZNS 50 mg and 1

was markedly higher
II. ZNS 50 mg: clear]
diminishing UPDRS |

diminishing UPDRS |

was markedly higher
II. ZNS 25 mg: clear]
diminishing UPDRS |
(P =0.039)

or-related scores:
(P <0.01)

|. Sleep state: improved markedly in 3

. UPDRS Il (OFF): clearly diminished
(22.3-12.3, P < 0.001)
I. H-Y stage (OFF): clearly improved

cant decreased
1)

. ZNS 25-50 mg: clearly efficacious in

Il scores

I. ZNS 50 mg: percentage of responders

00 mg: clearly

efficacious in diminishing “OFF” time

. ZNS 50 mg: clearly efficacious in
diminishing “OFF” time (P = 0.005,
difference, —0.709 h/day)

I. ZNS 50 mg: percentage of responders

(40.5%; P < 0.001).
ly efficacious in
(off) and UPDRS llI

. ZNS 25 mg: clearly efficacious in

| scores. (P =0.029)

I. ZNS 50 mg: percentage of responders

(P=0.038)
ly efficacious in
(off) score

ZNS, zonisamide; RCT, randomized controlled trials;, H-Y stage, Hoehn and Yahr stage; UPDRS, Unified Parkinson’s Disease Rating Scale; PDQ-39, Parkinson’s Disease Questionnaire-39; RBD, rapid eye movement
sleep behavior disorder.
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Side effects Phase 3 trials Phase 3 trials Phase 2b/3 trials

(Murata et al., 2015) (Murata et al., 2016) (Murata et al., 2007)
PLC ZNS ZNS Total PLC ZNS ZNS PLC ZNS ZNS ZNS Total

25mg 50mg 25mg 50mg 25mg 50mg 100mg
Total 49.6% 57.7%  60.9% 59.3% 65.1% 55.6% 60.3% 65.1% 709% 729% T79.5% /
Constipation 1.5% 1.5% 3.1% 2.3% 6.3% 1.6% 1.6% 3.6% 6.3% 8.2% 4.8% 6.5%
Nasopharyngitis 6.9% 1.7% 3.9% 5.8% 11.1% 4.8% 3.2% 7 / / / /
Bronchitis 2.3% 1.5% 3.1% 2.3% / / / 7 / / / /
Contusion 3.1% 2.3% 1.6% 1.9% / / 4 g / / / 4
Blood LDH increased 3.1% 2.3% 3.1% 2.7% / / / / / / / /
Blood urea increased 1.5% 3.1% 0.8% 1.8% / / / / / / / /
Decreased appetite 3.1% 4.6% 0.8% 2.7% 6.3% 4.8% 1.6% 14.5% 51% 82% 16.9% 10.1%
Dyskinesia 7.6% 6.9% 7.0% 7.0% 1.6% 8.2% 3.2% ¥ ¢ / / /
Somnolence 2.3% 3.1% 6.3% 4.7% / / / 4.8% 1.3% 15.3% 15.7% 10.9%
Insomnia 3.1% 3.1% 0.0% 1.6% 7.9% 4.8% 4.8% i f / / /
Apathy / / / / / / / 6.0% 7.6% 71% 10.8% 8.5%
Dizziness / / / / / / / 7.2% 3.8% 5.9% 7.2% 5.7%
Weight loss / / / / 6.3% 0% 4.8% 4.8% 7.6% 3.5% 9.6% 6.9%
Increased in serum CK / / / / 6.3% 4.8% 1.6% 8.4% 8.9% 8.2% 4.8% 7.3%

Only data for adverse effects with an incidence of > 5% were reported in phase 3 trials (Murata et al., 2016) and phase 2b/3 trials (Murata et al., 2007). Adverse events
affecting > 5% are in bold font. ZNS, zonisamide; PLC, placebo, LDH, lactate dehydrogenase; CK, creatinine phosphokinase; /, not reported.
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Agent(s)

JJC8-016

JJC8-088

JJC8-091

Dose(s), species

10-30 mg/kg, i.p.
RAT

3-100 mg/kg, i.p.
MICE

10-30 mg/kg, i.p.
RAT

1-566 mg/kg, i.p.
RATS

3-30 mg/kg, i.p.
RAT

3-56 mg/kg, i.p.
MICE

1-56 mg/kg, i.p.
RATS

10-56 mg/kg, i.p.
RAT

3-100 mg/kg, i.p.
MICE

Behavioral effects

NSE on locomotion when injected alone

| Cocaine-induced hyperlocomotion

Did not induce self-administration
| Cocaine self-administration

| Reinstatement of cocaine seeking
behavior

NSE on ambulatory behavior

| METH self-administration following
both short and long access to drug

| Cocaine self-administration

1 Optical intracranial self-stimulation
NSE on cocaine PR breakpoints
NSE on METH self-administration

following both short and long access to

drug
1 Ambulatory behavior

NSE on cocaine FR self-administration

| PR breakpoints for cocaine
| Cocaine primed reinstatement
| Optical intracranial self-stimulation

| METH self-administration following
both short and long access to drug

NSE on ambulatory behavior

Neurochemical effects

NSE on stimulation of NAS DA

NSE on stimulation of NAS DA
NSE on stimulation of evoked DA

release in NAS
1 NAS DA clearance

1 NAS DA efflux

1 Evoked DA release in the NAS
1 NAS DA clearance

1 NAS DA efflux

1 Evoked DA release in the NAS
1 NAS DA clearance
1 NAS DA efflux

NSE on evoked NAS DA release
1 NAS DA clearance

1 NAS DA efflux

NSE on evoked NAS DA release
1 NAS DA clearance

References

Zhang et al. (2017)

Keighron et al. (2019b)

Tunstall et al. (2018)

Newman et al. (2019)

Tunstall et al. (2018)

Keighron et al. (2019b)

Newman et al. (2019)

Tunstall et al. (2018)

Keighron et al. (2019b)

NSE, not a significant effect; METH, methamphetamine; FR, fixed ratio; PR, progressive ratio; i.p., intraperitoneal; 1, increase; |, decrease.
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Agent(s)

MOD

R-MOD

S-MOD

Dose(s), species

3-300 mg/kg, s.c.
RAT

20-60 mg/kg, i.v.

RAT

10-56 mg/kg, i.v.

RAT

10 pg/5 pL, ic.v.

RAT

100-600 mg/kg, p.o.

RAT

30-300 mg/kg, i.p.

RAT

30-100 mg/kg, i.p.

RAT

30-300 mg/kg, i.p.

MOUSE
10-32 mg/kg, i.v.
MOUSE

5-100 mg/kg, i.p.
MOUSE

30-300 mg/kg, i.p.

MOUSE

Effect of MOD

- 1 Extracellular NAcc DA levels

-1 Extracellular DA in the NAcc
- | METH-induced stimulation of NAcc DA levels

- 1 Extracellular NAS DA levels
- NSE on cocaine-induced stimulation of NAS DA levels

-1 Extracellular NAcc DA levels

- 1 Extracellular DA in the striatum and PFC

- 1 Electrically evoked DA in the ventral and dorsal striatum

- 1 Extracellular DA in the NAcc
- | Nicotine-induced stimulation of NAcc DA levels

- 1 Extracellular NAS DA levels

- 1 Extracellular NAS DA levels

- 1 Electrically evoked NAS DA

- | DA clearance rate

- 1 Electrically evoked DA in the NAS
- | DA clearance rate

- 1 Extracellular NAS DA levels

References

Ferraro et al. (1996¢)
Zolkowska et al. (2009)
Mereu et al. (2020)
Murillo-Rodriguez et al.
(2007)

Rowley et al. (2014)
Bobak et al. (2016)
Wang et al. (2015)

Loland et al. (2012)

Keighron et al. (2019a)

Keighron et al. (2019b)

Loland et al. (2012); Mereu
et al. (2020)

NAcc, nucleus accumbens; NAS, nucleus accumbens shell; PFC, prefrontal cortex; METH, methamphetamine, i.p., intraperitoneal; i.v., intravenous, i.c.v, intracerebroven-
tricular injection; s.c., subcutaneous; p.o., oral administration; NSE, not a significant effect; 1, increase; |, decrease.
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PSUD symptoms

Actions of MOD

Recreational use, misuse, and
potential for dependence (DEA

schedule 1 or 2)

Cardiovascular issues

Impaired cognition

Impaired mood

Elevated neuroinflammation

Sleep disruptions

Gawin (1991); Barr et al. (2006)

Lange and Hillis (2001); Kaye et al.
(2007); Duflou (2020)

Bolla et al. (1999); Nordahl et al. (2003)

Rounsaville et al. (1991); Salo et al.
(2011)

Kousik et al. (2012)

Schierenbeck et al. (2008); Hasler et al.
(2012)

Low abuse liability (DEA schedule 4)

Substitute for psychostimulants

Decreased cocaine use
Decreased nicotine use
Decreased METH use

Regulates heart rate disruptions
associated with amphetamines

Improved attention, concentration,
executive function

Improved mood

Improve depressive illness
Increased/decreased anxiety

Protects against PSUD-related
neuroinflammation

Wake-promoting agent

Fatigue reducing

Jasinski (2000); Deroche-Gamonet

et al. (2002); Myrick et al. (2004); Food
and Drug Administration (2007);
Vosburg et al. (2010)

Gold and Balster (1996); Reichel and
See (2012)

Dackis et al. (2005); Hart et al. (2008)
Wang et al. (2015)

Shearer et al. (2009); De La Garza et al.
(2010)

Makris et al. (2004); De La Garza et al.
(2010)

Pigeau et al. (1995); Minzenberg and
Carter (2008); Killgore et al. (2009);
Finke et al. (2010); Dean et al. (2011)

Pigeau et al. (1995)

Frye et al. (2007)
Samyai et al. (1995); Salo et al. (2011)
Raineri et al. (2012)

Beusterien et al. (1999); Scammell et al.
(2000)

Pigeau et al. (1995)

METH = methamphetamine; DEA = Drug Enforcement Agency; PSUD = psychostimulant use disorder; MOD = modafinil.
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Refs

Benedict et al.
(2004)

Craft et al. (2012)

Claxton et al.
(2015)

Craft et al. (2020)

Cha et al. (2017)

Mcintyre et al.
(2012)

Fan etal. (2011)

Fan etal. (2013)

Guo et al. (2014)

Luchsinger et al,
(2016)

Koenig et al.
(2017)

Lin et al. (2018)

Mansur et al.
(2017)

Ishoy et al.
(2017)

Watson et al.
(2019)

Watson et al.
(2005)
Hanyu et al

(2009)

Sato etal. (2011)

Yietal (2012)

Broman-Fulks
etal. (2012)

Shiina et al.
(2015)

Diagnosis

Healthy subjects

Adults with amnestic mild
cognitive impairment or AD

Adults with amnestic mild
cognitive impairment or AD

Adults with amnestic mild
cognitive impairment or AD

Meajor depressive disorder

Euthymic adults with bipolar
disorder

Nondiabetic patients with
$SZ or schizoaffective
disorders

SZ or schizoaffective
disorders

Depression with T2DM

Amnestic mild cognitive
impairment

Non-diabetic subjects with
mild cognitive impairment

and early dementia due
to AD

NDVCI

Mood disorder (MDD or BD)

sz

Subjective cognitive
complaints (alf of subjects
had family history of AD; 45-
70 years old)

Mid AD or amnestic mid
cognitive deficits

AD or amnestic mid
cognitive deficits

AD with T2DM

sz

Healthy subjects

sz

Design

Randornized, double-
biind, placebo-
controlied

Randornized, double-
biind, placebo-
controlled

Randomized, double-
biind, placebo-
controlled

Randomized, double-
blind, placebo-
controlled

Randomized, double-
biind, placebo-
controlled crossover
design

Randomized, double-
blind, placebo-
controlled

Single dose, double-
blind, placebo-
controlled

Randomized, double-
blind, placebo-
controlled

Randomized, double-
blind, placebo-
controlled

Randornized, double-
biind, placebo-
controlled
Randornized, double-
biind, placebo-
controlled, crossover
study

Randomized, double-
blind

Open-label

Randomized, double-
biind, placebo-
controlied

Randormized, double-
biind, placebo-
controlled

Randormized, double-
biind, placebo-
controlled
Randomized, open-
controlled

Randomized, open-
controlled

Randomized, double-
blind, placebo-
controlled

Randomized, double-
blind, placebo-
controlled

Open-iabel,
preliminary cinical trial

Intervention(n);
Control(n)

intranasal insuiin 40
U (19);
placebo (19)

intranasal insulin 20
U (36);

intranasal insulin 40
U (38);

placebo (30)

intranasal insuiin 20
U @1);

intranasal insulin 40
U (19)

placebo (20)

intranasal insulin 40
U (119);
placebo (121);

intranasal insulin 40
U (19);
placebo (16)

intranasal insulin 40
U (34);
placebo (28)

single-dose of
intranasal insulin 40
U (15);

placebo (15)

intranasal insulin 40
U 4 times/d (21);
placebo (24)

metformin (29);
placebo (29)

metformin (40);

placebo (40)
placebo folowed by
metformin (10);

metformin folowed
by placebo (10)

metformin +
donepezi (48);
acarbose +
donepezl (46)
19

exenatide (20);
placebo (20)

raglutide (15);

placebo (11)
rosigitazone (20);
placebo (10)

piogltazone (15);
control (17)

piogitazone (21);

control (21)

rosiglitazone (9);
placebo (10)

Quercetin 500 mg/
day (309);

Quercetin 1000 mg/
day (319);

Placebo (313);
Sulforaphane (7)

Drug, duration

Intranasal insulin 40 1U;

8-week treatment

Intranasal insuiin 20 1U or 40 IU;
4-month treatment

Intranasal insuiin 20 1U or 40 IU;
3-week treatment

Intranasal insuiin 40 IU; 12-
month treatment; Followed by a
6-month open label extension

intranasal insulin 40 1U;
4 times/d;
12-week treatment

Intranasal insulin 40 1U qid;

8-week treatment

single dose of intranasal insulin
401U

Adjunctive intranasal insulin 40
1U 4 times/d; 8-week treatment

Metformin 1000 mg once-daily
for 1 week, then daly dose
increased to 1500 mg over a
period of 2 weeks (td); 24-week
treatment

Metformin, (or placebo)
1000 mg (bid);

12-month treatment

Metformin 500 mg (or placebo)
by mouth daily for 1 week, then
dally dose increased 1o

2000 mg (bid):

16-week treatment (8 weeks
metformin followed by placebo
for 8 weeks or vice versa)
Metformin, 500 mg (td):
Donepezil 10 mg (an);
Acarbose, 50 mg (tid); 1-year
treatment

Liraglutide, 1.8 mg, daily;
4-week treatment

Exenatide, 2 mg once weekly;
3-month treatment

Liraglutide 0.6 mg for 1 week,
1.2 mg for 1 week, 1.8 mg for
10 weeks, daly;

12-week treatment

Rosigitazone, 4 mg, daily;
6-month treatment

Piogiitazone, 15 to 30 mg, daily;

6-month treatment

Piogitazone, 15-30 mg, dally
(15 mg n=19; 30 mg n=2);
6-month treatment

Rosigltazone, 4 mg, daily;
8-week treatment

Quercetin 500 mg/day:
Quercetin 1000 mg/day;
12-week treatment

Sutforaphane (30 mg/day p.o);
8-week treatment

Results

Intranasal intake of insulin
enhanced both consoiidation of
words and general mood in
humans without causing systemic
side effects.

Treatment with 20 U of insulin
improved delayed memory. Both
doses of insulin (20 and 40 IU)
preserved caregiver-rated
functional abilty and general
cognition (the ADAS-cog score and
the ADCS-ADL scale).

Daily treatment with 40 U insulin
modulated cognition for adults with
AD or mild cogritive impairment,
with the apolipoprotein E-related
differences in treatment response
for the primary memory composite.
No cogniive or functional benefits
were observed with intranasal
insulin treatment over a 12-month
period among the primary
intention-to-treat cohort.

No between group differences
were observed in change from
baseline on total MADRS, PANAS,
or on a global index of
neurocognition.

Adjunctive intranasal insuin
administration significantly
improved a single measure of
executive function in bipolar
disorder.

Single-dose intranasal insulin
treatment did ot have a large-
enough effect on verbal memory or
sustained attention to be detected
in this study.

There were no significant
differences between the two
groups at week 8 on
psychopathology and cognition
(PANSS and SANS).

Metformin changed glucose
metabolism (HoATC levels),
improved depressive performance
(MADRS and HRSD-17 scores)
and cognitive function (Wechsler
Memory Scale-Revised).
Metformin improved cognitive
deficits (total recal of the Selective
Reminding Test).

Metformin improved executive
function (Trais-B) and increased
orbitofrontal metabolism (Arterial
Spin Label MR).

Metformin improved cognitive
function (ADAS-Cog scores; WHO-
UCLA AVLT TMT scores; TMT
times)

Liraglutide improved cognitive
function from baseline to endpoint
(the TMTB standard score and a
composite Z-score comprising
multiple cognitive tests (the DSST,
RAVLT, Stroop test)
Non-significant resuit in improving
cognition or psychosocial function
in obese, antipsychotic-treated SZ
patients (BACS, REY, SF-36, PSP,
PANSS)

No detectable cognitive differences
between study groups after this
duration of treatment.

Rosigiitazone exhibited better
delayed recall and selective
attention compared to placebo.
Pioglitazone decreased FIRI and
HOMA-R, and improved cogrition
(ADAS-Jcog scores and WMS-R
logical memory-I scores).
Pioglitazone decreased plasma
insulin levels, improved cognition
(MMSE, ADAS-J-cog, and WMS-R
logical memory-) and regional
cerebral blood flow in the parietal
lobe.

No significant results in change
scores of cognitive performances
between two groups in clozapine-
treated patients with SZ (WAIS-
HVLT, TMT, WCST)

No significant effects of quercetin
on memory, psychomotor speed,
reaction time, attention or cognitive
flexibilty between groups.

Sulforaphane had the potential to
improve some domains of cogritive
function in SZ (OCLT).

NDVGI: non-dementia vascular cognitive impaimment; ADAS-Cog: the Alzheimer's Disease Assessment Scale-Cognitive Subscale; WHO-UCLA AVLT: The World Health

Organization-University of Calfonia-Los Angeles Auditory Verbal Leaming Test; TMT: the Trail Making Test; SZ: schizophrenia; MDD: major depressive disorder; BD: bipolar disorder;
TMTB: the Trail Making Test-B; DSST: Digit Symbol Substitution Test; RAVLT: Rey Auditory Verbal Learning Test; BACS: Brief Assessment of Cognition in Schizophrenia; REY: Rey-
Osterreith complex figure test; SF-36: the Short-Form 36 survey of the International Quality of Life Assessment; PSP: the Personal and Social Performance Scale; PANSS: Positive and.
Negative Syndrome Scale; SANS: the Scale for Assessment of Negative Symptoms; WAIS-I: the Digit Span subtest from the Wechsler AdultInteligence Scale Il HVLT: the verbal fiency
test, the Hopkins Verbal Leaming Test; TMT: the Trail-Making Test; WCST: the Wisconsin Card Sorting Test; MMSE: the Mini-Mental State Examination; ADAS~J-cog: Alzheimer’s Disease
Assessment Scale-Cognitive Subscale Japanese version; ADCS-ADL: The Alzheimer's Disease Cooperative Study- activities of daily lving; WMS-R logical memory-I: Wechsler Memory
Scale-revised logical mamory-: FIRY: fasting immuncreactive inculin: HOMA-R: the homeostasis model assessment ratio: OCLT: the Accuracy component of the One Card Leaming Task.
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Cell death and degradation
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@FAFMK)
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Nitochondria-related pathways
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Protielin
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Prednisolone

Newrotransmitters’ modulaion  Riuzole

Ceftriaxone.

Lamotrigine

‘Gaboxadol hydrochloride

‘Gabapentin

Neuromuscular junction
stabilzation
34-DAP)

Tideglusib (NP-12, NPO31112)
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Salbutamol (aloutero)

Molecular class.

Pyridazine-derivative
‘Small molecule

‘Small molecule (RG7800
derivative)

Quinazoine

Inorganic sodium salt
Small molecule

Small molecule
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‘Sodium butyrate analogue
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Synthetc hydroxarmic acid
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Ribonucleoside diphosphate
reductase inhibitor

Oligosaccharide anthvacycline
antineoplastic antibiotic
‘Synthetic fluoroquinolone
antibiotic:

‘Synthetic benzyl styryt sulfone:
analogue

Cyclooxygenase (COX)
inhibitor
Pyrroidine

Chinese herbal formula

Dipeptide boronic acid
analogue

Cysteine proteases
ireversible inhibitor
Cysteine protease inhibitor
Pyrazolone

Amino acid dervative.

Cholesterol-ike structure

Monocional antibody

Heterooyciic aromatic organic:
compound

Rock inhibitor
Avomatic amine
‘Small molecule

Homone

Thyrotropin releasing
hormone analogue

Thyrotropin releasing

hormone analogue
‘Synthetic glucocorticoid

Benzothiazole derivative

“Third generation
‘cephalosporin antbiotic

Synthetic phenyltiazine

‘Synthetic compound
GABA chemical analogue

Organic compound pyridine-
derived

Small heterocycic
thiadiazoidine-based
molecue

Selective beta2-adrenergic
receptor agonist

2

3

3 88338 B
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3
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Original target
disease
(for DR)

Urea cycle disorder

Seizures; status epieptious; bipolar
disorder; migraine; sohizophrenia.

Mycosis

Cutaneous T-cell ymphoma
Multiple myeloma

‘Osteoarthrts, theumatoid arthritis in
adults: juvenie arhvts; ankylosing
spondyits, colorectal polyps; pain;
dysmenonthea; cardiovascular isk
reduction

Ghroric myelogenous leukemia;
polycythernia vera; cervica, head, neck
and ovaran cancers; melanoma; sicke
cel anemia

‘Acute myeloid leukemia

Respiratory tract, skin and skin structure,
intra-abdominal and Gl infections,
endocardits, tuberculos’s,
nonganococeal urethits, plague,
meningis and other NS infections.
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Seizures

Kidneys, iver and asthma; geriatric
diseases

Muiiple mysioma

Amyotrophic lateral sclerosis
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deficiency; end-stage renal disease

Amyotrophic lateral sclerosis

Cerebral vasospasm; cerebral ischemic
symptoms

Multiple sclerosis

Chonic obstructive puimonary disease;
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Ghronic renal faire; tumer and prader-
Wil syndromes; growth disorders
Epiepsy; spinal cord inury;
spinocerebelar ataxia; neonaal
respiratory ditress

Spinocerebelar degencration disease

Adrenocortical insufficency;
adrenogenital syndrome: hypercalcermia;
thyroicits; theumaic, ocular, oral,
hematologic disorders; colagen,
dermatologic, lung, gastrointestinal,
neoplastic and liver diseases; asthma;
pericarditis; mullple sclerosis;
myasthenia gravis, organ transplants;
nephrotic syndrome

Amyotrophic lateral sdlerosis

Acute oitis meda; endocardis;
meningis; septicemi; antibiotic
prophykaxs; bon, oin, gastrointestinal,
intra-abdominal, respiratory tract, skin
and urinary tract infection
Lennox-Gastaut syndrome; bipolar
disorder and mood episodes
Postherpetc neuralga; partia-onset
seizures; peripheral neuropathic pai
painul ciabetic neuropaty

Lembert-Eaton myasthenic syndrome
(LEMS)

Alzheimer's disease; progressive
supranuclear palsy; congerital myotonic.
dystrophy

‘Asthma, chronic obstructive pumonary
disease

Clinical trial phase

Active, not recniing-phase
W clnica tria for SMA
Stopped-phase U cinical
trial for SMA

Curtently in phase Il ciical
trial for SMA

Suspended after phase |
clinical trial for SMA.
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completeciis (or shgeloss;
qut heath, SOFA metabolsm,
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demats, obesty)

FDA-approved
Campeted-diical tialin SMA

FDA-approved
Completed-cinical tial in
SMA
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tumors, seizures,
osteoarthiis, anemia,
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opicid dependence

Many completed-trials
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FDA-approved
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FDA-approved
Recruiting-phase Il clnical
tril for SMA

FDA-approved
‘Three completed-clirical il
for SMA

FDA-approved

FDA-approved

Currently in phase Il cinical
tral for chronic
myelomonocytc leukemia
Recaled from the market

FDA-approved

FDA-approved

FDA-approved
FDA-approved

Completed phase Il linical
trialfor combinatorial
reatment with valproic acid
in SMA

Completed phase Il cinical
trialfor ALS

Active, not recruiing-phase
Il clrical tra for SMA
Active, not recruing-phase
Il clnical tra for SMA
PMDA approved in Japan
Recruiting-phase Il clinical
trial for ALS

FDA-approved
Completed-phase Il nical
tria in SMA

Curtently in phase Il ciical
trilfor COPD; ALS and SMA
FDA-approved piot study
for SMA

FDA-approved

Recruiting-phase IV ciical
tril for SOD
FDA-approved

FDA-approved
Completed phase Il inical
trial for SMA
FDA-approved

FDA-approved

FDA-approved

“Two cinical trials completed
o SMA type Il and I
patients.

FDA-approved
Recruiting-phase Il for SMA

Completed phase Il cinical
trialfor Aizheimer's disease;
Not yet recruiing phase I
clinicaltria for congenital
myotonic dystrophy
FDA-approved
Recriting-clinical ria for
SMA in French register

Ref. And/or clinical trial

NCT02268552
NCT02240355

NCT02913482 (Frefish),
NCT02908685 (Sunfish),
NCT03032172 ewelfish),
NCT03779334 (Rainbowish),
NCT04256265, NCTO4177134
Gogiott et al. (2013)

Luetal. 2013)

Cherry etal. (2013)

Cherry etal. (2013)

Baek et . (2019)

Ghang et al. (2001)

Andreassi et al. (2004)
NCT00528268 (STOPSMA),
NCT00439218 (NPTUNEO2)
and NCT00439569
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Kissel et al. (2011)
INCT00481013, NCT00374075

Avia et al. (2007)

Hahnen et al. (2006)
Garbes et al. (2009)

NCT02876094

Grzeschik et al. (2005)
NCT00485511, NCT00568698,
NCT00568802

Andreassi et al. (2001)

Konieczny and Artero (2020)

Son etal. (2019)
NCT02562443

Kim et al. (2020)
Ando et al. (2019)
NCT00324454
Tseng et al. (2017)
Foran et al. (2016)
Wang et al. (2019)
Wang etal. (2019)
Sun et al. (2019)

Kissel et al. (2011)
NCT00227266, NCT00661453

Bordet et al. (2007)
NCT01302600, NCT02628743
NCT03921528

Bowerman etal. (2012)
NCT03792490, eudra:CT-nr.
2017-003676-31

Hensel et al. (2017)
Skigh et al. 2011)

Ramdas and Servais (2020)
NCT02644668
NGTO0533221, NCTO1369901
Tzeng et al. (2000)

Ohuori et al., (2016)

NCT0410774
Quattroceli et al. (2017)

Dimitriad et &, (2013)
NCT00774423 (ASIRI)

Nazardo et al. 2011)

Nascimento et a. (2010)
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Mertni et a. (2003)
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DR, g repositoning; DS, ug screening; FDA, Food and Drug Administraton; SMA, spinal muscular atrophy. Natural, chemical and FDA-approved compounds are classifie by theirmechanism of action. The SMA dinical study phases
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Drug
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Rapamycin
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XPro1595

Phase 2

Phase 1

Phase 2

Phase 2

Phase 1

Duration

24 weeks

8 weeks

18 month

12 weeks

12 weeks

Number of
patients

15

10

12

18

Official Title

An Open-Label, Piiot Study of
Daratumumab SC in Patients With Mid to
Moderate Alzheimer's Disease (DARZAD)

Cognition, Age, and Repamycin
Effectiveness Downregulation of the
m-Tor Pathway (CARPE DIEM)

MCLENA-1: A Phase Il Clinical Tril for the.
Assessment of Safety, Tolerabilty, and
Efficacy of Lenaldomide in Patients With
Mid Cognitive Impairment Due to
Alzheimer's Disease

A Pilot Open Labeled Study of Tacrolimus
o Assess its Effects on Bio-markers of
Mild Cognitive Impaimment and
Alzheimer's Disease

Phase 1b Open-Label, Dose-ldentification
Study of XPro1595 in Patients With Mid
o Moderate Aizheimer's Disease With
Elevated High Sensitiity C-reactive
Protein in Biood

Primary Outcome Measures

ADAS-Gog/11 [Time Frame: 25 weeks]
Responder rate defined as
improvement of 24 points on standard
11-item.

Blood brain barrier penetration of RAPA
[Time Frame: Change from Baseline to
8 weeks]

Change in cognition as assessed by the
Alzheimer's Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog)
total score [Time Frame: 18 months]

‘GSF biomarkers of target engagement,
AD pathology, and neurodegeneration
Time Frame: Baseline and 12 weeks]

‘The number and percentage of patients
with a treatment-emergent adverse
event throughout 12 weeks of
treatment with XPro1595

ClinicalTrials.gov
Identifier

NCT04070378
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NCT04032626

NCT04263519
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