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Honeybees (Apis mellifera) have fascinating navigational skills and learning capabilities in the field. To decipher the mechanisms underlying place learning in honeybees, we need paradigms to study place learning of individual honeybees under controlled laboratory conditions. Here, we present a novel visual place learning arena for honeybees which relies on high temperatures as aversive stimuli. Honeybees learn to locate a safe spot in an unpleasantly warm arena, relying on a visual panorama. Bees can solve this task at a temperature of 46°C, while at temperatures above 48°C bees die quickly. This new paradigm, which is based on pioneering work on Drosophila, allows us now to investigate thermal-visual place learning of individual honeybees in the laboratory, for example after controlled genetic knockout or pharmacological intervention.
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INTRODUCTION

Temperature is an important modality for honeybees and small variations in ambient temperature can have large effects on honeybee development and behavior (Tautz et al., 2003; Groh et al., 2004; Jones et al., 2005; Kablau et al., 2020a,b). High temperatures are particularly critical not only for the proper development of larvae but also for adult honeybee workers. When in summer the temperatures exceed a threshold of 34°C, workers move outside the hive to lower hive temperature by fanning and by carrying water inside (Lindauer, 1954). With increasing ambient temperatures due to climate change, honeybee foragers are increasingly facing extreme temperatures during their foraging bouts (Soroye et al., 2020). Cold spots in an otherwise hot environment are, for example, provided by leaves of trees, which give shadow and thus allow honeybees and other bees to relax from temperature stress (Böll et al., 2019). Individual bees try to avoid temperatures above 44°C and even respond with the extension of their sting to stimulations with heat, indicating that heat can serve as an aversive stimulus for these insects in learning situations (Junca et al., 2014). Honeybees are excellent models of associative learning and memory (Giurfa, 2003). In addition to training bees to associate an odor (neutral stimulus) with sugar water reward in the conditioning of the proboscis’ extension response (for review see Giurfa and Sandoz, 2012), they can learn to associate an odor with a short and aversive heat stimulus in aversive conditioning of the sting response such that the odor can predict a punishment by high temperature (Junca et al., 2014). Most of the aversive learning paradigms rely on the observation of sting extension, which requires that the bee is immobilized on her back in a highly unnatural position, which might induce a large degree of stress in the insect.

To overcome this problem of fixation and to ask if honeybees can actually employ a normal ambient temperature as a reward or escape stimulus in an otherwise unpleasantly hot arena, we introduce a thermal-visual place learning paradigm for honeybees, which is based on a similar arena for fruit flies (Ofstad et al., 2011). A great advantage of this novel paradigm for honeybees is that the bees can walk about freely in the arena, which is highly advantageous over the fixed situation necessary for the learning paradigms described above. Also, this paradigm allows us to study the physiological mechanisms underlying visual learning in an arena under fully controlled conditions using a simulated environment, which is very important for understanding how bees orientate and navigate.



MATERIALS AND METHODS


Animals

All experiments were performed with honeybees (Apis mellifera carnica) from queen-right colonies maintained at the departmental apiary of Würzburg University. Colonies have been treated against Varroa destructor regularly with a sufficient time interval to experiments. Returning foragers aged between 3 and 5 weeks were collected from the hive entrance and wings were cut on the same day of the experiment or the day before, depending on the experiment, to prevent the bees from flying about. Bees were kept overnight in an incubator for 24 h at 28°C and 60% humidity. Bees could feed ad libitum from either 30% or 50% sugar solution until testing.



Behavioral Experiments

Spatial learning experiments were performed in a visual heat maze arena, which was described for the first time by Ofstad et al. (2011). Bees were collected individually from the hive entrance the day before testing. Until the start of the experiment, they were maintained in small cages (11.7 cm × 8.6 cm × 7 cm) and had access to either 30% or 50% sucrose solution ad libitum, depending on the experiment. Cages were placed in an incubator maintained at 28°C and 60% humidity. Before the behavioral experiment, a bee was taken out of the cage and transferred in a small glass vial, in which it was immobilized on ice for approximately 5 min. Then, we had to cut off the wings to prevent the bees from flying about in the arena. After 2 min, the bee was placed into the arena and usually began to walk immediately.

We adapted the thermal-visual arena of Ofstad et al. (2011) for honeybees. The ground of the round arena was heated by a water bath. To introduce a safe spot within the arena, a defined temperature (here 25°C) can be set at a specific spot due to 64 individually addressable thermoelectric modules (Peltier elements; 23 × 23 × 4.2 mm3; Q = 13.1 W, I = 2.7 A, U = 8.1 V, dT = 71 K; JenMechanik Limited, Jena, Germany, see Supplementary Material). We placed thermal conductive pads and a white PVC disk (material thickness of 0.5 cm) on top of the Peltier array providing a flat and even surface for the bees. The arena was limited by an 8 mm high, 18.5 cm diameter aluminum ring heated at 60°C covered with glass disc preventing the bees from escaping. The arena was surrounded by an LED screen of 30 cm heights with a diameter of 32 cm. The LED screen consisted of twelve P4 soft modules with 256 per 64 LEDs (Shenzhen UNIT LED Company Limited, China)1 which was used to produce landmarks in the form of black horizontal, vertical and diagonal stripe patterns in front of a white background. Each bar covered 15° of the screen seen from the center of the arena which corresponds to a spatial frequency of 0.033 cycles/°. During the experiment, the arena was illuminated with infrared light and bees were recorded with a non-chromatic camera (DMK27BUP031 with a TCL 1216 5MP objective; The Imaging Source Europe GmbH, Germany) supplemented by an infrared transmission filter. The camera was placed perpendicular above the arena center at a height of 56 cm. Movies were recorded using IC Capture 2.4.642.2631.

The experiment aimed to show that bees can find a safe spot by use of landmarks that were projected on the LED screen. A learning session consisted of six (Experiment 1) or 10 (all other experiments) training trials of 5 min each and a subsequent test without a safe spot (apart from Experiment 1). In each trial, the safe spot and the landmark were shifted by 90° clockwise or anticlockwise, i.e., one out of four quadrants that virtually divided the arena. Thus, the relation between landmarks and safe spots always remained constant. In each trial, the time was measured until the bee reached the safe spot, where it usually remained until the safe spot was re-located and thus the place became too hot for the bee.

Movies were compressed using the program any2ufmf. Subsequently, the walking path of a bee was tracked using Ctrax 0.5.11 (Branson et al., 2009). The location of the bee and the time it needed to reach the safe spot were subsequently calculated using a custom-made R-script (see Supplementary Material). We determined the duration until the safe spot was reached for each bee in each trial. In the subsequent test, we measured the time the bee spent in the quadrant where the safe spot had been in the trial before. However, the landmark was shifted as before. We only tested one shape in our experiments, because we could not detect any preference of the bees for a landmark without a safe spot (data not shown). But, we are convinced that honeybees do not have a natural preference for this highly artificial shape because it has been demonstrated that honeybees prefer flower-like patterns and shapes (Lehrer et al., 1995). We calculated a learning index as the quotient of the time the bee spent in the correct quadrant and the time it spent in the quadrant across the correct quadrant (Ofstad et al., 2011).



Statistics

Data were analyzed for normal distribution using the Shapiro–Wilk Normality test. The effect of training trial and treatment on the time needed to reach the safe spot was compared between different groups using repeated-measures analysis of variance (ANOVA RM, factor training trial or factor treatment, SPSS, IBM). To test whether the learning index differed from zero, one sample T-tests were performed (because all data appeared to be normally distributed). The learning indices of two different groups were compared using independent T-tests. All tests were two-tailed.




RESULTS AND DISCUSSION

Despite their minute brain, honeybees have impressive navigational skills, which allow them to locate diverse food sources within a range of several kilometers around their nest and to return fast and direct to their hive (Beekman and Ratnieks, 2000). Many experiments suggest that they rely on a cognitive map similar to humans (Menzel et al., 2005; Moser et al., 2008). When young bees leave the hive for the first time, they need to acquire information on the local area and perform 2 days of orientation flights before they begin to forage. If they are displaced during this time, many of them are unable to return to their hive (Capaldi and Dyer, 1999). Once they have performed their orientation flights, however, they can be displaced during their outward foraging trip and will still return to their hive using the most direct route, which often involves novel short cuts. Honeybees use both path integration, relying on a celestial compass and an odometer (Srinivasan, 2015) and view-based navigation, i.e., comparing memorized panoramic views with current views (Towne et al., 2017) for orientation in complex landscapes. Intriguingly, we still know very little about the neuronal mechanisms underlying these complex navigational skills in honeybees (Zwaka et al., 2019). Several studies indicate an important role for the mushroom bodies in honeybee orientation—a region of the insect brain involved in sensory integration and memory (Plath et al., 2017; Zwaka et al., 2019). Further, the central complex receives orientation and spatial information and processes how the bee is orientated in relation to its environment using visual working memory (Plath et al., 2017). An unresolved open question is whether there is a connection between the mushroom bodies and the central complex. Similar to vertebrates, the transcription factor early growth response protein 1 seems to play a role in orientation, since its expression is upregulated following a single orientation flight in the mushroom bodies in young foragers (Lutz and Robinson, 2013). A homolog of this gene is known to play a role in memory consolidation by promoting structural neuroplasticity in the brain following exposure to novel stimuli in vertebrates (Knapska and Kaczmarek, 2004).

To study visual place learning under controlled laboratory conditions for future analyses on the molecular mechanisms and genetics underlying learning and navigation, we established a thermal visual arena for honeybees, which was adapted from an arena for fruit flies (Ofstad et al., 2011). It was inspired by the Morris water maze for rodents and heat mazes for crickets and cockroaches (Morris, 1981; Mizunami et al., 1998; Wessnitzer et al., 2008; Ofstad et al., 2011). In this arena, honeybees learn to escape an unpleasantly hot environment (>44°C) by approaching a safe spot (i.e., a 25°C cool tile) associated with a visual stimulus (Figures 1A–C).
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FIGURE 1. (A) Schematic picture of the arena for thermal visual place learning in honeybees (adapted from Ofstad et al., 2011). The ground of the arena is unpleasantly hot and only a small safe spot is (25°C) is offered to walking honeybees. The visual panorama changes with the cold tile. (B) Photograph of the arena from the top. Light-emitting diodes illuminate the arena from the wall. (C) Thermal image of the arena: spatial learning experiments were performed using 46°C ground temperature. Also, a heated ring (~60°C) and a glass lid on top prevent bees from escaping. (D) The time needed to reach the safe spot at different ground temperatures (42°C–48°C) within in six training trials of 5 min each. Different letters (a,b) indicate significantly different groups (n = 11–12). (E) Times to reach the safe spot using 46°C ground temperature. Of bees that could use landmarks (green and blue graphs; bees of these two groups received different sugar solutions before training) and those which did not have landmarks (gray graph) within 10 training trials. The inlet shows examples of the safe spot position. In (D,E), mean values and standard errors are shown (n = 20–29). (F) Performance indices of groups trained without landmarks (gray dots; n = 20) and of those with landmarks [green (n = 47) and blue dots (n = 29)] which differed in the sugar concentration they could feed on before training (green: 50% and blue: 30%). *P < 0.05, T-test; n.s., not significantly different from zero (LM, Landmarks).



Honeybees are very sensitive to ambient temperature and maintain a brood nest temperature between 32°C and 36°C, with an optimal temperature of 35°C, to support the appropriate brood development (Tautz et al., 2003). When adult honeybees were tested for their thermotaxis on an aluminum block with a temperature gradient of 28–48°C, they preferred temperatures of 34–35°C (Kohno et al., 2010). At the individual level, bees avoid temperatures above 44°C and respond with a sting extension to heat stimulations (Junca et al., 2014). The lethal temperature for honeybees (Apis mellifera carnica) is at around 50°C (Kovac et al., 2014). We, therefore, applied temperatures between 42°C and 50°C to test which temperature is optimal to induce avoidance of honeybees in our arena.

The only visual cues for spatial orientation for the bee in the arena are provided by the surrounding LED panorama (Figures 1A–C). This displays three different stripe patterns with vertical, horizontal and diagonal bars (Figures 1A,B; Ofstad et al., 2011). To assess visual place learning, an individual honeybee is introduced into the arena. During training, we measure the time which the bee needs to reach the safe spot within a time window of 5 min. A surrounding heated ring (~60°C) and a glass lid prevent the bee from flying off the arena (Ofstad et al., 2011). Once the bee has located the safe spot, it remains there until the cool tile and the corresponding visual panorama are rotated randomly clockwise or anticlockwise by 90°. Then the bee starts searching for the safe spot anew. With increasing training trials the bees associate the position of the safe spot relative to that of the visual landmark. Temperatures between 42°C and 50°C (ground temperature) were applied in a first experiment in six trials to investigate at which temperature the bees find the safe spot fastest with repeated training. At 50°C, five out of seven individuals died after 5 min in the arena, so that this temperature was abandoned. At the other temperatures (42°C, 44°C, 46°C and 48°C), honeybees became increasingly faster in locating the safe spot with each training trial (Figure 1D). The two higher temperatures led to a particularly steep decrease in time to reach the safe spot. For that reason, we selected 46°C (second-highest temperature; at 46°C 20% of bees died during training, mostly because they did not accept the safe spot) for further experiments, when asking if bees would use the visual landmarks for orientation. In this experiment, one group of bees (Figure 1E; blue line) could use the T shaped landmark (border area between horizontal and vertical stripes) in the arena, which changed its relative position together with the safe spot (Figure 1E, inset). A second group of bees did not get any landmarks (the screen was set off; Figure 1E, gray graph). Further, we increased the number of training trials to ten, because after six trials not all of the groups tested before appear to have reached an asymptotic performance level. Although both groups showed a significant decrease in time to reach the safe spot (Figure 1E; effect of training trial: F(6,327) = 85.86; P < 0.001, ANOVA RM), the bees which could employ landmarks showed a significantly stronger reduction in the time to reach the safe spot (effect of landmark presence: F(1,49) = 354, P < 0.001).

Immediately after training, the bees faced a probe trial without a safe spot to test for visual place memory expression (described in Ofstad et al., 2011). The landmark changed its position as before. We hypothesized that bees should spend significantly more time in the quadrant of the arena where the visual landmark suggests the safe spot to be, even though there is no safe spot to escape the still high temperature in the arena during testing. The performance index of bees, i.e., the time bees spend in the target quadrant (the quadrant with the safe spot to be) in comparison to the opposing quadrant (Ofstad et al., 2011), was significantly larger than zero (Figure 1F; T = 2.17, P < 0.05, n = 47, for 50% sugar and T = 2.51, P < 0.05, n = 29, for 30% sugar), indicating place memory expression. In the absence of landmarks, however, the performance index did not differ from zero (Figure 1F; T = 0.1; P = 0.91, n = 20).

In many experiments on learning in honeybees [but also in other insects such as Drosophila and rodents (Lukoyanov et al., 2002; Friedrich et al., 2004; Krashes et al., 2009)], the feeding status of the individual has a strong effect on the behavioral response and in particular on learning performance. In honeybees, associative appetitive learning performance, for example, strongly depends on individual sucrose responsiveness (Scheiner et al., 1999, 2001a,b, 2005, 2013) and starvation time (Friedrich et al., 2004), which affects sucrose responsiveness. A starvation period of 18 h before training leads to a significantly higher memory performance than a starvation period of 4 h (Friedrich et al., 2004). Similarly, a high sugar water concentration (30%) used as a reward leads to a significantly higher acquisition performance than a low sugar concentration of 1.6% (Scheiner et al., 2005). Bees with a high sucrose responsiveness, i.e., good learners, also display a higher brain activity of cAMP-dependent protein kinase (PKA; Scheiner et al., 2003) and have higher levels of the biogenic amine octopamine (Behrends and Scheiner, 2012). Both PKA and octopamine play important roles in associative appetitive learning and memory formation (Fiala et al., 1999; Scheiner et al., 2006) and may have a similar function in thermal-visual place learning in honeybees.

Accordingly, we hypothesized that place memory expression in bees is dependent on the feeding status, as food deprivation at the individual or colony level is the main driving force for foraging behavior (Seeley, 1989; Desmedt et al., 2016). We, therefore, asked if learning in a thermal-visual arena may be affected by the sugar concentration which the bees had access to before training. Bees fed with either 30% or 50% ad libitum sugar solution before training displayed a significant decrease in time to reach the safe spot (effect of training trial: F(9,684) = 209.32; P < 0.001, ANOVA RM), while the time to locate the safe spot of both groups did not differ statistically (factor feeding status: F(1,76) = 0.68; P = 0.411, ANOVA RM). During the test, the performance index of both groups differed significantly from zero (30%: T = 2.51, n = 29, P < 0.05; 50%: T = 2.17, n = 47, P < 0.05) suggesting place memory expression. The performance index of the two groups receiving different sugar solutions did not differ significantly (T = 0.50; P > 0.05).

Many similar setups exist to test spatial orientation and learning in various insects including honeybees, fruit flies, ants, crickets and cockroaches (Zhang et al., 1996; Mizunami et al., 1998; Schatz et al., 1999; Menzel et al., 2005; Neuser et al., 2008; VanderSal, 2008; Wessnitzer et al., 2008; Foucaud et al., 2010; Ofstad et al., 2011; Tsvetkov et al., 2019). Many of the available paradigms investigating spatial learning in honeybees rely on food rewards. Tsvetkov et al. (2019), for example, developed a food search task adopted from the vertebrate literature for honeybees to study spatial learning. In their assay, the bees have to learn the location of artificial flowers inside the testing arena. Other paradigms use the successful return to the hive or the feeder after displacement as rewards (Menzel et al., 2005). Still, other paradigms employ complex mazes to study spatial learning and memory in bees (Zhang et al., 1996). Our new assay employing visual place learning in an arena under fully controlled conditions relies on temperature as a reinforcer. It offers several advantages, including the possibility of high-resolution analysis of the individual behavior, during training and testing. The recording of single animals allows a detailed and individual analysis including parameters such as quadrant distribution and transitions, speed, and directional changes when using a suitable tracking software like CTRAX (in this study; Branson et al., 2009) or others (Pérez-Escudero et al., 2014; Werkhoven et al., 2019). Ofstad et al. (2011) showed no difference in place learning performance between individually tested flies and flies tested in groups. Whether this also applies to social animals such as the honeybee will have to be tested in the future (Howard et al., 2019).

Taken together, our results show that honeybees can rely on visual landmarks to locate and learn a safe spot position in an otherwise hot arena. Further, the bee’s performance in this non-food reinforced task is independent of the feeding regime, at least for the selected standard sugar solutions (30% and 50%) given to the bees before the day of training. Our paradigm allows us now to study navigational skills of individual honeybees under controlled laboratory conditions, enabling manipulations and intervention with neuronal signaling pathways to understand the neuronal mechanisms underlying visual navigation and learning. The arena also allows detailed comparative studies, as different model organisms such as fruit flies, honeybees, but also ants can be trained with the same quality of stimuli (light and temperature) under controlled laboratory conditions. It may also provide a link to vertebrate studies because setups like the Morris Water Maze or the Radial Arm Maze have been used there for many years to study place learning and spatial tasks related to both basic and applied, clinical research (Savonenko et al., 2005; Vorhees and Williams, 2006; Wolf et al., 2016). Alzheimer’s disease, for example, could serve as an example here. To understand the disease in its entirety and to develop possible effective treatment strategies, mouse models are tested in different spatial memory tasks to characterize the cognitive profile. A major opportunity is therefore to identify fundamental mechanisms of memory formation and memory loss in insects using a similar behavioral assay like the visual place memory arena described in this study and in Ofstad et al. (2011).
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The behavior of an animal has substantial effects on its metabolism. Such effects, including changes in the lipid composition of different organs, or changes in the turnover of the proteins, have typically been observed using liquid mass spectrometry methods, averaging the effect of animal behavior across tissue samples containing multiple cells. These methods have provided the scientific community with valuable information, but have limited resolution, making it difficult if not impossible to examine metabolic effects at the cellular and subcellular levels. Recent advances in the field of secondary ion mass spectrometry (SIMS) have made it possible to examine the metabolic effects of animal behavior with high resolution at the nanoscale, enabling the analysis of the metabolic effects of behavior on individual cells. In this review we summarize and present these emerging methods, beginning with an overview of the SIMS technique. We then discuss the specific application of nanoscale SIMS (NanoSIMS) to examine cell behavior. This often requires the use of isotope labeling to highlight specific sections of the cell for analysis, an approach that is presented at length in this review article. We also present SIMS applications concerning animal and cell behavior, from development and aging to changes in the cellular activity programs. We conclude that the emerging group of SIMS technologies represents an exciting set of tools for the study of animal behavior and of its effects on internal metabolism at the smallest possible scales.

Keywords: cellular behavior, SIMS, isotope labeling, high-resolution imaging, nanoscale


INTRODUCTION

Recent years have produced large advances in the analysis of the general aspects of proteins, including “omics” studies for protein abundance (Antonelli et al., 2019; Noor et al., 2019), analysis techniques for the abundance of mRNA (Washburn et al., 2019), analyses of protein translation rates (Riba et al., 2019; Sharma et al., 2019) and much more. Similarly, substantial progress has also been made in microscopy techniques for imaging the location of proteins and the general morphology of cells. For example, optical microscopy techniques have been able to observe cellular processes at the nanoscale (Schermelleh et al., 2019). X-ray imaging and tomography techniques are also progressing and are useful tools in the cellular study (Weber et al., 2019; Zhang, 2019). These encouraging trends suggest that the organization and spatial configuration of cells will be examined efficiently in the next few years. Live fluorescence imaging complements these approaches by providing information in the temporal domain, albeit only in the short term, from seconds to hours. Overall, despite the power of these tools, the long-term temporal domain remains relatively unclear, since none of these technologies provide sufficient information on the cellular activity over days or longer.

The examination of cellular activity at various time scales is critical for the study of much of animal behavior, as it is well-established that the metabolic processes of a cell influence behavior and vice versa (for example Kohsaka et al., 2007; Leulier et al., 2017). This has been recognized decades ago, and several technologies have therefore been introduced. They typically involve measuring the composition of cells suspended in solution, using conventional biochemical tools or in-solution mass spectrometry approaches. Unlike many of the modern techniques mentioned above, these tools provide information on processes and rates averaged across multiple cells. These methods are therefore limited in resolution and are unable to fully describe metabolic processes at the cellular and subcellular scales.

A modern solution to this problem comes from new advances in mass spectrometry imaging techniques, particularly in the field of secondary ion mass spectrometry (SIMS). SIMS analysis, which makes use of instruments such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the imaging of individual cells, with resolutions up to the 100 s of nanometers. When coupled with isotope labeling and other correlative microscopy techniques, SIMS analysis represents an exciting new avenue for the examination of animal behavior at the cellular and subcellular scales, across the long-term temporal domain.

In this review article, we present an overview of the SIMS technique and its application for the examination of the behavior of individual cells. We begin with a general overview of SIMS methodology and later focus on the specific application of SIMS in cellular studies. We present three case studies that have used NanoSIMS to examine the behavior of individual cells, and we also discuss the broader applications of SIMS in biological and environmental studies. These topics aim to inform the reader about the advantages and limitations of these novel techniques, which will likely continue to expand in the future, as creative applications for SIMS technology are continually developed.



SIMS ANALYSIS

SIMS refers to measurement techniques wherein a selection of samples under a high vacuum is removed using a beam consisting of primary ions. This process is known as “sputtering.” Sputtering using the primary ion beam generates secondary ions, ionized atoms, and molecules which are then ejected from the analysis chamber and conveyed into a mass spectrometer for analysis (Figure 1; Fearn, 2015; Nuñez et al., 2018). While all SIMS techniques share these initial similarities, they differ slightly in the source of the primary ions, the voltage with which the ion beam strikes the sample, the amount of sample removed, and the separation of ions for detection. Two of the most common types of SIMS instruments used for imaging are time-of-flight SIMS (ToF-SIMS) and nanoscale SIMS (NanoSIMS). Matrix-assisted laser desorption/ionization combined with mass spectrometry (MALDI-MS), while not strictly a SIMS technique, is also often used to image biological samples and is mentioned here for comparison. For more information on MALDI and other mass spectrometry imaging methods, we refer the reader to the following reviews and studies: Hanrieder et al. (2013); Passarelli and Ewing (2013); Petras et al. (2017); Buchberger et al. (2018); and Xiao et al. (2020).


[image: image]

FIGURE 1. General principles of secondary ion mass spectrometry (SIMS) analysis. (1) SIMS analysis begins by making use of a primary ion beam, which can either be made of positive ions or negative ions. (2) The primary ion beam strikes the analysis surface during sputtering, producing secondary ions. (3) Secondary ions are accelerated towards the detector, either through a flight tube [time-of-flight SIMS, ToF-SIMS; image adapted with permission from Mazel and Richardin (2009) or through magnetic separation using a quadrupole (nanoscale SIMS, NanoSIMS), image adapted with permission from Nuñez et al. (2018)].



SIMS analyses are generally used to create images, where each pixel of the image contains a mass spectrum with chemical information of the analyte of interest. As such, the spatial resolution of this technique is typically correlated to beam diameter and pixel density. Previous studies have discussed methods of estimating the spatial resolution of SIMS by imaging over a known edge (Senoner et al., 2004). In contrast with the spatial resolution, the mass resolution of SIMS refers to the ability of the instrument to distinguish between adjacent masses. This is also referred to as the mass resolving power, or M/ΔM, where M is the mass being measured and ΔM is the mass difference resolvable between two peaks of interest (Hillion et al., 1993). A summary of expected sensitivities, mass resolutions, and spatial resolutions of SIMS techniques can be found in Table 1. The major differences between the three mentioned imaging techniques have to do with their mode of detection and the choice of the primary ion source, which affects both sensitivity and spatial resolution.

TABLE 1. Comparison of secondary ion mass spectrometry (SIMS) techniques with other mass spectrometry imaging techniques.

[image: image]

Unlike many other instrumental methods, which require the use of individual labels such as antibodies to mark specific proteins for analysis, SIMS images can be acquired without the use of labels (Hanrieder et al., 2013; Passarelli and Ewing, 2013). This is in contrast to techniques such as fluorescent noncanonical amino acid tagging (FUNCAT), which always requires the use of special labels (Dieck et al., 2012). In FUNCAT experiments a cellular metabolite, such as the amino acid methionine, is replaced with a noncanonical one, which is incorporated into proteins through the metabolic processes of the cells (i.e., protein synthesis). The typical noncanonical amino acids used in these procedures bear either an azide or an alkyne and are later revealed by a specific reaction to a modified fluorophore, termed a click reaction (Dieterich et al., 2010). This procedure is readily applied to cell cultures, where amino acids in the cell medium can be replaced easily with noncanonical ones but it is difficult to perform with animals. The ability of SIMS analyses to obtain information on the location of different structures without the use of these tools is a notable advantage of this method, although there are instances in which these labels can be used to enhance SIMS analysis (for example see Kabatas et al., 2015, 2019a,b; Vreja et al., 2015). These methods will be discussed in more detail later in this review article.

Within SIMS techniques, a difference exists between “static” and “dynamic” SIMS, where “static” SIMS refers to SIMS analyses that use a low primary ion dose (generally less than 1013 ions cm−2) which removes only 1% of atomic sites from the sample surface (Benninghoven, 1969). In contrast, “dynamic” SIMS refers to SIMS techniques that remove relatively large amounts of material. “Static” SIMS techniques are useful for obtaining molecular information, as the chemical bond between molecular fragments is more likely to be preserved at low primary ion doses, while “dynamic” SIMS techniques do not preserve chemical bonds, and are useful for providing high spatial resolution data on the distribution of elements in a sample (Cannon et al., 2000).

As the name implies, time-of-flight secondary ion mass spectrometry (ToF-SIMS) uses time-of-flight as a detection mode, where ions are accelerated through a flight chamber and are separated based on the time it takes for ions to reach the detector. Using ToF-SIMS, spatial resolutions up to 200 nm are possible (Fearn, 2015). In a typical dual-beam ToF-SIMS instrument, a primary ion gun is used to generate secondary ions for analysis, while a second “sputter” ion gun is used for depth profiling. There are a variety of primary ion sources available for ToF-SIMS, including the bismuth (Bin+; Nygren et al., 2005; Touboul et al., 2005b), gold (Au++, Au+, Au2+; Walker and Winograd, 2003) and gallium (Ga; Vickerman, 2001) sources, the buckminsterfullerene (C60+) source (Wong et al., 2003), and the argon gas cluster (Arn+) source (Rabbani et al., 2011). Sputtering with the primary ion source yields charged secondary ions, which are then accelerated into the flight chamber.

ToF-SIMS can be operated in static mode, where <1% of material is removed. This is often ideal for biological samples, however, to maintain static mode, higher concentrations of the analyte of interest are required to maintain spatial resolution. Besides, ToF-SIMS can also be operated under different conditions and configurations, by changing the source of the primary ion beam. For example, the C60+ source, the Arn+ source, and other polyatomic ion sources have recently been used to generate 3D chemical images, which can provide more detailed information from multi-layered samples (for example see Brison et al., 2013; Fletcher, 2015). This relatively new capability has expanded the utility of ToF-SIMS in examining biological samples.

ToF-SIMS is a flexible technique that, depending on the current of the primary ion beam, can obtain information from molecular fragments or atomic information. Thus, ToF-SIMS is a useful tool for mapping the distribution of elements, ions, and molecules in unlabeled samples. In contrast, NanoSIMS cannot be operated in static mode. Instead, NanoSIMS is always operated in dynamic mode. While ToF-SIMS can generate both atomic and molecular fragments as secondary ions, NanoSIMS only generates secondary ions at the atomic (and occasionally diatomic) scale. In the absence of molecular secondary ions, stable isotope measurements in NanoSIMS can be used to infer molecular distribution (for example see Pett-Ridge and Weber, 2012).

The NanoSIMS method is typically used with one of two sources, the cesium source (Cs+), which enhances the ionization of negative secondary ions, and the oxygen source (O− or [image: image]), which enhances the ionization of positive secondary ions. A new radio frequency (RF) oxygen source has been developed, which has increased the sensitivity and long-term stability of this mode (Malherbe et al., 2016). The Cs+ source, which has a maximum spatial resolution of <50 nm, is used to examine elements that more readily ionize into negative secondary ions, such as H, C, N, O, F, P, S, and Cl. The oxygen source, in contrast, is used to examine elements that more readily ionize into positive secondary ions, such as Li, Na, Mg, Ca, and some transition metals (Nuñez et al., 2018).

The NanoSIMS makes use of both an electrostatic and magnetic sector. Ions are deflected into six movable detectors and one stationary detector, which allows for a total of seven species to be detected during each analysis. The need to decide on a maximum of seven species at a single time is one limitation of the NanoSIMS instrument. Also, negative and positive ions cannot be collected within the same analysis, necessitating that researchers choose analytes that can be measured with either the Cs+ source or the O− source respectively. Also, NanoSIMS cannot be operated in static mode, and as such, provides information only on the distribution of elements and small molecular fragments such as CN−. Despite these limitations, the high spatial resolution and mass resolution of NanoSIMS and its ability to collect reliable isotopic information make it a highly useful technique.

Both ToF-SIMS and NanoSIMS rely heavily on appropriate sample preparation to ensure the quality of these analyses. In particular, SIMS analysis requires the preparation of thin, flat surfaces which are then placed on the conductive material. The methods for generating these samples vary depending on the type of sample and the nature of the study. For example, cryo-sectioning with a microtome and directly applying the sections to a conductive surface is common for tissue analysis (Amstalden van Hove et al., 2010), whereas other SIMS samples are embedded in various heat and/or vacuum resistant epoxies before sectioning and placing on silicon wafers (Saka et al., 2014). In cases where conductivity is difficult to achieve, such as with geological samples, coating with a thin layer of a conductive material such as gold is also common (Bonnin et al., 2019). A full discussion of sample preparation is beyond the scope of this review, however, we refer the reader to the following reviews and studies, which cover sample preparation methods in more detail: Goodwin (2012); Hanrieder et al. (2013); Passarelli and Ewing (2013); Wang et al. (2014); Fearn (2015); Dong et al. (2016); Nuñez et al. (2018); and Buchberger et al. (2018).

MALDI, an instrumental technique that ionizes the sample using a laser energy absorbing matrix, is typically used to analyze large molecular species (up to 10,000 Da) which cannot be imaged using NanoSIMS. However, MALDI has an imaging resolution in the micrometer range, which is substantially poorer than either of the SIMS techniques (Schwamborn and Caprioli, 2010; Passarelli and Ewing, 2013; Buchberger et al., 2018). While the spatial resolution of this technique has been improving (Hanrieder et al., 2013), and this technique is useful for mapping proteins and peptides, its low spatial resolution makes it less suitable for the subcellular and cellular scales focused on in this review, and so we primarily discuss applications of ToF-SIMS and NanoSIMS.



ANALYZING UNLABELED SAMPLES WITH SIMS

Both NanoSIMS and ToF-SIMS instruments can be used to examine samples that are prepared for analysis and introduced into the SIMS without any elemental or isotopic labeling. To successfully use SIMS to image these samples, the analyte of interest must be sufficiently distinct from the surrounding matrix. For example, the NanoSIMS technique has been used to examine the distribution of selenium in cereal grain and arsenic in rice (Moore et al., 2010). Because arsenic and selenium are not major components of the structure of cereals and rice, SIMS can be used to detect areas where these elements can be found in high concentrations. The NanoSIMS has also been used to examine the origin of dust particles in Luxembourg (Krein et al., 2008) and to examine Ca and P in the axonal and glial regions of mice to study the response of the central nervous system to neurotrauma (Lozić et al., 2014). The latter study revealed that Ca microdomains not associated with P rapidly decrease after injury, while Ca microdomains associated with P are unaffected. In recent years, NanoSIMS has also become useful in the study of ancient life. Typically, in these studies, samples are examined for traces of organic material, using chemical features that indicate biological activity. For example, measuring C, N, and S in fossil samples taken from the Omdraaivlei Formation in South Africa (Kaźmierczak et al., 2016) allowed researchers to identify evidence of ancient organisms.

The majority of NanoSIMS techniques, however, take advantage of its high mass resolution by combining it with isotope labeling techniques, an approach that will be discussed in detail in the next section. For further reference on the use of NanoSIMS for analyzing biological samples, both labeled and unlabeled, see Nuñez et al. (2018). In contrast, ToF-SIMS is often used in examining unlabeled samples. For example, ToF-SIMS has been used to examine the incorporation of calcium into silicon-based bone grafts, an important precursor to bone regeneration (Wang et al., 2014). In conjunction with atom probe tomography (APT), ToF-SIMS has also been used to examine the organic-mineral interface in the calcium carbonate shells of foraminifera, a type of marine zooplankton, which has implications for studies of biomineralization (Branson et al., 2016; Bonnin et al., 2019). In a similar vein, ToF-SIMS analyses have also been conducted on tissues and lipids to examine lipid biomarkers of diseases (Touboul et al., 2005a; Debois et al., 2009; Kezutyte et al., 2013) and to examine the distribution of cholesterol in brain tissue, which is relevant for studies of Alzheimer’s disease (Lazar et al., 2013).

While this review is primarily focused on the use of isotope labeling to examine subcellular metabolic effects, we note that valuable insights into cell behavior can still be gained through the use of unlabeled samples. For example, a study by Philipsen et al. (2018) used ToF-SIMS to examine major lipids in the brains of specimens of the fruit fly Drosophila melanogaster that had been exposed to cocaine and methylphenidate (MPH), a common ADHD medication. In this experiment, three- to four-day-old male flies were transferred to yeast paste containing either 15 mM cocaine or 50 mM MPH for 3 days. The fly heads were then detached and brain samples analyzed using ToF-SIMS.

Philipsen et al. found that lipid distribution changed after the administration of cocaine, with lipids that form positive ions becoming visibly more abundant in the central brain and optical lobes after cocaine administration and lipids that form negative ions becoming less abundant (Figure 2). This suggests that cocaine use may change the chemical structure of the brain. While MPH also altered the lipid distribution of the Drosophila brain, the alterations caused by MPH were strikingly opposite to those caused by cocaine. Because cocaine and MPH also have opposite behavioral effects, with MPH enhancing cognition, memory, and behavior while cocaine decreases attention, learning, and memory, the results of this study imply a link between brain lipid distribution and cognition.


[image: image]

FIGURE 2. Distribution of biomolecules in the Drosophila brain before and after cocaine treatment by ToF-SIMS in positive and negative ion modes. Image area: 800 × 800 μm2 and 256 × 256 pixels; pixel size, ~3 μm. Overlaid images: (A,B) purple, control brain; green, cocaine-treated brain (positive ion mode); (C,D) green, control; red, treated brain (negative ion mode). Scale bar: 200 μm. A color “thermal” scale is shown. This shows marked differences in the distribution of lipids after the introduction of cocaine, particularly in the negative ion mode. This may indicate that behavioral changes induced by cocaine can be related to changes in lipid distribution, and can be observed through SIMS. Reprinted with permission from Philipsen et al. (2018).



Similarly, a recent study by Dowlatshahi Pour et al. (2019) used ToF-SIMS on unlabeled brain samples to measure hippocampal zinc, which is an essential trace element in many proteins, but which also acts as a neurotoxin in high concentrations. By using ToF-SIMS to examine zinc-related compounds, an act which necessitates using static SIMS to preserve chemical bonds, the researchers were able to observe that zinc compounds in the rat hippocampus increase in concentration after acute brain injury. Because these compounds are all from bound zinc species, their findings challenge the idea that the accumulation of free zinc in synaptic vesicles is the main source of neuronal degeneration after traumatic brain injuries. These studies highlight the fact that valuable insights into cell behavior can be obtained from unlabeled samples, particularly when using ToF-SIMS.



COMBINING SIMS ANALYSIS WITH ISOTOPE LABELING

Isotope labeling is a powerful tool that can be used to highlight areas of interest with high resolution and precision. In general, isotope labeling is used in SIMS analysis in one of two ways, either to highlight a specific area of interest or to mark a particular experimental time. In both cases, rare stable isotopes are used because the rare isotope is easily distinguished from the surrounding matrix, and the ratio of rare isotope to common isotope in nature is well-constrained. Because NanoSIMS can differentiate between stable isotopes of the same element with high resolution, using SIMS analysis on an isotopically labeled sample allows the researcher to see the labeled area clearly in the resulting intensity map (Steinhauser et al., 2012).

Isotope labeling is particularly useful in biological studies because rare isotopes are processed by organisms in the same way as common isotopes are, and are incorporated into the organism’s biomass in the same way as ordinary organic material. This makes it possible to label tissues and other parts of the organism by introducing the stable isotope label into the organism’s food (Steinhauser and Lechene, 2013). If the amount of time it takes an isotope label to be incorporated into the tissue is known, an isotope label or several isotope labels can be used to mark time points throughout an experiment. For example, a researcher can introduce the isotopic food at the start of an experiment, so that only cells produced during the experiment are labeled (for example see Hassouna et al., 2016), or a researcher can provide isotopic food for a certain amount of time as part of a pulse-chase experiment. Figure 3 shows one example of such an isotope labeling scheme, taken from Arrojo e Drigo et al. (2019). In this experiment, described in more detail later, 15N food is used at the beginning of the organism’s life to mark old material. The label can be seen very clearly in the subsequent NanoSIMS images.


[image: image]

FIGURE 3. (A) Sample measurement scheme for an isotope labeling NanoSIMS experiment. In this case, the isotope label used is 15N, which is used to mark “older” cells. (B) NanoSIMS image from the optic nerve head (ONH) of the labeled mouse. Here, bright colors refer to older, labeled cells. The dashed line refers to an endothelial cell present in the electron microscopy image which does not have any discernible features in the NanoSIMS image. (C) NanoSIMS image of two capillaries in the ONH of a 6-month chase mouse. An endothelial cell nucleus (yellow arrow) and myelin sheaths (pink arrows) are indicated. A pericyte nucleus is visible to the left of the capillary lumen. Labeled cells are visible in comparison to unlabelled cells, illustrating the usefulness of isotope labeling methods applied to SIMS. Reprinted from Arrojo e Drigo et al. (2019) with permission fromElsevier.



Isotope labeling has also been used in the fields of oceanography and paleoclimatology, to label portions of the skeletons of corals and other calcifying organisms. Many of these organisms will be affected by ocean acidification and climate change in the future, and some of these organisms are also useful for paleoclimate studies because the chemical composition of their shells changes in measurable ways as the surrounding environment changes. For both these applications, it is beneficial to understand how the organism’s skeleton or shell is formed. Isotope labeling provides valuable insights into this process. For example, Brahmi et al. (2012) demonstrated how labeling a coral skeleton with 86Sr can be used to calculate average extension rates, allowing researchers to examine the rate of biomineralization in these organisms.

Furthermore, NanoSIMS has seen increasing use in the field of environmental microbiology, where the instrument’s ability to track the flow of biologically active elements such as nitrogen, carbon, and iron is greatly useful. By using NanoSIMS and isotope labeling, the distribution of these cellular activities (for example, carbon and nitrogen fixation) can be examined (Behrens et al., 2012). Carbon and nitrogen fixation in algae from marine and freshwater habitats, for example, can be examined using 13C and 15N labels to examine how carbon and nitrogen are fixed through ecosystems. The use of SIMS to measure environmental processes is further detailed in the review by Behrens et al. (2012).

The versatility of isotope labeling means that it can be used to examine questions on the scale of whole organs or organisms, but SIMS and isotope labeling can also be used at the subcellular level to examine processes within cells. For example, NanoSIMS has been used to track the uptake of isotopically labeled human proteins by microbes in the human intestine (Berry et al., 2013), to measure the anabolic activity of Staphylococcus aureus by tracking deuterium (2H) and 15N (Kopf et al., 2016), and to examine dividing cells in the small intestine (Steinhauser and Lechene, 2013).

While isotope labeling is a common part of SIMS experiments involving microbes, rats, or mice, there is growing evidence that suggests that isotope labeling and SIMS may also be used to examine human metabolism and cell behavior, by the administration of 15N thymidine to a human volunteer (Steinhauser and Lechene, 2013). This is an exciting avenue for research, and will likely become more prominent in future years if it can be proven that the patient suffers no ill effects from the administration of these isotopically enriched chemicals. In further sections of this article, we present three examples of the combination of isotope labeling and NanoSIMS to examine the behavior of cells in various organs.



SAMPLE CASE 1: BRAIN

Hassouna et al. (2016) used a combination of NanoSIMS and 15N labeling during an investigation on the effects of recombinant human erythropoietin (EPO) on cognitive performance in mice. The goal of this study was to examine whether EPO, which has been suggested to improve cognitive performance in cases such as schizophrenia, multiple sclerosis, major depression, and bipolar disease, is linked to neurogenesis. To investigate this, the authors first injected male mice intraperitoneally with either recombinant human EPO or a placebo, beginning at the age of 28 days. Isotope labeling was achieved by feeding the mice food pellets labeled with 15N, also beginning at the age of 28 days. Ensuring that the 15N labeled food was coincident with the start of the experiment is important, as it ensured that only cells produced during the experimental period were labeled with 15N. In this case, 15N serves as a marker for experimental cells.

The mice included in the NanoSIMS study were given either EPO or placebo injections every other day over 3 weeks. After three weeks of feeding, EPO and 15N-leucine feeding stopped simultaneously. One week later, mice were anesthetized and brains removed. Brain slices were embedded in resin and imaged using a combination of fluorescence microscopy and NanoSIMS. Other mice were separated into groups for cognitive experiments.

In this study, the authors used NanoSIMS was used to identify pyramidal neurons with higher than average 15N incorporation (Figure 4). Because higher than average 15N could only come from the 15N leucine feeding, cells with higher than average 15N can be assumed to correspond to areas of induced protein synthesis. By comparing the brains of the EPO-treated mice and the placebo-treated mice, the researchers found that 15N incorporation was higher in EPO-treated mice, suggesting that treatment with EPO resulted in increased protein synthesis within pyramidal neurons. This was supported by stereology (cresyl violet) and CTIP2 staining, both of which showed an increase in cell number in EPO-treated brains. When combined with cognitive studies of EPO treated mice, the researchers were able to conclude that EPO can not only improve cognition in mice and humans but also result in increased amounts of neurogenesis from inconspicuous local precursors. This is relevant for studies of central nervous system regeneration in adults, as EPO expression has been observed to be linked to brain injury, and presumably to recovery from injury.
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FIGURE 4. 15N-leucine incorporation in CA1 pyramidal neurons evaluated by NanoSIMS. (A) Overview of the hippocampus showing dense proliferation signals (EdU) in the dentate gyrus. The white square illustrates the EdU signal-free area in the pyramidal layer, analyzed by NanoSIMS. (B,C) Illustration of samples following placebo treatment; (D,E,E’) Illustration of samples following erythropoietin (EPO) treatment; arrows in panel (E’) point to newly generated neuronal cell mass with high15N/14N ratio; stars in (E’) denote “control” signal in cytoplasmic regions of older neurons. (F,G) Scatter plots of 15N/14N ratios in pyramidal neurons in both treatment groups. (H,I) Coefficient of variation of 15N/14N ratios in cytoplasm and nuclei of pyramidal neurons (n = 3 for both groups). All bar graphs are shown as mean ± s.e.m.; **P < 0.01 (unpaired two-tailed t-test). 15N incorporation appears higher in EPO-treated mice, indicating increased protein synthesis within pyramidal neurons treated with EPO. These observations thus show that EPO may contribute to central nervous system regeneration in adults, which may have behavioral and cognitive implications. Reproduced with permission from Hassouna et al. (2016).





SAMPLE CASE 2: HEART

NanoSIMS and pulse-chase experiments using isotope labeling have also been used to obtain valuable information about the renewal of mammalian heart cells, as described in Senyo et al. (2013) which examined the differentiation of progenitor cells to cardiomyocytes. This study sought to answer a fundamental question about the formation of cardiomyocytes in adult mammals—specifically, whether stem cell activity could result in a high rate of renewal of cardiomyocytes, or whether new cardiomyocytes are born at a low rate, derived from the division of pre-existing cardiomyocytes.

To answer this question, the authors first administered 15N-labeled thymidine for 8 weeks to three age groups of mice—newborn (4 days), young adult (10 weeks), and old adult (22 months). The authors chose these periods to examine the formation of cardiomyocytes at different ages. Because, newly formed cells would be labeled with 15N, the authors could analyze samples using NanoSIMS and examine which cells showed higher than average 15N labeling, similar to the method used in Hassouna et al. (2016).

Following NanoSIMS analyses on these samples, the authors found that in the newborn group, more than half of the cardiomyocytes showed 15N labeling. This suggested a large concentration of newly formed cells, consistent with the observation that cardiomyocytes continue to synthesize DNA and develop after birth. However, in the young adult group, the frequency of 15N-labeled cardiomyocytes decreased by 66-fold. In the old adult group, the frequency of the 15N label in cardiomyocytes further decreased. This indicates a decrease in DNA synthesis in cardiomyocytes with age under normal conditions (Figure 5). Further examination with 15N thymidine labeling on double-transgenic MerCreMer/ZEG mice showed that during aging, most new cardiomyocytes are derived from existing cardiomyocytes.
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FIGURE 5. [15N]Thymidine was administered for 8 weeks to mice of different ages: newborn, starting at postnatal day 4; young adult, starting at 2 months; old adult, starting at 22 months. Top, 14N mass images show histological details. Bottom, 15N:14N hue–saturation–intensity images show 15N+ nuclei. Mosaics are constructed from nine tiles, 60  μm each. Scale bar: 30 μm. These data indicate a decrease in 15N-labeled cells with age, which demonstrates that DNA synthesis in cardiomyocytes decreases with age under normal conditions. In this case, the 15N label acts to mark DNA synthesis occurring after the administration of the isotope label. Reprinted by permission from Senyo et al. (2013).



SIMS was also used to examine the effect of myocardial injury on cardiomyocyte renewal. For this experiment, a group of mice underwent surgery, during which they were subjected to myocardial infarction. A second, control group of mice also underwent surgery without myocardial infarction. Both groups were continuously labeled with 15N thymidine for over 8 weeks. In the mice that had sustained an injury, the frequency of labeled cardiomyocytes increased significantly in the area surrounding the infarction site, something that was not observed in the control group. This indicates that in those 8 weeks, cardiomyocyte division increased in the injured mice. This suggests that cardiomyocytes do have some ability to divide and re-enter the cell cycle, particularly after injury, however, the results of the overall study suggest that the majority of DNA synthesis in cardiomyocytes still occurs in pre-existing cells. By using a combination of SIMS and isotope labeling, the authors were able to conclude that cardiac progenitor cells do not significantly contribute to the formation of cardiomyocytes in mammals.



SAMPLE CASE 3: INNER ORGANS

The combination of isotope labeling and SIMS analysis has also been applied to the question of cell age, as illustrated by Arrojo e Drigo et al. (2019). In this study, female mice were fed 15N labeled food before the introduction of a male. Feeding with the labeled food continued during pregnancy, including during mating, gestation, and lactation. Pups were then weaned onto 14N unlabeled food after either 21 or 45 days. Feeding with 14N food continued for a period of up to two years. This method results in cells that were produced during early development maintaining a 15N label, particularly if these cells did not divide or exchange material with 14N-rich cells. By using this method, the authors hoped to use SIMS to find especially long-lived cells that had maintained the 15N label from early development.

The authors reported age mosaicism in certain inner organs, including the central nervous system, pancreas, and liver, where some cells appeared long-lived, others new, and others of varying ages. In particular, the authors found that the liver and pancreas were composed of cells with different ages, particularly fibroblasts and endothelial cells. By having a subset of mice subjected to the experiment for six months, while another subset of mice was kept in experimental conditions for up to 18 months, the authors were also able to investigate the rate of turnover in various inner organs during that time.

In the liver, the authors reported that the majority of hepatocytes retained the 15N label during this period, remaining “older” cells. In contrast, stellate-like cells and sinusoid-like cells experienced significant turnover between 6 and 18 months of age, transitioning from mostly “old” cells to mostly “younger” cells. The pancreas, meanwhile, appears to be composed of cells of varying ages, with non-uniform turnover between alpha, beta, and delta cells. Comparing the cells from mice that had been weaned at 21 days with mice that had been weaned onto unlabeled food at 45 days, the authors found that a significant percentage of alpha and beta cells appear to be formed in the time between 45 and 21 days, while all delta cells appeared “old” in both conditions (Figure 6).
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FIGURE 6. (A,B) SEM (A) and MIMS (B) of a cross-section of the islets of Langerhans (pancreas). Old and young acinar cells are indicated by the pink and white arrow, respectively. Yellow dotted box highlights cells shown in (C). (C) Enlarged view of boxed region in (A) and (B). SEM and MIMS of beta cells (yellow arrows) and an old alpha cell (pink arrow). (D) An old delta cell (left) next to a younger beta cell (top right). (E) SEM and MIMS of a young (bottom) and an old (top right) endothelial cell. Old pancreatic stellate cells are seen in the top and lower right corners. (F) Relative turnover in percentages of cells that are as old (gray) or younger (white) than L2 neurons from 15N-SILAM P21 mouse chased for 26 months. (G) Same as in (F), but from a 15N-SILAM P45 mouse chased for 18 months. The total number of cells analyzed for each cell type is listed underneath each pie chart. At the bottom of the MIMS images, the heatmap shows the 15N/14N x 104 and scaled with an HSI. Scale bars: 5 μm (A,C,E) and 2.5 μm (D). In this case, the 15N label represents “older” cells. Thus, the 15N label can be used to identify long-lived cells in the pancreas, and using a pulse-chase experiment, shows the period during which cellular turnover is most likely to occur. Reprinted from Arrojo e Drigo et al. (2019) with permission from Elsevier.





ALTERNATIVE METHODS FOR SAMPLE LABELING

Although SIMS techniques are useful recorders of chemical information, one enduring limitation of these techniques is that without an independent method for imaging the location of interest, it is difficult to determine exactly what cellular structure is being imaged. While certain cellular structures such as the nucleus are often obvious and easily distinguished in SIMS images, the same cannot be said for many organelles. One solution, then, is to combine SIMS imaging techniques with an optical microscopy technique. This technique, termed correlated optical and isotopic nanoscopy, or COIN, can allow researchers to obtain isotopic data from organelles and other structures which may not easily be recognized in SIMS (Saka et al., 2014). For detailed information on the application of COIN to biological samples, we refer the reader to Saka et al. (2014), which discusses the technique at length.

In brief, however, the proper application of COIN requires that the microscopy technique used is of sufficient resolution to correlate the organelle of interest with the isotopic signature. Thus, while confocal microscopy techniques are sufficient for organelles above the diffraction limit, smaller organelles and proteins would require super-resolution microscopy techniques for COIN to be usable. Also, COIN requires that a biological sample be prepared in a manner such that the same sample can be imaged by both techniques. This requires ensuring that the resin used is viable for both SIMS analysis and the chosen optical microscopy technique and that samples are cut to a thickness that optimizes resolution in both methods. It must also be possible to image the same location in both techniques, which would require a method of marking the area of interest without damaging the sample.

These requirements impose additional limitations on this technique. Other solutions have been proposed, such as the immunostaining of samples using antibodies coupled to isotopically pure metals (Angelo et al., 2014). In this manner, antibodies can be imaged through SIMS, which eliminates the need for correlative microscopy. However, antibodies coupled to metal tags tend to incorporate poorly into specimens. This undermines the high resolution of SIMS, resulting in a less precise image (Opazo et al., 2012; Ries et al., 2012).

To solve these issues, various methods using elemental and isotopic probes have been developed, which add enriched labels to proteins of interest. For example, labels enriched with 19F can be added to various proteins, which can then enable them to be analyzed both using NanoSIMS and using fluorescence imaging (Vreja et al., 2015). Similarly, areas of interest can be labeled by using boron-based probes, which then can be used to reveal the structure of proteins while other measurement channels can be used to examine other pertinent positive ions (Kabatas et al., 2019b). These methods allow for more flexibility when designing SIMS experiments, and alleviate some of the limitations of the SIMS techniques.

The use of correlative microscopy techniques and probes to better identify analysis regions in SIMS is an ongoing area of study and is a complex issue. The combination of SIMS, various probes and labels, and microscopy is not necessarily straightforward, and a full discussion of these tools would be more suited as the subject of its review. However, it appears clear that the development of new SIMS imaging techniques will remain correlated with advances both in microscopy and elemental probe techniques.



CONCLUSIONS

The high resolution and sensitivity of SIMS make it a good tool for the analysis of behavior at the cellular and subcellular levels, particularly when coupled with isotope labeling techniques to highlight areas of interest. Advances in SIMS technology continue to make this a promising method for the analysis of cell structure, metabolism, and protein turnover, which can ultimately lead to changes in animal behavior. The various studies mentioned in this review showcase the potential of this technique for measuring behavioral and metabolic effects and also show other biological and environmental applications for these new and emerging techniques.

It should be noted, however, that the majority of these studies also made use of correlative microscopy techniques. Hassouna et al. (2016), for example, made use of fluorescence and staining, while Arrojo e Drigo et al. (2019) utilized electron microscopy to determine the location of cells. This highlights one enduring limitation of SIMS techniques, namely that without an independent method for imaging the location of interest, it is difficult to tell exactly what structure being analyzed. Because of this, the development of new SIMS techniques will likely remain correlated with advances in microscopy. However, as further developments continue in these areas, SIMS will likely remain a fundamental tool in cellular imaging well into the future.
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Current neuroethological experiments require sophisticated technologies to precisely quantify the behavior of animals. In many studies, solutions for video recording and subsequent tracking of animal behavior form a major bottleneck. Three-dimensional (3D) tracking systems have been available for a few years but are usually very expensive and rarely include very high-speed cameras; access to these systems for research is limited. Additionally, establishing custom-built software is often time consuming – especially for researchers without high-performance programming and computer vision expertise. Here, we present an open-source software framework that allows researchers to utilize low-cost high-speed cameras in their research for a fraction of the cost of commercial systems. This software handles the recording of synchronized high-speed video from multiple cameras, the offline 3D reconstruction of that video, and a viewer for the triangulated data, all functions previously also available as separate applications. It supports researchers with a performance-optimized suite of functions that encompass the entirety of data collection and decreases processing time for high-speed 3D position tracking on a variety of animals, including snakes. Motion capture in snakes can be particularly demanding since a strike can be as short as 50 ms, literally twice as fast as the blink of an eye. This is too fast for faithful recording by most commercial tracking systems and therefore represents a challenging test to our software for quantification of animal behavior. Therefore, we conducted a case study investigating snake strike speed to showcase the use and integration of the software in an existing experimental setup.

Keywords: motion capture, high-speed, opensource, tracking, snake, strike


INTRODUCTION

High-speed video recording is a common tool to visualize and subsequently quantify fast behavioral performances such as in snakes (Kardong and Bels, 1998; Young, 2010; Herrel et al., 2011; Penning et al., 2016; Ryerson and Tan, 2017), other fast moving animals (Patek et al., 2004; Tobalske et al., 2007; Seid et al., 2008), or insect flight (e.g. Altshuler et al., 2005; Boeddeker et al., 2010; Geurten et al., 2010; Straw et al., 2011). However, in most snake studies only one camera or a maximum of two are used to capture such rapid motion, with the one exception of a recent study where multiple cameras with only moderate temporal resolution, were used to investigate locomotor maneuvers (Gart et al., 2019). Software such as DLTdv (Hedrick, 2008), Tracker (Open Source Physics)1, ImageJ (Rasband, 1997-2018), or Didge (Alistair Cullum, Creighton University) have usually been used to process the captured images. These open source solutions are suitable tools to use when capturing with a single camera and with a known distance to the recorded object(s), with an exception for DLTdv as it performs triangulation when combined with calibration information provided by a different software. Single camera capture, however, creates some limitations. Using a mirror allows a single camera to perceive multiple views of the snake such as done by Kardong and Bels (1998), but any time a single camera is used to capture three-dimensional (3D) information, the camera must be placed in a setup that is stereotypically well-defined in a way that the distances such as between camera sensors or from the camera sensor to the object are known. The inflexibility of these well-defined setups can be troublesome for the use in multiple experiments, requires extra expertise, and entails extra costs for building and storage.

Motion capture technology using multiple infrared cameras has been available for experimental studies already for decades. While one of the principal fields of employment for these systems was and still is the capture of human motion, this technology has been used in more recent years for the tracking of animal locomotion (Dahmen and Zeil, 1984; Fry et al., 2000; Straw et al., 2011; Tian et al., 2011; Theunissen and Dürr, 2013; Robie et al., 2017; Theunissen et al., 2017). Systems such as Vicon, Optitrack, Motion Analysis, Qualisys, or XSense are largely comparable and use infrared reflective spherical surface markers on the subject of interest that are tracked by multiple spatially fixed cameras and allow triangulating the positions of various body parts in virtual 3D space. In contrast, active marker-based tracking systems such as Dari Motion, Myomotion, NDI, or marker-less systems, commonly use depth information and a wire-frame, or similar, model of the tracked object mostly for applications involving humans. These model-based systems are expensive with costs that range from $10,000 to $100,000, though some open source algorithms are available for human pose estimation in video recordings (e.g. OpenPose, Cao et al., 2018, DeepPose, Toshev and Szegedy, 2014, ArtTrack, Insafutdinov et al., 2017, and DeeperCut, Insafutdinov et al., 2016). While commercial systems work well with low reconstruction error and ease of use, this technology is rather insufficient for high-speed motion capture, mostly because of the typically low maximal camera frame rates of 100–250 Hz. Accordingly, details of ultrafast movements such as strikes of rattlesnakes, which from initiation to target contact are completed within ∼0.05 s (Kardong and Bels, 1998; Penning et al., 2016) require a camera with a capture frame rate well beyond 200 Hz. At such a frame rate, and using a state-of-the-art tracking procedure, optical recordings of a rattlesnake strike would comprise a mere 10 frames of triangulated trajectory. Accordingly, many details about the kinematic profile would be unavailable and thus invisible apart from the fact that raw images are usually not stored. Though often done to save disk space as well as to minimize bandwidth saturation, it prevents any re-analysis of the triangulated motion trajectory.

Here, we present a multi-camera system that allows high-speed motion capture of ultrafast animal movements such as snake strikes using low-priced cameras with high frame rates of 750 Hz and sufficient spatial resolution. The developed software provides a suite of functions that encompass the entirety of data collection, processing, and storage of motion capture with a special focus on processing speeds for high-speed camera capture. Another advantage of using a single software for the data recording and processing pipeline is that the amount of ambiguity and pitfalls that inexperienced motion capture practitioners could encounter is decreased. The amount of data that is generated by high-speed cameras grows quite rapidly with the number of cameras, their speed, and their resolution. Handling this large amount of data often causes problems and can be vastly time consuming when large data sets are processed without performance optimization. This software processes the data to the full extent of the available computer system resources; a feature not available in other tracking software such as DLTdv Hedrick (2008), but which greatly diminishes the time required for processing. Although this system was developed in order to capture snake strike motion dynamics, it can easily be employed for motion studies of other animals than snakes. SnakeStrike is an open source framework written to allow users to harness the power from other open source libraries for image manipulation, camera interaction, and computer vision (Bradski, 2000; Schroeder et al., 2006; Guennebaud and Jacob, 2010; Rusu and Cousins, 2011; Moulon et al., 2013). Thus, besides assisting in the resource-intense and time-critical initial collection of images at high frame rates with multiple cameras, SnakeStrike performs subsequent offline image processing for triangulation and data visualization. Color thresholding is used for marker identification, allowing simultaneous tracking of multiple animals or body parts when markers with different colors are used. If infrared cameras are used, then infrared markers can subsequently also be used. Marker types need not be spherical or 3D in form. Something as simple as a piece of colored tape can be used, and no wire-frame, or similar model, is required. A major advantage of SnakeStrike is the storage of all original images as reference. This permits repeated off-line data re-interpretation in case new automatic tracking methods or sequential modeling methods become available. Because of the open source code and the modular structure of SnakeStrike, other annotation and pose estimation tools such as DeepLabCut (Mathis et al., 2018) or LEAP (Pereira et al., 2019) can be incorporated into the processing pipeline.



MATERIALS AND METHODS

In this section we describe the requirements to use the system and how we fulfilled those requirements, how to use the software from a user’s perspective, as well as provide a high-level overview of how the images are processed such that 3D triangulated points of the markers become available. The order of the sections follows the order the user will generally interact with the interface. This order is reinforced by the software to create a consistent pipeline for the user. Where appropriate we include suggestions for solutions to problems that can arise during use. Furthermore, we describe the experimental setup used for each of our two experimental settings.


Hardware Requirements

For effective recording of high-speed videos for 3D tracking, it is important to use cameras that are fast enough to capture every detail of the motion of interest and can function together. The only absolute requirements to run the SnakeStrike software are a 64-bit computer running 64-bit Linux. To ensure faithful data transfer to the computer, enough bandwidth on a single bus or multiple busses for the communication protocol is required to save data without dropping individual frames. Therefore, it should be thoroughly calculated which camera communication protocol (e.g. USB3, Ethernet, etc.) is most beneficial given the respective requirements. The only requirements are that the camera adheres to the GenICam standard and has an application programming interface (API). Since very large amounts of data need to be transferred and stored, a computer equipped with sufficient sized RAM and hard drives that have enough storage space to store the recorded raw images is required. However, the precise camera and computer configuration generally depends on the speed of the motion of interest and total recording time necessary to capture every detail. An example data set of only 1 second of recording time from a setup equipped with 5 USB 3.0 cameras with a resolution of 640 × 480 pixels and using lossless data compression requires ∼700 MB of disk space, while ∼3.2 GB of RAM is the minimal requirement for the images from the data capture, assuming that the images are returned from the camera in RGB8 format. If the format is changed to something like Bayer BG8, then the amount of required RAM decreases by a third. Sufficient RAM for running the software should also be included in the calculation. Since AC powered lights flicker when recorded with high-speed cameras, lights for the experimental setup need to have a flicker frequency that is higher than the camera speed or are non-flickering. Note that not all LED lights are non-flickering.

To satisfy secondary requirements of our experiments, we used a computer with multiple CPU cores, 64 GB RAM, and several Terabytes of available hard disk storage. Furthermore, we used multiple USB 3.0 cameras. Consequently, a PCI card that expanded the available USB 3.0 ports and ensured that each new port had its own controller was utilized. A separate controller for each port guaranteed that the port would not share bandwidth with other USB 3.0 ports. When running a high-speed camera, it is very easy to saturate these buses with a single camera, let alone multiple. For triggering the cameras, a software trigger is usually available, although this does not guarantee synchronized images when using a USB connection. If a hardware trigger is required while using USB cameras, an external hardware trigger must be added.

We chose Basler Ace acA1300-200uc cameras (Basler AG, Ahrensburg, Germany), which have a maximum image size of 1280 × 1024 pixels. At full spatial resolution, the maximum speed is 203 Hz, however, if the resolution is decreased to 640 × 480 pixels, a frame rate of 750 Hz can be achieved. With camera speeds this high, light flickering of the illumination can be a major issue. Accordingly, surgical lights were used when recording snake strikes in the 3D X-ray setup. However, AQ Aquaflora 54-watt fluorescent bulbs (D-D The Aquarium Solution Ltd., Ilford, United Kingdom) are cost-efficient and have successfully been applied in initial tests. When available, non-flickering LED-technology can be used as an alternative. The used cameras were connected to the computer by USB 3.0. To exclude potentially dropped images due to saturation of the bus, a Startech PEXUSB3S44V card (StarTech.com, London, ON, Canada) was used. For correct triangulation during our experiments, USB camera synchronization was essential. Accordingly, a Labjack U3 (Lakewood, CO, United States) AD/DA converter with custom-built housing to trigger the cameras via three available digital ports was used. A maximum of three cameras can be triggered per port, without critical attenuation of the TTL signal. As long as the camera speed is less than 25,000 fps, i.e. one frame per 40 μs, the 20 μs delay between each of the pulses is short enough to ensure a quasi-simultaneous image recording from all triggered cameras. Thus, recorded images are saved as the same frame. If only one trigger is available, another solution to allow all cameras to be triggered is to use a buffer amplifier; this prevents the signal from being affected by load currents and ensures a truly synchronous trigger.



User Interface

SnakeStrike is currently only available for 64-bit Linux. The C++ source code and installation instructions are available at “https://github.com/gwjensen/SnakeStrike”, while the main user and code documentation can be found at “https://gwjensen.github.io/SnakeStrike/”. Since compiling C++ source code with many dependencies is not an easy task, a docker image with the required dependencies as well as SnakeStrike pre-installed is available on DockerHub at gwjensen/snake_strike with the requisite source for building the Docker image manually located at “https://github.com/gwjensen/SnakeStrikeDocker”. Information regarding plugins or specific functions is available at “https://gwjensen.github.io/SnakeStrike/”.

The main method of interacting with SnakeStrike is through a basic graphical user interface (GUI). The interface manages folder structure and encapsulates the many steps behind the actions of calibration, capture, and triangulation tasks. The functionality of the interface is divided into three separate tabs in the top left corner of the window (Figure 1A). First, the user creates a new project/experiment, where a project/experiment comprises a single data collection. This ensures consistent data annotation output and reduces workload for the user by automatically organizing created files. After the project is created, new options become available guiding the user along the GUI. For instance, if the cameras are not connected, the user is unable to use any recording options until establishing the connections and pressing “Refresh Camera Connection.” The “Collect Data” tab as well as the side toolbar provides the user with a live preview from the cameras, to initially position the cameras and perform the fine tuning of the focus.
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FIGURE 1. User Interface of the SnakeStrike software and view of the experimental setup used for Study 1. (A) Main screen of the software depicting simultaneous previews from four connected cameras. (B) Calibration dialog window after a successful calibration attempt. (C) DIN A1-sized calibration image adopted from Li et al. (2013), affixed to a 1 cm thick cardboard for calibration. (D) Example of the dialog window used to triangulate the markers encountered in the images. (E) Overview of the experimental setup used for study 1, depicting the arrangement of three low-cost Basler cameras and a Franka Emika Panda robotic arm. (F) Close-up of the robotic arm with green markers affixed to a piece of fiberboard.


Camera parameters, such as frame size, frame rate, and exposure length need to be set by the software provided by the camera manufacturer and has to be saved in an external configuration file that adheres to the GenICam programming standard. This standard is a generic programming interface that is supported by all compliant cameras and guarantees that a configuration file is transferable between cameras produced by different manufacturers. To set the camera parameters within SnakeStrike, the configuration file must be loaded using the “Load Camera Config” button. Further information, i.e. whether the camera is USB 3.0 or Ethernet-connected, are automatically abstracted. After the configuration of the cameras, the calibration can be started by pressing the “Calibrate Cameras” button that opens the calibration dialogue (Figure 1B). Using the technique described by Li et al. (2013), the intrinsic calibrations, i.e. finding the optical center, focal length, and lens distortion of the individual camera, as well as the extrinsic calibrations, i.e. how the cameras are positioned relative to each other in 3D space, are performed.



Undistortion and Calibration

The size of the image used for calibration depends on the angles between the cameras and the viewing space covered by the cameras. A large viewing angle and/or a large viewing space requires a calibration image that is sufficiently large to be viewed by more than one camera at a time. Optimal calibration objects allow finding correspondences at multiple levels of resolution. The calibration object must be affixed to a movable planar surface such that the image remains flat, but still can be moved through the cameras’ field of view (Figure 1C). It is not necessary for the calibration image to be fully viewable by each camera or that all cameras see the calibration image at the same time. More important for a successful extrinsic calibration is that the cameras can be linked across images that are shared. For example, in a setup with three cameras (A, B, C), where A and B can see the calibration image in a few image captures, and B and C can see the calibration image in a few captures, it is unnecessary for A and C to also share image captures when capturing the calibration image.

Calibration images should be recorded at low frame rates (e.g. 4 Hz in the current study). This reduces the amount of multiple copies of identical images that would be recorded if the movement of the calibration object is too slow with respect to the camera frame rate. Identical images lead to instabilities in the calibration calculation and unnecessarily increase computation time. Generally, it is recommended to use a slow capture frame rate, and make sure that the calibration object is presented with multiple different orientations relative to the cameras. For a detailed and mathematical explanation of the calibration procedure (see Hartley and Sturm, 1997; Kanatani et al., 2016).

To undistort the images from individual cameras, and to calculate the relative camera positions, we used the technique described by Li et al. (2013). One camera sensor will always be used to define the origin of world space. After collection of the images, the user can choose to see the text output of the calibration and can set the lower boundary for the number of matches. The SURF-like (Bay et al., 2006) difference of Gaussian filter (Li et al., 2013) detectors must find a pair of images that can be paired for further calibration. If the calibration returns with no errors, then a root-mean square error (RMS) of camera positions in space relative to each other is provided (Figure 1B). As the positioning is an optimization and not a closed-formula solution, the error depends on different parameters, such as camera resolution, quality of focusing, number of recorded images, and number of Gaussian filter matches. After calibration, a mask of the experimental setup can be saved (although not required) along with the project information, to improve post-processing such as thresholding.



Marker Detection and Tracking

After configuration and calibration of the cameras, the “Record” button in the “Collect Data” tab becomes available and the recording can be started. Once a recording has been completed, offline data processing can be started by pressing the “Process” tab. Pressing “Triangulate Points” brings up the dialog window for thresholding the markers from each camera’s image and triangulating those points into world coordinates (Figure 1D). Our marker detection method is analogous to how commercial tracking systems work in that a specific color range, as supplied by the user, is thresholded to detect the markers in an image. This thresholding combined with the grouping of pixels close to each other and then returning the center of that group is how a colored marker on the object/animal is transformed into a marker position. Typically, commercial systems rely on the markers being IR reflective and of a spherical shape to allow the use of ellipse fitting algorithms. Our approach does not have these restrictions. To decrease computational complexity in our software, the initial correspondence of marker position in relation to the different cameras and the colored marker in 3D space are provided by the user. All subsequent correspondences are performed automatically as described below. For thresholding, a range of colors according to the HSV scale can be chosen. To help remove noise, which can pose a severe problem when using this rudimentary approach, a small configurable filter is available. The preview dialog allows the user to fine tune the values for a particular capture session before proceeding to the triangulation. Images being used for triangulation will automatically be undistorted according to the camera distortion coefficients that were calculated separately for each particular camera during calibration.

Markers are not required to be 3D in shape when capturing data, i.e. the IR reflective spheres used by commercial systems, however, when capturing data, it must be ensured that at least two cameras see the tracked points. While two cameras are the minimal requirement for 3D triangulation, the quality of triangulation is considerably improved using three cameras (Stewenius et al., 2005). The benefit of using non-3D markers, like tape or paint, on animals that are difficult to handle such as snakes, is that such 2D markers are more likely to remain attached to the animal. This benefit is offset by the need for more cameras if markers are obscured from one or more cameras. The optimal marker size depends on the camera resolution and size of the object to be tracked. Markers and lighting need to be adjusted to each other. Markers must appear bright enough to allow a dissociation from other low light background colors. On the other hand, markers must not be too bright, because of a potential confoundment with reflections or glare from other surfaces in the experimental environment. We thus recommend choosing colors that have a very high value and saturation in the HSV color space. This facilitates segmenting with both small and large amounts of light. Using a less vibrant color for a marker is possible, but requires that the color is non-glossy; otherwise, reflections on the marker surface can optically change the shape of the marker and thus impair the function of the thresholding algorithm. This could lead to larger errors such as the mid-point of the marker shifting, or even optically splitting the marker into two. In this case, noise smoothing operators in the thresholding dialog are required to rejoin the marker. Accordingly, the larger the markers, the larger the potential error that can occur during triangulation, due to the number of pixels that the marker covers and the problem of finding a representative pixel for this group. When several pixels enter or leave the group, the representative center pixel will most likely change as well. This splitting can also occur because of changes in illumination of the marker, i.e. slight shadow on the marker. This is a source of error related to the lighting of the setup that cannot be fixed by non-flickering lights.

In a perfect situation, where the cameras in a setup have perfect intrinsic and extrinsic calibration matrices, i.e. the parameters of the camera and its position to every other camera is perfectly known, the triangulation of corresponding pixels across cameras is straightforward. A ray extends from each camera sensor through the corresponding pixel in question. In a perfect setup, these projection rays would intersect in 3D space. In reality, however, there are many sources of noise that prevent an intersection of these lines. These sources include noise in the calibration of the camera, noise in how the camera sensor converts light information, noise caused by the viewing of a 3D object from different positions that might not view the object in the same way, etc. When the lines don’t intersect, as is usually the case, a method for finding the 3D point of intersection is required. This means that a new pixel in each image needs to be found such that all the projection lines through those pixels intersect in 3D space. There are many metrics that can be used for determining where this new pixel in each image is located.

To help correct for noise inherent in marker location triangulation we used a technique described by Kanatani et al. (2008) as “optimal correction,” but using the specific implementation from Kanatani et al. (2016), that translocates the marker’s center pixel in the image space a minimal amount such that all projection lines from the cameras intersect again in 3D space. This is known as minimizing the reprojection error (geometric error), i.e. the error in pixel space of the data point and its reprojection. In other words, this method finds a pixel as close to the original pixel in the pixel space for each camera such that the projection lines through those pixels will intersect. Once the lines intersect again, the algorithm of Direct Linear Transformation (DLT) (Sutherland, 1974), which solves using the singular value decomposition (SVD), can be used to calculate the 3D point represented by the corresponding marker locations in each image. If DLT is used without the geometric correction afforded by “optimal correction,” or by another correction algorithm, then the SVD in the equation has multiple possible answers. The algorithm chooses the solution that minimizes the sum of least squares distance, not in the pixel space, but in 3D space from the projection lines of the data points to the point in 3D space that satisfies the intersection constraint. Minimizing the error in the pixel space is generally agreed to be an inferior solution compared to minimizing the error in the geometric space, i.e. the reprojection error (Hartley and Zisserman, 2003) (See Supplementary Videos S1, S2).

When using three or fewer cameras, the globally optimal translocation of data points according to geometric correction can be provided by the polynomial algorithms of Hartley and Sturm (1997) for two cameras, which was later extended by Stewenius et al. (2005) to three cameras. However, as the number of cameras grows, the size of the polynomial function to solve becomes unwieldy. As described by Hartley and Kahl (2007), Stewenius and Nister, in an unpublished work, calculated the degree of the polynomial that would need to be solved for views 2–7. They found 6, 47, 148, 336, 638, and 1081 to be the respective order of the polynomial for calculating the global optimal solution. This shows how quickly the number of local optima of the cost function increases. For more than three cameras, the search for a global optimal solution is commonly done with optimization of a cost function or gradient descent algorithms. These solutions for more than three cameras, however, as mentioned by Hartley and Zisserman (2003) can be quite computationally expensive as well as difficult to program. Quite often these methods also rely on assumptions regarding the source of the noise, e.g. Gaussian distributed. We used the iterative method of Kanatani et al. (2008) to minimize the geometric error without minimizing a cost function or relying on any assumptions regarding the source of the noise. Furthermore, as was shown in Kanatani et al. (2008), since this method starts as an approximation of the solution, it typically requires only a couple of iterations to converge and, in the case of three or less cameras, to provide the same solution as the closed form polynomial equations in less time. In our experience with five cameras the algorithm performs quickly and produces high quality results even with the additional noise that is contributed by the movement of marker center positions. These errors are discussed further in Study 1 below.

Matching multiple points across multiple cameras is not a trivial problem, as Munkres (1957) demonstrated. If we have M cameras, finding the corresponding point from one camera in the set of all other points in each of the other M-1 cameras is a computationally intensive task. This problem can be solved for two sets in O(N3), i.e. the time required to solve the problem scales cubically with the number of inputs, assuming that there are no further constraints to the matching. For more than two sets and when there are additional constraints, such as that the assignment over time stays consistent, these problems are still an active area of research. A general solution to the problem of triangulation of occluded points during tracking has also proved elusive. Only basic methods for the tracking of points are available in our implementation at the moment. Currently, for a triangulation attempt, the user has to select the visible markers in images from a single time step manually using an intuitive GUI. The selection does not need to be pixel precise as the closest visible marker will automatically be selected. This initial marking helps to decrease the computational complexity of assigning matching points across camera views to a more manageable problem. These starting positions are then used as the initial starting positions for points in a Kalman filter (Kalman, 1960). Using this initial configuration, the Hungarian algorithm, also known as the Munkres-Kuhn algorithm (Munkres, 1957; Kuhn, 1959; Bourgeois and Lassalle, 1971), along with the Kalman filter, which receives its step update information from the matching of the Hungarian algorithm, are used to keep the point assignments consistent through time. These algorithms are only used to support the correct assignment of correspondence, while the pixel positions of the marker come from the thresholding and not from the steps of the filter. A high-level diagram of this processing pipeline is shown in Figure 2. The user has the option to force the algorithm to skip timesteps where not all markers for each camera are visible. When the setup consists of more than two cameras, the user can fall back to a set of fewer cameras that have no occlusion for that timestep. An algorithm library for correspondence is used to match corresponding points from images taken at different angles. In the default case this library is the Kalman filter and Hungarian algorithm combination mentioned above. However, since this library is dynamically loaded, the user has the option to write a correspondence plugin for keeping the identity of thresholded points unique through time, making it unnecessary to rely on the basic method described above.
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FIGURE 2. Diagram depicting the flow of data during the processing of images which results in a 3D triangulated point of the markers being tracked. The variable S is the set of markers as they exist in the real world with St=0 being the first time step in the image capture series. The information for initial point correspondence is entered by the user, via the labeling GUI. The variable Vt,j is the image pixel position of the markers for time step t and camera j. Variables with a hat such as [image: image] or [image: image] represent calculated guesses as to the true values Vt,j and St, respectively. The arrow with the marking “KFP” is a Kalman filter prediction, and the boxes “Thresh,” “HA,” “OC,” and “Tri” indicate the color thresholding algorithm, the Hungarian algorithm, the optimal correction algorithm, and the triangulation algorithm, respectively.


Our framework provides an API where these new algorithms can be supplied to the framework without re-compiling the codebase. This interface is basic in the sense that it provides the points for each timestep, and expects the points to return in ordered lists for each timestep. This creates an interface that puts a minimal amount of constraints on the algorithms that are used to process the point tracking data. More information regarding the API for these algorithms can be found on “https://gwjensen.github.io/SnakeStrike/”. This is where software such as DeepLabCut (Mathis et al., 2018) or LEAP (Pereira et al., 2019) can be integrated into SnakeStrike. This also allows data to be processed by many different algorithms, if necessary. It further offers the possibility for the user to maximize the constraints such as how to handle obscured points, what to do when point labels are swapped, etc.



Viewing Tracking Data

After triangulation, the data can be viewed by the built-in 3D point cloud viewer. This generates an animation of the movement through time, and also allows stepping through each individual timestep. A line connects the points in the order as indicated by the user for disambiguation. This line is useful for relating triangulated points to the body of the animal, but does not directly reflect pose information of the animal. For example, in the case of a snake, the line won’t follow the contours of the snake unless the markers are spaced with minimal distance to each other. The points are also of different colors to prevent ambiguity when viewing the motion of the points through time (Figures 3A2,B2,C2). The triangulation performed by SnakeStrike does not perform any direct filtering or smoothing on the triangulated points over time. It only provides a simple forward-backward filter as part of the GUI window to allow the user to see how filtering or smoothing could improve the data.
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FIGURE 3. Experimental setting for capturing and analyzing snake strikes in study 2. (A–C) Raw images of a strike of an amazon tree boa (Corallus hortulanus) at three different time steps: at a stationary position (A1), and approximately in the middle of the strike (B1,C1). The large black circle behind the snake is the horizontal X-ray emitter, while the vertical X-ray emitter above the snake is out of view. Corresponding triangulation is plotted as output by the SnakeStrike software for the corresponding images (A2–C2). The coordinate system has been rotated such that triangulated points and images have the same viewpoint. Each marker (1–5) on the snake is depicted by a different color label in the triangulated data, starting with the red (1) point and ending with the yellow point (5) in (A2–C2); a red line connects all points in the triangulation. This line corresponds to the marker positions on the snake from rostral to caudal and is not based on pose estimation. The direction of the line is defined by the user during triangulation. The data shown in plots (B,C) are 86 images (114.7 ms) apart.




Procedures for Study 1: Measurement of Accuracy

The accuracy of SnakeStrike was determined under particular control conditions, that, however, differed with respect to the experimental setting used in study 2 for the strike movements of snakes (e.g. cameras, lighting conditions, etc.). The accuracy of the system was determined with a robotic arm that reproducibly moved an artificial object to calculate the error level for the calibration technique and illustrated the effect of different recording conditions. The setup consisted of a robotic arm (Model: “Franka Emika Panda,” Franka Emika GmbH, Munich, Germany) used to move a flat plane with affixed markers in a specific spatial configuration (Figures 1E,F and Table 1). Robotic arm motion allowed for precise movements with identical trajectories, while parameters such as speed were altered under defined conditions. With this approach two types of camera lenses, two different marker dimensions, and two different movement speeds were tested. The definition of the exact distances between the points allowed calculating the error in 3D triangulation between all points. The affixation of the points to a plane allowed calculating the error of the points from the plane that fits all points with the least error.


TABLE 1. Distance between markers on the calibration object used for Study 1.

[image: Table 1]The basic experimental setting was as follows: placement of three cameras, oriented around the robotic arm (Figure 1F). Bright neon green markers (small: 10 mm × 10 mm; large: 22 mm × 22 mm) were attached at specific locations on a flat piece of medium-density fiberboard to ensure that the markers were aligned in the same spatial plane; the chosen marker color was unique and did not occur on objects anywhere else in the cameras’ field of view. For the Fujinon DV3.4x3.8SA-1 (Fujifilm, Tokyo, Japan) lens, the distance between cameras and marker plane was about 110 cm (Figure 1E). For the Ricoh FL-CC0614A-2M (Ricoh, Tokyo, Japan) lens, the distance was increased to ∼175 cm, because of the longer focal length of the lens. As the cameras had to be moved, calibration differences as well as lens differences were tested. Each capture session was completed with the cameras set to an image size of 640 × 480 pixels at a frame rate of 750 Hz. For each capture, 6000 images were recorded. For triangulation, the thresholding viewer tools of SnakeStrike were used and set to a color range with the most correct detection of the markers and minimum false-positive detections.



Procedures for Study 2: Strike Movement of the Amazon Tree Boa (Corallus hortulanus)

The tracking framework was applied for the first time ever on living animals in combination with biplanar X-ray to capture fast snake strikes. The field of view of the X-ray tubes was too small to encompass the entire strike of the snakes while still providing adequate resolution. Therefore, an additional data capturing method was required to compare local information obtained from the biplanar X-ray motion capture with global snake movement information. This multi-modal data and the analysis of the resulting data fusion is not a component of the tracking system, and thus out of scope. Nevertheless, we were able to assess the usage of the system with live animals and to demonstrate that this stand-alone 3D motion tracking system can easily be integrated in existing experimental set-ups to record multi-modal data sets.

The experiment included four amazon tree boas (Corallus hortulanus) with a snout-vent-length (SVL) of 100–120 cm. Snakes of either sex and a body mass of 23–69 g were obtained from the in-house animal breeding facility at the Chair of Zoology at the Technical University of Munich. Snakes were kept at a temperature of 22–30°C on a 12 h:12 h light:dark cycle. Permission for the experiments was granted by the respective governmental institution for animal welfare (Thüringer Landesamt für Verbraucherschutz; code: 15-003/16). For the experiments, five cameras running at 750 Hz at a spatial resolution of 640 × 480 pixels were used resulting in 7500 images per camera per capture sequence. This required ∼11GB RAM (We used the Bayer BG8 image format) and ∼7 GB disk space to record and store one capture, excluding any memory or storage space to run SnakeStrike. The orientation of the snake in space when anchored to a branch represented a difficult condition to reliably capture images as snakes can coil back onto themselves, thus potentially occluding markers. Additionally, the placement of markers on the snake, though spaced out along the body of the snake, can end up next to each other when the snake forms its characteristic S-shaped curves. Therefore, multiple cameras were necessary such that at least two cameras saw the markers at any timepoint.

Avery No. 3320 multipurpose labels (Avery Dennison Corporation, Glendale, CA, United States) were used as markers as they can be stained with any suitable color, and have a good adhesion, without irritating the skin. The labels were painted in a light blue color as it would be the only incidence of that color in the experimental setting. There were blue markers on the body and an additional red marker on the head because the head becomes obscured by the opening of the mouth as described by Cundall and Deufel (1999) and the X-ray tubes did not allow for setting up cameras directly above the snake (Figures 3A1,B1,C1). To reduce errors and to avoid correspondence switching of the markers, the body and head markers had different colors. Accordingly, the two marker colors were triangulated separately and then required post-processing to fuse the data manually using a simple script.




RESULTS


Study 1: Measurement of Accuracy

The accuracy of the tracking system was determined by using a robotic arm for the generation of a movement of the flat plane through the visual field of the cameras (Figures 1E,F). Based on the variations of the experimental protocol, it was possible to determine the errors related to the different configurations. To provide an intuitive understanding of the performance abilities of the system, we also converted errors from absolute 3D world space measurements to approximate pixel space equivalencies. Figure 4A (Supplementary Figure S1A) and Figure 4B (Supplementary Figure S1B) illustrate the errors resulting from running the same movement at two different speeds, two different lenses, and two different marker sizes. The faster robotic arm speed covered the same motion trajectory as the slower speed, but also covered a slightly different motion at the end due to the faster movement. This was expected as it produces the same trajectory as the movement at the slower speed, but over a shorter amount of time. Details of the results with different marker size, lenses, and movement speed were plotted in the various rows and columns in Figure 4 and Supplementary Figure S1. A major outcome of these experiments was the observation that neither the change of lenses nor the speed of the movement has a substantial effect on the accuracy of the reconstruction. The latter finding was also not too surprising given that the movement speed was far slower than the camera frame rate (750 Hz) for these experiments.
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FIGURE 4. Study 1: Error in marker location while the fiberboard with attached markers was moved through space by the Franka Emika Panda robotic arm. Parameters: two marker sizes and two relative speeds of movement of the markers. Data is shown for one camera lens (Fujinon DV3.4x3.8SA-1) only. In Supplementary Figure S1 additional data recorded with a second camera lens (Ricoh FL-CC0614A-2M) are presented. (A) Each boxplot refers to an interpoint distance error between two points of known distance in the calibration object (Table 1); the numbers on the x-axis represent the points and are separated by a hyphen. (B) Marker distance from the best-fitting plane for all markers.


The largest visibly observed differences were found for the size of the markers, with an increase of ∼2–3 mm (∼2 pixels) in the average error per point when using larger markers. This was likely due to the fact that the larger the marker, the more the center of the marker potentially shifts. This shifting can be caused by parameters such as changes in illumination, color intensity, or visibility. It is noteworthy, however, that the planar error did not change between the two marker sizes. In order to better understand the effect that aspects such as viewing angle, lighting, or color intensity changes have on the accuracy, stationary images were collected. Figures 5A,B show the respective distance errors between points and the distance from the closest fitting plane, respectively. During all captures, 6000 images were acquired at a frame rate of 750 Hz. In this case, small markers were used and each plot represented the position of the fiberboard relative to the main camera. The positions were as follows: “facing downwards,” “facing perpendicular,” “slanted right,” “slanted left,” “slanted up,” and “slanted up with a sharper angle.” It is noticeable that the error ranges for “slant right,” “facing downwards,” and for “slanted up with a sharper angle” were considerably larger than for the other capture angles. Variances for both of these positions ranged mostly from 4 to 6 mm (∼3–4.5 pixels), while other positions tended to have less than 4 mm (∼3 pixels) of variance. The markers perpendicular to the camera as well as the “slant left” capture error ranges were considerably smaller than reported for moving markers. Markers at other angles relative to the camera had error variances comparable to those during motion captures.
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FIGURE 5. Study 1: Error in marker location with a stationary fiberboard across 6000 time steps. (A) Stationary markers viewed from different angles by the center camera. Each boxplot refers to an interpoint distance error between two points of known distance in the calibration object (Table 1). The numbers on the x-axis represent the points and are separated by a hyphen. (B) Distance of markers from the best-fitting plane for all markers (left). Movement of triangulated points in 3D from their mean while markers were stationary (right). (C,D) Same data as shown in (A,B) but post-processed with a Kalman filter. For plots of the remaining data post-processed with a Kalman filter (see Supplementary Figure S2).


To better explain the source of these errors in the triangulation, the original pictures were reanalyzed to potentially discern differences between the positions that showed a smaller error variance and those that showed a larger variance. The first noticeable difference was that the angle of the marker board relative to the camera was larger in the “slanted right” compared to the “slanted left” capture configuration. A similarly sharp angle was also present relative to one of the cameras in the “slanted up with a sharper angle” capture condition. Thus, the sharper the angle of the camera optical axis relative to the marker, the smaller the marker from the view of the camera. The resultant smaller viewable marker size combined with color intensity differences due to the angle relative to the camera caused the center point of the marker to move with either the flickering of the light source or the change in illumination caused by the angle. Part of the error was likely due to the fact that the triangulated points provided by SnakeStrike have not been filtered or smoothed through time. To demonstrate the effect that a filter would have on the error variance, the data from Figure 5 were processed by a simple Kalman filter (Kalman, 1960). As illustrated in Figures 5C,D and Supplementary Figure S2, it was clear that the use of such a filter drastically reduces the error variance for both the interpoint error as well as the planar error, indicating the necessity to apply such a simple and easy to implement post-processing to obtain even more reliable motion tracking.

Analysis of the data collected from this experimental paradigm showed that even though a high frequency fluorescent bulb was used as the main light source, a minor oscillatory flicker occurred in the image sequence. This introduced a noticeable effect on the accuracy of marker positions as the flicker significantly changed the color characteristics of the markers with respect to saturation and hue. To precisely quantify the error, introduced by the flickering light, a second test of the accuracy object was performed in a new setup where the object remained stationary in a position that was perpendicular to the center of three cameras. In this second experimental setting, data was recorded using a completely separate location with a bright light source consisting of four AQ Aquaflora 54-watt fluorescent bulbs that did not produce any light flickering, and the spacing of the cameras was similar to the original setting. The respective data are presented in Supplementary Figures S3B,C, S4B,C and give a clear approximation of the error that the flickering of the light has introduced in the originally collected data (Supplementary Figures S3A, S4A), i.e. an average spatial error difference of maximally 1 mm (∼1 pixel) with considerably increased variances, 2–3 mm (∼2 pixels) for the flickering data error. As the errors for both the flickering and the non-flickering light condition show the same trends, there is still a systematic error in the triangulation of the system. Given that the data obtained in the flickering and non-flickering light condition used different camera calibrations, it is more likely that the residual error derived from inaccuracies in the calibration object, or an error in the triangulation and rudimentary thresholding algorithms, though it is nevertheless still small in magnitude.



Study 2: Strikes of the Amazon Tree Boa (Corallus hortulanus)

In the framework of the experimental setting, 20 snake strikes were recorded, out of which 15 were used to provide tracking data that could be fully processed by SnakeStrike (Figure 6). The meta-information regarding successful strikes is presented in Table 2. Captures 19 and 20 derived from a smaller snake and thus were not included. Captures 14 and 16 used a rather strong heat element as infrared target to elicit the strike instead of the IR emitter that was used for the other strikes. This strong heat element produced visible light that affected the ability of SnakeStrike to properly track the markers. Capture 11 did not yield a consistent set of images, likely because of partially missing data from one of the 5 cameras and therefore was excluded from further analysis. Details regarding the velocity of each strike over time is presented in Figure 6. The dots indicate the calculation of the velocity for each timestep using 3D triangulation information. The value for each individual dot was calculated as the change in distance between two subsequent timesteps, where a timestep was denoted by a captured image. There are two lines for each capture plot with one showing the best fit for the trial data and the other indicating the average best fit for all trials of a particular snake. Data points that did not allow an analysis were removed from the plot (red bars) based on a velocity threshold of 2.5 ms–1. This omission of data typically occurred when the identity of points was swapped for a few timesteps, or when the thresholding process found a different reflection or source of color than the marker in question and assigned a new – but often only temporary – point as marker for that timestep. An example for the velocity change of a snake strike is plotted at the lower right of Figure 6 as the best fitting curve for all snake strike trials in comparison to the best fitting curve for all trials of each individual snake.


TABLE 2. Strike meta-data as calculated from initial forward movement of strike until start of head retraction.
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FIGURE 6. Study 2: Snake strike velocity over time (A) 3D positions in study 2 of each snake’s head for each trial are plotted to illustrate the velocity changes during the strike. In some trials, e.g. Y4 markers were obscured from the view of at least one camera resulting in a loss of correspondence as a new and usually temporary point was assigned to be the marker location. These time steps were removed using a velocity threshold of 2.5 ms– 1 (red vertical bars). (B) Group aggregate velocity statistics for all snakes individually and as mean across all snakes tested in this study.





DISCUSSION

As indicated previously for machine vision in social interaction studies (Robie et al., 2017), when individual animals are visually indistinguishable, the task of tracking in the presence of occlusions or partial overlap is an unresolved problem. For snake motion tracking, a similar problem exists as positions on the body surface of the snake are nearly identical, such as when the snake skin consists of a repetitive pattern. This makes markerless tracking methods, such as DeepLabCut (Mathis et al., 2018), much harder to employ successfully on patterned snakes. Markerless annotation programs such as DeepLabCut further require a set of manually labeled images to train the software. In the case of DeepLabCut, this training can require a couple of hundred images per camera, though in practice a smaller number can be sufficient, and if the camera is moved, it might require re-labeling of a set of new images from that camera. Furthermore, DeepLabCut does not provide 3D triangulations of annotated points. On the other hand, non-patterned skin can also be problematic as large sections of the snake surface look very similar and indistinguishable causing specific positions to be difficult to discern with sufficient spatial resolution. With the snake moving and changing body shape in a very short period of time, the labels assigned to these markers will be swapped in most cases, unless the system is able to uniquely identify and track a particular marker over time. This is implemented in many systems by using multiple markers as a single marker and putting them into a unique configuration scheme that is identifiable by the system (Theunissen et al., 2017), thus filling up even more skin space with markers. Unfortunately, the maintenance of the spatial configuration can be also very problematic since some animals (e.g. insects or small birds) are too small to carry an extra payload or are able to remove these markers very easily (e.g. snakes or squids). For example, a snake easily twists itself and effortlessly removes even the smallest markers. This is the major reason why studies such as that by Theunissen et al. (2017) used rigid structures attached to the body and head of the animal as markers. This method allows motion capturing of the whole animal as body and head can be tracked even when there is occlusion of some markers. In a large system with many cameras the triangulation is robust to marker loss through the view of many cameras. Unfortunately, this method is not suitable when attempting to capture the kinematics of the animal or the kinematics of particular appendages.

SnakeStrike is a framework that allows researchers in animal tracking to use one piece of software from experiment start to finish and in combination with high-speed cameras to save time in the processing of 3D triangulation data for animals that can be difficult to track. Our preliminary data set on boid snakes showed that this framework is suitable to track even fast movements such as snake strikes and provides first information about the instantaneous speed during the complete strike of a boid snake. Although this data set primarily serves to demonstrate potential applications of this framework, it already showed that instantaneous strike speed has a similar magnitude, when compared across different individuals. In addition, our data on boid snakes shows similar strike profiles and trajectories as described for strikes of viperid snakes (Kardong and Bels, 1998; Herrel et al., 2011), suggesting the presence of a common motor program for executing strike behavior. Similar experiments with an increased number of markers placed on the snake body, would also allow for a further, more detailed analysis of the contribution of typical loop formations in strike progression.

The data presented in Study 2 shows that the new framework presented here allows for collection of data even from vastly agile animals without the necessity of purchasing costly commercial systems or having to combine multiple other software solutions. Despite room for further improvement, the system provides scientists with new options and another alternative to existing systems such as DLTdv (Hedrick, 2008) to record novel data sets. Some drawbacks of the system derive from the necessity to simultaneously save the images from multiple high-speed cameras, which requires a large amount of memory for the initial capture, high CPU load for processing, and a large amount of hard drive space for long term storage. This requires a large upfront cost for a computer, although the computer can also be used for other tasks, and still costs only a fraction of a commercial system. However, the storage of the raw data, allows recalculations and reanalysis at any time (see below). Since changes of light intensity, shadowing, and occlusion of markers can occur within a given recording session, thresholding color from the images can be complicated and time consuming. The impact of this issue can be reduced, though not completely eliminated, by pre-tests of the color(s) to be thresholded in the actual setting, as well as by strict adherence to a consistent experimental environment and regime.

The benefits of this framework considerably compensate for the few disadvantages, also because in many experiments, the latter can be at least partially circumvented. The reduced upfront costs compared to commercial motion tracking systems allows greater ability to incorporate motion tracking at high speed in animal studies. As shown in Study 1, the error in the system is small with regard to normally occurring sources of errors such as flickering lights, color thresholding problems, or marker identity swapping. For animals in which affixing large 3D markers is impossible because the animal might remove the markers or they do not remain affixed, this is a particular improvement. In studies of animal behavior, the goal usually is to obtain the largest amount of usable data as possible. Being able to store and reassess all originally captured images, rather than having to only rely on calculated 3D points is a very big advantage, since various additional analyses can be performed offline. This indicates that the acquired information can be used not only for the initial, principal aim of a project, but also allows answering novel questions without the necessity to perform a second experiment. Since all 3D points are decoupled from the images, the generation of the points in terms of decrease in error can be improved by new methods in the future. The data generated from older studies can therefore be re-interpreted or interpreted in greater detail, when, for example, new algorithms for coping with occlusion of tracking markers has been developed. Triangulation of data collected today would suffer from this aspect of the current state of the art in algorithms. However, if this problem is improved, these data can be easily re-interpreted with new algorithms and possible new insight can be obtained, without having to re-run tedious and often difficult and time-consuming experiments. SnakeStrike brings the functionality of several open source projects together in a way that is highly beneficial to researchers who have no access to expensive motion capture systems. Researchers who work with non-standard and especially fast-moving animals now have an affordable option to exploit novel experimental ideas. In addition, those interested in testing new algorithms for object correspondence over time can generate real-world data sets very quickly and easily, or test ideas on previously collected data.



DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.



ETHICS STATEMENT

The animal study was reviewed and approved by the Thüringer Landesamt für Verbraucherschutz; code: 15-003/16.



AUTHOR CONTRIBUTIONS

GJ, HS, PS, and TK: conceptualization. GJ: methodology, software, validation, investigation, data curation, writing – original draft. GJ, HS, EH, PS, and TK: formal analysis, writing – review editing. PS and TK: resources. GJ and TK: visualization. HS, EH, PS, and TK: supervision. TK: project administration. HS, PS, and TK: funding acquisition. All authors contributed to the article and approved the submitted version.



FUNDING

This research was partly funded by a grant from the Bernstein Center for Computational Neuroscience (BCCN) Munich (Project B-T7) as well as additional intramural funding from the Biomimetics Center at TUM.



ACKNOWLEDGMENTS

We would like to thank Dr. Alexandros Paraschos for his help configuring and running the Franka Emika Panda arm for the verification study. We would also like to thank Rommy Petersohn and Ingrid Weiss for their help in collecting the X-ray data in Jena.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnbeh.2020.00116/full#supplementary-material

FIGURE S1 | Study 1: Error in marker location while the fiberboard with attached markers was moved through space by the Franka Emika Panda robotic arm. Parameters: two marker sizes and two relative speeds of movement of the markers. Data is shown for one camera lens (Ricoh FL-CC0614A-2M) (A) Each boxplot refers to an interpoint distance error between two points of known distance (Table 1) in the calibration object; the numbers on the x-axis represent the points and are separated by a hyphen. (B) Marker distance from the best-fitting plane for all markers.

FIGURE S2 | Same data as shown in Figures 5A,B, but post-processed with a Kalman filter to illustrate the improvement by filtering or smoothing of the triangulated data for the analysis. (A) Each boxplot refers to an interpoint distance error between two points of known distance in the calibration object (Table 1). The numbers on the x-axis represent the points and are separated by a hyphen. (B) Distance of markers from best-fitting plane for all markers (left). Movement of triangulated points in 3D from their mean while markers were stationary (right).

FIGURE S3 | Study 1: Effect of light-flickering on inter-marker distance error variance. The markers were stationary and perpendicular to the cameras’ position. Each boxplot refers to an interpoint distance error between two points of known distance in the calibration object (Table 1). The numbers on the x-axis represent the points and are separated by a hyphen. (A) Example of a trial where flickering was present in the light source. (B) Example of a trial in a different setting where light-flickering was absent. (C) Example of a trial in the same setup as in (B), but with a different camera calibration.

FIGURE S4 | Study 1: Same data as in Supplementary Figure S3, but with the error displayed as the distance of the marker from the best-fitting plane for all of markers. (A) Example of a trial where flickering was present in the light source. (B) Example of a trial in a different setup where light-flickering was absent. (C) Example of a trial in the same setup as in (B), but with a different camera calibration.
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A central function of sensory systems is the gathering of information about dynamic interactions with the environment during self-motion. To determine whether modulation of a sensory cue was externally caused or a result of self-motion is fundamental to perceptual invariance and requires the continuous update of sensory processing about recent movements. This process is highly context-dependent and crucial for perceptual performances such as decision-making and sensory object formation. Yet despite its fundamental ecological role, voluntary self-motion is rarely incorporated in perceptual or neurophysiological investigations of sensory processing in animals. Here, we present the Sensory Island Task (SIT), a new freely moving search paradigm to study sensory processing and perception. In SIT, animals explore an open-field arena to find a sensory target relying solely on changes in the presented stimulus, which is controlled by closed-loop position tracking in real-time. Within a few sessions, animals are trained via positive reinforcement to search for a particular area in the arena (“target island”), which triggers the presentation of the target stimulus. The location of the target island is randomized across trials, making the modulated stimulus feature the only informative cue for task completion. Animals report detection of the target stimulus by remaining within the island for a defined time (“sit-time”). Multiple “non-target” islands can be incorporated to test psychometric discrimination and identification performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying various sensory perceptual performances (auditory frequency discrimination, sound source localization, visual orientation discrimination). Furthermore, we show that pairing SIT with chronic electrophysiological recordings allows revealing neuronal signatures of sensory processing under ecologically relevant conditions during goal-oriented behavior. In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for mammals that combines self-motion and natural exploratory behavior to study sensory sensitivity and decision-making and their underlying neuronal processing.

Keywords: psychophysics, sensory feedback, chronic recording, go no-go, freely moving, sound localization, frequency discrimination, orientation selectivity


INTRODUCTION

Understanding how specific behaviors (reflexes, motor patterns, sensory representations, subjective perception, or cognitive functions) arise from neural processing is a primary goal of neuroscience. Pioneering research on sensory processing was based on observations of organisms and their innate behavior in their natural habitats (von Frisch, 1954; Tinbergen, 1963; Lorenz, 1981). This minimal-intervention approach laid the groundwork for the study of natural behavior during ethologically adequate sensory stimulation, yet left questions regarding the underlying neuronal mechanisms and brain circuits largely unanswered. In the last decades, experimental methods to study neural activity in awake and behaving animals have been increasing in number and complexity, providing previously unreachable insights into processing capabilities of neural populations. However, the great complexity of these techniques often requires highly controlled experimental conditions, which in turn limit their ecological relevance. Thus, they are prone to underestimate the dimensionality of neuronal processing (Gao and Ganguli, 2015; Krakauer et al., 2017).

A central evolutionary driving force acting on sensory systems is the processing of environmental cues in relation to self-motion: the interdependence of a motor action and the resulting modulation of sensory information is a fundamental aspect of both neural coding and decision making (Etienne et al., 1996; Ma and Jazayeri, 2014; Case et al., 2015), because this reciprocal interaction with the outside world allows for the continuous update of the “internal framework” within which the sensory inputs are interpreted (von Holst and Mittelstaedt, 1950; review: Campbell and Giocomo, 2018). Accordingly, substantial neural resources are dedicated to gathering and interpreting sensory information in relation to one’s own voluntary actions (Keller et al., 2012; Rancz et al., 2015; Vélez-Fort et al., 2018). A number of studies recently demonstrated the impact of movement on neuronal processing across sensory modalities, including somatosensation (Fu et al., 2014; Kerekes et al., 2017), vision (Chiappe et al., 2010; Niell and Stryker, 2010; Maimon et al., 2010; Dadarlat and Stryker, 2017; Clancy et al., 2019), and audition (Zhou et al., 2014; Schneider et al., 2014; for review see Schneider and Mooney, 2018). Likewise, multisensory co-modulation of the physical properties of the environment is crucial for inference and sensory object formation (Noppeney et al., 2008; Diehl and Romanski, 2014; Altieri et al., 2015; Atilgan et al., 2018) and, thus, highlights the importance of active task engagement of the experimental animals. This informational framework is highly plastic and subject to context-dependent modulation (Chabrol et al., 2015; Deneux et al., 2019).

However, despite the fundamental role of self-movement during goal-oriented behavior and the resulting multisensory co-modulation in complex sensory scenes, experimental investigations including these aspects are still underrepresented in the literature (Krakauer et al., 2017). While reports on psychophysical measurements involving decision-making are recently increasing (Carandini and Churchland, 2013; Saleem et al., 2018; The International Brain Laboratory et al., 2020), to this date, a flexible experimental paradigm to study sensory processing during goal-oriented behavior in freely moving animals is lacking. Here, we modified and expanded the existing concept of using closed-loop free navigation assays (Polley et al., 2004; Whitton et al., 2014). We present the Sensory Island Task (SIT), a novel experimental paradigm to study sensory processing of variable modalities during unrestricted self-movement in actively engaged animals that also allows for simultaneous neural recordings.



MATERIALS AND METHODS

In SIT, animals freely explore an arena in the presence of sensory background stimulation. They are trained to search for a hidden target island (a small circular sub-space in the arena, see below). Upon entering the target island, the background stimulus switches to the target stimulus. The animals are trained to report the detection of the target stimulus by staying at this position in the arena (i.e., within the target island). The position of the target island is altered in each trial and, thus, can only be found by detection of the change in sensory stimulation. A trial is considered correct when the animal stays within the target island for a specific duration (“sit-time,” typically 5–6 s). After a correct trial, a food reward is dropped in the arena via an overhead food dispenser. Trials have a time limit (typically 60 s) after which they are considered incorrect. Additionally, in some experiments (multi-island, see section “Results” for details), non-target islands were introduced simultaneously with the target island. These islands triggered a different change of stimulation than the target and no reward was provided when sit-time was achieved. This design of the task renders it a natural implementation of the NO-GO sensory change detection task, which are typically used in head-fixed experiments (Carandini and Churchland, 2013) and here is replaced by a sit-in-place condition.


Animals and Housing: Gerbils

Here, SIT was used in two sensory modalities (auditory and visual) and in two species. Mongolian gerbils (Meriones unguiculatus) were used to probe auditory frequency discrimination and identification (aSITfreq) and sound source localization (aSITloc) as well as visual orientation discrimination (vSITori). All procedures involving gerbils were approved in accordance with the stipulations of the German animal welfare law (Tierschutzgesetz) (AZ 55.2-1-54-2532-74-2016 and AZ 55.2-1-54-2532-70-2016). The animals were from the breeding colony of the Biocenter of the Ludwig-Maximilians University Munich. Animals were housed in groups of 3–4 individuals with 12 h light/dark cycles.



Animals and Housing: Mouse Lemurs

Additionally, aSITfreq was conducted with two gray mouse lemurs (Microcebus murinus). The non-invasive experiments were in accordance to the NRC Guide for the Care and Use of Laboratory Animals, the European Directive 2010/63/EU, and the German Animal Welfare Act. They were approved by the Animal Welfare Committee of the University of Veterinary Medicine and approved and licensed by the Animal Welfare Committee of the LAVES (AZ 33.19-42502-04-18/3050). The animals were from the breeding colony of the Institute of Zoology of the University of Veterinary Medicine Hannover. Maintaining and breeding were permitted by the Landeshauptstadt Hannover and the Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES; AZ 42500/1H).



Setup and Stimulation During aSITfreq and aSITloc With Gerbils

The aSITfreq and aSITloc (freq: sound frequency as target indicator; loc: sound source location as target indicator) tests with gerbils were conducted in a custom-made setup consisting of a circular arena (diameter = 92 cm) within a sound attenuated chamber (Figure 1A). The arena floor consisted of a black-painted wood or PVC surface surrounded by perforated metal walls (height: 16 cm). Additionally, PVC walls were mounted on top of the metal wall around the entire arena up to a height of 75 cm.
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FIGURE 1. (A) Schematic of the experimental aSIT setup for gerbils. (B) Schematic representation (top view) of the aSITfreq arena in the single island version for gerbils (background and target frequencies for gerbils were 20 kHz and 660 Hz). (C) Comparison for gerbil 1 of the percentage of trials finished with the percentage of trials which would have been finished by chance at each time point after the beginning of a trial (shadow areas correspond to 95% confidence interval); Left panel: 1st half of the 1st session; Right panel: 3rd session. (D) Percentage of successful trials relative to the chance level (as calculated in C at 60 s) for each gerbil (error bars correspond to the 95% confidence interval). Session 1: NGerbil 1 = 66 trials, NGerbil 2 = 55 trials; Session 2: NGerbil 1 = 72 trials, NGerbil 2 = 65 trials; Session 3: NGerbil 1 = 56 trials, NGerbil 2 = 61 trials. Inset: duration of successful trials for each gerbil in the two last training sessions, horizontal lines denote median (solid) and quartiles (dashed) of the distribution. Durations of correct trials per session are available in Supplementary Figure S2 (both for gerbils and for mouse lemurs). (E) Time to success in two consecutive successful trials was not correlated with geometric island distance in either gerbil. Pearson correlation, NGerbil 1 = 89 pairs of trials, NGerbil 2 = 68 pairs of trials. (F) Schematic of the experimental aSIT setup for mouse lemurs. Background and target frequencies for lemurs were 10 and 4 kHz, respectively. (G) Performance of two mouse lemurs in three consecutive days at the end of the training: percentage of successful trials relative to the daily chance level (as calculated in C; error bars correspond to the 95% confidence interval). Session 1: NLemur 1 = 32 trials, NLemur 2 = 48 trials; Session 2: NLemur 1 = 43 trials, NLemur 2 = 43 trials; Session 3: NLemur 1 = 44 trials, NLemur 2 = 41 trials. For performance levels during intermediate training sessions (see Supplementary Figure S3).


Stimuli were computer generated and transmitted through an amplifier (AVR 445 Harman/Kardon, Germany). Stimulus presentation was delivered through loudspeakers (Aurasound NSW1-205-8A 1″ Extended Range) mounted externally of the arena (∼5 cm distance to the metal walls). Auditory stimuli during aSITfreq were 57 ms long pure tones with frequency according to task structure. Trial initiation elicited the playback of the background frequency (20 kHz), and animal entrance into an island triggered the switch of the frequency played to the target frequency of 660 Hz or non-target frequencies of 460, 860, 1060, or 1320 Hz (Figure 2 - see section “Results” for details). Stimuli during aSITloc were 57 ms long harmonic complex sounds with a fundamental frequency of 147±4 Hz and low-pass filtered below 1.5 kHz. Trial initiation triggered the playback of the above-mentioned harmonic complex by the background loudspeaker, and animal entrance into the island triggered the switch of the playback to the target loudspeaker. Stimuli in either aSIT version were played at a repetition rate of 4 Hz and their amplitude was 70 dB SPL roved ±5 dB, which rendered a stimulation of about 55 dB above background noise. The animal’s position was tracked via images captured every 250 ms with a Flea3 camera (FL3-U3-13Y3M-C, Point Grey Research Inc.), centered over the arena at a height of 130 cm from the arena floor. Stimulation parameters (i.e., sound frequency or source location) were updated online according to the animals’ position within the arena (see section “Results” for details). Custom-made software for animal tracking, stimuli generation and food reward delivery was developed in MATLAB. A custom-made overhead rotating food dispenser positioned 100 cm over the arena was used for automatic reward administration by dropping a food pellet (∼20 mg, TestDiet LabTab AIN-76A) or part of a sunflower seed after every correct trial. If the animal did not correctly report the target island within the time limit, a low-pass filtered noise was presented to the animal for 10 s, during which no new trial could be initiated.
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FIGURE 2. (A) Schematic representation (top view) of the aSITfreq in the multiple island version. Note that on a given trial, only three of the four possible non-target frequencies were offered. (B) Performance of each gerbil per training session (error bars correspond to the 95% confidence interval). Session 1: NGerbil 1 = 64 trials, NGerbil 2 = 68 trials; Session 2: NGerbil 1 = 58 trials, NGerbil 2 = 59 trials; Session 3: NGerbil 1 = 51 trials, NGerbil 2 = 49 trials; Session 4: NGerbil 1 = 62 trials, NGerbil 2 = 52 trials. (C) Incidence of sit-time across sessions, relative to chance level per island (error bars correspond to the 95% confidence interval). (D) Psychometric function: comparison between the first and last training session of the percentage of events the animal stayed the sit-time in each island depending on the frequency distance in octaves of the island to the target frequency; results were fit with a logistic function (dashed line).




Behavioral Training During aSITfreq and aSITloc With Gerbils

Two gerbils were used for the behavioral testing of the aSITfreq paradigms, and 11 gerbils were tested in the aSITloc version of the task. Training of gerbils began at a minimum of 8 weeks of age. All gerbils within this study were male. Water and food (pellets) were provided ad libitum until training started, at which point food was only available during training sessions as reward for correct trials. No more than two training sessions were carried out per day, lasting up to 60 min each for aSITfreq and up to 90 min for aSITloc. Final parameters of island size (diameter = 25 cm, ∼7% of the arena surface) and sit-time (6 s) were identical for both aSITloc and aSITfreq. For aSITfreq, animals were presented with the final parameters from the beginning of training. For aSITloc the training of the animals was performed by gradually reducing island size (starting at diameter = 42 cm, ∼21% of the arena surface) and increasing sit-time (starting with 2 s) over the course of the training sessions. Additionally, for aSITloc, animals were initially trained in a protocol with one slightly elevated, peripheral, circular initiation platform (diameter = 12 cm), which the animals had to visit in order to initiate a trial. For aSITfreq, an additional configuration with multiple islands was tested, where three non-target islands were available in the arena alongside the aforementioned target island (see section “Results” for details). All gerbils in the aSIT tasks underwent a general habituation period in the SIT setup for 15 min per day for 5 days.



Setup and Stimulation During aSITfreq With Mouse Lemurs

The aSITfreq experiments with mouse lemurs were conceptually identical, yet with adapted parameters to accommodate to species-specific exploration behaviors. Experiments were conducted in a circular open field arena with a diameter of 80 cm and a height of 70 cm (Figure 1F). For online animal tracking, a camera (Logitech C500 Webcam) with removed infrared filter was positioned above the center of the maze and at a distance of 92 cm from the floor plate, so that the arena floor optimally fitted the vertical dimensions of the video picture. For acoustic stimulation, a single broadband speaker (Visaton B200, VISATON GmbH & Co., KG, Haan, Germany) was mounted above the arena at a distance of 165 cm from the arena floor. The floorplate was made of frosted light-conducting acrylic glass (Plexiglas® LED, Evonik Industries, Darmstadt, Germany) and illuminated with infrared diodes (peak wavelength at 940 nm) from below to provide optimal contrast between background and experimental animal during tracking. The sidewall of the circular arena was made of opaque, dark-gray acrylic glass (Zimmermann + Collegen Kunststoff-Technik GmbH, Hannover, Germany). Food rewards used as positive reinforcement during the learning experiments (see below) were provided on-top of the regular, ad libitum diet. To provide food rewards (small peanut pieces of approximately 15 mg) for correct behavioral responses during training, commercially available aquarium feeders (Rondomatik 400, Grässlin GmbH, St. Georgen, Germany) were modified to be controllable with Arduino Uno microcontrollers via Arduino Uno motor shields (v1). Two of these modified feeders were installed at opposing positions on the arena wall (i.e., at a distance of approximately 70 cm from the floor) and their positions could easily be shifted between sessions to reduce predictability of the reward location. For online animal tracking as well as sound stimulation and hardware control based on the animal’s behavior, we used self-coded Python scripts, running on windows machines with Windows 7 and Python 3.7.



Behavioral Training During aSITfreq With Mouse Lemurs

Training of mouse lemurs was conducted in male individuals aged 5 and 6 years that had previously participated in non-auditory behavioral experiments unrelated to SIT. To avoid stress, subjects were transported to the setup in their sleeping boxes and experiments were conducted under low-light conditions (1–5 lux). Each animal was trained once per day during workdays in a single session of 60 min or 50 completed trials (depending on which limit was reached first). Animals were trained in a protocol with one slightly elevated, peripheral, circular initiation platform, which the respective animal had to visit in order to initiate a trial, and one circular target island. Once a trial had been initiated, a background sound (pure tone of 10 kHz, 57 ms duration, sound pressure level = 67.5 ± 2.5 dB) was played back at a repetition rate of approximately 5 Hz while the geometric center of the animal remained outside of the target island (pseudo-randomly generated position without overlap with the initiation platform). As soon as the animal entered the target island during a given trial, stimulation switched to the target sound (pure tone of 4 kHz, all other properties were identical to the background sound). The frequency of the stimuli was chosen to lie within the range of optimal hearing described for mouse lemurs (Schopf et al., 2014). If the animal failed to find the target island or to remain within it for the desired sit-time within a pre-defined trial duration, the trial stopped, as did the acoustic stimulation, and the animal had to revisit the initiation platform to start a new trial. During the experiments, the setup was illuminated with dim red light, comparable to the illumination of the housing rooms during the daily activity phase of the nocturnal mouse lemurs. While the location and size (diameter = 18 cm, 5% of arena surface) of the initiation platform were fixed values, the size of the target island, the sit-time, and the trial duration could vary between sessions. In the first session, the size of the target island was set to a diameter of 32 cm (∼16% of arena surface), the target duration to 1 s, and the trial duration to 120 s. To increase the difficulty with increasing training and to better differentiate behavioral responses to the target sound from chance-level performance, these variables were changed between sessions, depending on the animal’s performance on the preceding training days. Values for the final sessions were a target island diameter of 24 cm (∼9% of arena surface) and a sit-time of 5 s. Animals were trained until performance in three consecutive sessions under these conditions was above chance level.



Setup and Stimulation During vSITori With Gerbils

The vSITori experiments were conducted in a 3D virtual reality setup called ratCAVE (Del Grosso et al., 2017), which was designed for behavioral experiments in freely moving animals. To this end, a large rectangular arena (dimensions 162 cm × 72 cm and walls of 60 cm height, placed with a 70 degrees angle to accommodate the visual projection), was used. A set of 7 cameras (Prime 13W 240 fps, OptiTrack, NaturalPoint Inc., United States) served to record the 3D position of reflective markers fixed on the head of the animal. A projector with 240 fps frame rate (VPixx Technologies Inc., Canada), mounted to the ceiling, was used to project the image of the virtual environment on the walls of the arena depending on animal position (Figure 3A). A food dispenser (Campden Instruments Ltd.) positioned above the arena served for automatic reward administration by dropping a food pellet (∼20 mg, TestDiet LabTab AIN-76A) after every correct trial. A custom-written python-based software was used to manage the projection, animal rewarding, positioning, and data logging.
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FIGURE 3. (A) Schematic representation of the ratCAVE setup (adapted from Del Grosso et al., 2017). (B) Schematic representation (top view) of the vSITori arena, both in the single and in the multiple island version. Animal entrance to a target island and non-target island triggered the change of grating orientation from vertical to horizontal or oblique, respectively. All gratings used only differed in orientation angle. Differences in appearance is due to visual angle from above. (C) Performance of each gerbil in example sessions from the beginning, middle, and end of the training, in the single island task (error bars correspond to the 95% confidence interval). First session: NGerbil 3 = 20 trials, NGerbil 4 = 42 trials; middle session: NGerbil 3 = 12 trials, NGerbil 4 = 20 trials; last session: NGerbil 3 = 40 trials, NGerbil 4 = 32 trials. (D) Incidence of sit-time across sessions relative to chance level per island, in the multiple island task (error bars correspond to the 95% confidence interval). Gerbil 3 NSession 1 = 34 trials; NSession 2 = 41 trials; NSession 3 = 43 trials; NSession 4 = 39 trials; NSession 5 = 44 trials; NSession 6 = 39 trials.


The virtual environment for the vSITori experiment consisted of black and white square-wave grating patterns with stripes of 10 cm width, projected on all four walls of the arena. When animals entered the target island, the projected grating pattern on the walls changed its orientation from vertical to horizontal (Figure 3B). A non-target island was additionally implemented for one of the animals which, upon animal entrance, triggered change from the vertical grating projection to oblique (45 degrees). Each successful trial was followed by an inter-trial period of 15 s with only light projected on the arena floor (no patterns on the walls) to allow the animal to find the rewarded pellet. After the inter-trial interval, the new trial started automatically.



Behavioral Training During vSITori With Gerbils

Two male gerbils were trained in this version of vSITori. No habituation was required, as they had previously participated in another study within the same arena. Animals were food restricted and kept at a minimum weight of 85% of the ad libitum condition. Similar to the aSITloc experiments, training of the animals was performed by gradually reducing island size (starting at ∼10% of the arena surface) and increasing sit-time (starting at 2 s) over the course of the training sessions. At the end of the training (15 and 24 sessions), a trial was considered correct when the animal stayed within the target island of minimal size (∼6% of arena surface area) for a sit-time of 6 s. For one of the gerbils, the non-target island was introduced to the trials after performance reached a level significantly different from chance (see section “Results”).



Source Code Availability

Protocols to perform aSITfreq experiments are freely accessible for download at https://gin.g-node.org/asobolev/runsit/.



Surgical Procedures and Chronic Electrophysiological Recordings

One adult male Mongolian gerbil (∼70 g) that was trained in aSITloc underwent tetrode implantation surgery. At the beginning of the surgery, the animal was anesthetized with an intraperitoneal injection of a mixture of metedomidin (0.15 mg/kg), midazolam (7.5 mg/kg), and fentanyl (0.03 mg/kg). The depth of the anesthesia was verified by lack of paw pinch or eye lid reflexes. To maintain it at a constant level, the same mixture was subcutaneously re-injected every 90 min. After shaving and disinfecting the head, a local anesthetic (50 μl, 2% xylocaine) was injected under the scalp skin and below the skin near the ears. For protection and to prevent dehydration, the eyes were covered with an ophthalmic gel (Thilo-Tears SE, Alcon Pharma GmbH). The animal was then transferred to the stereotactic apparatus, where its head was securely fixed via a bite and ear bars. Its internal temperature was monitored with a rectal thermometer and kept constant at 37°C throughout the experiment by a feedback controlled electric heating pad (Harvard Apparatus). After disinfection, a midline scalp incision was performed to expose the skull. Subsequently, the connective tissue on the skull was removed with a bone curette and the skull was treated with 35% phosphoric acid (iBOND etch gel, Kulzer), which was promptly washed away. Structural screws were placed on top of the left frontal and right parietal bones and the ground screw on the occipital bone, so that it gently touched the brain. After stereotactic alignment, a 3 × 3 mm craniotomy and durotomy were performed on top of the left auditory cortex, followed by a very slow lowering (2 μm/s) of a tetrode bundle to a maximum depth of 0.9 mm into the cortex, using a micromanipulator (Scientifica). The craniotomy was carefully filled with KY-jelly and immediately sealed with dental cement (Paladur, Kulzer), which also fixated the bottom of the microdrive and the outer cannula that protected the tetrodes. 1 ml of Ringer’s solution was subcutaneously injected at the end of the surgery and the anesthesia was reversed via subcutaneous injection of the antagonist mixture composed of naloxone (0.5 mg/kg), flumazenil (0.4 mg/kg), and atipamezol (0.375 mg/kg). Analgesics (0.2 mg/kg, meloxicam) and antibiotics (7.5 mg/kg, enrofloxacin) were orally administered post surgically for five subsequent recovery days. During this time, the animals had food and water ad libitum and were not trained.

The implant used in this experiment was a tetrode bundle consisting of four tetrodes glued together, which, on their turn, consisted of four insulated tungsten wires (12.7 μm diameter each, tungsten 99.95%, California Fine Wire) twisted around each other. Each wire was connected to a custom-made printed circuit board with Omnetics connector (Axona), which was attached to a lightweight microdrive (0.25 mm/turn, Axona). The tetrodes were glued together and protected by an inner and outer cannula that could slide by each other. On the day prior to the surgery, the tip of all electrodes were cut with sharp scissors and gold plated (Non-Cyanide Gold Plating Solution, Neuralynx) to reach a desired impedance of 100–150 kOhm (at 1 kHz). The tetrode bundle was implanted vertically in the following coordinates from lambda: 6.2 mm lateral, 2.6 mm anterior. The recording depicted in Figure 4 occurred at an electrode depth of ∼1.3 mm.
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FIGURE 4. (A) Schematic representation (top view) of aSITloc, a sound source localization version of SIT. (B) Left-hand panel: Reporting of sound location was highly significant (P = 0.0033, N = 11 gerbils, Wilcoxon signed-rank test) compared to their chance level given their actual locomotion behavior, calculated by surrogate island computation. Right-hand panel: In 1/8 of the trials the identity of the target and background loudspeakers was swapped for a subset of the animals. A significant decrease in the performance for the “swapped” trials below chance level (P = 0.018, N = 7 gerbils, horizontal lines depict the median, Wilcoxon signed-rank test) suggests the animals were actively avoiding the target island under these conditions. (C,D) Response magnitude differences in auditory evoked potential (AEP) recordings of auditory cortex neural populations. (C) Single session example traces. Dotted lines represent AEP per trial and active loudspeaker identity. Thick traces represent the median of all trials. (D) Quantification of AEP amplitude. In this example session the AEP amplitude was significantly larger during target loudspeaker activity (P = 0.000049; Ntarget = 19, Nbackground = 23; Mann-Whitney U-test). Boxplots depict the median (black line), 1st and 3rd quartile (filled boxes), ± 2.7 σ (whiskers) and outliers (crosses).


Recorded signals were amplified and digitized (16-bit resolution) in the wireless headstage (W2100-HS16, Multichannel Systems), and transmitted to the receiver. Through an interface board (W2100-System, Multichannel Systems), the signal was then sent to the computer where it was acquired with a sampling rate of 25 kHz via commercial software (Multi Channel Experimenter). A digital signal for posterior alignment of the sounds and video with the neural signal was simultaneously sent to the interface board.



Data Analysis

All data analyses were performed in MATLAB (Mathworks) and Python using custom scripts. To test the performance of the animals, we compared the percentage of correct trials in each session with surrogate runs based on random target island shuffling. That is, for each trial (offline, a posteriori), 1000 surrogate (non-real) islands, non-overlapping with the target one, were randomly set and the real trajectory of the animal was used to calculate in how many of these islands the trial would have been correct given the required sit-time (Supplementary Figure S1). At each time point, we determined how many trials were already finished and the respective uncertainty (95% confidence interval) was calculated based on bootstrapping (random sampling with replacement from all the trials of the session). The median chance performance and confidence interval at each time point was calculated based on bootstrapping from the random target island shuffling data (random sampling with replacement from the 1000 surrogate trials with number of trials as size of the sample). The chance performance calculation was based on trajectories from trials which were incomplete up to the considered time point (real target island not yet found) and trajectories in which the animal stayed longer than the sit-time in the surrogate island before that time point. A trial which had been finished by that time point and in which the animal did not find the surrogate island cannot be used in the bootstrapping of the time points posterior to the finishing time because it is unknown whether the animal would have found the island if the trial had been longer. This method allows obtaining an estimate of the proportion of correct trials the animal would have gotten just by chance given their locomotion trajectory and dynamics.

In the multi-islands version of SIT, the sit-time incidence was calculated by assigning an island to each trial. This assignment corresponds to the first island in which the animal stayed longer than the sit-time. For example, if the animal correctly finished a specific trial but had been sitting for longer than the sit-time in a non-target island prior to finishing, this trial is assigned to the respective non-target feature and not to the target one, even though the animal also remained sufficiently long in the target island later. A trial in which the animal never remained for longer than the sit-time in any island is assigned to “None.” In the aSITfreq multi-island configuration, the target frequency is always present but the non-target frequencies are not, as there are 4 non-target frequencies and only 3 non-target islands in each trial. Therefore, for each session, we calculated the percentage of trials assigned to each frequency, normalized by the total amount of trials in which the respective frequency was available. As a measure of uncertainty, the 95% confidence interval was calculated by bootstrapping (the percentage calculation was done on 1000 random samples with replacement from the assignment to each frequency with number of trials as size of the sample). The chance level (calculated per animal with data from the last session of the single island version) was subtracted from this percentage and the 95% confidence interval was calculated using error propagation.

For the construction of the psychometric function, in each session all the events in which the animal stayed at least 1s in the island were identified. For those events, the percentage of times the animal stayed in a specific frequency island for the designated sit-time (6 s) was calculated. This allows the construction of a perception curve by fitting a logistic function [image: image] to these percentage values, with the frequency distance in octaves of each island to the target frequency as x; the offset in relation to zero describes the recurrent behavior of stopping randomly, which occasionally can last longer than the sit-time.

For the analysis of the local field potential (LFP), the recorded signal was low-pass filtered at 600 Hz. Auditory evoked potential (AEP) was calculated per trial, by loudspeaker active. Amplitude of the AEPs was calculated from peak to peak, that is, the difference between the maximum and minimum voltage recorded in the time window corresponding to the first 100 ms after stimulus onset.



Statistics

Binomial tests were used to compare, on a given experimental session, the percentage of correct trials with the ones expected by chance, as calculated using the surrogate runs analysis.

All error bars correspond to the 95% confidence interval as calculated via bootstrapping, except for the boxplots in Figure 4D.

For the investigation of possible linear relationships between the distance between islands in consecutive trials and the time to completion in the latter trial (Figure 1E), we used Pearson correlation analyses.

For comparisons of central tendencies on the group level, we used two-tailed non-parametric tests: Wilcoxon signed-rank tests for paired samples and Mann-Whitney U-test for independent samples.

All hypotheses were tested at an alpha level of 0.05.



RESULTS

The Sensory Island Task (SIT) is an operant conditioning foraging task in an open-field arena (Figure 1). We designed SIT to allow for high flexibility regarding the implementation of sensory modalities and parameters to address the desired specific research question. Animals can roam freely in the arena, in search for a sensory “target island” (in auditory versions of SIT, we used a circular target area within the arena, area ∼5–9% of the arena surface), relying solely on changes in the presented stimulus, which is controlled in real-time via closed-loop position tracking. They are trained via positive reinforcement to discover the target island by detecting a change in stimulation from a “background” to a “target” stimulus. Animals report this detection of the target stimulus by remaining within the island for a defined time (sit-time). Upon correct reporting, a food reward is administered by dropping from an overhead dispenser, which ensures that any association of the reward consumption with a specific location in the arena is prevented (since the reward bounces unpredictably on the arena floor). The location of the target island is randomized across trials, making the stimulus feature under investigation the only informative cue for task completion. Multiple “non-target islands” (areas where the relevant stimulus feature is changed into neither the target nor the background and where the animal is not rewarded) can be incorporated in SIT to test identification performance. Furthermore, SIT can readily be adapted to the species and sensory system under investigation. To demonstrate this high flexibility, here we present data from Mongolian gerbils (Meriones Unguiculatus, rodents) and gray mouse lemurs (Microcebus murinus, small primates) trained in SIT to perform auditory frequency discrimination and identification (aSITfreq). We further demonstrate the suitability of SIT to study sound source localization (aSITloc), as well as visual orientation identification and discrimination (vSITori).


Auditory Frequency Discrimination (aSITfreq)

We trained animals to detect a change in the presented stimulus frequency upon entering the target island. Throughout a trial, a “background” frequency was played in repetitive pulses (duration 57 ms, repetition rate 4 Hz in rodents, 5 Hz in mouse lemurs) through a single loudspeaker as long as the animal was outside of the target island. Once (and if) the animal entered the target island, the stimulation (played from the same loudspeaker) switched to the “target” frequency (Figure 1B). Two gerbils and two mouse lemurs (see below) were trained to perform this task in this configuration.

For gerbils, background and target frequencies of 20,000 and 660 Hz were chosen, respectively (see Supplementary Video 1). Both gerbils reached similarly high proportions of correct trials within three training sessions (Figure 1D; see figure legend for trial numbers). The percentage of successful trial completion highly exceeded chance performance levels (i.e., random stopping in the arena for > 6 s, Figures 1C,D, P = 6E-17 for gerbil 1 and P = 2E-27 for gerbil 2, binomial test, calculated for the last session). Chance performances were calculated by the use of bootstrapping methods with surrogate target locations and the actual animal locomotion trajectories (see Supplementary Figure S1A and section “Materials and Methods”). Thus, the animals stopped and remained significantly longer in the portion of the arena that triggered the appearance of the target frequency compared to any other location. This behavior was independent of the relative location of the target island position, within the arena as the animals explored the arena uniformly (i.e., no center avoidance was observed, Supplementary Figures S1B,C). Indeed, performance levels of both gerbils was significantly above chance level already for the second half of trials in the very first session of exposure to the task, and further increased with more training (Figure 1D, significance is denoted by the lower bound of the confidence interval not extending to chance level).

In both animals, more than half of the correct trials had durations of less than 30 s (half of the maximally allowed duration, inset in Figure 1D), suggesting that the chosen maximum trial length was adequate for the animals to complete the task. As rodents may exhibit history-biased behavior in operant conditioning paradigms (Busse et al., 2011), it raises the question if the gerbils might preferentially re-visit (or alternatively avoid) the locations in the arena which triggered the target stimulus in the previous correct trial. To test if they employed specific spatial bias in their search strategy based on the successful detection of the target island location in the prior trial, we plotted the linear distance between the target islands in two consecutive successful trials as a function of the time to completion in the latter of the two trials (Figure 1E). Across the two animals, no significant correlation was observed (Figure 1E, Pearson correlation, details in figure legend), demonstrating that the animals’ exploration behavior was not influenced by the short-term history of task success.

The results so far demonstrated the suitability of aSITfreq for assessing frequency-change detection (discrimination) in gerbils. Next we asked to what extent these results are qualitatively specific to the innate locomotion behavior and learning capabilities of the species/clade we used (gerbils/rodentia) or generalizable across clades. To this end, we also trained two gray mouse lemurs on aSITfreq. Gray mouse lemurs are primates, yet comparable in size to gerbils. Notably, they exhibit a quite distinct innate exploration behavior compared to gerbils, as they usually show low levels of spontaneous exploration in an open field setting (Picq, 2016). Only once they learnt that active exploration of the setup was occasionally rewarded, exploration rate increased. Therefore, we adapted some SIT parameters accordingly and started the training with a large target island size (diameter = 32 cm), a short sit-time (1 s) and a long maximum trial duration (120 s) to increase the initial likelihood of rewarded trials. Once exploration activity of a given individual had increased, parameters were successively changed toward the target values (target diameter = 24 cm, SIT-time = 5 s, maximum trial duration = 60 s). We further introduced an initiation platform for the mouse lemurs, which allowed the animals to decide when to start a trial by visiting the platform (Figure 1F, see Supplementary Video 2, section “Materials and Methods” and section on sound localization below). Mouse lemur 1 reached the final target parameters in session 14 (after 438 trials), mouse lemur 2 in session 19 (after 567 trials). Under these conditions, both mouse lemurs achieved highly significant performance levels in aSITfreq (Figure 1G, P = 2E-3 for mouse lemur 1 and P = 1E-12 for mouse lemur 2, binomial test, calculated for the last training session). Note that our surrogate island bootstrapping method to obtain chance levels and to determine significant performances (see section “Materials and Methods”) is sensitive to a subject’s moving velocity as well as the specific parameter settings of each trial and, thus, provides an objective evaluation. Hence, SIT can readily be adapted to different species.



Multiple Island aSITfreq

The results so far imply that the animals’ behavior in SIT serves to seek out the target sound. However, it is unclear whether this behavior is based simply on change-detection (i.e., simply stopping whenever the stimulation changed) or if SIT can also be utilized to test the animals’ sensitivity for identification of the target stimulus. To test this hypothesis in more detail, we extended the paradigm design of SIT.

We implemented a version of aSITfreq with several islands simultaneously offered in the arena (Figure 2A, see also Supplementary Video 3). The same two gerbils that were tested in the single-island task were used in this task. Four islands were simultaneously and pseudo-randomly positioned in each trial corresponding to different stimulus frequencies, including the original target frequency (660 Hz). The frequencies of the non-target islands were 460, 860, 1060, and 1320 Hz. The background frequency “outside” of islands remained as before (20,000 Hz). Importantly, in this SIT version, animals again only received a reward for sit-time stays in the actual target island (no reward was provided for sit-time stays in the non-target islands, and trials were allowed to continue). Overall, the animals showed high success rates (Figure 2B, comparable to those in aSITloc, Figure 4B) already from session 1, yet because non-target island sit-time stays did not trigger trial termination, the animals could have stopped in any of the non-target islands for 6 s before entering the target island and finishing the trial. Such behavior would still correspond to a non-selective searching behavior based on detection of a change from the background frequency. Note that in this multiple island configuration of SIT, it is not possible to compute the chance level as the surrogate islands would overlap with the non-target ones which correspond to a change in frequency. To address the specificity of island preferences (and therefore the possibility of oddball strategies) directly, we calculated “sit-time incidences” a posteriori, that is, we determined the first island in which the animal remained for longer than the sit-time for each trial. Each recorded trial was assigned to only one island (if any at all), namely the one where the animal first stayed for longer than the sit-time. Afterward, we computed the proportion of trials that corresponded to each island frequency relative to the animal’s recurrent random sitting behavior calculated as the chance level in the last single island session (i.e., a proxy for the sit-time incidences outside of islands, see section “Materials and Methods”). Notably, significantly high sit-time incidence percentages for the target island were observed already after the first session of exposure to the multi-island aSITfreq (Figure 2C, significance is given by the fact that chance level lies outside the 95% confidence interval for the target). Likewise, sit-time incidences for non-target islands dropped in prevalence after the first training session and reached baseline level for most non-target frequencies besides 860 Hz (see below). These results strongly indicate that the animals learn to specifically associate the target island frequency with the reward. It is further evidence that the animals were actively searching for the location of the target island (i.e., the arena location that induces the appearance of the target stimulus) and not simply awaiting a change in stimulation that is independent of their own spatial behavior. This assessment is further corroborated by the finding that gerbils adapted their arena occupancy during exploration according to target island location biases (see section on sound localization and Supplementary Figure S5).

Interestingly, the proportion of sit-time incidences in non-target islands was not uniform. We observed that sit-time incidences for the 860 Hz island were significantly increased relative to baseline for either animal for some of the training sessions (for gerbil 1, the lower bound of the confidence interval remained above chance level on all sessions, while for gerbil 2 it only did so on the second session). Gerbils are generally capable of discriminating even smaller frequency differences than used here (0.4 octaves) when presented in succession (Klinge and Klump, 2009). However, Chen et al. (2019) have recently shown that when confronted with a memory-based frequency discrimination task, mice generalize auditory stimuli. Therefore, one plausible explanation to the increased sit-time incidences for 860 Hz is that the gerbils generalized the new presented stimulus initially after introduction of the non-target islands.

The data, thus, suggest that multi-island SIT might represent an adequate behavioral readout of perceptual thresholds. This premise is further supported by the observation that the sit-time incidence percentage for the 860 Hz island of gerbil 2 decreased to baseline at later training sessions, which is indicative of increased frequency identification ability with experience (Figure 2C, lower panel), which could be explained by an extinction of the prior generalization (Chen et al., 2019). The reason why generalization (and extinction) is seen at 860 Hz, but not 460 Hz might be related to asymmetrical filter broadening and/or the closer logarithmic spacing (Schnupp et al., 2011).

To directly describe performance levels and their change across training sessions, we next calculated the “conditional sit-time incidences” for each of the tested island frequencies (expressed in octave distance to the target frequency - Figure 2D). For this analysis, we only considered trials where the animal encountered at least 1 s of sound exposure in the respective island, to ensure that the animal had the opportunity to evaluate the nature of the frequency change (see section “Materials and Methods”). The results of this analysis revealed two findings: first, a clear dependence of the conditional sit-time incidences on the octave-distance to the target frequency is apparent; second, the peak performance values increased, while conditional sit-time incidences of non-target frequencies decreased over the training sessions. These results indicate that learning occurred, which resulted in better identification of the different frequencies. Hence, multi-island SIT in combination with sit-time incidence analyses allows constructing psychometric functions to determine perceptual learning progress.

So far, we established that SIT allows the investigation of auditory frequency discrimination and identification in rodents and in primates. Next, we tested the suitability of SIT to study another sense, namely vision.



Visual Grating Orientation Discrimination (vSITori)

Here, SIT was incorporated into an existing free-navigation visual stimulation setup (from Del Grosso et al., 2017, 2019) and two gerbils were trained to report when the orientation of the grating projected on the walls of the arena changed from vertical to horizontal (Figure 3B and Supplementary Video 4). Both gerbils achieved a performance above chance level (Figure 3C, P = 2E-28 for gerbil 3 and P = 1E-4 for gerbil 4, binomial test, calculated for the last training session) at the end of the training (gerbil 3 was trained in a total of 24 sessions – 672 trials – and gerbil 4 in 15 sessions – 384 trials).

Gerbil 3 was additionally tested for stimulus feature specificity by introducing a non-target island. The non-target island corresponded to a 45° orientation of the grating (Figure 3B and Supplementary Video 5). As in previous versions of SIT, this island was not rewarded if the gerbil spent longer than the sit-time inside and the trial continued. To analyze the specificity of the gerbil’s behavior, we again calculated the sit-time incidence percentage and assigned each trial to the island in which the animal stayed first for the duration of the sit-time. Already in the first session in which the non-target island was introduced, the animal exhibited high selectivity for the target stimulus and stayed for the sit-time almost exclusively in the target island (Figure 3D). The sit-time incidence percentage for the non-target island is not different from chance, which supports the hypothesis that the gerbil learned that a specific grating orientation is associated with reward and not any change in orientation. Thus, SIT is readily adaptable to other sensory modalities, suggesting that it is suitable for multi- or cross-modal investigations.

Next, we examined how SIT can be utilized to study another fundamental auditory computation – sound localization – and to what extent employing SIT (hence introducing its inherent ecological relevance by allowing free exploration) in chronically implanted animals may facilitate the identification of new neural processing signatures.



Sound Localization (aSITloc)

We applied SIT to study sound localization in freely behaving and engaged animals. Traditionally used paradigms to study spatial sensitivity require a constant head position during sound presentation (Wood et al., 2019), often in naïve or anesthetized animals (Middlebrooks and Knudsen, 1984). In contrast, aSITloc allows investigations in the locomoting animal during active localization, providing more naturalistic conditions and, thus, higher ecological relevance. We used the single-island configuration, yet here the target island cue was a change in the sound source location (i.e., the active loudspeaker). The arena was equipped with two diametrically opposed loudspeakers (180° angle separation from the center of the arena), from which a short (57 ms) harmonic complex sound (see section “Materials and Methods”) was presented at 4 Hz repetition rate. Upon trial initiation (see below), the sound was played by one of the two loudspeakers (the background) until the animal entered the target island, at which moment the stimulation switched to the second loudspeaker (target) (Figure 4A and Supplementary Video 6). The identity of the target and background loudspeaker was maintained throughout training and testing yet catch-trials with swapped identities were introduced in a subset of the animals (see below). Since we combined this paradigm with neural recordings in the auditory cortex (AC), we added an initiation platform (∼1 cm in height) for the animals during training and testing on aSITloc (similar to the mouse lemur paradigm in aSITfreq). Voluntary trial initiation has been shown to reduce spontaneous discharge and improve the detection of thresholds (Buran et al., 2014) and task engagement sharpens spatial tuning of neurons in AC in cats (Lee and Middlebrooks, 2011). The platform was positioned near the wall of the arena and animals were required to stay on it for one second to start a trial.



Locomotion and Sitting Behavior Are Specific to Target Loudspeaker and to Target Island Distribution Likelihood

We tested 11 gerbils in aSITloc, all of which reached highly significant success rates (Figure 4B, P = 0.0033, N = 11 gerbils, Wilcoxon signed-rank test). Swapping the identity of the target and background loudspeakers in 1/8 of trials during the testing phase (the identities of target and background loudspeakers remained fixed during training) resulted in performance levels that were significantly lower than chance level (Figure 4B, P = 0.018, N = 7 gerbils, Wilcoxon signed-rank test). Given that these catch-trials started with the presentation of the usual target stimulus, the animals could potentially have just stopped moving immediately after initiating a trial in anticipation of the reward, which could explain the extremely low success rate. However, further analysis revealed that the animals indeed encountered the target-islands with similar prevalence in catch-trials as in normal trials, but rarely remained in the island for the required sit-time in catch-trials (Supplementary Figure S4). Thus, the animals actively avoided staying in the target island in these catch-trials, revealing that they indeed associated the identity of the active loudspeaker (target or background) with reward predictability. Since the spatial location of the active loudspeaker was the only parameter that allowed determination of loudspeaker identity, these data validate that the animals were actively localizing the sound source to achieve task performance. Hence, similar as for frequency discrimination, the gerbils did not follow an oddball strategy but specifically searched for the target stimulus.

We also tested to which extent the animals associate their locomotive searching behavior with target detection success. To this end, we employed a biased distribution likelihood of target island locations in the arena. We found that after the animals were trained on one specific distribution likelihood, their arena occupancy was specific to this distribution (Supplementary Figure S5). That is, the animals predominantly visited locations in the arena that were most likely to contain the target island. Thus, a clear association existed between the animals’ locomotive behavior and their reward expectancy, i.e., they actively searched for the target island position. Together, these data validate that SIT allows the interrogation of different cues based on the concept of a locomotive search for a target stimulus (i.e., island).



Electrophysiological Recording of Neural Activity During SIT Performance

We were interested in combing SIT with chronic electrophysiological recording techniques. Specifically, we asked to what extent the unrestricted self-movement and task relevance that are provided by SIT might facilitate exploring neural signatures of spatial processing in AC. Therefore, we implanted a tetrode bundle in AC of a previously trained gerbil (see section “Materials and Methods”), and recorded brain activity during task performance in aSITloc. We collected local field potential (LFP), from which we calculated Auditory Evoked Potentials (AEPs). Remarkably, although the acoustic stimulation was identical from both loudspeakers (sound intensity was roved throughout trials), AEPs were different between the two sound sources (Figures 4C,D). Specifically, AEP amplitudes were significantly larger during stimulation by the target loudspeaker (P = 0.000049, Mann-Whitney U-test). A plausible reason for this difference in AEP amplitude could be differences in the intensity of the sounds presented from each loudspeaker, due to the animal being closer to the target loudspeaker than to the non-target, at the moment of respective sound presentation. This does not seem to be the case, as the histograms of animal position for target and non-target loudspeaker sound presentations do not show such a bias (Supplementary Figure S6). More likely, these data suggest that the learned relevance of each specific sound source modulates neural response amplitude. Such differences in sound-source-specific responses have – to our knowledge – not previously been reported in studies on spatial processing and thus demonstrate that the use of SIT may be beneficial to reveal neuronal signatures of sensory processing under ecologically relevant conditions.



DISCUSSION

SIT is a novel experimental paradigm for freely moving animals that are actively engaged in a sensory processing task and can be combined with simultaneous neural recordings. It exploits voluntary exploratory self-motion – and its cessation upon detection of a change in the sensory stimulation – for testing psychophysical sensitivity in a variety of cues and sensory modalities. Self-motion occurs constantly under natural conditions and, throughout evolution, neural processing has adapted to the resulting continuous modulation of the sensory input (Niell and Stryker, 2010; Zhou et al., 2014; McGinley et al., 2015; Williamson et al., 2015; Willett et al., 2019). SIT consequently captures ethologically relevant behavior that is crucial for sensory processing and decision making. SIT was inspired by existing closed-loop free navigation assays (Polley et al., 2004; Whitton et al., 2014), but differs significantly in a number of aspects. Most importantly, the introduction of discrete sensory islands instead of a gradient fundamentally changes the locomotion behavior toward free exploration of the entire arena. Moreover, the introduction of multiple islands allows the interrogation of animals about perception thresholds and the construction of psychometric functions.

The last decade has seen a rise in the study of perceptual decision making, particularly in rodents. Data from established and commonly used paradigms, such as go/no-go tasks (G/NG) and two alternative forced choice tasks (2AFC), can be difficult to interpret. For example, in 2AFC designs, the animals are forced to give an answer on every trial, which renders the disentanglement between real decisions and guesses difficult (Carandini and Churchland, 2013). The sensory environment in which rodents are immersed while performing these tasks has been increasing in complexity in recent years, from lever operation, to full 360° virtual reality with online locomotive update. However, animals require substantial training to learn how to use and navigate these setups. Moreover, a major drawback of many virtual reality setups is a lack of vestibular feedback (due to head fixation) that is naturally present during self-movement.

In contrast, SIT is characterized by shorter training periods than many traditional behavioral paradigms or techniques involving virtual reality (e.g., as little as one training session for gerbils in aSITfreq), high flexibility to readily adapt parameters to both the constraints of the scientific question at hand and to the behavioral characteristics of the animal clade used. If required (e.g., depending on complexity and species), the motivational state of the animals can be controlled by addition of an initiation platform, which assures the willingness of the individual to perform a trial. In essence, SIT represents a refined version of a G/NG task. Nonetheless, the possibility to add multiple non-target islands allows testing of cue identification and determining psychometric functions. In its currently presented form with pseudo-randomized island locations, SIT does not represent a spatial association nor a long-term memory task. Nonetheless, SIT can be easily transformed into such a task by maintaining the target island location constant across trials or switching between a limited number of target locations; e.g., a recent study by Rossato et al. (2018) which used electromagnets to switch between available islands in the Morris water maze could be performed in SIT, with greater flexibility due to the amount and position of the islands depending on software rather than hardware. In addition, the lack of water in SIT facilitates maintenance of the setup and coupling of experiments with interventions such as electrophysiology. Although dry versions of the water maze already exist, such as in Bast et al. (2005), where animals forage for food in hidden compartments, SIT provides an easier, more versatile alternative in which the search for food can be replaced by the search for target island (to receive food reward). Thus, spatial learning and memory studies in relation to sensory cuing could be performed, a task of high ecological relevance in many species (Sherry, 1985; Collett et al., 1986).

In any of its potential variants, combining SIT with specific time points of electrode implantation (e.g., before/during training), opens exciting possibilities to study aspects of learning and plasticity of sensory processing during voluntary self-motion and active sensing. We have exemplified some of this potential here, as our AC recording during aSITloc revealed previously unreported response modulation of spatial sensitivity based on sound source identity. Previous reports had established that neuronal responses in auditory cortex can be modulated by “attention” (Hubel et al., 1959; Evans and Whitfield, 1964). Our findings are related, but potentially more profound, as the difference in responses to both loudspeakers is unlikely to be due to the attentive state of the animal, but rather the relative relevance of the two sound sources regarding reward expectancy and experimental design. Multiple studies in AC have found relevance-specific response modulation in animals if engaged in the experimental task (Miller et al., 1972; Fritz et al., 2003, 2007; Atiani et al., 2009; Otazu et al., 2009; Lee and Middlebrooks, 2011; Guo et al., 2019). Moreover, a recent study with macaque monkeys that were trained to respond differentially to the same auditory stimulation depending on the context reported larger auditory cortex responses to the same stimulus when it required a no-go response (Huang et al., 2019). Likewise, greater neural responses during aSITloc were observed for target sounds that required the animal to remain sitting.

In summary, SIT is a flexible and easily implementable behavioral paradigm that uniquely incorporates self-motion and natural exploratory behavior, which are essential for ecological sensory processing. SIT is readily applicable across species and sensory modalities and extendable to use for neurophysiological investigations. Beyond the options we have exemplified here, SIT is widely adaptable to a large variety of neuroscientific and ecological fields. For example, besides the auditory and visual cues probed here, we suggest that somatosensory cues can be studied by dynamically changing the floor texture, or olfactory sensitivity could be tested collocating the target island and odor release valves beneath the arena. Similarly, decision-making based on congruent or ambiguous combinations of different sensory modalities is ecologically important and could readily be applied in SIT. In the future, it would be particularly interesting to use high yield recording devices, such as neuropixel electrodes (Juavinett et al., 2019), to sample a wide range of brain areas. Moreover, the ongoing miniaturization of technology will allow precise stimulus control in various sensory modalities and combinations (e.g., through wireless miniature cameras or microphones). These new technologies coupled with SIT should garner unprecedented insights to unravel ecologically relevant sensory neural processes.
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FIGURE S1 | (A) Schematic representation of the surrogate island random permutation. Colored line depicts a real trajectory of an animal in a trial color coded with the time at which the animal was at each position, starting from the initiation platform (filled gray circle). The real target island is where the animal ends (open orange circle). The dots correspond to the position of the animal with 1s interval between them. The chance level of task completion was calculated using a posteriori surrogate island locations (open black circles, only a few shown here from the 1000 actually used for each trial). (B) Trajectories of gerbil 1 and 2 during the 2nd training session separated by correct and incorrect trials: no apparent change in pattern of locomotion is seen when the animal did not succeed in the task. (C) Comparison of the distance of the target island’s center to the center of the arena between correct and incorrect trials for gerbil 1 and 2 in the same session as in B. Gerbil 1: Ncorrect = 44, Nincorrect = 28, P = 0.12; Gerbil 2: Ncorrect = 44, Nincorrect = 21, P = 0.63 (Mann-Whitney U test). Boxplots depict the median (black line), 1st and 3rd quartile (filled boxes), ± 2.7 σ (whiskers) and outliers (cross).

FIGURE S2 | Duration of correct trials in aSITfreq for gerbils (left panel) and for mouse lemur (Right panel).

FIGURE S3 | Mouse lemur performance at intermediate training sessions, relative to chance level. Target island diameter = 26.7 cm. For mouse lemur 1, x = 6 and sit-time = 4 s. For mouse lemur 2, x = 5 and sit-time = 2 s.

FIGURE S4 | Comparison in the aSITloc version between the trials in which the target loudspeaker was the one from the training, with catch-trials (1/8 of total trials) in which the opposite loudspeaker was the target one. (A) The gerbils found the target island as often in catch-trials as in normal target trials. (B) The gerbils left the target island much more often (∼85% trials) in catch-trials than in normal target trials (∼35% trials). Only situations where the gerbils stayed in the target island for at least 1 s were used to assure the gerbil listened to the sound and did not just run through the island. Number of sessions: 39; Number of normal target trials: 1784; Number of catch trials: 285. Uncertainty was determined using a bootstrapping method.

FIGURE S5 | Association between spatial position and stimulus change in the aSITloc. (A) Distribution of the target islands for all the trials in a session where there was not a target location bias (left) and in a session where there was a target location bias (right). The filled gray circle corresponds to the initiation platform. The dashed magenta circle radius is twice as large as that of a target island and divides the target islands which were considered to be in the center (light gray circles) from the target islands considered not to be in the center (dark blue circles). In sessions without target location bias ∼59% of the islands occurred in the center whereas, in sessions with target location bias, ∼78% occurred in the center. (B) Difference in percentage of successful trials between trials in which the target was in the center and trials in which the target was not in the center (error bars correspond to the 95% confidence interval, calculated using a bootstrapping method). Gerbil 1 and 2 (these are not the same gerbils that were trained in aSITfreq) were first trained in an unbiased condition and the bias condition was later introduced. Gerbil 3 was first trained in a biased condition, and the bias was later removed. When the target location was biased to the center, the animals spent more time in that region and their performance increased in relation to when the target was outside the center.

FIGURE S6 | Histograms of gerbil position at sound presentation times for the session during which LFP was recorded, reported on main (Figure 4). Left panel shows the histogram for target stimulus presentations (orange loudspeaker). Right panel shows the histogram for background stimulus presentations (blue loudspeaker).
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We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green LEDs that allows us to present tethered ants with views of their natural foraging environment. The ants walk on an air-cushioned trackball, their movements are registered and can be fed back to the visual panorama. Views are generated in a 3D model of the ants’ environment so that they experience the changing visual world in the same way as they do when foraging naturally. The Antarium is a biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles. The length of the base of the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have 19,855 Green and Blue pixels and 495 UV pixels, covering 360° azimuth and elevation from −50° below the horizon to +90° above the horizon. The angular resolution is 1.5° for Green and Blue LEDs and 6.7° for UV LEDs, offering 65,536 intensity levels at a flicker frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on the axles of rotary actuators. We build 3D models of the natural foraging environment of ants using purely camera-based methods. We reconstruct panoramic scenes at any point within these models, by projecting panoramic images onto six virtual cameras which capture a cube-map of images to be projected by the LEDs of the Antarium. The Antarium is a unique instrument to investigate visual navigation in ants. In an open loop, it allows us to provide ants with familiar and unfamiliar views, with completely featureless visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-loop, we can study the behavior of ants that are virtually displaced within their natural foraging environment. In the future, the Antarium can also be used to investigate the dynamics of navigational guidance and the neurophysiological basis of ant navigation in natural visual environments.

Keywords: visual navigation, virtual reality, reconstructed visual reality, ants, LED arena


INTRODUCTION

Ample experimental evidence now makes us confident that central-place foraging insects, such as ants, bees, and wasps navigate predominantly visually, relying on both scene memories and celestial compass information (e.g., Reid et al., 2011; Zeil, 2012; Collett et al., 2013; Wystrach et al., 2014; Graham and Philippides, 2017; Wehner, 2020). Visual navigation is supported by path integration (Heinze et al., 2018) which runs in the background, providing a failsafe, and in some cases and situations, also by olfactory, tactile and magnetic cues (Buehlmann et al., 2012, 2015; Knaden and Graham, 2016; Fleischmann et al., 2018). Evidence from behavioral studies and increasingly detailed knowledge of neural circuits relevant for navigation (e.g., Stone et al., 2017; Buehlmann et al., 2020; Kamhi et al., 2020; Steinbeck et al., 2020) are beginning to feed into neurally constrained and experimentally informed models of navigation (e.g., Baddeley et al., 2012; Ardin et al., 2016; Webb and Wystrach, 2016; Stone et al., 2017; Hoinville and Wehner, 2018; Gkanias et al., 2019; Schulte et al., 2019; Differt and Stürzl, 2020; Sun et al., 2020) and into robotic implementations (e.g., Lambrinos et al., 2000; Möller, 2000; Stone et al., 2016, 2017; Webb and Wystrach, 2016; Sabo et al., 2017; Dupeyroux et al., 2018).

The predictions of these models will likely become increasingly hard to test in behavioral experiments. The main reason being that controlled manipulations of complex visual cues, such as the full landmark panorama or conflict experiments between different compass systems are difficult to perform in natural navigation environments. Equally, investigations of the real-life computational properties of navigation-relevant neural circuits are currently hampered by limitations in the way visual information can be presented in electrophysiology rigs (see e.g., Table 1). There are currently no projection devices that can convey the full information content of the spatial, spectral, and polarization signal patterns that characterize natural navigation environments; and lastly the navigational competence of insects is based on active learning processes (e.g., Collett and Zeil, 2018; Jayatilaka et al., 2018; Zeil and Fleischmann, 2019) and relies on the active comparison between remembered and currently experienced input patterns (e.g., Zeil, 2012; Le Möel and Wystrach, 2020; Murray et al., 2020). It is thus likely that the neural machinery underlying navigation is heavily state-, context- and activity-dependent, requiring closed-loop control of the visual scene by the insect and control by the experimenter over the experience (What has been learned?), the motivation (What is the navigational goal?) and the state of the animal (Whether it holds information from path integration or not).

TABLE 1. Parametric comparison of existing insect research VR systems and the Antarium.
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With this in mind, we designed the Antarium, a panoramic projection device that would allow us to present ants walking on a trackball with views of their known foraging environment and to give the insects full control over the view transformations by feeding their intended movements back onto the panorama. Besides the engineering challenges of the device itself, there are two pre-conditions for this to work: a need to know the movements of the ants in their natural foraging environment and a way of reconstructing the views they will have encountered under natural conditions. To satisfy the first condition, we rely on several years of tracking ant movements with differential GPS, both during their normal foraging activity and after systematic displacement experiments (e.g., Narendra et al., 2013; Reid et al., 2013; Jayatilaka et al., 2014; Zeil et al., 2014). We second used LIDAR and camera-based methods to build 3D models of the ants’ foraging environment (e.g., Stürzl et al., 2015; Murray and Zeil, 2017), which we now can use to render panoramic views at any location within the foraging range of the ants and project them in the Antarium.

The Antarium is not the first “Virtual Reality” device in insect research but it is the first one that has been designed with the specific aim of enabling the presentation of natural, in contrast to synthetic, visual navigation environments (e.g., Van De Poll et al., 2015). We summarize the features of some devices described in the literature in Table 1 and briefly describe their properties below (see also Fry et al., 2004, 2008; Dombeck and Reiser, 2012; Schultheiss et al., 2017; Stowers et al., 2017).

Dickinson and Lighton (1995) built a cylindrical arena with green LEDs which was limited to display a dark vertical bar that could be rotated around the animal. The device could not display an arbitrary scene. Similarly, Strauss et al. (1997) designed a projector for walking Drosophila experiments. It is a cylindrical device, with monochrome (green) LEDs. A full-color computer projector with a hemispheric back-projected screen was built by Gray et al. (2002) and combined with a wind tunnel for moth research. The FliMax device (Lindemann et al., 2003) is an LED projector designed for fly research. It delivers a monochromatic (green) image for the tethered insect in its frontal visual field and was used to present reconstructed, outdoor view-sequences in electrophysiological experiments (Boeddeker et al., 2005). Reiser and Dickinson (2008) designed a modular projection device consisting of small identical square panels of monochromatic (green) LEDs. These modules can be used to tile a surface that has curvature around at most one axis, for example a cylinder1. The projection system designed by Takalo et al. (2012) is based on a modified video projector with elaborate optics. Paulk et al. (2014) used four LED panels to build a square well around the animal on the trackball. The panels are approximately 20 cm squares, with a 32 by 32 matrix of RGB LEDs on each. Only the green channel was utilized and only vertical bars were shown to the animal. Commercial projectors beamed onto a hemisphere were used by Peckmezian and Taylor (2015) who presented artificial 3D environments to trackball mounted jumping spiders. Koenig et al. (2016) projected simple shapes onto a rectangular array of light-guides, the other ends of which lined the walls of a cylindrical arena. More recently Kaushik et al. (2020) built an arena where the tethered insect is placed in the geometric center of a triangular prism formed by three high-speed commercial computer monitors turned on their side, delivering full-color video of a 3D modeled landscape.

The Antarium project aimed to design a projection system for experiments on ant navigation which must be capable of presenting panoramic views of the natural foraging habitat of ants in a way that addresses their spectral and polarization sensitivities while also allowing the ants to interact with the scene and the experimenter to modify it in arbitrary ways.

None of the existing projection systems could deliver on all these points. The following constraints were considered at the outset:


   • Since ants have a panoramic vision (e.g., Zollikofer et al., 1995; Schwarz et al., 2011), the arena must cover 360° azimuth and the whole celestial hemisphere. Similarly, the arena must be able to project ground features down to −45° elevation.

   • At the time the Antarium was designed, the spectral sensitivities of Myrmecia ants were not known, but scattered reports made it likely that ants, in general, possess UV, blue and green receptors (see references in Ogawa et al., 2015).

   • The Antarium must be able to deliver light of sufficient intensities at these wavelengths. On a sunny day, the brightness in a natural scene can vary by 5 log units. The Antarium should be able to deliver a similar intensity range.

   • Like most insects, ants possess a dorsal eye region with UV and polarization-sensitive receptors that feed into the skylight polarization compass system. The Antarium, therefore, would need to provide adjustable polarization covering the celestial hemisphere.

   • We work with Australian bull ants. One of the largest bull ants (Myrmecia pyriformis) has around 3,500 ommatidia per eye (Narendra et al., 2011). Therefore, to avoid aliasing, the number of pixels must be at least 20 000.

   • The critical flicker fusion frequency (CFFF) has been determined for two Myrmecia species, for the nocturnal M. midas at 84.6 ± 3.2 Hz and the diurnal-crepuscular M. tarsata at 154.0 ± 8.5 Hz (for review see Ogawa et al., 2019). For the Antarium, we opted for a minimum flicker rate of 300 Hz. The minimum frame rate for ants to observe continuous motion is not known, but it cannot be higher than the critical fusion frequency. Therefore, a frame rate close to 200 fps should be sufficient.

   • We decided to use the trackball system designed by Dahmen et al. (2017) that records the rotations of a hollowed-out, air-supported Styrofoam sphere using optical mouse sensors. Besides a very high sampling rate, the advantages of this system are that it can be used in two ways: with the tethered animal free to rotate around the yaw axis and the trackball recording the animal’s translational movements only and with the tethered animal fixed, so that the trackball movements reflect both the yaw rotations and the translational movements of the animal.

   • Finally, we had to operate within tight budgetary constraints.



The Antarium offers unique and crucial opportunities to investigate visual navigation in ants and to test models of visual navigation. It allows us to confront ants in both open and closed-loop with familiar and unfamiliar views of their natural environment, but also with completely featureless visual scenes, or with scenes in which dominant objects have been removed or displaced or that are altered in spatial or spectral composition. Most importantly, the Antarium can also be used in the future to investigate the neurophysiological basis of ant navigation in natural visual environments.



THE ANTARIUM DESIGN


Geometry

Although an ideal projector would be spherical, several practical constraints make this untenable. For example, if LEDs were drilled and glued to the inside surface of a sphere, the optics would be ideal (see e.g., Koenig et al., 2016). However, hand-soldering thousands of LEDs to their driver is error-prone and extremely labor-intensive, and thus prohibitively expensive. A faster and cheaper alternative is to have machine printed circuit boards (PCB). PCBs can be any shape but must be flat, which constrains the projector to be a polyhedral approximation of a sphere. Since PCB manufacturing has a large NRE (non-recurrent engineering) cost, it is significantly cheaper if the polyhedron can be built from identical facets. Facet number is then a trade-off between optical properties and cost, with larger numbers leading to a better approximation of the sphere, but higher printing and labor costs. To guarantee that each facet has identical properties, i.e., that the LED arrangement can be identical on them, all of the polyhedron’s vertices should lie on a sphere.

We chose the biscribed pentakis dodecahedron (Figure 1A) as our spherical approximation for the Antarium. It has 60 facets of identical isosceles triangles. Five triangles form a pentagonal pyramid and 12 of such pyramids comprise the solid. For the Antarium one such pyramid is removed at the bottom, providing an opening where a trackball with the tethered animal can be inserted.
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FIGURE 1. The Antarium. (A) Concept schematics of the biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles carrying LEDs and control electronics and the trackball device. (B) Tethered ant on an air-cushioned trackball. The ants are free to rotate around the yaw axis, but its translational movements are registered by monitoring the rotations of the Styrofoam ball. (C) The tethered ant as seen by the Antarium camera. (D) The fully assembled Antarium. (E) The landscape panorama projected by the Antarium LEDs seen at 1.5° resolution, about twice the average resolution of ants.



The physical size of the Antarium is constrained by electronic circuit board density, mechanical limitations, and the need for the opening at the bottom to be sufficiently large for the insertion of the trackball apparatus. With all those factors considered, the length of the base of the triangle was chosen to be 368 mm. All other dimensions are determined by the geometry of the pentakis dodecahedron, resulting in a roughly 1 m diameter device (Figure 1D).



Pixel Arrangement

Ideally, the LEDs should be as evenly distributed on the surface of the polyhedron as possible, which is challenging, because the pattern continuity between adjacent panels needs to be addressed. A pattern was found where the LEDs are on the vertex points of a hexagonal lattice. A computer program was written that calculated the pixel positions and minimized the inter-pixel angle variation while taking the technological constraints of manufacturing into account.

Two such hexagonal grids were calculated, one for the GB (green/blue) pixels and another for the UV pixels. The angular acceptance functions are much wider and the spacing of ommatidia in the dorsal rim area is much higher than in the rest of the eye. It was decided that the UV LED pattern therefore should be made significantly sparser than the BG pattern, especially because of the high cost of UV LEDs and the need for their adjustable polarization.

Each triangle contains 361 blue/green pixels and nine UV pixels (Figures 2A,B). Therefore, the 55 triangles that form the Antarium all together have 19,855 GB pixels and 495 UV pixels. Because no spectral sensitivity information was available at the time, the LEDs were chosen based on their price, availability, physical size, brightness, and beam angle. The selected LEDs were LTST-C930KGKT (Lite-On, Inc), LTST-C930TBKT (Lite-On Inc.,), and VLMU3100 (Vishay) for the green, blue, and UV, respectively. As can be seen in Figure 2C, the current LEDs’ spectral emissions are ill-matched to the photoreceptor spectral sensitivities that have since been determined in Myrmecia ants (Ogawa et al., 2015). This problem will be fixed in Antarium Mark II, which is currently under construction (see “Outlook” section below).
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FIGURE 2. The design of individual Antarium panels. (A) Photograph of one of the panels with LEDs seen as white rectangles. (B) Detail of the panel LED locations on the printed circuit board and the actuator axle location for polarizer disks. (C) Spectral sensitivities of Myrmecia ants compared with current LED emission spectra. Continuous lines: normalized spectral sensitivities of the nocturnal Myrmecia vindex recorded intracellularly (redrawn from Ogawa et al., 2015). Dotted lines: emission spectra of the LEDs used in the current version of the Antarium as per manufacturer specifications. (D) Schematic of how light polarization is achieved. (E) The data path of the Antarium.



Preliminary experiments revealed substantial internal reflections within the Antarium, which were subsequently minimized by fitting a low reflection black cardboard cover to its internal surface. We measured the reflectance of the black cardboard with a USB-4000 Ocean Optics spectrometer against a certified reflectance standard reference from LabSphere illuminated by natural light. For all wavelength points, the cardboard intensity was divided by the reflectance standard’s intensity. Between 400 and 700 nm, the cardboard reflects between 5 and 7% of the light, without dips and peaks.



Polarization

The adjustable polarization of the UV LEDs is based on each UV pixel being composed of two UV LEDs (Figure 2D). One of them is not polarized at all. The other one is placed behind a linear polarizer. The polarizer is a small disc mounted on an axle of a rotary actuator. The actuator can rotate the disc and therefore its plane of polarization can be at any angle. By varying the relative intensities of the polarized and unpolarized LEDs, the polarization depth can also be controlled.

The actuator needs to be fast as it must to be able to follow scene changes. Stepper motors and servos are too slow. The chosen actuator is an aircore, comprising of a small permanent magnet rotor and a stator with two coils arranged orthogonally. The combined magnetic fields of the two coils can have constant strength but set in any direction by driving one coil with a current that is proportional to the sine of the desired angular position while the other with its cosine. The permanent magnet rotor will always align with the magnetic field direction. Because the rotor is a low mass, an aircore can be driven into a new position quite fast. It has a tendency of oscillations while it settles, but manufacturers also offer devices with a small droplet of silicone oil in the rotor bearing. The oil acts as a damper and the time constant of the damping depends on the viscosity of the oil used. With the correct viscosity, the settling can approach the theoretical optimum. The chosen aircore, MicroAirCore 2022-715 from Simco, Limited was tested in the laboratory and it was fast settling, with very little oscillation. A 180° rotation can be achieved in less than 200 ms.



LED Driving

To guarantee constant brightness the LEDs must be driven by a constant current source. The brightness of an LED is a function of the current flowing over it. LEDs are semiconductor diodes with nonlinear I–V characteristics. Also, as with all semiconductor devices, the characteristics are dependent on the temperature of the chip. Although a laboratory is usually an air-conditioned room, LEDs generate waste heat which warms them up. An LED that was bright for a while will be significantly warmer than one that ran at low intensity.

To mimic natural conditions, the intensity range of the arena should span close to 5 log units. A 16-bit linearly spaced intensity regime (65,536 levels) corresponds to 4.8 log units. We used a commercially available LED driver chip, the MBI5040 from Macroblock which satisfies all these criteria. It can drive 16 LEDs with a constant current. It uses a 16-bit pulse-width modulation (PWM) scheme to set the intensity of each LED individually. It can also apply a correction scheme to compensate for LED brightness variation. The correction scheme can vary the drive current from 0 to the nominal maximum in 1% steps for each LED separately. Also, it can detect and report short circuit and open circuit LED failures. Furthermore, the chip can operate with only a 0.5 V drop across its driving circuitry, an important feature from a power consumption point of view. The maximum drive current is 30 mA per LED; the LEDs used in the Antarium use only 20 mA drive current, far below the chip’s limits.

There are 361 BG and 9 UV pixels on a triangle and the MBI5040 can drive 16 LEDs (i.e., eight pixels), therefore each panel contains 47 chips.



Flicker Considerations

Using PWM to set the LED brightness introduces flicker. PWM works by turning the LED full brightness for a short time then completely dark for some other time; the average intensity is the ratio of the ON time and the PWM period (the sum of the ON and OFF times). Thus, the LED flickers with the PWM period. Using discrete-time increments, the number of levels that can be displayed is the number of increments per PWM period. To ensure ants do not see the flicker, the Antarium needs a flicker frequency of 300 Hz or more. Thus, the PWM period needs to be no more than 3.33 ms which with 65,536 levels gives an elementary time increment of 50.86 ns, and a clock frequency of 19.7 MHz. We chose to run the PWM on a 20 MHz clock, even though the MBI5040 chip could run on up to 30 MHz.

However, another method allows us to reach a much higher flicker frequency far beyond what would be detectable by any biological system. The MBI5040 implements what is called scrambled PWM, a scheme designed to increase the flicker frequency above the PWM period. Instead of turning the LED on for the ON time then extinguishing it for the OFF time, the scheme spreads those times around within the PWM period. For example, if the period is 10-time units and the LED has a brightness of 30%, a simple PWM will turn it on for 3 units then off for 7 units. However, a scrambled PWM system might turn the LED on for 1 unit, then off for 2 units, on for 1, off for 2, on for 1, off for 3. Since the LED was on for 3 units and off for 7 the average brightness is still 30%, but now the LED blinked three times during the period instead of once. There are various ways to perform spreading. The MBI5040’s method becomes active when the brightness level increases above 32 units out of the 65,536. The Antarium uses a 20 MHz clock, thus if the LED brightness is higher than 0.05% of full scale, the flicker frequency will be more than 9 kHz, while below this threshold, for very dark LEDs, the flicker will be 305 Hz. Photodiode tests using an oscilloscope confirmed flicker at 9 kHz.



Video Delivery and Frame Rate

Since the Antarium’s LED array is simply a display device, the method of data delivery from the rendering computer must be defined to understand all of the Antarium’s LED information. All together the Antarium has 20,350 pixels, each of which needs 2 × 16 bits of data to set the brightness, giving a total of 651,200 bits per video frame. The most common communication links on a computer are USB and Ethernet. When the Antarium was designed, the fastest USB was 450 Mbps (USB-2.0 full speed), the next step down was 12 Mbps (USB-2.0 high speed). The most common Ethernet interface was the so-called 100BASE-TX, delivering 100 Mbps over the ubiquitous "blue cable" (officially named Category-5 twisted pair cable). Full-speed USB interface chips were not readily available at the time and the high-speed USB was simply not fast enough. We, therefore, chose the 100 Mbps Ethernet link as the delivery medium for the video stream.

If a full-frame is 0.6512 Mbits, then the 100 Mbps link has a theoretical limit of 153 frames per second. In reality, it is less, as there are protocol overheads. That does not meet our goal of 200 fps and so we needed to find ways to compress the video stream.

The compression scheme must be relatively simple so that the panels of the Antarium can decode it and so that any computer can encode it without special hardware. The solution we chose is to subsample the color information. Instead of delivering 16-bit resolution green and blue values for a pixel independently, a 16-bit luminance value and an 8-bit chromaticity value can be delivered. That saves 25% of the video bandwidth (24 bits per pixel instead of 32). It does not compromise the 4.8 log unit brightness range, however, it does limit each pixel to 256 available hues.

The simplest way of sending data from a computer over an Ethernet link is by using a standard protocol that is supported by any operating system. One of those is UDP (user datagram protocol), where blocks of data (packets) are sent from one machine to another. UDP is advantageous in that it has a smaller overhead than other protocols. On the other hand, it does not guarantee delivery and gives no feedback on whether the packet ever arrived. UDP is often used in situations where the occasional loss of a packet is acceptable, but the unpredictable delays arising from confirming the reception of every packet and re-sending lost ones are not. These strengths and limitations are well suited for video streaming since if a single video frame gets lost, most of the time the observer will not even notice. Whereas if the streaming stopped while the sender and receiver negotiate the retransmission of a single packet, the video quickly becomes unwatchable. The Antarium, therefore, uses UDP for video delivery, with a dedicated Ethernet link to ensure that packet loss is rare.

An Ethernet frame contains up to 1,500 bytes of actual data (usually called the payload) and a further 38 bytes of addressing synchronization, and other ancillary information. Furthermore, UDP adds 24 bytes of protocol information to the data portion of the packet. The protocol overhead is thus 62 bytes for each Ethernet frame with a UDP packet in it. In a full video frame, a single Antarium triangle is represented by 1,110 bytes. Two extra bytes are added to the raw data, for reasons explained later. Therefore, the payload is 1,112 bytes. If each packet contains one triangle’s worth of video information, then 1,174 bytes need to be transferred per triangle. A video frame contains 55 such Ethernet frames, resulting in a maximum theoretical video rate of 194 fps over a dedicated Ethernet link. Indeed, in practice, the Antarium sustains around 190 frames per second.



Architecture

Driving the nine polarisation actuators exceeds the capacity of available microcontrollers, so the Antarium’s panels are equipped with a field-programmable gate array (FPGA) instead. The processing unit of each triangle must receive video frames and send the brightness data to the 47 LED driver chips. Also, it must control the drive current of the nine actuators for the polarisers which each have two coils (18 total drive lines). Using pulse-width modulation (PWM) to set the current necessitates a device with 18 PWM units which no commercially available microcontroller can support. Instead, we chose to use an FPGA. An FPGA is just a large collection of simple digital logic building blocks, which then can be connected inside the chip to form a digital circuit that performs a specific function. Microcontrollers are well suited for tasks that work on fewer hardware signals at a time and where the decision making logic or calculations are complex. For tasks where there are many hardware signals and the calculations and decision making are relatively simple but must be performed at high speed and with precise timing, FPGAs are often a better choice. A large number of PWM signals make the FPGA a better solution for the Antarium. As such, each triangle panel contains an XC3S50AN chip from Xilinx, Incorporation. The chip has 50,000 logic gate’s worth of resources and can handle more than 80 input/output digital signals at high speed.

For our triangular panels, the FPGA needs to buffer a video frame, decode the compressed chromaticity, send the decoded data to the LED driver chips, and run 18 PWM controllers for the actuators, which consumes about 60% of its gates. The remaining 40% is not sufficient to also run Ethernet and UDP protocols as a logic circuit. While we could have used a more powerful chip, the added cost for every 55 panels would have been a significant expense. We instead chose to design a single interface board, with an associated one-off cost, that receives the video feed from the computer and distributes it to the triangles in a simpler way.

When the FPGA on each triangle panel receives a frame, it decodes the chromaticity encoding and collects the 16-bit intensity values for each LED in a buffer. At the end of the video frame, the buffer is sent to the LED driver chips. The drivers have an SPI (serial peripheral interconnect) interface, a standardized serial bus. The LED driver chips are designed to be daisy-chained. Since very long SPI chains are technically problematic, we divided the LED drivers into four chains. The FPGA delivers the video data to the chips on the four SPI chains simultaneously, which allows us to use a lower speed on the buses.

We use an H-bridge design for the PWM controller of the polariser’s actuators, which provides a large reduction in energy usage when the actuators are idle. To drive a single H-bridge the FPGA needs to produce two signals, so for the two coils of nine actuators each, 36 output signals are generated. This design allows energy to be saved since the FPGA reduces the current on both coils by the same factor (thus keeping their ratio, and therefore the angle of the actuator intact) when the actuator is stationary. This holding current is one-quarter of the current used for moving the actuator. If the actuator needs to be re-positioned, the FPGA switches the drive current back to nominal and when the position has not changed for a while, it slowly reduces the current to the one quarter holding value.

Finally, we placed thermal sensors on each triangular panel which are also controlled by the FPGA. The data from these sensors can be sent back across the network, which is important given the large amount of heat that can be produced when the full device is running at maximum brightness.



Power Distribution

Since the Antarium consumes a significant amount of power, ensuring adequate power supply was integral. Each LED needs 20 mA for full brightness. A typical blue or UV LED has a voltage drop of around 3.4 V. The driver chip needs an extra 0.5 V, resulting in a minimum power supply voltage of 3.9 V. To cater for variations and to provide a safety margin, the LED driver circuitry operates from a 4.2 V supply. Due to the use of the intensity/chromaticity encoding, a pixel never needs more than 20 mA. Therefore, a triangle panel’s 370 pixels draw 7.4 A. Besides, the driver chips themselves also consume approximately 30 mA from the same supply. With 47 driver chips per panel that add 1.4 A to the load. The FPGA and its support circuitry need to be supplied as well, although that supply current is negligible compared to that of the LEDs and the drivers. The actuators run from 12 V and the nominal coil current is 54 mA. Due to the sin/cos driving scheme, however, the two coils of an actuator together have a maximum current consumption of 77 mA. The maximum current therefore is 0.7 A.

All together the board needs about 9 A from 4.2 V and 0.7 A from 12 V. The boards have two high-efficiency switch-mode power supplies that generate the 12 V and 4.2 V from a 24 V supply. The efficiency of these supplies is close to 90%, thus the board draws a maximum of 2.13 A from 24 V. Since under no circumstances will all LEDs of all triangles be on full power while all actuators being also set to their most power-hungry position, it was decided that a commercially available 24 V, 10 A power supply unit from MeanWell can safely power five triangles forming a pentagon. Eleven such units power the Antarium. Power losses on the cabling are minimized by using sufficiently thick wires.



Thermal Considerations

The Antarium’s maximum power consumption is 2.5 kW, making its heat generation roughly equivalent to a portable oil radiator, enough to warm a small room with a volume of 16 m3. If that thermal energy were concentrated inside the Antarium’s less than 1 m3 volume, the temperature would rise to uncomfortably high levels for any subject very quickly. There are three ways to mitigate that risk: reducing the dissipated power, ensuring heat radiates outwards, rather than inwards, and ensuring convection between interior and exterior spaces.

Consumption is minimized due to our use of natural scenes, which are highly varied and contain many dark objects, such as trees trunks, buildings, and shadows on the ground (see Figure 1E). Furthermore, to compensate for the intensity variation due to parallax arising out of the Antarium’s geometry, the central area LEDs of each panel are artificially darkened. Together these two factors more than halve the overall power consumption.

Unfortunately, most of the heat is generated by the LEDs, which are on the inside of each panel. To minimize the amount of heat inside the Antarium we made use of the fact that each LED is connected to a solid copper plane near the outer surface of the PCB. While normally the thickness of copper in PCBs is 35 μm we used 70 μm copper for the Antarium to improve heat conductance. To further augment each panel’s heat conduction, we added a large exposed copper square to the exterior of each panel, which is thermally connected to the inner plane. This allows us to attach a Peltier cooling element with a heatsink and a fan, which can even more effectively suck the heat out and dissipate it. However, after testing the Antarium in its final form it turned out that there was no need for such additional cooling of the panels.

The lack of the need for a cooling element was perhaps facilitated by ensuring good airflow between the interior and exterior of the Antarium. This convection is assisted by a small table fan placed under the Antarium when it is operational, which supplies fresh air into the internal volume and forces the warm air out. Besides, an air-conditioned room helps to keep the internal temperatures at comfortable levels, and also ensures comfortable working temperatures for operators when set to 19°C.

We measured the temperature inside the Antarium at the position where the ant would be on the trackball using a Kestrel 5500 Weather Meter (Kestrel Australia, East Melbourne, VIC, Australia), the room air conditioning set at 19°C and after allowing temperatures to stabilize for 1 h. The temperature was recorded when it stopped changing over a 3 min period. We measured: Ambient room temperature: 20.5°C on a 26°C day; all LEDs on maximum output, no fan: 61.3°C; natural image, no fan: 28.3°C; natural image, with a fan: 25.1°C; ambient room temperature re-tested after the Antarium measurements: 20.5°C. This is well within natural foraging temperatures for both day- and night-active Myrmecia ants (Jayatilaka et al., 2011).

Figure 1D shows the fully assembled Antarium.



Distributor Board

The distributor board, as its name implies, distributes the video signal to the triangles (Figures 2E, 3). It contains an LPC1788 microcontroller from NXP, Inc. The microcontroller has an ARM Cortex-M3 core running at 120 MHz, 512 KB internal FLASH, and 96 KB internal RAM. It also has built-in peripherals, including an Ethernet protocol engine, an SD card protocol engine, several other serial communication blocks, timers, and user-programmable digital I/O ports. Its Ethernet engine, augmented with an external media access controller (TLK110, Texas Instruments) provides the 100 Mbps Ethernet interface.
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FIGURE 3. The Antarium control electronics. (A) The distributor board and its major electronics. (B) The block diagram of the LED panel Field-Programmable Gate Array.



The microcontroller shares its work with an XC3S500E (Xilinx, Inc.) FPGA containing half a million gates worth of logic. Between the microcontroller and the FPGA, there is a 128 KB dual-port static RAM chip (IDT70V28L, Integrated Device Technology). All received Ethernet frames are written into the dual-port RAM. Then the microcontroller decodes the protocol and analyses the packets. Packets related to connection maintenance are processed and responded to by the microcontroller. If the packet contains video data, then the microcontroller sends a message to the FPGA that the data should be delivered to a triangle. The FPGA examines the packet data, decides which pentagon it belongs to, and queues it for transmission on one of its 11 output links to the pentagons. After delivering the packet to the triangle the FPGA sends a message to the microcontroller informing it that the data are out and the given dual-port RAM region can be released.

If a triangle sends some data, then the FPGA holds the message in temporary internal storage, and after signaling the microcontroller that a message is available. When the microcontroller indicates that it is ready, the message is passed to it through the dual-port RAM.

The communication between the FPGA on the distributor board and the FPGAs on the triangles uses differential signaling. The data rate is 10 Mbps and the signal is subjected to the so-called Manchester encoding. That data speed and encoding are used by the 10BASE-T Ethernet standard, which facilitates the use of low-cost Ethernet connectors, magnetics, and cables. While the data speed and encoding method are the same, the protocol which the Antarium uses is much simpler than Ethernet. Each data frame starts with a preamble, followed by a synchronization byte, followed by a byte that indicates the type of the packet and its destination (or source) triangle within the pentagon. The next byte contains additional information about the packet content. The data follow and the packet is finished with a two-byte long data integrity check. That protocol is simple enough so that even the resource-limited FPGAs on the panels can handle it.

The configuration bitstream of the distributor board’s FPGA is stored on a micro-SD card. The board has an SD card socket and the microcontroller drives it. The controller implements the SD card protocol as well as the Microsoft FAT file-system, thus the FPGA bitstream can be written to the card using any computer. When the board is powered up, it first reads the SD card and loads the bitstream into the FPGA.

From the TCP/IP network stack, the firmware of the microcontroller also implements the UDP (user datagram protocol), IP (internet protocol), and ARP (address resolution protocol). Those are the necessary and sufficient components to be able to communicate with a machine with a standard network stack, regardless of the operating system it runs.

The distributor board also has a secondary function: to program the FPGAs on the triangles. The FPGA on the distributor board forgets its configuration when it is powered down. When the board is turned on, the microcontroller needs to load the configuration from the SD card. The FPGA on the triangle has built-in non-volatile storage to hold its configuration, thus it wakes up fully configured. However, the configuration first needs to be programmed into the non-volatile storage. Xilinx offers a free tool to do that, but the tool was slow and unreliable. Fortunately, the programming algorithm could be reconstructed from various application notes (engineering advisory articles). We then created our implementation of the algorithm on the distributor board and it can program the triangle’s FPGAs in a few seconds, with 100% reliability.

The distributor board is powered from a commercially available 12 V power module (plug-pack). The actual supply voltages for the electronics are generated from that 12 V using an LT3824 (Linear Technology) dual switch-mode regulator. To aid software development and the initial programming of the board also contains an RS-232 serial port.



Design Tools

All design work was performed on a computer running the open-source GNU/Linux operating system. To aid engineering, several programs were written in-house to calculate or optimize certain parameters, to assist debugging, or to automate tasks. These programs were all written either in the C or in the Tcl language. Tcl/Tk is an open-source, interpreted scripting language with graphical capabilities. C programs were compiled using the open-source gcc toolchain. Building the final binary image or bitstream was controlled by the open-source gmake tool. The open-source Fossil distributed version control system was used to keep track of changes during development.

The schematic entry and the PCB design for the triangles and the distributor board were done using the commercial Eagle EDA package from CadSoft GmbH (recently taken over by Autodesk), version 6.4, professional edition, for Linux. The PCB manufacturing files were visually checked using the gebv open-source Gerber viewer tool.

The code for the FPGAs was written in the Verilog hardware description language. The logic simulations utilized the Icarus Verilog open-source simulator and the GtkWave open-source waveform viewer programs. Logic synthesis, technology mapping, place-and-route, and bitstream generation were performed by the ISE 14.7 toolchain from Xilinx, Inc. The tool is closed source but Xilinx provides it free of charge.

The firmware for the microcontroller on the distributor board was written in the C language. The code was compiled using gcc in a cross-compiler configuration. The open-source Armlib library from Bendor Research Pty. Limited was used for most low-level functions and the task scheduler. The Ethernet driver, SD card driver, and the FAT filesystem utilized routines donated by Arthur Digital Solutions Kft (Hungary).

The component sourcing, purchasing, PCB manufacturing, and assembly were ordered from Albacom Kft (Hungary). Quality control and thorough testing of the boards before shipment to Australia was performed, gratis, by Arthur Digital Solutions.

The mechanical design and the manufacturing of the scaffolding were done by the ANU workshop. The power cables were manufactured by hand; the Ethernet cables, wires, and sundry electronics items were purchased from Jaycar, a local electronics store.



3D Rendering and Driver Software

The software that generates the video stream for the projector makes use of the commercially available three-dimensional (3D) rendering engine Unity (Unity Technologies) running in Microsoft Windows@. The primary market for the engine is computer games and as such it is best suited for planar projections. The Antarium has a low pixel count compared to most commercial video games and it is, therefore, possible to render six or more game views simultaneously at a high frame rate, on modern graphics cards. The six views have the same camera position in the 3D virtual world, but the cameras look in six orthogonal directions (up, down, left, right, front, and back), essentially creating a projection onto a cube. A custom shader uses a spherical transformation known as cube-mapping to map the pixels of our rendered cube onto any arbitrary 3D model. By applying this shader to a 3D model that represents each LED in the Antarium as an individual face, with the same azimuth and elevation as the LED’s real-world coordinates, we can render the scene as it would appear if projected onto the Antarium. We then use a compute shader to sample each face of our virtual Antarium using its normal as a lookup into the now spherical cubmap (using DirectX SampleLevel function). Finally, we encode and package these as pixel data to send over UDP to the distributor board.

The Antarium aims to display views of the natural habitat of the animals (Figure 1E). We, therefore, constructed a 3D model of that habitat using camera-based reconstruction methods (see Stürzl et al., 2015; Murray and Zeil, 2017). Thousands of photographs were taken with a Panasonic Lumix DMC-FZ200 camera at 4,000 × 3,000 pixel resolution while walking around in the area surrounding the nests of the experimental ants. Multiple voxel clouds were created from these photographs with the software Pix4D (Pix4D SA) and exported as 3D models before being combined into a single unified and aligned 3D reconstruction of the ants’ foraging environment. Since the very distant panorama does not have enough parallax to be processed by the 3D reconstruction software, we added the distant panorama later as a static background image at 1 km (approximately infinite) distance. We captured this panorama with a Ricoh Theta S panorama camera (Ricoh Company Limited, Tokyo, Japan).

This procedure allows us to capture views from within our 3D model, or from within projections of panoramic photographs, to edit the 3D model (using Blender) or photographs to fix errors (using Paint.net), and finally to generate experimental treatments (using Unity3D). For example, Myrmecia ants regularly visit trees for foraging (e.g. Narendra et al., 2013; Reid et al., 2013; Jayatilaka et al., 2014) and we are now able to extract such foraging trees from the photograph and the 3D model, allowing us to move the foraging tree to any arbitrary location or bearing in the model/photograph as an ant is viewing the scene inside the Antarium. We can then ask, whether the ants treat trees as individual landmark beacons, or get their bearing from the whole landmark panorama.



The Trackball System

The ants are placed on an air-cushioned, light-weight, 10 cm diameter trackball (Figures 1B,C) on which they are free to rotate around the yaw axis but that allowed us to record their intended translational movements as described in detail by Dahmen et al. (2017; see also Murray et al., 2020). The trackball sends the position data to the rendering computer using USB. In a departure from the original, we now maintain and compile the trackball code using Microsoft Visual Studio in the C language (Microsoft Inc. 20XX). The USB connection relies on the open-source usblib library. The system response is linear up to speeds of 1.2 m/s (for detailed system properties see Dahmen et al., 2017).

Since the trackball is connected to the computer running the 3D engine, we can use the movement data it generates to update the position of our virtual cameras in the 3D world, thus providing our ant subjects with closed-loop control of the visual scene. When running in an open-loop, 3D scenes or panoramas can be presented either statically or in sequence. For closed-loop, we use Kernel32 to share a file in shared memory between the trackball program and the game engine. In this file, we write the current offset of the trackball from its starting location and accept commands to reset the starting location, such as when a new treatment begins. In both modes, the human operator, or their code, can arbitrarily change the ant’s virtual position and heading at any time. However, in the closed-loop mode, this trackball offset can be used to update the position of the six cameras inside the 3D model, thus updating the view that is presented to the ant subject, based on its movement on the trackball. It should be noted that due to the complexity of this setup significant care must be taken to ensure all real-world and virtual objects are rotationally aligned so that the visual consequences of the ant’s movements are accurately represented.



Antarium Camera

To record in addition to the ants’ intended paths also the scanning movements of their head, we mounted a Raspberry-Pi V1 camera at the apex of the Antarium. The camera is connected to a Raspberry-Pi single-board computer (Raspberry Pi Foundation, UK). It records a 1,280 × 960 pixel video at 30 fps to an external USB disk (Figure 1C). The recording format cannot be played back with commercially available software on Windows, thus the recorded footage is transcoded to MP4 format using the open-source ffmpeg package on a Linux computer.



Proof of Concept

To date, we have conducted several experiments demonstrating that ants recognize familiar scenes in the Antarium and derive navigational instructions from them. We will present these behavioral results in a separate publication. In brief, we confronted ants tethered on the trackball with four different views (Figure 4A): a familiar view half-way toward a tree along their normal foraging corridor (Familiar), the view from the nest (Nest), an unfamiliar view from a location about 5 m offset from the foraging corridor (Unfamiliar) and a scene that consisted of a horizon line only (Unstructured). As the ants walked on the trackball in these four situations, we instantaneously rotated the scenes several times through 90 degrees randomly clock- or counter-clockwise to test whether the insects took note of panorama information. They indeed changed path direction in response to such rotations when confronted with any of the structured, but not the unstructured scenes as shown for two examples of the Familiar scene in Figure 4B (Familiar) and Figures 4C (Unstructured), with 15 s long segments before rotations labeled red and 15 s segments after rotations labeled blue. Instances of rotations are marked by a blue dot. Note that the ants’ speed is not constant, but indicates that the ants move in spurts (Figures 4B,C) and that their path direction oscillates with smaller amplitudes when confronted with a familiar scene and larger amplitudes when confronted with an unstructured scene.
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FIGURE 4. Proof of concept experiments. (A) Four panoramic views from the ants’ foraging habitat. Familiar is located on the ants’ foraging corridor, half-way toward their foraging tree; Nest is the view from the ants’ nest entrance; Unfamiliar if the view from a location about 5 m to the side of the foraging corridor and Unstructured is a synthetic view without landmark panorama. (B) Two examples (left and right) of ants responding to familiar scene rotations. Instances of rotations are marked by blue dots in the time course of path direction (top) panels and of speed (bottom panels). Fifteen seconds segments before (red) and after rotations (blue) are also marked on the intended paths of the ants (shown on the left) and on the time course of path direction (top panels). Paths are shown in the trackball coordinate system. (C) Same as (B), but in the presence of the unstructured scene. Note the difference in path direction oscillations in (B,C).



For another example of responses to the familiar scene rotations (Figure 5), we extracted the head- and longitudinal body axis orientation of the ant from the Antarium camera footage 15 s before to 15 s after the rotation (Figure 5B). Following rotation, the ant’s head- and body scanning movements tend to increase (Figure 5B) as she changes her heading direction in the three instances in which she responded to the rotation.
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FIGURE 5. Proof of concept experiments. (A) The path (left), the time course of path direction (right-top), and time course of speed (right bottom) for an ant in the presence of the familiar view. Successive instances of scene rotation are marked by blue dots and numbered. Otherwise conventions as in Figure 4. (B) Top row: gaze (head, orange) and longitudinal body orientation (blue) over time from 15 s before and 15 s after rotation 2–4. Bottom row: head orientation relative to longitudinal body axis for the same segments. The vertical black line marks the moment of rotation.






OUTLOOK

The Antarium is a unique reconstructed visual reality arena for ants. No projection system before it has offered a completely panoramic projection tuned to an insect’s vision, including arbitrary polarization patterns. Furthermore, the Antarium can deliver accurate recreations of the visual reality of animals, by projecting imagery captured from their natural habitat rather than artificially generated scenes (e.g., Stowers et al., 2017; Kaushik et al., 2020). We see the ability to present natural views that are familiar to an insect as an important condition for answering many questions about the neural mechanisms underlying visual navigation.

The Antarium not only allows us to compare responses to familiar and unfamiliar natural scenes, but we can also add, remove or dislocate landmarks, set up conflicts between different visual information (i.e., celestial vs. terrestrial), and manipulate the intensity, the color, or the spatial frequency composition of scenes. In closed-loop, we can investigate the dynamics of visual navigation, such as the relationship between navigational decisions and scanning movements, or the frequency with which ants check and update their heading direction.

Since the initial conception of the Antarium, many advancements have been made, both in the development of LEDs and in our knowledge of the neural and visual systems of ants. These advancements combined with lessons from our experiments with the Antarium, have led us to design a second version, the Antarium Mark II to improve upon the original. For instance, we now know that the spectral sensitivities of Myrmecia photoreceptors in both day- and night-active species have peak sensitivities around 375, 430, and 550 nm (Figure 2C; Ogawa et al., 2015). As LEDs with expanded emission in the UV range have become available and have dramatically decreased in cost, we can now much more precisely match LEDs to ant spectral sensitivities and increase the density of UV LEDs. Antarium Mark II will thus provide much-improved UV contrast of the landmark panorama, which has been shown theoretically and in behavioral experiments to be important for providing information on heading direction (e.g., Möller, 2002; Kollmeier et al., 2007; Graham and Cheng, 2009; Stone et al., 2014, 2016; Differt and Möller, 2015; Schultheiss et al., 2016).
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FOOTNOTES

1^A bi-colour (green and blue) version of that device is now commercially available and a trichromatic (green, blue, and UV) device is being designed (Michael B. Reiser, personal communication).
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The post-embryonal development of arthropod species, including crustaceans and insects, is characterized by ecdysis or molting. This process defines growth stages and is controlled by a conserved neuroendocrine system. Each molting event is divided in several critical time points, such as pre-molt, molt, and post-molt, and leaves the animals in a temporarily highly vulnerable state while their cuticle is re-hardening. The molting events occur in an immediate ecdysis sequence within a specific time window during the development. Each sub-stage takes only a short amount of time, which is generally in the order of minutes. To find these relatively short behavioral events, one needs to follow the entire post-embryonal development over several days. As the manual detection of the ecdysis sequence is time consuming and error prone, we designed a monitoring system to facilitate the continuous observation of the post-embryonal development of the fruit fly Drosophila melanogaster. Under constant environmental conditions we are able to observe the life cycle from the embryonic state to the adult, which takes about 10 days in this species. Specific processing algorithms developed and implemented in Fiji and R allow us to determine unique behavioral events on an individual level—including egg hatching, ecdysis and pupation. In addition, we measured growth rates and activity patterns for individual larvae. Our newly created RPackage PEDtracker can predict critical developmental events and thus offers the possibility to perform automated screens that identify changes in various aspects of larval development. In conclusion, the PEDtracker system presented in this study represents the basis for automated real-time staging and analysis not only for the arthropod development.

Keywords: monitoring, development, drosophila, larva, ecdysis behavior, tracking


INTRODUCTION

Ecdysis or molting is the most important feature of ecdysozoan species including arthropods, nematodes and other relatives (Telford et al., 2008). The whole body surface of these animals is surrounded by a chitinous cuticle which hardened, for example, to an exoskeleton in the whole group of arthropods (Hadley, 1986; Ewer, 2005). Therefore, for a successful growth from juveniles to adults the animals have to shed and renew their body surface throughout their post-embryonal development (Nijhout, 2013). The renewing process is controlled by a highly conserved neuroendocrine system which has been well described in several species, especially in arthropods such as the crab Portunus trituberculatus, the butterfly Manduca sexta and the fly Drosophila melanogaster (Rewitz et al., 2007; Xie et al., 2016, Riddiford et al., 1999). Beside the renewing of the cuticle, some insect groups further evolved a total re-organization (metamorphosis) from the last larval stage to the adult during a pupal stage (holometabolism). Consequently, the post-embryonal development of holometabolous insects is characterized by both, molting and metamorphosis (Weeks and Truman, 1984; Truman, 1996).

Although the molecular pathway and regulation of molting-related molecules are well understood, the question arises whether different factors such as the physiological state of the animals, food choice and environmental stimuli influence the post-embryonal development and directly affect the larval endocrine system and growth (Koyama et al., 2014). While hormones such as 20-hydroxyecdysone, juvenile hormone and insulin are well known to function in molting and growth especially in insects (Chang, 1985; Riddiford et al., 2003; Beckstead et al., 2005; Lin and Smagghe, 2019), the role and importance of the critical weight especially for the initiation of metamorphosis is still not fully understood (Robertson, 1963; Nijhout and Williams, 1974; Davidowitz et al., 2003; Mirth et al., 2005).

To get a better understanding of the physiological state, molecular background and motivation of the individual animal during specific developmental time points, such as molting or metamorphosis, staging of juveniles, or larvae represents an important approach. For example, larvae of holometabolous insects can be manually classified into developmental stages by morphological characteristics such as the differentiation of the mouth hooks or anterior and posterior spiracles (according to, e.g., Okada, 1963; Schubiger et al., 1998; Vaufrey et al., 2018). Another approach for staging juveniles or larvae is to allow females to lay eggs for some hours on a food media and examine larvae after a set time interval, for example every 12 h (according to, e.g., Burmester et al., 1999). However, both manual detection approaches are time-consuming. In addition, specific larval stages and developmental time points are difficult to catch as the main ecdysis behavioral sequence takes only a comparatively short time window of a few minutes. The molting cycle in general comprises four consecutive phases: (1) intermolt; the time between two molting events, (2) pre-molt; the time-window just before the main molt, (3) molt; the time-window where larvae shed their cuticle, and (4) post-molt; the time-window right after the main molt (Locke, 1970). In the fly D. melanogaster the ecdysis behavioral sequence as part of the molting cycle is described to last only 30 min and is divided in four parts—the occurrence of the double mouth hooks and vertical plates, renewing of the tracheal system, pre-ecdysis and ecdysis (Park et al., 2002).

Our long-term goal is the investigation of individual molecular and behavioral changes during the molting cycle of the animal. As the main ecdysis takes about 5 min of a single larval stage of D. melanogaster, the first aim was to find a tool for precisely timing these stages for investigations on development-associated processes such as sensation and food choice. Using D. melanogaster, we established a monitoring system throughout the whole post-embryonal development—from egg to pupa—over 10 days (Dewhurst et al., 1970). Under constant environmental conditions (25°C and 65% humidity) and a yeast-sugar diet, we observed the life cycle from egg to pupa with a camera and a framerate of 3 frames/minute. We subsequently analyzed the videos with the focus on the molting cycle throughout the post-embryonal development such as the main molting sequence on an individual level. Our results reveal insights into larval behavior regarding activity and growth. We clearly observe the specific activity pattern during the molting cycle and the individual growth in size from young to old larval stages. Consisting of a video recording set up and newly developed analysis scripts (in Fiji and R), the PEDtracker (=post-embryonal development tracker) forms the basis for a future real-time tracking system for the prediction of developmental stages which could also be used for various other insects and their relatives.



MATERIALS AND METHODS


Animal Husbandry and Fly Strains

All experiments were performed with the wild-type Drosophila melanogaster strain Canton-S. Flies were kept on standardized cornmeal medium at 25°C and 65% humidity under a 14:10 light:dark cycle. Adult flies were transferred to new food vials every 72 h.



Egg Laying, Tracker Preparation and Data Recording

For egg laying small Petri dishes (4 cm diameter) were filled with a 3% agarose (VWR life science; type number: 97062-250), 3% sucrose (Merck KGaA; type number: 107687), and 30% apple juice (Edeka) mix. To entice female flies to oviposit one drop of yeast was put on top of the plate. Flies were allowed to lay eggs for at least 2 h and then, one egg per chamber was transferred to the larval bed. The bed was prepared as previously described (Szuperak et al., 2018) with the SYLGARD® 184 Silicone Elastomer Kit (type number: 24001673921) and a size of 8.3 cm in length and 5.7 cm in depth in a self-made 3D-printed template (Renkforce 3D-printer RF1000; material PLA). Each bed contains of 24 chambers (4 x 6) with each 1 cm in diameter. For an optimal set-up, with the regard to humidity and the camera resolution, maximal half of the chambers could be filled. Before placing eggs, each chamber was filled with 100 μl food medium containing a mix of 2% agarose (VWR life science; type number: 97062-250), 2% sucrose (Merck KGaA; type number: 107687), and three drops of fresh yeast. To avoid mold a mixture of 0.1% methylparaben-ethanol (methylparaben: Carl Roth GmbH + Co. KG type number: 3646.4; ethanol: CHEMSOLUTE® type number: 2273.1000) was added to the food medium. To avoid an escape of larvae, the bed was covered with clear film and two layers of glass plates. The bed was then placed in a custom-built climate chamber (workshop of the University of Konstanz) on a glass table with constant LED-light (KYG light-table) from below (Figure 1). The climate chamber provided a constant temperature (23–25°C) and humidity (60–65%) for our experiments. Lower humidity (< 50%) led to a stronger dehydration of the food, a higher humidity (>75%) caused condensation on the clear film. Pictures were taken every 20 s over a period of at least 10 days with a 25 mm lens using a Basler camera (acA2040-25gm; type number: 105715) with a resolution of 2048 × 2048.


[image: Figure 1]
FIGURE 1. Scheme of the experimental set-up. Larvae were observed over ten days under constant light in a climate chamber with constant abiotic conditions. For observation three pictures per minute were recorded with a camera and saved with a custom-made software. Pictures were then combined to a video sequence and analyzed with custom-made scripts in ImageJ and R.




Data Analysis

We recorded 22 experiments (seven runs for finding optimal conditions; 15 runs with optimal conditions) and examined 43 individuals for the hatching timepoint, 36 individuals for the first molting event, 23 individuals for the second molting event such as 33 wandering stages. For data analysis pictures were processed as individual 6-h video sequences (1080 frames) with a custom-made Fiji script (Schindelin et al., 2012; see Supplementary Figure 1). We first defined regions of interest (ROIs) marking the individual chambers. For each ROI a median background image was created and subtracted from the cropped video. The resulting images were thresholded and then analyzed with specific measurement settings (Table 1) in Fiji.


Table 1. Measurements used in ImageJ for video analysis (full description via https://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Subsection-30.7).

[image: Table 1]

After image processing in Fiji (Figure 2), we followed up with error correction and further in-depth analysis in a custom-written R script using R version 3.6.1 (R Core Team, 2019) in RStudio (R Studio Team, 2019; see Supplementary Figure 2). For each larval stage, parameters for size and shape of valid objects were defined (Table 1, Figure 3, Supplementary Figure 3). To determine the length of each larva the major axis of each object was scaled to the diameter of each chamber (~ 300 px = 10 mm). Growth rates were then calculated as follows:

[image: image]

To determine larval movement, the Euclidian distance between the centroids (X1, X2; Y1, Y2) in two successive frames was calculated through Pythagorean function

[image: image]

Next, the relative movement over time was used to get an activity pattern for the individual larvae. Data frames containing analyzed particles were then sorted, merged and plotted. We show examples of the molting behavior of two larval stages in time lapse videos (recorded at 3 fpm; played back at 3 fps; see Supplementary Material 1, 2). Statistical analyses were conducted with R version 3.6.1 (R Core Team, 2019) in RStudio (R Studio Team, 2019) using the R Stats Package stats. For evaluate the difference between manual and computational object detection for place and length we used the paired t-test [t.test(a,b, paired = TRUE)]; to evaluate the variances of different developmental events for timing and size we used the F-test with the greater alternative [var.test(a,b, alternative = “greater”)]. Final figures were designed with R version 3.61 in R Studio using the ggplot2 package and were then edited with Adobe Illustrator CS5 (San Jose, CA, USA).


[image: Figure 2]
FIGURE 2. Image processing for tracking system. Larval stage three were used for all imaged pictures. (A) Original section of a video sequence. Note individual larva in the chamber. (B) Section of a video sequence. Picture were smoothed using convolution with Gaussian function. (C) Median calculation of an image shows the median intensity over all images in a stack. (D) Implementation of an arithmetic and logical operation. We used the difference between the source (img1) and destination image (img2)—imgX = | img1—img2 |. (E) Set threshold dependent on the larval stage (L1, 10; L2, 20; L3, 30). (F) Orange dashed line represents the silhouette of the object of interest in the section.



[image: Figure 3]
FIGURE 3. Stage-specific parameters for data sorting and evaluation. Three values for shape description—solidity, circularity and roundness—are used in combination with the area to differentiate between larval stages. (A) Arrow indicates position of larval stage one. Surface of individual larva ranges from 50 to 300 square pixels. (B) Arrow indicates position of larval stage two. Surface of individual larva ranges from 300 to 1500 square pixels. (C) Arrow indicates position of larval stage three. Surface of individual larva ranges from 1500 to 3000 square pixels.





RESULTS AND DISCUSSION

For tracking adult Drosophila melanogaster there exist many different approaches to monitor activity over several days, usually with the focus on circadian activity and sleep research. Some of these approaches make use of infrared light beams (e.g., the Drosophila Activity Monitor; Pfeiffenberger et al., 2010) or video tracking (e.g., Gilestro, 2012) to monitor the flies but these setups are not designed to handle objects of varying size and shape. As a basis for our tracking setup we used the LarvaLodge (Szuperak et al., 2018) which itself is based on earlier work in Caenorhabditis elegans (Churgin et al., 2017). In their experiment up to 20 larvae can be monitored simultaneously for several hours. For our even longer approach—monitoring the whole post-embryonal development of D. melanogaster over the course of several days—we had to overcome multiple challenges. Our first task was to improve the setup to enable proper larval development over several days. For this we had to address humidity issues and prevent the growth of mold. We settled on a frame rate of three frames per minute as a middle ground to still be able to measure activity but also record for a timespan of more than a week without generating a vast amount of data. One typical experiment contains about 60,480 images (14 days; lossless compression as .png-images). The first step of processing was performed in ImageJ where the target objects (i.e., the larvae) are extracted from the video. Here we had to address the problem of the dramatic change in size of the larvae over the course of their development as well as the change in the environment over several days. Difficulties occurred with food drying out or larvae digging into the food which have been solved to some extent in ImageJ with the Gaussian Blur filter and by the application of binary Close and Dilate functions. Further improvement of the quality of our data was then performed in the secondary processing implemented with R in RStudio. A evaluation of the set up regarding the definition of larval parameters, object detection and definition of larval length are shown in Table 2, Supplementary Figures 3–5. Interestingly, during the review process of this paper another system for tracking activity in D. melanogaster has been published (DIAMonDS; Seong et al., 2020). Their setup uses a flatbed scanner to monitor the animals during their whole lifecycle from embryo to death. Their work focuses on transitions between static (embryo, pupa, carcass) and dynamic stages (larva, adult fly), but they do not discriminate between different larval stages.


Table 2. Statistics of the system evaluation and the comparison of developmental timepoints.

[image: Table 2]

The characterization of specific developmental time points and larval size are important parameters for the investigation of the body constitution as well as the behavior during the development. Looking at an example of larval activity over a period of about 3 h we can see that the larva crawls through the chamber and stops at frame 213 (video position ~ 1:20 min, see Supplementary Figures 6, 7) and then rests in the same place for almost 30 min. Interestingly, after 14 min the larva turns to the side and rests there for another 15 min. During both resting periods, the record indicates alternating phases of resting, pulsation and contraction (frames 213–300, video position 1:20–1:40 min). After comparing the video to previous studies we suggest that the observed resting phase in the video sequence correspond to the ecdysis behavioral sequence of the D. melanogaster larva (Park et al., 2002). Since the PEDtracker can only detect low activity but not contractions so far, we have examined several detected molting events manually and assume that the first resting phase corresponds to tracheal molt and air filling, and the second one with stronger pulsation and contractions to pre-molt and main molt. The same pattern occurs during the ecdysis behavioral sequence of L2 to L3 (see Supplementary Figures 8, 9). We analyzed both ecdysis behavioral sequences for larval activity (Figure 4) and show that the activity patterns for both larval stages reveal a decrease of movement during molting events. Whereas, larvae move up to 5 mm in the intermolt phases, they slow down to at least 0.5 mm in the pre-molt and main molt stage (Figure 4).


[image: Figure 4]
FIGURE 4. Activity patterns of two developmental stages and related molting events. (A) Activity pattern (in mm) and molting sequence of larval stage one. Insert represents the activity pattern (in mm) of larval stage one during the main molting event. Note a time window of 150 fs of low activity of the larva. (B) Activity pattern (in mm) and molting sequence of larval stage two. Insert represents the activity pattern (in mm) of larval stage two during the main molting event. Note a time window of 100 fs of low activity of the larva. fs, frames; min, minutes.


Our results reveal a mean hatching time point of 18 h after egg laying and a nearly similar size of about 0.5 millimeter for young L1 Canton-S larvae (Figures 5, 6). Interestingly, the later the developmental stage the higher is the variability of the time point of molting events and the respective body sizes of larvae (Figures 5A,C, 6; Table 2). Our results indicate a mean lifespan of D. melanogaster Canton-S larvae of 7.8 days from egg hatching to pupation (Figures 4A, 7). This result is in contrast to previous studies which revealed that D. melanogaster larvae went under pupation five days after egg laying (Table 3, Dewhurst et al., 1970; Ashburner, 1989; Casas-Vila et al., 2017). Our results further indicate less stringency in developmental time points and life spans of single larval stages in comparison with the literature (Figure 7). Whereas the mean hatching time after egg laying is in line with previous studies (about 18 h; 0.7 days; Markow et al., 2009), our results indicate the first molting event 2.6 days after egg laying (=1.9 days after hatching) and the second molting event 4.2 days after egg laying (=3.5 days after hatching). Previous studies indicated that larvae of the same age not pupated at the same time (Casares and Carracedo, 1987). Thus, the life cycle of D. melanogaster might be variable to some degree and dependent on different life-history traits and not only on the expression of molting related molecules such as ecdysone and juvenile hormone.


[image: Figure 5]
FIGURE 5. Developmental time points and related growth in length. (A) Time after egg laying and corresponding developmental time points. Note the high variation (five to ten days after egg laying) of the pupation event. (B) Time after egg laying and corresponding developmental time points for five single larvae as an example. (C) Growth in length from egg hatching to pupation and related developmental time points. Note the high variation of larval length at the pupation event. Growth ratemedian = 4.9. (D) Growth in length and related developmental time points for three single larvae as an example. Note the highest growth in length in larval stage three. Growth rate 1(blue line) = 6.2; growth rate 2 (light red line) = 5.9; growth rate 3 (gray line) = 4.06. See table 2 for statistical tests and p-values.



[image: Figure 6]
FIGURE 6. Correlation between developmental time and size. (A) Y-axis indicates time after egg laying in days; x-axis represents larval length in mm. Light gray dots indicate larval stage one, light red dots indicate larval stage two and blue dots indicate larval stage three. Ellipses represent 95% confidence level. (B) Arrows indicate the length of a small late stage three larvae, approximately one hour before pupation. (C) Arrows indicate the length of a large late stage three larvae approximately one hour before pupation. AEL, after egg laying; mm, millimeter.



[image: Figure 7]
FIGURE 7. Scheme of the post-embryonal development of D. melanogaster and related values generated by the PEDtracker. The given values represent the average values of relevant developmental time points after egg laying such as the larval lifespan, the average length of all larval stages in length and the related growth rate. AEL, after egg laying; d, days; EBS, ecdysis behavioral sequence; h, hours; L1, larval stage one; L2, larval stage two; L3, larval stage three; mm, millimeter.



Table 3. Comparison of developmental time points.
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Previous studies showed that the developmental period of drosophilid species depends on environmental stimuli such as temperature, humidity or light. The developmental period successively decreases to seven days depending on the increase of the temperature up to 28 degree (Ashburner and Thompson, 1978; Al-Saffar et al., 1996; Tochen et al., 2014). Moreover, the highest survival rate (88–97%) for pupae of D. melanogaster is described for 60 to 100% relative humidity (Elwyn et al., 1917; Al-Saffar et al., 1996). But then, the sensitivity of larvae to temperature and humidity differ between drosophilid species (Geisler, 1942; McKenzie and Parsons, 1974). In contrast to the effect of temperature and humidity, the role of light on the developmental period and larval circadian clock is still under debate. Some studies indicated that permanent night has no effect on the animals, but in other cases the culture in constant darkness revealed a reduced longevity (Payne, 1910, 1911; Erk and Samis, 1970). Similar effects have been shown for culture in constant light (Allemand et al., 1973).

Investigation of dietary influence on the developmental period in larvae further implicated that the food composition has a prevalent effect on the life span and body parameters of drosophilids (Anagnostou et al., 2010; Ormerod et al., 2017). The developmental period increases with the linear availability of carbohydrates (negative correlation) and decreases (positive correlation) with the linear availability of proteins. Consequently, larvae are capable to differentiate their needs of nutrients and regulate their dietary intake toward a minimal developmental period (Rodrigues et al., 2015). In two drosophilid species D. melanogaster and D. subobscura a correlation between the metabolic rate, the developmental period and social parameters was observed (Marinkovié et al., 1986; Cluster et al., 1987; Hoffmann and Parsons, 1989; Sevenster and Alphen, 1993). Additional investigation on larval life, mortality, and pupal viability in D. melanogaster and D. simulans revealed a correlation between the density of larval numbers and the developmental period—high density and crowding of larvae in culture leads to a longer developmental period in both species (Powsner, 1935; Miller, 1964). To conclude, a decrease or increase of the developmental period of D. melanogaster is caused by different environmental stimuli and sociality. However, due to our results and experimental set-up, the examination of a single larva in one chamber on basic food medium with optimal temperature (25°C) and humidity (65%), we assume that the metabolic rate might influences the developmental time rather than social interactions or competition in their environment.

Our results further indicate a high variability of the size, especially for L3 Canton-S larvae. Whereas, young L1 Canton-S larvae showed a similar size (about one millimeter) until the first molting event, late wandering L3 Canton-S larvae (shortly before pupation) differ in size from about three to five millimeters (Figure 5C, Table 4). Therefore, we plotted larvae on an individual level to observe the time span and size between egg hatching and pupation on an individual level. Our results indicate that the pupation time point and the size of late L3 Canton-S larvae are independent of the egg hatching time and size (Figures 5, 6). We further expect that a specific size plays a key role for the initiation of molting and is therefore more relevant for younger larvae than for older (Figure 6). Our correlation between the time after egg laying and larval size showed that also small L3 larvae of the Canton-S strain went under pupation after a relatively long developmental time (Figure 6A). Previous studies inferred that larvae have to grow to a minimum size before entering the next growth stage and that growth phases before pupation can divided into two distinct phases which are independently genetically regulated (Robertson, 1963). Our results reproduce this finding that even smaller L3 larvae are able to pupate but due to individual variations we assume that the size might not be the only initiator for pupation and metamorphosis (Figures 6B,C). In comparison with other wild-type strains the variability of size in Canton-S larvae is also higher (Vaufrey et al., 2018).


Table 4. Comparison of larval body length.

[image: Table 4]

In this study we followed D. melanogaster larva during several stages of development from egg hatching to pupation over up to 14 days (Figure 7). We defined tracking parameters to identify the larva most consistently in our environment and over a large range of body sizes. We found and analyzed critical developmental events like molting while looking at the activity and growth of the larva (Figure 7). With the combination of a video-sequence and a particle analyzer we are able to manually detect important developmental stages which will be the basis for a future real-time tracking system. For future improvement of the PEDtracker system, the analyzed particles regarding larval size and activity we presented in this methodology illustrate the basis for a custom-made software program for the analysis of insect larvae and prediction of behavioral events. Our focus was on getting data for the future implementation of such a real-time tracking system with an integrated molting detector for the prediction of important development time points such as molting or metamorphosis.

Taken together, our PEDtracker system provides a novelty in tracking systems for the observation of the whole post-embryonal development on an individual level which is not only suitable for insects but also for other molting animals such as chelicerates, nematodes, and other ecdysozoans. Besides the usage in the observation of developmental time points, the PEDtracker represents a useful tool for further molecular and behavioral experiment such as the culture of different genotypes under different food regimes.
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Supplementary Video 1. Molting event larval stage one to larval stage two; recorded at 3 fpm, played back at 3 fps.

Supplementary Video 2. Molting event larval stage two to larval stage three; recorded at 3 fpm, played back at 3 fps.

Supplementary Figure 1. Scheme of the Fiji macro script. Frames were distributed in packages of 1080 frames (equivalent to 6 h at 3 fpm) and then cropped in regions of interest (ROIs). ROIs were analyzed with specific parameters. Parameters for analyzed particles were saved in a csv-file. Batches at the border of two developmental stages were analyzed with parameters of both respective stages.

Supplementary Figure 2. Scheme of the R script. Csv-files were loaded in R and combined into a newly created list. Data were evaluated in two steps. First, fitting settings where selected and then objects where analyzed with these settings. After final evaluation of the data, new csv-files were saved and results were plotted using ggplot2.

Supplementary Figure 3. Definition of larval parameters for analyzing larval objects in Fiji and R. Parameters (Area, Circularity, Aspect Ratio, Roundness, Solidity) were defined for each larval stage with the objective to reliably sort out non-larval objects. To distinguish one or more objects from a larval object we have examined 60 cases (orange bar plot) for different parameters. In 56 cases (93%) the parameter “solidity” was higher for larval objects. For this reason, we used the value for solidity to distinguish larval from other objects in one frame.

Supplementary Figure 4. Evaluation of the centroid of an object in a frame. (A) Point cloud represents 51 cases of objects. X- and Y-Axis represents the width of the larval bed in pixel. Red dots indicate manually detected objects every 10 frames, black triangles represent the analyzed objects with Fiji and R, respectively. Note that the two-paired points are close together, except for non-detected objects which shows that PEDtracker detects larval objects and avoids false detections. (B) Bar plot indicates the detection probability for larval objects. Note that the detection probability is highest for L2 and lowest for L3. (C) Bar plot indicates the difference of the manual and computational detected object position on the X-axis. The difference of the detection between manual and computational detected object positions on the X-axis is below 5 pixels (lower than one larval length). (D) Bar plot indicates the difference of the manual and computational marked object position at the Y-Axis. The difference of the detection between manual and computational marked object positions on the Y-axis is below 5 pixels (lower than one larval length).

Supplementary Figure 5. Comparison of larval length between manual and computational detection. Note that the lengths of the computational detected larvae are slightly higher than the manual values due to the more precise area determination and resulting longitudinal axis.

Supplementary Figure 6. Activity pattern from a period of about 1,000 frames (~ 5.5 h) of a molting event and a non-molting event of first instar larvae. Insert compares the level of low activity of a molting event and the non-molting event. Note the phases no activity (light blue and red line).

Supplementary Figure 7. Molting events of individual first instar larvae. Note the phases of low activity in all images. Low activity indicates ecdysis behavioral sequence of D. melanogaster larvae.

Supplementary Figure 8. Activity pattern from a period of about 1,000 frames (~ 5.5 h) of a molting and a non-molting event of second instar larvae.

Supplementary Figure 9. Molting events of individual second instar larvae. Note the phases of low activity in all images. Low activity indicates ecdysis behavioral sequence of D. melanogaster larvae.
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Animals coordinate their various body parts, sometimes in elaborate manners to swim, walk, climb, fly, and navigate their environment. The coordination of body parts is essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant information. For example, by shaping the movement of the head and body in an active and controlled manner, flying insects structure their flights to facilitate the acquisition of distance information. They condense their turns into a short period of time (the saccade) interspaced by a relatively long translation (the intersaccade). However, due to technological limitations, the precise coordination of the head and thorax during insects' free-flight remains unclear. Here, we propose methods to analyse the orientation of the head and thorax of bumblebees Bombus terrestris, to segregate the trajectories of flying insects into saccades and intersaccades by using supervised machine learning (ML) techniques, and finally to analyse the coordination between head and thorax by using artificial neural networks (ANN). The segregation of flights into saccades and intersaccades by ML, based on the thorax angular velocities, decreased the misclassification by 12% compared to classically used methods. Our results demonstrate how machine learning techniques can be used to improve the analyses of insect flight structures and to learn about the complexity of head-body coordination. We anticipate our assay to be a starting point for more sophisticated experiments and analysis on freely flying insects. For example, the coordination of head and body movements during collision avoidance, chasing behavior, or negotiation of gaps could be investigated by monitoring the head and thorax orientation of freely flying insects within and across behavioral tasks, and in different species.

Keywords: bees, machine learning, random forest, decision tree, neural network, coordination, control, active vision


1. INTRODUCTION

Animals travel in their habitat to chase prey, escape predators, find mates, or food. The motile body parts, such as legs, wings, or fins, often differ from the sensory ones. For example, the eyes of most sighted animals are placed on the head, away from wings or legs. The non-collocation of motile and sensory body parts allows many animal species to decouple where to look and where to move. Notably, animals frequently stabilize their head while traveling in their environment to compensate for body motion (e.g., roll movements) that is required for steering (e.g., Van Hateren and Schilstra, 1999a; Ravi et al., 2016) or actively move their head to extract relevant information, for example the distance to a prey or landing site (Sobel, 1990; Kral, 2003, 2012). Adequate motion of an animal in its habitat and perception of its surrounding requires the well-coordinated orchestration of sensory and motile body parts.

Flying insects orchestrate their flight similarly to ballet dancers performing a chainé or a pirouette. They first start turning their thorax at a slow speed, and then later turn their head at a higher speed. Between such sharp head turns, the head direction is mostly stabilized (Van Hateren and Schilstra, 1999a,b; Viollet and Zeil, 2013; Doussot et al., 2020b; Verbe et al., 2020) allowing flying insects to estimate the distance to neighboring objects (Srinivasan, 2011; Kern et al., 2012), traveled distance (Srinivasan, 2011), perceive gaps (Ravi et al., 2019), or land (Frasnelli et al., 2018) by using the apparent motion of nearby objects on their retina (Egelhaaf et al., 2014). This active gaze strategy requires excellent coordination between the head and thorax, respectively. However, due to the small size of flying insects, head-body coordination has been analyzed rarely and most studies have focused on the insect's thorax orientation.

The thorax orientation of insects gives only a poor proxy of the viewing direction (Van Hateren and Schilstra, 1999a,b; Riabinina et al., 2014; Doussot et al., 2020b). Therefore, recordings lacking head orientation information limit our understanding of the perception-behavior loop. However, in flying insects, one crucial aspect of their perception takes place between sharp head turns, i.e., during intersaccades (Egelhaaf et al., 2014). Therefore, by predicting the occurrence of the head's saccades from the time course of thorax orientation, we could deepen our understanding of the behavior of flying insects.

We used recordings of the head and thorax orientation of free-flying bumblebees Bombus terrestis (Doussot et al., 2020a), that include footage of high spatial and temporal resolution and from different perspectives to develop methods to lessen such limitations.

In most previous experiments, only the orientation of the thorax could be determined, due to technological limitations. We developed a method to locate the head intersaccades solely from the time course of thorax orientation. We based our method on classifiers (decision tree and random forest) and tested our approach in two scenarios often encountered in experimental design. First, many insect flights are recorded at frame rates lower than 500 fps. Second, many recordings only report the orientation along one axis of rotation (often the z-axis) (for example, Kern et al., 2012; Lobecke et al., 2018; Robert et al., 2018; Lecoeur et al., 2019; Ravi et al., 2019). However, the orientation of an animal is defined around three axes. Thus, we tested our classifier with only the orientation around the z-axis.

Our first method focused on the saccade/intersaccade classification. We developed a second method to predict the detailed time course of head and thorax orientation, elaborating on an approach developed by Dürr and Schilling (2018) using an artificial neural network to map the posture of one leg of the stick insects to another. We extended their method by adding a temporal component (forecasting or backcasting) and applied it to our bumblebees' flight. Our approach may serve as a computational ground plan for investigating body part coordination in other animals.



2. MATERIALS AND METHODS


2.1. Data Acquisition
 
2.1.1. Animal Preparation

Data were collected according to Doussot et al. (2020a). We explain the procedure here for clarity. We used a healthy hive of Bombus terrestris provided by Koppert B.V., The Netherlands. Bumblebees were manually marked and transferred into a 30 × 30 × 30 cm acrylic box. Marking the head was done by painting three small dots (~ 1 mm diameter each) with acrylic paint on the bees' heads: one above each eye and the one in between the eyes at the height of the antenna scape insertion point. Special attention was paid to not cover the ocelli and the eyes of the bumblebees (Figure 1B). We marked the thorax by fixing an equilateral triangle (side length of 5 mm) of black paper with a white pearl dot (1 mm diameter) at each apex with wax.


[image: Figure 1]
FIGURE 1. Experimental setup and example flight. (A) Virtual setup of the arena. Bee enters the flight arena through the hole at the bottom, that connects to the hive. (B) Marker positions on head and thorax. (C) Top view of real world arena. (D) Example of a learning flight in 3d space. (E) Temporal structure of a section of a leaning flight as lollipop plot, with each sticks pointing direction indicating thorax orientation and color indicating movement classification (green = intersaccade; purple = saccade).


The bumblebees entered a cylindrical flight arena with a radius of 35 cm and a height of 50 cm through a 1 cm hole in the center of the ground (Figures 1A,C). The flight arena was connected to a foraging chamber.



2.1.2. Tracking of Head and Thorax Markers

Six learning flights of bees were recorded using three synchronized high-speed cameras (Optronis CR3000x2) with a resolution of 1,710 × 1,696 pixels. The three cameras sampled a volume of ~ 10 × 10 × 10 cm3 around the nest entrance from different perspectives. The recording area was restricted to a small part of the arena as we intended to monitor the head and thorax orientation at a high spatial resolution. The recorded volume was illuminated by four blocks of four LEDs each (HIB Multihead LED, HS vision GmbH, Germany).

We started the recordings as soon as a marked bumblebee took off. Recordings were made at a shutter speed of 1/2, 000 s, a frame rate of 500 frames per second, and for ~ 11 s. The three cameras were calibrated using the Matlab toolbox dltdv5 (Hedrick, 2008).

We developed and assessed our method based on six learning flights of marked bees. Tracking of head and thorax markers was achieved with a custom-made Python script, based on OpenCV. The videos were then manually reviewed with the software IVtrace (https://opensource.cit-ec.de/projects/ivtools) to ensure correct detection. We then reconstructed the marker positions in 3D space using the Matlab toolbox dltdv5 (Figures 1D,E).



2.1.3. Orientation

Given a three dimensional space, one can infer the orientation of any solid object in it, by defining an object-specific coordinate system of three orthogonal unit vectors centered at a pivot point. One then can describe the orientation of this object by the relative orientation of this object-specific coordinate system with respect to the world coordinate system. In order to describe the orientation of the bees' head and thorax at any given time, we first chose an appropriate coordinate system for our arena and then reconstructed the bee coordinate system from the markers we placed on them.

The head (resp. thorax) coordinate system was defined as follows. Its origin was defined as the center of mass of the three markers placed on the head (resp. thorax). Two of the three markers were aligned with from left to right in the head (resp. thorax) coordinate system, and thus formed the y-vector. The x-vector was orthogonal to the y-axis and passed by the third marker. Finally, the z-vector being orthogonal to the two other axes were computed as cross product between the x and y-vector. In mechanics, the orientation of a solid object is often defined by three rotational angles (Euler angles). Different conventions can be used to define the rotational angles. The conventions differ by the order of elementary rotations. Here, we used the yaw-pitch-roll convention (Diebel, 2006). This convention is defined as rotating first around the roll axis (x-axis in the world coordinate system), then around the pitch axis (y-axis of a temporary coordinate system), and finally around the yaw axis (z-axis in the head or thorax coordinate system). This transformation was performed at each instant of time, yielding the time courses of the yaw, pitch, and roll angles for the head and the thorax.




2.2. Saccade and Intersaccade Classification
 
2.2.1. Ground Truth: Thresholding on Head's Orientation

The YPR orientation was filtered with a one-dimensional-cubic spline function (with smoothing parameter λ = 150) (Scipy.signal). The smoothing parameter λ, interpreted as the degree of freedoms, was estimated from a generalized cross-validation criterion with R (see Supplementary Figure 1 for the effect of lambda on our method). Cubic splines are often used in biomechanics data filtering (Woltring, 1985), since abrupt changes in the data are not smoothed out, in contrast to low pass filtering. Based on the angular velocity of the head around the z-axis ωz(t) in the bee coordinate system, intersacades and saccades were extracted using a two-thresholds method. For derivatives higher than 372.42°/s (manually determined), the time point was considered as being part of a saccade. The neighboring time points were considered part of the same saccade, if the derivative was higher than 200.54°/s, and as part of an intersaccade otherwise.



2.2.2. Benchmark: Thresholding on Thorax's Orientation

In numerous experiments, the orientation of the bee's head cannot be resolved. Thus, researchers usually segregate the trajectories into saccades and intersaccades by using a threshold on the thorax angular velocities. The threshold is usually chosen by observing the variation of the thorax angular velocity over time (Van Hateren and Schilstra, 1999a; Riabinina et al., 2014; Mertes et al., 2015). Here, head orientation data was available. Thus, instead of choosing the threshold by visually observing the time course of the thorax's angular velocity, we chose them such that the accuracy of the classification is maximized i.e., the number of true positives (a time point t, head and thorax are saccade), and true negative (a time point t, head and thorax are intersaccade). The thorax's saccades extracted by this method are the benchmark for our classifier method.



2.2.3. Classifier Based Method

We investigated whether non-single-threshold classifiers can outperform the segregation based on hard thresholding of the thorax's angular velocity (i.e., our benchmark). Hence we compared the established benchmark (Th) with two well-known non-linear classifiers: a decision tree (DT) and a random forest (RF). A decision tree can have a high variance in the optimal tree. The use of a random forest, i.e., multiple trees, reduces the variance in the optimal classifier. We define the learning task as follows: Given a finite time series of angular z-velocities obtained from the thorax, predict the binary class label associated with the center measurement of this time series, where labels are “head saccade” or “head intersaccade.”

More formally, the input of the classifier was thus [image: image] with Δt being the time window (a hyperparameter of our classifier). Hence, the classifier yields a class C(t) ∈ ℂ = 0, 1 by applying a function f :ℝ⋉ → ℂ on the input [image: image]. We have, thus, the equation: [image: image] (Figure 2). C(t) = 0 [resp. C(t) = 1] means that the angular velocity at the timepoint belongs to an intersaccade (resp. saccade).


[image: Figure 2]
FIGURE 2. Example of the decision process done by a decision tree. The thorax angular z-velocity (in blue) within a given time window Δt (e.g., red and green dotted rectangle), is the input of the classifier. A decision tree is composed of nodes (circles), with input xi (gray arrows). If the input xi is greater or equal to a learned threshold ϵ, the right node is selected, otherwise the left (see example in the gray square). The process is repeated until a decision saccade/intersaccade can be drawn. The red (resp. green) node highlights the decision path for an intersaccade (resp. for a saccade).


The classifiers were trained, validated, and tested using scikit-learn (Pedregosa et al., 2011). The training was used to adjust the parameters of the classifier. The training set consisted of the first 70% of samples per learning flight for all 5 learning flights. The validation was used to select hyperparameters: depth D (i.e., the number of layers in a Decision Tree) and the time window Δt, by varying the parameters systematically D ∈ [1, 20], and Δt ∈ [0, 50] ms. The validation set consisted of the remaining 30% of the five flights used for the training set. Since our classes are sufficiently balanced, we used the accuracy of the classifier to determine which classifier performed best on the validation/test data set.

To test the performance of the best classifiers, we used one learning flight that was neither used for training nor for the test (i.e., forming the validation data set). The trained saccade-intersaccade classifier was applied for every time point. The prediction C(t), saccade, or intersaccade, at time t was compared to the ground truth H(t) obtained by thresholding the head's angular velocity. Our goal was to outperform the classification from a benchmark, namely the classification T(t) based on the thresholding of the thorax's angular velocity. We thus compared the accuracy of the classifier ACCclassifier with the accuracy of the benchmark ACCbenchmark. ACCclassifier and ACCbenchmark are defined by:

[image: image]

Here [⋯ ] are the Iverson brackets. The Iverson brackets is a notation that takes a true/false input. Let P be a true/false statement. [P] is defined to be 1 if P is true, and 0 otherwise. N is the number of time points in the learning flights.



2.2.4. Extension: Often Encountered Situations

To further assess the validity of our method, we investigated the accuracy of our classifier in two often encountered situations. First, researchers are not always able to record at a high frame rate. Second, some behavioral assays rely on single-perspective recordings, and therefore the orientation of the thorax cannot be determined entirely. Assumptions need to be made about certain axis of rotations. For example, when the orientation of the body long-axis is derived from a top view camera, it is often assumed that the orientations pitch and roll are null. To investigate the robustness of the classifier at a lower-frame rate, we down-sampled our recordings and interpolated them by using a cubic spline in order to recover the 500 fps on which the classifiers are trained. The classification was then performed on the angular velocities of the thorax derived from downsampled and interpolated trajectories. To investigate the impact of a null-pitch and null-roll assumption, we set the z positions of the markers at a given frame to their average z position (mimicking top view recordings). The orientation was then calculated yielding only the variation of yaw. The accuracy of the classifiers was then calculated on the angular velocities (here equivalent to the derivative of the yaw orientation, because pitch and roll are null).




2.3. Predicting Head Angular Velocity From Thorax

The time course of the head and thorax position are tightly linked. However, the head can be in a different orientation as the body thanks to the neck muscles connecting the two. In flying insects, the time course of the head angular velocity appears to be loosely correlated with the thorax angular velocity. Indeed when the head is rotating fast, the thorax is likely to turn quickly as well (Kern, 2006). In other words, the head and thorax angular velocities share some information that may be used to predict the one from the other (e.g., predict the head angular velocity from the thorax angular velocity).

Predicting head angular velocity from thorax angular velocity in a reliable manner could allow researchers to record only the thorax orientation to study the head orientation, alleviating the need to mark the head and monitoring it with high-resolution cameras. Our method focuses on predicting the angular velocity around the z-axis, because the angular velocity is varying the most around this axis during bee learning flights. The prediction of the head angular velocity along the z-axis will be based on the body angular velocity during a time interval Δt:

[image: image]

Where [image: image] is the instantaneous angular velocity of the thorax around the z-axis at time t. [image: image] is the prediction of the instantaneous angular velocity of the head around the z-axis at time t. g():ℝn → ℝ is a function (e.g., a neural network) used for prediction.

Predicting the motion of one body part from another (e.g., head angular velocity from thorax angular velocity), could inform about the predictive causality between the two body-parts and therefore the underlying control mechanisms (Granger, 1969). Thus, we predicted the thorax angular velocity along the z-axis based on the head angular velocity during a time interval Δt. Our method will, therefore, be described for predicting the head angular velocity from thorax angular velocity.


2.3.1. Neural Network Architecture

To predict the motion of one body part from another, we used a feed-forward artificial neural network. The neural network consisted of three layers. The input layer contained as many neurons as measures of instantaneous angular velocity within the time window Δt plus a bias neuron (acting in a similar manner as the intercept in a linear fit). So for recording at 500 fps and Δt express in ms: 1+0.5Δt neurons. The second layer, i.e., the hidden layer, contains N+1 neurons with N ∈ 1, 2, 4, 8, 16, 32, 64, 128. The activation functions of the units were rectified linear (relu). A neuron with a relu activation function will have an output proportional to its input when the input is positive. However, when the input is negative, the neuron will output zero. The last and third layer contained two output neurons with a hyperbolic tangent activation function. A neuron with an hyperbolic tangent activation with an input x will output tanhx. The two neurons encoded the sine and cosine of the predicted angular velocity around the z-axis, and their response at time t will be referred to as Os(t) and Oc(t), respectively.

The neural network has two hyperparameters: the number of neurons in the hidden layers N and the size of the time window Δt. To find the optimal N and Δt, we performed a grid search over the parameter space with Δt ∈ {1, 3, 5, ⋯ , 53}ms and N ∈ {1, 2, 4, 8, 16, 32, 64, 128} resulting in 40 neural networks.



2.3.2. Training

The neural networks were implemented and trained using tensorflow API for python (Abadi et al., 2015). The weights of the networks were randomly initialized. To train the network we used the Adam optimizers (Kingma and Ba, 2015) with the loss function that the training procedure aim at minimizing:

[image: image]

The numerator in the loss contains the euclidian norm of a vectorial difference. The vector [image: image] is the direction of the bee's head velocity expressed in Cartesian coordinates. The vector [image: image] is formed by the two output neurons of our network. The euclidian norm of the vectorial difference can therefore provide of a measure of the network performance, because when the two vector match their difference is a null vector. In the loss function, the numerator (resp. denominator) decreases as the output of the network approaches the angular velocity of the head (resp. thorax). The loss function is thus small when the prediction is close to the head angular velocity and far from the thorax angular velocity. The denominator, thus, guarantees that when the prediction is close to the thorax angular velocity, the loss function is high, decreasing the risk of the network learning the identity, i.e., predicting the thorax from the thorax. λ is a regularization term and is equal to 0.5. ϵ is a small value to avoid division by zero and is equal to 0.1. The networks were trained for 30 epochs on the first 70% of each of the five learning flights.



2.3.3. Choosing Hyperparameters and Validation

To choose the hyperparameters Δt and N of our predictive method, we evaluated the performance of the network on the remaining 30% of the five learning flights (i.e., on the test data set). From the 40 trained networks per hyperparameter tuple, we calculated the unsigned error angle ΔΩ between predicted head angular velocity [image: image] and the measured head angular velocity [image: image] over time. The hyperparameters yielding the smallest median unsigned error angle were retained for validation (Supplementary Figure 2 and Supplementary Table 1).

To assess the performance of our predictive method, we use the previously trained neural networks on data never seen by the networks. We use the sixth recorded learning flight. The thorax to head prediction the optimal number of neurons is 32 and the optimal window size is 29. For the head to thorax prediction we have an optimal number of neurons of 4 and the optimal window size is 45.



2.3.4. Temporal Shift

The share of information between head and thorax angular velocities may be delayed. For example, the thorax angular velocity until a time point t − τ may be used to predict the angular velocity of the head at time point t. In that case, the thorax angular velocity contains enough information to forecast the head angular velocity. We apply the same procedure described above, but with temporally shifted head and thorax angular velocities.

The forecasting of the head angular velocity along the z-axis will be based on the body angular velocity during a time interval Δt:

[image: image]

Here, τ is the time between the last observation used for prediction and the time at which the angular velocity of the head is predicted. Similarly, the backcasting of the head angular velocity along the z-axis will be based on the body angular velocity during a time interval Δt:

[image: image]

τ is thus the temporal shift between observation and prediction. For forecasting τ is negative. For backcasting τ is positive.





3. RESULTS

Flying insects are thought to coordinate their thorax and head motion in order to maximize head stabilization. They segregate their flights into saccade and intersaccade. We investigated methods aimed at evaluating two different aspects of head-body coordination during insect flight: (1) Head saccade identification and (2) head angular velocity prediction based on the time structure of thorax movements. We applied and tested these methods to the learning flights of bumblebees, B. terrestris.


3.1. From Thorax Angular Velocities to Head Saccades

In agreement with previous descriptions of flying insects' behavior, we observed that the angular velocity ωz of the head is segmented into segments of high velocity (called saccade) and low velocity (called intersacade) Figure 3. The angular velocity of the thorax shows a similar pattern, but with a less neat segmentation between the intersaccades and saccades.


[image: Figure 3]
FIGURE 3. Time course of yaw angles and ωz(t) of the head and thorax of a learning flight. Head saccades (blue regions) are extracted with manually chosen thresholds (red dotted line). Body saccades (red regions) are extracted with thresholds to best match the head saccades.


In the past, segmentation of insect flights into saccade and intersaccade was based on thresholding the angular velocity: angular velocities higher than the threshold are considered part of a saccade. Recording the head orientation of flying insects during free flights is technically demanding and has rarely been done (Van Hateren and Schilstra, 1999a; Riabinina et al., 2014). Thus, researchers have often only access to the orientation of the insects' thorax (Van Hateren and Schilstra, 1999a; Kern et al., 2012; Philippides et al., 2013; Ravi et al., 2013, 2019; Riabinina et al., 2014; Lobecke et al., 2018; Robert et al., 2018).

It thus raises the question: how well can we extract head saccades based on the thorax angular velocity? The first set of methods we investigated concerned the accurate classification of head saccades from thorax angular velocities.


3.1.1. Decision Tree and Random Forest

Choosing a hard threshold to segment the time course of angular velocity based on the thorax is challenging, due to slower speeds during saccades and higher speeds during intersaccades. Thanks to the segmentation based on the head angular velocity, we can choose this threshold to maximize the accuracy (i.e., the percentage of frame correctly classified as saccade and intersaccade). Despite an optimally chosen threshold, we observed that many frames are incorrectly classified (compare misaligned red and blue stripes in Figure 3). The thresholding approach uses the velocity observed at time t to classify it as either saccade or intersaccade. However, head saccades have a time span of several 10 ms; thus, using neighboring observations may help classify the behavior.

Instead of choosing a single linear threshold, the field of machine learning offers algorithms that classify data. Here, the input is the angular velocity within a time window Δt around a given time point t. The binary class to be predicted is either a head saccade or not a head saccade (intersaccade).

Both classifiers DT and RD are classifying the thorax angular velocity with higher AUC than our benchmark (i.e., the thresholding method) Figure 4 on the test set. The Decision Tree, and Random Forest yielded an error rate of 11.91 and 11.26% (i.e., a 36.29 and 39.72% smaller error than the benchmark), respectively.


[image: Figure 4]
FIGURE 4. Time course of head saccades (blue) and predicted head saccades (orange and green) from thorax angular velocity ωy). Thorax saccades (in red) are extracted with a double thresholds (as in Figure 3). Two trained classifiers (a decision Tree, in green, and a Random Forest, in orange) were applied to the learning flight (which was not used for training) to predict head saccades.




3.1.2. Robustness at Low Sampling Rates

Our video footages were filmed at a relatively high frame-rate (500 fps) and captured using multiple perspectives to extract the 3D positions and orientations of the bee's head and thorax. However, recording at high frame rates and high spatial resolution requires special hardware not always affordable or available (for example during field experiments). Therefore, many experiments have been performed with frame-rate between 50 and 100 fps (Kern et al., 2012; Philippides et al., 2013; Ravi et al., 2013, 2019; Riabinina et al., 2014; Lobecke et al., 2018; Robert et al., 2018). At such a frame rate, data can usually be processed online (Straw et al., 2011; Stowers et al., 2017) or saved requiring reasonable space on hard drives. To assess the ability of our classifiers to identify saccades and intersaccades from low temporal resolution thorax orientation, we down-sampled our original recordings. We then interpolated the data with cubic splines to retrieve the 500 fps on which our classifiers were trained. The accuracy of the classifiers decreases with decreasing temporal resolution. Still, for frame rates higher than 40fps our classifiers perform better than (or as good as) our benchmark (Figure 5).


[image: Figure 5]
FIGURE 5. Area under the curve between saccade/intersaccade classifications from classifier or double thresholds on thorax angular velocity and head saccade/intersaccade classification as a function of frame rate. The benchmark is the classification from ωz of the thorax based on the optimally chosen double threshold at 500 fps. The classifier outperform the benchmark for frame rates above 40 fps even when angular velocity of the thorax is determined by assuming zero pitch and roll orientation (classifier followed by 2D).




3.1.3. Robustness to Single Camera Recordings

Obtaining the 3D orientation of the thorax requires the identification of at least three points on multiple views or, when sufficient visual features are visible, use advanced computer vision techniques for pose estimation from a single perspective (Graving et al., 2019). The orientation can, however, be approximated from a single perspective by making some assumptions. For example, assuming a null pitch and roll, the yaw orientation can be obtained from a single perspective view at the flying insect from above (Kern et al., 2012; Philippides et al., 2013; Lobecke et al., 2018; Robert et al., 2018; Ravi et al., 2019). We replicated this assumption on our data and assessed how well our classifiers could segment the flights into saccades and intersaccades. The classifiers still performed better than our benchmark for frame rates higher than 70 fps.




3.2. Predicting Head and Thorax Angular Velocity

Flying insects orchestrate the movements of their head and thorax in a timely manner, such that the head saccade and thorax saccade temporally overlap. The neurons controlling the head and thorax movements receive inputs from different brain areas (Schröter et al.,2007; Ibbotson et al., 2017; Steinbeck et al., 2020) One of these inputs could be an efference copy (i.e., a copy of an outflowing movement-producing signal generated by the motor system) of the head motion that affects the control of the thorax. The reciprocal would be an efference copy of the thorax motion affecting the control of the head. The efference copy signal needs to be processed and transmitted to another part of the bee's body, to affect the control of the targeted movement. If this were the case, we would expect two characteristics: (1) information is shared between the head and thorax angular velocity, and (2) the information at a given time t can be mapped to information at a later time t + τ.


3.2.1. Predicting Head Velocity From Thorax Velocity (τ = 0)

We observed that the head and thorax angular velocity temporally overlap. It therefore seems likely that a mapping between the movements of the two body parts at τ = 0 exists. Dürr and Schilling (2018) used an artificial neural network (ANN) to investigate whether information from a given body part can be mapped to another. We used an ANN to map the head to the thorax angular velocity (and vice versa) without temporal delays (i.e., τ) Figure 6E. We observed that the predicted head angular velocity co-varies with the bees' head angular velocity (Figures 6B,D). A similar observation is made for the prediction of the thorax angular velocity from the head angular velocity (Figures 6A,C). The errors between the prediction and target are concentrated below 200 deg/s, i.e., below the variation of angular velocity during intersaccades. However, we observed that a prediction of the thorax angular velocity from the head angular velocity yielded lower errors than the reciprocal prediction (Figures 6F,G).


[image: Figure 6]
FIGURE 6. Predicting head and thorax angular velocity (without temporal shift) on a given flight not seen during training of the artificial neural network. (A) Prediction, in blue, of the thorax angular velocity from head angular velocity (orange). (B) Prediction, in blue, of the head angular velocity from thorax angular velocity (orange). (C,D) Zoom on (A,B), respectively. The prediction (blue line) follow the target (green line). (E) Schematic of a prediction at a given time point. (F,G) distribution of error between predictions and targets.




3.2.2. Forecasting and Backcasting Head Velocity From Thorax Velocity (τ≠0)

We investigated the mapping of information between body parts for different delays τ. Similarly to the τ = 0 case, we used an ANN to map the angular velocity of one body part to another. However, the observation (for example, the head angular velocity) was temporally shifted relative to the target (for example, the thorax angular velocity). When τ is negative, the observation occurred before the target. Thus, this observation could be used to control the behavior of the target. For example, the thorax velocity at time t is sent as an efferent copy to the head control arriving at t − τ. We will refer to this case as forecasting (Figure 7D). If, τ is chosen to be positive, the observation occurred after the target, hence we will speak of backcasting (Figure 7F). This case mainly serves the purpose of avoiding over-interpretation of the results and will be later discussed.


[image: Figure 7]
FIGURE 7. Error for one flight (validation set) for thorax to head (A) and head to thorax (B) prediction. Time course of the head and thorax angular velocity (C) are shown in blue and orange, respectively. (D,F) Example of a positive and negative shift of ±τ11 time steps of the observation. (E) Correlation between target and prediction for different temporal shifts.


We observed that the prediction error varied as a function of time (Figures 7A,B). By comparing the time course of the errors (Figures 7A,B) and the observation (Figure 7C), we observe higher errors during saccades. Such a pattern may be observed, when the network predicts a zero angular velocity, because during intersaccades the angular velocity is close to zero. This may happen when the potential relationship between the two body parts cannot be learned by the network. The prediction from the network and the target are, in this case, not correlated. Thus, we quantify the error as a function of the time-shift by using the correlation between the target (e.g., head angular velocity) and its prediction (e.g., head from thorax angular velocity).

The prediction of the head angular velocity correlates well with the network prediction, but the correlation is lower for large temporal time shifts. We observe a plateau between τ = −12ms and τ = 0ms (i.e., for forecasting), and a sharp decrease for τ > 0, and a smooth decrease for τ < −12ms (Figure 7E). In contrast, the prediction of the thorax angular velocity correlates poorly with the network prediction, except between τ = 0 and τ = +12 ms, i.e., for backcasting.

It, therefore, seems that an efference copy of the head angular velocity is sent to control the thorax angular velocity.





4. DISCUSSION

To understand how different body parts work together and interact with each other, their kinematics must be recorded. However, some small animals can move very fast (for example a bee performing a saccade). Thus, the necessary equipment to track such fast movements, is often not available. Hence, the orientation of the thorax, which is relatively easy to track, is often used as a proxy for head orientation. However, this proxy is prone to errors. We used data of head and thorax orientation during learning flights of bumblebees and developed two methods to reduce this error. The coordination of head and thorax is of particular interest for understanding how information is gathered and processed by the bee, for example, the estimation of the distance to surrounding objects during intersaccades. Our first method predicts the saccades of the bee's head from the time course of thorax movement. Usually head saccades are identified by applying a threshold on the thorax angular velocity. This method does not lead to optimal results. Therefore, we trained a decision tree and a random forest classifier to automatically determine when head saccades take place, given the time course of thorax orientation. We were able to reduce the mis-classifications made when choosing the threshold manually from 39.72 to 11.26 %. A binary classification between saccades and intersaccades is likely not sufficient to fully understand the coordination between body parts in detail. Dürr and Schilling (2018) showed that it is possible to use an ANN to map the posture of one leg of a stick insect to the posture of another. We successfully used this concept and applied it to predict the orientation of a bee's head angular velocity from that of its thorax. Furthermore, we added a temporal component (forecasting or backcasting) to analyse how head and thorax work together. Our findings show that for a temporal shift of up to 10 ms it is possible to predict the head orientation from thorax orientation. If the shift is bigger the error increases drastically.


4.1. Technological Aspects

Many moving animals and robots alike actively shape their gaze to extract relevant information about their surroundings (Egelhaaf et al., 2012; Wisniewska et al., 2012; Tuhkanen et al., 2019). For example, during translation, the apparent motion of an object informs the agent about its relationship in space to the surroundings. If one can track the head of an animal during its course of movement, one could pinpoint for example when distance information is perceived. However, tracking the animal as a whole might already pose a challenge, rendering the tracking of specific body parts a nearly infeasible endeavor. For instance, researchers have to restrict the space of the recording area and use expensive recording devices to allow high spatio-temporal resolution. The spatial limitations constrain research potentially to only a part of the behavior. Additionally, researchers are often obliged to manually track the body parts of interest, a labor-intensive process which introduces a potential experimenter bias to the data. Our method solves this issue by allowing us to infer the timing of head saccade/intersaccade from thorax orientation at a rather low temporal resolution (40 fps) and a spatial resolution sufficient to record only the thorax. For example, in the case of bumblebee learning flights, by only tracking body orientation, one could predict head orientation and, thus, unravel when and how distance information might be learned about the nest-hole environment to enable later returns (Doussot et al., 2020a). Similarly, when bumblebees are crossing a difficult passage such as a gap in a wall (Baird et al., 2016; Ravi et al., 2019), head movements may be used to extract relevant information. By studying head movements, one can interpret the flight sequence performed at the entrance of this aperture. We should note, however, that we cannot infer the complete orientation (yaw, pitch, roll) of the head from thorax movements; therefore, our method cannot account to assess roll and pitch rotations in these behaviors.



4.2. Other Machine Learning Approaches

Our two methods are based on supervised machine learning techniques. First, for our classification task, we used two different classes of models. We decided to use an easily trainable Decision Tree. However, this class of models brings several disadvantages, of which one is its high variance, meaning small changes in data can lead to drastically different optimal trees. We therefore employed a more powerful class of models, Random Forests, which extend the concept of Decision Trees, mitigating the previously mentioned problem up to a certain amount. Unfortunately, Random Forests often become very complex and are not as clearly to be interpreted as Decision Trees. In any case, both models have shown that classification is possible, indicating two possibilities to pursue in future research.

First, one could utilize feature engineering. All our models operated directly on the input data, but research shows that feature engineering can improve performance (Wang et al., 2016; Banerjee et al., 2019). Second, more sophisticated (but potentially also data demanding) approaches could be employed. An example, is the use of Convolutional Neural Networks, which have been shown to work on time series classification with some minor adjustments (Gamboa, 2017).

Second, for our prediction task, we used a feed forward neural network inspired by the work of Dürr and Schilling (2018) to predict head orientation from body orientation. Alternative forecasting methods, such as ARIMA and Echo State Networks, have been used to forecast thorax position from previous observations (Meyer et al., 2018). These approaches may also be used to study the coordination of multiple body parts. Indeed, in the field of machine learning, the problem presented in this paper is coined time series classification, which spawned an extensive research endeavor (for a review see Bagnall et al., 2017).



4.3. Biological Implications

Our method to estimate the head angular velocity from the thorax angular velocity relied on an artificial neural network. The network can only relate the two angular velocities when a function between them exists and the network design can capture such function (Csáji et al., 2001). For example, by increasing the number of neurons in the network more complex functions can be found (Dürr and Schilling, 2018). The existence of such a function, embedded in the network, implies that input and output of the network share information. We applied this idea to the head and thorax angular velocities and found that indeed information is shared between the two.

Information in a dynamic system (such as the thorax and head control) is transmitted through the system either directly between subsystems or via another subsystem (for example a brain region). Hence, the sharing of information between subsystems in a dynamic system (e.g., between head and thorax) can be due to a common source (e.g., a central pattern generator; Guertin, 2013) or efference copies sent from one target to another (Straka et al., 2018). In both cases, a signal needs to be transmitted. Hence, generating a delay between the source and the destination will occur. By temporally shifting the recorded source (for example the head) relative to the target (for example the thorax) and using an artificial neural network, we studied the information flow. We found no evidence that the information flows from the thorax to the head.

A unidirectional flow of information between head and thorax can be observed when a source S (e.g., visual perception) is coupled to the head control (H), and also drive to some extent thorax control (T) in a way that the source can predict thorax but not vice versa (Granger, 1969; Diebold, 2006). Then due to transitivity of causality (if H → S and S → T, then H → T), information flows uni-directionally from H to T either directly (without a source) or indirectly (via the source) (Sugihara et al., 2012; Ye et al., 2015). Whereas, a direct flow implies biologically an efference copy, an indirect flow implies common brain regions implicated in the control of the two body parts. In addition, a source S (e.g., the brain) could control the head H and thorax T movement. Our method can not disambiguate between an efference copy or a feedforward control from or via a common brain region, but may be used to suggest how the information does not flow in the system.

Our data suggests no efference copy sent to the wing motor neurons to control head-yaw velocity during saccades. However, in the context of roll stabilization, to align the field of view to the horizon line (Raderschall et al., 2016), it has been suggested that head stabilization in flight is controlled by a feed-forward signal, where a copy of the command signals to the wing motorneurons is sent with an opposite sign to the head position control system (Viollet and Zeil, 2013) but also with the visual horizon (Goulard et al., 2015). Interestingly, these observations suggest different flows of information and pathways controlling the head and thorax' movements underlying roll stabilization and a saccadic gaze strategy.

The use of an artificial neural network to test the predictability of the output of one subsystem from the other informs not only about the potential causal relationship between these systems, but also provides a function relating the two. Thus, predictions can be made based on this function when information about one of the systems is not available.




5. CONCLUSIONS

We built our model on the bumblebee's complex maneuvres performed during learning flights. These flights are convoluted and are significantly different from the flights shown by bumblebees crossing a cluttered environment (Srinivasan, 2011), for example. The saccadic flight and gaze strategy at high temporal frequencies and high velocity is observed in multiple species. Flies or honeybees, for example, perform saccades similar to bumblebees. Flies' saccades tend to be slightly faster ( 5000°/s) than the ones of bumblebees (Van Hateren and Schilstra, 1999a; Braun et al., 2012). In contrast swimming seals turn their head with an angular velocity of only up to 100°/s in a saccadic manner (Geurten et al., 2017). Our saccade-intersaccade classifier based on the thorax angular velocity of bumblebees is likely to require retraining before being applied to other species. Nonetheless, because precise predictions could be made despite the complexity of the learning flights, it is likely that the presented methods can be adapted and extended to evaluate data from different animals.

Similarly to the classifier, our method to study the orchestration of movements of different body parts can be used to study movements of different animals, but the resulting trained networks are likely usable only for closely related datasets. It would, therefore, be of interest to apply this method to different species and behavioral assays to test its broader applicability.
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Many animals establish, learn and optimize routes between locations to commute efficiently. One step in understanding route following is defining measures of similarities between the paths taken by the animals. Paths have commonly been compared by using several descriptors (e.g., the speed, distance traveled, or the amount of meandering) or were visually classified into categories by the experimenters. However, similar quantities obtained from such descriptors do not guarantee similar paths, and qualitative classification by experimenters is prone to observer biases. Here we propose a novel method to classify paths based on their similarity with different distance functions and clustering algorithms based on the trajectories of bumblebees flying through a cluttered environment. We established a method based on two distance functions (Dynamic Time Warping and Fréchet Distance). For all combinations of trajectories, the distance was calculated with each measure. Based on these distance values, we grouped similar trajectories by applying the Monte Carlo Reference-Based Consensus Clustering algorithm. Our procedure provides new options for trajectory analysis based on path similarities in a variety of experimental paradigms.

Keywords: bumblebee, clustering, route, classification, clutter, navigation


1. INTRODUCTION

Finding a location in an unknown environment can be a daunting time- and energy-demanding task. In contrast, returning to a known location is much easier than finding it for the first time. To return to an already known location, animals and artificial agents alike can move along habitual routes. Forming and following of routes has been observed in numerous taxa; from insects (Lihoreau et al., 2011; Woodgate et al., 2016; Buatois and Lihoreau, 2016; Woodgate et al., 2017) to mammals (Hurlebaus et al., 2008; Pfeiffer and Foster, 2013); thus, it is a wide-spread strategy to navigate in a familiar environment. Despite the large number of taxa following routes, it remains little understood how routes are established and followed.

Thanks to the rise of miniature embedded tracking devices (Nagy et al., 2010; Genzel et al., 2018; Greif and Yovel, 2019), and high-throughput computational methods, tracks of individual animals in various natural habitats (Graving et al., 2019) have become more wide spread in recent years. With this expanding collection of paths gathered by scientists, there is a growing need for efficient data-analysis pipelines to identify, classify, and compare different paths across taxa, species, or individuals.

There is a distinction to be made between an animal's path and a route. A path specifically describes the animal's trajectory of movement, while the route can be visualized as a string around which different paths meander. Depending of the consistency of the paths taken among different runs, a potential route may not easily be recognizable to an observer. However, when many paths are observed and clearly show a common overarching structure, one may conclude that the animals are following the same route.

To date, different paths were visually grouped into different routes. However, this may lead to unintentional biases toward a preferred hypothesis. Alternatively to a qualitative assessment, one may cluster paths numerically. Paths belonging to the same route would share similar descriptions, be they their average speed, their sinuosity, or spatial similarity among paths. Therefore, we aim at finding descriptions of paths to group them into common routes. During the last century, numerous methods comparing two paths have been developed and refined (see for review Magdy et al., 2015), yielding similarity measures between paths. Therefore, on the one hand we will try to cluster paths based on their characteristics (such as average speed, or positional spread); on the other we will try to cluster paths based on paths similarity measures. With both descriptions of paths (flight characteristics and path similarities) we attempt to identify clusters in the data.

Numerous techniques have been developed to identify clusters in data. Many clustering techniques require to choose the number of clusters beforehand. Others address this problem by using metrics to determine an appropriate number of cluster [e.g., Monti consensus clustering, (Senbabaoğlu et al., 2014), Non-negative Matrix Factorization (Lee and Seung, 2001) or k-means with Ward cost function (Braun et al., 2010)]. Such algorithm may however bias the results toward higher or lower number of clusters. A novel method, named Monte Carlo reference-based consensus clustering (M3C), allows to cluster the data and determine the number of clusters from the data while avoiding a bias toward a higher number of clusters (John et al., 2020). This is performed by statistically testing a given number of clusters against the null hypothesis of having only one cluster.

We propose to combine a clustering algorithm (here M3C) and a number of features describing paths, be it flight characteristics (e.g., average speed) or similarity measures, to identify potential routes followed by animals. To illustrate this combination, we use behavioral data of bumblebees, Bombus terrestris, known for their route following skills (Lihoreau et al., 2011), flying through a heavily cluttered environment. We compare the trajectories of bees through an obstacle parkour by using two similarity measures [Dynamic Time Warping (Salvador and Chan, 2004) and Fréchet distance (Fréchet, 1906; Magdy et al., 2015)], derive the number of potential routes and associate the individual trajectories to their corresponding route by using the M3C clustering algorithm. Furthermore, we classify trajectories based on flight characteristics, such as the average speed, to assess whether several characteristics are sufficient descriptors to identify routes from paths. The clustering algorithm may yield ambiguous results. We complemented the clustering outcomes with a method to visualize high dimensional data. Such visualization allow to disambiguate between different clustering outcomes. Finally, we discuss the potential use of alternative similarity measures and how to place novel trajectories into an existing classification.



2. MATERIALS AND METHODS


2.1. Data Acquisition
 
2.1.1. Animal and Hive

We used two healthy hives of Bombus terrestris provided by Koppert B.V., The Netherlands. Bumblebees were transferred into a 30 × 30 × 30 cm3 acrylic box. Inside the hive box, bumblebees were provided with pollen. Before starting the experiment, the bumblebees got 1 week of habituation time to access the foraging chamber at any time. In the foraging chamber, bumblebees were provided with feeders containing sucrose solution (0.5kg/L). After habituation, we could usually observe bumblebees flying in a direct manner between foraging chamber and hive. These bees, likely to be foragers, were marked to track their individual learning progress. To this end, the animals were captured and restrained on their way back to the hive. A small colored plastic tag was fixed with resin on the animals' thorax. After the marking procedure, the bumblebee was placed close to the hive entrance.



2.1.2. Procedure

The habituated bees were allowed to travel through a foraging tunnel (140 × 30 × 30 cm3) connected to the hive box and a foraging chamber via 2.5 cm diameter tubes and acrylic boxes (see Figure 1). The walls of the tunnel were covered with a red and white 1/f noise pattern (as in (Ravi et al., 2019)). When an individually marked bumblebee returned from the foraging chamber, it was rerouted by using small acrylic gates into an experimental tunnel, parallel to the foraging tunnel. Only one bee at a time was permitted to cross the experimental tunnel.


[image: Figure 1]
FIGURE 1. Experimental setup shown from above. The hives were kept in an acrylic box shown on the left. Bees were allowed to forage on sucrose solution in the foraging chamber (to the right, not shown), which could be reached by traveling through a tube and tunnel (top) system. Marked foragers could, upon exiting the foraging chamber, be re-directed into the experimental tunnel (bottom), where 49 vertical objects form a complex cluttered environment, which they had to cross to return to their hive.


The experimental tunnel, used for individual training and recording, contained 49 vertical objects (29.5 × 1 cm2) suspended from the ceiling and creating a cluttered environment. The objects were made of red acrylic that blocks light below a wavelength of 650 nm. Objects were placed as in Figure 1. Five cameras (Basler acA2040-90umNIR) with red filters (Heliopan RG715) viewed the tunnel from different perspectives, and allowed recording the bee's behavior.

A recording started as soon as the bee crossed the infrared-light barriers placed before to the tunnel entrance, and stopped as soon as the bee crossed the light barriers after the tunnel exit. While recording, the tunnel was illuminated from below by light filtered through 650 nm cutoff low-pass acrylic, so that the objects were transparent for the cameras but were perceived as dark by the bumblebees (Dyer et al., 2008).



2.1.3. Trajectories

Inbound flights of individually marked bumblebees were recorded while they were flying through the clutter. The calibrated cameras recorded at 60 frames per second. Each bumblebee was recorded ten times. The frame-wise position of the recorded bee was triangulated using flydra (Straw et al., 2011).

Afterwards, the trajectories were manually reviewed to check for possible errors. Only trajectories after the fifth trial were considered. In addition, since the setup was invariant along the altitude (i.e., the z-dimension), we reduced the trajectories to their planar projection. We selected trajectories during which bees entered, swiftly crossed, and exited the tunnel. We used a total of 83 trajectories from 27 different individuals (see Figure 2).


[image: Figure 2]
FIGURE 2. Overview of the trajectories (A) and their descriptions, path similarity (B) and flight characteristics (C). (A) Top view of all unclassified trajectories that were used. (B) Heatmap of normalized distance values of both similarity measures (DTW and Fréchet), where the columns represent the trajectories, and the rows the respective paired trajectories for both measures. (C) Heatmap of normalized flight characteristic values. The columns represent the trajectories and the rows depict the flight characteristic values.





2.2. Path Clustering

Our aim was to group trajectories into distinct routes. The trajectories were not directly grouped to each other based on the time course of their x,y coordinates, but reduced to a certain number of features, be it flight characteristics (e.g., average speed) or similarity measures (see section 2.2.2 below). This grouping is akin to the problem of identifying clusters, where each cluster of trajectories would correspond to a route.


2.2.1. Flight Characteristics

Along a given route, the bee may fly slower than along another route, because for example obstacles might be closer to the bee Baird et al. (2005). The bee may also decide to follow one wall of the tunnel or to center in it (Serres et al., 2008). Thus the maximal, average, and standard deviation of lateral position may be good predictors of a route. Finally the average and standard deviation of the gaze direction, as well as the traveled distance divided by the shortest distance between the start and the end of the bee's path (i.e., the sinuosity), inform about the overall flight direction and how much the bee meandered in the clutter.

Seven flight characteristics were used to describe each bumblebee's flight trajectory: the average speed μs, the lateral position μy of the average trajectory, gaze direction μα in the tunnel, the standard deviation of the lateral position σy and of the gaze direction σα, the maximal lateral position max(y), and the sinuosity.



2.2.2. Path Similarity

Our second method to describe each path was based on similarity measures of their structure. Several functions can evaluate the similarity between two trajectories (Magdy et al., 2015; Su et al., 2020). These functions yield a distance which is the inverse of the similarity between the two trajectories.

Since animals may meander differently along a route, the selected similarity measures between paths must take into account divergent path lengths and keep the traversed locations ordered along time. We considered two measures: a variant of Dynamic Time Warping (DTW) and the Fréchet distance. DTW minimizes the sum of absolute differences between two trajectories, whereas Fréchet identifies the shortest distance between two trajectories that is sufficient to connect points along the trajectories. DTW and Fréchet thus capture different similarities between trajectories, and can be regarded as a global and local measures, respectively (see also Supplementary Figure 1).

The two distance functions required numerous computations, because they iterated through individual observations for each trajectory pair. To reduce the computational cost for the similarity measures, we re-sampled the trajectories as follows: The trajectories were interpolated and afterwards down-sampled to achieve equal distances between neighboring points, in order to keep the shape of the trajectory. The distance between the points was the median speed across all trajectories.


2.2.2.1. Dynamic Time Warping and FastDTW

Dynamic Time Warping (DTW) was one of the similarity measures between two temporal sequences, here two trajectories (Salvador and Chan, 2004). To illustrate this measure, we may picture two strings with knots laid flat on a table. Our goal is then to connect the knots from one of the strings to the other one using the minimum amount of connecting materials. The connections are not allowed to cross each other, we try to make them as short as possible, and the first knots on the each of the strings are connected to each other. DTW is an algorithm that finds such connections between the strings. In our case, the knots are the observed bee's positions, and the strings are the time axes of the trajectories (see also Supplementary Figure 1). Therefore, DTW captured similarities by working on the full paths (i.e., global measure of path similarity).

The computational demands for this function scaled quadratically with the length of the trajectories and was therefore inefficient to use with long trajectories. FastDTW linearly approximates DTW by using a multi-level approach that recursively projects a solution from a reduced resolution and then refines the projected solution (Salvador and Chan, 2007).



2.2.2.2. Fréchet Distance

The Fréchet distance is a spatial similarity measure that can be best described intuitively as a person walking a dog (Fréchet, 1906). They are connected by a retractable leash and are walking on different paths. Assuming that both the person and the dog are allowed to travel with different speeds, but are not allowed to backtrack their path, the Fréchet distance describes the minimal length the leash would need to have to connect both throughout their journey (see also Supplementary Figure 1). Therefore, Fréchet captured similarities with an extremum function (i.e., a local measure of path similarity). It took into account the location of points, as well as their order, but did not shift points along their time axis.




2.2.3. Monte Carlo Reference-Based Consensus Clustering Algorithm

We clustered the path descriptions (either flight characteristics or path similarity) by using the Monte Carlo Reference-based Consensus Clustering algorithm (henceforth called “M3C”). M3C solves a common problem of selecting a suitable number of clusters and also introduces formal hypothesis testing, by generating random data to get an estimate of a random Gaussian distribution.

M3C runs the clustering algorithm multiple times, for each number of cluster K, resulting in potentially different partitioning of the data. A consensus is created based on the different runs (Vega-Pons and Ruiz-Shulcloper, 2011). M3C builds a consensus matrix showing the probability of two samples being part of the same clusters. A very high and a very low probability indicate a small ambiguity whether the cluster allocation is correct. The consensus matrix is used to create the cumulative distribution function (CDF) curve. An ideal CDF curve has a flat shape, because ideally only very small and very high probabilities are noted in the consensus matrix. A proportion of ambiguous clustering (PAC) can be derived from the CDF curve. The PAC score quantified the ambiguity of cluster assignments between clustering runs based on the cumulative distribution function (CDF) of the consensus matrix (see Supplementary Figures 3A,B, Figures 1B,C in John et al., 2020).

The lower left portion of the CDF curve represents sample pairs that are rarely clustered together, and the upper right part represents those that are almost always clustered together, whereas the middle segment represents sample pairs with ambiguous assignments in different clustering runs. The PAC-score quantified the middle segment of the CDF curve. It was defined as the fraction of sample pairs with consensus indices falling in an interval between U1 and U2, where U1 is a value close to 0, and U2 a value close to 1 (usually 0.1 and 0.9). Thus, a low PAC-score and therefore a flat middle segment indicated a low rate of discordant assignments across clustering runs.

Furthermore, M3C assessed whether the PAC score for a given number of K is significantly lower than that for a single cluster K = 1. M3C simulated data sets to get null distributions of PAC scores for K = 1 and tested the following hypothesis.

H0: the PAC score does come from a single Gaussian cluster

The alternative hypothesis was:

HA: the PAC score does not come from a single Gaussian cluster

This hypothesis testing was done for each K (here ranging from 2 to 10 routes) and thus provided a p-value for each K. When a PAC score was at a low local minimum and its associated p-value is below 0.05, the path descriptions significantly clustered, indicating distinct group of paths (i.e., routes).

The procedure to decide on a suitable number of clusters was not unambiguous. Indeed more than one K may have a low PAC score associated with a p-value below 0.05. To disambiguate between two K we visualized the cluster by projecting the data (a high dimensional space) using t-distributed stochastic neighbor embedding (t-SNE) on a 2D space. After projection, clusters become visible and may allow to visually disambiguate between clustering outcomes.



2.2.4. Comparison of Path Clustering

Our method used a free parameter: the re-sampling coefficient. We investigated the effect of the free parameter for a range of speeds s ∈ [2, 11] mm/frame. The choice of the re-sampling coefficient may change the clusters of trajectories. Therefore, we reran our clustering algorithm with different coefficients. We, then, compared the clustering results from the re-sampling coefficient s ≠ 6 mm/frame to the one with s = 6 mm/frame.

The clustering results were compared by building a confusion matrix with the reference being s = 6 mm/frame as follows. A given pair of trajectories (A and B) belonged to the same cluster when trajectories were re-sampled with s = 6 mm/frame and also when the trajectories were re-sampled with s ≠ 6 mm/frame. Hence, we had a true positive. Similarly, two trajectories (A and C) did not belong to the same cluster with both re-sampling coefficients. Thus, we had a true negative. Additionally, when two trajectories (A and D) belonged to the same cluster with the reference re-sampling (resp. the tested re-sampling) coefficient but did not with the tested re-sampling (resp. reference re-sampling) coefficient, we had a false negative (resp. false positive).

We used a precision score from the confusion matrix derived from whether pairs of trajectories clustered or did not cluster together. The precision score was the amount of true positives divided by the sum of the true positives and false positives.

The resulting precision score may be due to chance. Therefore, to interpret the precision scores statistically, we simulated 100 random clustering results. We randomly assigned trajectories to a given cluster (from two to ten clusters). We calculated the precision score for the 100 random clustering T and derived from their distribution the probability that our observed precision score (or a higher score) t came from this distribution p = P(T ≥ t|H). In this case, the distribution served as null hypothesis, where the critical value for α = 0.05 can be inferred from the precision score value at the 95th percentile of the distribution. Consequently, the p-value for our observed precision score was determined by the cumulative probability of all values beyond that point, i.e., the area under the graph between the 95th and 100th percentile of the distribution.





3. RESULTS

We proposed a method to identify routes based on quantitative descriptions of individual trajectories. To illustrate our method, we used paths from bumblebees flying in a cluttered environment. Our procedure consisted of four steps:

1. Describing the trajectory: path similarity or flight characteristics

2. Deriving the number of routes

3. Validation of route number

4. Visualization of the routes.


3.1. Describing the Trajectories of Bumblebees

We described the bumblebees' paths (Figure 2A) by first using flight characteristics. Each trajectory is thus described by seven values. We observed that some trajectories share multiple characteristics and thus may form clusters of paths (Figure 2C).

Second, we described the bumblebees' paths by using path similarities. We used two measures Fréchet distance and DTW on 83 trajectories. Each trajectory is thus described by 83 values for each measure. The path distances contain two diagonals with zeros. These values correspond to the similarity of each trajectory with itself. Blocks of similar values are present, thus potentially different clusters (Figure 2B).

These two descriptions will be independently fed to the M3C algorithm.



3.2. Determining a Significant Number of Routes

When looking at bees' trajectories in the clutter, it seems that paths visually cluster along specific “routes” (Figure 2). Using our descriptions of trajectories (flight characteristics or path similarities) we applied the M3C algorithm to identify groups of trajectories belonging to the same route.

When using flight characteristics, we found that two clusters (K = 2) have a local minimum PAC-score and are significant. When using DTW, Fréchet, or both path similarity measures, we observed local minima of the PAC-score, at K = 2, at K = 4, and at K = 2 and K = 4, respectively (for single measure, see Supplementary Figure 2, for both measures, see Figure 3). Furthermore, the p-values for these numbers of clusters are below 0.05.


[image: Figure 3]
FIGURE 3. Output from the M3C algorithm based on similarity measures (left) and flight characteristics (right). (A) PAC-scores (Proportion of Ambiguous Clustering) of different number of clusters (K) for similarity measures. (B) p-values of different numbers of clusters (K) for similarity measures. The red dotted line indicates the 0.05 significance level, where points (plotted in red) reach the significance level and points below the line (plotted in black) do not. (C) PAC-scores of different numbers of clusters (K) for flight characteristics. (D) p-values of different numbers of clusters (K) for flight characteristics. The red dotted line indicates the 0.05 significance level, where points (plotted in red) reach the significance level and points below the line (plotted in black) do not.


Thus, we found a significant number of clusters of trajectories described by either flight characteristics or path similarities. We have therefore different potential clustering outcomes. To disambiguate between them we will visualize the clusters with t-SNE.



3.3. Visualization of Clusters

We have grouped the trajectories of bumblebees into similar routes by using the M3C method, yielding high dimensional data. To visualize such high dimensional data, they can be projected onto a 2D space by using linear (e.g., Principal Component Analysis) or non-linear projection (e.g., t-distributed stochastic neighboring embedding: t-SNE). Here, we used t-SNE to visualize the two path similarity measures (a 166D space) and the flight characteristics (a 7D space) in a 2D space, respectively. The data points are then labeled according to their corresponding clusters derived from the M3C. The path similarities projected onto a 2D space formed four clusters matching the clusters derived from the M3C (Figure 4C). In contrast, the projection of the flight characteristics in a 2D space does not form such distinct and spatially apart clusters (Figure 4D). One may observe two clusters, but one of them contains points associated to the two routes, hence the clustering outcome is not validated by t-SNE. Visualization with t-SNE indicated K = 4 but not K = 2 clusters as the M3C for the path similarities and flight characteristics, respectively.


[image: Figure 4]
FIGURE 4. Comparison of classified trajectories between similarity measures and flight characteristics. The four different colors represent the different clusters. (A) Top view of all trajectories classified with similarity measures. In each subplot, the trajectories belonging to their respective route are plotted, as well as their average trajectory (in a thicker line). In addition, for each other route, the averaged trajectory is added with a lower opacity. (B) Top view of all trajectories classified with flight characteristics. In each subplot, the trajectories belonging to their respective route are plotted, as well as their average trajectory (in a thicker line). In addition, for each other route, the averaged trajectory is added with a lower opacity. (C,D) Visualization of M3C clustering with t-SNE (t-distributed stochastic neighboring embedding). (C) t-SNE plot of trajectories classified by using similarity measures. (D) t-SNE plot of trajectories, classified by using flight characteristics.


Interestingly, the clustering outcome with K = 4 resulted in a split of one of two clusters with K = 2. The partitioning of the cluster was thus conserved between K = 2 and K = 4 (see Supplementary Figure 5).



3.4. Visualization of Routes

The last step of our method is to visualize the labeled paths and an average route representing the derived route structure. We plotted each cluster of trajectories, based on flight similarity. We can see that the trajectories assigned to each cluster are spatially closer to one another than to those of the other derived routes (Figure 4A). When visualizing the routes obtained from clustering based on flight characteristics (Figure 4B), the second cluster contains dissimilar paths. Overall, the trajectories grouped based on path similarity form visually coherent groups. The same is not true for the grouping based on flight characteristics.



3.5. Effect of Re-sampling Trajectories

We re-sampled our trajectories to reduce the computational demand while preserving the shape of the trajectories by using a constant traveling speed (re-sampling coefficient). Nevertheless, the re-sampling may impact the classification results. To assess the impact of the re-sampling coefficient, we performed clustering for different re-sampling coefficients.

We classified pairs of trajectories for two classification methods (reference s = 6 mm/frame and alternative re-sampling s ≠ 6 mm/frame). By building a confusion matrix from this classification, we derived the precision of the alternative re-sampling. A precision of one means that pairs of trajectories are sorted in the same manner for both the ground truth and the alternative re-sampling.

We observe that the precision is close to 1 across the tested range of re-sampling parameters (Figure 5), especially for K = 4 clusters, the chosen reference number of clusters. However, this precision score may have been obtained by chance. Therefore, we statistically test how likely the precision comes from a random clustering of paths. We observe that the simulated precision scores are distinctly below our tested precision scores (Supplementary Figure 6). Thus, the precision scores obtained from the different re-sampling parameters, are significantly different from a random clustering of trajectories. Since the precision scores are close to 1 and significantly different from random clustering, the re-sampling parameters do not strongly impact the classification results.


[image: Figure 5]
FIGURE 5. Effect of different re-sampling coefficients on the precision score. For each re-sampling coefficient (x-axis), the precision score for each possible number of clusters was tested. K = 6 serves as a reference (truth values) for the other re-sampling coefficients.





4. DISCUSSION

We developed a quantitative method to derive routes from groups of trajectories. The number of potential routes was chosen based on the proportion of ambiguous clusters and statistical tests assessing the plausibility of multiple routes among our collection of trajectories. We described trajectories and then clustered them based on their descriptors using Monte Carlo Reference-based Consensus Clustering (John et al., 2020). Path similarity measures (DTW and Fréchet measures) yielded meaningful clusters of trajectories (i.e., routes). In contrast, clustering results based on DTW or Fréchet similarity measures alone were not validated by the t-SNE visualization (Supplementary Figure 2). The same was observed for clustering based on flight characteristics (e.g., average speed, and average lateral position). Concluding only on the result of M3C may lead to ambiguous results, as a low PAC-score and a rejection of the null hypothesis (i.e., having only one cluster) may be found for different numbers of clusters. By using M3C on two path similarity measures and visualizing the results with t-SNE, we could determine a potential number of routes in the trajectories of bees.

Computing the path similarity between a pair of trajectories is time consuming. The complexity of the algorithm often grows as a product of the length of the two trajectories (L1 and L2). Since we calculated the similarities between all pairs of Nt trajectories of average length [image: image], the complexity was in the order of [image: image]. We reduced the computational demand by re-sampling every trajectory to lower the number of observations. The re-sampling parameter in our tested range did not strongly affect the resulting classifications.


4.1. Alternative Uses of our Approach

The bees in the cluttered environments flew from one end of the tunnel to the other. Our method already takes the distance between the first observations between two paths into account when computing similarity measures (due to a property of DTW). However, in nature, animals will travel between two locations in both directions. The route followed by the animal may differ between an inbound and outbound journey (as was observed in ants, Kohler and Wehner, 2005). Comparing an inbound path with an outbound path without mirroring, will lead to different routes, even if the paths visually overlay in space. Clustering the animal's inbound and outbound journey requires to mirror either the inbound or outbound paths so that they start at the same location.

In addition, in nature animals may slightly deviate from their route, for example by being pushed by a gust of wind (Riley et al., 1999; Wystrach and Schwarz, 2013; Ravi et al., 2016). The larger the deviations are, the smaller the similarities between paths become. Thus it may lead to classifications of such trajectories into different routes. Using partial match measures such as the LCSS distance (see Su et al., 2020 for review) lower the risk of classifying several disturbed trajectories belonging to the same route into different routes.



4.2. Associating Novel Trajectories to Clusters

Understanding the underlying mechanisms driving animals through their environment often involves building a model of the perception-behavior loop and simulating an agent moving in the environment. However, when the originally observed trajectories are inherently variable (e.g., Lobecke et al., 2018), it becomes difficult to assess whether an artificial agent mimics, at least to some extent, the animal's behavior. Furthermore, simulated trajectories might differ between runs (for example due to intrinsic noise in the model, e.g., Bertrand et al., 2015; Le Möel and Wystrach, 2020), which might differ to some extent from the animal's behavior. For a route-following agent, one would be satisfied, if the same number of routes can be derived from the agent's trajectories, as were derived from the animal's trajectories. Our clustering method can be used to address these aspects. First, as we did here, routes can be extracted from a collection of experimentally observed trajectories. Second, the same procedure can be applied on modeled trajectories to assess whether the descriptions of these simulated trajectories also cluster into the same routes as the experimentally determined trajectories. Third, we can map the trajectories of the modeled agent to the cluster of the animal's trajectories (or vice versa). Indeed, our method relies on a classifier (e.g., partition around medoids) using trajectory similarities. By calculating the similarity between an agent's trajectory (or any novel trajectory) and those of an animal, the agent's trajectory becomes a point in the input space of the classifier. Thus, we can assign it to one of the clusters, i.e., one of the routes of the animals. Therefore, we can compare an agent path with the behavior by using our method.



4.3. Clustering Trajectories of Non-route Following Behaviors

We developed our method to derive routes from trajectories. However, we can extend it to trajectories that do not form routes. For example, animals may steer in a given direction to go away from a food source and hide its collected reward (e.g., dung beetle, Dacke et al., 2013), move in a convoluted manners to avoid a predator or chase prey (Boeddeker et al., 2003; Kane and Zamani, 2014; Wardill et al., 2017) or perform complex search behavior when searching for home (Doussot et al., 2020; Schultheiss et al., 2015). In these examples, the animals are not following a route. However, one may be interested in the similarities between trajectories. One may seek to statistically group the runs of multiple dung beetles or the convoluted paths of chasing flies. The series of turns may be more important than the actual position of the animal when comparing such trajectories. Instead of using position based similarity measures (such as DTW and Fréchet), one may use similarity measures based on the direction of movements of the animals (e.g., SPADE, Chen et al., 2007).

Taken together, by combining trajectory similarities and a clustering approach without knowledge of the number of clusters, common path structures between the trajectories of walking, flying or swimming animals can be identified. We illustrated our method by using flights of bumblebees in cluttered terrain and could extract four common routes. Trajectory classification has applications in several fields (Wang et al., 2020) and is an opportunity to identify common strategies in animal behavior, from maintaining a given direction to following routes, or chasing prey.
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Future anthropogenic climate change is predicted to impact sensory-driven behaviors. Building on recent improvements in computational power and tracking technology, we have developed a versatile climate-controlled wind tunnel system, in which to study the effect of climate parameters, including temperature, precipitation, and elevated greenhouse gas levels, on odor-mediated behaviors in insects. To establish a baseline for future studies, we here analyzed the host-seeking behavior of the major malaria vector mosquito, Anopheles gambiae sensu strico, to human odor and carbon dioxide (CO2), under tightly controlled climatic conditions, and isolated from potential background contamination by the presence of an experimenter. When presented with a combination of human foot odor and CO2 (case study I), mosquitoes engaged in faster crosswind flight, spent more time in the filamentous odor plume and targeted the odor source more successfully. In contrast, female An. gambiae s. s. presented with different concentrations of CO2 alone, did not display host-seeking behavior (case study II). These observations support previous findings on the role of human host-associated cues in host seeking and confirm the role of CO2 as a synergist, but not a host-seeking cue on its own. Future studies are aimed at investigating the effect of climate change on odor-mediated behavior in mosquitoes and other insects. Moreover, the system will be used to investigate detection and processing of olfactory information in various behavioral contexts, by providing a fine-scale analysis of flight behavior.

Keywords: Anopheles gambiae, host seeking, 3D tracking, carbon dioxide, olfaction, human odor, behavior


INTRODUCTION

Insects integrate cues of multiple sensory modalities to navigate in their environment in order to locate suitable food sources, mating partners, or oviposition sites (Buehlmann et al., 2020). Understanding insect flight behavior in response to their variable olfactory environment requires an experimental system that is able to mimic the required climatic conditions in a precise manner, while facilitating easy presentation of cues, observation, and analysis of flight behavior in detail. The versatile climate chamber and wind tunnel system presented in this study provides these features, and also facilitates tracking insect flight in 3 dimensions (3D).

Female mosquitoes rely predominantly on odors to find a blood meal, especially at longer distances from the host, while also using visual and thermal cues when nearing the target (Takken and Knols, 1999; Cardé, 2015; Raji and DeGennaro, 2017). Our understanding of host-seeking behavior in mosquitoes has expanded substantially due to advancements in video capture, tracking technology and computational power (Anderson and Perona, 2014; Spitzen and Takken, 2018; Manoukis and Collier, 2019). In the recent past, tracking mosquito behavior has allowed for analyses in greater detail, and provided new levels of understanding in host-seeking strategies, the different sensory cues involved and their integration (Dekker and Cardé, 2011; Lacey and Cardé, 2011; Lacey et al., 2014; McMeniman et al., 2014; van Breugel et al., 2015; Hawkes and Gibson, 2016). Moreover, behavioral responses to mosquito vector control tools that are targeting host-seeking behavior, such as insecticide-treated bed nets and baited traps, have been analyzed to improve their efficiency (Cooperband and Cardé, 2006; Spitzen et al., 2014; Parker et al., 2015, 2017; Angarita-Jaimes et al., 2016; Cribellier et al., 2018, 2020; Amos et al., 2020).

Based on tracking studies and behavioral observations, the long-range flight strategy of female anthropophilic mosquitoes, such as the African malaria vector, Anopheles gambiae sensu lato, and the yellow fever mosquito, Aedes aegypti, in response to human host odors has been characterized as “cast and surge,” in which mosquitoes surge upwind upon contact with an odor-laden filament of air and perform crosswind flight if the trace is lost (Cardé and Willis, 2008; Dekker and Cardé, 2011; Spitzen et al., 2013). At intermediate distances, gated by the encounter of human-emanated carbon dioxide (CO2) and body odors, mosquitoes approach high-contrast visual features (van Breugel et al., 2015; Hawkes and Gibson, 2016) and initiate landing in the presence of short-range host cues, such as body heat and humidity (McMeniman et al., 2014). While these basic characteristics are common to all host-seeking mosquito species, details, such as the relative importance of the respective cues, differ in respect to, e.g., host preference and daily flight activity patterns (Cooperband and Cardé, 2006; Dekker and Cardé, 2011; Spitzen et al., 2013; Hawkes and Gibson, 2016). In An. gambiae, for instance, the role of CO2 in regulating host seeking is controversial. While some studies found CO2 on its own to be a host-seeking cue, eliciting activation, orientation, or both (Healy and Copland, 1995; Lorenz et al., 2013), others did not find such an effect (de Jong and Knols, 1995; Takken et al., 1997; Spitzen et al., 2008). This discrepancy can partially be explained by differences in behavioral assays used and the mode of presentation of CO2, but also contamination by odors from an experimenter cannot be excluded in some studies (Webster et al., 2015).

The improved wind tunnel system presented in this study is equipped with a highly-versatile automated climate-control that allows us to analyse the odor-mediated anemotaxis of An. gambiae sensu stricto in response to human host odors under stable and precise climatic conditions, while reducing background odors to a minimum. The case studies presented here investigate the role of human host cues in An. gambiae s. s. host seeking. Case study I confirms that, when presented with a salient odor, i.e., a combination of human odor and CO2, mosquitoes spend more time in the filamentous odor plume, engage in faster crosswind flight maneuvers and find the source more reliably. Case study II supports previous findings that An. gambiae s. s. likely does not use CO2 on its own as a cue in host seeking.



MATERIALS AND METHODS


Wind-Tunnel System
 
Hardware: Air Treatment, Climate Chamber, Wind Tunnel

Air for the wind-tunnel system was supplied from the ventilation system of the building, pre-filtered, with a low, constant pressure and a temperature of 20–22°C. Airflow within the wind tunnel system was regulated by two circular duct fans (F2: K 315 sileo, F3: KV 315 sileo; Systemair, Skinnskatteberg, Sweden) and a mechanical flow control valve (BDEP-4-025-1; FläktGroup, Herne, Germany), equipped with a modulating damper actuator (LM24A-SR; Belimo, Hinwil, Switzerland) that is adjusted from the control panel of the wind tunnel (Figure 1; F2 and the flow control valve are installed on the feeding line before the filter unit and thus not shown). Incoming air to the wind-tunnel system was pushed through a Camfil filter unit equipped with a pre-filter and 16 activated carbon filters (pre-filter: EcoPleat Eco 3GPF ePM1 55% 592x592x48-F7 ISO; carbon filters: CamCarb CM 2600 GC VOC; ducted filter housing: CamCube HF-CC 1010 1010AZ; Camfil, Stockholm, Sweden) before entering the mixing unit. In the mixing unit, turbulent intermixing of the fresh air from the filter unit and recirculating air from the climate chamber occurs and mixed air is passed into the climate chamber (Figure 1).


[image: Figure 1]
FIGURE 1. Schematic of the wind tunnel system (A) and climate chamber (B). Incoming air (blue) is filtered in the filter unit and passed on to the mixing unit where it is mixed with warm air (red) from the recirculating duct. In the climate chamber, the air is humidified by five humidifiers (three shown) and passed on through an equalizer toward the pre-chamber and flight arena. Both pre-chamber and flight arena can be accessed by doors. Air is removed by the exhaust. F1 and F3 indicate the fans and H1 the heater. F2 and the flow control valve are placed on the feeding line to the wind tunnel system and thus not shown.


Within the climate chamber (stainless steel, l × w × h: 1,760 mm × 2,000 mm × 1,570 mm; Figure 1), air temperature and relative humidity (RH) can be adjusted up to 27.0°C and 70 % RH, respectively, regulated from the control panel. The lower limits of both parameters are determined by the air fed into the wind-tunnel system from the ventilation system of the building. Within the climate chamber, the air is humidified by five humidifiers (B 1/4 ML-1.5; Spraying Systems Co, Wheaton, IL, US) that are placed in the zone of recirculating air in the chamber and fed by the warm water supply of the building (Figure 1B). Connections for cold water, distilled water and pressurized air are installed and can be used for future applications, e.g., to adjust temperature and humidity to values different from those specified above. The climate chamber with its large inner dimensions is constructed such that it both facilitates turbulent intermixing of the air and permits easy servicing, as well as placing of additional equipment for e.g., raising ozone and CO2 background levels. The climate chamber is built in a stainless steel tray (fold height 20 mm) and placed on a waterproofing membrane (Biltema, Helsingborg, Sweden) to protect the floor from humidity. Climate chamber walls are thermally insulated with styrofoam (thickness 40 mm) and covered with a waterproofing membrane. The recirculating duct, which is constantly passing a part of the warm, humidified air from the climate chamber back to the mixing unit (Figure 1B), is equipped with an in-line duct fan (F1: KV 315 sileo; Systemair) and a circular electric duct heater (H1: CV25-60-M; VEAB Heat Tech AB, Hässleholm, Sweden), regulated by the control panel. The climate chamber and the majority of other parts are made from stainless steel, except fans, filter house and heater.

From the climate chamber to the pre-chamber and flight arena, the air passes through an equalizer, in which variations in temperature, humidity, and speed of the airflow are stabilized (6 perforated metal sheet units; 1,000 mm × 600 mm × 600 mm; Figure 1A). The near-laminar airflow entering the pre-chamber and flight arena is stable in temperature, RH, and speed (methods see below; Figure 2). Within the pre-chamber (600 mm × 600 mm × 600 mm), the air passing toward the adjacent flight arena (2,000 mm × 600 mm × 600 mm) can be manipulated, e.g., by introducing an odor source as demonstrated in this study. The bodies of both chambers are made from black polycarbonate (thickness 5 mm), each covered with a transparent, removable acrylic glass roof (thickness 6 mm). The matt surface of the black polycarbonate body of the flight arena limits light reflections. Three doors enable access to the setup with minimal disturbance to the airflow (Figure 1A). The flight arena is closed off on both sides by black mosquito netting (mesh size 1.4 × 1.6 mm, plastic-covered fiberglass; Biltema), set in a black metal frame. Downwind of the wind tunnel, the air exits through an exhaust equipped with an equalizer unit (3 perforated metal sheet units; 400 mm × 610 mm × 610 mm, placed 280 mm away from the wind tunnel. The airspeed of the exhaust is adjusted to ca. 0.5 m s−1, which removes air from both the wind tunnel and the room in which it is placed.


[image: Figure 2]
FIGURE 2. Physical parameters of the wind tunnel system. (A) Schematic of the placement of the Tinytags (open square), for measurement of temperature and relative humidity (RH), and anemometer (filled circle), for wind speed, at the upwind screen. Measurements in cm. The distance to the upwind screen was 15 cm. Temperature (B), RH (C), and air speed (D) over time.




Control Panel: Airspeed, Temperature and Relative Humidity

The coarse setting for the air pressure was pre-set upon installation of the wind tunnel system, where the fans F1, F2, and F3 were individually adjusted via three five-step transformers (Systemair 5000, type RE 1.5, Tuvfassons 7886-009; Tuvfassons, Sigtuna, Sweden; Figure 1). Upon operation of the wind tunnel system, wind speed can be finely regulated by an airflow damper, which is operated from the control panel. With the fixed pre-set adjustment of F1, F2, and F3, the airspeed can then be adjusted to up to 0.35 m s−1.

Temperature and RH are controlled via the control panel, mainly by a custom-programmed PLC unit (Millenium 3 Essential CD20- 12I/8O S 24VDC; Crouzet, Valence, France; Jörgen Lantz Engineering Consulting Firm; Supplementary Figure 1). In short, the control panel is integrating set points, actual values and input of e.g., time of ventilation and drain flushing, limits for set points and actual values, conditions for starting the wind tunnel (e.g., air flow from the building), and the control of the flow adjustment damper.

Upon shutting down the wind tunnel, an ejector drain flush is automatically activated by the control panel that flushes remaining water from the climate chamber using pressurized air. Then, the wind tunnel is dehumidified by running at maximum speed (0.35 m s−1) for 12 h. This removes the remaining water from the climate chamber and humidity from associated parts of the setup.



Quantification of Physical Parameters Within the Flight Arena

Air temperature and RH were quantified using Tinytag Plus 2 TGP-4500 data loggers (Intab, Stenkullen, Sweden), set to 1 Hz sampling rate. Tinytags were arranged in an array (Figure 2A), and placed 15 cm downwind of the upwind screen. Air speed was measured using a ThermoAir3 hot wire anemometer (Schiltknecht Messtechnik AG, Gossau, Switzerland), read every 5 s. The anemometer was placed mid-center in the flight arena, 15 cm downwind of the upwind screen (Figure 2A). Air temperature, RH and speed were recorded for an hour (Figures 2B–D).




Case Studies
 
Mosquitoes

Anopheles gambiae sensu stricto (G3 strain) were reared as previously described (Omondi et al., 2015). Adult mosquitoes were maintained in Bugdorm cages (30 × 30 × 30 cm; MegaView Science, Taichung City, Taiwan) at 27 ± 1°C and 65 ± 5% RH under a 12 h light: 12 h dark regimen, and provided with 10 % sucrose ad libitum. For colony maintenance, adult females were fed on donor sheep blood (Håtunalab, Bro, Sweden) using a membrane feeding system (Hemotek Ltd, Blackburn, UK). For oviposition, wet filter papers were provided, and eggs transferred to larval trays (24 × 18 × 7.5 cm, filled with 2 cm of distilled water) before hatching. Larvae were fed daily on Tetramin Baby fish food (Tetra GmbH, Melle, Germany). For experiments, pupae were collected and transferred to Bugdorm cages (17.5 × 17.5 × 17.5 cm) prior to eclosion. Experiments were conducted with non-blood-fed females at 4 days post-eclosion (4 dpe). Prior to the experiment, females were sugar starved either for 4–16 h without (case study II), or 15–23 h with ad libitum access to water (case study I), and then transferred to individual release cages (10 × 7 cm), at least 30 min before the start of the experiment, using a mouth aspirator. Host-seeking females were pre-selected by placing a gloved hand on the netting of the cage. All experiments were conducted within the peak activity period of host seeking, i.e., the first 4 h of the scotophase (e.g., Jones and Gubbins, 1978).



Flight Arena

Mosquito flight behavior was tracked in the wind tunnel setup described above (Figures 1A, 3A). The wind tunnel was adjusted to 27.0°C and 70% RH, and the wind speed was set to 0.22 m s−1.


[image: Figure 3]
FIGURE 3. Tracking of mosquito flight. (A) Schematic of the flight arena and the setup for video capture of mosquito flight. A mosquito, released at the release point, flies upwind toward the upwind screen. Cameras mounted above the flight arena record the reflection of the infrared light on the body of the mosquito. The filmed volume, i.e., the area covered by both cameras, is shown in gray. Distance measurements are given in cm. Dimensions drawn to scale, apart from measurements marked by †. (B) Schematic of the glass hoop used for turbulent presentation of CO2 (Dekker and Cardé, 2011). Measurements are given in cm. (C) A representative flight trajectory of a single mosquito in response to carbon dioxide and human foot odor, viewed from different angles. Positions within the cylindrical volume of interest (VOI) are indicated in dark red, whereas positions outside the VOI are in light blue. “Bouncing” at the upwind screen is denoted in gray.




Odor Stimuli

Odor stimuli were delivered from two different devices, a glass hoop and a metal sock holder, placed within the pre-chamber of the wind-tunnel system (Figures 3A,B). Carbon dioxide of either ambient or elevated concentrations (1,200, 2,400, 4,800 ppm) were presented using a glass hoop with equidistant holes to create a turbulent plume (Dekker et al., 2001), which was positioned in the pre-chamber, 10 cm upwind of the upwind screen. For elevated CO2 concentrations, pure, pressurized CO2 (Strandmöllen AB, Ljungby, Sweden) was mixed in different proportions with carbon-filtered and humidified ambient air at a resulting flow rate of 1 l min−1. The concentration of the resulting mix was measured using a LI-820 CO2 analyser (LICOR Biosciences, Lincoln, NE, US) and adjusted to the desired concentration ± 50 ppm prior to entering the glass hoop. Compliance to a tolerance interval of ± 200 ppm was confirmed after each trial, as the pressure of the pure CO2 showed minor shifts over time. Addition of CO2 did not detectibly increase the flow rate of the air passing toward the glass hoop (BA-4AR flow meter; Kytola Instruments, Muurame, Finland). For the presentation of human foot odor, socks worn by the experimenter were used, in accordance with previous studies (e.g., Njiru et al., 2006; Verhulst et al., 2011; Robinson et al., 2018). Black cotton socks were worn for 19–21 h prior to the experiment, rolled up and then suspended from a metal hook between the glass hoop and the upwind screen (Figure 3A). Used socks provided an odor source for a maximum of 1 h, and were later washed with a low-perfumed washing detergent (ICA Skona, Solna, Sweden) before reuse. Here, cotton socks were chosen over nylon socks, as the foot odor collected on the former elicited responsiveness from a higher proportion of mosquitoes (enter the filmed volume; data not shown).

Odor stimuli presented in case study I were combinations of either air or 1,200 ppm CO2, and human foot odor or corresponding controls, i.e., no sock and clean sock. The resulting treatment combinations were “air/air,” “CO2/air,” “air/clean sock,” “air/used sock,” and “CO2/used sock.” In case study II, CO2 on its own was presented at either ambient (400 ppm to 445 ppm), or elevated concentrations (1,200, 2,400, 4,800 ppm). The order of treatments was randomized over the experimental day.



Experimental Procedure

For each trial, a release cage containing a single female mosquito was placed at the release point close to the upwind end of the wind tunnel (Figure 3A). Mosquitoes were exposed to the odor stimulus during acclimatization to avoid disturbing the air current and the mosquitoes once the trial started. After an acclimatization period of 2 min, the video recording was started, and the door of the release cage gently opened. Individuals that did not enter the filmed volume of the flight arena (Figure 3A, gray area) within 3 min were removed from further analysis. Flight behavior of responding mosquitoes was recorded until landing on the upwind screen for at least 5 s, or for up to 10 min of continuous flight. After each trial, the response (“flight,” “no flight”) and landing site (“upwind screen,” “other,” “not landing”) was visually observed. Each mosquito was only tested once. Surgical gloves were worn during the experiment, and equipment and mosquitoes were handled with great care to avoid contamination with human odor.



Video Capture and Flight Trajectory Reconstruction

Flight behavior was recorded from above the wind tunnel with two infrared light (IR) sensitive GigE cameras (acA1300-60gm; Basler AG, Puchheim, Germany; Figure 3A), equipped with 4.4–11 mm lenses (LMVZ4411; Kowa, Aichi, Japan), at 60 frames s−1 using Media Recorder 4.0 (Noldus Information Technology, Wageningen, The Netherlands). Illumination was provided by six IR arrays (850 nm; VAR2-i2-1 IR illuminators; VAR-i2-LENS-6025 diffuser lenses; Raytec, Ashington, UK) placed at the downwind end of the flight arena (Figure 3A). Cameras recorded the reflection of the IR light on the wings and body of the mosquito. An LED array, shielded with a paper screen, at the upwind end of the wind tunnel, provided diffuse visible white light of low intensity (<1 lux; LX-101 lux meter; Lutron Electronic Enterprises, Taiwan) for visual orientation of the mosquito. Cameras were mounted at an angle above the wind tunnel, resulting in a coverage of the entire volume of the upwind 120 cm of the wind tunnel. A narrow volume at the top of the upwind screen (triangular intersection, 2.2 × 11.5 cm) was shielded by the frame holding the netting, where mosquitoes could only be observed by one camera and therefore not be tracked in 3D (Figure 3A). Due to the mosquito's protruding abdomen and hind legs while sitting, landing could be tracked except the top 5 cm of the upwind screen (Figures 4E, 5E).


[image: Figure 4]
FIGURE 4. Mosquito flight in response to human host cues. (A) Proportion of mosquitoes responding (dots), i.e., entering the filmed volume within 3 min, for each treatment. Bars denote 95% confidence intervals. Different letters denote significant differences between the treatments (pairwise comparison using “emmeans,” corrected with the Tukey method). Sample sizes are given below the plot. (B) Proportion of flight in volume of interest (VOI), as shown in dark red in the top panel (see Figure 3C). Boxes represent upper and lower quartiles, whiskers denote 1.5 times interquartile distance, crosses outliers, and black horizontal lines the median. Different letters denote significant differences between the treatments (Dunn Kruskal-Wallis pairwise comparison test, Benjamini-Hochberg corrected). (C) Mean speed of crosswind flight for heading angles between 90° to 120° and 240° to 270° (orange area in the top panel). Only mosquitoes that were within the VOI at least once were taken into account. (D) Proportion of mosquitoes landing (black, open) and of mosquitoes landing on the target (green, filled) relative to the total number of responsive mosquitoes. (E) Landing location on the upwind screen. The defined target area (ø 15 cm) is denoted as a dashed circle. Green dots indicate landing positions within, and gray dots positions outside of the target area. Light gray area denotes the “blind spot” where tracking of landing was not possible.



[image: Figure 5]
FIGURE 5. Mosquito flight in response to different concentrations of carbon dioxide. (A) Proportion of mosquitoes responding (dots), i.e., entering the filmed volume within 3 min, for each treatment. “amb.” for ambient. Bars denote 95% confidence intervals. Different letters denote significant differences between the treatments (pairwise comparison using ‘emmeans,' corrected with the Tukey method). Sample sizes are given below the plot. (B) Proportion of flight in volume of interest (VOI), as shown in dark red in the top panel (see Figure 3C). Boxes represent upper and lower quartiles, whiskers denote 1.5 times interquartile distance, crosses outliers, and black horizontal lines the median. Different letters denote significant differences between the treatments (Dunn Kruskal-Wallis pairwise comparison test, Benjamini-Hochberg corrected). (C) Mean speed of crosswind flight for heading angles between 90° to 120° and 240° to 270° (orange area in the top panel). Only mosquitoes that were within the VOI at least once were taken into account. (D) Proportion of mosquitoes landing (black, open) and of mosquitoes landing on target (green, filled) relative to the total number of responsive mosquitoes. In treatments where no mosquitoes landed on target, CIs were infinite and thus not shown. (E) Landing location on the upwind screen. The defined target area (ø 15 cm) is denoted as a dashed circle. Green dots indicate landing positions within, and gray dots positions outside of the target area. Light gray area denotes the “blind spot” where tracking of landing was not possible.


EthoVision XT 14 (Noldus Information Technology) was used to convert the video files from both cameras to 2D position data. For all trials, the data was manually inspected during the process to exclude frames with identification errors. Data was generated without interpolation of missing samples or smoothing of the flight path. The 2D position data was then combined into a 3D flight path using Track3D (Noldus Information Technology; see Spitzen et al., 2013). The system was calibrated using a customized calibration frame and CentroidFinder software (Noldus Information Technology) at the start of the experimental series and if required, i.e., when the daily mean intersection error exceeded a threshold of 2.0 pixels. The following variables were calculated by Track3D and used in subsequent analysis: position in three dimensions (x, y, z), flight speed and heading angle in the vertical plane.



Analysis of Response Rate and Flight Trajectories

A mosquito was considered responsive if it entered the filmed volume within 3 min. Treatment factor effects were tested using a binomial generalized linear model (GLM), followed by a Chi-square test (R, version 3.5.1; R Core Team, 2018). Post-hoc pairwise comparisons of the treatment combinations were tested with the “emmeans” package (R), corrected using the Tukey method.

Obtained 3D trajectory data was processed and analyzed using customized Matlab (version R2020a; MathWorks, Natick, MA, US) and R scripts (version 3.5.1). In a first step, the analysis window of individual trajectories was defined and frames containing outliers were excluded. The start of the analysis window was determined by the mosquito entering the filmed volume, and the end by either the instance of landing or a maximum flight duration of 10 min. Landing was identified by detecting the time point at which the mean speed over 60 frames was below a threshold of 50 mm s−1 for three consecutive seconds, which was also confirmed by visual observation. Landing coordinates were determined for future analysis. In very few cases, the video recording was ended before the above criteria were fulfilled, and in these cases those files were excluded from further analysis. Data points where the mosquito's position was <6 cm away from the upwind screen were excluded from most further analyses since the physical boundary likely affected mosquito flight (“bouncing”).

For analyzing mosquito flight in the volume where it may encounter odor filaments, a volume of interest (VOI) was defined, and approximated to be a cylinder in space, with a diameter of 14 cm, centered within the flight arena (Figure 3C), based on the shape and dimension visualized by smoke paper (Günther Schaidt SAFEX Chemie GmbH, Tangstedt, Germany; Supplementary Figure 2). The proportion of flight in the VOI was calculated by the number of frames with a position within the VOI divided by the total number of frames. A Dunn Kruskal-Wallis multiple comparison post-hoc test with Benjamini-Hochberg correction was used for pairwise comparison between the treatments (“FSA” package; R, version 3.5.1).

Crosswind flight was quantified using the mosquito's heading angle, which is defined as the angle between the x-axis (direction of air movement) and the direction of mosquito flight in the vertical plane, in which 180° corresponds to straight upwind flight. The mean speed of crosswind flight per mosquito was calculated for heading angles between 90° to 120° and 240° to 270°. Only flight trajectories that were within the VOI at least once were considered for analysis. For pairwise comparison between the treatments, a Benjamini-Hochberg corrected Dunn Kruskal-Wallis multiple comparison post-hoc test was used.

Mosquito-landing response was analyzed by determining whether the landing coordinates were within a target area on the upwind screen. The target area was circular, 15 cm in diameter and centered downwind of the odor delivery devices. Treatment factor effect was tested using a binomial GLM and Chi-square test. For multiple pairwise comparisons between the treatments, the “emmeans” package was used (corrected using the Tukey method).





RESULTS


Case Study I—Human Host Cues
 
Response Rate

Of the 447 mosquitoes tested, 161 responded by entering the filmed volume within 3 min after opening the door of the release cages. Human host cues had a significant effect on the number of mosquitoes responding, in which both factors, CO2 and human foot odor, and their interaction, contributed significantly to the observed effect (Chi-square test, p < 0.05). A significantly larger proportion of mosquitoes (ca. 70%) entered the filmed volume when exposed to both CO2 and human foot odor in comparison to all other treatments (p < 0.05; Figure 4A). No significant differences were observed among the other treatments.



Flight in Volume of Interest

When human host cues were present, mosquitoes spent a larger proportion of flight within the VOI (p < 0.05; Figure 4B). The highest proportion of flight within the VOI was elicited by the combination of CO2 and human foot odor, which was significantly different from all other treatments except human foot odor alone (Dunn Kruskal-Wallis test, p < 0.05). Stimulation with either human host cue on its own resulted in a significant increase of flight inside the VOI in comparison to the air control (p < 0.05), whereas there was no difference between air and clean sock control (p = 0.2).



Crosswind Flight

When analyzing the mean speed of mosquito crosswind flight for mosquitoes that were in contact to the VOI at least once (Figure 4C), a significant difference between the combination of both human host cues and air control (Dunn Kruskal-Wallis test, p = 0.01) and clean sock control (p = 0.01) was detected. Mosquitoes that were exposed to both CO2 and human foot odor flew on average 1.3 × faster in comparison to the air control. In addition, there was a tendency of increased crosswind flight frequency for both the human foot odor and the combination of human food odor with CO2 for larger distances to the source when pooling all mosquitoes (Supplementary Figure 3).



Landing and Landing Location

Of the 161 mosquitoes responding to the different treatments, 108 landed within the maximum recording time of 10 min. No significant difference was observed when comparing between treatments (p > 0.05; Figure 4D). However, the proportion of mosquitoes landing on target was significantly affected by the factors CO2 and human foot odor (Chi-square test, p < 0.001), in which 57% of the responsive mosquitoes landed on the target area on the upwind screen in response to CO2 and human foot odor, compared to 3% for the air and 10% for the clean sock control. These differences were significant among treatments (p < 0.01; Figures 4D,E).




Case Study II—Carbon Dioxide
 
Response Rate

In response to the four CO2 treatments, 107 of 235 mosquitoes responded by entering the filmed volume. No significant effect of the concentration of CO2 was observed (GLM, Chi-square test; p = 0.2; Figure 5A).



Flight in Volume of Interest

No effect of the concentration of CO2 on the proportion of flight within the VOI was observed (Kruskal-Wallis test; p = 0.2; Figure 5B). The proportion of flight inside the VOI was generally low, ranging from 0.2% in response to 1,200 ppm to 2.9% for 2,400 ppm CO2.



Crosswind Flight

No significant difference in crosswind flight speed was observed when comparing between the treatments (Kruskal-Wallis test; p = 0.2; Figure 5C). There was no tendency of increased crosswind flight frequency between the treatments (Supplementary Figure 4).



Landing and Landing Location

Within the maximum recording time of 10 min, 77 of 101 mosquitoes landed. No significant difference was observed for the total proportion of mosquitoes landing (GLM, Chi-square test; p = 0.4), nor for the proportion of mosquitoes landing “on target” (p = 0.3; Figures 5D,E).





DISCUSSION

The two case studies presented here demonstrate the functionality of the versatile climate-controlled wind tunnel system as an experimental setup for analyzing insect flight. Moreover, we provide new findings and confirm previous observations on odor-mediated optomotor anemotaxis in An. gambiae s. s. Case study I recapitulates the characteristics of female An. gambiae s. s. host-seeking behavior in response to human host cues, as previously described in other contexts by 3D tracking studies (Spitzen et al., 2013; Hawkes and Gibson, 2016). In the present study, the combination of CO2 and human foot odor elicited a significant increase in mosquito responsiveness and host seeking, as reflected by a higher proportion of flight spent inside the volume where mosquitoes were more likely to encounter odor filaments. Moreover, mosquitoes tended to engage in more and faster crosswind flight in response to human odor cues. In addition, mosquitoes that responded to human host cues were also more prone to localize the odor source. This is consistent with previous studies on host seeking in both An. gambiae (Spitzen et al., 2013; Hawkes and Gibson, 2016) and other vector mosquito species (Cooperband and Cardé, 2006; Dekker and Cardé, 2011; Lacey and Cardé, 2011; van Breugel et al., 2015).

Similar to case study I, case study II took advantage of the isolated, thus human-odor-free, environment of the wind tunnel system and assessed the role of CO2 on its own as a host-seeking cue in An. gambiae s. s. There is currently a lack of consensus about the role of CO2 in eliciting activation, orientation and landing in An. gambiae s. s. females (de Jong and Knols, 1995; Healy and Copland, 1995; Takken et al., 1997; Spitzen et al., 2008; Lorenz et al., 2013; Webster et al., 2015). The concentrations of CO2 used in the present study are within the physiologically dynamic range of the CO2-sensitive neurons (Majeed et al., 2017), yet had no effect on responsiveness, crosswind flight, i.e., a measure for host seeking, or the accuracy of landing on the source. These findings are in accordance with previous observations in large-volume flight arenas, which demonstrate that An. gambiae do not rely on CO2 on its own to locate a human host (de Jong and Knols, 1995; Takken et al., 1997; Spitzen et al., 2008; see however Omondi et al., 2015; Majeed et al., 2017). Carbon dioxide is emitted by all hosts and is thus considered a general cue, signaling the presence of a host, but not necessarily the presence of a human (e.g., Mboera and Takken, 1997). For the highly anthropophilic An. gambiae s. s., CO2 is hypothesized to only contain information in the context of human odor (e.g., Takken and Verhulst, 2013). Such contexts include, e.g., the identification of presently inhabited human dwellings, by integrating CO2 with a persistent human odor-laden background, or, in the presence of multiple breathing hosts, the discrimination of host type, such as in dwellings shared by cattle and humans (Cardé and Willis, 2008; Webster et al., 2015). The latter has also been shown in mosquito species that demonstrate a wider breadth of host preference, in which the general host signal, emitted CO2, can be used as a reliable cue for host localization and discrimination (Dekker and Takken, 1998; Majeed et al., 2017).

The two case studies demonstrate the potential of the climate-controlled wind tunnel system to investigate the odor-mediated behavior of insects, including species that are sensitive to background odor contamination. The ability to finely adjust temperature and humidity, and to maintain these physical parameters at stable levels, provides the means to analyse the impact of future changes in climatic conditions on insect flight behavior. These parameters significantly affect population dynamics and vectorial capacity (Reiter, 2001; Paaijmans et al., 2010; Shapiro et al., 2017; Tang et al., 2018), but their effect on host seeking and other odor-mediated behaviors has until now not received any attention. The wind tunnel system provides additional means to analyse the effect of future anthropogenic changes in climate conditions on odor-mediated behaviors, as it requires no major modification to, for example, elevate background levels of greenhouse gasses, such as CO2 and ozone, as well as other atmospheric pollutants (Agrell et al., 2005; Majeed et al., 2014; Cook et al., 2020). Besides assessing the impact of future climatic changes on mosquito behavior, the future perspective for our laboratory is to evaluate the effectiveness of synthetic blends as attractants in mosquito control and monitoring devices. Moreover, we envision that fine-scale analysis of behavior will provide valuable information on how the peripheral and central olfactory systems detect and integrate olfactory information.
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Animal behaviours are demonstrably governed by sensory stimulation, previous experience and internal states like hunger. With increasing hunger, priorities shift towards foraging and feeding. During foraging, flies are known to employ efficient path integration strategies. However, general long-term activity patterns for both hungry and satiated flies in conditions of foraging remain to be better understood. Similarly, little is known about how permanent contact chemosensory stimulation affects locomotion. To address these questions, we have developed a novel, simplistic fly activity tracking setup—the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of walking behaviour, of several flies in parallel, with all arena surfaces covered by a uniform substrate layer. We tested two constellations of providing food: (i) in single patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI, further assessment, analysis and presentation is done with a custom-built MATLAB analysis framework. We find that starvation history leads to a long-lasting reduction in locomotion, as well as a delayed place preference for food patches which seems to be not driven by immediate hunger motivation.

Keywords: Drosophila, feeding, foraging, place preference, tracking


INTRODUCTION

Flies show hunger-motivated ranging or foraging walks to find food; they also show explorative walks (or local searching behaviour) after food encounter (Dethier, 1957; Bell et al., 1985; Bell, 1990; Corrales-Carvajal et al., 2016; Kim and Dickinson, 2017; Murata et al., 2017; Hughson et al., 2018; Mahishi and Huetteroth, 2019), and much has been achieved in identifying the circuits and dynamics involved in this behaviour (Corfas et al., 2019; Lin et al., 2019; Moreira et al., 2019; Sayin et al., 2019; Seidenbecher et al., 2020; Behbahani et al., 2021). Most of these studies either used hunger-motivated behaviour to focus on the underlying navigational strategy of the flies, or they focussed on exploration–exploitation trade-offs under different motivational settings.

Interestingly, both hedonic and caloric value of the food source can influence explorative walks. The perceived sweetness after ingestion correlates to the duration and path length of explorative walking (Murata et al., 2017), and protein-sated flies venture further away from a yeast patch than protein-deprived flies (Corrales-Carvajal et al., 2016). As satiation levels drop with ongoing post-prandial energy expenditure, finding food is becoming increasingly important. An exploring fly constantly assesses palatability with its tarsal chemosensors, supported by occasional proboscis extension (Mahishi and Huetteroth, 2019). But how much does a fly explore when nutritional homeostasis can be achieved anywhere?

What are the locomotion dynamics independent of food search? To overcome distorting foraging locomotion, driven by constantly changing hunger levels, we provide an arena with omnipresent food. Although these previous studies imply foraging-independent explorative walking in sated flies (Bell et al., 1985; Bell, 1990; Murata et al., 2017), no study exists to our knowledge that studied prolonged intrinsic walking behaviour on a homogenous food substrate, where any locomotion motivated by food-seeking can be ruled out.

It is also not well understood how palatability and satiation affect walking activity beyond the first 3–120 min after food interaction; food-related responses can exert their physiological and behavioural effects on longer timescales. Larval diet composition impacts adult food choice (Davies et al., 2018), and preference of a caloric diet over an equally palatable alternative is only established after several hours (Dus et al., 2011; Stafford et al., 2012). Similarly, a dietary imbalance between palatability and nutritional content is leading to sustained physiological changes much later (Wang et al., 2016, 2017; Musso et al., 2017; Park et al., 2017; May et al., 2019). Apart from few exceptions (Martin, 2004; Meunier et al., 2007), most existing fly locomotion studies either examine short periods at high temporal resolution (Kim and Dickinson, 2017; Murata et al., 2017; Brockmann et al., 2018; Hughson et al., 2018; Landayan et al., 2018), or sample for short recurring time windows to cover longer periods (Green, 1964a,b; Connolly, 1966a; Barwell et al., 2020). Automated circadian studies provide both temporal resolution and timespan, but focus on changes in rhythmicity (Guo et al., 2016; Pegoraro et al., 2020), and rarely include location preferences or locomotion in a nutritional context (Donelson et al., 2012; Dreyer et al., 2019).

We use uninterrupted video tracking (1 Hz) of pre-starved and pre-fed flies to compare locomotion activity and location probability for over 24 h in two conditions: (i) a foraging setting with a single food patch or (ii) with homogenous food substrate on all surfaces. Our assay comes with a data pipeline from recording to analysis utilising custom-written camera recording software, FIJI-based tracking, and MATLAB-based data analysis, various sanity check functions and visualisation.



MATERIALS AND METHODS


Animals

All experiments were performed with 2–5 days old male OregonR flies, maintained at the University of Leipzig at 25°C and 60% humidity on a 14:10 LD cycle (light 7:00 to 21:00) on standard fly food. Pre-starved animals were kept for 22–24 h in empty vials with added wet tissue, pre-fed flies were allowed to feed ad libitum on normal fly food, until placing them in the Panopticon under constant dark conditions, with infrared LED lighting (850 nm) from below (Figure 1A). The average starting time of experiments was 12:00 ± 2 h for foraging experiments or 12:30 ± 3 h for omnipresent food experiments, respectively.
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FIGURE 1. The Panopticon. (A) Entire recording setup for the Panopticon. The whole assay platform has an infrared light source placed in the bottom (grey box with red LEDs), on top of which is a height-adjustable transparent glass platform with a small circular plastic layer acting as diffusor. The arena itself is placed on this platform, positioned precisely in line with the light source, the diffusor and the recording camera fitted on top with a stable holder. (B) Top view of Panopticon, sagittal view below. The arena consists of eight visually separated sectors, as indicated by sector-dividing walls of the 3D printed inset (black), which sits in substrate (blue) inside a Petri dish lid (grey). Another Petri dish lid with a layer of substrate closes the arena. Two configurations are used: (i) food patch arena with 1% agarose as substrate (depicted), which contains individual, centrally located food patch containers (teal blue) filled with 1% agarose with 200 mM sucrose (pastel pink) or (ii) omnipresent food arena without food patches, but 1% agarose with 200 mM sucrose as substrate (not shown).




Panopticon Assay

Cold anesthetised pre-fed and pre-starved male flies were alternately placed in individual sectors of the Panopticon and then transferred onto the imaging rig (Figure 1A), which is located inside a climate chamber (not shown) to maintain constant levels of 60% humidity and a temperature of 25°C. The Panopticon consists of an opaque 3D-printed arena (.stl file; Renkforce RF1000: Material PLA white), which is inserted in the lid of a standard plastic Petri dish (85 mm, Greiner) partially filled with substrate (1% agarose or 1% agarose containing 200 mM sucrose), separating it in eight sectors (5.5 cm2 each) and prohibiting any sensory contact between flies (Figure 1B). During insertion of the plastic arena into still viscous substrate we assured homogenous coating of all inner walls before solidification. For foraging experiments, small Eppendorf lids were used to create individual food containers in each arena (food patches, 0.2 cm2). The 1% agarose with 200 mM sucrose in these food patches was levelled with the surrounding 1% agarose to avoid confounding effects of negative geotaxis on place preference (Robie et al., 2010). The Panopticon was closed with another inverted Petri dish lid with a layer of substrate to provide equal surface texture on all sides (Figure 1B). Data collection was started as soon as all flies regained walking ability (within 1 min of transfer). Images (1024 × 1024 px) were recorded with a camera (Basler acA1300-200uc) at 1 frame/s for 24 h.



Tracking and Analysis

The recorded images were processed in batches using a custom-written, FIJI-based macro. Object information was extracted and saved as csv files. Results were then further handled using a data analysis script written in MATLAB 2018a, which provides various sanity check functions and visualisation. Some plots make use of the “shadedErrorBar” function (Campbell, 2020). Activity and place preference plots are either aligned according to start time (1 h plots) or time of day (24 h plots). To exclude movements caused by camera noise we set a minimum threshold of 2 pixels (0.1 mm) and treated the fly as stationary in this case. Regions of interest for place preference (food patches, same-sized virtual food patches) were created in MATLAB. For further details on analysis and plotting functions see Results and Code, and the Readme file available on Github1. Fast and efficient data handling allows for tracking and analyses of 24 h data (recorded at 1 Hz) in about 4 h on a regular desktop PC (Ryzen 3 3200G, 16 GB RAM, Intel SSD 660p 512GB).



flyPAD

Food sip measurements were performed on the flyPAD (Itskov et al., 2014). Animals were pre-fed or pre-starved as before, anesthetised on ice and then transferred into individual flyPAD chambers with added wet tissue to allow for 24 h recordings. Data analysis took place with a customised version of the MATLAB script for the flyPAD (Itskov et al., 2014).



Statistics

All statistical analyses were conducted using GraphPad Prism 8®. Mann–Whitney U-tests were performed between pre-fed and pre-starved fly values in each bin for activity plots, place preference plots, stop duration plots and flyPAD sip plots. For displacement distribution plots, values for short-distance walks (≤2 mm) and, where applicable, long-distance walks (5–10 mm) of pre-fed and pre-starved flies were binned and compared with a Mann–Whitney U-test. Horizontal lines indicate significance levels between pre-fed and pre-starved flies from a single group, curly braces represent identical significance levels for multiple groups (∗ = significant difference, alpha = 0.05; n.s. = not significant).



RESULTS


Paradigm and Data Pipeline for Image Based Tracking of Fly Locomotion

We designed a novel, low-cost fly activity tracking setup, the Panopticon (Figure 1). Walking behaviour of eight flies can be recorded simultaneously for up to 24 h. All arena walls and the top lid are covered in 1% agarose (with or without 200 mM sucrose) to both provide equal surface texture on all sides and to maintain humidity levels and avoid desiccation, allowing continuous recordings for up to a week (data not shown). Experiments were performed in constant darkness (DD) with IR lighting (850 nm) to provide constant environmental conditions. It has been previously shown that DD is less disruptive to fly activity pattern than constant light (LL) (Green, 1964a).

We devised a complete data pipeline from recording to analysis (Figure 2). Image recording utilises custom-written camera recording software. Subsequently, the recorded images are analysed in batches using a custom-written, FIJI-based macro script. After background subtraction and pre-processing of the images objects are extracted and saved. The results are further analysed in a custom, MATLAB-based data analysis framework. Here, basic quality control and error checking functions are applied. At first, we calculated the rate of missed/failed detections, and experiments with an error rate of more than 5% were excluded from further analysis (Supplementary Figure 1A). In the second step, we did a visual inspection of the walking traces (shown with a temporal colour code) to check for obvious detection errors (Supplementary Figures 1B,C). As the last step we did a sector-wise plotting of particularly long frame-to-frame movement events that could be associated with potentially false-positive detections (Supplementary Figure 1D). After this initial quality control, derived parameters like activity patterns and location probabilities are calculated.
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FIGURE 2. Data handling and workflow. Data acquisition (i) steps with the Panopticon involve preparation of the arena with substrate media, collection and loading of single flies in each of the sectors, followed by recording of fly activity. Further processing and tracking (ii) of recorded data (in JPEG format) is performed on FIJI to further divide collected frames into batches to facilitate efficient image processing and subsequent detection of fly positions. Data analysis (iii) was executed in MATLAB and consisted of pre-processing and quality checks followed by in-depth analysis and plotting of the tracked data (saved and loaded as.csv files).




Pre-starved Flies Appear Sated Within 20–30 min of Food Provision

First we assessed how hunger impacts locomotion activity during food search, and within which timescale the effect subsides after provision of food. Finding a food patch is well studied, and we know from existing data that locomotion increases with starvation level (Connolly, 1966b; Knoppien et al., 2000) and changes its dynamics after food patch encounter (Dethier, 1976; Corrales-Carvajal et al., 2016; Kim and Dickinson, 2017; Murata et al., 2017). Using the Panopticon with food patches, we find that both pre-starved and pre-fed flies exhibit increased activity for about 20–30 min in their new environment, as reported before (Liu et al., 2007; Soibam et al., 2012). This initial increased activity is significantly more pronounced in pre-starved flies during the first 20 min (Figure 3A), which correlates with compensatory overeating as soon as food is available (Carvalho et al., 2005). Flies need to stop to feed, and there is a reciprocal relation between the two behaviours (Mann et al., 2013). Accordingly, there is a significantly higher number of short duration stops (2–7 s) on the food patch during the first 30 min (Figure 3B), which soon shift during the subsequent 30 min towards less frequent, longer breaks (Figure 3C). At this point, both pre-starved and pre-fed flies reach equally low levels of activity (Figure 3A). This pattern is reflected in sip numbers, as independently determined on the flyPAD, which provides a good estimate of actual food intake (Itskov et al., 2014). Pre-starved flies exhibit a significantly higher sip number as pre-fed flies at first, but sip numbers quickly reach equal baseline levels (Figure 3D), suggesting comparable satiation in both initially starved and fed flies. This is in accordance with previous studies that demonstrated reduced activity after a meal (Murphy et al., 2016).


[image: image]

FIGURE 3. Pre-starved flies show higher activity and food intake within first 30 min. (A) Both pre-fed (deep purple) and pre-starved (orange) flies exhibit raised activity on the food patch assay (inset schematic) during the first 20 min, with pre-starved flies showing significantly higher activity than pre-fed flies. Both groups reach baseline levels subsequently. Data is presented as means ± SEM in 5 min bins. N values are given in brackets. (B) Initially starved flies make significantly more stops of 2–7 s duration than pre-fed flies in the first 30 min, (C) but not in the next 30 min on the food patch (inset schematic). (D) Feeding rate, as measured on the flyPAD, indicates that initially starved flies show higher initial sip rate than the pre-fed flies, which quickly decreases to a comparable sip rate. *Indicate significance levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines represent comparison between pre-fed and pre-starved flies from a single group. Curly braces represent identical significance levels across multiple groups. N values are given in brackets.


Taken together, our data shows that during the first 20–30 min pre-starved flies exhibit increased activity, and an increased number of stops lasting between 2 and 7 s. These most likely reflect feeding bouts, which soon disappear when they presumably reach hunger motivation levels comparable to pre-fed flies during the following 30 min.



Starvation State Affects 24 h Walking Activity and Place Preference in a Food Patch Assay

Interestingly, despite the quick compensation in feeding motivation, we observe behavioural differences in locomotion between experimental groups in the long term. Pre-fed flies exhibit a characteristic evening activity peak before the subjective night, which is missing in pre-starved flies (Figure 4A). This elevated evening activity in pre-fed flies is accompanied by a significantly higher number of short-stop events in a representative 30 min time window (Figure 4B). On the morning of the next subjective day, stop rates decreased to comparably low levels in both experimental groups (Figure 4C). To see if this bias during the subjective evening is reflected in speed characteristics, we looked at displacement between frames as a proxy for velocity. Indeed, displacement up to 2 mm/s on the food patch in the same time window (19:00–19:30) is significantly different between pre-fed flies and pre-starved flies (Figure 4D). On the subjective next morning (08:30–09:00), movement has slowed down equally in both groups (Figure 4E). Whereas locomotive differences between initially starved and fed flies disappear on the subjective morning next day, another effect in positional preference becomes more pronounced; initially starved flies increasingly prefer to sit on or close to the food patch (Figure 4F).
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FIGURE 4. Locomotion activity and food patch preference over 24 h on food patch assay. (A) Although initial activity levels on the food patch arena (inset schematic) are comparable, pre-starved flies (orange, n = 34) continued to show significantly decreased activity levels during subjective evening and early night, as compared to pre-fed flies (deep purple, n = 29). Subjective night indicated by grey-shaded area. There was no significant difference in activity across the rest of the 24 h. (B) Pre-fed flies showed significantly increased numbers of stops of shorter duration (2–7 s) on the food patch (inset schematic) than pre-starved flies during peak activity time window of 19:00–19:30, (C) whereas no significant difference in food patch stops was observed between 08:30 and 09:00 the next morning between the two groups. X-axis tick labels indicate duration of stops with a log 2 scale, where 21 = 2–3 s, 22 = 4–7 s, and so on. (D) Short-distance moves (≤2 mm) between both groups were significantly different on the food patch (inset schematic) during the 19:00–19:30 time window, (E) but not during the 08:30–09:00 time window. (F) Pre-starved flies spent significantly higher fractions of time on the food patch (inset schematic) as compared to pre-fed flies, with exception of the initial 3 h. *Indicate significance levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines indicate significance levels between pre-fed and pre-starved flies from a single group. Curly braces represent identical significance levels between pre-fed and pre-starved from multiple groups. N values are given in brackets.


To summarise, we see that satiation state impacts locomotion and place preference across the day. Within the first hour, pre-starved flies are more active than pre-fed flies, and supposedly compensate their caloric deficit in bouts of short stops until they reach food intake homeostasis. Afterwards, pre-starved flies show reduced activity, particularly during the subjective evening as compared to their pre-fed control group. Interestingly—and despite equivalent hunger motivation—initially starved flies develop increased preference for the food patch over 24 h.



Initial Starvation State Impacts Movement Speed Over 24 h

Initially starved flies are equally active as pre-fed flies for the majority of the observed 24 h timespan (Figure 4A), yet they increasingly confine themselves to the spatially restricted food patch (Figure 4F). How does this impact the flies’ velocity? As an approximation, we examined the displacement distribution across 24 h between both experimental groups, and found that short displacements of up to 2 mm in the arena were significantly more common in pre-starved flies than in pre-fed flies (Figure 5A). These short movements are mostly found to be associated with the food patch (movements on patch itself, as well as movements onto patch or off the patch) (Figure 5B), whereas short movements outside the patch occur with equally low frequency in both experimental groups (Figure 5C). This suggests that both pre-starved and pre-fed flies have comparable internal drives to move, and the location bias of pre-starved flies towards the food patch is compensated by a significantly higher number of short distance moves of up to 2 mm.
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FIGURE 5. Initially starved flies show more frequent short walks over 24 h. (A) Higher probability of short-distance walks (≤2 mm) was observed in pre-starved flies (orange) as compared to pre-fed flies (deep purple) within the entire arena (including food patch area, inset schematic) across 24 h. (B) The significantly increased short-distance moves for pre-starved flies than those of pre-fed flies were even more pronounced if analysed on the food patch only (inset schematic). (C) Probability of flies showing 0.1–2 mm movements were not significantly different between the two groups as observed in the area outside of the food patch (inset schematic). *Indicate significance levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines indicate significance levels between pre-fed and pre-starved flies from a single group.




Non-foraging Conditions Reinstate Evening Activity Dynamics in Initially Starved Animals

A hungry fly has an intrinsic drive to forage and reach satiety. But how does such a fly behave when we take away the need for foraging altogether, when hunger can be satiated anytime, anywhere? In such a context, we adjusted the assay by removing the food patches and instead lacing all inner surfaces with a homogenous layer of 1% agarose containing 200 mM sucrose. The raised initial activity in the food patch assay (Figure 3A) was reduced by about 15% on omnipresent food in pre-fed flies (Figure 6A); with about 50% this effect was even more pronounced in pre-starved flies. The stop lengths in the food-covered arena during the first 30 min are comparable between both experimental groups (Figure 6B), but there is a robust dichotomy in average speed distribution: pre-starved flies preferably move at average speeds up to 2 mm/s, wherein pre-fed flies travel substantial and significant distances at average speeds between 5 and 10 mm/s during this time window (Figure 6C).
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FIGURE 6. Omnipresent food provision equalises activity levels but not speed. (A) Pre-starved (orange, n = 27) and pre-fed flies (deep purple, n = 34) show no significant difference in activity across the first hour on a homogenous sucrose-covered arena (inset schematic), (B) together with no significant differences observed for shorter stops (2–7 s). X-axis tick labels indicate duration of stops with a log2 scale, where 21 = 2–3 s, 22 = 4–7 s, and so on. (C) However, pre-starved flies did show higher frequency of short feeding-related walks (0–2 mm) in the first 30 min than those of pre-fed flies, while pre-fed flies showed a significantly higher frequency of longer distance walks (5–10 mm). (D) There was no significant difference observed again in the next 30 min for shorter stops (2–7 s) between the two fly groups, but (E) pre-starved flies continued to show significantly increased short-distance moves as compared to pre-fed flies. (F) Pre-starved flies show comparable activity levels to pre-fed flies, including during the evening activity peak, with no significant difference observed across the remaining 24 h. (G) Location probability within virtual food patch-sized areas revealed no significant difference in place preference across 24 h for both pre-starved and pre-fed flies. (H) During the 19:00–19:30 time window, both groups showed equal number of short stops (2–7 s), with (I) consistent higher frequency of short-distance walks seen in pre-starved flies than pre-fed flies. (J) No significant difference in short stops (2–7s) was observed during the 08:30–09:00 time window the next morning across both groups, (K) and again a significant difference in short-distance moves. Data indicates higher walking speed in pre-fed flies as compared to pre-starved flies. *Indicate significance levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines indicate significance levels between pre-fed and pre-starved flies from a single group. Curly braces represent identical significance levels between pre-fed and pre-starved from multiple groups. N values are given in brackets.


During the subsequent 30 min, when initially starved flies supposedly adjusted their caloric needs, stop lengths remain similar (Figure 6D). But while pre-starved flies still significantly prefer slow movements, the preference becomes less pronounced and the shift towards higher average velocities reaches comparable levels between 5 and 10 mm/s in both groups (Figure 6E). The initially lower activity of pre-starved flies as compared to that of pre-fed flies disappears during the remainder of the 24 h experiment duration. In fact, this even includes a reinstated evening activity peak in pre-starved flies (Figure 6F). A virtual food patch (i.e., an area of equivalent size to the food patch) in the omnipresent food arena shows no place preferences for both groups (Figure 6G). It has been reported that flies kept on sugar increase their locomotion in contrast to flies kept on agarose (Lim et al., 2014). Indeed it appears as if overall levels of activity in the omnipresent sucrose arena are slightly elevated, in comparison with fly activity levels in the food patch arena (Figures 4A, 6F). Taken together, ubiquitous food presentation dampens initial hyperactivity during the first 30 min, and restores the activity peak during subjective evening in pre-starved flies.



Pre-starved Flies Maintain Reduced Walking Speed Across 24 h on Omnipresent Food

As mentioned before, homogenous food distribution in the Panopticon results in equivalent stop dynamics for both pre-starved and pre-fed flies. Indeed, this holds true across all examined time windows (Figures 6B,D,H,J), and is different to what we observed on food patches before (Figures 3B,C, 4B,C). Similar to before however, initially starved flies retain a significant prevalence for slower average speeds up to 2 mm/s (Figures 6C,E,I,K), just as seen in the food patch arena (Figure 5). This reduced average velocity persists even during later time points when both experimental groups likely have comparable satiety levels—and no carbohydrate restrictions whatsoever. Due to its consistency across assays, the reduced average speed seems to be a conserved feature of the flies’ nutritional history. Taken together, this implies a long-lasting effect of starvation experience on average velocity independent of localised food patches.



DISCUSSION

The Panopticon represents a cost-effective, Petri dish-based locomotion assay which we utilise in two configurations: (i) a classical foraging assay with a single food patch and (ii) an omnipresent food configuration, where every surface in the arena is uniformly covered by substrate. In such a scenario, non-foraging explorative walking behaviour is dissociated from foraging-related search and exploration walking; the flies’ tarsal chemosensors are permanently stimulated and every arena location is equally suited to provide food. Due to constant food provision and humidity buffering, longer-lasting recordings (up and beyond 24 h) are possible. This special layout of our locomotion assay will allow for the further dissemination of activity motivations independent of food localisation, i.e., the drive to find a mate (see below), or initial startle response. This previously described increase in activity leads to increased wall walking, is associated with exploring a new environment and usually lasts for only a very short period (Götz and Biesinger, 1985; Liu et al., 2007). By comparing initial activity in the food patch arena (Figure 3A) and omnipresent food conditions (Figure 6A), it turns out that the startle response is indeed minute in comparison to the foraging activity—or that even fed flies abandon enhanced arena exploration when encountering 200 mM sucrose.

One current caveat of our experiments is that the flies are exclusively resupplied with a carbohydrate food source. Although the flies’ intake target is heavily skewed towards carbohydrates (Lee et al., 2008; Tatar et al., 2014) and flies can survive on sucrose alone for weeks (Hassett, 1948), we cannot rule out additional effects by ongoing protein deprivation or possible micronutrient shortage as shown in other insects (Grund-Mueller et al., 2020). Nonetheless, we only tested male flies which exhibit a more pronounced skew towards sugars than females (Ribeiro and Dickson, 2010). Also, female mating status, egg production and oviposition can affect consumption, as well as food and place choice (Joseph et al., 2009; Carvalho-Santos et al., 2020; Hadjieconomou et al., 2020). Conversely, the drive to find a mate might be the main motivation for the evening activity seen in both pre-fed and pre-starved males in the omnipresent food assay (Figure 6F), although courtship is thought to be associated with activity at dawn (De et al., 2013). Usually, mating drive is assessed as an incentive to engage in courtship (Rings and Goodwin, 2019), but to our knowledge the motivation to locate a female hasn’t been studied in flies (Lee and Wu, 2020); our assay would allow isolating such a locomotion incentive by interfering with known mating motivation circuits (Zhang et al., 2019). If mating drive is indeed the main motivation behind the evening activity, it is superseded by the pre-starved flies’ preference to stay close to a food source (Figure 4A).

Surprisingly, we do not see a pronounced morning activity peak in our assay, as would be expected from circadian DAM assay studies (i.e., De et al., 2013). We cannot entirely explain this, although DAM assays provide higher sensitivity to crepuscular activity (Garbe et al., 2015), and the morning peak can be a subtle component of endogenous rhythmicity in DD lab conditions (Silva et al., 2021). A DD paradigm ensures homogenous illumination during tracking and is less disruptive for internal rhythms than constant light (Green, 1964a). But permanent dark lacks a distinct visual and thermal Zeitgeber signal for morning onset, which, at least under seminatural conditions, has been shown to be the major influence on the morning activity peak, with little contribution from internal clock genes (Green et al., 2015). Furthermore, individuals within a fly population can exhibit crepuscular, diurnal and nocturnal activity pattern (Pegoraro et al., 2020); the tested flies might be skewed in their allele distribution for such circadian traits. The activity peak during the subjective evening however is very robust. Remarkably, this activity peak is only missing in one condition: in pre-starved flies on the food patch Panopticon. Pre-starved flies do ingest increased amounts of food immediately after food is resupplied (Figure 3D). Under constant ad libitum food conditions, flies tend to not eat to their maximal capacity but rather maintain an almost empty crop (Edgecomb et al., 1994). A full crop cannot only terminate feeding (Gelperin, 1971; Min et al., 2020; Wang et al., 2020a), but also limit post-prandial explorations (Murata et al., 2017). However, it is doubtful that this “rest-and-digest” effect would last very long after the initial voracious re-feeding period. While pre-fed flies always exhibit the evening activity peak, pre-starved flies—which would be expected to have a ‘rest-and-digest’ period after re-feeding—have a reconstituted evening activity peak under omnipresent food conditions (Figure 6F). This rather indicates a crucial interplay between spatial availability of nutrients and general locomotion motivation across the day to explain the activity differences during the evening in pre-starved flies.

Along with the food patch location preference (Figure 4F), the following picture emerges: it appears that the motivation for pre-starved flies to sit on the food patch could be not to stray too far from a feeding resource, which outcompetes the motivation for raised activity during the subjective evening. As soon as food is omnipresent, the location preference is gone, and evening activity is reinstated. If the place preference in previously starved flies is also triggered by gustatory activation like local food search (Murata et al., 2017) remains to be shown, for example by providing sweet-only food patches (i.e., arabinose) to rule out caloric involvement. It also remains to be shown if ongoing protein deprivation is involved; however, male flies only seek a protein source after days of prolonged protein starvation (Ribeiro and Dickson, 2010).

The second outcome is less obvious, but robust: independent of food patch presence or omnipresent food, the pre-fed flies move faster than pre-starved flies during the course of the experiments (Figures 5, 6C,E,I,K). This could be a delayed effect of the experienced starvation stress; prolonged vibrational stress can lead to reduced voluntary locomotion (Ries et al., 2017). Another possibility could be a long-lasting or even persistent effect on sensory perception (May et al., 2019; Vaziri et al., 2020).

Hunger is known to sensitise certain chemosensory and other circuits at the expense of others, but such sensitisation is usually reversed as soon as the caloric demand is met (Root et al., 2011; Nishimura et al., 2012; Farhan et al., 2013; Inagaki et al., 2014; Longden et al., 2014; Sachse and Beshel, 2016; Grunwald Kadow, 2019; Lin et al., 2019; Wang and Wang, 2019). Habituation and sensitisation of tarsal sugar responses are only described in the minute range (Duerr and Quinn, 1982; Scheiner, 2004; Paranjpe et al., 2012). We assume that such short-lasting effects in each flies’ recurring hunger/feeding/satiety cycles are cancelled out by interindividual variance, since we do not observe any obvious correlation in activity on the binned level of start-synchronised 24 h data (not shown) that would point towards a coordinated habituation effect. Adaptation of taste-sensing neurons can occur over longer time frames, after permanent dietary intervention (May et al., 2019; Wang et al., 2020b). Exposure to high concentration sucrose might either differentially desensitise gustatory sensilla in pre-fed and pre-starved flies, or the prolonged hunger experience in pre-starved flies leads to a permanent sensitisation of gustatory sensilla. In either case, the threshold to sample the substrate would differ between the two experimental groups, resulting in the observed speed differences in the Panopticon.

The most striking phenotype however is the increasing bias of pre-starved flies towards the food patch (Figure 4F). A similar difference in food patch interaction (although not on that timescale) has been observed for sitter and Rover alleles of the foraging gene; while Rover flies show normal local search behaviour after ingestion, sitter flies tend to stay close to the food source (Pereira and Sokolowski, 1993). Flies are aware of the food patch position within the arena. This is different from learning the spatial arrangement pattern of food patches, which houseflies seem to be not capable of (Fromm and Bell, 1987). But flies can remember locations and learn to efficiently navigate towards previously encountered targets like visual landmarks (Neuser et al., 2008), safe spots (Ofstad et al., 2011), or food sources (Navawongse et al., 2016), even in the dark and without usage of visual or olfactory sense (Kim and Dickinson, 2017).

It appears that the biogenic amine serotonin (5-HT) is involved in such place learning (Sitaraman et al., 2008, 2017; Sitaraman and LaFerriere, 2020). Furthermore, different 5-HT subsets or 5-HT regulation interfere with feeding (French et al., 2014; Albin et al., 2015; Liu et al., 2015), food seeking behaviour (He et al., 2020), locomotion (Yellman et al., 1997; Howard et al., 2019), sleep architecture (Liu et al., 2019), and quiescence (Pooryasin and Fiala, 2015). Thus, 5-HT manipulation provides a good candidate for further studies in the Panopticon (Tierney, 2020).

Similarly, octopamine (OA) and tyramine (TA) influence locomotion in a state-dependent manner; starvation shifts the OA/TA balance via TBH expression levels and leads to hunger-induced hyperactivity (Yang et al., 2015; Schützler et al., 2019). A single OA neuron signals satiation and stops food-motivated search (Sayin et al., 2019), and the same neuron can initiate feeding behaviour (Youn et al., 2018). Also, OA influences AKH signalling for diurnal pattern generation (Pauls et al., 2020), and might be affected in pre-starved flies during the blocked evening activity peak. Given the pleiotropic actions of OA, place preference may be impacted as well (Selcho and Pauls, 2019).

The food patch location is most likely associated with food reward in both pre-fed and pre-starved flies, analogous to odour associations with caloric value (Burke and Waddell, 2011; Fujita and Tanimura, 2011; Huetteroth et al., 2015; Ichinose et al., 2015; Musso et al., 2015; Yamagata et al., 2015; Zhang et al., 2015; Das et al., 2016). Such long-lasting, food-related odour memories are stored in the mushroom body (MB) (Krashes and Waddell, 2008), and it is clear that this structure, especially its zonal dopaminergic modulatory innervation, has a central instructional role in motivational foraging and feeding (Tsao et al., 2018; Musso et al., 2019; May et al., 2020).

In the Panopticon experiment, the food-place association could be enforced by two factors in pre-starved flies: First, the absolute amount of food that is ingested by pre-starved flies within the first 30 min is bigger, since they supposedly need to cover their caloric deficit (Figure 3D). Secondly, the lack of caloric signals during starvation renders food-associative MB circuits particularly sensitive to the next food encounter (Hirano and Saitoe, 2013; Hirano et al., 2013, 2016; Plaçais et al., 2017; Wu et al., 2018). For example, starved flies, contrary to fed flies, do not require additional sleep to consolidate a food-odour association (Chouhan et al., 2020). It appears the subjectively perceived value of food is higher in starved flies than in fed flies. So during this time of transition in a new environment, both quantity and perceived quality of the ingested food on the food patch would be higher for pre-starved flies. These two effects together could lead to a strong and long-lasting positive association with the food patch location that influences location decision making beyond nutritional demand for the subsequent 24 h.

However, some issues are not addressed by this explanation. Retrieval of a food-associated memory depends on the motivational incentive of hunger; a starved fly will utilise an olfactory food association to increase its chances to feed, whereas fed flies will only do so after being starved once more (Krashes and Waddell, 2008). Similarly, starved flies would have a higher incentive to retrieve and use their place memory of the food patch location, and indeed, starved flies exhibit a higher and more frequent return rate to a known food patch, be it real or virtual (Corrales-Carvajal et al., 2016; Kim and Dickinson, 2017; Murata et al., 2017; Corfas et al., 2019; Haberkern et al., 2019).

In this regard it is unlikely that the lasting food patch preference in the Panopticon depends on concurrent hunger as the motivational drive to retrieve spatial memory. All other food-related behaviours like activity, stop distribution or sip number are aligned between pre-starved and pre-fed flies within an hour, indicating comparable hunger motivation from then onwards (Figure 3), and protein hunger only starts to influence male food choice much later (Ribeiro and Dickson, 2010). It also needs to be taken into account that food association in the Panopticon is not formed with odours but with place, and associations of spatial features involve the central complex (Liu et al., 2006; Stern et al., 2019); it is equally possible that plastic changes in this structure contribute to the observed location preference. In a place learning assay, the unavoidability of an aversive heat stimulus can boost its reinforcing propensities (Sitaraman and Zars, 2010); it is feasible that the same is the case for unavoidable starvation.

But why does this effect appear to become stronger over time? It might be possible that the pre-starved flies generalise from the starvation experience, and hence seek proximity to the food source. Increasing generalisation of an aversive stimulus over time is not only observed for odour-shock learning and male aggression in flies (König et al., 2017; Kim et al., 2018), but is also a characteristic feature of post-traumatic stress disorders in both animals and humans (Stam, 2007). A similar long-lasting effect has been described for predator-induced oviposition preference (Kacsoh et al., 2015). Here, gravid female flies are exposed to parasitoid wasps for several hours. After removing the wasps, the females choose ethanol-laced patches over control patches for days (fly larvae have a higher ethanol tolerance than wasp larvae). As in the Panopticon, prolonged exposure to a distressing stimulus (hunger or parasitoid wasps) influences a later choice (place preference) even after the stressor was removed. Interestingly, MB inhibition and several memory mutants abolished this long-lasting skew exclusively after wasp removal, but not under immediate threat; it will be interesting to see how MB function and memory genes impact the place preference on the Panopticon.



OUTLOOK

We present here a new paradigm to examine locomotion behaviour and place preference, under foraging conditions (food patch Panopticon) or under permanent chemosensory stimulation (omnipresent food Panopticon). The food patch Panopticon will help to examine the neuronal circuits underlying long-lasting effects of starvation on place preference, and how this apparently non-associative process relates to known associative long-lasting memory function.

In the omnipresent food Panopticon, we will be able to assess the influence of state-modulating or state-mediating substances like biogenic amines or neuropeptides and their receptors on locomotion parameters, without interference of foraging-motivated movement. Being able to do this over prolonged periods will help to discern long-lasting pleiotropic effects of these effectors (Martelli et al., 2017; Dreyer et al., 2019; Nässel et al., 2019; Pauls et al., 2020).
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Motion capture of unrestrained moving animals is a major analytic tool in neuroethology and behavioral physiology. At present, several motion capture methodologies have been developed, all of which have particular limitations regarding experimental application. Whereas marker-based motion capture systems are very robust and easily adjusted to suit different setups, tracked species, or body parts, they cannot be applied in experimental situations where markers obstruct the natural behavior (e.g., when tracking delicate, elastic, and/or sensitive body structures). On the other hand, marker-less motion capture systems typically require setup- and animal-specific adjustments, for example by means of tailored image processing, decision heuristics, and/or machine learning of specific sample data. Among the latter, deep-learning approaches have become very popular because of their applicability to virtually any sample of video data. Nevertheless, concise evaluation of their training requirements has rarely been done, particularly with regard to the transfer of trained networks from one application to another. To address this issue, the present study uses insect locomotion as a showcase example for systematic evaluation of variation and augmentation of the training data. For that, we use artificially generated video sequences with known combinations of observed, real animal postures and randomized body position, orientation, and size. Moreover, we evaluate the generalization ability of networks that have been pre-trained on synthetic videos to video recordings of real walking insects, and estimate the benefit in terms of reduced requirement for manual annotation. We show that tracking performance is affected only little by scaling factors ranging from 0.5 to 1.5. As expected from convolutional networks, the translation of the animal has no effect. On the other hand, we show that sufficient variation of rotation in the training data is essential for performance, and make concise suggestions about how much variation is required. Our results on transfer from synthetic to real videos show that pre-training reduces the amount of necessary manual annotation by about 50%.

Keywords: insect locomotion, machine learning, behavioral analysis, marker-less motion capture, deep neural network, motion tracking


INTRODUCTION

Several insect species are important study organisms in neuroscience, perhaps particularly so in neuroethology. Accordingly, new methodology for the quantitative analysis of insect behavior through motion capture and pose estimation has received a lot of attention. Owing to the computational limitations in image processing, early approaches relied on marker-based tracking algorithms, using kinematic models to constrain the process of pose estimation, particularly if sampling rates were low (Zakotnik et al., 2004) or if multiple body parts had to be tracked (Petrou and Webb, 2012). Additional offline optimization algorithms have been proposed to determine the most likely movement sequence from a series of pose estimates (e.g., Zakotnik and Dürr, 2005). As video hardware improved and sampling rates increased, marker tracking became reliable without an underlying model (Bender et al., 2010). Similarly, current high-end commercial motion capture systems are based on reliable, multi-view marker identification at high frame rates, so as to allow the processing of labeled 3D marker trajectories. Although these systems were developed originally to capture human movement, they can be adapted to track whole-body kinematics of large insects, too, achieving high accuracy and precision even when tracking unrestrained climbing behaviors (Theunissen and Dürr, 2013; Theunissen et al., 2015). Nevertheless, all marker-based approaches are limited by the necessity to equip the animal with an appropriate set of reflective markers. This is not always possible (e.g., on delicate or sensitive structures, for small species, or at locations where markers restrain movement) and requires additional, accurate measurement of all marker positions relative to the body structures that are to be tracked (e.g., particular joints).

With increasing computational power of current image processing systems and the application of machine learning approaches, a number of marker-less motion-capture and pose estimation systems have been developed. They are based on either advanced machine vision techniques such as 3D photogrammetry (Mündermann et al., 2006; Sellers and Hirasaki, 2014) or artificial intelligence applications of deep neural networks (for recent reviews, see Abbas and Masip, 2019; Datta et al., 2019). The latter have been applied very successfully in neuroethology, including insect species as small as Drosophila melanogaster. For example, DeepLabCut (Mathis et al., 2018) applies a deep architecture of stacked convolutional networks with identity short-cuts, the so-called ResNet architecture (He et al., 2016). This ResNet part of the system has been trained on the large image data base ImageNet. For motion capturing of arbitrary animal movement sequences, DeepLabCut appends a stack of de-convolutional layers that can be trained in an end-to-end manner. Other deep neural network applications for motion analysis have focused on particular aspects of this approach, such as iterative improvement by manual re-labeling of pose estimates (Pereira et al., 2019), or exploiting movement information from subsequent frames (Liu et al., 2020). In all of these approaches, the output of the system is a 2D map of probabilities—so-called score maps or confidence maps—that indicate both the most likely position estimate of a particular body part and a measure of confidence of that estimate. With one score map per tracked feature, several features may be tracked in parallel for pose estimation. In fact, training on multiple features in DeepLabCut was shown to improve tracking performance over dedicated single-feature trackers (Mathis et al., 2018).

Essentially, the training procedure of deep neural networks is thought to form an internal representation of the feature to be tracked, albeit one of unknown structure and properties. Provided the training data is appropriate, the representation helps to localize a particular instance of the feature regardless of its position, orientation, size, texture or color. However, since the representation is not an explicit geometric model, it is not clear how well it transfers to new applications with setup- or species-specific properties, particularly if these properties have not been part of the training data.

Of course, it is always possible to re-train neural networks to new data sets, but this requires time-consuming, manual annotation. To further improve transfer of neural-network-based motion capture systems to new experimental paradigms, we propose pre-training on synthetically generated video sequences. We argue that this may be particularly suitable for behavioral experiments on arthropods because their exoskeleton and segmented body structure experience little deformation (other than mammals with wobbly masses and relative movement between skin and skeleton). As a consequence, known animal postures may be rendered for arbitrary experimental setups, species-specific body features and animal sizes. Second, manual annotation can be avoided because labels for joints and segments can be generated in conjunction with the generation of each video frame. Third, video frames can be generated in nearly arbitrary sample sizes, allowing for ample feature variation.

The exploitation of tailored synthetic videos to improve transfer learning across experimental paradigms and species appears to be particularly promising in the study of natural locomotion behavior. This is because natural locomotion involves a wide range of manoeuvers such as turning and climbing, the study of which requires the use of very different experimental setups. Furthermore, the analysis of unrestrained locomotion requires reliable and accurate tracking of posture sequences that involve several parts of the body trunk, along with four, six, or even more limbs, each one comprising multiple joints and segments. Finally, animals not only come in different sizes, they also walk or run at variable speed and orientation, generating a lot more postural variation than may be observed in constrained experimental setups.

Accordingly, the main goal of our study is to determine how synthetic video training data may reduce the amount of manual annotation. To this end, a first objective was to find out what kind of and how much variation of geometric transformations is required in the synthetic training data. Aiming at an application to research on unrestrained insect locomotion, our second objective was to demonstrate the efficiency of pre-training on synthetic data in terms of reduced manual annotation of experimental video data.

Our showcase study uses experimental data of walking and climbing stick insects. We will be focusing on stick insects and, in particular, on the Indian stick insect Carausius morosus in this study. It is an established organism for studying the neural mechanisms and neuroethology of locomotion (Bässler, 1983; Cruse, 1990; Büschges, 2012; Dürr et al., 2018). In drawing from experimental samples of whole-body postures of C. morosus (Theunissen et al., 2014a,b), we generate simplified multi-cylinder models of instant 3D postures, including 22 annotated 3D coordinates of leg, head and thorax joints. Each posture could be transformed by an arbitrary combination of rotation, translation, and scaling. With one posture per frame, we rendered synthetic top-view videos in VGA resolution (640 × 480 pixels) to train DeepLabCut.

We show that tracking performance is affected only little by scaling by factors 0.5–1.5. As expected from convolutional networks, the translation of the animal has no effect. On the other hand, we show that sufficient variation of rotation in the training data is essential for performance, and make concise suggestions about how much variation is required. Finally, we assess the transfer performance of the synthetically pre-trained networks on experimental video data from walking stick insects, showing that pre-training reduces the amount of manual annotation by some 50%.



MATERIALS AND METHODS


Video Recordings of Walking Animals

We used intact adult female stick insects of the species Carausius morosus (de Sinéty, 1901) from an insect culture bred at Bielefeld University. None of the animals had been used in experiments before. Experimental videos were recorded as top views of animals walking on a planar surface in a “gantry setup.” This setup contained a circular arena with a plane, black surface of 1.2 m diameter. A 200 mm high, dark vertical bar was projected to a circular arena otherwise white arena wall allowed for visual landmark orientation and, thus, induce a directed walking behavior. A digital video camera (Basler A602fc) equipped with a zoom lens (Pentax H6Z810) was mounted on a gantry approximately 1.5 m above the arena. The camera was operated at a resolution of 640 × 480 pixels and a frame rate of 50 frames per second. The gantry allowed to track the animal by moving the camera in two directions, parallel to the walking surface. A total of 13 experimental training videos were recorded: one video for each combination of the four cardinal walking directions and three zoom settings (see Supplmentary Table 1 for estimated intrinsic camera parameters and the corresponding spatial resolution in mm per pixel) with the camera held stationary above the center of the arena. Additionally one extra video was recorded in which the animal was tracked by moving the camera to keep the whole animal in view for the entire video. No further digital processing of videos was done. The intrinsic camera parameters were obtained with the camera calibration functions of OpenCV1.

After recording, a set of 286 frames was selected at random and manually annotated using the ImageJ software2. On each one of the selected frames, we annotated the positions of 22 body features: These were the coxa-trochanter, femur-tibia, and tibia-tarsus-joints of all six legs, along with the anterior and/or posterior part of the head, prothorax, mesothorax, and metathorax. Apart from the abdomen, this set of features corresponded to the segment boundaries used to generate the synthetic videos (see Figure 1).
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FIGURE 1. Body geometry of the stick insect and tracked body features. (A) Single rendered posture as used for training, with labels indicating the body features that were to be tracked. The right front, middle and hind legs are labeled R1 to R3. The three features per leg to betracked are shown for the middle leg R2: these are the coxa-trochanter joint (R2 CxTr), the femur-tibia joint (R2 FeTi), and the tibia-tarsus joint (R2 TiTa). (B) Example frame of an experimental video with labels at the tracked body features. The + symbols mark manually annotated positions; circles mark network estimates. Note that trained networks can deal with motion blur. Despite motion blur of the right front leg and left middle leg, leg postures may be estimated well.





Synthetic Videos

Synthetic videos were generated from rendered body postures acquired in whole-body motion capture experiments as described by Theunissen and Dürr, 2013 and stored in an open-access database (Theunissen et al., 2014a,b). Animated single walking trials are available online3 (see samples for the species Carausius morosus and obstacle height 0). From this data base, we used joint angle time courses of the first 1,600 frames of the trial named Animal12_110415_24_33. For each frame, the 3D locations of 22 body features were calculated, using forward kinematics in Matlab (The MathWorks, Natick, MA, USA). The features of the abdomen and the six tarsi of the legs were estimated as described by Dürr and Schilling (2018). Each posture could be subject to scaling, translation and/or rotation so as to control the amount of variation of these parameters in our training data (see below).

Each body segment was visualized as a cylinder with two spheres at the end (Figures 1A, 2A). Individual video frames were generated using Python4: individual frames were rendered using the Vapory library5 and concatenated into video files using the MoviePy library6. All videos were rendered with an image size of 640 × 480 pixels, i.e., the same as in our experimental videos. Rendering transformed the 3D postures of the body into 2D images of a virtual camera with fixed camera projection matrix. The resulting spatial resolution was 0.28 mm/pixel at a scaling factor of 1, resulting in 0.55 or 0.18 mm/pixel for 50% and 150% scaling. The virtual camera had a viewing angle of 69.4° and was placed 200 units above the ground plane with its line of sight pointing downward, i.e., resulting in a top view video of the walking animal. The surface color as well as the radii for the spheres and cylinders were chosen to approximate the appearance of our experimental videos (for details see Supplementary Material.) As all body features were labeled prior to forward kinematics and rendering, each rendered frame came with 22 labeled feature positions that were used as annotations during training.
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FIGURE 2. Rendered frames and score maps of a synthetic video. (A) Top view of a stick insect whose posture was computed from experimental data, using forward kinematics. The body segments are represented as cylinders and the joints as spheres. As no texture was applied, the animal body has a smooth, gray surface. The above frames show the same posture modified by a rotation (90°) and a scaling by 150%. (B) The color labels in the left frame correspond to the score maps of the deep neural network output on the right. The color code shows the confidence score of the network for a particular body feature to be located at that position. In the leftmost case the metathorax position was estimated (red dot in left frame). The middle and right images show score maps for the head (green dot in left frame) and the tibia-tarsus joint of the right front leg (blue dot in left frame), respectively. The axes correspond to the image coordinates in bins of 8 × 8 pixels. The score-map was log-transformed to improve visualization. Since the model outputs probability values in [0, 1], the log transformed values are negative. Warmer colors indicate higher confidence.



The Matlab code for calculating the forward kinematics, as well as the Python code for rendering images (and videos) and generating the corresponding training annotations are available on request from the corresponding author.



Deep Neural Network Models

We used DeepLabCut (Deeplabcut github repository7, 2018) to train and test all deep neural network models of our study. All training was carried out at the compute cluster of center for Cognitive Interaction Technology (CITEC) at Bielefeld University. It provides several GPU cores of the NVidia Tesla (Tesla P-100 and Tesla C2075) and GTX (GTX 1080 Ti) architectures. We used the standard training schedule of DeepLabCut. This schedule comprises training for 1,030,000 iterations with varying learning rates, depending on iteration number. For a detailed description of DeepLabCut see Mathis et al. (2018) and Nath et al. (2019).

The subsequent evaluation was performed on one GTX 1050 graphics card. To illustrate the output of such a trained deep neural network, Figure 2B shows score-maps for three body features, where the brightest point on the map indicates the most likely location estimate.



Experiments


Experiment I: The Relative Effect of Scaling, Translation and Rotation

The first experiment was designed to assess the degree of invariance regarding scaling, translation and/or rotation of the animal posture. To this end, we generated a total of seven synthetic videos with a length of 1,600 frames each. In each video the animal was placed at the origin of the world coordinate system and aligned along the x-axis. The virtual camera position was adjusted to the position of the animal such that it appeared to be held in place at the image center. We then used any combination of the following three basic transformations to render seven videos:


1.  Random translation (T) of the animal in the image plane by [−30, 30]px in either direction;

2.  Random rotation (R) of the camera around its viewing axis by [0, 2π] radians;

3.  Random scaling (S) of all body segment lengths by a factor drawn from the set {0.5, 0.7, 1.0, 1.3, 1.5}.



All transformations were drawn at random for each frame. Apart from the three videos with single types of transformations, further four videos were generated with combinations of two or all three basic transformations:


4.  Video 4 combined random translation with rotation (TR).

5.  Video 5 combined random translation with scaling (TS).

6.  Video 6 combined random rotation with scaling (RS).

7.  Video 7 combined random translation, rotation and scaling (TRS).



For each video frame we then calculated the respective 2D-positions of the annotated body features. Of each synthetic video, we used 200 randomly selected frames (and the corresponding, annotated 2D-positions) to train the neural network model, whereas the total 1,600 frames were used to test the model. The performance of each one of the resulting seven models was evaluated by the accuracy of its position estimates of the 22 body features. The benchmark for evaluation was the TRS Video 7 that contained all possible random combinations of transformation. For each one of the 1,600 frames and each body feature, we calculated the Euclidean distance between the position estimate and the ground truth. The mean of this error measure will be referred to as the average pixel error. Frames for which the model provided position estimates with a confidence rating less than 10% were excluded from the subsequent analysis of the body feature concerned. The latter occurred for frames where the respective body feature was occluded or outside the frame. On average, models which were trained on rotations gave about 30 low-confidence estimates (for 22 features × 1,600 test frames), whereas models which were not trained on rotations gave about 700 low-confidence estimates.



Experiment II: How Much Rotation Is Required?

The second experiment was designed to determine a suitable range of rotational variation in the training data. To do so, we rendered eight artificial videos with 800 frames each (corresponding to the first 800 frames of animal pose data). Other than in Experiment I, we kept the position of the virtual camera fixed and only varied its rotation in discrete steps, with one fixed rotation for each video. Training videos were then generated with a random selection of 200 frames drawn from different subsets of these eight videos. Each of these was used to train a separate neural network model. Training Video 1 had no transformation applied. For training Videos 2—8, we used an increasing number of discrete rotations of the virtual camera with increments of 45°. As a result, Video 2 had frames rotated by 0 or 45°, Video 3 had frames rotated by 0, 45° or 90°, and so on. As before, performance was evaluated on the TRS Video 7 of Experiment I, i.e., a video that included rotation angles drawn from a continuous set rather than from a discrete set as used for training. The average pixel error was calculated as in Experiment I.



Experiment III: Transfer From Synthetic to Real Videos

The third experiment was designed to evaluate the potential of using synthetically generated video material to reduce the amount of manual annotation of experimental video material. For this experiment, we trained two distinct sets of neural networks: A first set of models used the default networks of DeepLabCut, i.e., ones that had been pre-trained on ImageNet only. This set of models will be referred to as Experimental-only models, and will be used to assess training performance on regular experimental video material. A second set of models was pre-trained on 8,000 randomly selected frames from a synthetic video containing any combination of eight rotations in discrete increments of 45° (0°–315°) and five scaling factors (0.5, 0.7, 1.0, 1.3, 1.5). Then, it was trained additionally in exactly the same way as the Experimental-only models. This set of models will be referred to as Synthetic+Experimental models, and will be used to assess the benefit of pre-training with synthetic video material.

For the training part on experimental data, we used our videos of real walking animals. The amount of training data was varied in four training fractions: 10, 20, 50 and 80%. The training fraction is the fraction of the total 286 experimental video frames that was used to train the models. The remaining frames (i.e., 1-training fraction) were used as test frames to evaluate the performance of the network. Five models were trained for each training fraction, with each set of training frames drawn at random. As in Experiments I and II, the average pixel error was calculated for the position estimates of 22 body features.





RESULTS

With our overall goal being to improve marker-less motion capture by use of synthetic video material, we expected the following four aspects of the video generation process to be of importance: (i) the availability of a suitable sample of natural animal postures; (ii) the quality of the rendered image; (iii) the correct choice of image view and scaling; and (iv) sufficient combination and variation of geometric transformations of the rendered animal. Owing to the availability of a database on whole-body kinematics of walking and climbing stick insects (Theunissen and Dürr, 2013; Theunissen et al., 2014a,b, 2015) and the relevance of stick insects as a study organism in locomotion research (e.g., Bidaye et al., 2018; Dürr et al., 2018) we decided to use stick insect data to generate synthetic data. Among the three stick insect species modeled by Theunissen et al. (2014b), the Indian stick insect Carausius morosus (de Sinéty, 1901) has the most plain body geometry, allowing us to render postures with a fair degree of realism despite the simplicity of a multi-cylinder-model (see Figures 1A, 2A). Finally, given the availability of high-quality and easy-to-use camera calibration toolkits (e.g., the Matlab camera calibration toolkit) it is reasonably simple to measure distance, orientation and optical projection properties of arbitrary digital camera setups. Accordingly, we decided to base all of our experimental analyses of this study on top views of the Indian stick insect C. morosus, assuming that most if not all results should easily transfer to: (i) other data sets; and (ii) any other single-camera setup. Instead of addressing (iii) the impact of rendering procedures with different degree of realism of the entire video frame, we decided to focus on the body geometry of the animal model. Thus, the original problem was narrowed down to aspect (iv), i.e., the question of which kind of combinations and how much variation of geometric transformations were needed to be contained in a synthetic training video in order to achieve optimal motion capture performance.


Random Transformations

In order to judge the relative significance of geometric transformations for motion capture performance, we tested different combinations of linear translation, rotation of the camera and scaling of the body. To do so, a total of seven training videos were generated, using random transformations with parameters drawn from the ranges given in “Experiments” section. The corresponding seven DeepLabCut models were evaluated against a test video that comprised all three transformations, again with parameters drawn from the same ranges as the training videos. Figure 3 shows the mean Euclidean distances between the position estimates of the network and the ground truth. Each box plot comprises the errors from all 1,600 frames of the test video and all 22 tracked body features. Clearly, models that were trained on data with variable rotation outperformed the ones without rotation, with the median error dropping from approximately 40 pixels to 3. The highest median error of the models including rotations was 2 pixels and was found for the “R” model, which was trained on rotations only. In metric units, an error of 2 pixels corresponded to 0.36–1.1 mm, depending on the scaling factor of the random transformations. The lowest median error of the models which were trained without variation of rotation was 40 pixels and was found for the “TS” model which was trained on a video with variation of translation only. Furthermore, the small differences among the four models that were trained with variable rotation indicated that models trained with variable scaling performed better than those that were trained without. Translation appeared to have no impact on the performance.
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FIGURE 3. Rotation matters. Average pixel error of seven models that were trained with different combinations of scaling (S), rotation (R), and translation (T). Models that were trained with variable rotation of the posture (left: R, rotation with scaling (RS), translation, rotation and scaling (TRS), TR) outperform models that were trained with one posture orientation only (right: S, T, TS). Note that, for the sake of clarity, outliers beyond 1.5 times the interquartile range are not shown. As yet, all data points were included in any and all statistical computations. The scale factor converting pixels to mm was in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of the random transformation.



To test for statistical significance of these observations, we reduced the distributions of error-per frame shown in Figure 3 (n = 35,200) to distributions of median errors per body feature (N = 22). Since we had corresponding error measures for each one of the seven models, we used a Friedman test to confirm that at least one median value significantly differed from the others (statistic: 119.3; p < 0.001). To reveal further performance differences among models we ran post hoc pair-wise comparisons using Wilcoxon’s test for matched pairs. The results are shown in Table 1. Performance differences among models proved to be statistically significant for all but four model pairs: These include all comparisons among models trained without variation in rotation (S, T, and TS) and the comparison of the models R and TR. We conclude that models which were trained on different animal sizes in addition to variable rotation showed significantly better performance than models which were only trained with variable rotation and/or translation. Translation, on the other hand, had hardly any impact on performance as variable translation resulted in a slight improvement only if added to variation of rotation and scaling (TRS vs. RS). When comparing the error distributions for different body features, points which are close to the main body axis (e.g., segment borders of the thorax, leg coxae) clearly had smaller errors than those located further away (e.g., femur-tibia joints and tarsi). The example shown in Figure 4 is the result of the RS model, i.e., the network trained with variable rotation and scaling. The color code emphasizes this apparent improvement of tracking performance from distal tarsi (blue), to intermediate femur-tibia joints (green), to proximal groups (red and yellow). The latter were tracked very consistently and with high accuracy and precision. To illustrate the striking improvement whenever the training data varied in rotation, Supplmentary Figure 1 shows the same kind of graph as Figure 4 but for the TS model, i.e., the model trained with variable translation and scaling. Note how the error variance is about one order of magnitude larger than that of the RS model shown in Figure 4, irrespective of body feature. Moreover, the clear proximal-to-distal ordering of error magnitude found for the RS model is lost for the TS model. We conclude that optimal motion capture performance requires sufficient variation of rotation in the training data.

TABLE 1. p-values of pairwise Wilcoxon tests for the seven models of experiment I.
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FIGURE 4. Proximal body parts have lower errors than distal ones. Distributions show the pixel errors for 22 individual body features (n = 1,600 per distribution). The error is the Euclidean distance between the ground truth and the network prediction. This particular model has been trained on a video which included random rotations and scaling (RS). Distributions were sorted from top to bottom by increasing standard deviation. The color code groups body parts according to a proximal-to-distal gradient (red: thorax and head; orange: coxae; green: tibiae; blue: tarsi). The scale factor converting pixels to mm was in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of the random transformation.



To illustrate the consistency of tracking across an entire synthetic video, Figure 5 shows the error for each frame. The tracking is not uniformly good as there appear to be more “difficult” episodes around frames 850 and 1,500. The top inserts to Figure 5 show some selected frames from these regions. For example, frames 861 and 862 show large tracking errors of the right middle leg tarsus (blue circles). Typically this seems to happen when the tarsus is occluded by the tibia or when the right middle leg crosses the right hind leg. In this case the occlusion also has a detrimental effect on the tracking.
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FIGURE 5. Test error is equally low for most frames. Median pixel errors of all body features were included. The model was trained on video comprising frames with five scaling factors and eight rotations (RS, as in Figure 4). The pixel error varies around a common mean for most video–episodes with three peak regions beyond 3.0 at frames 670, 800–900 and 1,500. These peaks correspond to “difficult postures.” The dashed red line represents the median and the two yellow lines are the first and third quartiles. The black line represents the 1.5 times the interquartile range. The top row shows selected frames from difficult regions. Colored points label the features tracked.





Significance of Rotation by 180°

Given the conclusion of the previous section, we wanted to find out how much variation of rotation is sufficient. To this end, we ran a second experiment in which eight models were trained on videos that differed in the amount of variation in rotation angles. Instead of random variations, we added one further rotation angle step by step, with increments of 45°. As a result, we obtained eight models, where the first had been trained on animal postures with a single body orientation, the second had been trained on postures with two orientations (0° or 45° rotation), the third had been trained on postures with three orientations (0°, 45°, 90°) and so on. Figure 6 shows that the median error decreased with increasing number of rotation angles added. The error dropped most strongly across the first four models (0°–135° rotation). Furthermore, we found that a major drop in the error range occurs across the first six models (0°–225° rotation) with the addition of the fifth rotation angle, i.e., including 180° rotation (opposite walking directions), marking the steepest decrease in error range. Here the median error dropped from 42 pixels (no rotation) to 3 pixels (corresponding to 0.54–1.65 mm, depending on the scaling factor of the random transformations), and the inter-quartile range of the error dropped from 69 (no rotation) to 37. Given the bilateral symmetry of the animal, the significance of having at least 180° of rotation range suggests that beyond this point it may be easier to tell the front end from the rear end of the animal.
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FIGURE 6. Rotation by at least 180° greatly improves performance. Average pixel error for eight models with varying degree of rotation. Rotations were applied in steps of 45°, with model number indicating the cumulative number of rotation steps. Model 5 is the first model that was trained on postures with a rotation range larger than 180°. Models that were trained on videos with six or more rotation steps have the least error. Note that, for the sake of clarity, outliers are not shown. As yet, all data points were included in any and all statistical computations. The scale factor converting pixels to mm was in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of the random transformation.





Transfer to Experimental Data

Next, we tested how well training on synthetic video data transferred to normal laboratory video material. Real animal video material differs in many ways from our synthetically created videos, for example with regard to noise, motion blur, lens distortion and overall appearance of the animal. Our experimental video comprised 286 manually labeled frames taken from digital videos of a stick insect walking on a horizontal surface in one of eight directions (~45° rotation steps). The image size of the animal was varied by zooming in or out. In this third experiment, a first set of Experimental-only models was trained from scratch. For comparison, a set of Synthetic+Experimental models was trained using the most advanced model from Experiment I (Figure 3) to start with, i.e., a model trained on postures with variable rotation and scaling. Further, to assess the amount of additional training with manually annotated video material, the fraction of frames used for training was varied in four steps. For example, a training fraction of 20% means that 20% of the 286 annotated video frames were used for training, while the remaining 80% were used for testing. Finally, as the training fraction was drawn at random, a total of 40 models was trained, with five instances per combination of “model type” × “training fraction”. Figure 7 shows representative output examples from four models, two Experimental-only models and two Synthetic+Experimental models, where each of these pairs (columns in Figure 7) shows one example for a model trained with a training fraction of 80% (top row in Figure 7) and another trained with a training fraction of 10% (bottom row in Figure 7). The results indicate that the performance of both the Experimental-only and Synthetic+Experimental models are equally good when trained with a training fraction of 80%. The smaller the training fraction, the more frequent become the low-confidence position estimates and mis-location errors.
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FIGURE 7. Synthetic training data can lead to good model performance. Selected frames illustrate performance of model variants that do (Synthetic + Experimental, right panels) or do not (Experimental-only, left panels) include artificially generated frames, and differ in the fraction of training data (top panel: 80% of frames were annotated for training; bottom panel: Only 10% of frames were annotated). Circles mark the position of high-confidence estimates of the network, crosses mark low confidence estimates; + symbols mark manually annotated positions. (A) The Experimental-only model with a training fraction of 80% achieved good performance (no mis-locations). (B) The Synthetic + Experimental model with 80% training fraction achieved similarly good performance as (A). (C) The Experimental-only model with 10% training fraction showed some errors and low-confidence estimates. (D) The Synthetic + Experimental model with 10% training fraction shows several errors.



We assessed whether we could achieve an error margin of ≤4 px and determine how much training data variation was needed to reach this error margin. The 4 px margin was established because on the lower zoom settings this corresponds to about 2.8 mm. As the adult females typically measure about 80 mm (Theunissen et al., 2015), this seemed reasonable. The lower zoom setting was selected as benchmark because here deviations and tracking inaccuracies were larger compared to the size of the insect than on higher zoom settings.

Figure 8 summarizes the performance for all 40 models (five per model type and training fraction). Both the Experimental-only and the Synthetic+Experimental models improved with increasing training fraction. Both kinds of model performed similarly well when using a training fraction of 80%, while the Experimental-only models performed considerably worse than the Synthetic+Experimental models when trained with a training fraction of only 10%. For both model types, training errors were very similar, and generally very low, irrespective of training fraction. Nevertheless median test errors were always significantly lower for Synthetic+Experimental models (e.g., Training fraction 10%; Wilcoxon’s U-test on rank sums: U = 2.0, n1 = 5, n2 = 5, p = 0.0184), except for the training fraction of 80%. At this training fraction median errors of both the Experimental-only and Synthetic+Experimental models converged to a similar level of performance and median pixel errors are the same for both Experimental-only and Synthetic+Experimental models (three pixels, corresponding to 0.6–2.3 mm, depending on the zoom settings of the camera). Only for this highest training fraction did the median error of the Experimental-only models fall into the 95% confidence bands of the Synthetic+Experimental model errors. Moreover, the confidence cut-off appeared to improve the performance of all models slightly. However, this difference tuned out to be not significant, irrespective of model type (U = 169, n1 = 20, n2 = 20, p = 0.205 for pooled Experimental-only models; U = 178.5, n1 = 20, n2 = 20, p = 0.285 for pooled Synthetic+Experimental models). Finally, the median error of the Synthetic+Experimental models was <3 pixels with a training fraction as small as 50%. We conclude that the use of synthetic videos for pre-training of deep neural networks can reduce the amount of manual annotation by at least 37.5% (3/8) without a decrement in performance.
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FIGURE 8. Comparative evaluation of Experimental-only and Synthetic + Experimental models. Individual points represent different networks. Average pixel errors are plotted against the fraction of training frames in the video. Training errors (lower lines) are nearly equal for all networks. Performance of the Synthetic + Experimental models (red and yellow lines with confidence bands) was better than that of models that were trained on experimental data only (blue lines with error bars). Estimates with and without a cut-off threshold of 10 reveal a small improvement if the cut-off is applied, though this difference is not statistically significant. Each dot represents one data point. The scale factor converting pixels to mm was in the range of 0.202–0.771 mm/pixel, depending on the zoom setting of the camera (see Supplementary Table 1).






DISCUSSION


Requirements on Feature Variation

While deep neural networks have been repeatedly shown to achieve very good performance in marker-less motion capture (Datta et al., 2019), the choice of appropriate training data remains crucial for their performance. Mathis et al. (2018) showed that accuracy of DeepLabCut mainly depends on two factors: the number of frames used for training and the number of body parts to be tracked. They reported that 200 frames are sufficient to reach a good performance level. Figures 3, 6 confirm this. As yet, both of these figures also prove that the amount of parameter variation has a profound impact on performance, particularly the variation of rotation. As expected for a fully convolutional neural network, translation has no impact on the performance of DeepLabCut. In contrast, scaling has a small but statistically significant effect (Figure 3 and Table 1), at least within the tested range of 0.5× to 1.5×. It is possible that larger deviations in size will affect the performance more. In experiments on insects, the tested scaling range should cover samples from three to five successive developmental stages. For example, in stick insects of the species Carausius morosus, a threefold increase in size would cover the size difference between larval Stages 1 and 3 or between Stages 3 and 7 (assuming size data of Ling Roth, 1916). The scale variation in the experimental data set should exceed this range, synthetic generation of training data would allow for arbitrary size variation during training.

Clearly the main problem of DeepLabCut concerns image rotations, which have to be learnt entirely from rotational variation in the training data. Although rotation equivariance has been implemented in neural network applications (e.g., Cohen and Welling, 2016; Chidester et al., 2018), it is not a property of ResNet (He et al., 2016) nor of systems that are based on it, including DeepLabCut. As a result, if rotational variation in the training data was insufficient, the net will perform poorly during the tracking task if it encounters small deviations in body orientation.

Figure 6 shows that five rotations (0–180°) are sufficient for good generalization in our motion tracking showcase. This makes sense because including the +180° rotation allows the network to tell the rear from the front end of a bilaterally symmetric animal. Together with only three intermediate rotational steps, the system can successfully track animals which are oriented along angles that the network never experienced during training. Data variation beyond 180° rotation further reduced the tracking error, but to a much smaller degree. Although our results suggest that five rotations in steps of 45° are enough to generalise across all rotations, the actual number of rotational steps in the training data may not be crucial. Since the average error dropped markedly only after the network had been trained on the frameset including the 180° rotation, it may be the range that is important, rather than the number of steps comprised in it. At present, we cannot distinguish between these two possibilities.



Benefits and Limits of Pre-training With Synthetic Data

As shown by Figure 5, tracking accuracy is persistently accurate for long test sequences. The inserts to Figure 5 also show that if performance falls short of the average accuracy, the underlying causes may not be clear. This may be because at least two important properties of the deep neural network approach have both advantages and disadvantages. For example, the ability to learn features of 2D projections of 3D postures is a major strength of deep convolutional networks. As yet this may cause problems if 2D projections involve occlusions (e.g., see Figure 9) because the learnt feature may be masked by a feature of the occluding body part. Thus, if occlusions are frequent, they may either have to be learnt as a separate feature as such, or else be disambiguated by additional camera views. Combining multiple views has been proposed in tracking systems such as DeepFly3D (Günel et al., 2019) or Anipose (Karashchuk et al., 2020). With multiple camera views, the utility of synthetic video data should be potentiated by the number of cameras, n, as each posture of the database is rendered (and automatically annotated) n times, thus reducing the amount of manual labeling by (n − 1)×F for F training frames.
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FIGURE 9. Occlusion of body parts. Here the tarsus of the left hind leg (dark green cross) is occluded by the hind leg femur. The network mistakes the tarsus of the middle leg (light green cross) as the tarsus of the hind leg (dark green circle). The ground truth is marked by crosses, whereas circles mark network estimates.



Another property that comes with benefits and problems alike is the use of score maps with probability estimates. Whereas this has obvious advantages in case of motion blurring (e.g., see right front leg R1 in Figure 1B), peak confidence values may not always indicate the correct location of a feature. In case of motion blur, a feature may almost vanish but still be identified by means of its most likely position estimate. Occasionally, however, juxtaposed features may lead to score maps with multiple local maxima of the confidence rating. In such cases, the global maximum need not yield the most accurate estimate. We argue that in both of these cases the use of synthetic training data may improve performance on experimental data, for example if motion blur reduces manual annotation accuracy, or if rare “difficult postures” require particularly large training data sets that are easy to synthesise but difficult to obtain through manual annotation.

We had expected the Synthetic+Experimental models to transfer features learned from synthetic data to real video frames, such that experimental analysis could be run after additional training with very small sets, e.g., 20–30 video frames. This was not quite the case, despite the fact that Synthetic+Experimental models performed significantly better than Experimental-only models when trained with low frame numbers (see Figure 8; training fractions of 10–50%). As shown in Figure 7D, a Synthetic+Experimental model that was trained with additional 28 experimental video frames shows considerable errors. For the corresponding Experimental-only model in Figure 7C this was expected because 28 training frames were far less than the minimal requirement on training data as determined by Mathis et al. (2018).

Nevertheless, Figure 8 clearly shows that pre-training on synthetic data reduces the amount of manually annotated experimental training data by some 50%, thus effectively halving human effort. Despite training errors were equally low for all models, Synthetic+Experimental models outperformed all Experimental-only models that were trained with <150 frames (e.g., training fraction 50%). Since generating and annotating synthetic frames is done automatically and considerably faster than manual labeling, the reduction of human effort and work time is considerable.

It should be noted that our synthetic data used a rather simplistic multi-cylinder model, suggesting that increased realism of the synthetic data may lead to further improvement. In applications for automated human pose estimation, more complex synthetic data sets have been used (e.g., Varol et al., 2017). Our results show that pose estimation applications on single insect species can achieve good performance with much simpler body shape models. We attribute this to much smaller inter-individual variation of body shape in insects than in humans. Future work will need to test whether and how body shape models have to become more sophisticated if single trained networks were to be applied to multiple species and both sexes. In classification problems involving composite images of multiple, geometrically simple objects, synthetic training images may not need to be rendered at all, but rather be generated by image processing. For example, Toda et al. (2020) successfully applied a technique called domain randomization to create synthetic images of grains with a high degree of variation. While such approaches nicely illustrate the power of modern image processing techniques, it is unlikely that deep learning applications to motion capture and/or pose estimation of animals could be trained successfully on synthetic images generated without an underlying body model.

In summary, we have presented a show-case example of unrestrained walking stick insects, showing that training with synthetic data can effectively reduce the amount of manual data labeling for DeepLabCut, a deep convolutional neural network for motion tracking and pose estimation. Provided that the synthetic training data includes sufficient variation of rotation, even a simple multi-cylinder representation of the model animal can reduce the amount of manual annotation by some 50%.
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As a canary in a coalmine warns of dwindling breathable air, the honeybee can indicate the health of an ecosystem. Honeybees are the most important pollinators of fruit-bearing flowers, and share similar ecological niches with many other pollinators; therefore, the health of a honeybee colony can reflect the conditions of a whole ecosystem. The health of a colony may be mirrored in social signals that bees exchange during their sophisticated body movements such as the waggle dance. To observe these changes, we developed an automatic system that records and quantifies social signals under normal beekeeping conditions. Here, we describe the system and report representative cases of normal social behavior in honeybees. Our approach utilizes the fact that honeybee bodies are electrically charged by friction during flight and inside the colony, and thus they emanate characteristic electrostatic fields when they move their bodies. These signals, together with physical measurements inside and outside the colony (temperature, humidity, weight of the hive, and activity at the hive entrance) will allow quantification of normal and detrimental conditions of the whole colony. The information provided instructs how to setup the recording device, how to install it in a normal bee colony, and how to interpret its data.

Keywords: honey bee (Apis mellifera L.), social, electrostatic field, behavior, datalogger


INTRODUCTION

A honeybee colony is a well-organized unit of social life that is composed of highly interacting groups of single organisms with different duties, age-dependent behavioral routines, and experience. Many of the messages communicated between these organisms are accessible by electric-field measurements. These are electrostatic signals that workers produce due to their body movements, e.g., their dances, shivering to control temperature, fanning behavior to regulate hive humidity and CO2, “stop” and “whooping” signals, and overall motor activities characteristic of arousal states, preparation for play flights of young bees, and preparation for swarming. Dances are particularly rich in information because they encode specific meaning in a symbolic form (von Frisch, 1967). Rhythmic movements of bee bodies, in whole or in part (e.g., the abdomen and the wings), are technically easily observable because they produce characteristic patterns of electrostatic fields (ESF; Greggers et al., 2013). This is because the wax-covered body surface of bees charge up electrostatically due to friction between body parts, between animals inside of the crowded hive, and between the air and body during flight. We used these signals to characterize and quantify the information flow inside the hive. Here we describe how we measured the relevant signals under undisturbed bee keeping conditions, how we related these electrostatic signals to body movements of single bees, and how we shall use these signals to identify biologically meaningful states of the colony.

ESF data collected from whole colonies are relevant in many respects. Honeybees are the most efficient pollinators of economically and environmentally highly relevant plants (Klein et al., 2007; Potts et al., 2016). Dance activities tightly mirror foraging activities across an area of some 5 km radius around a hive (von Frisch, 1967). Since a dance codes the outbound component of a flight to the pollinated flowers or other food sources, available information potentially allows spatial tracking of pollination activities (Steffan-Dewenter and Kuhn, 2003; Seeley, 2011; Couvillon et al., 2014). These efforts, however, provided rather limited information because of the experimental challenges to decode the large number of dances necessary for ecological studies. ESF measurements allow for a quantification of colony-related pollination activity and its dynamics over time and space. The health of honeybee colonies, and thus their pollination efficiency depends on multiple components including season, environmental conditions, bee keeping activities, infections by parasites (viruses, bacteria, fungi, mites), and exposure of/to insecticides (Chauzat et al., 2010; Moritz et al., 2010; Morawetz et al., 2019). The latter conditions are particularly relevant in modern agricultures since many insecticides (e.g., neonicotinoids) act directly on the nervous system of honeybees (Eiri and Nieh, 2012; Casida and Durkin, 2013), and have been found to compromise not only foraging activity and navigation, but also dance communication (Van der Sluijs et al., 2015; Tison et al., 2020). Other insect pollinators (butterflies, beetles, flies, solitary bee) are also affected by insecticides, and thus monitoring the effect of insecticides on honeybee communication may provide information beyond honeybee pollination activities (Pisa et al., 2015). In this sense, ESF measurements in honeybee colonies offer access to biologically and environmentally relevant data about the health condition of ecosystems.

Our approach aims to implement a robust ESF measuring device that allows normal bee keeping activities and data collection by beekeepers without sophisticated knowledge of electronics or big-data management. The methods applied are based on the discoveries by Greggers et al. (2013), which require sophisticated laboratory instrumentation and are, thus, not suited for typical bee-keeping activities. We found that ESF signals tightly mirror biologically relevant conditions and will allow unsupervised long-term monitoring of health conditions in honeybee colonies.



MATERIALS AND METHODS


Hive

The bee hive contained 11 regular comb frames (Zander system, Holtermann, Germany) and one frame for the measuring devices (Figure 1A). The four vertical walls of the hive box were made of two layers of wood glued together with a metal mesh between them to act as a Faraday cage. The mesh layers were connected to the ground. The floor consisted of a metal mesh for ventilation and access of bees to the combs. In order to close the Faraday cage, a roof made of tin was also connected to the mesh layers and ground. The system was designed such that normal beekeeping was combined with electric-noise shielding. The back of the hive box was elongated to house the electronics and a car battery as power supply.


[image: image]

FIGURE 1. Hive construction and measuring devices. (A) Front and side view of the hive. A plastic tube containing a GPS receiver was fixed to a sidewall (not shown). The weight of the hive was measured with three load cells (LC). The round entrance tube was equipped with a capacity sensor of the bee traffic (insert to A). A sensor for external temperature and humidity was located below the extension of the hive box (arrow TS/HS outside). (B) The hive was built as a Faraday cage with a metal mesh between two tightly attached wooden plates, a metal mesh as the ground floor and a metal plate as the roof. The middle comb close to the entrance [blue double pointing arrow in (C)] contained the six ESF sensors. (C) Side view of the measuring comb with the six electrostatic field (ESF) sensors.





Sensors

A plastic tube extending from the side-wall of the hive contained a GPS module (UBX-G7020, u-blox, China, not shown), which was used to synchronize time and spatial date information from satellites. The hive weight was monitored with three load cells (LC; 50 kg, AUTODA, China) connected to load cell amplifiers (Avia Semiconductor, HX711 ADC, China). A sensor for external temperature and humidity (HTU21D-F breakout board, Adafruit, NY, USA) was located below the extension of the hive (Figure 1A, TS/HS sensor outside). A second sensor for internal temperature and humidity was located in the measuring frame (Figure 1B, TS/HS sensor inside). The entrance consisted of a plastic tube (diameter: 50 mm, length: 10 cm) with a landing platform (Figure 1A, insert). The inside of the tube was equipped with two metal rings (width: 1 cm) that were connected to a capacity sensor (FDC1004, Texas Instruments, TX, USA). A brass tube (diameter: 1 cm) was placed in the middle of the plastic tube and served as a reference potential by being connected to ground. These capacity sensors at the entrance served as an activity measure of bees entering and leaving the hive. Changes of capacitance depended on the numbers and frequencies of bees traveling through the tube since the dielectric constant of the bee body (mainly water) is approximately 80 times higher than that of air. The high dynamic range of the sensor allowed nearly single-bee resolution, and measurements from an absence of bees to full bee beard and above.

The ESF measurements sensors were placed in a box—referred to as measuring comb—(Figure 1C) made of 4 mm thick Plexiglas sheets which occupied a third of a standard Zander frame with a thickness identical to regular combs. The sensors pointed towards the neighboring comb in the region of the dance ground close to the entrance (see double pointing arrow in Figure 1C). The back of the measuring box was shielded by a grounded metal mesh in order to prevent pickup of ESF signals from comb on the other side. An open space of 2 cm in the lower part of the box allowed bees to cross to other combs. The six ESF sensors (CJMCU-9812 MAX9812L, CJMCU, China; capacitive microphones with microphone preamplifier board) were arranged in the lower part of the box (Figure 1C). The microphone capsules were opened and their dielectric membranes were removed, eliminating any sound pressure effects and exposing the gate pin of the central J-FET. The cut-off frequency was reduced to 5 Hz by replacing the original capacitor at the entrance gate with a jumper wire. The six altered sensors were arranged in two rows with three sensors each, all facing the same direction towards the dance floor of the opposing comb. The amplified and filtered (5–20,000 Hz) analog signals are sent to a synchronous six channel delta-sigma analog digital converter (MCP3903, Microchip, AZ, USA) on a custom-designed printed circuit board (PCB) in the hive back (Figure 2).
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FIGURE 2. Central recording device. Inputs (ESF probes, Temperature, Humidity, Scale, GPS and entrance activity; Figure 1) were connected to the central board as well as to a SD card writer to save all data. The custom-made board was plugged onto a STM32 developer board. (A) Photograph of one unit. Large pin rows left and right connected to the STM32 board below. The green printed circuit boards (PCBs) on the bottom house the scale instrumental amplifiers and associated ADCs (analog-digital converters). The central SMD chip (MCP3903, Microchip, AZ, USA) digitized the analog ESF signals (middle of PCB). (B) PCB schematic diagram of the board in (A). Note the split ground plane along the horizontal middle axis. The lower segregated ground plan isolated the upper digital traces from the sensitive analog ESF signals. (C) Circuit diagram of (A) and (B).





Central Recording Device

The board in the electronic device was a custom made 2-layer PCB (Figures 2, 3) connecting all sensors and devices to a microcontroller evaluation board (STM32F407VET, STMicroelectronics, Geneva, Switzerland) attached to it on its lower side (shield-arrangement). The custom board also housed an ADC (analog-digital converter) and related analog-signal conditioning circuits. The ADC digitized six signal channels simultaneously with 5,000 samples per second with a 24-bit resolution. The data from the six ESF sensors were saved from 06:00 to 23:59 UTC and stored on a 64 or 128 GB SD card. In addition to the ESF data, data from the temperature and humidity sensors inside and outside the hive, data from three load cells acting as a scale for the mass of the whole hive, and MCU-temperature (microcontroller-temperature), were sampled and saved every 120 s all day long. The data from both capacitance sensors at the entrance were sampled and saved at 100 samples per second from 06:00 to 23:59 UTC. Each of these three data streams were saved in binary files with regular GPS timestamps. Additionally, a unique identifier for each hive and a hardware identifier of the microcontroller was saved as well. We chose to store all data in a binary format to use the data storage on the SD cards efficiently. The whole system was powered by a generic 12 VDC, 60–100 Ah car battery, which provides electricity for more than 10 days. The battery needed to be recharged approximately once per week, at which time, the SD card was replaced by an empty one. The binary data were converted into CSV (comma separated values) files and processed by a custom program written in Python 3.
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FIGURE 3. System overview: red connections show power connections and blue data lines. The system is connected to a 12 V battery. A step down boost converter generates 5 V which is also regulated by the MCU-PCB to 3.3 V for some sensors. The electric field sensors are connected to an ADC (MCP3903, Microchip, AZ, USA) on the PCB. The STM32 reads out the ADC data with a sample rate of 5,000 Hz via SPI in a timer triggered interrupt. The activity sensor channels are read out at 200 Hz via I2C. The scales are connected via a custom serial protocol and are, like the temperature and humidity sensors (I2C) read out every 120 s.





Data Processing

The resulting CSV files were structured in the following way: one file contained the data of the six ESF channels together with the corresponding time stamps for a duration of 200 s per file, another file contained all daily data on temperature, humidity and load cells, and a third file contained the two channels of the capacitance sensors at the entrance and daily timestamps. In addition, weather data were downloaded automatically via the Darksky API1 for the hive’s location determined by the GPS sensor and matching the data’s timestamp. The weather data were used for analyses in addition to data from the temperature and humidity sensors outside the hive. Example of the data can be found in the article’s Supplementary Materials (raw data, converted data of all types, one typical summary PDF and WAV files). A summary PDF file for quick analyses was produced together with optional WAV files (see Supplementary Materials).

A state machine, built with function pointers, was used to make the code more structured (Figure 4A). At the start of the monitoring unit the RTC (real time clock) was synchronized with the GPS time (if no GPS time was available after waiting 5 min it went into an error-state and rebooted), and then the load-cells were initialized. When no error occurred in the initializing-state it continued to the configuring-state. The configuration instruction was loaded, verified that it was time for a recording, total number of measurements was calculated and switched to the execution-state. If debugging was needed the system could be switched to the testing-state where the sensors may be tested. When the desired number of electric-field measurements was reached the system switched to the finalizing-state where the microprocessor was set to the standby mode in order to save power. After waking up from the standby mode it switched again to the initializing-state. If an error occurred, the system switched to the error-handling-state where an error message was printed (via UART) and switched again to the initializing-state.
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FIGURE 4. State machine and graphic surface of the converter and analyzer. (A) Schematic diagram of the state machine (see text). (B) The converter and analyzer graphical user interface.



The converter and analyzer graphical user interface (Figure 4B) created CSV-files (comma-separated values), enriched it with online weather data, detected the social signals and created a report. The user input needed for analysis was as follows: first, the user chose the folder containing the raw binary files. Next, the scope of conversion and analysis was selected, including optional steps like the generation of WAV files of the ESF traces for manual investigation in audio software. The program allowed the generation of a PDF file summarizing all results like temperatures and alike as well as dances over time in a basic human-readable format (see Supplementary Materials). The program also allowed for easy change of important parameters e.g., relevant social signal frequencies as well as minimum duration of such signals to be detected. This tool was intended for use by non-data scientists. In cases of incoherent inputs, the program prompted insightful error messages to debug the error.



Validation

We related the recorded ESF signals to the animals behaviors in multiple ways. Greggers et al. (2013) reported a method that allowed to record simultaneously, dances by video and ESF using a transparent potassium chloride electrode. Tison et al. (2016, 2020) found correlations between waggle dances related ESF signals and uptake of neonicotinoids. In addition, the Supplementary Video shows a set-up with an observation hive together with the voice recording of an experimenter during simultaneous ESF, video recordings and visual inspection of dancing, fanning and stop signal producing bees. As shown in the video ESF were recorded via square-like wires that were connected to the ESF sensors. Multiple other set-ups were used to observe the behavior by eye together with a voice protocol that allowed off-line comparison with ESF recordings. As described below the ESF data stream was analyzed by the converter software to identify and label waggle-dance-related signals (WRS), short-pulse-related signals (SRS) and fanning-related signals (FRS). To verify those signals we investigated 97 files from different systems e.g., hives during different seasons and years. The classification of WRS, SRS and FRS was compared between human eye based labeling and that of converter based classification. To test the system in the field we cooperated with 29 beekeepers spred all over Germany besides our own 12 measuring devices. We supported and supervised the use of the devices for up to 5 years. Our students cared for the systems and carried out their experiments in our bee garden.

PCB plans, bill of materials, code on the STM microcontroller, wiring diagram, converter code as well as analysis code can be found in the Supplementary Files. The Supplementary Files also contain example data, raw and converted as well as a PDF summary. They are available here: https://figshare.com/articles/dataset/The_electronic_bee_spy_Eavesdropping_on_honeybee_communication_via_electrostatic_field_recordings_-_Supplemental_Data_and_Codes/13490973">https://figshare.com/articles/dataset/The_electronic_bee_spy_Eavesdropping_on_honeybee_communication_via_electrostatic_field_recordings_-_Supplemental_Data_and_Codes/13490973">https://figshare.com/articles/dataset/The_electronic_bee_spy_Eavesdropping_on_honeybee_communication_via_electrostatic_field_recordings_-_Supplemental_Data_and_Codes/13490973 and https://doi.org/10.6084/m9.figshare.13490973.v1. The Supplementary Video and its description is available here: https://figshare.com/articles/media/The_electronic_bee_spy_Eavesdropping_on_honeybee_communication_via_electrostatic_field_recordings_-_Supplemental_Video/14140634">https://figshare.com/articles/media/The_electronic_bee_spy_Eavesdropping_on_honeybee_communication_via_electrostatic_field_recordings_-_Supplemental_Video/14140634">https://figshare.com/articles/media/The_electronic_bee_spy_Eavesdropping_on_honeybee_communication_via_electrostatic_field_recordings_-_Supplemental_Video/14140634 and https://doi.org/10.6084/m9.figshare.14140634.v1.




RESULTS


Collected Data

Thirty-six systems were run by 29 cooperating bee keepers and students over the last 5 years. We collected 46 TB of binary data that correspond to ~15 years’ worth of continuous EFS recordings. Some devices failed during deployment, mostly due to faulty solder connections. Meanwhile most of the devices ran over a period of 4 years. Some errors occurred within weeks, some after more than a year. Some of the beekeepers had experience with electronic devices and a PC, but most of them were naïve with respect to the devices and cared only about standard bee keeping. The date came from different country sides and about half of the systems also ran during winter time.



ESF Signatures of Social Signals

The movements of the charged body of a forager bee led to patterns of ESF that were characteristic of these movements. We shall focus here on social communication signals as the most characteristic and highly stereotypical movements inside the colony. Three signals were distinguished on the basis of their characteristic frequencies and time courses, waggle-dance-related signals (WRS, Figure 5A), short-pulse-related signals (SRS, Figure 5B) and fanning-related signals (FRS, Figure 5C). WRS were composed of two frequency components, the low frequency domain (5–25 Hz, WRS_L) of the abdomen waggling, and the high frequency domain (190–230 Hz, WRS_H) of wing vibrations—partially synchronized with abdominal movements. Since the number of waggles per waggle run correlated with the distance to the indicated food source one can read the distance by counting the number of waggles and multiply them with 75 m (Haldane and Spurway, 1954). SRS last less than 1 s and were composed of high frequency signals (>350 Hz) that usually occurred in the context of dance communication. The origin and sources of these short pulses were not further characterized as these are outside the article’s scope. FRS originated from fanning behavior that led to ventilation of air inside the hive box. Fanning lasted longer than 15 s and was characterized by highly regular waves of ESF (frequency 90–120 Hz). The characteristic frequencies and temporal patterns allowed us to assign to each signal one of the three labels (WRS, FRS, SRS). The labeling process was validated by visually comparing the corresponding waveform data created by a custom-written player program in multiple example files. We found that 85% (in 97 files containing 484 dances) were classified correctly. However, the rate of missed waggle runs (false negative) was much higher: 84% (102 from 645 visually identified dance rounds). These results indicate that the number of dance rounds labeled by the converter program is highly conservative as compared to the visually labeled dance rounds.
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FIGURE 5. Representative examples of three classes of ESF signals. (A) Waggle-dance-related signals (WRS). The electrograms show the time/frequency diagram in false colors (signal power) for two frequency bands, the low frequency of the abdomen waggling (WRS_L) and the high frequency of the wing vibrations (WRS_H). (B) Short pulse related signals (SRS) with the time courses and corresponding electrograms for two kinds of SRS. (C) Fanning related signals (FRS). Note the different time scales.





Environmental Parameters

First, we examined whether the strength of the ESF depended on outdoor humidity and/or UV radiation. Such an effect would be expected if the body charge depends only on-air friction leading to higher charge in dry air and under high UV radiation. Furthermore, no ESF signals would be expected during wintertime when bees do not leave the hive. Datasets with large variation of outdoor humidity and UV radiation were compared with ESF strengths in four frequency bands, 5–30 Hz, 190–230 Hz, and 380–400 Hz. No significant correlations were found (Spearman’s correlation coefficients ranged from −0.14 to +0.18, number of data pairs n = 85,737 for outdoor humidity during summer periods ranging from 15% to 89% and n = 52,422 for UV radiation; see also Figure 6B). Next, we examined randomly selected datasets from colonies at winter time and compared them with similar numbers of randomly selected datasets from summer colonies. Significantly higher signal powers were found in all frequency bands during the summer season (t-test, p < 0.001, n = 1.47*1010) but the differences were small (1.3–1.4%).


[image: image]

FIGURE 6. Examples of ESF signals and external as well as internal parameters. (A) Upper two graphs: daily rhythms of waggle dance related signals in both frequency bands (WRS_L, WRS_H) between April 20 and April 26, 2020. The bin width of the upper graph is 1 h, that of the graph below 2 h. Lower graph: signals from the two activity sensors on one day (April 17, 2020). (B) Examples for the five frequency bands of ESF signals recorded between August 14 and August 21, 2020 by the six ESF sensors. WRS_L: waggle dance related signal low frequency band, SRS: short pulse related signal, FRS: fanning related signal. The number of the respective signals per hour were averaged for each day. Notice the different scale of the ordinate. (C) Humidity outside, temperature outside, UV index, temperature inside and signal power during the time period August 14–21, 2020. Note the corresponding ordinates.



Taken together we concluded that body charge resulted predominantly from the friction of body parts of each animal and that between the animals.

Next, we examined how social signals varied with weather conditions, seasons of the year, time of day, and internal conditions of the colony (temperature control inside the hive, brood, honey store and health conditions). Examples are shown in Figure 6. Multiple correlations were examined and will be the subject of separate analyses of the collected data.




DISCUSSION

Electrostatic fields (ESF) are meaningful signals to bees inside the colony. They are received via deflections of mechanoreceptors (antennae, possibly also mechano-sensory hairs), but not by an electric organ (Greggers et al., 2013; Clarke et al., 2017). These electrostatically induced mechanical stimuli can be learned and discriminated by bees based on their frequency components and their modulation over time. Since the frequency of waggling reaches well below the range of acoustic microphones (<30 Hz) it cannot be adequately recorded with sound-pressure microphones. The temporal resolution of our ESF recordings (5 Hz to 5 kHz) was sufficiently high to pick up characteristic frequency modulations and harmonics even for high-frequency short pulses. The short and high frequency pulses were labeled as the same category in this work although they are most likely used in different behavioral contexts and with different meaning (Bell et al., 2019). Social signals in honeybee colonies have been recorded with varying methods over the last 50 years. Most of these recordings were based on human observations or optical methods, procedures that excluded the possibility to monitor these signals under natural beekeeping conditions. Also microphone recordings relied majorly on single combs in an observation hive (Esch et al., 1965; Nieh, 1993). More natural conditions were possible in recordings of vibrational signals of the wax surface (Ramsey et al., 2017) but these measurements did not allow selective monitoring for different forms of social signals and their meaning to bees is unknown.

The current version as published in this work is fully operational, scalable, and may be adapted to various use cases. Whilst the current setup is the least complex we note that it was a time-consuming endeavor already. The high resolution of 24 bits at the ESF ADC allowed us to over-sample the signal, an approach that was of high value during the early exploration phase allowing us to analyze even minute signals. This procedure will not be necessary in the future anymore as signal amplitude and frequencies allow for lesser resolution in signal amplitude (ADC bit depth) and sampling time. The capacity sensors gathered reliable data on entrance activity with neither drift nor interfering noise being observed. These entrance capacitance data will be processed in the future in more detail (separating between arriving and departing bees, classification of massive movements) and will be related to other data either recorded (temperature and humidity inside and outside the colony) or downloaded from the weather service web site.

Classification and quantification of social signals have been performed so far offline. We are working towards implementing programs to run on the device’s MCU directly for online data reduction. Thus far, the conversion of binary data as well as the analyses of extraction and classifying the social signals did not involve machine-learning approaches, an obvious goal for the future. A further step will be to recharge the 12 V battery with a solar charging device, allowing deployment in remote areas.

Overall, the system worked successfully. The device recorded ESF signals as their related behaviors were observed. The converter software and subsequent analysis could extract the ESF signals sufficiently. However, early adaptations including those described here, contained hundreds of hand-soldered connections that caused instabilities and errors. The next generation, already in testing, is completely produced with surface-mounted components (SMD) and can be built by pick-and-place machines. This will drive the reliability to commercial standards and lower cost compared to hand soldered components. It will also allow for up-scaling the number of devices by orders of magnitude. SMD populated systems are produced fully automatically. Currently, for ease of implementation, the system does not shut down peripheral devices when they are not used. In particular, in future systems, the GPS will be switched off most of the time since it is only needed for synchronization once per day and draws considerable current while active. Furthermore, certain sensors will be switched off for periods of time leading to reduced power consumption. We have estimated that the device will run for 6 weeks with a standard lead-acid 12 V 100 Ah battery.

We found that the strength of ESF signals did not depend on UV radiation in the environment suggesting that the amount of charge in the air had only a minor or no effect on charging the bee body by friction during flight. This conclusion is supported by the finding that the strength of ESF did not correlate with the humidity outside the hive. Since, we also recorded ESF signal during wintertime we conclude that the body charge of bees resulted predominantly from friction between body parts of the same animal and between animals inside the colony.

The methods applied to identify, separate and label social signals were based on the characteristic frequency bands and the time windows over which they appeared. We confidently separated waggle-dance-related signals (WRS) from stop-signals and fanning-related signals (FRS). However, measurement-related electronic noise and, most probably, biological noise from movements of many bees in front of the ESF sensors limit the rate of correct labeling of WRS and likely caused missing signals(false negatives) and detecting wrong signals (false positives). We addressed this question by inspecting WAV files by visually evaluating both the time course of ESF recordings and the electrograms in two frequency bands as shown in Figure 5A. Initially we characterized typical WRS by observing dancing bees in an observation hive and simultaneous recording of ESF. Contrary to our expectation, false negatives were more frequent than false positives. Our expectation was based on the fact that rather similar body movements are known from other social signals like the buzzing or jostling runs of bees performed in various contexts (before a proper waggle dance is performed, arousing other bees and motivating young bees to build wax cells for food store (von Frisch, 1967; Hrncir et al., 2011). There are other forms of body movements that may emanate ESF in the frequency range of 5–30 Hz, e.g., dorso-ventral abdominal vibrations known to lead to vibrations of 10–22 Hz (Gahl, 1975), or so-called grooming dances consisting of vibrations of the entire bee body at 4–5 Hz (Land and Seeley, 2004). Furthermore, we also expected more false positives because our algorithm labeled WRS at night and during wintertime. Although it is known that bees may perform waggle dances at night (von Frisch, 1967, p351ff, personal observations) we assumed other signals than WRS may be produced by bees at times when no foraging bees are active in the environment. Thus, our current WRS labeling procedure has obvious limitations. Improvements will take additional characteristics into account. For example, the WRS_L of a single waggle run is modulated in a characteristic time course of an initial increase, then plateau followed by a decrease in frequency. In addition, waggle dances occurred mostly not as single waggle run but with bouts of waggle runs allowing improvement of the labeling of waggle dances by enlarging the time window and taking repetitive bouts of waggle run characteristic frequency bands into account. The high-frequency component of the waggle dance (WRS_H) is known to signal particularly attractive food sources (Hrncir et al., 2011) and thus may be used as indication of rich forage. Short-pulse signals (SRS) haven been recorded in bees following a dance (begging signal; Esch, 1961), stop signal (Nieh, 1993) and during swarming (Seeley, 2011). We found SRS with different frequency characteristics (basic and harmonic), durations, and frequency modulations. It has not been possible, yet, to relate these ESF signals to specific behaviors. Fanning behavior is involved in controlling temperature, humidity and CO2 concentrations within the colony (see below).

The recording of physical parameters both inside and outside of the colony opens up opportunities to uncover links between biological phenomena of the colony (e.g., brood cycles, preparation for swarming, health conditions) and physical parameters, a topic that will be addressed in subsequent reports. The physical parameters measured were temperature and humidity of the brood nest, the activity at the hive entrance, the weight of the hive, and the weather conditions. The controllability to regulate the brood temperature under varying external weather conditions is a highly sensitive factor of the colony’s health. For example, chalkbrood, a disease of honeybee larvae caused by the fungus Ascosphaera apis, can be restored if the brood temperature does not drop below 35°C (Maurizio, 1934). It has been argued that the colony responds to bacterial and viral infections by raising its temperature, also known as fever response of the colony (Seeley, 1985, p. 111). Colonies not responding with a temperature increase appear to suffer more from infections. Nosema infections are accompanied by an increase in humidity. Thus, combined measurements of the control of both temperature and humidity may be indicative of such infections. Exposure to insecticides compromise dance communication (Eiri and Nieh, 2012; Tison et al., 2020), individual bee navigation (Henry et al., 2012; Fischer et al., 2014; Tison et al., 2016) and learning (Tison et al., 2017). Honeybee colonies can thus serve as monitors of environmental hazards resulting from insecticide treatment in agriculture.
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Grasping movements are some of the most common movements primates do every day. They are important for social interactions as well as picking up objects or food. Usually, these grasping movements are guided by vision but proprioceptive and haptic inputs contribute greatly. Since grasping behaviors are common and easy to motivate, they represent an ideal task for understanding the role of different brain areas during planning and execution of complex voluntary movements in primates. For experimental purposes, a stable and repeatable presentation of the same object as well as the variation of objects is important in order to understand the neural control of movement generation. This is even more the case when investigating the role of different senses for movement planning, where objects need to be presented in specific sensory modalities. We developed a turntable setup for non-human primates (macaque monkeys) to investigate visually and tactually guided grasping movements with an option to easily exchange objects. The setup consists of a turntable that can fit six different objects and can be exchanged easily during the experiment to increase the number of presented objects. The object turntable is connected to a stepper motor through a belt system to automate rotation and hence object presentation. By increasing the distance between the turntable and the stepper motor, metallic components of the stepper motor are kept at a distance to the actual recording setup, which allows using a magnetic-based data glove to track hand kinematics. During task execution, the animal sits in the dark and is instructed to grasp the object in front of it. Options to turn on a light above the object allow for visual presentation of the objects, while the object can also remain in the dark for exclusive tactile exploration. A red LED is projected onto the object by a one-way mirror that serves as a grasp cue instruction for the animal to start grasping the object. By comparing kinematic data from the magnetic-based data glove with simultaneously recorded neural signals, this setup enables the systematic investigation of neural population activity involved in the neural control of hand grasping movements.

Keywords: electrophysiology, multi-sensory, non-human primate, grasping, object interaction


1. INTRODUCTION

Primate hands are versatile tools that are used in a variety of behaviors, starting from grasping objects to social interactions (Terry, 1970; Dunbar, 1991). More so, hand movements are easy to track and observe, making them a perfect candidate for trying to understand how our brain generates these fine and complex movements and reacts to the tactile and proprioceptive feedback the hand provides at the same time (Munk, 1890; Penfield and Boldrey, 1937; Jeannerod et al., 1995). For this reason, reach-to-grasp tasks provide valuable insights in movement generation and feedback processing.

To study the neuronal control of grasp movements, it is important that the animal executes a variety of grasp types and hand shapes, since behavior and neural activity can be properly correlated only then. In previous studies, this was often achieved by training the monkey to grasp a handle with different grasp types, usually a precision grip, where the object is hold between the index finger and thumb, and a power or side grip, where the object is clasped with the whole hand (Napier, 1962; Baumann et al., 2009). However, the low number of different grasps severely limits how well we can understand how the brain truly moves our hands. This led to different attempts of presenting a higher number of objects to the monkeys in order to get them to display a higher variety of different grasps. In different studies the objects are either presented on a multijoint manipulator (Sakata et al., 1995; Suresh et al., 2020) or even free hanging on strings (Vargas-Irwin et al., 2010). While this indeed allows to present a higher number of objects to the monkey it comes at the cost of a higher interaction with the animal, as the object is changed regularly. This means the experimenter either remains inside the setup or needs to step into it whenever a change is needed. Since most experiments aim to exchange the object after a few trials (ideally after every trial) this means a high downtime where the animal can not work and might be distracted.

We therefore wanted to automate this process, similarly as previously described by Murata et al. (2000), Raos et al. (2006), and Fattori et al. (2010). We used a round turntable with six compartments for different objects that could be rotated by computer control. To make usage of possible auditory cues harder, the rotation direction (left or right) was chosen at random. This allowed to present up to six objects automatically in random order, without having to switch manually between objects after each trial. Using this design, Schaffelhofer et al. (2015) were able to present to the monkey a total of 48 objects that were mounted on 8 turntables. The six objects on each turntable were then presented in random order until enough trials per object were collected, after which the turntable was manually exchanged. This way, the animal could work consistently and undisturbed by the experimenter, except for short breaks in the recording session when a turntable was switched.

In this paper, we present the current version of our turntable design. This setup features six objects on a turntable, allows for attention control of the animal, and instructs the animal to use visual or tactile object exploration to determine the appropriate grip type for each presented object. Improvements include a more accessible turntable plate to speed up the exchange process, a more precise detection whether an object is fully lifted, and projection of the cue LED for the animal directly onto the object to avoid an attention split. The latter is achieved by shining a very small red LED on a half-transparent mirror, giving the animal the impression as if the cue LED would sit directly onto the object without illuminating the object. We also present a new task paradigm where objects are not only presented visually, but also tactually, allowing to compare not only how the animal interacts with multiple objects, but also how it does so using different sensory information.



2. MATERIALS AND METHODS


2.1. Animals

Here we present behavioral and neural data from one monkey that was trained on this setup. The monkey was a male, purpose-bred rhesus macaque (Macaca mulatta), that was born 2011 at the German Primate Center (Deutsches Primatenzentrum GmbH, Göttingen, Germany) and housed together with another male monkey with a 12 h dark-light cycle. Fluid intake through water bottles, the reward system (containing juice) or fruits and vegetables was monitored on training days, since fluids were used as main reward for successful trials. On days were the animal was not trained or recorded, he had free access to water. Access to food was never restricted. All experiments and housing were performed in accordance with European and German law and in agreement with the “Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research” (National Research Council, 2003), as well as the NC3Rs “Guidelines for non-human primate accommodation, care and use” (National Centre for the Replacement, Refinement and Reduction of Animals in Research). Authorization for conducting this experiment was delivered by the Animal Welfare Division of the Office for Consumer Protection and Food Safety of the State of Lower Saxony, Germany (permit no. 14/1442 and 19/3132).



2.2. Implantation and Neuronal Signal Acquisition

To investigate the neuronal activity during the task, one animal was implanted with floating microelectrode arrays after training was completed (FMA, Microprobes for Life Sciences, Gaithersburg, MD, USA, see Musallam et al., 2007). Two arrays each were implanted into four different brain areas (see Figure 1): Anterior intraparietal cortex (AIP), primary somatosensory cortex (S1, area 3b), Primary motor cortex (M1) and premotor cortex (area F5). In this paper we present data from two example units from M1 and F5. For data acquisition two neural signal processors (Cerebus systems, Blackrock Microsystems Inc., Salt Lake City, UT, USA) were synchronized and connected to the implants. Data was recorded with 30 kHz and 16 bit and stored together with behavioral data on a hard drive for offline analysis (see Analysis methods, below).


[image: Figure 1]
FIGURE 1. Cortical implantation sites. (A) Intrasurgical picture, showing the floating microelectrode arrays (white rectangles) implanted in parietal and frontal cortex. (B) Implantation schematic with implantation sites in parietal area AIP, somatosensory cortex (S1), primary motor cortex (M1), and premotor cortex (area F5). Black lines indicate cortical sulci. Double arrows indicate the medio-lateral (M-L) and posterior-anterior (P-A) direction.




2.3. Experimental Setup

In order to study how primates interact with different objects, a turntable setup was build that can automatically present up to six objects to the animals without human manual interaction. An earlier version of this setup has been employed in previous studies (Schaffelhofer, 2014; Schaffelhofer et al., 2015; Schaffelhofer and Scherberger, 2016).

Core parts of the setup include a turntable, which is a round object plate featuring up to six 3D printed objects, a stepper motor (NEMA 17, Nanotec Electronic GmbH & Co. KG, Feldkirchen, Germany) that can rotate the turntable so that the selected object is presented to the front, as well as a stepper motor controller (SMCI33-2, Nanotec Electronic GmbH & Co. KG, Feldkirchen, Germany). These parts are mounted on a customized table so that the front object is reachable by the animal sitting in its primate chair (see Figure 2). The table fits the turntable plate on-top of a rotating axis (connected through two custom made carbon bolts that fit in two holes inside the turntable and axis) that fits a belt system connecting the turntable with the stepper motor (see Figure 3). In order to use the setup with a magnetic-based data glove (Schaffelhofer and Scherberger, 2012), the motor was positioned away from the turntable and connected to the turntable shaft (3D printed, Material: Nylon 12 [Versatile Plastic], Electro Optical Systems GmbH, Munich, Germany) with a toothed belt. Also, the setup was kept free of metal as much as possible with usage of plastic screws and fiberglass rods.


[image: Figure 2]
FIGURE 2. Overview over the experimental setup. (A) Monkey sitting in a primate chair on top of a plastic box. On the table an object plate (4) with six red objects that can be rotated by a motor (1) and controller (2) positioned underneath the table. The animal can only see and interact with one object at a time. A strip of white LED lights (3) is placed above the object for illumination. A photo-electric Laser barrier (6) is placed below the turntable and above the object counterweights, to detect the lifting of an object. A one-way mirror (5) is placed between the monkey and the table, which projects, from the animal's perspective, a red cue LED (7) onto the front object. A handrest button in front of the primate chair sets a consistent start position of the monkey's hand and an electromagnetic field generator of the hand tracking system is placed below the object plate to track the monkey's hand movements with a data glove (not shown). (B) Frontal view of the table. (C) Top view with turntable in the setup.



[image: Figure 3]
FIGURE 3. Overview over the motor control and belt system. Below the tabletop an extra level of the table houses the belt and motor system. The turntable (not shown) will be placed on top of the 3d-printed shaft and cogwheel, which fits the toothed belt connecting shaft and motor.


A capacitive-sensing touch button was fixed to the front of the primate chair, serving as a handrest button. The monkey was trained to place its hand on the button to initiate a trial. This ensured a defined start position of the hand for each trial and was also used as a safety measure during turntable rotation: the motor was programmed to move only when the button was pushed, ensuring an immediately stop of the rotating turntable should the monkey ever try to interfere with it. Relative position of the animal to the turntable was set by adjusting the height and position of a pedestal box supporting the primate chair.

For this study, six different objects were designed (see Figure 4): A sphere, a cube, a ring, a ring with edges, a bar and a bar with edges. These objects were designed to look and feel differently while each pair (each column in Figure 4) is grasped with a similar hand shape and grasp. The idea behind this design was to be able to disentangle the influence of sensory information and hand shape. Each object was designed in Autodesk Inventor (Autodesk, Inc.) and 3D printed out of plastic (PA 2200, Electro Optical Systems GmbH, Munich, Germany) by Shapeways (Shapeways Inc., New York, United States). We chose a red design for contrast to the black background of the turntable.


[image: Figure 4]
FIGURE 4. 3D renders of the six objects. These objects were designed in pairs, where the two objects in the same column require a similar hand shape and grasp while looking and feeling differently. Top row: sphere, ring, and rounded bar. Bottom row: cube, edged version of the ring, and box.


Each object was fitted with a counterweight below the object plate that was connected to the object with a carbon stick. The total weight of the object and counterweight was 120 g for all objects, independent of the object shape and size, to ensure a similar force required for lifting. Lifting height was 1 cm, forcing the monkey to actually lift the object, but with limited effort. Objects were placed near the outer border of the turntable disk (closest to the monkey) to avoid that the animal can rest his hand in front of the object. Furthermore, the balance point was placed as low as possible to ensure that the object is pulled down by gravity and cannot get stuck in the “lifted” position. The counterweight of each object doubled as trigger for a light barrier that was positioned below the object plate (see Figure 5). Whenever an object is lifted, the counterweight breaks the light-beam and the computer detects a successful object lift. To ensure a high sensitivity of the light barrier, a laser pointer with a small diameter was used to point on a light sensitive photo transistor.


[image: Figure 5]
FIGURE 5. Function of the photoelectric Laser barrier. To determine whether an object has been lifted, a Laser and photoelectric element is placed below the object. (A) The Laser can pass through as long as the object is not lifted. (B) The counterweight of the front object will block the Laser once the object is lifted.


The front of the setup consists of long barriers out of black plastic (see Figure 2B) that, together with small barriers next to each object, ensure that the monkey can see and interact only with the object currently facing him. This not only keeps the object presentation more stable, since only one object is within view at any time, but also doubles as a barrier to prevent the animal from interacting with the other objects during grasping or tactile object interaction. All plates are custom made out of black plastic sheets. A black plastic tube was fitted into the middle of the turntable to further obstruct view on other objects.

A one-way mirror on a Plexiglas plate was mounted to the table using thick fiberglass bars, between the monkey and the object (see Figure 6). This mirror serves multiple functions. First, it reflects a red LED above the mirror onto the object. This cue LED is used by the monkey to determine when to interact with the object as either “explore cue” during tactile trials or “grasp cue” in both trial types. Projecting the LED light on the object prevents the animal from having to split attention between the position of the object and the cue LED, and also helps the animal not to move his eyes when the object is illuminated. Furthermore, this prevents the LED light being obscured by the monkey's arm. While the cue LED was usually turned off when the monkey's arm interacted with the object, this might be an important factor in other task paradigms. Second, the mirror could also be used for video-based eye tracking, without installing an additional eye-tracking mirror. Finally, the mirror serves as a barrier, making it harder for the animal to interfere with equipment, most notably the reward tube, located above the mirror. Additional LED lights could also be projected through the one-way mirror. We designed an LED plate featuring four LEDs that were placed in a reversed T shape that could be used to calibrate an eye tracker, and two additional yellow LEDs that were used to inform the animal of error trials.


[image: Figure 6]
FIGURE 6. Projection of the cue LED light. To superimpose the red cue LED light onto the front object, from the monkey's perspective, a one-way mirror is placed, such that the angles α and α′ match. This avoids an attention split between the object and the cue LED.


3D printable STL files for the objects described above as well as more information on assembly are available at: https://github.com/NBL-DPZ/TurntableSetup.



2.4. Alignment of Collected Data

During the experiment, data from different sensors needed to be integrated. We utilized a capacitive-sensing touch button to detect whenever the animal was resting his hand at the start position, two light barriers (one to detect turntable rotation and one to detect lifting of the front object), and a data glove.

The setup was controlled by a NI PXI realtime System (National Instruments, Austin, TX, USA) with a clock rate of 1 ms and custom written LabView-Software. This included detection when the handrest button was pushed, the light barriers were triggered, and control of the rotation motor. Furthermore, the graphical user interface for the data glove (named KinemaTracks) was implemented in Matlab, as first described by Schaffelhofer and Scherberger (2012). As described above, two synchronized neural signal processors (NSPs; Cerebus systems, Blackrock Microsystems Inc., Salt Lake City, UT, USA) were used to record neural data and behavioral events. For the latter, the digital input port of the NSPs were used to record and synchronize all collected data from the three machines (NSPs, PXI-Box, and data glove PC).

The states of the sensors were encoded into numbers (e.g., 31 when the object was down, 32 when the object was lifted up) and written to the digital port of both NSPs as were numbers to identify the different epochs during this task. Due to usage of the same clock, this allowed to align neural data according to different epochs (or in theory even sensor states). A similar method was used to align additional data for the data glove. While the exact magnetic sensor positions remained on the dedicated data glove PC, a synchronization signal was sent to the NSP using the serial input every time a new data point was written onto the data glove PC, which was used to synchronize the clock of the data glove PC with that of the NSPs during offline analysis. Additional metadata were recorded during the intertrial state using the digital input port, such as time and date, which object was used during the current trial, and whether the trial was successful. This “tailer” always started and stopped with a specific sequence of numbers for easier data extraction during offline analysis. This way, all necessary information needed to synchronize the data of all sources was saved alongside the neural data on the recording PC.



2.5. Behavioral Paradigm

The monkey was trained in a delayed-grasping paradigm to grasp objects that he had either seen or touched beforehand. The main idea was to require the animal to either first look at an object and then grasp it in the dark, or to first touch and tactually explore the object in the dark before also grasping it in the dark. A diagram of this task is shown in Figure 7.


[image: Figure 7]
FIGURE 7. Task paradigm. After an object has arrived in front of the animal, it has to wait in the dark for an object presentation period, in which the animal could identify the object either visually or tactually. In the visual task, the object is illuminated for 700 ms. In the tactile task, however, the monkey remains in the dark and instead has to reach out, touch and briefly lift the object (maximal duration: 3,000 ms). The animal is then required to memorize the object for 1,000–1,500 ms before instructed to lift the object within 870 ms. All successful trials are rewarded with a fluid reward.


The animal is comfortably seated in a primate chair and sits in the dark during the whole experimental session. At the start of the experiment, a pseudo-random sequence of object presentation order is generated that ensures a uniform distribution of object occurrences, but prevents the animal from predicting the upcoming object in the next trial. The monkey can initiate a trial by placing his hand on the handrest button, which will start the turntable rotation. The turntable will stop at the appropriate object according to the aforementioned presentation sequence. Next, the object is presented either visually or tactually. For visual presentation, the object is illuminated for 700 ms, which instructs the monkey to sit still and simply look at the object. During tactile trials, however, the red cue LED above the object turns off as an explore cue (tactile trial: tactile exploration), which instructs the animal to reach out, touch, and lift up the object briefly within 3,000 ms to confirm haptic object exploration. This approach was chosen to encourage the monkey to actually interact with the object and to ensure that an appropriate grip for object lifting has been haptically explored. The animal then has to return to the handrest button during this object presentation period to ensure that the hand is always remaining still on the handrest button during the complete memory period, ensuring that the starting position of the hand is identical for visual and tactile trials. Afterwards, a memory period (memorize object) of random length (1,000–1,500 ms) occurs to avoid prediction of the grasp cue. As a last step, the red cue LED will turn off in both task conditions as a grasp cue, and the animal is required to quickly reach out, grasp and lift the object in the dark (within 870 ms). If this grasp and lift action is successful, the red cue LED turns on again and the animal has to return the hand to the handrest button to receive a reward (small amount of the animal's favorite juice). In case the animal made an error during any point of the task, two yellow error LEDs light up to indicate the error and the next trial starts after some short delay.



2.6. Data Analysis
 
2.6.1. Movement Time Analysis

To evaluate whether or not the animal actually used object information during the final grasp period, we measured the reaction time and the movement time during visual and tactile trials, independently of object shape. A shorter movement and reaction time would indicate prior knowledge about the object, since an optimal grasp can be chosen right away (Michaels et al., 2018). If the monkey does not know the object's identity, he will need time to explore the object to find the best fit for his hand and therefore take longer. Reaction time was defined as the time between the appearance of the grasp cue and the release of the handrest button. Movement time was defined as the time when the monkey lost contact with the handrest button to explore (for tactile object exploration) or to grasp the object (for both grasp periods) until the object was fully lifted. Reaction and movement times were plotted as a histogram (bins width: 5 ms for reaction time; 10 ms for movement time; see Figures 8, 9).


[image: Figure 8]
FIGURE 8. Distribution of reaction time. Histograms illustrate how often a certain reaction time occurred during the grasp period in the tactile object exploration (A) and during grasping in tactile (B) and visual trials (C). Bin width: 5 ms; cut off at 500 ms. For tactile exploration (A), the slightly higher mean and larger variation of reaction time suggests hesitation, e.g., due to the unknown object, and less preparedness. For both tactile and visual grasping (B,C), a similar distribution of reaction time was observed, indicating that the animal obtained in both tasks sufficient object information during the object presentation period to plan an appropriate grasp.



[image: Figure 9]
FIGURE 9. Distribution of movement times. Histograms illustrate how often a certain movement time occurred in both tasks. Bin width: 10 ms, cut off at 1,200 ms. During tactile exploration (A) the object was unknown, leading to multiple and varying grasp attempts and on average a much longer movement time. For grasp movement execution in the tactile (B) and visual grasps (C) a similar movement time can be observed, indicating that the animal was able to execute an appropriate grasp for the object based on the object information gathered from the object presentation period.




2.6.2. Neural Data Analysis

After raw data acquisition (see Implantation and neuronal signal acquisition, above), data was prepared for detection of spikes as previously described (Dann et al., 2016; Intveld et al., 2018; Michaels et al., 2018; Buchwald, 2020). The data was filtered with a median filter (window length: 3.33 ms) and the resulting signal subtracted from the raw signal. Then, a 4th order non-causal Butterworth filter (5,000 Hz) was applied as a low-pass filter (Butterworth, 1930). Channels where noise was already apparent during recording were excluded from the analysis. To remove common noise sources present in all channels (e.g., movement artifacts) a principal component analysis (PCA) artifact cancellation procedure was performed, as described in Musial et al. (2002). Only PCA dimensions with a coefficient larger than 0.36 (with respect to normalized data) were kept to avoid removing individual channels. Afterwards, data was spike-sorted using a modified version of Wave_Clus (Kraskov et al., 2004; Chaure et al., 2018). To demonstrate the feasibility of neural recording with this setup, two representative single units are presented below (see Results and Discussion).

For visualization of neuronal activity, we calculated a peri-event time histogram for each single unit (see Figure 10). For this, spike events were extracted and a Gaussian smoothing filter applied (SD: 50 ms) for every trial. The resulting firing rate curves where then aligned and averaged at three different time points, so that the influence of specific trial events can be better visualized. Data is presented 500 ms before object presentation (representing the baseline period where the animal is not engaged in any activity), followed by 700 ms after the onset of the illumination or explore cue LED, reflecting the neuronal response to seeing or touching the object. The second alignment point is the start of the memory period (time interval from 100 ms before until 500 ms after memory start), reflecting neural activity after the object presentation period ended (either stop of object illumination or a return to the handrest button) to ensure no more tactile object information is perceived and all movement ended. Third, data was aligned at movement start (500 ms before and 1,000 ms afterwards), reflecting grasp-related neural activity. To differentiate the 12 task conditions, six different colors were chosen for the objects while solid and dashed lines represent visual and tactile task trials, respectively.


[image: Figure 10]
FIGURE 10. Peri-event time histogram of two example units from primary motor cortex (M1 unit) and premotor area F5 (F5 unit). (A) Activity during the two tasks of one M1 unit, showing higher activity during periods and task conditions that contain movement. (B) Activity of one F5 unit, showing activity during movement-related epochs as well as during object illumination. Colored dashed or solid lines: mean firing rate across trials for the visual task (solid lines) and tactile task (dashed lines) and the six objects: sphere, cube, round bar, block bar, ring, and block ring (different colors). Horizontal bars on top of the panels indicate periods with significant selectivity for sensory modality (vision vs. tactile; purple), object conditions (green), and interaction (blue); 2-way ANOVA with Bonferroni correction (p < 0.0001), see Methods.


To test for significant differences between task conditions, a 2-way sliding ANOVA (Analysis of variance) was conducted (sliding window: 100 ms, factors “objects” with six levels, “sensory modality” with two levels and “interaction” between factors) and Bonferroni-corrected for multiple comparison (p-value: 0.0001). Horizontal lines above the histogram indicate significant differences between the two sensory (visual vs. tactile) task modalities (purple), between objects (green), and significant differences caused by an interaction between objects and task modality (cyan).





3. RESULTS AND DISCUSSION


3.1. Behavioral Analysis

Using this experimental setup, we have successfully trained one rhesus monkey in this grasping task paradigm, and furthermore have recorded behavioral and neural data from this animal, which we report in the following section.

For behavioral analysis of the recorded data, we analyzed the reaction and movement times during both tasks. We tested whether the monkey memorized the object information on both tasks or tried instead to guess the object. It can be assumed that the animal does recognize visually presented objects since seeing objects will give all information needed to grasp objects, especially for an animal that was trained on these objects beforehand and had the chance to familiarize itself with them (Gibson, 1958; Eimas, 1967; Dhawan et al., 2019).

Tactile object information however involves more effort, since the animal needs to move its hand around the object and match known tactile features of the object (Camponogara and Volcic, 2020). However, it was a priori unclear whether the monkey memorizes the object or instead prefers the easier but slower approach, to try out different grasps during the final movement epoch, until a fitting grasp is found for lifting up the object. In order to control for this, we determined the reaction time and movement time of the animal for all trials of both tasks during five recording sessions. Reaction time gives an insight into the preparedness of the animal, while movement time is influenced also by how quickly the object can be grasped and lifted, or whether grip adjustments were necessary (Michaels et al., 2018).

For reaction times, time between the occurrence of the grasp cue and the release of the handrest button, a broad distribution of movement times can be seen during the object presentation period of the tactile trials, when the animal is instructed to tactually explore the object, with a mean reaction time of 309 ms (standard deviation: 142 ms). During the grasp period of tactile and visual trials, however, we can see a more narrow distribution that looks very similar for visual and tactile trials, with a similar mean (mean: 256 and 269 ms, respectively, SD: 33 ms for both). This reflects very likely the state of knowledge of the monkey in these task epochs: during tactile exploration, the animal has no prior knowledge about the object, which might cause some hesitation and general unpreparedness. During tactile grasping, the monkey is then informed, since he has previously explored the object during the tactile exploration. During visual grasp, the monkey has already seen the object and knows which object he has to interact with, allowing him to prepare an appropriate grip. For movement time, a similar difference was observed for its distribution and mean (see Figure 9). During tactile exploration the movement times were generally longer and wider distributed with a mean of 754 ms (SD: 250 ms), reflecting that the animal did not know the object at this time point. Visual and tactile grasps showed a very similar distribution with a mean of 312 and 304 ms (SD: 58 and 52 ms), respectively, indicating that in both cases the animal was aware of the specific object it had to interact with. Reaction and movement time analysis therefore both confirm that the animal perceives the object identify prior to the final grasp of the object and independent of the sensory modality (vision or touch) and is able to use object information for the planning of a suitable grasp.



3.2. Neuronal Activity

To show the suitability of our setup also for neuronal recordings, we demonstrate the successful recording of neuronal activity from two neuronal units, one from primary motor cortex (M1) and one from premotor cortex (area F5) (see Figure 10). A lot is known about the activity of motor and premotor cortex during visually guided grasp conditions. The premotor cortex is mainly known as an area where movements are prepared, while motor cortex becomes active mainly during grasp execution (Fritsch and Hitzig, 1870; Penfield and Boldrey, 1937; Kakei et al., 1999; Hoshi and Tanji, 2000; Fluet et al., 2010; Schaffelhofer and Scherberger, 2016). In line with this past work, we found that activity in M1 and F5 were mainly active during epochs that contained movement, i.e., during tactile exploration of the object and during the actual grasp period in both tasks. This is illustrated in two example neurons from M1 and F5 (see Figure 10).

In both tasks (visual and tactile) the same six objects were presented. When comparing the activity in M1 and F5 for different objects during grasping, slight differences were observed in M1, while larger differences were visible in F5 (sliding ANOVA, Bonferroni corrected, p < 0.0001; see above: Data Analysis). In F5, objects that require a similar grasp (sphere and cube, round and blockbar, ring and blockring) elicit a similar firing rate during the object presentation epoch in the tactile task condition (dashed line), although significant differences between different objects can be found during this epoch (gray line above graph). When comparing visual (solid lines) vs. tactile conditions, we found no significant difference during movement, when the animal grasps the object, as signified by the lack of the top purple line above the graph during most of this period. In both areas the firing rate during grasping is similar for the same objects. During object presentation, however, significant differences are apparent (dark turquoise line on top of the graph). In both areas, the units remain at a lower firing rate during object illumination vs. tactile exploration. This was expected, since the tactile object presentation period contains movement, while the animal sits still during the object illumination in visual trials. In M1 this difference carries over during memory period, where a slightly higher firing rate can be observed, even though the monkey is no longer moving and has already returned to the handrest button. This is most likely remaining motor activity until the biological system had enough time to return to baseline (Evarts, 1968). This difference is significant during early but not late memory. In F5, the opposite is true, where object illumination seems to create a slightly higher firing rate in early memory. Both units show a short moment of significant difference after movement start, which might match findings in human trials, where haptically guided grasps (although by feeling an object in the other hand) lead to an earlier hand shaping but more cautious movement (Camponogara and Volcic, 2019).



3.3. Conclusion

In this paper, we presented a turntable setup that can be used to investigate hand movements in primates under different sensory conditions. The utilization of a motorized turntable with up to six objects allows randomized object presentation, where the monkey can work largely undisturbed from human interactions. Since turntables can be easily exchanged, even larger sets of objects can be presented in different blocks of trials, if needed by the experiment (e.g., see Schaffelhofer and Scherberger, 2016). Overall the number of objects can be scaled up as much as an experiment requires. While this setup was optimized for usage in non-human primates, it is also possible to use a modified version for human subjects, e.g., by scaling up the object size to allow for more natural hand movements.

We used this setup to demonstrate reaction and movement times between different task conditions, which can shed some light on how the animal uses object information to make informed decisions about the best hand grasp. Furthermore, with implants in multiple brain areas, we have demonstrated the suitability of this setup for investigating brain activity during different grasps (with different hand shaping) and different sensory conditions. This may serve for better understanding of how the brain integrates sensory information to generate meaningful movements.
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Studying the routes flown by long-distance migratory insects comes with the obvious challenge that the animal’s body size and weight is comparably low. This makes it difficult to attach relatively heavy transmitters to these insects in order to monitor their migratory routes (as has been done for instance in several species of migratory birds. However, the rather delicate anatomy of insects can be advantageous for testing their capacity to orient with respect to putative compass cues during indoor experiments under controlled conditions. Almost 20 years ago, Barrie Frost and Henrik Mouritsen developed a flight simulator which enabled them to monitor the heading directions of tethered migratory Monarch butterflies, both indoors and outdoors. The design described in the original paper has been used in many follow-up studies to describe the orientation capacities of mainly diurnal lepidopteran species. Here we present a modification of this flight simulator design that enables studies of nocturnal long-distance migration in moths while allowing controlled magnetic, visual and mechanosensory stimulation. This modified flight simulator has so far been successfully used to study the sensory basis of migration in two European and one Australian migratory noctuid species.
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INTRODUCTION

Like the North American Monarch butterfly, many species of moths have been identified as long-distance migrants (Williams, 1958). Naturalistic observations, and comprehensive recordings of flight trajectories using vertical-looking radar, have demonstrated the migratory directions of insects are not necessarily determined by the prevailing wind direction (Chapman et al.,2008a,b, 2010). In fact many insects have some level of control over their desired migratory route, an ability that implies the use of a compass that enables individuals to steer a course during a migratory flight (Chapman et al.,2008a,b, 2015). While the compass systems of some diurnal migratory Lepidopterans, such as the Monarch butterfly (Danaus plexippus) or the Painted Lady (Vanessa cardui), are relatively well described (e.g., Mouritsen and Frost, 2002; Reppert et al., 2004; Stalleicken et al., 2005; Nesbit et al., 2009; Mouritsen et al., 2013), little is known about the compass cues and the navigational mechanisms that enable the migrations of nocturnal migrants such as moths.

One such nocturnal migrant is the Australian Bogong moth (Agrotis infusa), a remarkable nocturnal navigator (see portrait in Figure 6A). After emerging from its pupa in early Spring, somewhere within the semi-arid breeding grounds of inland south-eastern Australia, an adult Bogong moth embarks on a long migration toward the Australian Alps (Common, 1954; Warrant et al., 2016). Because the breeding grounds of Bogong moths are so vast, this journey will occur in one of many possible directions, anywhere between the extremes of directly east (from western Victoria) to southwest (from southeast Queensland), depending on where the journey begins. Migratory flights may take many nights or even weeks and cover over 1000 km. Once the Bogong moths have arrived in the Alps (starting in early October), they seek out the shelter of high ridge-top caves and rock crevices (typically at elevations exceeding 1800 m). In their hundreds of thousands, moths line the interior walls of each alpine cave where they aestivate over the summer months, probably to escape the heat of the Australian plains (Tomlinson et al., in preparation). Toward the end of the summer (February and March), the same individuals which arrived months earlier emerge from the caves and begin their long return trip to their breeding grounds. Once arrived, the moths mate, lay their eggs, and die. The next generation of Bogong moths – hatching in the following Spring – then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Australian Alps and locate the aestivation caves dotted along the high alpine ridges of south-eastern Australia.

To navigate to a specific alpine destination, through unknown territories or environments, Bogong moths need to rely on external compass cues (Warrant et al., 2016; Dreyer et al., 2018b). To study these cues, we modified a previously invented system, the Mouritsen-Frost flight simulator (Mouritsen and Frost, 2002; Minter et al., 2018). The original Mouritsen-Frost flight simulator consists of a cylindrical behavioral arena (placed on an experimental table) which is equipped with a vertical axle to which a flying moth is tethered, and an optical encoder. The encoder is connected to the top of the axle, which continuously measures the flight direction of the moth relative to geographic or magnetic North, thus allowing the reconstruction of the moth’s virtual flight path. The modified Mouritsen-Frost flight simulators we describe here added a projector system, a clear Plexiglass tabletop, a mirror and control software which enables the experimenters to simulate the optic flow of the landscape beneath the moths. This optic flow continuously adjusts its direction to match the direction the moth is heading at any moment in time. The flight simulator’s simple and compact design not only allows deployment in the field, but also in the lab where it can be incorporated within more sophisticated assemblies where stimulation can be controlled, such as within a magnetic coil system, or even incorporated with an electrophysiology rig (Beetz et al. in preparation).

In this paper we describe in detail how a modified Mouritsen-Frost flight simulator is built, the various experiments it can be used for and the types of data it can produce (and how these data can be analyzed). This description will be largely based around our ongoing work on the Australian Bogong moth, and various European relatives, but the equipment and analyses are applicable to a wide variety of flying insects.


The Modified Mouritsen-Frost Flight Simulator

Since one of our main experimental goals was to investigate the magnetic sense of night-flying insects, the entire setup was built from non-magnetic materials.



The Behavioral Arena

A length of wide Plexiglass cylinder (or any other type of plastic cylinder) can be used as an arena. The dimensions of this cylindrical arena are more or less arbitrary, but we have achieved good results using a cylindrical Plexiglass arena of diameter 500 mm and height 360 mm (8 in Figure 1; 5 mm material thickness) placed vertically on an experimental table (Figure 2). The interior design of the arena is of particular importance since moths are extremely sensitive to visual landmarks and will steer their course relative to any larger visible landmark on the inside wall of the arena. We thus avoided having a glossy interior wall (to reduce reflections) or a wall covered in paper or cardboard which can buckle. In order to minimize landmarks, we covered the interior wall of the arena with a uniform self-adhesive black felt, where the visibility of the join was minimized.
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FIGURE 1. A schematic drawing of the flight simulator showing the encoder (1), the encoder mount (2), the diffuser paper (3), the circular Plexiglass lid (4 and 7), the protective brass shaft (5), the tungsten axle (6), and the behavioral arena (8). For explanation see text.
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FIGURE 2. The experimental table. (A) Schematic drawing of the experimental table showing the tabletop (9), the aluminum connectors (10), the circular opening (11), and the telescopic legs (12). (B) A photograph showing its deployment in the field at Col de Coux, Switzerland. For detailed explanation see text.




The Encoder Mount

The optical encoder (described in detail below) is held within an encoder mount at the center of the upper opening of the cylindrical arena. The encoder-mount design is of equal importance as the design of the inside wall of the arena since this mount constitutes a very dominant landmark if a non-symmetrical design is chosen. In earlier experiments, we used a simple transparent Plexiglas beam as an encoder mount, which was placed across the diameter of the open arena top. Unfortunately this introduced a bipolar landmark. The easiest way to avoid this is to place a circular lid on the arena with the encoder mounted at its center. We used a circular sheet of UV-transparent Plexiglass (4 and 7 in Figure 1 and 17 in Figure 3; 510 diameter × 4 mm thick) as the lid (and encoder mount). Topped with Lee filter diffuser paper (3 in Figure 1), this mount can also serve as a projection screen if dorsal visual stimulation is desired (see below). In our setup, the cylindrical casing of the encoder is held in place at the center of the lid by a custom-machined plastic cylindrical mount equipped with a grub screw to fix the encoder (2 in Figure 1). A hole drilled through the center of the lid allows a 110-120 mm long brass tube (5 mm outer diameter – 5 in Figure 1) to be inserted through this hole, and fixed to the Plexiglass sheet with super glue. This thin cylindrical tube surrounds and protects a long (130 mm) tungsten rod (6 in Figure 1) connected to the rotational axis of the optical encoder (1 in Figure 1). The tungsten rod serves as the axle of the optical encoder and is attached to the dorsal thoracic surface of the moth (see below for details).


[image: image]

FIGURE 3. A schematic drawing showing how optic flow (left) and an austral starry night sky (right) are projected onto the experimental arena. Moving optic flow (a satellite image of the Australian countryside) is projected from a projector placed to the side of the table (15), via a 45° mirror (14), onto the underside of a diffusing screen (13) placed on the tabletop under the behavioral arena. A local starry night sky (generated using the planetarium software Stellarium) is projected from a projector mounted above the arena (16) onto a circular diffusing screen (17) placed on top of the arena (which also holds the encoder mount (18) at its center).




The Experimental Table

The design of the table (Figure 2) is more or less arbitrary as well, as long as it features a circular opening at the center of the tabletop that has the same diameter as the circular arena and has sufficient clearance underneath to position a suitable mirror (see Figure 3). After testing many different table designs, we settled on using custom-machined lightweight aluminum tables (700 × 700 × 4 mm aluminum tabletop featuring a 490 mm circular opening at the center) with telescopic legs (850 mm length, if fully elongated) made out of two aluminum pipes (12 in Figure 2; pipe 1: 4 cm outer diameter, 50 cm length; pipe 2: 45 cm length) for maximum flexibility. The choice of aluminum has the added advantage that it is non-magnetic and thus suitable for experiments involving magnetic stimulation. The telescopic legs were useful for leveling the table on uneven ground during outdoor field experiments. The tabletop (9 in Figure 2) was cut into two halves for easy transport (35 × 70 cm each) - it can be easily re-assembled using aluminum connectors (10 in Figure 2). The legs can be disassembled from the tabletop and reconnected using screws. This table can easily be transported in a large suitcase.



Projecting Optic Flow and the Starry Night Sky

In our experiments, we have been interested in the use of stars as compass cues during the long-distance migration of Bogong moths. To create overhead starry night-sky stimuli we use a portable ASUS S1 LED projector situated 1.3 m above the arena (located at 16 in Figure 3) and connected to a laptop via a HDMI cable (3–5 m). To block any stray light from the projector itself, the projector is enclosed within a 3D-printed plastic box with air vents to allow cooling and featuring an opening in front of the lens. This combination of box and projector can be mounted on an adjustable tripod or a ball joint mount (available from Thorlabs) using the typical 1/4” screw for camera/projector mounts.

To simulate the starry sky over our experimental site on the date and time of our experiments, we used the freeware planetarium software Stellarium and created screenshots (screen resolution 7480 × 720 pixels) of these simulated starry skies. These were then cut into a circular shape using Corel Draw X5 and saved as PNG files (300 dpi) to create the stimulus images. These circular images were then projected onto a screen placed on top of the arena. This screen consists of a circular lid of clear UV-transmissive Plexiglass topped with UV-transmissive diffusing paper (Lee Filters 250 half-white diffuser) having a diameter of 50 cm (17 in Figure 3). Since the projector does not emit UV light, and we wished to have the full spectrum of light available from the night sky available within our stimulus, we installed a custom-made LED-ring (built by Timothy McIntyre, University of South Australia: outer diameter 120 mm, inner diameter 50 mm) featuring eight UV LEDs (LED370E Ultra Bright Deep Violet LED; Thorlabs) centered over the exit opening of the 3D-printed plastic box containing the projector. The brightness of the LED-ring was controlled using custom software written in MATLAB (Mathworks, Natick, MA, United States) together with several layers of neutral density filters (Lee Filters) which were fixed to the front of the LED-ring (thus allowing the intensity of UV illumination to be adjusted to natural nocturnal levels).

We have found that the presence of dim, slowly moving optic flow, projected beneath the moth and always moving from nose to tail irrespective of the moth’s orientation in the arena, provides extra motivation for the moths to fly (see below). A second ASUS S1 LED projector (also encased within a 3D-printed plastic box and located at 15 in Figure 3) projects ventral optic flow via a 45° mirror. This mirror (14 in Figure 3; IKEA model NISSEDAL, 65 × 65 cm) deflects the projection of the optic flow onto a screen situated underneath the arena. This screen consists of a transparent Plexiglas plate (11 in Figure 2; 60 × 60 × 0.5 cm) covered with one layer of white opaque diffuser paper (Lee Filters 250 half-white diffuser). The intensity of the optic flow is dimmed to nocturnal levels by using a combination of several neutral density filters (Lee Filters) placed over the exit opening of the 3D-printed plastic box containing the projector.



The Recording System

Our recording system is based on optical encoder systems from US Digital. Our preferred system is their E4T Miniature Optical Kit Encoder (located at 18 in Figure 3) in combination with their USB4 Encoder Data Acquisition USB Device, including all necessary cables. The standard encoder software US Digital Explorer shows the orientation of the encoder axle (or moth) as a compass needle that rotates relative to North within a circular compass rose. In order to fix the tungsten encoder axle (6 in Figure 1) to the encoder and have it rotate freely without jamming, a cylindrical piece of brass (14 mm diameter, 4 mm height), equipped with a tiny hole (1 mm diameter) for the tungsten axle, was glued to the underside of the encoder. The encoder has an angular resolution of 3°, so the output values of the system (2 channel quadrature TTL square-wave outputs which are converted into degrees by the software) range between 0 and 120 rather than 0° to 360°. This means that each output value in degrees has to be multiplied by 3 in the analysis to fit the data into a full circle reference frame. During our experiments, several Microsoft operating systems (Windows XP, Windows 7 and Windows 10) have been used as a platform for the recording software. Since some of our experiments take place in the field, we use a “semi-rugged” laptop model (Dell Latitude E6430 ATG) for our recordings. The output file format is a standard text file (.txt) in which the observed heading directions are saved in a column together with a complementary timestamp. We measure the heading directions at a sampling rate of 5 Hz. Thus, over a period of typically 5 to 10 min, we are able to continuously record a tethered moth’s “virtual flight path,” that is, its heading direction relative to (say) north monitored 5 times per second. From this virtual flight path we are able to construct an average vector representing the moth’s trajectory (Figure 4), the direction and length of which, respectively, reveal the mean orientation angle and directedness of the moth. The directedness of the moth (i.e., its tendency to fly in the same direction) is captured in the r value of its trajectory vector, a unitless value between 0 and 1. More directed moths have longer vectors and larger r values (e.g., Figure 4A, compared to the less directed moth shown in Figure 4B). How the trajectory vectors of tested moths are used to understand their collective migratory flight behavior will be explained in more detail later.
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FIGURE 4. Typical virtual flight tracks recorded by the encoder system. (A) The virtual flight track of a Red underwing moth (Catocala nupta, RU#11) recorded in Illmitz (Austria) over 5 min of consecutive flight (each minute is represented by a different color), plotted relative to magnetic North (mN). In 1, the entire 5 min flight track is shown with the moth’s flight direction recorded every 0.2 s (see enlargement), while in 2 the resultant vectors calculated for each minute of the same track are shown. 3 shows the resultant flight trajectory vector of RU#11 (r = 0.48, α = 177°), based on the 0.2 s samples recorded over 5 min of consecutive flight. (B) As in A, but for the track of another Red underwing moth (RU#5) recorded at the same location. This particular individual was less oriented than RU#11, as seen in the comparably shorter lengths (i.e., lower r values) of the resultant vectors in 2 and 3. Note that even though moth RU#5 flew in many loops (see enlargement in 1), it was able to fly both clockwise and counter-clockwise (black arrows in 1), a good indicator that the stalk was attached symmetrically to the thorax of the moth and that neither of the wings were damaged. (C) The vectors of 14 Red underwings are plotted as gray radial lines in a circular diagram [the vectors of RU#11 (1) and RU#5 (2) are plotted in blue]. The radii of the concentric circles indicate the r value (from 0 to 1) at increasing step-size from the center toward the periphery. Based on these 14 vectors, we can also investigate the orientation behavior of the moths as a single population by employing the Moore’s modified Rayleigh test (see Figures 7, 8), which accounts not only for the direction of each moth (as in a classical Rayleigh test) but also for its directedness (i.e., its flight vector r value).


As mentioned above, we project dim optic flow below the moth (13 in Figure 3) to simulate an apparent forward movement similar to what a flying insect would experience in the wild, thus promoting flight behavior. The encoder system, while recording the virtual flight paths of the tethered moths, is coupled to the ventral optic flow via a feedback loop. This feedback is maintained by the software package “Flying” (custom written software) that instantaneously adjusts optic flow direction in response to changes in heading direction, thus ensuring that the optic flow always moves backward beneath the tethered moth (head to abdomen) as the moth apparently moves forward. The speed of the optic flow can be adjusted in the “Flying” software, and its illumination intensity (as described above) by neutral density filters. The image we used to create the optic flow was a screenshot taken from Google Earth (set to satellite view; see 13 in Figure 3) – the Earths’ surface near the town of Narrabri (New South Wales, Australia) from an altitude of about 800 m. This town lies close to one of the migratory routes of the Bogong moth.



Magnetic Stimulation

To test the effects of an Earth-strength magnetic field on the flight behavior of moths, the behavioral arena can be placed within a double-wrapped (Kirschvink, 1992; Mouritsen, 1998; Schwarze et al., 2016), computerized 3D-Helmholtz coil system consisting of three pairs of orthogonally mounted coils: the X-, Y-, and Z-coils (Figure 5C). This computer-controlled Helmholtz coil system enables us to send minute currents through the paired X-, Y-, and Z- coils which result in changes in the magnitude of the respective component vectors (measured in nano Tesla, nT) and thus in changes in the resulting magnetic field vector. By systematically changing the magnitude of the X and Y components (while the Z-component is kept constant), the orientation of the experimental magnetic field vector can be rotated around the Z-axis (clockwise or counter-clockwise), executing a motion pattern which is depicted as a shaded orange cone in Figure 5A. The horizontal orientation of the experimental magnetic field vector (which we define as pointing to magnetic North, mN) can therefore be set to any desired azimuth relative to geographic North (gN in Figure 5A) without altering the total intensity (the magnitude) of the experimental magnetic field vector or the inclination angle (γ in Figure 5A), both of which are maintained at natural local values. Other stimulus designs are also possible – one could for instance include a change of γ without altering the azimuth of the experimental magnetic field vector. In addition to accurately producing and adjusting natural geomagnetic fields within the flight arena, the coils are also able to create a “magnetic vacuum” (i.e., a nulled, or zeroed field; Mouritsen, 1998) around the moth (see Figure 5B). This stimulus (or rather, lack of stimulus) is useful for disabling the magnetic sense if one wishes to test the responses of moths to other relevant compass cues in isolation, such as visual cues or wind. Moreover, our previous work (Dreyer et al., 2018b) has shown that altering a compass cue in one modality (e.g., magnetic) without a corresponding alteration in compass cues in other modalities (e.g., visual), can introduce cue conflicts (see Figure 6). A nulled field can avoid such conflicts if desired, although cue conflict experiments can be a powerful tool for understanding the interactions of different compass cues. A double-wrapped coil system (Kirschvink, 1992) allows incorporation of an elegant control configuration into the stimulus design. The parallel connection of the coils can be switched to antiparallel connection, supplying the now electronically separated neighboring copper windings of the system with a current of a reversed sign. The resulting local magnetic fields cancel each other out and no magnetic field changes are generated, while the coil system is still operated with electrical current. This results in a true “sham-rotation” of the stimulus which is very useful as a control in behavioral experiments, or to check if, for instance, the coil system itself generates electrical artifacts into nearby electrophysiological equipment. Additionally, the coil system should be carefully grounded.
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FIGURE 5. Magnetic stimuli generated by the Helmholtz coil system. (A) The experimental magnetic field vector (thick black arrow) can be subdivided into 3 vectors (or component vectors) which are oriented perpendicular to each other: the X- (red arrow), Y- (green arrow), and Z-component (blue arrow). The orange cone indicates the rotational movement pattern of the resulting magnetic field vector, which points toward magnetic North (mN). (B) The magnitude of the X-component (red arrow), Y-component (green arrow), and Z-component (blue arrow) of the experimental magnetic field vector, measured at the center of our Helmholtz coil system, plotted as a function of time for a specific magnetic stimulus sequence (shown here as an example). For the first 2 min of this stimulus sequence, the field was nulled to create a “magnetic vacuum” (zero field). Following the 2-min magnetic vacuum, the Helmholtz coil system was set to generate 3 clockwise (light gray) and 3 counter-clockwise (dark gray) 360° rotations (12 s each; resolution of magnetic field changes: 1 step per 1°) while keeping inclination γ constant (as in A). The error bars give the SD around the means of 5 repetitions of the stimulus. Note that the Z-component (and thereby γ) have negative values, reflecting the fact that in the southern hemisphere the field lines of the Earth’s magnetic field exit the Earth’s surface (i.e., inclination angle is defined as being negative). (C) A Helmholtz coil system currently in use in Australia with an arena positioned at its center.
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FIGURE 6. Migratory orientation in Bogong moths is multimodal. (A) A male Bogong moth (Agrotis infusa). (B) Experimental procedure and results. Each tethered moth was subjected to magnetic and visual cues during four 5-min phases (termed phases A–D) and their directions and directedness (orientation and length, respectively, of gray vectors in circular plots) measured. When the positions of the magnetic field (heavy colored arrows) and visual landmarks (black triangular ‘mountain’ and overhead stripe) are correlated and turned together (Phases A,B,D), the moths (n = 42, gray vectors) remain significantly oriented near the landmarks (as indicated by the long (highly directed) red population mean vectors; p < 0.001). When the two cues are set in conflict (Phase C), moths become disoriented (as indicated by the short (undirected) red population mean vector; 0.5 < p < 0.9). The directedness (length) of the population mean vector is given by its R* value: the greater the R* value, the more directed the population of moths it represents. The R* value also reveals the likelihood that the mean flight direction of a population of moths – where each moth has its own direction and directedness (direction and length of gray vectors) – differs significantly from a random, undirected population (according to the Moore’s modified Rayleigh test: Moore, 1980). Dashed circles: required α-level for statistical significance (i.e., the R* value required to reliably distinguish the directedness of the population from a random, undirected population): p < 0.05, p < 0.01, and p < 0.001, respectively, for increasing radius. Outer radius of plots: R* = 2.5. Red radial dashes: 95% confidence interval. gN, geographic North. mN, magnetic North. Data are from Dreyer et al., 2018b and diagram from Johnsen et al., 2020. The photo of the Bogong moth in A is courtesy of Dr. Ajay Narendra, Macquarie University, Australia.


Our coil system (Figure 5C) – custom built by the workshops of the University of Oldenburg – had outer diameters of 1245 mm (X coils), 1300 mm (Y coils), and 700 mm (Z coils). The coil system is powered by constant-current power supplies, one for each coil axis (Kepco, model BOP 50-2M, 50V, 2A). The current running through the coil systems was controlled via High-Speed USB Carriers (National Instruments USB-9162) and custom-written codes in MATLAB (Mathworks, Natick, MA, United States). A Meda FVM-400 magnetometer, the probe of which is placed at the position of the moth, is used to ensure that the magnetic field is correctly set with the appropriate field parameters for the experiment at hand.



EXPERIMENTAL PROCEDURES


Keeping Moths Prior to Experiments

In order to minimize stress, the moths should be stored in a cool, shaded and quiet place, ideally at least one meter above ground (because of ants which might be attracted to the samples). This place should, however, not be totally dark but exposed to the natural light cycle so as not to disturb the moths’ circadian rhythm. We housed our Bogong moths in individual plastic containers which were equipped with cotton buds drenched in honey solution (10%). We recommend using animals for orientation experiments within 3 to 6 days of capture. The cotton buds were replaced with new cotton buds drenched in fresh honey solution every second day. We fed our animals prior to every experiment with fresh honey solution.



Attaching Tethering Stalks to Moths

To prepare moths for tethering in the flight arena, we adopted a method for attaching tethering stalks to moths that was first established in the lab of Dr. Jason Chapman (University of Exeter, United Kingdom, e.g., Minter et al., 2018). Moths were first calmed by placing them in a freezer for a few minutes and then positioned under a plastic gauze mesh (5 × 5 mm mesh holes) secured to a table top on either side of the moth with weights (anything heavy). The thick layer of scales is then removed from the dorsal thoracic plate (the mesoscutum). This can simply be achieved by using a regular small paint brush or a custom-made micro-vacuum equipped with a pipette tip that sucks the scales from the mesoscutum. The micro-vacuum has the advantage of minimizing scale dispersion in the air. In any case, a dust mask is recommended for this procedure. After the scales are removed from the mesoscutum, a ca. 15 mm length of straight tungsten wire (ca. 0.5 mm diameter) is used to make a tethering stalk (this tungsten wire is identical to that used for the encoder axle: 6 in Figure 1). Tungsten wire is an ideal choice as it is non-magnetic and sufficiently stiff. With a pair of needle-nosed pliers, the final 3-5 mm of the tungsten wire is bent into a small loop that is then bent 90° to the rest of the stalk. This loop is glued to the mesoscutum of the moth using Evo-Stik Impact contact adhesive (Evo-Stik United Kingdom), thus furnishing the moth with a vertical tethering stalk. Great care should be taken to avoid damaging/immobilizing the wings or antennae with adhesive, and to position the tungsten stalk perfectly vertically. Once the adhesive is dry, a stalked moth should be kept with fresh food in a plastic container in a cool, shaded and quiet place. For this purpose, we used containers made from UV-transparent Plexiglass. At sunset, prior to the experiments, our stalked moths were placed outside (in individual UV-transmissive Plexiglass containers) on a somewhat elevated position to ensure they could view the setting sun and the celestial rotation for at least 1 h after sunset. Following this, moths were returned to the lab and placed in darkness. Prior to each experiment the moths must be totally dark adapted.



Insertion of Moths in the Flight Simulator

Even though the apparatus can (with some experience) be operated by one person alone, it is wise to plan for two experimenters to enable a smooth workflow. One person should run the computer, while the other attaches the experimental animals to the simulator prior to each test. Since the experiments should be conducted in more or less absolute darkness, the animals should be handled using a headlamp featuring a dim red LED (invisible to most insects). The experimental moths can easily be extracted from their containers by grasping the tungsten tethering stalk using a pair of regular stainless-steel haemostats. Moths generally fly vigorously when held by the tethering stalk. To tether the moth to the optical encoder, a small length (ca. 10–15 mm) of tightly fitting thin rubber tubing is partially pulled over the free end of the tungsten encoder axle (6 in Figure 1), i.e., the end that is not connected to the optical encoder. The other free end of the tubing is used to receive the end of the tungsten tethering stalk, which is inserted with the help of the haemostat. This is a very delicate procedure since any permanent bending of the tungsten encoder axle will lead to artifacts in the recorded heading directions – the entire procedure should be practiced in daylight prior to beginning experiments.

The encoder software needs to be calibrated to an external reference direction prior to each experiment. This could be magnetic or geographic North, depending on the experimental design. A light-reflective sticker positioned at North somewhere in the vicinity of the setup turned out to be very helpful for locating this direction. Calibration is achieved by turning the moth on its tether until it is oriented northward and then holding it there until the software encoder direction is zeroed (i.e., a readout of 0° = North). After the system is calibrated, the animal should be given up to a minute to accustom itself to the experimental environment and “settle down” before the recording starts. During this time period the encoder software should be used to check whether the animal can turn in both directions, whether it spirals vigorously in one particular direction (i.e., continuously turns around its tethering axis) or if it stops permanently. If one of these behaviors is displayed it likely indicates a stalking error and the animal should be discarded. In an ideal recording situation, the animal will settle down to a given flight direction after a short while and show a typical behavior which we refer to as “scanning.” This means that the compass needle of the encoder software is hovering over a particular direction on the compass rose, swinging back and forth over a span of about 15°–45°. Using a spirit level, one should occasionally check that the encoder is level since this might influence the flight direction of the animal.



Experimental Precautions

A necessary first step when using a flight simulator to study the migratory behavior of an insect species is to establish the insect’s natural migratory direction during its migratory season – this can then be used as a control direction for further orientation experiments. While being tested, the animals must experience an unobscured view of the sky and an undisturbed magnetic field. The choice of the experimental location is probably equally as important as the timing of the experiments. “Geographic bottlenecks” along the migratory route, such as mountain passes or valleys, usually concentrate insects during their migration and are often good places for catching sufficient numbers for these experiments.


Data Selection

It is reassuring when the recorded natural migratory (control) direction coincides or overlaps with previously established vanishing directions or natural observations, but the experimenter should always be aware of his/her own confirmation bias. The exclusion of a moth from either the experiments or from the analysis should only occur according to pre-determined rules, not according to rules created after the experiments. In our experiments, if a moth performed under ideal outdoor experimental conditions and was still unable to steer a course (irrespective of the direction it chose to fly), and its resulting trajectory had an r value less than 0.2, this moth was excluded from the analysis. However, to compare indoor orientation experiments under different stimulus conditions, no lower threshold for the r value should be set because disorientation might be a valid outcome of the experiment due (say) to the presentation of a deliberate cue conflict between two or more of the applied stimuli. Thus, in this case, a low r value might be an expected outcome and filtering out this particular moth might mask the effect of a natural behavior.

It sometimes happens that even a seemingly well-oriented moth stops performing flight behavior before the previously determined experimental time is over. If this occurred, we usually tried to kick-start the animal by gently bumping the arena. If a moth stopped 4 times during an experiment, we aborted it. In particularly unsettled weather conditions, such as a looming thunderstorm, we found that the moths were not eager to perform in the arena and frequently stopped flying (and this occurred both during indoor and outdoor experiments).



Moon Phase and Weather

Even if the moon’s disc is not directly visible to the animal, the moonlight entering an outdoor arena can introduce an intensity gradient on the wall of the arena situated opposite to the physical direction of the moon’s disc. This uneven illumination of the arena wall could provide unwanted (and confounding) orientation cues for the flying moth. It is possible to shade the arena from moonlight using a flat piece of plywood or commercially available sunshades (e.g., a beach umbrella), but this might block a considerable part of the sky which in turn could interfere with the experimental design. Moreover, any top-heavy structure with a large surface is very vulnerable to be blown over by the wind. When choosing a suitable time window for outdoor experiments, the current moon phase, prevailing winds, predicted precipitation and temperature are important factors to account for and to monitor. If possible, the dew point spread should also be monitored during an experimental night as we found that moths began to behave erratically in the arena if there was too much moisture in the air (Dreyer et al., 2018a).



Putative Artifacts

Since many animal species are attracted to landmarks in behavioral experiments, great care must be taken to avoid unwanted landmarks, such as treetops in outdoor experiments, being visible from the inside of the arena. The easiest way to check for this is to set up the arena at the same height above ground as it is intended to be located during an experiment and to visually confirm that no outside landmarks are visible from the inside of the arena by sticking one’s head through the bottom of the arena.

Any stray light generated by the equipment must be avoided since this too could provide an unwanted orientation cue that could affect the heading direction of a tested moth. This includes the screen of the recording computer and the reflection of the screen light on the face of the experimenter. The computer screen should be set to the lowest possible intensity setting and covered with a thin sheet of red plastic filter to block out most wavelengths visible to insects (such filter sheets can be obtained from Lee Filters). The recommended use of red LEDs during the experiments has already been mentioned. A red-light regime will make it very difficult to read or identify handwritten notes or markings which were made using a pen or marker with red ink. To check if the walls of the arena are impermeable to artificial stray light from the outside, it is very helpful to put a very bright light source on the inside of the arena and to look for stray light shining through cracks and irregularities from the outside.



Experimental Design for Orientation Experiments

In previous orientation experiments in which a migratory behavior was convincingly demonstrated to be driven by the animal’s orientation relative to a particular compass cue, the animal’s orientation could be altered by changing the position or orientation of that cue (e.g., Kramer, 1950; Wiltschko and Wiltschko, 1972; Emlen, 1975; Lohmann, 1991).

One classic approach is the ABA stimulus configuration (Figure 7). In an orientation experiment, this entails an animal being asked to perform migratory orientation behavior relative to a particular cue (condition A). In our illustrated example, this cue is a weak wind stream provided by a small fan mounted into the arena wall (Figure 7) – Bogong moths respond to this wind stream by flying somewhat into it. In a second experimental condition, the spatial orientation of this cue is altered (e.g., the position of the fan is shifted by 180°: condition B). This experimental sequence is referred to as an AB sequence (Figure 7A), and this can be used to determine whether the moth truly responds to the cue (which in this case means that the moth should turn roughly 180° from A to B, as indeed it does: Figure 7D). Reversing the order of the experimental conditions (i.e., a BA sequence) can be used to confirm the orientation response (Figures 7B,E). An ABA stimulus configuration (Figures 7C,E) is a classic configuration which seeks to confirm that the behavior observed initially can be restored and is thus truly related to the change in spatial orientation of the compass cue. The results of a classic ABA experiment become even more convincing when the ABA sequence is exchanged for a BAB sequence in 50% of the experiments without a noticeable change in the conclusions that can be drawn from the results, and if control experiments (e.g., AAA, BBB or a control condition featuring no relevant orientation-related information, CCC), alternating with the actual experiments, lack the previously observed changes in the behavior of the animal.
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FIGURE 7. The modified Mouritsen-Frost flight simulator can be used to monitor changes in flight behavior in response to changes in putative orientation cues. Since wind speed and direction influence the migratory behavior of moths (e.g., Chapman et al., 2008b), we exposed migratory Bogong moths to very weak air streams (6 kph) from two different directions relative to magnetic North while they performed flight behavior in our arena. The air streams were generated by two small fans. (A,D) The AB stimulation sequence. The fan located in the southwest was activated (red dashed arrow) and the animal flew for 5 min (condition A). We found that moths fly roughly toward the direction of the wind stimulus (i.e., into the wind), as seen by the red flight trajectory vector shown in D. The upper vectors in panels D–F indicate the entire average 5 min flight while the lower vector sequence indicates the flight behavior within each successive 1-min bin. The length of each vector indicates the “directedness” of the flight, that is, the fidelity with which the moth kept to the same flight direction. Directly following condition A, the fan located in the northeast was switched on and the animal flew for another 5 min (condition B), again into the wind as seen by the blue flight trajectory vector shown in D. (B,E) The BA stimulation sequence. The same procedure as in A,D but with the wind stimulus presented in the reverse sequence. (C,F) The ABA stimulation sequence. Here the fans were rotated by 45° to form an east-west axis. The fan located in the east was activated first (blue dashed arrow) and the animal flew for 5 min (condition A). Then the fan located in the west was activated for 5 min (condition B). Finally condition A (east fan activated for 5 min) was repeated.


In the case of Bogong moths, we discovered that most of the animals are extremely sensitive to the presence of unintentionally presented visual landmarks (an irregularity in the felt on the wall of the arena, a scratch in the lid holding the encoder, etc.). This becomes problematic if tested under condition B since any compass cue which is systematically changed in condition B is now set in conflict with the previously learned spatial relationship of this cue with the unintentionally presented landmark, which can confuse the moth. In our earliest experiments we discovered that this led to clearly less oriented flight behavior during condition B. We took advantage of this “sensitivity” toward landmarks in later experiments by employing obvious and intentional visual landmarks within the arena. This allowed us to design cue conflict experiments which demonstrated that Bogong moths are able to sense the Earth’s magnetic field and that they learn the relationship between this magnetic field and visual landmarks to steer migratory flight (Dreyer et al., 2018b).



ANALYSIS OF ORIENTATION DATA

The results of the cue conflict experiment on Bogong moths mentioned above (Figure 6B) provide a good introduction to the methods we have used to analyse data generated in the flight arena (Dreyer et al., 2018b). In these experiments, 42 moths were each allowed to fly for 5 min while exposed to a conspicuous visual cue (a triangular black “mountain” above a lower black “horizon” within the flight simulator arena, and a black stripe on a rotatable circular UV-transmissive diffuser above the moth) and an earth-strength magnetic field (Figure 6B). These two cues – visual and magnetic – were either turned together while maintaining their learned correlated arrangement (Figure 6B), or one cue was turned without the other to create a cue conflict (Figure 6B). Whenever the cue correlation was maintained, the population of moths remained oriented, but when a cue conflict was introduced, they became disoriented, implying that both visual and magnetic cues are used for steering migratory flight (Dreyer et al., 2018b).

These results were derived by analyzing the 42 moths as a single population. For each of these moths, our recording system, as previously mentioned, allows us to record the virtual trajectory of each moth by sampling its orientation choices as angles relative to gN at a frequency of 5 Hz (Figures 4A,B). Based on these angles, custom-written software and the MATLAB Circular Statistics Toolbox (Berens, 2009) were used to calculate an average vector representing the moth’s trajectory, the direction and length of which reveal the mean orientation angle and directedness of the moth, respectively – these are the gray vectors in the circular data plots for Red underwing moths shown in Figure 4C (14 vectors for the 14 moths flown) and for Bogong moths shown in Figure 7 (42 vectors for the 42 moths flown). The length of the vector is reflected in its r value (a unitless value between 0 and 1) – the longer the vector, the greater the r value and the more consistently the moth flew in its chosen direction.

Once we have determined the average vectors for each of the 42 moths, we can investigate the behavior of the moths as a single population. To do this, we apply a non-parametric Moore’s modified Rayleigh test (MMRT: Moore, 1980; Zar, 1999), calculated using the circular statistics software Oriana (KCS, Pentraeth, United Kingdom). The MMRT ranks the vectors according to their length (i.e., r value) and weights them according to these ranks, meaning that not only the mean direction of a moth’s vector, but also its directedness (length), impacts the ultimate outcome of the test – the generation of an average heading vector for the population as a whole (for a detailed description of the statistics involved, see Dreyer et al., 2018b). This average population vector – shown as the red vector in each of the circular data plots of Figure 6 – has a length that indicates the likelihood that the population is heading in the specific direction indicated by the vector. This length is represented by the vector’s R∗ value (see Figures 6B, 8 for details). The greater the R∗ value, the more directed is the population it represents.


[image: image]

FIGURE 8. A comparison of the non-parametric Moore’s modified Rayleigh test (MMRT) and the classical Rayleigh test, using the flight trajectories of 23 Dark sword-grass moths (Agrotis ipsilon) recorded at Col de Coux in Switzerland. (A) Flight trajectories analyzed using the MMRT. The individual flight trajectory vectors of each moth are shown as blue vectors and the average heading vector of the population (sample) derived from the test is shown as the red arrow. The dashed circle indicates the required R* value for statistical significance (p < 0.05) and the red line on the outer circle marks the 95% confidence interval. The thin gray circles indicate the r value (in steps of 0.2), which are applicable to the flight trajectory vectors of individual moths (blue vectors). (B) Same data as in A, but now evaluated using the classic Rayleigh test. The mean flight directions of each moth are shown as blue dots around the periphery of the circle. According to the classic Rayleigh test, which does not weight the orientation choices according to their r value (as does the Moore’s modified Rayleigh test, A), the population is not significantly oriented. The dashed circle indicates the required α-level for statistical significance (p < 0.05). Note that the length of the red arrow in B encodes the r value, not the R* value. (C–E) The mean flight directions of individual moths (from panel B) were ranked according to the lengths (r values) of their underlying flight trajectory vectors (from panel A) and accordingly assigned to three bins: r values 0.20–0.33 (C, n = 8), r values 0.35–0.49 (D, n = 8), and r values 0.53-0.93 (E, n = 7). The mean vectors for each of the three sub-populations were computed using only the mean flight directions of the moths (arrows in each plot). Moths with flight trajectory vectors having larger r values (C) tend to cluster more tightly around a single orientation direction (leading to a longer mean sub-population vector).


A significant advantage of knowing the entire virtual flight trajectory of each moth is that one has access to much more information. In addition to knowing the moth’s average heading direction (trajectory vector direction), one also knows how well directed the moth was during its flight (trajectory vector length).

When a trajectory exists, the advantage of the MMRT over the regular Rayleigh test (Batschelet, 1981) becomes apparent (Figure 8). An MMRT analysis of the flight trajectory vectors of 23 Dark sword-grass moths (Agrotis ipsilon), recorded at Col de Coux in Switzerland (Figure 8A), is compared to a classic Rayleigh analysis of their heading directions alone (Figure 8B). A significant average heading vector for the population only appeared after accounting for the directedness of the 23 moths by using the MMRT test (red vector in Figure 8A, p < 0.05). A classic Rayleigh test (ignoring directedness) on the same data indicates that the moths were instead disoriented (red vector in Figure 8B, p = ns). The reason for the difference lies in the fact that for this data set (and many other flight-simulator data sets we have observed), more directed moths (i.e., moths with flight trajectory vectors having larger r values) tend to cluster more tightly around a single orientation direction (leading to a longer average subpopulation vector, Figure 8E), whereas less directed moths tend to have average heading directions that are somewhat more random (Figures 8C,D). Since the MMRT gives greater weight to more directed individuals, this test finds a significant orientation direction for this population of Dark sword-grass moths (Figure 8A).

Both the Rayleigh test and the MMRT operate on the null hypothesis that the orientation choices are uniformly distributed around a circle (Batschelet, 1981). However, in the case of a rejection of the null hypothesis, both tests assume a circular normal distribution, meaning that the distribution of data is unimodal (i.e., possesses a single cluster of orientation choices). If a bimodal distribution of orientation choices is to be expected, the mean orientation angle of each individual animal can first be transformed by doubling this mean angle (if the resulting angle is greater than 360°, one must subtract 360° from this result). Once this is done, one is free to test the modified dataset using the MMRT or Rayleigh test.

Finally, in order to determine whether the distributions of orientation choices made by two different populations (or samples) are significantly different, we employ the non-parametric Mardia-Watson-Wheeler uniform-scores test (Batschelet, 1981), calculated using Oriana. This proved useful in our studies of Bogong moths, where tested populations of autumn and spring migrants were expected to migrate in significantly different directions (and indeed did so: Dreyer et al., 2018b). The Mardia-Watson-Wheeler test can also be used for determining whether populations of two different species possess the same or different migratory headings (Dreyer et al., 2018a).



CONCLUSION

The Mouritsen-Frost flight simulator was initially designed to record the orientation choices of diurnal insects during their migration (Mouritsen and Frost, 2002). Relative to their “natural orientation behavior,” a subpopulation of tethered flying insects can then be tested under conditions in which the spatial orientation of a putative compass cue (or several cues) is altered, with the goal of determining whether the insects compensate for this alteration. Apart from this obvious application, one can also use the flight simulator to investigate the influence of external “disturbance factors,” such as an artificial light stimulus of certain intensity, polarization, and/or wavelength, on the flight performance of insects. Such methods could for instance also be used to investigate the influence of other stressors, such as light pollution on insect migration, or to investigate the influence of various types and concentrations of pesticides on the migratory flight capacities of different insect species.

A technically more advanced application is to integrate the flight simulator within an electrophysiology rig, as is being successfully done to monitor the neuronal activity of brain areas involved in navigation while an insect is tethered within the arena (Beetz et al., in preparation). In these experiments, an extracellular tetrode array (containing typically 4-5 electrodes) can be inserted into the brain while the insect performs flight behavior in the arena under controlled stimulation conditions. The tetrode enables the experimenter to pick up neuronal responses from several neurons at once (typically 2–5 per electrode), increasing the chances of encountering neurons involved in the processing of navigational information. Changes in the firing rates of recorded neurons could subsequently be correlated to changes in the spatial orientations of external sensory stimuli and to changes in flight direction that these may induce. Such methods would constitute powerful tools for dissecting the function of neural networks responsible for processing and acting on sensory information encountered during migration and navigation.
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Reversal learning requires an animal to learn to discriminate between two stimuli but reverse its responses to these stimuli every time it has reached a learning criterion. Thus, different from pure discrimination experiments, reversal learning experiments require the animal to respond to stimuli flexibly, and the reversal learning performance can be taken as an illustration of the animal's cognitive abilities. We herein describe a reversal learning experiment involving a simple spatial discrimination task, choosing the right or left side, with octopus. When trained with positive reinforcement alone, most octopuses did not even learn the original task. The learning behavior changed drastically when incorrect choices were indicated by a visual signal: the octopuses learned the task within a few sessions and completed several reversals thereby decreasing the number of errors needed to complete a reversal successively. A group of octopus trained with the incorrect-choice signal directly acquired the task quickly and reduced their performances over reversals. Our results indicate that octopuses are able to perform successfully in a reversal experiment based on a spatial discrimination showing progressive improvement, however, without reaching the ultimate performance. Thus, depending on the experimental context, octopus can show behavioral flexibility in a reversal learning task, which goes beyond mere discrimination learning.

Keywords: spatial learning, cognitive abilities, behavioral plasticity, cognition, cognitive flexibility


INTRODUCTION

A reversal learning experiment is a classic experiment to investigate the cognitive abilities of an individual and was originally used by Bitterman and colleagues to compare the learning abilities of different species (Bitterman, 1965). Studying the cognitive abilities of Octopus vulgaris is of particular interest, as this species, although belonging to the mollusks, is usually considered to possess extraordinary or “vertebrate-like” cognitive abilities (Mather et al., 2010) such as its ability to learn from observing conspecifics (Fiorito and Scotto, 1992). Moreover, high cognitive abilities are often inferred from the large size and organization of its brain (Young, 1971).

During a reversal learning task, the animal first has to learn to discriminate between two stimuli to a predefined criterion during the acquisition phase. After passing the criterion, the signs of the stimuli are reversed, and the previously positive stimulus is now changed into the negative stimulus and vice versa. Usually, a number of reversals are conducted to test whether the animal will show progressive improvement in such a serial reversal learning experiment; progressive improvement is defined as a decrease in the number of errors per reversal over all reversals conducted. Some animals even achieve the ultimate performance of one-trial learning; they need to experience only one error to realize that a reversal has taken place (see, for example, Mackintosh and Mackintosh, 1964; Balderrama, 1980; Karson et al., 2003). Thus, over time, some animals learn to learn (Harlow, 1949); they are forming a reversal learning set. This learning ability illustrates that reversal learning is going beyond mere discrimination learning during which an animal learns stimulus specific responses (Shettleworth, 1998). Reversal learning has usually been considered a good indicator for behavioral flexibility. Species, especially those that inhabit complex environments, profit from behavioral flexibility, as it will allow them to adapt to changes in their environment and/or to find suitable alternatives quickly (Day et al., 1999; Bond et al., 2007; Lea et al., 2020).

Just recently, Bublitz et al. (2017) revisited visual reversal learning in octopus in good tradition of work of the mid-twentieth century (Boycott and Young, 1957; Mackintosh, 1962; Young, 1962b; Mackintosh and Mackintosh, 1963, 1964). These previous studies analyzed various aspects of visual reversal learning such as the effect of reversing daily without prior reaching a learning criterion, the effect of overtraing on reversals with and without irrelevant cues, or the effect of vertical lobe removal on reversal learning (for overview see Table 1 in Bublitz et al., 2017) with the vertical lobe being an essential neuronal structure for learning and memory (see for example, Young, 1960, 1970). From these studies, it was concluded that octupus can perform multiple reversals and can increase its performance over reversals. Bublitz et al. (2017) refined the general methodological approach of the previous visual reversal learning studies by the elimination of pretraining or the introduction of a secondary reinforcer, thereby conducting a “classic” visual serial reversal learning experiment. The results varied considerably between individuals. One of the individuals participating in the study of Bublitz et al. (2017) showed a very good reversal learning performance, reducing the number of errors over four completed reversals. In contrast, the three other individuals failed to reach the learning criterion already during the first or second reversal. Moreover strong stimulus preferences occurred that might have affected learning in general and reversal learning in particular.

In many animals, the performance in a visual reversal learning experiment is contrasted with the performance in a spatial reversal learning task in which the individual either has to choose the right or left side, a very simple spatial discrimination, depending on the experimental stage. For a number of animals, the performance in the latter is better than in a visual reversal learning experiment (see, for example, skunks in Doty and Combs, 1969; or painted turtles in Holmes and Bitterman, 1966). In general, good spatial reversal learning performance including progressive improvement has been documented for various species ranging from bumblebees (Chittka, 1998), pigeons (see, for example, Gonzalez et al., 1967; Ploog and Williams, 2010), to dogs (Tapp et al., 2003) and horses (Potter and Fiske, 1979); one-trial learning occurred in chimpanzees (Schusterman, 1964), rats (Dufort et al., 1954), or cockroaches (Balderrama, 1980). One explanation for this phenomenon is related to the fact that the spatial discrimination does not involve irrelevant cues as does the visual task during which the side, left or right, is the irrelevant cue on which the animal should not focus on for making its response. Consequently, in line with these previous studies, octopus might also perform better in spatial discrimination tasks and its reversals. In addition, orientation in space might be a crucial ability for most mobile species, as the octopus, which might consequently result in a better spatial than visual (reversal) performance. Spatial orientation, in general, is also expected to play a major role for octopus, which is a central place forager (Mather, 1991b). The octopus individuals often hide themselves in their dens. However, they leave their shelters to go for foraging. Good spatial abilities are required to return to the den after the foraging trip. These spatial abilities are also asked for if an octopus decides to move into a new den. An additional factor that might assert even more pressure on the development of good spatial orientation skills is that octopus is a soft-bodied animal that faces considerable predatory pressure (Mather and O'Dor, 1991). Thus, reducing the amount of time outside the shelter to a minimum by good spatial knowledge seems to be critical for survival. Besides these theoretical considerations deduced from the octopus ecology, experimental evidence for good spatial skills is already available for octopus: octopus species have been shown to rely on landmarks for spatial orientation (Mather, 1991b), some individuals successfully performed in detour experiments (Wells, 1964, 1967, 1970), and they were able to (re)locate burrows in arenas (Boal et al., 2000). Moreover indirect evidence for good spatial skills results from the observations of Mather (1991a) describing O. vulgaris as often moving to new places in successive hunts, which again requires spatial knowledge to be able to return to the den.

Among the cephalopods, spatial reversal learning has only been addressed in O. maya (Walker et al., 1970) and Sepia officinalis (Karson et al., 2003). In Walker et al. (1970), however, the signs of the stimuli were only reversed twice, and finally, training was stopped at the beginning of the second reversal. In contrast, Karson et al. (2003) conducted a classic spatial serial reversal learning experiment with common cuttlefish in which one individual even completed eight reversals, and two individuals met the learning criterion with one or two errors.

Spatial serial reversal learning has not been tested in O. vulgaris yet, our model species for cognitive abilities. Thus, the main goal of this study was to collect data on spatial reversal learning in O. vulgaris to further elucidate on the reversal learning abilities of octopus as a measure of their cognitive flexibility. This data set might also allow comparing the visual and spatial reversal performance of octopus. We hypothesized that octopus performs better in the spatial serial reversal learning experiment, as (1) stimulus preferences dominating visual discrimination experiments do not play a role in spatial tasks, and as (2) there is good theoretical as well as empirical evidence that octopus possesses good spatial abilities.

During training of the original task, three octopus individuals failed to improve their performances. In an attempt to overcome stagnation, we introduced an incorrect-choice signal (ICS), presented after an incorrect response. As after its introduction, the octopus individuals easily reached the learning criterion and could complete several reversals successfully, we set out to study the effect of this ICS. Thus, we trained a second group of octopus individuals without prior training experience without ICS and compared the learning performance of these two groups.



MATERIALS AND METHODS


Experimental Subjects

Seven subadult O. vulgaris (Ov1–Ov7), caught in the Tuscan Archipelago of the Mediterranean Sea, served as experimental subjects. The number of experimental animals compares well with the sample size of previous reversal learning studies including capuchin monkeys, turtles, lizards, crayfish, minks, ferrets, and skunks (Holmes and Bitterman, 1966; Capretta and Rea, 1967; Doty and Combs, 1969; Day et al., 1999; Beran et al., 2008). Previous octopus reversal learning studies had trained 4–10 individuals per condition (Boycott and Young, 1957; Mackintosh, 1962; Young, 1962b; Mackintosh and Mackintosh, 1963, 1964). The dorsal mantle length of the octopus of this study was 5–8 cm. Sex could only be determined in Ov5, a male octopus. Except for Ov3, all animals were experimentally naive. Ov3 had already been trained for 1,160 trials to choose one out of two target tubes (TT), the task of this study, however, using two identical optical stimuli moving up and down close to the TTs instead of the monitor lightening up as start signal (see Experimental setup and Experimental procedure for details). Due to differences in training, the data of Ov3 will only be presented in the Supplementary Material; however, they will not be included in the analyses of this manuscript.

The animals were transported in containers containing natural sea water. After transportation, under continuous monitoring, the animals were adapted to the conditions of the home tanks by adding water from the home tanks to the containers slowly and dropwise before they were inserted in the home tanks.

The animals were kept according to the recommendations on maintenance, care, and welfare given for cephalopods (Smith et al., 2013; Fiorito et al., 2014, 2015). All seven subjects were housed individually in 250-L glass tanks (100 × 50 × 50 cm) with a substrate of sand, coral, stones, and shells that allowed the animals to hide and build a den. The tanks were filled with natural sea water with a salinity of 35 g/kg at a water temperature of 19–23°C. These parameters of maintenance as well as all essential parameters of water quality were regularly checked. With the help of artificial illumination, a natural day/night cycle of 12 h/12 h was achieved.

Food was usually provided to the subjects twice a day exclusively during experiments and according to their performance, however, overall assuring that the animal got an adequate amount of food every day. On days, on which no experiment was conducted, the animals were fed ad libitum. The amount of food taken on these days allowed adjusting the amount of food given during experiments to achieve good satiation daily. The experimental animals were fed with either bivalve or gastropod mollusks. The type of food was chosen according to individual preferences as well as availability but was kept constant for one individual over the entire experimental period. Uneaten food was removed after feeding.

Depending on the individual and its motivation, a single experimental session run with one octopus individual lasted from 90 min up to approximately 2 h. Experiments were conducted 5–7 days a week over a total period of up to 7 months of training.

The animals' health status including, for example, its posture, movements, changes in body pattern, vigilance, or feeding behavior were controlled at least every morning and evening. This study was conducted in accordance with the directive 2010/63/EU, and maintenance and the experiments (Permit No. 6712GH00113, Staatliches Amt für Umwelt und Natur Rostock, Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei, Mecklenburg-Vorpommern) as well as transport (EG Verordnung 1/2005, Reg.-Nr. 082120000714) were approved by local authorities.



Experimental Setup

The general experimental setup is shown in Figure 1. The components of the experimental setup were installed inside the individual home tanks before starting an experimental session. Outside the tank at one fare end, an LCD monitor was permanently attached (21.5 in., 60 Hz, E2251 Full HD, LG electronics, Inc., Seoul, South Korea). The monitor was lit to signal the start and dimmed to signal the end of a trial. As octopus is polarization sensitive (Hanke and Kelber, 2020), the animals might have used either the polarization and/or the luminance information as start or end signal. A vertical divider separated the area in front of the monitor into equally large left and right compartments, compartments A and B. Within each compartment in the outer right, respectively, the outer left corner and close to the LCD monitor, a transparent acrylic TT (length, 55 cm; diameter, 3 cm) was inserted through the lid of the aquarium. These TTs served as targets that the animals were supposed to touch and provided the food reward to the subjects in case of a correct response. As established by Bublitz et al. (2017), the food reward was preceded by a secondary reinforcer, a transparent acrylic rod with a black tip that was moved up and down the respective tube. Upon an incorrect response, a black plastic rod could be inserted into the aquarium, the incorrect-choice signal (ICS; see Experimental procedure, Figure 1C and Supplementary Video 2). At approximately 50 cm distance to the monitor and aligned with the center of the monitor, a terracotta flower pot served as a starting point for each single trial during experiments and ensured that the subjects had approximately the same viewing angle on the display and the TT, subtending 50°, and the same distance to the TTs at the beginning of each trial. A feeding tube inserted right above the terracotta flower pot was used to lure the animal back to the starting point after its response, if necessary. For luring, the secondary reinforcer was gently moved up and down this feeding tube, which usually attracted the octopus' attention.


[image: Figure 1]
FIGURE 1. Experimental setup. (A) A liquid crystal display (LCD) monitor M was attached to the tank from outside to signal the start and the end of each single trial by lighting and dimming the monitor, respectively. The area in front of the monitor was separated by a divider D into two compartments. In each compartment, a target tube TT was inserted through the lid of the aquarium; the animals were required to touch the target tube for a response. Each single trial started with the animal positioning itself on a flower pot P at approximately 50 cm distance to the monitor. The whole area was illuminated by a lamp L. To avoid secondary cues during experiments, the top of the aquarium and the side walls were shielded with an opaque cover O (side cover not shown for clarity). Experiments were observed and recorded with the help of a camera C. Not drawn to scale. (B) Photograph of the camera with which the aquarium could be overseen even if the aquarium was covered from all sides. The octopus is sitting on the flower pot, and the two target tubes are on the left and right side in front of the monitor, which has already turned bright signaling the start of the trial. A third tube close to the flower pot served to lure the octopus to the flower pot, if necessary. Please note that the divider can hardly be seen due to the position of the camera with respect to it and as it is aligned with the third tube. (C) After an incorrect response, the octopus was presented with an incorrect choice signal (ICS), a black rod, upon which the octopus initially/sometimes changed their body pattern to a broad mottle pattern—the ICS was introduced when training stagnated (group 1) or right from the start of training (group 2).


During experiments, an opaque curtain around the aquarium as well as an opaque cover on the lid of the tank kept the experimenter out of sight of the octopus in order to avoid unintentional secondary cueing. The experimenter observed the experimental procedure via a camera (Genius WideCam 1050, KYE System Corporation 2011, Taipei, Taiwan) equipped with a wide-angle lens. The whole experimental area was illuminated with a lamp from above.



Experimental Procedure

After the insertion of the animals into the aquaria, they were first allowed to adapt to the new environment. When they started to take food from the experimenter, which usually happened within 1–3 days after insertion into the home tanks, pretraining started, which involved the establishment of the secondary reinforcer (Bublitz et al., 2017), feeding from the feeding tube, stationing on the terracotta flower pot, and luring the animal five times to the left and right TT according to a pseudorandom protocol (Gellermann, 1933). Once these pretraining steps were completed, a preference test consisting of a maximum of 10 trials per individual was conducted to reveal whether the animals had a preexisting preference for the left or right side of the aquarium. The location in space marked by a TT preferred by the individual was defined as negative stimulus (S–) during the acquisition phase of the experiment (R0) in which the animal had to learn to only choose one side/one TT (positive stimulus, S+) to get a reward. Upon reaching the learning criterion defined as a performance of ≥80% correct choices (p < 0.01, χ2 test) in two consecutive sessions of 20 trials, the signs of the stimuli and thus the reward contingencies were reversed; reversal 1 (R1) started. Now the animal had to move to the TT, which had been defined as S– in the previous phase of the experiment, to get a reward. As we conducted a serial reversal learning experiment, every time the animal met the learning criterion, a new reversal (R2, R3–Rn) was initiated until the animal stopped cooperation, most likely due to senescence. Thus, the number of reversals conducted per animal varied.

During all stages of reversal training, the animal started a trial by approaching and sitting on the flower pot (Supplementary Video 1). Subsequently, the monitor was lit, and a 3-min time interval begun during which the animal had to make a decision for the left or right TT. A decision was defined as the animal touching a TT with at least one arm. Dimming of the monitor served as end-of-trial signal upon which the animal's task was to return to the start location. If the animal did not respond to the start signal in the 3-min time interval, the trial was ended. If five trials had to be ended without any response from the animal, the whole session was ended.

The feedback after a response was different for groups 1 and 2. It was varied to study the effect of the ICS. For group 1 including three individuals (Ov1–Ov3), training was started without the ICS, but with positive reinforcement alone. Thus, a correct response was signaled by the secondary reinforcer and food, and an incorrect response was signaled by dimming the monitor directly after the response. As training progressed, the ICS was introduced during R0 in session 40 for Ov1 and Ov2; just to mention for completion, training with the ICS started during R1 in session 15 for Ov3 (see Supplementary Material). At these experimental stages, the animals did not show any sign of learning; moreover, their cooperation was very low. We therefore started ICS signaling, predicting that the feedback after an incorrect response would facilitate the learning process. For group 2 including four individuals (Ov4–Ov7), trained after we had worked with individuals of group 1, incorrect responses were signaled by the immersion of the ICS from the first trial/session during R0 on predicting that, with ICS signaling right from the start of the training, the octopus individuals would continuously learn. Octopus individuals were randomly assigned to one of the two groups.



Analysis

We analyzed the performance of each animal regarding (1) the number of errors (error referring to an incorrect trial) needed to learn the original task in R0, (2) the number of reversals conducted over the course of the study, (3) the minimum number of errors reached within each group, and (4) the presence of progressive improvement over reversals; these results are reported descriptively. Furthermore progressive improvement was also statistically assessed for every individual, and/or for groups 1 and 2 by averaging the performance of the individuals. For the analysis of progressive improvement, we conducted a linear regression analysis, testing the null hypothesis that the slope of the linear regression is zero. Statistical analyses were run in R 3.3.3 (The R Foundation for Statistical Computing, Vienna, Austria).




RESULTS

In group 1, trained with positive reinforcement alone initially, Ov1 and Ov2 did not learn the basic task; the learning criterion was not met within 40 sessions or after 272 and 346 errors, respectively. Learning stagnated, and the animals hardly cooperated for experiments. With the introduction of the ICS, a black rod signaling an incorrect response, in session 40, R0 could be finished with Ov1 and Ov2 within five and seven sessions or with 38 and 47 errors, respectively (Figure 2).


[image: Figure 2]
FIGURE 2. Results of the spatial reversal learning experiment. Exemplary performance of experimental animal Ov1 as correct choices (in %) over time during the acquisition phase (R0) in which it was trained only with positive reinforcement but without incorrect-choice signal (ICS). Ov1 did not reach the learning criterion defined as a performance of ≥80% correct choices in two consecutive sessions (continuous line) in 40 sessions with 20 trials. After the introduction of the ICS indicating the incorrectness of the response in session 41, Ov1, however, reached the learning criterion after five sessions.


After the introduction of the ICS, all individuals finished a number of reversals (Figure 3A and Table 1): Ov1 completed 13 reversals and Ov2, five reversals. Over reversals, Ov1 increased its performance (F-statistics; Ov1 F = 44.1, df = 11, p < 0.01), making fewer errors per reversal the more reversals it experienced. In contrast, Ov2 did not drastically improve its performance over reversals (F-statistics; Ov2 F = 0.7, df = 3, p = 0.46); the number of errors even increased during the last reversal; as the animal stopped cooperating completely thereafter, we assumed that its performance in its last completed reversal had already been caused by a cease in motivation as usually occurring at a late point in octopus' training. Grouping all results, the number of errors decreased significantly over reversal for the individuals of group 1 (F-statistics; Ov1-2 F = 9.77, df = 16, p < 0.01). The minimum number of errors reached by Ov1 and Ov2 was 13 errors in R11. Please note that the results of Ov3 are not included here but in the supplement (see Supplementary Material) due to a slight deviation in training.


[image: Figure 3]
FIGURE 3. Error curves of all individuals trained in the spatial reversal learning experiment. (A) Results from individuals from group 1 trained with the incorrect-choice-signal (ICS) at a later stage of training. The data points indicate the number of errors made until the learning criterion was met during a reversal including the errors made in the two sessions in which it achieved a performance at or exceeding 80% correct choices. The number of errors before ICS signaling was started is written as numbers in the graph allowing the same scaling of the y-axis of the two graphs and thus a direct and better comparison of the performance of groups 1 and 2. The data of Ov1 are marked with filled diamonds and that of Ov2 with filled squares. (B) Results from individuals of group 2 trained with the ICS from the beginning of the experiment. The data of Ov4 are marked with filled diamonds, that of Ov5 with open squares, that of Ov6 with open triangles, and that of Ov7 with filled circles. Irrespective of the group, all animals learned the original task and reversed multiple times completing 2–13 reversals, and their performance showed a general trend to improve over time.



Table 1. Overview of the performance of the experimental animals during the various phases of the reversal learning experiment depicted as number of errors per reversal.

[image: Table 1]

In group 2, trained with the ICS right from the beginning, Ov4 and Ov7 completed R0 successfully after 10 sessions, Ov5 needed 7 sessions, and Ov6 13 sessions for the completion of R0 (Figure 3B, Table 1). In this group, the individuals were also able to finish numerous reversals thereafter: Ov4 completed nine reversals, Ov5 five reversals, and Ov6 four reversals. Ov7 finished two reversals, and its training had to be stopped in R3 due to a cessation of cooperation from the side of the animal. In this group, the best performance of seven errors per reversal was shown by Ov4 in R7. In general, the performance of all animals increased during R1 and, despite some fluctuations, tended to generally decrease over reversals in the subsequent reversals (F-statistics; Ov4–Ov7 F = 18.6, df = 18, p < 0.01).



DISCUSSION

In this study, we conducted a spatial serial reversal learning experiment and could show that individuals of the species O. vulgaris are able to reverse a simple spatial discrimination task up to 13 times successfully. Some octopus individuals showed clear progressive improvement reaching a performance of 20–30 errors per reversal. The best performance achieved was seven errors to complete a reversal (Ov4 in R7).

The number of errors reached during a reversal in this serial reversal learning experiment including a simple spatial discrimination task was in the same range as for other animals (see, for example, Doty and Combs, 1969; Mackintosh and Cauty, 1971). At the same time, octopus is outperformed by some species (see, for example, Doty and Combs, 1969) also including invertebrates such as the American cockroach (Balderrama, 1980); the cockroaches reached one-trial learning in a reversal learning study including an olfactory discrimination. Among those invertebrates, S. officinalis, another cephalopod species, also reduced its errors to one or two errors (Karson et al., 2003), thus to less errors than the octopus of this study. However, these interspecific comparisons have to be made with caution, as methodological differences between studies may strongly influence these results. The cuttlefish, for example, were making their responses when avoiding an unpleasant experimental situation; they were fleeing from a chamber in which they could not settle on the ground (Karson et al., 2003). The differences in performance might thus reflect differences in experimental designs as shown in previous studies (for review, Rayburn-Reeves and Moore, 2018).

The results of this study clearly indicate that learning highly depends on the experimental conditions, the context of learning. Initially, the octopus individuals of group 1 did not learn the spatial discrimination task (Ov1, Ov2) or failed to reverse in R1 (Ov3, see Supplementary Material). The application of the ICS signaling an incorrect response changed the learning behavior of octopus systematically; the individuals learned the respective task with ease. In group 1, all individuals irrespective of the onset of signaling with the ICS learned the original task within seven sessions at maximum after the introduction of the ICS. We think that the animals learned the task because the ICS signaled an incorrect response clearly and not as a result of the intensive training before. Our conclusion is based on several facts: prior to signaling with the ICS, (1) no learning was observed, except for one individual, (2) the animals showed a clear drop of motivation and already started to cease or ceased cooperation, and (3) usually, octopus is learning within a couple of sessions, if they learn at all (Messenger et al., 1973). The last aspect is supported by the learning performance of the individuals of group 2; it took all four individuals trained with the ICS right from the beginning only 13 sessions at maximum to solve the original task, and the high variability documented in other studies (see, for example, Bublitz et al., 2017) was not as apparent. Moreover, we have clear evidence from the octopus behavior that they have actually perceived the signal because, upon the introduction of the ICS, they initially/sometimes changed their body pattern to the broad mottle display (Figure 1C; Packard and Sanders, 1971). In conclusion, we think that octopus learning is positively affected by an ICS, an aspect that, however, needs to be investigated in detail.

This conclusion, that learning is positively affected by the ICS, is supported by previous octopus discrimination or learning studies in which very strong feedback for incorrect responses was provided (see, for example, Young, 1961, 1962b; Mackintosh and Mackintosh, 1963). In these experiments, octopus also performed well. The positive effect on learning might occur because an ICS directly indicates an incorrect response. In contrast, using positive reinforcement alone, the incorrectness of a response is only indirectly signaled by the absence of positive feedback or by the absence of food. However, some animals might need an unambiguous feedback even after responding incorrectly (see, for example, honey bees in Avarguès-Weber et al., 2010). If we can generalize the effect of an ICS over experiments, it is still unresolved why octopus training profits from an ICS or, regarding the study at hand, why positive reinforcement alone did not allow most octopus individuals to learn the task. From an ecological perspective, food might not be the sole or even the main driver of octopus behavior, as prey is probably not a limiting factor for a generalist under water (Mather, 1991a; Mather et al., 2012). Octopus might initiate behavioral changes when an external event clearly indicates the inappropriateness of its behavior just shown. Thus, a combination of positive reinforcement and signaling with an ICS might cause learning, as it mimics the natural situation of octopus.

In contrast to previous discrimination or learning studies in octopus, we can show with our training results, that a neutral signal, a black rod, can easily be associated with incorrect responses causing no harm. Even to the contrary, the animals simply detached from the TTs and moved toward the station allowing the next trial to start. It is conceivable for future experiments to use an alternative ICS, such as a looming stimulus on a monitor as described in Pignatelli et al. (2011); however the looming stimulus should be reduced in strength to avoid the strong avoidance responses shown by the cephalopods. Preliminary results from our training indicate that this signal could be equally effective (unpublished results). A visual signal on a monitor would allow standardizing the signal and might be easier to apply depending on the experimental task or setup.

One of our motivations for this study was to contrast the reversal performance of octopus in a visual (Bublitz et al., 2017) versus a spatial discrimination task. Comparing the performance during R0 during visual reversal learning with the performance of group 1 prior to the introduction of the new experimental tool, the ICS, it is directly evident that the visual discrimination was acquired much faster than the spatial discrimination. It took octopus individuals 60–459 trials to learn a visual discrimination (Bublitz et al., 2017) or even less in Mackintosh and Mackintosh (1964). However, only one individual, Ov3, was able to reach the learning criterion within this range of trials, after 100 trials, when trained for a spatial discrimination most likely due to its previous experience (see Experimental subjects and Supplementary Material). The other two individuals of group 1 did not even learn the spatial discrimination task within 800 trials. Moreover, compared to the acquisition rates of most octopus in visual experiments, the acquisition rate of the octopus from group 2, which were, however, trained with the ICS, was slower than in the visual experiments. In conclusion, a spatial discrimination task does not seem to be easier to solve for an octopus than a visual task. This finding is contrary to our expectation that was based on theoretical and empirical considerations (see Introduction), suggesting that octopuses have good spatial skills leading to good spatial discrimination abilities. Good and maybe even better visual abilities, on the other hand, fit to the well-developed visual system and the high neuronal investment for the processing of visual stimuli in the large optic lobes of octopus (Young, 1962a; Maddock and Young, 1987; Budelmann, 1994).

Ultimately, spatial serial reversal learning could not be tested with positive reinforcement alone rendering a comparison of reversal performance with spatial versus visual cues difficult. To allow direct comparison, future work should revisit visual reversal learning with a methodology including positive reinforcement and ICS signaling. However, despite differences in experimental design, we can conclude that with both types of tasks, most octopus can learn to reverse multiple times in succession. Octopus can increase its performance over reversals; however, the minimum number of errors per reversal varies across studies (compare with, for example, Bublitz 2017; Mackintosh and Mackintosh, 1964). As octopus is responding flexibly to spatial as well as nonspatial cues, such as visual cues, the selection might have favored behavioral flexibility in octopus, in general, a thought raised by Day et al. (1999). This finding is also in line with the hypothesis that learning and flexibility in handling of previously learned aspects are crucial from the point of view of octopus biology. Factors that possibly require well-developed learning abilities in general and reversal learning abilities in particular are (1) the short lifespan of octopus during which long learning phases can be fatal, thus learning from experience is vital; (2) its active foraging mode during which the animals most likely have to make decisions to familiar and novel stimuli in the same or a new context quickly; (3) competition for niches with other animals; or (4) predator pressure, which is particularly high in a soft-bodied animal (for a detailed discussion, see Bublitz et al., 2017). Flexibility in behavior has previously been shown regarding the presence of predators (Meisel et al., 2013) or the construction of dens (Mather and Dickel, 2017); thus, from an ecological perspective, flexible responding to familiar conditions, as tested during reversal learning, might be essential and indeed occurring in octopus. An interesting avenue for future research could be to test how vision supports spatial orientation allowing the animal to construct a visuospatial map of its home range (Mather, 1991a).

Overall, its cognitive abilities allow the octopus to not only solve a discrimination problem but also to reverse previously learned responses. Thus, octopus can learn more than during discrimination learning, meaning more than the association between a stimulus and its associated response.
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To pursue a more mechanistic understanding of the neural control of behavior, many neuroethologists study animal behavior in controlled laboratory environments. One popular approach is to measure the movements of restrained animals while presenting controlled sensory stimulation. This approach is especially powerful when applied to genetic model organisms, such as Drosophila melanogaster, where modern genetic tools enable unprecedented access to the nervous system for activity monitoring or targeted manipulation. While there is a long history of measuring the behavior of body- and head-fixed insects walking on an air-supported ball, the methods typically require complex setups with many custom components. Here we present a compact, simplified setup for these experiments that achieves high-performance at low cost. The simplified setup integrates existing hardware and software solutions with new component designs. We replaced expensive optomechanical and custom machined components with off-the-shelf and 3D-printed parts, and built the system around a low-cost camera that achieves 180 Hz imaging and an inexpensive tablet computer to present view-angle-corrected stimuli updated through a local network. We quantify the performance of the integrated system and characterize the visually guided behavior of flies in response to a range of visual stimuli. In this paper, we thoroughly document the improved system; the accompanying repository incorporates CAD files, parts lists, source code, and detailed instructions. We detail a complete ~$300 system, including a cold-anesthesia tethering stage, that is ideal for hands-on teaching laboratories. This represents a nearly 50-fold cost reduction as compared to a typical system used in research laboratories, yet is fully featured and yields excellent performance. We report the current state of this system, which started with a 1-day teaching lab for which we built seven parallel setups and continues toward a setup in our lab for larger-scale analysis of visual-motor behavior in flies. Because of the simplicity, compactness, and low cost of this system, we believe that high-performance measurements of tethered insect behavior should now be widely accessible and suitable for integration into many systems. This access enables broad opportunities for comparative work across labs, species, and behavioral paradigms.

Keywords: Drosophila melanogaster, optomotor response, tethered fly, walking behavior, sensorimotor behavior, open-source, open-hardware


1. INTRODUCTION

The fly Drosophila melanogaster is a powerful model system for research in nearly all areas of organismal biology, and has been especially central to major discoveries in the development and function of the nervous system (Bellen et al., 2010). Drosophila have long been champion species for a wide range of behavioral experiments that are ideally suited to a controlled lab setting (Götz, 1964; Benzer, 1967; Heisenberg and Buchner, 1977). The low cost, small size, wide availability, and ease of breeding have made flies ideal for educational and outreach settings, especially as the first or only hand-on introduction to genetics for many students (Harbottle et al., 2016). One important benefit of popularizing Drosophila methods for educational settings is that cutting-edge research can become directly relevant to the experience of the students. However, it is challenging to bring modern methods in animal behavior to teaching laboratories, since most setups developed for this purpose are built from custom components that are often quite expensive or difficult to obtain. Whereas, just a few years ago, specialized components required custom machining or complex procurement, the surge of “desktop manufacturing” and tools like 3D printers and laser cutters, now enables quick prototyping for low-cost fabrication. These tools support increasing interest in citizen science and STEAM education, making it practical for makers, especially those at research institutions, to assemble even complex laboratory setups. Here we describe our efforts to optimize the accessibility and cost of a complete system for preparing and experimenting on flies using the preferred method in our laboratory—precise behavioral measurements for single, body-fixed (tethered) flies presented with controlled visual stimuli (Reiser and Dickinson, 2008; Dombeck and Reiser, 2012).

Why would anyone want to build this accessible setup for measuring visually guided fly walking behavior? We think there are at least three very good reasons. First, these experiments have been central to many recent discoveries. For example, the critical role of T4 and T5 neurons as the primary source of direction selective motion vision (Bahl et al., 2013; Strother et al., 2017), and the discovery of a compass network that tracks heading in the ellipsoid body (Seelig et al., 2010), were both discovered with fly-on-ball setups. Second, the typically used setups for carrying out these experiments are quite specialized, and therefore our updated approach may be the first to bring this complicated setup within reach for many labs. And finally, the rewards of establishing such a setup are large and immediate, since this setup produces reliable measurements of robust behaviors–many of which can even be observed by eye. Consequently, fly-on-ball setups enable efficient, quantitative experiments that are ideal for exploring new stimulus regimes or replicating prior results. We believe these experiments are also ideal for teaching students about neurobiology, for an introduction into laboratory instrumentation, and for a hands-on exposure to quantitative animal behavior and the related opportunities for stimulus designs and data analysis. We hope that the accessibility and low cost of this system makes it suitable for a wide variety of research laboratories, summer courses, undergraduate, and even high-school teaching labs.

In what follows we describe the motivation and goals of the project, then detail all the components of the system, characterize the performance of the integrated setup, demonstrate its performance in measuring rather sophisticated aspects of visually guided behavior in flies, and finally estimate the cost of our systems. While we favor a modular, adaptable approach to instrumentation, we have endeavored to simplify the described system, so we mainly detail one specific setup, but throughout we describe some alternative solutions that we considered. The manuscript describes the system that we have built and used for data collection between November 2020–May 2021. We thoroughly documented the system at https://reiserlab.github.io/Component-Designs/ and will post updates on the repository while we continue making improvements to this setup.


1.1. Motivation and Approach

The continual improvement of many commercial technologies comes as a direct result of massive, iterative efforts, by thousands of engineers, optimizing all aspects of the design of these products (consider that smart phones are not quite 15 years old). By comparison, even the most mature instruments used for collecting laboratory data are essentially bespoke prototypes benefiting from very few “generations” of development. For that reason, many scientists prioritize designing their setups to combine high flexibility with precise control, which often requires using fairly expensive components capable of precision that far exceeds the requirements (often overestimated since never precisely specified) of any individual experiment. For the fly behavioral setup we have sought to optimize, we now benefit from several decades of methods development by many laboratories, which means we understand the requirements of this system rather well. Consequently, by eliminating unnecessary precision and flexibility, and taking advantage of desktop manufacturing tools, we could greatly simplify these setups and can now replicate them at much lower cost.

The development of our inexpensive treadmill was initially inspired by an invitation to run a hands-on training module at the Drosophila Neurobiology: Genes, Circuits & Behavior course at the Cold Spring Harbor Laboratory during the summer of 2019. We wanted to give each participant the hands-on experiences of anesthetizing and tethering flies and then positioning them on a treadmill to observe walking behavior, but this required many, independent setups. Therefore, when we started replicating the typical walking fly-on-ball setup we favor in our lab (Seelig et al., 2010; Strother et al., 2017), we focused on replacing the most expensive components, one-for-one, with less costly commercial parts and some 3D-printed components. At the time of the course we had converted a setup that would cost > $16,000 to replicate, to one that we built for < $500. The course was a success—we assembled seven setups and provided rigs to small groups of student who all learned to tether flies and to position them on the treadmill. This success lead us ask whether this setup was only suitable for demonstrations or could it fully replace our typical setup? In the past year we have continued to simplify and optimize the setup, achieving our goal of reproducing a “gold-standard” data set, the “optomotor” response of walking flies (Götz and Wenking, 1973; Buchner, 1976), with its well-studied dependence on the spatial and temporal properties of the visual pattern. Due to the COVID-19 pandemic we could not return to the course during the summers of 2020 or 2021, but have continued to refine the setup, so that we can now describe a complete, full-featured, low-cost implementation of both a fly preparation setup and the experimental setup. We share all component designs at https://reiserlab.github.io/Component-Designs/, a repository we plan to update continuously.




2. MATERIALS AND METHODS


2.1. System Overview

We detail the major components of our system for preparing (tethering) and measuring the walking behavior of flies. In Figures 1A,B, we show the components of the experimental setup. In this apparatus, a single fly is tethered to a rod that is mounted on a manipulator allowing for precise positioning of the animal along the three translational axes (all components color-coded; manipulator in blue, Figure 1A). The fly is positioned on top of an air-supported sphere, which serves as an omnidirectional treadmill (sphere holder in green). A heat-pad below the ball holder regulates the temperature near the fly (in purple); a thermistor attached to the holder provides the measurements for closed-loop control. Visual stimuli are displayed on a tablet computer (in gray) and the camera (in red) captures rotations of the ball in response to fly walking. Three LED fixtures (in yellow) illuminate the ball. Figure 1C shows signal flow for the system, including a computer that runs the software for ball tracking (FicTrac, Moore et al., 2014) as well as FlyFlix, the software we developed to generate stimuli and log responses.


[image: Figure 1]
FIGURE 1. Inexpensive treadmill setup for walking fly experiments. The rendering in (A) highlights the major components. A fly is tethered to the thin syringe tip (light-green cone) and positioned and held in place with the micromanipulator (in blue) facing the tablet (gray) while walking on the treadmill sphere (in white). The treadmill holder (in green) floats the sphere on a steady stream of air supplied by the tubing (light blue). The camera (in red) is used to track the sphere rotations, while adjustable lights (in yellow) illuminate the sphere. The temperature near the fly is controlled from below by the heat-pad (in purple). All components are mounted on a breadboard laser-cut from an acrylic plate. (B) A photograph of the setup in the lab. (C) The flow of information between the major functional modules. For closed-loop experiments, ball rotations from FicTrac are routed to FlyFlix for on-line stimulus updates.


Experiment on body-fixed animals have many advantages, including precise control of their sensory experience while simultaneously measuring motor output, but can be complex to implement, and often raise questions about whether the behavior is “naturalistic” (Dombeck and Reiser, 2012). Within insect behavior, there is a long history of body-fixed experiments, together with many thoughtful comparisons to the behaviors of freely moving animals. Here we describe our simplified implementation of our preferred method (Figure 2) for gluing flies to a thin rod, a process referred to as tethering. This process can be straightforward, but requires a specialized setup that is not widely available or particularly well-described in the literature. The goal is to mount the flies as quickly as possible and with minimal glue on a small portion of the thorax, such that this process has a minimal effect on their behavioral vigor. A good tethering strategy must enable the precision required for positioning at the small scale of the fly body, as well as the mechanical robustness required to be manipulated by human hands. Essentially, a small fly needs to be carefully glued to an object that people can routinely move from one device to another. It is nearly impossible to tether a moving fly, and so flies must first be immobilized. While there are multiple ways to anesthetize flies, and CO2 is commonly used, this gas affects behavior for many hours (Bartholomew et al., 2015). Instead, we favor chilling flies, which causes insects to enter a chill coma because of a transient failure of neuromuscular function, from which they rapidly recover (Findsen et al., 2014). When chilled to temperatures close to (but usually 2–4°C above) freezing, flies rapidly immobilize, but then rapidly recover upon warming (Gibert and Huey, 2001; Gibert et al., 2001). We describe the construction of the tethering station in section 2.2 and the experimental setup in section 2.3. In section 2.4, we detail how we used these components to run experiments.


[image: Figure 2]
FIGURE 2. Chilled tethering station for preparing flies. (A) Photograph highlighting the major components of the tethering station: micromanipulator (in black), sarcophagus (in red), Peltier-based chiller with heat-sink (silver and black), and a transparent laser-cut fixture with a hand rest. This setup is typically positioned under a dissecting microscope, and a thermistor is used to measure the top surface of the chiller for closed-loop temperature control. (B) A compact, 3-axis micromanipulator fabricated from 3D-printed parts and simple hardware components. Two different arms are shown, one for the tethering station and the other for the experimental rig. Each axis consists of a rotating handle and screw (in yellow), a locking nut (in red) that fixes the location of the screw relative to the outer rail, and nuts within each carriage (in green), that transfer the linear motion. The device is held together and mounted using additional screws (in purple). (C) A rendering of the sorting and mounting plate, containing a series of indentation, each referred to as a sarcophagus, of different dimensions for different animal sizes. Cold-immobilized flies are sorted on the top section of the plate, and single flies are positioned in one of the cavities for gluing to the tether. (D) A photograph of the plate mounted on top of the chiller with a temperature sensor (yellow tape) and a fly glued to the tether (a dispensing needle). (E) The fly picker used to move anesthetized flies. The picker uses suction controlled by the operator's finger to pick up and deposit single flies.




2.2. Tethering Station

For maximal user convenience, we recommend physically separating the tethering station from the experimental setup (as in Figure 2A) and positioning it under a dissecting microscope. However, users may wish to use a single micromanipulator for both the tethering station and experimental setup (see Supplementary Figure S3D), a slightly less convenient configuration, but one that saves space and further reduces the cost.


2.2.1. Magnification

In our experience, every student can learn to prepare well-glued flies for behavioral experiments with only a few sessions of practice. However, better results require learning to position flies so they are glued with approximate symmetry—in the center of the anterior notum and with minimal body rotation about the roll and yaw axes, and with the tether glued at 90° to the body long axis. This precision requires magnification. In our current setup, we position the tethering stage below a salvaged stereo microscope (Zeiss STEMI SV8). For confirmation we have tethered flies with alternative magnification methods such as a low-cost “toy” USB microscope and a magnifying glass typically used for soldering electronics, however neither is as practical as a stereo microscope. In particular, we find that the instantaneous feedback of an all-optical system is ideal for mastering the hand-eye coordination required, while the delays in the low-cost digital microscope were quite challenging to work with. We recommend a stereo microscope with a magnification of at least 10 × (although 30 × is even better) and a clearance of at least 170 mm to support the height of the tethering station.



2.2.2. Tether

The tether provides the critical interface between the humans-scale and the fly-scale. We base the tethers in our laboratory on the original three-part design of Michael Dickinson (Lehmann and Dickinson, 1997). These parts are a metal connector, a ~0.1 mm diameter tungsten rod (that gets glued to the fly), and hypodermic tubing to connect the two parts. The rod and tubing are typically sold in longer units and need to be cut to length before the assembly of the three parts. A special setup is required to assemble these components reliably. Also, the tethers can be easily bent and require regular repairs and replacement. Because of the laborious assembly and other limitations of this design, we tested many alternative options better suited to the needs of a teaching course.

In our walking setup, we obtained excellent results using unmodified blunt-tip dispensing needles. Dispensing needles with Luer adapters are widely available, manufactured to tight tolerances, inexpensive, and easy to handle. We selected 34 ga needles, featuring a stainless steel tube with an outer diameter of 0.25 mm and about 12.5 mm (0.5 in) in length (for a comparison between this dispensing needle and the traditional tether design, see Supplementary Figure S5H). This is the finest needle size that is readily available from many vendors (e.g., AG-ABSS-99D0, Bstean, China). Due to this fine size, these dispensing needles are also suited for tethered flight experiments, but can be easily bent and require careful handling. From observations of students we estimate that up to 3 tethers might need replacement during a week of experiments, even though we only had to replace one during data collection for this study. We use the inner sloped cone of the Luer lock to friction mount the tethers to our setup, and have designed mount points on the arms of the Micromanipulator in the preparatory and experimental setup (Figure 2B). It is convenient to tether several flies one after the other and hold them until the start of the experiment (see Supplementary Figure S5I), for example on a strip of upward facing M4 or 8-32 screws glued to a surface. We note that the Luer adapter is keyed with a pair of plastic tabs that can be used for alignment. We only use these as a visual aid, but this feature could facilitate more automated alignment in future setups.



2.2.3. Glue and Curing

To fix the tether to the fly thorax, we use resins that polymerize upon intense illumination, conveniently converting from liquid to solid within seconds. The standard glue used in our lab is KOA 300 (Kemxert, Poly-Lite, York, PA, USA), that requires UV (320–380 nm) light to cure. We typically use a commercial spot-curing lamp, such as the SpotCure-B (Kinetic Instruments Inc., Bethel, CT, USA), as they supply high intensity illumination (that cures the resin within seconds) and feature a convenient, audible timer that allows us to achieve consistent curing. Throughout the development of our setup, we tested different glue products and have confirmed that Bondic UV liquid plastic (Bondic USA, Niagara Falls, NY, USA) and Solarez Fly Tie UV Cure (Solarez Wahoo International, Vista, CA, USA), which are both widely available, work well as the tethering glue. We have a slight preference for the viscosity of the KOA 300 glue. Bondic and the Solarez thick formula appeared to be more viscous, while the Solarez flex formula (green package) is quite similar to KOA 300. A single tube of glue typically lasts over a year and the cost differences between these options are not significant. We used KOA 300 in our experiments.

For teaching lab applications, we have used inexpensive UV-LED mini flashlights (basically a CR2032 battery with a single UV-LED) to cure KOA 300. Bondic and Solarez are available in packages with battery-operated curing lights that work well for our application. In the near future, we plan to integrate automatically timed UV curing lights into the tethering setup.



2.2.4. Cooling

When cooled below 4°C Drosophila are rapidly and reversibly immobilized (Gibert et al., 2001), which makes it convenient to align and tether the flies, and to perform further surgeries and treatments, if so desired. While flies can be chilled on a metal stage mounted on ice (or a frozen gel ice pack), a temperature-controlled thermoelectric cooler provides a more compact and precise solution. Using the Peltier effect, a powered thermoelectric cooler moves heat from one side of the device to the other. To cool one side continually below room temperature, heat must be effectively carried away from the hot side. In our lab, we use a recirculating water chiller to pump water through a liquid-cooled Peltier assembly. This is quite reliable, but is expensive, cumbersome due to the substantial tubing required, and is occasionally very messy.

For our optimized setup we use an integrated, low-cost Peltier assembly, labeled “Chiller” in Figure 2A, that is a 40 × 40 mm2 thermoelectric module mounted between a 40 × 60 mm2 aluminum plate and a 90 × 90 mm2 aluminum heat-sink with a fan for cooling (Adafruit Industries, New York, NY, USA). When powered with a 12 V 5A supply, the top aluminum plate reaches temperatures below 0°C while operating under typical ambient room temperatures, confirming that the device can adequately cool flies. In order to provide a consistent temperature above freezing, we implemented closed-loop temperature control using a W1209 module (multiple vendors, e.g., MOD-78, ProtoSupplies, Lake Stevens, WA, USA) that can regulate an electric load up to 10 A based on input from a 10 kΩ NTC thermistor attached to the top side of the chiller's aluminum plate (see Figure 2D). We mount the chiller at 20° toward the experimenter, shown in Figure 2A. This angle provides good airflow for cooling the module, while pushing air away from the experimenter so as not to blow flies off of the tethering station. By pitching the platform we ensure that flies will always be visible from above while being inspected, aligned, and tethered. This means that both the fly and tip of the tether are seen throughout the process. For the simplest setup, we angled the chiller by extending two screws at the corners of the fan attached to the heat-sink (see Supplementary Figures S3A,D). The integrated setup shown in Figure 2A is assembled from laser-cut acrylic sheets, and the design also includes mounting holes for the micromanipulator and a hand rest.



2.2.5. Sarcophagus

To position, hold, and sometimes dissect or manipulate cold-anaesthetized flies during tethering, we typically use a movable cylindrical cavity machined from solid brass. This design is affectionately referred to as a sarcophagus and based on the original design of Karl Götz (Max Planck Institute for Biological Cybernetics) from the 1960s. The most important feature of the cavity is that it should be smooth and slightly larger than a fly, since sharp edges can easily injure fly legs. Beyond this detail, many aspects of the elaborate Götz design are not required for routine tethering of flies for walking experiments. For the optimized tethering stage, we tested 3D-printed sarcophagus components produced from different materials, including resin, ABS, and TPA, and found all of them working similarly well.

We made the example plate in Figures 2A,D from red ABS. 3D printing allowed us to place cavities of different sizes on a single plate, to accommodate experimenter preference for size and depth, as well as to support tethering insects of differing sizes. The inclined sorting area on the top section of the plate effectively has different temperature zone depending on the depth of material toward the Peltier element. We sanded the bottom side of the sarcophagus plate and mounted it to the aluminum plate of the chiller with thermal adhesive tape. We find that setting the Chiller to a nominal temperature of −2°C works well for our setup but may need adjustment for different setups. To maximize fly behavioral vigor, it is ideal if flies remain immobilized while on the plate, at above freezing temperatures (Gibert and Huey, 2001), but start moving within seconds once taken off the plate.



2.2.6. Micromanipulator

Tethered fly experiments require precise and stable positioning at two distinct steps: when gluing the tether to the fly and for positioning the fly on the sphere. We typically use research-grade three-axis linear stages with probe-clamps (from either Thorlabs or Siskiyou) that are primarily used for microscopic manipulation and are therefore called micromanipulators. These essential components of a reliable setup, commercially available for >$500, are too expensive for a teaching course. We found lower-cost three-axis micromanipulators for < $100 (e.g., LD40-LM, multiple manufactures available through Aliexpress, China) that are a suitable replacement for linear stages from lab suppliers (see Supplementary Figure S4A). However, we were interested in exploring even less expensive options, and evaluated several 3D-printed alternatives, including the micromanipulator design from Open Labware (Baden et al., 2015; Chagas et al., 2017). We find this design to be quite workable, but the footprint was challenging to incorporate into our setup. Based on these explorations, we designed our own micromanipulator, optimized for simplicity and cost, and with a compact footprint.

Our three-axis micromanipulator design (Figure 2B) assembles from nine 3D-printed parts and standard screws. For each axis, an outer rail surrounds the carriage on three sides. Each rail features a screw held in place by a locking nut (red in Figure 2B). Turning each yellow knob with the attached red screw moves the corresponding green nut, and with it the carriage. The arrangement of the three axes allows translational movement in any direction by up to 20 mm. We printed the parts from ABS on a F-170 (Stratasys Ltd, Eden Prairie, MN, USA). This design requires slightly tighter tolerances than can be relied on from the printer, so we sanded the outer faces of the carriages with 200 grit sanding paper until they slide into the rail. The rails did not require post-processing. Even though this sanding can take up to 30 min, we find this advantageous as it allows us to produce a close fit across material and printers, and thus high accuracy movement, without adapting the design. We also recommend applying a plastic lubricant to the rails (e.g., Dry-Film Lube, WD-40, San Diego, CA, USA) to increase smoothness of movement. Gluing 3D-printed (or laser cut) knobs to the screw heads allows comfortable handling of the micromanipulator. The bottom rail has additional holes for securely mounting the manipulator to the baseplate. For labs with access to a 3D printer, our design of the micromanipulator costs less than $5 in materials (including nuts and screws). Ordering the parts through 3D printing services increases the cost to around $15. In addition to printing time, ~1 h of build time is required.

We designed two arms for attaching to the z-axis carriage, as shown in Figure 2B. For tethering flies we use the arm depicted above the manipulator. It is slightly longer, and holds the tether (by a friction fit) at 20° inclined from vertical, to match the slope of the heat sink. The arm shown mounted on the carriage holds the tether at a 10° angle in the opposite direction, and is used for the experimental setup. The orientation and function of these arms can be simply modified for other specific applications. While a micromanipulator assembled from 3D-printed parts is a low-cost functional substitute, it does not replicate all properties of a commercial linear stage. In particular, the plastic parts are somewhat compliant and cannot be used with heavy loads.



2.2.7. Fly Picker

Single flies need to be moved and carefully positioned on the tethering platform. It is possible to do this with forceps, but we do not recommend picking up flies destined for behavioral experiments by either their legs or wings. In our laboratory we use a commercial vacuum pump and wand with a fine tip that is typically used for handling tiny electronic components during assembly. With such a device, it is possible to gently lift a fly before depositing her into the sarcophagus in nearly the ideal position for tethering. One alternative would be to fit a standard lab aspirator (or pooter) to use a fine tip. However, we find the hand-held vacuum approach to be rather convenient and so we have fashioned a version from standard components (Figure 2E). We use a plastic transfer pipette with the bulb end cut off and replaced by a tubing connector (we used Luer locks connectors, but any tight connection would work). This connection is further strengthened with heat shrink tubing. We connect the tubing to our available lab vacuum (other suction pumps or sources of negative pressure will work, Baden et al., 2015), and control the suction from the picker with a roller clamp. We cut a hole in the side of the pipette and glued in another adapter with a flat surface. When covering this stub with a finger, the suction at the tip substantially increases. Removing the finger from the stub releases the fly. Since the opening at the tip of the transfer pipette is too wide for a Drosophila, we added a one-way tip (F1732011 Pipetman Expert Tips EL10ST, Gilson, Middleton, WI, USA) as in Supplementary Figure S5F or a piece of thin heat shrink tubing, as in Supplementary Figure S5G. By bending a paper-clip to a desired angle and using a heat gun on the shrink tube and plastic pipette tip, we bent the tip to an angle that allowed more convenient fly pickup. A pipette tip with an inner diameter of 0.25 mm and an outer diameter of 0.65 mm allows for convenient manipulation of flies. Fly bodies are surprisingly robust, but we nevertheless recommend adjusting the pressure (via the clamp) to just above the threshold for reliably lifting flies.




2.3. Experimental Setup

The major components already introduced for the walking fly-on-ball setup shown in Figure 1, are described in more detail below.


2.3.1. Baseplate

Many lab setups are built on solid aluminium breadboards with threaded mounting holes from specialized lab equipment manufacturers. They are very stable and can be flexibly used for many purposes. In place of these boards, we use a 300 × 300 × 10 mm3 acrylic board into which we cut 144 holes of 6.35 mm diameter in a 12 × 12 grid with 2.54 mm (1 in) spacing using a laser cutter. To further simplify the design, we opted not to tap threads into the holes. We position several of our components, such as the LED lamps, with a friction fit. Other parts are stably mounted with screws and nuts. We use adhesive rubber feet at the corners to lift the baseplate and add some vibration damping. This baseplate could be further simplified to the minimal size and number of mounting holes required to fit the components in the setup, but the additional holes allow for future extensions to the apparatus. This simple design is both light and stable, ideal for carrying to teaching labs and outreach events. In the accompanying repository we provide files for laser cutter, CNC-machines, or as a blueprint for hand-drilling.



2.3.2. Micromanipulator

To walk with a typical gait, the fly needs to be positioned ~0.4 mm from the surface of the sphere, and aligned to the center of the ball (see Supplementary Figure S5J). We use a second, identical micromanipulator, of our own design, described in section 2.2.6, with the arm that positions a fly so they are walking at 10°, or slightly “uphill”—based on the observation that this incline appears to improve walking performance (personal communication, Shiuan-Tze Wu). The tether is friction mounted onto the arm and can be gently rotated to align the long axis of the fly toward the screen.



2.3.3. Treadmill

The omnidirectional treadmill consists of a stem that holds an air-supported sphere. Our simplified, 3D-printed design for the sphere holder is a direct adaptation of an earlier design, which was custom-machined out of aluminum (Seelig et al., 2010). The original design made use of a straight inner shaft for airflow to simplify the machining process, but this limitation does not apply to 3D-printing. We implemented a more compact design where air enters via tubing with a 90° angle to the sphere-supporting air column, as shown in Figures 1A,B. In addition, we provide CAD files for alternative designs and also for different ball sizes in the accompanying repository at https://reiserlab.github.io/Component-Designs/. While, some 3D-printing methods will produce a solid, airtight part, most printers that build up parts by fusing filament in layers may result in parts that are not airtight and will allow air to escape. Rather than require specific printing methods, we achieve a quite satisfactory performance with simple post-processing. Applying acetone to the surface of parts printed from ABS seals these holes. We find that sealing only the outer surface works well, while applying solvents to the thin inner tubing could cause clogging of the air stream and might require iterations of drilling out and applying solvents again.

The flow-rate of the air needs to be controlled: if too low, the ball won't reliably float, and if too high, the ball will be much less stable (or fly off). In a previous fly-on-ball setup pressurized air regulated by a commercial mass flow controller feeds the airflow (Seelig et al., 2010). We find no loss of performance when using an inexpensive flowmeter instead, so long as it allows fine control over the appropriate range of airflow; for example, VFA-22 (Dwyer, Michigan City, IN, USA) with a maximum of 1 L min-1 works well. An inexpensive roller-type tube clamp can also work well. In practice, we adjust the flow rate by visually inspecting a walking fly on the ball. In place of a pressurized air supply, we have tested an aquarium-style air pump with a maximum flow rate of 1.8 L min-1. We find that inexpensive pumps induce some vibrations in the ball and are continuing to investigate the ideal substitute for wall-supplied pressurized air.



2.3.4. Spheres

The sphere of the treadmill is the only moving part during the walking experiment and is critical for good measurements of behavior. The sphere needs to be nearly perfect in shape with a surface not too smooth, light enough to float on the air stream and be spun by the fly, but not so light that flies can pick it up, and with low rotational inertia to enable mostly unrestricted walking by flies. We have tested many alternatives, but our preferred standard sphere is still based on the method of Seelig et al. (2010), where the spheres are cut from foam with either a file or by a CNC machine (project further documented at https://wiki.janelia.org/wiki/display/flyfizz). We find that flies walk best on a sphere cut from Last-A-Foam FR-7120 (General Plastics Manufacturing Company, Tacoma, WA, USA) to a diameter of 9 mm (density of 320 kg m-3, sphere weighs approx. 0.12 g). For optical tracking (under near-infrared, NIR, illumination) of sphere rotations with FicTrac (Moore et al., 2014), we paint this NIR-reflective foam with BLK3.0 paint (Stuart Semple studio, Dorset, UK), which we find to be less NIR-reflective than a black permanent marker, and thus produces high contrast features. We continue to test alternative sphere materials that will be more readily available than a hand-filed foam ball. The results will be documented in the accompanying project repository.



2.3.5. Sphere Tracking Camera

In tethered walking experiments the flies are fixed in space, however their intended locomotion, as if walking on an infinite virtual plane, can be estimated from the rotation of the sphere they are turning. Several methods have been developed for measuring relative rotations of the ball, for example through optical mice sensors or via optical flow calculated with camera-based systems (Lott et al., 2007; Seelig et al., 2010; Vishniakou et al., 2019). Under ideal circumstances, these relative measurements can be calibrated for excellent accuracy, but these systems can be quite sensitive to the uniformity of the lighting and focus of the sensors, etc. By estimating the absolute position of the sphere in every frame, the tracking software FicTrac (Moore et al., 2014) is an exciting alternative approach that offers several advantages.

Fictrac maps individual camera frames of a patterned ball to a previously constructed template of the sphere's pattern to estimate the instantaneous rotation of the sphere. From the frame-by-frame estimates of the sphere's orientation, FicTrac reconstructs the animal's virtual trajectory. The software works best with sharp edges and high contrast, so Moore et al. (2014) suggest to avoid motion blur by imaging with high frame rates and short exposures. FicTrac supports industrial cameras from Flir and Basler, as well as images through OpenCV, a library for real-time machine vision with extensive support for a variety of image sources.

As FicTrac operates on high-contrast, grayscale images, downsampled to a resolution of 60 × 60 px, we realize that the ideal low-cost camera should support high frame rates at low-resolution—a combination of requirements that are nearly the opposite of most inexpensive camera sensors. We found that the PlayStation Eye camera (Sony Entertainment Corp.), developed as an input controller for action games, is an excellent solution. Using open-source drivers for the low-latency integrated video processor, we obtain access to a stable video stream of 187 fps at a resolution of 320 × 240 px. The camera's sensor OV7720 (OmniVision Technologies) was developed for low-light operations, and we found the sensor is sensitive to NIR illumination once we removed the filter attached to the lens housing. To effectively use this camera, we modified the body for easier mounting and to accept S-mount lenses, as shown in Supplementary Figures S1, S2. This modification takes between 30 and 60 min. For reliable imaging of the sphere at a working distance of 10.5 cm we mount a macro lens with 25 mm focal length and a fixed aperture (see Figure 1B and Supplementary Figures S1, S2).

The PS Eye camera is our preferred high-performance and low-cost solution. Since it is mass-produced as a toy, the camera is available from different vendors and secondary markets for around $5 to $20. The modularity of our setup and FicTrac's support for many cameras through OpenCV enables other cameras with similar properties to work. To ensure that our system works reliably on readily available PCs, we ran all tests and collected all data on an older model, multi-core x86-64 system with a maximum frequency of 3 GHz and a hard disk drive running Lubuntu 20.4 LTS. This PC was powerful enough to run two FicTrac instances as well as FlyFlix, the software we developed for stimulus presentation, experiment control, and data logging in parallel. We expect that most PCs will be able to run these experiments.



2.3.6. Lighting

An important consideration for measuring visually guided behaviors is to use illumination that minimally interferes with the animal's vision. The most practical solution is to use NIR illumination since fly vision is insensitive to these longer wavelengths (Sharkey et al., 2020), but most camera sensors measure it well. As we operate our camera at high frame rates and with a fixed aperture lens, intense illumination is essential for reliable sphere tracking, yet the light cannot be so intense that it saturates regions of the image (due to the limited dynamic range of any camera).

To achieve strong, but diffuse, NIR illumination, we use three generic 840 nm LEDs placed between the camera and the treadmill, pointing toward the sphere. We designed compact 3D-printed housings that allow flexible positioning of the light sources at the top of posts that are friction fit into the holes on the baseboard, as shown in Figures 1A,B. We used pieces of a plastic bag as a diffuser in front of each lamp, attached with heat shrink tubing. For our setup, we used a 5 V power supply together with a 470 Ω current-limiting resistor. With these lamps in place we adjust the lights until we obtain images of the sphere that are bright, yet evenly lit. In our standard setup (our display set to 24% brightness), we do not need to place a visible light blocking filter on the camera, although this could improve robust ball tracking with other displays.



2.3.7. Heat-Pad for Temperature Control

We typically run experiments in rooms that are climate-controlled for the comfort of humans, yet these conditions are often not ideal for flies. Walking experiments can often be conveniently made more efficient by running them at increased temperature, since flies walk more often and faster at elevated temperatures (Soto-Padilla et al., 2018) and also for using temperature-dependent genetic reagents such as Shits1 or TrpA1 (Owald et al., 2015). In our experience, flies walking at warm temperatures, below 35°C, which is considered noxious (Huey et al., 1992), engage in the same walking behaviors that flies do at room temperatures, but do so with much greater consistency, as they are less likely to pause and groom. To inexpensively support warming the fly, we installed a resistive heat-pad underneath the sphere holder, controlled by a second W1209 temperature controller (also see section 2.2.4). We attached a thermistor to the sphere holder as close to the animal as possible. The actual temperature at the animal position might be slightly different (most likely lower and should be verified if critical), and we consequently refer to the W1209 setting as the target temperature. For the experiments detailed below, we use a target temperature of 32°C. Users of this setup could readily modify this temperature setpoint depending on their experimental requirements, or may wish to omit this temperature control subsystem.



2.3.8. Display

A surprisingly wide range of visual stimulus delivery strategies have been used for insect behavioral neuroscience: from motor operated moving objects like patterned drums, to projectors and computer monitors, to custom-made LED displays (Palermo and Theobald, 2019; Kaushik et al., 2020; Kócsi et al., 2020). In our lab, we typically use custom-made, modular LED displays configured as cylinders around the animals, to deliver stimuli with excellent temporal precision (Reiser and Dickinson, 2008 and future developments documented at https:/reiserlab.github.io/Modular-LED-Display/). We have not yet succeeded at producing an inexpensive, widely available display using LEDs, and so we explored other options.

For the inexpensive treadmill setup, we used a widely available tablet computer with an in-plane switching (IPS) liquid-crystal display (LCD), an Amazon Fire 7 with a nominal screen size of 7 in Figure 3A. We connected the tablet to a USB power supply and to a local Wi-Fi network during all experiments and displayed visual patterns through a web browser. To allow replication across devices, we used Mozilla Firefox instead of the pre-installed browser. We installed the most recent versions of Firefox and kept the Android 9 based Fire OS updated with the latest release (most recently Firefox 86.1.x and Fire OS-7.3.x). We manually set the display brightness to 24%. IPS displays are known for their relatively wide “viewing angle,” but from the position of the fly 35 mm in front of the center, there will be an intensity gradient depending on the pixel position. For the patterns we display, this effect partially reduced since we compensate for the view-angle by increasing the physical width, and therefore the brightness, of bars closer to the edge of the screen (Figure 3B).
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FIGURE 3. Display used to present a range of visual stimuli. (A) In our typical experiment, a tethered fly walks on an air-supported foam sphere, while facing a tablet computer that displays a moving grating pattern. (B) The FlyFlix software renders a virtual scene that simulates a cylindrical display onto the tablet's flat screen. The azimuthal span of each bar within a grating pattern is scaled to correct for the viewing angle—even though the dark bar on the left is ~3 × as wide as the bright one in the center, they both span 10° from the perspective of the fly positioned 35 mm in front of the display. The purple spot on the right marks the location where light measurements reported in Figures 4A–C were made. (C) Space-time representations of the display during trials showing a moving grating pattern (spatial axis displayed right-to-left, time axis is top-to-bottom). Each row of these images represents one horizontal slice through the displayed pattern, at the indicated point in time. For these 3 s trials showing moving patterns with different spatial periods and temporal frequencies, clock-wise motion appears as space-time tilts that go down and to the left. (D) Representation of displayed screen content during object following conditions for clockwise movement with the indicated speeds.


To our knowledge, inexpensive tablets have not been used to test detailed behavioral responses of flies to moving stimuli, and so we evaluated both the technical performance of the display system (Figure 4) as well as the behavioral responses of flies to tablet-displayed motion stimuli (Figure 5). Tablets featuring IPS displays with 60 Hz refresh rate are the most widely available inexpensive option. It will be interesting to reevaluate new display technologies (such as OLED) with higher refresh rates as these become less expensive. Our existing system could be rapidly adapted to using a student's personal smartphone instead of a tablet, further reducing cost (and probably distractions) in teaching environments.
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FIGURE 4. Technical performance of the experimental setup. During the presentation of moving grating patterns we measured changes in display brightness at the approximate location marked in Figure 3B. The measurements show a regular pattern that changes at the expected temporal frequency (A,B) and at the same temporal frequency of 7.5 Hz during conditions showing different spatial period grating motion (C). The apparent filtering for the patterns with the finest bars is due to spatial averaging by the sensor. The traces show a small ripple of high frequency noise, this 60 Hz noise is in the sensor measurement and not due to the display. (D) The percentage of frames that were rendered correctly and within the expected time interval (see text for further details) during open-loop and closed-loop experiments. (E) Details of the frames that were not rendered within 1 frame interval shows a majority delayed by a single frame. A very small number of longer delays occurred, and all were from the same, few experiments. (F) The measured network latency for a round-trip message between FlyFlix server and client through WebSocket compared to a network ping (ICMP). The numbers mark the percentage of round-trips that would arrive within the 1st, 2nd, 3rd, or 4th ~17 ms display frame (indicated by the vertical lines). Box plots show the first and third quartile for the box, median for the center line, the whisker extend to 1.5 of the inter-quartile range (IQR). Panel (D) shows all data points, (E,F) only the outliers as individual points.
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FIGURE 5. Visually guided turning behaviors measured with the optimized setup. Panels along the top row show walking behavior in response to a moving grating pattern with a spatial period of λ = 90°. (A) The forward walking speed of flies across the different conditions (n = 30). (B) The turning response of a single fly to multiple presentations of 3 s rotational stimuli moving clockwise (CW, yellow) and counterclockwise (CCW, purple). Thin lines represent single trial responses and the mean response across trials is in the thicker line. (C) The mean turning response across all 30 flies: the top row shows the responses to each direction of motion and the combined responses are plotted below. (D) The tuning curve summarizes the combined response, averaged during the period of stimulus presentation. For comparison, the data in blue is extracted from similar experiments on a different setup, from Figure 1H of Creamer et al. (2018). The mean turning responses for a series of gratings with different spatial periods are plotted in (E) and summarized as a tuning curve in (F). (G) The mean turning responses to presentations of a single 45° bar sweeping across the display. The lightly colored stripes represent the expected position of the bar on the display. The box plot in (A) uses first and third quartile to span the box, 1.5·IQR for the whiskers and outliers are plotted as individual points. The error bar in (D,F) are plotted as mean ± SEM. A consistent color code for clockwise responses (yellow) and counterclockwise responses (purple) is used in panels (B,C,E,G).




2.3.9. FlyFlix

By designing our inexpensive treadmill setup around a network-connected tablet as the visual display, we remove the need for any specialized devices for data acquisition or graphics cards for stimulus generation, but we developed software we call FlyFlix, to control experiments, generate stimuli, and log data. Figure 1C shows a simplified flow of information through the experimental setup. Our display connects through the web browser to the local URL of the FlyFlix server. Upon connection, the web server delivers the most recent version of the FlyFlix client software (written in JavaScript) as an HTML5 web page. The implementation follows an event-based approach with minimal dependencies between client and server, so that any device capable of displaying an HTML5 website can act as a client without prior installation of client software. We have verified that smartphones and computer monitors can be used to display the stimuli, but all results reported in this paper are from experiments using the tablet described in section 2.3.8.

The FlyFlix client and server communicate over a bidirectional, low-latency WebSocket connection. The server can deliver different experiments at specific URLs, or different views on the same experiment to different displays (a feature not used in our standard setup). Once the client connects to the server, it shows a “Fullscreen” and a “Start” button, the first changes the client to a full-screen mode, while the seconds sends the request to the server to start the experiment. After the protocol finishes or the WebSocket connection is interrupted, the FlyFlix client displays a button to “Reconnect” to the server. When the client starts the experiment, the server generates a set of trials based on the pre-specified configuration. The FlyFlix client renders a scene based on its local representation of the stimulus. The server sends updated parameters to change the representation and the client continuously reports back the actual state of the rendered stimulus. This bidirectional communication happens throughout the experiments with time-stamped messages. We implemented the FlyFlix server in Python-3.9 using the Flask-1.1.2 web framework. Bidirectional communication from the server-side is based on Flask-SocketIO-5.x with concurrent networking through Eventlet-0.30. The JavaScript client uses two external libraries: Socket.IO-3.1 for the communication and Three.js-r124 for rendering the visual stimuli.

For our “gold-standard” visually guided behavioral experiments, we wanted to present moving grating patterns composed of vertical bars across the display. Depending on the condition, we move distinct patterns at different speeds through the frontal visual field of the fly. Using the 3D graphics library Three.js, these stimuli are represented as segments of a virtual cylinder surrounding a virtual camera. We set the material of these segments to emits color but not be affected by virtual lighting. The virtual cylinder is 305 mm in diameter, matched to the size of a typical LED arena used in our lab, and a virtual height that exceeds the size of the virtual camera frame. The virtual camera accounts for the physical distance between the animal and display (35 mm), and has the effect of correcting the displayed size of the cylinder segments so that they span an equivalent azimuthal size from the fly's point of view, but span a different physical size on the display (illustrated in Figure 3B for a grating made up of 10° bars). We achieve the movement of gratings on the tablet by rotating the virtual camera although we can use FlyFlix to modify the virtual world as well, for example in more complex closed-loop conditions.

The FlyFlix server generates and controls experiments. Depending on the experimental condition, the server asynchronously sends parameters describing the virtual scene to the client. These parameters primarily concern the scene layout as well as rotational speed, orientation, and maximum refresh rate of the camera. Based on the set of parameters, the client continuously renders the current frame. This decouples the timing of server and client: the server communicates changes to the virtual world in real-time, but does not need to consider the capabilities of the client such as the screen refresh rate. Similarly, the client is independent from the server—if there is a lag in the communication from the server to the client, the client renders the previously communicated parameter instead of waiting for instructions. The client sends its time-stamped state to the FlyFlix server where they are stored in a log file together with the time-stamped server status. This on-line stimulus tracking allowed us to characterize the performance of our display and the network latency (Figure 4) and should enable powerful extensions of FlyFlix that we discuss below.




2.4. Experimental Protocol

To validate this new experimental setup we wanted to measure flies carrying out a well-studied visually guided behavior, the so-called syn-directional optomotor response, in which the flies steer, by turning, in the direction of a rotating visual pattern (Götz and Wenking, 1973; Seelig et al., 2010; Strother et al., 2017; Creamer et al., 2018). We recorded responses to open-loop stimulus presentations, in which the response of flies is measured, but not used to control the trajectory of the stimulus. To map the dependence of the turning response on the temporal frequency and spatial period of the pattern, we used periodic grating patterns moving at one of multiple (temporal) speeds, and a series of patterns composed of different grating (spatial) periods. In addition, we also measured object-following behavior, by recording turning responses to single sweeps of bright bars moving at different velocities.

For the temporal frequency tuning (14 conditions total), we showed grating with a spatial period of λ = 90° composed of pairs of alternating 45° bright and dark bars. The periodic pattern moves either clockwise or counterclockwise with one of seven angular velocities (ω = 22.5, 90, 180, 360, 675, 1350, and 2700°s-1). For a periodic pattern, the temporal frequency is the angular speed divided by the spatial period (ω/λ) and so the tested conditions include 0.25, 1, 2, 4, 7.5, 15, and 30 Hz. The 30 Hz stimulus serves as a control condition. For the spatial period tuning (14 conditions) we tested motion of gratings with one of 7 spatial periods (λ = 5, 10, 20, 30, 60, 90, and 120°) all at a temporal frequency of 7.5 Hz, spanning angular velocities between 37.5 and 900°s-1. At the beginning of each trial, the display shows the initial position of the pattern stationary for 500 ms, then moves for 3 s and shows the pattern stationary again for another 500 ms. Figure 3C shows some examples of the patterns displayed in these conditions.

In the object-following conditions, a bright vertical 45° bar moves across the screen, exactly once at one of 6 angular speeds (ω = 22.5, 90, 180, 360, 675, and 1350°s-1) in either the clockwise or counterclockwise direction. Consequently, these trials have different durations between 0.13 and 7.8 s. During the 500 ms pre- and post-trial period, the screen is fully dark. Diagrams in Figure 3D illustrate these conditions.

Open-loop conditions were interleaved with 3 s closed-loop trials, where the fly's turning controlled the position of the stimulus. We tested a variety of closed-loop conditions (data from these trials are somewhat ambiguous and not part of our analysis). For technical verification we extended closed-loop trials to a length of 30 s and also bracketed these trials between 500 ms pre- and post-trials. Within an experiment, each set of conditions was presented as randomly ordered blocks. The blocks repeated 6 times. The temporal frequency and spatial period mapping experiments were performed as separate protocols. At the beginning of each protocol there is a delay of 10 s to allow the experimenter to shield the experimental setup from the environment with a box, if desired. To minimize any unintended visual stimulation from the room, including any status lights on miscellaneous devices, we ran experiments in a darkened room, and a cardboard box, painted with BLK 3.0 on the inside, was placed over the experimental setup. All experiments were conducted on single tethered flies, with a target temperature of 32°C, to increase fly walking. Figure 5 presents the behavioral results.



2.5. Fly Preparation

We used the Dickinson Lab (DL) wild-type strain of Drosophila melanogaster for our behavioral experiments. This fly strain was established by interbreeding the progeny of 200 wild caught gravid females (Tammero and Dickinson, 2002). The original laboratory culture was maintained in Michael Dickinson's lab, from which the Reiser lab established a copy at Janelia in 2007. This strain has been used in dozens of behavioral studies and has been referred to as “DL” starting with Ofstad et al. (2011). For this study, we reared flies on standard cornmeal agar food at 21°C and 50 % humidity. We conducted the speed tuning (Figures 5A–D) and object tracking (Figure 5G) experiments on 30 female flies and the spatial period tuning experiments (Figure 5E) on 20 flies (randomly selected 11 male, 9 female). All flies were raised in a 16:8 h light-dark cycle; experiments were run on flies between 5 and 6 days post-eclosion.

Prior to tethering, we moved groups of ~4 flies from the fly vial to a 5 ml “Falcon”-style tube (12 mm wide) using a transfer funnel of our design (see Supplementary Figures S5A,B). The vial containing flies was placed in an ice bucket (not shown). After 5 min on ice, the immobile flies were carefully tapped onto the cold, temperature-controlled sorting platform (upper part of the red structure in Figures 2A,C). We used the suction from the fly picker (Figure 2E) to lift and then deposit each selected fly, one at a time, into one of the semi-cylindrical indentations in the lower part of the platform (see Figures 2A,C,D). It is occasionally possible to position a fly perfectly aligned into this “sarcophagus,” but typically flies need to be adjusted using a paintbrush. With a fine wire (see Supplementary Figures S5C,D) we placed a small drop of glue toward the anterior side of fly's notum, the dorsal surface of the thorax. The hand rest (see Figure 2A) supports the user's arm during these fine-scale manual steps. We used the three-axis linear stage Figures 2A,B to position the tether to just contact the glue. Once the “glue” is cured with short wavelength (UV) light, the micromanipulator was used to lift the fly out of the sarcophagus (Figure 2D).

We recommend a brief procedure of chilling flies. In our experiments, none of the tested flies were chilled for longer than 23 min. A reliable sign of vigorous flies and minimal effects of the chilling procedure is that flies should start moving within seconds of being removed from the sarcophagus—something we routinely observed. A body-fixed fly can be positioned in the experimental setup immediately, but we followed a standard practice of allowing for a 20–30 min recovery. Specifically, we placed the tethered flies upside down in a holding area for at least 30 min between tethering and the start of the experiment. We provided a piece of ~5 × 5 mm2 tissue to the flies, which they readily manipulated with their legs. This fly tethering procedure represents a practical compromise that works well in our experience—long enough to tether a small group of flies, while allowing them ample time to recover, but not so long as to compromise behavioral vigor.



2.6. Data Analysis

FlyFlix and FicTrac store the data in rectangular data files. While FicTrac follows a tidy data format, FlyFlix uses a key-value based long format. A custom Python script loads these different data formats into a consistent SQLite database. We use R-4.0 with the tidyverse-1.3 packages and ggplot-3.3 for data analysis and plotting.

Flies were presented with paired visual stimuli that moved in both the clockwise and counterclockwise direction. We recorded the ball rotation via FicTrac. Out of the 25 recorded variables, we used the “animal's heading direction (lab)” to estimate intended body yaw rotations and the “animal movement speed” for the walking velocity. We used “delta timestamp” to convert frame-based differences into time-based rotational velocity and the physical diameter of the sphere to calculate the movement velocity (Figures 5A,B). For time-series data, the average turning response was calculated for a sliding window of 5 camera frames across all trials of a condition. These responses were averaged on a per-fly basis (see Figure 5B), before being averaged across flies (top of Figures 5C,E,G). Responses to counterclockwise stimulus movement were scaled by −1 and averaged together with the clockwise responses for the combined responses (Figures 5C,E, bottom). The summary tuning curves (Figures 5D,F) show mean turning velocity during stimulus presentation as mean ± SEM across flies.




3. RESULTS


3.1. Characterizing the Technical Performance of the Experimental Setup

As the inexpensive treadmill setup uses several components not typically used in animal behavior experiments, we measured many aspects of the system's performance, and summarize the results in Figure 4. To validate the tablet's display of our moving visual stimuli, we measured local brightness changes on one side of the display (position indicated on the right side of Figure 3B) with a mounted photo-diode (INL-3APD80, Inolux Corporation, Santa Clara, CA, USA). We viewed and logged the data on an oscilloscope (MDO3040, Tektronix Inc., Beaverton, OR, USA). Figures 4A,B shows typical measurements of the brightness changes measured for the moving patterns of the temporal frequency tuning conditions. Figure 4C shows typical measurements for moving patterns during the spatial period tuning conditions. These measurements suggest that the Fire 7 tablet reliably displays these periodic patterns, for example showing the expected periodic changes at the indicated temporal frequency. We note that even at the 30 Hz condition, which is half of the display refresh rate (lower trace in Figure 3B), the stimulus timing looks extremely reliable; this condition is included as a stimulus control, since at half of the display refresh rate, the display flickers, and thus produces no net motion. The spatial period conditions show a similarly reliable periodic pattern at 7.5 Hz (Figure 3C). The reduction in the sharpness of the edge transitions for smaller bars is simply due to spatial averaging by the sensor (and is a reasonable model for why the fly visual system also sees smaller period, thin-bar, patterns as consisting of lower contrast).

During experiments, the FlyFlix client records the rendering status for each frame. By providing this on-line stimulus tracking, not possible with many other display systems, a record of successful and delayed frames can be stored and incorporated into the post-hoc data analysis. Before the web-browser displays a frame, the software asynchronously requests an update of the rendered content based on the current set of parameters. If this request times out before the frame is rendered, then the previous content is shown again. Figure 4D shows the percentage of frames that are rendered correctly and within the allotted time, which is (on average) the inter-frame-interval of ~17 ms. We plot the percentage of correct frames for 33 open-loop experiments as well as from 9 closed loop experiments (for which the behavioral data are not shown). For both configurations, the average performance is quite reliable, with more than 99.9 % of the frames correctly rendered. Figure 4E provides details of the ~0.1 % of cases when frames were not rendered within this interval. We do not find any systematic errors. On average one out of every 1,000 frames skips exactly one frame update. Higher numbers of skipped frames are extremely rare, and tend to come in clusters, mostly during conditions with the same animals. Since FlyFlix records these measurements, trials above certain relevant thresholds can be identified post-hoc and removed from analysis.

Since the FlyFlix server and FlyFlix client communicate via a network, we characterized the latency of this asynchronous bidirectional communication by sending time-stamped packages from the server to the client, which immediately returns the package. In Figure 4F, we plot this WebSocket latency (WS) and also a ping using a lower network layer (ICMP). 97.9 % of the frames completed a round-trip within 1 inter-frame-interval (~17 ms, indicated with horizontal magenta lines in the plot) of the display, even though WebSocket based communication takes slightly longer with the additional protocol overhead. We expect that in our real application, the network reliability is even higher, since only half of a round-trip is required to update the display while the returned display state is not time critical.

In our experiments, we used our institute's infrastructure: the FlyFlix server was connected to a wired network, the tablet connected via Wi-Fi to a different subnet. Should the latency of an available network become too high, a local network router directly connecting FlyFlix server and client will improve the timing of the communication.

Taken together, the results of Figure 4, demonstrate that a low-cost tablet provides a reliable visual display producing excellent stimulus control and timing over measured system events. These technical measurements show that our low-cost system replaces many components typically required for precise experiment control (like data acquisition devices or high-end PC graphics cards) without sacrificing any performance, for the range of pattern speeds and network latencies described here.



3.2. Visually Guided Turning Behaviors Measured With the Optimized Setup

An important demonstration of our new, integrated system is that “typical” fly behaviors can be measured from flies tethered using our new tethering station and behavioral data collected using the new experimental setup. We focused on the optomotor responses, and present results from (30+20 =) 50 flies across 2 different protocols (detailed in sections 2.4 and 2.5). Figure 5A shows the walking speed of flies during each trial of the temporal frequency protocol. Across conditions, flies walk with a similar speed, with a mean around 10 mm s-1 which is slightly faster than walking speeds measured in other fly-on-ball experiments (Creamer et al., 2018), and is only slightly slower than the walking speeds of freely walking flies at similar temperature (Ofstad et al., 2011).

When presented with rotating patterns, flies tend to turn in the direction of the pattern movement, a response seen in single trials and across trials for the example condition shown in Figure 5B. While there is some trial-to-trial variability, in nearly every trial, the flies turned in the clockwise, or positive direction (in yellow) for clockwise pattern motion and in the counterclockwise, or negative direction (in purple) for counterclockwise pattern motion, a pattern that is clearly seen across flies and stimulus speeds (top of Figure 5C). The amplitude of the turning velocity we measured depends on the temporal frequency of the pattern movement (observable in the data combined from both directions, in the lower row of Figure 5C). This is precisely the expected result, since temporal frequency tuning is a well-described aspect of fly motion vision—insects are most sensitive to movement of periodic pattern with some temporal frequency optimum, and are less sensitive to movements with both higher and lower temporal frequency (Götz and Wenking, 1973). We compare our results, plotted using the mean responses during the period of stimulus presentation as a tuning curve, to the most relevant, recent independent measurement from another lab using a different setup (Figure 5D contains an overlay of data from Creamer et al., 2018). We find that in our experiments, for most conditions, flies turned more overall, and we see similar, monotonically increasing response levels up to 4 Hz motion. At the highest temporal frequencies we see an interesting difference, where our responses were reduced, the responses from Creamer et al. (2018) remain much larger. We attribute this difference to limitations of our display. As previously discussed, the tablet refreshes the screen content with 60 fps; at this refresh rate, a 30 Hz temporal frequency motion grating will appear as flicker—containing no net motion, and so it is expected that our flies cannot turn to follow motion that is not there. Similarly, the responses to 7.5 and 15 Hz pattern motion are reduced since the illusion of smooth motion is weaker at these speeds. Aside from these technical limitations of the display at very fast speeds, we find excellent concordance between our measurements and those of previous experimenters.

The optomotor turning response is also expected to depend on the spatial period of the grating pattern (Buchner, 1976; Creamer et al., 2018). We presented a series of grating patterns with different spatial periods at a fixed temporal frequency of 7.5 Hz. The flies responded with large, consistent turning to patterns with a grating period above λ = 20° (Figures 5E,F). For narrower stripes, the responses were reduced, and in fact no consistent turning was measured for the pattern with λ = 5°. This result is expected based on prior work, and is remarkably similar to the measurement of Buchner (1976), who used a very different stimulus strategy.

Finally, we tested the flies' ability to track a moving bar, a behavior that is known to depend on both the motion and position of the moving object (Poggio and Reichardt, 1973; Bahl et al., 2013). As with the rotating grating patterns, we found that flies turned so as to follow the direction of the rotating bar (Figure 5G). The peak turning velocity was similar between different rotational velocities of the stimulus, and quite similar to peak turning during the grating motion. To casually explore the position-dependence of the turning response, it suffices to note that most of the turning reaction occurs once the object (position indicated by the diagonal lines) crossed the midline (most notable for ω = 90, 180, and ~360°s-1). It is as if the flies don't attempt to orient toward an object they are likely to intercept as it approaches their midline, but once an object is getting away (as measured by its progressive, or front-to-back motion), their attempted tracking behavior rapidly increases. This response profile matches the recent measurements of walking flies (Bahl et al., 2013), but differs somewhat from the behavioral reactions of tethered flying flies that respond to both the regressive and progressive motion of the object (Reiser and Dickinson, 2010). For the fastest speeds tested, the flies were unable to track, that is “catch up to” the spinning bar, and the responses are seen to lag the position of the stripe by more than 100 ms. In the condition with ω = 1,350°s-1, the object moved across the 60 fps display in less than 8 frames with displacements of over 20° between frames, which are too large for the fly to smoothly integrate as motion, and as expected the flies barely turned to this condition.

In Figure 5, we summarize the behavior of Drosophila in our optimized, inexpensive treadmill setup, in a sophisticated range of stimulus conditions. We show clear symmetric turning responses to all symmetric stimulus conditions. The temporal frequency and spatial period tuning as well as the object tracking behaviors are highly similar to previously published measurements from other labs using different experimental setups, for all but the fastest stimulus conditions. Based on these results, we unreservedly recommend this low-cost setup, not only for teaching purposes, but for nearly any research application.




4. DISCUSSION

In this paper, we have described our re-implementation of a complete system for tethering flies and the accompanying experimental setup for measuring tethered fly walking behavior to controlled visual stimuli (Figures 1, 2). Our spherical treadmill setup takes a fresh look at the fly-on-a-ball paradigm. While the design is guided by several decades of experimental methods development, we have been optimizing the setup by simplifying the components, reducing costs, and ensuring availability. Since many of the components have not previously been deployed in animal behavior setups, we validated their performance (Figure 4). We found excellent reliability for the low-cost display and low network latencies, which combine to establish a highly reliable new method for experimental control. This system comes with other advantages such as a flexible stimulus control software that can dynamically correct for the viewing angle (Figure 3). Finally, we measured the walking behavior of flies to a range of moving visual stimuli and confirmed, in exquisite detail, that our new setup is capable of reproducing nearly all relevant prior measurements using similar visual stimuli for wide-field gratings and small moving objects. Therefore we now have a low-cost setup that is a quite reliable instrument, and consequently find that it produces highly reliable open-loop behavioral measurements. Based on this experience, we believe our setup will be ideal for teaching courses and for a wide range of laboratory uses. We sincerely hope that the reduced complexity and enhanced accessibility of these setups will excite many young scientists about quantitative animal behavior, and will increase the reproducibility of research observations. In the following sections we discuss cost savings of our system, the cost of cost savings in the form of limitations, some possible extensions, and future work.


4.1. Costs and Availability

We have endeavored to reduce the cost of the system at each step, often with considerable cost savings relative to alternative contemporary setups. We estimated the costs based on building a single setup, using parts available in the U.S., during the spring of 2021. Many of the components are available as generic parts from multiple vendors, and most will also have comparable alternative, if not identical, components available world-wide. We selected example sources to illustrate the price range for potential cost savings and overall costs and provide website links for the same purpose. We give examples and not endorsements for or against particular vendors. We estimate the prices for 3D-printed components using the online instant quote at https://craftcloud3d.com. For the laser cutting, we use estimates from https://ponoko.com. We base our cost estimation of consumables and commodities like glue, tethers, and screws on a projected weekly consumption. In Tables 1, 2, we link to packages that will last for longer periods of time. Those with access to a 3D printer, a laser cutter, or a selection of screws can expect overall lower costs.


Table 1. Price estimation of parts for experimental setup.

[image: Table 1]


Table 2. Suggestion for components in an inexpensive treadmill tethering station.

[image: Table 2]

For the comparison to a contemporary setup, we surveyed several groups and specified a system that would realistically represent the type of setup we would build in our lab today for ongoing research projects. Below we detail a few key components, and summarize the systems' cost in Tables 1, 2, and in Figure 6). Figure 6 shows we can assemble both complete systems for ~$330, whereas the standard, yet very nice, pair of setups would cost ~$17,000, a remarkable ~50-fold cost reduction.


[image: Figure 6]
FIGURE 6. Estimated cost savings for each setup. The price of each functional unit is a comparison between the standard setups and the optimized, inexpensive tethering station (A) and experimental (treadmill) setup (B). The diagonal line in each of (a), (b) represents an equal price in both setups. In (C,D), we list the components (or functional units) represented by the labels in (A,B). We use a projected maximum of weekly consumptions for expendables (e.g., glue and tethers). Between the two versions of these systems, we estimate a ~50-fold cost saving. Further details are provided in the text and in Tables 1, 2, detailing these components.


One simple way to reduce costs and increase access is to exclusively use Free Software and other open-source components. From GNU/Linux as the operating system, to FicTrac, camera drivers, FlyFlix, and Firefox, all are available without paying software license fees. Furthermore, the majority of the components in the Component-Designs GitHub repository are constructed using Free Software such as FreeCAD, KiCAD, and Inkscape. As a direct consequence, the software necessary to modify our designs is available without hidden costs and for all major operating systems in the foreseeable future. Communities around these software packages provide good documentation, tutorials, and support for any type of questions. In the long term, open standard file formats used by Free Software also ensure unrestricted exchange of design files, beyond the specific software packages we used.



4.2. Trade-Offs and Limitations

The flexibility and modularity of our proposed system is also a limitation: it takes more time and effort to make and assemble the systems based on components from multiple vendors, rather than ordering ready-made products. We sought to replace all custom parts with commercially available inexpensive components wherever possible, such as the display system or the tethers, but in many cases, no alternative existed and we turned to custom designs.

Many components of our setup are produced in a 3D printer or a laser cutter. This may increase access compared to custom-machined metal parts, but it is still a limitation. Nevertheless, we see three main alternatives to produce these parts: (1) high quality 3D printers are becoming more affordable and easier to use, (2) maker spaces provide access to 3D printers in communities across the world, and (3) many companies offer 3D printing as a service. We used the third (and most expensive) option in our cost estimates (Figure 6). We consider access to a laser cutter as nice, but unnecessary for building this setup (alternatives discussed throughout). The factors regarding price, maker spaces, and online services also apply to laser-cutting acrylics. Building a new experimental setup is always a time-consuming endeavor, but even more so when the components need to be built from scratch. We estimate ~5 h of printing time on the Stratasys F-170 printer, but could take considerably longer on the more common, less expensive printers. Potentially the use of 3D printing services is an option to reduce print time and the initial expertise and equipment required. We further estimate that another ~5 h are necessary for assembling the first setup. In the near future, we will provide printing and assembly advice on our accompanying repository based on feedback from early adopters.

FlyFlix, the system of a single server providing stimuli for network connected display clients, is extensible to multiple tablet displays. For the low-cost implementation described here, we have only used a single display in front of the fly covering ~130° in azimuth and 100° in elevation. Our lab's standard cylindrical displays cover 270° in azimuth, and this larger field of view is critical for some visually guided behaviors. Virtually any display will present non-uniform brightness from the perspective of the fly. In our current implementation, we do not correct for this, as there is little evidence to suggest that optomotor behaviors with large-field, high-contrast gratings are sensitive to these local brightness variations. Nevertheless, the brightness of the display as viewed by the fly, at each location on the screen, can be measured and corrected for by non-uniformly masking the local brightness of the display. This step should be seriously considered if users wish to use such a display for measurements of neuronal responses within small receptive fields. Furthermore, the tablet we chose only supports refresh rates of 60 fps. This limits the speed of stimuli that can be shown, including to motion speeds that the fly can perceive (see Figure 5D). Many apparent motion stimuli—including most of the moving gratings and the small moving objects shown in Figure 5—can be very well-approximated at this display refresh rate, but this illusion of smooth motion breaks down for stimuli defined by very fast motion. Newer handheld displays with higher refresh rates and gaming monitors used in other experimental setups overcome this limitation, but at significantly increased cost (Kaushik et al., 2020). The FlyFlix software is agnostic to the display and should work “out of the box” with higher refresh rate displays. Nevertheless, network latency will be a limiting factor for high-speed closed-loop systems, but there is little reason to believe that flies (or just about any animal) required closed loop latencies that are less than ~10 ms.



4.3. Extensions and Future Work

The challenge of setting up multiple rigs in a teaching lab to provide hands-on experience with Drosophila's fascinating walking responses to visual stimuli initially inspired the inexpensive treadmill project. Since then, we optimized the setup and so far only tested it with fruit flies. Nevertheless, we expect that adapting the setup to other insects should be straightforward. The Sarcophagus already accommodates many body sizes and could be modified for others. A much larger insect may require a larger ball size, but fortunately, the nature of our manufacturing process and the availability of our 3D designs allows any components to be scaled to adapt to specific animal sizes.

While we have focused on visually guided behaviors with this setup, it would be very exciting to implement other types of sensory stimulation: wind, humidified air, sounds, odors, or even polarized light (Mathejczyk and Wernet, 2020). The inexpensive treadmill setup could readily be applied to longer duration observational studies of individual flies, for example in sleep studies or starvation experiments. All of these can be integrated into our experimental design with little to no modification to the existing components.

While we have achieved all of our initial goals, we continue working to improve the system. In the near future, we plan to provide more accessible alternatives to our hand-filed balls and a suitable replacement for laboratory wall air to float the ball. On the software side, we will continue to expand the capabilities of FlyFlix. One exciting direction is to use the on-line stimulus tracking to allow instant verification, and for example, to automatically repeat any trials during which stimuli were not successfully presented. Another important improvement for the combination of FlyFlix and specific tablets will be incorporating stimulus calibration information. One important goal will be to compensate for the brightness of the display, at different locations, and possibly for different color channels, to achieve a more uniform luminance distribution from the fly's perspective.

The open-loop experiments detailed in Figure 5 show that our new system is capable of replicating a wide range of visually guided behaviors in walking flies. In addition, we have implemented closed-loop protocols and confirmed that they are technically working. So far we have not been impressed with the behavioral results from this subset of closed-loop trials and so we continue to optimize these experiments and hope to report robust closed loop behaviors in the near future. Finally, we will implement a low-cost solution for optogenetic stimulation of walking flies, and will adapt the setup as needed so that we can mount it under a microscope to accommodate electrophysiology or calcium imaging measurements. We will post all updates on the accompanying repository and we welcome all feedback, ideas, and contributions.
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Navigating animals combine multiple perceptual faculties, learn during exploration, retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression of their current needs and motivations. Navigation in insects has been linked to a variety of underlying strategies such as path integration, view familiarity, visual beaconing, and goal-directed orientation with respect to previously learned ground structures. Most works, however, study navigation either from a field perspective, analyzing purely behavioral observations, or combine computational models with neurophysiological evidence obtained from lab experiments. The honey bee (Apis mellifera) has long been a popular model in the search for neural correlates of complex behaviors and exhibits extraordinary navigational capabilities. However, the neural basis for bee navigation has not yet been explored under natural conditions. Here, we propose a novel methodology to record from the brain of a copter-mounted honey bee. This way, the animal experiences natural multimodal sensory inputs in a natural environment that is familiar to her. We have developed a miniaturized electrophysiology recording system which is able to record spikes in the presence of time-varying electric noise from the copter's motors and rotors, and devised an experimental procedure to record from mushroom body extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined with a reconstruction of the animal's visual perception and find that the neural activity of MBENs is linked to sharp turns, possibly related to the relative motion of visual features. This method is a significant technological step toward recording brain activity of navigating honey bees under natural conditions. By providing all system specifications in an online repository, we hope to close a methodological gap and stimulate further research informing future computational models of insect navigation.

Keywords: honeybee (Apis mellifera L.), neuroethology, navigation, mushroom body, naturalistic condition, quad copter, electrophysiology


1. INTRODUCTION

Honey bees are remarkable navigators. Foragers learn to orient in complex environments and perform accurate goal-directed flights in areas several square kilometers in size (Collett, 1996; Menzel and Greggers, 2015). A range of experimental evidence and computational models regarding which strategies bees may employ have been put forward (Srinivasan et al., 1996). Path integration, visual guidance using view memories or structured landmark memories may play a role. However, it is still unknown whether and how those components are combined and at which level of computation they may be available to a navigating bee (Collett, 2019; Webb, 2019). In most animal models, the search for the neural correlates of navigation has made considerable progress through experiments in which the recorded animal was able to move freely in close-to-natural environments (O'Keefe and Nadel, 1979; Bingman and Able, 2002; Hafting et al., 2005; Rubin et al., 2014; Eliav et al., 2021).

In insects, we can identify two main approaches: animals may either move freely in small confined arenas, such that their brain is accessible with wire electrodes or imaging techniques (Jin et al., 2014, 2020; Kim et al., 2017), or they are tethered in virtual reality setups moving stationarily (Harrison et al., 2011; Zwaka et al., 2019). Early evidence showed that bees accept virtual stimuli (Abramson et al., 1996), and virtual reality arenas in which bees can explore artificial environments “afoot” have been established (Schultheiss et al., 2017; Buatois et al., 2018). However, while other insects have been shown to readily fly in virtual environments (Kaushik et al., 2020), so far only one virtual reality arena for bees reported flights just over one minute long (Luu et al., 2011). No neurophysiological data has yet been obtained from bees flying in virtual reality. Recording from neurons using a backpack of miniaturized hardware as proposed in dragonflies (Harrison et al., 2011) is still infeasible due to size and weight constraints in bees. As a result of this technological gap, little is known about the neural correlates of flight navigation in bees.

Substantial previous research in various insect species has identified potential candidate neuropils that may play a role in navigation. Recent work, however, suggests that even minor differences between the connection patterns of different insect species may yield a significantly different functionality of these circuits (Pisokas et al., 2020), underlining the necessity of neurophysiological access to navigating honey bees in flight.

Where should we look for neuronal correlates of navigation? The central complex was found to house neurons essential for sun compass related navigation (Homberg et al., 2011). Body direction cells were found in the cockroach's central complex under conditions that allowed testing of immediate memory effects as they appear under dynamic spatial object-body relations. They thus may play a role in guiding walking trajectories under natural conditions (Varga and Ritzmann, 2016). Ring neurons in the Drosophila central complex were found to code body direction in relation to simulated visual objects (Kim et al., 2017), and these neurons are thought to play a role in the directional component of path integration (Seelig and Jayaraman, 2015). However, the central complex is difficult to access in honey bees. It lies below the mushroom bodies (MBs), another important neuropil that integrates multi-modal sensory input and is involved in memory formation (Menzel, 2014). Particularly in the context of navigation, the MB has been previously hypothesized to store view memories that the navigating insect could match with its current observations (Menzel, 2012; Webb and Wystrach, 2016; Müller et al., 2018; Webb, 2019) and would then continue moving into directions of highest familiarity. Previous work confirmed detrimental effects on higher-order forms of learning (Komischke et al., 2005; Devaud et al., 2007) when interfering with the mushroom body's functioning (Buehlmann et al., 2020; Heinze, 2020; Kamhi et al., 2020). Mushroom body extrinsic neurons (MBENs), neurons at the output of the mushroom body, are likely involved in memory formation and retrieval (Menzel, 2014) and have been successfully recorded in freely walking honey bees (Duer et al., 2015; Paffhausen et al., 2020). Moreover, a subset of MBENs can be targeted precisely under visual control after exposing only a fraction of the brain (Menzel, 2013). This increases the animal's survival rate over extended recording durations, and hence, we here decided to target MBENs. The MBs multimodal and learning-related properties make it a much more suitable target in the context of real-world vs. virtual reality. It seems more likely to trick the central complex with a VR stimulation to process meaningful information related to navigation. The MB, however, has the potential to be more sensitive to the integration of multimodal stimulation. The synchrony, resolution, and comprehensiveness of the real world may be particularly helpful when investigating the involvement of the MB during navigation.

We propose a novel methodology to record neuronal activity from MBENs of honey bees on a quadcopter. The animal can be flown automatically along predefined routes presenting natural stimuli in all sensory modalities. We performed behavioral experiments to verify that bees show flight behavior when tethered on the copter and can integrate visual information perceived on the copter in subsequent episodes of autonomous navigation. Supported by these results, we developed a miniaturized recording system that is capable of amplifying and digitizing neural activity while reducing motor and rotor noise to acceptable levels. In this paper, we specify all system components and show the results of our behavioral experiments. We provide a detailed account of experiments in which we successfully recorded neurophysiological data in flight and present an analysis that confirms that the recorded activity is linked to the sequence of stimuli perceived along the flown routes. This is the first work that proves that this alternative to virtual environments is indeed feasible. By opening all system specifications, code and data, we hope to encourage the community to continue these efforts to identify the neural correlates of navigation in honey bees1.



2. METHODS


2.1. Behavioral Experiments

Behavioral experiments were conducted in a grassland east of Großseelheim, Germany. A two-frame observation hive was set up at the western border of the field (50° 48' 51.1452" N, 8° 52' 20.9928" E). The field site was rich in visual landmarks, both on the ground (irrigation channels, footpaths, hedges, etc.) and the horizon (see the map in Figure 1 and panoramic images in Supplementary Material).
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FIGURE 1. Map of the field site for the behavioral experiments. For the homing experiment, honey bees from the hive (Red) where trained to forage at the indicated feeder location (Orange). Individuals caught at this site were attached to the quadcopter and transported to the release site (Yellow).



2.1.1. Do Tethered Bees Show Flight Behavior on a Drone?

Honey bee (Apis mellifera) workers from three groups (hovering—H, forward flying—F, and control—C) were attached to a quadcopter (Matrice 100, DJI, Shenzhen, China) via an extension arm (50 cm in length, see Figure 2). A number tag with a small metal pin was glued to the animal's thorax, and the pin was clipped to the extension arm. The arm positioned the bee such that it had an almost unoccluded view. The copter was placed in the field, and the animal was allowed to grab a light foam ball (~8 mm in diameter) attached to the ground via a string. A camera behind the animal recorded video at 25 Hz to an SD card. At the start of the experiment, the copter lifted off from the ground (groups H and F), pulling the bee from the foam ball. For the control group C, the ball was pulled manually, without any motor activity of the copter. Due to the tarsis reflex, the bees started beating their wings instantaneously. Bees in group H were lifted upwards to ~2 m altitude (natural altitude during short foraging trips with a distance of 30 m), with negligible rotatory or horizontal movement. Bees in group F were flown forwards, continuously gaining altitude (up to 2 m) and distance to the lift-off point. The copter was controlled manually and brought back after no wing beating was observed anymore or a maximum of one minute of flight time had passed. Flight forward velocity was 10 m/s (natural flight speed observed during radar experiments, Riley et al., 2005). Videos were analyzed after the fact, and the duration of continued wing beating was extracted. Each of the 47 bees was tested with all treatments in randomized order with resting intervals of 1 min.


[image: Figure 2]
FIGURE 2. Behavioral field experiments. (A) Honey bee attached to a quadcopter via an extension arm. (B) Still image of a video recording showing flight behavior defined as continuous wing beating, with raised abdomen and hind legs.




2.1.2. Homing After Copter Flight

We investigated if bees extract information relevant for homing when being transported on the copter. Bees were trained to a sugar dish 400 m east of their hive (50° 48' 56.25" N, 8° 52' 38.766" E, see Figure 1) and caught after drinking ad libitum. A small plastic marker with a metal pin was glued to the number tag they already had affixed to their thorax. The animal was then either clipped to the copter's extension arm (treatment group T, N = 54) or put in an opaque box on the top face of the copter (control group C, N = 18) such that it could not perceive the flight path visually. The animal was tethered with a small clamp in the box, similar to the mechanism depicted in Figure 2. The procedure took ~1 min. The copter was then started manually, ascending vertically to 15 m altitude, and was then set to reach the target location automatically (400 m north of the feeder location: 50° 49' 6.4632" N, 8° 52' 30.5616" E). Both lift-off and landing procedures were performed manually because automatic lift-off and landing were implemented with a slow rate. Flight velocity was 10 m/s. Upon arrival at the target location, the bee was untethered and released. The time and ID of the bee were noted upon release and arrival at the hive. Some bees landed in the grass shortly after taking off. For these bees, we noted the time they resumed their return flight.




2.2. Neuronal Correlates of Navigation


2.2.1. Miniaturized Recording System

To record neural activity from the bee's brain, we developed a lightweight, battery-driven amplifier, and a data acquisition and storage system. The custom solution consisted of a two-channel extracellular amplifier, two analog-digital converters (ADC), and a microcontroller board with an SD card for data storage. The amplifier (see Figure 3) was based on a suitable one-channel amplifier (Budai, 2004). The circuit board (PCB) contained two of those amplifiers, a shared power supply, and two electrically isolated ADCs that were read out simultaneously by a dedicated microcontroller. The head stages were laid out on a separate PCB, located close to the bee. This way, the weak neural signals had to travel only a few centimeters. The electrode bundle (Duer et al., 2015) consisted of two enameled copper wires and a bare silver wire as reference. The reference wire was bent 90° relative to the copper wires, 80 μm above the electrodes' tip, to indicate the desired depth of electrode placement in the brain. The two input channels were measured and amplified in reference to the shared ground electrode. The resulting signals were later subtracted from each other in the digital domain to form a differential pair. The impedance of each electrode was highly dependent on the final recording site, i.e., the surrounding tissue and their electric properties. An offline impedance matching allowed for the most accurate noise cancelation (see section 2.3).
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FIGURE 3. Extracellular amplifier and data flow. (A) Photograph of the custom two-channel extracellular amplifier. The design contains two head stages to convert the impedance. They are located close to the bee's head. Each analog signal is then processed separately by amplifiers (amplification factor: 1,000x) and active filters (bandpass: 300 Hz–10 kHz). The resulting analog signals were then digitized by two synchronized delta-sigma analog to digital converters (16 bit, 20 kHz sampling frequency). Two galvanic isolators isolated the digital signals to not pick up any noise from the data storing microcontroller (STM32F4). (B) Schematics of the system with a STM32F4 as on-board computer. Diagram of all electrical components of the neurocopter system and the used buses additionally to the components which are parts of the DJI Matrice 100 quadcopter. The blue arrows represent data transfer. The direction of an arrow symbolizes the direction of the information flow. The red arrows show power supplies and their respective voltages. To make the code hardware independent, the STM32 cube hardware abstraction layer was used for hardware access.


Electric noise reduction was of particular importance due to the disproportionately small voltage and current of the brain signals and the noise emanating from the copter. In-flight, the copter generates strong electric and electromagnetic fields. The plastic rotors generate electric fields by statically charging due to the air friction, and the four motors driving the rotors generate strong electromagnetic fields. Each motor is connected to a motor controller that generates strong switching noises, interferes with the copter's battery voltage, and generates electric field changes. All those influences were considered when the amplifier's power supply was designed and isolators were chosen. The cables transmitting analog signals were particularly susceptible to noise. Copper tape was used to shield all cables from electric field interference. The recorded signals were amplified such that the biological signals were detailed enough for sufficient spike sorting, but the large voltage changes would not saturate the input range of the amplifier (see Figure 8). The amplified and filtered (100–20,000 Hz) signals were digitized and read out by a microcontroller board (see Figure 3). This component acquires timestamps from a connected GPS module and stores the data on an SD card. The neural data, therefore, was synchronized to the copter telemetry data.



2.2.2. Quadcopter

A quadcopter (Matrice 100, DJI, Shenzhen, China) was equipped with the miniaturized recording system and an extension arm to attach the animal and recording equipment. A camera observed the tip of the arm from below and provided a view of the environment (Yi 4k, YI Technologies, Singapore, see Figure 4). The battery case was retracted slightly to balance the weight of the extension arm for best flight stability. A custom metal cage on top of the copter contained the amplifier board. It was shielded with copper tape that was connected to the copter battery's negative terminal. The microcontroller board was located on top of the cage. The extension arm also separated the bee from the motors as far as possible without interfering with the flight properties and the center of mass of the copter. The potential pickup of electromagnetic fields emerging from the motors and propellers is decreased this way. The bee stage was connected to the extension arm by rubber dampeners to reduce vibrations.


[image: Figure 4]
FIGURE 4. Environment of the navigation experiments. (A) View of the onboard video camera. The frame shows the experimental environment while the copter is en route to the feeder (see marked location in B). (B) Trajectory of the trefoil flight pattern. Flights started at the south-west corner of the field, ~180 m from the hive.




2.2.3. Field Site and Photogrammetry

A hive was set up at Free University Berlin (52° 27' 25.3116" N, 13° 17' 45.7584" E), and bees were trained to collect sucrose from a feeder on a field (~50,000 m2) at Julius-Kühn-Institute Berlin, Germany (52° 27' 39.7008" N, 13° 17' 48.3288" E). All inflight neurophysiological recordings were conducted at this site.

In the post-experimental data analysis, we studied the link between neural activity and the animal's visual input, reconstructed from the copter's position and a realistic 3-dimensional map of the field site. Prior to the experiments, the field was mapped using photogrammetry from aerial imagery (using a DJI Inspire, Pix4D), resulting in a surface depth map. Due to regulations, we were not allowed to fly over the surrounding areas. We extracted freely available image data (Google Earth) in virtual flyovers for the surrounding field (in total 220 km2) and reconstructed the depth map in high-resolution (12 cm/pixel) for a close neighborhood around the field and in low resolution (~4 m/pixel) for a larger surrounding area. The three maps were combined in Blender (Blender Online Community, 2018). This way, the high-res map of the field (resolution: ~13 cm/pixel) provided detailed and up-to-date ground structures, while the two other models provided horizon information.



2.2.4. Experimental Procedure

Honey bees were trained to a feeder on the experiment site, 420 m north of the hive. The feeder (0.5 M sucrose solution) was positioned in the middle of the field (see Figure 4, standing on a bright yellow box (80 cm wide, 35 cm long, and 40 cm high). All bees visiting the site were marked. The marking color changed every day to distinguish how many days a bee was foraging at the site.

In preparation for an experiment, one of the marked honey bees with at least three days of visiting the feeder was caught at the hive. The bee was transferred into a glass vial and anesthetized on ice. The bee, once immobilized, was carefully harnessed in a bee holder with fabric tape and mounted to the recording stage on the copter (see Figure 5). Under stereomicroscopic vision, the head was opened, and the glands and trachea were pushed aside until the alpha lobe was visible (see Figure 5). Two electrodes were implanted into the region of interest. The ground electrode would then rest on the surface of the brain. Once stable neuronal signals were occurring, the electrodes and head aperture were sealed with silicone (Kwik-Sil, WPI, Sarasota, FL, US). The bee and copter were then transported to the field site. A preflight check assured that neural activity was present after light stimulation (acoustic monitoring) and that the recording system was running properly. After the preflight check, the bee was flown automatically on a predefined path resembling a trefoil (see Figure 4). The flight path was chosen such that it includes feeder flyovers from different directions and a flight stretch into the hive's direction. This way, we would be able to explore several hypotheses, e.g., that MBENs respond to familiar views. Bees can see ~300° horizontally on the body plane with low spatial resolution for peripheral ommatidia (Seidl and Kaiser, 1981). The bee holder may thus have blocked a small portion of the posterior view (see Figure 5). Otherwise, the bee had an almost unobstructed view of the environment.
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FIGURE 5. Preparation setup and recording site. (A) Preparations for electrophysiological experiments were performed in a controlled environment with the honey bee already attached to the quadcopter. (B) A small rectangular incision into the head capsule revealed the bee brain's alpha lobe after the trachea and glands were pushed aside. The electrode bundle visible in the microscope was attached to a micromanipulator with dental wax. Once the electrode bundle was implanted, it was connected to the head stage on the copter via a custom connector jack. Finally, the electrodes and incision were sealed with silicone. Before the animal was moved to the field, the electrode holder was detached to allow for a free anterior view.


Flights started in the southwest corner of the field, approximately on the line connecting hive and feeder, into the direction of the feeder. The copter lifted off manually to an altitude of 15 m and was then switched to automatic waypoint following. Flight velocity was set to 5.5 m/s. The speed and altitude were chosen because of the legal requirement to maintain line of sight. The copter described a linear path to the feeder and beyond and then executed a right turn ~80 m behind the feeder. The turn reoriented the copter back to the feeder, now facing it from a different bearing. The sequence (feeder overflight and turn) was repeated twice, and the copter then flew back to the start location to repeat this flight pattern until the battery of the copter was too low to continue (3–5 repetitions depending on wind conditions, e.g., head- or tailwinds). The copter was then landed manually at the start site for battery replacement, with consistent rest times between trials. Each time, we downloaded the data to a laptop and then performed the preflight check again. The process was repeated until either the animal died or no spikes could be registered anymore.




2.3. Data Analysis


2.3.1. Behavioral Experiments

Statistical hypothesis testing was performed to analyze the behavioral data. For the wing duration experiment (section 2.1.1), a one-sided Mann-Whitney U-test was used to test the null hypothesis that there are no significant differences in observed flight behavior duration between the three groups (hovering—H, forward flying—F, and control—C).

For the homing experiment (section 2.1.2), a one-sided Mann-Whitney U-test was used to test the null hypothesis that there are no significant differences in the duration of homing flights after the release from the copter between the two groups (treatment group—T, control group—C).



2.3.2. Neuronal Correlates of Navigation


2.3.2.1. Spike Sorting

The recorded data consisted of two channels of neuronal signals timestamped by GPS signals. The GPS signal was also used to timestamp the telemetry of the copters flight path, which would be used to synchronize the data with sub-millisecond accuracy. The telemetry data was saved with 100 samples per second, including the speed, height, GPS coordinates, acceleration, and orientation of the copter. The data were then merged using the GPS timestamps.

The electrophysiological recordings were analyzed using the Python scientific software stack (Walt et al., 2011; Virtanen et al., 2020). We developed a data processing and spike sorting procedure similar to Quiroga et al. (2004) but adapted to high levels of non-homogeneous noise in the data caused by the motors and rotors of the copter. A robust normalization was applied to both channels separately: xt = [xt − median(X)]/mad(X), where xt is the amplitude of the signal at time t and mad is the median absolute deviation of the signal. The differential of the two recordings was then computed to improve the signal-to-noise ratio in the data. Furthermore, a local robust normalization was applied with a sliding window size of one second to reduce the effect of the time-varying signal-to-noise ratio caused by the quadcopter's motors and rotors on the quality of the extracted signal.

Spikes were then extracted using thresholding. A robust estimate of the standard deviation was calculated as n = median(X)·k (k = 1.4826). The threshold for spike detection was set to Thr = 4·n (Quiroga et al., 2004). Spike positions were then extracted using local minima detection on the thresholded data.

For each detected spike, a window around the peak of the signal of length 1.44 ms was extracted for spike sorting. Haar wavelet coefficients were calculated using PyWavelets (Lee et al., 2019). The dimensionality of these features was reduced using the PCA implementation of scikit-learn such that each remaining feature explains at least one percent of the variance of the wavelet coefficients (Pedregosa et al., 2011). Anomaly detection was performed using the Local Outlier Factor (Breunig et al., 2000) on the PCA features, and detected outliers were not used in further analyses. Spikes were then clustered using the HDBSCAN algorithm (McInnes et al., 2017) on the PCA features using a minimum cluster size of 100.

To increase the method's sensitivity in periods of high noise (e.g., during acceleration of the quadcopter), for each detected neuron, the median spike shape was determined, and the sliding Pearson correlation of this shape with the normalized input signal was computed. The spike detection steps were then repeated on the correlation coefficient, i.e., a threshold was computed, and local minima beyond this threshold were detected. This pattern matching spike detection increased the number of detected non-outlier spikes from 13,861 to 17,106 in a recording of ~14 min.

Spike trains were binned in intervals of 100 ms, and spike rates were calculated as the sum of detected peaks during each interval. For the visualization of the rates in Figure 8, a rolling mean with a window size of 3 s was used to smoothen the trajectory.



2.3.2.2. Autocorrelation of Spike Rates

The trefoil path was repeated multiple times per flight, and it seems possible that the neuronal signals reflect these repetitions, irrespective of which sensory properties the units we record from encode. To verify that hypothesis, we calculated the Pearson correlation coefficient of the spike rate time series that corresponds to a single repetition of the trefoil trajectory in a sliding window over the whole flight's recording. If the bee's brain signals reflect the repetitive flight patterns, we expect to see peaks denoting the beginning of every trefoil pattern.



2.3.2.3. Realistic Model of the Honey Bee Compound Eye

In the data analysis, the copter telemetry data (GPS and compass readings) were used to reconstruct the flight path in the 3-D map of the environment. We previously published a software package to reconstruct bees' visual perception (Polster et al., 2019). These bee views mimicked the field of view of the compound eye and the distribution and sampling properties of individual ommatidia. For each 3D position and orientation in the virtual environment, the software casts rays for individual ommatidia and provides a sample of the texture color at the intersection with the 3D model (see Figure 6). To explore whether specific ground or horizon structures may have given rise to repeatable spike activity, we used the software to project spike rates back to the virtual surface.
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FIGURE 6. Mapping of a honey bee's vision at one position. (A) 3D rendering from the photogrammetric model of the experimental landscape. (B) The reconstructed honey bee's perception of the field. To draw this perspective onto a map, the location of each pixel in the photogrammetric model is calculated. (C) Only pixels that show a part of the field are used for mapping, which are marked as green in image Red pixels show parts of the environment outside the field. They are not used for mapping as well as blue pixels which lead to artifacts after mapping. (D) Ray casting is used to model the locations in the field perceived by the individual and placed on a map of the field. Each mapped pixel is assigned the same color as in the bee image.







3. RESULTS


3.1. Forward Motion Induces Tethered Flight

The forward flight group F showed significantly longer wing beating compared to both control and hover groups (median [min, max]; group F: 13 s [0 s, 64 s]; F vs. group C: 2 s [0 s, 16 s], U = 279.5, P < 0.001; F vs. group H: 3 s [0 s, 14 s]; U = 468, P < 0.001). Groups C and H did not differ significantly (U = 2329, P = 0.089). See Figure 7 for boxplots of the data.


[image: Figure 7]
FIGURE 7. Individuals show more natural flight behavior while being attached to a flying drone and can navigate faster when they can perceive their environment while being transported to a new location. (A) The total time of wing beating on the ground, in stationary flight, and during forward movement of the drone. Wing beat behavior occurs for longer durations during a forward movement of the drone (N = 47). (B) Individuals were caught at a feeding site and replaced to a new location using the drone before being released (N = 54). Bees in the control group (N = 18) were contained in an opaque container and could not visually perceive their environment during flight. Return times to the hive were measured, and control bees were found to take significantly longer to return.




3.2. Copter Transfer Allows Faster Homing

Bees in the treatment group T returned home after a significantly shorter amount of time (median [min, max]; group T: 149.5 s [75 s, 1,070 s]; T vs. group C: 200 s [105 s, 875 s]; U = 326, P = 0.019). See Figure 7 for boxplots of the data.



3.3. Recording Neural Activity Is Feasible on a Flying Copter

Before using the new recording system on the copter, we tested its functionality with artificial signals and signals from a honey bee brain under laboratory conditions. Activity from the same source was recorded with both the copter's amplifier system and a commercial system (amplifier: EXT, npi, Tamm, Germany; digitization: 1401micro, Cambridge Electronics Design, Cambridge, UK). We found no significant differences in the data obtained by these two systems when comparing spikes from bee brains as well as sweeping through frequencies generated artificially.

In-flight, we successfully recorded uninterrupted single-unit activity from MBENs for multiple repetitions of the flight trajectory. The electrodes picked up significant amounts of EM noise produced by motor controllers, motors, and propellers. We observed that the noise levels differed between channels, probably due to differences in impedance. However, the differential recording allowed removing much of it when carefully adjusting the respective digital gain factor for one of the channels. For each experiment, the factor was set manually after the fact. Once this tuning was complete, spike shapes emerged. The amplitude of the monopolar input channels was around 100 times larger than the resulting spikes from the differentiated channel. These recordings were then sorted. We calculated interspike intervals and confirmed that the refractory period of 4 ms was rarely undercut, indicating the successful sorting of single spike sources. For more details, see Figure 8.
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FIGURE 8. Spike train evaluations for bee A. (A) The neuronal activity recorded during a flight from two channels exhibited high noise levels, most of which was eliminated by subtracting the two channels in the digital domain. (B) The differential raw trace shows spikes above residual noise. (C) Recording from (B) zoomed in on two individual spikes (exceeding the horizontal threshold potential). The recording was spike sorted to extract single-unit activity. (D) Spike shape template of units shown in (C). (E) Inter-spike interval (ISI) distribution showing a single mode at 21 ms and very few instances below 5 ms. (F) Spike rate over time per flight (see Figure 4). Each graph represents a repetition of a continuous flight path from start to finish for the same trefoil trajectory. The repetitions share similar features synchronized to the time (and therefore place) of the flown path.




3.4. Neuronal Activity During Flight Is Repeatable

Experiments with neuronal recordings on the copter took place during the fall of 2018 and summer of 2019. Starting with around 200 animals, we successfully implanted electrodes into ~50 animals, all producing neural activity upon light stimulation. However, only 10 animals continued to provide spike data after transport to the field, and only three of these recordings passed the post-experiment quality control check. Half of the recordings showed too much noise over the entire flight list with doubtful spike sorting results, and two recordings were excluded due to variable signal-to-noise ratios throughout the experiment.

The neural recordings are consistent for repeated environmental stimuli. We find strong autocorrelation of the spike rates for single trefoil flight patterns in individual bees (see Figure 9). This indicates a relationship between the phase of the trajectory and the spike rate.
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FIGURE 9. Spike rates are strongly autocorrelated for multiple repetitions of the same flight trajectory. Sliding-window autocorrelations were computed for all rounds of six (a–f) flights. For all flights, particularly for flights a, b, and d, strong correlations of spike activity were observed for several rounds of the same flight trajectory. Gaps between rounds and the starting and landing periods were removed, and the sliding Pearson correlations were computed. Gray lines indicate the start of a round.


We found that episodes with high spike rates coincide with turning maneuvers (see Figure 10), though high spike rates do not exclusively appear in turns, and some turns do not show higher spike activity. These findings are consistent for repetitions of the same trajectory in one animal but also between individuals. We found a strong correlation of the spike rates with the copter's turning velocity at a latency of 0.7 s. In some recordings, straight flight paths showed spike rate variations as well, yet we did not find any explanation for this behavior (see Figure 11).


[image: Figure 10]
FIGURE 10. (A) Spike rate of mushroom body output neurons of an individual bee and angular velocity during flight. (B) A strong time-lagged correlation between spike rate and rotational speed (yaw) was found with a lag of 0.7 s (Pearson's r 0.27, p ≪ 0.001).
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FIGURE 11. Flight trajectories and spike rate. Each plot shows the spike rate as false color on top of the coordinates of the flown trajectory. The plots are in consecutive order for the first three flights of each bee [(A) Bee A, (B) Bee B]. The following flights are depicted in the supplementary. At the center of the flower formation, the trained feeder is located. The spike rate in Bee B is more heterogeneous and higher at the corners. The flown corners in the experiments of bee B are sharper than for bee A.


Visual inspection of the spike rates revealed no apparent correlation to the bee's spatial relation toward the feeder or the hive. We used a model of the bee compound eye to map the spike rate back to the map of the area for each position along the flight path (see Figure 12). While blobs of activity are visible on the resulting maps, they are likely due to single bursts and not due to distributed activity summing up over repeated overflights.
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FIGURE 12. Mapping of the spike rates on the field of view of the individuals during flights. At each position, all pixels in the field of view of the bee on the map are assigned the corresponding spike rate value at that time. The mean is calculated of pixels with multiple assigned spike rate values during mapping. Turns were excluded to highlight spike activity during parts of the rounds without high angular velocity. See the Supplementary Material for the mapped spikes rates including turns.


The mapping of spike rate activity to the field of view of the individuals in general revealed regions associated with high spike rates that were varying over multiple repetitions of the same trajectory, even within one individual. Interestingly, even when excluding the turns in this mapping, the regions near the turning maneuvers tended to show the strongest activity (see Figure 11). We found no clear evidence of consistent associations of spike rate with specific landmarks in the data analyzed here.




4. DISCUSSION

We propose a novel methodology in the search for the neural correlates of navigation in bees. In contrast to reproducing realistic conditions in virtual environments, we propose moving the lab to the field. While this approach comes with its own challenges, we show that recording neural activity from MBENs in honey bees is feasible on a quadcopter in flight.

We miniaturized the recording hardware, and substantially reduced motor noise picked up by the electrodes with various strategies, from grounding and shielding to differential recordings and respective hardware design decisions.

Those bees that survived the implant and were transported to the field survived multiple repetitions of the flight trajectory. The bees that entered analysis showed no baseline shifts indicating electrode movement nor subsequent loss of units. The electrophysiological data are of high quality, and the spikes and their properties are close to those recorded under lab conditions (Zwaka et al., 2019).

While continuous wing-beating behavior was observed for only a fraction of natural navigational flight durations, forward flight induces longer wing beating compared to the control groups. It is possible that tethered bees, even those that do not fly, perceive their environment as indicated by their significantly shorter homing flights as compared to compromised vision.

Data from three successful neurophysiological experiments may not be conclusive evidence that bees fully retrieve their navigational experience when tethered on a copter, the reproducible neural activities during their trefoil paths, however, suggest that MBENs encode visual features possibly related to the environment. The most prominent correlation we found confirms earlier findings of body turning encoded in MBENs of the cockroach (Mizunami et al., 1998). A similar relationship was found during flight turns in cockroaches (Guo and Ritzmann, 2013). The spike rate correlation could also be related to non-visual stimuli like antennal deflection or changes in inertia.

Before continuing these recording experiments, a few additional key challenges have to be overcome. We need to increase the success rate (currently only 5%) and survival time of the animal. The success rate under laboratory conditions varies between 30% in bees mounted to a tube (Filla and Menzel, 2015) and 10% in bees moving stationary in a virtual environment (Zwaka et al., 2019). The recording electrodes require improvement, particularly the ground electrode that appears to transfer too much mechanical stress onto the brain. One failure case may be attributed to the silicon we used to seal the head access window. In some animals, the signal quality decreased over the time the silicon was set to dry, and we suspect the electrode position to have changed due to shrinkage of the silicone seal. A strong seal that limits electrode movement also throughout the copter flights appears as a crucial element in increasing recording quality.

To reduce post-experiment rejection rates (so far at 70%), we need to further improve the signal-to-noise ratio. On the one hand, this could be accomplished with better shielding and adaptive impedance matching for the channel subtraction. On the other, the assessment procedure that determined whether spike magnitudes are sufficient would benefit from a realistic simulation of anticipated copter noise in the lab.

The main problem for interpreting the results is that spike rates can only be meaningfully compared within the same animal due to potential differences in the neuronal connectivity and electrode implant locations between individuals. Unfortunately, only a finite amount of data can be recorded from one individual, making the interpretation of the results difficult. It may be possible to assess the exact recording location via imaging techniques. To improve the repeatability of the implant and reduce variability in the resulting signals, the electrode production, insertion, and sealing process could be automated in future studies.

An important question to be addressed more accurately in future work will be to relate the localization of the recording electrodes to subsets of MBEN or brain structures such as the central complex. Extracellular recording techniques come with the unavoidable limitation of spatial location. Therefore, the preparatory steps during the selection of the recorded neurons become extremely important. Technical improvements that allow extending the recording time substantially will help characterize the selected neurons physiologically by probing batteries of more complex stimulus conditions before the preparation is fixed to the copter. So far, we selected for stable responses to simple movement stimuli before the bee was fixed to the copter. Thus, it is not surprising that the MBENs analyzed here correlate with turning motions.

Our data analysis includes the reproduction of the bee's visual perception using a three-dimensional map created before the experiments. In contrast to recording synchronized video approximating the field of view of honey bees directly on the copter, our approach drastically reduces the amount of data recorded in each experimental run. However, our model of the honey bee vision using a photogrammetric model of the environment can not simulate the dynamic nature of vegetation, celestial cues, and weather conditions.

Bees have shown flight behavior in a virtual reality setup (Luu et al., 2011), on average even longer than on our copter, despite lacking realism and completeness of the stimulation. While the experimental protocols are not comparable between this and our study, a question still remains for both the drone and the VR approach in general: do bees require a closed feedback channel, i.e., some control over their sensory input, for prolonged flight? Closed-loop bee flight in virtual arenas has not been accomplished yet, possibly due to a lack of realistic multimodal stimulation. Still, while the drone approach offers exactly that, it comes with the challenge of sensing the bee's desired change in body pose under much more noisy conditions—likely a challenge the lab approach may overcome more readily. Why then continue developing the copter system? A likely use-case in the future may be the verification of specific results concerning navigation and neuronal correlates that emerged from VR setups or other lab based experimentations. Functionally relevant claims from such experiments could be put to the test by our method. A verification of results from VR experiments should be valid even with low numbers of bees if the results are consistent. On the other hand, open-loop VR experiments can now investigate whether similar repeatable neuronal activity as shown here can be found in virtual trefoil flights of harnessed bees as well. We will gladly share all relevant data for this comparison (3D map, flight paths and neural recordings).

Our system complements the toolkit for studying the neural correlates of natural navigation in bees. While future developments of lab-based setups may need to focus on a realistic, multimodal reproduction of the environment, drone-based setups are confronted with more complex control tasks. Since, to our knowledge, there is not yet a virtual reality system capable of recording brain activity in flying bees, our system can serve as an alternative starting point. To encourage the continuation of this effort, we are sharing this proof of concept, as presented here, in its entirety with the community.
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Despite considerable advances, studying electrocommunication of weakly electric fish, particularly in pulse-type species, is challenging as very short signal epochs at variable intervals from a few hertz up to more than 100 Hz need to be assigned to individuals. In this study, we show that supervised learning approaches offer a promising tool to automate or semiautomate the workflow, and thereby allowing the analysis of much longer episodes of behavior in a reasonable amount of time. We provide a detailed workflow mainly based on open resource software. We demonstrate the usefulness by applying the approach to the analysis of dyadic interactions of Gnathonemus petersii. Coupling of the proposed methods with a boundary element modeling approach, we are thereby able to model the information gained and provided during agonistic encounters. The data indicate that the passive electrosensory input, in particular, provides sufficient information to localize a contender during the pre-contest phase, fish did not use or rely on the theoretically also available sensory information of the contest outcome-determining size difference between contenders before engaging in agonistic behavior.

Keywords: supervised learning, agonistic behavior, weakly electric fish, passive electric image, active electric image


INTRODUCTION

Weakly electric fish are active at night and are frequently found in dark and turbid environments (Moller et al., 1979). The specialized electric sense enables weakly electric fish well adapted to cope with the specific challenges imposed by this lifestyle (Carlson and Sisneros, 2019). They produce electric signals for both, electrolocalization and electrocommunication with conspecifics (Möhres, 1957; Lissmann, 1958; Lissmann and Machin, 1958; Moller, 1970). These signals are generated through an electric organ (EO) distributed along the trunk (South American weakly electric fish) or the tail (African weakly electric fish). The synchronous discharge of these organs [electric organ discharge (EOD)] is used to emit either intermittent or continuous electric fields (Gallant, 2019). EODs are low in amplitude (often in the order of 1 mV) and, in addition, these signals attenuate steeply with distance from the emitting fish (Rasnow, 1996; Sicardi et al., 2000; Chen et al., 2005; Nelson and MacIver, 2006).

With respect to electrolocation, it is known that weakly electric fish electrically locate objects in the dark and even discriminate between objects relying on various object features (von der Emde, 1990, 1999; von der Emde and Bleckmann, 1998; Schwarz and von der Emde, 2000). Furthermore, it has been investigated that electric fish also use their electric sense for spatial navigation (Jun et al., 2016; Jung et al., 2019). The role of EODs in electrocommunication has also been studied although these studies until recently were constrained to lab conditions (Moller, 1970; Walz et al., 2013). Recent (costly) advances have made it possible to now also study electric communication (of wave-type species) in the wild (Henninger et al., 2018, 2020; Madhav et al., 2018; Raab et al., 2021).

Weakly electric fish are either a wave type, i.e., emitting EODs continuously, or a pulse type, i.e., emitting short EOD pulses with variable intervals between pulses. Wave-type weakly electric fish emit with relatively stable EOD frequencies (Walz et al., 2013; Henninger et al., 2020) and this continuous discharge at stable and individual-specific frequencies makes the attribution to individuals comparatively easy (Madhav et al., 2018). In pulse-type electric fish, however, the inter-discharge time is typically larger than the EOD duration, making a frequency-based assignment of EODs impossible. Furthermore, the EODs of pulse-type species typically show relatively small intrasexual individual differences (Carlson and Arnegard, 2011; Krahe, 2019). In Gnathonemus petersii, the role of androgens and estrogen on the EOD waveform has been demonstrated (Landsman et al., 1990). In captivity, without any hormonal treatment, interindividual EOD differences are rather small. This holds specifically true for individuals of the same sex (Landsman et al., 1990; Landsman, 1993). The study of electrocommunication in pulse-type species is still limited by the laborious manual analysis of very short behavioral sequences (Moller and Bauert, 1973; Gebhardt et al., 2012). A successful workaround has been the use of artificial fish that emit pre-defined EOD sequences. This has proven as a successful means to study the impact of the defined EOD sequences on the behavior groups of fish and individuals (Donati et al., 2016; Pannhausen et al., 2018; Worm et al., 2018).

Our study aims to provide tools to facilitate the assignment of EOD in pulse-type fish. While we establish a workflow for the interaction of dyads, the approach in principle can be scaled up to larger groups. In contrast to the aforementioned techniques that allow purely electrical tracking and identification of individuals, the workflow established in this study aims to facilitate offline and lab-oriented work and requires the extraction of fish locations using common visual tracking methods.

In brief, our approach employs supervised learning methods to first track fish individuals and then use the position data to assign EODs to the individuals. The position tracking is based on open-source software (https://sleap.ai/, version: 1.016) that is used for estimating the positions of animal body parts (Pereira et al., 2019, 2020). It supports multianimal pose estimation and tracking and includes an advanced labeling/training graphical user interface (GUI) for active learning and proofreading. Implementing a decision-tree model that was trained with prerecorded data, we then used the position data to attribute EODs to individuals. The model is part of the Scikit-learn package, implemented in Python, and also freely available (Pedregosa et al., 2011). The combination of visual tracking and supervised learning resulted in high performances and accuracy of position estimation and the attribution of EODs to individuals. Error rates were below 5% and could be reduced further with a small to an intermediate effort by using the interactive social leap estimates animal poses (SLEAP) GUI and resorting to the manual assignment of EODs in a small and automatically identified subset of the data.

To demonstrate the suitability of the proposed workflow, we applied it to study the aggressive behavior in G. petersii during dyadic interactions. These fish are territorial and often live in fixed groups with social ranking. In residence-intruder interactions, the aggression of the resident fish toward an intruder has been described (Crockett, 1986). The outcome of such encounters can depend on the body size, meaning that the larger fish has a higher probability to win the fight (Bell et al., 1974; Terleph, 2004). As agonistic behavior can be costly, we now ask if the electric sense contributes to a precontest assessment of the quality of a potential contender before engaging in agonistic interactions. The resource holding potential (RHP), i.e., the ability to win a possible fight, is frequently assessed based on far-ranging sensory input (Nelson, 2006), but these are unavailable or unreliable during the nocturnal encounters of weakly electric fish. Therefore, we ask if G. petersii can evaluate the outcome of a fight before the first physical contact: We hypothesized that fish would not initiate an aggressive contact if they can determine beforehand that they are likely to lose. If so, the electrosensory information may either be passive and/or active. The former modality allows the perception of external electric fields created by inanimate or living organisms, including the EODs of other weakly electric fish. In contrast, the active electrosensory modality relies on the perceptions of the self-generated electric field. Here, the modulation of this field through nearby objects having a different conductivity or capacity from the surrounding water provides environmental information used by these fish to reconstruct their surrounding (Knudsen, 1975; von der Emde, 1999). A previous study on the South American weakly electric fish Gymnotus omarorum tested the RHP of the contender through modeling of the sensory input (Pedraja et al., 2016). We do a follow up on this study using an evolutionary distinct weakly electric fish lineage to demonstrate the power of supervised learning methods for research on weakly electric fish communication. Passive and active electroreception is mediated through different electroreceptors that both occur and are distributed over the animal skin. The electric pattern, i.e., the distribution of local field intensities, provides the relevant input to both modalities. This spatial distribution is referred to as the electric image (EI) (Caputi and Budelli, 2006). To distinguish between active and passive sources, we will refer to the sensory images generated by the presence of external electric fields as passive EI and to those images generated by the distortions through elements in the electrosensory scenery as active EI.



MATERIALS AND METHODS


Setup

The experimental tank had a size of 66 × 72 cm and was filled up to a water level of 12 cm. Seven pairs of electrodes were mounted on the tank walls. Electrodes were made of coated thin silver wires attached to plastic rods, the tips of the wires were exposed for about 1–2 mm and placed 5 cm above the tank floor. The floor of the tank was filled with small glass beads to allow illumination from below.

Electric organ discharges were recorded with an Axon Instruments amplifier (Foster City, CA, USA; Cyber Amp 380), digitized at 125 kHz (National Instrument, Austin, TX, USA; PCI-6251 M, 24 bit). Amplification and filter settings (high-pass 300 Hz and low-pass 10 kHZ) of the amplifier were controlled through the software (National Instruments, Austin, TX, CyberControl, 1.1.0.12).

IR-LEDs (880 nm) were placed below the tank to illuminate the tank from below. G. petersii has been reported to not perceiving IR light of this wavelength (Ciali et al., 1997). Videos of fish were captured from above (Mako 130B mono, AVT imaging, frame rate: 30 or 10 Hz, stored in an AVI format). Each exposure also triggered a transistor-transistor logic (TTL) pulse that was recorded alongside the EOD data (125 kHz sampling rate, 12 bit, audio card). These pulses were used to synchronize video and EOD data. EOD and video recordings were initiated through custom written MATLAB scripts (32 bit; R2013, MathWorks, Natick, MA, USA).



Animals

Fish (n = 6) were housed in a large tank with partitions to keep individuals from physical interactions outside the experimental time. The light/dark cycle was 12/12 h, and all experiments were conducted during the subjective night time of the fish. Water conductivity in the experimental tanks was 120 ± 5 and 160 ± 20 μS/cm in the holding tanks. Water temperature was regulated to 22 ± 2°C by heating the experimental room to avoid electric noise through aquarium heaters.



Data Sets

Two different data sets were acquired. Data set I is based on two fish of equal size, where we obtained 20 60 s recordings of each of these fish exploring the tank individually. This data set was used to train supervised learning models such as the random forest regressor (RFR) model and multilayer perceptron (MLP) models (see section Types of Supervised Learning Models for Regression). To estimate the performance of EOD allocation, we also recorded and analyzed 10 60-s long videos with both fish interacting in the tank. The performance of EOD allocation was analyzed by contrasting this automated allocation to a human-observer-based allocation of EODs (see section Using Supervised Learning to Predict the Fish Position of Real Fish).

With data set II, we then further evaluate the suitability of the workflow by addressing aggressive behavior during dyadic interactions of fish of different sizes (n = 6). Size difference and thus the differences in EOD amplitude could in theory influence the accuracy of the EOD allocation, thus this data set also served to test for the robustness of the used model. Our behavioral analysis focuses on the first approach between two fish. With the 6 individuals, we could have tested 15 possible pairings. However, we excluded the interaction of the two fish used in the first data set to make sure that fish had not a chance to have a priori knowledge about their contender. Of the remaining 14 pairings, we needed to exclude 1 pairing, where fish approached each other swimming backward making it impossible to determine who initiated the contact.



Two-Dimensional Representation of Electric Potentials

Python (Version 3.7) was used to simulate the potential at the electrodes in the horizontal plane of the experimental setup. For this, virtual electric dipoles (virtual fish) were randomly positioned and oriented in this plane (2,500 positions tested). To minimize border effects, virtual fish were at least 10 cm from the walls of the tank. In total, 20 virtual fish of 8–15 cm length were simulated. Thus, the used data set contained the variables fish length, x and y coordinates of the fish center, and the sine and cosine of the angle, the virtual fish was oriented at and the seven potentials of the electrodes.

The electric field of the virtual fish was modeled based on a simple dipole, i.e., point charges of equal amplitude and opposite polarity located in the tail and the head of the animals, respectively. The potential at the electrodes was calculated using the equation for an electric dipole potential:

[image: image]

where V is the resulting voltage, k is the Boltzmann constant, and R1 and R2 are the distances of the head and tail position to the electrodes of interest, respectively.

We were only interested in the relative differences between electrode pairs. Therefore, charge q was set to 1/k throughout all simulations, this resulted in electrode voltages within the range of ±1 V irrespective of the position of the fish in the tank. For the electrodes, we simulated both differential and single-ended recordings against the ground. Differential recordings were simulated as the potential difference of electrode pairs, whereas single-ended recordings were simulated with the reference potential in the center of the tank.



Types of Supervised Learning Models for Regression

We tested several types of supervised learning models to predict fish position and orientation based on the electric potentials. We now describe the two models that we determined as suitable from pretests. To compare their performance, we used the estimation errors of the models when allocating EODs for real fish (data set I) (Figure 1).
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FIGURE 1. Supervised learning methods for regression. (A) A decision tree comprises a root node containing all input data features, interior nodes containing subsets of the data, and leaf nodes containing the final target values. A decision tree can have different numbers of interior nodes and leaf nodes. The goal of a decision tree is to create a model that predicts the value of a target variable (x and y position of the six fish skeleton coordinates) by learning the decision rules derived from the data (electrode potentials). (B) A multilayer perceptron (MLP) model can learn a nonlinear function approximation from a set of features and a target. The input layer comprises a set of neurons representing these input features (electrode potentials). Each neuron in the hidden layer transforms the values from the previous layer through a weighted linear summation followed by a nonlinear activation function. However, in case of a regressor model, the activation function is omitted (set to the identity function). The output layer receives the values from the last hidden layer and transforms them into output values (x and y positions of the fish skeleton). (C) Comparison of the regression performance of the random forest regressor (RFR) and MLP models with different numbers of hidden layers. The spatial error is defined as the average distance between true and the model-estimated head position (anchor point, see also Figure 2).



Random Forests Regressor

A nonparametric supervised learning method, decision trees, is used for classification and regression (Figure 1A). The objective of a decision tree is to establish a model for predicting the value of a target from the input data features through learning simple decision rules. Each decision tree has branches and three types of nodes: the root node is the initial node, which represents the entire sample (in this case electrode potentials). The interior nodes represent the features of a data set, and the branches represent the decision rules. Finally, the leaf nodes represent the outcome (in this case x and y positions of the fish skeleton). Decision-tree models are prone to overfitting. Random forests are an ensemble learning method for classification, regression, and the other tasks that operate by constructing a multitude of decision trees at training time. They provide a solution to the problem of overfitting. In random forests, each tree in the ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set. For random forest regression tasks, the average/median/most common vote prediction of the individual trees is returned.



Multilayer Perceptron Model for Regression

This type of model can learn a function approximation from a set of features and the target (Figure 1B). The input layer comprises a set of neurons representing the input features (in this case: electrode potentials). Each neuron in the hidden layer transforms the values from the previous layer with a weighted linear summation. In a classification model, this is followed by a nonlinear activation function. However, in case of regression, the activation function is set to an identity function. The output layer receives the values from the last hidden layer and transforms them into output values (in this case: x and y positions of the fish skeleton).




Using Supervised Learning to Predict Fish Position and Orientation of Simulated Data

A supervised learning algorithm was applied to predict fish position and orientation based on the simulated potentials. Specifically, we used the RFR model from the Scikit-learn package (Version 0.22.2) with default settings and the number of trees in the forest set to 25 (Pedregosa et al., 2011). The electrode potentials to the model were provided as independent variables from which the location, orientation, and size of the fish had to be predicted. A grid search optimization (“GridSearchCV” from the Scikit-learn package) was used with 25 iterations to tune the RFR. To evaluate the learning, the data set was split into a training (75% of the data) and a test set (25% of the data) that was not included in the learning phase. The supervised learning success was verified by a built-in metric (“score” function in the Scikit-learn package). The score function returns the coefficient R2 that is defined as (1-u/v), where u is the residual sum of squares: sum [(true position–predicted position)2], and v is the total sum of squares: sum [(true position–mean (true position))2]. This metric thus ranges between zero and one for optimal performance.

To verify the suitability of different electrode configurations in more detail, the deviation between the predicted values of the test set and the true virtual fish size, position, and orientation was calculated. In the following, we focus on the position error as we only used this in the behavioral experiments. Matplotlib (Version 3.2.1) was used for visualizing the results (Hunter, 2007).



Using Supervised Learning to Predict Fish Position of Real Fish

We used supervised learning methods to predict fish position based on the recorded EOD data with the aim to assign EODs to individual fish. The workflow (Figure 2) consisted of several interacting steps as described in detail in the following.
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FIGURE 2. An Illustration of the workflow. Electric organ discharge (EOD) detection was done in Matlab (white background), whereas fish tracking and pose estimation were based on Python (gray). The tracking in the open-source package social leap estimates animal poses (SLEAP) is based on deep neuronal networks that are computational demanding. Therefore, we relayed the training and final tracking of the data onto the CoLab platform (medium gray). The RFR (dark gray) was trained using the EOD waveform vectors as an input and the tracked (single fish) position data as the target. After training, the EOD waveform vectors were used to estimate fish position. This estimate from the RFR then was compared to the tracked fish position to assign the EOD identity in Matlab (see also Figure 7). The later behavioral analysis of agonistic behavior relied on the data set generate in this way to analyze the electrosensory information provided by the active and passive electrosensory system during the observed behavior (blue background).


The RFR model was used again for the behavioral data; in addition, we also tested different MLP models. There were a few changes with respect to the setup and the data estimated. Fish were allowed to move freely within the experimental tank, including tank boundaries. Furthermore, we did not estimate the virtual fish position and orientation, but rather the position of the six nodes of the skeleton of an animal (Schnauzenorgan, head1, head2, mid1, mid2, and tail) as previously defined in SLEAP (see section Fish Position Tracking). We used the default parameter settings of the RFR model from the Scikit-learn package, also the “n_estimators” was set to 100.

We used an MLP model from the Scikit-learn package (Version 0.22.2) with default settings (except for the two parameters) to construct neuronal networks of different size. The size of the hidden layer was 50, 100, or 200, respectively. The number of iterations was 10,000 to ensure that all models converged (Pedregosa et al., 2011).

To train the supervised learning models, 40 videos from the data set I with single fish swimming in the area were used (58.385 EODs and corresponding fish positions). The EOD waveform vectors [see section EOD Detection; Figure 3A(iii)] were used as the input, and the positions of the six skeleton nodes of the fish midline (Figure 4) were the target to be learned. The performance between models and model configurations was assessed using 25% of the data previously not included in the model training. From the four options, the RFR model was the best in localizing the position of the emitting fish as verified using the head position of an animal now (Figure 1C). This model thus was used on data set I with both fish swimming together (15.763 EODs and positions). While the network estimated the position of six nodes for each individual, we are primarily interested in the identity of the EOD-emitting fish. Therefore, we calculated the root mean square (RMS) error (summed over all six nodes) between the model estimated fish positions of the true fish positions (Figure 7A). The fish with the smallest RMS error was labeled as the EOD-emitting fish.
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FIGURE 3. (A) Extracting EOD input vector for the RFR model. (i) EODs were extracted by a threshold operation. The threshold was defined differently for each channel. It could be set way above noise level as EODs had to be detected only in one of seven electrode recordings. If two EODs were separated in time by less than 400 μs, the later EOD was deleted. Interfering EODs of two fish were detected in an additional step. (ii) To align EODs, we took the absolute values and averaged across all electrodes. EODs were cut 272 μs before and 128 μs after the EOD peak. (iii) The concatenated EODs were stored as a vector. (B) Detection of interfering EODs. (i) Histogram of the residual errors of single EOD waveforms from an average EOD waveform. EODs were normalized to the absolute maximum peak beforehand. Inset: enlargement of the histogram including the threshold above which EOD waveforms were checked. (ii) Percentage of EOD doublets of the total number of EODs checked (blue) and the absolute number of EOD doublets found (red) plotted against the number of EODs checked. With the threshold shown in red in the inset in [B(i)], 119 EODs needed to be inspected. Of these 98% are doublet EODs, which accounts for almost 90% of all doublets in the data set. Thus, the manual re-analysis can be made very efficient by concentrating on this “suspicious” fraction of the total data. (iii) Example of two overlapping EODs. EOD doublet can be easily identified by visual inspection. Upper panel: normalized average EOD waveform (black) and single EOD waveform (red); middle panel: EOD recordings aligned to the maximum peaks. Lower panel: EOD recordings including the EOD detection surrounding the current “doublet” EOD (green).
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FIGURE 4. An example of single video frames shows the superimposed skeletons tracked using SLEAP. In the majority of cases (see i,ii), the tracking using SLEAP was sufficiently precise. When tracking a single fish, the error rate was low and errors occur when fish took unusual postures (see iii). For dyadic interactions, errors were more frequent and dependent on the distance between animals (see iv).


To compare this automated identification to the human-observer identification, we first manually assigned all 15.763 EODs based on visual inspection to the individual fish. To estimate the precision of this human-observer approach, the process was conducted a second time after 3 months, and a disagreement in about 1% of the cases was found. Because the error rate using the network was substantially larger than 1%, we manually corrected those EODs presumably wrongly assigned by the model.



EOD Detection

For EOD detection, a custom written Matlab program was used (Figures 2, 3). To obtain the EOD vector later used for EOD assignment in the supervised learning models, the following steps were taken (Figure 3A):

i) Electric organ discharge threshold detection: EODs were detected using a separate threshold for each of the seven channels. The thresholds were set such that they were clearly above the noise level and low enough that each EOD was detected at least from one channel.

ii) Waveform extraction: to temporally align the EODs, we took the average of the absolute values on all channels [Figure 3A(ii)]. Then, the original EOD channels were aligned to the maximum peak of the mean absolute trace. We cut individual EODs using a temporal window of 272 μs before and 128 μs after the peak.

iii) Waveform vector normalization: a row vector was created containing the data of an EOD of all seven electrodes. This row vector was then normalized by the absolute maximum peak resulting in a voltage range of ±1 V [Figure 3A(iii)]. This step was taken to make the EOD assignment more robust against variable fish sizes.

Temporally overlapping EODs of two fish were detected in the following way (Figure 3B):

iv) EOD doublet detection: each normalized EOD waveform was automatically compared to the average normalized EOD [Figure 3B(iii) top]. To obtain the normalized average EOD waveform, the absolute values of the EOD recordings were averaged across all detections and channels and then normalized by dividing the average by the peak amplitude. Correspondingly, the normalized EOD was obtained by averaging the absolute values of the seven EOD channels and then normalized by the maximum.

The histogram of the difference between the normalized single EOD waveforms and the normalized average EOD waveform was long-tailed in each data set. The majority of EOD doublets was found in this tail of the histogram [Figure 3B(i,ii)], allowing to focus the manual correction to a fraction of the actual data: if the absolute deviation exceeded a threshold, EODs were visually inspected by the user to determine if doublets occurred [Figure 3B(iii)]. We stored the time point of the doublet and reassigned the EOD to both fish after the automatic assignment of the EODs with the RFR model.



Fish Position Tracking

For video-based tracking of the fish positions, we used SLEAP (Pereira et al., 2019, 2020; Figures 2, 4). SLEAP is a framework for multi-animal body part position estimation via deep learning. It is written in Python and comes with a labeling and training GUI that supports active learning. We used the multi-animal top-down approach because an initial comparison showed better results than the bottom-up approach also available in this framework. The top-down approach complements two different models: the centroid model first predicts the location of each animal in a given frame. Then, the instance centered confidence map model is used to predict the locations of all the nodes (“posture”) for each animal separately.

The use of SLEAP is well documented elsewhere (https://sleap.ai) (Pereira et al., 2019, 2020). However, in short, our workflow consisted of the following steps (Figure 2; light and medium gray panels).

i) Creating the skeleton: the skeleton consisted of six user defined nodes (e.g., Schnauzenorgan, head positions 1 and 2, mid positions 1 and 2, and tail) and the corresponding edges (e.g., connection between Schnauzenorgan and head position 1).

ii) Initial labeling: about 50 randomly chosen frames out of 10 videos (data set I, two interacting fish) were used for the initial labeling. To account for a variation in the setup, we chose the videos where the background differed, i.e., the glass beads covering the floor were manually shuffled, resulting in a heterogeneous distribution of the background intensity.

iii) Creating a custom training profile: the SLEAP-label GUI was used to create a custom training profile for the multi-animal top-down model. The profile must be adjusted to match the animal under investigation. Specifically, we adjusted the anchor part and the input scaling. The anchor part is an important parameter as it is used to estimate where each animal is located. We chose head position 2 as the anchor part as it was in a relatively central position and can be precisely located as the midpoint between the pectoral fins. The input scaling of the centroid model was set to 0.5, which enabled matching of the receptive field size to the actual fish size. In addition, the input scaling of the centered instance model was set to 1.25, to obtain a smaller receptive field than for the centroid model.

iv) Training: the customized training profile and the training data set were transferred to Google Colab. Training was then run in Google Colab using a Python script based on the example notebooks for top-down models (function: SLEAP-train; profiles: centroid.json and centered_instance.json). We used “flow” as the tracking method. Here, SLEAP takes instances from the prior frames. Then, points in the instance are shifted based on the use of optical flow (Xiao et al., 2018). These shifted points are used as the candidate instances.

v) Retraining: after training, the network was used to predict the skeleton positions of the fish for 5 of the previous 10 videos. These predictions were transferred back to our local PC. We manually picked 10 frames per video where the quality of the labeling was low. Incorrect labels were corrected, and a new training data set was created, including the previously randomly chosen 50 data frames and now selected and corrected 50 data frames. In this way, the network got randomly chosen data as an input as well as the data that were specifically hard to allocate correctly. This data set was again transferred to Google Colab, and the model was retrained. Afterward, following the abovementioned procedure, the remaining five videos were used to add more labels to the training data set. In a total of 150 frames that were used to train the network, 50 of those were randomly chosen, and 100 were chosen based on the detection performance of the neuronal networks from the different training iterations.

vi) Analyzing videos: following steps i–v, we analyzed all videos (single- and multi-animal videos) using Colab. The obtained videos were then further processed using the SLEAP-label GUI to correct the remaining errors on local PCs (Figure 4). The results were then saved in hdf5-format for further processing in Matlab.



Dyadic Interactions

To study dyadic interactions, fish were placed on opposite sides of the experimental setup. A gate prevented them from entering the inner part of the arena, and the gates were operated remotely and opened simultaneously after an acclimatization time of 10 min. Behavior was videotaped at 30 frames/second for the first min following gate opening, and the first contact behavior was analyzed based on these videos. First contact was defined as the first time fish touched each other. EIs were calculated from the simultaneously recorded EODs.

Within the first 10 min after the first contact, a 5-min video was recorded at 10 frames/second. This video was used to evaluate the fight resolution. Fight resolution was determined by counting the number of attacks and observing the chasing behavior from these videos. An attack was defined as a contact between both animals in which at least one individual changed body posture as a result of the contact. Chasing was defined as one fish being followed by the other fish using approximately the same trajectory.



Modeling the EIs

Passive and active electroreception is mediated through different electroreceptors that both occur and are distributed over the skin of an animal. The electric pattern, i.e., the distribution of local field intensities, provides the relevant input to both modalities. This spatial distribution is referred to as the EI (Caputi and Budelli, 2006). To distinguish between active and passive sources, we will refer to the sensory images generated by the presence of external electric fields as passive EI and to those images generated by the distortions through elements in the electrosensory scenery as active EI.

Electric images were computed with the software originally developed by Rother (2003). This approach was verified and utilized in previous studies (Rother et al., 2003; Migliaro et al., 2005; Sanguinetti-Scheck et al., 2011; Hofmann et al., 2013, 2017; Pedraja et al., 2014). The model estimates the transcutaneous current density for each of the points on the surface of the animal and is based on the following assumptions:

(1) All media are ohmic conductors. This means that the vector representing the current density at the point x (J(x)) is proportional to the vector electric field at the same point E(x). Then,
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The proportionality constant σ(x) is the volumetric conductivity at the point x.

(2) The model neglects capacitive effects, that is, we assume that there is no accumulation of charge p(x) at any point in space.
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(3) Given that the dielectric relaxation of the media in general is shorter than the minimum significant period of the EOD Fourier components, the model is an electrostatic approximation (Bacher, 1983).

(4) The space is divided into volumes of homogeneous conductivity. The fish and the different objects are defined as the zones of different conductivity immersed in an infinite water medium. Each object is covered by a thin resistive layer (the skin in the case of the fish), which can be homogeneous or heterogeneous (magnitudes specified as desired).

The model is based on the charge density equation which, under the above assumptions, implies that the charge generated by the sources f (x) is equal to the charge diffusion:
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Using Equation (3) and then Equation (2)
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The electric field E(x) can be expressed as E(x) = –∇φ, therefore,
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where φ(x) is the local potential at point x.

Equation (6) is a partial differential equation known as the Poisson equation and can be solved for every point in space, in our case the fish boundaries by using the boundary element method (BEM) as proposed by Assad (1997). For a formal explanation of the BEM (please see Assad, 1997; Hunter and Pullan, 2001; Rother, 2003; Brebbia et al., 2012). Briefly, this method determines the boundary conditions by solving a linear system of M · N equations for M poles and N nodes, with the unknown variables being the transepithelial current density and potential at each node (Pedraja et al., 2014). The transepithelial current density and potential are calculated for each node and linearly interpolated for the triangles formed by the nodes. The choice of nodes allows for an approximation of the shape of objects and fish, and by scaling the number of nodes the spatial resolution of the EIs can be chosen to match the computational power available. We based our model on a set of 49 ellipses composed of 17 nodes each (835 nodes forming 1,666 triangles) (Rother, 2003). The size of the fish can be scaled by changing the two diameters of each ellipse and changing the distance between ellipses.

To adjust the model to the actual fish posture, a third-order polynomial was fitted to the six skeleton points of the actual fish (see above). The fish-body ellipses were realigned according to the first derivative of the fitted polynomial to match the rotation of the ellipses to the curvature of the posture of the fish. From this, nodes and surfaces are produced to result in the final three-dimensional (3D) reconstruction for which the electric current and the transcutaneous voltage were calculated (Figure 5, Hofmann et al., 2014; Pedraja et al., 2020).
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FIGURE 5. The transition from the fish skeleton estimated by SLEAP to a three-dimensional (3D) model was used to model the electric images (EIs). The skeleton obtained from the tracking procedure is shown in the upper panel and is fitted by a third-order polynomial. A set of pre-defined ellipses that form the body of the 3D fish are then distributed along the polynomial (middle). Note that the ellipses can be scaled in size and distance to match the true size of the fish. The points of the ellipses represent the nodes that are connected to form a total of 1,666 triangles for which we then calculated the EIs using a well-established boundary element method (BEM) (bottom).


For our analysis, we separated passive and active EI information. This basically means that for each EOD we calculated the resulting EI perceived by the EOD-emitting fish (active EI) and the EI provided to the non-emitting receiving fish (passive EI). This was done for all EODs up to the first physical encounter of the fish. Active EIs were calculated as the difference between the electrosensory stimulus (scene with both fish) and the basal field (scene with just the discharging fish) at the discharging fish sensory surface. Passive EIs were obtained by using the electrosensory stimulus at the sensory surface of the nondischarging fish (Pedraja et al., 2016). Based on the EIs, we estimated which fish could have obtained sufficient information to detect the other fish first. For this, we consider the moment where the EI amplitude of one fish exceeded that received by the other fish by a factor of two. This was independently determined for both passive and active EI. This analysis was limited to inter-fish distances where EI amplitudes exceeded currents above 0.1 μA as this is the internal noise range of the model.




RESULTS

In the following, we will first detail the steps we took in optimizing the EOD recording setup using supervised learning methods to then demonstrate how two different models performed in automatically localizing an EOD-emitting fish in the setup.

To further demonstrate the robustness of the approach we found to be best suited, we then will report data where the RFR model approach is being used on dyadic interactions of fish to investigate if and how the RHP may be perceived and used in conflict resolution between dyads of G. petersii.


Using Supervised Learning to Predict Fish Position and Orientation of Simulated Data

The positioning of the electrodes in the experimental arena is important to obtain suitable coverage of the EODs and sufficient resolution to distinguish EODs between individual fish. By combining a simulated electric field to mimic a swimming electric fish with a supervised learning-based algorithm that predicted the position of this fish mimic, we compared six different electrode arrangements, including both differential and unipolar recordings (Figure 6). For this, electrode arrangement along the tank walls was altered. We did not test electrodes on the floor as this would have interfered with the video recordings, but the methodology of optimizing the electrode arrangement described here is applicable to arbitrary experimental layouts and electrode configurations.
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FIGURE 6. (A) Performance of the tracking with respect to six different electrode configurations. Electrode pairs are marked with different colors, where + corresponds to the positive and – to the negative pole. With the exception of the arrangement shown in (iii), all recordings were differential (refer to matching colors of electrodes, depicted as circles). In the setup shown in panel (iii), the ground electrode was situated in the middle of the tank. The top view of the arena shows where tracking errors larger than 3 cm occurred. The magnitude of these errors is color coded (see bar). (B) Box-and-whisker plots of the spatial error for the six electrode configurations. The configurations 1, 3, and 4 had the best performance and configuration 1 was further used in the behavioral experiments on dyadic interactions (see text for details).


The degree to which the supervised learning model was able to correctly locate the fish mimic was used to obtain the best of the six arrangements tested. Configurations 1–6 are shown on Figure 6A(i–vi), respectively. With one exception, the model performance was good, as indicated by R2 scores >0.9. The exception is the arrangement two. Here, the axis of neighboring (differential) recording pairs was continuously rotated from one pair to the next, leading to a comparatively good resolution in the middle of the tank, while positioning was poor toward the tank walls. A similar arrangement (configuration 3) with the reference in the center of the tank improved the performance, particularly avoiding errors between fish positions at opposite electrodes, but still mislocating the mimicked fish toward the walls. Similar problems occurred for the configurations 5 and 6. Configuration 6 used the five electrode pairs that form a perpendicular net, whereas two electrodes pair have a different angle by crossing from corner to corner. This resulted in satisfactory spatial resolution at the corners and the center of the tank but in larger errors in the remaining arena.

In summary, configurations 1, 3, and 4 are determined as suitable electrode configurations, in the majority of mimic positions and orientations, the mislocation of the mimic EOD was below 2 cm (Figure 6B). Given that the fish are at least 10 cm in length, an error of this magnitude was considered acceptable. Fish tend to spend much time at the tank walls and corners (personal observation; Teyke, 1989), configuration 3, where errors were particularly high for the corners of the tank, was also discarded. Configurations 1 and 4 were comparable, we chose configuration 1 for all the following experiments. With seven electrodes, we assumed (though we did not test this) that we might have a slightly better performance close to the borders of the setup when working on real data as there is a higher spatial sampling of EOD data.



EOD Detection

The analysis of EOD data involved detecting the time point of the event and extracting the EOD waveform in a standardized manner (Figure 3A). Both are needed as an input for our RFR model to estimate fish position from the field geometry. As the initial training of the network was based on the data with a single fish in the tank, it could not correctly assign EODs of two fish that occurred simultaneously within the time window of 400 μs used during the training. EOD doublets were reliably found by looking at the deviation of the EOD waveforms from the average EOD waveform (Figure 3B). False EOD doublet detections typically occurred when the electric potentials were low on all electrodes. This process could also be fully automated in the future. Note, however, that the used algorithm is limited to dyadic interactions.



Tracking With SLEAP

The performance of the tracking model was different for single- (n = 72,000 frames) vs. multi-animal videos (n = 18,000 frames) (Figure 4). Tracking of single animal was efficient. The fish was detected in all frames but one and the body posture needed to be corrected in <2% of the frames (Figure 4, bottom left). Corrections to the tracking were thus limited and mainly restricted to situations where the fish made unusual movements, e.g., tried jumping. With two fish in the arena, one of either fish was not detected in less than 1% of the frames. This was typically the case when fish were very close to each other or partially overlapped (Figure 4, bottom right). The posture, i.e., the six nodes of the midline of the animal needed adjustment in about 5% of the frames.



Using Supervised Learning to Predict Fish Position of Real Fish

We tested an RFR model and different MLP models of various numbers of hidden layers to predict the fish position from the EOD data. Using the single fish recordings from data set I, we could establish how well the models fared in predicting the fish position. For simplicity, we now only considered the error in the anchor point (second head node, see Figure 7). The error that is the distance between the tracked anchor point and the EOD predicted anchor point was the smallest (median: 1.48 cm) for the RFR model but the MLP model with 200 hidden layers had an almost comparable performance (median: 2.18 cm). Given its performance, we chose to continue with the RFR model only.
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FIGURE 7. (A) Estimation error calculation. The distance between each skeleton node of the predicted fish (based on the RFR) and the tracked fish (based on SLEAP) was measured. The predicted fish location that had the smallest sum of distances from either of the two tracked fish (estimation error) was considered as the EOD producing fish. (B) Histogram of correct (black) and incorrect (red) identity assignments as a function of the difference in estimation error of both fish (abs(errorID1-errorID2, red)). (C) We tested different parameters to assess the likelihood that the model erroneously assigned EODs to individuals. The first parameter used was the distance between individual fish (black), the second the estimation error (blue), and the third the difference between the estimation errors of both fish (red). The percentage of mislabeled EOD-IDs found during manual re-inspection of the data is plotted against the percentage of data that had to be checked for different measurements. Reading example: checking 5% of the data using a threshold criteria based on the difference between both fish resulted in a capture of 30% of all errors, or in other words the 5% of the data that had the smallest difference between both fish contained 30% of all mislabeled EODs. When checking 5% of the data using a threshold criteria relying on the estimation error alone allowed an identification of only 18% of all errors. However, when checking 5% of the data using the threshold criteria based on the difference in estimation error, 40% of all errors could be found. Hence, using the threshold criteria based on the difference in the estimation error is the most efficient way to find wrongly assigned EODs.


Indeed, the RFR model was further found to be valuable in identifying the EOD-emitting fish in dyadic interactions (data set I). Here, the performance that is correctly labeling EOD-IDs (and the localization of the emitting individual) was around 95%. Errors mainly occurred for short distances between individuals (Figure 7C) and are also dependent on fish positions.

With this, it was possible to further improve the performance focusing on the data most likely to cause problems. Therefore, we calculated the difference of the estimation error for both fish (see Figure 7A). By focusing on the 5% of the data where the difference in the estimation error was the smallest, 40% of all wrong assignments were found, enabling us to manually improve the total error to <3%. The inclusion of 10% of the data with the lowest difference in the estimation error resulted in an assignment error of 2%.

Given the performance of the model and the enormous reduction of observer-based annotation time, we applied the workflow established now to dyadic interactions of new fish pairs that differed in size from the fish used in training the network (data set II). In addition, the interactions studied now were limited to the initial approach phase, where the inter-fish distances and relative orientations presumably will be different from the training conditions. Despite these differences, the performance was found to be robust: less than 6% (n = 348) of the EODs (n = 5,848) were wrongly assigned (in 6% of all EODs a human observer chose a different EOD-emitting fish).



Dyadic Interactions

About 13 pairings of fish that had not physically encountered each other before were analyzed. In five pairings, the difference in body size was 23–28%, whereas in the remaining eight pairings the size difference was between 2 and 17%. We found no dependency between the fish size and the animal that initiated the first encounter (binomial test; for all pairings 7 (larger) fish in 13 pairings initiated an attack, p = 0.5; for length difference <20% 5 (larger) fish in 8 fish pairings initiated an attack, p = 0.36, and for length difference >20% 2 (larger) fish in 5 pairings initiated an attack, p >= 0.5; Figure 8A).
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FIGURE 8. Effect of fish size on first contact initiation and dominance status. (A) The first contact was initiate independent of fish size (binomial test, p = 0.5, 0.5, and 0.36 for all, >20%, and <20% size differences, respectively). (B) The dominance status dependent on fish size for size differences >20% (binomial test, p = 0.031). No difference in dominance was found for small size differences (binomial test, p = 0.636). (C) Aggression level also was dependent on size difference. Big fish attacked significantly more during dyadic interactions of large size differences while more aggressive behaviors (number of attacks) were found in an interaction among fish of small size differences. Red and blue symbols represent the large and small fish, respectively.


Based on the number of attacks initiated by an individual, we determined the dominance status within each pairing (Figure 8B). In pairings with a large size difference (>20%), the larger fish was always the dominant individual, whereas the outcome of the encounter was not predictable in the smaller size difference pairings (binomial test; 5/5, p = 0.031 for length difference >20% and 4/8, p = 0.636 for length difference <20%, Figure 8B). Considering all pairings, no significant relation between size difference and dominance was found (binomial test; 9/13, p = 0.133). We also measured the time individuals spent in chasing each other. Aggression, as now measured by the number of attacks a fish does, overall was higher in dyadic interaction of low size differences (Figure 8C), whereas in interactions of larger size differences there were fewer attacks that were predominantly executed by the larger fish (Figure 8C).



Initial Approach Phase

Regardless of the size difference, the approaching fish always initiated the first contact. In 9 of the 13 interactions, these contacts were directed toward the tail of the opponent, in the remaining 4 cases, the head was targeted. To understand if the electric sense contributes to the behavior and whether active or passive electrolocation is used, we next modeled the electrosensory input for each first-approach trajectory. Figure 9 shows the results of the EI reconstruction for two exemplary dyadic interactions. While Figures 9A,C depict the data for a dyad with a large size difference, Figures 9B,D show the result for a small size difference interaction. Although the trajectories leading to a contact varied between fish, we frequently observed that the passive and active EIs peaked on the head and tail regions, almost irrespective of the relative orientation between contenders (e.g., Figures 9A,B right).


[image: Figure 9]
FIGURE 9. Analysis of electrosensory input calculated for the initial approach phase during the agonistic encounter of dyads of Gnathonemus petersii. (A,B) Left: approach trajectories of two fish of large (A) and small size differences (B). Points indicate the fish positions and gray lines indicate their orientations. Time from start to the first physical encounter is depicted by the gray gradient of the orientation labels (light gray = start). Middle: color-coded RMS of the active EIs of the sequences are shown on the left. Here, zero on the y-axis indicates the start of the experiment (see black arrow), and the images end with the first contact. Right: same as data on the left but for passive EIs. (C,D) The maxima of active (left) and passive (right) EI of both fish are plotted against time. The distance between individuals is shown in the color-coded bar above the plot. Blue colors indicate close distances, whereas yellow colors represent larger distances. Note that in C the distance does not constantly reduce over time. The black arrows indicate the time point at which the EI of both fish start to diverge. The fish perceiving the strongest EI is shown in a color-coded fashion. The data in C corresponds to the approach depicted in (A), whereas the data in (D) refer to the approach depicted in (B). Red and blue symbols represent the large and small fish, respectively.


Independent of the size differences, the passive EI could best explain which fish approached first. In 10 of the 13 cases, the fish initiating the attack is predicted to having perceived the contenders passive EI before the contender would have detected the approaching fish (binominal test; p = 0.046). In contrast, the active EI was only more intense in the approaching fish in 6 of 13 cases (binomial test; p >= 0.71). With respect to size differences, the passive EIs were the largest for the attack leading fish in all cases for the >20% group (binominal test; 5/5, p = 0.031). Meanwhile, this was not the case in the smaller size difference pairings (binomial test; 5/8, p = 0.363). This indicates that the information obtained from the passive EI guides the approach leading to the first contact.




DISCUSSION

We now introduced the use of supervised learning models to aid in the study of (pulsatile) weakly electric fish and applied the methodology to investigate the role of electrosensory information in the dyadic interactions of G. petersii. Our initial objective was to introduce a workflow to overcome the bottleneck that the time-consuming human-observer-based allocation of EODs to individual fish poses to the study of electrocommunication, especially in pulse-type species. For this, we first optimized the recording configuration by combining a simple electric field model that mimicked the electric field of the fish with an RFR model from the open Scikit-learn package. By combining the open-source tracking tool SLEAP with an RFR model, we then showed that the EOD data recorded using the recording configuration we had determined as the best for our setup can be used to automatically assign EODs to two fish. As expected, this automatic procedure was not free from errors. However, by reanalyzing a well-defined subset of the data (frames where the difference in the estimation error of two individuals was low), the precision used for identifying EOD-emitting fish was significantly improved without requiring substantial user interference (Figure 7). Based on the automated EOD-labeling and tracking of individuals, we were then able to model the sensory input that each fish experiences by applying a BEM.

The obtained data revealed that in agonistic interactions between fish of different sizes, the attack initiation appears to be mediated by electrosensory information of the contender's direction (Figure 9). Specifically, the fish that finds the electric field generated by the other fish first will initiate the approach that leads to the first contact. However, despite the finding that larger fish dominate in agonistic encounters (Figure 8), we found no clear relation of the probability to lead the attack with respect to the size difference between dyads. This makes it plausible that the RHP of the contender is not available from either passive or active images during first encounters.

Taken together, the supervised learning methods and the workflow established now should prove valuable for future studies of electrocommunication in weakly electric fish.


Supervised Learning Algorithms to Study Interactions of Weakly Electric Fish

In this study, we used SLEAP to track individual fish from low-resolution video recordings. Compared to DeepLabCut, another open-source environment, which is capable of tracking multiple individuals (Mathis et al., 2018; Nath et al., 2019), our choice was based on the comparative ease to install SLEAP on local PCs and the stability of the GUI on our PC (Windows 10, processor: Intel®Xeon®CPU E3-1270 v5 @ 3.60GHz 3.60 GHz, working memory: 32GB RAM). However, our approach could also be implemented in DeepLabCut or similar constantly evolving tracking toolboxes (Lauer et al., 2021). To enhance the efficiency of model training and tracking, we decided to move to Colab. As the data storage size is limited in Colab, video material should not be too big and we would recommend to rely on local high-performance clusters of PCs if possible.

The EOD allocation to fish-ID was implemented based on an RFR model within the Scikit-learn package implemented in Python (Pedregosa et al., 2011). This is just one of many supervised learning methods. As an example, we tested an MLP model on the single fish recording of data set I (Figure 1). The RFR model outperformed the MLP models even for hidden layer sizes of 200 (median estimation error: RFR model: 1.48 cm; MLP: 2.18 cm). Nevertheless, both approaches were comparable with respect to their accuracy.

Our workflow was based on a laboratory condition in which visual tracking is easy. We thus used actual fish recordings for the training of the RFR model. Using real fish data instead of simulated data has the advantage that we did not have to model the boundary effects. However, more refined electric field modeling (e.g., Comsol-based simulations) could also be used. We would envision, however, that our measurement-driven approach will be swifter to implement, particularly for more complex setups than the comparatively reduced arena used here.

Once trained, the RFR model could also be used to predict the fish location without the need for additional video tracking if precision must not be very high. The median error of the model-tracked head position was about 1.48 cm, which is comparable to the data reported for other electrical fish tracking algorithms (Jun et al., 2013; average accuracy: 2.5 cm for eight-channel configuration). A more refined electrode array would further improve the precision attainable. Jun et al. (2013) used a dipole model to create a lookup table that was later used to localize fish. A dipole model can be used as a suitable approximation of the electric field of the weakly electric fish in simple environments but performance will degrade in a more complex environment as model performance is reduced near objects (Jun et al., 2013). Our approach is less sensitive to the complexity of the environment as long as the complexity is already introduced during the training sessions.

The tracking precision of the attack data set was reduced as compared to the single fish tracking data (single fish: 1.48 cm and dyadic interaction: 3.2 cm). This reduction in performance likely has several causes: the trajectories may have covered different parts of the experimental setup compared to the training data set; secondly, fish in the attack group were more heterogeneous in size than the pair used in training, and finally, the pose of animals during the dyadic interactions might have differed from the training conditions. Most likely, the different spatial coverage had the most significant effect. Even though we had split the data for the initial training into training and a test set, both still were taken from the same trajectories. Thus, the spatial coverage along these trajectories was higher than that over the remaining area of the setup. We did not attempt to quantify the magnitude of this effect. One possibility to overcome it in the future is to sample the training data set to achieve equal spatial sampling of the arena. Furthermore, similar to the retraining approach already applied for the pose estimation tracking using SLEAP, it might be useful to add the corrected EOD assignments to the training data set. Another option that would improve localization performance would be to substantially enlarge the data set used to train the model.

In principle, the training of the RFR model could also be performed with the simulated data. For this, we would recommend more sophisticated methods that incorporate a boundary effect. Alternatively, one could exclude the data obtained close to walls or close to electrodes (Jun et al., 2013). Because the fields in our case can be viewed as static and no capacitive properties needed to be included, the prior solution could be achieved using analytically methods like the finite element method or the boundary element method as used in this case to model the EIs (Gómez-Sena et al., 2014). With the improvement (even sampling during training) as mentioned earlier, we consider the training of the model with real fish data as a suitable and fast approach, as demonstrated here. For laboratory work conducted in large tanks, using an RFR model might also be a promising approach. However, it seems advisable in such a scenario to use the modeled and calibrated data as an input for training, as equal spatial coverage of larger arenas would require long sampling periods. For fieldwork, it appears questionable whether reasonably small localization errors can be achieved. At present, there are few methods available to track weakly electric fish in the field. One particularly interesting study in this regard was to estimate the position and orientation of fish (up to three animals at a time) by solving an inverse problem based on the known sensor geometry and an electrostatic dipole model through Bayesian interference (Madhav et al., 2018). The spatial precision is not sufficient to enable the resolution of directly interacting fish, but certainly the approach will be of great interest for investigating locomotor behavior on larger scales, such as territorial or foraging movements and excursions in the field.

Although we now evaluated and studied the suitability of the proposed methods and workflow for dyadic interactions, no major constraints for working with more animals exist. The RFR model estimates fish position based on the electric potentials at the electrode. The number of fish in the tank does have an influence on the precision of that measurement as they usually have a different conductivity as the water. However, as the position estimation of the RFR model is based on several electrodes, it is likely relatively robust against this interference. However, the likelihood of fish being close together and of similar or identical orientation also increases with the number of fish in the setup. Thus, the fraction of frames that will require manual inspection is expected to scale up with the number of individuals. A partial remedy to this would be a denser coverage of the arena by using more electrodes. This will be of particular relevance for setups with more water depth.

In conclusion, we are confident that our approach is also suitable to track small groups of animals. However, the limitation on the number of animals being tracked together will need to be tested for each experimental setup.



The Role of the EI During Dyadic Interactions

Agonistic behavior is one of a variety of behaviors that are considered to be important in conflict resolution between members of the same species (Lorenz, 1963; King, 1973). It can include the emergence of individual aggression that often occurs during the formation of hierarchical relationships within populations (Kudryavtseva, 2000). The rank within a group itself is often directly related to the access to resources, including territories, sexual partners, or food. Studying social interaction that shapes this access, in this case, agonistic encounters, in electric fish is particularly advantageous: Their social behavior includes both electric and locomotor displays that in part depend on a well-known and an experimentally accessible neural circuit. Furthermore, the ability to computationally reconstruct the electrosensory information that contenders could obtain in (or prior to) agonistic encounters can provide access to a deeper understanding of behavioral choices (and their outcomes) in social interactions.

As expected from previous work with the same species as the one investigated in our work, fish length was a good predictor of the outcome of an aggressive encounter (Terleph, 2004). The larger fish always dominated the encounter by showing a higher number of attacks (Figure 8). However, when the size difference between the two fish was smaller than <20%, the dominance status could not be predicted by size alone. Furthermore, in these encounters, the aggression level was higher as revealed by the more frequent attacks (determined for 5 min after the first encounter). While size difference was predictive of the outcome of the agonistic interaction, it did not correlate with the decision which fish initiated the first approach. This may be explained in two ways: either fish cannot infer the relative size difference based on the active or passive electrosensory information received, or the size difference is ignored in the decision to attack. Meanwhile, more research is required to decide this question, our analysis of the electrosensory input allowed us to conclude that the passive electrosensory information rather than the active electrosensory information would be the source most likely to be of importance in this behavior. We found that indeed the magnitude of the passive electrosensory image perceived by the approaching fish was a suitable predictor of attack initiation. This suggests that, while passive electrolocation mediates the information about the position of a contender, the RHP (size) is either ignored or not perceived at this stage. The finding that EIs, both passive and active, were mainly focused on the head in part is explained through the anatomy rather than the trajectories. As a consequence of the tapering off of the body thickness toward the tail, which reduces the cross-sectional area and thereby increases the internal resistivity, current (generated either by the fish itself or by external sources) is funneled to the head region. As a result, the maximal current densities (and transcutaneous voltages) occur at the head region. This could aid in the detection of contenders and the assessment of their RHP. While the latter was not found in our study, the finding that passive EIs likely provide (spatial) information to the fish initiating the first contact agrees well with the results of dyadic interactions in G. omarorum, a South American weakly electric fish species (Pedraja et al., 2016). The similarity suggest that the role of the EI in agonistic encounters may be shared between different independently evolved electric fish species. With respect to the methodological aspect, the methods established now seem suitable to further our understanding of the role of active and passive electroreception in different situations: agonistic contest, courtship display, exploration of objects, and determination of different perceptual parameters in collective behavior.
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Knowledge about body motion kinematics and underlying muscle contraction dynamics usually derives from electromyographic (EMG) recordings. However, acquisition of such signals in snakes is challenging because electrodes either attached to or implanted beneath the skin may unintentionally be removed by force or friction caused from undulatory motion, thus severely impeding chronic EMG recordings. Here, we present a reliable method for stable subdermal implantation of up to eight bipolar electrodes above the target muscles. The mechanical stability of the inserted electrodes and the overnight coverage of the snake body with a “sleeping bag” ensured the recording of reliable and robust chronic EMG activity. The utility of the technique was verified by daily acquisition of high signal-to-noise activity from all target sites over four consecutive days during stimulus-evoked postural reactions in Amazon tree boas and Western diamondback rattlesnakes. The successful demonstration of the chronic recording suggests that this technique can improve acute experiments by enabling the collection of larger data sets from single individuals.
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INTRODUCTION

Acquisition of long-term chronic EMG data is well-established in many animal species ranging from fish (Cooke et al., 2004), to mammals such as mouse (Tysseling et al., 2013), monkeys (Park et al., 2000), and even humans (Kern et al., 2001). However, electromyography (EMG) in reptiles employing invasive intramuscular electrode implantation is often limited to acute experiments extending over a few hours or a single day. Alternatively, multi-unit activity from muscle fibers can be recorded over a wider area with non-invasive surface electrodes (sEMG; Staudenmann et al., 2010), although with variable success in reptiles, given their generally rather solid, scaled skin. Thus, sEMG recordings in snakes are technically challenging because the signal is lost when the animals remove electrodes and/or recording devices while rubbing their body against objects. Since this affects the reliability of chronic data acquisition, sEMGs are rarely used for muscle activity recording in reptiles. Instead, bipolar hook wire electrodes are mostly implanted directly into the muscle tissue. In this case, electrode fixation is achieved through the barbed hook of the electrodes. Cyanoacrylate glue, vet-wrap adhesive bandage, and plastic cement is mostly used to additionally secure the electrode wires on the outside skin and to tie the wires to each other to form a single strand of wires (for a detailed description of this classic technique see: Jayne, 1988; Sharpe et al., 2013). This technique of intramuscular EMG recordings has been used previously to shed light on a variety of snake behaviors from locomotion (Jayne, 1988; Newman and Jayne, 2018) to feeding and drinking (Cundall and Ganz, 1979; Cundall, 1983; Berkhoudt et al., 1994) but also on more specific behaviors such as strikes (Young, 2010) or venom spitting (Young et al., 2004, 2009). There has even been a study on how epaxial muscles of the snake are activated during reaching tasks (Jorgensen and Jayne, 2017). In all these studies, 1–12 electrodes were inserted into locally restricted body segments either percutaneously or by surgically opening the skin to expose the muscles of interest. In general, animals were sacrificed after finishing EMG recordings, which was mostly on the same day as the electrode implantation, classified this approach as an acute experiment. However, Moon (2000) was successful in keeping bipolar hook electrodes in place within snake axial muscles for up to 1 week performing chronic EMG recordings.

Instead of using barbed bipolar electrodes, surface patch electrodes have been used in studies on salamanders (Carrier, 1993), iguanas (Carrier, 1989), and snakes (Moon and Gans, 1998). This type of electrodes facilitates the recording of EMG signals from muscles that are too thin to accommodate barbed bipolar electrodes (Carrier, 1989) or when muscles are in close proximity to adjacent, larger muscles that potentially generate cross-talk of the activity pattern (Loeb and Gans, 1986). In order to solve this issue, a patch, made of silicone rubber sheet was used to provide electrical insulation from the larger muscles, while electrical activity from the surface of the small muscle was recorded by the bipolar electrodes attached to the other side of the patch.

The main drawback of classic sEMG recordings, is the limited spatial precision, because this technique precludes a precise identification of the recorded muscle or the exact vertebral location during the actual experiments. However, in studies, such as our present investigation, in which spatio-temporal muscle activation patterns of larger body segments (e.g., loops) with respect to relative body position (inside vs. outside, rostral vs. caudal) or type of muscle activation (tonic vs. phasic) is the major goal, a high spatial resolution would be desirable but is not essential to obtain the respective information. To overcome the technical limitations of sEMG recordings in snakes and to allow for chronic multi-site muscle activity analyses, we have developed a new technique for collecting multi-channel EMG data from multiple body segments during the execution of a natural snake behavior. Our technique resembles the use of patch electrodes, with the skin providing electric insulation from one side, while electric activity is recorded from the surface of large epaxial muscles with bipolar electrodes. This recording technique avoids surgical exposure of the muscle or the use of barbed electrodes and is thus less invasive. This technique permits stable EMG recordings with a high signal-to-noise ratio. Both, individual spikes and local muscle group dynamics, normally associated with sEMG data, were robustly and consistently acquired in two species of snakes. Furthermore, this technique is suitable for the recording of high-quality data over several days and can thus be employed for chronic recording of EMG data in snakes.



MATERIALS AND METHODS


Experimental Animals

In this study, five semi-adults [snout-vent length (SVL), range: 85–106 cm; body weight range: 79–174 g] Amazon tree boas (Corallus hortulanus) and two semi-adult Western diamondback rattlesnakes (Crotalus atrox, Baird and Girard, 1853) (SVL, range: 42–45 cm; body weight range: 112–122 g) were used. In addition, four carcasses of Amazon tree boas were used to establish the electrode implantation prior to the actual animal experiments. Snakes were bred at the Chair of Zoology (Technical University of Munich) and maintained on a 12 h:12 h light:dark regime, 22–33°C temperature range, and a diet of pre-killed rodents with water ad libitum. Permission for the experiments was granted by the respective governmental institution for animal welfare (Regierung von Oberbayern, Gz.: ROB-55.1-2532.Vet_02-19-115).



Presurgical Preparation

Electromyography electrodes and implantation needles were prepared 1 h before application of the anesthetic drugs to minimize the time required for the implantation process. For this procedure, thin flexible cables were used to avoid an impairment of the natural motility and to support the large number of implanted electrodes. The absence of any impact of the inserted recording electrodes on natural motion dynamics and pattern was verified by a qualitative estimation of the locomotion capacity before and after the implantation. For connecting the electrodes, Omnetics Neuro NanoStrip connectors (A79021-001, Omnetics, Minneapolis MN, USA) were used, which consisted of a miniaturized connector (7.4 × 4.4 × 1.8 mm), pre-wired with 18 cables [gold plated copper alloy, length: 46 cm; ø 0.160 mm; 0.3 mm including polytetrafluoroethylene (PTFE) coating]. Each cable was electrically shielded with an individually colored layer of biologically compatible PTFE coating and was thus protected from producing a short-circuit with other wires. The total weight of the wires including the connector was 2.8 g which equals 1.6–3.5% of the snakes' bodyweight and was thus easily supported even by the smallest snakes employed for the study. The cables were used in pairs, such that the cut ends formed a bipolar EMG electrode (Figures 1A–F). Using a connector with 18 cables generated eight bipolar electrodes with one of the two remaining electrodes used as ground wire, and the other as backup in case the ground electrode becomes damaged or removed during the recordings.


[image: Figure 1]
FIGURE 1. Custom-built items required for chronic mounting and anchorage of multiple EMG electrodes. (A1) Shortened injection needle and EMG electrodes with attached cyanoacrylate sphere that ties two cables to form a bipolar electrode. (A2,B) Needle with cables inserted up to the cyanoacrylate sphere (A2) and higher magnification of the cyanoacrylate sphere (B); position of the sphere and needle length is adjusted such that the electrode tips remain inside the needle during the implantation process. (C,D) Schematic depicting the first implant position, with the needle, containing the bipolar electrode, located subdermally (dotted lines) between the entry and exit hole (C); after removal of the needle, the bipolar electrode remains in the tunnel between the skin and epaxial muscles (D) invariably fixed in place by the suture (blue circle); schematic of the second, more caudal implant position (E) with cables of the first bipolar electrode pair (light red and beige) affixed to the skin with the suture that also holds the second implanted electrode pair in place. (F) Photograph of the second implant site in an Amazon tree boa depicting the wiring, cyanoacrylate sphere and suture as shown schematically in (D,E); the inset depicts the connector at higher resolution. (G1,G2) Inside (G1) and outside view (G2) of the “snake sleeping bag” for Amazon tree boas used to prevent accidental removal of cables by the snake; brown silicone stripes increase friction and when closed prevent the snake from exiting the bag; black and beige hook and loop fasteners allow for easy and fast closing/opening of the bag. (H) Photograph of an Amazon tree boa inside the “snake sleeping bag”.


In order to secure the EMG electrodes in a close and constant relative position to each other, cables were affixed to each other using a small drop of cyanoacrylate glue (Figures 1A,B). To prevent the cables from undesired, accidental removal (discussed below) a solid spherical object was formed from additional drops of glue, whereupon the drying process was accelerated through application of small granules of sodium bicarbonate (Supplementary Video 1). The distance between the sphere and the tip of the EMG electrode determined the extent of the cable section that was subdermally implanted and served to ensure a consistent length of all cables within a given animal. In our experiments on both species of snakes, implanted cables with a length of 40 mm were employed, allowing a robust fixation without affecting natural movement capabilities.

The steps for producing an electrode were as follows: the position of the sphere on the cable was visually marked while aligning the two cables. At the same time a small drop of glue was applied to both cables at the marked position. Both cables' relative length was ensured to remain invariant relative to each other, as this would have caused problems with cable management during the experiments. After application, while the small drop of glue hung from both cables in a half-spherical form, a pinch of sodium bicarbonate was sprinkled from above onto the glue to facilitate solidification and drying. This caused the downwards hanging glue to be pulled upwards into a half-spherical form, due to the combination of surface tension and instantaneous fixation. Rotation of the cable and repetition of the procedure ensured a small but strong hold that was spherical in form (Figure 1B). Care was taken to avoid creating an excessively large sphere (>3 mm) since an oversized sphere causes a configuration where an undesired space between the snake's body and the cable might be formed. This would allow another object to insert itself between the cable and the snake and to generate sufficient force to remove the cable. A sphere diameter of ~2–3 mm was found to be most suitable for stable cable implantation. Any rough edges were removed from the sphere by careful sanding with high-grit sandpaper. The soldered connectors for the cables were oriented in relation to the snake such that the cable bundles were directed toward the caudal end of the snake to daisy-chain the implanted electrodes with the amplifier through a connecting cable approaching from the caudal part of the animal. This helped preventing an entanglement and minimized cable tension potentially caused by animal movements as the caudal part of the snakes generally showed less displacements in space during provoked movements compared to the rostral part of the body. To prevent bundles of excess cable to extend caudally, the length of the cables was trimmed according to the distance between the different electrode insertion points: if the electrodes were directed from rostral to caudal at a distance of 6 cm from each other with a bipolar electrode on the left and right side of the axial column, respectively, then cables 1–4 remained at a length of 46 cm, cables 5–8 were trimmed to 40 cm, and cables 9–12 were trimmed to 34 cm, etc. For the shorter rattlesnakes, the same cable lengths were used. Excess stretches of cable were fused together behind the caudal most implantation site and wrapped in parafilm. The insertion of the cables was performed with a hypodermic needle (Figure 1A). The diameter (outer diameter: 1.2 mm) of the needle was just wide enough to accommodate the two cables that formed a bipolar electrode pair. The plastic Luer-lock connector was cut off with a sanding disk attached to a rotary tool preventing a closure of the internal canal, such that the needle approximated a hollow sewing needle.



Anesthesia

Prior to the electrode implantation, snakes were placed in an induction chamber and pre-anesthetized with 2 ml isoflurane (Isothesia, Henry Schein Vet, Hamburg, Germany). As soon as the tail-pinch reflex ceased, snakes were intubated with a cat catheter (diameter: 1.2 mm) connected to an isoflurane vaporizer (Isotec-3, Völker GmbH, Kaltenkirchen, Germany). The isoflurane concentration provided by the vaporizer was set to 2.0–2.5%, to ensure adequate surgical anesthesia throughout the entire duration of the implantation process. Additionally, Carprofen (Carprosol, cp-pharma, Burgdorf, Germany) was administered (2 mg/kg body weight, i.m.) for analgesic treatment 1 h before the start of the implantation and once thereafter every following day throughout the entire period of EMG recordings.



Electrode Implantation

Before electrode implantation, all surgical tools, needles and wires were sterilized through submersion in a disinfectant (Perfektan TB, Dr. Schumacher, Malsfeld, Germany) for at least 5 min. For the electrode implantation, the sharp end of the needle was used to penetrate the skin of the snake at predetermined positions at the side of the body and was subdermally guided over a distance of 4.5 cm (Supplementary Video 2). Great care was taken to prevent undesired penetration of muscles. The needle was then pushed from caudal to rostral along the longitudinal axis of the snake's body. After insertion of the needle for 4.5 cm, the sharp end was pushed outwards again to exit the skin. Thereby the needle entered and exited the skin simultaneously at two points to form a subdermal tunnel. Using a stereo microscope, the bipolar electrodes were inserted through the cut end of the needle until the sphere was flush with the end of the needle (Figure 1C; Supplementary Video 2). At this point, the sharp end of the needle was grabbed with small surgical hemostats and was fully pulled through the rostral penetration site. The inserted cables remained underneath the skin as the sphere was unable to traverse through the caudal penetration entrance generated by the needle (Figure 1D). The electrodes were thus precisely positioned underneath the skin at a distance of 4 cm from the initial penetration site through the skin following the tunnel created by the needle. Overall, this process was performed 10 times to insert the bipolar electrodes (eight penetrations with two cables implanted at each penetration site) and the two single, separate ground electrodes (two penetrations with one cable implanted at each penetration site) resulting in a total of 16+2 (18) implanted cables (Figures 1E,F). In this proof-of-principle, study the electrodes were approximately placed on the surface of the semispinalis-spinalis (SSP) muscles. If necessary, precise electrode positions could be determined by dissection or X-ray imaging.



Cable Fixation

In order to prevent cable removal, a suture (Daclon Nylon, Monofilament Non-absorbable, USP 2/0, SMI AG, St. Vith, Belgium) binding skin and cables was placed at the side of the glue sphere opposite to the cable's entry hole to tightly hold the two cables in place (Figures 1D–F). We used non-absorbable nylon monofilaments, because of its high tensile strength, manageability, and good tissue compatibility. The suture needle was inserted laterally from the center of the cyanoacrylate sphere such that it appears that the suture will bisect the sphere. Before the initial knot of the suture was tightened, the suture thread was positioned to the side of the sphere, such that the sphere was centered between the electrode penetration site and the suture loop (Figure 1D). The suture thereby applied a slight pressure against the sphere, which facilitated a tight arrest of the open end of the cable underneath the skin and minimized the likelihood of cable removal. Such an unfortunate circumstance would occur when an open space would form between the skin and the end of the cable separated by the sphere. Cables from rostrally implanted electrodes were bundled and affixed to the body (Figures 1E,F). Further intermediate sutures were placed at locations between adjacent bipolar electrodes to form bundles of cables from several target sites. Care was taken to create sufficient slack, such that the cables allowed sufficient mobility when the snake formed pronounced body loops. This was determined during anesthesia by laterally bending the body of the snake in both directions. At the end of the implantation process, extending cables proximally to the connectors were coiled and carefully wrapped in parafilm (Figure 1F, inset).



Postsurgical Recovery

Following implantation, the isoflurane concentration was set to 0%, which caused complete recovery of the snakes from the anesthesia within a few minutes. During the experimental procedure each snake was regularly and systematically monitored. There was no alteration of the health of the snakes nor any obvious inflammatory signs at the site of the implanted electrodes. It was important that during the recovery period and prior to the experimental trials on successive days the snake's movements remained restricted to prevent the occurrence of forces onto the implanted cables. This measure assisted in preventing accidental removal of cables and consequential damage of the skin. In chronic experiments that lasted for several days, snakes were kept overnight in quarantine cages. A particular challenge during the overnight rest was the prevention of the cables from becoming entangled in cage enrichments, e.g., branches. A major advancement for the performance of chronic measurements across several days was therefore the reliable and faithful affixation of recording electrodes and cables at all times. This was particularly challenging at night in the home cage when the animals were essentially unobserved. Instrumental for successfully maintaining all electrodes in place and functionally intact was the use of an individually adjusted “snake sleeping bag,” which prevented impairment and deterioration of electrode placements and thus ensured the continuity of the recording condition over the experimental period of up to 4 days (Figures 1G,H). The maximum temporal extent for EMG recordings of 4 days was determined by the maximal duration that the legal body approved for these experiments and thus was not based on technical limitations of the described method.

The “sleeping bag” was made out of fabric and securely covered the segment of the body where the cables were inserted. The “sleeping bag” tightly kept the electrodes and cables in place but still allowed the animal to perform undisturbed locomotor movements. For arboreal species with a more elongated and slender body such as the Amazon tree boa (Corallus hortulanus) employed in our study, the use of such a bag was highly beneficial as these snakes generally use their prehensile tail to wrap around objects, as well as around their own body. The “sleeping bag” was constructed from a stretchy jersey fabric. Critical for the stable positioning of the bag was the extension of the snake out of the fastened shut bag on both sides (Figure 1H). If only the head were to come out of the bag, then the snake could still insert the highly flexible tail through loops that would form with the inserted cables, potentially removing the latter.

At the points where the head and tail exited the bag, hook and loop fasteners were attached to the outside of the bag (Figure 1G2). On the inside of the bag in relation to the hook and loop fasteners were silicone stripes (Figure 1G1). These stripes helped to hold the bag in place around the body such that the snake was unable to slither out. The middle section of the bag consisted of a large compartment that was closed by a long strip of hook and loop fasteners running parallel to the extent of the compartment. The size of the bag was adjusted to the size of the snake (0.9–1.4 m SVL) such that the animal was not able to fully extend its individual body segments. This prevented the snake from forming several S-shaped curves at body midsection and to pull the tail in through the bottom of the bag. As the diameter of the body directly behind the head of Amazon tree boas is smaller than that of the midsection, a well-fastened hook and loop closing mechanism prevented the animal from slithering out of the bag during forward movements. The diameter constriction of the body behind the head also prevented the snake from pulling the latter back into the closed containment. Besides ensuring a strong and uniform closing mechanism, hook and loop fasteners facilitated a quick and easy opening and closing of the bag to insert and remove the snakes. For terrestrial and more heavy bodied snake species such as Western diamondback rattlesnakes, also employed in this study, the use of a “sleeping bag” was not necessary. These snakes lack an extensive tail region that allows being wrapped around objects or the own body. During the post-surgical period, we noticed in fact that these snakes remained rather coiled-up overnight, thereby minimizing the risk of electrode impairment.



Data Collection

In the current pilot study, eight bipolar electrodes and two additional ground electrodes were implanted as described above to demonstrate the constant quality of EMG recordings over several days. The bipolar electrodes were inserted in a pairwise fashion on the left and right side of the axial column at a dorso-lateral position (Figure 1F). To identify each electrode pair, electrodes were referred to a particular “position,” as shown in Figure 2. The insertion points for the four rostro-caudal positions were determined by the following distances along the axial column starting from directly behind the skull (0 cm): 6, 17, 28, and 39 cm. Since the rattlesnakes used in this study were about half the length of the boas, the respective distances for the corresponding rattlesnake implantations were 5, 10, 15, and 20 cm. The two monopolar ground electrodes were inserted at ~45 cm in Amazon tree boas (~25 cm in rattlesnakes) behind the head on both sides of the body. After implantation, each snake was allowed to recover overnight, and EMG data were collected over a period of four consecutive days. Recorded EMG signals were amplified by a factor of 192 and digitized (20 kHz) by a 16-channel amplifier board with bipolar (differential) inputs (RHD2216, Intan Technologies, Los Angeles, California). Digitized EMG signals were forwarded to a USB-interface board (RHD2000, Intan Technologies, Los Angeles, California) and stored on computer using the USB interface board software provided by Intan Technologies. The recorded signals were processed by a 50 Hz notch filter followed by further processing with a fourth order Butterworth band-pass filter with a lower end of 20 Hz and upper end of 850 Hz. Recordings were down-sampled by the intan software to 4 KHz to ease plotting of the data, though the original data were stored for further analysis. To calculate the envelope of the recorded EMGs, the data was rectified and a fourth order Butterworth low-pass filter (8 Hz) was applied. Bias caused by rectification was removed by using the data before the start of the motion stimulus device (see below) to calculate a mean. This mean was then subtracted from the full data range. Subsequently, the values were normalized between 0 and 1 to facilitate comparison between electrodes and individuals.


[image: Figure 2]
FIGURE 2. Reliability of multi-electrode EMG recordings during stimulus-provoked changes of the snake's (Amazon tree boa) body formation. Representative recordings at four rostro-caudal positions (P1–P4 in the top scheme) on the left (red) and right side (blue) of an individual snake; the scheme of the body formation before (top left) and during turntable movement (top right) was reconstructed from videos recorded simultaneously with the 8-channel EMG 3 days after electrode implantation; dashed lines indicate time steps of the video frames used for reconstruction of the body formation. The envelope of the recorded EMGs was normalized to the maximum value, per channel, respectively, and was plotted as gray overlay onto the raw data.


A custom-built motion stimulus device (turntable) was used to provoke compensatory postural reactions driven by stereotypic muscle activity for the assessment of EMG quality. Accordingly, the snake was placed on a branch that was positioned in the vertical rotation center of the turntable. The turntable had a dimension of 30 × 30 cm and was driven by a brushless DC motor (Model:3268G024BX4 CS, Faulhaber, Schönaich, Germany). A MATLAB script (MATLAB ver. R2016a, Mathworks, Natick, Massachusetts, USA) was used to control turntable movements. The standard stimulus consisted of a sinusoidal rotation in the horizontal plane with a positional excursion of ±60° and a frequency of 0.1 Hz (period of 10 s). A spatially invariable infrared stimulus (IR-Emitter, Steady State IR Source, Model EK-5270, Laser Components GmbH, Olching, Germany) was presented in front of the snakes to attract the attention of this infrared-sensitive species. Since the snakes focused on the position of the IR-Emitter, the head remained relatively stable in space during turntable rotation. This was achieved by the snakes through an activation of compensatory movements of the head/body involving the most rostral body loops. Thus, turntable motion caused the snake to decrease or increase the diameter of its S-shaped body loops, which resulted in a relatively stereotyped motor behavior, ideally suited to assess the quality of the EMG recordings. To reconstruct the change in body shape, a video camera (Basler Ace acA1300-200uc, Basler AG, Ahrensburg, Germany) was mounted above the turntable and was temporally synchronized with the EMG recording device.

To verify that the described chronic recording technique is also applicable to other snake species with a different body shape and lifestyle, we performed EMG recordings in the Western diamondback rattlesnake—a heavier bodied species with a ground-based lifestyle. This species, however, turned out to be unsuitable for turntable experiments, because of a lack of robust postural stabilization as performed by the Amazon tree boa. We therefore designed a different task and recorded EMGs during aggressive strikes from both, Amazon tree boas and from Western diamondback rattlesnakes. This highly dynamic behavior was chosen, because it could be easily provoked in both species and due to the high kinematic profile posed a particular challenge for the stability of the implanted electrodes. In these experiments, the Amazon tree boas rested on the same branch as in the turntable experiments. To account for the ground-based lifestyle, Western diamondback rattlesnakes were placed directly on the flat surface of the stationary turntable. An infrared stimulus (IR-Emitter, Steady State IR Source, Model EK-5270, Laser Components GmbH, Olching, Germany) in front of the animals at a distance of 10–20 cm was used to attract their attention and to elicit aggressive targeted strikes. The video camera (see above), mounted above the turntable and synchronized with the EMG recordings, was used to capture the strikes for offline analysis. To determine when strike activity started in the EMG signal a measure of 1.5 standard deviations above the mean of the total signal capture was used. This metric alone has many false positive correlations. To mitigate these aspects, a sliding window of 35 ms was used. The start of EMG activity of the strike was only marked once all timesteps in the window were above threshold. Furthermore, the search for the strike start was started 250 ms prior to the time of visual strike start. The data set obtained during the strike behavior of Amazon Tress Boas (N = 4) was chosen for the evaluation of the electrode performance across successive recordings days. Accordingly, the data on the strikes recorded at the first day after electrode implantation was compared with those recorded 4 days after implantation. To differentiate data that consisted mostly of noise from data with actual strong EMG activity, the first second of each recording without stimulation or movement was selected and referred to as “noise” (Figure 3B). In comparison, the time period from the visual start of the strike until the time of maximal extension of the snake during a strike was referred as “signal” (Figure 3C). The mean amplitude of these time periods was calculated separately for each individual animal. The mean amplitude of the “noise” (respectively, “signal”) from day 1 was compared to the data obtained on day 4 by normalizing to the maximal value. Normalized data was then averaged across the four tested individuals.
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FIGURE 3. Evaluation of EMG quality. (A) Selected period of EMG activity (top trace) and at higher temporal resolution (bottom traces). (B,C) Evaluation of the electrode performance at day 1 (black) and day 4 (red) after implantation. Data that consisted mostly of noise (B) was analyzed separately from data with actual strong EMG activity (C). The analyzed data was recorded from muscle activity during strikes of an Amazon tree boa; note the similarity of the values at day 1 and 4 for both parameters.


At the end of both types of experiments over a period of 4 days, snakes were decapitated under deep isoflurane anesthesia (5%) using an animal decapitator (Small Animal Decapitator, Stoelting Co., Wood Dale, IL, USA).




RESULTS

The success of simultaneous EMG recordings from eight bipolar electrodes along the snake body was initially demonstrated by data sets of muscle activity recorded from two different Amazon tree boas 1 day after electrode implantation (Figures 2–4). When resting on the branch prior to horizontal turntable movements, the recorded EMG showed only weak activity of units with small amplitudes, which sometimes was difficult to discriminate from concurrent noise (Figures 2, 4A1). However, following initiation of the sinusoidal rotational movement, snakes actively changed their body formation (Figures 2, 4A1), accompanied by a patterned axial muscle activity with a high signal-to-noise ratio (Figure 3A). There was no substantial change in the signal quality during the entire experiments, even when the recording electrodes were confronted with high forces that occur during fast strikes of Amazon tree boas (Figure 3B) that cover long-distances. The EMG revealed a bilaterally side-specific pattern, which consisted of an asynchronous muscle activity on the left (Figures 2, 4A1, red traces) and right side (Figures 2, 4A1, blue traces) at any one of the four rostro-caudal recording positions. The side-specific activity pattern was accompanied by a phase-difference of the respective myogenic potentials. When different individuals were positioned in the center of the rotation axis, such that a comparable body form was assumed, the recorded activity was similarly patterned (Figures 2, 4A1,A2; Supplementary Figure 1).
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FIGURE 4. Temporal robustness of multi-electrode EMG recordings during stimulus-provoked changes of the snake's body formation. (A) Muscle activity of an Amazon tree boa other than the one from which the data were presented in Figure 2 at day 1 (A1) and day 4 after implantation (A2); recordings derived from the two most rostral positions (P1 and P2 in the top scheme) on the left (red) and right side (blue); the scheme of the body formation before (top left) and during turntable movement (top right) was reconstructed from videos recorded simultaneously along with the eight-channel EMG; the recordings from P3 and P4 are illustrated in Supplementary Figure 1; dashed lines indicate time steps of the video frames used for reconstruction of the body formation. The envelope of the recorded EMGs was normalized to the maximum value, per channel, respectively, and was plotted as gray overlay onto the raw data. (B) Overlays of the normalized envelopes of each channel at position P1 (channel 1 and 2) and P2 (channel 3 and 4) at day one (dashed black lines) and day four (solid green lines).


Likewise, EMG data, collected from a given animal at two separate days (day 1 and day 4 after the implantation) were used to evaluate the temporal consistency of the recordings during the experimental period (Figures 4A,B; Supplementary Figures 1A,B). Recorded EMG signals from the same channels appeared to be qualitatively very similar on the 2 days (Figures 4A,B; Supplementary Figures 1A,B). During the separate recording sessions, the muscle activity exhibited recording-site-specific high signal-to-noise ratios with variations across channels, nevertheless allowing a detailed pattern analysis by calculation of the envelope of the recorded EMGs. The variations in the activity pattern between day 1 and day 4 were larger at the caudal recording sites (P3 and P4, Supplementary Figure 1) as compared to the more rostral recording positions (P1 and P2, Figure 4) and were likely related to the more variable anchoring positions of the snake at the latter body positions.

The data sets, obtained from simultaneous EMG recordings of eight bipolar electrodes during snake strikes (Supplementary Video 3) showed that the employed technique is sufficiently stable to also capture the muscle activity during highly dynamic movements (Figures 5A–H; Supplementary Figure 2) in a comparative approach in different snake species. In total, 199 strikes of the Amazon tree boa (N = 5) and 71 strikes of the Western diamondback rattlesnake (N = 2) were recorded. In contrast to the slow compensatory postural reactions provoked by a turntable rotation, the EMG activity during snake strikes was considerably shorter with the maximum activity at the time when the actual strike was launched (Figures 5A,D,F,G). Recorded EMGs did not differ across species and showed a strong activation with high amplitude EMGs at strike start. However, temporal activation of epaxial muscles did not occur simultaneously when the recordings of the left and right side at a particular positional configuration were compared. In the example shown in Figures 5A,B, high amplitude EMGs at strike start were only recorded on the left side of the snake (Figure 5A), The activation of the right side (Figure 5B) was considerably weaker with a delayed appearance of EMG activity at higher amplitude. This activation pattern was neither species- nor side-specific and appeared to be rather related to the specific loop-formation of the snake body. If the loop was formed in a mirror-image fashion, as the illustrated example of a rattlesnake strike in Figures 5E,F, the temporal activation sequence was inversed.
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FIGURE 5. Multi-electrode EMG recordings during stimulus-provoked aggressive strikes. (A–H) Representative recordings from an Amazon tree boa at two rostro-caudal positions [(A,B): Position 1; (C,D): Position 2]. (E–H) Similar recordings as in (A–D), from a Western diamondback rattlesnake. (I–L) Distribution of spatio-temporal muscle activation patterns along the body axis of all recorded strikes from the Amazon tree boa (I,J) and the Western diamondback rattlesnake (K,L). The left and right sides of the body was classified for each recording position as fast-activation side (I,K) or slow-activation side (J,L) based on the temporal sequence of the activation. The order of activation is depicted by colored bars (blue = first, purple = second, red = third, gray = fourth). Green vertical bar in (A–H) indicates start of the snake strikes.


For further analysis, the recording positions on both sides of the snake were classified as fast-activation side or slow-activation side. The side (left or right) at which for a given recording position, EMG activity was encountered earlier than the corresponding activity on the other side was signified as fast activation side (Figures 5A,D,F,G) and the other side accordingly as slow activation side (Figures 5B,C,E,H). This classification scheme simplified the analysis and comparison of the spatio-temporal activation of strikes by both the Amazon tree boa (Figures 5L,J) and the Western diamondback rattlesnake (Figures 5K,L). Differently colored bars indicate the order in which EMG activity was recorded. Accordingly, e.g., for recording position 1 the blue bar indicates the number of strikes in which the first EMG activity occurred at this position. The purple bar, likewise, represents the sum of all strikes in which the EMG activity was recorded subsequently and so on. Since at each position bipolar electrodes were implanted on both sides of the snake, the differentiation between fast-side activation and slow-side activation was taken into account. The summation of the data obtained from all strikes of an Amazon tree boa (Figures 5L,J) and the Western diamondback rattlesnake (Figures 5K,L) demonstrated a high variability without a clear temporal activity pattern. Thus, we found no clear pattern that could be related to a wave-like activation either from rostral to caudal or vice versa. This would be the case when the firing order is strongly correlated with electrode position. Since such a correlation is absent in the distribution of fast-side and slow-side activation positions, there is no fixed sequential activation of consecutive body positions.

However, a noticeable difference emerged when the distribution of fast-side activation and slow-side activation was compared between the strikes of the Amazon tree boa and the Western diamondback rattlesnake. In the data obtained from the Amazon tree boa, there was hardly any correlation between the fast-side activation and the slow-side activation (Figures 5I,J). In contrast, a clear correlation was present in the data obtained from the strikes of the Western diamondback rattlesnake (Figures 5K,L). This was most evident, when looking at recording position 1 and 4 or the colored bars for the first (blue) and fourth (gray) electrode position. Thus, in the Western diamondback rattlesnake, the slow-side activation was spatio-temporally more linked to the fast-side activation than in the Amazon tree boa (see discussion below).



DISCUSSION

Following stable subdermal implantation of up to eight bipolar electrodes directly above epaxial target muscles, robust EMG activity with high signal-to-noise ratio was reliably recorded from all sites. The overnight coverage of the snake body ensured a position-invariant arrangement of all electrodes throughout the recording period, without loss or deterioration of the signals. The recording of comparable EMG waveforms across consecutive daily sessions confirmed the suitability of multiple subdermally implanted electrodes for the chronic acquisition of large sets of myogenic activity during natural motor behaviors in snakes. The robust recording of EMGs in rattlesnakes demonstrated the suitability of this method also for snakes with a different body shape.

Electromyography recordings from different individuals with comparable body formation and curvatures revealed similar activity patterns in response to turntable stimulation, suggesting 1) the presence of comparable task-dependent muscle activation patterns and/or 2) the recording of similar groups of muscle fibers. This indicates that the established method represents a suitable technique to reliably record and compare the contraction dynamics and temporal pattern of multiple equivalent groups of axial muscles across individual snakes. However, snakes assumed slightly different body configurations, when placed on the positioning branch during repetitive recording sessions. Thus, the recorded EMGs naturally showed variations across individuals and subsequent days of data collection related to the specific body loop formation.

The different body loop formation is also relevant for the interpretation of the fast aggressive strike of snakes. Since in our EMG data no clear fixed sequential activation of consecutive body positions became apparent, it is unlikely that the snake strike is activated by a fixed motor pattern. This would require that the snakes repetitively strike from identical positions with generalized loop formations. However, from our experience, especially with rattlesnakes, strikes can be initiated from any position independent from the actual loop formation. Thus, we hypothesize that the activation order is rather related to the distance that each loop adds to the strike, with larger loops being activated before smaller ones. This might also explain the difference, between fast-side and slow-side activation in both the Amazon tree boa and the Western diamondback rattlesnake. The comparison of the coordination of the slow- and fast-sides of the strikes provides information about how the first (fast-side) activity is being counteracted by the delayed (slow-side) activity of the other side. First activation of the outside of a loop pushes the snake into a more linearly aligned position. If that would not be counteracted by an opposing force, the snake would be unable to maintain this linear position and this particular section of the body would go past the midline to form a new loop at the opposite side of the body. Thus, the delay of the slow-side activation would depend on the actual loop size. This indicates that it takes more time for the body to straighten a big loop in comparison to a small loop. Therefore, counteraction by slow-side activity would be delayed when a big loop has to be straightened during a strike. Thus, the difference between the Amazon tree boa and the Western diamondback rattlesnake might be explained by the loop size before launching a strike. Smaller loops cause a slow-side activation with a shorter delay and therefore result in a stronger correlation between fast-side and slow-side activation. However, a more detailed study design that includes high-speed video acquisition from multiple cameras for a detailed analysis of loop formation would be necessary to confirm this hypothesis considering the actual strike model (gate vs. tractor tread) as described by Kardong and Bels (1998). This would also allow for a comparative investigation of snake motor patterns with other neuromechanical models such as the undulatory sand-swimming of sandfish lizards, that has been analyzed in greater detail (e.g., Ding et al., 2013; Sharpe et al., 2013).

Nonetheless, independent of all activity details, the overall robustness of the recordings suggests that chronic compound EMG recordings of axial muscles for at least up to 4 days in snakes are possible and allow reliable acquisition of myogenic potentials of similar sets of muscle fibers at particular body positions in both employed species of snakes. It must be pointed out, however, that recordings of sEMGs, either using surface electrodes (e.g., in mammals; Staudenmann et al., 2010) or by placing electrodes directly onto the surface of the muscle (Biedermann et al., 1999, 2000; Scholle et al., 2001) as used here, will not yield sufficiently precise data to allow linking the recorded compound activity with individual muscle fiber bundles. Such an alignment clearly requires the implantation of electrodes into surgically exposed and thereby identified muscles, however, with likely detrimental consequences for motion patterns and trajectories. If locally restricted recordings from specific muscles or even from deep muscle tissue is required, classic hook electrodes should be preferentially employed (Loeb and Gans, 1986). However, implanting electrodes deep into muscular tissue impairs the mobility of the animals and thus the undisturbed execution of natural motor repertoires. Therefore, the specifically used EMG acquisition technique is generally a trade-off between muscle specificity and interference-free motor performance. Thus, our approach for electrode insertion, cable fixation, and potential snake movement restriction is therefore an elegant compromise that allows a considerable extension of the experimental period without undesirable loss of recording electrodes. This proof-of-concept study thus successfully demonstrated the possibility to faithfully record high-quality EMG signals over the course of several days at multiple sites along the body with a comparable suitability in two species of snakes with different body structures and life styles. Moreover, the occasional presence of distinctive large-amplitude single-units in the EMG recordings even allows sporadic identification of individual muscle fibers and thus the potential detection of task-specific differential contributions of muscle fibers with specific dynamic properties.



CONCLUSION

The establishment of an improved multi-electrode implantation technique to record the EMG of snake axial muscles was highly successful and proved to be excellently suited for collecting high-quality muscle activity data for several days. Most instrumental for chronic recordings were the durable subdermal insertion of the recording electrodes as well as the use of the “snake sleeping bag” that efficiently prevented the loss of wires and ensured safe resting of the animal overnight. The latter invention also kept the cables unimpaired while the animal recovered from anesthesia and allowed multiple recording sessions over several days with the same configuration, likely recording the same muscle fiber bundles. In addition, the method caused no visible detriments of the health, vitality or mobility of the animal over an extended recording period. Thus, larger data sets can be recorded, which potentially reduces the number of experimental animals used in future studies. While this technique has less accuracy for the determination of muscle specificity in comparison to intramuscular EMG, it is more than sufficient to provide vital information on muscle activity that can be used to investigate muscle coordination in combination with concurrent high-speed video recordings of snake locomotion or strike movements.
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EasyFlyTracker: A Simple Video Tracking Python Package for Analyzing Adult Drosophila Locomotor and Sleep Activity to Facilitate Revealing the Effect of Psychiatric Drugs
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The mechanism of psychiatric drugs (stimulant and non-stimulant) is still unclear. Precision medication of psychiatric disorders faces challenges in pharmacogenetics and pharmacodynamics research due to difficulties in recruiting human subjects because of possibility of substance abuse and relatively small sample sizes. Drosophila is a powerful animal model for large-scale studies of drug effects based on the precise quantification of behavior. However, a user-friendly system for high-throughput simultaneous tracking and analysis of drug-treated individual adult flies is still lacking. It is critical to quickly setup a working environment including both the hardware and software at a reasonable cost. Thus, we have developed EasyFlyTracker, an open-source Python package that can track single fruit fly in each arena and analyze Drosophila locomotor and sleep activity based on video recording to facilitate revealing the psychiatric drug effects. The current version does not support multiple fruit fly tracking. Compared with existing software, EasyFlyTracker has the advantages of low cost, easy setup and scaling, rich statistics of movement trajectories, and compatibility with different video recording systems. Also, it accepts multiple video formats such as common MP4 and AVI formats. EasyFlyTracker provides a cross-platform and user-friendly interface combining command line and graphic configurations, which allows users to intuitively understand the process of tracking and downstream analyses and automatically generates multiple files, especially plots. Users can install EasyFlyTracker, go through tutorials, and give feedback on http://easyflytracker.cibr.ac.cn. Moreover, we tested EasyFlyTracker in a study of Drosophila melanogaster on the hyperactivity-like behavior effects of two psychiatric drugs, methylphenidate and atomoxetine, which are two commonly used drugs treating attention-deficit/hyperactivity disorder (ADHD) in human. This software has the potential to accelerate basic research on drug effect studies with fruit flies.
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INTRODUCTION

Drosophila is a powerful genetic animal model for studies of complex phenotypes such as circadian rhythms, sleep, movement, and diseases (Sokolowski, 2001; Bier, 2005; Bellen et al., 2010). With lower costs and higher yields than mammalian models, Drosophila has contributed to revealing the genetic and neuroscientific basis of autism spectrum disorders (ASDs) (Tian et al., 2017; Coll-Tane et al., 2021), attention-deficit/hyperactivity disorder (ADHD) (van Swinderen and Brembs, 2010; van der Voet et al., 2016), and other disorders (Ries et al., 2017). In particular, large-scale studies of target genes and drug effects of the stimulants such as amphetamine, methylphenidate (MPH), and cocaine have greatly accelerated the basis of future pharmacogenomic and pharmacodynamic research (Heberlein et al., 2009; Rohde et al., 2019; Philipsen et al., 2020). Sleep and locomotor activity are crucial behaviors in the study of neurological disorders in Drosophila, since certain psychiatric disorders cause deficits in these behaviors. Different devices and accompanying software have been proposed for Drosophila sleep/locomotor tracking and downstream analyses, but they are not designed for the simultaneous independently tracking of multiple individual flies in drug effect studies. For example, pySolo (Gilestro and Cirelli, 2009), ShinyR-DAM (Cichewicz and Hirsh, 2018), and “tracker” (Donelson et al., 2012) software have been widely used, but limited to the infrared-detected Drosophila Activity Monitor (DAM) system (TriKinetics, Waltham, MA, United States). It records the frequency of fruit flies crossing infrared beams in a tube to study the locomotor, sleep, and circadian rhythms. The high cost of the single tube device limits its usage for high-throughput studies. Other well-known commercial tracking software, such as EthoVision XT from Noldus (Wageningen, Netherlands), is also expensive.

The Ctrax (Slawson et al., 2009) and the IowaFLI Tracker (Scaplen et al., 2019) are all camera-based software based on grouped individual tracking in the defined area. However, such group-based activity can interfere (e.g., with social behavior) with sleep/locomotor activity after drug treatment. Furthermore, some software was developed in MATLAB (Barwell et al., 2021), which is also an expansive commercial solution. In addition, it is slow when dealing with large videos using an artificial intelligence approach to track large fruit fly behaviors such as idtracker.ai (Romero-Ferrero et al., 2019).

Thus, we developed EasyFlyTracker, which uses affordable and easy-to-build equipment to track and analyze the sleep/locomotor activities of individual adult fruit flies for the study of drug effects, especially psychiatric drugs. To avoid interference of social behaviors, each arena contains only single fruit fly. EasyFlyTracker can track the activities of up to 72 individuals simultaneously with current settings and scale up to any number of individuals theoretically. After evaluating the tracking accuracy of EasyFlyTracker, we used it to track and quantify the locomotor activities of Drosophila treated with two commonly used psychiatric drugs such as MPH (a stimulant) and atomoxetine (ATX) (a non-stimulant) for ADHD symptoms in humans and finally identified hyperactivity-like behavior.



MATERIALS AND METHODS

Our tracking system consists of two parts, software and hardware setup, of which software (named EasyFlyTracker) development is our focus. All the hardware can be purchased directly online and installed easily and we provided product lists on our website http://easyflytracker.cibr.ac.cn/#/document. Next, for convenience of users, hardware setup is introduced first.


Hardware Setup Requirements

We built the customized recording environments, which are easily rebuilt and cost-effective compared with commercial equipment. The setup (cartoon diagram is shown in Figure 1) consists of the following parts: a standard commercial video camera, a background light, a computer, and polycarbonate (PC) antistatic transparent flat chambers. An example of up to 72 individuals were tracking simultaneously with our current settings (diameter of each circle is 16 mm) and it can scale up to any number and any circle size of individuals theoretically. However, as the number and circle size increase, the equipment settings should upgrade accordingly to maintain the performance of the system. The minimum size of the fruit fly body needs to be at least 4 pixels otherwise it will be treated as noise rather than a fruit fly. Active video of flies was obtained by recording the video directly above the activity areas of fly. Any camera with a resolution of 640 × 480 or better will work and we used 1,280 × 720 and 30 frames per second (fps). In addition, users need to ensure that the camera is still, the light (or infrared light) is constant, so that the background image is stable and stationary, and the background should be a clean and bright environment.


[image: image]

FIGURE 1. Hardware setup of video recording system. A cartoon schematic of our shooting setup, which consists of the following parts: a standard commercial video camera, a background light, a computer, and polycarbonate (PC) antistatic transparent flat chambers. The minimum size of the fruit fly body needs to be at least 4 pixels otherwise it will be treated as noise rather than a fly.




Development of EasyFlyTracker for Locomotor and Sleep Activity Analysis

EasyFlyTracker is written in the open-source Python 3.61 programming language and can be used to understand the tracking process, thanks to the user-friendly interface. The schematic plot of EasyFlyTracker is shown in Figure 2. General flow of the software (Figure 2A) contains read input data, track position of fly, define and analyze behavior, and output files. Details (Figure 2B) of tracking algorithm, behavior definition, outputs and visualization, and detailed information are provided below.
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FIGURE 2. The schematic plot of EasyFlyTracker. (A) General flow of the software. (B) Details of input data, tracking algorithm, behavior definition, output, and visualization.



Tracking Algorithm

It calculates the trajectory of each fly (center position and orientation in each frame) after importing the stored video sequence. Sample videos,2 which were recorded with our aforementioned customized shooting environments, were used to develop EasyFlyTracker. Tracking is achieved through four steps (a graphical example of the tracking algorithm is shown in Figure 2B): background modeling, foreground segmentation, coordinates calculation, and orientation estimation of Drosophila.


Background Modeling

A total of 800 frames or available number of frames when it is smaller than 800 are randomly selected from video and the pixel value with the highest number of occurrences in the time dimension is kept for each pixel. The background image is obtained after traversing all the pixel points. It should be noted that a random factor is used here, which will lead to the probability of inconsistency in the results of multiple operations on the same video. However, this deviation is extremely small and belongs to the normal range.



Foreground Segmentation

A pixel is determined to be a foreground pixel (fruit fly) if it satisfies the following conditions: its own pixel value is less than 120 and the difference with the background pixel is greater than 70 (Piccardi, 2004). In general cases, it works very well to separate fruit flies from the background with the threshold setting as 120. However, when the background is not clean such as there are some black impurities, we need another parameter to remove the noisy pixels with the requirement that difference between the foreground and the background is greater than 70. By combining these two parameters, we can efficiently separate fruit flies from the background.



Coordinate Calculation of Drosophila

The coordinate values were calculated based on the barycenter method of the region [connectedComponentsWithStats()] function of OpenCV (version 4.5.2) package in Python 3.6.



Orientation Estimation of Drosophila

The minimum area boundary rectangle of the segmented fruit fly region was calculated to determine the tail-to-head orientation. We further combined the velocity direction to determine the exact location of head and tail. Due to the low resolution, we did not consider the difference between head and abdomen velocity directions as previously reported (Geurten et al., 2014).




Behavior Definition

Based on the trajectory matrix of each fly (center position and orientation in each frame), EasyFlyTracker quantifies behavioral patterns of locomotor and sleep activity. Average distances every 10 min per fly (10 min is commonly used in the published literature and actually users can set any customized values) are used to define locomotor activity (Rohde et al., 2019). Sleep is defined as more than 5 min complete inactivity (Shaw et al., 2000); then, statistics of average sleep time and proportion of sleeping flies of each treatment group are used to show the status of sleep activity. The treatment group information is user defined and provided in the file “group.xlsx.” The example file can be found online (see text footnote 2), which includes treatments (drugs, control, or others) and the corresponding fruit fly number. Moreover, statistics of average angle change per second per fruit fly, the frequency of the fly passage at each position, and the regional preference of Drosophila movements are also defined to describe the locomotor activity of fruit fly. All these statistics are provided in different formats for users.



Software Outputs

The software provides different outputs. The first outputs are the plots of different behaviors including the locomotor activity plot, sleep status plot, heatmap plot, angle change plot, and regional preference plot. The locomotor activity plot shows average distances of the different Drosophila treatment groups during different time intervals (default every 10 min). The sleep status plot displays the statistics of sleep fly (default every 30 min). The heatmap plots show the relative frequency of the fly passage at each position and both the frequency per flies and grouped heatmaps are provided. Sleep intervals can be removed from the heatmap plots with the “heatmap_remove_sleep” parameter defined in the “config.yaml” file. The angle change plots show the statistics of average angle change per second per fruit fly and the regional preference of Drosophila movements more visually shows the regional bias of Drosophila movement. About the details of visualization parameters, please refer to our Supplementary Material. The second outputs are Excel files, which provide analysis results of different behaviors among the different groups and users can easily perform statistical analysis or plot by themselves according to their preference. The third is .npy files, which contain more output information and intermediate result information such as the position of the activity of fly at every frame; thus, users can reload and reanalyze at any time. The fourth output is the config file related to user configurations, which can be used to modify or further develop in the future.



System Evaluation

To ensure the usage of different platforms and users, we evaluated the tracking accuracy rate of location and orientation (manually checked random frames of different videos) of EasyFlyTracker. Images of frames were randomly generated from three different videos taken at random (November 17, 2020, December 1, 2020, and December 4, 2020). For the location evaluation, we have used 100 random frames for each video. Each frame is a picture recording location of each fruit fly at the corresponding time point. Then, three different people manually judged the accuracy rate of tracking of each fruit fly. We distinguished the consistency of tracking location and location of fly in each randomly generated image and numbers of mistracked flies were recorded. Tracking errors were defined as those without recognizable location or where the cross was obviously not in the center of the fly. Finally, the average accuracy of location of three videos evaluated by three people was calculated as the accuracy of the tracking rate. For the orientation evaluation, we have used 600 random frames for each video and checked one fruit fly per frame. In total, three people manually checked the same 1,800 fruit flies and recorded three types of evaluation result including correct, wrong, and indistinguishable. After removing the indistinguishable cases, the average accuracy of orientation was then calculated.




Other Information

Statistical analysis was performed using Python (version 3.8.3). The Kruskal–Wallis H-test (SciPy, version 1.5.0) was used for comparisons of groups. A value of p < 0.05 was considered to indicate statistical significance. The website was built mainly using VUE version 2.6 and Spring Boot version 2.4.0.




RESULTS AND DISCUSSION


Overview of EasyFlyTracker

EasyFlyTracker is an open-source package based on video tracking to analyze locomotor and sleep activity of fruit fly that can be run interactively through a graphical user interface. The software can be easily customized to accept most of the common video formats such as MP4, AVI, MOV, FLV, and so on. It can track single adult individual flies in parallel and quantify their locomotor and sleep activity. The main function of EasyFlyTracker includes two aspects (Figure 2): (1) track the position of each fly and store it. Tracking is achieved through four steps: background modeling, foreground segmentation, coordinates calculation, and orientation estimation of Drosophila. The average tracking accuracy rate of location and orientation are 99.89 and 87.75% separately, which were manually evaluated random frames of different videos by three people (summary of tracking accuracy rate can be found in Supplementary Table 1) and (2) define, analyze, and visualize locomotor activity and sleep behaviors from various aspects including average distances every 10 min per fly (or other customized time interval), statistics of sleep status, statistics of average angle change, and the frequency of the fly passage at each position, and so on. It has been successfully installed and ran at the cross-platform level (Supplementary Table 2) by different person. More details on behavior definitions, outputs, and plot parameters can be found in the methods.



Online Website and Usage of EasyFlyTracker

We provide the special website http://easyflytracker.cibr.ac.cn (home page, see Figure 3A) with feedback page (Figure 3B), where users can add comments and suggestions for better upgrade interaction and detailed usage example (Figure 3C) and step-by-step video tutorials (Figure 3D). In short, users can run EasyFlyTracker by the following steps: (1) download or install the EasyFlyTracker package; (2) download demo files from our website including example video, config.yaml, and group.excel file; (3) modify config.yaml file according to the personal video path of user or example video provided by us, group information and time duration, and so on; (4) track the position of Drosophila at each frame by running the command line: easyFlyTracker config.yaml; and (5) run other command lines to analyze and statistically track information: easyFlyTracker_analysis config.yaml. More detailed tutorials (such as installation, personalized settings, and customized downstream analyses) are available from our website. Technical comments and suggestions can also directly add to GitHub.3


[image: image]

FIGURE 3. The website of EasyFlyTracker. (A) Home page. (B) Feedback page where users can add comments and suggestions for better upgrade interaction. (C) Detailed usage example. (D) Step-by-step video tutorials.




Psychiatric Drug Treatment Study of EasyFlyTracker

We applied EasyFlyTracker to 3-h videos recorded of Drosophila treated with wild-type (WT) w1118 control, MPH (a stimulant), and ATX (a non-stimulant) (Sigma-Aldrich, Shanghai, China). MPH and ATX are two commonly used drugs to treat ADHD symptoms of inattention, hyperactivity, and impulsivity in humans (Cortese, 2020). Drosophila breeding and modified capillary feeder (CAFE) assay (Diegelmann et al., 2017) for drug feeding (a cartoon example is shown in Figure 4A) can be found in Supplementary Material. After drug feeding, we placed one adult fruit fly in each arena and engaged in simultaneous tracking (24 flies per treatment and 72 flies in total, Figure 4B). Based on EasyFlyTracker, the locomotor activity of fruit fly was monitored by video and short-term distances were quantified. Our software reported that when WT male flies were exposed to MPH, the behavior of the flies produced hyperactivity-like behavior (higher locomotor activity) compared to controls (van der Voet et al., 2016; Rohde et al., 2019). We observed a significant increase in average distances over time per fly in MPH- (Kruskal–Wallis H-test: p = 1.93e-03) or ATX-exposed individuals (Kruskal–Wallis H-test: p = 4.48e-06) (Figure 4D), which is in agreement with published results (Rohde et al., 2019). Meanwhile, the corresponding average sleep time per 30 min was shown (Supplementary Figure 1), but no clear pattern observed during the length of the video. In addition, the heatmap plot of the frequency per fly (Figure 4C) showed the preferential status of each fly among our 3-h videos and grouped heatmaps of the three treatments were also provided (Figure 4E). They clearly show that flies moved continuously along the edges. This may be due to edge preference or repetitive stereotyped movements. We also provided angle change plot (Supplementary Figure 2) and movement plots of different treatments (Supplementary Figure 3) to help illustrate more details of the activities of fruit flies. It turned out that increased angle change activities associated with the treatment groups (Supplementary Figure 2) similar as that of moving activities (Figure 4D). It makes sense that angle change represents one form of routine activities. The above results indicate that EasyFlyTracker can help users to reveal the effects of adult Drosophila locomotor activity after drug treatment.


[image: image]

FIGURE 4. An example of psychiatric drug treatment study using EasyFlyTracker. (A) Drug treatment by modified capillary feeder (CAFE) assay. (B) Example of activity assay and size of chambers for the three treatments. Panels (C–E) plots are output examples of our real drug treatment video, which was taken on March 30, 2021. (C) Heatmap plot of the frequency of each fly. The relative frequency of the fly passage at each location was plotted (red indicates the highest frequency in the area; dark blue indicates that no flies ever transitioned through this position). (D) The average distance every 10 min per fly was significantly increased in the methylphenidate (MPH) (M-1.5)- or atomoxetine (ATX) (A-0.25)-exposed group compared to the control (C) group throughout the 3-h video. (E) Grouped-heatmap plots of three treatments. The color legend is the same as in (C).


As a bonus, EasyFlyTracker can be easily transferred to other Drosophila-like animals or even other animal models such as worm and mouse, as we provide detailed tutorials and open-source code on the website.4 If users wish to extend to other animal models, we still recommend testing the accuracy of tracking first. In addition, this study has some limitations. We did not conduct a real-time tracking function of the software because during our development process, it was considered more important to prove the offline accuracy rather than real-time tracking and analysis. Also, in order to maintain an open development for better expansion by others, we provided all source code rather than developing it as a fixed-format program. Tracking of group behaviors was not considered in current version, since we have not figured out a solution at a low cost. Finally, our software is designed for adult fruit fly, thus we did not test its applicability to larval fruit fly. In the future, we will optimize and upgrade the software taking into account the above elements and incorporating user comments. In summary, we developed a Python package, called EasyFlyTracker, which is simple, stable, and reliable for analyzing the locomotor activity of fruit flies and it is easy to rebuilt equipment, which is suitable for the software. We hope that this system can achieve large-scale screening of drug response and even target genes in the future, thereby providing clues for psychiatric research and is expected to provide precision medicine research and new drug development models for its drug treatment in Drosophila as well as other animals.
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Accurate tracking is the basis of behavioral analysis, an important research method in neuroscience and many other fields. However, the currently available tracking methods have limitations. Traditional computer vision methods have problems in complex environments, and deep learning methods are hard to be applied universally due to the requirement of laborious annotations. To address the trade-off between accuracy and universality, we developed an easy-to-use tracking tool, Siamese Network-based All-Purpose Tracker (SNAP-Tracker), a model-free tracking software built on the Siamese network. The pretrained Siamese network offers SNAP-Tracker a remarkable feature extraction ability to keep tracking accuracy, and the model-free design makes it usable directly before laborious annotations and network refinement. SNAP-Tracker provides a “tracking with detection” mode to track longer videos with an additional detection module. We demonstrate the stability of SNAP-Tracker through different experimental conditions and different tracking tasks. In short, SNAP-Tracker provides a general solution to behavioral tracking without compromising accuracy. For the user’s convenience, we have integrated the tool into a tidy graphic user interface and opened the source code for downloading and using (https://github.com/slh0302/SNAP).

Keywords: behavioral tracking, deep learning, model-free, universality, Siamese network


INTRODUCTION

Living organisms receive cues from external environments, process the information internally, and finally output the processing outcomes in the form of behavior. Therefore quantitatively modeling and analyzing behavior is vital to help understand the motivations and underlying mechanisms of animals and is thus widely used in neuroscience (Frye and Dickinson, 2004; Krakauer et al., 2017) and other animal-related disciplines, such as psychology (Snowdon, 1983; Dewsbury, 1992), ecology (Nathan et al., 2008; Dall et al., 2012). The recent decades have witnessed the application of technology in recording and observing animal behavior, which has greatly liberated human labor in behavioral data acquisition, and yielded large amounts of data with unprecedented spatial and temporal resolutions (Gomez-Marin et al., 2014). These explosive animal behavioral data bring significant challenges to analysis. Fortunately, automated image-based processing methods offer opportunities to solve the challenges in behavioral analysis (Dell et al., 2014) and open up a new field called computational ethology that aims to quantify animal behavior (Anderson and Perona, 2014). Accurate trajectory tracking is the first and most crucial step of behavioral analysis (Pereira et al., 2020).

Recent advances in computer vision (CV) and deep learning have inspired many well-behaved tracking methods. Among different algorithms developed on traditional CV techniques, background subtraction is the earliest and most commonly used by software such as ToxTrac (Rodriguez et al., 2017). There are also software packages that apply other efficient object segmentation methods, such as the adaptive thresholding in Tracktor (Sridhar et al., 2019). To track individuals in groups, which can be disturbed by the touching and crossing among individuals, idTracker (Pérez-Escudero et al., 2014) uses regressive features of all individuals and successfully tracks multiple individuals simultaneously. The above-mentioned methods have shown successful tracking performance in particular conditions. However, they still have some limitations, of which the most critical one is that these methods work fine only in constrained environments because of the relatively simple features extracted by their segmentation methods. Deep learning, which is the most popular method in image processing (LeCun et al., 2015), has provided significant breakthroughs in designing video-based animal behavior tracking algorithms (Mathis and Mathis, 2020). Representative examples are idTracker.ai (Romero-Ferrero et al., 2019) for multiple individual tracking and DeepLabCut (DLC; Mathis et al., 2018), LEAP (Pereira et al., 2019), and DeepPoseKit (Graving et al., 2019) for high-dimensional postures tracking. The outstanding feature extraction ability of deep learning significantly improves the performance of tracking tools in complex environments. However, a common problem for both traditional and deep learning methods is their performance loss in “open” conditions, in which the statistical distributions of test datasets are different from those of training datasets (Goodfellow et al., 2014; Nguyen et al., 2015). The most effective solution for deep learning methods is enough training samples. Thus when applying deep learning methods in practice, researchers have to manually annotate a certain number of video frames to collect enough training samples, a well-known difficult task in biological fields requiring expertise and time. Besides, researchers should also be equipped with professional knowledge to train or fine-tune the neural networks. Therefore, solving practical problems by taking advantage of deep learning while bypassing its overdependence on data is a hot topic in the deep-learning field. We think SNAP-Tracker is a successful attempt to implement this idea in animal behavioral tracking.

To alleviate the burden of researchers and promote the development of behavioral analysis, in this article, we present an accurate, universal, and easy-to-use tracking software, Siamese Network based All-Purpose Tracker (SNAP-Tracker). As its name suggests, we develop SNAP-Tracker upon a pretrained Siamese network, consisting of two identical subnetworks to extract features and make comparisons (Bromley et al., 1993). Although developed upon deep learning methods, SNAP-Tracker works in a model-free way to track the object without premodeling it first. Thus, it no longer requires refinements after network pretraining. A region-of-interest (ROI) align and distractor learning protocol has been applied to the Siamese network to help overcome the disturbance from background information (Su et al., 2020). Briefly, the ROI-aligned operation can promise a smaller data loss/data gain ratio than the ordinary ROI pooling operation, so it is set before ROI pooling in the template branch to generate more accurate target features. SNAP-Tracker’s graphic user interface (GUI) is tidy and easy to operate (Supplementary Figure 1). In most cases, users only need to define the tracking target with a bounding box at the beginning of the videos, just like taking a “snapshot” of the target, and SNAP-Tracker will use the “snapshot” as the beginning template to finish the following tracking procedure. Experimental results displayed that SNAP-Tracker can accomplish tracking tasks across various species and environmental conditions without compromising performance. With an additional detection module, SNAP-Tracker can behave in the “tracking with detection” mode, suitable for dealing with larger datasets or more complicated tracking tasks. However, different from other “tracking by detection” software, the detection module of SNAP-Tracker is only activated when tracking failures might happen, which can improve the overall accuracy but will not affect processing speed too much. To sum up, with SNAP-Tracker, accurate tracking, can become more accessible and more efficient.



MATERIALS AND METHODS


Datasets


Mouse Freely Running Dataset

The dataset describes the freely running behavior of mice with their heads fixed. It consists of seven raw videos, provided by Jun Ding’s Lab from Stanford University. The videos were captured from the side, and each one recorded 5,000 frames (896 × 600 pixels) for about 3 min. All experimental procedures were conducted in accordance with protocols approved by Stanford University’s Administrative Panel on Laboratory Animal Care. We separated the seven videos into four groups according to foot illumination, roller color, and head direction (Table 1). Throughout all the seven videos, the forefoot and hindfoot on the closer side to the camera were manually annotated with bounding boxes and served as the ground truth to test the performance of the tracking tools. The dataset is available at https://drive.google.com/file/d/1k0w_lgIBd5xIY0f63J8VfuccvHZ7spsD/view?usp=sharing.


TABLE 1. Groups of the mouse freely running dataset.
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Other Datasets

The zebrafish dataset is a video of five freely swimming zebrafish recorded from the top. An example video of idTracker is available from Perez-Escudero et al. (2014), and we downloaded it from http://www.idtracker.es/. The mouse pupil dataset displays the abnormal pupil constriction behavior in the absence of intrinsic photosensitive retinal ganglion cells glutamate (Keenan et al., 2016). The chimpanzee dataset is a video about the tapping behavior of a chimpanzee on a keyboard we downloaded from Hattori et al. (2013). The peacock spider dataset displays the courtship body behavior of peacock spiders (Girard et al., 2011). The blue-capped cordon-bleu dataset records the multimodal courtship of birds (Ota et al., 2015).




Siamese Network-Based All-Purpose-Tracker


Overview

Siamese Network-based All-Purpose-Tracker was written in Python 3 and implemented with PyTorch 0.4.0. We develop the GUI with Qt 5.13.0. We have tested its availability on Ubuntu 16.04 and Windows 10. More detailed information, including the executable file, the master code, and others, can be found in the GitHub repository: https://github.com/slh0302/SNAP.

The basic structure of SNAP-Tracker follows the framework of the Siamese network (Bertinetto et al., 2016), which consists of twin-deep convolution networks sharing the same set of parameters. The first essential module of SNAP-Tracker is the feature extractor pretrained on ImageNet, which can be either a 5-layer AlexNet (Krizhevsky et al., 2012) or a 50-layer ResNet-50 (He et al., 2016). Experiments in this paper were all performed with the faster AlexNet. Another essential module is the similarity metric module used for calculating the cross-correlation between the template and target frames. The area with maximum similarity will be decided as the tracking location. To decrease the disturbance of background information, we have developed an ROI align and distractor learning protocol (Su et al., 2020). Briefly speaking, the ROI align layer is placed after the feature extractor to maintain the template scale with more accurate features and exclude the disturbance from marginal background information. Further distractor learning is performed after cross-correlation calculation to increase the Euclidian distance between the target and distractors.

We have also implemented a “tracking with detection” mode with an additional detection module, a Faster-RCNN with a 50-layer ResNet that can be trained with the primary tracking results offered by the basic tracking module. When the detection module is activated, if the output confidence of SNAP-Tracker is below 0.3, it will help guide the tracking procedure.



Network Training

We have used AlexNet (Krizhevsky et al., 2012) and stride-reduced ResNet50 (He et al., 2016) as the backbone network to perform proposal classification and bounding box regression with five anchors as in Li et al. (2018). The backbone network of our architecture was pretrained on ImageNet (Russakovsky et al., 2015). Then we further trained the whole neural network of SNAP-Tracker on COCO (Lin et al., 2014), ImageNet DET (Deng et al., 2009), ImageNet VID (Russakovsky et al., 2015), and YouTube-Bounding Boxes Dataset (Real et al., 2017) to learn a general measurement of similarities between objects for visual tracking. In both training and testing, we used single-scale images with 127 pixels for template patches and 255 pixels for searching regions. We applied stochastic gradient descent with the momentum of 0.9 and a weight attenuation of 0.0005 as the optimizing method. We warmed up ResNet50 with a learning rate of 0.005 for the first five epochs. For AlexNet, we fixed the parameters of its first three layers, and AlexNet did not need a warm-up at the beginning of the training. Then we set 0.001 and 0.0001 as the learning rate of the backbone network and the rest of the network (Zhu et al., 2018; Li et al., 2019). The learning rate decayed exponentially to one-tenth of the original value.

The detection module of SNAP-Tracker is a pretrained 50-layer ResNet-based Faster-RCNN. For the retraining of the detection module, we kept all of the parameters default. We collected 10–50K frames by the basic SNAP-Tracker for retraining, the initial learning rate was 0.001, and the batch size was 32. For DLC and LEAP, the initial learning rate was 0.005 and 0.0001, and the batch size was 16 and 8, correspondingly.



Output Confidence

Output confidence represents the confidence level of the model about results. It is used in the “tracking with detection” mode to activate the detection module. As we can regard object tracking as a binary classification problem between the tracking target and background information, we used the classification probability of the tracking target as the output confidence.




Experimental Design


Evaluation Criteria

Overlap rate (OR) is the ratio of intersection area to union area between tracking results and human annotations. We used OR to evaluate the tracking accuracy of software using bound boxes as the tracking results. We set the threshold of success at 0.5. If the OR value of the result is higher than the threshold, we can consider that the tracking is successful, and the success rate means the ratio of successful frames. We ran a test on the first 1,300 frames of mouse freely running video 1 and found out that the bounding box size in the first frame could affect the final successful rate (Supplementary Figure 2); and in our results, we chose circumscribed rectangle as the bounding box size by our experience.

We also used pixel error (PE) to evaluate the accuracy of tracking software when the tracking results of the software are points. PE is the Euclidean distance between the tracking results of software and human annotations. Positions of tracking points or bounding boxes centers refer to the tracking results of the software. We set the successful threshold at 20 pixels. If the PE value is lower than the threshold, we can consider that successful tracking and the accuracy rate means the ratio of successful frames.



Experiments Description

To reveal that few human corrections are helpful to maintain high accuracy (Figure 2), feet tracking was performed on different continuous frames (up to 3,000) of three videos from the mouse freely running dataset (Table 1). We used OR as the evaluation criterion for calculating error rates, which were the ratios of the number of failing frames to total frames (Figure 2B). Label efforts under different tracking frames mean the ratio of human correcting frames to total frames (Figure 2C).


[image: image]

FIGURE 1. An illustration of the workflow for SNAP-Tracker. In the typical workflow of SNAP-Tracker, users should make the only annotation at the first frame of the video by dragging a bounding box out of the tracking object, which will serve as the template for the second and other later frames. In the search region of a target frame, the image feature is extracted by the pretrained feature extractor simultaneously with the template. After comparing the cross-correlation between the template and target frame feature, the similarity metric module will select the location with maximum similarity and generate an adapted bounding box outside the tracking object. Connecting the bounding boxes of all frames in series can form the object’s trajectory. * Denotes the similarity function (i.e., cross correlation) to be computed for target and template feature.



[image: image]

FIGURE 2. Few human corrections are helpful to increase accuracy. (A) In a practical auto-tracking procedure (the gray line in the top plot), the tracking result (the green box) can match the ground truth (the red box) most of the time (the bottom left inset). Tracking drift may occasionally happen due to the fast movement of the object or another similar object nearby (the bottom middle inset). The tracking drift can evolve to tracking failure without a correction (the bottom right inset). However, a single correction on the earliest tracking drift frame can successfully rescue the subsequent tracking failure (the black line in the top plot). X-axis: Frame number of the video; Y-axis: overlap rate with the evaluation threshold of 0.5. (B) The tracking error rates of forefoot and hindfoot increased with video frame length’s elongation. Error rate: the percent ratio of failed frames in the total frames. N = 3 videos. (C) Fewer human corrections than error frames are enough to fix the tracking failures and achieve 100% accurate tracking results. A 100% accuracy: all the frames’ OR values are above 0.5; label effort: the percent ratio of frames needs to be corrected to keep 100% accuracy. N = 3 videos.


To illustrate the stability of SNAP-Tracker in open conditions, we used PE as the evaluation criterion to demonstrate the performance of SNAP-Tracker and two representative deep learning tracking tools, DLC (Mathis et al., 2018) and LEAP (Pereira et al., 2019; Figure 3). Test frames and training frames were from the same video in the close condition test, while from different videos or under different conditions in the open condition tests. We fixed the length of the testing frames at 1,000 and repeated each test session with randomly selected clips three times.
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FIGURE 3. Stable performance of SNAP-Tracker in open conditions. (A) In the close condition, training and test frames come from the same video. (B) The accuracy of three methods in the close condition with different scales of the training set. The tracking accuracy of DLC (dare blue) and LEAP (light blue) increases with more training frames. SNAP-Tracker (red) is independent of training, and its performance is comparable to the other two. Accuracy: the ratio of frames with PE value lower than the threshold of 20 pixels. (C) In four kinds of open conditions, the test video can be a different one with similar environmental conditions (the first row) or has different illumination (the second row), different roller colors (the third row), different head directions (the last row). (D) In open conditions, the accuracies of DLC and LEAP both drop significantly even trained with the highest number of training frames. However, SNAP-Tracker can still keep relatively good performance due to its independence to training.


To test the applicability of SNAP-Tracker in broader situations, we used five other videos coming from published data (Figure 4). We validated and converted the tracking results to other indexes for further analysis, such as moving distance in pixel (px), moving speed in pixel per frame (px/f), area size in pixel square (px2), and angle in degree. We also recorded the times needed for human correction and exhibited it in the percentage of total frames.
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FIGURE 4. Broader applicability of SNAP-Tracker. (A) Top: In the case of individual tracking among five zebrafish, the cyan box indicates the target fish, and the blue line shows its moving trajectory. Bottom: The plot shows the variation of swimming speed (in pixel per frame) of the zebrafish. (B) Top: In the case of mouse pupil tracking, the box shows the pupil of a glutamate knockout mouse. Bottom: The plot reveals the variation of pupil area (in pixel2). (C) Top: In tracking the chimpanzee finger with complex background information, it is easy to locate the finger position accurately. Bottom: Tapping behavior can be observed in the movement speed plot (in pixel per frame). (D) Top: When analyzing the courtship behavior of a peacock spider, we tracked the tips of the pair of third legs and head. Bottom: The open angle between two third legs, a sign of the “Fan” dance, is speculated. (E) Top: In tracking two blue-capped cordon-blues, we tracked the positions of their heads with different color boxes. Bottom: The plot represents the movement of heads with corresponding colors, which exhibits the interactive bobbing behaviors of birds. (F) The bar plot shows the ratios of human correction in tasks. Percentages of human correction (black) in the five tasks are 0.2, 0.4, 3.6, 3.8, and 1.1% respectively. The average human correction is 0.9 ± 1.7%.


To compare the efficiency of the “tracking with detection” mode of SNAP-Tracker with other “tracking by detection” methods, such as DLC, we applied PE as the evaluation criterion to evaluate their success rates under different training frames (Figure 5B). In this experiment, we used all the seven mouse running videos as a whole to test both packages. We randomly selected 60% of the seven video frames to constitute the whole training set and evenly used 2–100% in the training sessions. For the working pipeline of DLC, training frames were precisely the handed-labeled ground truth annotations. So the label efforts equaled its training samples. For the working pipeline of the detection mode of SNAP-Tracker, the training frames were from its immediate automatic tracking results and occasional human corrections; and we took the human corrections as the label efforts it needed.
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FIGURE 5. Tracking with detection mode. (A) In the tracking with detection mode, a video can be tracked by the auto-tracking mode first, as described above. Then the detection module can be trained by these annotation results and help improve the automatic tracking with higher accuracy. Iteratively, it is possible to track a long video stably with the well-trained detection module. We set the threshold at 0.3 for output confidence activating the detection module to avoid compromising processing speed. (B) The comparison of labeling efforts between the tracking with detection mode of SNAP-Tracker (red) and DLC (blue). The accuracy of DLC is positively related to the number of training images, which requires manual annotation. While for the detection module of SNAP-Tracker, the primary tracking module can provide most annotations, achieving similar accuracy with fewer human laborious by almost two magnitudes. Accuracy: the ratio of frames with PE value lower than the threshold of 20 pixels. (C) An example of autocorrection by the detection module. The tracking with detection mode can (the black line) prevent failures that happen in the tracking-only mode (the gray line). X-axis: Frame number of the video; Y-axis: overlap rate with the evaluation threshold of 0.5.






RESULTS


Framework and Workflow of Siamese Network-Based All-Purpose-Tracker

We developed SNAP-Tracker on a deep Siamese neural network, one of the deep neural networks widely used in visual tracking. SNAP-Tracker is a model-free tracker and thus can complete tracking tasks without modeling the object priorly, different from other model-based deep learning methods. There are two critical compositions in the basic framework of SNAP-Tracker (Figure 1). The feature extraction module (the orange part in Figure 1) is thoroughly pretrained first and then used for feature extraction from the bounding box of the template frame and the searching areas in target frames. The similarity metric module (the blue part in Figure 1) determines the object’s location by calculating the cross-correlation between the extracted features from the template and the target frames. To start a realistic tracking procedure, users can label the object in the first frame as the template and then give hands to SNAP-Tracker, which will automatically label-size adaptive bounding boxes outside the tracking object according to the maximum feature similarity to the template. With the sliding of video frames, SNAP-Tracker annotates each frame continuously and finally produces the trajectory of the tracking object through the video. Supplementary Video 1 shows a practical case of the workflow, which is easy to operate. As described above, throughout the whole tracking procedure, usually the only thing users have to do is define their interested tracking objects at the first frame with a bounding box and then handing over the task to SNAP-Tracker by simply clicking the starting button in the GUI (Supplementary Figure 1).



Few Human Corrections Are Helpful to Keep High Accuracy

Tracking failure is a common problem for tracking tools, which can happen when the tracking object moves too fast or when another similar object occurs nearby. In these cases, the software would accumulate errors without human interference. Therefore we integrated a manually auxiliary correction module into the basic operation panel of SNAP-Tracker (the dashed box E in Supplementary Figure 1). Users can rescue tracking failures by stopping the tracking and correcting the error with a new bounding box, which will change the original template into a new annotation of the current frame. After this, we can restart tracking from the breaking point (Supplementary Video 2 shows a practical case). We have shown the efficiency of human correction in preventing tracking errors with the first video of the mouse dataset (Figure 2A). In this experiment, we used OR as the evaluation criteria and set the threshold at 0.5; tracking failure meant the OR was below the threshold. The OR of the 1,145th frame dropped suddenly below the threshold of 0.5, indicating a tracking failure might happen, which was the tracking drift to the other forefoot (the bottom middle inset of Figure 2A). Without human correction, SNAP-Tracker regarded the wrong foot as the tracking object, and tracking failure could happen (the bottom right inset of Figure 2A). Sometimes, it was probable for SNAP-Tracker to automatically relocate the target if the correct foot appeared again in the searching region of SNAP-Tracker. However, if we could timely correct the shifted bounding box at the 1,145th frame where the tracking drift started, the continuous tracking failures could be avoided to a large degree. Intuitively, failures would increase with the length of the video being longer. To reveal that few human corrections are helpful to keep high accuracy in this situation, we performed feet tracking on the mouse dataset with different continuous frames clips (up to 3,000). As expected, error rates, indicating the ratio of failed tracking frames to total frames, increased with longer clips (Figure 2B). But a certain number of label efforts, representing the ratio of human correcting frames, were enough to keep the OR of each frame steady above the threshold, which we identified as 100% tracking accuracy (Figure 2C). It must be noted that the OR value and final successful/error rate can be influenced by the bounding box size, as we tested on the first 1,300 frames of the video used in Figure 2A (Supplementary Figure 2). Our paper used circumscribed rectangle as the bounding box covering the target while the size was as small as possible. In short, SNAP-Tracker can complete much better tracking with acceptable times of timely corrections by humans.



Stable Performance of Siamese Network-Based All-Purpose-Tracker in Open Conditions

Siamese Network-based All-Purpose-Tracker is a model-free tracking package. Unlike the popular model-based methods, model-free methods do not need to learn the prior knowledge of the tracking object in advance. Therefore SNAP-Tracker does not require model retraining or parameters fine-tuning, which significantly alleviates the need for manual annotation before applied. The manual annotation needed in the first frame will not modify the model parameters but will tell SNAP-Track what the tracking target is. In this way, SNAP-Tracker can express much more stable performance in open conditions compared with other model-based tracking methods. To demonstrate the stable performance of SNAP-Tracker in open-conditions without enough training samples, we tested SNAP-Tracker and two other representative deep learning methods, DLC (Mathis et al., 2018) and LEAP (Pereira et al., 2019), on the mouse dataset (Figure 3). We used PE as the evaluation criterion of accuracy in this experiment and set the successful threshold at 20 pixels. The accuracy was the ratio of successful frames. When tested in close conditions, where the test dataset came from the same video as the training dataset (Figure 3A), SNAP-Tracker and the other two deep learning methods showed good performance (Figure 3B). It is worth noting that the two model-based deep learning methods displayed increasing accuracies with the increment of training data. However, the performance of SNAP-Tracker was independent of training due to the model-free tracking strategy, and we expressed its accuracy with a horizontal red dashed line in the figure for a better comparison. When it came to open conditions, test datasets had different feature distributions from the training dataset, such as different videos under similar environments or different videos with different conditions (foot illumination, roller colors, and head directions) (Figure 3C). It is evident in Figure 3D that the performance of model-based deep learning methods dropped sharply due to the lack of model fine-tuning with test data; only DLC did not show bad accuracy in the first situation in which the test dataset was the most similar to the training dataset. However, SNAP-Tracker could exhibit better and stable performance in different open conditions (Figure 3D). Furthermore, to clearly tell DLC and LEAP what to be tracked in the test video, we have added the first annotation of test videos, and the SNAP-Tracker was used for tracking, in each corresponding DLC and LEAP training session (Supplementary Figure 3). Compared with before (line with dots in Supplementary Figure 3), by training with one additional frame, the first annotation of test videos (smooth line in Supplementary Figure 3) could improve the accuracy but slightly. Therefore, SNAP-Tracker can be used directly with relatively stable performance, offering a choice for tasks with varying conditions.



Broader Applicability of Siamese Network-Based All-Purpose-Tracker

Siamese Network-based All-Purpose-Tracker can have good applicability across different behavioral tracking paradigms. To demonstrate the broader applicability of SNAP-Tracker, we applied it in five other videos with different species and tasks coming from published data and made further analyses based on the primary tracking results (Figure 4). In this experiment, we used PE and the threshold of 20 pixels as the evaluation criterion of accuracy and defined the accuracy as the ratio of successful frames. We showed the averaged accuracy of 10 trails on each dataset (Supplementary Figure 4) and typical cases demonstrating the corresponding comparison with the ground truth (Supplementary Videos 3–7). In the individual tracking task of zebrafish, SNAP-Tracker can accurately track one of a collective of 5 zebrafish (the cyan bounding box and blue trajectory in Figure 4A), and we could obtain the swimming speed of the animal according to the tracking trajectory (Figure 4A). Besides individual tracking, tracking particular body parts of an animal, such as the contraction and dilation of pupils, is also essential in neuroscience. In the tracking of mouse pupils (Keenan et al., 2016), we could quickly identify the state of the pupil via the area of the inscribed ellipse of each bounding box, which could reveal the role of glutamate by comparing the difference between wild type and glutamate knockout mouse (Figure 4B). In another case of tracking the finger of a chimpanzee with a more complex background (Hattori et al., 2013), we could also get an accurate trace of the finger and infer the tapping frequency between alternative keys (Figure 4C). More than that, SNAP-Tracker could also be used for more sophisticated behavioral analysis, for example, the courtship behavior of peacock spiders (Girard et al., 2011) and blue-capped cordon-bleu (Ota et al., 2015). By tracking the pair of third legs and the head of a peacock spider, we could speculate the open angle between two third legs, which served as a constituent of “Fan” dance, a representative courtship posture of peacock spiders (Figure 4D). Similarly, by tracking the positions of the heads of two blue-capped cordon-bleu, we could extract out the interactive bobbing behavior between them from the video (Figure 4E). We recorded the number of corrections needed to keep 100% accuracy during tasks and found that none of the human corrections in five tasks was larger than 4% (Figure 4F). On average, human correction only occupied a tiny portion (0.9 ± 1.7% on average). Taken together, with a reasonable number of human corrections, users can apply SNAP-Tracker widely in various tracking tasks.



Tracking With Detection Mode

As shown above, the need for human correction will increase with the elongation of tracking frames (Figure 2B). A strategy that can liberate human efforts is required in longer videos with more complex conditions. Therefore we developed a “tracking with detection” mode by providing SNAP-Tracker with an additional detection module. In its brief framework (Figure 5A), the automatic tracking results from the basic SNAP-Tracker serve as the training dataset for the detection module, and the detection module can help improve the accuracy of the basic auto-tracking module. After iterative training, the well-trained detection module can take the place of human correction when a tracking shift happens. Notably, the detection module only functions when the output confidence level of SNAP-Tracker is lower than the predefined threshold; users can set a higher threshold for better accuracy or a lower threshold for faster processing. In our experiment, we set the activation threshold at 0.3. A significant difference of the “tracking with detection” mode of SNAP-Tracker from DLC compared with a “tracking by detection” deep learning method is that SNAP-Tracker itself can offer tracking results as training data, saving much hand-labeling efforts. To demonstrate the efficiency of the “tracking with detection” mode of SNAP-Tracker, we tested the performance (with the criterion of PE) of SNAP-Tracker and another “tracking by detection” method with a synthetic free-running mouse video consisting of the seven videos (Figure 5B). We found that the “tracking with detection” mode can perform well with few label efforts (red lines in Figure 5B). However, the “tracking by detection” method (blue lines in Figure 5B) needed two magnitudes higher label efforts to achieve comparable accuracy. It should be clarified here that label effort has a different source in each method. Specifically, the label efforts of DLC equaled its training samples, while we took the human correction numbers as the label efforts for SNAP-Tracker. The “tracking with detection” mode can improve tracking efficiency compared with the basic SNAP-Tracker. In a typical tracking case of mouse foot, the “tracking with detection” mode (the black line in Figure 5C) could avoid tracking errors that happen under the regular mode (the gray line in Figure 5C). To sum up, the “tracking with detection” mode can replace the role of human intervention to complete more complex tracking tasks, which are suitable for dealing with larger datasets.




DISCUSSION

This article presents a model-free tracking software, SNAP-Tracker, which shows robust performance under various conditions. The software has already been pretrained with publicly available datasets and requires no more parameter fine-tuning when used in practical tasks, which greatly reduces the burden of users. Considering the user communities with different backgrounds, we have integrated the software into a compact and easy-to-use GUI. The “tracking with detection” mode of SNAP-Tracker is more automated with the help of a detection module, and we can apply it in more complex conditions. In a word, SNAP-Tracker can be a practical choice in different kinds of behavioral tracking analysis. We will discuss the characteristics of SNAP-Tracker from the following aspects.


Benefits and Drawbacks of Deep Learning

The benefits of using deep learning in behavioral analysis are apparent as those in other CV fields. Compared to traditional CV methods, deep learning methods can achieve much more accurate performance at the human level and even beyond. So deep learning is the current trend in many fields, and popular tracking software packages use deep learning. Nevertheless, we should notice problems such as high computational consumption and overfitting in deep learning methods cautiously (Mathis and Mathis, 2020). Researchers have made contributions to decreasing training efforts and increasing processing speed. DLC (Mathis et al., 2018) was built in the way of transfer learning upon DeeperCut (Insafutdinov et al., 2016), a previously established model. Soon after, LEAP tried to improve the processing speed by applying a network with much fewer layers at the price of accuracy (Pereira et al., 2019). The more recent DeepPoseKit made considerable progress in both speed and robustness by using a multiscale deep-learning model (Graving et al., 2019). Even so, laborious annotations and network fine-tuning are inevitably needed, which can be much severe if the tracking task contains multiple individuals (Graving et al., 2019). With enough training samples, deep learning methods can perform very well. However, if there are not enough training samples, the performance of deep learning methods will be affected. The situation in practical neuroscience research could be much more challenging. The annotation of biological samples is a well-known arduous task, requiring expertise and much time. For example, when observing the courtship behavior of songbirds (Ota et al., 2015), scientists are interested in only a tiny portion of the whole video frames. Making annotation is time-consuming, and training in this few-shot situation is challenging. Another problem we have to resolve is the performance loss in “open” conditions. Environmental conditions, such as illumination, in practice can change during the task, but we cannot label a training set including all possibilities. In some particular tasks, such as screening mutant mice (Brown et al., 2000), the animal’s behavior is complex to be predefined. Thus, training in this situation will be a challenge. The idea of model-free tracking is a recently introduced solution to circumvent these drawbacks, which is the designing strategy of SNAP-Tracker.



Model-Based and Model-Free Tracking

The model-based and model-free dichotomy is familiar in the CV tracking field. Although idTracker (Pérez-Escudero et al., 2014), idTracker.ai (Romero-Ferrero et al., 2019) were used in individual tracking, and DLC (Mathis et al., 2018), LEAP (Pereira et al., 2019), and DeepPosekit (Graving et al., 2019) were designed for pose estimation, all of them and many other tracking tools in ethology belong to model-based tracking (Worrall et al., 1991), which require prior knowledge of the objects before tracking. For model-based tracking, targets in the frames of a video are detected first by object detection or segmentation methods and then connected along the temporal series to generate the moving trajectory. We call this pipeline “tracking by detection”; the strategy of tracking by detection can increase tracking accuracy, but at the cost of processing speed and generalization. Differently, model-free tracking (Zhang and Van Der Maaten, 2013) is independent of the target’s prior modeling, and users can apply the method directly to broader tasks. Without premodeling, users can define the tracking target’s template in the first frame and then let the software finish tracking to the end frame by frame. In this way, SNAP-Tracker can be a universal method suitable for various behavioral missions.



Individual Tracking and Pose Tracking

According to the analyzing resolution, we can classify behavioral analysis into different stages, from coarse to fine (Pereira et al., 2020), which can be summarized into two classes, individual tracking and pose tracking. They are the critical consideration for users to decide the options of tracking tools. In general, the spatiotemporal trajectory of single or multiple individuals is enough to answer questions (Berdahl et al., 2013; Mersch et al., 2013; Seibenhener and Wooten, 2015). To simplify the tracking of multiple individuals in a group, researchers usually labeled the targets with artificial markers (Ohayon et al., 2013; Shemesh et al., 2013), which might potentially affect animal behaviors (Dennis et al., 2008). By defining the model of each individual, idTracker (Pérez-Escudero et al., 2014) and its deep learning version idTracker.ai (Romero-Ferrero et al., 2019) make tracking unmarked targets possible. In more complex situations, researchers have to extract detailed pose information of the targets (Khan et al., 2012; Guo et al., 2015; Ota et al., 2015), which raises the difficulty of tracking. Representative methods, DLC (Mathis et al., 2018), LEAP (Pereira et al., 2019), and DeepPoseKit (Graving et al., 2019), display exemplary performance in pose estimation by utilizing the outstanding feature extraction ability of deep-learning network. However, the amount of tracking individuals is still limited due to the increased computation time. Moreover, it requires exhaustive annotating efforts to establish a training dataset with the growing individuals (Graving et al., 2019). Individual tracking and pose tracking are closely related. On the one hand, tracking an individual or a local body is always performed to crop active areas of the object to achieve better pose tracking. On the other hand, pose tracking can be regarded as high dimensional individual tracking in some ways, tracking key points of animals (Dell et al., 2014). Therefore, accurate tracking is the foundation of behavioral analysis, and this is the theoretical basis for SNAP-Tracker to be applied in broader tasks.

Overall, SNAP-Tracker perfectly achieves a balance between applicability and accuracy. The pretrained deep Siamese network makes SNAP-Tracker track the object accurately by comparing the similarity between the template and the target. The model-free tracking strategy equips SNAP-Tracker with broader applicability demonstrated by the experiments above in this article. Strictly speaking, the problem of manual annotation is not thoroughly solved, but the most attractive characteristic of SNAP-Tracker is that it requires only one annotation to start the tracking procedure. Users can correct accidental tracking failures by hands in regular mode or by the detection module in the “tracking with detection” mode. For the convenience of users, we designed the detection module is in a close loop, in which the tracking module offers elementary results as training data to the detection module, and the latter can help increase the accuracy of tracking. There is still some weakness of the SNAP-Tracker that should be solved to improve further the usability and accuracy of SNAP-Tracker, such as the setting of optimal hyperparameters (Dong et al., 2021) and the tracking failures when the target is occluded (Dong et al., 2017). We have considered some of these in the subsequent improvement of SNAP-Tracker.




CONCLUSION

In conclusion, we provide a tracking method in a model-free fashion. Users can easily apply it to various tasks without heavy data annotations. We hope that our tool can lower the barrier to using deep learning methods in animal behavioral analysis and help solve practical tracking problems in related fields.
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The analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection of animal positions and pose. Pose and position can be assessed with video analysis programs, the “trackers.” Most available trackers represent animals as single points in space (no pose information available) or use markers to build a skeletal representation of pose. Markers are either physical objects attached to the body (white balls, stickers, or paint) or they are defined in silico using recognizable body structures (e.g., joints, limbs, color patterns). Physical markers often cannot be used if the animals are small, lack prominent body structures on which the markers can be placed, or live in environments such as aquatic ones that might detach the marker. Here, we introduce a marker-free pose-estimator (LACE Limbless Animal traCkEr) that builds the pose of the animal de novo from its contour. LACE detects the contour of the animal and derives the body mid-line, building a pseudo-skeleton by defining vertices and edges. By applying LACE to analyse the pose of larval Drosophila melanogaster and adult zebrafish, we illustrate that LACE allows to quantify, for example, genetic alterations of peristaltic movements and gender-specific locomotion patterns that are associated with different body shapes. As illustrated by these examples, LACE provides a versatile method for assessing position, pose and movement patterns, even in animals without limbs.

Keywords: animal tracker, zebrafish, Drosophila larva, gender dimorphism, Hough transform, intermittant locomotion, saccades, undulatory swimming


1. INTRODUCTION

Neuroethology encompasses many behavioral paradigms ranging from complex tasks such as learning and communication (Von Frisch, 1974; Brown, 1976; Dubnau and Tully, 1998; Riley et al., 2005) to more basic activities such as reflexes or locomotion (review: Corthals et al., 2019). Regardless of the complexity of the behavior, behavior is inherently noisy. This noise arises from different internal states of each individual, such as hunger, thirst, or reproductive needs (Abbott, 2020). The noise of the internal states neccessitates repeated measurements and authentic quantification of the examined behavior. Quantifying behavior started with simple observations and written description of animal's behavior (e.g., Yerkes, 1903; Jensen, 1909; Turner and Schwarz, 1914) and developed into artificial intelligence (AI) assisted video analysis (Mathis et al., 2018; Pereira et al., 2018; Werkhoven et al., 2019; Gosztolai et al., 2020).

Most computer assisted methods of video analysis rely on either marker recognition or difference image tracing. Marker recognition filters out physical markers (white balls, stickers, or paint) attached to the animal based on marker properties such as contrast, luminescence, or color (Zakotnik et al., 2004; Spence et al., 2010). Alternatively, marker recognition can exploit the ability of AIs to recognize markers in complex scenes (Mathis et al., 2018; Pereira et al., 2018, 2020; Gosztolai et al., 2020). AIs are able to use visual structures (e.g., limbs, joints, etc.) as markers, obviating the need to attach physical markers. Lightweight animals, however, may neither be able to carry physical markers nor may their bodies bear prominent features that can be recognized by AIs. Markers are also difficult to attach to aquatic or ground-dwelling animals as they might easily be removed by the substrate through which these animals move. In such animals, difference image analysis provides an alternative. Difference image analysis is the basis of LACE, a motion tracker that is presented here. LACE derives the posture from the contour of the animal and is therefore independent of markers. We illustrate the workings and versatility of LACE using two different examples.

In example I, we analyse the peristaltic movement of Drosophila late 3rd instar larvae. The ion channel mutants nan36a and iav1 display disturbed chordotonal neuron function (Kim et al., 2003; Gong et al., 2004; Zhang et al., 2013), causing locomotion and contraction defects (Zanini et al., 2018; Katana et al., 2019). We use these mutants and the wild-type to illustrate the ability of LACE to detect genetic alterations in the body movements of small limbless animals. LACE is also able to differentiate between contraction anomalies and course changes of the animal. This ability relies on the mathematical reconstruction of the antero-posterior axis, which sets LACE apart from other insect motion trackers (Branson et al., 2009; Fontaine et al., 2009; Donelson et al., 2012; Kain et al., 2013; Risse et al., 2013).

In example II, we use LACE to analyse the undulatory swimming movements of zebrafish (Danio rerio). Undulatory movement is the principal mode of locomotion in a wide range of limbless animals whose body propagates train of waves that, running laterally from head to tail, propels the animals forward (Gray, 1939). To track such locomotion behaviors, a number of computer-based videography methods have been developed over the past few decades (Fontaine et al., 2008; Green et al., 2012; Maaswinkel et al., 2013; Pittman and Ichikawa, 2013; Pérez-Escudero et al., 2014; Kim et al., 2017; Zhiping and Cheng, 2017; Husson et al., 2018; Walter and Couzin, 2021). These trackers all faithfully report the animal's locomotion behavior, but with variations in focus on larvae (Fontaine et al., 2008; Green et al., 2012), individuals in shoals (Maaswinkel et al., 2013; Pérez-Escudero et al., 2014; Zhiping and Cheng, 2017), single (Geng et al., 2004; Tsibidis and Tavernarakis, 2007; Leifer et al., 2011; Stirman et al., 2011, 2012) and multiple worms (Liewald et al., 2008; Ramot et al., 2008; Swierczek et al., 2011; Wang and Wang, 2013; Brosnan et al., 2021) simultaneous physiological recordings (Kim et al., 2017) or available hardware (Geng et al., 2004; Tsibidis and Tavernarakis, 2007; Ramot et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012; Swierczek et al., 2011; Brosnan et al., 2021).

Especially the aforementioned worm trackers (Geng et al., 2004; Tsibidis and Tavernarakis, 2007; Liewald et al., 2008; Ramot et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012; Swierczek et al., 2011; Wang and Wang, 2013; Brosnan et al., 2021) are quite similar to our software and surpass its functionality by being able to control lights, camera and in some cases even the x,y-stages of a microscope (compare Table 1). The bodysize of Caenorhabditis elegans (ca. 1 mm) makes microscopic recordings necessary. One of the major benefits of behavioral recordings under a microscope is that the background is usually clear and uniformly illuminated. LACE is also capable to detect animals in more complex backgrounds (see Supplementary Material), but has no hardware control integrated.


Table 1. Comparison table of LACE to some prominent Caenorhabiditis elegans trackers.
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BEEtags are lightweight, their handling and application can significantly affect stress levels and behavior in animals. To overcome these obstacles, many other trackers have been developed which are automated and markerless. For instance, Deeplabcut is one such automatic and markerless pose estimator which works on the principle of transfer learning. Though, it provides outstanding results with minimal training data and has been proved successful on multiple species, it does not prove to be equally good for tracing the undulatory movement in limbless animals.

Here, we introduce a tool (LACE) for automated, markerless detection of wave-like movement in limbless animals. The importance of this approach lies in the very fact that it does not consider the organism as a point source or uses any marker to track the pose of the animal, but instead builds a pseudo-skeleton from the contour of the animal. This increases the flexibility of the pose description and circumvents occlusion problems. We illustrate the versatility of LACE by tracking the peristaltic movement of Drosophila larvae and undulatory swimming in adult zebrafish.



2. MATERIALS AND METHODS


2.1. LACE Limbless Animal TraCkEr

LACE consists of nine toolboxes that solve different tasks: file I/O, background calculation, image manipulation, ellipse detection, ad-hoc correction, post-hoc evaluation, animal-pose detection, image to world coordinate transformation, and computational load management (see Figure 1). Each of these tasks can be run via the integrated command-line-interface (CLI) of MATLAB or custom graphical-user-interfaces (GUIs).


[image: Figure 1]
FIGURE 1. The analysis flow of LACE. The user interacts with most toolboxes through a graphical user interface (GUI). The GUI results in an execution script that holds all information and file positions to run an analysis on the entire video. By testing the script inside the GUI, the system is able to calculate the analysis duration, which is used in the computational load management. The bash scripts can be run over night.



2.1.1. File Input/Output

LACE can read most video formats through MATLAB's own VideoReader and uses the image manipulation toolbox to load image series, stacks, or single images. We also included a small toolbox (LACE_norpix toolbox) that can read in the NorPix Sequence video format (NorPix, Inc., 1751 Richardson Street, Suite 2203, Montreal, Quebec H3K 1G6 Canada), based on the script developed by Brett Shoelson (Mathworks). There is a newer implementation available by Paul Siefert1.



2.1.2. Background Calculation

After loading the image sequences or videos, images are prepared to detect the animal. First, one needs to acquire a background image, as a subtrahend for the difference image. The background image can be acquired in different ways: A) If the background is monotone or very stable between recordings (lighting, color, position, etc.), one can record an image without an animal being present. B) In a temporal sequence of images, in which the recorded animal moves through the scene, one can use the differences over time in each pixel to calculate images without the animal being present.

For example, if the animal is dark on a bright background, a maximum intensity projection over time will produce an image without the animal. If the animal is white against a dark background, a minimum intensity projection will provide an empty background. In cases in which the background changes mildly, due to e.g., lighting changes, an average intensity projection might yield the best contrast between animal and background and provide an image of the background without animal. Regardless of the type of projection, these calculations only function as long as the animal does not occupy a subset of pixels all the time, that is when it moves.

LACE offers all three options to calculate your background using the LACE_bg toolbox. The LACE_bg toolbox includes functions for all image and video formats and is usually called through the LACE_GUI_script GUI. As the calculation of the background takes up most computational time, the LACE_GUI_script GUI plays a chime at the end of the calculation.



2.1.3. Image Manipulation

After LACE has executed the file I/O and background calculation steps, it performs image manipulation, ellipse detection, and ad-hoc corrections frame by frame (see Figure 1). The image manipulation functions are collected in the LACE_im toolbox. The purpose of LACE_im toolbox is to derive candidate edges of the animal from a given frame and the background. Each frame of the image data is analyzed in 6 steps:

1. subtracting the background from the frame -> difference image

By subtracting the background (see Figure 2A) from the frame (see Figure 2B) all structures of the footage that are not moving (background) are removed while moving objects remain (see Figure 2C).

2. normalization of the difference image

Provided that the animal clearly contrasts with the background, it should be the brightest object in the difference image. The image is normalized to the maximum, assigning pixel values close to 1.0 to the brightest regions of the animal.

3. binarisation of the difference image -> binarised image

The user defines a threshold above which all pixel information is treated as 1 and below which as zero. The resulting image can be seen at Figure 2D.

4. optional: removal of information outside the region of interest (ROI)

The user can define the region in which the animal resides during the video footage. This region is called a ROI (region of interest). All pixels outside the ROI are set to zero (see Figure 2D).

5. erosion of the binarised image

When tracking multiple animals or objects, two moving areas may collide. In such cases, LACE might wrongly recognize two objects as a single one. To avoid this, we use image erosion to remove contact sites of the two animals.

6. Find edges

The edge detection of each animal is done by the Matlab implementation of Canny's edge detector bwboundaries (Canny, 1986).


[image: Figure 2]
FIGURE 2. Image Manipulation. (A) Raw footage of a zebrafish video. The animal is depicted on the right border of the area. (B) Respective difference image. (C) Binarised image with a threshold of 0.25 (D) Binarised image after erosion and dilatation (image morphology).


The toolbox also encompasses some simple GUIs for ROI definition. Some standard procedures (e.g., image dilatation, erosion, and rotation) wrap functions of the MATLAB Image Manipulation toolbox (Gonzalez et al., 2004). This allows the user to adjust the procedures without having to interfere with the MATLAB standard toolboxes.



2.1.4. Animal Detection via the Hough Transform

The Hough transformation is a method to test if a given pixel in an image is a part of a certain geometrical shape, such as lines (Duda and Hart, 1972), circles (Yuen et al., 1990), or ellipses (Tsuji and Matsumoto, 1978). The Hough transformation algorithm is fed with a black and white image that only contains bright edges of objects (animals) in a given picture. The Hough transform creates a new image (the accumulator image) in which each pixel of an edge is tested to be a part of one of the aforementioned geometrical shapes. If many points on the given edge belong to the geometrical shape, they will render a bright spot in the accumulator image. The brightness of the spot is relative to the number of pixels that participated in this shape. This allows us to find multiple geometrical shapes inside a given image and rank them by the quality of their detection (brightness of the spot).

Many animals feature a torpedo like body shape, due to aero- or aquadynamic friction. This torpedo like shape can be approximated by an ellipse, which can be detected in the Hough transform (Duda and Hart, 1972; Xie and Ji, 2002). The ellipse detection in LACE (LACE_HTD toolbox) wraps the MATLAB implementation by Martin Simonovsky2 (Xie and Ji, 2002; Basca et al., 2005). As Hough transform detection is a brute force approach and therefore computational intensive, we use a common simplification: We split the frame into smaller images that only encompass one set of boundaries.

Although the Hough transformation is computational intensive, it offers many advantages over classic difference image analysis. Conditions such as maximum and minimum size of the geometrical shape (in our case, the major axis of an ellipse) are already implicit to the detection mode and do not have to be applied post-hoc. The orientation of the shape is part of the output of the accumulator space. Even partially occluded geometrical shapes are found, as they still produce a substantially bright spot in the accumulator image. Especially animal interaction often leads to problematic detection situations as the animals occlude each other (see Figure 3) or align so that they become a double wide ellipse (Figure 3). In normal difference image analysis, this needs to be solved manually. The Hough transform results in multiple candidates for these situations, that can be used to solve this problem automatically via ad-hoc corrections.


[image: Figure 3]
FIGURE 3. These are illustrations of five standard problems LACE_ac toolbox can automatically detect and solve. Problem 1 and 2 are superfluous detections of either the same animal (Problem 1) or other contrast areas in the video frame like shadows (Problem 2). Both are solved by deleting the detection with the lower quality rating. Problem 4 results from one of the detection ellipses not passing all criteria (size, eccentricity, last position) and is solved by taking the detection with the highest quality from the sub-threshold detection list. Problem 5 to 7 are all due to a miss-detection in which two or more animals are lumped together, because of their proximity. These are mainly solved by deleting detections that are too large and choosing from the sub-threshold detection list (Problems 5 and 6) or by splitting up the chain in animal long regions (Problem 7).




2.1.5. Ad-hoc Corrections

Video observations that include multiple individuals can lead to occlusion problems. One major problem is to decide if two animals overlay and therefore create overlaying ellipses or if one animal can be fitted by two overlaying ellipses. Some of these issues can be solved with a prior information that the user provides, e.g., the number of animals present in the observation. This allows LACE to categorize occlusion problems into seven standard problems that the LACE_ac toolbox tries to solve.

1. Problem 1: Too many overlaying instances of detection

The Hough transform detection found too many ellipses. The number of ellipses exceeding the user defined number of animals is identical to the number of ellipses with largely overlaying surface area. This indicates a case in which one or more animals are fitted with more than one ellipse. In this case, we keep the ellipse with the best quality of detection from the group of overlaying ellipses.

2. Problem 2: Too many non-overlaying instances of detection

The Hough transform found too many ellipses but none of them overlay. This is rather easy to solve, the ellipse with the lowest detection quality, is deleted.

3. Problem 3: Problem 1 and 2 occur at the same time

First we reduce the overlaying ellipses, if needed, the ellipses featuring the lowest detection quality are deleted afterwards.

4. Problem 4: Too few ellipses are found

In this case, there are no overlaying ellipses but not enough detection was preformed. The Hough transform detection also keeps detection below the quality threshold. We fill up the detection until we reach the number of predicted animals with the best sub threshold quality instances of detection.

5. Problem 5: Too few ellipses are found but few are larger than a single animal - Chaining

We call this problem chaining. If one individual attaches itself to the extremes of the body long axis and aligns itself roughly to the body long axis, this produces a figure eight shape that can be mis-detected as one large animal. From the Hough ellipse detection (see Section 2.1.4), we can estimate if one of the detections is at least 1.5 times larger than a single animal. If this is the case, we split the chain by splitting the oversized detection and refitting ellipses to it with the mean size between minimum and maximum major axis length.

6. Problem 6: Chaining and not enough instances of detection

In this case, solving the chaining problem still can not deliver enough ellipses. In this case, we again fill up the ellipses with the best sub-threshold instances of detection.

7. Problem 7: The correct number of animals were found, but there is chaining

In this case, the chains are refitted as in Problem 5 and the algorithm chooses from all ellipses, the one with the lowest detection value and deletes it until the correct number of ellipses is reached.

Whenever an ellipse-detection is corrected via an ad-hoc algorithm, its detection quality is set to –1 to help identify weak instances of detection for later analysis. With the exception of the user provided information, ad-hoc corrections employ only information about the current detection frame. Some problems, however, are solved more reliably with information from the detection results before and after the frame in which the problem occurred. These problems are solved by LACE's post-hoc evaluation toolbox.



2.1.6. Post-hoc Evaluation

After LACE detected ellipses via the LACE_HTD toolbox and performed ad-hoc corrections (see Figure 1), there might be still some problematic frames left. In nearly all problematic frames, we have a number of candidate ellipses for the animal either above or below the detection threshold. If, for example an animal is not detected in framex, there are usually a large number of sub-threshold candidate instances of detection to choose from. The LACE_eva toolbox uses information from framex−1 and framex+1 to choose the best sub-threshold candidate in framex.

The LACE_eva toolbox uses three estimators, which evaluate the detection based on position, surface area, and contour, and then score instances of detection on the basis of their parameter. The user can weigh the scores with factors: For example, if the user wants problematic instances of detection mainly solved via the position of previous instances, he sets the weight of the pose estimator to 1.0 (highest value) and all other estimator weight to relatively low values. Setting the estimator weight to zero omits this estimator for scoring.

1. Position estimator

The position estimator scores possible ellipse detections by the euclidean distance between them and the last detection of the animal.

2. Surface estimator

This estimator scores the candidates by their surface area. Candidates with similar surface area to the detected animal, score higher than those candidates with vastly different surface area.

3. Contour estimator

The contour estimator scores candidates in a similar fashion to the surface estimator, but for the length of the contour.

The evaluation runs automatically and allows so for detection rates of more than 99% during optimal lighting environments (FTIR, Case study I) and over 96% in more difficult lighting environments (Case study II).



2.1.7. Pose Detection

After LACE detected the animal in the first round via the LACE_HTD toolbox and executed automated corrections and evaluations, LACE calculate the pose of the animal de novo. The pose detection is performed by the function LACE_ana_getPose of the LACE_ana toolbox. We return to the edge picture derived from Canny's edge detector (see 2.1.3 step 6). LACE_ana_getPose selects 100 evenly spaced pixels from border between the detection object and its background. These pixels are the centers of Voronoi cells (see Figure 1, line 3), which encompass all space that is closer to its center than to the other centers (Dirichlet, 1850; Voronoi, 1908). As a consequence, many new borders and vertices are created inside the silhouette of the object. The vertices are mainly distributed around the mid-line of the object (see Figure 4, line 4).


[image: Figure 4]
FIGURE 4. Schematic overview of the pseudo skeleton calculation. The figure illustrates the general procedure used to derive a pseudo-skeleton, therefore all vertices, contours, etc. are schematic drawings and not based on data or results of the algorithms. The pose detection uses the center of the ellipse detected by LACE_HTD toolbox as the center for a simple contour detection (solid orange line) via Canny's edge detector. One hundred evenly spaced pixel-coordinates (translucent orange dots) on the contour are chosen. Note that these contour-coordinates are not evenly spaced in the schematic drawing. These contour-coordinates are used as seeding coordinates for Voronoi cells (teal colored lines and dots). A Voronoi cell encompasses all space that is closer to its contour coordinate than to the other contour coordinates. Each cells is enclosed by a number of edges. The Voronoi calculation also generates edges of the Voronoi cells outside the contour of the animal, which are ignored in the algorithm and therefore not drawn here. These Voronoi-edges (teal lines) are represented by their vertices (teal dots). The algorithm selects the vertices that are inside the animal's contour for further computation. Those central Voronoi-edge vertices are now used in Dijkstra's path algorithm to select (teal dots with orange border) the central line along the anteroposterior-axis (dashed orange line).


A Dijkstra shortest path algorithm3 is then used on the points inside the detection object (Figure 4, line 4) (Dijkstra, 1959). The start and the end of the path are determined via the closeness to the boundary. LACE_ana_getPose then choose shortest path between the start and the end of the mid-line vertices (line Figure 4, line 5). This concludes the detection part of LACE as we detect the animal and know its mid-line.



2.1.8. Coordinate Transformation

Upon this point in the LACE analysis pipeline, all instances of detection and analysis are kept in a pixel coordinate system. In most cases, biologist are more interested in physical measurements. To converge our measurement from pixels to meters, LACE offers two distinctly different types of conversions and a number of measurements. Functions for this transformation can be found in the LACE_p2m toolbox.

In all cases, an object of known size is marked inside a frame. These objects can be circular, rectangular or a simple line. In cases of the circles and rectangles, the LACE_p2m toolbox interpolates the position of the animal inside the circle or rectangle. Thereby, the coordinate system in which the animal moves, not only changes dimensionality from pixel to meter, but also changes the origin of the coordinate system. For example, if one of the corners of the rectangle is set to (0,0), it becomes the actual coordinate origin. The line measurement only shifts the dimensionality from pixels to meters, but keeps the original coordinate system origin.



2.1.9. Computational Load Management

LACE includes many simple but computational intensive steps such as ellipse detection via Hough transformation (Tsuji and Matsumoto, 1978) or minimal cost matching via the Hungarian algorithm (Kuhn, 1955). Also, it is programmed for CPU usage and therefore has no option to be used on faster and available GPU processors. To avoid blocking a workstation for hours, we have developed a scheduler system.

The general idea is that the user is guided through a graphical user interface (GUI) to define an executable detection script. During the definition of the detection script, the user performs test detection on single images which are later used by LACE to benchmark the computation duration for the whole data set (e.g., a complete movie or image stack). In the second step, the user uses the LACE_scriptBalancer to divide the executable scripts on the different CPU cores. As soon as the user does not need the PC anymore, the user can start the detection process and all cores will process the detection scripts. Thereby, you can spend the day recording and defining scripts and run the detection over night.

In a GUI, the user can open the image data (movie, sequence, or image stack) and test the different parameters of image manipulation, such as binarisation threshold, erosion radius, etc. Furthermore, the user has the option to define a ROI and calculate different backgrounds. In the next step, the user can define the parameter of the Hough ellipse detection, such as minimum and maximum length of the major axis of the ellipse or the number of animals depicted in the image data.

The GUI tests the detection parameters and provides the user with an example result on which further refinement can be attempted. In the last step, the user is asked to define a line, rectangle or circle to transform the data from pixel values to meter. Finally, the user needs to define where the detection results should be saved.

Now, the user can save all these parameters as well as the background, file position of the image data, etc., for later use. Also, the GUI writes out a ASCII formatted Matlab script which can be run to analyse the data. As LACE already run several test detections while the user optimized the parameters, it can estimate the computation time per frame. This computation is multiplied by the number of frames in the image data and saved to a MatLab variable called the toDoManager. The toDoManger is a simple cell matrix containing the file position of the executable detection script, the time it has estimated to run (float) and a Boolean variable flagging if the script has already run. The LACE_scriptBalancer GUI employs a simple greedy optimisation algorithm (Krumke and Noltemeier, 2009), to balance the computational load of all executable scripts on the available CPU cores. The user can then activate the start script which will activate the executable script for the different cores.




2.2. Case I - Larval Locomotion

LACE has been used to study the effect of opsins on the locomotion in Drosophila larvae (Zanini et al., 2018; Katana et al., 2019), revealing that these animals require visual opsins for proper locomotion and body contractions. The here published data set illustrates LACE's ability to faithfully track the contractions and locomotion of Drosophila larvae.


2.2.1. Locomotion Recordings

An FTIR assay (Risse et al., 2013) was used to assess the locomotory body contractions. Single 3rd instar wandering larvae were recorded crawling on 1% agar with a CCD camera (OptiMos, QImaging, Germany) at 34 frames per second for up to 45s with Micro-Manager. An inverted microscope (IX73, Olympus, Germany) with 1.25X magnification was used for recordings. To keep the larva in frame, the microscope stage was adjusted manually. All larvae were reared at 25°C at 60% humidity in a 12h/12h light-dark cycle on standard fly food (Corthals et al., 2017). CantonS and w1118 larvae were used to study wild-type control animal peristaltic contractions during locomotion, and nan36a and iav1 mutants that lack the mechanosensory channels NAN and IAV, respectively, and play a proprioceptive role in larval chordotonal neurons, were used to study abnormal locomotion.



2.2.2. Locomotion Analysis

To assess the body contractions, we detected the larva with LACE. Contraction amplitude was calculated as the minimal body long axis (Dijkstra path length from 2.1.7) divided by their maximal length (see 1).
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The curvature index is calculated as follows: The pseudo-skeleton is rotated so that the x-coordinate of both ends equals zero. In a second step, we calculate the integral of the y-coordinates and of the absolute y-coordinates. If both values are large, the animal is performing a turn. If only the absolute value is high, the pseudo-skeleton is in an s-shape form. The integral is subtracted from the absolute integral and therefore the resulting value is always positive. To indicate if it is a left or a right turn, we just multiply the value with the sign of the middle y-coordinate.

[image: image]

All calculations were performed with MATLAB.




2.3. Case II - Zebrafish Locomotion Recordings

We tested the versatility of our tracker by studying the undulatory locomotion in adult zebrafish. This study was performed to evaluate if there are any sex specific locomotion differences between male and female zebrafish. Locomotion videos of 59 adult male and 43 adult female zebrafish were recorded in two different experiments: baseline and startle induced swimming, to make a comparison between their locomotion. For both trials, zebrafish were filmed in a 24.9 x 11.4 cm Plexiglas aquarium with 1.6 cm water depth from above with a high speed camera (Genie HM1024, Dalsa, Imaging Solutions GmbH, Eningen u. Achalm, Germany) linked with a lens system (Optem Zoom 125C 12.5:1 Micro-Inspection Lens System). The setup was illuminated with a LED light plate (Lumitronix) and aquarium light control (Elektronik-Werkstatt SSF, University of Göttingen) from below. For startle induced swimming, a 474 g metal weight was dropped on the setup table, which elicits the recording by closing an open electrical circuit. The fall of the weight was guided by a 13 cm plastic tunnel and produced an impact force of 18.7 N on the surface of the table. The weight collision on the setup table creates a mechanical stimulus which would elicit a certain behavior among individuals. Every trial lasted for 30 s and was filmed with 200 fps. The baseline trials were started 30 s after transferring a fish to the setup tank. Startle induced swimming trials were started immediately after the baseline trials. The recordings were conducted in the diurnal rhythm between 10 a.m. and 8 p.m. For both trials, sequences of the experimental individual without movement for more than 2.5 s were excluded from analysis.


2.3.1. Locomotion Analysis

LACE was used to automatically extract the mid-line position from every single frame. LACE was run on MATLAB R2012b (The MathWorks Inc., Natick, Massachusetts, USA).





3. RESULTS


3.1. Ad-hoc Corrections

We analyzed 1,318 movies of zebrafish for the occurrence of ad-hoc corrections. In 1,176 (89%) of the videos there was not a single correction needed (see Figure 5). In 107 (8% of all videos) videos, less than 0.5% of their frames needed to be corrected. Whenever the fish made a sharp turn that resulted in a circular form, the algorithm discarded the detection, as it did not fit the expected animal length, this was usually solved by triggering the ad-hoc correction from Problem 4. In the remaining 42 movies, up to 80% of the frames needed to be corrected (see Figure 5). The overwhelming reason for this high percentage were wrong user entries. The expected organisms size (in pixel) was set too large or too small so that the detection was dismissed in the first approach. Again the ad-hoc correction for Problem 4 was triggered and the correct detection was used.


[image: Figure 5]
FIGURE 5. A histogram of the correction frequency per frame for 1,318 different zebrafish video. 1,176 videos needed no correction at all. In 107 videos, less than 5% of the frames were corrected. Note that the counts are depicted on a logarithmic scale. Above the histogram bars, a rug plot (similar to a scatter plot) of the occurrences is given. Each vertical marker represents a video at the given correction frequency on the x-axis.




3.2. Case I - Larval Locomotion

To assess the efficacy of our tracker, we first studied locomotion in Drosophila larvae (Zanini et al., 2018; Katana et al., 2019). When a larva crawls, peristaltic contractions of the body wall muscles lead to shortening and elongation of the body that allows for forward movement (Berrigan and Pepin, 1995; Heckscher et al., 2012). We measured the change in body length during forward locomotion. Phases of turning could easily be detected by the turn detector (2) (see Figure 6A). The body length over time of wild-type larvae forms a regular wave pattern, whereas the body length of the nan36a shows an irregular pattern (Figure 6C). The same effect can be seen in the eccentricity of both larvae Figure 6B). Our data revealed that the wildtype and control strains tested have similar body contraction amplitudes (1). Additionally, our analysis showed a significant reduction in the contraction amplitudes in the mechanosensory mutants (see Figure 6D). These effects are in agreement with previous reports of the role of NAN and IAV in Drosophila chordotonal organs (Kim et al., 2003; Gong et al., 2004; Zhang et al., 2013) and the role of these organs in controlling locomotion (Caldwell et al., 2003).


[image: Figure 6]
FIGURE 6. Quantification of body peristaltic contractions of freely crawling Drosophila larvae. The results of two trajectories traced with LACE are shown in (A–C): (A) the curvature, (B) eccentricity, and (C) normalized body length of a wild-type (CantonS) larva (orange) and a nan36a mutant larva (blue). The curve finder (A) detects portions of the video where turning is detected. The turns appear as gray shaded areas (point 2 for CantonS and points 2 and 3 for nan36a). The white background shows peristaltic contractions during forward crawling (points 1 and 3 for CantonS and 1 for nan36a). Above (wildtype) and below (nan36a) still frames from the corresponding times (1,2,3) are depicted. The pseudo-skeleton is superimposed as a light blue line, the contour of the animal is shown as solid green line, the central contour as a dashed green line, and the gut as a red line. Both markers (gut, central contour) were not used in this analysis. In (D) the contraction amplitude is quantified for wildtype, w1118, nan36a and iav1 mutant larvae. The nan36a and iav1 mutants have significantly lower body contraction amplitudes compared to wildtype CantonS and w1118. The dataset consists of 30 wildtype larvae (CantonS), 26 w1118 larvae, 8 nan36a larvae, and 12 iav1 larvae. Statistical significance was tested with Fisher's permutation test on different medians. ***p < 0.001, **p < 0.01.




3.3. Case II - Zebrafish Locomotion

To further test our tracker, we used adult zebrafish, which propagates undulatory waves along its body during locomotion. Several studies demonstrate sex-specific differences in the activity, anxiety, aggressive and exploratory behavior of zebrafish (Tran and Gerlai, 2013; Ampatzis and Dermon, 2016; Rambo et al., 2017), which all involves locomotion. We thus wondered whether female and male zebrafish might differ in their respective locomotion. To assess this possibility, we analyzed translational and rotational movements during baseline and startle-induced swimming. Figure 7 shows an example of how LACE traces the trajectory of a freely moving fish for 30 seconds. Like many other animals (Kramer and McLaughlin, 2001; Geurten et al., 2017; Helmer et al., 2017), zebrafish move intermittently (compare Figure 7C). Intermittent motion alternates between phases of active propulsion and gliding, which seems to be energy efficient (Kramer and McLaughlin, 2001).


[image: Figure 7]
FIGURE 7. An example trajectory of an adult zebrafish traced with LACE. (A) Top view of the trajectory. The body's pseudo-skeleton is plotted as a line every 50 ms. Time is color coded by the color-bar. Three segments of the trajectory were chosen for a close up representation in B. 1 and 3 depicts fast turns and 2 shows a phase of undulatory body wave propulsion. (B) Enlarged view of the three segments from A. The pseudo-skeleton is now plotted every 5 ms. Time is encoded by the color bar. (C–E) show quantification of the trajectory over time. The gray areas mark the time in which the 3 segments (subplot B) occurred. (C) Thrust velocity in m*s−1. (D) is a YY-plot. The dark blue axis presents the yaw angle in degrees (shown in the same color). The light blue axis shows the yaw velocity in °*s−1 (shown in the same color). (E) depicts the mean angle of the pseudo-skeleton parts to each other. If the pseudo-skeleton is a perfect line, the angle is 180° and should decrease the more the skeleton is bent.


In the example shown in (Figure 7A), the zebrafish separates its movements into rotations and translations (review on the strategy: Corthals et al., 2019). Apparently, zebrafish change their heading when rotating but they also use the rotations for propulsion, as can be seen for the two example turns (segment 1 and 3) in (Figures 7B,C). Each of the orientation turn elicits a spike in thrust velocity (Figure 7C). These spikes are coincidental with pronounced changes in the body yaw (Figure 7D) and bending angle of the pseudo-skeleton/body of the fish (Figure 7E). In addition to this turn-propulsion, zebrafish exploit an s-shaped undulating movement for propulsion shown in (Figure 7B2). The analysis of the pseudo skeleton reveals that although the undulating propulsion elicits similar bending and thrust (Figures 7C,E), there is only negligible change in the orientation of the fish (Figure 7D).

The quantification of many trajectories revealed significant differences between female and male zebrafish locomotion. We analyzed their translational and rotational movements separately and used the peaks in yaw velocity to calculate a triggered average of turning maneuvers (velocity threshold 200°*s−1 | see Figures 8A,B). Female fish achieved significantly lower peak turning velocities than males (Figures 8B,D), while they turned as often as males (Figure 8E). The lower peak turn velocities seen in female trajectories might have an influence on the thrust velocity given that turns are also used for thrust-propulsion.


[image: Figure 8]
FIGURE 8. Analysis of multiple trajectories by female and male zebrafish during motivated trials. The median yaw angle (A) and velocity (B) of turn triggered averages plotted against time. The solid line represents the median of all individuals, shaded areas represents 95% confidence interval. Females are represented by the orange color, males by a blue color. Yaw to the left/right is indicated by positive/ negative numbers, respectively. The yaw angle over time is equal between male and female. Males exhibit higher maximal velocities compared to females. (C) The triggered average of all spikes of propulsion is plotted against time. The shaded area represents standard deviation from the mean. There is no significant difference in the propulsion and gliding motion of male and female. (D–I) show the quantification of different types of locomotion in the form of box plots. The black line represents the median of all individuals, the box displays the upper and lower quartile, the whiskers denote 1.5 times the interquartile distance and the plus-signs mark the outliers. Color is coded as in A. (D,E) The saccadic peak velocity of females as compared to males is significantly lower, while there is no significant difference in the saccade frequency between the two. (F,G) The median thrust and slip velocities of male fish are significantly higher as compared to the females. (H) There is no difference in the body-bending angle during acceleration. (I) There is a significant decrease in the frequency of thrust stroke of females as compared to males. The data set consists of 59 males and 43 females. Statistic significance was tested with Fisher's exact permutation test on different medians. ***p < 0.001, **p < 0.01.


As the fish only accelerates during the propulsion phase of the intermittent motion, the time velocity plot of a trajectory shows distinct peaks (compare Figure 8C). To test for differences in thrust-propulsion, we calculated a triggered average for every peak in the thrust velocity exceeding 10 cm*s−1. The mean of these velocity peaks was very similar in male and females (Figure 7C), yet females moved significantly slower than males, as can be seen in the median thrust and slip velocities (Figures 8F,G). This gender dimorphism might reflect differences in body shape and, thus, hydro-dynamic drag. If so, we expected to see differences in the gliding phase after a thrust stroke (Figure 8C), but gliding velocities were the same for females and males. Differences in body shape might cause difference in body bending, yet also bending seemed to be the same (Figure 8H). The significantly different thrust velocity is caused by a significantly different thrust stroke frequency (Figure 8I). As the turn frequency is similar between the sexes, we can deduct that the significant thrust-stroke-frequency difference is caused by a higher frequency of s-shape propulsion.




4. DISCUSSION

The detection of animals in videos is the basis for many neuroethological studies, ranging from locomotion analysis (Muybridge, 1882) to learning tests (Barth et al., 2014). Methods that facilitate the tracking of animals are evolving constantly, facilitating the analysis of large sets of behavioral data. Currently, most trackers fall into two categories: trackers that treat the animal as a solid object with an orientation (Branson et al., 2009; Donelson et al., 2012; Pérez-Escudero et al., 2014; Geissmann et al., 2017; Mönck et al., 2018; Rodriguez et al., 2018; Werkhoven et al., 2019; Krynitsky et al., 2020) and trackers that represent the animal as a skeleton (Fontaine et al., 2009; Kain et al., 2013; Nath et al., 2013; Mathis et al., 2018; Pereira et al., 2018; Gosztolai et al., 2020). The application of such trackers to limbless or rather featureless animals is sub-optimal because skeleton representations are based on readily identifiable body parts that can be used as visual markers (e.g., joints,legs,antennae) or require the attachment of physical markers, which is not always possible. The representation of animals as solid lines or single points also discards important features of the trajectory, as limbless animals generate propulsion by deformation of their bodies.

The tracker LACE has been specially designed for tracking limbless animals, though it can be applied to other organisms as well. Since limbless animals usually lack clear markers such as color patterns or joints, arms, and legs, pose estimation requires information about the mid line of the body. LACE estimates this mid-line from the contour of the animal and treats this mid-line as a pseudo-skeleton that allows to quantify body deformations without using physical or visual markers. To our knowledge, the only available tracker that represents animals in a similar fashion is FIM-track (https://github.com/i-git/FIMTrack) which allows to analyze animal trajectories using frustrated total internal reflection (FTIR) (Risse et al., 2013). FIM-track was developed specifically for analyzing FTIR trajectories and we found it to be less efficient under different lighting conditions. For example our fish tanks were back lit and therefore the signal to noise ratio, was significantly lower than in an FTIR experiment.

LACE consists of nine toolboxes that can be used as a stand-alone software or can be combined with other existing trackers. The pseudo-skeleton generator, for example, can be used in combination with other trackers that can detect the contour of the animal (Fontaine et al., 2009; Nath et al., 2013; Risse et al., 2013). The video loading module of LACE can read nearly any standard file format and works for different lighting conditions. This LACE_bg toolbox offers the advantage of calculating background images for varying light-dark conditions. LACE also allows one to define the region of interest (ROI), allowing to discard irrelevant information. Although already available software (e.g., Fiji Schindelin et al., 2012, 2015) could have been used to create ROIs, we wanted to integrate everything into one GUI for ease of use. The ad-hoc and post-hoc evaluation toolboxes allow to record multiple animals or objects together, automatically solving many occlusion problems. LACE provides the LACE_p2m toolbox to convert pixel coordinates into arena-based SI coordinates. Normally, these computational intensive steps takes hours. To speed up analysis, LACE is equipped with a scheduler system that allows for a division of labor between different CPU cores, allowing users to record data and define scripts during the day and run the analysis overnight. Many of those features can be found in other tracking software, but not in the same combination.

The most comparable trackers to LACE are trackers of the model worm Caenorhabditis elegans (see comparison Table 1) (Geng et al., 2004; Tsibidis and Tavernarakis, 2007; Ramot et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012; Swierczek et al., 2011; Brosnan et al., 2021). This is not surprising as Caenorhabditis is a limbless organism with very few distinguishable anatomical markers. Although recording videos from a microscope has disadvantages (e.g., moving the stage, low photon yield, etc.) which many of the mentioned trackers overcome elegantly, there are certain advantages. Two of those advantages are uniform background and iso-illumination across the field of view. LACE handles more complex lighting situations as well (see Supplementary Material).

The most comparable fish tracker is idTracker (Pérez-Escudero et al., 2014; Romero-Ferrero et al., 2019). idTracker shares most of LACEs features and has a much more sophisticated detection of individual organisms in a group. LACE identifies individuals via their position, direction, and posture. In contrast to LACE, idTracker identifies the individuals by the eigenvalues of their Gestalt. To our knowledge idTracker does not however derive a pseudo-skeleton for the identified individuals, which is crucial to most of our analysis.

LACE is rather computational intensive and therefore cannot track multiple animals in real-time. Many of the aforementioned worm trackers and the TRex tracker (Walter and Couzin, 2021) have real time capabilities. Whereas the worm trackers can rely on slim algorithms due to bright and uniform backgrounds, TRex achieves this computational speed by using a non interpreted language (C++). LACE is written in a less efficient but more accessible programming language (Matlab), which allows the user to customize the source code directly.

We have illustrated the versatility of LACE using crawling Drosophila larvae and swimming adult zebrafish as examples. Studying peristaltic contractions during locomotion of Drosophila larvae allows to screen for genes, neurons, and networks involved in proprioception, mechanosensation, and locomotion (Caldwell et al., 2003; Hughes and Thomas, 2007; Zanini et al., 2018; Katana et al., 2019). In Zanini et al. (2018) we used LACE to analyse the role of opsins in mechano-transduction. We used LACE instead of the FIM-Track because we needed to analyse locomotion under infrared-light and visible light conditions. Although FIM-Track worked well with infrared light, it did less so in the presence of visible light. A costly infra-red pass filter would have solved this problem. Another option seemed to express green-fluorescence protein (GFP) in the larval muscles, as was done to study the roles of mechanosensory neurons during peristalsis (Hughes and Thomas, 2007). Our tracker bypasses the need for GFP expression and can be used to track many animal species. Its ability to detect turning events during locomotion allows to analyse exclusively, for example, periods of forward locomotion. LACE can precisely track this locomotion and distinguish turns from normal peristaltic movements. It also allowed us to identify subtle changes in locomotory body movements in mechanosensory mutants (Zanini et al., 2018).

By using LACE to track zebrafish, we tested for differences in locomotion between adult females and males. Several studies had indicated sex specific differences in different forms of zebrafish behavior (Philpott et al., 2012; Tran and Gerlai, 2013; Ampatzis and Dermon, 2016; Rambo et al., 2017), yet whether these differences extend to locomotion, had, to the best of our knowledge, not been explored. Using LACE, we found that females swim slower than males and turn less fast (Figures 8D,F,G). Possibly, the ovary makes it more difficult for the females to bend their body during turning. We did not find any sex-specific differences in the bendability (Figure 8H), yet visual inspection of fish revealed that females with full ovaries are larger than males. The more slender body of males presumably experience less drag in water, but thrust strokes and declines were virtually identical for the two sexes, arguing against pure effects of drag (Figure 8C). The same argument holds true for a difference in inertia caused by a difference in weight between both sexes [males 0.23 g, females 0.36g (Eaton and Farley, 1974)].

Even though a female has to overcome a higher inertia to change its velocity (2nd law of motion Newton, 1833) the resulting velocity profile is nearly identical (Figure 8C). When we analyzed the frequency of thrust strokes, we found that males perform more thrust strokes in a given time period, allowing them to swim faster than the females. Moreover, while the turning frequency is nearly identical for the two sexes, males more often perform s-shape thrust strokes, propelling them forward with higher speed. LACE has the potential to reveal such minute but crucial information from the video data without a need for any markers or AI-training. Overall, by this study, we have shown that LACE has the capability to differentiate between different aspects of locomotion ranging from fast turns to bendability and forward motion, revealing a hitherto undescribed behavioral sexual dimorphism in zebrafish.

LACE is a simple, markerless, and fully automated tracker for studying undulatory locomotion in limbless animals. We have demonstrated that this tracker can be used to study different aspects of locomotion behavior in different types of limbless organisms and in more complex lighting environments. Our results indicate that LACE has the potential to reveal novel aspects of locomotion behavior in a variety of larger organisms. We hope that our tracker will facilitate the study of movements and pose in various animals species.
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Instrument Primary lon Source Spatial Resolution Mass Resolution Upper Mass Limit
(M/AM)
NanoSIMS lon beam (Cs* or O~) <50 nm (Cs), 10,000" Atomic and diatomic
<200 nm (07) (e.g: CN-) fons’
ToF-SIMS lon beam (Bi%, Gz, 200 Nm-5 pm ~10,0002 1,500-2,500 Da
A etc) (dependent on source)
MALDI-MS/MS Laser light 1-150 um* =1,000,000° (using 20 kDa®
(typically 10 um) Fourier Transform ion

cyclotron resonance
mass spectrometry)

1 Hillion et al. (1993); Nufiez et al. (2018); 2Boxer et al. (2009); 3Feamn (2015) 4Hanrieder et al. (2013); 5Dilillo et al. (2017); Jones et al. (2014)
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Part

microscope

glue

UV protective glasses
Fly picker wand
Temperature control
Tether

Funnel
Micromanipulator
Screw

Locking nuts

Nuts

Washer

Heat pump

Power Supply
Sarcophagus
Thermal Tape

Tether Station holder
UV Curing light
Paintbrush

Round bottom tube
Heat sink holder
Hollow Body Pin Vise

Description

any dissecting scope
glass to glass adhesive
Different manufacturers
Transfer Pipette

Chiler thermostat
Dispensing needle 34GA
3D-printed (PLA, ABS)
3D-printed (ABS)
M3x0.5 40mm

M3x0.5

M3x05

M3

Peltier on heat sink
12V 5A (Heat Pump)
3D-printed (ABS)

for Sarcophagus.

Laser cut (acrylic)

UV Keychain light

Fine tip

Chiling tube

Hand rest

Fiyhook holder

Link

kemxert.com
amazon.com
amazon.com
amazon.com
bstean.com
reiserlab.github.io
github.com
mcmaster.com
mcmaster.com
mcmaster.com
mcmaster.com
adafruitcom
adafruit.com
reiserlab.github.io
adafruit.com
reiserlab.github.io
‘amazon.com
amazon.com
mcmaster.com
ponoko.com
mcmaster.com

Price

$0.58
$11.00
$0.03
$5.00
$0.96
$3.00
$20.00
$0.49
$0.11
$0.06
$0.23
$35.00
$26.00
$3.00
$0.95
$15.00
$1.33
$7.00
$0.06
$18.00
$16.00

Usually one item per line is required, but commodites lie nuts are available in packages
that will supply components for several setups. For package prices and more details refer
to the text and Supplementary Tables $1-54.
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significantly different; ns, not significantly different.
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Trial Snake Duration (s) Distance Speed Max Velocity
(m) (ms~7) (ms~T)
1 Y4 0.0866458717 0.0958 1.1055 1.6393
2 Y4 0.1359673678 0.1731 1.2732 1.8036
3 Y4 0.1506305153 0.2136 1.4182 1.9968
4 Y4 0.0786477912 0.0829 1.0542 1.8137
5 Y2 0.1146391533 0.1461 1.2743 1.6408
6 Y2 0.1066410728 0.2192 2.0556 2.3136
7 Y2 0.1306353142 0.1472 1.1270 2.1715
8 Y2 0.1426324349 0.1567 1.0984 1.6513
9 Y2 0.1652936629 0.1419 0.8583 1.2661
10 Y2 0.1986189981 0.1573 0.7920 1.3873
12 B5 0.1959529713 0.1901 0.9700 1.4633
13 B5 0.1746247567 0.1695 0.9705 1.3763
15 B5 0.1093070996 0.0968 0.8854 1.4035
17 B5 0.1479644885 0.1462 0.9878 1.3030
18 B5 0.155962569 0.1468 0.9411 1.3333
All Mean 0.1396109378 0.1522 1.1208 1.6376
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Straussetal.  Gray etal. (2002) Lindemann etal. Reiser and Takaloetal.  Paulketal. (2014)  Koenig etal. Kaushik et al. Antarium
(1997) (2003) Dickinson (2008) (2012) (2016) (2020)
Colour Green RGB Green Green White Green RGB AGB G.B, UV
Polarzed No No No No No No No No Yes (UV)
Technology LED Projector LED LED Projector LED Projector + light LcD LED
quides

Azimuth +180° +125° +125° Depends +135° +180° +180° +180° +180°
Elevation —0, +45° +125° —90°, +70° Depends —64°,+57° —35°, +45° —45°, +45° —58°, +72° —50°, +90°
Number of pixels 5,760 307,200 7,168 84.N 480,000 4,008 5,760 11 million 19,855 GB 495 UV
Intensity levels 2 256 8 8 256 2 256 256 65,536
Flicker (Hz) 1,000 80 o3} a72 360 ~300 2 ? 9,000
Frame rate (Hz) 1,000 80 370 ar2 360 ? 300 165 190
Angular resolution 20 <10 28° Depends aso a5° 2-3° 0.14° 1.5°GB6.7° LV
Light level 60 cd-m-2 141ux 420 cd-m-2 Depends 4W.m-2 168 ux ? ? N/A
Closed loop Yes Yes No Depends Yes Yes Depends Yes Yes

A comparison of the properties of diffierent comparable projection devices used in insect neuroethology work with those of the Antarium.
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