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Editorial on the Research Topic

50 years of Statistical Physics in Mexico: Development, State of the Art and Perspectives

In the autumn of 1971, the small group of physicists then working at the Instituto Mexicano del
Petróleo (IMP), in Mexico City, was expecting the visit of several distinguished scientists from
abroad, who had been invited for talks and seminars on various topics of Statistical Physics. The
Mexican physicists at IMP realized that it was an excellent opportunity to organize a meeting on the
subject; it could be held the coming January, when most of the would-be speakers were available.
Nevertheless, no formal organizing committee was appointed. Leopoldo García Colín, then director
of the Applied Research Division at IMP, oversaw the whole operation, made the formal invitations
and secured the financial support from IMP. The meeting itself was organized by Fernando del Río,
who was assisted by his then Ph.D. student, Luis Mier y Terán, and by Sigurd Larsen, who was on
sabbatical stay at the Institute.

Besides a fewMexican speakers who joined the visitors from abroad, the participants in thatmeeting
were mostly graduate students who were working on the subject. By a combination of sheer luck and
common sense, the meeting was planned to be held at Oaxtepec, a lush site about 70 km south of
Mexico City that boasts a spring-like weather all year round. The meeting had no title nor name, and
nobody foresaw that it would become a yearly event, nor thought to take a group photograph. Among
the foreign speakers on that (first) meeting were Melville Green, Sigurd Larsen, Joel Lebowitz, Anneke
Sengers, Jan V Sengers, and Robert Zwanzig. The meeting had a wide success. The talks were of the
highest quality, and the ample time available and pleasant surroundings was profited by the young
Mexican students, who interacted closely with the speakers. This success spurred the decision to
organize a yearly event every winter. Since then, 49 meetings have been held, the last one in January
2020. This year should have seen the 50th, but it was suspended due to the Covid pandemic. The
Winter Meeting on Statistical Physics (WMSP) constitute the series of physics gatherings of longest
standing in Mexico, and have been a valuable asset in promoting the growth and consolidation of the
discipline. In these 50 years, Statistical Physics inMexico has grown from a single site of research and a
handful of practitioners to almost twenty centers around the country and hundreds of scientists.

The present collection aims to commemorate the long standing tradition of the WMSP. It begins
with a review of molecular-based equations of state. Regardless of how they are derived
(experimental data or simulation results) when obtained from statistical mechanics; these
equations are labeled molecular-based. In this work, a general scheme for the derivation of truly
perturbed equations is presented. Two approaches are identified, Bottom-up and Top-down, and
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individual steps are discussed in detail along with several rules,
reflecting the fundamentals of fluid physics. To exemplify these
approaches, the author shows some well-established theoretical
approximations, such as the Statistical Association Fluid Theory,
to study the equation of state for water.

During the last decades, thermodynamic properties of model
fluids have been studied using theoretical tools of Statistical
Physics. As an example of the contribution of the Mexican
community on the development of accurate approximations to
account for the phase behavior of molecular fluids, López de Haro
and Rodríguez Rivas solved the equation of state of a parabolic-
well fluid combining both a second-order thermodynamic
perturbation theory and molecular simulations.

Next, an investigation about the intermediate phase in glasses via
a lattice gas model with a modified Hamiltonian considering
different energies for cycles of connected atoms (glass with
contaminants that form rigid and flexible structures) is presented.
Authors study density transitions as a function of chemical potential
and a parameter representing the quantity of contaminants. Finally,
using hysteresis loops over these quantities they calculate the heat
flow of the system, showing that the model present an intermediate
phase, minimizing the non-reversing heat flow.

Statistical Physics often use the tools of Quantum Mechanics,
but the converse is also true. In a macroscopic system in
equilibrium, the probability for a system to occupy a given state
is proportional to exp(−E/kBT) (Boltzmann factor) where E is the
energy of that state and kBT the kinetic energy. This result can be
obtained bymaximizing entropy while constraining the energy. On
the other hand, the amplitude for a quantum system undergoing a
given path is proportional to exp(−S/iћ) (Feynman factor) where S
is the action of that path. The similarity between both factors raises
the question about the quantum analog of entropy. This quantity is
called “quantropy.”Here, an extension of quantropy is presented in
an integrated version.

Brownian particles have drawn the attention of physicists since
the beginning of the last century. Recently, it has been seen that the
diffusion of this type of particle is affected when the system is near a
jammed state or in the presence of external potentials. This change in
dynamical behavior where the particles slow down or accelerate
occurs in certain time regimes. In this article, authors report
experimentally and numerically different time regimes of a single,
colloidal particle diffusing under the influence of a periodic optical
potential. They show that the time at which a regime change occurs
depends only on the height of the periodic potential.

Soft condensed matter is well represented in this volume. For
instance, Vázquez-Vergara et al. investigated the relaxation
dynamics of resonances in viscoelastic microfluidics. Aside
from their theoretical importance as models for non-
equilibrium phenomena in non-Newtonian hydrodynamics,
pulsatile flows of viscoelastics have important applications in
nano-fabrication and lab-on-a-chip devices. Experimental
analysis of a viscoelastic zero-mean flow slug subjected to
periodic pulses allow the authors to propose and validate a
model for the constitutive equations. Delicate experimental
measurements of the hydro-mechanical properties of DMPC/
Cholesterol mixedmonolayers were performed by Bañuelos-Frías
et al. via Langmuir force determination and Brewster angle

microscopy. Measurements were made under physiological
concentration and pH conditions, leading to further advances
in the understanding of why double chain lipids are better than
single chain lipids to made up the cell membrane.

Structured soft condensed matter presents challenges to
statistical mechanical modeling. Among these challenges, self-
assembly of liquid crystals in constrained fields is relevant due to
theoretical and practical reasons. The study of the nonlinear
dynamical equations for coupled conserved and non-conserved
fields describing nanoparticle concentration and liquid crystal
order parameters under such conditions was also discussed here.
The team lead by Guzmán, tackled this question by writing down
these equations and solving them for bidimensional domains to
determine approximate relaxation dynamics for the order
parameter of the liquid crystal. Assembling dynamics are also
at the center of the manuscript by Valadez-Pérez et al. Reversible
aggregation of purely short-ranged attractive colloidal particles
led to cluster formation with fractal-like morphology. Authors
found that the fractal dimension of competing interaction fluids
does depend on the second virial coefficient, as in the purely
attractive case. And that the addition of repulsive forces in the
potential between colloids changes the clustering morphology.

Propagation of topological defects in self-assembly liquid
crystals is of particular interest in the production of
metamaterials. Three-dimensional topological properties of
liquid crystals had much of the attention through the two-
dimensional variants are of interest from a theoretical and
technological point of view. Calderon-Alcaráz et al. present
molecular dynamics simulations to study strongly confined
two-dimensional liquid crystals. The impact of constrained
geometries on the phase diagram and the appearance of
prominent topological defects are analyzed in detail.

Pattern formation and aggregation were also studied in
relation to chocolate surfaces. Delgado et al. applied
topography atomic force microscopy and cone-plate rheometry
to experimentally characterize temperature-dependent pattern
formation dynamics of melted chocolate with and without
additives (sugar and lecithin), as well as 2D computer
simulations of the polymorphic phase molecules under the
NVT ensemble using a Mie-segmented coarse-grained
potential. Experimental and simulation results showed
agreement with the Avrami model for aggregation based on
phase change kinetics. These observations led to predict sizes
for chocolate grains which compare accurately with real sizes.

When colloids are confined to non-flat and closed geometries,
they experience curvature effects that can induce new phenomena
in the static and dynamical properties not seen typically in flat
and open spaces. In the particular case of interacting colloids
diffusing on a spherical surface, Ledesma-Durán et al. provide
evidence that the different dynamical transitions observed at the
level of the mean-square displacement can be explained in terms
of the existence of an entropic potential that limits the number of
accessible states to the colloids. Furthermore, colloids are a class
of soft materials that also serve to understand fundamental
questions in Statistical Physics. One of the latter concerns with
the validity of some thermodynamic processes at the molecular
level. In his contribution, Gómez-Solano reviews and describes

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 7275822

Castañeda-Priego et al. Editorial: Statistical Physics in Mexico: 50 years

6

https://www.frontiersin.org/articles/10.3389/fphy.2020.627017/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.627017/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.636070/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.636149/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.636149/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.637138/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.622872/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.643355/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.634792/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.643333/full
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


both the operation and performance of a colloidal heat engine
under finite-time Stirling cycles.

Single-file diffusion refers to transport of particles in narrow
channels such that mutual passage is excluded. This degree of
confinement induces a kind of anomalous diffusion as a result of
the correlation between particle displacements. To further
understand the diffusive behavior in quasi-one-dimensional
channels, Huerta et al. report on molecular dynamic results of
the collective dynamics in a system made up of hard disks. The
results show that the transverse excitations obey very specific
dispersion law associated to optical transverse modes, not
typically seen in both 1D and 2D cases.

Since the birth of Statistical Physics, it has contributed to the
development and growth of other branches of science, such as
Mathematics, Chemistry and Ecology, just to mention a few
examples. This fundamental aspect has brought the possibility
of applying the tools and methods of the Statistical Physics in
multidisciplinary problems. In his contribution, Hernández-
Lemus nicely summarizes the main elements and aspects of
the modern theory of random fields and discusses in detail
some of its recent applications not only in Physics, but also in
Biology and Data Science; applications that will serve to better
understand problems of interdisciplinary character. Among
the other applications of Statistical Physics is the study of
how DNA compact within cells, or a biopolymer can be
encapsulated. Linear chains of molecules are called semiflexible
polymers, these include DNA, biopolymers, or common
polymers like polyester. Castro-Villareal and Ramirez develop
the theory to study semiflexible polymers in the 3-dimensional
domain, applying their results via Monte Carlo simulations to the
case of a an open domain, an sphere and a cube, where they
observe a shape transition in the polymer for the closed domains,
one state where the mean square distance from end-to-end
exhibits an oscillating behavior, and the other exhibits a
monotonic behavior.

Hopefully, the content of this issue will allow the reader to
witness the qualitative growth, geographical expansion and
maturity reached by Mexican researchers in Statistical Physics,
plus the very welcome contribution from abroad. We can be
confident that these Winter Meetings will continue to be held for
many years ahead, for this discipline is foundational to an
increasing number of fields, and young students and mature
researchers alike will certainly continue profiting and enjoying
the interaction with their peers from around the world.
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With the exception of purely empirical equations of state, the remaining equations can
bear the tag “molecular based.” Depending on their derivation, their molecular basis
varies from those having only some traits of ideas/results of molecular considerations
to equations obtained truly by application of statistical mechanics. Starting from
formulations of statistical mechanics of liquids, a general scheme for derivation of truly
perturbed equations is formulated. Two approaches, Bottom-Up and Top-Down, are
identified, and the individual steps are discussed in detail along with several rules that
reflect the essentials of the physics of fluids, which should be observed. Approximations
and simplifications used in the implementation of the scheme are then analyzed in light
of these rules, and a classification of equations of state is introduced. To exemplify
these approaches in detail, theoretical and SAFT routes toward an equation of state
are considered for water along with a potential way of merging these two approaches
to obtain a reliable equation with a potential to predict the behavior of real fluids and not
only to correlate them.

Keywords: perturbation theory, simple reference fluids, classification of equations of state, primitive models,

thermodynamic perturbation theory, SAFT equations

1. INTRODUCTION

In addition to experimental measurements, the thermodynamic properties of pure fluids and their
mixtures can be obtained by methods of statistical mechanics, both by theoretical calculations and
molecular simulations. Particularly important properties are those of pressure-volume-temperature
(PVT) relations, which are usually presented in the form of equations of state (EoS). They can be
obtained using different methods, and several points of view can be adopted to sort them out and
classify them. Undoubtedly, it is possible to distinguish two basic types of equations: empirical
and molecular based. The former are typically obtained by fitting the known experimental (but
also molecular simulation) data of the considered real/model system to what is usually an arbitrary
many-parameter function, and they should thus bemore appropriately called correlation functions.
Some examples we may mention include the IAPWS equation for water [1] or the equation for the
Lennard-Jones (LJ) fluid of Johnson et al. [2]. The latter equations are based, to various degrees, on
ideas and results of statistical mechanics.

The term “molecular based” itself, covering all non-empirical equations, is rather vague, and
equations falling into this category need to be further differentiated. Any statistical mechanical
treatment requires as input one indispensable ingredient: an intermolecular interaction model
whose choice depends on the goal of such computations. In studies aiming at the elucidation
of molecular mechanisms governing the behavior of fluids, idealized simple models (referred to
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Nezbeda Molecular-Based Equations of State

further in the paper as primitive models) are used, whereas if
the goal is a prediction of behavior of real fluids, the model is
rather a complex function (referred to as a force field) defying
any exact treatment. In addition to their simplicity, an advantage
of the simple models is a possibility to obtain the final results in
a close analytic form, and these results may then be conveniently
used also in treatment of complex fluids. Examples are solutions
of the Percus-Yevick equation for the fluid of hard spheres (HS)
[3, 4], sticky hard spheres [5], square-well fluid [6, 7], the mean
spherical approximation result for dipolar hard spheres (DHS)
[8], Dahl-Andersen solution for the double square-well model
[9], or results of the thermodynamic perturbation theory (TPT)
for various primitive models of associating fluids [10–15].

Dealing with real fluids, the only method making it possible
to derive an EoS in an analytic form is a perturbation expansion.
There is one exception, however: theoretical results for various
Yukawa models. The Yukawa model is rather flexible, and,
because it is able to describe, with reasonable accuracy, properties
of simple fluids, it has attracted a lot of attention, and vast
amounts of literature dealing with the Yukawa model is available.
Analytic results for the model have been obtained by solving
the Ornstein-Zernike equation using different variants of the
mean spherical approximation, see, e.g., [16–18], or a variational
perturbation theory [19].

The perturbation expansions, and hence the resulting EoS,
differ in the way how the reference system is defined and the
correction terms treated. There are two different statistical-
mechanical approaches: Bottom-Up (BU), beginning at the
specific and moving to the general, and Top-Down (TD),
going from the general to the specific. The TD approach
starts from a complex realistic (preferably the best available)
interaction model, analyzes the effect of different interactions
on the properties of the considered fluid and discards its
less important parts, and it comes gradually via well-defined
approximations to a coarse grained model and, ultimately, to
a theoretically tractable (simple/primitive) model for the fluid
in hand. Such a model is/may thus be commonly used as a
reference in a perturbation theory. The BU approach is, in a
certain sense, a macroscopic (phenomenological) approach and
corresponds to a common classification of liquids according to
their increasing complexity (see the next chapter). It starts from
a simple intuitive/speculative model whose use is justified by
either previously or a posteriori obtained results of molecular
theories and simulations. It is (implicitly) assumed that themodel
captures the basic features of the studied class of considered fluids
and additional terms accounting for other interactions are then
added. The parameters appearing in the expressions are evaluated
by fitting to data of the considered fluid, either simulation or
experimental ones, and may not thus be directly linked to the
actual molecular characteristics.

Each of the above approaches has its advantages and
disadvantages. The BU approach makes it possible to treat
very complex systems (using a simplified intuitive modeling)
that otherwise defy any rigorous treatment. On the other
hand, it is virtually impossible, because of its intuitive basis,
to systematically improve its performance with respect to
the underlying molecular mechanisms, and further progress

toward better results has to go via empirical corrections only.
Furthermore, for the development of the parameters of the
proposed EoS a large number of experimental data is required,
and the use of the EoS outside the range of the data is
problematic. In general, BU equations enjoy great flexibility,
and if their performance is not acceptable, it can be improved
by adding additional terms, making their parameters state
dependent, etc. In the TD approach, everything is clearly defined
from the very beginning and performance of the developed
EoS can be gradually improved by accounting for the known
neglected effects. An advantage of this approach is that it also
provides a guidance for developing non-intuitive simple models
that, in turn, may serve as a theory-based reference in the BU
approach. Its disadvantage is that, when strictly adhering to
theory, it may be limited to fluids made up of relatively small
and medium-sized molecules. Furthermore, it is tied to a parent
interaction model and cannot thus perform better than the
model itself. Nonetheless, it is worth emphasizing that, although
conceptually completely different, both methods, TD and BU,
may formally end up with the same result. A typical example
is the vdW EoS, which was derived originally by an intuition
and belief in the existence of molecules as volume excluding
entities (hard bodies; BU approach) but which can also be derived
rigorously by starting from a realistic intermolecular potential
(TD approach) and applying then a perturbation expansion
about a suitable short-ranged repulsive reference model (see
section 2.3).

The two potential ways to develop a molecular-based EoS
outlined above are not usually distinguished, which may also
hinder further (faster) progress toward better equations, often
making the results more complex. Typically, instead of going to
the basics, (empirical) corrections of corrections of corrections
are introduced. As a typical example, we may again mention
the vdW EoS and dozens of its empirical modifications. When
derived by statistical mechanical tools, it is clear that the first
term represents an EoS of the fluid of hard spheres (excluded
volume) and the other term a mean field approximation. Using a
perturbation theory, both these terms are well-defined and can be
systematically improved reflecting the corresponding theoretical
development (e.g., better EoS of hard spheres). On the other
hand, using the original form of the equation, improvements
are made only by empirical adjustment of the parameters of
the equation (e.g., hundreds of cubic equations with their
temperature or/and density dependence of parameters).

An overwhelming majority of molecular-based EoS are of
the vdW-type, i.e., they were developed using the BU approach.
Within this group of equations belong also SAFT (Statistical
Association Fluid Theory) equations [20–23] (although this is not
usually acknowledged), which have gained great popularity in the
last two decades and which are the most versatile engineering
equations in use today. Although called “SAFT equations,” it
should be emphasized that (as stated by pioneers of the SAFT
approach) “. . . SAFT is not a rigid equation of state but a method
that allows for the incorporation of the effect of association”
[22]. This concept, referred to further as a van der Waals-type,
was introduced in the end of 1980s as an alternative to what
was exclusively used at that time: “perturbed hard body” EoS.
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Emerging in the early 1980s, instead of a hard body term for the
short-range reference, it employs simple (primitive) models that
capture the effect of association [24–26]. SAFT equations have
been quite successful in modeling/correlating thermodynamic
properties of fluids (over 100 phase equilibria data of pure fluids
[27] and 60 binary fluidmixtures [28] were correlated), and SAFT
is arguably considered the state-of-the-art engineering method
for this goal.

The success of SAFT equations stems directly from theoretical
and simulation results on the effect of the range of interactions.
However, because its construction is only intuitive and without
a reference to any actual interaction model, the potential
of the theoretical findings has not been yet fully explored,
and developments and improvements of SAFT equations have
followed an empirical path as documented, for example, by a
large number of different versions of SAFT and by dozens of
different equations for one and the same compound. The goal
of this paper it to review in detail the general theoretical basis of
the derivation of molecular-based equations, produce an analysis
of the individual steps and approximations, and identify/suggest
potential ways for their improvement. This program is then
exemplified for water for which more than 40 different SAFT
EoS have been developed [29] and which is likely the most
intensively investigated compound and a challenge for both
theorists and applied scientists to fully understand and describe
its complex behavior. The paper is organized as follows. In the
next section, we review the necessary theoretical background for
the derivation of EoS and present both intuitive and force-field-
associated simple (primitive) models as well as basic results of the
thermodynamic perturbation theory. Their general discussion
with respect to the TD and BU approaches and application to
water makes up section 3, which is followed by an outline of a
potential development toward more accurate equations of state
with firm molecular footing.

2. THEORETICAL BACKGROUND

2.1. Brief Historical Survey
Any theoretical consideration at the atomistic level must start
from an intermolecular interaction model. Nowadays, using
results of quantum chemical computations, molecules are
pictured as bodies made up of individual atoms, groups of atoms,
or, in general, simply of a set of certain interaction sites that are a
fountainhead of interactions. Assuming then pair-wise additivity,
the potential functions are written in a uniform way as a sum of
interactions between these sites:

u(q1, q2) ≡ u(R12,�1,�2) =
∑

i∈{1}

∑

j∈{2}

uss,ij(|r
(i)
1 − r

(j)
2 |)

≡
∑

i∈{1}

∑

j∈{2}

uss,ij(rij) , (1)

where qi are generalized coordinates of molecule i, R12 is the
separation between the reference sites within the molecules (not
necessarily their centers of mass), � stands for orientation,
and uss,ij is a spherically symmetric (!) simple interaction
acting between site i on molecule 1 and site j on molecule

2 with r
(i)
k

being their position vector. The individual site-
site interactions are non-electrostatic (referred to also as vdW
or dispersive interactions) and Coulombic between charges
localized within the molecules. It is also usually assumed that,
for the sake of simplicity, for relatively small molecules the
geometrical arrangement of the sites is fixed within the molecules
(rigid monomer).

The composite site-site interactions in Equation (1) produce
an electrostatic field that may be approximated by an interaction
between molecular electric multipoles. It has thus been common
to write, alternatively, the interaction potentials as

u(q1, q2) ≡ unon−el(q1, q2)+
∑

{multipoles}

umultipole−multipole(q1, q2)

(2)
where unon−el stands for non-electrostatic interactions and
umultipole−multipole for the interaction between the permanent
multipoles of the molecules. The multipole-multipole interaction
is usually considered up to the quadrupole-quadrupole level.
However, since this approximation of the (truncated) interaction
is not able to capture complex interactions in associating fluids
(i.e., the fluids exhibiting hydrogen bonding; HB; H-bonding),
at the BU level, an artificial term accounting for H-bonding is
formally added:

u(q1, q2) ≡ unon−el(q1, q2)+
∑

{multipoles}

umultipole−multipole(q1, q2)

+ uassoc(q1, q2) , (3)

It must, however, be emphasized that the inclusion of the last
term does not represent any real physical force but captures
a net effect of existing electrostatic interactions. Nonetheless,
in certain circumstances, its use may be justified. Finally,
following the original van der Waals way of thinking and
results of early molecular simulations it is further convenient
to consider separately repulsive and attractive parts of the vdW
interaction, i.e.,

u(q1, q2) = urep(q1, q2)+ uatt(q1, q2)+ uelstat(q1, q2)

+ uassoc(q1, q2) (4)

The form of Equation (4) forms the basis for a classification
of fluids based on the increasing complexity of the constituent
molecules and their properties [30]. It also offers itself intuitively
for development of molecular-based EoSs, starting with the
simplest class of real fluids, the so called normal fluids for which
uelstat ≈ 0 and uassoc ≈ 0, and proceeding then toward fluids with
increasing complexity.

An interpretation of early simulation results, namely that the
strong short-range repulsive interactions have a predominant
effect on the properties of fluids (this unfortunate interpretation
will be discussed further in the text), suggested that the fluid ofHS
is a suitable reference (vdW way of thinking). Further extension
of the HS model to general hard non-spherical bodies of an
arbitrary shape (for a review see [31]) subsequently provided
an EoS that served then as a suitable reference system model
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for describing the properties of simple non-polar fluids, e.g.,
lower hydrocarbons.

To move beyond normal fluids, the next class of fluids
in the complexity hierarchy are polar fluids. First attempts
followed the (mis)interpretation of simulation results of the
structure of fluids being determined, in general, by the
strong purely repulsive interactions and treated the long-range
multipole-multipole interactions as a perturbation. However,
despite all the effort invested, the obtained results using this
approach did not fullfil the expectations (see, for example,
[32]) for simple physical reasons that will become clear in
the following section. It became evident that a more complex
yet simple model, preferable from the same class of fluids,
is needed as a reference system. The simplest and most
logically suitable reference model for polar fluids appears
to be that of dipolar HS. The analytic result (required
in the perturbation theory) for its properties was obtained
by Wertheim [8] using the mean-spherical approximation,
and this result made it possible to consider the reference
dipolar HS model for developing a theory for polar fluids.
However, this route did not work satisfactorily either [32].
It is therefore not surprising that a similar approach applied
to the third class of fluids in complexity, associating ones,
failed as well. As an example, Muller and Gubbins [33]
used the interaction model in the form of an extended
Stockmayer potential,

u = uLJ + uDD + uHB = uref + uHB , (5)

where uLJ is the Lennard-Jones (LJ) potential, uDD stands
for the dipole-dipole interaction, and the additional
H-bonding term, uHB, was treated as a perturbation.
Comparison with simulations gave rather disappointing
result [33, 34].

To summarize, it turned out that building an EoS on the basis
of an available EoS of a preceding simpler fluid is a blind alley
and that another approach should be applied. A breakthrough in
this field is associated with (i) the development of simple suitable
models, (ii) development of theory for such models, and (iii)
simulation results that pursued a different classification of fluids
[35], see section 2.4.

Several simple models that aimed at capturing the main
features of H-bonding (strong and strongly directional short-
range attractive interaction) appeared, approximately, at the
same time: the model of Bol [24], double-square well model of
Dahl and Andersen [25], and the model of Smith and Nezbeda
(SN) [26]. The gist of both the Bol’s and SN models was that
their formulation allowed formation of not only dimers [36] but
also chains and rings. After focusing first on water and methanol
[37, 38], this idea was later extended to capture properties of
other associating and polar fluids [39, 40] and also to model
colloids (colloids with patchy sites [41, 42]). As it will be shown in
section 2.4, it is fully justified to use these models, either directly
or indirectly, as a suitable reference system for developing an
EoS following both the TD and BU approach. This application is
facilitated by availability of analytic EoS’s obtained from the TPT.
An example of this approach is the family of SAFT equations.

2.2. Perturbation Expansion and Equation
of State
The assumption inherent to all applications of perturbation
methods is a possibility to split the considered function
(property) into two: reference and perturbation parts. In the case
of the classical many particle systems, such a function is the pair
interaction potential,

u(q1, q2) = uref(q1, q2)+ upert(q1, q2) (6)

Since the expansion is then carried out in powers of upert,
from the formal mathematical point of view, it is required that
the perturbation term be much smaller in comparison to the
reference term. However, as it will become clear later, this is
not the case of the considered physical systems and a different
constraint is imposed on split (6). Any general perturbation
expansion of fluid systems (system of many interacting particles)
involves an expansion of the exponential exp[−βU] [43–45],

exp[−βU] = exp[−βUref](1− βUpert +
β

2
U2
pert + . . . ) (7)

where U is the system’s internal energy, U =
∑

i<j u(qi, qj).
The Helmholtz free energy is usually considered as the pivot
function to be expanded from which then any thermodynamic
property may be evaluated using the standard thermodynamic
relations. Alternatively, since the pair correlation function,
g = g(q1, q2) [46], provides the complete information on
the properties of fluids [43, 44], it is also possible to compute
thermodynamic properties from the expansion of the pair
correlation function [6],

g = gref + βǫg(1) + . . . (8)

where ǫ scales energy. It is easy to show that results of the first-
order expansion of the Helmholtz free energy are equivalent
to the result obtained from the zero-order expansion of the
correlation function.

For the purpose of the discussion of the relation between
the perturbation expansion and various EoSs and to make
all subsequent steps in the perturbation expansion (further
introduced approximations) clear, it is more convenient to
use the expansion of the correlation function. We thus start
directly with the expression for pressure (compressibility factor,
z) in terms of the interaction potential and the pair correlation
function [43, 44]:

z ≡
PV

NkBT
= 1−

βρ

6V

∫

(V)

du(q1, q2)

dR12
g(q1, q2)dq1dq2 (9)

Here, P is the pressure, T is the temperature, ρ is the number
density, ρ = N/V , and g(q1, q2) is the pair correlation function
of the fluid at hand.

The above separation of the potential, Equation (6), implies
that the corresponding thermodynamic functions also split into
two terms, i.e.,

z = 1−
βρ

6V

∫

(V)

[

duref(q1, q2)

dR12
+

dupert(q1, q2)

dR12

]

g(q1, q2)dq1dq2

(10)
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Now, using the zero order approximation for g, i.e., g ≈ gref,
we get

z ∼= 1−
βρ

6V

∫

(V)

[

duref(q1, q2)

dR12
+

dupert(q1, q2)

dR12

]

gref(q1, q2)dq1dq2 (11)

= zref −
βρ

6V

∫

(V)

dupert(q1, q2)

dR12
gref(q1, q2)dq1dq2 (12)

= zref + zpert{uref} (13)

where the curly braces indicate that zpert is a functional of the
reference interaction potential, i.e., zpert is evaluated with respect
to the chosen reference system. Equation (13) is the fundamental
equation which makes it possible to differentiate between
different approaches used to “derive” molecular-based EoS.

Interpretation of Equation (13) is evident: provided that the
structure of the reference and original systems is nearly identical
(in other words, if the perturbation interaction has only a
marginal effect on the structure of the entire system), then it is
possible to estimate the properties of the studied system bymeans
of those of the reference fluid with some added corrections.

As a next step we must therefore find a way to determine
the properties of the reference fluid (which, however, may not
be a simpler problem either), and this may involve another
approximation (expansion). For simplicity, we are going to
exemplify this step by considering the simple LJ fluid

uLJ(r) = 4ǫ
[

(
σ

r
)12 − (

σ

r
)6

]

(14)

Considering the Barker-Henderson theory [43, 44], the split of
uLJ reads as

uLJ(r) = 4ǫH(σ − r)
[

(
σ

r
)12 − (

σ

r
)6

]

+ 4ǫH(r − σ )
[

(
σ

r
)12 − (

σ

r
)6

]

(15)

= uref(r)+ upert(r) ≡ uref,rep + upert(r) (16)

with the soft repulsive fluid as a reference whose properties
must be now determined. Unfortunately, no accurate analytic
results for this fluid are available, and we thus have to resort
to another approximation, and it is only at this point where
the HS fluid enters the game. Results of molecular simulations
tell us that the structure of the soft repulsive reference can be
very well-approximated by that of a fluid of hard spheres. The
pair correlation function of the HS fluid is known and may
thus be conveniently used to evaluate the perturbation integrals
with the thermodynamic properties of the repulsive reference
being mapped onto those of a certain HS fluid of an unknown
diameter σHS:

z = zref,rep −
βρ

6V

∫

(V)

dupert(q1, q2)

dR12
gref,rep(q1, q2)dq1dq2 (17)

∼= zHS −
βρ

6V

∫

(V)

dupert(q1, q2)

dR12
gHS(q1, q2)dq1dq2 (18)

It is necessary now to bear in mind that while Equation (13)
results from the perturbation expansion used to determine the
properties of the original simple fluid, Equation (18) results
from a further approximation applied to the reference system to
determine its properties. In other words, Equation (18) cannot
be interpreted as a perturbation expansion about the hard sphere
reference fluid to deal with realistic simple fluids although it may
look so!

To summarize, the perturbation expansion for realisticmodels
is a two-step process, first to find a suitable reference model that
guarantees convergence of the expansion and then to devise a
method for the description of its properties.

2.3. Equations of State Classification
In the light of the results of the preceding subsection wemay now
clearly categorize molecular-based equations of state.

2.3.1. Theoretical (Perturbed) Equations
The derivation starts with an explicit expression of the interaction
model. Using then the equations derived in the preceding
subsection, the resulting EoS possesses the form

z = zref + 1z (19)

where 1z is evaluated with respect to the chosen reference
system and represents a perturbed correction over the reference
system. To accomplish all the calculations, the pair correlation
function of the reference system is required, which imposes, to
a considerable extent, severe limits on this approach. A typical
example of such theoretical equations are the results of the
TPT applied to various primitive models [39, 40]. Considering
realisticmodels, truly theoretical EoS’s obtained by a perturbation
expansion are also available, e.g., for the square-well fluid
[6, 7] or Yukawa fluid [16, 47, 48]. For further discussion,
see section 3.1.

2.3.2. van-der-Waals-Type Equations
This is a mixed molecular-macroscopic BU approach and
overwhelming majority of available equations belong to this
category. Without considering an explicit form of the interaction
potential u, it is assumed that a potential can be split into several
terms (in principle of the equal weight)

u = u0 + u1 + u2 + . . . (20)

and that, accordingly, the Helmholtz free energy can be written
as a sum of the corresponding terms,

A = A0 + A1 + A2 + . . . (21)

and hence also the EoS,

z = z0 + z1 + z2 + . . . (22)

This approach then starts from Equation (21) with the goal
to find/choose appropriate expressions for the individual terms
Ai corresponding to ui in (20). The key difference between
Equations (19) and (22) is that the individual terms in (22) are
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mutually independent, and there are thus no constraints impose
on them. Although the leading term A0 is usually predominant,
the remaining terms, 1z, are just certain corrections and should
be properly called “correction terms.” These EoSs are sometimes
used also for an interpretation of molecular mechanisms
governing the behavior of the fluid systems of interest, but such
an interpretation is not justified because there is no guarantee
that real fluids do follow such mechanisms, and some of their
conclusions may thus be misleading.

A typical example of this approach is the original vdW
equation, and it is worth comparing now the above two
ways toward an EoS to elucidate the difference although both
approaches will end up with the same equation. Let us consider
a simple realistic fluid, e.g., the Lennard-Jonesium. Applying
the Barker-Henderson method for the description of the soft
repulsive reference system, the theoretical route yields [43]

zth = zHS(σ (T))+
∫ +∞

σ

gHS(r)upert(r)r
2dr (23)

where σ is the well-defined reference HS diameter obtained from
the original uLJ potential. Using now a crude approximation of
a uniform distribution of molecules outside the effective hard
spheres, we get

zth = zHS(σ (T))+ const× βρ (24)

We get the same equation following the vdW way of thinking.
Molecules are objects excluding certain volume (hard spheres)
and they are further subject to an attractive interaction due
to the presence of other molecules in the system. By waving
hands (using certain intuitive physical arguments), he set 1z =

const×βρ, which is the same result as in Equation (24). However,
whereas the perturbation term in Equation (24) is clearly defined
and can be improved by using better approximations for gref, in
the vdW approach, there are no clues how to improve it, and any
arbitrary correction can be made.

2.3.3. Semi-theoretical Equations
There are two main obstacles in the theoretical approach:

• A lack of availability of results for the pair correlation function
of the reference fluid that would make the evaluation of the
perturbation integral possible

• A reliance on the chosen force field (interaction model)

The latter problem can be bypassed by lifting the link of the
equation to the chosen force field and considering its interaction
parameters as adjustable ones and evaluating them by fitting
real experimental data. The former problem is more severe. The
reference model must account for the structure of the molecules
comprising the considered fluid and cannot thus be fully general
and applicable for other liquids. It is, however, worth reminding
that neither these models are unique, and, for one and the
same compound, the structure of its molecule may vary from
model to model. For example, for water alone, there are several
geometrical arrangements of the interaction sites upon which the
corresponding force fields have been developed. It is therefore

necessary again to lift some of the theoretical constraints and the
direct link to a specific force field. To describe the structure is a
problem for itself. In this respect, the equations derived in this
way may converge to equations obtained by the BU approach.

2.4. Choice of the Reference System
The choice of the reference system is a crucial step in any
perturbation expansion. The choice is dictated by both physical
and mathematical considerations. From the physical point of
view, one would like to ensure the reference be as close as possible
to the original system. However, in such a case, handling the
reference may be as difficult as handling the original system. On
the other hand, mathematical considerations tend to as simple as
possible reference to make it mathematically tractable.

Perturbation theories of fluids came to existence only after it
had been shown that the structure of the HS fluid is practically
identical to that of the LJ fluid, which estimates the properties
of noble gases quite well. The interpretation of this result claimed
(and this misinterpretation is one that can still be seen today [49])
that the structure of liquids is determined primarily by strong
short-ranged repulsive interactions, but, as already discussed
in section 1, this approach however failed when applied, for
instance, to polar fluids.

Besides the classification of fluids according to the increasing
complexity of their molecules, another view was offered by
Andersen [35]. He classified fluids according to the range
of intermolecular interactions. The underlying idea of this
classification is that it is not the type of interaction (repulsive,
attractive, etc.) but its range that matters. Consequently, the
interpretation of the early simulation results was correct but only
due to sheer coincidence: in the case of normal (non-associating
and non-polar) fluids, the short range part of the interaction
coincides with its repulsive part, but this is not the case for
strongly polar and associating fluids. A systematic investigation
of the effect of the range of interactions on the properties of fluids
was undertaken by Nezbeda and coworkers using a trial potential
that maintains the total interaction at close separations intact and
switches off the long-range Coulombic interactions at separations
beyond a certain threshold [50],

uT(q1, q2) = u(q1, q2) for R12 ≤ R0

= unon−el(q1, q2) for R12 > Rrange . (25)

where it is only a purely technical matter how to actually
construct such a uT within the narrow transition range R0 <

R12 < Rrange. First studies focused on water [51–53], and,
later on, other associating and polar fluids were also considered
[54–56]. Considering a series of values of the cutoff parameter,
Rrange, the effect of its changes on both the spatial and
orientational structure on these fluids was examined. All the
results indicated that the influence of the switching range is
nearly lost when the short-rangemodel uT covers, approximately,
the first coordination shell. It means that the structure of the
systems defined by u and uT is very similar (nearly identical).
In other words, the long-range part of the Coulombic interactions
has only a marginal effect on the structure of pure fluids [50, 57].
In addition to the structural properties, the bulk thermodynamic
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FIGURE 1 | Site-site correlation functions of TIP4P water at ambient conditions in dependence on the switching range, see Equation (25). Curves correspond to
different switching ranges, and the circles are simulation results for the full potential.

behavior and vapor-liquid and selected kinetic properties were
also examined. Selected results are shown in Figures 1–3 and in
Table 1.

It has therefore been necessary to correct the original
interpretation of early simulation results, which has been
misleading. The properties of fluids are determined primarily by
the short-ranged interactions, which may, however, be not only
repulsive (which is the case of simple fluids) but also attractive. In
addition to its utilization for equations of state development, this
result forms also, for example, the basis for the local molecular
field theory of Rodgers et al. [58] who explore a possibility to use
a spherical cutoff of the long-range Coulombic interactions. It is
also worth mentioning in passing that this conclusion may apply
also even to electrolyte solutions as witnessed, for example, by the
success of the use of simple short-range models to estimate their
properties; see, for example [59–62].

The above findings thus (i) fully justify the use of simple
short-range models at all thermodynamic conditions to estimate
properties of fluids and (ii) thus explain why equations of
state based on simple short-range models (BU approach)
may yield reasonably good results. Such models, if properly
constructed, should provide an accurate estimate of the structure
of both polar and associating fluids but not necessarily of all
their thermodynamic properties. In Figure 3, we compare the
orthobaric pressure of the full models and their short-range
versions for several fluids, and in Table 1 the same comparison
is presented for the internal energy and pressure. Whereas the
internal energy is also captured quite accurately by the short-
range model, this is not the case of pressure, particularly at
the dense liquid phase. It means that the contribution of the
neglected long-range Coulombic interactions should be the main
correction to pressure of the short-range models.

2.5. Primitive Models
We are going to use the term “primitive model” (PM) to refer to
simple short-rangemodels (toy models) that capture qualitatively
the key physical properties of a given class of fluids but that

cannot (should not) be used to estimate quantitatively their
thermodynamic properties. For non-polar fluids, the simplest
models serving this purpose are purely repulsive hard spheres,
various hard bodies, or flexible chains of hard spheres.

To reproduce the structure of polar or associating fluids, the
Coulomb interaction at short intermolecular separations has to
be incorporated as well. It is assumed that molecules contain
charges corresponding to lone electrons and hydrogen atoms
(protons). Coulombic-type sites of two kinds (to mimic plus and
minus charges and their interaction) are therefore embedded
to the hard core of molecules (see Figures 5 and 6). A general
primitive model thus assumes the form

uPM(1, 2) = urep,core(1, 2)+
∑

i∈{1},j∈{2}

urep(rij)+
∑

i∈{1},j∈{2}

uattr(rij)

(26)
where the summation in the second term runs over the pairs of
the like sites and in the third term runs over the pairs of the unlike
sites. This is a general definition of the primitive model that
captures the physical reality, namely that, simultaneously with
the attractive interaction between the unlike charges, there is also
an inextricable repulsive interaction of the same strength between
the like charges. Only these two types of interactions together
give rise to H-bonding in real fluids. This corresponds to the TD
approach in which the models are not constructed arbitrarily but
descend from a realistic parent model. For general rules for the
construction of such models see [63, 64]. Two remarks seem here
appropriate. First, although the actual choice for the repulsive
and attractive site-site interactions seem obvious, a hard sphere
interaction for the repulsion and a square-well interaction for
the attractive interaction, there are at least two possibilities of
defining the attraction between the unlike sites, see Figure 4: (i)
Bol [24] defines the attractive interaction between sites i and j
with respect to the vector R12 connecting the reference sites

u
(Bol)
HB (R12, r

(1)
i , r(2)j ) = −ǫSW for R12 < rc; θ1, θ2 < θc

= 0 otherwise , (27)
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FIGURE 2 | Site-site correlation functions of methanol at density ρ = 761.9 kg/m3 and temperature T = 298 K in dependence on the switching range: dashed line
(4,6) [Å]; dotted line (4.7,6.7) [Å]; full line (5.7,7.7) [Å]. Reprinted with permission from J. Phys. Chem. B (2002) 106:7537.

(ii) whereas Smith and Nezbeda [26] defined this interaction
directly by the separation between the interaction sites

u
(SN)
HB (r12) ≡ uSW(|r1 − r2|; λ) = −ǫSW for r12 ≡ |r1 − r2| < λσ

= 0 for r12 > 0 . (28)

A consequence of these different definitions is that the
orientational part of the configurational space over which an
H-bond can be established is constant in Bol’s formulation,
whereas it is tapered with increasing separation between the
reference sites in the SN formulation. Second, the inclusion
of the repulsive interaction between the like sites means that

when all the attractive interactions are switched off, we do not
get a common hard body but the so called pseudohard hard
body (PHB) [65], the body that captures the actual excluded
volume [66, 67], an important concept in molecular physics
of fluids; albeit purely repulsive, it can also yield, to a milder
extent, preferred orientations similar to H-bonding [68]. The
PHB is not a simple hard body, however; it possesses a flavor
of non-additivity, and there is currently no theory for the PHB
fluids available.

In general, there are no a priori constraints imposed
on model’s parameters. Such constraints may be imposed,
for example, in connection with the application of a
specific theory. For example, to make the application
of the TPT possible, it is required that the conditions
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FIGURE 3 | Orthobaric pressures of the full (filled symbols) and short-range versions (open symbols).

TABLE 1 | Comparison of the internal energy and pressure of the parent and their
associated short-range models.

Parent Short-range

ρ U P U P

[kg/m3] [kJ/mol] [MPa] [kJ/mol] [MPa]

Water; T = 298K

1,000 −41.42 (23) 29.20 (4,016) −41.98 (28) −36.23 (3,747)

1,120 −42.02 (28) 358.9 (510) −42.69 (28) 286.8 (439)

Water; T = 353K

1,000 −38.57 (28) 112.3 (425) −38.91 (29) 64.44 (3,757)

1,120 −39.56 (21) 462.9 (431) −39.98 (23) 421.9 (411)

Acetonitrile; T = 298K

800 −34.48 (8) 283.4 (4) −31.53 (3) 107.1 (19)

Hydrogen fluoride; T = 350K

1,200 −25.94 (04) 2,634 (103) −26.26 (06) 2,379 (119)

Numbers in parentheses denote the error of last digits.

of the so-called steric incompatibilities be satisfied, see
section 2.5.

The above procedures of constructing the primitive models
make it possible to examine their structure and, consequently,
verify their suitability for the reference fluid. Although the
structure is an important physical property, its main use is in
theoretical considerations only; in applications with primary
focus on the thermodynamic properties, the structure plays only
a marginal role. This is the case of the BU approach which
focusses on the final net effect of the Coulombic interactions, i.e.,
on the establishing of H-bonds only, but not on the interactions
themselves. It means that in the BU methodology, the second
term in (26) is omitted.

Another way for constructing primitive models has thus
been followed. Chapman and coworkers, while developing SAFT,
utilized the idea of hard bodies with embedded interaction sites
and constructed a caricature of molecules also as bodies made

FIGURE 4 | Schematic representation of the H-bonding: Bol’s notation
(upper) and Smith-Nezbeda’s notation (lower).

up of segments with certain interaction sites [21]. However,
bearing in mind the TPT to be used for the evaluation of the
thermodynamic behavior of the models, no site location was
specified because the TPT of the first order is independent of
the site’s location. Furthermore, to make the models as simple as
possible, and thus (i) easily tractable by theory and (ii) readily
applicable to a variety of different fluids, smaller molecules
are simply pictured as hard spheres, and larger non-spherical
molecules are pictured as chains of hard spheres, see Figure 7.
These models (i.e., SAFT models) consequently do not have
any relation to real molecules and any realistic intermolecular
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FIGURE 5 | Schematic representation of the site-site interaction in the primitive model (A) and the associated pseudohard body (B). Symbols N and P denote the
negatively and positively charged sites, resp. Reprinted with permission from Pure Appl. Chem. (2013) 85:201.

FIGURE 6 | Primitive models descending from realistic force fields.

FIGURE 7 | Intuitive primitive models used in SAFT modeling. Shaded circles denote Coulombic interaction sites.

interaction model, and their actual form is therefore rather
arbitrary with all its parameters treated as adjustable.

2.6. Thermodynamic Perturbation Theory
The TPT was developed by Wertheim in a series of papers [69–
72] to deal with systems exhibiting association or polymerization,
i.e., the systems with strongly orientation-dependent and short-
ranged attractive interactions with the general interaction in
the form of Equation (26). He presented a concise scheme that
produces also integral equations (solved analytically, for example,

for the one-site SN model [10]). It is not a general theory in
the sense that (i) it requires a special form of the interaction
function and (ii) explicit results are not universal functions but
have to be developed specifically for the model at hand (e.g.,
number of the interaction sites per molecule). There are two
important constraints imposed on the interaction model for
the TPT to be applicable, the so-called steric incompatibilities:
(1) one interaction site can be engaged in establishing one
bond only, and (2) only one bond can be established between
two molecules. Provided that these two constraints are not
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satisfied, the results rapidly start to deteriorate (when compared
to simulation data), and when the constraints are ignored, any
application of the TPT is only a formal use of certain formulas
with unpredictable results. Here we provide only the basic
relations of the theory referring the reader to original papers
and to a detailed pedagogical review by Zmpitas and Gross [73]
for details. For the demonstration of the model dependence
and discussion, we present here explicit results for the four-site
model, which is a typical model of water (ST2-type models with
tetrahedral geometry [74]); explicit expressions of the EoS for
different compounds/models can be found in [13] (Equations
22–24 therein).

The TPT theory assumes the interaction function in the
form of Equation (26) and starts from its decomposition
into a repulsive reference part and a highly directional
perturbation part:

u = uWref + uWpert (29)

where uWref = uhardcore, i.e., the fluid with all attractive
interactions switched off, and subscripts “W...” are used to
distinguish these potentials from those used in a general
perturbation expansion. The quantity addressed by the theory is
the excess Helmholtz free energy,AWref, which is expanded about
a reference, and, using the diagrammatic technique, it tries to
evaluate the contribution due to the association given by uWpert

by rearranging the graphs and neglecting certain classes thereof.
The key function of the TPT are integrals I, which involve the

Mayer function of the HB bond interaction and (in the first-order
theory) the reference (hard body) fluid pair correlation function:

I =

∫

gWref(q1, q2)fHB(q1, q2)dR12d�1d�2 (30)

where fHB is the H-bonding Mayer function, fHB =

exp(−βuHB) − 1. For a four-site model with two (P)-sites
and two (N)-site embedded to a hard sphere, the final result
for the residual free energy in the first order expansion is
given by [75]

βA = AWref +
2c

1+ c
− 4 ln(1+ c) (31)

where c is obtained as the solution of a simple equation involving
the integral I as a parameter,

c =
1

2
[
√

(1+ 8Iρ)− 1] (32)

As mentioned in the preceding subsection, simple models may
have also odd number of Coulombic sites. In this case, one site
has to establish two bonds that may cause problems with the
application of the TPT—the condition of steric incompatibility is
not satisfied. Using the TPT as is in the first order for suchmodels
is definitely not correct, but this problem may be bypassed, at
least partially, by considering the theory in the second order.

TPT is an approximate theory, and its accuracy is therefore
an important issue. Surprisingly, only little attention has been

paid to it. Nezbeda et al. [75] examined TPT for a four-
site primitive model of water within the context of other
theories for primitive models and reported rather disappointing
results. A more thorough examination was carried out by
Slovak and Nezbeda [76] considering both the site-site and
angular interaction formalism. Physical properties examined
were the internal energy, pressure (equation of state), and the
heat capacity, CP. A general conclusion they drew from the
comparison of the theory with the simulation results was that
the theory is only fairly accurate at liquid densities and low
temperatures and becomes reasonably accurate only at higher
temperatures and low densities. They attributed the found
discrepancy to only an approximate resummation of graphs at
the level of the first order expansion when only one pair of H-
bonded molecules is considered in the reference hard body fluid.
Better results may be/are obtained from higher order theories.
Application of the TPT to water represents a very stringent test.
Although no similar examination for simpler models (fluids) has
been carried out, it may be assumed that the theory will perform
better for other fluids.

Vlček et al. [15] implemented the TPT of the second order
and carried out molecular simulations again. Besides a model of
water, they also considered a primitive model of methanol that
has only one pair of the Coulombic sites. In this latter case, the
TPT was in perfect agreement with simulations over the entire
range of thermodynamic conditions. The model of water was in
perfect agreement with simulations at higher temperatures and
at low and intermediate densities; yet the agreement was at least
semi-quantitative at very low temperature and high density.

3. TOWARD AN EQUATION OF STATE

3.1. Perturbed Theoretical Equation of
State
As mentioned in section 2.2, to implement the perturbation
expansion, a reference fluid has to be determined first, and,
according to Equation (13), its correlation function is then
required for the correction terms to be evaluated. This step
is accomplished by approximating the reference fluid by an
appropriate primitive model. In the case of simple fluids, this
does not bring about any problem because such a primitive
model is the fluid of hard spheres. For other fluids, the primitive
model contains both a hard core and an orientation dependent
attractive interaction. There are theoretical tools available how to
estimate its thermodynamic properties, but this is not the case
of correlation functions. Immediately available is the correlation
function for the SN model [11], but for other PM models we
have to resort to an additional approximation. Integral equations
are, with the exception of the Yukawa fluid, out of the question
because they yield only numerical results. There thus seems
to be only one general tool that may offer an analytic result
for g(q1, q2): the RAM (Reference-Average-Mayer function)
perturbation theory [77]. Accuracy of this theory was examined
by its application to a PM of water [75] with the results found
of medium accuracy only. Since it is required that the result
be in an analytic form, this would further require additional
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approximations. Accounting for the fact that the TPT itself may
not be sufficiently accurate, it is then questionable whether such
an effort is worth trying at all because it is very likely that only a
low-quality result can be expected. Nonetheless, the RAM theory
can be used for other purposes, see, for example, section 3.3.

It can thus be concluded that there is no theoretical method
able to provide a reliable and good description of the structure of
the PMs in an analytic form. As it thus stands, it seems that the
truly pure theoretical TD approach to develop an analytic EoS has
reached its limits.

3.2. van der Waals-Type Approach: SAFT
A typical example of modern vdW-type EoS is the family of
SAFT equations. SAFT methodology views molecules as objects
built from spherical segments (atoms, molecules, or functional
groups) that interact through isotropic interaction forces.
It does not consider any explicit intermolecular interaction
model but implicitly assumes that there are three major
contributions to the total intermolecular interaction energy [22]:
(1) the repulsion-attraction contribution between the individual
segments (monomers), (2) a contribution due to the formation
of chains, and (3) a contribution due to formation of association
complex between different segments. The Helmholtz free energy
is then written as a sum of three mutually independent
contributions, each of them corresponding to the above type of
interaction. In terms of the corresponding compressibility factor,
it reads as [22]

zSAFT = zsegment + zchain + zassoc (33)

Decomposition (33) does not have any a priori justification and
was based only on intuitive physical considerations in the same
way as the original vdW equation. Only later studies on the
effect of the range of interactions discussed in section 2.4 have
provided a support for it. Specifically, it is the explicit inclusion
of the association term because it is the short-range Coulombic
interaction, which plays the predominant role. In this respect,
Equation (33) should be more appropriately, at least formally,
written in another order with zassoc as the leading term.

The monomer-monomer interaction is the subject of choice.
The most common choice used to be the LJ potential for which
several analytic equations of state are available [2, 78, 79].
The hard-core Yukawa can also be a potential choice for the
same reason [47, 48]. It is also used for the description of
screed Coulombic interactions while the Sutherland potential is
useful for systems with multipolar interactions. The exponents
of the LJ potential, (m, n) = (12, 6), were originally chosen for
convenience without deeper physical justification. Lafitte et al.
[80] let the (m,n) exponents be free adjustable parameters (Mie
potential) gaining greater flexibility (two more parameters for
fitting) for the description of the softness/hardness of repulsions
and also for the range of the attractive interaction. The specific
choice of the monomer-monomer interaction also affects the
evaluation of the corresponding contribution to the EoS and a lot
of effort has also been invested into its development. This activity
brings researchers back to the period when perturbation theories
of simple fluids were in their focus.

An open question remains whether to directly incorporate
also the long-range Coulombic interactions into Equation (33).
In their paper [33], Muller and Gubbins conclude that these
interactions are more important than it was previously thought
and this would also fully agree with the results shown in Table 1.
An extension of Equation (33) by including explicitly the dipole-
dipole contribution was considered by Karakatsani et al. [81] to
deal with strongly dipolar fluids and recently also by Ahem et al.
[82]. An extension along the same path wasmade by Liu et al. [83]
who, in addition to incorporating the dipole-dipole interaction,
employed the hard-core Yukawa for the monomer-monomer
interaction instead of the LJ. On the other hand, Clark et al. [84]
argue that this contribution is not necessary and can be captured
in an average fashion by short-range primitive models. Although
this may be acceptable from the point of final numerical results,
this attitude contradicts the primary finding of section 2.4 and
takes SAFT farther away from physical reality.

The incorporation of the dipole-dipole interaction
contribution to Equation (33) deserves a further discussion. The
intermolecular interactions have their origin in the electrostatic
interactions whose contribution can be expressed as a sum of
multipole-multipole interaction contributions:

u = u0 + uDD + · · · + uoct−oct +
∑

uhighermultipoles (34)

This interaction gives rise to the H-bonding phenomenon at
short intermolecular separations. It means that it is thus possible
to rewrite Equation (34) into the form

u = uHB for R12 ≤ Rcut

= u0 + uDD + · · · + uoct−oct

+
∑

uhighermultipoles for R12 > Rcut (35)

where Rcut is a certain cutoff. It becomes now clear that
the simultaneous inclusion of the dipole-dipole contribution
and the H-bonding contribution means that the dipole-dipole
contribution from short intermolecular distances is counted
twice: its contribution from the short separations is already
accounted for by the H-bonding term. This should be evidently
avoided but the question to what extent this double counting
affects the results needs to be examined.

To obtain an EoS in an analytic form, the key integrals of type
I, Equation (30), have to be evaluated. The integrals contain the
correlation function of the reference fluid which, with exception
of the fluid of HS, is not available. Since the integration range
should be quite narrow, which is required by the conditions
of steric incompatibilities, an obvious approximation is to use
the rectangular rule for the evaluation of the integral and
approximate gHS by its contact value, g∗HS. Nezbeda and Iglesias-
Silva [85] approximated g close to contact by a straight line
defined by the contact value of gHS and its first derivative, whereas
Jackson et al. [86] used the approximation r2g∗HS ≈ const.
Nonetheless, comparison of simulation results with those based
on these approximations showed that the results were nearly
identical and that inaccuracies in I had only marginal effect [76].
This finding may thus make evaluation of I easier in cases when
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the reference fluid is not that of HS because the use of rather
crude approximations may be justified.

As is obvious from the above discussion, there is nearly an
unlimited number of possibilities to modify or extend SAFT
equations. This is in fact the property inherent to any EoS
developed using the BU approach and reflects the fact that SAFT
is a methodology and not a rigid EoS [22]. It is not the goal of this
paper to review SAFT equations, and let us mention therefore at
least their main types. Besides the original SAFTwith hard sphere
monomers, SAFT-HS, two other main versions are SAFT-VR
(variable range) [87, 88] and PC-SAFT (perturbed chain) [49].
Furthermore, there is also a group contribution version, SAFT-γ
[89], SAFT-RPM [90–92] dealing with electrolytes, and SAFT-
VR-D [81, 93] for dipolar and dipolar and associating fluids.
The most recent development includes SAFT-µ [80, 94] whose
monomer units interact via a Mie-type potential with adjustable
exponents. Furthermore, here is a number of modifications and
applications of all these versions and we refer the reader to
available review articles for further reading [22, 23, 95, 96].

3.3. Equations of State for Water
3.3.1. SAFT Equations
Number of SAFT equations developed for water is enormous.
In their recent review from 2016 on SAFT for water, Vega
and Llovell [29] list altogether 47 SAFT equations belonging
to 9 different versions of SAFT. Yet, many other equations
(typically of the same type of equation but with different sets
of parameters) are missing. The molecular size and energy
parameters of the listed versions vary within the range 1.91–
3.59[Å] for σ and 839–2,932[K] for ǫ/kB pointing again to the
fact that these parameters may hardly have anything common
with physical reality and are pure numbers. As an interesting
example we may mention conclusions of the very recent paper
by Ahmed et al. [82]. They report excellent results for the VLE
of water and other compounds with one interesting feature: to
obtain these results, the size of the monomer unit has to swell
with increasing temperature, which contradicts both common
sense and the observed (and obtained by theory) behavior; with
increasing temperature, the molecules attain kinetic energy and
get closer to each other which means that, effectively, their
excluded volume shrinks.

The primary question concerns which model of the water
molecule to use and all three possibilities, models with two,
three, and four Coulombic sites were considered. It is also
argued that the number of sites may not be fixed and should
be conveniently changed, particularly in aqueous solutions
according to solutes. Two-site geometries have therefore also
been used. For arguments and discussion of these choices
see [29].

There are many papers which include, among other
compounds also water but not many papers with the focus on
water. An exception are two papers by Jackson et al. [84] and
Dufal et al. [94]. The above problem was subject to a thorough
research of Clark et al. [84] not from the point of the relation
of the water model to reality but which model suits best SAFT.
They considered all three possibilities, two, three, and four
Coulombic site models. Since the four-site model turned out to

yield superior results they furthermore considered four different
sets of parameters for this model. They concluded that the model
with four Coulombic sites with the W2 set of parameters is the
most appropriate in describing the H-bonding in water, yielding
the largest ratio of the H-bonding and dispersion energies, and
also more realistic degree of association. This could, however,
be anticipated, as the four-site arrangement does not give to
molecules too many chances to adopt other arrangement but
tetrahedral. Despite all the effort invested and careful analysis and
discussion in that paper, the recommended parameters are just
numbers because the model ignores completely all long-range
Coulombic interactions, which is compensated by adjusted values
of the parameters.

The other paper [94] discusses in detail an application of
the TPT to the model u = uMie + uassoc and it deserves a
comment. Although, in general, SAFT assumes some form of
the interaction model, we are not aware of any paper where the
structure corresponding to the model is examined. The excellent
agreement of thermodynamic data may hide deficiencies in the
structure which would debase the equation. For example, as
a step beyond the hard core with interaction sites, a more
“realistic” model, the LJ particle decorated with H-bonding sites
was proposed [97]. Nezbeda and Slovak simulated this model
[98] with the following result: (i) when the H-bonding energy
parameter found in [97] was used, the resulting structure was
typically argon-type; (ii) to obtain a water-type structure, it was
necessary to increase the energy parameter to a very high value,
and the model then behaved like HS with bonding sites. It may
be expected that a similar result will be obtained also with the
uMie + uassoc model. It would be therefore interesting to examine
which structure it will actually produce.

Water is known to exhibit a number of anomalies that seem to
be ignored in most applications of SAFT. This is quite surprising
because the anomalies are fingerprints of water and their (at
least qualitative) reproduction is therefore very important if the
equation is to describe the behavior of real water. However,
behavior of pure water outside the region of phase equilibria is
only rarely addressed. An exception is paper [94] in which some
response functions are reported, albeit only at high pressures.

To summarize, there is no doubt that SAFT equations are able
to do great job concerning the correlation of experimental data
but their contribution to better understanding of the behavior of
water has so far been minimal.

3.3.2. Semitheoretical Equations
In their first application of PMs to water, Nezbeda and Pavliček
[99] constructed the full EoS similarly as in SAFT fashion with
the ST2 geometry of the PM, considering also the dipole-dipole
term. The EoS was thus in the form

z = zPM + zdisp + zDD (36)

The dispersion term was considered in its simplest form as the
mean field contribution, and the DD term, to avoid double
counting of electrostatic contributions at close separation, was
assumed as a dipolar hard sphere of a diameter larger than the H-
bonding radius. Parameters of the EoS were evaluated, as usual,
by fitting the VLE data, and the results were found satisfactory.
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A more sophisticated equation along this line was developed
by Nezbeda and Weingerl [100] using a four-site parent model
and the first-order TPT. The EoS had the same form as above
and the parameters were evaluated so as to obtain the best
representation of the vapor pressure and coexistence liquid
densities from the triple point up to 643.15 K. The equation
remains reliable also for various thermodynamic properties
outside the coexistence region. It reproduces the anomaly in the
isothermal compressibility locating its minimum at T = 38◦C
(vs. the experimental value T = 46oC) at P = 1 bar. Its overall
performance is of the same quality as that of the SAFT-YDD
(Yukawa-dipole-dipole) [83] one.

An attempt to derive an equation following the theoretical
route was made by Jirsak and Nezbeda [101]. Within the spirit
of perturbation theory, we considered modeling water not as
a whole but only by its short-range part, and its description
by a PM was considered. The parent model was the best non-
polarizable model of water, TIP4P/2005 [74]. The short range
reference was obtained by deducting its long range Coulombic
interaction and the associated PM was then obtained by making
use of the RAM [77] and Barker-Henderson theories [6]. The
PM thus contained only one parameter, the H-bonding energy
ǫ/kB, the parameter which does not exist in the parent model.
To keep contact with it (and hence also with real water), they
set the value of ǫ/kB to 4440K to obtain, approximately, the
experimental temperature of the density maximum and applied
the 2nd order TPT developed in [15]. Having in mind that it
is the theory of the short-range reference and not of complete
water, the qualitative behavior of the response functions, the
thermal expansion coefficient, α, the coefficient of isothermal
compressibility, κ , and the residual isopiestic heat capacity were
examined with the following result. At low pressures, α is a
monotonous function that becomes negative with decreasing
temperature, which means that the density exhibits a maximum.
At elevated pressures, the maximum of ρ moves to lower
temperatures in agreement with experimental observations.
Another interesting feature of α is crossing of all isobars in a
small region around 360 K and α ≈ 0.4 × 10−3. This behavior
corresponds surprisingly well to that observed on real water:
α of real water exhibits the same phenomenon around 325 K
with α ≈ 0.45 × 10−3. All these findings correspond to rather
a very complex behavior of α as a function of pressure along
isotherms. The temperature dependence of the coefficient of
isothermal compressibility exhibits a minimum that becomes
less pronounced with increasing pressure in agreement with the
experiment, and there is also a decrease of κ with increasing
pressure. The residual isopiestic heat capacity is found to be only
weakly temperature dependent, exhibiting, in agreement with
reality, a very shallow minimum. The pressure effect on 1CP is
very small.

To summarize, the fact that the proposed theoretical approach
reproduces the known anomalies of water semi-quantitatively
without any reference to or incorporation of H-bonding should
be considered as a great success of theory. Accounting further
for the fact that all the results are available in an analytic form
this would be the perfect reference system for developing a
perturbation-theory-based EoS.

4. SUMMARY AND CONCLUSIONS

The ultimate goal of the statistical mechanics of matter is to
provide methods of explaining and predicting the experimentally
measurable quantities of a given substance in terms of the
properties of its constituent particles. From the purely theoretical
point of view this is feasible because all gears, theories, and
simulation methods are readily available. The problem is their
implementation. In chemical engineering applications, it is
demanded that the obtained equations be in an analytic form
while most of the exact statistical mechanical results are in
a numerical form only. It is therefore necessary to restore
to approximations, but this has to be done with caution.
Results of statistical mechanics possess the great power of
predictability, whereas too crude approximations may debase
them to mere correlation schemes; some recommendations are
summarized below.

The theoretical perturbed equations and SAFT equations
represent two extreme methods for developing EoS. As already
discussed in section 3.1, the theoretical approach is too strictly
bound to a parent realistic model which itself has always
some deficiency. Furthermore, it also imposes certain limits on
theoretical tools, e.g., the simple model used in the process is
subject to certain rules. Finally, it may hardly handle fluids made
up of large flexible molecules. On the other hand, SAFT is not
linked to any real fluid, and its connection with molecular theory
is at the same level as it would be the vdW equation in which
the original hard sphere term was replaced by the correct EoS
of the fluid of HS: a very rough model of molecules is treated
by the very sophisticated TPT. Although attempts to improve
its performance have been made, these attempts are driven by
intuition and analogies only and also keep the resulting EoS only
more complex. No doubt that the SAFT equations have been very
successful in correlating experimental data, but their potential
to predict the properties of fluids in the regions where no data
are available—a factor of great importance and necessity—is
very questionable.

As it appears, the best way to obtain an accurate and reliable
EoS with a potential of predictability may be a combination of
both above approaches, i.e., a semi-theoretical approach. It is
evident that the crucial point along this way is the choice of a
reference fluid that should capture most of the behavior of the
studied system (or, more accurately, of the short-range reference
fluid) and remove the burden imposed on the correction terms.
At this point, the theoretical route may fullfil its role: to supply a
primitive model mimickingmore or less faithfully real molecules,
their interaction, and the structure of the fluid. If this is satisfied,
the correction terms will play much less important role and will
not need too sophisticated elaboration.

A very important problem is the evaluation of the parameters
of equations. It is important to bear in mind that the primitive
model should reproduce as faithfully as possible the properties
of the reference fluid and not of the considered fluid. It means
that the parameters of the primitive model and of the correction
terms have to be evaluated separately, which will make this route
different from the current SAFT and previous semitheoretical
approaches. Concerning the evaluation of the parameters of the
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correction terms, this is discussed in [84]. A typical choice used
in the majority of papers on SAFT are vapor-liquid equilibrium
(VLE) data. Clark et al. discuss this problem and are aware
of the fact that the pairwise additive force fields are not able,
in principle, to describe simultaneously the behavior of liquid
and gas [102] of strongly associating fluids and that only the
orthobaric pressures and liquid saturated densities should be
used in fitting.

Another important problem concerns the inclusion of the
dipole-dipole interaction. The best and simplest, and also most
commonly used, is the Padé approximant of Rushbrook et al.
[103]. However, its incorporation is not straightforward, which
is not always recognized. It is not possible to formally add this
term as is to the EoS. As mentioned in section 3.2, the dipole-
dipole interaction at short separations is part of the electrostatic
interactions that result in H-bonding and is thus already included
in the models with the explicit H-bonding terms. If this is not
taken care of, the electrostatic interaction at short separations
will be counted twice. To assess the importance/effect of this
inconsistency remains to be done.

An associated problem is the choice of properties to use to
assess the developed EoS. In the overwhelming majority cases,
how accurately the equation can correlate the equilibrium data is
reported as a rule despite the fact that such data were, at least
partially, used for the evaluation of the parameters. It is not
necessary to bother with the structure because this should be
the problem of the primitive model to be developed. We think
that the useful and fair way to assess accuracy/correctness of
the EoS is to go away from the phase equilibrium region and
to present the response functions, i.e., the second derivatives
of the Helmholtz free energy. Not only water but also other
associating fluids exhibit an interesting behavior of these
functions. This comparison could cast light on the quality of the
derived equation.

The last remark concerns the future development. In this
review, we have focused on pure fluids, which is of importance
for theory, but in applications, we have to deal primarily with
mixtures. Mixtures were in the focus of research in the early

stages of the development of theories of fluids, but we are not
aware of any systematic theoretical research activities at the
present time. Moreover, whereas for pure fluids force fields
are being continuously developed and improved, practically no
results are available for the intermolecular interaction between
the molecules of species A and B. In other words, the effect of
the presence of molecule B on the pair interaction A–A is not
known, and empirical combining rules must be employed. This
deficiency could be, at least partially, bypassed by employing
polarizable force fields but then the theoretical path is out
of question. Consequently, a SAFT-type approach remains at
present the only available tool to deal with mixtures (and other
complex problems such as for example, interfacial phenomena).
With regards to theory, it can be assumed that the effect of
the range of interactions found for pure liquids will hold true
also for mixtures. A natural choice for the reference system will
then be a mixture of primitive models, though with the only
exception [104] that results for the thermodynamic properties
of such mixtures are missing. It is generally accepted that
excluded volume effects are responsible for a number of observed
properties of mixtures, and the primitive models (or their
pseudohard cores) may capture them. It is also known that
mixtures/solutions, e. g., aqueous solutions of alcohols, exhibit
anomalies in their structural properties and primitive models
may be able to capture them. All these theoretical results may
lead to a more sophisticated reference system, which is the key
to developing accurate and reliable equations of state.
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Microscopic Model of Intermediate
Phase in Flexible to Rigid Transition
Aldo Sayeg Pasos-Trejo* and Atahualpa S. Kraemer*

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico

We introduce a lattice gas model with a modified Hamiltonian considering different energy
for cycles of connected atoms. The system can be interpreted as a chalcogenide glass
with pollutants forming floppy and rigid structures. We consider an energetic penalization
for redundant bonds in the network. This penalization allows us to incorporate the topology
constraints of rigidity in the network to study the thermodynamics of the system. We
observe, depending on the parameter used for the penalization, that the system exhibits a
typical first-order phase transition, or a stepped transition between the low and high
density while varying the chemical potential. We also observe a hysteresis loop in the
density and energy of the system. We use the area of these loops to calculate the
irreversible enthalpy. There are two regimes, one where the enthalpy decreases linearly
and the other with almost constant enthalpy. As the enthalpy is almost constant and very
low, we interpreted this as the intermediate phase of the chalcogenide glasses.

Keywords: chalcogenide glasses, covalent network, rigidity, intermediate phase, phase transition, lattice gas

1 INTRODUCTION

Lattice gas models are among the simplest thermodynamic models that exhibit a phase transition
with an exact solution in 2D. The nearest neighbor interaction and limitation of occupation in
volume allows emulating a real gas in potentials such as Lennard-Jones [1]. This model has proven to
be useful in different contexts, such as condensation of DNA [2], or the absorption in controlled-pore
Glasses [3]. There is also a direct relationship with the Ising model, which was first used to study
ferromagnetic materials [4], and then many other materials as spin-crossover materials [5], or spin
glasses [6] among others. On the other hand, chalcogenide glasses seem to be some of the most
promising materials for future technology, with important applications [7–9], ranging from solid
state batteries [10, 11] to optics and photonics infrared devices [12, 13]. Topology and rigidity of the
network are characterizing properties of these glasses [14, 15].

Experimental modulated differential scanning calorimetry (MDSC) and computational molecular
dynamics (MD) studies near the glass transition over chalcogenide materials have found anomalies
in the behavior of the macroscopic variables of these materials, giving rise to what is known as the
intermediate phase [16–18]. Although theoretical explanations regarding the significance and
existence of this phase exist, as far as we know, no microscopic model which recovers the
thermodynamic macroscopic properties of the system has been constructed to this date. The
purpose of the paper is to provide a simplified microscopic model that reproduces the behavior of
thermodynamic variables in the intermediate phase.
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2 INTERMEDIATE PHASE AND RIGIDITY IN
CHALCOGENIDE GLASSES

The anomalies mentioned previously, along with most of the bulk
properties of chalcogenide glasses, have been related to a
microscopic property of their covalent network called rigidity
[19]. It can be defined as the property of atoms being able to move
without deforming current bond angles and lengths. More
precisely, a whole mathematical formalism can be developed
to study rigidity [20].

Independently of the mathematical theory of rigid networks,
simplified models have been extensively used to study the rigidity
of glasses, with particular focus on reproducing the transition
between rigid and floppy modes [21]. The most relevant of them
is the percolation rigidity model, based on constraint counting,
which can be exactly solved using mean-field
approximations [22].

Besides the obvious complexity arising from the absence of
long-range order in amorphous solids, the challenge in building a
model that recovers macroscopic properties relies on the
difficulty of representing the vibrational entropy accumulated
near the boson peak and the inherent degeneracy of most of the
configurations [23].

Such difficulty is directly related to the problem of effectively
quantifying the rigidity of the network so it can be incorporated
into the microscopic model. Mean-field theories are incapable of
describing the microscopic scale accurately. In the particular case
of two-dimensional networks, the pebble game algorithm [24] is
capable of decomposing a network onto its rigid components
with sufficient speed, but it does not give a method of relating
rigidity to thermodynamic variables.

The algorithm relies on Laman’s theorem [25] which
characterizes exactly the rigidity of a network embedded in a
two-dimensional Euclidean space. The referred theorem hasn’t
been successfully extended to other dimensions due to the
difficulty of the exactly characterizing the rigid components of
a network embedded in an arbitrary geometry. For dimensions
greater than two, approximations are commonly used [26]. As we
are only interested in quantifying the rigidity as a function of
thermodynamic variables in a more accurate way than the mean-
field theories, we could aim to use a non-precise but a simplified
model of the network by using a modified lattice gas model. This
model should take into account the results obtained by the pebble
game algorithm when simulating the transition to a rigid system.

2.1 Description and Behavior of
Chalcogenide Glasses
Chalcogenide glasses are amorphous solids built upon members
of the 16 group of the periodic table (S, Se, Te) by doping them
with members of another group, most commonly group 15
(As,Sb). To a molecular level they can be completely described
by a continuous random network (CRN) [27]: a molecular
network where each edge represents a covalent bond.
Although van der Waal forces between pairs of free electrons
are normally present in the system, those interactions are weak
enough to be left out of the CRN model.

Raman Spectroscopy allows us to obtain the resonant
frequencies of the vibrational modes of the network, which is
related to the different molecular structures (components) of the
network. This information allows to calculate the entropy by
using the formula S � ∑ xilog(xi) where xi is the relative fraction
of each component [28]. This approach has been particularly
useful in numerical studies [23].

The relationship between the topology of the network and its
rigidity to the macroscopic properties of the system via the
changes in its density of states was first proposed by Phillips
[14, 15] and further confirmed from mean-field constraint
counting approaches to rigidity by Thorpe [19, 29].
Experiments have also shown that when examining glasses of
the same compound but different stoichiometries, which is
equivalent to changing the mean coordination number of the
network, macroscopic properties change as a function of the
stoichiometries and present a transition when passing for
coordination numbers similar to the theoretically predicted by
mean-field theory [30, 31]. In addition, when performing
experimental MDSC calorimetry studies of chalcogenide
glasses, we can measure the heatflow during endothermic and
exothermic processes of the system. With these measurements,
the irreversible enthalpy when passing through the glass
transition can be obtained. When analyzing such data as a
function of the stoichiometry of the glass, a reversibility
window is found, in which the irreversible enthalpy vanishes
[16]. Such a window can not be directly associated with a rigid or
floppy phase of the CRN; it forms a new phase called intermediate
phase [16].

The importance and existence of the intermediate phase are
confirmed by the exotic behavior of other macroscopic properties
of the glasses in such a window [32], such as ionic conduction
[33] and infrared reflectance [34]. The intermediate phase has
also been observed by measuring the configurational entropy of
the system [23, 28, 35, 36]. Studies on other chalcogenide glasses
and oxide glasses also exhibit an intermediate phase with similar
anomalies in the macroscopic variables [17], and it can also be
observed in molecular dynamics simulations [18].

Such experiments have also measured quantities that are
directly related to the average coordination number and the
number of floppy modes (see for example [17] and references
inside), which can be used to quantify the constraint density [16].
Those quantities have been also developed in analytical and
numerical treatment of this materials [14, 17].

Despite the experiments and simulations carried out the
intermediate phase is still controversial especially due to
contradicting experimental studies in which a structural origin
of the phase isn’t found [37–41].

2.2 Microscopic Models
Besides the experimental controversy, some efforts have been
made in order to construct a microscopic (structural) model that
reproduces the exotic behavior of the macroscopic variables of the
system. Outside of the intermediate phase context, several
microscopic models have been developed [27, 42], more
recently putting effort into describing the glass transition and
the Arrhenius-like behavior [43, 44].
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One of the first models [45], uses a random bond network that
allowed to control the number of rings of bonds, which are
problematic in the rigidity percolation theory. The authors used a
computer simulation that allowed constructing the network
beginning in a floppy mode and growing it by adding bonds
that restrict movement in a non-redundant way (i.e., the bonds
reduce the degrees of freedom of the system). After all of the
independent bonds have been placed, the bond allocation
continues and its performed at random. With this model, the
authors were able to observe a transition from a floppy state to a
rigid, non stressed (i.e., without redundant bonds) and from there
to a stressed network. The key element in the model is in the
procedure of the building that allows for self-organization in the
network.

This model was further developed by Chubynsky et al. Ref. 46
in order to work with networks in thermodynamic equilibrium, as
the network construction process of the original model could lead
to highly atypical networks for the system. This model changes
the original only in a small way: it grows the network from a
floppy state by adding independent bonds, but every time it adds
a bond it deletes and creates a bond that doesn’t change the stress
(i.e., the redundancy of another bond) of the network.

Another model Ref. 47 also uses the self-organization of the
network, in this case by explicitly describing the Hamiltonian as
the number floppy modes. The network is restricted to a Bethe-
like lattice (of finite size). The system is then studied using Monte
Carlo simulations, switching configurations by rewiring two
randomly selected nodes. The intermediate phase is found in
terms of changes in the probability of a stressed cluster that exists
and percolates through the entire lattice.

It must be acknowledged that the three mentioned models
depend on the Pebble Game algorithm in order to describe the
independent bonds of the network. Other models have been
studied before those mentioned [48]. They do not depend directly
on the exact description of the rigid components of the network,
but instead approximate those components via loops or cycles of
the covalent graph. They are also known as tree-like percolation
models. Most of these models do not produce a uniform ensemble
with equal probability for all tree-like structures, although they
can be treated as if they were in thermodynamic equilibrium.
Tree-like percolation models also include self-organization by
avoiding the building of loops.

Models that directly attack the thermodynamic properties
from the hamiltonian either analytically [49] or numerically
via stochastic descriptions [23] have also been developed.
Another important aspect of the models in this subsection is
the fact that most of them are designed only to describe the
system in moments where we can accurately characterize the
vibrational entropy of the atoms. Such an assumption implies that
the temperature T of our systems is much smaller than the Debye
temperature TD.

3 MODEL

Similar to tree-like percolation models, we can argue that in two-
dimensions the redundant constraints put by adding a bond to an

atom with zero degrees of freedom is equivalent to whether the
connectedness of the graph will depend on such bond. In a lattice
gas model, an independent bond will be a bridge edge of the
graph, and rigid components become equivalent to components
isomorphic to cycles. To obtain the macroscopic variables from
the microscopic model, we need its hamiltonian. We will base our
model in the lattice gas model, which has the following
hamiltonian:

H � −μ∑
i

ni − J∑
〈i, j〉

ninj (1)

where μ is the chemical potential, ni is 1 or 0 depending if the site i
is or not occupied, and J is the energy of the bound between two
nearest neighbors represented by 〈i, j〉.

This hamiltonian will be modified to take into account the
energy cost of stress (redundant constrains). In our model these
redundant constrains are the bonds forming cycles. Then, adding
a cost energy of the bonds belonging to a cycle to Eq. 1, we obtain:

H � −μ∑
i

ni − J∑
〈i, j〉

ninj + C ∑
〈i, j〉 ∈ L

ninj � Hchem +Hint +Hrig (2)

here L is the set of all the nearest neighbors that form clusters
without bridge edges. This is equal to the set of all the edges
between vertices in cycles. C > 0 represents a penalization for
forming rigid clusters that delay the normal phase transition of
the system between a low-density and a high-density state. This
allows our system to find new non-rigid configurations and stay
near them for large simulation times. Figure 1 shows occupied
sites as circles, while the bridge edges are in black, and cycles are
plotted in purple.

Our model differs from the original tree-like percolation [50]
due to the fact that, although it is also an Ising-like model, in the
tree-like model the connectedness problem arises as an

FIGURE 1 | Search of rigid clusters for a 16×16 square lattice system
with closed boundary conditions.
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interpretation of the system, meanwhile that in our model we are
explicitly modifying the hamiltonian with a new term.

In the limit T→ 0 we can approximate how the system in a
square lattice will behave in order to orient the range of
parameters of the Hamiltonian for which we will see certain
transitions.

For C ∼ μ ∼ J , if we have N atoms with a fraction l of them
forming rigid clusters, we can suppose than adding a new atom
adds three rigid bonds and change two normal bonds to rigid
bonds on average (see Figure 2), which becomes equally likely
when

Hchem(N) +Hint(N) + Hrig(lN)<Hchem(N) − μ +Hint(N) − 3J

+Hrig(lN) + 5C,

(3)

which gives a critical value μc1 for the chemical potential when the
inequality becomes an equality:

μc1 � 5C − 3J (4)

and suggests a change between medium and high density.
Physically, this medium density corresponds to the case where
adding particles in rigid, non stressed components is favored.
This can be related to the constrain density nc of the network, so
that μ> μc1 will correspond to high constrain density nc (fully
connected system).

For μ, J≫C orC ≈ 0 we have the same behavior than a normal
lattice gas, and the critical value for μ is expected at μc2 � −2J with
a jump between low and high density.

For sufficiently high values of C≫ μ, J energy minimization
will be achieved by having as less cycles as possible. For N atoms
in the system not belonging to a cycle, it will be equally probable
to add or remove atoms if:

Hchem(N + 1) + Hint(N + 1) � Hchem(N) + Hint(N) (5)

which happens for μc3 � −J and predicts a transition between
high and low density states. μ< μc3 will correspond to a floppy
system with low constrain density nc ∼ 0. For μc1aμc3, which is
obtained for Cca2J/5 we can expect only a double transition in
the system.

Summarizing, μc1 the critical value for the transition from a
medium to high density (rigid to stressed), μc2 is the typical
critical value from zero density to one in the lattice gas model, and
μc3 correspond to the value where appear a transition from zero to
non zero (floppy to rigid) density.

4 SIMULATIONS

We studied the model performing Markov Chain Monte Carlo
simulations, based on the Metropolis-Hastings algorithm. The
stability and convergence of chains were analyzed to determine
the number of Monte Carlo Sweeps (algorithm steps per lattice
site) needed to achieve convergence. For τ � 100 Monte Carlo
Sweeps all the systems are thermalized. This is also confirmed
after seeing a drastic reduction of the standard deviation of
samples between the whole system and the last τ/2 states.

We simulated for 41×31 equally spaced values of (μ,C) in the
[−3.5, 0.0] × [0.5, 1.2] interval and fixed J � 2, KBT � 0.5 over
four independent square lattices with periodic boundary
conditions of side L � 32 and 40. Macroscopic variables were
calculated as the average of the thermalized values as shown in
Figure 3.

The simulation was coded in the Julia Language [51], and can
be found online in a public repository at: https://github.com/
sayeg84/latticeModels

5 DISCUSSION

5.1 Macroscopic Variables
In a canonical ensemble, the probability to be in a particular state
is proportional to exp(−H/KT) � exp(−βH). This give us a
relation between temperature and the parameters of the
hamiltonian. Developing this expression we obtain
exp(−βH) � exp(βμ∑ ni)exp(−β(Hint +Hrig)). Given so,
varying the parameter μ is roughly equivalent to varying
β � 1/KT , by this we mean both variables can be used to
induce the transitions in a similar way, but the corresponding
critical exponents are different [52]. Varying the other two
parameters is not equivalent to varying β, since these are not
multiplied not by the sum of ni, but by the sum of the product (for
many configurations, the product βC∑ ninj � 0). However, these
parameters can be useful to extend the model to study the effects
of pressure or to perform simulations varying T instead of μ.

Changing pressure on the system is equivalent to deforming
the lattice (change the volume V) which translates into a change
of the potential energy because J � J(V) and C � C(V). The
probability to be in a particular state in the NPT isothermal-
isobaric ensemble is proportional to exp − β(H + PV −
Nlog(V)/β) [53]. This probability looks like the probability for

FIGURE 2 | New bonds (green) created by adding a new atom next to a
rigid cluster (purple) in a square lattice.
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FIGURE 3 |Macroscopic variables for a square lattice model: density ρ (top left), internal energy U (top right), density susceptibility χ (bottom left) and heat capacity
at constant volume CV (bottom right), for L � 40 as a function of chemical potential μ and the parameter C.

FIGURE 4 | Macroscopic variables for a square lattice: density ρ (top left), internal energy U (top right), density susceptibility χ (bottom left) and heat capacity at
constant volume CV (bottom right) for constant C � 0.92 for L � 40 as function of μ. Dark line in U separates positive and negative energies.
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the NVT-ensemble, except that instead of H, now we have
H′ � H + PV − Nlog(V)/β. For the Monte-Carlo simulation,
this means that we need to add the possibility to change the
volume of the system instead of changing a node in the lattice.
The only missing part is a model for J and C. A goodmodel for J is
J(V) � A0V2, where A0 is the harmonic contribution to the
elastic interaction energy between two neighbors [54].
However, we still don’t have a good model for C(V). This
ensemble is also probably more suitable to variate the
temperature than the NVT-ensemble, since the experiments
are performed at constant pressure, and if the volume is fixed,
when the temperature increases the probability to change a node
tends to 1, whichmeans that the density tends to 1/2, so the whole
transition is not reached, the reason why we used μ instead. We
would now like to give an interpretation of C.

Average coordination number 〈r〉 and rigidity are correlated
and are considered as the defining parameters for the study of the
intermediate phase. Redundant bonds have an energy cost that we
related with C in Eq. 2. In this case, the total energy cost is the
product of all the redundant bonds times C. We can variate then
the energy cost by varying the number of redundant bonds (so, by
varying 〈r〉) or by varying C. So, we can interpret the variation of
C as the variation of the percentage of pollutants if the reached
configuration is the same. Then, small values of C correspond to
flexible configuration and high values of C to rigid or stressed
configurations.

The susceptibility χ and the specific heat Cv show two large
jumps near values μc3 � ≈ − 2.5 and μc1 > μc3. We observe that
μ> μc1 shows a high density state, while μc1 > μ> μc3 gives a
medium density state and μc3 > μ returns to low density.

Because a medium-density state could be unexpected for a
model of this kind, we checked that its existence is independent of
system size by performing simulations for smaller sizes. It occurs
for every size and even becomes more stable asN grows. We define
μc1 as the value of μ where there is a transition from medium to
high density. In Figure 3 we can see that this also corresponds to
the value of μ that maximizes the derivatives of the variables, that in
this case result in the density susceptibility χ and the specific heat
Cv . To better visualize these plots, in Figure 4we show a cut of each

macroscopic variable when C � 0.92. We define μc1(Cv) �
argmax(Cv(μ)) and μc1(χ) � argmax(χ(μ)). In Figure 5 is
displayed the relationship between μc1(Cv), μc1(χ) and C.

The linear fit of the data displays parameters close to the
theoretical analysis done previously (section 3, and equation
refeq: mu1) with a high correlation coefficient even if the
analysis was very rough. An analysis of hexagonal and
triangular 2D lattices revels that the macroscopic variables
exhibit the same behavior for those values of μ but for a
different interval of C. This is expected from a theoretical
point of view due to the critical point dependence of the
average rigid bonds added when going from the spanning tree
configuration to a rigid configuration.

5.2 Hysteresis
The simulations presented in the previous subsection were all
performed by initializing the system with a random low-density
configuration and making the simulations over it in a μ-increasing
direction. When performing the same procedure but for
μ-decreasing and beginning with a high-density configuration,
the macroscopic thermodynamic variables show a different
path. This difference in the path is called hysteresis.

Hysteresis is usually related to loss of internal energy and the
work that the system produces [55, 56]. The area of the hysteresis
loop in the density of the lattice gas is directly proportional to the
work ΔW, while the area of the hysteresis loop in the internal
energy corresponds to the loss of energy ΔU in the process. Using
the first law of thermodynamics, we can obtain the heat
ΔQ � ΔW + ΔU , which we associate with the irreversible
enthalpy. The area enclosed by the loop can be positive or
negative depending on how the loop is walk by varying μ. To
correctly define the sign, we will say that the area is positive if the
loop is walked counterclockwise, and negative otherwise.

The hysteresis loops and their areas, corresponding to the
work produce by the system ΔW and the change of the internal
energy ΔU are shown in Figure 6. Figure 7 shows the heat ΔQ �
ΔW + ΔU as a function of C. The integrals used to calculate the
area of the loops were calculated using a trapezoidal rule.

Comparing Figures 3, 6 we can see that the difference in
internal energy ΔU is negative when there is a middle step in the
transition when varying μ. The interval where this occurs is from
C ∈ [0.6, 1.14], and the minimum is reached forC ∼ 1.0. ForΔW,
the function decreases in the interval C ∈ [0.5, 0.65], for
C ∈ [0.65, 85], a local minimum is reached, then the function
becomes increasing until a maximum around C ∼ 1.1 is found,
and then it decreases again until C ∼ 1.14, where ΔW ∼ 0.

As a result ΔQ � ΔW + ΔU is a linearly decreasing function in
the interval C ∈ [0.5, 0.78], while in the interval C ∈ [0.78, 1.14],
ΔQ ∼ c remains constant, with c ∼ 0.1. We associate this interval
C ∈ [0.78, 1.14] (shaded area) with the intermediate phase
reported in chalcogenide glasses when a pollutant is added.
This region was also obtained as the region where there is a
step on the plot of ρ, passing through ρ � 0.5. However for values
C > 1.14, we did not observed an increase of ΔQ as reported in
literature [17], instead we observed ΔU ∼ ΔW ∼ ΔQ ∼ 0. We
associate this with the limitations of the model, where a transition
is not fully achieved when C is too high.

FIGURE 5 | μc1 as function of C taken from both CV and χ. Values of μc1
concide for both variables at all the values of C. The linear fit was performed
jointly for both data.
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Recalling the association of the parameter C with 〈r〉 we see
that our results have qualitatively a similar behavior to the
experimental studies in literature [17]. Comparing with the
other numerical results of microscopic models, our results
display phase separation in terms of the macroscopical
variables related to the hamiltonian. Even if a more concise
comparison with experimental results is not able with our
work, the model is sufficiently generic to be expanded in order
to achieve more precise simulations that could reproduce
experimental results.

6 CONCLUSION

We present a simple model that exhibits a change in enthalpy
behavior when varying the rigidity of the system, a behavior similar
to that reported in chalcogenide glasses when increasing the
amount of added pollutants. The fact that the model is simple
results in efficient simulations, that allows us to make large enough
systems and study how they change by varying different
parameters. In addition, this model allows us to obtain density,
internal energy, density susceptibility, and specific heat.

For certain parameters, the model exhibits a step transition in the
density, while for others the transition is with no medium values of
density. From the values of Cv and χ we observe that the first
transition is not clear while the second seems to be a first-order
transition.We interpreted the twopossible states as “solid” and “fluid”.

We were able to analytically approximate the parameter range
where the transitions would appear. Our numerical results are in
close agreement with such rudimentary approximations.
Furthermore, our model is the first to connect the microscopic
properties with the macroscopic thermodynamic variables.

Studying the hysteresis loops wewere able to observe a change in
behavior of the enthalpy, which is related to the change in density
observed when the chemical potential (or temperature) varies when
the transition becomes stepped width a medium density.

Despite success in qualitatively describing the first transition
(flexible-rigid) to the intermediate phase, we were not able to
reproduce the transition to stressed systems. We speculate that to
see such a transition we would need to vary the temperature
instead of the chemical potential.

FIGURE 6 |Hysteresis in the thermodynamic variables for different values of C. Light colors are forC � 0.64 and darker colors are forC � 1.0367. The integral of the
curve is shown in the right side.

FIGURE 7 | ΔQ � ΔW + ΔU as a function of C for the values obtained in
Figure 6, the shaded area corresponds to the region where there is a step on
the plot of ρ, passing through ρ � 0.5.
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Thermodynamic Properties of the
Parabolic-Well Fluid
Mariano López de Haro1* and Álvaro Rodríguez-Rivas2

1Instituto de Energías Renovables, Universidad Nacional Autónoma deMéxico, Temixco, Mexico, 2Departamento de Matemática
Aplicada II, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain

The thermodynamic properties of the parabolic-well fluid are considered. The
intermolecular interaction potential of this model, which belongs to the class of the
so-called van Hove potentials, shares with the square-well and the triangular well
potentials the inclusion of a hard-core and an attractive well of relatively short range.
The analytic second virial coefficient for this fluid is computed explicitly and an equation
of state is derived with the aid of the second-order thermodynamic perturbation theory
in the macroscopic compressibility approximation and taking the hard-sphere fluid as
the reference system. For this latter, the fully analytical expression of the radial
distribution function, consistent with the Carnahan-Starling equation of state as
derived within the rational function approximation method, is employed. The results
for the reduced pressure of the parabolic-well fluid as a function of the packing fraction
and two values of the range of the parabolic-well potential at different temperatures are
compared with Monte Carlo and Event-driven molecular dynamics simulation data.
Estimates of the values of the critical temperature are also provided.

Keywords: van hove potential, parabolic-well fluid, thermodynamic perturbation theory, equation of state, Monte
Carlo simulation, Event-driven molecular dynamics simulation

1 INTRODUCTION

The issue of Frontiers in Physics this paper belongs to is devoted to commemorating the
celebration of fifty consecutive annual Winter Meetings in Statistical Physics in Mexico.
Therefore, we have chosen to write on a subject that has been present in these meetings
from the beginning; namely, the thermodynamic properties of fluids that we are persuaded can
still offer some interesting results.

We begin by recalling that, in an attempt to prove the validity of the thermodynamic limit of
classical statistical mechanics, van Hove [1] introduced in 1949 a potential ϕ(r) consisting of a hard
core of radius r0 and a finite-range attractive tail. The actual form of this so-called van Hove
potential is

ϕ(r) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞, 0≤ r ≤ r0,
< 0, r0 < r ≤ b

> − ε0, r0 < r ≤ b,
0, r > b,

(1)

where r is the distance, b corresponds to the range, and −ε0 corresponds to the lower bound of the
attractive tail, whose form is rather arbitrary. It should be pointed out that two popular models of
intermolecular potentials used in liquid state physics, namely, the triangle-well potential and the
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square-well potential, fulfill the condition of being van Hove
potentials and their thermodynamic properties have been
thoroughly studied (see, for instance, Refs. [2–11] for the
former model and Refs. [12–24] for the latter and references
therein). Surprisingly, as far as we know, the parabolic-well
potential, which is also a van Hove potential, has not been
used for that purpose. The main aim of this paper is to
contribute to partly remedying this situation.

We consider a parabolic-well fluid whose molecules interact
with a potential of the form

u(x) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, 0≤ x ≤ 1,

ε[(
x − 1
λ − 1

)
2

− 1], 1< x ≤ λ,

0, x > λ,

(2)

where x � r/σ is the reduced distance (r being the distance), σ is
the diameter of the hard core, ε> 0 is the well depth, and λ> 1 is
the potential range. As it occurs with other relatively simple
models, the main asset of this model potential is probably that,
despite being an idealized representation, it nevertheless contains
the main features of true molecular interactions in fluids, namely,
a repulsive hard-core and an attractive interaction that
continuously goes to zero as the intermolecular distance
increases. In this regard, it is interesting to recall what Widom
[25] pointed out in the case of the square-well fluid: “Where I
speak of the necessity to treat accurately the effects of the
attractive or repulsive forces, I do not mean that it is
important to know the corresponding part of ϕ(r) with
quantitative accuracy. Indeed, even if the ϕ(r) of Figure 1
were idealized as a square-well potential, as in Figure 3, but
the statistical mechanical consequences of such a potential were
then determined without further approximation, there would

undoubtedly result in an essentially correct description of all the
macroscopic properties of matter throughout a vast region of the
p and T plane, including the neighborhoods of the triple and
critical points. Thus, what matters is not the quantitative accuracy
of the assumed ϕ(r), but rather the qualitative accuracy of the
resulting spatial correlations of molecular positions; the triple and
critical points are distinguished by having the relevant qualitative
features of this correlation, and the nature of its propagation
through the fluid, determined primarily by the short-range
repulsive forces between molecules, or by the longer ranged
attractive forces, respectively.” Something similar may be said
about the parabolic-well potential. In fact, an interesting asset of
this model is that its thermodynamic properties are readily
amenable for treatment within the second-order
thermodynamic perturbation theory of Barker and Henderson
[26]. Within this approach, in order to derive the Helmholtz free
energy of the parabolic-well fluid, two ingredients are required:
on the one hand, one needs the Helmholtz free energy of the
reference hard-sphere fluid of diameter σ. On the other hand, one
also requires an expression for the radial distribution function
gHS(x) of the hard-sphere fluid. In this work, we will profit from
the availability of a method [27], the so-called rational function
approximation (RFA) method, to (analytically) obtain an
approximate gHS(x) which is thermodynamically consistent with
the equation of state of the hard-sphere fluid and make use of this
fact to derive the equation of state of the parabolic-well fluid.

The paper is organized as follows. In the next section, we recall
the main aspects of the RFA method for the computation of
gHS(x) and provide the explicit expression for this quantity in
the first coordination shell. This is followed in Section 3 with the
completely analytic derivation of the equation of state of the
parabolic-well fluid within the second-order Barker-Henderson
thermodynamic perturbation theory in the macroscopic

FIGURE 1 | Various isotherms of the parabolic-well fluid for λ � 1.25. The label TPT indicates that the results have been obtained using thermodynamic perturbation
theory while the label MC refers to Monte Carlo simulation results.
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compressibility approximation and taking the hard-sphere fluid
as the reference system. Section 4 contains some illustrative
results for the reduced pressure of the parabolic-well fluid and
a comparison with our own Monte Carlo and Event-driven
Molecular Dynamics simulation data. We close the paper in
the final section with further discussion and some concluding
remarks.

2 THE RFA METHOD FOR THE
COMPUTATION OF THE RADIAL
DISTRIBUTION FUNCTION OF THE HARD-
SPHERE FLUID

In this section, we provide the analytic result for the radial
distribution function (rdf) of the hard-sphere fluid gHS(x), as
derived with the RFA method [27], and its explicit expression in
the range 1< x ≤ 2. We begin by recalling two important
relationships between the thermodynamic and structural
properties of the hard-sphere fluid derived from statistical
mechanics. On the one hand, the compressibility factor ZHS �
p

ρkBT
(where p is the pressure, ρ the number density, kB the

Boltzmann constant, and T the absolute temperature) of the
hard-sphere fluid is related to the contact value of the rdf gHS(1+)
through

ZHS � 1 + 4ηgHS(1+), (3)

where η � πρσ3/6 is the packing fraction. On the other hand, the

hard-sphere isothermal susceptibility χHS ≡ [
d(ηZHS(η))

dη ]
− 1

is

related to the rdf through

χHS � 1 + 24η∫
∞

0
dx x2 [gHS(x) − 1]. (4)

In the RFA method [27], the Laplace transform of x gHS(x) is
taken to be given by

G(t) � L{x gHS(x)} � t
12η

1
1 − etΦ(t), (5)

where

Φ(t) � (1 + S1t + S2t
2 + S3t

3 + S4t
4)/(1 + L1t + L2t

2),

and the six coefficients S1, S2, S3, S4, L1, and L2 (which depend on
the packing fraction) may be evaluated in an algebraic form by
imposing the following requirements: (i) χHS must be finite and
hence the first two integral moments of the total correlation
function h(x) ≡ g(x) − 1, i.e., ∫∞

0
dx xnh(r)with n � 1, 2, must be

well defined; (ii) the approximation must be thermodynamically
consistent with a prescribed equation of state; i.e., the

thermodynamic relationship χHS � [dηZHS(η)
dη ]

− 1

must be

satisfied. Using the first requirement, one finds that L1, S1, S2,
and S3 are linear functions of L2 and S4. Imposing the
requirement (ii) leads to explicit expressions for L2 and S4 in
terms of χHS and ZHS [27]. Finally, the expressions for all the
coefficients are as follows:

L1 � 1
2
η + 12ηL2 + 2 − 24ηS4

2η + 1
, (6)

S1 � 3
2
η
−1 + 4L2 − 8S4

2η + 1
, (7)

S2 � −1
2
−η + 8ηL2 + 1 − 2L2 − 24ηS4

2η + 1
, (8)

FIGURE 2 | Various subcritical isotherms of the parabolic-well fluid for λ � 1.75. The label TPT indicates that the results have been obtained using thermodynamic
perturbation theory while the label MD refers to Event-drivenMolecular Dynamics simulation results. The inset shows an enlargement of the intermediate packing fraction
region for the isotherms with Tp � 1.0 and Tp � 1.1.
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S3 � 1
12

2η − η2 + 12η2L2 − 12ηL2 − 1 − 72η2S4
(2η + 1)η

, (9)

L2 � −3(ZHS − 1)S4, (10)

S4 � 1 − η

36η(ZHS − 1/3)[1 − [1 +
ZHS − 1/3
ZHS − ZPY

(
χHS
χPY

− 1)]]
1/2.

(11)

Here, ZPY � 1+2η+3η2
(1− η)2 and χPY � (1−η)4

(1+2η)2 are the compressibility

factor and isothermal susceptibility arising in the Percus-

Yevick theory. To close the problem, one has to give an

expression for ZHS, so all the procedure is a function of this

choice. For a given ZHS, the radial distribution function is

given by

gHS(x) �
⎧⎪⎪⎨
⎪⎪⎩

0, 0≤ x < 1,
1

12ηx
∑
∞

n�1
φn(x − n)θ(x − n), x ≥ 1

(12)

with θ(x − n) being the Heaviside step function and

φn(x) � L−1{ − t[Φ(t)]−n}. (13)

Explicitly, using the residues theorem,

φn(x) � −∑
4

n�1
etix ∑

n

m�1

Amn(ti)
(n −m)!x

n−m, (14)

where

Amn(ti) � lim
t→ ti

1

(m − 1)!(
d
dt
)

m− 1
(t − ti)t[Φ(t)]− n, (15)

with ti being the four roots of 1 + S1t + S2t2 + S3t3 + S4t4 � 0;
namely,

t1 � − S3
4S4

+ yp − yn, (16)

t2 � − S3
4S4

+ yp + yn, (17)

t3 � − S3
4S4

− yp − ym, (18)

t4 � − S3
4S4

− yp + ym, (19)

where

yp � −1
2

����������������
S23
4S24

− 2S2
3S4

+ yr + ys
3S4

√

, (21)

yr � −S
2
2 − 3S1S3 + 12S4

3S4ys
, (22)

yn � 1
2

����������������������������������
S23
4S24

− 4S2
3S4

− yr − ys
3S4

− S33
8ypS34

+ S2S3
2ypS24

− S1
ypS4

√

, (23)

ym � 1
2

����������������������������������
S23
4S24

− 4S2
3S4

− yr − ys
3S4

+ S33
8ypS34

− S2S3
2ypS24

+ S1
ypS4

√

, (24)

ys � − 1
21/3

[yt +
����������������������
−4(S22 − 3S1S3 + 12S4)

3 + y2t

√
]
1/3,

(25)

yt � 2S32 + 9S1S2S3 + 27S23 + 27S21S4 − 72S2S4. (26)

As we will indicate below, once ZHS(η) has been chosen, Eqs.
5–26 are all that is needed to evaluate the first- and second-order
perturbation terms for the free energy of the parabolic-well fluid
within the Barker-Henderson thermodynamic perturbation
theory taking the hard-sphere fluid as the reference system. To
close this section and for later use, we now write the explicit
expression for the radial distribution function up to the first
coordination shell which reads

gHS(x) �
⎧⎪⎪⎨
⎪⎪⎩

0, 0≤ x < 1,

∑
4

i�1

ai
x
eti(x− 1), 1≤ x ≤ 2

(27)

where

ai � −ti(1 + L1ti + L2t2i )
12η(S1 + 2S2ti + 3S3t2i + 4S4t3i )

(i � 1, 2, 3, 4). (28)

3 THERMODYNAMIC PERTURBATION
THEORY AND THE EQUATION OF STATE
OF THE PARABOLIC-WELL FLUID
Perturbation approaches for the computation of thermodynamic
properties of fluids are well established theoretical tools [28, 29].
In the Barker-Henderson perturbation theory [26], one splits the
potential into a hard-sphere part and a perturbation part; namely,
u(r) � uHS(r) + u1(r), where

uHS(x) � {∞, 0≤ x ≤ 1,
0, x > 1 (29)

and

u1(x) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0≤ x ≤ 1,

ε[(
x − 1
λ − 1

)
2

− 1], 1< x ≤ λ,

0, x > λ

(30)

Once this separation has been made, the Helmholtz free
energy per particle of the parabolic-well fluid is expressed as a
power series in the inverse of the reduced temperature
Tp � kBT/ε, which up to second order reads

f
NkBT

� fHS
NkBT

+ 1
Tp

f1
NkBT

+ 1
Tp2

f2
NkBT

(31)

Here, N is the number of particles and fHS stands for the
Helmholtz free energy of the reference hard-sphere fluid while f1
and f2 (this latter in the so-called macroscopic compressibility
approximation) are given, respectively, by

f1
NkBT

� 12η
ε

∫
λ

1
gHS(x)u1(x)x2dx (32)
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and

f2
NkBT

� 6ηχHS
ε2

∫
λ

1
gHS(x)u21(x)x2dx. (33)

Note that we have made use of the fact that gHS(x) vanishes for
0≤ x < 1 and of the expression for u1(x) given in Eq. 30,
respectively, to set the lower and upper limits of the integrals
in Eqs. 32, 33. In turn, the equation of state of the parabolic-well
fluid in this approximation is given by

Z ≡
p

ρkBT
� ZHS + 1

Tp
η
z

zη
(

f1
NkBT

) + 1
Tp2

η
z

zη
(

f2
NkBT

). (34)

And, the chemical potential may be readily obtained as

μ

kBT
� f
NkBT

+ Z, (35)

where f
NkBT

is given in Eq. 31, together with Eqs. 32, 33, and Z is
given in Eq. 34. So, provided we choose ZHS, which of course also
determines χHS and fHS, and take gHS to be the one computed with
the RFA approach and such compressibility factor, the
completely analytic formulation of the second-order Barker-
Henderson thermodynamic perturbation theory in the
macroscopic compressibility approximation for the parabolic-
well fluid taking the hard-sphere fluid as the reference system has
been derived. In our subsequent calculations, we will be restricted
to relatively narrow wells (1< λ≤ 2) so that Eq. 27 for gHS(r) will
be used. Furthermore, ZHS and χHS will be chosen to be those
corresponding to the Carnahan-Starling (CS) equation of state
[30]; namely,

ZHS(η) ≡ ZCS(η) � 1 + η + η2 − η3

(1 − η)3
(36)

and

χHS(η) ≡ χCS(η) �
(1 − η)4

1 + 4η + 4η2 − 4η3 + η4
. (37)

Further, from the CS equation of state, it also follows that

fHS(η)
NkBT

� fCS(η)
NkBT

� −1 + ln
6η
π
+ (4 − 3η)η
(1 − η)2

. (38)

The availability of the completely analytic (albeit
approximate) forms of the Helmholtz free energy and the
equation of state of the system (which are themselves not
very illuminating and therefore will not be explicitly written
down [31]) allows us in principle to compute, for a given value
of λ, the compressibility factor using Eq. 34, the vapor-liquid
coexistence curve from the equality of pressures, and chemical
potentials of the two phases and also to obtain the critical point
in the usual way.

Preliminary results for the isotherms will be presented in the
following section, together with a comparison with our
simulation data. But before presenting such results, we will
take advantage of the simple form of the intermolecular
potential of this fluid to compute its second virial coefficient.
This is given by

B2(T) ≡ − 2πσ3 ∫
∞

0
x2(e

u(x)
kBT − 1) dx (39)

� − π

6
σ3[

6kBT
ε

(1 − 2e
ε

kBT + λ)(λ − 1)2 − 4λ3

+3
�����
πkBT

√
e

ε
kBT

ε3/2
(2ε + kBT(λ − 1)2)(λ − 1)Erf(

����
ε

kBT

√
)].

Equation 39, which to the best of our knowledge has not been
reported before, allows us to obtain the Boyle temperature TB of
the parabolic-well fluid as a function of λ by equating B2(TB) to
zero and solving numerically for TB. In Table 1, we show some
particular values and, for comparison, we also include the values
corresponding to triangle-well and square-well fluids with the
same range λ.

To close this section, we will also take advantage of the
knowledge of the second virial coefficient, to obtain estimates
of the critical temperature according to the Vliegenthart and
Lekkerkerker criterion [32], namely, from equating this
coefficient with −6vm, where vm � π

6σ
3 is the volume of the

spherical core. The results for given values of the range are
given in Table 2, where we have also included such estimates
for the cases of the triangle-well and square-well fluids with the
same range λ.

Note that, for all three model fluids, the values of both the
reduced Boyle temperatures and the estimates of the reduced
critical temperatures increase as the range λ is increased. Also
note that the geometrical form of the well influences such values
as reflected in the fact that, for the same value of the range, the
ones corresponding to the triangle-well fluid are smaller than
those of the parabolic-well fluid which, in turn, are smaller than
those of the square-well fluid.

TABLE 1 | Reduced Boyle temperatures Tp
B ≡ kBTB/ε (up to three significant

figures) of triangle-well, parabolic-well, and square-well fluids for various
values of the range λ.

λ Tp
B(Triangle-well

fluid)
Tp
B(parabolic-well

fluid)
Tp
B (square-well

fluid)

5/4 0.72 0.94 1.39
3/2 1.32 1.78 2.85
7/4 2.08 2.87 4.84
2 3.03 4.25 7.49

TABLE 2 | Estimates of the reduced critical temperatures Tp
c ≡ kBTc/ε (up to three

significant figures) of triangle-well, parabolic-well, and square-well fluids for
various values of the range λ, as obtained from the second virial coefficient and the
use of the Vliegenthart and Lekkerkerker criterion.

λ Tp
c(triangle-well

fluid)
Tp
c(parabolic-well

fluid)
Tp
c (square-well

fluid)

5/4 0.43 0.55 0.78
3/2 0.69 0.90 1.39
7/4 1.00 1.35 2.21
2 1.38 1.90 3.27
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4 ILLUSTRATIVE RESULTS

Now we return to our main aim. In order to assess the value of
the thermodynamic perturbation theory approach presented
in the previous section, we have carried out NVT Monte Carlo
(MC) simulations to compute the pressure of parabolic-well
fluids for various values of the range λ≤ 2 and supercritical
temperatures for later comparison with our theoretical results.
The details of such simulations are as follows. The number of
particles in our simulations is N � 1372 and we have
considered a cubic box, of length L and with periodic
boundary conditions. Reduced units are used, so that
lengths are expressed in units of σ (L � lσ, with l a pure
number), the reduced temperature is Tp, the packing
fraction is η � π

6
N
Vσ

3 (where V � L3 is the volume), and the
reduced pressure is pp � pσ3ε−1.

For the sake of illustration, we report here the results of the
simulations for λ � 1.25 and 1.75, along various isotherms. For
each isotherm, eight different packing fraction values η � 0.05 to
0.5 with Δη � 0.05 were simulated in order to compute the
reduced pressure pp. Each run was carried out using 1.5 · 106
Monte Carlo steps (MCS) discarding the first 106 MCS for
equilibration, and the properties were measured every 20 MCS
and averaged every 1000 MCS; furthermore, for each packing
fraction, the values of pp were averaged over 20 parallel
simulations to obtain better statistics.

Finally, the pressure was calculated using the expression

pp � 6
π
ηTp[1 + 4ηgPW(1+) − 4η

Tp
∫

λ

1
gPW(x) du

p
1(x)
dx

x3dx]. (40)

Here, up1(x) � u1(x)/ε, gPW(x) is the radial distribution function
of the parabolic-well fluid (computed in the usual way [33] with

the subscript PW standing for parabolic well), and the second
term on the right-hand side of Eq. 40, obtained following a
similar procedure to the one used by Rotenberg [12] in the case of
the square-well fluid, accounts for the hard-core contribution to
the parabolic-well potential.

In Figures 1-3, we show the comparison between the results of
the isotherms obtained with the thermodynamic perturbation
theory and from simulation. Note the good agreement between
theoretical and simulation results for all the values of Tp above the
critical temperature that we considered.

On the other hand, the subcritical isotherms were obtained by
means of Molecular Dynamics (MD) Event-driven simulations.
We have performed event-driven simulations of N � 108000
elastic smooth spheres carried out with the DynamO software
package [34]. The spheres interact by a stepped parabolic-well
type potential [35–37], a discretized version consisting of a
sequence of 15 steps of widths 0.05σ, steps more than
reasonable in most instances [37]. We have used σ,
τ � �����

mσ2/ε
√

, m, and Tp as units of length, time, mass, and
temperature, respectively. The MD event-driven simulations
were performed for one value of the range of the potential,
namely, λ � 1.75, along the isotherms Tp � 1.1, 1.0 and 0.7. In
the first stage, we have performed NVT simulations with an
Andersen thermostat during 2 × 108 collisions, and after the
equilibration, the second stage of NVE simulations with a
duration of 8 × 108 collisions was performed [38]. The full
pressure tensor for the system was determined by means of
the expression

P � Pkinetic + Pinteraction (41)

where the kinetic pressure is given by

FIGURE 3 | Various isotherms of the parabolic-well fluid for λ � 1.75. The label TPT indicates that the results have been obtained using thermodynamic perturbation
theory while the label MC refers to Monte Carlo simulation results.
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Pkinetic � 1
2V

∑
N

i

vivi , (42)

with vivi being a dyadic product which yields a matrix result and
the masses of the particles are set as mi � 1. The contribution to
the pressure due to interactions is given by

Pinteraction � 1
Vtsim

∑
event

ij

Δpirij , (43)

where the summation is over each two-particle i, j event interaction,
tsim is the total simulation time, Δpi is the momentum impulse on
particle i, and rij � ri − rj is the separation vector between the
interacting particles. Finally, the hydrostatic pressure, which in
this instance coincides with the reduced pressure, was computed
from the trace of the tensor

pp � tr(P)/3 � (Pxx + Pyy + Pzz)/3 . (44)

In Figure 2, we show the comparison of the subcritical
isotherms obtained with the thermodynamic perturbation
theory and from simulation for a range λ � 1.75. The typical
van der Waals loop is clearly seen for the theoretical isotherm
with Tp � 0.7 (which grossly underestimates the simulation data)
and is still present in the isotherms with Tp � 1 and Tp � 1.1,
respectively. On the other hand, we have checked both through
Monte Carlo and Event-driven MD simulations and also through
the outcome of the thermodynamic perturbation theory that the
isotherm with Tp � 1.35 (not shown), which according to the
Vliegenthart and Lekkerkerker criterion should be the critical
one, is a supercritical isotherm. In fact, the simulation data
indicate that the real critical isotherm for this value of the
range lies above but close to the one corresponding to the
theoretical curve for Tp � 1.1.

While it is clear from Figures 1–3 that the qualitative trends
observed in all the simulation results are correctly accounted
for by the theory, a better perspective of its performance may
be gained by looking at the quantitative differences. Therefore,
in Table 3, we display the actual numerical values for a couple
of isotherms. In both cases, it is clear that the good qualitative
agreement seen in Figures 1, 2, respectively, is not
accompanied by quantitative agreement. In fact, the first
theoretical isotherm (λ � 1.25 and Tp � 1.5), which is a
supercritical isotherm, yields an underestimation of the
reduced pressure when compared to the simulation values.
On the other hand, for the second isotherm (λ � 1.75 and
Tp � 1.1), which is subcritical, the general overall trend is that
the theoretical curve overestimates the value of the reduced
pressure. As one would expect, in the case of the supercritical
isotherms, the quantitative agreement is improved as the
reduced temperature is increased.

5 CONCLUDING REMARKS

In this paper, we have addressed the study of the thermodynamic
properties of a fluid whose molecules interact through a

parabolic-well potential. For this model, we obtained the exact
second virial coefficient which in turn allowed us to compute
the Boyle temperature and to estimate the critical temperature
for arbitrary values of the potential range λ. The parabolic-well
potential is in the same family as the triangle-well potential
and the square-well potential, being in some sense
intermediate between the other two. A reflection of this is
the behavior of both the Boyle temperatures and the estimates
of the critical temperatures in which, for a fixed range, the
values corresponding to the parabolic-well potential lie
between the ones corresponding to the other two. Whether
this points out to a deeper relationship between the
geometrical shape of the well and the location of the critical
point in van Hove fluids is not clear to us at this stage but might
be worth considering in the future.

In order to obtain further analytic results, we considered a
thermodynamic perturbation theory approach for this fluid
within the Barker-Henderson second-order macroscopic
compressibility approximation and taking the hard-sphere
fluid as the reference fluid. Restricting ourselves to values of
the range in the interval 1< λ≤ 2 and evaluating the radial
distribution function of the hard-sphere fluid according to the
RFA method with the CS equation of state, we were able to
derive (albeit approximate) fully analytic expressions for the
Helmholtz free energy, the equation of state, and the chemical
potential of the parabolic-well fluid. With such expressions, we
were able to compute theoretically various isotherms for a
given potential range. These were subsequently compared to
our own Monte Carlo NVT and Event-driven MD simulation
results. It must be emphasized that these simulation data are to
our knowledge the only ones available in the literature for this
system.

TABLE 3 | Theoretical and simulation results for the reduced pressure at various
packing fractions in two isotherms of the parabolic-well fluid. The labels MC,
MD, and TPT stand for Monte Carlo, Event-driven MD, and thermodynamic
perturbation theory, respectively.

λ � 1.25, Tp � 1.5

η Simulation (MC) TPT
0.1 0.4984 0.3912
0.15 0.9408 0.6931
0.2 1.5577 1.1066
0.25 2.4038 1.6873
0.3 3.5641 2.5289
0.35 5.1764 3.7918
0.4 7.4700 5.7559
0.45 10.8447 8.9191
0.5 16.0428 14.1890

λ � 1.75, Tp � 1.1

η Simulation (MD) TPT
0.1 0.0694 0.1129
0.15 0.0642 0.0738
0.2 0.0413 0.0007
0.25 0.0094 −0.0280
0.3 0.0227 0.1287
0.35 0.4810 0.6941
0.4 1.7221 1.9983
0.45 4.2439 4.5110
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It should be clear that the calculations that we have presented
in the previous section are still preliminary but we want to stress
that further work on this subject is currently being carried out.
Nevertheless, at this stage, a few additional comments are in
order. We begin by pointing out that the qualitative agreement
between the results for the isotherms above the critical one
obtained from thermodynamic perturbation theory and those
stemming out of NVT Monte Carlo simulations, as well as the
improvement of the quantitative agreement as the reduced
temperature is increased, although clearly rewarding, are not
very surprising in view of the fact that our theoretical
approximation relies on the convergence of the perturbation
expansion for high temperatures. Also rewarding is the fact
that the results of the Event-driven MD simulation for the
isotherm Tp � 1.0 in the case in which the range is λ � 1.75,
which is a subcritical isotherm, are also well accounted for by the
curve obtained using thermodynamic perturbation theory. The
same happens with the isotherm with Tp � 1.1. On the other
hand, the gross underestimation of the theoretical curve for the
subcritical isotherm with Tp � 0.7 and the same value of the
range indicates that the convergence of the perturbation series is
very poor for this reduced temperature. In any case, it is fair to say
that the present theoretical approach provides a good starting
point for the study of the thermodynamic properties of parabolic-
well fluids. Future work with the same approach contemplates
the computation of the critical point and the liquid-vapor
coexistence curve of such fluids. Finally, since we are
persuaded that the parabolic-well fluid may still offer some
other insights on the thermodynamic behavior of fluids, we

hope that the results of the present paper may also motivate
others to conduct more studies using this model.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MLH worked out the theoretical development of the
thermodynamic properties and ÁRR performed the NVT
Monte Carlo and Event-driven molecular dynamics simulations.
Both authors worked on the written version of the paper.

FUNDING

This study was funded by Universidad Nacional Autónoma de
México (salary of Mariano López de Haro) and Junta de
Andalucía (support funds for the group of investigation of ÁRR).

ACKNOWLEDGMENTS

ARR acknowledges the financial support of Junta de Andalucía,
through Project “Ayuda al grupo PAIDI FQM205.”

REFERENCES

1. van Hove L. Quelques propriétés générales de L’intégrale de configuration D’un
système de particules avec interaction. Physica (1949) 15:951–61. doi:10.1016/
0031-8914(49)90059-2

2. Largo J, Solana JR. A simplified perturbation theory for equilibrium properties
of triangular-well fluids. Phys Stat Mech Appl (2000) 284:68–78. doi:10.1016/
s0378-4371(00)00232-6

3. Betancourt-Cárdenas FF, Galicia-Luna LA, Sandler SI. Thermodynamic
properties for the triangular-well fluid. Mol Phys (2007) 105:2987–98. doi:10.
1080/00268970701725013

4. Betancourt-Cárdenas FF, Galicia-Luna LA, Benavides AL, Ramírez JA, Schöll-
Paschinger E. Thermodynamics of a long-range triangle-well fluid. Mol Phys
(2008) 106:113–26. doi:10.1080/00268970701832397

5. Zhou S. Thermodynamics and phase behavior of a triangle-well model and density-
dependent variety. J Chem Phys (2009) 130:014502–12. doi:10.1063/1.3049399

6. Koyuncu M. Equation of state of a long-range triangular-well fluid. Mol Phys
(2011) 109:565–73. doi:10.1080/00268976.2010.538738

7. Guérin H. Improved analytical thermodynamic properties of the triangular-well
fluid from perturbation theory. J Mol Liq (2012) 170:37–40. doi:10.1016/j.
molliq.2012.03.014

8. Rivera LD, Robles M, López de Haro M. Equation of state and liquid–vapour
equilibrium in a triangle-well fluid. Mol Phys (2012) 110:1327–33. doi:10.1080/
00268976.2012.655338

9. Bárcenas M, Odriozola G, Orea P. Coexistence and interfacial properties of
triangle-well fluids. Mol Phys (2014) 112:2114–21. doi:10.1080/00268976.2014.
887801

10. Trejos VM, Martínez A, Valadez-Pérez NE. Statistical fluid theory for systems
of variable range interacting via triangular-well pair potential. J Mol Liq (2018)
265:337–46. doi:10.1016/j.molliq.2018.05.116

11. Benavides AL, Cervantes LA, Torres-Arenas J. Analytical equations of state for
triangle-well and triangle-shoulder potentials. J Mol Liq (2018) 271:670–6.
doi:10.1016/j.molliq.2018.08.110

12. Rotenberg A. Monte Carlo equation of state for hard spheres in an attractive
square well. J Chem Phys (1965) 43:1198–201. doi:10.1063/1.1696904

13. Barker JA, Henderson D. Perturbation theory and equation of state for fluids:
the square-well potential. J Chem Phys (1967) 47:2856–61. doi:10.1063/1.
1712308

14. Luks KD, Kozak JJ. Adv Chem Phys (1978) 37:139–201.
15. Carley DD. Thermodynamic properties of a square-well fluid in the liquid and

vapor regions. J Chem Phys (1983) 78:5776–81. doi:10.1063/1.445462
16. del Río F, Lira L. Properties of the square-well fluid of variable width.Mol Phys

(1987) 61:275–92. doi:10.1080/00268978700101141
17. del Río F, Lira L. Properties of the square-well fluid of variable width. II.

The mean field term. J Chem Phys (1987) 87:7179–83. doi:10.1063/1.
453361

18 Benavides AL, del Río F. Properties of the square-well fluid of variable width.
Mol Phys (1989) 68:983–1000. doi:10.1080/00268978900102691

19. López-Rendón R, Reyes Y, Orea P. Thermodynamic properties of short-
range square well fluid. J Chem Phys (2006) 125:084508–5. doi:10.1063/1.
2338307

20. Rivera-Torres S, del Río F, Espíndola-Heredia R, Kolafa J, Malijevský A.
Molecular dynamics simulation of the free-energy expansion of the square-
well fluid of short ranges. J Mol Liq (2013) 185:44–9. doi:10.1016/j.molliq.2012.
12.005

21. Elliot JR, Schultz AJ, Kofke DA. Combined temperature and density series for
fluid-phase properties. I. Square-well spheres. J Chem Phys (2015) 147:
1141101–12. doi:10.1063/1.4930268

22. Padilla L, Benavides AL. The constant force continuous molecular dynamics
for potentials with multiple discontinuities. J Chem Phys (2017) 147: 034502–6.
doi:10.1063/1.4993436

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6270178

López de Haro and Rodríguez-Rivas Thermodynamic Properties of Parabolic-Well Fluid

41

https://doi.org/10.1016/0031-8914(49)90059-2
https://doi.org/10.1016/0031-8914(49)90059-2
https://doi.org/10.1016/s0378-4371(00)00232-6
https://doi.org/10.1016/s0378-4371(00)00232-6
https://doi.org/10.1080/00268970701725013
https://doi.org/10.1080/00268970701725013
https://doi.org/10.1080/00268970701832397
https://doi.org/10.1063/1.3049399
https://doi.org/10.1080/00268976.2010.538738
https://doi.org/10.1016/j.molliq.2012.03.014
https://doi.org/10.1016/j.molliq.2012.03.014
https://doi.org/10.1080/00268976.2012.655338
https://doi.org/10.1080/00268976.2012.655338
https://doi.org/10.1080/00268976.2014.887801
https://doi.org/10.1080/00268976.2014.887801
https://doi.org/10.1016/j.molliq.2018.05.116
https://doi.org/10.1016/j.molliq.2018.08.110
https://doi.org/10.1063/1.1696904
https://doi.org/10.1063/1.1712308
https://doi.org/10.1063/1.1712308
https://doi.org/10.1063/1.445462
https://doi.org/10.1080/00268978700101141
https://doi.org/10.1063/1.453361
https://doi.org/10.1063/1.453361
https://doi.org/10.1080/00268978900102691
https://doi.org/10.1063/1.2338307
https://doi.org/10.1063/1.2338307
https://doi.org/10.1016/j.molliq.2012.12.005
https://doi.org/10.1016/j.molliq.2012.12.005
https://doi.org/10.1063/1.4930268
https://doi.org/10.1063/1.4993436
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


23. Sastre F, Moreno-Hilario E, Sotelo-Serna MG, Gil-Villegas A. Microcanonical-
ensemble computer simulation of the high-temperature expansion coefficients
of the Helmholtz free energy of a square-well fluid. Mol Phys (2018) 116:
351–60. doi:10.1080/00268976.2017.1392051

24. Río Fd., Guzmán O, Martínez FO. Global square-well free-energy model via
singular value decomposition. Mol Phys (2018) 116:2070–82. doi:10.1080/
00268976.2018.1461943

25. Widom B. Intermolecular Forces and the Nature of the Liquid State: liquids reflect
in their bulk properties the attractions and repulsions of their constituentmolecules.
Science (1967) 157:375–82. doi:10.1126/science.157.3787.375

26. Barker JA, Henderson D.What is “liquid”? Understanding the states of matter.
Rev Mod Phys (1976) 48:587–671. doi:10.1103/revmodphys.48.587

27. López de Haro M, Yuste SB, Santos A. Alternative approaches to the
equilibrium properties of hard-sphere liquids. In: A Mulero, editor. Theory
and simulation of hard-sphere fluids and related systems, lecture notes in physics
753. Berlin, Germany: Springer (2008). p. 183–245.

28. Zhou S, Solana JR. Progress in the perturbation approach in fluid and fluid-
related theories. Chem Rev (2009) 109:2829–58. doi:10.1021/cr900094p

29. Solana JR. Perturbation theories for the thermodynamic properties of fluids and
solids. Boca Raton, Florida: CRC Press (2013).

30. Carnahan NF, Starling KE. Equation of state for nonattracting rigid spheres.
J Chem Phys (1969) 51:635–6. doi:10.1063/1.1672048

31. These expressions are available, however, in a Mathematica code that we have
employed and which we are willing to supply if requested.

32. Vliegenthart GA, Lekkerkerker HNW. Predicting the gas-liquid critical point
from the second virial coefficient. J Chem Phys (2000) 112:5364–9. doi:10.1063/
1.481106

33. Frenkel D, Smit B. Understanding molecular simulation: from algorithms and
applications. San Francisco, CA: Academic press (2002).

34. Bannerman MN, Sargant R, Lue L. DynamO: a free ${\cal O}$(N) general
event-driven molecular dynamics simulator. J Comput Chem (2011) 32:
3329–38. doi:10.1002/jcc.21915

35. Chapela GA, Scriven LE, Davis HT. Molecular dynamics for discontinuous
potential. IV. Lennard-Jonesium. J Chem Phys (1989) 91:4307–13. doi:10.1063/
1.456811

36. Thomson C, Lue L, Bannerman MN. Mapping continuous potentials to
discrete forms. J Chem Phys (2014) 140:034105–13. doi:10.1063/1.4861669

37. López de Haro M, Rodríguez-Rivas A, Yuste SB, Santos A. Structural
properties of the jagla fluid. Phys Rev E (2018) 98:012138–48. doi:10.1103/
physreve.98.012138

38. Bannerman MN, Lue L, Woodcock LV. J Chem Phys (2010) 132:084607–12.
doi:10.1063/1.3328823

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 López de Haro and Rodríguez-Rivas. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6270179

López de Haro and Rodríguez-Rivas Thermodynamic Properties of Parabolic-Well Fluid

42

https://doi.org/10.1080/00268976.2017.1392051
https://doi.org/10.1080/00268976.2018.1461943
https://doi.org/10.1080/00268976.2018.1461943
https://doi.org/10.1126/science.157.3787.375
https://doi.org/10.1103/revmodphys.48.587
https://doi.org/10.1021/cr900094p
https://doi.org/10.1063/1.1672048
https://doi.org/10.1063/1.481106
https://doi.org/10.1063/1.481106
https://doi.org/10.1002/jcc.21915
https://doi.org/10.1063/1.456811
https://doi.org/10.1063/1.456811
https://doi.org/10.1063/1.4861669
https://doi.org/10.1103/physreve.98.012138
https://doi.org/10.1103/physreve.98.012138
https://doi.org/10.1063/1.3328823
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


A Bidimensional Gay-Berne Calamitic
Fluid: Structure and Phase Behavior in
Bulk and Strongly Confined Systems
A. Calderón-Alcaraz1, J. Munguía-Valadez1, S. I. Hernández2, A. Ramírez-Hernández3,
E. J. Sambriski 4 and J. A. Moreno-Razo1*

1Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico, 2Unidad Multidisciplinaria de
Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro,
Mexico, 3Department of Biomedical Engineering and Chemical Engineering, and Department of Physics and Astronomy, The
University of Texas at San Antonio, San Antonio, TX, United States, 4Department of Chemistry, Delaware Valley University,
Doylestown, PA, United States

A bidimensional (2D) thermotropic liquid crystal (LC) is investigated with Molecular
Dynamics (MD) simulations. The Gay-Berne mesogen with parameterization GB(3, 5,
2, 1) is used to model a calamitic system. Spatial orientation of the LC samples is probed
with the nematic order parameter: a sharp isotropic-smectic (I-Sm) transition is observed
at lower pressures. At higher pressures, the I-Sm transition involves an intermediate
nematic phase. Topology of the orthobaric phase diagram for the 2D case differs from the
3D case in two important respects: 1) the nematic region appears at lower temperatures
and slightly lower densities, and 2) the critical point occurs at lower temperature and slightly
higher density. The 2D calamitic model is used to probe the structural behavior of LC
samples under strong confinement when either planar or homeotropic anchoring prevails.
Samples subjected to circular, square, and triangular boundaries are gradually cooled to
study how orientational order emerges. Depending on anchoring mode and confining
geometry, characteristic topological defects emerge. Textures in these systems are similar
to those observed in experiments and simulations of lyotropic LCs.

Keywords: confinement, topological, disclination, transition, nematic, simulation

1 INTRODUCTION

Bulk materials exhibit properties imbued by their underlying chemical makeup: the packing of and
interactions between atoms and/or molecules impart characteristic traits. On the other hand,
metamaterials are synthetically produced and depend more on the relative positioning of
building blocks within the structure. Such a trait allows metamaterials to achieve novel
properties not exhibited by bulk materials (prominently of an electromagnetic and/or an optical
nature). This has facilitated the expansion and miniaturization of existent technologies [1, 2].

Building blocks capable of molecular recognition are essential in the bottom-up production of
metamaterials [3–7]. Specifically, complementary moieties can display the ability to “latch” in
solution, onto a substrate, or in a combination of scenarios to produce desirable architectures. The
threshold concentration of building blocks and formation steps are some issues to consider when
optimizing their fabrication [8]. Structural properties in a metamaterial will remain stable provided
the interaction strength between units withstands thermal fluctuations in the medium. Bottom-up
approaches exploit this feature to circumvent the use of mechanical intervention. Production is
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scaled by merely increasing the amounts of reactants and relying
on system kinetics for product formation. Packing specificity can
be modulated by carrying out the assembly under spatial
confinement [9–15]. Many fabrication protocols have been
optimized by mimicking the strategies latent in biomolecular
systems [4, 16, 17].

The solvent is a key component in the production of
metamaterials, which must effectively disperse building blocks
and stabilize noncovalent interactions holding structures
together. Self-assembly reliant on the chemical
complementarity embedded in building blocks relegates the
solvent to a passive role, serving in large measure as a
dispersing agent. A paradigm shift is to screen solvents for an
active role in the generation of metamaterials [18–22]. In this
scenario, the solvent provides additional bottom-up control that
extends the gamut of attainable targets [23–26].

The solvent “paradigm shift” is exemplified in the elastic forces
mediated within a liquid crystal (LC) fluid. The intrinsic
anisotropy of LCs facilitates spatially ordered mesophases.
Solvent order at certain state points can be disturbed in the
presence of colloidal inclusions, resulting in topological defects
that exert static and dynamic control. Because of their ability to
spatially “communicate,” topological defects can couple (obeying
topological charge rules) to yield specific colloidal arrangements,
including dimers [27–38], wires (i.e., chains) [21, 28, 35, 39–44],
and arrays [21, 31–34, 36–38, 43, 45, 46]. Solvents recruited as
active agents contributing to the self-assembly of metamaterials
enhance a variety of structural possibilities.

Much research has been devoted to three-dimensional (3D)
self-assembly [25], though a two-dimensional (2D) variant
continues to be of interest from an exploratory perspective
[47–55] as well as in applied technologies [1, 56]. Optimal
function is achieved via slab geometry in many devices,
including optoelectronic/photonic materials [57–61], sensors
[60, 62–68], display technologies [69–71], smart glass [72, 73],
spatial light modulators [74–77], and tunable filters [78–81].
However, dimensionality plays an essential role in the type
and extent of structural order that a condensed phase can
maintain [52, 82–88]. When coupling the elastic forces of
topological defects in LC media, colloidal ordering induced via
a substrate can differ significantly from that observed via
topological mediation in the bulk [21, 24, 25, 35, 36]. Slab
assembly becomes relevant in 3D colloidal arrangements
because it yields intermediates: metamaterials are finalized
upon “stacking” slabs in layer-by-layer synthesis to achieve a
target 3D structure [89–91].

In this work, we focus on two aspects of a thermotropic
calamitic LC fluid relevant to colloidal self-assembly: 1) the
changes in topology of the solvent phase diagram due to a
reduction in dimensionality from 3D to 2D, and 2) the
mesophase behavior of the solvent under strong confinement
in slab geometry. The Gay-Berne (GB) model [92] is used here
because it captures salient mesogenic features and has a relatively
low computational overhead. Prior work with the GB mesogen
has focused on different mesophases in bulk 3D systems [93–98].
Additionally, surface-induced ordering (i.e., anchoring) via
boundary walls has been studied in thin films [99], droplets

[100], and toroidal cavities [101]. Several GB parameterizations
have reproduced nematic and smectic phases [102–104]. More
recently, a discotic parameterization has been used to explore
nematic and columnar phases [105–109], providing insight on
structural and dynamic measurements at the molecular level
[110–112]. The recognition of specific design principles has
stimulated the attainment of novel targets [27].

Despite serving as a point of reference for 3D phenomena, the
phase behavior of a strictly 2D thermotropic GB LC system has
been limited [113, 114]. On the experimental front, optical
microscopy commonly provides information on quasi-2D
samples, and in most cases, data merely reflect 2D projections
of an underlying 3D system [56, 115]. Renewed interest in the
organization of rigid biopolymers as effective 2D systems (in bulk
and under confinement) has led to new and interesting textures
observed under strong confinement [116–122]. Simple
simulation models reproduced the phenomenology observed in
2D [123–126]. Because those efforts focused on lyotropic liquid
crystals, we extend the field by considering a thermotropic fluid.
Specifically, we explore how shape of the confining area and type
of anchoring induced by boundary walls affect mesophase
behavior.

2 MODEL AND METHODS

The GB model is a generalization of the Lennard-Jones potential
defining the interaction between anisotropic molecules. Each
molecule i is represented as an ellipsoid having a center-of-
mass position ri and a unit vector êi along the principal
(major) axis denoting its orientation (Figure 1).

The intermolecular interaction between the ith and jth
mesogens is written as

FIGURE 1 | Schematic defining the degrees of freedom and parameters
associated with the GB(3, 5,2, 1) mesogens. Molecular axes are defined by unit
vectors êi and êj . The center-to-center unit vector r̂ij tempers the interaction potential
relative to mesogen-mesogen orientation, affecting both length [Eq. 2] and
energy [Eq. 5] scales. The interaction potential is scaledby amodel length σ0 defined
with respect to the side-side length σss. The end-end length σee is used to define the
molecular aspect ratio; for the parameterization used in this work, σee/σss � 3.
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UGB(rij, êi, êj) � 4 ε(r̂ij, êi, êj) [Ξ−12
ij − Ξ−6

ij ], (1)

where rij � ri − rj and the scaled distance is given by

Ξij � 1
σ0

[ rij − σ(r̂ij, êi, êj) + σ0 ], (2)

where σ0 the width of the mesogen (i.e., the minor axis) and rij �∣∣∣∣rij
∣∣∣∣ is the magnitude of the intermolecular (center-to-center)

separation vector. The relative orientation of mesogens within the
mediummust be taken into account to regulate the strength of the
intermesogen interaction. This requires a fully specified function
of a general variable ω,

Γ(ω) � 1 − ω[
c2i + c2j − 2ω ci cj cij

1 − ω2 c2ij
], (3)

where ci � êi · r̂ij, cj � êj · r̂ij, cij � êi · êj, and r̂ij � rij/
∣∣∣∣rij

∣∣∣∣ is the
unit (center-to-center) separation vector. The orientation-
dependent length scale (range) parameter σ(r̂ij, êi, êj) is
computed as

σ(r̂ij, êi, êj) � σ0[Γ(χ)]− 1/2 (4)

Here, χ � (κ2 − 1)/(κ2 + 1), where κ � σee/σ0 � σee/σss is the
length-to-width (aspect) ratio of the mesogen (Figure 1). The
strength anisotropy function ε(r̂ij, êi, êj) is defined by the
product

ε(r̂ij, êi, êj) � ε0[ε1(êi, êj)]
]
[ε2(r̂ij, êi, êj)]

μ
, (5)

where the exponents ] and μ are adjustable parameters. The
energy anisotropy functions are defined as

ε1(êi, êj) � [1 − χ2(êi · êj)2]
− 1/2

(6)

and

ε2(r̂ij, êi, êj) � Γ(χ′). (7)

The parameter χ′ depends on the ratio of the potential well
depths corresponding to side-side (ss) and end-end (ee)
configurations, κ′ � εss/εee. More specifically, χ′ � [(κ′)1/μ − 1]/
[(κ′)1/μ + 1].

The GB model uses four parameters conventionally
represented as GB(κ, κ′, μ, ]). Previous work has shown that
specific parameter sets reproduce thermodynamic and
structural properties of experimental systems [105, 107, 127].
A complete phase diagram of the 3D GB model is available for
GB(3, 5, 2, 1) [104, 128–132], which corresponds to a calamitic
mesogen. Moreover, this parameterization has been used to
investigate intermolecular interactions in nematic samples
[133–135]. Simulations have been previously reported for GB
discotic mesogens focused on tracing changes in phase behavior
under confinement [99, 130, 136–140] and in droplets [141]. The
reader interested in additional parameterizations is referred to
previous work [127, 129, 135, 142–146].

The GB(3, 5, 2, 1) parameterization is used in this work to
elucidate the role that dimensionality plays on mesophase
behavior. Shown in Figure 2 are representative interaction
energy curves as a function of intermesogen distance for
different relative orientations. For the GB(3, 5, 2, 1) mesogen,
the side-side arrangement is preferred over other
configurations, a feature that promotes the nematic phase at
reasonably accessible temperatures. The GB(3, 5, 2, 1)
parameterization was chosen because it has been extensively
used as a model for prolate LCs, such as the alkylbiphenyl
mesogen family.

Confined systems were modeled with walls constructed from
an array of spherical (i.e., circular in 2D) particles. The mesogen-
wall interaction is obtained by taking the limit of Eqs. 1 and 2
when one of the interacting mesogens becomes a sphere (i.e., a
wall particle) [147–149]. In that limit, the range parameter and
strength anisotropy functions are given by

σw(r̂ij, êj) � σ0[1 − χ(r̂ij · êj)2]
− 1/2

(8)

and

εw(r̂ij, êj) � ε0[1 − χ′w(r̂ij · êj)2] (9)

where

χ′w � 1 − (εh/εp)
1/μ
. (10)

For Eqs. 8–10, the ith molecule denotes a wall-type particle,
the jth molecule refers to a mesogen, εh corresponds to the energy
scale for homeotropic anchoring (when êj is locally perpendicular
to the confining wall), and εp represents the energy scale for

FIGURE 2 | Intermlecular potential for the GB(3, 5, 2,1) mesogen as a
function of intermesogen distance. Representative mesogen arrangements
are highlighted to emphasize how UGB(r) is tempered according to relative
mesogen-mesogen orientation.
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planar anchoring (when êj is locally parallel to the confining
wall). Anchoring conditions can thus be controlled by adjusting
these two parameters.

We focus on a strictly 2D thermotropic liquid crystal in this
work: “flat” ellipsoidal mesogens evolve in a plane. All results
reported herein were generated by performing MD simulations
in the canonical (NAT, where A is constant area for 2D,
analogous to NVT where V is constant volume in 3D) and
isothermal-isobaric (NPT) ensembles. Translational and
rotational equations of motion were integrated using the
velocity-Verlet algorithm [150]. For bulk samples, in either
the NAT or NPT ensembles, the time step used was δt � 0.001.
For systems in confined regions, the time step used was
δt � 0.002. The coupling parameters for simulations were as
follows: Qthermostat � 10, Qbarostat � 1, 000. In the case of bulk
samples, the simulation cell was defined with lateral
dimensions Lx and Ly : periodic boundary conditions were
applied in all directions. All simulations were initialized at
relatively high temperature (i.e., Tp � kBT/ε0 � 1.0). Low-
temperature states (Tp � kBT/ε0 � 0.1) were attained by
cooling the system gradually. Velocities were assigned from
a Maxwell-Boltzmann distribution and the moments of inertia
were set to I � (σ20/20)(κ2 + 1) [151]. All particles were set to
unit mass (m � 1) and intermolecular potentials were
truncated at a cutoff length scale rc � (κ + 1)σ0 for
expediency. Interparticle potentials were shifted to enforce a
smoothly vanishing force at rc. Simulations were run for at
least 5 × 106 time steps for equilibration and another 5 × 106

time steps for production.
Global orientational order is characterized by the orientational

traceless tensor Q [152], specialized for the 2D case [153] as

Q � 1
N

∑
N

i�1
(2êi ⊗ êi − I), (11)

where ⊗ denotes the tensor product and I is the identity matrix.
Diagonalization of Q leads to two eigenvalues (λ+ and λ−). The
nematic (Maier-Saupe) order parameter S is defined in terms of
the highest eigenvalue λ+, so that S � λ+. The parameter S is equal
to zero for isotropic configurations and increases as orientational
order increases.

3 RESULTS AND DISCUSSION

3.1 Orientational Order and Liquid Structure
In this section, we present data for a series of samples of
increasing size (mesogen number) to elucidate the
orientational order of the LC liquid as a function of
temperature. We focus here on characterizing differences due
specifically to sample size, considering N ∈ {500, 1000, 4000}.
Profiles for the Maier-Saupe order parameter are presented in
Figure 3.

The nematic order parameter S displays a state with low
orientational order (S ≈ 0) when the temperature exceeds a
threshold depending on the pressure Pp of the system. The
onset of orientational order shows a jump in S, such that S ≈ 1
when the temperature is sufficiently low: this high value of S
indicates the formation of the smectic phase. An isotropic-
smectic transition (I-Sm) takes place without an intermediate
nematic state when the pressure is sufficiently low (i.e., for
Pp < 2). As the pressure increases, the I-Sm transition occurs
by passing through a range of nematic state points,
corresponding approximately to 0.25< S< 0.75. A finite-size
effect in S becomes pronounced at higher pressure
(i.e., Ppa2): the transition appears less sharp as the
ensemble size N decreases.

To investigate how finite-size effects are pronounced at higher
pressures, simulations were performed for Pp � 5.0. At this
pressure, finite-size effects are accentuated. We performed
simulations for N ∈ {10000, 50000}. As can be gleaned from
Figure 3, results for the larger two systems are close to one
another. Hence, finite-size effects seemingly dissipate when the
ensemble size is at least of O(104).

To gain insight into the local structure, we analyzed MD
snapshots forN � 50, 000 when Pp � 5.0 via a temperature sweep
shown in Figure 4. An eightfold magnification of a portion of the
ensemble is shown to aid discerning local mesophase order: the
entire ensemble for each temperature is provided in the
Supplementary Material. At high temperatures, translational
entropy overwhelms the cohesive energy of the LC medium
and a disordered phase is the most stable state accessible to
the system. At intermediate temperatures, the ensemble displays
small clusters of mesogens with correlated orientation. Clustering
grows in spatial extent with decreasing temperature. At even
lower temperatures, the cohesive energy overtakes the decreasing
translational entropy: a liquid phase with smectic order ensues at
these temperatures. The smectic mesophase is stabilized

FIGURE 3 | Order parameter S as a function of temperature Tp at
different pressures Pp ∈ [5.0 (black), 3.0 (red), 1.0 (orange), 0.5 (blue), 0.1
(green)] in the bulk 2D system. The response in the order parameter S is
compared among different ensemble sizes: N ∈ [500 (triangles), 1,000
(squares), 4,000 (diamonds)]. Finite-size effects become pronounced as
pressure increases (and correspondingly at higher temperature). For Pp � 5.0,
results are also included for N ∈ [10,000 (dashed line), 50,000 (circles with
error bars)]. Finite-size effects appear to dissipate when N is of O(104).
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(i.e., structural order increases in spatial extent) upon further
cooling.

3.2 Phase Diagram Topology and
Mesophases
A major contribution in this study is the orthobaric
[i.e., (ρp,Tp)] phase diagram for the 2D system shown in
Figure 5. The 3D case for the same GB mesogen is overlaid
with gray and red shadows: such a comparison enables us to
appreciate how dimensionality affects topology. The phase
diagram for the 3D case was previously reported [128, 129].
The 2D phase diagram reported here was obtained from MD
simulations performed in the isothermal-isobaric (NPT)
ensemble. The pressure Pp was controlled with a Nosé-Hoover
barostat; samples consisted of N � 1, 000 mesogens. Phase
regions were outlined by acquiring data for
Pp ∈ {0.1, 0.5, 1.0, 2.0, 3.0, 5.0}. For each pressure, the system
was initialized at a high temperature and gradually cooled in
steps of ΔTp � 0.02 for at least 5 × 106 time steps.

When compared to the 3D case, the 2D system displays an
evident shift in its phase boundaries. This behavior is justified by

the fact that thermal fluctuations are stronger when the
dimensionality of the system is reduced [154–156]. The 2D
system shows that the nematic phase emerges over a wider
(nearly double) range in temperature at slightly lower
densities. Additionally, the isotropic phase occupies a larger
area of stability in the (ρp,Tp)-plane, extending to lower
temperatures and higher densities in 2D. The critical point
appears at a lower temperature (Tp

c � 0.202 ± 0.007) and
slightly higher density (ρpc � 0.159 ± 0.002) when compared to
the 3D system. Our result for the 2D critical point compares very
well with previous work [157, 158].

It is instructional to consider how finite-size effects influence
the topology of the phase diagram. For this purpose, three
isobars are included: Pp ∈ {0.1, 3.0, 5.0}. For the (ρp,Tp)
region shown, only slight deviations from the boundaries in
the top-right corner would be expected. Boundaries shown on
the phase diagram serve as a guide to the eye based on the
available data extracted from the isothermal-isobaric
simulations. The slim regions conveyed by solid lines are best
estimates that outline the limits of phase stability and do not
represent true coexistence lines.

We note that isothermal-isobaric simulations can probe
metastable regions that elude canonical simulations without

FIGURE 4 | Snapshots of the bulk 2D system when Pp� 5.0 and N � 50, 000. Shown is an eightfold-magnified region of the ensemble to discern the local order of
mesogens. Configurations are arranged as a temperature sweep (arrows) with each configuration showing its temperature Tp. Mesogens are colored according to
orientation, as indicated by the color bar (bottom).
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yielding coexistence (i.e., phase separation). The complete
mapping of such phase boundaries would require free energy
calculations, such as Gibbs ensembles [159–161], Gibbs-

Duhem integration [162], histogram reweighting [163], or
the Frenkel-Ladd method [164], among others. The
coexistence of mesophases, however, was verified by
independent canonical simulations. A sample cooling
routine highlighting the coexistence of different
mesophases is shown in Figure 6. The snapshots trim out
sparsely populated regions of the full simulation cell observed
at lower temperatures.

3.3 Confinement: Point Defects and Domain
Walls
The extent to which mesophase structure is affected by
strong confinement was also explored in this study.
Inspiration for this lies in the rich structures and
topological defects observed in lyotropic systems: the
similarity in the textures observed in our thermotropic
system highlights certain universal traits of topological
defects. From an applications standpoint, this is of
interest because topological defects can be recruited for
the self-ordering of colloidal particles. In the case of a 2D
system, this arrangement has the potential to yield
monolayers of colloidal particles with specific positional
constraints.

The 2D LC samples were confined within walls consisting of
an array of fixed Lennard-Jones particles. Three different
confinement scenarios were considered in this study: circular,
square, and triangular. The mesogen packing fraction was kept
approximately at η � 0.75 in all cases to ensure a nematic state
point consistent with the bulk 2D phase diagram. As a point of

FIGURE 5 | The orthobaric phase diagram for the GB(3, 5, 2,1)
mesogen in 2D (lines) and 3D (gray shadow). The 2D critical point (diamond)
appears when ρpc � 0.159 ± 0.002 and Tp

c � 0.202 ± 0.007. The nematic
phase region is highlighted in both cases: 2D (blue shadow) and 3D (red
shadow). For 2D, the nematic region is stable over a wider Tp-range for a
slightly narrower ρp-range. Three specific isobars (dotted lines, labeled with
Pp ) are shown for comparison. Only the top-right region of the phase diagram
is most sensitive to finite-size effects as shown in the response of the order
parameter S in Figure 3.

FIGURE 6 | A representative cooling sweep in the NAT ensemble. Configurations are shown for an ensemble with N � 2, 000 and ρp � 0.10. The temperature Tp

decreases going from left to right over a narrow temperature window as shown. Snapshots of the simulation box have been trimmed to improve the visual clarity of the
more densely populated regions observed at lower temperature.
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reference, the packing fraction for a 2D hexagonal lattice
composed of circular units is η ≈ 0.907 [165].

To characterize the way the confining walls exert a structuring
effect on the mesogenic liquid, two anchoring conditions were
considered: homeotropic (εh/εp � 5.0) and planar (εh/εp � 0.2)
cases (Eq. 10). The nematic field emerging from the sample in the
bulk region displays a dominant direction. However, the
boundaries defining the confined area disrupt any such
dominant alignment. The resulting director field persists in
response to a delicate balance between anchoring conditions
imposed by the confining walls and the strong tendency of
neighboring mesogens to mutually align. As a result, this
synergy has the effect of stabilizing topological defects within
the confined region.

Data for circular confinement are shown in Figure 7.
Topological defects are sharply sensitive to the type of
anchoring. For homeotropic anchoring, the confinement
radius in this work affords a low-temperature director field
giving rise to two defects (with topological charge +1/2),
localized away from the wall but separated in relation to one
another. This behavior is consistent with density functional

theory predictions [119]. As temperature increases, the defects
move away from one another until they approach the wall: at
sufficiently high temperature (Tp ∼ 1.80), the defects dissipate to
yield a single, isotropic configuration. Such an outcome is
possible because the anchoring energies at the confining
surfaces are of finite strength. As can be seen in the
configuration snapshots, thermal fluctuations are sufficiently
strong to overcome the orientation induced by anchoring.

The situation changes for planar anchoring: at low
temperature, two defects are present, but they are located at
opposite poles of the confining circle. As a result, the so-called
polar nematic configuration is observed. This state is
distinguished by a layered mesophase similar to the smectic-
like state that dominates all but two thin surface shells on
opposite ends (Tp ∼ 0.20). Another configuration also
observed at the lowest temperature possesses boundary
disclinations, but the main topological defect consists of point
defects appearing on opposite poles of the circular boundary
(refer to the discussion on circular boundary confinement in
Section 3.4). Radially oriented domains, like those observed in
the case of homeotropic anchoring, are absent in planar

FIGURE 7 | The 2D GB(3,5, 2, 1) mesogen system confined by a circular boundary. The series from top to bottom represents a cooling sweep: temperature is
indicated by the centered temperature bar. Renditions are shown for homeotropic (εh/εp � 5.0, two leftmost columns) and planar (εh/εp � 0.2, two rightmost columns)
anchoring. Each set of columns on either side of the temperature bar correspond as follows: configuration snapshots (left) and scalar field of the local order parameter
(right).
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anchoring. Nematic-like order emerges as temperature increases
for both anchoring modes under circular confinement. Although
two polar defects persist at high temperature in the two systems
(Tp ∼ 1.20), the type of anchoring can be distinguished by
probing the relative distance between defects: the separation
between the two defects is always larger (nearing the boundary
wall) for planar anchoring. As expected, internal order is mostly
lost in both types of anchoring at sufficiently high temperatures.
Our observations are consistent with those documented for a 2D
fluid of hard rods in the high-density regime, with a sufficiently
small aspect ratio [124].

Square confinement leads to more interesting textures as
shown in Figure 8. The reduced symmetry of the boundary
frustrates global mesophase order. For both anchoring
conditions, domain walls (i.e., boundaries between different
orientationally ordered domains) appear at sufficiently low
temperature (Tp ∼ 0.60). For homeotropic anchoring, domain
walls define three regions: a large region with a local director
rotated π/2 radians in relation to the local directors characterizing
two small regions oriented in the same direction. Mesogens in the
large region are highly oriented and form smectic-like layers.
These domain walls signal domains possessing different
orientations: the free energy is minimized in the system when

curved interfaces develop. Moreover, two equivalent states are
possible by symmetry: one shown in the snapshots and another
obtained by rotating the snapshot π/2 radians. In this way, the
system displays two-fold degeneracy. This effect was previously
observed using a density-functional approach [166]. An external
field can lead to an interchange between the two states
dynamically, as previously reported [167].

When planar anchoring is operative under square
confinement, four domain walls (i.e., five regions) appear.
Four small regions display an orientation aligned with the
confining walls and one interior region with a local director
tilted slightly in relation to adjacent lateral domains. This
arrangement is strikingly similar to the W ∼ 40L system
studied by Cortes et al. [117]. It is plausible for the interior
region to eventually reorient to create a single region where the
local director matches that of two adjacent lateral domains. As
temperature increases, those domain walls disappear and two
point defects arise close to the corners of the square. The
structural behavior of the LC sample under square
confinement agrees with previous theoretical models [121].

The most severe confining geometry in this study is the
triangular boundary, the results of which are shown in
Figure 9. For either type of anchoring, three orientationally

FIGURE 8 | The 2D GB(3, 5, 2, 1) mesogen system confined by a square boundary. Data are arranged as in Figure 7.
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ordered regions are discernible at low temperature: the resulting
topological defects are driven by an order that permeates from the
boundary wall toward the center of the confining region. This
effect promotes the formation of a near-centered defect in either
anchoring case at fairly high temperature (Tp ∼ 2.00). Streak
disclinations radiate from the point defect, signaling the partition
between distinctly oriented regions giving rise to three domain
walls only when the temperature is sufficiently low (Tp ∼ 0.60).

Although the scalar fields of the order parameter under
triangular confinement for both anchoring cases are similar,
the two samples can still be differentiated when accounting
for local order. The approximate local directors
corresponding to the three oriented domains highlighted
in Figure 9 are rotated π/6 radians with respect to one
another. This difference arises from the coupling of the
anisotropic shape of the calamitic mesogen and the
underlying confining geometry. When placed at the center
of the triangular region, the set of directors for the
homeotropic sample point at the corners of the triangular
boundary; the analogous set for planar anchoring results in
the bisection of all sides of the triangular region. As expected,
the orientationally ordered regions and the streak

disclinations dissipate with increasing temperature, though
the point defect persists even at high temperature (Tp ∼ 1.40).

3.4 Dynamics of Confined Samples
Ancillary data from this work are ensemble trajectories given that
systems were evolved with MD simulations. Although static
information obtained from simulation snapshots is useful in
characterizing orientational order and topological defects, it is
equally important to probe the temporal behavior of mesophases.
To this end, trajectories were leveraged to probe dynamical
fluctuations in the fluid structure and the scalar field of the order
parameter. The Supplementary Material includes trajectory
visualizations for the systems in Figures 7–9. Each visualization
is labeled by temperature and anchoringmode. The timescale in each
case corresponds to approximately 3% of an entire simulation run.

The system under circular confinement with planar anchoring
at reasonably high temperatures already exhibits features
reminiscent of the polar defects stabilized at low temperatures.
However, such defects are accompanied by strong fluctuations in
intensity and positional alignment. As one point defect vanishes
another emerges in the same pole. For homeotropic anchoring,
point defects fluctuate in number, intensity, and position at high

FIGURE 9 | The 2D GB(3,5, 2, 1) mesogen system confined by a triangular boundary. Data are arranged as in Figure 7. A set of approximate local directors
highlighted for the lowest temperature (red arrows) enables differentiating between the two anchoring modes, as discussed in the main text.
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temperatures. Upon further cooling, the homeotropic sample
displays two point defects with minimal fluctuations in
position and intensity, immediately after two radially oriented
domains form. Before the central smectic-like region sets in, the
separation between the two point defects reaches a minimum.
Fluctuations in intensity are minimal at the lowest temperature
studied: the separation between point defects stabilizes at a
slightly larger distance (Tp ∼ 0.20) than before (Tp ∼ 0.80). In
the case of planar anchoring, point defects appear on opposite
poles of the circular boundary. Unlike the low-temperature
configuration in Figure 7, textures in the bulk region of the
confined area become richer when the smectic phase sets in:
boundary defects of fleeting intensity appear upon further cooling
for planar anchoring. However, polar defects persist prominently.

The behavior of topological defects upon sample cooling is
similar for both anchoring modes under square confinement. In
both cases, a highly fluctuating cross pattern with approximately
two point-like defects on opposite corners of the square is
observed. As soon as the sample reaches a temperature where
the smectic mesophase becomes favorable, the fleeting point-like
defects vanish: each anchoring case becomes distinguishable at
this point (Tp ∼ 0.60). For homeotropic anchoring, two
prominent domain walls persist, giving rise to three distinct
regions. For planar anchoring, four domain walls become
stable, demarcating five distinct regions. The domain walls,
although subdued when compared to the homeotropic case,
yield a rhomboidal pattern.

When comparing the two anchoring modes for triangular
confinement, the cooling history is very similar in both cases. A
point defect is characteristic of either case upon the slightest hint of
ordering. Three domain walls weakly form at high temperature
(Tp ∼ 1.00), although they are characterized by strong fluctuations
in position and intensity. Upon further cooling, the domain walls
assert their presence and a point defect becomes prominent in the
sample (Tp ∼ 0.60). As discussed in Section 3.3, due to the
similarity between the two anchoring cases, it is only possible to
distinguish the two samples by inspecting the relative arrangement
of local directors in each sample.

4 CONCLUSION

Bulk and confined 2D samples were explored for the Gay-Berne
mesogen with parameterization GB(3, 5, 2, 1). This model
calamitic exhibits a sharp isotropic-smectic (I-Sm) transition
at lower pressures (Pp < 2.0); at higher pressures (Ppa2.0),
the I-Sm transition involves an intermediate nematic phase.
Clusters of locally ordered mesogens reach a threshold size, at
sufficiently low temperatures, before the LC sample becomes
smectic. The nematic phase shows an extended region of stability,
nearly doubling in the temperature range at slightly lower
densities. The critical point shifts to a lower temperature and
a higher density compared to the analogous 3D system.

Confined samples were subjected to three boundary geometries:
circular, square, and triangular. In circular geometry, two point defects
emerge: for homeotropic anchoring, point defects are stable in the bulk
region of the boundary and remain at a nearly constant separation. For

planar anchoring, point defects gravitate toward opposite poles of the
boundary. In square geometry, no stable point defects are observed at
low temperatures. Instead, two distinct domain walls give rise to three
regions under homeotropic anchoring; the structure under planar
anchoring results in four interconnecting domainwalls, rhomboidal in
form, producing five regions. In triangular geometry, confinement
yields similar defects when comparing anchoring modes: three
domain walls “emanate” from a nearly centered point defect
yielding three regions. In this case, local directors must be
accounted for to differentiate between anchoring modes.

All systems were studied with MD simulations. The resulting
trajectories of confined 2D LC samples were visualized,
revealing a complex evolution of textures originating from
topological defects. Ordered domains at low temperatures are
prefaced with strong thermal fluctuations that cause spatial
variations in the mesophase at sufficiently high temperatures.
Within the mesophase, flickering in position and intensity of
topological defects is minimized at sufficiently low
temperatures. Both the confining geometry and anchoring
mode contribute to the type of defects observed.

Confined 2D LC systems provide a rich and exciting outlook.
An outstanding matter with an eye toward 3D metamaterials is
how disclinations couple when colloidal slabs are stacked.
Practicable systems could extend layer-by-layer protocols [7,
89, 90, 168–180], thus expanding the gamut of metamaterials
attainable by conventional 3D-based methods. Studies on the
switching mechanics by applying external fields (as opposed to
thermal tempering) would be of interest in the production of
devices and associated technologies. A characterization of
relevant timescales would offer an important perspective on
design principles. Structured colloidal assemblies via
topological defects could be exploited to yield colloidal
assemblies with screw/twist properties, thus amplifying the
availability of chiral materials.
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Thermodynamic and Mechanical
Properties of DMPC/Cholesterol
Mixed Monolayers at Physiological
Conditions
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Emmanuel Antonio Vazquez-Martinez, Eduardo Gomez* and Jaime Ruiz-Garcia*

Biological Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

One of the main known effects of cholesterol is to rigidify the cell membrane throughout the
so-called condensing effect. Although many studies have been done in mixtures of
cholesterol with different membrane lipids, there are not many studies in a wide
concentration range of cholesterol or at physiological conditions. In this work, we
studied mixtures of DMPC/Cholesterol monolayers to determine the effect of
cholesterol, from very low to physiological concentrations and two pHs. We use a
Langmuir balance and Brewster angle microscopy to study their thermodynamic
behavior at 37.0 ± 0.1°C at the air/solution interface. From the analysis of the (π−A)
isotherms, we determined the excess area and the compressibility elastic modulus to
determine the monolayers mechanical properties. Surprisingly, we found three main
effects of cholesterol: The first one is a fluidization effect of the monolayer at all
cholesterol concentrations. The second effect is the so-called condensing effect that
appears due to the non-ideality of the mixture. The third effect is a stiffness of the
monolayer as the cholesterol concentration increases. These effects are stronger in
pure water, pH ≈ 6.6, than on buffer at physiological pH � 7.4. We also found that all
mixtures are thermodynamically stable at all concentrations at a surface pressure of 30.1 ±
1.6 and 27.4 ± 3.2 mN/m in pure water and buffer, respectively. Furthermore, we
compared this stability with a fatty acid monolayer that shows a much lower surface
pressure equilibrium value that DMPC or its mixtures with cholesterol, indicating a possibly
reason why double chain lipids are better than single chain lipids to made up the cell
membrane.

Keywords: cholesterol, DMPC, model membranes, brewster angle microscopy, Langmuir monolayers, isotherms,
mechanical properties

INTRODUCTION

Cholesterol is a very important component in all membranes of mammalian cells and it is critical to
human health: It is known that cholesterol is responsible for the modulation of physical properties of
cell membranes, because the bulky molecular structure of cholesterol interferes with the movement
of the phospholipid tails [1]. It constitutes up to 40% of the plasma membrane in some type of cells
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[2] and the cholesterol concentration seems to be involved in the
regulation of microphase separation (lipid rafts), rigidity,
membrane thickness and permeability [3–5].

One effect of adding cholesterol is to reduce the Lβ/Lα phase
transition temperature, and it removes completely the transition
at 50% of cholesterol concentration [6], by inducing the
formation of an intermediate phase known as the liquid
crystalline ordered or liquid ordered phase [5, 7]. The
transition temperatures are correlated with the chain melting
temperature (0°C for some glycerophospholipids and 37°C for
sphingolipids). Other effects of adding cholesterol include
changes in the lipid molecule cross sectional area, the
thickness of the bilayer, the orientational order of the lipids
and the motion of the hydrocarbon chains [1, 3, 5].

Cholesterol mixed with phospholipids can form oligomeric
chemical complexes with a fundamental stoichiometry 3:2 and
6:1 phospholipids per cholesterol molecule [8, 9]. The formation
of these phospholipid/cholesterol complexes produce the so-
called cholesterol condensing effect [4, 7, 10, 11] where the area
occupied by the molecules is decreased. As stated by the
umbrella model, the lipid acyl chains and the nonpolar
cholesterol part become densely packed as they share the
limited space below the phospholipid head groups. At a
particular concentration, the head groups cannot protect
additional cholesterol molecules from contact with water and
they form a separated and immiscible monohydrated
cholesterol phase [12–14]. The solubility limit for cholesterol
in phosphatidilcholines (PC) bilayers is known to be around
66% [7, 10, 12].

Recent monolayer studies of the interaction of phospholipids
and cholesterol have shown that themolecular area of the mixture
is typically smaller than the weighted molecular areas of the pure
components [4, 15, 16]. It was found that cholesterol interacts
preferentially with phospholipids containing fully saturated
chains and this interaction decreases significantly with
unsaturated chains [1, 5, 15, 17]. Cholesterol interacts more
strongly with sphingolipids than with phosphatidylcholines of
similar chain length [8, 11, 17, 18]. Monolayers mixtures of
phosphatidilcholines and cholesterol have a higher collapse
pressure (πc) than monolayers of single components,
indicating that a mixed monolayer is more stable [16, 19, 20].

Model systems with only a few components have been
extensively used to study the properties of biological membranes
[8, 17, 19]. Giant unilamellar vesicles have been used to study
mechanical properties and interactions between lipids and DNA,
peptide and proteins in a simple model system composed of a single
phospholipid bilayer [21, 22]. Langmuir monolayers have also been
used as 2D model systems to study interactions present in
biomembranes [3, 18], since the physicochemical and mechanical
characterization of the monolayers can be obtained from surface
pressure-area (π−A)measurements [17, 23, 24]. Furthermore, phase
transitions, morphologies and textures can be obtained by
combining additional characterization techniques such as neutron
and X-ray scattering, polarized fluorescence, Brewster angle
microscopy (BAM) or atomic force microscopy (AFM) [12, 18, 25].

Phosphatidylcholines play an important role in cell
membranes since they represent more than 50% of the
lipids of the plasma membrane in most eukaryotic cells
[26]. The interaction of DMPC and other
phosphatidylcholines of different acyl chain length and
saturation degree with cholesterol has been studied at pH
6.6 and 24°C, and found that cholesterol cannot condense in
the same way unsaturated lipids as it does saturated lipids,
due to the kinks of the double bonds on the acyl chains [27].
In a similar study, at different temperatures from 10–30°C, it
was found that acyl chain asymmetry modifies the interfacial
elasticity of the lipid monolayers [28]. The condensation
effect in DMPC and DPPC induced by different sterols at
23°C has been determined by mean of the analysis of the
excess free energy; it was found that the mixture of
phosphatidylcholines with cholesterol produced the most
stable monolayers in comparison when cholesterol is
replaced by ergosterol or lanosterol [29]. The effect of the
subphase pH on the condensation effect in mixed monolayers
of DPPC/cholesterol in a wide range of cholesterol fraction
(10–90%) has been studied by Gong et al, at 25°C. They found
that the monolayer is more stable at neutral pH and at 60% of
cholesterol fraction [11]. Kim et al. observed that at 23°C a
very low fraction of cholesterol (≈0.2%) modifies dramatically
the morphology and the dynamic properties of a DPPC
monolayer by reducing the surface viscosity due to the
formation of 6:1 phospholipid/cholesterol complexes. This
complexes decorates the boundaries of the DPPC lipid
domains [9].

In this work, we study the interaction between DMPC and
cholesterol from very low to physiological cholesterol mole
fractions (0.01–0.40) and at physiological conditions of
temperature, 37 ± 0.1°C and pH, ≈ 6.6 and 7.4. We use the
Langmuir balance technique to study the model membrane
monolayers, and we obtain the mechanical properties of the
membranes from the isotherms. We show that cholesterol
have three effects i) It fluidizes the monolayer at low surface
pressures and at all concentrations studied, ii) When the pure
condensed phase appears, it shows the so-called condensing
effect, and iii) Upon increasing the concentration of
cholesterol the monolayers stiffens.

EXPERIMENTAL

Materials
DMPC (1,2-Dimyristoyl-sn-glycero-3-phosphocholine, > 99%,
Sigma-Aldrich, United States), Cholesterol (>99% Sigma-
Aldrich, United States) and Arachidic acid (≥99% Sigma-
Aldrich, United States) were used without further purification.
DMPC, Cholesterol and Arachidic acid were dissolved in HPLC
grade chloroform (>99%, Fermont, Mexico). Then DMPC and
Cholesterol were mixed in different molar ratios (0, 0.01, 0.02,
0.03, 0.04, 0.10, 0.15, 0.20, 0.30, 0.35, 0.40, and 1.0) of cholesterol
and stored at −20°C.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6361492

Bañuelos-Frías et al. Cholesterol Effect in Model Membranes

59

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Methods
Langmuir-Blodgett Trough
A Langmuir-Blodgett trough (model 611, NIMA Technology
LTD., Coventry, England) was used to measure the pressure-
area isotherms, using a filter paper as the Wilhelmy plate for the
surface pressure determination (with a precision of ±0.1 mN/m).
The trough was filled with deionized water (bioresearch grade
water, >18.0 MΩ-cm of resistivity, Barnstead/Thermolyne,
Dubuque, Iowa, United States) and deionized water was used
to prepare the pH 7.4 phosphate buffer solution. The temperature
was kept at 37.0 ± 0.1°C, during the experiments in order to have
human physiological temperature conditions, using a water
recirculator bath (Neslab, United States). Before starting each
experiment, the subphase and trough cleanliness were tested by
closing the barriers and checking that the pressure sensor
readings were less than 0.1 mN/m when the barriers of the
Langmuir through were fully closed (and by the presence of a
dark background only, observed by Brewster angle microscopy,
see below). Using a 50 µl Hamilton glass microsyringe, the lipid/
Cholesterol mixtures were gently deposited on the air/water
interface and waited at least 30 min to allow for the
evaporation of the solvent before starting each experiment.
The monolayer was then compressed at 20 cm2/min. The
average area per molecule was calculated by the NIMA
software based upon the average molecular weight,
concentration and volume of the deposited sample.

Brewster Angle Microscope
During the compression, images of the monolayer were acquired
using a Brewster Angle Microscope BAM (Nanofilm EP4,
Accurion GmbH, Germany) in order to see morphologies of
the monolayer and phase transitions, along the obtained
isotherms in the whole surface pressure range.

Mixed Monolayer Stability Study
We studied the stability of the DMPC/cholesterol mixed
monolayers by slowly compressing them up to 35 mN/m and
maintaining the area per molecule constant by using the area
control function of the NIMA trough software. The surface
pressure was recorded for approximately 300 min, in order to
determine changes in surface pressure as consequence of the
monolayer relaxation until its equilibrium value. The
experiments were done both in ultrapure water (pH ≈ 6.6)
and in a buffer subphase at pH 7.4.

RESULTS AND DISCUSSION

Isotherms
The addition of even a very small amount of cholesterol produces
a considerable shift in the take-off pressure area [12]. Considering
an ideal mixture behavior between DMPC and cholesterol, each
isotherm should give a take-off pressure area equal to A � XDMPC

ADMPC + XChol AChol, where Ai and Xi are the molecular take-off
area and the mole fraction of the “i” component, respectively.
Taking a 0.01 cholesterol fraction gives A � 0.99 (142) +0.01 (40) �
141.0 Å2/molecule, which is much larger than the

experimental value of 115.3 ± 0.1 Å2/molecule obtained. In
fact, this is reflected at all cholesterol concentrations studied
here, as it is shown in Figure 1. This difference implies that
cholesterol interacts strongly with the liquid expanded (LE)
DMPC phase, disrupting its formation and making the gas
phase to disappear at much lower areas per molecule. Here, we
are taking the take-off pressure as a reference for the
“disappearing” of the gas phase, although in a mixture this
is not completely correct, especially when the concentration of
cholesterol becomes high. However, at the higher
concentration of cholesterol in the mixture, we notice that
the gas phase disappeared at about 5–8 mN/m and at lower
cholesterol concentrations the gas phase disappear at even
lower surface pressure; therefore we are taking the take-off
pressure area as a reference for this case.

So, taking the take-off pressure as a reference of the condensed
phase of pure DMPC, the molecules are arranged with a
particular tilt azimuthal order parameter [30]. However, the
bulky cholesterol molecule disrupts this order, shifting the
appearance of the pure condense phase to lower areas per
molecule, as denoted by a smaller take-off area of the surface
pressure, as shown in Figure 2. A cholesterol molecule changes
the tilt angle of the DMPC molecules around it, making them

FIGURE 1 | Pressure-area isotherms of the DMPC/Cholesterol mixtures
at 37.0 ± 0.1°C, on (A) ultrapure water at pH ≈ 6.6 and (B) PBS Buffer at pH
7.4 subphases. As the cholesterol mole fraction increases, the take-off
pressure moves to lower areas per molecule, extending the presence of
the gas phase.
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more vertical with respect to the surface, so that they occupy a
smaller effective area. The LE − G coexistence region is thus
extended, decreasing the take-off pressure area by more than just
the difference in areas of the individual components [16, 17, 31].
Cholesterol have therefore the effect of fluidizing the monolayer,
preventing the appearance of the pure condensed phase.

Figure 3 shows representative BAM images along various
isotherms. The images show the coexistence of the gaseous (G)
phase (darker regions) and the more condensed (LE) phase
(brighter regions) at relatively low surface pressures (Figures
3A–D). In the pure DMPC isotherm, the G phase disappears at
the take-off surface pressure, as it is noticeable absent at a
pressure of 5 mN/m (Figure 3E), something typical for a pure
component system [18, 32, 33]. As we increase the amount of
cholesterol there is a residual amount of gaseous phase at the
same pressure of 5 mN/m, see Figures 3F–H [17, 34]. But at the
surface pressure of 15 mN/m, the gaseous phase disappears at all
mixture concentrations but in fact it disappears even a lower
surface pressures, rendering a homogenous monolayer in the
condensed phase (Figures 3I–L). At an even higher pressure
value of 32.5 mN/m, we notice the presence of small 3D crystals
which become more noticeable at higher pressures particularly
close to the collapse pressure (Uc). The amount and size of the 3D
crystals increase with the cholesterol concentration. It has been
proposed [35] that the properties of a lipid monolayer can be
correlated to those of a bilayer around a surface pressure of
32–35 mN/m.

Excess Area Analysis
A way to estimate the miscibility and the interactions between
molecules present in a two-component monolayer mixture is by
the determination of the excess area [11, 16]:

Aex � A12 − (X1A1 − X2A2) (1)

where A12 is the average area per molecule of the mixture and Ai

andXi as defined above. A negative excess area indicates attractive
forces between the two kind of molecules of the mixture [11, 20,
23, 31]. Figure 4 shows the excess area determined at different
surface pressures in the cholesterol range studied. The excess area
is negative in all cases, indicating attractive interactions in the
condensed phase between DMPC and cholesterol. At a given
pressure the excess area is fairly constant at all cholesterol
fractions; showing a clear effect that is noticeable even at the
smaller amount of cholesterol studied. The effect is more evident
at lower surface pressures, possible due to there is more space
between the phospholipid molecules where cholesterol can be
intercalated. As the surface pressure increases, this space is reduce
making the presence of cholesterol between the lipids more
difficult, until it is expelled at even higher surface pressures.
The strongest attractive interaction (most negative excess area)
occurs in the range of 0.30–0.40 M fraction of cholesterol. It is
worth noting that this range of cholesterol concentration
coincides with the physiological value in most cell membranes
[11, 17, 26].

Thermodynamic Properties
Thermodynamic stability of mixed monolayers can be obtained
by comparing the pure monolayer using the excess Gibbs free
energy [23],

ΔGexc � ∫
π

0
[A12 −(x1A1 + x2A2)]dπ (2)

It can be noticed from Figure 5 that the excess Gibbs-free
energy for all the mixtures is negative, therefore it can be
concluded that the DMPC and cholesterol molecules form a
stable mixed monolayer at all conditions. The lowest energy
happens again at a concentration between 30–40% of
cholesterol concentration and at surface pressures of
30–40 mN/m that correspond to the values present in
mammalian cell membranes [2, 26, 35].

Mechanical Properties and Equilibrium
Spreading Pressure
Monolayer mechanical properties can be analyzed by calculating
the isothermal compressibility or rather its inverse, the area
compressibility elastic modulus given by [15, 23, 24],

C−1
s � −A(dπ

dA
) (3)

Figure 6 shows a plot of C−1
s as a function of the area per

molecule for different cholesterol fractions. Note that C−1
s start at

a very low value when the monolayer is at the coexistence region
of the condensed and gaseous phases (see Figure 3A). In this
situation, the high compressibility of the gas phase gives a low
value for C−1

s . The value of C−1
s rises sharply at the take-off

pressure area, mainly due to the compression force required to
overcome the repulsive interactions of the condensed domains

FIGURE 2 | Take-off pressure area of the studied isotherms on ultrapure
water at pH ≈ 6.6 and on PBS Buffer pH 7.4 subphases. In both cases, the
cholesterol delays the appearance of the pure condensed phase to lower
areas/molec.
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during domain coalescence [8]. The sharp rise stops once we
reach a uniform monolayer and here we see two different slopes
for pure DMPC (Area/molecule between 90 and 130 Å2),
indicating a phase transition between two different condensed
phases with different compressibility values. That transition is not
as evident with a small fraction of cholesterol, probably due to the

fact that cholesterol introduces some disorder in the monolayer
[36]. As it was discussed before, the cholesterol changes the tilt
angle of the DMPCmolecules around it, moving the system away
from a well-defined phase. At higher molar fractions (>0.10), the
C−1
s curve start showing again two slopes; this is the monolayer

becomes stiffer at higher surface pressures due to a rise in

FIGURE 3 | BAM images of DMPC/chol mixed monolayer at different surface pressures at 37.0°C. The images are 462 × 564 µm2. All the images in a row (column)
correspond to the surface pressure (cholesterol fraction) indicated in the first image.
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molecule packing driven by the well-known cholesterol
condensation effect, where the phospholipid acyl chains
interact strongly with cholesterol as reported in the literature
[5, 11, 16]. This condensing effect does not mean that the
monolayer becomes more ordered, in fact there are reports
that the molecular correlation is short range [36]. Even more,
at around physiological concentration of cholesterol (0.3–0.4),
the C−1

s curve still show two slopes. However, the lower slope
region has shrunk while the upper one has increased. The pure
cholesterol C−1

s curve only show one high slope indicating a low
compressibility of the condensed phase, in good agreement with
its corresponding isotherm [37]. All C−1

s the curves reached a
maximum value until collapse occurs; after the maximum, the
value of C−1

s decreases rapidly to zero because the film becomes
highly compressible due to collapse.

On the other hand, the behavior of both type isotherms, and
therefore C−1

s , is quite different at pH 7.4 than in ultrapure water
(pH ≈ 6.6). First of all, the take-off surface pressure occurs at
higher molecular areas at pH 7.4. This means that the condensed
phase appears at larger areas per molecule, due to the interactions
between the head groups and the phosphate ions of the buffer
solution expands the condensed phase [25, 38]. This difference in
the take-off surface pressure might change the phase order

compared to those present at lower pH, it could result in a
more tilted phase; this result in a more expanded phase but also
somewhat more compressible, as can be observed by both type of
isotherms and C−1

s , since the latter is significantly larger for the
pure DMPC and the higher cholesterol concentration at the
higher pH. In addition, the change in pH has an effect in the
behavior of C−1

s , for example, for the pure DMPC monolayer it
shows three different slopes before collapse at pH 7.4 while at
pH ≈ 6.6 it shows only two slopes, indicating that the monolayer
might have three and two different phase regions, respectively. In
addition, the maximum of the C−1

s value at the intermediate
concentrations of cholesterol is similar at 0.01 M fraction of
cholesterol, but at 0.1 M cholesterol concentration is
significantly higher at the lower pH. However, an addition of
a small amount of cholesterol has a more noticeable effect at the
higher pH than at lower pH. As mentioned above, the C−1

s values
change strongly with the addition of only 0.01 cholesterol
fractions even more at 0.1 cholesterol fraction the C−1

s curve
becomes more shallow, with not very well defined regions. But at
around physiological concentration of cholesterol, e.g., 0.35–0.40,
the C−1

s curve behavior changes strongly; the slope is very high,
especially at physiological pH, and closer to the behavior of the

FIGURE 4 | Excess area as function of cholesterol concentration at
different surface pressures in ultrapure water (A) and in pH 7.4 subphase (B).

FIGURE 5 | Excess Gibbs free energy for the mixed monolayer at
different cholesterol concentrations and surface pressures in ultrapure water
(A) and in pH 7.4subphase (B). For all the isotherms, the ΔGex is negative,
indicating that the molecules mix spontaneously.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6361496

Bañuelos-Frías et al. Cholesterol Effect in Model Membranes

63

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


pure cholesterol curve, indicating that the monolayer becomes
very stiff.

It is worth noticing that the maximum of the C−1
s curves at

high concentration of cholesterol and also for pure cholesterol, is
much higher at higher pH, indicating that the monolayer is stiffer.
This behavior is easily observed in Figure 7, where for different
concentrations of cholesterol, the C−1

s values are slightly lower at
low surface pressures for the higher pH. But as the surface
pressure is increased, the monolayer behavior is reversed since
at higher pH shows higher values of C−1

s than a lower pH, which
again indicates that the monolayer becomes stiffer.

Figure 8 shows a monolayer stability analysis as a function of
time at pH ≈ 6.6 (Figure 8A) and physiological pH (Figure 8B).
In this study, we prepare again Langmuir monolayers with
different concentrations of cholesterol and compared their
relaxation with that of pure DMPC. We also include for
comparison, the relaxation behavior of pure arachidic acid and
pure cholesterol. It has been proposed [13, 34] that the behavior
of a monolayer in a surface pressure range of 32–35 mN/m is
equivalent to the behavior of a bilayer in a cell membrane at 20°C.
To test this hypothesis, the monolayers were slowly compressed
(20 cm2/min) up to 35 mN/m and allowed to relax to its
equilibrium surface pressure.

Our relaxation studies indicate that all monolayers have a
pressure drop as a function of time. However, both DMPC and
DMPC + cholesterol relax to an equilibrium surface pressure of
about 30.2 ± 1.4 and 27.4 ± 3.2 mN/m in pure water (pH ≈ 6.6)
and buffer at pH 7.4, respectively. It is surprising that at pH ≈ 6.6
the equilibrium surface pressure in quite similar for all the
cholesterol concentration range, the surface pressure drop was
between 3.8 and 6.2 mN/m, while at pH 7.4 the surface pressure
drop is somewhat larger, between 4.4 and 11.5 mN/m. Therefore,
the equilibrium surface pressure values at pH 6.6 are not very
different for all DPPC-Cholesterol mixtures, but at pH 7.4 the
equilibrium surface pressure values are not as homogeneous. The
pressure drop indicates that the monolayer is slowly collapsing;
that is, forming three-dimensional structures, but it is worth
noting that the equilibrium surface pressure at pH 7.4 of pure
DMPC and its mixture with a cholesterol mole fraction of 0.35
falls in the range of the equilibrium surface pressure at pH 6.6. In
addition, we can state that at 37.0°C and physiological pH 7.4 that
any of these monolayers could be equivalent to a bilayer below
27 mN/m, in terms of their equilibrium properties. Remarkably,
pure cholesterol has a quick and very large surface pressure drop
at physiological pH, to about 17 mN/m, as shown in Figure 8B).
This indicates that the equilibrium surface pressure of the
mixture is mostly due to the DMPC. Moreover, the surface

FIGURE 6 | Area compressibility elastic modulus at different cholesterol
fractions at 37.0 ± 0.1°C on ultrapure water subphase (A) and on pH 7.4 (B).

FIGURE 7 | Comparison between area compressibility elastic modulus
at different surface pressures on ultrapure water subphase (A) and pH 7.4
subphase (B).
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pressure of arachidic acid shows two behaviors at pH 7.4; first, a
rapid decay of about 11 mN/m in a short time, followed by a
much slower decay of about 6 mN/m more toward the final
equilibrium spreading pressure of about 18 mN/m. This is, the
equilibrium spreading pressure value of arachidic acid is similar
to that of pure cholesterol and almost half the initial surface
pressure value. Even more, at pH 6.6, the equilibrium pressure of
arachidic acid decays more slowly that at pH 7.4, but it decays
even to a lower value of about 12.5 mN/m. This give us a good
indication that monolayers formed by single chain lipids have a
much lower equilibrium surface pressure than monolayers
formed by double chain lipids, such as phospholipids. This
also might indicate why nature chose double chain lipids, such
as phospholipids, to be the main lipid components in cell
membranes. Due to energetic considerations, single chain
lipids tend to form micelles while double chain lipids tend to
form vesicles that are associated with the formation of cell
membranes [39]. However, even if single chain lipids could
form vesicles, they could not form thermodynamically stable
unilamellar vesicles but rather multiwall vesicles; for the case of
arachidic acid they will be 4 to 5 bilayers thick [32].

Figure 9 shows a series of representative Brewster angle
microscopy images of the equilibrium spreading pressure
experiments of the monolayers. First at a surface pressure of
35 mN/m (left) and then at the equilibrium surface pressure

(right) of the corresponding sample. The first row corresponds to
the DMPC monolayer, at 35 mN/m where a homogeneous
monolayer can be observed. While at 27 mN/m a few 3D

FIGURE 8 | Monolayer equilibrium surface pressure comparison as a
function of the cholesterol concentration at (A) pH 6.6 and (B) pH 7.4
determined at 37.0 ± 0.1°C. In addition, the equilibrium surface pressure of
arachidic acid is shown at both conditions.

FIGURE 9 | Relaxation of lipid monolayers for pure DMPC (first row) and
arachidic acid (second row) monolayers at the beginning of the experiment
(left column) and at the end of the experiment (right column) at pH 7.4
subphase at 37.0 ± 0.1°C. The images are 462 × 564 μm2.
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structures can be noted over the homogeneous DMPCmonolayer,
this is due to the relaxation of the monolayer. In the second row, a
homogeneous Cholesterol monolayer can be noted at 35 mN/m
and then when the equilibrium surface pressure is reached (17mN/
m), after 2.5 hours, some 3D structures can be noted floating on a
homogeneous monolayer. In the third row the DMPC+0.3
cholesterol mixed monolayer is shown. At the start of the
experiment at 35 mN/m, separated 3D structures can be noted
due to the condensing effect induced by the cholesterol molecules.
While at the equilibrium surface pressure (27mN/m), 3D structure
domains can be noted as well, forming a foam-like structure.
Finally, the fourth row shows the images corresponding to the
arachidic acid monolayer. At the beginning of the surface pressure
relaxation experiment (35 mN/m) some 3D structures can be
observed. But at the equilibrium surface pressure (17 mN/m), a
large amount of arachidic acid crystals can be noticed due to the
collapse of the monolayer by the relaxation process. It is important
to notice that the arachidic acid monolayer achieves stability at a
surface pressure value 37 % lower than the DMPC monolayer and
its mixtures with cholesterol. Therefore, the phospholipid
monolayer has a stable surface pressure much higher than the
single-chain fatty acid.

CONCLUSION

The analysis of the thermodynamics andmechanical properties of
Langmuir monolayers of DMPC/cholesterol as a function of the
concentration of cholesterol and at two pH values at physiological
temperature gave interesting results. For example, we found that
the isotherms of DMPC/cholesterol monolayers mixtures show
an increase in the monolayer fluidity at all cholesterol
concentrations. Cholesterol is a bulky molecule that makes the
take-off surface pressure of the monolayer appears at lower areas
per molecule. This means that the presence of the gas phase
remains at much lower area per molecule compared to that of the
pure DMPC monolayer due to the effect of cholesterol, thus
fluidizing the monolayer. However, this effect is much less
pronounced as the concentration of cholesterol increases, and
near physiological cholesterol concentration the monolayer is less
compressible, as observed by an increased in slope of the
compression modulus, C−1

s , more noticeable at physiological
pH than at the lower pH of pure water.

On the other hand, it is important to notice that the excess free
energy is the lowest at physiological concentrations of cholesterol
at both pH and surface pressure, this is, it becomes more negative

not only as the concentration of cholesterol increases but also as
the surface pressure increases as well, close to the equilibrium
surface pressure determined at both pH. This indicates that
DMPC and cholesterol mix better at higher cholesterol
concentrations as well as at higher surface pressures. In
general, in agreement to the excess area and Gibbs free energy
analysis, this results showed the presence of attractive interactions
that form thermodynamically stable monolayers in the whole
cholesterol fraction range studied [17], and where more stable
monolayers were observed when the mixture contained about the
average physiological cholesterol fraction (≈0.35) that resulted to
be energetically favored and gives more stable monolayers [11].
Furthermore, we show that monolayers formed by either pure
DMPC or a mixture of DMPC with cholesterol relax to about the
same equilibrium surface pressure, although the final surface
pressure relaxation value is different depending on the pH.
Furthermore, we also show that a monolayer formed by a
single chain lipid, such as arachidic acid, is much less stable
than the pure DMPC or the DMPC/cholesterol mixture; this
results clearly indicates a possible reason on why nature uses
double chain lipids as its mayor component in cell membranes.
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Entropic Effects of Interacting
Particles Diffusing on Spherical
Surfaces
Aldo Ledesma-Durán1, J. Munguía-Valadez2, J. Antonio Moreno-Razo2, S. I. Hernández3 and
I. Santamaría-Holek3*

1Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No.186 Colonia
Vicentina, Delegación Iztapalapa, México City, México, 2Departamento de Física, Universidad Autónoma Metropolitana-
Iztapalapa, Avenida San Rafael Atlixco No.186 Colonia Vicentina, Delegación Iztapalapa, México City, México, 3Unidad
Multidiciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México
(UNAM), Boulevard Juriquilla, Querétaro, México

We present a molecular dynamics and theoretical study on the diffusion of interacting
particles embedded on the surface of a sphere. By proposing five different interaction
potentials among particles, we perform molecular dynamics simulations and calculate the
mean square displacement (MSD) of tracer particles under a crowded regime of high
surface density. Results for all the potentials show four different behaviors passing from
ballistic and transitory at very short times, to sub-diffusive and saturation behaviors at
intermediary and long times. Making use of irreversible thermodynamics theory, we also
model the last two stages showing that the crowding induces a sub-diffusion process
similar to that caused by particles trapped in cages, and that the saturation of the MSD is
due to the existence of an entropic potential that limits the number of accessible states to
the particles. By discussing the convenience of projecting the motions of the particles over
a plane of observation, consistent with experimental capabilities, we compare the
predictions of our theoretical model with the simulations showing that these stages are
remarkably well described in qualitative and quantitative terms.

Keywords:molecular simulations,mean square displacement, surface sphere, diffusion coefficient, curved surfaces

1 INTRODUCTION

In several physical and biological systems the mass transport phenomena is carried out in surfaces
with non vanishing curvatures. The diffusion of bio-molecules and other particles on the surface of
liposomes, drops and other curved entities is of high relevance due to its potential applications in
biomedicine and technology [1–4]. Characteristic examples of this phenomena can be found in the
diffusion of proteins on curved membranes or in the surface diffusion of molecules and chemical
solvents in catalytic surfaces [5–8].

In these curved domains, many geometric aspects relating the motion of the particles on surfaces
have been studied in recent years [9–14]. These studies are relevant in the understanding of applied
problems such as nucleation, spinodal decomposition, adsorption, and phase transitions, since the
dynamics of the particles is modified due to the curvature of the surface on which the molecules are
embedded [15–18].

In particular, the most relevant quantity to measure in these particle motions is the mean square
displacement (MSD). However, most of the previously refereed studies provide geometric
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information of the MSD and the effective diffusion coefficient
only for the case where the interaction of the particles occurs with
the surface and not among particles themselves. In this
simplification, many expressions can be found in the literature
for approximating the short and long time behavior of the MSD,
see Ref. [9] and references therein. However, for the case of
interacting particles, there are only few numerical works studying
the influence of interaction and confinement in theMSD [19–21].

In this work we will consider how the surface diffusion
displacements are influenced by the interaction of the particles
and the projection of their displacement in a plane of observation.
This is because for most experimental cases of interest, the
geodesic trajectories of the particles cannot be followed at all
times, and only the projection in a plane of observation can be
measured [11, 22, 23]. This fact emphasizes that for diffusion over
closed surfaces, the observed motility depends on the curvature of
the surface and on the plane of observation [24–26].

We present the results of the MSD for interacting particles in a
crowded spherical surface by using Molecular Dynamics (MD)
simulations and implementing five different pairwise-interaction
potentials between the particles in a relatively high surface density
medium (ρp � 0.92). The particles are free to move on the entire
spherical surface of radius R. To keep the particles on the surface,
we use the algorithm described by Juffer et al. [27]. The
continuous interaction potentials used are different cases of
the generalized form of the Mie potentials [28]: LJTS,
WCA(12.6), WCA(50.49). Besides, some simple discontinuous
potentials like the shoulder-square (SS) and the well-square
(SW) were adapted to their continuous-mathematical form
described by Munguía-Valadez et al.1

With the aim to provide a physical interpretation of the results
of these numerical calculations, we formulate an analytic model
based on the generalized Smoluchowski equation with time-
dependent coefficients [29–34]. Using this tool, we can
identify how the change of perspective, confinement and
crowding are incorporated in an effective diffusion coefficient
that takes into account the entropic confinement and the
anomalous diffusion. The model used here was derived in the
context of mesoscopic non-equilibrium thermodynamics
(MNET) and has been widely used in order to obtain kinetic
equations for transport phenomena, like diffusion-adsorption
processes, anomalous diffusion, activated processes, diffusion
in pores, and diffusion in the presence of entropic barriers
[35–39]. In particular for our purposes, MNET has been
successful in describing diffusion on other confined systems
[38, 40–42].

The comparison between our numerical simulations and
thermodynamic-based model allows us to propose a new
interpretation of the observed dynamics of the MSD for
diffusion of interacting particles over a sphere, and to compare
the different subdiffusive regimes associated with the hardness or
softness of the particle collisions. We have chosen a spherical

geometry in order to rule out the effects of different local
curvatures in the surface. This will also allow us to recover
previous theoretical results deduced for the sphere in absence
of interaction.

Regarding the organization of work, in Section 2 we present
our Molecular Dynamics simulations on the diffusion of finite
sized-particles over an spherical surface for different interaction
potentials among particles. Then, we study the dynamics of the
diffusion and the behavior of the MSD using the results provided
by a Smoluchowski description which is presented in Sections 3.1
and 3.2, for free and interacting particles, respectively.
Comparison between simulations and model is presented in
Section 4. Finally, discussion and concluding remarks are
provided in Section 5.

2 MOLECULAR DYNAMICS SIMULATIONS

We present the details of the simulations as well as a brief
description of the interaction potentials used in this work.

2.1 Interaction Potentials
The continuous interaction potentials are defined through:

ϕn,m(rij) � (
n

n −m
)(

n
m
)
m/(n−m)

ε[(
σ

rij
)
n

− (
σ

rij
)
m

], (1)

where ϕn,m(rij) is the most general form of the Mie potential [28].
For example, we can write the Truncated and Shifted Lennard-
Jones (LJTS) interaction by choosing n, m � 12, 6, and then

ϕLJTS(rij) � {ϕ12,6(rij) − ϕ12,6(rc), rij ≤ rc,
0, rij > rc,

(2)

FIGURE 1 | Potentials of interacting particles used for the simulations.
(A) Potential of Truncated and Shifted Lennard-Jones. (B) WCA(12, 6)
potential and the hard sphere pseudo-potential WCA(50,49). (C) and (D)
Square-Shoulder potential continuous and continuous Square-Well
respectively, given by Eq. 4.

1Munguía-Valadez J, Chávez-Rojo MA, Moreno-Razo JA, Sambriski EJ (under
review). The generalized continuous multiple step potential: model systems and
related properties. J Chem Phys.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6347922

Ledesma-Durán et al. Entropic Effects of Interacting Particles

69

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


where σ(� 2a) is the particle diameter, rij �
∣∣∣∣ri − rj

∣∣∣∣ the distance
between the centers of mass of the i-th and the j-th particles, ϵ the
potential well depth, and rc(� 2.5σ) the cutoff radius. On the
other hand, a generalization of the Weeks-Chandler-Anderson
potential (WCA) [43, 44] can be written as

ϕWCA(n,m)(rij) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕn,m(rij) + ϵ, rij ≤(n
m)

1/n−m
σ,

0, rij >(n
m)

1/n−m
σ,

(3)

where rij � (n/m)1/n−mσ is the value that corresponds to the
minimum potential. In our case, we use the parameters
n, m � 12, 6, [WCA(12, 6)] and n, m � 50, 49, [WCA(50, 49)]
to incorporate pseudo hard-sphere interaction models into the study,
see Figure 1B [44].

The Square-Well (SW) and Square-Shoulder (SS) potentials can
be approximated with the Generalized Continuous Multiple Step
Potential (GCMS), which incorporates a contribution of excluded
volume followed by multiple steps that model repulsive barriers or
attractive wells as the casemay be. Its simplified form can be written as:

ϕGCMS(σ,ω, q, a0, rij) � ϵ⎡⎢⎣( ω

rij − σ + ω
)

q

+ a0
1 + exp[q(rij − σ − ω)/ω]

⎤⎥⎦, (4)

where ω defines the spatial extent of the particle core in units of σ, q
is related to the hardness of the potential, and a0 is a factor that
defines an attractive step (a0 < 0) or a repulsive one (a0 > 0). The
parameters used to reproduce the SS and SW are: ω � 0.5, q � 500,
a0 � 1 and a0 � −1, respectively, see Figure 1C y Figure 1D.

2.2 Simulation Method
In this work all quantities are assumed to be expressed in
conventional reduced units, with m, σ and ϵ as the units of mass
(set equal to 1), distance, and energy, respectively. According to this
convention, the temperature (Tp) is in units of kBT/ϵ where kB is
Boltzmanns constant, the density (ρp) in units of ρσ2, the time (δtp)
in units of δt(ϵ/mσ2)1/2, and the energy (ϕp) in units of ϕ/ϵ. A
monodisperse system of spherical particles was studied with the
restriction of moving on the surface of a sphere of radius R � 9.3σ.
To study the dynamic behavior of each system,Molecular Dynamics
simulations were performed in the canonical assembly (NVT) for a
total ofN � 1000 particles embedded in the spherical surface, with a
surface density given by ρp(� N/A) � 0.92. The R and ρp values
were taken for compatibility with previous studies by Vest et al.
[45–47]. The system was placed in a thermal bath at a temperature
Tp � 1.0 set constant by using the isokinetic method; the integration
of the equations of motion was carried out using the velocity-Verlet
algorithm [48], with the restriction fi(ri) � |ri|2 − R2 � 0 (see Ref.
[27]) and a time-step δtp � 10− 3 for LJTS, WCA(50, 49) and
WCA(12, 6) systems, and with δtp � 10− 4 for SS and SW systems.

The simulations were run by 106 time-steps for LJTS,
WCA(50, 49) and WCA(12, 6), and by 107 time-steps for SS
and SW to reach thermodynamic equilibrium, then for 3 × 107

and 4 × 108 time-steps, respectively, for the calculation of the

mean square displacement. Some representative trajectories of a
tracer particle for each potential are plotted in Figure 2.

The results of our simulations for the MSD are plotted in
Figure 3. At the right side we plot the geodesic MSD over the
sphere with the saturation valor of (π2 − 4)R2/2. At the left, we
plot the MSD measured when the displacements of the particles
are projected the plane of observation XY, giving the saturation
value of 2R2/3. These saturation values for long times only
depend on the geometric configuration and therefore are the
same for free and interacting diffusing particles [10].

The MSD plotted in Figure 3 shows four different stages: 1) the
ballistic regime where the MSD increases as t2, 2) a transition
between ballistic and diffusive regime where the slope of the
MSD decreases and changes of concavity, 3) the subdiffusive
regime where, as we will calculate below, the MSD increases as tα

with α(1 and, finally, for long times, 4) the saturation regime where
theMSD no longer increases since the domain of the sphere is finite.
These four regimes are seen in the geodesic and projected version of
the MSD plotted at right and left of Figure 3, respectively. Some or
all of these four stages have been found both in numerical
simulations [9, 49–52] and experiments, mainly for protein and
lipid diffusion on cell membranes [53–56].

The form of the plots for the MSD in Figure 3 depends on
the combined effect of the curvature of the surface, the
interaction of the particles and, in the case of the projected
displacement, the projection on the observation plane. In the
next section we will deal with the connection between these
different effects and their effect in the measured effective
diffusion coefficient.

3 THE MSD OF FREE AND INTERACTING
PARTICLES

Commonly, experimental setups for measuring the diffusion of
particles on curved surfaces use confocal microscopy techniques
[33, 57, 58]. Due to the focal length inherent to these techniques,
the measure of the motions of the particles under study is
preferentially performed in terms of their projection to the
focal plane [22, 23]. In view of this, in the present section we
study the equivalence between the description of the free
diffusion over the surface (the geodesic displacement) and
compare with the evolution of its projection in the planar
disk constrained by the sphere, see Figure 4. First, we will
deduce an expression for the MSD of free particles moving at a
flat disk by considering how the entropic restriction of the
movement (imposed by the fact that the particles cannot travel
beyond the radius of the disk) is reflected in the transport
properties that are used to describe the motion. Then, we will
modify the MNET description to include the interaction and
crowding of particles.

3.1 The MSD of Free Punctual Particles
From a thermodynamic point of view, the problem can be tackled
by estimating the equivalent force keeping the system confined to
diffuse in the planar disk delimited by the surface of the sphere of
radius R, see Figure 4. This equivalent force can be written in

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6347923

Ledesma-Durán et al. Entropic Effects of Interacting Particles

70

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


terms of a Taylor expansion. To first order, this correspond to an
harmonic-like potential of the form

U(r)x1
2
κ0r

2. (5)

The potential here is of an entropic origin, since it is due to the
fact that the particles cannot leave the sphere projection or,
equivalently, the planar disk. The maximum value of this
potential, associated with the equivalent force, can be
estimated by using the equipartition theorem [59]. Comparing
the mean kinetic energy of the particles, K � (3/2)kT (which
corresponds to one half for each degree of freedom in the three
dimensional description), with the maximum potential energy
available for the trapped particles, Umax � (1/2)κ0R2, we can
estimate the value of the effective restorative coefficient κ0 as

κ0(R) � 3kBT
R2

. (6)

Hence, the projected motion of the particles constrained to
diffuse in a disk under the influence of the equivalent harmonic
force can be described by means of the Smoluchowsky
equation

zP
zt

� D0∇2P − D0

kBT
∇ · (PF), (7)

where kB and T are Boltzmann constant and temperature,
respectively. Since the equivalent force has radial symmetry,
assuming an initial configuration with the same symmetry
allow us to reduce the calculation of the MSD to the
contribution in the radial coordinate r. In this case, we have

FIGURE 2 | (A) Representative instantaneous configuration of the system with N � 1,000 particles on the spherical surface of density ρp(� N/A) � 0.92 and with a
radius of R � 9.3σ. (B–F) Path of a tracer particle over the spherical surface for the different interaction potentials.

FIGURE 3 | MSD of interacting particles over the sphere with the potentials given in Figure 1. The geodesic arc, 〈s2〉, and the projected displacement in the XY
plane, 〈r2〉, are plotted at left and right, respectively.
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zp
zt

� D0

r
z

zr
[r

zp
zr

+ κ0r2

kBT
p] (8)

where the force that constraint the particles motions
is F � −∇U , with U given by Eq. 5, and the gradient
and Laplacian operators are represented in polar
coordinates.

The mean square displacement in the constrained disk system
is therefore given by

〈r2〉 � ∫
​ R

0
∫

​ 2π

0
r2prdr. (9)

The time evolution of the MSD is obtained by taking the
derivative

d〈r2〉
dt

� ∫ r2
zp
dt

dA, (10)

And substituting Eq. 8. Assuming zero flux boundary
condition: zp/zr(R) � 0 in the border of the disk and the
conservation normalization equation, ∫​ R

0
prdr � 1, we can

prove, using successive integration by parts, that

d〈r2〉
dt

� 4D0 − 2D0

kBT
κ0〈r2〉. (11)

The comparison of the previous result with the result of
diffusion in an infinite planar surface, 〈r2〉 � 4D0t, shows that
the effect of the confinement is proportional to the ratio of the
potential and kinetic energies:

d〈r2〉
dt

� 4D0(1 − 3
2
〈U〉
〈K〉), (12)

where the average here is over the ensemble of non-interacting
particles. Eq. 11 is readily solved using that 〈r2〉→ 0 when
t→ 0 as

〈r2〉 � 2kBT
κ0

[1 − e− 2κ0D0t/kBT]. (13)

Substituting the estimated value of κ0 given in Eq. 6, valid
when particle interactions are negligible, we obtain

〈r2〉 � 2R2

3
[1 − e− 6D0t/R2]. (14)

This result has been obtained by using different methods in
Ref. [10] and, as expected, only depends upon geometrical
considerations resulting from averaging methodologies applied
directly to the Laplace-Beltrami diffusion equation.

This result describing the projection of the surface to the disk
can be contrasted to the result of particles really moving on a
planar disk of radius R, where K � kBT (since there are only two
freedom degrees), κ0 � 2kBT/R2, and therefore, from Eq. 11, we
have

〈r2〉2D � R2[1 − e−4D0t/R2]. (15)

Comparison between Eqs 14, 15 shows that the displacement
in a sphere respect to a planar projection has an average reduction
by a factor of 2/3 for long times. This reduction factor in the
displacements can be deduced also by evaluating the ratio
between the effective diffusion coefficient measured on a
planar region, D0, with respect to that measured in the
observation plane, D⊥. The result is

D⊥

D0
� 1
2
(1 + 〈n2

z〉), (16)

Where 〈n2z〉 is the geometric average of the quadratic vertical
component of the normal vector [10, 59]. For the sphere we have
nz � cos θ, from where it is straightforward deduced that 〈n2z〉 �
1/3 giving the expected result D⊥/D0 � 2/3.

3.2 The MSD of Interacting Non-punctual
Particles
In the previous subsection we have shown that the entropic
restrictions, present by the fact that tracer particles move over
a surface with a finite number of accessible states, are responsible
for the observed saturation value reached by the MSD at long
times. However, as we have seen in Figure 3, the simulations
show that the time behavior of the MSD at intermediate times
scales with a time dependence tα with α≤ 1. Therefore, for certain
interaction potentials, anomalous diffusion is observed. This fact
requires that the model developed in Section 3.1 should be
generalized to cope with particle interaction.

This generalization goes along the same lines of Santamaría-
Holek et al. [32], where a Smoluchowski description with

FIGURE 4 | Projection on an equatorial plane of the Brownian motion
which takes place over the surface of a sphere of radius R. The polar radial
coordinate of the particle r is measured on the plane.
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time-dependent coefficients was used to demonstrate that the
exponent characterizing the sub-diffusion is controlled by the
nature of the local cages and the free space at disposal for their
motion. In our case, since the single particle MSD reported here
accounts for the motion of independent particles in a crowded
media, the description of the diffusion can be given also in terms
of the generalized Smoluchowski equation for the single-particle
distribution function [61]. This equation for the probability is the
counterpart of the respective generalized Langevin equation with
memory effects, commonly used to describe microrheological
experiments and has the peculiarity of being equivalent in the
long-time regime to the Smoluchowski equation with time
dependent coefficients [29, 30]. This fact was generalized in
Refs. [31, 33, 62] for the case of power-law dependent
memory kernels which are equivalent to time dependent
diffusion coefficients of the form

Ds(t) ≈ D0(
t
τ
)
α− 1

, (17)

where τ is a characteristic time of the anomalous diffusion
process. In this equation, the exponent α ∈ (0, 1] characterizes
how strong sub-diffusion is and, as it was shown in Ref. [32], has
the general form

α � (1 − B1
a
ξ
)

3kBT
κ0R2

. (18)

Besides the entropic effect introduced through the ratio
kBT/κ0R2, the Eq. 18, through the factor 1 − B1(a/ξ), contains
the two main ingredients mentioned previously, namely, the free-
area at disposal to perform diffusion a/ξ, and the nature of the
local cages through the coefficient B1. The characteristic length ξ
is related with the free-area in which the finite particles can move
in a surface of total area A: ξ � A1/2

freexR(1 −Ma2/R2)1/2 where M
is the number of particles forming the cage. In this case, we have

α � (1 − B1
aR

R2 −Ma2
), (19)

This expression for the sub-diffusion exponent shows that it
only depends in the radii of the particles and sphere, and on the
parameter B1. This parameter indirectly depends in the nature of
the interaction potentials used. In the context of hydrodynamics
[63], it was related with the correction introduced by
hydrodynamic interactions over the motion of a particle when
this motion takes places near to a solid wall. Since these
interactions are related to the potential interactions among
particles, one may conjecture that the parameter B1 is a
measure of the effect that different interaction potentials have
on the cages’ dynamic structure and, therefore, of the different
values that the sub-diffusion exponent may take.

Even in this approximation, it results difficult to estimate
theoretically the parameters in Eq. 18. However, it is clear that the
exponent of the subdiffusive process is linked to the shape of the
interacting potential, the curvature of the surface and the
projection of the forces to the observation plane. In order to
find its value for the different potentials in Figure 1, we will adjust
the data of the numerical simulations, using the Smoluchowski

equation, but now in terms of this time dependent diffusion
coefficient as we detail below.

Therefore, we will consider that the single particle
Smoluchowski equation describing the dynamics of a tracer
particle in an effective medium of N − 1 interacting non-
punctual particles takes the form

zp
zt

� Ds(t)
r

z

zr
[r

zp
zr

+ 1
kBT

κ0r
2p], (20)

Where now the time dependent coefficient is given through Eqs.
17, 19. From the last equation, repeating the same procedure of
the last section, the temporal evolution of the MSD is obtained
to be

〈r2〉 � 2kBT
κ0

{1 − exp[ − 2κ0
kBT

(∫
t

0
Ds(t′)dt′.)]}. (21)

Using Eq. 6 we finally have

〈r2〉 � 2
3
R2{1 − exp[ − 6

R2
(∫

​ t

0
Ds(t′)dt′)]}, (22)

Which is the general expression for the MSD of the tracer
particles valid for the whole time interval. From this equation,
it is possible to deduce the temporal behavior of the diffusion
coefficient for all the stages of the process in terms of the
numerical data provided by the simulations as

Ds(t) � R2

6
(d〈r2〉/dt)(t)

((2/3)R2 − 〈r2〉(t)). (23)

Notice that this equation reproduces the expected behavior for
short and long times. For short times 〈r2〉→ 0 and
d〈r2〉/dt→ 4D0 and therefore Ds →D0. For long times, it is
expected that the MSD saturates and, therefore, d〈r2〉/dt→ 0
with Ds → 0.

At the other hand, when (Eq. 22) is used in combination with
the diffusion coefficient in Eq. 17, it accounts only for the process
once the sub-diffusion stage has started. At intermediary times, it
accounts for the sub-diffusion associated with particle
interactions and cage diffusion effects and, for long times, it
account for the fact that the particles have a restricted number of
accessible states in a finite domain. In the next section we will use
the numerical simulation in order to find the general behavior of
the temporal diffusion coefficient and the exponents of sub-
diffusion for the potentials we have considered in Section 2.

4 COMPARISON BETWEEN MODEL AND
SIMULATIONS

We have shown that the projection on the equatorial plane of
the geodesic MSD, directly measured in the numerical
simulations, is an equivalent form to characterize the
diffusive dynamics of the particles. We have explained
how the saturation value of the MSD rescales due to the
restricted number of accessible states, giving rise to entropic
constrictions on the dynamics of the particles.
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For short and intermediate times, our methodology allows us
to consider how different aspects modify the behavior of theMSD
of interacting particles forced to diffuse in the surface of the
sphere. All these aspects are clearly represented in Figure 5,
where we plot the time-dependent diffusion coefficient, Ds, given
in Eq. 23 for the potentials chosen, and illustrated in Figure 1. For
constructing this plot, the data from the functions 〈r2〉(t) and
d〈r2〉/dt obtained from numerical simulations are directly
substituted in (Eq. 17) for Ds(t).

The first aspect to notice is the reference diffusion
coefficient, D0. This is marked as a dashed line in Figure 5
and represents the surface diffusion coefficient in an infinite
planar surface, and negligible interaction potential among
particles. In Figure 5 it is seen that, for the used potentials,
the value of the diffusion coefficients augments according to
the order: SW , LJTS, SS, and WCA(12, 6). The color key is the
same as in Figure 1.

The second aspect to notice in the temporal dependence of the
diffusion coefficient Ds(t) is the emergence of sub-diffusion due
to the crowding effects. This results in different slopes of the curve
Ds(t) at intermediary times and, therefore, corresponds to
different values of the sub-diffusion exponent α. In order to
compare quantitatively the sub-diffusion for the different
potentials, in Figure 6, we adjust the data from numerical
simulations using (Eq. 22) with the temporal dependence of
the diffusion coefficient in (Eq. 17) using the least squares
method. The value of the local diffusion coefficient D0 and the
sub-diffusion exponent α together with the fits of the data are
given in Figure 6.

Figure 5, show that the value of the diffusion constant D0 is
smaller for hardest potentials (WCA(12, 6) and SS) than for softer
potentials (WCA(50, 49), LJTS and SW). The potentials having
wells also show this tendency since the diffusion constant for the
LJTS is larger that of the SW potential. The attractive part of the
potentials decreases, in turn, the kinetic energy of the particles
surrounding the tracer particle and, therefore, the energy

availability to perform position fluctuations. This
interpretation is clear after a comparison between the
potentials WCA(50, 49) and WCA(12, 6), which have a similar
functional form but different degree of penetrability. Another
aspect to be noticed is the steepest drop of the diffusion
coefficients (lower α) for the potentials with a tilted repulsive
part after r � 1, that is, SS and WCA(12, 60). A better
understanding of the effect of the shape and hardness of the
interaction potentials on the diffusion constants and the sub-
diffusion process will require its own work.

Finally, the third aspect to notice is that both the ballistic and
long-time behaviors of the MSD appear in all cases since not
depend on the interaction potential. Because of this, they do not
provide information of the fluid medium where the diffusion
occurs. As it is seen in Figure 5, the final drop of the diffusion
coefficient to zero occurs earlier as the diffusion coefficient is
lower, as expected.

Our work shows that the deviations of the MSD relative to the
planar behavior represent the effect that the particle interaction
and crowding effects have on the dynamics. This effect is coupled
with the presence of an entropic force restricting the number of
accessible states. We prove that these two effects are well captured
by the projected diffusion coefficient Ds, given in Figure 5 and
which has been reported in previous numerical simulations and
experiments [53, 64].

The excellent agreement in Figure 6 among simulation
results and the theory proposed indicates that particle
interactions control the cage effect and the sub-diffusion
regime. The delay induced by the crowded scenario appears
since the transient stage, and its influence is captured by the
memory effects that the effective diffusion coefficient Ds(t)
incorporates. We have found that the value of the parameters
used for fitting the MSD curves depend upon the used
potentials and further numerical and theoretical studies
are necessary in order to show the relation between the
form of the potential interaction and the surface diffusion
coefficient. Similar commentaries can be done concerning
the specific value for the radii of the particles and the surface
density. These values allowed us to capture the effect of the
surface density and the form of the potential on the sub-
diffusion observed. Nonetheless, a more detailed study on
the dependence of the diffusion properties on this factor will
require a future work.

5 CONCLUSION

We have studied the statistical and dynamical properties of a
system of interacting particles constituting a fluid embedded on a
sphere’s surface. To understand the link between the microscopic
properties of the fluid and the observedMSD, we have proposed a
diffusion model incorporating memory and entropic effects that
allowed us to derive a simple and powerful expression for the
projected time-dependent diffusion coefficient. This expression
allows us to characterize the dependence of the diffusive
dynamics on the particle interactions and surface curvature.
This approach takes into account the change of perspective

FIGURE 5 | Projected surface diffusion coefficient Ds(t) as a function of
the time for the interacting particles with potentials given in Figure 1. The
dashed lines represent the reference value D0 in a planar surface.
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inherent to the experimental measure of diffusion of particles on
closed surfaces. The formalism proposed in this work reproduces
also some limiting cases previously studied in the literature and
exemplifies, with the use of ideas emerging from irreversible
thermodynamics, how we can provide a more flexible description
that helps to interpret complex phenomena occurring at the
surface.

In this work, we have shown in Figure 3 that the dynamics of
the MSD reflects four stages. Two, at short times tp ≤ 10− 1s, are
associated with the ballistic regime and how it ceases; and other
two (tp ≥ 10− 1s) associated with the diffusion regime in presence
of cages at the intermediate and long time regimes, corresponding
to anomalous diffusion and saturation, respectively. Using the
ideas of the MNET we use the Smoluchowski equation for
describing the process once the diffusion regime starts and
this is shown Figure 6 for the intermediary and long time
behaviors of the MSD. In contrast, modeling the regimes at
short times will require another kind of kinetic mechanism.
However, it is worth mentioning that, under the perspective of
biological applications of surface diffusion in crowded membrane
environments we discuss below, only the subdiffusive regime is
accessible to measurements with the actual experimental time-
resolution capabilities and therefore, this does not constitute a
limitation to our conclusions.

In the realm of applications, this study allows us to establish
a connection with models and experiments studying the
diffusion of several tracers in the cytoplasm of living cells
which often exhibit heterogeneous distribution of
macromolecular crowders [65–67]. This crowding is
extremely important in the surface membrane and might
affect the properties of anomalous diffusion. It is known,
for example, that going from a less to a more crowded
region will slow down the dynamics, both in terms of the
exponent and diffusivity [68–70]. This results very important
since the slow transport in the cell membrane of lipids and

proteins is linked with protein cluster formation, phase
segregation, lipid droplet formation, signal propagation and
other crucial functions occurring on the cell surface which can
be enhanced by the presence of sub-diffusion [71, 72].
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A colloidal particle embedded in a fluid can be used as a microscopic heat engine by

means of a sequence of cyclic transformations imposed by an optical trap.We investigate

a model for the operation of such kind of Brownian engines when the surrounding

medium is viscoelastic, which endows the particle dynamics with memory friction. We

analyze the effect of the relaxation time of the fluid on the performance of the colloidal

engine under finite-time Stirling cycles. We find that, due to the frequency-dependence of

the friction in viscoelastic fluids, the mean power delivered by the engine and its efficiency

can be highly enhanced as compared to those in a viscous environment with the same

zero-shear viscosity. In addition, with increasing fluid relaxation time the interval of cycle

times at which positive power output can be delivered by the engine broadens. Our

results reveal the importance of the transient behavior of the friction experienced by a

Brownian heat engine in a complex fluid, which cannot be neglected when driven by

thermodynamic cycles of finite duration.

Keywords: stochastic thermodynamics, heat engine, fluctuations, noise, viscoelasticity, memory effects,

non-equilibrium processes, colloids

1. INTRODUCTION

Historically, the study of heat engines has played a fundamental role in the general understanding
of energy exchanges in macroscopic systems. For instance, the conception of the well-known
Carnot cycle almost two centuries ago was motivated by the design of efficient engines capable
of performing mechanical work by extracting energy from a hot reservoir and transferring heat to
a cold reservoir, which finally led to the formulation of the second law of thermodynamics. Carnot
theorem imposes a universal bound for the maximum efficiency that can be ideally achieved by any
heat engine working reversibly in the quasi-static limit. Since then, further theoretical results on
the efficiency of irreversible heat engines under finite-time thermodynamic cycles with non-zero
power output have been obtained [1–6], which turn out to be important for practical applications.

In more recent years, advances in miniaturization technologies have allowed researchers
in both basic and applied science to conceive the design of micron- and submicron-sized
machines with the ability to perform specific tasks in the mesoscopic realm, e.g., controlled
cargo transport through microchannels and nanopores, in situ cell manipulation, assembly of
functional microstructures, micropumping, microflow rectification, micromixing of fluids, and
bio-inspired artificial locomotion [7–9]. This has triggered an increasing interest in investigating
the energetics and performance of mesoscopic heat engines, which, similar to their macroscopic
counterparts, must be able to convert in an efficient manner the energy absorbed from their
environment into useful work [10, 11]. An important issue that arises in the theoretical description
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and implementation of such devices is that they must operate
under highly non-equilibrium conditions with pronounced
thermal fluctuations, which poses important conceptual and
practical challenges [12]. A significant progress in the theoretical
analysis of mesoscopic heat engines has been made in the last
two decades with the advent of stochastic thermodynamics,
which extends concepts of classical thermodynamics such as heat,
work and entropy production to the level of single stochastic
trajectories for both equilibrium and driven systems [13–16].
Within this theoretical framework, it is possible to carry out a
comprehensive analysis of the performance of stochastic heat
engines based on Brownian particles subject to periodically
time-dependent potentials and temperatures [17–21]. Along the
same lines, optical micromanipulation techniques have facilitated
during the last decade the experimental realization of simple
colloidal heat engines, which are composed of a single colloidal
particle as a working substance, embedded in water as a heat
reservoir, undergoing thermodynamic cycles controlled by a
harmonic optical potential [22–26]. In such colloidal systems,
expansions and compressions during Stirling- and Carnot-like
cycles are achieved by decreasing and increasing the trap stiffness,
respectively, while a hot reservoir is realized either by an actual
increase of the local temperature of the around the particle
or by addition of synthetic noise of non-thermal origin. These
experiments have paved the way for the investigation of stochastic
models of colloidal heat engines in more intricate and realistic
situations, such as passive Brownian engines operating in contact
with active baths [27–32], Brownian engines with a self-propelled
particle as working substance in contact with a viscous fluid [32–
35] or in a suspension of passive Brownian particles [36] as a heat
bath, as well as the realization of a colloidal Stirling engine in
bacterial baths with tunable activity [37].

It must be pointed out that, in most of the situations
envisaged for biological and technological applications, the fluid
environment of a colloidal heat engine is not perfectly Newtonian
with a constant viscosity, but possesses a complex viscoelastic
microstructure because of the presence of macromolecules, e.g.,
biomolecular chains, polymers and wormlikemicelles, or colloids
suspended in a solvent, thus exhibiting time-dependent flow
properties [38]. Therefore, the motion of a colloidal particle in
such materials lacks a clear-cut separation from timescales of
the surroundings, which results in memory effects with large
relaxation times. All these features give rise to a wealth of
intriguing transient effects that markedly manifest themselves
when time-dependent driving forces are exerted on an embedded
particle [39–44], and are absent in the case of purely viscous
fluids. Although all these conditions are met by a colloidal heat
engine operating in a complex fluid, to the best of our knowledge
they have never been examined in the context of stochastic
thermodynamic cycles. Therefore, it is of paramount importance
to assess the role of viscoelasticity in the performance of this
kind of engines, since the resulting frequency-dependent friction
experienced by a colloidal particle can significantly impact the
rate at which energy is dissipated into a viscoelastic bath [45–48].

Here, we investigate a model based on the generalized
Langevin equation for the operation of a stochastic Stirling
engine composed of a Brownian particle embedded in a

viscoelastic fluid bath, which includes a memory kernel and
colored noise to account for retarded friction effects and
thermal fluctuations of the medium on the particle motion. By
numerically solving the corresponding non-Markovian equation
of motion, we analyze the effect of the characteristic relaxation
time of the fluid on the performance of the engine under finite-
time Stirling cycles, and compare our results with those found in
the case of Brownian particle in a Markovian bath. We uncover
a significant increase in the power output and the efficiency of
the engine operating in a viscoelastic environment with respect
to the corresponding values in a viscous bath at a given cycle
time. Moreover, with increasing relaxation time of the fluid,
the convergence to the quasi-static Stirling efficiency is shifted
to monotonically decreasing values of the cycle period, thereby
expanding the interval at which the engine is able to efficiently
deliver positive power.

2. MODEL

We consider a stochastic heat engine consisting of a Brownian
particle embedded in a viscoelastic fluid as a heat bath, whose
motion is confined by a harmonic potential. Both the curvature
of the confining potential and the temperature of the system can
be varied in time according to a well-specified periodic protocol
that mimics a macroscopic thermodynamic cycle. Therefore,
a stochastic model of the particle dynamics that allows for
temporal variations of the temperature is needed. Based on
Zwanzig’s pioneering work [49], Brey et al. [50] and Romero-
Salazar et al. [51] derived the simplest equations of motion of
a Brownian particle coupled to a heat bath with temperature
changing in time. Their approach incorporates linear dissipative
terms in the equations of motion of the surrounding bath
particles, which account for continuous cooling or heating of the
system controlled by some external mechanism in such a way that
the bath particles are always in a canonical equilibrium at a well-
behaved temperature dependent on time. In particular, in one
dimension the generalized Langevin equation for the position
x(t) at time t > 0 of the Brownian particle subject to a potential
U(x(t), t), reads [50, 51].

m
d2x(t)

dt2
= −

∫ t

0
ds K(t−s)

d

ds





√

T(t)

T(s)
x(s)



−
dU(x(t), t)

dx
+ζ (t),

(1)
wherem is the mass of the particle, T(s) is the temperature of the
system at time 0 ≤ s ≤ t, and K(t − s) is a memory kernel that
weights the effect of the previous history of the particle motion
at time s on its current drag force at time t due to the temporal
correlations induced by the surrounding medium. In addition, in
Equation (1), ζ (t) is a Gaussian stochastic force which accounts
for thermal fluctuations in the system and satisfies

〈ζ (t)〉 = 0,

〈ζ (t)ζ (s)〉 = kB
√

T(t)T(s)K(|t − s|). (2)

Extensions of Equation (1) to the three dimensional case, r =

(x, y, z), which are relevant inmany experimental situations using
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optical trapping techniques [52], are possible by a proper choice
of the potential U(r, t) and a tensorial form of the memory
kernel for particles of arbitrary shape [53]. Here, for the sake
of simplicity we focus on the dynamics of a single coordinate
of a spherical particle of radius a, which is confined by a
harmonic potential U(x, t) = 1

2κ(t)x(t)
2, where κ(t) is the

stiffness at time t of the corresponding restoring force. Moreover,
we assume that the fluid bath is incompressible and the time-
dependent variation of κ(t) and T(t) are such that its rheological
properties remain in the linear viscoelastic regime, which is
completely characterized by the stress relaxation modulus G(t),
or equivalently, by the complex dynamic shear modulus at
frequency ω > 0, G∗(ω) = iωη∗(ω), where i =

√
−1 and

η∗(ω) is the complex viscosity given by the Fourier transform
of G(t), i.e., η∗(ω) =

∫ ∞

−∞
dt e−iωtG(t) [54]. In general, G(t)

is a function that decays to zero over a finite time-scale whose
value is many orders of magnitude greater than those of simple
viscous fluids [38]. For a larger than the characteristic length-
scales of the fluid microstructure, the Fourier transform of the
memory kernel, K̂(ω) =

∫ ∞

−∞
dt e−iωtK(t), is related to η∗(ω) by

the generalized Stokes relation [55, 56].

K̂(ω) = 6πaη∗(ω)

[

1+ a

√

iρω

η∗(ω)

]

, (3)

with ρ the density of the fluid. Furthermore, when a is
much smaller than the so-called viscoelastic penetration depth,
√

|η∗(ω)|
ρω

, as typically occurs for micron-sized particles suspended

in most viscoelastic fluids, inertial flow effects are negligible [57].
In such a case, Equation (3) can be approximated to K̂(ω) =

6πaη∗(ω) [58], which yields the simple relation K(t) = 6πaG(t)
by Fourier inversion. This leads to the following Langevin
equation for the position of the Brownian heat engine in the
overdamped limit

6πa
∫ t

0
ds G(t − s)

d

ds





√

T(t)

T(s)
x(s)



 = −κ(t)x(t)+ ζ (t). (4)

In the following, we focus on a fluid relaxation modulus
consisting of a Dirac delta function plus an exponential decay

G(t) = 2η∞δ(t)+
η0 − η∞

τ0
exp

(

−
t

τ0

)

, t ≥ 0, (5)

which models the rheological response of several viscoelastic
fluids, such as wormlike micelles [42, 59, 60], some polymer
solutions [61, 62], and to a great extent, the linear viscoelasticity
over certain time intervals of intracellular fluids [63, 64], block
copolymers [65], and λ-phage DNA [42, 66], where τ0 is the
relaxation time of their elastic microstructure, whereas η0 and
η∞ represent the zero-shear viscosity and the background solvent
viscosity, respectively. Therefore, the corresponding friction
memory kernel is

K(t) = 2γ∞δ(t)+
γ0 − γ∞

τ0
exp

(

−
t

τ0

)

, t ≥ 0, (6)

where the complex conjugate of its Fourier transform, K̂∗(ω) =
6πaη(ω), represents a frequency-dependent friction

K̂∗(ω) =
γ0 + γ∞ω2τ 20

1+ ω2τ 20
+ i

(γ0 − γ∞)ωτ0

1+ ω2τ 20
. (7)

In Equations (6) and (7), γ∞ = 6πrη∞ and γ0 = 6πrη0 ≥ γ∞
are friction coefficients characterizing dissipation at short and
long timescales, respectively, whereas elastic effects are quantified
by (γ0 − γ∞)τ0. Hence, in this case, Equation (4) takes the form

γ∞
dx(t)

dx
+

γ0 − γ∞

τ0

∫ t

0
ds exp

(

−
t − s

τ0

)

d

ds





√

T(t)

T(s)
x(s)





= −κ(t)x(t)+ ζ (t). (8)

It is noteworthy that, at constant temperature T and in absence of
a trapping potential, the mean square displacement of a particle
whose motion is described by Equation (8), is

〈1x(t)2〉 =
2kBT

γ0

{

t +

(

1−
γ∞

γ0

)

τ0

[

1− exp

(

−
γ0

γ∞τ0
t

)]}

,

(9)
which implies that in the long-time limit, t ≫ γ∞τ0/γ0, it would
perform free diffusion like in a Newtonian fluid with constant
viscosity η0 [67–69], i.e., 〈1x(t)2〉 ≈

2kBT
γ0

t. This provides a
clear criterion for a direct comparison of the performance of
a Brownian engine in a viscoelastic fluid bath with that in a
viscous medium of the same zero-shear viscosity, i.e., η =

η0, under identical time-dependent variations of κ(t) and T(t).
Furthermore, we introduce the dimensionless parameter

α =
γ0

γ∞
− 1 ≥ 0, (10)

in such a way that, for either α = 0 or τ0 → 0, the memory
kernel becomes K(t) = 2γ δ(t), with constant friction coefficient
γ = γ0 = γ∞. Consequently, in these cases Equation (4)
reduces to

γ
dx(t)

dt
= −κ(t)x(t)+ ζ (t), (11)

where the thermal noise ζ (t) simply satisfies [50].

〈ζ (t)〉 = 0,

〈ζ (t)ζ (s)〉 = 2kBT(t)γ δ(t − s), (12)

Equation (11) describes the motion of a Brownian particle
coupled to a viscous heat bath with time dependent temperature
T(t) through the frictional force −γ

dx(t)
dt

and the thermal
stochastic force, subject to a restoring force −κ(t)x(t). It should
be noted that this situation was explicitly considered in many
of the models of single-particle heat engines reported in the
literature [18, 20, 27, 28, 31–35].

We point out that the rheological properties of viscoelastic
fluids are generally dependent on their temperature, which under
a thermodynamic cycle would also become time-dependent.
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FIGURE 1 | (A) Schematic representation of a Stirling cycle of period τ performed by a colloidal heat engine, embedded in a viscoelastic fluid, by means of the

temporal variation of the stiffness κ (t) of a trapping harmonic potential U(x, t) = 1
2 κ (t)x(t)2 and of the bath temperature T (t). At time 0 ≤ t < τ/2, the trap stiffness is

linearly decreased from κM to κm < κM while keeping the temperature of the surroundings at high temperature Th (step 1 → 2). At t = τ/2, the temperature is

suddenly decreased to Tc < Th (step 2 → 3), and kept at that value for τ/2 < t < τ , while linearly increasing the trap stiffness from κm to κM (step 3 → 4). The cycle is

completed at t = τ , at which the temperature is again increased to Th (step 4 → 1). For a given realization of the cycle, the particle position x(t) encodes the

information of the stochastic energy exchange between the particle and the surrounding fluid, as depicted by the noisy trajectory obtained by numerical simulations of

Equation (8). (B) Schematic representation of the Brownian Stirling cycle in a 〈x2〉-κ−1 diagram, similar to the pressure-volume diagram of a gas.

The inclusion of such thermal effects in the minimal Langevin
model (8) is not trivial and even a phenomenological description
through additional rheological parameters and time-scales would
render it little useful for a clear interpretation of the memory
effects of a frequency-dependent friction in the performance of
the Brownian engine. Therefore, similar to the simplifications
made in most single-particle models of heat engines working in
purely viscous fluids, as a first approximation we assume that
η0, η∞ and τ0 remain constant over time. The effect of the
temperature dependence of these parameters is out of the scope
of the present paper and will be the subject of further work.

The operation of the Brownian engine during a Stirling cycle
of duration τ is depicted in Figure 1A, where the trap stiffness
and the temperature are varied in time t according to the
following protocols

κ(t) =

{

κM − 2
τ
δκt, 0 ≤ t ≤ τ

2 ,
κm − δκ

(

1− 2
τ
t
)

, τ
2 < t ≤ τ ,

(13)

and

T(t) =







Th, 0 ≤ t < τ
2 ,

Tc, τ
2 ≤ t < τ ,

Th, t = τ ,
(14)

respectively, where δκ = κM − κm > 0 and Th > Tc. More
specifically, a full cycle consists of a sequence of four steps:

1 → 2: For 0 ≤ t < τ/2, the colloidal engine undergoes
an isothermal expansion at high temperature Th by linearly
decreasing the trap stiffness from κM to κm.

2 → 3: At t = τ/2, the temperature is suddenly decreased to
Tc, while keeping the trap stiffness at κ(t = τ/2) = κm, thus
corresponding to a isochoric-like process.

3 → 4: For τ/2 < t < τ , the engine undergoes an isothermal
compression at low temperature Tc by linearly increasing the
trap stiffness from κm to κM .

4 → 1: At t = τ , the temperature is suddenly raised to Th,
while keeping the trap stiffness at κ(t = τ ) = κM , i.e., an
isochoric-like process, thus completing the full cycle.

Then, the cycle is repeated until the system reaches a time-
periodic steady state, which becomes independent of the choice
of the initial condition x(t = 0) = x0. Note that, by analogy with
a macroscopic Stirling cycle of a gas as a working substance, here
the inverse of the trap stiffness and the variance of the particle
position play the role of the volume and pressure, respectively, as
depicted in Figure 1B.

According to stochastic thermodynamics [14], the work done
on the system by the time variation of the optical trap over a
single stochastic realization of the (n + 1)−th cycle starting at
tn = nτ , with n = 0, 1, 2, . . . , is

Wτ =
1

2

∫ tn+τ

tn

dt
dκ(t)

dt
x(t)2,

=
δκ

τ

[

−

∫ tn+
τ
2

tn

dt x(t)2 +
∫ tn+τ

tn+
τ
2

dt x(t)2
]

, (15)

whereas the heat dissipated into the bath during the first half
period of the cycle is given by

Qτ/2 = Wτ/2 − 1Uτ/2

= −
δκ

τ

∫ tn+
τ
2

tn

dt x(t)2 −
1

2

[

κmx
(

tn +
τ

2

)2
− κMx(tn)

2
]

.

(16)

In Equation (16), Wτ/2 is the work done during the first half
of the cycle, and 1Uτ/2 is the corresponding variation of the
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potential energy in the harmonic trap, U(x, t), in accordance
with the stochastic extension of the first law of thermodynamics.
Positive and negative values of Wτ correspond to work done
on the particle and work performed by the particle, respectively,
whereas positive and negative values of Qτ/2 represent heat
transferred from the particle to the bath and heat absorbed by
the particle, respectively. It must be noted that the mean steady-
state values of the two stochastic variables given by Equations (15)
and (16), which will be denoted as 〈Wτ 〉 and 〈Qτ/2〉, respectively,
are the ones needed for the calculation of the efficiency of the
Stirling heat engine [17]. They involve the variance of the particle
position at an arbitrary time t ≥ 0, 〈x(t)2〉, with t = 0 the
time defining the initial condition, computed over an ensemble
of independent realizations of the colored noise ζ (t) defined by
Equations (2). An analytical treatment of this problem requires
the explicit solution of the generalized Langevin Equation (8),
which is not trivial even in the simpler case of a constant trap
stiffness and constant temperature [48]. Therefore, to address
the problem of the performance of a Brownian Stirling heat
engine described by Equations (2), (8), (13) and (14), we opt for
numerical simulations of the corresponding stochastic dynamics.

2.1. Numerical Solution
In order to compute the probability distributions of the work
and the heat defined in Equations (15) and (16), as well as
their corresponding mean values, the non-Markovian Langevin
Equation (8) must be numerically solved. To this end, we express
it in an equivalent Markovian form by introducing an auxiliary
stochastic variable, z(t), defined as

z(t) =
1

τ0

∫ t

0
ds exp

(

−
t − s

τ0

)

√

T(t)

T(s)

[

x(s)+ τ0
√

21(s)ξz(s)
]

,

(17)
where

1(s) =
kBT(s)

γ0 − γ∞
, (18)

represents a diffusion coefficient associated to the effective
friction γ0−γ∞, which depends on the instantaneous value of the
temperature at time s,T(s), and ξz(s) is a Gaussian noise satisfying

〈ξz(s)〉 = 0,

〈ξz(s)ξz(s
′)〉 = δ(s− s′). (19)

Consequently, the non-Markovian Langevin Equation (4) for x(t)
can be written as a linear system of two coupled Markovian
Langevin equations

dx(t)

dt
= −

α + 1

γ0
κ(t)x(t)−

α

τ0

[

x(t)− z(t)
]

+
√

2D∞(t)ξx(t),

(20)
dz(t)

dt
= −

1

τ0

[

z(t)− x(t)
]

+
1

2T(t)

dT(t)

dt
z(t)+

√

21(t)ξz(t),

(21)

with α defined in Equation (10). In Equation (20), D∞(t)
is a short-time diffusion coefficient associated to the infinite-
frequency friction coefficient limω→∞ K̂∗(ω) = γ∞, see
Equation (7), at temperature T(t), and is given by

D∞(t) =
kBT(t)

γ∞
, (22)

whereas ξx(t) is a Gaussian noise which satisfies

〈ξx(t)〉 = 0,

〈ξx(t)ξx(s)〉 = δ(t − s), (23)

Note that, apart from the step-like changes at t = tn and t =

tn + τ
2 , T(t) remains constant. Accordingly, the rate of change

of the time-dependent temperature in Equation (20) vanishes
during each half a Stirling cycle, i.e., d

dt

[

lnT(t)
]

= 0.
To compute the probability distributions of Wτ and Qτ/2,

we carry out numerical simulations of the stochastic process
[x(t), z(t)] starting from the initial condition [x(t = 0) = 0, z(t =
0) = 0] with a total length of 2 × 104 times the period τ .
To ensure that the system is always in a time-periodic non-
equilibrium steady state independent of the choice of the initial
condition, the first 104 cycles are left out and the origin of time is
shifted to the beginning of the (104 + 1)−st cycle. Furthermore,
without loss of generality we choose constant values of the low
and high-frequencies viscosities that are typical of viscoelastic
fluids prepared in aqueous solution in semidilute regimes [42,
62, 66, 70, 71]: η0 = 0.040 Pa s and η∞ = 0.004 Pa s, which
correspond to α = 9. The diameter of the colloidal particle is
set to a = 0.5µm, while the maximum and minimum values of
the trap stiffness during the Stirling cycle are chosen as κM =

5 pNµm−1 and κm = 1 pNµm−1, respectively, which are easily
accessible with optical tweezers [52]. The temperatures of the
reservoir during the hot and cold part of the cycle are Tc = 5◦C
and Th = 90◦C, which are selected in such a way that they are
within the temperature range in which water, which is a common
solvent component of many viscoelastic fluids, remains liquid.
On the other hand, to study the influence of the fluid relaxation
time on the performance of the colloidal Stirling engine, τ0 is
varied in the range of 0.01–100 s, which also covers characteristic
values in actual experimental systems. We solve Equations (20)
bymeans of an Euler–Cromer schemewith time step δt = 10−4 s,
which is about 75 times smaller than the shortest relaxation time
of the system, γ∞/κM . In the case of the Stirling heat engine
in a Newtonian viscous fluid, we solve numerically Equation
(11) with constant friction coefficient γ = 6πaη, where η =

η0 = 0.040 Pa s and the rest of the involved parameters, namely,
κm, κM , a, Tc, Th, and δt, are selected with the same values as
described before for the viscoelastic case for a direct comparison
between both systems. We also explore different values of the
cycle period, 0.01 s ≤ τ ≤ 50 s, which allows us to examine the
approach of the computed quantities to the quasi-static values
τ → ∞. We note that τκ ≡ γ0/κm represents the slowest
dissipation time-scale of the system [26], and appears explicitly
in the analytical expressions for the variance of a Brownian
particle undergoing a finite-time Stirling cycle in contact with a
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A C E

B D F

FIGURE 2 | (A) Probability density function of the workWτ , and (B) the heat Qτ/2, for a Brownian Stirling engine in contact with a viscoelastic fluid bath with relaxation

time τ0 = 2.65τκ , for different values of the cycle time τ . (C) Probability density function of the work Wτ , and (D) the heat Qτ/2, for a Brownian Stirling engine during a

cycle of duration τ = τκ , in contact with viscoelastic fluid baths with the same zero-shear viscosity η0 = 0.040 Pa a, and distinct relaxation times τ0 spanning 5 orders

of magnitude (solid lines). (E) Probability density function of the work Wτ , and (F) the heat Qτ/2, for a Brownian Stirling engine during a cycle of duration τ = 10τκ , in

contact with viscoelastic fluid baths with the same zero-shear viscosity η0 = 0.040 Pa s and distinct relaxation times τ0 spanning 5 orders of magnitude (solid lines). In

(C–F), the dotted lines represents the corresponding curves for a Brownian engine in a Newtonian fluid (τ0 = 0) with constant viscosity η0 = 0.040 Pa s. The insets are

semilogarithmic representations of the main plots.

viscous heat bath [34]. Therefore, in both cases of the viscous and
viscoelastic baths analyzed here, all the timescales are normalized
by τκ , whereas energies are normalized by kBTc.

3. RESULTS AND DISCUSSION

Since Wτ and Qτ/2 are stochastic variables, we first present the
results for their probability distributions, ̺(Wτ ) and ̺(Qτ/2),
respectively, for different values of the time-scales τ and τ0. In
Figures 2A,B, we plot such distributions for a value of the fluid
relaxation time that is comparable to the largest dissipation time-
scale of the system: τ0 = 2.65τκ , at which memory effects due to
the frequency-dependent friction must be important. In such a
case, we observe that for fast Stirling cycles with period τ smaller
or comparable to τκ the work distribution is asymmetric with
respect to its maximum and exhibits pronounced exponential
tails, as illustrated in the inset of Figure 2A. In addition, large
positive work fluctuations occur for small τ , which indicates the
existence of rare events where work is done on the particle during
a cycle, thus effectively consuming energy as a heat pump. As τ

increases, the exponential tails and their asymmetry vanish, thus
giving rise to a narrower Gaussian-like shape for τ ≫ τk. This

shows that the probability of finding positive work fluctuations
decreases by increasing τ , i.e., the Brownian particle behaves
more and more like a macroscopic Stirling engine, which on
average is able to convert the heat absorbed from the viscoelastic
bath into work. On the contrary, the heat distribution does not
significantly change with the cycle time τ , as shown in Figure 2B.
In this case, clear exponential tails remain even for large values
of τ , as revealed in the inset of Figure 2B. where the probability
of occurrence of negative heat fluctuations is higher than that of
positive ones. Hence, regardless of the cycle period τ , it is more
likely that heat is absorbed by the particle than dissipated into the
bath during the isothermal expansion at temperature Th.

In Figures 2C,D, we analyze the dependence on the
fluid relaxation time τ0 of the work and heat distributions,
respectively, for Stirling cycles of period τ = τκ , i.e., similar
to the largest viscous dissipation time-scale of the system. For
comparison, we also plot as dotted lines the corresponding
probability distributions for a colloidal engine in a fluid with
constant viscosity η = η0, for which τ0 = 0. Remarkably, we
find that the fluid viscoelasticity, through the parameter τ0, has a
strong influence on the resulting shape of the distributions. For
a viscous bath, the work has large exponential tails with a highly
asymmetric shape. A similar shape is observed for a viscoelastic
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A B

FIGURE 3 | (A) Mean work done by the Brownian Stirling engine during a cycle, −〈Wτ 〉, as a function of the cycle time τ , for different values of the fluid relaxation time

τ0 (solid lines). The dotted and dashed lines represent the mean power output of a Brownian Stirling engine in Newtonian fluids with constant viscosities η = η0 and

η = (1+ α)−1η0 = η∞, respectively. The arrows depict the location of the corresponding minima. (B) Mean power output per cycle of the colloidal Stirling engine, Pτ ,

as a function of the cycle duration τ , for different values of the fluid relaxation time τ0 (solid lines). The dotted and dashed lines represent the mean power output of a

Brownian Stirling engine in Newtonian fluids with constant viscosities η = η0 and η = (1+ α)−1η0 = η∞, respectively. Same color code as in (A). Inset: stall time of the

engine defined in Equation (26), τ ∗, as a function of the fluid relaxation time, τ0 (thick line). The thin line represents the value of τ ∗ for an engine operating in a

Newtonian fluid with constant viscosity η = η∞.

bath at sufficiently small τ0, but the width and the asymmetry
of the distribution gradually decrease as τ0 increases, then
converging to a single limiting curve with a rather symmetric
profile for sufficiently large values of the fluid relaxation time
τ0 & τκ , as shown in the inset of Figure 2C. In addition, the
heat distribution also has exponential tails with a width that
does not strongly depend on the fluid relaxation time τ0, but the
location of the maximum is slightly shifted to more and more
negative values ofQτ/2 with increasing τ0, as shown in Figure 2D.
Finally, for values of the cycle duration τ larger than τκ , the
shape of ̺(Wτ ) changes from a rather symmetric exponentially-
tailed distribution to a limiting Gaussian curve with increasing
τ0, whereas ̺(Qτ/2) exhibits a symmetric profile with exponential
tails peaked at a negative value ofQτ/2, which remains unaffected
by the τ0, as respectively shown in Figures 2E,F for τ = 10τκ . It is
important to realize that for τ > τκ , the work distribution of the
Brownian engine is narrower in a viscoelastic bath as compared
to that in a viscous bath with the same zero-shear viscosity.
This can be attributed the elastic response in the former case,
which prevents large instantaneous heat losses into the bath by
viscous dissipation, thus resulting in a more efficient conversion
into work of the energy extracted from the surroundings. This
observation underlines the importance of the friction memory
kernel of the particle motion in the viscoelastic fluid, which
becomes strongly dependent on the frequency imposed by the
Stirling cycle. Thus, for sufficiently small τ0 < τκ the energy
exchanges between the Brownian particle and the viscoelastic
bath must not be that different from those occurring in a viscous
fluid, while for sufficiently large τ0 > τκ significant deviations
must take place, as verified in Figures 2C,E for τ0 = 0.0265τκ

and τ0 = 265τκ , respectively.
To investigate the performance of a Brownian engine

operating in a viscoelastic bath, in Figure 3A we plot the mean

work done by the Brownian engine during a cycle, i.e., −〈Wτ 〉.
In a Newtonian fluid, −〈Wτ 〉 is positive at sufficiently large τ

and monotonically saturates to a constant positive value in the
quasi-static limit τ → ∞ [34].

− 〈Wτ→∞〉 =
1

2
kB(Th − Tc) ln

(

κM

κm

)

, (24)

whereas it becomes negative at small values of τ and tends to
zero as τ → 0 according to Equation (15), thus implying that
it has a minimum at a certain value of τ . This is verified in
Figure 3A, where we plot as dotted and dashed lines the curves
corresponding to the work done by a particle in viscous fluids
with constant viscosities η = η0 = 0.040 Pa s and η = η∞ =

0.004 Pa s, respectively, i.e., equal to the viscosities characterizing
the long-time and short-time dissipation of the viscoelastic fluid.
The location of the minimum, which is depicted by arrows,
depends on the specific value of η, but the general shape of
the curve in a linear-logarithmic representation is the same, as
observed in Figure 3A. Interestingly, in the case of viscoelastic
fluids with non-zero values of τ0, the work done by the particle
exhibits an intermediate behavior between these two curves. For
instance, for τ0 = 0.0265τκ ≪ τκ , the dependence of−〈Wτ 〉 on τ

is very similar to that in a Newtonian fluid with viscosity η = η0,
with a single minimum at the same location (τ ≈ τκ ) and only
small deviations of the respective values along the vertical axis.
Nevertheless, as τ0 increases, a second local minimum emerges
at τ ≈ 0.1τκ , i.e., at the location of the minimum of the curve
corresponding to the Newtonian fluid of viscosity η = η∞, as
observed in Figure 3A for τ0 = 0.084τκ . Such a secondminimum
becomesmore andmore apparent with increasing τ0, whereas the
first minimum at τ ≈ τκ becomes less and less dominant, as seen
for τ0 ≥ 0.265τκ . Unexpectedly, for τ0 ≫ τκ , the curves for the
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viscoelastic case converge to that for a Newtonian fluid with a
viscosity η = η∞. These observations suggest that, depending of
the specific values of the fluid relaxation time and the cycle time
with respect to τκ , different dissipation mechanisms take place in
order for the particle to convert the energy taken from the bath
into work by means of the applied thermodynamic cycle.

Next, we compute the mean power produced by the engine
during a cycle

Pτ = −
〈Wτ 〉

τ
, (25)

whose dependence on the cycle time τ is plotted as solid lines
in Figure 3B for some exemplary values of the fluid relaxation
time τ0. Besides, we also plot in Figure 3B as a dotted line the
mean power for a Brownian engine in a Newtonian fluid bath
with viscosity η = η0. It is important to note that, for all values
of τ0, Pτ exhibits a non-monotonic behavior as a function of τ ,
which gradually deviates from the behavior in a Newtonian fluid
with viscosity η = η0 as τ0 increases. This is the result of the
pronounced non-monotonic dependence of −〈Wτ 〉 on τ shown
in Figure 3A. In particular, Pτ has a maximum that originates
from the trade-off between high energy dissipation at small cycle
times τ (high frequency operation) and large τ (slow operation),
at which net work is produced by the engine with low dissipation.
Additionally, the general shape of all power curves displays three
different operation regimes. For sufficiently slow Stirling cycles
(large τ ), the engine is able to deliver net power on average
(Pτ > 0), where the irreversible energy dissipation into the bath
becomes negligible. On the other hand, there is a specific value
of the cycle time at which the engine stalls, i.e., both the mean
work and the power output vanish: 〈Wτ 〉 = 0, Pτ = 0 [17].
Finally, for sufficiently fast cycles (small τ ), the engine absorbs
energy (Pτ < 0) rather than delivering it, thus behaving like a
heat pump. This regime is the consequence of the large amount
of energy irreversibly dissipated when the particle is quickly
driven by the periodic variation of κ(t) and T(t). Interestingly,
in Figure 3B, we show that the value of the fluid relaxation time
τ0 has a considerable impact on the mean power output, and in
particular, on the value of the cycle time at which the Brownian
engine stalls, which we denote as τ ∗

Pτ∗ = 0. (26)

For instance, in the case of the Newtonian fluid (τ0 = 0)
with η = η0, we find τ ∗ = 6.15τκ , while for a viscoelastic
fluid (τ0 > 0), τ ∗ is smaller and decreases with increasing τ0.
In the inset of Figure 3B, we plot the dependence of τ ∗ on
τ0, where we can see that for sufficiently short fluid relaxation
times, the stall time is close to that for a Newtonian fluid bath
(τ ∗ = 6.15τκ ), and monotonically decreases with increasing
τ0. In this short-τ0 regime, the performance of the engine is
very sensitive to the specific value of τ0, as shown by the strong
variation of the shape of the power curves plotted in Figure 3B

for τ0 = 0.0265τκ , 0.084τκ , 0.265τκ , 0.84τκ . Around τ0 = τκ , a
conspicuous change in the dependence on τ0 of the operation
of the engine happens. Indeed, as τ0 increases the stall time
converges to the constant value τ ∗ = 0.52τκ , as verified in the

inset of Figure 3A for τ0 > τκ . The monotonic decrease of τ ∗

implies that the interval of cycle times at which the engine is
able to efficiently deliver positive power output is expanded with
increasingly larger τ0. Moreover, with increasing fluid relaxation
times τ0 > τκ , which is consistent with increasingly pronounced
viscoelastic behavior of the bath, the power output curves
converge to a limiting curve, as shown in Figure 3B for τ0 =

2.65τκ , 8.4τκ , 26.5τκ , 84τκ , 265τκ . Remarkably, we find that such
a limiting curve corresponds to the power curve of a Brownian
Stirling engine in a Newtonian bath with viscosity equal to high
frequency value η = η∞ = 0.004 Pa s, i.e., the viscosity of the
solvent component in the viscoelastic fluid, which is represented
as a dashed line in Figure 3B. As a consequence, the limit of
the stall time of an engine working in a viscoelastic fluid with
increasing τ0 corresponds to the stall time of a Brownian engine
operating in a Newtonian one with constant viscosity η = η∞,
τ ∗ = 0.52τκ , as verified in the inset of Figure 3B, see the
horizontal solid line. Furthermore, in Figure 3B, we check that,
for a given cycle of finite duration τ , the mean power output
of the engine operating in a viscoelastic fluid is enhanced with
increasing values of τ0 with respect to the power output in a
Newtonian fluid of the same zero-shear viscosity. We also find
that the location of the global maximum of each power output
is shifted to smaller and smaller values of τ with increasing
τ0, whereas the value of Pτ at the maximum increases with
increasing τ0 because of the decreasing irreversible dissipation
taking place in a fluid with pronounced viscoelastic behavior.

These findings allows us to uncover the underlying
mechanism behind the influence of fluid viscoelasticity on
the performance of the engine. In a Newtonian fluid with
constant viscosity η0, the largest time-scale associated to viscous
dissipation due to temporal changes in the trap stiffness is
precisely τκ , which is proportional to η0, and represents the
largest relaxation time in the system. In this case, the viscous
bath simply acts as a mechanically inert element of the engine
which equilibrates instantaneously in response to the particle
motion under the variations of the trap stiffness. On the other
hand, when the bath is a viscoelastic fluid, the hidden degrees
of freedom of its elastic microstructure, e.g., entangled micelles,
polymers, interacting colloids, etc., also come into play in the
dynamics and mechanically respond within a characteristic time
τ0 > 0 to the temporal changes periodically imposed on the
particle. Therefore, the interplay between τκ and τ0 determines
the resulting energetic behavior of the system:

• If τ0 ≪ τκ , the fluid microstructure fully relaxes before the
energy dissipation into the bath takes place on a time-scale
τκ . In such circumstances, the Brownian particle has enough
time to probe the long-time (low frequency) properties of the
fluid environment with friction coefficient K̂∗(ω → 0) =

γ0 = 6πaη0, see Equation (7), thereby leading to a stochastic
energetic behavior similar to that in a Newtonian fluid with
constant viscosity η = η0.

• If τ0 . τκ , excessive irreversible energy losses by viscous
dissipation are counterbalanced by the transient energy
storage in the elastic structure of the bath, because at
frequencies ω ∼ τ−1

0 the imaginary part of K̂∗(ω) is not
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A B

FIGURE 4 | (A) Mean heat absorbed by the Brownian Stirling engine during the isothermal expansion at high temperature, −〈Qτ/2〉, as a function of the cycle time τ ,

for different values of the fluid relaxation time τ0 (solid lines). The dotted and dashed lines corresponds to the mean heat absorbed by the colloidal engine in Newtonian

fluids with constant viscosities η = η0 and η = (1+ α)−1η0 = η∞, respectively. The horizontal thin dotted line represents the quasi-static value given by Equation (27).

(B) Mean rate of heat absorption by the colloidal engine during the isothermal expansion at high temperature, Jτ , as a function of the duration of the cycle τ , for

different values of the fluid relaxation time τ0 (solid lines). Same color code as in (A). The dotted and dashed lines correspond to mean rate of heat absorption in

Newtonian fluids with constant viscosities η = η0 and η = η∞, respectively. The arrows depict the location of the corresponding maxima. The dotted-dashed line

depicts the behavior ∼ τ−1.

negligible. Therefore, the value τ0 ≈ τκ marks a qualitative
change in the energy exchange between the particle and bath.

• If τ0 > τκ , the elastic fluid microstructure does not have
enough time to mechanically relax to the temporal changes
of the cycle, thus preventing the particle from undergoing
the long-time friction characterized by the coefficient γ0.
Therefore, the particle can only probe the short-time
response of the surrounding fluid through the high-frequency
components of the friction, which correspond to K̂∗(ω →

∞) = γ∞ = 6πaη∞ for τ0≫τκ according to Equation (7). As
a consequence, in this limit the relevant dissipation timescale
is γ∞/κm, which is in general smaller than τκ because η∞ =

η0(1 + α)−1 ≤ η0. For instance, for the numerical values
chosen in the simulations presented here, γ∞/κm = 0.1τκ .
Accordingly, less irreversible dissipation must take place in
the viscoelastic fluid under finite-time Stirling cycles, thus
enhancing the net power output of the engine at a given cycle
time τ as compared to that in a Newtonian fluid with the same
zero-shear viscosity η0.

To confirm the previously described mechanism of energy
storage and dissipation during the Stirling cycle, in Figure 4A,
we plot the mean heat absorbed by the particle during the hot
step of the cycle, −〈Qτ/2〉, as a function of the total duration
τ of a full cycle. We find that, for all values of τ and of the
fluid relaxation time τ0, −〈Qτ/2〉 ≥ 0, which means that the
particle absorbs heat on average during the first half of the cycle.
In particular, for a given τ0 the mean absorbed heat increases
monotonically from the value −〈Qτ=0〉 = 0, and saturates to a
constant value corresponding to a quasi-static process as τ → ∞.
For comparison, in Figure 4A, we also plot as a dotted line the
mean heat absorbed by the Brownian engine when operating in a

Newtonian fluid with viscosity η = η0. In such a case, it can be
readily demonstrated from Equation (16) that −〈Qτ/2〉 actually
approaches a quasi-static value, which is explicitly given by [34]

− 〈Q(τ→∞)/2〉 =
1

2
kB(Th − Tc)+

1

2
kBTh ln

(

κM

κm
,

)

(27)

For the numerical values of the parameters investigated here,
−〈Q(τ→∞)/2〉 = 1.203kBTc, see horizontal thin dotted line in
Figure 4A. We observe that, regardless of τ0, all heat curves
converge to such a value for τ ≫τκ , but depending on the specific
value of the fluid relaxation time, different behaviors occur at
short and intermediate cycle durations. Once again, we find that
with increasing τ0, the mean-heat curves gradually deviate from
the behavior in a Newtonian fluid with viscosity η = η0, and for
τ0 ≫ τκ they converge to that in a Newtonian fluid with η = η∞,
see dashed line in Figure 4A. This provides another evidence
that, as τ0 increases, the energy dissipation of an engine operating
in a viscoelastic fluid is mainly determined by the friction with
the solvent.

In Figure 4B, we plot as solids lines the mean rate of heat
absorption by the engine from the bath during the isothermal
expansion at temperature Th

Jτ = −
〈Qτ/2〉

τ
, (28)

as a function of the cycle duration τ for some representative
values of τ0 > 0. The corresponding curves for a particle in
Newtonian fluids with η = η0 and η = η∞ are represented
as dotted and dashed lines, respectively. In such cases, we find
that Jτ exhibits a maximum, which corresponds approximately
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A B

FIGURE 5 | (A) 2D color map representation of the efficiency of the colloidal Stirling engine, ǫτ , as a function of the fluid relaxation time, τ0, and the duration of a Stirling

cycle, τ . The dotted-dashed line corresponds to the stall time τ ∗, which separates the values of the parameters τ0 and τ for which the system operates as a heat

engine (ǫτ > 0) from those for which it behaves as a heat pump (ǫτ < 0). (B) Examples of efficiency curves as function of the duration of a Stirling cycle, τ , for some

particular values of the fluid relaxation time (solid lines). The dotted and dashed lines represent the efficiency curves of a Brownian Stirling engine in Newtonian fluids

with constant viscosity η = η0 and η = η∞, respectively. The dotted-dashed line depicts the quasi-static value of the Stirling efficiency, ǫτ→∞, given by Equation (30).

to the location of the minima in −〈Wτ 〉 shown in Figure 3A.
For τ . τκ , a marked dependence on the fluid relaxation time is
observed if τ0 . τκ , while for τ ≫ τκ a dependence Jτ ∼ τ−1 on
the Stirling cycle time emerges for all values of τ0, thus indicating
the onset of the quasi-static thermodynamic behavior.

The previous findings reveal that, unlike the performance of
Brownian heat engines in a Newtonian environment with a single
relevant time-scale γ0/κm of energy dissipation, in a viscoelastic
fluid bath the low-frequency and the high-frequency values of the
friction, γ0 and γ∞, give rise two meaningful dissipation time-
scales, namely τκ = γ0/κm and the apparently hidden time-scale
(1 + α)−1τκ = γ∞/κm due to the friction of the particle with
the solvent. When the Stirling cycle time τ is comparable to one
of such time-scales, the corresponding channel of irreversible
dissipation is strongly activated. This in turn leads to a large
amount of energy absorbed by the particle from the heat bath at a
very high rate, as manifested by theminima andmaxima depicted
by arrows in Figures 3A, 4B, respectively. For an arbitrary cycle
time, the interplay between the two channels of irreversible
dissipation along with the transient energy storage by the elastic
microstructure of the fluid determine the resulting performance
of the Brownian engine.

Finally, we determine the efficiency of the Brownian Stirling
engine, defined as

ǫτ =
−〈Wτ 〉

−〈Qτ/2〉
, (29)

as a function of the cycle time, τ , and the relaxation time of
the viscoelastic fluid, τ0. The results are represented as a 2D
color map in Figure 5A, with some efficiency curves plotted
in Figure 5B as a function of τ for exemplary values of τ0.
Additionally, in Figure 5A, we also plot the stall time τ ∗ defined
in Equation (26) as a function of the fluid relaxation time. As
a consequence of the energy exchange with a viscoelastic bath

discussed in the previous paragraphs, τ ∗ divides the efficiency
diagram into two regions. For τ < τ ∗ the Brownian particle
behaves a heat pump, where ǫτ < 0 exhibits a rather intricate
dependence on τ0 and τ due to the competition between the
different energy storage and dissipation channels of the bath,
which results on average in net energy absorption from the
bath. On the other hand, for τ > τ ∗, the efficiency is positive,
ǫτ > 0, i.e., the Brownian particle behaves as a heat engine
with positive power output. In this case, the efficiency is a
monotonic increasing function of both τ and τ0. Note that for
the investigated values of the cycle time τ , the interval at which
the engine has a positive efficiency is rather narrow for small
fluid relaxation times τ0 < τκ , because for the large value of
the zero-shear viscosity considered in the simulations (η0 =

0.040 Pa s, typical of biological fluids), there is a large amount
of heat dissipation even at comparatively slow Stirling cycles.
However, when the value of τ0 is similar or larger than τκ , the
elastic response of the fluid takes effect, hence the decrease in
energy dissipation with a subsequent broadening of the interval
of cycle times by one order magnitude for which ǫτ > 0.

Because in the model (4), we assume that the only source of
stochasticity of the system is the thermal fluctuations of the fluid,
apart from the driving potential of the harmonic trap there are
no other sources of energy that affect the performance of the
Brownian engine. Therefore, it is expected that the quasi-static
Stirling efficiency

ǫτ→∞ =
ǫC

1+ ǫC

ln
(

κM
κm

)

, (30)

which can be determined from the ratio of Equations (24) and
(27), is never exceeded at finite τ regardless of the relaxation
time of the viscoelastic fluid. In Equation (30), ǫC = 1 −

Tc
Th

Frontiers in Physics | www.frontiersin.org 10 March 2021 | Volume 9 | Article 64333387

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gomez-Solano Colloidal Heat Engines in Viscoelastic Baths

TABLE 1 | Mean power output produced by a Brownian Stirling engine during a

cycle τ = τMP = 18.6τκ and corresponding efficiency for distinct values of the fluid

relaxation time τ0.

τ 0/τκ
τκ

kBTc
Pτ=τMP ǫτ=τMP

0 0.00679 0.1218

0.1 0.00867 0.1484

1 0.00994 0.1667

10 0.01142 0.1829

100 0.01183 0.1893

In all cases, the zero shear viscosity is the same, η0 = 0.040 Pa s.

corresponds to the efficiency of a Carnot engine operating quasi-
statically between two reservoirs at temperatures Tc and Th. For
the numerical values of the parameters characterizing the Stirling
cycle considered here, we find ǫτ→∞ = 0.2043. In Figure 5B, we
demonstrate that, indeed, all the efficiency curves are bounded
by such a value and approach it as the cycle time τ increases.
The typical value of cycle period at which such efficiency is
reached strongly depends on τ0. While for a Brownian engine in a
Newtonian fluid of viscosity η0 the convergence is very slow, the
quasi-static Stirling efficiency can be reached in a viscoelastic bath
for typical experimental values of the parameters of the system, as
shown in Figure 5B for τ0 > τκ .

To compare the performance of a Stirling Brownian engine in
a viscoelastic bath with other situations of practical interest, we
first determine its efficiency at maximum power in a Newtonian
fluid bath with the same zero-shear viscosity η = η0. Although
not as general as the Carnot efficiency, under some circumstances
the so-called Curzon-Ahlborn efficiency [1, 2] represents a good
approximation for the upper bound of the efficiency of stochastic
heat engines working at maximum power [4, 6, 17, 19]. For
the values of the parameters investigated in this work, we find
that the power output Pτ in a purely viscous fluid reaches the
maximum value PτMP = 0.00679kBTcτκ

−1 at a cycle time of
τMP = 18.6τκ , at which the efficiency is ητMP = 0.1218. This
value compares well with the Curzon-Ahlborn efficiency, ǫCA =

1 −

√

Tc
Th

= 0.1248, and is approximately 60% the Carnot

efficiency ηC = 0.2043. In Table 1, we list some exemplary
values of the mean power output over a cycle, Pτ=τMP , and
the corresponding efficiencies of the Brownian engine, ǫτ=τMP ,
operating at the same Stirling cycle time τMP = 18.6τκ in
viscoelastic fluid baths with distinct values of their relaxation
time τ0. We verify that with increasing τ0, both the absolute
power delivered by engine and its efficiency are enhanced with
respect to those in a Newtonian fluid. In particular, the efficiency
at τMP = 18.6τκ converges to approximately 93% the Carnot
efficiency for τ0 ≫ τκ .

4. SUMMARY AND FINAL REMARKS

In this work, we have investigated a stochastic model based on
the generalized Langevin equation for a Brownian Stirling engine
in contact with a viscoelastic fluid bath. The slow rheological
behavior of the fluid is taken into account in the model by

an exponentially decaying memory kernel, which captures the
basic features of the linear viscoelastic behavior of many non-
Newtonian fluids. Our findings demonstrate that the memory
friction exerted by the surrounding fluid has a tremendous
impact on the performance of the heat engine in comparison
with its operation in a viscous environment with the same
zero-shear viscosity. In particular, a pronounced enhancement
of the power output and the efficiency of the engine occurs
as a result of the frequency-dependent response of the fluid
under finite-time Stirling cycles, thus converging to limiting
curves determined by the high frequency component of the
friction of the particle as the fluid relaxation time increases.
Moreover, the minimum value of the duration of the Stirling
cycle at which the Brownian engine can convert energy from
the medium into work becomes monotonically shorter with
increasing fluid relaxation time, which broadens the interval
of possible values of the Stirling cycle duration over which
the engine is able to efficiently deliver positive power. From
a wider perspective, our results highlight the importance of
the non-equilibrium transient nature of the particle friction
under temporal cycles of finite duration. We point out that,
although in a different context, qualitatively similar effects
have been discussed in systems with frequency-dependent
properties due to their coupling to non-Markovian baths, such as
Brownian particles driven into periodic non-equilibrium steady
states [72] and quantum Otto refrigerators [73]. Furthermore,
the link between a frequency dependent friction and the
noise correlations of the bath is in turn an important issue
for the correct interpretation of the efficiency of stochastic
heat engines operating in non-equilibrium baths, as recently
examined in the case of underdamped active Brownian
particles [74].

To the best of our knowledge, our work represents the first
investigation on the effect of memory friction in the performance
of a Brownian Stirling engine in contact with a viscoelastic fluid
reservoir. Thus, we expect that the results presented in this
paper will contribute to a better understanding and potential
applications of efficient work extraction and heat dissipation
in other types of mesoscopic engines operating in complex
fluids. Further steps of our work aim at addressing long-term
memory effects during stochastic thermodynamic cycles with
finite period, as those described by stretched exponentials [75]
and power law kernels and fractional Brownian noise [76–
79], which describe the mechanical response of diverse soft
matter systems such as glasses and biological materials [80, 81].
One further aspect that could be investigated in the future
is the effect of temporal changes in the fluid parameters, as
it is well-known that the rheological properties of viscoelastic
fluids are dependent on their temperature, which under a
thermodynamic cycle would become time-dependent. We would
like to point out that, since the parameters characterizing
the operation of the heat engine presented in this paper are
representative of typical soft matter systems, we expect that
this process can be realized in a straightforward manner by
use of optical tweezers [52]. Similar ideas could be extended
to Brownian particles in non-linear potentials [82], and active
Brownian heat engines [32] functioning in complex fluids, which
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could be implemented by means of light-activated colloids
in non-Newtonian liquids [69, 83–86] and hot Brownian
particles [87–89].
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The natural variation of temperature at ambient conditions produces spontaneous

patterns on the surface of chocolate, which result from fat bloom. These metastable

patterns are peculiar because of their shape and cannot be obtained by controlled

temperature conditions. The formation of these spontaneous grains on the surface of

chocolate is studied on experimental and theoretical grounds.Three different kinds of

experiments were conducted: observation of formed patterns in time, atomic force

microscopy of the initial events on the grain formation and rheology of the melted

chocolate. The patterns observed in our experiments follow the trends described by the

Avrami model, which considers a constant value at all spatial scales of the rate of linear

growth α that governs the formation of isolated grains, starting from molecular clusters.

Through NVT-ensemble computer simulations, using a Mie-segmented coarse-grained

model of triacylglycerides molecules, we studied the process of nucleation that starts the

pattern growth. From simulation and experiment results it is possible to derive a realistic

value of α.

Keywords: chocolate, cocoa butter, nucleation, fat bloom, Avrami equation

1. INTRODUCTION

The study of chocolate is interesting for many reasons. Despite its evident importance in the food
industry, this complex mixture is also a good example of some scientific curiosities [1]. For sure,
some of these curiosities were found because of its technological importance and this is the case
of our research: if a chocolate bar on a lab table had not become aged by chance, the observation
of beautiful patterns on its surface had not inspired this ongoing study. Most of us have seen the
appearance of patterns on a chocolate bar when left unperturbed for a long enough period of time,
allowing it to age, some examples of such patterns are shown in Figure 1. It is easy to see that the
contours formed call for the use of fractals to explain them, but shape generalities might not be easy
to describe in scientific terms. On a close inspection of patterns in Figure 1, in the same sample,
one finds a variety of shapes as different as “mostly circular,” “snowflake-like,” “almost circular,” and
“hexagonal-like”.

The formation of chocolate phases and their properties can be revised extensively in the
literature [2]. Figure 2 summarizes the phases observed as function of temperature [3, 4]. In the
temperature range of 50–60◦, all the history of the sample can be erased. The volume change in
the cooling-heating processes presents an important hysteresis. On one side, under cooling it is
understood that the polymorphic forms β(V) and β(VI) form low temperature phases without a
clear formation of the phases α and β ′. In contrast, under heating, volume changes are noticeable
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https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.643355
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.643355&domain=pdf&date_stamp=2021-04-15
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jorgedel@fisica.ugto.mx
https://doi.org/10.3389/fphy.2021.643355
https://www.frontiersin.org/articles/10.3389/fphy.2021.643355/full


Delgado et al. Spontaneous Pattern Growth on Chocolate Surface

FIGURE 1 | (A–E) Spontaneous patterns on chocolate surfaces obtained at ambient temperature after several days.

FIGURE 2 | Illustrative diagram of the volume change for the different phases

observed under heating (black continuous line) and cooling (blue segmented

line) ramps for cocoa butter. The phases more commonly described and

named in the literature are annotated at the top of the different sections

separated by vertical segmented lines. The intervals marked for each phase

are approximated. The green region marks a common range of dispersion

data associated to different phase transition and glass transition temperature

values reported in literature. Metastable curves and melt expansion volume are

suggested accordingly.

when different phases are formed. As depicted in Figure 2,
previous works suggest that volume changes are not monotonous
[4]. Phase change temperatures are approximate and, in general,
temperatures reported differ by several degrees. Moreover, glass
transition temperatures are also reported in the same ranges as
the ones for phase change temperatures [5]. As a consequence,
it is easy to suggest metastable lines that practically span all over
the volume temperature diagram due to the proximity between
the phase change temperatures [6, 7].

The story is a little different for the formation of patterns
on the surface of chocolate, the phenomenon is not clearly
understood, and few studies analyze the shape of these patterns

[8]. In addition, from the collection of patterns previously
reported, it is difficult to draw conclusions about the shapes
formed, or about the reasons that gave rise to them. However,
it is a consensus to consider the onset of the whitish color on
the chocolate surface a consequence of the “fat bloom” event:
the physical separation between β(V) and β(VI) phases during
the aging process of chocolate. In the literature, one can find
some “recipes” to produce “fat bloom,” most of them involve
the use of temperature cycles [3, 9]. However, in our initial
attempts to create such patterns, we had difficulties obtaining
them using periodic cycles or constant temperatures as it happens
in literature [10]. As a consequence, the patterns observed in
Figure 1 were produced using a different procedure to what is
usually reported in the literature.

In this paper, we reproduce the common patterns observed
during the aging of chocolate at ambient conditions and give a
glimpse on the reasons for obtaining them, based on a theoretical
description given by the Avrami model for aggregation [11,
12]. For our study we use both experiments and simulations.
Definitively, the complex mixture of at least triglycerides,
polyphenols, and carbohydrates of high molecular weight,
called “chocolate,” represents a challenge for experimental
reproducibility [3, 13]. Despite being difficult to conduct an
experiment expecting the same pattern twice, it is possible to
reproduce some trends of events necessary to obtain patterns that
share some common characteristics. Here, it is crucial to identify,
as is going to be discussed, that different events play a role in the
final shape observed.

2. EXPERIMENTAL AND THEORETICAL
METHODS

2.1. Sample Preparation
Two types of commercial chocolate were used in this
work: a commercial 100% cacao product from the
brand Mayordomo without added sugar or soy lecithin
(https://chocolatemayordomo.com.mx) and a chocolate
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FIGURE 3 | Illustration of the particles used to model β(V) molecules. Each

particle is composed of 43 fused spheres of diameter σ that form a

chair-shaped molecule. The length of each segment of the molecule is shown

in the diagram.

from the brand New Art Xocolatl with 85% cacao
(www.newartxocolatl.com). The latter has added sugar and
soy lechitin. These two extra components are usually the
main difference between pure cacao and the mixture called
“chocolate.” In these mixtures, soy lechitin allows emulsification
of the product with water and milk while sugar provides
sweetness, which is completely absent in pure cacao. Despite
the differences in composition between the two chocolates used,
the experimental results were similar when changing the type of
chocolate used.

Three different kinds of experiments were conducted:
observation of formed patterns in time on chocolate surfaces
at different temperatures, atomic force microscopy of the
initial events on the pattern formation and rheology of melted
chocolate. Patterns on chocolate surfaces were obtained by
heating up samples of chocolate up to 60◦C and pouring
the viscous liquid in pre-heated petri dishes, which were
then subjected to different temperature conditions. Time and
temperature were recorded during pattern formation. The images
analyzed in this paper were captured from these petri dishes
during the evolution of the patterns. The topography Atomic
Force Microscopy (AFM) images were also obtained from the
petri dishes samples using a Witec alpha-300 microscope in a
tapping mode (100 × 100µm and 150 × 150 lines). Rheology
was performed in a HR-3 Discovery Hybrid Rheometer (TA
Instruments) using a cone-plate geometry of 40 mm diameter
and 0.5◦. The temperature was controlled in the rheometer using
a Peltier plate.

2.2. Computer Simulations
We have developed a two-dimensional (2D) model for the
experimental system which allow us to have a glance at the self
assembly of the β(V) molecules. Our system consist of rigid
bodies, each made with spheres of diameter σ , that have a
shape close to one of a β(V) molecule [14–16] (see Figure 3).
We have chosen a Mie-type potential to model the short-
range attractive behavior between fat molecules. Lennard-Jones
interaction potentials have been previously used to model units
of fat crystals and its assembly into bigger systems [17]. Here, we
chose to impose a shorter attractive range as a first attempt to
model the fat crystal formation. In our model, the spherical units
in each molecule interact only with the spheres of neighboring

molecules via the pair potential,

Uij(r) =







Cǫ
[(

σ
r

)m
−

(

σ
r

)n]
+ U0 r < rcut

0 r ≥ rcut

. (1)

Where r is the center-of-mass distance between two spheres,
ij indicates interaction between the spherical units i and j in
two different molecules, σ is the approximated diameter of the
repulsive core and ǫ is the strength of the interaction in kBT units.
The exponents m and n in Equation (1) define the range of the
attractions, and are set to m = 36 and n = 24. The constant
C = m (m/n)n/(m−n) /(m− n) ensures that the minimum of
the potential is at ǫ = 1. The range of the interaction between
molecules is set with the cut-off parameter rcut = 1.9σ . The
shift value U0 is chosen accordingly such that Uij(rcut) = 0.
For simplicity, we have set ǫ = 1, σ = 1 and the unit time
τsim =

√

mσ 2/kB. Our simulation model does not considers the
explicit presence of other compounds of the cocoa fat, i.e., these
molecules are described as a continuous solvent, like a primitive
model of the system, an approach that has been used in computer
simulations of asphaltenes [18]. The properties of this effective
solvent can be introduced by a dielectric constant, that can be
incorporated within the strength of the interaction or the reduced
temperature used in the simulation.

All simulations have been performed with the open-source
MD simulation package LAMMPS [19], which has a dynamical
integrator for rigid bodies [20, 21]. In our 2D simulations, the
spherical units that form our molecules are restricted to a plane
and keep the same initial z position. Each molecule segment of
length 1σ is composed of two spheres, with a total of Np = 43
spheres per molecule and NM = 1, 020 molecules in our 2D
simulation box. To explore the assembly of our molecules, we
use the packing fractions φ = 0.22, φ = 0.36, and φ =

0.48. For each case, we start with a 2D box with an initial
isotropic configuration, which was created with purely repulsive
molecules (rcut = σ ). The interaction between the molecules is
turned on in a constant number, volume, and temperature (NVT)
ensemble using a Nose-Hoover thermostat [22]. We have set the
temperature of the systems to kBT/ǫ = 1. The simulation time
step was taken as δt = 0.005τsim and the total simulation times
used were of 2× 105 τsim to 5× 105 τsim.

3. RESULTS

3.1. Pattern Formation
Figure 4 shows several attempts to obtain the patterns observed
in Figure 1 with different cycles of temperature, as explained
in the figure caption. As it can be observed, the patterns
formed by controlled cycles, or just by maintaining a constant
temperature, do form different types of patterns, but they are
qualitatively different from those in Figure 1. Examples of these
differences can be seen also in literature [3, 10]. Perhaps the
main phenomenological differences between patterns in both
figures are the occurrence of clear circular centers and more
symmetric shapes, see the two patterns presented in Figure 1.
What we observe in Figure 1 is the most commonly observed
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FIGURE 4 | Patterns on chocolate surfaces produced with a cycle or a

constant temperature value. (A,B) Patterns obtained with a temperature cycle

from 17 to 35◦C in 12 h during 4 days. (C,D) Patterns obtained using a

constant temperature of 26◦C for three days. In both cases, the samples are

cooled down from 60◦C and poured on petri dishes thermalized at the

minimum temperature tested.

FIGURE 5 | Ambient temperature fluctuation in time and spontaneous

patterns obtained in these conditions on a chocolate surface. Upper patterns

correspond with red crosses and lower patterns with blue plus signs on the

temperature curve. Patterns on the left, before 2,000 min, are 5.15 mm width

and the last three patterns on the right are 10.55mm width.

phenomenology and it can only be produced when temperature
fluctuates in the range between 20 and 30◦C, as observed
in the sequence of pictures presented in Figure 5 with the
corresponding registry of temperature. These fluctuations are,
apparently, necessary to obtain the characteristic morphology
of these patterns. The initial steps to obtain this morphology
are shown in Figure 5. At the very beginning, a circular center
acts as a germ nucleus for a new phase, and in this way the

polymorphic forms evolve from β ′ to β , as reported in the
literature [4]. Some of the pictures suggest correctly that the
center is a dome with an associated change in volume. In Fact,
during all the formation of patterns, volume changes modify
and produce patterns with uneven surfaces. The blooming is
dusty, making difficult ameasure with AFM, but interestingly, the
beginning of the pattern can be measured with this technique as
observed in Figure 6. Here, we show the first steps of the pattern
formation, where we see a clear circle of a different phase rising
up from the surface.

Using rheology, it is possible to correlate volume changes
and reproducibility of the melting process. Figure 7 shows shear
apparent viscosity and the first normal stress coefficient of a
sample under temperature cycles. For the two chocolate types, the
viscosities rise up under cooling clearly because of the formation
of the melting phase. The first time that the sample was cooled,
the viscosity of the samples raised up at a temperature around
18◦C, but the temperature at which the maximum occurs is not
the same. Remarkably, because of the pre-history of the samples,
this difference exacerbates under heating. Moreover, between two
different experiments with the same cooling or heating history,
it was impossible to obtain reproducible temperatures where the
same viscosity rose up. Interestingly, the temperatures around
which we observe the rise of both viscosities (18 and 25◦C)
have been described as glass-transition temperatures, which is
possibly related to traces of unstable polymorphic forms of
monounsaturated triacylglycerides [5]. It is important to point
out that, in our case, the fact that the first normal stress
coefficient, related with the change in volume, could rise up in
different moments even for the same conching history, might be
one of the reasons for the wide range of pattern shapes observed
on the chocolate surfaces.

3.2. Simulation Results
An effective packing fraction for a model of pure cocoa butter
can be obtained using the unit cell length values in crystalline
polymorphic forms of triglycerides and the elongated shape of
the molecules. With this, we calculated a packing fraction close
to φ = 0.30. Thus, we used this value as a reference for our
simulation systems and selected the range of packing fraction
values 0.22 ≤ φ ≤ 0.36. Figure 8 shows snapshots of the
typical configurations obtained for the concentrations explored.
The colors indicate clusters of molecules with the same local
orientation. The clusters were obtained using the criterion for
nematic droplets made of hard spherocylinders developed by
Cuetos and Dijkstra [23], which uses the local order parameter
of each particle. This parameter is obtained for each particle i
by setting a surface-to-surface cutoff distance of ρij = 0.5σ
to all the j particles in this range. The local orientation order
parameter S(i) of each i particle is calculated using all the j
particles that follow the restriction imposed by ρij. Two particles,
i and j, belong to the same cluster if they obey three conditions:
S(i) > 0.4 and S(j) > 0.4, their surface-to-surface distance is
ρij < 0.5 σ , and the product of their main axis orientation vectors
is | ui ·uj |> 0.85. The separation restriction ρij < 0.5 σ accounts
for the fact that the potential imposes a short range attraction
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FIGURE 6 | (A,B) Beginning of the pattern formation at different spatial scales. (C) Topographic image of the pattern observed in (B) by AFM microscopy. Brighter

zones correspond with upper regions in space.

FIGURE 7 | First Normal Stress Coefficient (A) and Shear Apparent Viscosity (B) for chocolate in a temperature cycle using a rate of 0.25◦C/min. The sample was first

conditioned 5 min at 60◦C prior to the beginning of the experiment. Then, the sample was cooled down from 40◦C to 15◦C (“Down” in the legend) and immediately

heated up again until 40◦C (“Up” in the legend). The experiment was performed twice with two different samples (“1” and “2” in the legend).

between particles; particles in a fat crystal will be at short surface-
to-surface separations. With this procedure we identify all the
clusters in our simulation box, and assign the same color to all
the particles in each cluster.

In this work, the analysis of the systems is purely qualitatively,
and focuses only on the cluster sizes and connectivity, but
relevant information can be extracted from it. In Figure 8A, only
two different clusters are found, but when the concentration
is increased, the connectivity of the molecules is reduced and
several small clusters appear (see Figure 8C). In fact, we have
measured the average size of clusters for a bigger simulation
box (8,500 particles) in a wider packing fraction range (0.12 ≤

φ ≤ 0.48), and found that the clusters have an average size

of around 480σ up to concentrations close to φ ≈ 0.20.
Above this concentration, the average size decreases to about
85σ at φ = 0.48. These sizes were calculated by averaging
the length of several clusters in more than one direction and
can be interpreted as average diameters. Thus, clusters become
smaller as the concentration increases. The size of the clusters
is relevant because our systems are consistent with the process
of aggregation described by the Avrami model, characterized
by two stages: a microscopic nucleation of molecules in order
to form active germ nuclei, which consequently aggregate to
induce growth grains. The simulations give insights into the first
stage, where the clustering of particles give rise to the germ
nuclei, corresponding to the aggregation nuclei that will induce
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FIGURE 8 | Snapshots of typical final configurations of simulation boxes at

packing fractions (A) φ = 0.22, (B) φ = 0.36, and (C) φ = 0.48. Colors

indicate different clusters, the preferred orientation of the molecules changes

between clusters.

the formation of grains in chocolate samples. The size of these
clusters might also have an effect on the final shape of the patterns
formed on chocolate surfaces.

3.3. Pattern Growth
The nucleation process observed in experiments and simulations
can be theoretically described using the Avrami model [11, 12],
which is based on a statistical description of the formation of
grains starting from initial or germ nuclei. The basic assumption
behind this model is that the factors that govern the tendency
of the growth nuclei are similar to those which govern further
growth, i.e., what Avrami described as an isokinetic process. If p(t)
describes the probability of formation of growth nuclei per germ

nucleus per unit time at temperature T, then

p(t) = Ke−(Q+A)/RT (2)

where Q is the energy of activation per gram molecule, A is the
work per gram molecule required for a germ nucleus to become
a growth nucleus, R is the gas constant and K is a normalization
constant. The probability p(t) is used to introduce a characteristic
time τ of the growth process, defined as

dτ

dt
= p(t). (3)

In a similar way, the size or linear dimension of the grain, denoted
by r(t), is given in terms of a rate of growth, G(t), according to
the expression

dr

dt
= G(t). (4)

Both equations imply that

G(t) =
dr

dτ
p(t), (5)

where dr
dτ

is the speed of linear growth in the characteristic time.
By integrating we obtain

r(τ ) =
∫ τ

0

G(x)

p(x)
dx (6)

In the isokinetical regime, it is assumed that the speed of linear
growth is a constant over concentrations and temperatures,
denoted by α, i.e., G(t) = αp(t). Consequently,

r(τ ) = ατ (7)

The volume V and surface area S of a grain are then given as,

V(τ ) = σ3Dr
3 (8)

and

S(τ ) = σ2Dr
2. (9)

Where σ3D = 4π/3 and σ2D = π are 3D and 2D shape
factors, respectively.

These expressions correspond to isolated growth nuclei. By
considering two associating mechanisms for the growth of a
grain, via the nucleation around a germ nucleus or the nucleation
around an already growth nucleus, and using the expressions
obtained for the V and S, as initial values for the grain sizes,
Avrami [11] derives rate equations for the number density of
nuclei germs N(t) and for the total extended volume of the grain.
By coupling these equations and solving them in the general case
of a random distribution of initial germ nuclei, a general equation
for the actual value of V(t) is obtained, known in the literature as
the Avrami equation, given by

V(t) = V0(1− e−btd ). (10)
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FIGURE 9 | Growing area vs. time for the patterns observed in the two series

of Figure 4. The solid line is the fitting of the data to the 2D Avrami equation.

The temporal Avrami exponent obtained is d = 0.905± 0.14 (open black

squares) and d = 1.142± 0.28 (open blue circles). The corresponding values

for parameter b are 0.00043± 0.00020 and 0.00059± 0.00028, respectively.

The square correlation coefficient is higher than 0.96 in both cases. Inset:

Normalized fat bloom growing area from binarized images vs. time of a section

of the chocolate surface where no patterns were formed; data were also fitted

with the Avrami equation (solid red line) obtaining d = 4.055± 1.406 and

b = 8.1× 10−14 ± 8.3× 10−13.

Where b is a coefficient that depends onG(t) and p(t) and d is the
Avrami exponent. Both quantities depend also on the geometric
dimension of the grain. Typical theoretical values obtained for
d vary within the range 1 ≤ d ≤ 4, depending on the value
of the probability of formation of growth nuclei p(t), which is
set by the energy of activation Q and the work required to form
a growth grain A [12]. In the case of quasi two-dimensional,
plate-like, grains, d ≈ 3 if p(t) is small (i.e., a high total energy
E = Q + A per mole required for a germ nucleus to become a
growth one) whereas for high values of p(t) (i.e., small values of
E), d ≈ 2. Linear-like grains will have 1 ≤ d ≤ 2, although it
is important to bear in mind that the key factor that determines
d is a complex one since not only depends on E but on G. For
fluctuations in temperature, we could expect that Q becomes a
determinant factor in the way that the grain growth formation
is induced.

The growing area S(t) of the two pattern series observed
in Figure 5 was analyzed using the Avrami equation for the
corresponding 2D case, written as

S(t)

S0
= 1− e−btd , (11)

where S0 is the saturation area. This 2D version of Avrami model
has been used previously to study crystallization by clustering
of disk nuclei, using computer simulation [24]. For each time
step, the pattern was drawn on a mask and the corresponding
area, in pixels, was plotted vs. time. Results of the pattern
growth for the two series, observed in the, show a remarkable
similarity. For this image analysis, the fitting of the data to the

Avrami equation gives an exponent d ≈ 1. Furthermore, we
analyzed the fat bloom homogeneous phenomena by performing
a binarization that identifies regions of higher fat content, which
presumably corresponds to β(V)-β(VI) rich regions and have a
lighter typical color. We focused on sections of the images where
no patterns grow, to avoid regions with holes on the surface.
From these data, we obtained an Avrami exponent d ≈ 4 (see
inset in Figure 9). From the Avrami fitted expression in Equation
(11), and assuming the formation of effective disk grains, the
statistical quantities involved in the Avrami model, described by
Equations (2–9), can be given as explicit functions of time and
model constants. For example, the effective radius of the grains is
given by

r(t) = r0

√

1− e−btd (12)

where r0 is the grain’s radius for the saturation time

θ = (1/b)1/d (13)

On the other hand, the energy formation for a grain can be given
by two different terms,

Q+ A

RT
= ln

[

2αθ

r0d

]

+ ln

[ √

1− e−btd

θbtd−1e−btd

]

, (14)

where θ is used in order to split the logarithm into two terms with
dimensionless arguments. In this equation, the work per gram
molecule required for the formation of the growth nucleus (A)
is the time dependent term in the right side of the equation, and
the energy of activation per gram molecule (Q) is the constant
term, i.e.,

Q

RT
= ln

[

2αθ

r0d

]

. (15)

From computer simulations, Q/RT can be obtained from the
minimum value of the potential energy required by a pair of
clusters in order to associate into a grain disk. This energy E∗ =

E/ǫ is determined from MD simulations. We can estimate ǫ

and σ using data from a previous work on modeling biodiesel
phase diagramswith aMolecular Thermodynamic approach [25].
Biodiesel molecules and triglyceride molecules have the same
fatty acids. The triglyceride molecule in our model, observed in
Figure 3, is formed by two units of stearic acid and one unit
of oleic acid. The size of the oleic acid residue, linked to one
of the three hydroxymethyl residues of the glycerol with a size
of 6.5σ , can be compared with the size of the methyl oleate in
reference [25], in order to estimate the total size and interaction
energy of our triglyceride molecule. In this way, each molecule is
formed by Np segments and each segment has an average energy
ǫ. The activation energy per molecule is set by the molecules at
the border of each cluster, according to the short-ranged Mie
potential model used in the simulations. The average energy per
molecule is then approximated by E = Npǫf , where ǫf is an
average energy term per segment that only has contributions
from interactions in the border of the clusters. The molar
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TABLE 1 | Rates of linear size growth for different sets of Avrami parameters d
and b. Values are also given for the saturation time and predicted diameters of

chocolate grains after 2,000min.

d b θ/min α/(mm/min) Diameter/mm

0.905 4.3 10−4 5247.1606 3.3279 10−5 0.1331

1.142 5.9 10−4 672.3961 3.2771 10−4 1.3108

4.055 8.1 10−14 1696.4375 4.6115 10−4 1.8446

activation energy Q/RT is here given by E/kT. Together with the
constants d and b determined from fitting of experimental data
S(t), we obtained the value of the isokinetical parameter α that
links the energetic process involved in the growth of grains with
the rate of change with time of the radius of the grain,

α =
r0d

2θ
eQ/RT (16)

=
r0d

2θ
e
Npǫ

∗
f
ǫ/kT

.

As described in detail in the Supplementary Material, from this
expression we can predict a value for α considering the saturation
time θ , and the corresponding typical value of 1 mm for the
diameter of a grain. The simulation value obtained for ǫ∗

f
= ǫf /ǫ

for a packing fraction φ = 0.36 is−0.015, and with theMolecular
Thermodynamic value of energy for the biodiesel parameter
[25], we obtained the results for θ and α reported in Table 1.
Furthermore, we calculated a predicted value of the diameter of a
grain after 2,000 min, obtained from α, that allows comparisons
with the experimental results from Figure 5. We observe that
the model can predict accurately the effective diameter of the
chocolate grains.

4. DISCUSSION

We have presented the different aspects required to obtain
the most common patterns observed during the aging on the
surface of the chocolate. One basic aspect is the necessity of
having temperature fluctuations in the range of 20–30◦C, as
observed in Figure 5. Without them, it is practically impossible
to obtain metastable patterns with circular centers and high
radial and angular symmetry. Ambient temperature fluctuations
apparently allow to reshape constantly the pattern; following
metastable paths that produce more frequently and more
efficiently patterns with radial symmetry than the symmetry
produced in situations where temperature is fixed or cyclic. It is
important to point out that the different phases observed with
the variation of temperature have differences in volume and
crystallinity (orientation). In the literature there are descriptions
of typical hysteresis in volume between the cooling and the
heating histories, as depicted in Figure 2, which is similar to what
it is suggested from hysteresis in the normal stress coefficient vs.
temperature (Figure 7). Following Figure 2, we can also suggest
that the proximity among the different stable and metastable
chocolate phases produces easily different shapes or patterns

on its surface, that depend on temperature fluctuations and on
the previous history of the sample. However, the patterns are
completely reproducible; considering that the first events are
always circular patterns that, as time goes on, develop ruffles
and small scarce islands. Clearly, more than two phases could
be involved to create a pattern, but interestingly the pattern
growing can be captured using the Avrami model (Figure 9).
An Avrami exponent d in the range of one is obtained and, as
previously mentioned, it can be linked, via the probability of
formation of growth nuclei p(t), with a low value of energy E
of the fat bloom event triggered in a pattern. By contrast, the
homogeneous fat bloom formation also analyzed according to the
Avrami model (Figure 9, inset), presents an exponent near 4, that
corresponds to an energy higher than the one necessary to form
a pattern.

Although the time and size scales involved in experiments
and simulations are very different, the fact that the spontaneous
pattern growth observed on the chocolate surface can be closely
described by the Avrami equation suggests that the isokinetical
approach intrinsic to this model, i.e., the proportionality between
the growth rate G(t) and the probability of formation growth
of nuclei, p(t), can be linked to the way the triacylglycerides
molecules interact to form active germ nuclei, as observed in
simulations, and then the clustering of these nuclei in order
to form grains with an increasing radius. In other words, the
associating mechanisms that induce the formation of grains can
be described using the coarse-grained model of molecules in our
NVT simulations scale accordingly to the Avrami model. Within
their uncertainty values, the Avrami constants b and d obtained
for the experimental system can be used, in combination with
the activation energy determined from computer simulations
at an equivalent packing fraction of the experiments, in order
to determine the isokinetical parameter α (or speed of linear
growth of the formation) of chocolate grains. We have found
that the predicted sizes for chocolate grains compare accurately
with real sizes. In future works we will address the correlation
between the parameters of the Mie pair-interaction used in the
simulations and the actual value of Q required to form a growth
nucleus from germ nuclei. It is important to stress here that
a proper modeling of the grain formation, according to the
second stage of aggregation described by Avrami, requires the
consideration of the surface tension of the system. However,
at the level of the scale described by the simulations presented
here, our simulations are restricted to the description of the
first stage of the aggregation process, that only considers the
formation of active germ nuclei. Amore detailed analysis will also
require to consider the role played by other molecules present
in chocolate.

In spite of the complexity of the behavior of real patterns
on the chocolate surface, it is interesting that a coarse-grained
model of the molecular behavior involved can be accomplished
through the Avrami model in order to give information of the
associatingmechanisms that determine the actual growth process
of chocolate grains. Furthermore, the alignment of the nuclei
observed in the simulations resembles what is expected in the
formation of fat crystals [14, 17, 26]. The difference in the
connectivity for different packing fractions might be another
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crucial factor in fat bloom. Further issues that we would like
to answer are how the fluctuation of temperature is correlated
to the activation energy for the formation of grains, and the
characterization of the rheological behavior of experimental
samples in terms of the molecular model used in the simulation
and its dependence on the Mie potential parameters, as well as
the role played by the solvent molecules.
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Reversible aggregation of purely short-ranged attractive colloidal particles leads to the
formation of clusters with a fractal dimension that only depends on the second virial
coefficient. The addition of a long-ranged repulsion to the potential modifies the way in
which the particles aggregate into clusters and form intermediate range order structures,
and have a strong influence on the dynamical and rheological properties of colloidal
dispersions. The understanding of the effect of a long-ranged repulsive potential on the
aggregation mechanisms is scientifically and technologically important for a large variety of
physical, chemical and biological systems, including concentrated protein solutions. In this
work, the equilibrium cluster morphology of particles interacting through a short-ranged
attraction plus a long-ranged repulsion is extensively studied by means of Monte Carlo
computer simulations. Our findings point out that the addition of the repulsion affects the
resulting cluster morphology and allows one to have a full control on the compactness or
fractal dimension of the aggregates at a given thermodynamic condition. This allows us to
manipulate the reversible aggregation process and, therefore, to finely tune the resulting
building blocks of materials at large length scales.

Keywords: competing interactions, reversible aggregation, clustering, cluster morphology, fractal dimension

1 INTRODUCTION

Many body systems composed of particles interacting via a short-range attraction and a long-range
repulsion (SALR) have attracted attention in the past decade due to their rich phase behavior not
observed for systems interacting with purely attractive potentials. One of these is the clustered fluid
phase resulting from the frustration of the gas-liquid separation. This phase has been observed in
experiments, as well as in molecular simulations, see, e.g., references [1–14]. Understanding the
clustering of particles is necessary to explain changes in the dynamics and rheology of colloidal
systems with competing interactions, see [15, 16].

The competition between attraction and repulsion over different length scales makes possible to
have different phase diagrams depending on the parameters that control both the range and strength
of each potential feature. [17] presented an empirical classification for systems with competing
interactions based on the range of the repulsion and attraction. When the attraction range is smaller
than 20% of the particle diameter σ and a repulsion range is slightly larger than that of the attraction,
these systems are considered as type I system. Particles in type II systems have a longer range
repulsion while the attraction range is similar to that of the type I systems. However, the range of the
repulsion is still at the order of σ. Both the type I and II SALR systems have been studied see Table 1
in reference [17]. Type I and II systems present a similar phase diagram, which includes phases as: the
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dispersed fluid, clustered fluid, and percolated states. One
difference of these two types of systems is that type I is
believed to present a gas-liquid separation below the cluster
temperature if the repulsion range is short enough, as is
speculated by [17]. In type II systems, the repulsion prevents
the equilibrium clustering of particles beyond some limit, see, e.g.
[3]. In reference [11] it is found that it is possible to find a fluid-
crystal coexistence in type II systems. Finally, a type III system the
attraction range is much longer than that of type I and II systems,
and comparable to σ with an even longer-ranged repulsion. For
those systems, some theoretical study show that there can be
some very interesting gas-liquid transition behavior, see, e.g.,
[18, 19].

In this work, we focus on the cluster morphology of type I
systems, since the features of the interaction are more similar to
the estimated potential for colloidal systems and protein
solutions, see for example references [2, 4, 5, 20–23]. Besides,
the structural properties of clusters have not been studied
systematically yet.

The phase diagram of particles with only short-ranged
attractions has been studied intensively, see e.g. [24–30]; and it
is widely accepted that their thermodynamic behavior is
determined by the extended law of corresponding states, [31].
In a similar spirit [10], proposed a generalized phase diagram for
particles with competing interactions after studying type I and II
systems through Monte Carlo computer simulations. According
to the generalized phase diagram, particles at low and moderate
concentrations form a dispersed fluid state at high temperatures,
and an equilibrium clustered fluid state at temperatures below
Tref
c , where Tref

c is the critical temperature of a reference system.
Particles in the reference system interact through only the
attractive part of the full SALR potential, the repulsive part,
beyond σ, plays the role of a perturbation. At high enough
concentrations, the dispersed fluid state percolates to form the
random percolated state similar to particles with only attractions.
However, when increasing the concentration, clustered fluid state
can transition into a different percolating network, the cluster
percolated state. Below the equilibrium clustered fluid state, it has
been identified a non-equilibrium region related to the gel
transition, [11]; but it is out of scope of the generalized phase
diagram proposed by [10].

The manuscript is organized as follows. In Section 2, the
interaction potential, as well as the computer simulation protocol
are described. In Section 3, the structural signature of competing
interaction systems is discussed and intimately related to the
properties of clusters, which are studied in Section 5. Section 4
presents the phase diagram, where the region relevant for this
work is explicitly pointed out. Finally, in section 6 the main
conclusions of this work and some perspectives are presented.

2 COMPETING INTERACTION POTENTIAL
AND MONTE CARLO COMPUTER
SIMULATIONS
We have performed extensive Monte Carlo (MC) computer
simulations in the canonical ensemble NVT for a system made

up of spherical particles with a diameter σ, interacting through a
short-ranged attraction plus a long-ranged repulsion given by the
expression,

u(r) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ r < σ

−ϵ σ ≤ r ≤ λσ

Aϵ exp(−κ(r − λσ))
r/σ − 0.1

r > λσ

(1)

the range and strength of the attraction are well determined by λ and
ϵ, respectively, while the maximum repulsion strength (in units of ϵ)
is given byA and the corresponding range is approximately κ−1. The
potential well is related to the reduced temperature by T* � kBT/ϵ,
with kB being the Boltzmann’s constant and T the absolute
temperature. This potential form was chosen because the
contribution of the attraction, as well as the repulsion, are easily
distinguishable. We have also chosen the range parameters as: λ �
1.1 and κ � 3 to have a simple representation of the interaction
between proteins in aqueous solution, see, for example [10]. We are
mainly interested in the effect of the repulsion strength on the
structure and aggregate morphology. For that reason, we
systematically vary the values of A � 0.2, 0.5, 0.7 and 1.0.

MC computer simulations were carried out at the same packing
fraction, ϕ � 0.1; this is related with the number density ρ* � 6ϕ

π . We
particularly chose this particle concentration to avoid the percolation
threshold, which is reached when ϕa 0.15, see [32, 33]. A typical
simulation consists of 108MC steps to reach the equilibrium and 108

extraMC steps tomeasure the structural properties of the system. At
the lowest temperatures, additional MC steps where required to
reach thermodynamic equilibrium; 109 MC steps before the
structure was measured. In some simulations, we were not able
to reach the equilibrium since particles tend to aggregate in large
clusters, this situation is similar to the usual gas-liquid phase
separation. In the Supplementary Material, we show the
calculation of the binodal line; those results indicate that the
non-equilibrium states observed in simulations are close to the
binodal.

To characterize the microstructure, we calculate the so-called
structure factor, S(q), which quantifies the density fluctuation
correlations [34]. We have simulated a system of 11,000 particles
to resolve the S(q) at small q-values, i.e., long wavelengths. Once
the structure of a system was determined, the cluster size
distribution, P(s), as well as the radius of gyration, Rg(s), were
calculated. Those quantities represent the normalized probability
of finding a cluster made of s particles and the corresponding
effective radius. In this second calculation, the number of
particles in the simulations was decreased to 4,000, since the
computational cost of larger systems is quite expensive.

3 STRUCTURAL SIGNATURE OF THE
INTERMEDIATE RANGE ORDER
STRUCTURES AND CLUSTERED PHASE
The hallmark of many SALR systems, is found in the structure
factor, [10]. The S(q) presents a peak at some q-value smaller than
the typical one related to the correlation between pairs of particles,
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usually around 2π/σ. Such low-q peak has been observed in protein
solutions, see, for example, [1, 2, 5, 15, 22]. However, this peak is not
only due to the appearance of a clustered phase, but to a more
general intermediate range order (IRO) structure, see [8–10, 22]. For
example, the IROpeak has also been observed at high concentrations
where particles are already forming a percolating network, see [8].

[10] defined the clustered fluid state as that thermodynamic state
of a system at which the cluster size distribution, P(s), displays a well-
defined peak or maximum around s ∼ 20. This state is easily detected
sinceP(s) decreases faster than a power law, when the system is below
the percolation threshold. Also, according to [10] the clustered state is
reached when the low q-peak takes a value above the critical value of
2.7. This empirical criterion works well for type II SALR systems,
although there is not a physical explanation for such a value. Another
criterion to identify the clustered phase has been proposed by [13]
based on the value of the thermal correlation length.

In Figures 1A,B the structure factor for the systems with the
lower repulsion, obtained through MC simulation (symbols) and by
solving the Ornstein-Zernike equation with the Percus-Yevick
closure (solid lines), is shown. In (A) it is also included the S(q)
for the reference system, A � 0 (dashed lines). The structure factor
for A � 0 and A � 0.2 is equal for all temperatures considered,
except for qσ < 2, that means the repulsion is too weak to affect the
short-ranged correlations at separations around σ but is large
enough to break up the large-ranged correlations responsible of
the gas-liquid phase separation, as q goes to 0. For the system with

A � 0.5, the low-q peak emerges as indicated in both simulation and
theory, see Figure 1B. The localization of this peak shifts to lower
values as T* is lowered. It is worth to mention that the theory does
not agree with the simulation at low-q values however the
information provided is useful to distinguish between systems
close to the phase separation, panel (A) and systems with a true
clustered phase, panel (B). In panel (B) the low-q peak for the lowest
temperatures is close to the limit imposed to the periodic boundary
conditions, but the theory can give the trend of simulation as it does
at the highest temperatures.

Figures 1C,D show the cluster size distribution for systems
with A � 0.2 and 0.5, respectively, where P(s) is multiplied by s to
avoid the biasing to monomers. The probability of finding large
clusters increases as the temperature gets lower, as expected, see
[8]. For example, for the system with A � 0.2 at T* � 0.4, that is
inside the phase separation region, the distribution presents two
peaks, at s � 1 and ∼ 4000 (data not shown). By increasing the
repulsion strength to A � 0.5, P(s) indicates that the probability
of finding large clusters is higher for A � 0.2 than for A � 0.5,
since the repulsion impedes the clustering. At T* � 0.375 the
distribution looks different than the one obtained for other
temperatures. In fact, there is a small shoulder at around 60
particles, a value larger than the reported for the clustered phase
in reference [10]. Also, for this temperature, the low-q peak
exceeds the value of 2.5, which is closer to the expected for a
clustered fluid. Then, this case is somehow in the middle of the

FIGURE 1 | Structure factor for competing interaction systems whose repulsion strength is (A) A � 0.2 and (B) A � 0.5 at ϕ � 0.1 and different temperatures. (C,D)
display the cluster size distributions for (A,B), respectively. Computer simulation results are denoted by symbols, while solid lines are the theoretical solution of the
Ornstein-Zernike equations with the Percus-Yevick closure. In (A) we also include the S(q) for the reference system the SW potential, i.e., A � 0 (dashed lines). In (C,D)
we also include P(s) ∼ s−2.2 (solid line), the limit case for random percolation, see [35].

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6371383

Valadez-Pérez et al. Cluster Morphology of Colloidal Systems

104

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


full phase separation and the formation of a clustered phase. This
observation thus indicates that for a type I SALR system, the
transition temperature from a dispersed fluid state to a clustered
fluid state may start shift away from the gas-liquid transition line
for a reference potential system. This is qualitatively different
from that of a type II SALR system. Hence, for the SALR system,
the strength of the repulsion can affect the transition temperature
from a dispersed fluid to the clustered fluid state.

The relationship between the low-q peak and the shoulder in sP(s)
is clearer for the remaining cases. Figure 2 contains the same
information as in Figure 1 for systems with A � 0.7 and 1.0. At
low temperatures, T* < 0.375, the low-q peak of the structure factor is
about 2.0, and the cluster size distribution in panels (C) and (D)
present a shoulder between 20 and 30 particles, which indicates the
formation of the clustered fluid. Here themaximum of the S(q) is not
that close to the 2.7 threshold value, however systems are forming a
clustered fluid. An important observation here is that at high s values
the size distribution follows the power law P(s) ∼ s−2.2 observed in
random percolation and previously noted in reference [8]. Here,
clusters must form larger clusters that eventually percolate in the
cluster percolated phase, see reference [10].

4 PHASE DIAGRAM

In Figure 3A the phase diagram for the SW fluid with an
interaction range λ � 1.1 is displayed; it shows the gas-liquid

coexistence (blue circles) and the percolation threshold (orange
diamonds). The main effect having a repulsive potential coupled
with the SW is either to lower the critical temperature or to inhibit
the gas-liquid phase separation, favoring the formation of the so-
called intermediate range order (IRO) structure, as is discussed in
references [8–10]. For the lowest repulsion considered here,
A � 0.2, we did not observed the IRO peak, as well as the
clustered phase, but for the larger repulsion the simulations
predict the existence of the IRO peak at all temperatures considered.

The information presented in the previous section allows us to
establish the boundary between a disperse fluid, the clustered one
and the phase separation. Nonetheless, the exact location of this
boundary depends on the specific value of the repulsive potential,
see Figure 3B. Competing interaction systems at low
temperatures resemble the gas-liquid phase separation for
A> 0.2, however, it is difficult to establish this from the
simulation results. In the Supplementary Material, we show
the calculation of the binodal corresponding for different
A-values by using an approximate perturbation approach
developed by [36]. This approach predicts the occurrence of
the gas-liquid phase separation for all repulsive potentials
considered here, which agrees well with the proposal discussed
in reference [17] concerning the phase diagram of type I SALR
systems. For A � 0.2, the separation is predicted at T* ∼ 0.4,
which agrees well with the findings of our simulations. Thus, the
most interesting region to analyze the clustering is localized below
the percolation threshold and at temperatures around the

FIGURE 2 | Structure factor for competing interaction systems whose repulsion strength is (A) A � 0.7 and (B) A � 1.0 at ϕ � 0.1 and different temperatures. (C,D)
show the corresponding cluster size distributions. Computer simulation results are denoted by symbols, while solid lines are the theoretical solution to the Ornstein-
Zernike equation with the Percus-Yevick closure. In (C,D) we also include P(s) ∼ s−2.2 (solid line), the limit case for random percolation, see [35].
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binodal, colored region in Figure 3A. This temperature window
includes states where the systems could be either a disperse or a
clustered fluid and close to the expected phase separation.

Figure 3C shows some snapshots of the simulated system at
ϕ � 0.1 and T* � 0.45 for different values of A, this corresponds
to the yellow star in (A). For clarity, only clusters with 10 and
more particles are shown. The system with purely attractive
particles, case A � 0, presents the expected gas-liquid phase
separation, a large cluster surrounded by small clusters and
monomers. As the repulsion strength increases, the liquid
phase disappears and a clustered phase emerges. It can be
observed that the cluster morphology depend of the value of A
as we will see below.

5 CLUSTER MORPHOLOGY

The cluster morphology of competing interactions systems has
been studied in experiments and simulations [13]. found that
equilibrium clusters are more compact than those out of
equilibrium. Experiments made by [7] indicate that cluster
morphology is affected by the attractive contribution. Also
[37], found that equilibrium clusters tend to be elongated
structures. In a previous publication, [38]; we studied the

morphology of clusters made of purely attractive particles at
the same ϕ-value and for temperatures above the binodal. There,
we found that the morphology of clusters with more than 10
particles is determined by the strength of the attraction via the
second virial coefficient, while the morphology of small clusters is
insensitive to the state of the system.

In this work, we have performed a systematic study of the
cluster morphology. The radius of gyration is fitted using the
equation: Rg � Cs1/df , where df is the well-known fractal
dimension; this definition has been used to characterize the
morphology in similar systems [39]. Figure 4 shows the results
for systems at different temperatures and for repulsion strengths
(A) A � 0.5 and (B) 1.0. It is worth to mention that we have only
considered the Rg of clusters observed at least 100 times in the
simulation to have a more reliable and accurate statistics. For
A � 0.5, systems at high temperatures follow a similar trend as the
one observed for attractive particles. Small clusters have almost the
same shape independent of the temperature and large clusters
become more compact as the attraction becomes stronger, see
Reference [38]. The changes in df of large clusters are smaller than
the ones observed in systems with purely attractive interactions and
clusters keep a fractal dimension close to 2.0.

From Figure 1 it was noted the presence of small shoulder at
s ∼ 60 particles, at the same value there is a small change in the

FIGURE 3 | (A) phase diagram for the SW fluid with λ � 1.1, our reference system. Circles correspond to the gas-liquid phase separation taken from reference [29];
diamonds point out the percolation threshold, from reference [33]; using the extended law of corresponding states to map the SW with λ � 1.05 data. (B) State for
particles interacting through the full SALR potential, here we identify the dispersed fluid, the clustered fluid and those states in the phase separation, seeSupplementary
Material. (C) Snapshots corresponding to the yellow star for different repulsion strengths. Clusters are colored randomly to be easily identified. For clarity, clusters
with 10 or more particles are the only ones displayed.
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slope of Rg ; this behavior is more pronounced for the case A � 1.0
where also the localization of the shoulder is shifted to s ∼ 20.
Such case is shown in 4 (B), the behavior or Rg is completely
different from that reported in reference [38]. Firstly, the
morphology of small clusters with less than approximately 15
particles becomes more compact as the temperature gets lower,
the fractal dimension at the lowest temperature is around 2.5.
Secondly, clusters with a larger number of particles, until ∼ 60,
present a lower fractal dimension as the temperature gets lower. A
similar morphology has been previously reported by [23]; they
simulated a system of particles interacting through a potential
fitted from experimental data for a lysozyme immersed in an
aqueous solution. This means that at low temperatures compact
clusters join together without merging completely, that makes

possible the arrangement of these clusters in elongated structures
with a lower fractal dimension, in agreement to [23]. It is
important to note that for those clusters 2.5< 2Rg/σ < 4, this
size is comparable with 1.5< qσ < 2.5, which is the interval where
the low-q peak was located. Finally, clusters with more than
approximately 60 particles seem to have the same df , regardless
the temperature of the system. The latter could be related to the
fact that at all temperatures, the S(q) is very similar at low
wavelengths, i.e., q→ 0, see Figure 2B.

Figure 4C shows snapshots for systems withA � 1.0 at different
temperatures. In these cases, small clusters (5< s≤ 12) are colored
in blue and intermediate clusters (15≤ s≤ 30) in red. Small clusters
at low temperatures tend to be compact structures, they are less
compact as the temperature increases. The intermediate size clusters

FIGURE 4 | Radius of gyration for competing interaction systems at ϕ � 0.1 with different repulsion strengths (A) A � 0.5 and (B) A � 1.0 at different temperatures.
We plot, along the expectedRg, the radius of gyration for clusters with a fractal dimension of 2 (blue lines), 2.5 (red lines) and 1.6 (green lines). (C) Snapshots of the system
with A � 1.0 at different temperatures are displayed. Clusters with 5 up to 12 particles are colored in blue and clusters with 15 ≤ s≤30 in red. (D) Fractal dimension for
systems with A � 1.0, we classify clusters in small (s≤12), intermediate (13≤ s≤ 60) and large (s≥100), see [40]. Vertical line is the boundary between dispersed
and clustered fluid.
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at low temperatures are still compact, but adopt an elongated
configuration while at high temperatures some particles look as
branches. Besides, at T* � 0.4 small and intermediate clusters do
not have a distinctive shape as for the lower temperatures, which
agree with the fact that Rg does not change its slope at 15 particles.
These qualitative observations are supported by the information
given in Figure 4D. There, we have computed the fractal dimension
of clusters at different temperatures, they are classified as small
(s≤ 12), intermediate (13≤ s≤ 60) and large (s≥ 100), this
classification agrees with the different fractal regimes shown by
[40]. Since the boundary between intermediate and large clusters
does not have a well-defined location, we have decided to skip some
of the data. From the figure, it is clear how small clusters become
more compact as the temperature gets lower than T* � 0.375, i.e.,
the boundary between the dispersed and clustered phases.
Intermediate clusters become more elongated, while the
morphology of large clusters only changes slightly.

6 CONCLUSION

In this work, we investigated the cluster formation for systems
with competing interactions. The potential parameters were
chosen to represent the interactions between proteins in an
aqueous solution at low salinity. The analysis of the structure
factor, as well as the cluster morphology, reveals that due to the
addition of the long-ranged repulsion, the gas-liquid phase
separation is shifted to lower temperatures compared with that
of systems with pure attractive potential. For the case A � 0.2, it
was evident that the phase separation happens at T* � 0.4 and
there is no clearer IRO peak in the structure factor. For stronger
repulsion, the development of the IRO states as indicated by the
IRO peak is very obvious in the structure factor. And the cluster
morphology showed more complex structures due to the
competition of the attraction and repulsion. At the lowest
temperature analyzed here, T* � 0.35, the system with A � 0.5
reached a non-equilibrium state, which made difficult to state if it
is a gas-liquid phase transition or a non-equilibrium cluster
phase. Systems with the largest repulsion strength remained in
equilibrium within the simulation window.

The analysis of the cluster size percolation for systems in the
clustered fluid state revealed that there is cluster formation with a
preferential size in clustered fluid states. This optimal size depends
also on the strength of the repulsive potential. Thus for the type I
SALR systems, it is possible to produce clustered states with
specific cluster size by controlling the potential parameters.

At the lowest temperatures for the stronger repulsion, particles
are locally organized in very compact structures. Small clusters
with less than 12 particles tend to adopt the minimum energy
configuration, while intermediate size clusters have elongated
configurations when these compact clusters join together with
certain specific configurations. This cluster formation is different
from that observed in systems made of purely attractive particles,
[38]. For the SALR systems studied here, the scales at which the
intermediate size clusters are observed can be related with the
value at which the IRO peak appears in the structure factor. An
interesting future work is the analysis of the dynamics of the
clustering process at different concentrations in both the cluster
fluid states and the cluster percolated states.
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Random Fields in Physics, Biology and
Data Science
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A random field is the representation of the joint probability distribution for a set of random
variables. Markov fields, in particular, have a long standing tradition as the theoretical
foundation of many applications in statistical physics and probability. For strictly positive
probability densities, a Markov random field is also a Gibbs field, i.e., a random field
supplemented with a measure that implies the existence of a regular conditional
distribution. Markov random fields have been used in statistical physics, dating back
as far as the Ehrenfests. However, their measure theoretical foundations were developed
much later by Dobruschin, Lanford and Ruelle, as well as by Hammersley and Clifford.
Aside from its enormous theoretical relevance, due to its generality and simplicity, Markov
random fields have been used in a broad range of applications in equilibrium and non-
equilibrium statistical physics, in non-linear dynamics and ergodic theory. Also in
computational molecular biology, ecology, structural biology, computer vision, control
theory, complex networks and data science, to name but a few. Often these applications
have been inspired by the original statistical physics approaches. Here, we will briefly
present a modern introduction to the theory of random fields, later we will explore and
discuss some of the recent applications of random fields in physics, biology and data
science. Our aim is to highlight the relevance of this powerful theoretical aspect of statistical
physics and its relation to the broad success of its many interdisciplinary applications.

Keywords: random fields, probabilistic graphical models, Gibbs fields, Markov fields, Gaussian random fields

1 INTRODUCTION

The theory and applications of random fields born out of the fortunate marriage of two simple but
deep lines of reasoning. On the one hand, physical intuition, strongly founded in the works of
Boltzmann and the Ehrenfests, but also in other originators of the kinetic theory of matter, was that
large scale, long range phenomena may originate from (a multitude of) local interactions. On the
other hand, probabilistic reasoning induced us to think that such multitude of local interactions
would be stochastic in nature. These two ideas, paramount to statistical mechanics, have been
extensively explored and develop into a full theoretical subdiscipline, the theory of random fields.
Perhaps the archetypal instance of a random field was laid out in the doctoral thesis of Ernst Ising, the
Ising model of ferromagnetism [1]. However, although the physical ideas have been laid out mainly
by physicists, much of the further mathematical development was made by the Russian school of
probability. In particular, by the works of Averintsev [2, 3], which–along with the measure
theoretical-inspired formalization of statistical mechanics by J.W. Gibbs–, was able to specify a
general class of fields described only by pair potentials [4]. Theoretical advances were given by
Stavskaya who studied random fields bymeasure theory considering them as invariant states for local
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processes [5, 6], by Vasilyev who consider stationary measures as
derived from local interactions in discrete mappings [7] and
others.

The formal establishment of the theory of Markov-Gibbs
random fields, however, is often attributed to the works of
Dobruschin, Lanford and Ruelle [8, 9], in particular to their
DLR equations for the probability measures. Also remarkable is
the contribution of Hammersley and Clifford, who developed a
proof of the equivalence of Gibbs random fields and Markov
random fields, provided positive definite probabilities [10].
Although the authors never officially published this work, that
they thought to be incomplete given the–now known to be
essential–requirement of positive definite probabilities, several
published works have been made on top of it and even alternative
proofs have been published [11–13].

Aside from the extensive use of the Isingmodel and other random
fields in statistical mechanics–too many contributions to mention
here, butmost of them comprehensively reviewed in themonographs
by Baxter [14], Cipra [15], McCoy andWu [16], Thompson [17] and
in the simulation-oriented book by Adler [18]–; there has been also a
deep interest in development in models in biophysics, computer
science and other fields. The development of Hopfield networks as
models of addressable memory in neurophysiology (and artificial
neural networks) [19] is perhaps one of the earliest examples.
Followed by the implementation if the so-called Boltzmann
machines in artificial intelligence (AI) applications [20, 21] paved
the way to a plethora of theoretical, computational and
representational applications of random fields.

In the rest of this review paper, we will present some general
grounds of the theory of Markov random fields to serve as a
framework to elaborate on many of its relevant applications
inside and outside physics. Our emphasis here will not be to
be comprehensive but illustrative of some relevant features that
have made this quintessential model of statistical physics so
pervasive in our discipline and in many others (Markov
Random Fields: A Theoretical Framework). We will also
discuss how methodological and computational advances in
these areas may be implemented to improve on the
applications of random fields in physical models. We have
chosen to focus on applications in Physics (Markov Random
Fields in Physics), Biology (Markov Random Fields in Biology) and
Data Science (Markov Random Fields in Data Science and
Machine Learning). We are aware that by necessity
(finiteness), we are leaving out contributions in fields such as
sociology (Axelrod models, for instance), finance (volatility maps,
Markov switching models, etc.) and others. However, we believe
this panoramic view will make easier for the interested reader to
look into these other applications. Finally, in Concluding Remarks
we will outline some brief concluding remarks.

2 MARKOV RANDOM FIELDS: A
THEORETICAL FRAMEWORK

Here we will define and describe Markov random fields [8, 12]
(MRFs) as an appropriate theoretical framework useful for
systematic probabilistic analysis in various settings. An MRF

represents, in this context, the joint probability distribution for
a set (as large as desired) of real-valued random variables. There
are several extensions of the general ideas presented here, that will
be presented and briefly addressed as needed.

Let X � Xα be a vector of random variables (i.e., the features or
characteristic functions used to describe a system of interest). An
MRF may be represented as an undirected graph depicting the
statistical dependency structure of X, as given by the joint
probability distribution P(X) [22].

Let this graph be embodied in the form of a duplex G � (V , E)
consisting of a set V of vertices or nodes (the random variables
Xi’s) and a set E4V × V of edges connecting the nodes (thus
representing the statistical dependencies between random
variables). E also represents a neighborhood law N stating
which vertex is connected (i.e., dependent) to which other
vertex in the graph. With this in mind, an MRF can be also
represented as G � (V ,N). The set of neighbors of a given point
Xi is denoted NXi.

2.1 Configuration
We can assign each point in the graph, one of a finite set S of
labels. Such assignment, it is often called a configuration. We can
then assign probability measures to the set Ω of all possible
configurations ω. Hence, ωA represents the configuration ω
restricted to the subset A of V. We may think of ωA as a
configuration on the subgraph GA restricting V to points of A.

2.2 Local Characteristics
We can define local characteristics on MRFs. The local
characteristics of a probability measure P defined on Ω are
the conditional probabilities:

P(ωt |ωT∖t) � P(ωt

∣∣∣∣ωNt) (1)

This represents the probability that the point t is assigned the
valueωt , given the values at all other points of the graph. Let us re-
write Eq. 1. Since the probability measure will define an MRF if
the local characteristics depend only on the outcomes at
neighboring points, i.e., if for every ω

P(ωXi

∣∣∣∣ωG∖Xi) � P(ωXi

∣∣∣∣∣ωNXi
) (2)

2.3 Cliques
Given an arbitrary graph, we may refer to a set of points C, as a
clique, if every pair of points in C are neighbors. This includes the
empty set as a clique. A clique is then a set whose induced
subgraph is complete. Cliques are also called complete induced
subgraphs or maximal subgraphs.

2.4 Configuration Potentials
A potential η is an assignment of a number ηA(ω) to every
subconfiguration ωA of a configuration ω in the graph G. A given
η, induces an energy U(ω) on the set of all configurations ω as
follows:

U(ω) � ∑
A

ηA(ω) (3)
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Here, for fixed ω, the sum is taken over all subsets A4V
including the empty set. It is possible to define a probability
measure, called the Gibbs measure induced by U as

P(ω) � e−U(ω)

Z
(4)

Z (taken from the German word zustanssumme or sum over
states) is a normalization constant called the partition function.
As it is known, explicit computation of the partition function is in
many cases a very challenging endeavor. There is a great deal of
work in the development of methods and approaches to
overcome some (but not all) challenges in this regard. Some of
these approximations will be discussed later on.

Z � ∑
ω

e−U(ω) (5)

The term potential is often used in connection with potential
energies. In this context ηA is commonly termed a potential
energy in physics applications. ϕA � e−ηA is then called a potential.

Equations 4, 5 can be thus rewritten as:

P(ω) � ∏AϕA(ω)
Z

(6)

Z � ∑
ω

∏
A

ϕA(ω) (7)

Since this latter use is more common in probability and graph
theory, and it is also used in theoretical physics, we will refer to
Eqs. 6, 7 as the definitions of Gibbs measure and partition
function (respectively) unless otherwise stated. This will also
be justified given that Eq. 6 is a form of probability
factorization (in this case a clique factorization) [11].

2.5 Gibbs Fields
A potential is termed a nearest neighbor Gibbs potential if
ϕA(ω) � 1 whenever A is not a clique. We often call a Gibbs
measure to any regular measure induced by a nearest neighbor
Gibbs potential. However, we may define more general Gibbs
measures by considering different classes of potentials.

The inclusion of all cliques in the calculation of the Gibbs
measure is needed to establish the equivalence between Gibbs
random fields and Markov random fields. A nearest neighbor
Gibbs measure on a graph determines an MRF as follows [22]:

Let P(ω) be a probability measure determined on Ω by a
nearest neighbor Gibbs potential ϕ:

P(ω) � ∏CϕC(ω)
Z

(8)

With the product taken over all cliques C on the graph G.
Then,

P(ωXi

∣∣∣∣ωG∖Xi) �
P(ω)

∑ω
′
P(ω′) (9)

Here ω′ is any configuration which agrees with ω at all points
except Xi.

P(ωXi

∣∣∣∣ωG∖Xi) �
∏CϕC(ω)

∑ω
′
∏CϕC(ω′) (10)

For any clique C that does not contain Xi, ϕC(ω) � ϕC(ω′), So
that all the terms that correspond to the cliques that do not
contain the point Xi cancel both from the numerator and the
denominator in Eq. 10, therefore this probability depends only on
the values xi at Xi and its neighbors. P defines thus an MRF. A
more general proof of this equivalence was given by Hammersley-
Clifford theorem (see for instance [11]).

In essence, we can state that among the general class of
random fields, Markov random fields are defined by obeying
the Markov neighborhood law. Gibbs fields are usually
understood as Markov fields with strictly positive probability
measures (in particular, a strictly positive joint probability
density). These Markov-Gibbs fields are thus defined by the
Markov property and the positive definite probabilities and are
the ones that follow the Hammersley-Clifford theorem. More
general Gibbs fields can be defined by other neighborhood laws
than the Markov property [23], but these will not be addressed in
the present work.

2.6 Conditional Independence in Markov
Random Fields
To discuss the conditional independence structure induced by
MRFs, let us consider the following: An adjacency matrix Aij

represents the neighborhood law (as given by the Markov
property) on the graph G. Every non-zero entry in this matrix
represents a statistical dependency relation between two elements
on X. The conditional dependence structure on MRFs is related
not only to the local statistical independence conditions, but also
to the dependency structure of the whole graph [11, 24].

A definition of conditional independence (CI) for the set of
random variables can be given as follows:

(Xi⊥⊥Xj)
∣∣∣∣∣Xl5FXi ,Xj|Xl�Xl*(Xi*,Xj*)

� FXi|Xl�Xl*(Xi*) · FXj|Xl�Xl*(Xj*) (11)

∀Xi,Xj,Xl ∈ X

Here ⊥⊥ refers to conditional independence between two
random variables. FXi ,Xj|Xl�Xl*(Xi*,Xj*) �
Pr(Xi ≤Xi*,Xj ≤Xj*

∣∣∣∣Xl � Xl*) is the joint conditional
cumulative distribution of Xi and Xj given Xl . Xi*, Xj* and Xl*
are realizations of the corresponding random variables.

In the case of MRFs, CI is defined by means of graph
separation: Hence Xi⊥⊥GXj

∣∣∣∣Xl iff Xl separates Xi from Xj in G.
This means that if we remove node Xl there are no undirected
paths from Xi to Xj in G.

Conditional independence in random fields can be considered
in terms of subsets of V. Let A, B and C be subsets of V. The
statement XA⊥⊥Ĝ

XB

∣∣∣∣XC , which holds only iff C separates A from B
in G, means that if we remove all vertices in C there will be no
paths connecting any vertex in A to any vertex in B. This is
customarily called the global Markov property of TMFs [11, 24].
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The smallest set of vertices that renders a vertex Xi

conditionally independent of all other vertices in the graph is
called its Markov blanket, denoted mb(Xi). If we define the
closure of a node Xi as C(Xi) then Xi⊥⊥G∖C(Xi)|mb(Xi).

In an MRF, the Markov blanket of a vertex is its set of first
neighbors. This statement is the so-called undirected local Markov
property. Starting from the local Markov property, it is possible to
show that two vertices Xi and Xj are conditionally independent
given the rest if there is no direct edge between them. This is the
pairwise Markov property.

If we denote by GXi →Xj the set of undirected paths in the graph
G connecting vertices Xi and Xj, then the pairwise Markov
property of an MRF is given by:

Xi⊥⊥Xj

∣∣∣∣G∖{Xi,Xj}5GXi →Xj � ∅ (12)

Hence the global Markov property implies the local Markov
property which, in turn, implies the pairwise Markov property.
For systems with positive definite probability densities, it has been
proved that pairwise Markov actually implied global Markov (See
[11] p. 119 for a proof). This is important for applications since it
is easier to assess pairwise conditional independence statements.

2.6.1 Indepence Maps
Let IG denote the set of all conditional independence relations
encoded by the graph G (i.e., those CI relations given by the
Global Markov property). Let IP be the set of all CI relations
implied by the probability distribution P(Xi). A graph G will be
called an independence map (I-map) for a probability distribution
P(Xi), if all CI relations implied by G hold for P(Xi),
i.e., IG4IP [11].

The converse statement is however not necessarily true,
i.e., there may be some CI relations implied by P(Xi) that are
not coded in the graph G. We may often be interested in the so-
called minimal I-maps, i.e., I-maps from which none of the edges
could be removed without destroying its CI properties.

Every distribution has a unique minimal I-map (and a
given graph representation). Let P(Xi)> 0. Let G† be the
graph obtained by introducing edges between all pairs of
vertices Xi, Xj such that Xi⊥⊥Xj

∣∣∣∣X∖{Xi,Xj}, then G† is the unique
minimal I-map. We call G a perfect map of P when there are
no dependencies G which are not indicated by P,
i.e., IG � IP [11].

2.6.2 Conditional Independence Tests
Conditional independence tests are useful to evaluate whether CI
conditions apply either exactly or in the case of applications
under a certain bounded error [24]. In order to be able to write
down expressions for C.I. tests let us introduce the following
conditional kernels [25]:

CA(B) � P(B|A) � P(AB)
P(A) (13)

As well as their generalized recursive relations:

CABC(D) � CAB(D|C) � CAB(CD)
CAB(C) (14)

The conditional probability of Xi given Xj can be thus
written as:

CXj(Xi) � P(Xi

∣∣∣∣Xj) �
P(Xi,Xj)
P(Xj)

(15)

We can then write down expressions for Markov conditional
independence as follows:

Xi⊥⊥Xj

∣∣∣∣∣Xl0P(Xi,Xj

∣∣∣∣Xl) � P(Xi|Xl) × P(Xj

∣∣∣∣Xl) (16)

Following Bayes’ theorem, CI conditions–in this case–will be
of the form:

P(Xi,Xj

∣∣∣∣Xl) � P(Xi,Xl)
P(Xl) × P(Xj,Xl)

P(Xl) � P(Xi,Xl) × P(Xj,Xl)
P(Xl)2

(17)

Equation 17 is useful since in large scale data applications is
computationally cheaper to work with joint and marginal
probabilities rather than conditionals.

Now let us consider the case of conditional independence
given several conditional variables. The case for CI given two
variables could be written–using conditional kernels–as follows:

Xi⊥⊥Xj

∣∣∣∣∣Xl,Xn0P(Xi,Xj

∣∣∣∣Xl,Xn) � P(Xi|Xl,Xn) × P(Xj

∣∣∣∣Xl,Xn)
(18)

Hence,

P(Xi,Xj

∣∣∣∣Xl,Xn) � CXl ,Xn(Xi) × CXl ,Xn(Xj) (19)

Using Bayes’ theorem,

P(Xi,Xj

∣∣∣∣Xl,Xn) � P(Xi,Xl,Xn)
P(Xl,Xn) × P(Xj,Xl,Xn)

P(Xl,Xn) (20)

Or

P(Xi,Xj

∣∣∣∣Xl,Xn) �
P(Xi,Xl,Xn) × P(Xj,Xl,Xn)

P(Xl,Xn)2 (21)

In order to generalize the previous results to CI relations given
an arbitrary set of conditionals, let us consider the following
sigma-algebraic approach:

Let Σij be the σ-algebra of all subsets ofX that do not containXi

or Xj. A relevant problem for network reconstruction is that of
establishing the more general Markov pairwise CI conditions,
i.e., the CI relations for every edge not drawn on the graph. Two
arbitrary nodes Xi and Xj are conditionally independent given the
rest of the graph iff:

Xi⊥⊥Xj

∣∣∣∣∣Σij0P(Xi,Xj

∣∣∣∣Σij) � P(Xi

∣∣∣∣Σij) × P(Xj

∣∣∣∣Σij) (22)

By using conditional kernels, the recursive relations and Bayes’
theorem it is possible to write down:

P(Xi,Xj

∣∣∣∣Σij) �
P(Xi,Σij) × P(Xj,Σij)

P(Σij)
2 (23)
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The family of Eq. 23 represent the CI relations for all the non-
existing edges in the graph G, i.e., every pair of nodes Xi and Xj

not-connected in G must be conditionally independent given the
rest of the nodes in the graph. This is perhaps the most important
features of MRFs in connection with potential applications as
probabilistic graphical models. CI conditions often lead to
simpler (or at least computationally tractable) ways to
factorize the PDF or compute the partition function.

The algorithmic complexity of doing so in general (since the
number of CI relations grows combinatorially with the size of the
graph), makes it prohibitive in the case of a large number of
variables/relationships, in spite of recent advances on optimizing
large dimensional space CI testing for discrete distributions [26].
This is the biggest advantage of the present approach. As long as
one deals with strictly positive probabilities (that one can often
attain via regularization) and Hammersley-Clifford conditions
apply, modeling with nearest neighbor Gibbs potentials ensure CI
conditions in the graph (recall that global Markov property
implies pairwise Markov property and vice versa).

Now that we have presented the fundamentals of MRFs at an
introductory level, this may allow to discuss on how these features
have impact on their wide range of applications, as the basis for
probabilistic graphical models. Let us start by considering some
recent applications in physics.

3 MARKOV RANDOM FIELDS IN PHYSICS

From the pioneering work of the Ehrenfests, to the foundational
Izing models and its extensions (Potts, XY, etc.), MRFs have been
thoroughly used and developed inmany subdisciplines of physics,
ranging from condensed matter and mathematical physics to
geophysics, econophysics and more. There are numerous in-
depth reviews and monographs summarizing research along
these lines (see, for instance [27–30]). Since the main goal
here is to present some of the characteristic features of the
usefulness of MRFs as probabilistic graphical models, in terms
of their mathematical properties and broad scope of applicability,
both within and outside physics; our discussion will be somehow
biased toward work showing one or more of such features.

3.1 MRFs in Statistical Mechanics and
Mathematical Physics
Due to their intrinsic simplicity and generality, MRFs have
attracted the attention of mathematical physicists and
probability theorists looking to extend their associated
theoretical foundations. Important work has been done, for
instance, to incorporate geometrical properties and generalized
embeddings to the theory of random fields. Extremely relevant in
this regard is the monumental work presented in the monograph
by Adler and Taylor [31]. There, the authors expand on the
consideration of a random field as a stochastic process in a metric
space (discrete, Euclidean, etc.) to consider random fields as
stochastic mappings over manifolds. This extension is given
via writing down differential geometry characterizations of the
fields based on a measure-theoretic definition of probability.

Though this work may seem quite abstract, it was indeed born
out of an idea for an application of random fields to neuroscience.
Nurturing from similar ideas, recent work by Ganchev [32] has
expanded the notion of locality of MRFs and assimilate it to the
geometric features present in lattice quantum gauge theories, to
generate a gauge theory of Markov-Gibbs fields. Again, even if the
setting seems to be quite theoretical, an application to the
modeling of trading networks in finance is given.

Other mathematical extensions of Markov random fields are
related to the nature of the graphical model considered. In
general, probabilistic graphical models may belong to one of
two quite general classes: Markov networks (such as MRFs)
which are undirected graphs or Bayesian networks which are
directed graphs. The difference between undirected and directed
graphical models impose consequences in the kind of
fundamental mathematical objects of the theory: joint
probabilities or conditional probabilities, loopy graphs or
trees–directed acyclic graphs–, clique factorization vs.
conditional probability factorization via the chain rule, etc.
Whether the model is undirected or directed also has
modeling and computational consequences. To be fair, both
models have pros and cons.

Trying to overcome the limitations of both general
approaches, Freno and Trentin [33] developed a more general
approach to random fields termed Hybrid random fields (HRFs).
The purpose of HRFs is to allow the systems to present a wider
variety of conditional independence structures. As we will discuss
later, allowing for a systematic incorporation of more general
classes of conditional independence structures in indeed one of
the current hot topics in computational intelligence and machine
learning. Actually, even when HRFs are theoretical constructs
(much alike MRFs) they were designed to be learning machines,
i.e., to be supplemented with training algorithms to deal with high
dimensional data. HRFs were developed for logical inference in
the presence of partial information or noise. As in the case of
MRFs and of their gauge extensions just mentioned, HRFs were
developed to rely on a principle of localitywhich is an extension of
the Markov property that allows for sparse stochastic matrix
representations amenable for the computation on actual
applications. Once a (graph) structure has been given (or
inferred) HRFs are able (as is the case of MRFs) to learn the
local (conditional or joint-partial) probability distributions from
empirical data, a task commonly known in statistics as parameter
learning [34]. Hence HRFs are theoretically founded, but
developed thinking in applications. The scope of applicability
of MRFs has also become broader by expanding its applicability
to model tensor valued quantities [35], giving rise to the so-called
multilayer graphical models, also called multilayer networks
[36–39].

Aside from expanding the fundamental structure of MRFs,
mathematical physics applications of Gibbs random fields are
abundant. In particular, the so-called Random Field Ising model
(RFIM) has gained a lot of attention in the recent years. By using
the monotonicity properties of the associated stochastic field,
Aizenmann and Peled [40] were able to prove that there is a
power law upper bound on the correlations on a two-dimensional
Ising model, supplemented with a quenched random magnetic
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field. The fact that by combining random fields (the intrinsic Ising
field and the quenched magnetic field), the nature of the phase
transitions may drastically change has made the RFIM a current
topic of discussion in mathematical statistical mechanics. The
consequences of the induction of long range order in the RFIM,
leading to the emergence of the so-called Imry-Ma phase or Imry-
Ma states (named so since Imry and Ma were actually behind the
first proposal of the RFIM [41]) have been the object of intense
study recently. Berzin and co-workers [42] used MRFs to analyze
the dynamic fluctuations of the order parameter in the Imry-Ma
RFIM and its coupling with the static fluctuations of the
structural random field (accounting for the defects).
Interestingly, anisotropic coupling arises from two non-
absolutely overlapping local fields [43]. The effects of the non-
overlapping fields in anisotropy and disorder has been studied
since several decades ago [44], but the actual relationship with
non-locality was established relatively recently. For instance, it
was until 2018 that Chatterjee was able to quantitatively describe
the decay of correlations of the 2D RFIM [45] in a relevant paper
that led Aizenmann to re-analyze his former, mostly qualitative
proposal [40, 46].

Local stochastic phenomena in non-homogeneous and
disordered media in the context of the RFIM has also attracted
attention in relation to critical exponents and scaling. Trying to
expand on the origins of long range order from local interactions,
Fytas and coworkers have studied the 4DRFIM and its hyperscaling
coefficients [47]. This is particularly interesting since it has been
shown, via perturbative renormalization group calculations, that the
critical exponents of the RFIM in D dimensions are the same as the
exponents of the pure Ising model in D − 2 dimensions [48].
Related work has been carried out by Tarjus and Tissier, but
they instead resort to the use of the so-called functional
renormalization group approach in the multi-copy formalism
setting [49]. Their work has extended the predictive capabilities
of MRFs by incorporating ideas from symmetry breaking allowing
to characterize not just long-range order (LRO) but also
intermediate states characterized by quasi-long range order
(QLRO). The fact that QLRO may be attained from purely
Markov statistics (localized interactions) is in itself appealing for
statistical physics. The fact that local dependencies may suffice to
account for LRO and QLRO under certain conditions that do not
violate the Markov property of the MRFs, will have relevant
consequences for the applications of MRFs outside physics, such
as in the case of image reconstruction and pattern recognition in
machine learning. We will come back to these ideas later on.

Locality as depicted in MRFs can also have important
consequences for the theory of fluctuations in fields of
interacting particles. Reconstructing Boltzmann statistics from
local Gibbs fields (that as we have repeatedly stated are formally
equivalent to MRFs, provided strictly positive probability
measures) imply that under central limit scales the fluctuation
field of local functions can be represented instead as a function of
the density fluctuation field, in what is known as the Boltzmann-
Gibbs principle (BGP). It has been shown that the BGP induces a
duality whose origins are purely probabilistic, i.e., is independent
of the nature of the interactions provided their compliance with
the tenets of MRFs [50].

It is worth noticing that these contemporary developments in
the formal theory of MRFs are actually founded on seminal work
by probability theorists and mathematical physicists such as
Dobrushin, Ruelle, Gudder, Kessler and others. For instance,
Dobrushin laid out the essential conditions of regularity that
allow to make explicit the conditional probabilities in MRF
models [8]. This work, further developed by Lanford and
Ruelle [9] gives rise to the so called Dobrushin-Lanford-Ruelle
(DLR) equations that established, in a formal way, the properties
of general Gibbs measures. Later on, Dobrushin expanded on
these ideas by applying perturbation methods to generalize Gibbs
measures to even wider classes of interactions (i.e., to include
other families of potentials) [51]. An application of these ideas in
quantum field theory can be found in [52] within the context of
(truncated) generalized Gibbs ensembles.

Aside from measure-theoretical and algebraic foundations of
MRFs, important developments were made by considering
explicit dependency structures. In particular, the introduction
of strong independence properties led to the formal definition of
Gaussian random fields by Gudder [53]. Much of this earlier work
has been summarized in the monograph by Kindermann and
Laurie Snell [22]. The fact that MRFs are characterized by Gibbs
measures even for many-body interactions (under special
conditions), and not only for paired-potentials, was already
envisioned by Sherman [54], though it remained an unfinished
task for decades. Many body effects have actually been reported in
the context of localization in the random field Heisenberg chain
[55]. One step ahead toward generalizing MRFs consisted in
exploring the equivalence of some properties of random fields in
terms of sample functions. In this regard, Starodubov [56] proved
that there are random fields stochastically equivalent to an MRF,
but defined on another probability triple whose sample functions
belong to a map associated with the original MRF. The existence
of such mappings has relevant implications for applications, in
particular in cases in which explicit computation of the partition
function is intractable.

3.2 MRFs in Condensed Matter Physics and
Materials Science
Discrete and continuous versions of random fields have been
applied to model systems in condensed matter physics and
materials science (CMP/MS). The relevance of MRFs and its
extensions relies on their suitability to describe the onset of
spatio-temporal phenomena from localized interactions. Acar
and Sundararaghavan [57] have used MRFs to model the
spatio-temporal evolution of microstructures, such as grain
growth in polychrystalline microstructures as captured by
videomicroscopy experiments. Experimental data is the
foundation for explicit calculations of the (empirical)
conditional probability distributions.

Gaussian random fields have been used to model quenched
random potentials in fluids via mode-coupling by Konincks and
Krakoviack [58], and to model beta-distributed material
properties by Liu and coworkers [59]. These and other
extensions in CMP/MS made use of continuous, piecewise
continuous or lattice fluid extensions of Gibbs random fields.
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Such is also the case of the work of Chen and coworkers [60] who
introduced stochastic harmonic potentials in random fields to
account for the effects of local interactions on the properties of
structured materials; of the work by Singh and Adhilari [61] on
Brownian motion in confined active colloids and of the work of
Yamazaki [62] on stochastic Hall magnetohydrodynamics. A
semi-continuous approach (called smoothed particle
hydrodynamics, SPH), using discrete MRFs and extension
theorems, was used by Ullah and collaborators [63] in their
density dependent hydrodynamic model for crowd coherency
detection in active matter.

Extending the ideas of the classic RFIM, Tadic and
collaborators [64] were able to describe critical Barkhausen
avalanches in quasi-2D ferromagnets with an open boundary.
The use of MRFs with disordered field components has also
allowed to characterize embedded inhomogeneities in the spectral
properties of Rayleigh waves with application to the study of the
Earth’s microseismic field [65]. Geoacustic measurements and its
MRF modeling allowed these researchers to estimate the
mechanical and structural properties of the Earth’s crust and
upper mantle. Accurate estimates of these properties are
foundational to develop seismic-resistant devices and structures.

3.3 Applications of MRFs in Other Areas of
Physics
MRFs have also been applied in other areas of physics aside from
statistical mechanics and condensed matter. MRFs were applied for
instance, in geophysical models of marine climate patterns [66], to
study reservoir lithology [67] and subsurface soil patterns [68] from
remote sensing data. Aside from geophysics, optics and acoustics
have also incorporated MRF applications. In acoustics, for instance,
an MRF formalism can be used for the isolation of selected signals
[69]; or for the segmentation of sonar pulses [70]. In chemical
physics, MRFs are applied for the analysis of molecular structures
[71], and in the implementation of quantum information algorithms
for molecular physics modeling [72].

Disparate as the applications of MRF in the physical sciences just
presented may be, these are neither a comprehensive nor even a
representative list. However, we expect that some of the essential
aspects of its wide range of applicability and the large room for
theoretical development still available for these types of models were
captured in the previous discussion. Moving on to applications and
developments in other disciplines, such as Biology/Biomedicine and
the Data Sciences, we will try to convey, not just the usefulness of a
quintessential model in statistical physics in other realms–which is
huge, indeed–. We also intend to show how some of the
implementations and theoretical improvements in other
disciplines, can be exported back to physics and may help to solve
some of the many remaining conundrums of the theory and
applications of random fields in the physical sciences.

4 MARKOV RANDOM FIELDS IN BIOLOGY

Biology and Biomedicine are also disciplines in which MRFs have
flourished in applications and theoretical development. The

abundance of research problems and practical cases in which
stochastic phenomena dependent in spatio-temporal localization
is most surely behind. From the reconstruction of complex
imaging patterns (not far from applications in geophysics/
astrophysics imaging), to resolution of molecular maps in
structural biology, to disentangling molecular interaction
networks and ecological interactions; there are many
outstanding advances involving random fields in biology.
Again, we will discuss here just a few examples that will likely
provide us with a panoramic view and perhaps spark interest and
curiosity.

4.1 Applications of MRFs in Biomedical
Imaging
One somehow natural application of MRFs is imaging de-noizing
or segmentation. This is a quite general problem in which one
wishes to discern patterns from a blurred image. In particular an
MRF is built to discern which points in imaging space (pixels,
voxels) are locally correlated with each other, pointing out to their
membership to the same object in the image. The Markov
neighborhood structure of the MRF is hence used to un-blur
patterns and being able to accurately interpret the images. Often
MRFs (or its associated conditional Random fields) are used in
conjunction with inference machines such as Convolutional
Neural Networks (CNNs). This is the case of the work by Li
and Ping [73] who used a neural conditional random field
(NCRF) for metastasis detection from lymph node slide
images. Their NCRF approach infers the spatial correlations
among neighboring patches via a fully connected conditional
MRF incorporated on top of a CNN feature extractor. Their
modeling approach used a conditional distribution of an MRF
with a Gibbs distribution. As is often the case the energy function
(i.e., the Hamiltonian) consists of two terms, one summarizing
the contributions from unary potentials characteristic for each
patch, and the other one summing the pairwise potentials
measuring the cost of jointly assigning two neighboring
patches (i.e., the interaction potentials).

As is common in physics, estimating the marginals is an
intractable problem. Li and Ping resorted to using a mean-field
approach and then conditioning their results on this mean field
calculations. In order to do this, they trained a CNN with the
empirical data. CNN-MRF approaches have also been recently
applied to successfully discern computerized tomography
imaging (CT scans) [74] for prostate and other pelvic organs
at risk. After processing the data with an encoder/decoder
scheme, the output of CNN was used as the unary potential of
the MRF. Then via a MRF block model based on local
convolution layers, a global convolution layer, and a 3D max-
pooling layer the authors were able to calculate the pairwise
potential. The maximum likelihood optimization problem was
then solved via an adaptive loss function.

A similar approach was followed by Fu and collaborators [75]
to solve the retinal vessel segmentation problem, fundamental in
the diagnostics and surgery of ophthalmological diseases, and,
until quite recentlymanually performed by an ocular pathologist.
The authors also used a two term energy function within a mean
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field approach. To minimize the energy function subject to
empirical constraints they used a recurrent neural network
based on Gaussian kernels on the feature vectors applying
standard gradient descent methods. Blood vessel segmentation
was also studied using conditional MRFs by Orlando and
coworkers [76]. However, instead of using a mean-field
approach and inferring the marginals using neural networks,
these authors chose to perform Maximum a Posteriori (MAP)
labeling with likelihood functions optimized via Support Vector
Machines (SVMs). Imaging segmentation via MRFs can be
applied not only at the tisular level, but also on cellular (and
even supramolecular) scales. Several blood diseases, for instance,
are diagnosed by discerning the quantity, morphology and other
aspects of leukocytes as well as their nuclear and cytoplasmic
structure. To this end, Reta and coworkers used unsupervised
binary MRFs (i.e., classical Ising-like fields) to study leukocyte
segmentation [77]. A Markov neighborhood and clique potential
approach was followed. This classic approach has been enough
since from their high quality colored imaging data, it was possible
to define an energy function based on a priori Gaussian-
distributed probabilities, then applying a maximum likelihood
approach to calculate the posterior probability. Related ideas were
used to study microvasculature disorders in glioblastomas by the
group of Kurz [78].

Application Box I: Metastasis Detection
General problem statement: Accurate detection of metastatic
events is key to proper diagnostics in cancer patients.
Pathologists often resort to the analysis of whole slide
images (WSI). Computational histopathology aims for the
automated modeling and classification of WSI to distinguish
between normal and tumor cells, thus alleviating the heavy
burden of manual image classification. Li and Ping [73] used
Conditional Random Fields together with deep convolutional
neural networks to approach this problem.
Theoretical/Methodological approach: The approach
developed by the authors consisted in using a deep
convolutional neural network (CNN) for the automated
detection of the relevant variables (feature extraction or
feature selection). Once these relevant variables have been
determined, a conditional random field (CRF) was used to
consider the spatial correlations between neighboring patches.
The approach used to determine tumor and non-tumor
regions is similar to the one used in statistical physics of
condensed matter for the determination of ferromagnetic/
anti-ferromagnetic domains.
Improvements/advantages: The use of CNNs to reduce the
number of variables (and to find the optimal ones) is gaining
relevance in computational biology and data analysis
applications of random fields. It may result useful in any
setting in which there are no a priori determined relevant
variables. By conditioning these variables on the spatial
location, the authors have turn the configuration problem
into a classifier thus solving their problem.
Limitations: Though not an actual limitation for their
particular problem, the authors resort to the use of a mean
field approach to infer the marginals. This condition can be

strengthened by using approaches such as perturbative
expansions or maximum entropy optimization with a
suitable set of constraints.

MRFs have also been used in conjunction with deep learning
approaches for the topographical reconstruction of colon
structures from conventional endoscopy images. Since the
colon is a deeply complex anatomical structure, accurately
reconstructing its structure to detect anomalies related to, for
instance, colorectal cancer is of paramount importance.
Mahmmod and Durr [79] developed a deep convolutional
neural network-conditional random field method, which uses a
two-term energy function whose parameters are optimized via
stochastic-descent back-propagation. Several convolution maps
were used since their goal was also to estimate depth from
photographic (2D) images via MAP (i.e., by an a posteriori
maximum likelihood) optimization. This was actually possible
since the authors trained their model with over 200,000 synthetic
images of an anatomically realistic colon.

To improve the automated evaluation of mammography, Sari
and coworkers [80] developed an MRF approach supplemented
with simulated annealing optimization (MRF/SA). Improved
performance was actually attained by using pre-processing
filters leading to AUC/ROC of up to 0.84, which is considered
quite high since mammograms have proved to be especially hard
to interpret with computer aided diagnostics. MRFs have also
helped improve the estimation of cardiac strain from magnetic
resonance imaging data, a relatively non-invasive test to analyze
cardiac muscle mechanics [81].

4.2 Applications of MRFs in Computational
Biology and Bioinformatics
Computational biology and bioinformatics are also disciplines
that have widely adopted the random field formalism as a relevant
component of their toolkits. There are several instances in which
MRFs can be adapted to solve problems in these domains: from
structural biology problems in which the spatio-temporal locality
is naturally mapped onto random fields, to molecular regulatory
networks in which the graph structure of the MRFs mimic the
underlying connectivity of the networks, to semantic and
linguistic segmentation problems in genomic sequences or
biomedical texts.

Regarding computational models in structural biology,
Rosenberg-Johansen and his group [82] used a combination of
deep neural networks and conditional random fields to improve
predictions on the secondary structure of proteins (i.e., the three
dimensional conformation of local protein segments, the
formation of alpha helices, beta sheets and so on). The CRF
approach was quite useful in this case (in general non-
computationally tractable), since in protein secondary
structure, there is a high degree of crosstalk between
neighboring elements (residues), then the local dependency
structure greatly shrinks the search space. Previously, Yanover
and Fromer [83] applied an MRF formalism for the prediction of
low energy, protein side configurations, a relevant problem fro
several aspects of structural biology such as de novo protein
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folding, homology modeling and protein-protein docking. The
different types of local interactions among amino acid residues:
hydrophobic, hydrophilic, charged, polar, etc.) modeled as
pairwise potentials let to semi-empirical expressions for the
potential energies used in the MRF formalism. Once explicit
expressions for the field have been written, the authors resort to a
belief-propagation algorithm to find the optimal solution to the
MRF problem given the constraints. Several improvements were
actually applied to the message-passing algorithm that allow the
authors to find a method to obtain the lowest energy amino acid
chain configurations. This kind of approach may also be relevant
to improve solving methods of random fields in statistical physics
problems since it led to approximate explicit forms of the
partition function.

Improving methods to discern the structural properties of
proteins are also quite used in the context of protein homology,
i.e., to investigate on the functions of proteins related to their
structural similarity to other proteins, perhaps in different
organisms. Local homology relationships can also be
investigated by means of Markov random field methods. Xu
and collaborators developed a method (or better, a family of
methods) called MRFalign for protein homology detection based
on the alignment of MRFs [84, 85]. Aside from purely Ising
approaches, other methods of random fields of statistical
mechanics have been adopted in the computational biology
community. One of them is the Potts model. Recently,
Wilburn and Eddy used a Potts model with latent variables for
the prediction of remote protein homology (involving changes
such as insertions and deletions) [86] importance sampling from
extensive databases was used to perform MAP optimization as
commonly done in computational biology and computer science.

A topic related to homology, but also involving space-
dependent electrostatic interactions (protein-protein
interactions, in particular) is protein function prediction.
Networked models of protein prediction have been developed:
primitive models can be used to associate a function to a given
protein given the functions of proteins in their interaction
neighborhood and probabilistic models may do this by
weighting interactions with an associated probability.
Gehrman and collaborator devised a CRF method fro protein
function prediction based on these premises [87]. To solve the
CRF, they resort to a factor graph approach [88] to write down
explicit contributions to the cliques [89] and then using an
approximate Gibbs measure calculated from this clique
factorization. The approximation is based on other relevant
feature of Markov random fields, which we will discuss later
in the context of statistics and computer science: the use of the so-
called Gibbs sampler or Gibbs sampling algorithm [90]. The
Gibbs sampler is a Markov chain Monte Carlo (MCMC)
method used to obtain a sequence of
observations–approximated from a specified multivariate
probability distribution–, in those cases for which direct
sampling is difficult or even impossible (e.g., NP-hard or
super-combinatorial problems).

Perhaps not so well known as a relevant structural biology
problem until recently, is the determination of three dimensional
chromosome structure inside the cell’s nucleus. Long range

chromosomal interactions are believed to be ultimately related to
fundamental issues on global and local gene regulation phenomena.
A recently devised experimental method for global chromosome
conformation capture is known as Hi-C. Nuclear DNA is subject
to formaldehyde treatment to enhance covalent interactions glueing
chromosome segments that are three dimensionally adjacent. Then a
battery of restriction enzymes is used to cut DNA into pieces. Such
pieces are sequenced and the identity of the spatially adjacent regions
are then discovered. The data is noisy and often incomplete. For these
reasons, a team lead by Yun Li developed a hidden Markov random
field method to analyze Hi-C data to detect long range chromosomal
interactions [91]. This method combines ideas fromMRFs, Bayesian
networks and Hidden Markov models. In a nutshell, they assumed a
mixture of negative binomials as an Ising prior [22] and
supplemented it with Bayesian inference to calculate the joint
probabilities via a Metropolis-Hastings pseudo-likelihood approach.

Application Box II: Prediction of Low Energy Protein
Side Chain Configurations

General problem statement: The prediction of energetically
favorable aminoacid chain configurations constrained on the
three-dimensional structure of a protein principal chain is a
relevant problem in structural biology. Accurate side
configuration predictions are key to develop approaches to
de novo protein folding, to model protein homology and to
study protein-protein docking. Yanover and Fromer [83] used
a Markov Random Field with pairwise energy interactions
supplemented with a belief propagation algorithm to bypass
the mean field approximation.
Theoretical/Methodological approach: The authors
developed their approach by modeling energy levels (as
obtained by simulation and calorimetric techniques) as the
relevant variables in a pairwise Markov Random Field. Since
local side chain configurations have inhomogeneous
contributions to the global energy landscape, a mean field
approach will not be accurate. In order to circumvent the other
extreme of modeling all detailed molecular interactions, the
authors used belief propagation algorithm (BPA), a class of
message passing method that performs global optimization (in
this case energy minimization) by iterative local calculations
between neighboring sites.
Improvements/advantages: We can consider the use of the
BPA on top of the MRF, as a compromise between mean field
approach (not useful to solve the actual structural biology
problem) and full-detail molecular interaction modeling
(computationally intractable due to the large combinatorial
search space involved).
Limitations: Protein side chain prediction may in many cases
be affected by subtle angular variations in the rotamer side
chains. The authors have discussed that, to improve the
accuracy of their predictions in such cases, it may be useful
to resort to continuous-valued (Gaussian) MRFs with their
associated BPAs as an avenue for further improvement within
the current theoretical framework.

The spatial configuration of proteins within protein assemblies
such as membranes it is also relevant to understand the functions
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of molecular machines in the cell. By applying a combination of
deep recurring neural networks and CRFs, it was possible to
predict transmembrane topology and three dimensional coupling
in the important family of G-protein coupled receptors (GPCRs).
These receptors are able to detect molecules outside the cell and
activate cellular responses and are of paramount relevance in
immune responses and intercellular signaling [92].

As we have mentioned molecular regulatory networks are
models that may conceptually map random fields almost straight
forward. They have a graph-theoretical structure already and
their interactions are often so complex that modeling them as
stochastic dependencies is somehow natural [93]. Depending on
the nature of the regulatory interactions to be modeled, different
approaches can be followed. Gitter and coworkers, for instance,
used latent tree models combining an MRF with a set of hidden
(or latent) variables, factorizing the joint probability on a Markov
tree [94]. In this work, the action of transcription factor (TFs) was
mapped to a set of latent variables and the MRF was used to
establish the relationships of conditional independence of groups
of neighboring genes, via their gene expression patterns obtained
from experimental data. Zhong and colleagues [95] used a related
approach to infer regulatory networks via a directed random field,
giving rise to a tree structure known as a directed acyclic graph
(DAG). In their work, all variables follow a pairwise Markov field
with conditional dependencies following parametric Gaussian or
multinomial distributions. Although they resorted to a DAG
modeling due to its ability to work with mixed data (usually
undepowered for common MRF approaches), the limitations of
these studies to account for regulatory loops has to be considered.

Application Box III: Inference of Tissue-specific
Transcriptional Regulatory Networks

General problem statement: Transcriptional regulatory
programs determine how gene expression is regulated, thus
determining cellular phenotypes and response to external
stimuli. Such gene regulatory programs involve a complex
network of interactions among gene regulatory elements,
RNA polymerase enzymes, protein complexes such as
mediator and cohesion machineries and sequence specific
transcription factors. Ma and coworkers [96] used a Markov
Random Field approach to construct tissue-specific
transcriptional regulatory networks integrating gene
expression and regulatory sites data from RNA-seq and
DNAase-Seq experiments.
Theoretical/Methodological approach: The authors
developed an MRF approach with unary (node functions)
and binary (edge functions, i.e., pairwise interactions)
potentials for transcriptional interaction within a cell line
and across cell lines, respectively. With these two potential
functions a joint probability distribution is written. To solve
the problem, the JPD is mapped to a pseudo-energy
optimization (PEO) test via logarithmic. transformation.
The PEO is in turn transformed into a network maximum
flow problem and solved by a loopy BPA.
Improvements/advantages: An original contribution of this
work is the use of belief propagation algorithms to solve for a
quadratic pseudo-energy functions (with only unary and

pairwise potentials) representation and then using iterated
conditional modes. This may open an interesting research
path for other MRF applications.
Limitations: One possible shortcoming of this approach is the
use of linear correlation measures (Pearson coefficients) and
linear classifiers (Singular Value Decomposition) for a problem
with strong non-linearities (complex biochemical kinetics
associated with gene expression). The MRF structure will
indeed allow for more general statistical dependency
relationships, making the analysis even more robust.

Undirected graphical models in the form of usual MRFs, have
been used to construct, tissue-specific transcriptional regulatory
networks [96] in 110 cell lines and 13 different tissues, from an
integrative analysis of RNASeq and DNAase-Seq data. The
authors used a method to minimize the pseudo-energy
function by converting the problem to a maximum flow in
networks and solving the latter via a loopy belief propagation
algorithm [97].

To improve on the modeling capabilities of MRFs to describe
gene regulatory networks (GRNs) it is becoming customary to
include several data sources as a means to partially disambiguate
the statistical dependency structures. Banf and Rhee implemented
a data integration strategy to their MRF modeling of GRNs in an
algorithm called GRACE which exploits the energy function
based on unary and binary terms that we previously described
in the context of MRF modeling in biological imaging. Low
confidence pairwise interactions were removed by mapping
the problem to a classification task on imbalanced sets, and
following the tenets of Ridge penalized regression [98].

A somehow related method was devised by Grimes, Potter
and Datta, who integrate differential network analysis to their
study of gene expression data [99]. Their study was based on the
idea of using KEGG pathways to construct MRFs as a means to
functionally improve differential expression profiling [100,
101]. A similar MRF method was used to improve
transcriptome analysis in model (mouse) systems for
biomedical research [102]. Data integration can be also used
to incorporate biological function information (from metabolic
and signaling pathways) to the modeling of statistical Genome
Wide Association Studies (GWAS) via MRFs [103]. The MRF
was then solved by a combination of parametric (inverse
gamma) distributed priors and MAP techniques to find the
posterior probabilities. This is relevant since the important
results of GWAS research in biomedicine (statistical in
nature and often poorly informative in the biological sense)
can be contextualized via pathway interactions as devised via
this MRF approach.

Though not properly a molecular interaction network study,
Long, et al, developed a method combining graph convolutional
networks with conditional random fields, to predict human
microbe-drug associations [104]. Since there has been a
growing emphasis on the ways in which the human
microbiome may affect drug responses in the context of
precision medicine [105], accurate methods to predict such
associations are highly desirable for the design of tailor-made
therapeutic interventions.
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Since random fields are able to capture not only spatio-
temporal and regulatory associations, but are also proper to
represent semantic or grammatical relationships, they have
been thoroughly used in text analysis in biology, being the
subjacent texts genomic sequences or pieces of biomedical
literature. The group led by Fariselli used hidden CRFs for the
problem of biosequence labeling in the prediction of the topology
of prokaryotic outer-membrane proteins. Their study was based
on a grammatically restrained approach, using dynamic
programming much in the tradition of the so-called
Boltzmann machines in AI [106]. Poisson random fields over
sequence spaces were studied by Zhang and coworkers to detect
local genomic signals in large sequencing studies [107].

Moving on to data and literature mining methods based on
MRFs, we can mention passage relevance models used for the
integration of syntactic and semantic elements to analyze
biomedical concepts and topics via a PGM. The semantic
components such as topics, terms and document classes are
represented as potential functions of an MRF [108].
Biomedical literature mining strategies using MRFs were also
developed to study automated recognition of bacteria named
entities [109] to curate experimental databases on microbial
interactions. Related methods were previously used to identify
gene and protein mentions in the literature using CRFs [110].

4.3 Applications of MRFs in Ecology and
Other Areas of Biology
Other applications of random fields in biology include
demography and selection to study weakly deleterious genetic
variants in complex demographic environments [111] and for
species clustering [112], in population genetics. MRFs have also
been applied to understand species distribution patterns and
endemism and to unveil [113] interactions between co-
occurring species in processes governing community assembly
[114]; as well as for spatially explicit community occupancy [115]
in ecology.

Another group of disciplines in whichMRFs have flourished is
comprised of Data Science, Computer Science and Modern
statistics. The next section will be devoted to presenting and
discussing some developments of random fields in that setting.

5 MARKOV RANDOM FIELDS IN DATA
SCIENCE AND MACHINE LEARNING

The term Data Science refers to a multidisciplinary field devoted
to extracting knowledge and insight from structured and
unstructured data. It shares commonalities and differences
with its parent fields: statistics, computer and information
sciences and engineering. However, much of the emphasis is
on the extraction of useful knowledge from data, putting accuracy
and usability above formal mathematical structure if needed.
Naturally, Markov random fields as a theoretically powerful
methodology that allows for the incorporation of educated
intuition and has an intrinsic algorithmic nature has called the
attention of data scientists. We will present here, but a handful of

the many uses and implementations of MRFs in data science and
computational intelligence settings. As we will see, these studies
share a lot of commonalities with the applications in statistical
physics and computational biology while, at the same time,
incorporating elements that may cross-fertilize to the modeling
schemes in the natural sciences.

5.1 Applications of MRFs in Computer
Vision and Image Classification
As we alreadymentioned in the context of applications of random
field to biomedical imaging, segmentation and pattern
identification to enhance the resolution of spatial and/or
spatio-temporal maps is a common use of MRFs. From the
many applications in the field of computerized image
processing, we will discuss some that present peculiarities or
distinctive features that may be of more general interest. For
instance, to face the challenge of capturing three dimensional
structure from two-dimensional images, the so-called depth
perception, Kozik used an MRF-based methodology [116] in
which the energy function was modeled via a polynomial
regression model and a depth estimation algorithm with
correlated uncertainties (a sort of twofold autoregressive
model). By using these entries Kozik then solved an MAP
problem to obtain the maximum likelihood solution to the MRF.

In the context of AI to enhance low-resolution images (the
super-resolution problem), Stephenson and Chen devised an
adaptive MRF method [117] based on passing-message
optimization by a loopy propagation algorithm. Also in the
context of AI approaches to image processing Li and Wand
developed a combination of MRFs as generative models and deep
CNNs to discriminate two-dimensional images to try to solve the
so-called image synthesis problem, a relevant problem in
computer vision with applications both to photo-editing and
neuroscience [118]. A problem related to image synthesis is image
classification, in which certain features of images are discerned
and used to cluster images by similitudes in these feature spaces.
Applications in image recognition in security, forensics and
scientific microscopy and imaging among others abound. To
improve the accuracy of image classification algorithms,Wen and
coworkers developed a CRF method in which machine-learned
feature functions took the place of the unary and binary terms in
the potential energy [119], as in previous cases Gaussian priors
and loopy belief propagation algorithms were used to solve the
random field.

5.2 Applications of MRFs in Statistics and
Geostatistics
Geostatistics and geographical information systems are also quite
amenable to be modeled within the MRF paradigm due to their
natural spatio-temporal dependency structures. In the context of
prediction of environmental risks and the effects of limited
sampling, Bohorquez and colleagues developed an approach
based on multivariate functional random fields for the spatial
prediction of functional features at unsampled locations by
resorting to covariates [120]. As in the case of random field

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 64185911

Hernández-Lemus Random Fields

120

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


hydrodynamics (mentioned in the physics section), an empirical
approach based on continuous field estimators was chosen.
Continuous spatio-temporal correlation structures via so-called
Kriging methods extending the ideas of discrete random fields are
commonly used in environmental analysis and risk assessment
[121, 122].

Geological modeling is another field at the intersection of
geostatistics and geophysics which has adopted the MRF
formalism to deal with their problems. A segmentation
approach was used for stochastic geological modeling with the
use of hidden MRFs [123]. Using a methodological
approximation similar to the one used in computer vision and
biomedical imaging, latent variable MRFs are used to perform
three-dimensional segmentation. The model is supplemented
with finite Gaussian mixture models for the parameter
calculations and a Gibbs sampling inference framework,
following a similar approach to the one developed by the
group of Li [124], based on the methods of Rue and Held
[125] and by Solberg et al [126] and further developed by
Toftaker and Tjelmeland [127]. More refined geostatistical
methods have been based on a clever combination of several
developments of Markov random field theory. Along these lines,
the work by Reuschen, Xu and Nowak [128] is noteworthy, since
they used Bayesian inversion (based on Markov conditional
independence) to develop a random field approach to
hierarchical geostatistical models and used Gibbs sampling
MCMC to solve them.

The combined use of ideas from Markov and Gibbs random
fields in statistical learning and other approaches in modern
statistics has indeed become a fruitful line of research with
important theoretical developments and a multitude of
applications [24, 34, 129]. The use of MRFs and CRFs as tools
for statistical learning has been used in a multitude of settings in
both generative and discriminative models [33]. Aside Ising
models and MRFs, perhaps the most widely used applications
of the random fields are Gibbs sampling and Markov chain
Monte Carlo methods that we already mentioned. Due to the
generality and the relatively low computational complexity of
these sampling/simulation methods, several methods have been
developed based on them.

Gibbs sampling is a form of Markov chain Monte Carlo
(MCMC) algorithm. MCMC methods are used to obtain a
sequence of observations of a random experiment by an
approximation from a given (specified) multivariate
probability distribution when direct sampling is challenging
(computationally or otherwise). The essence of the method is
building a Markov chain whose equilibrium distribution is
precisely the specified multivariate distribution. Then, a
sample of such distribution is just a sequence of states of
the Markov chain. The use of the Markov property of an MRF
allows to use Gibbs sampling as an MCMC method, when the
joint probability distribution is not known (or is very
complex) but the conditional distributions are known (or
easier). Due to this, by using the pairwise Markov property,
Gibbs sampling is particularly fit to sampling the posterior
distribution of Bayesian networks (understood as a collection
of conditional distributions), a quite relevant problem in both,

statistical learning and in large computer simulation
problems.

Aside from these basic issues, Gibbs sampling has been
extensively enhanced over the years. One important
improvement has been the incorporation of adaptive rejection
sampling [130, 131], particularly useful for situations in which
evaluation of the density distribution function is computationally
expensive (e.g., non-conjugated Bayesian models). Adaptive
rejection sampling can be even applied to modeling via non-
linear mixed models [131]. To further minimize the
computational burden of Gibbs sampling, Meyer and
collaborators [132] developed an algorithm which samples via
Lagrange interpolation polynomials, instead of exponential
distributions. Convergence can be also improved by double-
adaptive independent rejection sampling [133] which is based
on a scheme of minimizing the correlation among samples. Gibbs
sampling approaches also allow for the determination of dense
distribution simulated sampling from sparse sampled data [134],
even in high dimensional latent fields over large datasets [135].

Gao and Gormley implemented a Gibbs sampling scheme
based on CRFs weighted via neural scoring factors (implemented
as parameters in factor graphs) with applications to Natural
Language Processing (NLP) [136]. MCMC has also been used,
in the context of Gibbs random fields in data pre-processing, to
reduce the computational burden of data intensive signal
processing [137, 138]. Gibbs sampling can also be applied in
parallel within the context of Gaussian MRFs on large grids or
lattice models [139]. Parallel Gibbs sampling methods can also be
developed in the context of sampling acceleration for structured
graphs [140].

Markov random fields and its associated Gibbs measures can
also be used to advance statistical methods in large deviation
theory [141] and to develop methods of joint probability
decomposition based on product measures [142]. Exact
factorizability of joint probability distributions is a most
relevant question in modern probability [143–146] with
important applications in data analytics [147], applied
mathematics [148], computational biology [149] and network
science [150], among other fields. MRFs also have been applied to
embed filtrations on high dimensional hyperparameter spaces.
The main idea is using random fields as hierarchical models
projecting the relevant hyper-parameter space to a lower
dimensional filtration [135]. This general problem is closely
related with the feature selection problem in computer science
and data analytics. We will discuss applications of the MRF
formalism in that context in the next subsection.

5.3 Applications of MRFs in Feature
Selection and AI
Feature selection (FS) refers to a quite general class of problems in
computer science, data analysis and AI. Feature selection aims to
find the minimum number of maximal relevant features to
characterize a high dimensional data set. One outstanding
family of methods of feature selection is regression methods in
which a set of regression variables is used to predict one (or a few)
dependent variables via functional relationships (commonly
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linear combinations with a distribution of weights). A subset of
the whole set of regression variables is considered statistically
significant, in that context those are the selected features. FS is a
more general problem than linear, multivariate or even non-
linear regression. MRF can be used to generalize regression
procedures to more complex situations. One notable method
was developed by Stoehr, Marin and Pudio [151] who used
hidden Gibbs random fields to implement model selection via
an information theoretical optimization criterion known as Block
likelihood information. Cilla and coworkers [152] developed a FS
method to be used in sequence classification based on hidden
CRFs supplemented with a generalized Lasso group
regularization method that instead of the colinearity condition
employs L1-norm optimization of the parameters. The authors
showed that FS outcomes with this method outperforms standard
conditional random field approaches.

Feature selection efficacy of MRFs is closely related to the
actual structure of the underlying adjacency matrices. Especially
relevant is the issue of separability. Although non-trivial
separability does not preclude the use of MRFs in large
datasets, as long as the positive definite nature of the measures
is ensured; there may be computational complexity limitations for
practical uses. Recently, Sain and Furrer [153] discussed on some
general properties of random fields (in particular for multivariate
Gaussian MRFs) that need to be taken into account in the design
of computationally efficient modeling strategies with such
random fields. By designing FS schemes with MRFs based on
the optimization of parameter estimation, for instance via
structured learning it is possible to improve substantially on
the computational complexity of such algorithms [154–158].
The graph structure of MRFs can also be optimized to
enhance the FS capabilities of the algorithms [159–163]. More
information along these lines can be found in the comprehensive
review by Adams and Beling [164] and in the one by Vergara and
Estevez [165].

As already mentioned the structure of MRF may result
advantageous to solve segmentation problems or delimitation
of statistical dependencies. These are problems that are
extremely relevant in the context of computational linguistics
and natural language processing applications. We will discuss
these in the following subsection.

5.4 Applications of MRFs in Computational
Linguistics and NLP
Automated textual identification and meaning discernment are
extremely complex (and very useful) tasks in current artificial
intelligence research and applications. The ability to detect text
patches with semantic similarity is one of the founding steps in
the ability to process natural language by a computer. By combing
a deep learning approach (a convolutional neural network) with
MRF models, Liu and collaborators [166] devised an effective
algorithm for semantic segmentation [167], which they called a
Deep Parsing Network (DPN). Within the DPN scheme, a CNN
is used to calculate the unary terms of a two-term energy function,
while the pairwise terms were approximated with a mean-field
model. The mean field contributions were iteratively optimized

using a back-propagation algorithm able to generalize to higher
order perturbative contributions. Although the original
application of semantic segmentation has been applied to
image segmentation, its applications to NLP are somehow
straight forward [168, 169].

A similar method was developed earlier by Mai, Wu and Cui
and applied to improve word segmentation disambiguation in the
Chinese language [170]. Main and colleagues, however, decided
to use a CRF on top of a bidirectional maximum matching
algorithm. Parameter estimation for the CRF was performed
via maximum likelihood estimates. These ideas were further
advanced by Qiu, et al [171] who used CRFs for clinical entity
recognition in Chinese. Speech tagging from voice recordings was
performed using a CRF devised by Khan and collaborators [172].
Even computer assisted fake news detection [173] and headline
prediction [174] can be achieved using CNNs and MRFs.

5.5 Applications of MRFs in the Analysis of
Social Networks
Social network analysis, including online social networks, other
forms of interpersonal interaction networks and even some social
networks in non-human creatures, have become a relevant field of
research in recent times (though the subject has been relevant in
the contexts of sociology and animal behavior for decades) [175].
The analysis of social network via MRFs is becoming more and
more common also. As an example, Jia and collaborators have
used MRFs to infer attributes in online social network data [176].
Their model used the social network structure itself to develop a
pairwise MRF. From empirical training data, the authors used the
individual behaviors to learn a probability that each user has a
given attribute. Then used that as an a priori probability, compute
the posterior probabilities by a loopy belief propagation algorithm
over the MRF, to, finally, optimizing the belief propagation
algorithm by a second neighbor criteria that sparsifies the
adjacency matrix. Further optimization of similar ideas was
obtained by using graph convolutional networks, i.e., CNNs
over CRFs [177]. Attribute inference in social network data
via MRFs can also be used to improve cybersecurity
algorithms [178], to learn consumer intentions [179], to study
the epidemiology of depression [180] among other issues. Social
networks as well as some classes of molecular interaction and
ecological networks are also relevant to the development and
improvement of MRF and CRF learning algorithms. This is so
since often a sketch (sometimes a detailed one) of the network
dependency structure is known a priori [181, 182]. This is yet
another instance in which applications may nurture back the
formal theory of random fields.

Application Box IV: Inference of User Attributes in
Online Social Networks

General problem statement: The attribute inference problem
(AIP), i.e., the discovery of personality traits from data on
social networks, is a central question on computational social
science. It is indeed an (unsupervised) extension of the
personality analysis tests of classical psychology with
important applications from sociological modeling to
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commercial and political marketing, and even national security
issues. Jia and collaborators [176] developed an approach to
the AIP from public data on online social networks using an
MRF with pairwise interactions.
Theoretical/Methodological approach: Given a training
dataset, behaviors are used to learn the probabilities that
each user (node) has a considered attribute, these are the
prior probabilities. Based on the neighborhood structure of
a pairwise Markov random field, posterior probabilities are
computed via a loopy belief propagation algorithm. The MRF
has a quadratic pseudo-energy function with node potentials
(unary contributions) for each user and edge potentials
(pairwise interactions) for every connected pair of nodes, as
defined by node correlations. Edge potentials are defined as
discrete-valued spin-like states λuv � 1 if nodes u and v have the
same attribute state and λuv � −1 if they do not. This way,
homophily in the social networks mimics spin-alignment in
lattice models of magnetism.
Improvements/advantages: To optimize computational
performance in large networks, the authors modified the
BPA by using a loop renormalization strategy. Hence,
circular node correlations are locally computed for each pair
of nodes prior to move to another edge and then using a linear
optimization approach. Thus, there is no need to allocate
memory for all circular correlations (loops).
Limitations: More than a limitation itself, an avenue of
predictive improvement may be given by extending their
MRF approach to allow multi-categorical (or even
continuous) state variables. Doing this will make possible to
capture the fact that most behavioral attributes are not simply
present/absent, but may occur over a range of possibilities.

5.6 Random Fields and Graph Signal Theory
Graph signal theory, also called graph signal processing (GSP) is a
field of signal analytics that deals with signals whose domain (as
identified by a graph) is irregular [183–185]. In the context of
GSP, the vertices or nodes represent probes in which the signal
has been evaluated or sensed and the edges are relationships
between these vertices. Data processing of the signals exploits the
structure of the associated graph. GSP is often seen as an
intermediate step between single channel signal processing and
spatio-temporal signal analysis. The nature of the edges is
determined by the relationship (spatial, contextual, relational,
etc.) between the vertices. Whenever edges are defined via a
statistical dependence structure, GSP can be mapped to either an
MRF or a CRF, thus allowing the use of all the tools of random
field theory to perform GSP [186, 187]. The networked nature of
the domain of signals embedded in a graph, allows the use of
spectral graph theoretical methods for signal processing
[188–190]. Conversely, correlations between features on the
signals are also useful to identify the structure of the
underlying graph [191, 192].

GSP has a number of relevant applications, from spatio-
temporal analysis of brain data [193]; to analyze vulnerabilities
in power grid data [194]; to topological data analysis [195],
chemoinformatics [196] and single cell transcriptomic analysis
[197], to mention but a few examples. Statistical learning

techniques have also being founded on a combination of
MRFs and GSP [198, 199], taking advantage of both the
networked structure, the statistical dependence relationships
and the temporal correlations of the signals [200–202].
Random field approaches to GSP have also been applied in
the context of deep convolutional networks [203, 204], often
invoking features of the underlying joint conditional probability
distributions such as ergodicity [205] and stationarity [206].

6 CONCLUDING REMARKS

As already known in statistical physics for decades, random fields
are a quite powerful and versatile theoretical analytical
framework. We have discussed here some fundamental ideas
of the theory of Markov-Gibbs random fields, namely the notions
of statistical dependency on neighborhoods, of potentials and
local interactions, of conditional independence relationships and
so on. After that, we discussed a handful of (mostly recent)
advances and applications of Markov random fields in different
physics subdisciplines, as well as in several areas of biology and
the data sciences. The main goal of this presentation was not to be
comprehensive but to be illustrative of the many ways in which
research and applications of random field may be advancing both,
inside and outside traditional statistical physics.

In the theoretical and conceptual advances side, we mentioned
how random fields may be embedded in general manifolds, how
by incorporating quenched fields (or somehow equivalently, by
adding quenching potentials) to the usual Izing random field, a
whole new phenomenology can be discovered in RFIMs. How
Markov and Bayesian networks may be combined in HRFs and
how gauge symmetries and other extended fields may broad the
scope of MRFs.

By examining the applications in physics and in other
disciplines, we discover (or often re-discover)
methodological and computational improvements to the
inference, analysis and solutions of problems within the
MRF/GRF/CRF settings. In these regards, we can mention
the use of CNNs as feature extractors on top of random fields,
to refine hypotheses about marginals and (via convolution) to
improve the accuracy of pairwise potential terms. We re-
examined how to extend beyond mean-field approaches,
either via MAP optimization, via higher order perturbations
solved by neural networks or maximum likelihood approaches
(depending on data availability). How, under certain
circumstances (still dictated by physical intuition and data
constrains) factorization of the partition function may be
attained via clique potentials obtained from Gaussian (or
other multivariate parametric distributions) or even from
empirical distributions.

We also analyzed how simulations in random fields may be
supplemented with well known methods–within the statistical
physics community–, such as simulated annealing, Markov Chain
Monte Carlo and importance sampling, but also frommethods of
wide use in other fields such as stochastic descent back-
propagation, factor graph approaches, Gibbs sampling,
pseudo-likelihood methods, latent models or loopy belief
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propagation algorithms to name a few. And how, under some
circumstances, parameter estimation (fundamental in
applications involving non-trivial partition functions) can be
reframed as a regression problem and benefit from the use of
the Ridge and Lasso optimization techniques, dynamic
programming and autoregressive modeling.

We want to highlight that, in spite of being a hundred-plus
year developed formalism in statistical physics, the theory of
Markov-Gibbs random fields is indeed a flourishing one, with
many theoretical advances and applications within and outside
physics.
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On the Time Transition Between
Short- and Long-Time Regimes of
Colloidal Particles in External Periodic
Potentials
Daniela Pérez-Guerrero1, José Luis Arauz-Lara1, Erick Sarmiento-Gómez2* and
Guillermo Iván Guerrero-García3*

1Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, 2Departamento de Ingeniería Física,
División de Ciencias e Ingenierías, Universidad de Guanajuato, León, México, 3Facultad de Ciencias, Universidad Autónoma de
San Luis Potosí, San Luis Potosí, México

The dynamics of colloidal particles at infinite dilution, under the influence of periodic
external potentials, is studied here via experiments and numerical simulations for two
representative potentials. From the experimental side, we analyzed themotion of a colloidal
tracer in a one-dimensional array of fringes produced by the interference of two coherent
laser beams, providing in this way an harmonic potential. The numerical analysis has been
performed via Brownian dynamics (BD) simulations. The BD simulations correctly
reproduced the experimental position- and time-dependent density of probability of the
colloidal tracer in the short-times regime. The long-time diffusion coefficient has been
obtained from the corresponding numerical mean square displacement (MSD). Similarly, a
simulation of a random walker in a one dimensional array of adjacent cages with a
probability of escaping from one cage to the next cage is one of the most simple models of
a periodic potential, displaying two diffusive regimes separated by a dynamical caging
period. Themain result of this study is the observation that, in both potentials, it is seen that
the critical time t*, defined as the specific time at which a change of curvature in the MSD is
observed, remains approximately constant as a function of the height barrier U0 of the
harmonic potential or the associated escape probability of the random walker. In order to
understand this behavior, histograms of the first passage time of the tracer have been
calculated for several height barriers U0 or escape probabilities. These histograms display
a maximum at the most likely first passage time t′, which is approximately independent of
the height barrier U0, or the associated escape probability, and it is located very close to
the critical time t*. This behavior suggests that the critical time t*, defining the crossover
between short- and long-time regimes, can be identified as the most likely first passage
time t′ as a first approximation.

Keywords: periodic potential, external field, spherical tracer, long time diffusion, most likely escape time

Edited by:
Atahualpa Kraemer,

National Autonomous University of
Mexico, Mexico

Reviewed by:
Michael Schmiedeberg,

Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Francisco J. Sevilla,
Universidad Nacional Autónoma de

México, Mexico

*Correspondence:
Erick Sarmiento-Gómez

esarmiento@fisica.ugto.mx
Guillermo Iván Guerrero-García

givan@uaslp.mx

Specialty section:
This article was submitted to

Soft Matter Physics,
a section of the journal

Frontiers in Physics

Received: 30 November 2020
Accepted: 03 February 2021

Published: 22 April 2021

Citation:
Pérez-Guerrero D, Arauz-Lara JL,

Sarmiento-Gómez E and
Guerrero-García GI (2021) On the Time
Transition Between Short- and Long-
Time Regimes of Colloidal Particles in

External Periodic Potentials.
Front. Phys. 9:635269.

doi: 10.3389/fphy.2021.635269

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6352691

ORIGINAL RESEARCH
published: 22 April 2021

doi: 10.3389/fphy.2021.635269

129

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.635269&domain=pdf&date_stamp=2021-04-22
https://www.frontiersin.org/articles/10.3389/fphy.2021.635269/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.635269/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.635269/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.635269/full
http://creativecommons.org/licenses/by/4.0/
mailto:esarmiento@fisica.ugto.mx
mailto:givan@uaslp.mx
https://doi.org/10.3389/fphy.2021.635269
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.635269


1 INTRODUCTION

A colloidal particle undergoing Brownian motion presents
deviations from pure diffusion when such a particle interacts
with an external potential or when it moves in a crowded
environment. Some examples of crowded environments that
affects colloidal motion include the colloidal motion of
proteins or organelles in the interior of a cell [1–3], the
motion of a tracer particle in complex fluids [4–9] and
colloidal motion near the glass transition [10, 11]. On the
other hand, examples of external fields that affect Brownian
motion are electric and magnetic fields [12], gravitational
forces [13–15] and optical manipulation induced by light [16,
17]. The diffusion of tracers in periodic, quasiperiodic, and
random external potentials has been also studied in
underdamped and overdamped conditions theoretically,
experimentally and via numerical simulations [18–21].

On the other hand, the main effect of external potentials, or
crowded environments, in colloidal dynamics is to promote the
appearance of time regimes in which particles might slow down
(subdiffusion) or speed up (superdiffusion) their motion as
compared with normal diffusion. Generally speaking, a
colloidal particle senses its environment when it moves in
Brownian motion. As a result, each time regime is related to a
particular length scale. The dynamics of a colloidal tracer
provides useful information about the concentration of other
colloidal macromolecules, the degree of coupling between the
tracer and an applied external field, as well as the competition
between the energy associated to the external potential and the
thermal energy [4, 10, 17, 22].

One of the most simple cases where the appearance of different
time regimes has been reported, due to the interaction of a
particle with an inhomogeneous external field, is a one
dimensional periodic potential interacting with a 2D colloidal
suspension [23–25]. Such a system has many advantages: it can be
simulated via BD simulations and can be experimentally realized
by using the interference of two coherent beams, providing
energy barriers of height close to the thermal energy, for laser
powers smaller than 1W [26]. A colloidal particle interacting
with a periodic potential presents three time regimes related with
different effects: free diffusion with a linear mean square
displacement can be observed at short times; a plateau in the
mean square displacement associated to “caging,” produced by
the existence of an energy barrier, can be seen at intermediate
times; and a hopping motion of the colloidal tracer between
adjacent periodic fringes in a second diffusive regime can be
observed at long times [23, 24]. Similarly, a random walker
simulation have been used extensively to simulate Brownian
motion [27–29]. In this type of simulations, the trajectories
are obtained from random numbers just as the BD
simulations, but the displacement is chosen more simply, not
derived from a force. Thus, the confinement is introduced as a
spatial condition of no escaping from a region. The height barrier
effect is then introduced as a cage-to-cage hopping probability.
This allow us to observe a process similar to that displayed by a
Brownian particle in a periodic potential, showing a short- and a
long-time diffusive regime as a function of time. Note, however,

that in the random walker simulation the particle is free to move
within the cage in contrast to the cosine-like potential used in the
Brownian dynamics approach.

It is important to note that the three time regimes presented
above mainly depend on the periodicity of the external potential
and the amplitude of the energy barrier, or the hopping
probability, and they can extend over several time decades [23,
24, 30]. For example, the short time regime is related with free
diffusion and thus is limited to the time the particle takes to
diffuse at the bottom part of the potential; the extension of the
plateau region is directly related with the amplitude of the
potential, and finally the long time diffusion results of a
balance between hopping time, and thus related with the
amplitude of the potential, and the periodicity of the potential.
Furthermore, this potential had been also studied for mean first
passage time calculations, giving theoretical predictions for the
ratio between the diffusion coefficients associated with its
dynamics [31]. In such a scenario, colloidal dynamics can be
described by the ratio between the short- and long-time diffusion
coefficients [23]. Other quantities of interest are the time at which
the caged motion begins, and the time at which the hopping
motion starts. As indicated before, the phenomenology found in
this potential can be mapped to several other situations. Thus, for
complex fluids, the long-time diffusion coefficient is related to the
zero shear viscosity [22], whereas the glass transition is related to
the so-called alpha relaxation [32]. Despite numerous theoretical,
simulation, and experimental studies that had been performed
since last century, a complete characterization of the prediction of
the short- and long-times diffusion coefficient, using available
theoretical models, as well as the study of the critical caging time
and the distribution of hoping times, is still lacking.

In this work, the dynamics of a colloidal particle in periodic
potentials is studied by using experiments and simulations,
focusing in the short- and long-times dynamics. We are
particularly interested in the behavior of the critical time at
which the MSD changes its curvature when the caging effect
appears, and in the distribution of hoping times between adjacent
periodic cells. We also compare our results with available
theoretical predictions. Our results give a full characterization
of the phenomena in terms of energy barriers and the associated
dynamical caging, providing a simple model to understand the
colloidal dynamics under different, but equivalent scenarios.

2 MODEL AND METHODS

2.1 Experimental Methods
The experimental system consists of a highly dilute water
suspension of 1 µm polystyrene spherical particles (Thermo
Scientific) confined between one microscope slide and a cover
slip. The sample has been prepared by following the procedure
described by Carbajal-Tinoco et al. [33].

The experimental set up for the light potential is based on the
interference of two beams in the plane of the sample, which
produces a periodical array of bright fringes of a specific width.
This experimental setup has been fully described elsewhere [34],
here we only discuss the main points. The laser beam used has a
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spectral width <200 kHz (Azur Light Systems) and range powers
between 40 and 500 mW. A half-wave plate and a fixed polarizer
allow us to vary the input power by rotating the half-wave plate.
The laser beam passes through a beam splitter, which divides the
beam in two with the same laser power. Both beams are directed
into a prism mirror that reflects the beams parallel each other.
The prism is mounted on a base that can be moved manually to
change the distance between the beams. A spherical lens
initializes the convergence of both beams in order to produce
the interference pattern in the focal plane of the lens. The distance
of separation between the beams determines the angle ψ of
incidence, which defines the periodicity of the intensity
pattern. However, it also changes the effective focal distance of
the lens due to spherical aberration. Thus, a focusing lens is
mounted on a moving stage to correct such effect. This
interferometer is coupled using a dichroic mirror to an
inverted microscope (OLYMPUS U-LH100-3) with a 60X
objective and numerical aperture 0.6, that allows us to obtain
high quality clear field images in order to get the time evolution of
the system.

The interference of the coherent beams produce an intensity
pattern expressed as [35].

I(x) � 2I0{1 + cos[2kx sin(ψ/2)]}e−2(x/R)
2 cos2(ψ/2) (1)

where I0 is the intensity of each beam, k � 2π/λ0, with λ0 �
488 ​ ​ ​ nm the incident beam wavelength and R the laser beam
radius. As it can be seen here, the periodicity of the distribution of
light is directly related to the angle ψ. For our experimental
conditions, the set-up is able to produce fringes between 1.3 and
6.0 μm by varying the position of the prism mirror. As shown
before [34], if the periodicity of the light distribution is larger than
the size of the particle, such a distribution produces a periodical
potential with the same periodicity, where the bright fringes
corresponds to the minima in the potential. For this study, the
periodicity of the distribution of light was set to 1 µm. Similarly as
in optical tweezers, instead of estimating the external potential
using the distribution of light and some model of interaction of
light with an spherical particle [36, 37], in this work the external
potential was calibrated comparing the experimental values of the
MSD with those resulting from the Brownian dynamics
simulation.

The time evolution of the system has been recorded by using
standard video equipment at 30 frames per second, giving an
experimental time resolution of 0.033 s. The tracking of the
particles has been performed by using Trackpy [38], which
implements and extends the Crocker-Grier algorithm in
Python language [39]. Furthermore, by placing neutral density
filters on the lens of the recording camera, the intensity profile
generated by the interference of the beams can be imaged, and
thus the spatial position of the minima has been estimated. This is
very helpful for the calculation of the spatial-dependent statistical
properties. It is important to note that we analyze the trajectories
of particles at the center of the field of view since the spatial
distribution of light is not homogeneous at the edges due to the
Gaussian envelope. This ensures that the variation of the intensity
in the region of interest is less than 10%, where the particles

interact with a similar external potential. The area in the region of
interest corresponds to 1908.5 µm2, and a total of 2 h of
recording, divided in three videos, were analyzed, giving
almost 2,000 trajectories. However, most of them are very
short, corresponding to particles that remained within the
region of interest only for a few frames. Such trajectories
contributed to the short time dynamics, and thus giving a
reliable quantification of the mean squared displacement at
short times as well as of the density of probability of
displacements. However, the long time dynamics lacks of
statistics as only a few particles remain during the total
duration of the video. The duration of each experiment was
defined due to the presence of a small drift in the laser beam,
producing a motion of the fringes in one direction. We found that
during intervals of 20 min there is a very small variation of the
position of the fringes, giving confidence in the position of the
fringes. Fringes were also found to vibrate due to external
mechanical noise, even tough the experiment was performed
on an isolated optical table. Once we get the trajectories of the
particles we are able to calculate the total average displacement
and the mean square displacement of all trajectories of particles in
a time interval. A schematic representation of the protocol we
have described is shown in Figure 1.

2.2 Theoretical Model and Brownian
Dynamics Simulations
In this work, we consider that a tracer particle is under the
influence of a periodic cosine potential of the form:

U(x,U0, L) � U0(1 − cos(
2πx
L

)) (2)

where U0 and L are the amplitude and periodicity of the external
potential, respectively.

The Brownian dynamics simulations were performed using
the method proposed by Ermak and McCammon without
hydrodynamic interactions [40]. As the experimental particle
concentration is very low, we consider a single particle in a one-
dimensional simulation box with periodic boundary conditions
along the x − axis. In the y − axis, the experimentally developed
field is constant, and thus we restrict the simulation to a one
dimensional problem. In the Brownian dynamics simulations, the
position of the particle at time t + dt is calculated from the
previous position at time t by using the equation:

x(t + dt) � x(t) + D0F(x(t))dt
kBT

+ R(dt) (3)

whereD0 is the translational diffusion coefficient of the particle at
short-times, F(x) � −dU(x)

dx is the force that the particle
experiences due to the external periodic potential U(x), and
R(dt) is a random displacement, having a normal distribution
with zero mean value and variance 2D0dt, fulfilling the so-called
fluctuation-dissipation theorem. In Brownian dynamics
simulations, the magnitude of the time step dt is crucial. If it
is too short, the computational time can increase significantly. If it
is too large, the stochastic differential equation can display
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incorrect values of the dynamic properties of the system. The use
of a single tracer under the influence of an external field allowed
us to utilize a time step of 3 µs. Let us note here that the
experimental time resolution is an order of magnitude larger.
Such time step allowed us to reproduce the analytic mean square
displacement of the Brownian harmonic oscillator with an
error less than 1 percent for a wide range of spring constants
[41]. In a typical Brownian dynamics simulation a maximum
Nmax � 1 × 1011 times steps have been performed, which is
equivalent to a total time of 3 × 105 s. Once the positions of
the tracer are known as a function of time, and assuming that the
statistical properties do not depend on the initial time, the mean
square displacement has been calculated as:

MSD (tj) � 1
Nmax − j

∑
Nmax−j

i�1
[x(ti + jdt) − x(ti)]2 (4)

where ti � idt.
On the other hand, Bellour et. al. [9]. have proposed the

following functional form to fit the MSD of tracer particles in
worm-like micelle solutions:

MSDBellour(t) � 2δ2(1 − exp{ − (
D0t

δ2
)
α

})
1
α

(1 + DMt

δ2
) (5)

This equation correctly describes the above mentioned
dynamical regimes: short time diffusion within the network
of micelles, cage effect at intermediate times, and hopping
motion due to breaking of the living polymer giving a second
linear regime at long times and thus can be used as a model to
estimate some parameters characterizing theMSD of particles in

periodical potentials. D0 is the short time diffusion coefficient,
which can be approximated as D0 ≈ kBT/6πηa according to the
Stokes-Einstein relationship as a first approximation, where kBT
is the thermal energy, η is the solvent viscosity, and a is the
particle’s radius. Experimentally, the short time diffusion
coefficient D0 is frequently different from kBT/6πηa given
that D0 also contains information regarding inter-particle
interactions and wall-particle interactions. δ2 is related to the
amplitude of the MSD within the cage and thus, it is usually
called the cage size. Notice that in general 2δ2 is not equal to the
periodicity L of our oscillatory potential. DM corresponds to the
long time diffusion coefficient, which in our system
characterizes the hopping of the tracer between fringes as a
function of time in our periodic system. Finally, α is a parameter
related to the smoothing of the transition between short times
and the caging, and it has a value close to 0.25 in worm-like
micelle solutions [5]. The Bellour parametrization was
originally proposed by considering that a tracer immersed in
a semidilute solution of worm-like micelles was describing three
different dynamic regimes in one dimension: 1) at short times
the dynamics is Brownian, that is, MSD(t) � 2D0t, where D0 is
the local diffusion coefficient; 2) at intermediate times, the MSD
remains constant for a given time interval, in such a way that 2δ2

is the value of the MSD at the inflexion point; and 3) at long-
times the motion becomes diffusive again and the long-time
diffusion coefficient corresponds to the macroscopic viscosity of
the solution. Thus, the starting point to describe this
phenomenology is to hypothesize that the particle is under
the influence of a harmonic potential. As a result, the MSD
cannot grow indefinitely but reaches a plateau:

FIGURE 1 | (Color online): Experimental measurement protocol of the dynamic properties of spherical tracers in periodic cosine-like potentials: (A) long exposure
photograph showing the light path producing the periodic distribution of light; (B) schematic representation of the experimental set-up; (C) light intensity profile
generated experimentally; (D) typical bright field images of spherical tracers interactingwith the external field; (E) trajectories obtained from the experiment using Trackpy;
(F,G) the maxima andminima of the periodic potentials are estimated from the bright and dark regions displayed in the panel (C); and (H) the density of probability is
calculated from the information obtained from the trajectories of the particles over the fringes.
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MSD(t) � 2kBT
kspring

(1 − exp(− kspring t

c
)) (6)

where D0 � (kBT)/c. By assuming that kspring � (KBT)/δ2, it is
possible to write

MSD(t) � 2δ2(1 − exp(− D0t

δ2
)) (7)

If the exponential is linearized, it is easy to see that at short times
MSD(t) � 2D0t, whereas at long times a plateau is reached at 2δ2.
One simple form in which the MSD can reach the physical limit
MSD(t) � 2DMt is by multiplying the analytical MSD associated
to a Brownian particle under the influence of a harmonic
potential by the term 1 + (DMt)/δ2:

MSD(t) � 2δ2(1 − exp(− D0t

δ2
))(1 + DMt

δ2
) (8)

Even though this last equation is able to reproduce the MSD of a
tracer immersed in a semidilute solution of worm-like micelles at
short- and long-times, in general fails to describe the onset of the
plateau around the inflexion point. Thus, Bellour proposed to add
a parameter α in order to adjust the onset of the experimental
plateau of the MSD. As one can appreciate here, the same basic
arguments employed by Bellour in this heuristic derivation of Eq.
5 can be used in the case of the systems studied here.

Another methodology to characterize the dynamical behavior
of a particle in hindered motion is related with the logarithmic
derivative, that corresponds to the temporal behavior of the
exponent γ in MSD∝ tc. As such, a numerical calculation can
be complex due to the experimental noise. We used here a more
direct approach by fitting the experimentally obtained MSD to

the Bellour model. Afterwards, these fitted parameters have been
used in the analytic calculation of the logarithmic derivative
of Eq. 5.

In order to calculate the long-time diffusion coefficient DM

theoretically, we consider that this quantity corresponds to the
effective diffusion coefficient of a hopping Brownian particle that
moves a distance L in the presence of a periodic external potential
with periodicity L. In such a scenario [42],

DM � Deff � 1
2
kescapeL

2 (9)

where kescape � 1/τescape is the escape or hopping rate of the
Brownian particle. Let us define the mean first passage time
(MFPT) τMFPT as the average time a Brownian particle needs to
reach the separatrix manifold for the first time, when was located
initially at a position x0 inside the initial domain of attraction. At
large height barriers, the MFPT τMFPT(x0) becomes essentially
independent of the starting point, that is, τMFPT(x0) is
approximately the same for all starting configurations away
from the immediate neighborhood of the separatrix. If the
probability of crossing the separatrix to the right or to the left
equals one half, the total escape time equals to two times the
MFPT, and the escape or hopping rate of the Brownian particle
can be written as:

kescape � 1
2τMFPT

(10)

Thus, Eq. 9 can be written in terms of the MFPT as:

FIGURE 2 | (Color online) ρ(x, t) at different times for the random walker
simulation. For t � 0.1 s the step distribution is recovered, whereas the
probability evolves to a Gaussian after a few steps. Inset: Representative
trajectory obtained from the simulation, showing the caging effect and a
hopping effect.

FIGURE 3 | (Color online): Mean square displacement MSD(t) of a
spherical tracer as a function of time. The red solid squares and the blue
dashed line correspond to the total mean square displacement (associated to
the free diffusion in the y− and x − axis directions) associated to
experimental and Brownian dynamics results, respectively, in the absence of
an external field. The black solid circles and the magenta dot-dashed line
correspond to the MSD(t) in the x − axis associated to experimental and
Brownian dynamics results, respectively, in the presence of a periodic cosine-
like external field.
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DM � 1
4τMFPT

L2 (11)

On the other hand, the diffusion coefficient of a Brownian particle
in the presence of a periodic potential, according to the Kramers
approach in the overdamped limit, can be written as [43].

DKramers
M � w0wbL2

2πc
exp{− Eb

kBT
} (12)

where Eb � V(xmax) − V(xmin), w2
0 � V ′′(xmin), w2

b � V ′′(xmax),
and D0 � kBT

c . If we chose

V(x) � U0(1 − cos(
2πx
L

)) (13)

xmin � 0, xmax � L
2, and Eb � 2U0, Eq. 12 can be written as:

DDF
M

D0
� 2πU0

kBT
exp{

−2U0

kBT
} (14)

which is the Dalle-Ferrier et al. [23] (DF) formula for a Brownian
particle in a periodic cosine potential. According to Lifson and Jackson
[30], the ratio of the long-time diffusion coefficient of a Brownian
particle in the presence of a periodic potentialU(x) can be written as:

DLJ
M

D0
� 1
〈exp{U(x)/(kBT)}〉〈exp{−U(x)/(kBT)}〉 (15)

where the brackets 〈 . . . 〉 indicate the average over the unit cell.
This result was obtained subsequently by several authors using
different routes, mainly based in solving the mean first passage
time problem using the one-dimensional Smoluchowski
equation.

The correspondingMFPTs can be obtained by equating Eq. 11
with either Eq. 12 or Eq. 15 to yield:

τDFMFPT � 1
4π

τ0
kBT
U0

exp{
2U0

kBT
} (16)

and

τLJMFPT � 1
2
τ0〈exp{U(x)/(kBT)}〉〈exp{−U(x)/(kBT)}〉 (17)

where

τ0 � L2

2D0
(18)

is the time that a particle needs to move a distance L in pure
Brownian motion, that is, in the absence of any external potential,
when the diffusion constant of the particle is D0. As it is shown
below, the Kramers escape time resembles more to the escape
times predicted by the Lifson-Jackson prescription and the
Brownian dynamics simulations at high values of U0. On the
other hand, notice that in the absence of an external potential

FIGURE 4 | (Color online): Density of probability per unit length of finding a tracer ρ(x, τ) as a function of the position and the reduced time τ � t/Δt, withΔt � (1/30)s. In
panels (A,C) there is an applied periodic cosine-like external field in the x-axis direction. In panels (B,D) there is not an applied external field in the y-axis direction. Symbols
correspond to experimental measurements. Lines are associated to Brownian dynamics simulations in which D0 � 1.8 × 10− 13m2/s and U0 � 1.33 kBT .
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(that is, in pure Brownian motion) the τLJescape reduces to τ0 as
expected, whereas the τDFescape diverges to an infinite time. In
addition, note that in the Lifson-Jackson approach the long-
time diffusion coefficient DM requires a numerical integration,
whereas the Dalle-Ferrier formula is completely analytical.

2.3 Random Walker
A random walker simulation follows a similar recipe to obtain a
trajectory as the Ermak and McCammon algorithm, however the
choice of the displacement is generated randomly either following
a distribution, or with a defined step size but without specification
of the force or diffusion coefficient [27–29]. In our case, such
distribution is flat of fixed width δx, instead of the typical
Gaussian distribution found experimentally and also simulated
in the BD protocol. The time scaling constant is not fixed and can
be chosen arbitrarily. In our case it was fixed to a value of
δt � 0.1 s. The evolution of density of probability ρ(x, t) of
finding a tracer at the position x at time t given that a t � 0
the particle was located at x � 0 produces a Gaussian distribution
after a few time steps, thus becoming dynamically equivalent to a
BD simulation after such time (see Figure 2), as expected. As the
distribution if perfectly Gaussian, it is expected also that higher
moments are also equivalent. If the width of the distribution δ and
the time scaling constant are chosen conveniently, this walker can
reproduce the diffusion coefficient, D0, of the BD simulations at
short times. Thus, we can conclude that the implemented random
walk simulation follows the most simple selection of
displacements between time steps. This naive selection gives
an important difference between the BD and the random walk
at short times, as the probability function of displacements is not
Gaussian in the first few lag times. However, this function evolves
to a Gaussian distribution function, and thus not only the second

moment but also higher moments are equivalent and
indistinguishable from the BD. Thus, at large times both
simulations are dynamically equivalent for a free particle.

In order to introduce the cage effect, the particle is located
inside a periodic cell of length L# with potential barriers of
vanishing small width at the boundaries. Then the random
walker is free to move within the cage, undergoing random
steps with displacement probability. The particle can cross the
cell boundary to move to an adjacent cage with a transition
probability p if a given generated step is out of the cage. The
success event gives a transition to the neighboring cage, whereas a
failure reflects the step to keep the particle inside the cage. Thus,
decreasing the transition probability gives a higher amount of
events before a success one, effectively producing confinement
within the cell for a given time. Inset in Figure 2 shows a typical
trajectory for a random walker in a cage of size 2 µm and
transition probability 0.001, showing the typical confinement
and several transitions within the simulation time. A transition
probability of zero leads to total confinement, and the walker is
unable to escape from the cage. In the opposite, free diffusion is
found for a transition probability of 1. Despite that, after few time
steps the random walker simulation and the BD simulation are
dynamically equivalent for free particles, the case of a caged
particle, either in the periodic potential or in a cage with a
probability of transition, is different. In this case, a direct
computation of the probability density within a unity cell
would show that the random walker is almost free within the

FIGURE 5 | (Color online): Maximum of the density of probability of
finding a tracer ρ(x, τ) at x � 0 as a function of the reduced time τ � t/Δt, with
Δt � (1/30)s. The solid squares and the dashed line correspond to
experimental and Brownian dynamics results, respectively, in the
absence of an external field. The black solid circles and the magenta dot-
dashed line correspond to experimental and Brownian dynamics results,
respectively, in the presence of a periodic cosine-like external field. FIGURE 6 | (Color online): Mean square displacement MSD(t) of a

spherical tracer as a function of time in the presence of a periodic cosine-like
potential of amplitude U0. Solid symbols correspond to Brownian dynamics
simulations in which L � 1.0 × 10−6 m and DBD

0 � D0 � 1.8 × 10− 13 m2/s
for several UBD

0 values (in kBT units). Dotted, dashed, and dot-dashed black
lines correspond to Bellour fittings (Eq. 5) using the parameters displayed in
Table 1.
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cage, giving a probability density almost constant within the cage,
whereas the presence of the continuous potential in the BD would
produce a more complex scenario. Despite this, and as shown
here, choosing properly the parameters of the random walker, the
evolution of the MSD is equivalent.

The random walker model is also useful to study the typical
mean first passage time problem, that will be used later to analyze
our results in terms of the distribution of escape times. However, as

in this case the particle either cross the barrier or not, in principle,
the random walker undergoes escaping processes, characterized by
an escape time τE , instead of the mean first passage time. By now it
is important to highlight the relation between the escape time
problem and the parameters of such stochastic model. Consider
first that the potential that can be modeled using the random
walker is a flat bottom well with delta barriers as frontiers. When
considering the simple case of a flat potential with perfectly
absorbing barriers, the mean first passage time, equivalent to
escape time only in this case, was found to be L#2/(16D0), as
expected from this simple model [44]. By including a transition
probability p, the escape time can bewritten as L#2/(16D0p), which
provides a definition of the long time diffusion coefficient DM

similar to that used in the BD simulation case

DM � 1
2τE

L#2 (19)

where DM � 8D0p. In such a scenario, the escape time is twice the
mean first passage time, which is consistent with a 1/2 probability
of jumping to the next cage per event.

3 RESULTS AND DISCUSSION

3.1 Short Time Dynamics
In order obtain the short time diffusion coefficient D0 of a tracer,
and the amplitude of the periodic potential U0 in our experiment,

FIGURE 7 | (Color online): Long-time diffusion coefficient DM(U0) of a
spherical tracer as a function of the maximum height barrier U0. The black
solid circles, the blue dashed-line, and the red solid-line correspond to
Brownian dynamics, the Lifson-Jackson prescription (Eq. 15), and the
Dalle-Ferrier formula (Eq. 14), respectively. In all cases, L � 1.0 × 10− 6 m and
DBD
0 � D0 � 1.8 × 10−13 m2/s.

TABLE 1 | Bellour fitting parameters DBD
M , δ2BD, and αBD associated to the

Brownian dynamics mean square displacement curves displayed in Figure 6,
as a function of the maximum height barrier UBD

0 . In all Brownian dynamics
simulations, L � 1.0 × 10−6 m and DBD

0 � D0 � 1.8 × 10− 13 m2/s.

UBD
0 [kBT] DBD

M [m2/s] δ2BD[m2] αBD

1.5 6.53 × 10− 14 1.28 × 10− 14 0.80
2.0 3.50 × 10− 14 1.28 × 10− 14 0.92
2.5 1.61 × 10− 14 1.12 × 10− 14 0.84
3.0 8.10 × 10− 15 9.78 × 10− 15 0.93
3.5 3.63 × 10− 15 8.49 × 10− 15 0.93
4.0 1.47 × 10− 15 7.34 × 10− 15 0.96
4.5 6.58 × 10− 16 6.42 × 10− 15 0.98
5.0 2.45 × 10− 16 5.62 × 10− 15 0.92
5.5 9.43 × 10− 17 5.12 × 10− 15 0.95
6.0 4.58 × 10− 17 4.65 × 10− 15 0.99
6.5 1.75 × 10− 17 4.26 × 10− 15 1.00
7.0 6.66 × 10− 18 3.93 × 10− 15 0.95
8.0 8.45 × 10− 19 3.38 × 10− 15 0.97

FIGURE 8 | (Color online): Logarithmic derivative of the mean square
displacement MSD(t) of a spherical tracer as a function of time in the presence
of a periodic cosine-like potential of amplitude U0. Solid symbols correspond
to Brownian dynamics simulations in which L � 1.0 × 10−6 m and DBD

0 �
D0 � 1.8 × 10−13 m2/s for several UBD

0 values (in kBT units).
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we measured the mean square displacements along the y− and
x − axis directions as a function of time. Given that along the
y-axis there is not an applied external field, the tracer experiences
free diffusive Brownian motion. Using the total mean square
displacement (associated to the free diffusion in the y− and x −
axis directions), the short time diffusion coefficient was found to
be D0 � 1.8 × 10− 13 m2/s, which in turn is used in our Brownian
dynamics simulations, allowing us to reproduce the observed
experimental behavior as it is shown in Figure 3. The reduction of
D0 is about 35% with respect the Stokes-Einstein equation for free
diffusion in the bulk, in accordance with previous results for a
similar geometry confinement [45]. Some deviations from these
value are expected experimentally as the separation between glass
plates varies within the sample, but deviations in D0 are also
expected to be small and thus does not greatly affect the
comparison between experimental and numerical results. A
direct comparison with the experimental mean square
displacement measured in the x-axis allowed us to fit the
maximum height of the periodic potential, resulting in the
numerical value of U0 � 1.33 kBT . Brownian dynamics
simulations of the tracer with the above values of D0 and U0

yielded a numerical mean square displacement that correlate very
well with experimental measurements in the x-axis, as it is shown
in Figure 3. Some deviations from the perfect linear relation was
found in the experimental MSD and associated with the small
vibrations reported above. As only a few particles remain withing

the field of view for more than 100 s, the long time dynamics is
also found to be affected by statistical noise.

A more stringent test for the estimated value of U0 parameters
(fitted via the experimental mean square displacement) is to
observe if it is able to predict other microscopic time dependent
properties such as the density of probability ρ(x, t) of finding a
tracer at the position x at time t given that at t � 0 the particle was
located at x � 0. This quantity, obtained from experiments and
Brownian dynamics calculations, is shown in Figure 4. The
behavior of ρ(x, t) in the presence of a periodic external field
is shown in panels (a) and (c), whereas ρ(x, t) in the absence of an
external field is displayed in panels (b) and (d). In general, good
agreement between the experimental and Brownian dynamics
data is observed either in presence or in the absence of the
periodic external field.

In the absence of an external field, ρ(x, t) displays a Gaussian
behavior for all times displayed, as expected. Specifically, the
maximum height ρ(x � 0, t) and the width of ρ(x, t) decreases
and increases, respectively, as a function of time. In the presence
of a periodic external field, a similar behavior to that observed in
the absence of an external field is seen only at very short times.

At longer times, the tracer starts to experience the external
field and it is seen that: 1) the rate at which the maximum height
ρ(x, t) at x � 0 decreases becomes lower compared to the case in
which the external field is not applied; and 2) the profile of ρ(x, t)
displays multiple damped maxima, which correspond to the
spatial localization of the minima of the applied periodic

FIGURE 9 | (Color online): (A) Critical time tp at which a change of
curvature in the MSD is observed (green squares), and (B) mean square
displacement at the critical time MSD (t*) as a function of the maximum height
barrier U0 (black circles). The blue triangles are associated the Bellour
fitting parameter 2δ2BD displayed in Table 1. These values were obtained from
Brownian dynamics simulations in which L � 1.0 × 10−6 m and D0 � 1.8 ×
10− 13 m2/s in all cases.

FIGURE 10 | (Color online) Random walker MSD fitting of Brownian
dynamics simulations in which the size of the periodic cell is L � 8 microns for
different energy barriers U0 (in KBT units). The fitting parameters used in the
random walker are the spatial and time increments a# and dt#, which
determine the short-times diffusion coefficient D0; and the cage size L# and
the jump probability p, which determine the long-times diffusion coefficient
DM . These values are explicitly indicated in the labels.
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external potential. This effect has been also reported in the
literature [23]. A comparison of the rate at which the
maximum of the density of probability ρ(x, t) at x � 0
decreases, in the presence and in the absence of the periodic
external field, is displayed in Figure 5 as function of time. Here,
an excellent agreement is observed between experimental
measurements and Brownian dynamics simulations.

3.2 Mean Square Displacement and Long
Time Dynamics
The good agreement observed between experimental and
simulation results presented above, motivates a study of long
time dynamic properties of the tracer via Brownian dynamics
simulations for a fixed periodicity L. The MSD of a spherical
tracer is displayed in Figure 6 as a function of time and the
amplitude of the periodic potential U0. Here, we observe that a
change of curvature and a plateau appear, which is more
noticeable when U0 increases. As a whole, the behavior of the
MSD found here is similar to reported results using simulations
and experiments [23, 24]. Moreover, it is observed that the
diffusion coefficient at long times, DM , is significantly lower
that the short time diffusion coefficient. DM and the Bellour

parameters δ2 and α, were estimated by fitting the numerical
results obtained from our Brownian dynamics simulations using
the Bellour Eq. 5. These numerical values are displayed in
Table 1. In contrast to the case in which tracer particles are
dispersed in worm-like micelles solutions, with α ≈ 0.25, the α
parameter here is higher than to 0.9, which gives a sharper
transition between the short and the caging times regime.
Interestingly, the asymptotic value of one is found in the
solution to the Langevin equation for a parabolic potential
[16]. The long time diffusion coefficient DM normalized with
the short time diffusion coefficient D0 is shown in Figure 7. In
this figure, it is observed that DM/D0 decreases rapidly as a
function of U0, as expected from Figure 6, reaching a value
close to 1 × 10− 5 for an energy barrier of 8kBT . In order to have a
theoretical estimation of DM at long times, it is possible to use the
Lifson-Jackson prescription (Eq. 15) or the Dalle-Ferrier et al.
formula (Eq. 14) if the periodic potential is known. In this study,
the periodic cosine potential given by Eq. 2 is fully defined in
terms of the parameters U0 and L. In Figure 7, it is observed that
the Lifson-Jackson prescription provides an excellent estimation
of the long time diffusion coefficient DM for all values of the
maximum height of the periodic potential U0 displayed.
Contrastingly, the Dalle-Ferrier et al. approach shows a

FIGURE 11 | (Color online):Brownian dynamics histograms of the first passage time (FPT) τ for different barrier heightsU0 and Δt bins. The value ofU0 in kBT units is
1, 2, 3, and 4 for (A–D), respectively. The Δt bin is 0.08, 0.04, 0.02, and 0.01 s for pink circles, red squares, blue diamonds, and green triangles, respectively. Black lines
are exponential tail fittings associated to Eq. 20. For a given U0 value, the vertical purple solid line corresponds to the critical time t* , and the vertical orange dashed line
indicates the mean first passage time τMFPT . The periodicity of the fringe and the short times diffusion coefficient are L � 1.0 × 10− 6 m and
DBD
0 � D0 � 1.8 × 10−13 m2/s, respectively, in the Brownian dynamics simulations.
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reasonable agreement, with the Brownian dynamics data, only for
large values of U0. In this regime, the Dalle-Ferrier et al. data
tends to those yielded by the Lifson-Jackson prescription (see the
inset of Figure 7).

In Figure 6 it appears that the time t* at which the first change of
concavity of the MSD occurs is the same for all values of U0

considered here. In order to locate this time more precisely, we
calculate the logarithmic derivative of the MSD which is plotted in
Figure 8 for different amplitudes of the periodic potential U0. At
very short and long times, the logarithmic derivative of the MSD
tends to one, again showing a purely diffusive behavior. At
intermediate values, the logarithmic derivative of the MSD shows
a minimum at a time which we identify as t*, i.e., at which a change
of curvature of the MSD curve is observed. The magnitude of the
logarithmic derivative at t* decreases as the energy barrier increases.
Figure 9A shows the value of t*as a function of U0. Here it is
observed that t* oscillates around the numerical value of 0.3 s. This
suggests that themagnitude of t* is independent of themagnitude of
U0 for a fixed periodicity L. In the same figure, the value of theMSD
at t* is shown, indicating a monotonic decrease by increasing U0.

On the other hand, another interesting feature regarding the
Bellour fitting is that the parameter 2δ2BD converge
asymptotically to the MSD at the time t* for large U0 values,
as shown in Figure 9B. This gives a new interpretation of 2δ2 in
this type of periodical potentials.

The above mentioned effect related with the decrease of the
2δ2BD parameter increasing U0, can be used to properly select the
parameters for the random walker simulation. As a result, it is
possible to compare the behavior of the random walker in the
most simple periodic potential of periodic flat cages, to that
displayed by a Brownian particle under the influence of a
periodical potential as 2. If the cage-size and the transition
probability p are chosen appropriately, this walker can also
reproduce the same trend of the DM/D0 ratio as found in the
BD simulation. As a consequence of the different potentials (a
periodic cosine-like one vs. a flat cage with a delta barrier), the
magnitude of the cage size decreases as p increases. Thus, the
transition probability p is a monotonic decreasing function of the
energy barrier. Interestingly, the MSD of the random walker is
able to reproduce very accurately the MSD obtained from the BD
simulations as shown in Figure 10, showing the same
independence of t* for different transition probabilities (that
are associated to different height barriers U0). This suggests
that the behavior of the particles in the two periodic potentials
studied here would be the same in other periodic potentials.

3.3 Histograms of First Passage Time
In order to gain further insight about the independence of t* at
different U0 amplitudes of the periodic potential for a fixed
periodicity L, in Figure 11 the histograms of the first passage

FIGURE 12 | (Color online): Normalized histograms of the first passage times for different barrier heights U0 and Δt bins. Black lines are exponential tail fittings
associated to Eq. 21. Locants have the same meaning as that used in Figure 11.
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time (FPT) τ of the tracer for several values ofU0 and different bin
values are displayed. In all analyzed cases, it is observed that short
FTPs are very rare events, giving also a measure of the time
required for the particles to reach the barrier by Brownian
motion. When the magnitude of the FTP increases, its
frequency of occurrence increases too. This augment of the
frequency of occurrence of the escape time is observed until a
critical value t′ is reached. At the critical FPT t′ the histogram
displays a maximum. The time t′ is then the most likely FPT of
the tracer. For larger FPTs, the associated frequency of occurrence
decreases exponentially. Thus, the tail of each FPT histogram (for
FPTs larger than t′) is fitted to a simple exponential of the form:

F(τ) � A exp(−Kτ) (20)

where F is the frequency of events in the escape time histogram, A
is the asymptotic value of F when τ � 0, and K is the decay
constant of the escape times. These three quantities depend on the
selected values of the bin of the histogram, D0, U0, and L. In each
panel of Figure 11, D0, U0, and L are kept constant, and different
histograms are displayed as a function of the value of the bin used.

On the other hand, all histograms displayed in Figure 11 are
normalized dividing the value of F by the corresponding value of
A, that is:

Fp(τ) � F(τ)/A (21)

These normalized histograms are shown in Figure 12. Here, we
observe that all normalized MFPT histograms collapse onto the

same curve for different bin values. Moreover, it is observed that
the most likely FPT t′ (that is, the FTP at which a maximum is
observed in each histogram) displays approximately a constant
value independently of the height of the periodic potential U0.
In addition, the magnitude of t′ is very close to the magnitude of
t*. As a result, the change of curvature observed in the MSD at t*

can be physically related to the characteristic time at which the
MFPT starts to display its more likely value. Contrastingly, the
mean first passage time (MFPT) τMFPT strongly depends on the
value of the height barrier U0 as it is shown in Figure 13. The
escape time τescape � 2τMFPT obtained from the Brownian
dynamics simulations are displayed in Figure 13 as a
function of the height barrier U0. The theoretical values
predicted by Eqs 16, 17 corresponding to the Dale-Ferrier
and the Lifson-Jackson approaches, respectively, are also
shown. The Dale-Ferrier formula break downs at low height
barriers U0, whereas the Lifson-Jackson Eq. predicts the
expected limit τescape � τ0, where τ0 � L2

2D0
. In both theoretical

approaches, the escape time τescape increases exponentially as a
function of the height barrier U0 and both descriptions
converge to the same value at height barriers. For all
displayed values, the escape time τescape produced by the
Lifson-Jackson equation displays an excellent agreement with
the data obtained from the Brownian dynamics simulations. On
the other hand, it is interesting to note that the histograms of
the FTP displayed in Figure 12 resemble the distribution of first
passage times in complex geometries [46–49], or in energy
landscapes [50–53], and are actually closely related. Here, we
focus the discussion on the relationship between the histograms
of escape times and a more simple statistical quantity such as
the MSD.

As pointed out above, important features of the motion of a
colloidal particle in a periodic potential are also presented in the
simple model of a random walker. Another interesting quantity is
the escape time whose histograms for the random walker
simulation were also calculated and shown in Figure 14. The
normalization of the histograms were performed following the
same protocol used in the BD simulations. Here, it can be
observed a behavior analogous to that observed by BD
simulations: the frequency of short escape times increases as
the escape time increases. This augment of the frequency of
occurrence of the escape time is observed until a critical value t′ is
reached. At the critical escape time t′ the histogram displays a
maximum. The time t′ is then the most likely escape time of the
tracer. For larger escape times, the associated frequency of
occurrence decreases exponentially.

Let us define now t# as the mean time required by the walker
to reach the boundary of the cell, given that it started at any
point of the cell of length L#. This time is displayed by vertical
colored-dashed lines in Figure 14 for several transition
probabilities, which can be associated to the U0 barrier
heights used in the BD simulations. In this figure, it is
observed that the time t# is located very close to the more
likely escape time t′, which is equal to 15, 17, 17, and 25 s for U0

equal to 1, 2, 3, and 4 kBT, respectively. Thus, it is possible to
interpret the more likely escape time as the mean time t#

required by the walker to reach one of the boundary of the

FIGURE 13 | (Color online): Escape time τescape � 2τMFPT as a function of
the barrier height U0. The black solid circles, the blue dashed-line and the red
solid line have been obtained from Brownian dynamics, the Lifson-Jackson
prescription (Eq. 17), and the Dalle-Ferrier formula (Eq. 16), respectively.
In all cases, τ0 � L2

2D0
, L � 1.0 × 10−6 m and DBD

0 � D0 � 1.8 × 10− 13 m2/s.
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cells given that started at any point of a cell of length L#. As this
time depends mainly on L# and not on p, and L# is of the same
order of magnitude for the different U0 values, all t# times are
located close among them. Moreover, it is observed that all t#

times are close to the average time t* of the BD simulations.
Then, it is possible to propose that the characteristic times t′ and
t# can be approximated by t*, which can be easily measured
fromMSD curves. Notice that the mean value of the escape time,
displayed as a vertical colored-solid line, strongly depends on
the U0 value. The above mentioned results can be summarized
following the next arguments and considering the ensemble of
particles located in the periodic potential and undergoing
Brownian motion: at long escape times, longer than t# the
escape process can be considered stationary: considering a time
window of constant width, at each time window a fraction of the

remaining particles are escaping from the potential, giving an
exponential decay of the histograms of escape times. Such
fraction decreases as U0 increases. The absence of escape
events at very short times, and the further increase is related
with an increase in the number of particles reaching the barrier
for the first time. This first regime is mostly independent on the
energy barrier and dominated by the periodicity of the potential.
The independence of the most likely time t′ on the energy
barrier U0 is related to the onset of the stationary regime at long
times. Thus, the time at which the MSD reaches the plateau and
starts to develop the second diffusive regime, characterized by
the parameter tp, can be used to differentiate the short- and
long-time regimes that the spherical tracer experiences under
the influence of a periodic external field, in terms of the behavior
of the escape time histograms.

FIGURE 14 | (Color online) Normalized histograms of the escape times obtained from the random walker simulations. The data are labeled according to the target
Brownian dynamics simulations displayed in Figure 10. Vertical blue, green, and red dashed lines represent the mean time t# required by the random walker to reach
one boundary of a periodic cell of size L#, given that the random walk started at any point inside the periodic cell. Vertical blue, green, and red continuous solid lines are
associated to the mean value of the escape time in the random walker model. The vertical black continuous solid line indicates the average critical time t* obtained
from the Brownian dynamics data.
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4 CONCLUSION

In this work, we have studied some dynamic properties of a
Brownian tracer in two periodic potentials at short- and long-
times. For the experimentally obtained harmonic potential, at
short-times, the proposed protocol allowed us to estimate the
short time diffusion coefficient D0 and the maximum height of
the potential U0, by performing a numerical fitting of the MSD of
the tracer obtained via experiments and Brownian dynamics
simulations. The precision of these parameters was further
tested by calculating another microscopic time dependent
property, namely, the linear density of probability per unit
length of finding the tracer at a position x at a time t. At
long-times, Brownian dynamics simulations were performed to
study some dynamic properties of the tracer such as the MSD.
The numerical MSDs obtained via Brownian dynamics were also
fitted to the Bellour equation. Using the parameters found, a
simpler randomwalker simulation was also performed in order to
test our results in one of the most simple forms of a periodic
potential.

At the level of the MSD, it was observed that a plateau and a
change of curvature appear and become more conspicuous when
the U0 increases. The long time diffusion coefficient of the tracer
DM , obtained from the Brownian dynamics simulations,
decreased rapidly as a function of U0 for a fixed periodicity L.
In order to estimate DM from first principles, we used the Lifson-
Jackson prescription and the analytic Dalle-Ferrier et al. formula.
An excellent agreement between the long time DM of the tracer
obtained via the Lifson-Jackson prescription and the
corresponding Brownian dynamics simulations is observed.
On the other hand, the Dalle-Ferrier et al. formula produces
long time DM coefficients that converge asymptotically, at large
U0 values, to those predicted by our simulations and the Lifson-
Jackson approach. By selecting properly the random walker
simulation parameters, the same trend of the long time
diffusion coefficient is obtained.

In order to locate clearly the time t* at which a plateau and the
first change of curvature appear at large values of U0, the
logarithmic derivative of the MSD was calculated for different
values of U0. It is found that the magnitude of t* remains
approximately constant and independent of U0 for a fixed
periodicity L of the periodic potential, finding the same results
for the case of the periodic potential associated to the random
walker by increasing the probability of hopping p. The most likely
escape time t′ of the tracer displays an analogous behavior regarding
U0 or p, and the magnitude of t′ is very similar to the magnitude of
t*. Thus, the change of curvature observed in the MSD at t* can be
physically related to the characteristic time at which the escape time
starts to display its more likely value. Moreover, the critical time t*

obtained from a single MSD curve can be used as a first
approximation of the most likely escape time t′, obtained from
computationally expensive escape time histograms.

The two periodic potentials studied here via experiments,
Brownian dynamics, and random walker simulations constitute

very simple models useful to characterize or describe more
complex systems such as dense polyelectrolyte solutions,
jammed spheres, and even crowded biological structures as
those found inside living cells. In this sense, if our simple
models are able to provide the long time diffusion coefficient
DM of a tracer in a dense and crowded experimental
environment, then the associated maximum height and
periodicity of the cosine potential can be used as effective
parameters describing the characteristic energy barrier that
the tracer needs to overcome in order to jump, or escape,
from one effective confining cell to another one. The
application of this approach to characterize the long time
dynamics of a tracer in dense tubular micellar solutions is in
progress and will be published elsewhere.
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5 APPENDIX

As both the Dalle-Ferrier et al. formula, and the Bellour fitting
parameter 2δ2BD converge asymptotically to the Lifson-Jackson
prescription, and the MSD at the time t*, respectively, for largeU0

values, the associated errors are displayed in Figures 15A,B. In
Figure 15, it is observed that the error of the Dalle-Ferrier et al.
analytic formula is of the order of ten percent for U0 � 3KBT .

This error can be decreased by increasing the magnitude of U0.
However, the error cannot be reduced less than 2 percent even
for maximum heights of the periodic potential as large as
U0 � 10 KBT . On the other hand, the error in the convergence
of the Bellour fitting parameter 2δ2BD regarding the MSD at
the time t* is similar to that displayed by the Dalle-Ferrier
et al. formula at U0 � 3KBT , even though it reduces very
quickly becoming as small as 0.01 percent for U0 � 3KBT .

FIGURE 15 | (Color online): (A) Error of the long-time diffusion coefficient obtained from the Dalle-Ferrier formula DDF
M regarding the value predicted by the Lifson-

Jackson DLJ
M prescription, and (B) difference between the fitting Bellour parameter 2δ2 and themean square displacement at the critical timeMSD(tp) as a function of the

maximum height barrier U0. These results were obtained from Brownian dynamics simulations in which L � 1.0 × 10− 6 m and D0 � 1.8 × 10− 13 m2/s in all cases.
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Quantum Implications of
Non-Extensive Statistics
Nana Cabo Bizet1*, César Damián2, Octavio Obregón1 and Roberto Santos-Silva3

1Departamento de Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Mexico, 2Departamento de
Ingeniería Mecánica, Universidad de Guanajuato, Salamanca, Mexico, 3Departamento de Ciencias Naturales y Exactas,
CUValles, Universidad de Guadalajara, Jalisco, Mexico

Exploring the analogy between quantum mechanics and statistical mechanics,
we formulate an integrated version of the Quantropy functional. With this prescription,
we compute the propagator associated to Boltzmann–Gibbs statistics in the semiclassical
approximation as K � F(T)exp(iScl/h�). We determine also propagators associated
to different nonadditive statistics; those are the entropies depending only on the
probability S ± and Tsallis entropy Sq. For S ± , we obtain a power series solution for
the probability vs. the energy, which can be analytically continued to the complex
plane and employed to obtain the propagators. Our work is motivated by the work
of Nobre et al. where a modified q-Schrödinger equation is obtained that provides
the wave function for the free particle as a q-exponential. The modified q-propagator
obtained with our method leads to the same q-wave function for that case. The procedure
presented in this work allows to calculate q-wave functions in problems with interactions
determining nonlinear quantum implications of nonadditive statistics. In a similar
manner, the corresponding generalized wave functions associated to S ± can also be
constructed. The corrections to the original propagator are explicitly determined in
the case of a free particle and the harmonic oscillator for which the semiclassical
approximation is exact, and also the case of a particle with an infinite potential barrier
is discussed.

Keywords: quantropy, nonlinear quantum systems, propagator, nonextensive entropies, path integrals

1 INTRODUCTION

Nonextensive entropies depending only on the probabilities have been obtained in [1]. They belong
to a family of nonextensive statistical mechanics, relevant for nonequilibrium systems. Renowned
examples are Tsallis (Sq) [2, 3] and Sharma-Mital [4]; all of them can be obtained within the
framework of Superstatistics [5].

For the entropies depending only on the probability, there are two entropy functionals [1]:

S+ � ∑
l

(1 − ppll ), S− � ∑
l

(p−pll − 1),

where the index l runs over the states of the system and pl denotes the probability of the state l. These
expressions can be considered as building blocks for nonextensive entropies without parameters. For
example, one can consider S1 � (S+ + S−)/2. These entropies are noticeably distinct to
Boltzmann–Gibbs (BG) entropy for systems with few degrees of freedom; however, when
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the number of degrees of freedom goes to the thermodynamic
limit, they match perfectly with BG statistics Cabo [6]. This is
when the probability pl is small, the leading term in S+ and S−
expansions is the BG entropy. Therefore, in this limit, BG statistics
is recovered. They belong to the class of Superstatistics of [5] with
an intensive parameter χ2 distribution found in [1]. These
entropies have also been studied in [6–10].

There is a universality of the Superstatistics family [5]. As
it has been shown, for several distributions of the
temperature, the Boltzmann factor essentially coincides up
to the first expansion terms. This has as a consequence that
also the entropies associated to these Boltzmann factors have
all of them basically the same first corrections to the
usual entropy. Furthermore, the three entropies listed here
that depend only on the probability are expanded only on
the parameter y � plnp; this is always smaller than 1 giving
correction terms to the entropy which at any order are
smaller than the previous ones. So, that any function of y
proposed as another generalized entropy, depending only
on this parameter, when expanded in y will basically
coincide with one of the three ones studied here; clearly
demanding that the first term in the expansion is −y giving
BG entropy. Thus, the entropies S+, S−, and their linear
combinations can be considered as building blocks to
compute any possible modified entropies depending only
on the probability.

We are motivated by the concept of Quantropy developed by
Baez and Pollard [11] and by nonlinear quantum systems with
modified wave functions based on Tsallis statistics in [3, 12, 13].
For example, the work [13] developed a nonlinear quantum
mechanics with q-mathematics motivated by Tsallis entropy.
In recent years, there have also been other interesting
developments in the connections of nonextensive entropies
and quantum mechanics [14–25]. Also, the work [26] showed
extensions of nonlinear quantum equations arising from an
effective one particle treatment of many-body physics, such
that the nonlinearity represents the interactions, obtaining
wave function solutions that are q-distributions and including
the harmonic oscillator potential. There exists as well a
connection between nonlinear quantum equations and
nonlinear diffusion and Fokker–Planck equations [18, 20] that
also is noticed in [26]. Moreover, interesting applications of
nonextensive entropies to compute statistical and
thermodynamical properties of graphene and 2-dimensional
quantum structures [27–30] have been developed. We develop
a version of Quantropy in terms of the propagator of a quantum
mechanical theory. Our generalized propagators could be
connected to the appropriate quantum equations. Baez and
Pollard’s Quantropy is a functional of the amplitude on the
path integral a, with the same functional form as the entropy
in terms of the probability Q � −∫

X

a(x)lna(x)dx. Giving the
functional

ΦBP � −∫
X
a(x)lna(x)dx − α∫

X
a(x)dx

−λ∫
X
a(x)S(x)dx,

(1)

where α and λ are Lagrangemultipliers and x is a path in the space of
all possible paths X. From the search of extrema of this functional,
restricted to values of a normalized and an average of the action,
Baez and Pollard obtained the relation a � exp(iS/h� − 1 − α) with
λ � 1

ih�. Then, a ∼ exp(iS/h�) with the normalization fixed by the
Lagrange multiplier α. This scheme deepens on the relation
between Quantum Mechanics and Statistical Physics,
which has also been studied in different approaches [31,
32]. For example, in [33], the Fisher Information measure
is employed to explore this relation.

In Baez and Pollard’s approach, the energy is mapped to
the action S and the temperature to ih�. We consider the same
identification but instead we identify E with the classical
action Scl . Thus, we consider as the analog of the entropy a
functional in terms of the propagator, instead of the
amplitude a. This is an extrapolation of the Quantropy
[11] to an integration over all classical paths. It is worth
to mention that the analog to the microstate in statistical
mechanics is a particle path in quantum mechanics. Such that
as the partition function in statistical mechanics is the sum
over all the microstates, the quantum mechanical analog is
the sum over all the paths of the particle (Feynman path
integral). The standard expression for the propagator is given
semiclassically by K ∼ exp(iScl/h�). We use this fact to define a
kind of integrated Quantropy functional now in terms of the
propagator for BG statistics, which we extend to the modified
statistics S+, S−, and Sq.

This article is organized as follows. In Section 2, we obtain a
series expansion for the probabilities versus βE for the generalized
entropies depending only on the probabilities S+ and S−. In
Section 3, we continue these expansions to the complex plane.
In Section 4, we present a version of Quantropy for BG statistics,
S+ and S− and Sq. In Section 5, we study in particular the case of
the free particle propagator, obtained from the extrema of the
Quantropy in the cases of S+ and S− and Sq for q< 1 and q> 1. We
show that the Kq propagator results exactly in the q-exponential
that defines the q-wave function for the free particle [3]. In a
similar manner, we argue that the corresponding generalized
propagators K+ and K− provide us with a procedure to construct
Ψ+ and Ψ− for the free particle. Our method however gives the
possibility to construct Kq, K+, and K− also for problems with
interactions and by this mean to identify the corresponding wave
functions. We also provide a way to perform the normalization
inspired in Feynman andHibbs work [34]. Section 6 is devoted to
the analysis of the harmonic oscillator, and we exemplify with the
case corresponding to K+. Finally, in Section 7, we study the K+
propagator for the particle in an infinite potential barrier. In
Section 8, we summarize our results and present the conclusion.
In a Supplementary Appendix we present a numerical study of
the propagators.

2 PROBABILITY DISTRIBUTIONS FOR
SYSTEMS WITH MAXIMAL S+ AND S−

We start by developing a recurrent solution for the probability
distribution of the generalized entropy S+, introduced in [1]. On
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the contrary to BG statistics, for a system subjected to S+
extremization, probability normalization, and energy
conservation, there is not a simple inverse function of the
probabilities p vs. the values of the energy state E. We
overcome this difficulty by finding a series solution to the
extremum equation. There are other possible series solutions,
but we discuss here one that has a good convergence. At the end
of the section, we give also the probability expansion for the
entropy S−, which is obtained by an equivalent Ansatz.

The functional to maximize the S+ entropy subjected to
probability normalization and averaged energy is given by [7, 8]:

Φ+ � ∑
l

(1 − ppll ) − γ∑
l

pl − β∑
l

Elp
pl+1
l . (2)

β and γ are Lagrange multipliers and El is the energy of the
state l, with probability pl . The average values of energy and
the normalization value have been omitted for simplicity.
The extrema of (2) given by δΦ+

δpl
� 0 gives a relation between

the energy E and the probabilities p (we have omitted the
index l):

βE � ( − γp−p − 1 − ln p)
(1 + p + p ln p)

. (3)

Notice that we omit the subindex l from the quantities. Setting
the Lagrange multiplier γ to −1, we first expand the previous
equation around p � 0 that accounts to consider the expansion
around y � plnp � 0. That is, for the exponential of minus
equation (3), one gets

e−βE � p−p2 lnp2 +1/2p3(lnp2 +2lnp3 + lnp4)
+1/6p4(−3lnp2 −8lnp3 −9lnp4 −6lnp5 − lnp6)

+1/24p5(12lnp2 +44lnp3 +70lnp4 +68lnp5 +42lnp6 +12lnp7 + lnp8)+ . . . .
(4)

We make the following Ansatz to solve equation (4).

p � e−βE⎛⎝1 +∑
n�1

cne
−nβE⎞⎠, (5)

where cn can be functions of βE. Plugging (5) in (4), to have the LHS
equal to the RHS, the coefficients multiplying the powers of e−nβE
with n> 1 have to vanish. This gives a recurrent expression for the
coefficients cn which for the first four coefficients is solved as

c1 � x2,

c2 � 1/2x2( − 1 − 2x + 3x2),

c3 � 1
6
x2(3 + 4x − 6x2 − 24x3 + 16x4),

c4 � 1
24
x2( − 12 − 16x + 60x2 + 116x3 + 30x4 − 300x5 + 125x6).

(6)

We have denoted βE as x. The coefficients (6) give the
following approximate solution for the probabilities versus βE:

p+ � e−x + e−2xx2 + 1
2
e−3xx2( − 1 − 2x + 3x2)

+ 1
6
e−4xx2(3 + 4x − 6x2 − 24x3 + 16x4)

+ 1
24
e−5xx2( − 12 − 16x + 60x2 + 116x3 + 30x4 − 300x5

+ 125x6) + . . . . (7)

In Figure 1, we compare the exact value of p vs. βE with the
power series solution (7) till 3rd order and with the Boltzmann
distribution e−βE .

Probability Expansion for the Entropy S− -
Consider the other generalized entropy dependent only on the
probabilities S−. For this entropy, the functional to extremizeΦ− reads

Φ− � ∑
l

(p−pll − 1) − γ∑
l

pl − β∑
l

Elp
1−pl
l . (8)

β and γ are Lagrange multipliers, and El is the energy of the
state l and pl its probability. Finding the extrema of (8) as δΦ−

δpl
� 0

and proposing the same Ansatz (5), we obtain a set of equations
that can be solved to give the recursive probability solution:

p− � e−x(1 − e−xx2 + 1
2
e−2xx2( − 1 − 2x + 3x2)

+ 1
6
e−3x( − 3x2 − 4x3 + 6x4 + 24x5 − 16x6))... (9)

3 MODIFIED AMPLITUDE EXPANSIONS

In this section, we use the series solutions for the probabilities in
terms of the energy obtained in the previous section, to perform
an analytic continuation to the complex plane. Considering a as
the amplitude of a path, this is a new complex variable
substituting the probability pl , and A as the action replacing
βEl . This identification will allow to study modified Quantropy
functionals, for the definition of Baez and Pollard (equation (1)),
as well as our definition (18). The usual Quantropy solution will
give an exponential a ∼ e

iA
h� . In our approach, this would be the

propagator K ∼ e
iScl
h� . We want to analyze the new statistics S+ and

S−. We will find a functional dependence of a vs. A (K vs. Scl) that
deviates from the exponential dependence.

The main idea is to complexify first the power expansion
solution (7) since the amplitude is a complex number, such that
we have a solution to the extrema of the modified Quantropy. The
functional to extremize reads

ΦBP,+ � ∫
​

(1 − a(x)a(x))dx − α∫
​

a(x)dx − λ∫A(x)a(x)a(x)+1dx.
(10)

Finding the extrema of (10) w.r.t. a, i.e., solving δΦBP,+
δa(x) � 0, one

gets

A
ih�

� ( − ca−a − 1 − lna)
(1 + a + alna) � F(a(

A
ih�
)). (11)
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FIGURE 1 | Probability versus βE. The blue line represents the BG statistics distribution. The dots represent the exact dependence in (3), S+ statistics distribution,
while the continuous red curve overlapping with the dotted line represents the power series solution (7) till order 3, i.e., up to the e−4x correction.

FIGURE 2 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics S+. We set the mass
and the Planck constant to unity. The quantum regime is given by Scl ≈ h�. Imposing Scl(h�which translates for fixed x � 1 in ta1/2, for fixed t � 1 translates in x2(2.
Notice that in the quantum regime Scl ≈ h�, there are differences between the standard and the modified propagator. In the classical regime, there are many oscillations
caused by the series expansion that should sum up when computing more terms. When Scl ≪ h�, then both results coincide. The difference between the results of
the modified propagator and the standard free particle is that the modified propagator result could be interpreted as the particle with an effective potential; this would give
a spatially bounded wave function.
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The range of validity of the propagators expressions depends
on the convergence of the imaginary series solution to this
equation. The series is obtained by doing the replacement βE
by A

ih� and p by a in (3). Also, the Lagrange multipliers have to be
mapped: β to λ and α to γ. The minus sign gives the right sign
after a rotation on the argument of the exponential (similar to a
Wick rotation). As the series solution continuation of (7), we
obtain the following expression:

a+(
A
ih�
) � eiA/h�(1 − A

h�

2

ei(A/h�)

− 1
2
(A2/h�2)( − 1 + 2i(A/h�) − 3(A2/h�2))ei2(A/h�)

− 1
6
(A2/h�2)(3 − 4i(A/h�) + 6(A2/h�2) − 24i(A3/h�3)

+16(A4/h�4))e3i(A/h�) + . . .). (12)

Since A has units of action, the argument of the exponentials and
the terms on the expansion are adimensional. Substituting this
expression on the constraint equation (11), we obtain the real

and imaginary parts of F(a(A
ih�)). In Figure 2, the relevant

difference of the propagators K+ obtained employing (12) with
respect to the standard one can be observed in the region of Scl ≈ h�.

Using the parameter λ � 1
ih�
in (12), the expression for the

amplitudes becomes

a+(A) � e− λA(1 + (λA)2e− λA

+ 1
2
(λA)2(−1−2λA + 3(λA)2)e− 2λA

+ 1
6
(λA)2(3 + 4λA − 6(λA)2 − 24(λA)3

+16(λA)4)e− 3λA + . . .). (13)

It is not difficult to observe that all terms of this expansion can
be written as derivatives with respect to the parameter λ. If we
derive with respect to λ, the usual amplitude we obtain is
z
zλe

−λA � −Ae−λA. Higher derivates can be written as

(
λ
n
)

m
zm

zλme
−nλA � (−1)m(λA)me−nλA, (14)

where m and n are positive integers. Thus, we rewrite (3) as

a+ � e−λA + λ
2

4
z2

zλ2
e−2λA

+ 1
2
(− λ

2

32
z2

zλ2
+ 2λ

3

33
z3

zλ3
+ 3λ

4

34
z4

zλ4)
e−3λA

+ 1
6
(3

λ2
42

z2

zλ2
− 4λ

3

43
z3

zλ3
− 6λ

4

44
z4

zλ4
+ 24λ

5

45
z5

zλ5
+ 16λ

6

46
z6

zλ6)
e−4λA + . . . .

(15)

One can compute the corrections to any order. Those
corrections to the usual amplitude a0 � eiS/h� can be

interpreted as higher order interactions of the action at
different frequencies1.

Now, one can apply the same method to determine the
distribution arising from the Quantropy with statistics S−. We
also have to perform the extension to the complex plane. The
amplitude distribution for the modified Quantropy coming from
S− is given by the following:

a− �ei(A/h�)(1+(A/h�)2ei(A/h�)

−1
2
(A/h�)2(−1+2i(A/h�)−3(A/h�)2)e2i(A/h�)

+1
6
(3(A/h�)2−4i(A/h�)3+6(A/h�)4

−24i(A/h�)5+16(A/h�)6)e3i(A/h�) + ...). (16)

4 QUANTROPY IN TERMS OF THE
PROPAGATOR

In this section, we present as an alternative proposal a kind of
integrated version of the Quantropy of [1]. First, we do it for the BG
entropy and then for S+, S−, and Sq. The change in distribution
probabilities which arise from modified entropies in statistics is now
reflected in the quantum arena as modifications to the propagators.
The propagators between points in space-time (xa, ta) and (xb, tb) in
quantummechanics determine the probability amplitude of particles
to travel from certain position to another position in a given time. As
modified entropies in statistical physics lead to modified probability
distributions, distinct probabilities of propagation over all paths from
(xa, ta) and (xb, tb) will arise from a modified Quantropy.

In the work [11], the Quantropy functional associated with BG
statistics was formulated, and its maximization leads to the weight on
the path integral a ∼ exp(−λS) with λ � 1/ih�. We propose another
functional, which in a sense constitutes an integrated version of
Quantropy. Its maximization leads to the propagator
K(x) ∼ exp(−λScl(x)). The Wentzel–Kramers–Brillouin (WKB)
method [35] allows to compute the wave function in a semiclassical
approximation. In a sense, this is linked to our approach, in which we
maximize a functional which determines the propagator with a
semiclassical approximation in terms of the classical action Scl . This
is exact for the free particle, the harmonic oscillator as well as for other
cases [36, 37]. The procedure is applied to generalized entropy
functionals, giving a modified propagator. For the Tsallis statistics,
we obtain Kq(x) ∼ expq(−λScl(x)). This structure is the same as the
one of the wave function for the free particle of the Tsallis statistic
Ψq(x) � expq(i(kx − wt)), which has been proposed as solution of
the nonlinear quantum equations of [13]. According to Feynman
arguments, one can start with the free particle propagator and
determine the corresponding wave function, as discussed in [34].
Thus, our procedure allows to find a propagator which can be
identified with the wave function of interest. We should note that
the propagator resulting from our procedure will describe not only the

1For example, for a massive particle those will be contributions from multiples of
the particle mass. For the harmonic oscillator also, there will be contributions with
a tower of masses and frequencies.
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free particle but to a good approximation any other problem with its
corresponding classical action. Our method should give the wave
function solution for the problem of interest.

With the same method, we write functionals for S+ and S− and
obtain probability distributions; we can write the corresponding
Quantropies and obtain the propagators K+ and K− and
correspondingly extrapolate them to the wave functions Ψ+
and Ψ−. This would give us the quantum behavior for a given
action. The obtained propagators can be related to nonlinear
quantum systems studied in the literature [26].

To define our functionals, we use the semiclassical limit to compute
the propagator; this is K(x) � F(a, b)eiScl(x)h� , denoting the classical
action as Scl(x) and being F(a, b) a constant depending on the time
difference tb − ta. For the free particle and the harmonic oscillator as
well as other physical problems [36, 37], this is an exact result.

For the BG statistics, we define the Quantropy functional:

Φ0 � −∫
​

K(x)lnK(x)dx − α∫
​

K(x)dx − λ∫
​

(Scl(x)K(x))dx. (17)

The extrema condition δΦ0
δK(x) � 0 gives as solution the

propagator dependence K(x) � e−1−α−λScl(x), with λ � 1/ih�,
where the normalization constant α determines F(a, b).

The integrated Quantropy functional for the new S+ statistic is
studied in [1, 6–10] is given by the following:

Φ+ � ∫
​

(1 − K(x)K(x))dx − α∫
​

K(x)dx

− λ∫
​

(Scl(x))K(x)K(x)+1dx. (18)

The extrema condition δΦ+
δK(y) � 0 with functional derivatives

leads to the equation:

0 � ∫
​

( − δ(x − y)K(x)K(x))(lnK(x) + 1)dx − α∫
​

δ(x − y)dx

−λ∫ Scl(x)K(x)K(x)+1δ(x − y)(lnK(x) + K(x) + 1
K(x) )dx,

(19)

and by changing the variable notation y to x, this can be
written as

λScl(x) � −1 − lnK(x) − αK(x)−K(x)

1 + K(x) + lnK(x) . (20)

Using our knowledge to solve this type of equation from the
statistical physics case, presented in Section 2, this gives for the
modified propagator the following series solution:

K+(x) � N+e−λScl(1 − e− λScl(λScl)2
+ e−2λScl(λScl)2( − 1 − 2(λScl) + 3(λScl)2)

− 1
6
e−2Sclλ × ( − 3S2clλ2 − 4S3clλ3 + 6S4clλ4 + 24S5clλ5

−16S6clλ6) + . . .). (21)

where N+ is the normalization constant. This is obtained by
taking the normalization α � −1. A different normalization
would change the coefficients in the expansion (21).

The maximization constraint for the new S− statistic is given by

Φ− � ∫
​

(K(x)−K(x) − 1)dx − α∫
​ ​

K(x)dx

− λ∫
​

(Scl)K(x)−K(x)+1dx. (22)

The extrema condition δΦ−
δK(x) � 0 gives the equation:

λScl(x) � 1 + lnK(x) + αK(x)K(x)
1 − K(x) − lnK(x) . (23)

Using our knowledge of this type of equation from the
statistical physics case, we obtain for the modified propagator
the series solution:

K−(x)�N−e−λScl(1+e(−λScl)(λScl)2

−e(−λScl)(λScl)2(−1−2(λScl)+3(λScl)2

+1
6
e−2Sclλ(−3S2clλ2−4S3clλ3+6S4clλ4+24S5clλ5−16S6clλ6)+...),

(24)

N− is the normalization constant. In the case of Tsallis statistics,
the functional is given by the following:

Φq � ∫
​ (1 − K(x)q)

(q − 1)
dx − α∫

​

K(x)dx − λ∫
​ ​

(Scl)K(x)qdx, (25)

and the solution to δΦq

δK(x) � 0 is

Kq(x) � Nqexpq( − λScl(x)),
� Nq(1 − (1 − q)λScl)

1
1− q.

(26)

We have still to discuss the normalization of the different
Kernels. This q-propagator is related to the q-wave function
for the free particle nonlinear quantum mechanics of [3]. We
explore this case which has been studied by other means in the
literature [3, 13, 24].

5 FREE PARTICLE PROPAGATORS

In this section, we write a modified propagator up to third order
for the free particle in the case of the statistics S+, S−, and Sq for
q � 1 − δ and q � 1 + δ with δ > 0. The values of q less or equal
than one are considered in order to compare the different
propagators. We determine when the corrections to the usual
propagator play an important role which turns to be in the
quantum regime characterized by Scl ≈ h�. First, we describe the
procedure; then, we describe the normalization; and in the last
subsection, we summarize our results.

5.1 Superposition of Kernels
Now, we proceed to describe a generalized Kernel. The
generalized complex probability distribution given by
expansion (21) can be regarded as a superposition of
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Kernels. Furthermore, the superposition will carry to the wave
functions. In order to normalize the superposition, we
consider that the total Kernel expansion integration is the
same as the usual (1 for the free particle), as is explicit in the
Quantropy functional (4). We show that this coincides with
the result for the normalization obtained from propagating the
wave function [34]. For the free particle, the unnormalized
Kernel is as follows:

K0(x, t; 0, 0) � (
2h�ϵiπ
m

)
(n− 1)/2

(
1
n
)
1/2

exp(
imx2

2h� t
),

where n is the number of divisions of the time interval and ϵ
is an infinitesimal time parameter that satisfies t � ϵn. This
expression arises from computing the path integral to get the
following:

K0(x, t; 0, 0) � ∫
​

eiS/h�Dx

� ∫
​

exp⎛⎝
im
2h�ϵ∑n

(xn − xn−1)2⎞⎠dnx

� (
iπ
2A

)
1
2

(
2iπ
3A

)
1
2

(
3iπ
4A

)
1
2 × . . .

×((n − 1)iπ
nA

)
1
2

exp(
iA(x0 − xn)2

n
), (27)

with A � m
2ϵh�. This calculation is performed dividing the integral in

multiple Gaussian integrals (see [34]). The normalization

constant is given by N � (2πih� ϵ
m )

− n
2

; hence, the normalized
propagator reads

K1(x, t; 0, 0) � (
2h�tiπ
m

)
− 1/2

exp(
imx2

2h�t
). (28)

We define the unnormalized Kernel for the free particle as

k(x, t; 1) � exp(
imx2

2h�t
) � e−λA, (29)

and the first two corrections in K+ are given by

k(x, t; 2) � (
mx2

h�t
)

2

exp(
imx2

h�t
) � (λA)2 z

2

zλ2
e−λA,

k(x, t; 3) � −(m
2x4

8h�2t2
+ m3x6

8ih�3t3
+ 3

m4x8

32h�4t4
) × exp(

3imx2

2h�t
),

� 1
2
( − λ2

32
z2

zλ2
+ 2

λ3
33

z3

zλ + 3
λ4
34

z4

zλ4)
e−3λA.

Thus, the generalized Kernel associated with S+ entropy is
given by

K+(x, t) � N+(k(x, t; 1) + k(x, t; 2) + k(x, t; 3) + . . . ).
The normalization constant is determined by the requirement

∫ ​ ∞
−∞K+(x, t)dx � 1, and up to the first corrections is given by

N+ � 1
1+3/(16 �

2
√ ) � 0.883.... The reason for this normalization is

also understood by an argument presented in the following,
motivated by Feynmann and Hibbs procedure [34].

Let us also discuss the normalization of themodified propagator
with respect to the usual one, as shown in the standard case [34].
We start considering the original unnormalized Kernel for the free
particle computed from the path integral:

K1,0(x, t; 0, 0) � 2
N−1
2 (

πih�t
mN

)
N− 1
2

(N)− 1/2exp(imx2

2h�t
).

To determine the normalization constant in the Feynman and
Hibbs method, we can apply formulas (2–34) and (4-3) on their
book [34] to write the new infinitesimal Kernel between position
xi and xi+1, with Δxi � xi+1 − xi, in a time ϵ as follows:

K+(ii+1, i) � 1
A
exp(

iϵ
h�
L(

Δxi
ϵ ,

xi+1 + xi
2

,
ti+1 + ti

2
)),

(1 + (iϵ/h�)2L(Δxiϵ ,
xi+1 + xi

2
,
ti+1 + ti

2
)
2

exp(iϵL(v, x, t)/h�) + . . . ).

(30)

The method consists in writing the wave function at a position
x at a time t + ϵ in terms of the wave function at position y � x + η
at a time t, explicitly

ψ(x, t + ϵ) � ∫
​ ∞

−∞
K+(x, y, ϵ)ψ(y, t)dy,

� ∫
​ ∞

−∞
1
A
exp(

iϵ
h�
L(

x − y
ϵ ,

x + y
2

, t)) × (1 + . . .)ψ(y, t)dy,

� ∫
​ ∞

−∞
1
A
exp(

iϵ
h�
L( − η

ϵ, x +
η

2
, t)) × (1 + . . .)ψ(x + η, t)dη,

� ∫
​ ∞

−∞
1
A
exp(

imη2

2h�ϵ )exp
⎛⎝ −

iϵV(x + η

2
, t)

h�
⎞⎠ × (1 + . . .)ψ(x + η, t)dη.

(31)

In the quantum standard theory, the normalization constant
can be determined by expanding the LHS of (31) ψ(x, t + ϵ) �
ψ(x, t) + ϵztψ and the RHS ψ(x + η) � ψ(x, t) + ηzxψ + η2

2 z
2
xψ

and exp(−iϵV/h�) � 1 − iϵV
h�
+ . . .; then, we compare the leading

term ϵ0. This implies that

1
A0

∫
​ ∞

−∞
exp(

imη2

2h�ϵ )dη � 1. (32)

In a similarly fashion, one gets for the first correction to K+
written in (30):

1
A
∫

​ ∞

−∞
exp(

imη2

2h�ϵ )(1 − (
mη2

2h�ϵ)
2

e
imη2

2h� ϵ + . . .)dη � 1.

It is worth to mention that the more important contribution to
(31) is given for small η′s, as well as in our generalized case. It is
necessary to check this argument; in order to verify, let us
consider the following integrals:
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∫
​

eiCw
2
dw � ����

iπ/C
√

, ∫
​

eiCw
2
w4dw � 3

��
π

√
4(− iC)5/2,

∫
​

eiCw
2
w2n+1dw � 0, n ∈ N.

The first correction gives the following relation:

A � A0(1 + 3
16

�
2

√ + . . .). (33)

The previous normalization factor is a general feature to
apply to any potential V(x, t), in particular is valid for the
cases discussed here. A similar expression holds for the
normalization of K− normalization, and this will be calculated
in the next section.

5.2 Analysis of the Propagators
Here, we summarize the propagators obtained with the
normalization methods described in previous subsections. The
results for K+ can be extrapolated to K− and Kq because the
method applied to obtain all of the propagators is the same.

Recall the standard propagator of the free particle from the
space-time point (0, 0) to (x, t) is given by

K1(x, t; 0, 0) � N0exp(
imx2

2h�t
). (34)

The constant w.r.t. x is as follows: N0 �
���
m

2πih�t

√
. For the case of

S+ and S− statistics, the first two contributions to the modified
propagators (21) and (24) read:

K ± � N ± exp(
imx2

2h�t
) × (1 ∓ exp(

imx2

2h�t
)(

imx2

2h�t
)

2

+ . . .), (35)

with N+ ∼ N0. For the Tsallis statics, the associated propagator
(26) is given by the expression:

Kq(x) � Nq(1 + (q − 1)(
mx2

2h�it
))

1
1− q

� Nqexp(
imx2

2h�t
)(1 − (q − 1)(

m2x4

2h�2t2
) + . . . .). (36)

We calculate the normalization constants for K ± up to the
first correction and exactly Kq to get the following:

N+ �
�����
m

2πih�t

√
1

(1 + 3
16

�
2

√ + . . . )
, (37)

FIGURE 3 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics S−. We set the mass
and the Planck constant to unity. Imposing Scl(h� for fixed x � 1 translates in ta1/2, and for fixed t � 1 translates in x2(2.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6345478

Cabo Bizet et al. Quantum Implications of Non-Extensive Statistics

153

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


N− �
�����
m

2πih�t

√
1

(1 − 3
16

�
2

√ + . . . )
, (38)

Nq �
�����
m

2πih�t

√
������
(q − 1)

√
Γ( 1(q−1))

Γ( 1(q−1) − 1
2)

. (39)

In the quantum regime Scl ≈ h�, the differences between the
propagators K+,K−,Kq, and K0 are shown in Figures 2–4. In
Figure 2 the K− propagator is compared to the usual one. Also,
Figure 3 shows a comparision of the K− propagator with the
standard one. The last Figure 4 shows a comparison between the
propagators for the Sq statistics Kq for q< 1 and q> 1 with the usual
one. The region of interest is the quantum regime with Scl ≈ h�.
Furthermore, in the classical regime, the oscillations of the standard
propagator grow averaging to zero as discussed in [34]. Thus,
we are interested in comparing the corrections arising from
different statistics in the quantum region of interest and, in the
plots, the differences between the standard and the modified
propagator can be observed. In the classical regime, there are
oscillations that should sum up when computing more terms.
When Scl ≪ h�, then both results coincide as shown in Figure 5.
The modified propagators could be interpreted as describing a

particle with an effective potential; this would give a spatially
bounded wave function.

6 THE HARMONIC OSCILLATOR

In this section, we apply the formulation of our modified
Quantropy of Section 4 for the case of the harmonic
oscillator. We compute the modified propagator constructed
by a superposition as it was done previously. The extension of
quantum systems employing the modified q-statistics has
been made only for the case of the free particle [13] with
different arguments. Our proposal allows to search the
manifestation of nonextensive statistics in nonlinear
quantum systems for generic potentials. We illustrate the
procedure calculating only K+, and the other propagators K−
and Kq could be similarly calculated.

For the harmonic oscillator with Lagrangian L � m
2 _x

2 − mω2

2 x2,
the path integral Kernel reads

K(a, b) � (
mω

2πih�sinωT
)
1/2

× exp(
imω

2h�sinωT
((x2a + x2b)cosωT

− 2xaxb)).

FIGURE 4 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics of Tsallis for
q � 1.1. We set the mass and the Planck constant to unity. Imposing Scl(h�, it translates for fixed x � 1 in ta1/2 and for fixed t � 1 translates in x2(2.
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Next, following a similar procedure as for the free particle, we
compute the generalized Kernel and normalize it. The
unnormalized Kernel is given by the following:

K(x, t, 1) � exp( − 1
2
λmωcot(ωt)x2). (40)

Now, we compute the next terms of the Kernel up to third
order, which are as follows:

K(x, t, 2) � (
λ
2
)

2
z2

zλ2
exp(−2λA)

� 1
4
λ2m2ω2x4exp( − λmωcot(ωt)x2),

(41)

K(x, t, 3) � 1
2
( − λ2

32
z2λ + 2

λ3
33

z3λ + 3
λ4
34

z4λ)exp(−3λA)

� ( − 1
8
λ2m2ω2cot2(ωt)x4 − 1

8
λ3m3ω3cot3(ωt)x6

+ 3
32
λ4m4ω4cot4(ωt)x8) × exp(

−3
2
λmωx2cot(ωt)).

(42)

Thus, the total normalized propagator up to third order reads

K+(x, t) � N+���
2π

√ ((
mωcot(tω)

ih�
)

1
2

exp(
−mωx2cot(tω)

2ih�
)

+ 1
4
(
mωcot(tω)

ih�
)

5
2

x4exp(
−mωx2cot(tω)

ih�
) − 1

8
⎡⎣(

mωcot(tω)
ih�

)
5
2

x4

+ (
mωcot(tω)

ih�
)

7
2

x6 − 3
4
(
mωcot(tω)

ih�
)

9
2

x8⎤⎦exp(
−3mωx2cot(tω)

2ih�
) + . . .)

(43)

where N+ � 1�����
cos(ωT)

√ 1

(1+ 3
16
�
2

√ + 1
96
�
3

√ )
. The relative normalization

of the modified propagator with respect to the normalization
of the usual propagator is a result obtained in Section 5 [see
formulas (31–33)]. This result is universal, i.e., independent
of the action. In Figure 6, we compare the propagator for
the harmonic oscillator for the standard Quantropy and
for the one based on S+ and S− statistics. We are interested in
the quantum regime given by Scl ≈ h�. There are noticeable
effects in that regime. Outside the quantum region, oscillations
grow as in the usual case [34]. This behavior occurs in the
classical region in which the modified Kernels will also not
contribute.

FIGURE 5 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics of Tsallis for q � 0.9.
We set the mass and the Planck constant to unity. Imposing Scl(h�, it translates for fixed x � 1 in ta1/2 and for fixed t � 1 translates in x2(2.
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7 POTENTIAL BARRIER

In this section, we apply the formulation of Quantropy
developed previously to compute the propagators
associated to a particle in an infinite potential barrier given
as follows:

V(x) � { 0 x > 0
∞ x ≤ 0 .

The standard unnormalized propagator for this problem is
given as follows [38]:

K(x, t; x0, 0) � exp[
im
2πh�t

(x − xo)2] − exp[
im
2πh�t

(−x − xo)2],
(44)

where x0 is the initial position. It is important to specify the
initial position since the particle cannot be located at x ≤ 0; thus,
we set x0 � ϵ, where ϵ is a small positive non zero parameter. This
allows tomake a comparisonwith the free particle case. Notice that if
we set x0 � 0, the propagator vanishes since the x dependence is
quadratic.

Now, we compute the nonlinear propagator associated to
the statistics S+: K+(x, t; ϵ, 0) up to third order, which is given
by expression (24). Since our theory is nonlinear, the
superposition principle is not valid, i.e., we cannot
consider the difference between the propagators of two
free particles, like is done for the usual propagator
K(x, t; x0, 0), rather in the semiclassical regime, we
consider the logarithm:

Scl � h�
i
ln(K(x, t; x0, 0)), (45)

This allows to substitute Scl into the series expansion
(21) K+(x):

K+(x, t; ϵ, 0) � e
im(x− ϵ)2

2πh� t − e
im(− x− ϵ)2

2πh� t[ ] × [1 + (e
im(x−ϵ)2

2πh� t

−eim(−x−ϵ)2
2πh� t )ln2(e

im(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

+1
2
(e

im(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

2
[3 ln4(e

im(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

+2 ln3(e
im(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t ) − ln2(e
im(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )

×] + 1
6
(e

im(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

3
[16 ln6(e

im(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

+24 ln5(e
im(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t ) − 6 ln4(e
im(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )

−4 ln3(e
im(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t ) + 3 ln2(e
im(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )]]. (46)

Note that the propagator is ill-defined if ϵ is zero. This propagator
oscillates faster than the usual propagator in x, and its amplitude is
greater. However, the global behavior of both propagators is quite
similar, and the oscillations and the amplitude grow as x increases.
For the time dependence in both cases, the propagator tends to zero
as t grows (see the set of graphics in Figure 7).

In the usual case, the propagator K(x, t; x0, 0) has the following
interpretation, the first part corresponds to the classical path of the
free particle from (x0, 0) to (x, t), while the second part corresponds
to the classical path of a free particle from (x0, 0) bouncing off the
wall and going to (x, t). The modified propagator expression
suggests a similar interpretation, i.e., the whole propagator can
be considered as the sum of both classical paths with the leading
terms given by the standard free particle and nonlinear corrections
which can be interpreted as an effective potential.

8 FINAL REMARKS

In this work, we explore the novel concept of Quantropy in
Quantum Mechanics (Q.M.), which constitutes the analog of the
entropy in Statistical Mechanics (S.M.). Mathematically,
Quantropy can be regarded as an analytical continuation of

FIGURE 6 |We set the unitsm � w � h� � 1. The left image shows the real parts of the normalized propagators for a fixed time t � 1, and the region Scl(h� is given by
|x|(1.765. The blue line corresponds to the modified propagator K+; meanwhile, the yellow one represents the usual propagator K(x, t, 1). The right plot is the
comparison between the propagators amplitude for x � 1 where the blue and the orange are the correction and the usual, respectively, and the quantum region is given
by ta0.464.
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entropy, performed under the identification of the energy in S.M.
to the action in Q.M., and the identification of the temperature to
the Planck constant, the map reads: E→ S and T→ ih�.

We establish a new definition of Quantropy, with the energy
mapped to the classical action E→ Scl , i.e., we consider that the
main entity is the propagator K(x) instead of the amplitude a(x)
of the path. Thus, we construct the propagator, a kind of
integrated version of the Quantropy Q0 � −∫

X

K(x)lnK(x)dx;
in this way, the functional corresponding to the BG under
the maximization procedure leads to K0 ∼ exp(iScl/h�).

We applied this concept to find the quantum mechanical
implications of modified entropies S+, S−, and Sq, and the
associated quantropies lead to generalized propagators, which
imply a modified wave functional quantum mechanics (modified
Schroedinger equation). Let us point out that the small
probabilities limit of modified entropies S+ and S− leads to
Boltzmann–Gibbs entropy. Similarly in the limit of small path
amplitude, one recovers the original Quantropy from the
modified functionals. This formalism could be a novel
framework to study nonlinear quantum mechanics as
those consider in [4, 12, 13]. We also provide an
understating of modified propagators associated with
Tsallis statistics, leading to wave functions corresponding
to q-distributions.

Also, the result for the Tsallis statistics implies a propagator
Kq ∼ expq(iScl/h�), where expq(x) is the q-exponential; this is
relevant since it makes contact with the Tsallis result of modified
wave function for the free particle, whose solution is
ψq ∼ expq(i(kx − ωt)). The connection is due to the
arguments of [34] in the discussion of the propagator for the
free particle K0 ∼ exp(iScl/h�). They show that the propagator K0

corresponds to the free particle wave function
ψ0 ∼ exp(i(kx − ωt)). Thus, analogously Kq will lead to ψq.
As a further work, we need to explore the relations in the
case of the modified propagators K+ and K−. They will give rise
to wave functions whose dependencies will be given by
Ψ ± � exp ± (i(kx − ωt)), also for the free particle. In this
case, we have a recurrent series solution but we do not have
exact expressions for these generalized exponentials. As
discussed, our proposal provides also generalized propagators
K+,K−, and Kq for problems with interactions; we illustrated this by
considering the K+ associated with the harmonic oscillator and the
infinite potential barrier.

There are hints from previous studies that the modified
entropies considered here can be interpreted as linked with
modified effective potentials. Therefore, these
modifications to the free particle could be related to a
usual quantum mechanics with an effective potential [9].

FIGURE 7 | We set the units m � h� � 1 and ϵ � 0.01; the graphic shows the real parts of the modified propagator (blue line) vs. standard propagator (yellow line).
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However, these effects could also lead to nonlinear
quantum equations explored in the literature with
modified wave functions [3, 12, 13, 26]. Furthermore,
what we found here based on the concept of Quantropy
could be linked to results for quantum systems in terms of
usual entropy vs. the density matrix [10]. A system
governed by a modified statistics (S+, S− or Sq) will lead
to modified density-matrix distributions.

Moreover, the modified “propagators” K+,K−, and Kq

actually are strictly no longer standard propagators
because they lack the usual propagation property. This
means that is not equivalent to propagate the particle from
(0, 0) to (t2, x2), than to first propagate it from (0, 0) to (t1, x1)
and then from (t1, x1) to (t2, x2). This occurs because, for
example,

∫
​

K+(0, 0; x1, t1)K+(x1, t1; x2, t2)dx1 ≠K+(0, 0; x2, t2).

This relates to the fact that in a quantum open systems where
these generalized entropies aremotivated, the nature of the processes
is non-Markovian. Those systems in consideration aremodeled with
Master Equations (Stochastic) [39]. We consider that this formalism
could be a natural framework to study nonlinear quantum
mechanics.

We would like to explore further processes where the modified
statistics in Quantropy play a central role. This could be done via
modified wave functions, which could be interpreted as the usual
quantum mechanics with an effective interaction [40] or from
nonlinear quantum equations. The modified wave functions will
correspond to the modified propagators obtained in this work. In
this work, we obtained the modified propagators for the free
particle, harmonic oscillator, and the infinite potential barrier
associated to the different statistics K+, K−, and Kq, discussing
the associated quantum behavior. We would also like to explore
in future work the quantum mechanical evolution of other
physical systems.
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We present the results of molecular dynamic studies of collective dynamics in a system

of hard disks confined to a narrow quasi-one-dimensional (quasi-1D) channel. The

computer simulations have been performed for the specific channel width of 3/2 of disk

diameter in which the disk arrangement at close packing resembles zigzag ordering

characteristic of a vertically oriented two-dimensional (2D) triangular lattice. In such

a quasi-1D system, which is intermediate between 1D and 2D arrays of hard disks,

the transverse excitations obey very specific dispersion law typical of the usual optical

transverse modes. This is in a sharp contrast both to the 1D case, where transverse

excitations are not possible, and to the 2D case, where the regular shear waves with

a propagation gap were observed. Other peculiarities of the dispersion of collective

excitations as well as some results of disk structuring and thermodynamics of the

quasi-1D hard disk system are presented and discussed for a range of hard disk densities

typical for fluid and distorted crystal states.

Keywords: hard disks, structure factors, collective dynamics, dispersion of collective excitations,

molecular dynamics

1. INTRODUCTION

Hard spheres and hard disks are widely accepted as the first choice approximation to model a
variety of soft condensed matter objects [1]. In spite of being a rather simple representation of the
substance, hard core-based model systems still are capable to recover a number of basic properties
and effects related to the structure, thermodynamics (e.g., phase transitions), and dynamics of real
systems. Recently, the interest has been revived in the properties of hard sphere fluid confined
to a narrow channel of the width that does not exceed two hard core diameters. In such system,
commonly referred to as quasi-one dimensional (quasi-1D) system [2], the hard-core particles
cannot pass the nearest neighbors and their motion is restricted by the neighbors. Of a particular
interest is the so-called single-file quasi-1D system with the width that does not exceed (1+

√
3/2)

of disk diameter [3] as then a disk cannot touch more than one neighbor from each side. This is a
substantial simplification that allows one to make a contact with the exact Tonks solution for the
purely 1D hard rod system [4]. The reasons for the interest to this system are both basic and applied.
The fundamental interest stems from the existence of the analytical transfer matrix approach for
the isobaric partition function [5–9] and the exact canonical partition function of this system,
which is recently derived in [10]. At present, the theoretical research in this area has been mostly
concerned with the efforts (i) to get an insight into the mechanism that governs transformation of
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the properties of hard core systems as their dimensionality
approaches 2 and 3 [5, 11], and (ii) to consider these systems
as glass formers, see [7–9, 12–14] and review [15]. The practical
interest stems from the possibility to use such a simple model
to capture properties of more complex systems, e.g., to explain
diffusion in zeolite and carbon channels [16–18], microfluidic
devices [19], in the technology of bio-integrated nanodevices [3]
etc. by treating the finite length axis of the quasi-1D system as the
pore width.

Confined many-particle systems are very versatile and
complex, and computer simulations are a perfect and in the
most cases only available tool to study their structure and
dynamics. It has been widely applied to study the structure
and single-particle dynamics in quasi-1D systems with various
model smooth/continuous particle–particle and particle–wall
interaction potentials. But even the quasi-1D systems partially
involving hard core particles and the quasi-1D systems of
pure hard core particles (that are the main subject of present
study) can be so different in their physics that comparison of
apparently similar effects in such systems often has no much
physical sense. For instance, in a quasi-1D system of hard core
particles suspended in a viscoelastic liquid solvent their effective
interactions are mainly of a hydrodynamic nature and the role of
confining walls is not so much in restricting particles’ motion as
in setting the boundary condition on the liquid solvent’s flow. At
the same time, in a quasi-1D system of pure hard core particles all
interactions are of an entropic nature. Another example concerns
a zigzag particle arrangement that very often is the object of
fundamental interest for different quasi-1D systems. However,
because of the difference in interaction potentials, the general
idea of the zigzag geometry is often the only thing in common.
For instance, a zigzag structure can occur both in quasi-1D
system with extremely short-range interaction such as a hard
core repulsion (e.g., see [9]) and in quasi-1D system with long-
range interaction such as a screened electrostatic repulsion in
dusty plasma (e.g., see review [20]). The difference between these
two interactions is known to be fundamental even in a purely
1D geometry in which the phase transition exists only for a
long-range particle–particle repulsion [21]. At the same time,
the computer simulations studies of dynamic properties of the
quasi-1D systems that contain only hard core particles, i.e., the
quasi-1D hard core systems, have been primarily performed in
the context of glassy dynamics. They were mostly focused on
the problems specific for the single particle dynamics such as
disk hopping time between different quasi-equilibrium states
and defects’ dynamics [7, 9, 12], and time dependence of
the particle displacement [9, 13]. The glassy behavior of hard
disk fluid confined to a narrow hard wall channel was also
studied theoretically in [7–9] by analyzing the transverse and
longitudinal equilibrium static pair correlation functions by the
transfer matrix approach [5].

Our recent computer simulations studies [22, 23] have
addressed the collective time correlation functions in the
bulk 2D and 3D hard core systems. What in the following
is referred to as collective dynamics means correlations in
the cooperative motion of a many-particle system. Such an
approach to understanding the dynamical processes is general for

studies of propagating waves (sound, shear, and heat ones) and
relaxation processes (thermal relaxation, structural relaxation,
stress relaxation, etc.). The corresponding collective dynamic
variables are defined via fluctuations of the conserved quantities:
number of particles, longitudinal and transverse components
of total momentum, and energy. All these collective dynamic
variables are known from the hydrodynamic approach and can be
used for theoretical description of the long-wavelength processes.
For the theoretical description of collective dynamics beyond the
hydrodynamic regime, the set of collective variables is extended
by the orthogonal ones (orthogonal to hydrodynamic variables),
which represent the longitudinal and transverse components
of stress tensor, energy current, etc. More precisely, computer
simulations [22, 23] were used to find how collective dynamics
of bulk hard spheres and bulk hard disks behaves on different
spatial scales. Rather unexpectedly the short-wavelength shear
waves were found in both cases from the well-defined peaks
of the transverse current spectral functions. Although nature of
shear waves in hard-core systems appears to be essentially the
same as in simple fluids [24], i.e., they emerge as the short-
wavelength excitations due to coupling of the transverse current
and transverse component of stress tensor, the hard-core fluids
are known for the absence of viscoelastic effects. Interestingly,
while there are no short-wavelength shear waves in a 2D hard disk
fluid at low particle densities, these were observed in the range of
higher densities by showing certain particular features just before
the freezing transition.

The present paper is devoted to a quasi-1D hard disk system.
An essential difference between the methods to study collective
dynamics in hard-core systems and those for models based on
analytic/continuous two-body potentials stems from the absence
of a local energy minima in the former case. Even in the case
of solids composed of hard spheres or hard disks, the particles
do not oscillate around the minimum of potential well, but are
moving ballistically in the cage formed by the nearest neighbors.
This difference gives rise to an interesting specific aspect of
the collective dynamics in a hard core system, namely, an
existence of strong correlations between the emergence of short-
wavelength shear waves and the caging phenomenon [25, 26],
which was noticed in the case of 2D hard disk system [22]. As
caging inevitably emerges in a hard disk system under quasi-
1D confinement, it is quite natural to expect the existence of
short-wavelength shear waves in this case as well. Then it is
not clear how the collective modes behave when additional
confinement is imposed, how the reflections from channel
boundaries affect the longitudinal and transverse excitations
originated from particle–particle collisions, how the single-
particle ballistic motions sum up to form a collective oscillation
modes. The case of transverse excitations is of particular interest
since latter are not present in the 1D prototype of the quasi-1D
hard disk system. All these issues remain unexplored. Therefore,
our aim is to perform molecular dynamics simulations of a
quasi-1D system of hard disks, calculate its static structural
properties, and make a link with the collective dynamics of the
system. The rest of the paper is organized as follows. In the
next section, we present the information on molecular dynamics
simulations; section 3 contains results of the static and dynamic
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properties of the studied systems. In the last section, we discuss
our findings.

2. MODELING AND SIMULATION DETAILS

The quasi-1D system is modeled by placing N hard disks of
diameter σ into elongated rectangular box formed by two walls
(lines) of length Lx ≡ L that are separated by a distance Ly ≡

H = σ + h with h < σ such that disks cannot pass each other.
The disk-disk two-body interaction is given by

u(rij) =

{

∞, rij < σ

0, rij ≥ σ ,
(1)

where rij = |rj − ri| is the distance between disk centers.
Additionally, both confining walls are impenetrable,

uw(ri) =

{

0, σ/2 < yi < h+ σ/2
∞, otherwise ,

(2)

thereby forming the hard-wall channel (or pore) of the width
H = σ + h and of the length L . The ends of the channel
are open and the periodic boundary conditions in x-direction
are employed.

Taking into account that width H = σ corresponds to
1D case, the range of channel widths σ < H < 2σ could
be considered as a bridge between 1D and higher dimensions.
Among continuous variety of the quasi-1D system width in this
range σ < H < 2σ there are two, H/σ = 1.5 and H/σ = 1+√
3/2 , when disk ordering at close packing is commensurate with

2D triangular lattice like milestones on the way from 1D to 2D.
To illustrate, Figure 1 presents two triangular hard disk arrays
that correspond to the most common horizontal (Figure 1A)
and vertical (Figure 1B) orientations of 2D triangular lattice that
differ by an angle of 30 degrees. The quasi-1D systems that
correspond to H/σ = 1.5 and H/σ = 1 +

√
3/2 are shown

by hollow disks that at close packing form two very distinct
crystalline zigzags. The main distinction concerns a number of
nearest neighbors interacting with each disk, i.e., two for H/σ =

1.5 and four in the case of H/σ = 1 +
√
3/2 . The narrower

quasi-1D systems is more close to the 1D system, while wider
quasi-1D system is more close to the 2D system. In the present
study, we are considering the narrower quasi-1D system with
width fixed at H/σ = 1.5.

The main body of simulations, in particular, those that
concern the collective dynamics, were performed by using
a collection of N = 200 hard disks at the fixed channel
width H with h/σ = 0.5 and the varied length, L/σ =

400, 350, 300, 250, 220, 198, 190, and 180. Thus, eight quasi-1D
hard disk systems that are characterized by different disk
linear density,

l =
Nσ

L
, (3)

were simulated. For convenience of comparison and discussion,
particular values of the linear density l , that corresponds
to each channel length L , are shown in Table 1 together

with corresponding values of the disk number density ρ =

Nσ 2/(HL) and packing fraction η = Nπσ 2/(4HL) , since
the latter are often used in the literature on quasi-1D systems.
The simulation runs with larger systems up to N = 2, 000
were performed as well and are properly indicated in the text.
Throughout the paper, the disk hard core diameter σ is used as
unit of length, while time is in units of (βmσ 2)1/2 . In simulations
we used β = σ = m = 1 , where β = 1/kT and m is the mass
of a disk.

Initially chosen N disks were located randomly inside the
channel of the shortest length L , i.e., the highest density
considered. Then initial disk configurations for lower densities
were obtained by increasing the channel length L . To handle the
collisions of hard disks with each other and with the channel hard
walls, we employ the event driven molecular dynamics (MD)
algorithm [27, 28]. According to this technique, the temperature
is kept constant by scaling appropriately the magnitude of
velocities of each hard disk such that kinetic energy of the
system agrees with the equipartition theorem. The directions
of the velocities of disk particles at the beginning of each run
were chosen randomly. Before calculating the averages for static
quantities, we ran MD simulations with assigned velocities, as
described before, to equilibrate the system.

Collective dynamics was studied via calculation of the density-
density, energy-energy, and longitudinal (L) and transverse (T)
current–current time correlation functions. In order to get
equally time-sampled positions of hard disks, i.e., the disk
trajectories, the positions of hard disks between the collisional
events were interpolated. Proceeding in this way, for the systems
of N = 200, 400, and 1,000 hard disks, we recorded the
trajectories and velocities along trajectory for each hard disk,
totally having dumped 100, 000 configurations for the systems of
N = 200 particles, but 40,000 configurations for the systems of
N = 400 particles, and only 20,000 configurations for the systems
of N = 1, 000 particles with the fixed reduced time interval
of 0.01.

The following Fourier components were sampled for each
configuration. The Fourier component of the particle density

n(k, t) =
1

√
N

N
∑

i=1

eikxi(t) , (4)

of the longitudinal component of current density

JL(k, t) =
1

√
N

N
∑

i=1

vx,i(t)e
ikxi(t) , (5)

and the transverse component of current density

JT(k, t) =
1

√
N

N
∑

i=1

vy,i(t)e
ikxi(t) , (6)

as well as of the energy density

e(k, t) =
1

√
N

N
∑

i=1

εkini (t)eikxi(t) . (7)
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FIGURE 1 | Disk zigzag ordering in a vertically (A) and horizontally (B) oriented 2D triangular lattice at disk close packing. In the present study, we are employing the

quasi-1D hard disk system of width H = σ + h with h/σ = 0.5 that at disk close packing resembles zigzag ordering shown in part (A). The driving force of such a

zigzag ordering is entropy, which in the case of hard disk system confined by hard walls is uniquely determined by excluded volume, as it is illustrated in (C,D). In the

case of 1D or 2D hard disk systems, excluded volume (the patterned area of width σ/2 around the disks and near the walls) depends on the distance between disks,

i.e., on the disk density only. For the quasi-1D system hard disk, the distance between disks and wall enters the play. In part (D), we illustrate how area (in some

relative units), accessible to the centers of other disks (the area of channel filled in blue) depends on the transverse position y0 = yi − h of the center of one individual

disk. One can see that such an area increases when disk moves to the channel walls and is minimal for its position at the middle of channel.

TABLE 1 | Density parameters (packing fraction η, number density ρ and linear density l) of the quasi-1D hard disk system with channel width H/σ = 1.5 and varied

channel length L for the case of N = 200 disks.

L/σ 180 190 198 220 250 300 350 400

η 0.5818 0.5512 0.5289 0.4760 0.4189 0.3491 0.2992 0.2618

ρ 0.7407 0.7018 0.6734 0.6061 0.5333 0.4444 0.3810 0.3333

l 1.1111 1.0526 1.0101 0.9091 0.8 0.6666 0.5714 0.5

Here xi is the position of disk i along the channel, vx,i(t), vy,i(t)
are the components of the ith disk velocity along the channel
and perpendicular to the channel, respectively, while εkini is the
kinetic energy of ith disk at time t . The wave vector k is defined
along the channel x−axis, compatible with the periodicity of
simulation box, as k ≡ kx = 2πm/Lx with m = 1, 2, 3, . . . .
Note that, due to a non-zero channel width H, the positions and
velocities of particles in quasi-1D systems have two components,
along ( x ) and perpendicular ( y ) to the channel. However, we are
using only wave vectors sampled along the channel. The reason
is that transverse collective excitations in atomistic systems can
propagate if at least two particles take part in the transverse
collective motion, i.e., the wave number is below π/σ . In the
case of a narrow channel of width H = 1.5σ the smallest
wavenumber, ky = 2π/H, is too large.

Having the Fourier components of energy and particle
densities, it is straightforward to calculate the Fourier
components of the heat density [24]

h(k, t) = e(k, t)−
fne(k)

fnn(k)
n(k, t) . (8)

Here fne(k) and fnn(k) ≡ S(k) are the static energy–density
and density–density correlators, respectively, while S(k) is the
static structure factor. The fluctuations of heat density permit
calculations of wavenumber-dependent specific heat at constant
volume Cv(k), which in the long-wavelength limit tends to its
macroscopic value. Another important quantity that can be
obtained from observed heat density dynamics is the Landau–
Placzek–like ratio, which gives information on the share of
contributions from relaxing and propagating processes to specific
heat Cv [24, 29].

The above-defined time-dependent Fourier components of
corresponding densities, equations 4 - 8, describe fluctuations
of conserved quantities in monoatomic fluids and form the set
of hydrodynamic variables of macroscopic collective dynamics.
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Having dynamic variables (4–8), we calculated the time-
dependent density–density correlation function,

Fnn(k, t) = 〈n(−k, t)n(k, t = 0)〉 , (9)

time dependent longitudinal and transverse current–current
correlation functions,

F
L/T
JJ (k, t) = 〈JL/T(−k, t)JL/T(k, t = 0)〉 , (10)

and time dependent heat density autocorrelation function,

Fhh(k, t) = 〈h(−k, t)h(k, t = 0)〉 . (11)

In what follows, the correlation functions (9–11) were
used for numerical time-Fourier transformation in order to
obtain the density–density dynamic structure factors S(k,ω),
longitudinal/transverse current spectral functions, CL/T(k,ω)
and the heat-density dynamic structure factor Shh(k,ω).

3. RESULTS

The system of hard disks in a narrow hard wall channel is
anisotropic [5]. The anisotropy is expected due to the system
setup L >> H , which results in two different pressure
components, i.e., the longitudinal, PL = FL/H , and transverse,
PT = FT/L . Here, FL and FT are the force per unit cross-section
exerted along the channel length L , and the force on a segment
of the horizontal wall of length L/(Nσ ) = 1/l , respectively.
These forces are both of entropic origin and rather sensitive to be
evaluated from computer simulations. Fortunately, these forces
can be found from the analytical canonical partition function of
a quasi-1D hard disk system reported in [10].

Figure 2 presents the dependencies PL(l) and PT(l) , as well
as FL(l) and FT (l) for three channel widths, H = σ + h , with h
fixed at: (a) h/σ = 0.141 , close to the 1D case; (b) h/σ = 0.5 ,
which is far from both lower 1D and higher single-file limits; and
(c) h/σ = 0.866 , which is very close to the terminate width
h/σ =

√
3/2 ∼ 0.866025 of a single-file system. At low linear

density, the transverse force FT is density independent, implying
that the vertical disks’ motion is ballistic, the vertical free path is
maximum, i.e., H − σ , the disks bounce between channel walls
and do not collide with other disks. As for the same low linear
density l . 0.8 , the transverse force is lower for a wider channel,
the frequency of disk bouncing between the horizontal walls has
to be lower for wider channels as well.

We see that, for low densities, the transverse pressure PT is
higher than the one along the channel. This is because in that case
PL is determined by a large disk separation along the channel,
whereas PT is determined by a short range of transverse motion
bounded from above by H − σ . As linear density increases
toward l ≥ 1 , disks start to mount one upon another, the vertical
free paths decrease and transverse pressure and force both rapidly
increase. For h/σ = 0.866 , Figure 2C, this results in PT to
be always higher than PL . However, for more narrow channels
with h/σ = 0.141 and h/σ = 0.5 , Figures 2A,B, before this
happens, at certain value of linear density, which is different

for each channel width H , the gaps between disks and walls in
transverse direction and the gaps between neighbor disks along
the channel become equal, and the pressures on the vertical and
horizontal boundaries coincide.

The density distribution profiles, ny(y), in the transverse
y−direction, obtained both from the analytical partition function
[10] and from MD simulations for quasi-1D hard disk system
of the width H/σ = 1.5 , are shown in Figure 3. While linear
density is low, l . 0.8 , the system is roughly homogeneous across
the channel as the density profiles ny(y) are nearly constant and
equal to the correspondent linear density l . In contrast, as linear
density increases, l > 1 , the disk distribution across the channel
shows the tendency of increase in the regions close to the channel
walls and decrease in the middle region of the channel. For the
highest studied linear density, l = 1.111 , the density profile
ny(y) exhibits an almost δ−like shape in the close proximity of
the channel walls and practically vanishes elsewhere.

The longitudinal static structure factor, S(k), is calculated
from MD simulations in a standard way as instantaneous-time
density–density correlator,

S(k) ≡ fnn(k) = 〈n(−k, 0)n(k, 0)〉. (12)

In Figure 4, we show the changes in the first peak of S(k) with
decrease of linear density l . Regarding the collective dynamics,
one of the most important features is location Kmax of the main
peak of S(k) , since the value of k = Kmax has the meaning of a
pseudo-Brillouin zone boundary in the considered quasi-1D hard
disk fluid at a particular density. In this region of wavenumbers,
de Gennes’s slowing down of the density fluctuations takes place,
which is ultimately reflected in the long tails of the density–
density time correlation functions. One can see that for linear
densities l > 1 the structure factor S(k) is typical for distorted
crystals, with the main peak shaped as the sheared-out delta
function. For linear densities l < 1 , one observes typical fluid-
like structure factor. In disordered systems where a structural
transition takes place, one can find different slopes of the main
peak of S(k) on both sides of the transition [30]. In Figure 5,
we show the main peak position Kmax of longitudinal static
structure factor S(k) as a function of the linear size L of system
that is proportional to the inverse 1/l of linear density. The
location of the main peak is changing from Kmax ≈ 7 for the
case of L/σ = 180 (the highest linear density l = 1.111 ) down
to the value Kmax ≈ 4.5 for L/σ = 400 (the lowest considered
linear density l = 0.5 ). Indeed, one can see that there is a kink in
the behavior of the maxima positions, which occurs in the region
of linear densities 0.8 < l < 1.01 . According to Figure 2B,
this range of linear densities corresponds in our system to the
thermodynamic state, where the transverse pressure PT is lower
than the longitudinal pressure PL . It worth to note that in a
quasi-1D system with channel width H/σ = 1.866 the latter
newer happens, i.e., always PT > PL (see Figure 2C), while there
is range of linear densities, 0.93 . l . 1.01 , where transverse
force FT is slightly smaller than longitudinal force FL . This
density range corresponds to packing fraction range from η =

0.35 to 0.45 (see Figure 10 of [9]), where the time dependence
of the mean-square displacement starts to develop a power-law

Frontiers in Physics | www.frontiersin.org 5 May 2021 | Volume 9 | Article 636052164

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Huerta et al. q1D Hard Disk System

FIGURE 2 | Density dependence of the longitudinal (L) and transverse (T) pressures and forces in quasi-1D hard disk system of different channel width H/σ = 1.141

(A), 1.5 (B), and 1.866 (C) calculated using the analytical canonical partition function [10].

time dependence due to the slow diffusion of defects in the zigzag
arrangement of disks, suggested in [12] as a mechanism for the
α relaxation.

The single-particle dynamics can be studied by means of the
velocity autocorrelation functions

ψ(t) =
〈v(t) · v(t = 0)〉

〈v(0) · v(0)〉
. (13)

The velocity autocorrelation functions were already obtained by
means of molecular dynamics simulations for the bulk 3D hard
sphere [31] and 2D hard disk [22] fluids. In both cases, the

authors found that there exists the packing fraction value ( η =

0.45 for 3D case and η = 0.65 for 2D hard disks) above which
the velocity autocorrelation function at short times develops a
negative minimum signaling of a nascent caging. In our case, an
anisotropic quasi-1D hard disk system shows essentially different
behavior for the directions along and across the channel. In
Figure 6, we show the velocity autocorrelation function ψ(t) ,
its xx- and yy-components, and how they depend on the disk
density. The xx-component, ψxx(t) , in the quasi-1D hard disk
system behaves in a way very similar to that for bulk 2D hard disk
system [22]. It has long-time tails for small linear densities l .
0.667 and changes to a shallow negative minimum at the largest
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FIGURE 3 | Transverse density profile, ny (y), of the quasi-1D hard disk system

with channel width H/σ = 1.5 and different disk linear density l : 1—1.111;

2—1.053; 3—0.909; 4—0.5. The symbols correspond to MD simulation data,

while solid lines result from the analytical canonical partition function [10].

studied linear density l = 1.111 (packing fraction η = 0.582)
due to collisions with the nearest neighbors.

The effect of reflections from the channel hard walls is
well seen in the transverse component, ψyy(t) , of the velocity
autocorrelation function. It took us by surprise that the
characteristic oscillation of ψyy(t) due to the wall reflections
changed its shape, and especially so for the intermediate
density l = 1.01 . Toward shorter times, it became more
shallow, transforming for the most dense system, l = 1.111,
into a very high-frequency heavily damped oscillation. This
effect is much better seen in the Fourier-spectrum Z̃yy(ω)
of the function ψyy(t) shown in Figure 7. The characteristic
oscillation due to hard wall reflection is changed starting from
l = 1.01 to shift toward higher frequencies with increasing
oscillation damping. This means that at high densities the zigzag
structuring of hard disks prevents their reflections from both
channel walls. Instead under zigzag ordering hard disks are
reflected from the single nearest wall and from two nearest
zigzag neighbors.

The xx- and yy-components of the velocity autocorrelation
function in a quasi-1D system were discussed so far only for
the case of hard core particles suspended in a viscoelastic liquid
solvent [32]. Similar to our Figure 6B, the authors observed a
negative minimum and a negative long time tail of the asymptotic
form ∼ −t−3/2 for the component parallel to the channel axis.
They also concluded that both findings take place only for sticky
boundary condition and does not occur if the solvent can slip
over the walls. Our finding of a negative minimum of the velocity

autocorrelation function in Figure 6B at the highest studied
linear density l = 1.111 is of a completely different nature as our
system consists solely of hard disks, which fly ballistically between
hitting hard obstacles. We did try to estimate the exponentials for
a negative long-time tail of ψxx(t) . However, even in our case of
saved 100,000 configurations with N = 200 particles, the noise
in the tails was very strong, which did not allow us to reliably
estimate the exponents. This shows that the lattice Boltzmann
simulations [32] are more appropriate tool for this purpose than
the Newtonian MD simulations.

Collective dynamics is usually studied via analysis of the
time correlation functions, which store the entire information
about collective excitations in the system and their coupling.
So far, the collective dynamics has been well-understood on
the macroscopic scales in bulk systems, but practically no
information is available in the literature on collective excitations
in confined low-dimensional systems consisting purely of hard-
core particles. The time correlations in the latter case can
be essentially different from that in the bulk systems. A
simple example of this difference is seen in the transverse
dynamics of considered quasi-1D hard disks system, which at
the smallest wavenumber accessible in our simulations always
shows damped oscillations due to reflection from the channel
hard walls. In contrast, in bulk 3d hard-sphere and 2D hard-
disk systems, where macroscopic hydrodynamics is valid, no
transverse excitations exist at small wavenumbers accessible in
simulations. It is seen in Figure 8 that the change of collective
transverse current autocorrelation functions with disk density
is practically the same as for the single-particle yy-velocity
correlations. This makes it evidence that the leading contribution
to the transverse current–current time correlation functions
comes from the particle reflections from the channel hard walls.

The longitudinal current time correlation functions allow one
to estimate the speed of sound for the smallest wavenumbers
accessible in simulations. In Figure 9, we show the obtained
dependence of the speed of sound on the channel length
L that is proportional to inverse 1/l of linear density
(see Table 1). As expected, the speed of sound shows a
monotonic decrease with increasing channel length, i.e., with
decreasing density.

Dispersion of the longitudinal and transverse excitations in
the studied quasi-1D hard disk system were obtained from the
peak positions of the longitudinal and transverse current spectral
functions CL/T(k,ω) that are the time-Fourier transforms of
the MD-derived longitudinal/transverse current–current time

correlation functions F
L/T
JJ (k, t). By employing well-established

methodology [24], the latter were analyzed for their peak
locations, which for different wave numbers k define the
dispersion, ωL/T(k), of longitudinal and transverse excitations.
Typical shapes of the spectral function CL/T(k,ω) are shown in
Figure 10 for the system of N = 200 particles and linear density
l = 1.01. As the shapes of the spectral functions are noisy, to
locate their peak positions and maxima, we made use of the
standard Bezier fit for noisy data. The simulations with larger
numbers of particles allowed us to access smaller wavenumbers
while the dispersion relations within the error bars remained
the same.
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FIGURE 4 | Static structure factor, S(k) of the quasi-1D hard disk system with channel width H/σ = 1.5 calculated according to the definition equation 12 by using

MD-generated 100,000 configurations of N = 200 disks. The sequence of panels (A–H) corresponds the linear density decreasing from l = 1.111 (A) to 0.5 (H)

according to Table 1.
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Figure 11 show the dispersions ωL/T(k) of longitudinal and
transverse excitations in the quasi-1D hard disk system. The parts
of Figures 11A,B present data for the linear densities l < 1 .

FIGURE 5 | Dependence of the main peak position, Kmax , of the static

structure factor S(k) of quasi-1D hard disk systems with the channel width

H/σ = 1.5 on the channel length L that is proportional to inverse 1/l of
linear density.

At first glance in this case the dispersion ωL(k) of longitudinal
excitations in quasi-1D hard disk system is very similar to that
already observed for a 2D hard disk system [22]. When linear

FIGURE 7 | Fourier-spectrum, Z̃yy (ω) , of the transverse velocity

autocorrelation function, ψyy (t) , shown in Figure 6C, at different linear

densities l = 1.111(L = 180), 1.053(190), 1.01(198), 0.909(220) , and 0.5(400).

FIGURE 6 | Velocity autocorrelation function, ψ (t) (A) and its longitudinal (the xx direction along the channel) (B) and transverse (the yy direction across the channel)

(C) components for quasi-1D hard disk system with channel width H/σ = 1.5 at different linear densities l = 1.111(L = 180), 1.053(190), 1.01(198), 0.909(220),

0.667(300), and 0.5(400).
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FIGURE 8 | Collective time correlation function of transverse momentum in

quasi-1D hard disk system with channel width H/σ = 1.5 evaluated at the

smallest wavenumbers kmin accessible in simulations, and for different linear

densities l = 1.111(L = 180), 1.053(190), 1.01(198), 0.909(220), 0.667(300) ,

and 0.5(400). The standard hydrodynamic shape of transverse current time

correlation function in fluids is the single-exponential one.

density is low, l = 0.5 , the dispersion ωL(k) only slightly
deviates from being monotonic. But as soon as linear density
increases, l = 0.909 , it shows well-defined minimum around
wavenumber values k ∼ 6 associated with position of the main
peak Kmax of longitudinal structure factor S(k) discussed in
Figures 4, 5. The deviation from hydrodynamic dispersion law in
the long-wavelength limit for both considered densities persists
to be “negative.” The “negative” dispersion concerns the negative
deviation of the dispersion curve ωL(k) at the boundary of
hydrodynamic regime from the linear hydrodynamic dispersion
law of acoustic modes in considered quasi1-D hard disk system.
These effects are similar to those observed in 2D hard disk
system with density increase [22]. In contrast, the dispersion
ωT(k) of transverse excitations is essentially different from
those in the case of 2D hard disk system [22]. Namely, for
both linear densities l < 1 we are observing rather flat
shape of the curve ωT(k) at reduced frequency ∼ 10 with
a tendency toward higher frequency values with increase of
linear density. In 2D hard disk system, the transverse excitations
are of acoustic nature. Moreover, the transverse excitations are
absent at low densities and there was observed a long-wavelength
propagation gap when they start to appear at higher densities.
It is therefore quite natural to attribute the flat transverse
mode in a quasi-1D hard disk system to disks’ reflections
from the channel hard walls. This issue is discussed in more
details below.

Parts (c) and (d) of Figure 11 show similar data for the
dispersions ωL/T(k) of longitudinal and transverse excitations
but for the range of linear densities l > 1. As for the dispersions
of longitudinal excitations, ωL(k) , we see the tendencies already
observed in Figures 11A,B under increase of linear density, i.e.,
the magnitudes of ωL(k) maxima are increasing while minima
become deeper, reaching zero-frequency values at density ρ =

FIGURE 9 | Dependence of the speed of sound cs in the quasi-1D hard disk

system with channel width H/σ = 1.5 on the channel length L that is

proportional to inverse 1/l of the linear density.

1.111 and being shifted toward larger wavenumber values k . The
later again is consistent with the shift for the position Kmax of the
first peak of the longitudinal structure factor S(k) in Figures 4, 5;
the “negative” dispersion in long-wavelengths region is preserved
as well. Such behavior of ωL(k) resembles one for the ordered
solids and in [33] is interpreted as a consequence of the
emergence a zigzag ordering in a squeezed quasi-1D system. The
dispersion of transverse excitations in Figures 11C,D does not
show notable changes too when the linear density was changing
to l = 1.01 . However, it does show dramatic changes at the
highest considered linear density l = 1.111 . Namely, (i) there is
a sharp increase of frequency ωT up to ∼ 70 ; (ii) the dispersion
curve ωT(k) itself exhibits bubble-like shape by splitting on
low- and high-frequency branches in the range of k -values that
coincide with location of the maximum of dispersion ωL(k) that
implies possibility of longitudinal-transverse excitation coupling
on atomic scale in a squeezed almost zigzag ordered quasi-1D
hard disk system.

The MD simulations allow one to study the fluctuations of
heat density in the system and their effect on collective dynamics.
We would like to remind that an adiabatic propagation of
sound in fluids causes small deviations of the local temperature
and instantaneous temperature gradients, which give rise to
relaxation processes of the local temperature via thermal
diffusivity. These relaxation process is directly connected with
entropy fluctuations and is responsible for the central peak
of dynamic structure factors S(k,ω). In Figure 12, we show
dynamic structure factors S(k,ω) as well as heat-density dynamic
factors Shh(k,ω) for three, the lowest wavenumbers in the
quasi-1D hard disk system at the highest linear density l =

1.111 . In both types of spectral functions, the side peaks are
caused by longitudinal acoustic excitations, while the central
peak for liquid state is caused by entropy fluctuations. In
our case of the confined, almost zigzag structure at linear
density l = 1.111 (channel length L/σ = 180 and
width H/σ = 1.5), the central peaks of S(k,ω) and
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FIGURE 10 | Typical longitudinal (L) and transverse (T) current spectral functions, CL/T (k,ω) , in the long-wavelength region at kmin = 2π/L (A) and for wave number

k = 17kmin (B) for the system of N = 200 disks and linear density l = 1.01. In (A), the transverse spectral function was multiplied by a factor 100 for eye

convenience. Blue line-connected asterisks show the Bezier fit applied for estimation of peak position of the noisy spectral functions.

FIGURE 11 | Dispersions of longitudinal (L) and transverse (T) excitations, ωL(k) and ωT (k) , in quasi-1D hard disk system with channel width H/σ = 1.5 at disk linear

density l = 0.5 (A), 0.909 (B), 1.01 (C), and 1.111 (D). The dashed straight lines in the small-k region correspond to hydrodynamic dispersion law ω = csk with the

corresponding speed of sound cs shown in Figure 9. The raw data for parts (C,D) were taken from our preceding paper [33].

Shh(k,ω) give evidence of the same temperature (sometimes
called entropy) relaxation processes typical for fluid state.
We calculated Shh(k,ω) for lower densities too, and observed

practically the same shape of Shh(k,ω) but with a larger
smearing of the central and side peaks in comparison with the
higher densities.
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FIGURE 12 | Dynamic structure factor, S(k,ω) , and heat-density dynamic factors, Shh(k,ω) , of the quasi-1D hard disk system with the channel width H/σ = 1.5

derived from MD simulations at the highest considered linear density l = 1.111 for three the smallest wavenumbers k1 < k2 < k3.

4. DISCUSSION

In dense, nearly solid-like states of a quasi-1D hard disk system,
we observed a rapid increase of the transverse frequency ωT(k)
in the long-wavelength region k ∼ 0 from ωT ∼ 12 for
linear density l = 1.01 in Figure 11C to the frequency ωT ∼

70 for linear density l = 1.111 in Figure 11D. The shallow
minimum in ωT(k) profile, observed for linear density l = 1.01

at wavenumbers k ∼ Kmax/2, also deepens and becomes well-
developed. Eventually, however, frequency ωT(k) at k ∼ Kmax/2
splits into a high- and low-frequency branches at linear density
l = 1.111 as shown in Figure 11D. The observed change in the
dispersion ωT(k) of transverse excitations as the system changes
from rarefied to dense can be explained by formation of the
zigzag structure. The transverse low frequency mode, which is
due to bouncing between the two hard walls, transforms into the
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FIGURE 13 | Left: Disks’ rearrangement in a pore that creates a window for two disks to exchange their vertical positions. Upper panel: disk in the pore at the

average distance along the pore, which is below the disk diameter σ and disks cannot exchange their vertical positions. To let disk 1 go down, disks on the left and

right of it get more dense. Mid panel: Disk 1 gets down through the window of size σ between disks 2 and 3. Now disk 2 may get up between disks 4 and 1. Lower

panel: The exchange of the vertical positions of disks 1 and 2 is accomplished. Now disk 4 potentially can move down. Right: Representative snapshots of disk

configurations taken from MD simulations of the quasi1-D hard disk system of the channel width H/σ = 1.5 to illustrate the schematics of disks’ rearrangement.

Shown are four the highest considered linear densities from the top to the bottom: l = 1.111, 1.053, 1.01, 0.909 that are discussed in Figure 14. The filled circles

indicate disks that are caged and cannot exchange their vertical positions.

FIGURE 14 | Distribution of actual horizontal distances, 1x , between the

nearest neighbor disks in quasi-1D hard disk system with channel width

H/σ = 1.5 at disk linear densities l = 1.111(1), 1.053(2), 1.01(3), 0.909(4) , and

0.5 (5) derived from MD simulations.

high frequency transverse oscillations between one wall and the
nearest neighbors in the zigzag structure. This is also supported
by the behavior of the transverse component of the velocity

autocorrelation function ψyy(t) in Figure 6C. Inspired by this
intriguing behavior, one of us developed an analytical theory [10]
of this system, which suggests that it is related to developing
window-like defects in the zigzag disks’ arrangement [33]. The
idea of defects of this kind (defect is a local less packing) has
been introduced [12] and employed [7–9, 12–14] to describe
glassy dynamics in terms of caged and uncaged states in the
disk arrangements in a quasi-1D hard disk system of the channel
width H/σ = 1.866 . In [33], such defects were associated with
the maximum contact separation of two disks along the channel,
which is equal to the disk diameter σ ; in [10], their distribution
was found analytically as a function of the linear density. As for
the densities l > 1, the horizontal contact distance between disks
and the actual horizontal distance between nearest neighbor disks
are very close, this distribution can be well representative of the
actual disks separations 1x, which is supported by the computer
simulation data.

At dense/close packing, the disks form perfect zigzag. As
confinement weakens, the tendency to the entropy increase
results in an emergence of progressively larger number of
window-like defects through which pairs of next neighbor disks
uncage and exchange their vertical positions (Figure 13). This
theoretical prediction of [10] has been confirmed from MD
simulations data for the distribution of the actual distances 1x

between next neighbor disks (Figure 14) and is in line with the
earlier result [8]. For high linear density, l = 1.111 , these are
distributed around1x/σ ∼ 0.89 close to the minimum possible
contact distance along the pore,

√
3/2 ≈ 0.87σ . However at

slightly lower linear density, l = 1.053, in addition to the
widening of maximum at 1x/σ ∼ 0.92 we see the appearance
of a sharp subpeak at 1x/σ = 1 . In contrast to the wide
maximum drifting toward larger 1x, the subpeak always remains
at 1x/σ = 1 , although its shape is changing: it becomes
more and more pronounced and finally exceeds the main peak,
signaling approaching a fluid-like state. It points to the exclusive
role that next neighbor disk center-to-center distance 1x = σ
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plays. Namely, creation of windows of the width of disk diameter
σ ( σ−windows) in the zigzag array, neither wider nor narrower,
is the most effective way to gain entropy by uncaging two disks
and making them extend their wondering to the whole channel
width. The described mechanism of disk’s caging/uncaging by
their neighbors in quasi-1D hard disk system is fundamentally
different to that in quasi-1D system with a long range screened
electrostatic repulsion in the dusty plasma [20] where particles
stay at finite distances and the zigzag can even transform into a
straight line.

In a pure 1D hard disk system, the vertical motion is
absent. In a densely packed quasi-1D hard disk system of the
width H/σ = 1.5 , it is also prevented by the full caging,
but it eventually appears as the confinement weakens. As for
sufficiently low density, the vertical disks’ motion from one
wall to another is possible, here one expects some contribution
to the dispersion relation from the nearly ballistic transverse
oscillation between the walls. As it comes from the maximum
vertical path H − σ , this contribution ωT1(k) to the frequency
ωT(k) at low density must be lowest possible. At high density,
however, the σ−windows are rare and disks can bounce at most
between one wall and the mid plane hence the lowest transverse
frequency ωT2 for higher densities is expected to be roughly
twice that for low density, ωT2 ∼ 2ωT1. The frequency ωT2 is
related to the maximal distance 1x at window nuclei, which
require local compression and must result in high frequency
longitudinal and transverse jitters. One can thus expect that the
lowest transverse frequency ωT2 and the highest longitudinal
and transverse frequencies appear near same wavenumbers k .
In addition, the group velocity at this wavenumber range has
to be zero as windows are not transferred by the waves. The
dispersion of the longitudinal and transverse excitations in quasi-
1D hard disk system obtained from MD simulations are in line
with this picture (Figures 11C,D). For linear density l = 1.01 ,
the peak at 1x = σ (Figure 14) indicates that σ−windows
in the zigzag structure are well-developed, the disk order is of
a short range, and frequency ωT1 can be identified with the
practically k−independent transverse frequency ωT(Kmax/2) ∼

10 in Figure 11C. At the same time, for linear density l =

1.111 , when there are almost no σ−windows (Figure 14), the
transverse spectrum splits into the lowest, ωT2 ∼ 20 ≈ 2ωT1,
and the highest frequency, ωT ∼ 100, at the wavenumbers k
where longitudinal frequency is maximum (see Figure 11D). At
wavenumbers k ∼ Kmax/2, the curves ωT1(k) and ωT2(k) are
plateaus, which indicate zero group velocities. The continuous
longitudinal and transverse modes for linear density l = 1.111
are related to the short free path oscillation of mutually caged
disks near the walls. Thus, the main properties of ωT(k), which
are directly related to the vertical motion, are in line with the idea
of the role of σ−windows in the zigzag arrangement.

The interpretation of computer simulation data in terms of
the vertical disk motion presented above is also consistent with
and well-illustrated by the theoretical dependence of the total
transverse force FT(l) in Figure 2B. Indeed, as discussed above,
for low linear density l , the transverse force FT is constant
implying the vertical motion to be ballistic because the free
path and free time are maximum. In contrast, for high linear

density l , the transverse force FT sharply grows with l, the disks’
arrangement is close to a dense zigzag, they cannot cross the
middle line of the channel so that the free path and time at
best are halves of their maximum values. Finally, this picture is
obviously in line with the disk density distribution across the
channel in Figure 3.

In conclusion, we would like to point out the novel
and unexpected development, which stems from the above
studies of the collective excitations. It is about a possible
Kosterlitz-Thouless scenario in quasi-1D hard disk system [33].
In 2D systems, melting proceeds via the Kosterlitz-Thouless
scenario [34]: a crystal develops defects, and their number is
growing continuously from zero at zero temperature until the
state becomes a liquid. The number of window-like defects in
a zigzag arrangement behaves exactly in this way [7, 9, 10, 12]:
it is zero only at dense packing and smoothly increases as
density goes down. But in the Kosterlitz-Thouless scenario, it
is essential that the spatial correlations decrease as a power law
at high densities and exponentially at lower densities. At the
same time, it is known that if the partition function of a system
possesses a transfer matrix property, which has been widely
accepted to be the case for a quasi-1D hard disk system, then
the correlations can only decay exponentially. Our search for
a different correlation behavior is motivated as follows. First,
our already published [33, 35] and tentative molecular dynamic
results on the system described here indicate that a power law
decay is possible. Second, it is shown in Appendix in [10] that
the transfer matrix property may be not so universal for quasi-
1D systems, which leaves a room for alternative theory. The work
is in progress.
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We study nonlinear dynamical equations for coupled conserved and non-conserved
fields describing nanoparticle concentration and liquid crystal order parameter,
respectively, and solve them numerically over bidimensional domains. These equations
model the rapid segregation of nanoparticles away from nematic domains, which has
been observed experimentally in a suspension of gold nanoparticles in 5CB below the
isotropic-nematic transition temperature. We contrast the different behaviors obtained
when the LC order parameter is treated as a scalar or a tensor, as well as the different
rates of evolution observed with each of these. We find, after an instantaneous quench
lowering the temperature below the transition one, an initial linear regime where the
ordering of the nematic phase proceeds exponentially with time. Only after a lag period
the nanoparticle material couples effectively to the LC order parameter and segregates
to regions that are less orientationally ordered (extended domain walls for a scalar order
parameter, but point disclinations for a tensor one). The lag period is followed by the
onset of nonlinear dynamics and saturation of the order parameter. The choice of a
scalar or tensor LC order parameter does not change this sequence but results in a
clear overshooting of the nonlinear saturation level for the tensor order parameter case.
These results are found to be insensitive to weak anchoring due to coupling of gradients
of the conserved and non-conserved variables, for the nanoparticle concentrations
and anchoring parameters studied. Our modeling approach can be extended in a
straightforward manner to cases where the cooling rate is finite and to other systems
where a locally conserved concentration is coupled to a orientation field, such as
active Langmuir monolayers, and possibly to other examples of nonlinear dynamics in
ecological or excitable media problems.

Keywords: dynamic equations, model C, liquid crystal, nanoparticles, mixture, self-assembly, phase separation

sorting, conserved and nonconserved fields

1. INTRODUCTION

Nonlinear dynamical systems generate intense research because they encompass a large class of
phenomena displaying pattern formation, wave-like solutions and even oscillatory patterns of
activity [1, 2]. When nonlinear dynamical systems take into account spatial dependencies, they
often are modeled in a continuum fashion with partial differential equations. Among the diversity
of such systems, the Newell-Whitehead equation (1) finds application diverse fields such as
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population growth and epidemics in ecology [3], pattern
formation in cloud fields [4], mechanical and chemical
engineering [5], and the dynamics of phase transitions [6]:

∂φ

∂t
− Ŵ

∂2φ

∂x2
+ bu− ǫf [u] = 0, (1)

where f [u] is a known functional of the unknown u, Ŵ is a
diffusion rate, b is a convection force and ǫ is the magnitude of
the nonlinear response.

An example of the application of the Newell-Whitehead
equation to soft matter systems occurs for the case of liquid
crystals and their isotropic-nematic transition, where the
appropriate choice of the functional f [u] leads to the well-
known Allen-Cahn [7] or Model A equations [8]. Liquid crystals
are a particularly convenient, table-top choice of materials to
study the behavior of nonlinear dynamical systems: they are
chemically stable at room temperature, highly susceptible to
external influences (of thermal, electrical, or magnetic character),
and have wide technological application [9].

When nanoparticles are suspended homogeneously in the
isotropic phase of a mesogenic fluid, they can undergo rapid
self-assembly of micron-sized nanoparticle structures if there is
a transition to the nematic phase [10–12]. The hollow structures
that can be obtained from such process have a range of sizes and
morphologies (such as spheres, cylinders, and foams) that make
them attractive for different areas of application [13–15], such as
optoelectronics, encapsulation and controlled release, sensing, or
catalytic frameworks, among others.

In order to understand this behavior, the Newell-Whitehead
equation (corresponding to Model A [8]) must be consistently
coupled to a conservation law for the concentration of
nanoparticles. We have formerly introduced a thermodynamic
model that accounts for the formation of the simplest NP
aggregate morphology observed in experiments (micro-shells)
as a first-order transition [16], where the excluded volume of
the nanoparticles competes with the latent heat of the isotropic-
nematic transition to give rise to shells with walls of a definite
width for a given temperature quench and initial volume fraction
of nanoparticles in the mixture. However, in the self-assembly
methodology reported by [12], the final morphology is controlled
by the cooling rate and initial concentration of nanoparticles.
This indicates that a dynamic model of the system, as opposed
to a purely thermodynamic description, is required to analyze it.

A first model addressing this requirement was presented in
[12], which combined a Lebwhol-Lasher Monte Carlo simulation
of the isotropic-nematic transition which was coupled in a linear
fashion to a Cahn-Hilliard equation for the nanoparticle sorting.
However, this coupling was one-directional: the nematization
order parameter S acted as an external field driving the
nanoparticle concentration, but there was no coupling back to
the Lebwhol-Lasher simulation.

In this work, we reconsider that previous approach in the
context of the dynamic equations of Model C for the time
evolution of coupled conserved and non-conserved fields [8].
In our present approach, the nematic order parameter and the
nanoparticle concentration follow dynamic equations that are

mutually coupled, and therefore we reconsider the nature of the
coupling free-energy term. We contrast the different behavior
obtained when the liquid crystal is described solely by its (scalar)
nematization order parameter S and when it is described with
a more detailed alignment tensor Q. To begin with, the former
situation does not allow for anchoring of the liquid crystal
director, while the second one can. We characterize and contrast
the types of structures obtained with the scalar and tensorial
models, as well as the different rates of evolution observed with
each of these. Further, we investigate the initial segregation
process, driven by linear dynamics, and the later non-linear
dynamics with numerical simulations.

We report new results quantifying the role of the nanoparticle
mobility and the anchoring of the liquid crystal (with respect
to nanoparticle concentration gradients present at the edges of
the NP aggregates) regarding the impact that the NPs have on
the LC dynamics and viceversa. Our results indicate that the
tensorial model is characterized by a slower rate of evolution
of the alignment tensor field but a faster evolution of the
NP concentration field, in comparison to the results of the
scalar model. Both display non-linear saturation of their initially
exponential dynamics, although the tensorial model shows a clear
overshooting with respect to its final saturation behavior.

With our new model, we are able to account for the mutual
coupling between the nanoparticles and the mesogenic fluid. It
also opens the way for including more realistic models for the
NP free energy, beyond the quadratic term that corresponds to a
truncation of the NP free energy at the level of its second-virial
coefficient. In particular, including the effect of the NP excluded
volume as well as the presence of attractive interactions is feasible
through known models for the free energy of hard spheres and
perturbation theories for Lennard-Jones, square-well and other
types of attractive potentials. We also discuss how our results
relate to other settings where Newell-Whitehead equations could
be coupled to conserved fields, in cases like excitable media,
population growth, and epidemics.

2. METHODS

Our analysis relies on the formulation of Model C, by [8],
for the dynamical equations of a conserved field coupled with
a non-conserved field. For our purposes, the conserved field
corresponds to the nanoparticle concentration, C(x′, t′). We
denote space and time coordinates by x′ and t′, respectively,
reserving unprimed symbols for non-dimensional coordinates to
be introduced below in order to simplify the notation. The non-
conserved field corresponds to the order parameter for the liquid
crystal. We consider, first, the case where this parameter is taken
simply as the scalar nematization,

S(x′, t′) = 〈P2(cos θ)〉, (2)

where θ is the angle between the molecular axis of a mesogen and
the nematic director, P2(x) is the second Legendre polynomial,
and the angular brackets denote here a coarse-graining average
over molecular orientations at the given coordinates. We
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also consider the case where the order parameter is the
alignment tensor,

Q(x′, t′) = 〈uu− I/d〉, (3)

with u a unit vector in the direction of molecular orientation,
I the identity tensor, and d = 2, 3 the dimensionality of u; the
angular brackets also denote here a coarse-graining average over
molecular orientations at point x′ and time t′.

Within the methodology of Hohenberg and Halperin [8], the
dynamic equations are related to the functional derivatives of
the system’s free energy functional with respect to each of the
dynamical fields, but they have different forms depending on the
presence or absence of a conservation law for each dynamical
variable. We show how to obtain such dynamical equation below.

For the case where the LC order parameter is taken just as the
nematization S, we take as the system’s free energy functional the
following expression:

F[S,C] =

∫

dx′
(

K

2

(

∇ ′S
)2

+
r

2
S2 − wS3 + uS4 +

�

2
C2

+
α

2
CS2

)

. (4)

In the previous equation, ∇ ′ denotes differentiation with respect
to the spatial coordinates x′i, r = a(T−T∗) is a control parameter
that depends on the temperature T, the limit of thermal stability
T∗ and a positive constant a, while K is an elastic constant, w and
u are Landau-de Gennes expansion coefficients [9], � is a virial
expansion coefficient for the NPs free energy and α is coupling
parameter for the conserved and non-conserved fields. They
are phenomenological constants with material-specific values.
The first four terms in (4) correspond to a Landau-de Gennes
expansion, the fifth term is a low-concentration approximation
to the free energy of the nanoparticles (to the level of the second
virial coefficient), with the last term providing the coupling
between the fields.

The Landau-de Gennes expansion coefficients a,T∗,w and u
can be determined from microscopic information by simulation
[17, 18] or by experimental information about the values of
several quantities at the isotropic-nematic transition in the
pure liquid crystal: the magnitude of the discontinuity of the
nematization S, the temperature shift between the transition
temperature, the limit of meta-stability T∗, the phase-transition
latent heat and the correlation length [19]. Elastic constants such
as K can be calculated from microscopic information about the
direct correlation function for the mesogens in a liquid crystal
[20, 21], or by analysis of long-wavelength director fluctuations
using molecular simulations [22, 23]. For the coupling between
the conserved and non-conserved fields, we have chosen a term
that is linear in C but is quadratic in S. This choice is similar
to that used by Elder and coworkers for the study of binary
mixtures [24] and results in a shift in the isotropic-nematic
transition temperature, as can be recognized by defining a control
parameter r(T,C) = a(T − T∗) + α

2C. Thus, the first effect of
the coupling term is a shift in the isotropic-nematic transition
temperature by an amount proportional to α

2aC, when compared

with that for the pure nematic with C = 0. From experimental
information as well as molecular simulation modeling, we set
α > 0 and therefore obtain a reduction in the transition
temperature when nanoparticles are present. A second effect of
the coupling term αCS2/2, when α is positive, is that the absolute
minimum of its contribution to the free energy is zero and can be
achieved when non-zero values of C occur at places where S = 0.
In other, words, segregation of nanoparticles to locally isotropic
regions is favored thermodynamically by this term.

For the case where the LC order parameter is the alignment
tensor Q, the system’s free energy functional is, analogously,
taken as:

F[Q,C] =

∫

dx′
(

K

2

(

∇ ′Q
)2

+
r

2
trQ2 − w trQ3 + u trQ4

+
�

2
C2 +

α

2
C trQ2

)

. (5)

Again, the parameters in this expression are phenomenological
and available from experiments [25, 26] and we consider α > 0
for the coupling between the fields C and Q, since the isotropic-
nematic transition temperature is observed to decrease as the
concentration of nanoparticles is increased. When considering
molecular orientation of mesogens confined to a plane, hence
d = 2, the tensor order parameter can be parameterized as

Q = S(nn− I/2) (6)

and the trace of odd powers of Q is identically zero. In
such situations, substitution of the previous parametrization
into (5) shows that the remaining terms r

2 trQ
2, u trQ4, and

α
2C trQ2 contribute to the free energy with r

4S
2, u

8 S
4, α

4CS
2,

respectively. These differ from the corresponding terms in (4)
only by a rescaling of the coefficients r, u, and α. Therefore, the
coupling term also favors segregation of nanoparticles into locally
isotropic regions.

In this work we present our results for the cases of
systems described by the models in Equations (4) and (5) over
bidimensional domains. To describe the dynamics after the
isotropic-nematic phase transition, we assume in Model C that
at time t′ = 0 the system suffers a sudden quench bringing
the temperature below the transition value. We also assume
that isothermal conditions throughout the whole sample remain
aftwerwards: this allows us to work solely with the dynamical
equations of Model C for the conserved and non-conserved
fields. For the case where S is the sole order parameter of the LC,
these equations are

∂S

∂t′
= −Ŵ

δF

δS
,

∂C

∂t′
= −∇ ′ ·

(

−ŴC∇
′ δF

δC

)

, (7)

where Ŵ and ŴC are phenomenological mobilities that here we
consider constant. Substitution of the free energy functional
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defined in (4) into (7), followed by a change of variables to
non-dimensional ones defined by

s =

√

u

|r|
S,

c =
α

|r|
C,

x =

√

|r|

K
x′,

t = Ŵ|r|t′, (8)

yields the following dynamical equations:

∂s

∂t
= ∇2s− (sgn(r)+ c)s− s3,

∂c

∂t
= R∇2 (c+ gs2

)

, (9)

where sgn(x) is the sign function, while R and g are non-
dimensional parameters:

R =
ŴC�

ŴK
, (10)

g =
α2

2u�
. (11)

We point out that, because our assumption of isothermal
conditions, we can treat parameter r = a(T − T∗) as constant
and so our scaled dynamical equations become independent
of r up to its sign; also, the actual nematization S is related
to the non-dimensional variable s through a temperature-
dependent transformation.

In summary, we notice that (9) contain a Newell-Whitehead
equation for the non-conserved field and a diffusion equation for
the conserved one that are mutually coupled. The coupling in
the former equation amounts to a local shift (by c) in the control
parameter sgn(r), while that in the latter amounts to an additional
term driving NP diffusion away from high-nematization regions.

For the case whereQ is the LC order parameter, it is necessary
to project δF/δQ onto the set of traceless symmetric tensors,
which results in the following expressions:

∂Q

∂t′
= −Ŵ

(

δF

δQ
−

1

d
tr

[

δF

δQ

]

I

)

,

∂C

∂t′
= −∇ ′ ·

(

−ŴC∇
′ δF

δC

)

. (12)

If one introduces a reduced alignment tensor as

q =

√

u

|r|
Q, (13)

the dynamical equations in this case reduce to

∂q11

∂t
= ∇2q11 − (sgn(r)+ c)q11 − q11

(

q211 + q212
)

,

∂q12

∂t
= ∇2q12 − (sgn(r)+ c)q12 − q12

(

q211 + q212
)

,

∂c

∂t
= R∇2 (c+ g

(

q211 + q212
))

, (14)

where the unprimed Laplacian operator denotes differentiation
with respect to the non-dimensional spatial coordinates x. Again,
(14) correspond to two coupled Newell-Whitehead equations, for
the components of the q tensor and one diffusion equation for the
NP concentration: the concentration shifts the coefficients of the
linear terms for the non-conserved variables, while their mutual
coupling is nonlinear, and the coupling of the non-conserved
variables to the conserved field drives diffusion of NPs away from
the nematically ordered regions.

While the scalar order parameter model expressed by (9)
does not allow us to consider anchoring of the liquid crystal
orientation with respect to the NP aggregate interfaces (that is,
the requirement that the nematic director n orients in a particular
direction with respect to an interface normal [9]), the tensorial
model given by (14) can be augmented to account for anchoring
by including a new term to the free energy density in (5) [27, 28]:

fanch = 3

(

∂C

∂x′i

)

(

∂Qij

∂x′j

)

, (15)

where 3 is an anchoring parameter. By coupling the gradients
of the concentration C and gradients of the elements of the Q

tensor, for 3 > 0 lower free energy configurations are obtained
when the director is parallel to concentration gradients, hence
hometropic at the interface of NP aggregates; if 3 < 0, then the
preferred orientation of the director becomes perpendicular to
concentration gradients and the anchoring becomes planar [28].
The corresponding dynamical equations obtained from Model
C are:

∂q11

∂t
= ∇2q11 − (sgn(r)+ c)q11 − q11

(

q211 + q212
)

+
λ

2

(

∂2c

∂x21
−

∂2c

∂x22

)

,

∂q12

∂t
= ∇2q12 − (sgn(r)+ c)q12 − q12

(

q211 + q212
)

+ λ
∂2c

∂x1∂x2
,

∂c

∂t
= R∇2

(

c+ g
(

q211 + q212
)

− λ

((

∂2q11

∂x21
−

∂2q11

∂x22

)

+ 2
∂2q12

∂x1∂x2

))

, (16)

where λ = α3

�u|r|1/2
.

For the tensorial model, the nematization s and the orientation
θ of the director n = (cos θ , sin θ) can be obtained from q using
the parametrization

q = s(nn− I/2) =
s

2

(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)

. (17)

Comparison between the parametrization of Q given in (6) and
(17), together with the scaling in (13) shows that s =

√
u/|r|S,

just as for the scalar model. From the dynamical Equations (9),
or (14), (16) and (17), one can show that homogeneous and
stationary states can be achieved if the initial NP concentration
is uniform c(x, 0) = c0 and the order parameter is either zero
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s(x, 0) = 0 or given by s(x, 0) =
√
1− c0 if r < 0. This

work is concerned with the former case since, experimentally,
nanoparticles are initially suspended homogeneously in the
isotropic phase of 5CB [12].

We solved numerically the dynamical equations, for the
models with scalar and tensor LC order parameters (with and
without anchoring in the latter case), with a finite difference
method over a square grid of N = 128 equidistant points in
each direction, with periodic boundary conditions. The spacing
1xi = 1 and the time step 1t = 0.01 were chosen together

so that the forward Euler method would be stable [1]. In order
to imitate the experimental conditions described by [12], we
used as initial condition an isotropic state s(x, 0) = 0 with
uniform nanoparticle concentration c(x, 0) = 0.01. We then
added random perturbations to the dynamical variables drawn
from a uniform distribution on the interval [−10−3, 10−3]. We
ran 20 realizations of the dynamics for these randomized initial
conditions for each simulated system.

Besides direct visualization of the evolution of the conserved
and non-conserved fields, we analyzed the dynamics of the

FIGURE 1 | Time evolution of nematization s(x) and NP concentration c(x), from the scalar model (9): (A) for NP mobility R = 0.1 and (B) R = 10. NP material
segregates to the domain walls where the nematization is diminished with respect to the interior of the nematic domains. This segregation is more pronounced for the
more mobile case (B). Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through both runs. In an homogeneous and steady nematic state s =

√
1− c0 = ±0.995

but, once the NPs segregate, we expect that at long times s = ±1 deep inside the nematic regions.
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system in Fourier space by calculating the power spectra

Ps(k, t) = s(k, t)s∗(k, t),

Pc(k, t) = c(k, t)c∗(k, t), (18)

where f (k, t) denotes the Fourier transform with respect to space
of f (x, t) and f ∗ is the complex conjugate of f . We also computed

the correlation functions

Cs(x, t) = 〈s(x− y, t)s∗(y, t)〉y − 〈s(y, t)〉2y,

Cc(x, t) = 〈c(x− y, t)c∗(y, t)〉y − 〈c(y, t)〉2y, (19)

where the angular brackets denote here an average over the whole
domain for the spatial coordinates y followed by a further average

FIGURE 2 | Time evolution of director orientation θ (x), nematization s(x) and NP concentration c(x) from the tensor dynamical Equations (14), for NP mobility
parameter R = 0.1. As for the scalar dynamical equations, NP material aggregates at the low nematization regions, which correspond here to point disclinations. As
the disclinations annihilate, NP material is released back into the nematic domains where it diffuses away. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed
through the run, so that the equilibrium values of s =

√
1− c0 = ±0.995 in the nematic phase.
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over multiple independent realizations. In this respect, the power
spectra and correlation functions were averaged over the 20
independent realizations corresponding to the same number of
randomized initial conditions for a given system.

We computed the correlations length ξa, for a = s, c, from the
correlation functions as

ξa =

(

∂ logCa

∂x

∣

∣

∣

∣

x=0

)−1

, (20)

obtained by quadratic fitting of the logarithm of the correlation
functions Cs and Cc with respect to the radial coordinate x = |x|.
Complementary to this method, we also measured a correlation
length La = 2π/ka from the wave number ka at which the power
spectra Pa(k, t) reaches half of its maximum (which corresponds
to the size of the circular patterns shown in Figure 3). While both
estimates yield proportional values, we found that the second
one tracks the increase in the correlation length more robustly.
Hence, only the time evolution of the correlation lengths Ls and
Lc is presented in the results.

3. RESULTS

Our first results for the time evolution of the nanoparticle-
mesogen mixture are shown in Figure 1 for the model with
scalar order parameter. Our numerical simulations show that
the nanoparticle concentration grows in time precisely at those
regions where the order parameter is close to zero. These regions
are domain walls between areas with nematization s of opposite
signs. As the domains grow and the domain walls shrink and
disappear, the NP concentration “stored” in the domain walls is
released back into the domains interior, diffusing back to other
nearby walls.

Figure 1A displays the time evolution when the relative
mobility parameter R = 0.1 corresponds to slow NP diffusion
compared to LC relaxation, one can observe that c is higher at
the domain walls but still noticeable at the domain interiors.
On the other hand, Figure 1B shows the time evolution for
R = 10, corresponding to fast NP diffusion compared to LC
relaxation. In this latter case, c is much smaller at the domains’
interior and most of the NP material gets confined to the
domain walls.

FIGURE 3 | Time evolution of the power spectra of the nematization Ps(k) and the concentration Pc(k) from (A) the scalar Equations (9) and (B) the tensor Equations
(14). As the time increases, the power is concentrated at ever smaller wave numbers k = |k|, indicating that the characteristic length in the system increases with
time. Also, the conserved-field power spectra Pc(k) show clear maxima at intermediate wavenumbers, with noticeable smaller values at the origin. Parameters
R = 0.1, g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.
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Our results for the model with tensor order parameter
and no anchoring (λ = 0) are shown in Figure 2 and
Supplementary Figure 1. Again, the numerical simulations show
that the NP concentration segregates toward topological defects
where the tensor order parameter q is close to zero. Now,
however, these topological defects are points where the director
orientation θ changes abruptly. In this case, the NP “stored” at the
defects are released back into the nematic phase when the point
disclinations of opposite charge annihilate. The same qualitative
behavior was obtained from numerical simulations with negative
and positive values of the anchoring coefficient (λ= −0.4, −0.1,
0.1, and 0.4), corresponding to weak planar and homeotropic
anchoring, respectively [28] (see Supplementary Figure 2). In
this model the nanoparticle aggregates remain on the order of
a few order parameter coherence lengths, and thus we observed
no formation of NP aggregates large enough to trigger repulsion
among them due to anchoring. However, non-zero values of λ do
alter the shape of the NP aggregates: those with −1/2 topological

charge acquire a clearly triangular shape, while those with +1/2
charge become slightly elongated (see Supplementary Figure 2).

In order to quantify the characteristic length scales associated
with the NP self-assembly at the topological defects in the
nematic, we analyzed the power spectra for the conserved and
non-conserved fields in our models, Ps(k, t) and Pc(k, t). Typical
behavior of these power spectra is shown in Figure 3, for the
cases with scalar and tensor order parameter with λ = 0 (no
anchoring), keeping the same values of R and g in both of them.
For both models and for both s and c, we observe that, overall,
the power becomes concentrated at ever smaller values of the
wave number k = |k| as time increases. This corresponds, as
expected from Figures 1, 2, to an increase in the characteristic
length scales for the order parameter andNP concentration fields.
Nevertheless, from Figure 3we can observe that such length scale
increase is faster for s than for c when the LC order parameter
is taken as scalar, but slows down noticeably for s when the
LC order parameter is taken as a tensor (see Figure 3B). The

FIGURE 4 | Time evolution of the angular average of the power spectra of the nematization Ps(k) and the concentration Pc(k), as functions of the wave number k, from
the scalar Equations (9) for conditions of low and high NP mobility R: (A) Ps(k, t) for R = 0.1, (B) Ps(k, t) for R = 10, (C) Pc(k, t) for R = 0.1, (D) Pc(k, t) for R = 10. Each
curve corresponds to the time indicated in the inset legends. While the nematization power spectrum increases quickly and steadily, the concentration power
spectrum Pc(k) for low NP mobility goes through a quiescent stage before undergoing sudden increase, and even initially decreases at high wave numbers for high NP
mobility. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.
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FIGURE 5 | Time evolution of the angular average of the power spectra of the nematization Ps(k) and the concentration Pc(k), as functions of the wave number k, from
the tensor Equations (14) for conditions of low and high NP mobility R: (A) Ps(k, t) for R = 0.1, (B) Ps(k, t) for R = 10, (C) Pc(k, t) for R = 0.1, (D) Pc(k, t) for R = 10.
Each curve corresponds to the time indicated in the inset legends. Now, the nematization power spectrum increases quickly but non-monotonically with time.
Nevertheless, the concentration power spectrum Pc(k) for low NP mobility still goes through a quiescent stage before undergoing sudden increase, and (initially)
decreases at high wave numbers for high NP mobility. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.

numerical solutions with λ 6= 0 display the same type of behavior
and are not shown. Therefore, from this point we focus on the
solutions for λ = 0, although we discuss quantitatively the effect
of anchoring on the dynamics later in this section.

To study further the different behaviors observed in the
Fourier space, we computed the angular average of the power
spectra and plotted the resulting functions Ps(k, t) and Pc(k, t)
against the wave number k at different times. For the model
with scalar order parameter under conditions of low NP
mobility (R = 0.1), we show the power spectra for s in
Figure 4A and that of c in Figure 4C. Figures 4B,D show
the corresponding power spectra, respectively, for conditions
of high NP mobility (R = 10). For both values of R, the
power spectrum Ps(k, t) for the nematization increases very
quickly at low values of k, until this increment slows down
and saturates (see Figures 4A,B). On the other hand, the power
spectrum Pc(k, t) for the NP concentration is initially quiescent
when the mobility R is small; only after some lag it increases

with time and acquires a maximum at intermediate values
of k (see Figure 4C): this corresponds to the bright rings
visible in Figure 3. When the mobility R is high, however, the
quiescent period is replaced with a process where the power
spectrum decreases sharply at high wave numbers, and only later
increases and develops a maximum at intermediate values of k
(see Figure 4D).

The corresponding situation for the model with tensor order
parameter is shown in Figure 5. Again, for conditions of low NP
mobility (R = 0.1), we show the power spectra for s in Figure 5A

and that of c in Figure 5C. On the other hand, Figures 5B,D
show the corresponding power spectra of s and c, respectively, for
conditions of high NP mobility (R = 10). The power spectrum
Ps(k, t) for the nematization still increases rapidly at low values of
k, but now the total increment is much reduced when compared
with the result from the scalar equations. Eventually, growth is
followed by a decrease with increasing time (see Figures 5A,C).
On the other hand, the behavior of the power spectrum Pc(k, t)
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FIGURE 6 | The maxima of the power spectra of the nematization and the concentration, as functions of time, for systems with anchoring parameter λ = 0 and with
low and high NP mobility, from (A) the scalar dynamical Equations (9) and from (B) the tensor Equations (14). In both (A,B) circles correspond to low NP mobility
R = 0.1 while crosses correspond to fast NP mobility R = 10. Initially, the nematization maxima grow exponentially and then saturate, but they show an overshoot
with respect to the saturation value in the tensor case (B). On the other hand, the exponential growth of the concentration maxima lags behind the growth of the
nematization maxima, but it is also followed by saturation. The lag period is shorter for the case of high NP mobility. Parameters g = 0.005, r = −1, c0 = 0.01 were
fixed through the runs.

for the NP concentration remains qualitatively similar to that in
the first model (see Figures 4B,D).

An alternative view of the time evolution of the power spectra
was obtained by plotting the maximum values of Ps and Pc,
as functions of time in a semi-logarithmic scale, as shown in
Figure 6. First, for the model coupling the NP concentration
only to nematization (see Figure 6A), we observe a regime
where the maximum of the nematization power spectrum grows
exponentially with time, followed by saturation. We observe
practically the same behavior for low and high values of the NP
mobility parameter, R = 0.1 and 10 (respectively). Also for the
case of scalar order parameter, we observe a lag interval where
the maximum of Pc decreases by a small amount before growing
rapidly toward some saturation value. Second, for the model
coupling c and the tensor order parameter, we again observe
exponential growth of the maximum of Ps, regardless of the value
of R. Only, in this case, the exponential-growth regime does not
reach values as high as in the first model, and it is followed by
an overshoot before a decrease to a saturation value. For the
second model, the maximum of Pc still shows the lag interval and
decrease followed by growth to a saturation value. Here, the high
mobility value R = 10 leads to a clear overshoot in the maximum
of Pc, while the low mobility value does not.

At this point, we present again results for the cases with
positive and negative anchoring parameter λ. Figure 7 compares
the time evolution of the maxima of the power spectra for
nematization and concentration for conditions of homeotropic
anchoring (λ > 0), planar anchoring (λ < 0), and
absence of anchoring (λ = 0). We found that for the range
of λ considered, corresponding to weak anchoring [28], the
dynamics of the LC order parameter and the NP concentration
display a minor dependence with the value of the anchoring
parameter λ. We interpret this as a consequence that, since the
initial concentration of NP was taken as very small, the local

concentration remains small even at the NP aggregates, as well
as the gradient of c. Thus, the influence of the anchoring that
couples the gradients of concentration to those of the order
parameter tensor is limited. With this in mind, we focus on the
representative case with λ = 0 in the rest of the results section.

We interpret the initial regimes of exponential growth in the
power spectrum of the nematization as the interval where the
dynamics can be described by the linear part of the dynamical
equations, and the saturation regime as the set-in of the nonlinear
saturation state where the nonlinear terms in the dynamics
prevent exponential divergence of the nematization field. Also,
we interpret the lag in the growth of the concentration power
spectrum as arising from the conserved-field dynamics: since the
dynamics of c is diffusive, at the linear stability analysis level
we do not expect it to give rise to unstable modes at any wave
number, only the non-conserved field may produce unstable
modes and so in the initial regime (controlled by the linear
dynamics) the only exponentially-rising power spectrum is the
one for s.

The information contained in the power spectra can be
translated back into direct space in the form of the auto-
correlation functions for s and c. Figure 8 shows the time
evolution of these correlation functions obtained from the scalar
dynamical equations, for R = 0.1 and R = 10 (the tensor
case correlation functions are qualitatively similar and shown
in the Supplementary Figure 3). These functions decay over a
short range, and such correlation range increases with time (as
expected). Still, the auto correlation of the NP concentration
remains flat over the initial lag period before growing quickly.

Figure 9 shows the time dependence of the correlation
lengths. For both the scalar and tensor order parameter models,
the nematization correlation length is typically larger than
the concentration correlation length. While the nematization
correlation length in the scalar order parameter model grows
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FIGURE 7 | The time evolution of the maxima of power spectra, from the tensor equations incorporating anchoring (14) with NP mobility R=0.1 and R = 10, of: (A)
the nematization when −0.4 ≤ λ ≤ 0 (planar anchoring), (B) the nematization when 0 ≤ λ ≤ 0.4 (homeotropic anchoring), (C) the NP concentration when
−0.4 ≤ λ ≤ 0 (planar anchoring), and (D) the NP concentration when 0 ≤ λ ≤ 0.4 (homeotropic anchoring). To facilitate comparisons, circles and crosses indicate
data for λ = 0. For the weak anchoring conditions and low initial NP concentration c0 = 0.01 considered here, the dynamics of the nematization shows only a small
dependence with the value of the anchoring parameter. Parameters g = 0.005 and r = −1 were fixed through the runs.

monotonically with increasing time, in all other cases the
correlation lengths show a peak over a time interval that
matches the initial linear regime, followed by systematic increase
afterwards. The lack of a peak in Ls(t) seems to us to be related
to the absence of overshoot in the power spectrum Ps(k, t)
for the scalar order parameter model when R = 0.1, since
the corresponding curve for R = 10 (not shown) does show
a peak while its corresponding power spectrum does present
an overshoot.

4. DISCUSSION

Our results indicate that, for situations where the nanoparticle
concentration is so low that approximation of their free energy
up to the level of the second virial coefficient is adequate, the
ordering of the nematic phase at temperatures below its phase
transition proceeds exponentially with time, with little response

of the NPmaterial. Such exponential dependence is characteristic
of the linear regime where the order parameter is small. Only
after a lag the NPs couple effectively to the ordering in the
liquid crystal, segregating to the regions where the nematic order
parameter is close to zero. These initial stages are followed by the
onset of nonlinear dynamics that leads to nonlinear saturation of
the order parameter. Whether the LC order parameter is taken
as a scalar or tensor does not change this sequence, but affects
the kind of topological defects that capture the NP material
(domain walls for the scalar case, point disclinations for the
tensor one) as well as a clear overshoot of the exponential
dynamics with respect to the nonlinear saturation level for
the tensor case. We found insensitivity of the solution to the
tensorial dynamical equations to the anchoring parameter λ for
conditions of weak homotropic or planar anchoring. Since this
parameter couples the gradient of the tensor order parameter
with gradients in concentration, we interpret this insensitivity as
arising from the low value of the conserved initial density: even
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FIGURE 8 | Time evolution of the correlation functions for the nematization and NP concentration from the scalar dynamical Equations (9), as functions of distance x,
for low and high NP mobility conditions: (A) Cs(x) for R = 0.1, (B) Cs(x) for R = 10, (C) Cc(x) for R = 0.1, and (D) Cc(x) for R = 10. The color legends indicate the time
t for each correlation function. Initially, the correlation for the nematization increases exponentially with increasing time, while that for the NP concentration remains
small. Only after a lag period it rises abruptly. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.

at those regions where NP aggregate the local concentration and
gradients remain small and so limit the influence of anchoring on
the dynamics.

Compared with the model used by [12], our approach fully
couples the dynamical equations for the LC order parameter
with the NP concentration. Still, we find that for values of
the coupling parameter g and initial NP concentration c0 as
small as considered here (similar to those in experiments),
the evolution of the LC component remains largely unaffected
even when varying the relative mobility parameter R by two
orders of magnitude. Numerical exploration of the dynamics
at higher NP higher concentrations is certainly possible and
useful for further investigation of the effects of anchoring, but
this would require improving the NP free energy expression
beyond the second virial coefficient level, as discussed below. For
situations where the NP aggregates become sufficiently large and
concentrated, they should start to behave as colloidal inclusions
in the nematic phase, triggering processes where weak anchoring,
as well as orientational elasticity, drive further interaction and

structure formation at the colloidal length scale [29–31]. Another
issue that should be addressed when considering higher NP
concentration is the emergence of additional interactions driven
by depletion interactions, as recently revealed by computer
simulations [32]. It is also possible to explore the behavior for
larger values of the coupling parameter g; preliminary results
from molecular simulations indicate that the coupling parameter
increases rapidly with pressure.

It is important to mention that the quadratic coupling term
used in this work leads to different behavior from the linear one
assumed by [12]: a linear coupling would result in preferential
segregation of the NP field to regions where s is negative, instead
of regions that are locally isotropic. Also, our choice for the free
energy of the NPs leads to simple diffusive behavior, instead of
the nonlinear dynamics of the Cahn-Hilliard equation,

∂z

∂t
= ∇2 (z3 − z −∇2z

)

, (21)
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FIGURE 9 | Correlation lengths Ls (top row) and Lc (bottom row) as functions of time for (A) the scalar order parameter model and (B) the tensor order parameter
model. The nematization correlation length is generally larger than the NP concentration correlation length. The peaks in these curves span the initial linear regime. The
curve for the nematization correlation length from the scalar dynamical equations does not display a peak. Parameters R = 0.1, g = 0.005, r = −1, c0 = 0.01 were
fixed through the runs.

where z = c − cc is the deviation of the NP concentration from
its critical density cc. In this work, we assume that parameter �

is positive and, therefore, that the NPs interact repulsively. In the
absence of attractive interactions, no critical point is expected and
so we used the Model C dynamics as stated. A Cahn-Hilliard
treatment would allow us to generalize our model to include
the effect of attractive interactions, but another possible route
is to replace the expression for the NP free energy with known
expressions for a Lennard-Jones [33] or a Square-Well fluid
[34] and then use Model C to obtain the nonlinear dynamical
equations. We are currently exploring this second avenue.

As mentioned earlier, our non-dimensionalization procedure
for the dynamical equations assumes that parameter r = a(T −

T∗) is constant, and our numerical simulations correspond
to evolution after a temperature quench below the isotropic-
nematic transition. In order to simulate finite cooling rates, it
would be sufficient to reframe the equations to incorporate a time
dependence in parameter r. This would be useful to test directly
the hypothesis of Riahinasab et al. that cooling rate and local
shifts in the transition temperature due to higher concentration
of nanoparticles dictate the morphology of NP assemblies during
segregation from the nematic phase, and we plan to perform and
report such calculations presently.

The modeling approach followed in this work can be extended
to three-dimensional cases, where the tensor order parameter
contains five degrees of freedom, but the numerical work
becomes more demanding. In particular, our finite difference
approach would probably need to be replaced with a more
efficient scheme, such as finite element or Galerkin methods.
Inclusion of stochastic noise terms into the dynamical equations
is also a possibility, although it has been shown by Bray that
it is an irrelevant perturbation in a Renormalization Group
sense [6, 35]: transitions between the minima in the free energy
are possible in the presence of thermal fluctuations (but are

seldom observed in simulations over small domains) and the
roughness of the interfacial structure is larger as the noise
strength increases [35]. Another direction where our modeling
approach can be applied is the study of active matter [35], in
particular the case of active Langmuir monolayers [36] where
a local concentration c of chiral molecules is coupled to a
local orientation field n. By extending the description of the
orientation to that of a tensor order parameter, defect dynamics
beyond the director description could be captured. Finally, we
point out opportunities for examining other nonlinear dynamical
systems where one ormore Newell-Whitehead equations become
coupled to a conserved variable. As an instance, even if a
quadratic term is absent in the dynamical equations for liquid
crystals in two dimensions due to the traceless condition of
its tensor order parameter, other systems may admit such a
term. The spatially-dependent Nagumo equation contains such
nonlinear dependence [3]:

∂M

∂t
= D∇2M + C1M(C2 −M)(M − C3), (22)

whereM represents the local population of a species undergoing
motion and birth, death and mutual cooperation or competition,
while D,C1,C2,C3 are parameters that account for such
processes. In some epidemiological studies [37], a population
of a short-lived species (for instance, mosquitoes) interacts
with another species (such as large mammals or birds) with
a very long lifespan compared to that of the first one.
In such cases, as a consequence of a large separation of
time scales, it may be interesting to consider the long-lived
population as approximately conserved. We are currently
surveying other instances of excitable nonlinear media where
coupling to locally conserved fields is warranted as a promising
research direction.
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Pulsatile flows of viscoelastic fluids are very important for lab-on-a-chip devices, because

most biofluids have viscoelastic character and respond distinctively to different periodic

forcing. They are also very important for organ-on-a-chip devices, where the natural

mechanical conditions of cells are emulated. The resonance frequency of a fluid refers to

a particular pulsatile periodicity of the pressure gradient that maximizes the amplitude

of flow velocity. For viscoelastic fluids, this one has been measured experimentally

only at macroscales, since fine tuning of rheological properties and system size is

needed to observe it at microscales. We study the dynamics of a pulsatile (zero-mean

flow) fluid slug formed by a viscoelastic fluid bounded by two air-fluid interfaces, in

a microchannel of polymethyl methacrylate. We drive the fluid slug by a single-mode

periodic pressure drop, imposed by a piezoactuator. We use three biocompatible

polymer solutions of polyethylene oxide asmodel viscoelastic fluids, and find resonances.

We propose a model accounting for surface tension and fluid viscoelasticity that has an

excellent agreement with our experimental findings. It also provides an alternative way

of measuring relaxation times. We validate the method with parameters reported in the

literature for two of the solutions, and estimate the relaxation time for the third one.

Keywords: fluid slug, pulsatile flow, dynamic permeability, microfluidics (experiment), viscoelasticity, interfaces,

contact angle, relaxation time

1. INTRODUCTION

The study of oscillatory fluid flow at microscales has become relevant due to the increasing
number of applications that use this type of motion. For example: chemical synthesis inside
microfluidic channels [1], liquid-liquid extraction [2], mixing by oscillatory cross flow [3–7],
cooling of microelectronic circuits by micro oscillating heat pipes [8], inertial focusing of particles
of a fewmicrons [9, 10], DNA elongation studies [11] and studies of oscillatory movement of liquid
plugs displaced by air in microchannels as model pulmonary flows [12, 13].

Pulsatile flows of viscoelastic fluids are very important for most organ-on-a-chip devices, where
the natural mechanical conditions of cells are emulated [14–17], since most natural processes occur
at certain characteristic frequencies. The characterization of viscoelastic fluids under non-steady
pressure forcing is also important for lab-on-a-chip clinical analysis of biofluids such as blood,
mucus, or synovial fluid. The dynamics of polymeric viscoelastic solutions under pulsatile forcing in
microchannels is an area of recent development [18]. Flow of these solutions is strongly influenced
by chemical properties of the polymer, its molecular weight and ramifications, concentration, the
nature of the solvent, temperature and pressure [19].
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The fluid response to an oscillatory pressure gradient has often
been described by the dynamic permeability, a theoretical linear
response function that has been obtained for numerous confined
fluids: Newtonian, Maxwellian and general linear viscoelastic
fluids, in a wide range of confining geometries [20–27]. It has
also been obtained theoretically for Newtonian and viscoelastic
fluids confined in elastomeric materials at microscales [28, 29]
and for compressible binary fluids [30]. A distinctive feature of
the dynamic permeability, when elastic elements are present in
the system, is that it presents resonances, which refer to particular
pulsatile periodicities of the pressure gradient that maximize
the amplitude of fluid velocity. Experimental observation of
resonances consists of an increase of flow velocity amplitude
at a specific frequency range of the driving pressure gradient,
that maximizes the momentum transfer to the fluid. For single
fluids, resonances have only been reported experimentally at
macroscales [31, 32], since fine tuning of rheological properties
and system size is needed to observe them at microscales, in a
desired frequency range.

Recently, a model to study the dynamics of a pulsatile (zero-
mean flow) fluid slug, consisting of a Newtonian fluid and
two air-fluid interfaces, driven by a periodic pressure gradient
in a rectangular microchannel, has been proposed [33]. In
that model, a stress tensor for a Newtonian fluid, together
with Laplace condition for the pressure jump at both sides of
the curved air-fluid interfaces, has been considered. Analytical
solution of the model showed, for relatively low frequencies,
a monotonic increase with frequency of the magnitude of the
dynamic permeability as well as the emergence of a resonant
behavior, due to the presence of surface tension. Microfluidic
experiments were designed and implemented to observe both the
low-frequency dynamics and the resonance. The model was then
validated against the experimental results and used as a proposed
strategy to measure surface tension in dynamic situations.

There are different ways to impose oscillatory frequencies
to a fluid inside a microchannel. By using syringe pumps,
low frequencies of oscillation (below 10 Hz) are achieved [1];
in contrast, the use of high-speed valves and gas-pressurized
fluids [3], mechanical motors [34], heating [35] or mechanical
displacement of an air bubble [36] can increase the forcing
frequency range to 10–1,000 Hz. Alternative possibilities to
impose pulsatile forcing in this frequency interval are the use of a
moving train of droplets [37] and the coupling of a loudspeaker
diaphragm to a microfluidic chamber [4]. Finally, coupling
the displacement of a piezoelectric to a fluid encompasses a
wide range of forcing frequencies of the methods described
previously [38].

There are several sophisticated theoretical models to study
the rheological behavior of PEO solutions, in different ranges of
concentration and molecular weights. Of particular importance
are the Phan-Thien-Tanner (PTT) model [39, 40] and the
Cross model [19]. They have been adequate to study several
experimental conditions and driving forces where a complex
rheological response, involving elongational and shear thinning
effects, has been experimentally observed and theoretically
reproduced. However, there is also experimental evidence that a
Maxwellian model predicts correctly and accurately the behavior

of small ejected, lowmolecular weight PEO (1x106g/mol) droplet
jets [41]. Moreover, within microchannels of constant sectional
area, several works suggest that for spatially-uniform pressure
gradients elongational and shear thinning effects, like the ones
considered by the PTT and Cross models, are irrelevant [40,
42, 43]. Furthermore, despite the fact that viscoelastic fluids
generally involve several relaxation times, many studies of fluids
with complex rheological behavior often report a single dominant
Maxwellian-like relaxation time, fitted from their experimental
data, since the Maxwell model is used as an archetype in the field.

In this work, we perform experimental and theoretical studies
of the dynamics of a pulsatile (zero-mean flow) microfluidic
slug, formed by a viscoelastic fluid bounded by two air-fluid
interfaces in a rectangular microchannel, and find resonances in
the dynamic permeability. We have driven the fluid slug by a
single-mode periodic pressure drop, imposed by a piezoactuator
in the range from 0.5 to 200 Hz, managing to keep the
amplitude of the dynamic pressure drop practically constant at
all frequencies. We have determined the displacement of the
viscoelastic slug by visualization of the oscillatory movement of
air-fluid interfaces. We have used three biocompatible polymer
solutions of polyethylene oxide (PEO), as model viscoelastic
fluids, because the rheological behavior of PEO has been widely
assessed [19, 44, 45]. We propose a linear model accounting
for surface tension and fluid viscoelasticity, that has a good
qualitative agreement with all of our experimental findings and
a quantitative agreement for low pressure drops, where the
linear theory is expected to describe the system. Such agreement
provides an alternative way of measuring relaxation times. We
validate the method against parameters reported in the literature
for PEO of two different molecular weights: 1x106g/mol (PEO1)
and 5x106g/mol (PEO5); and estimate the relaxation time for
PEO of 8x106g/mol (PEO8). This is of great relevance because
relaxation times are sometimes difficult to measure for low
polymer concentration in conventional rheometers [45–48].

The paper is organized as follows: section 2 describes
the experimental procedure and the data analysis; section 3
describes the experimental results including resonances of the
dynamic permeability; section 4 introduces a theoretical model
for pulsatile viscoelastic slugs; section 5 compares experimental
results for the dynamic permeability with predictions obtained
from the theoretical model, it also introduces a proposal
to measure relaxation times; section 6 summarizes the most
important conclusions and perspectives.

2. MATERIALS AND METHODS

2.1. Fluids
We use polyethylene oxide (Sigma-Aldrich) of three different
average molecular weights: Mw = 1x106 g/mol (PEO1); Mw =

5x106 g/mol (PEO5) and Mw = 8x106 g/mol (PEO8) to prepare
solutions in deionized water at a fixed concentration of 0.1%
(mass/volume). The dynamic viscosities, η, of the PEO solutions
are: 1.72 mPa.s for PEO1 [41]; 4 mPa.s for PEO5 (approximated
from a PEO4 solution at 0.1% (m/v) [19]), and 10 mPa·s for
PEO8 [measured with an ARES (RSF III) Rheometer]. The three
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polymer solutions have the same surface tension, σ = 62
mN·m−1 [49].

2.2. Microfluidic Device
We machined a straight microchannel (37.48 ± 0.11 mm long,
1.00± 0.04 mmwide and 0.31± 0.05 mm deep) on a 2 mm-thick
polymethyl methacrylate (PMMA) plate using a CNC machine
(CNC3018). The channel was sealed with a second PMMA plate
with four inlets (Figure 1) exposing both parts to volatilized
chloroform for 4 min and pressing them by a pair of slides and
clamps. The bonding was completed by sonication of the device
in ethanol at 50 ◦C for 15 min [50, 51].

2.3. Experimental Setup
A piezoelectric actuator equipped with flexural hinges as an
amplifier device (APF705, Thorlabs) was attached on one of its
sides to an elastic membrane that covered a rigid polyethylene
cylinder (15mm long, 4.7 mmdiameter). The opposite side of the
cylinder has a seal with a tubing (0.51 mm ID, 1.19 mm OD and
1 cm long; Microbore PTFE Tubing, Cole-Parmer) inserted in
the middle. The other end of the tubing was introduced into the
first microdevice inlet. The movement of the actuator displaces
the air in the cylinder and transduces an oscillatory movement to
a slug of PEO solution (1.0 cm in length; 3.1 µL) situated in the
middle of the microchannel (Figure 1). The oscillation frequency
and amplitude of the piezoelectric motion was controlled by
a multifunction data input/output device (USB-6351, National
Instruments) and magnified by a Trek PZD350A High-Voltage
amplifier (75–150 V). The pressure drop was measured by a
differential pressure sensor (Honeywell 142PC01G) attached by

PTFE tubing to the second and third inlets of the microfluidic
channel. The fourth inlet was open to the atmosphere. The
displacement of the liquid slug was visualized with the aid of an
inverted microscope (DM IL LED, Leica) and the movement of
the interface closest to the atmosphere outlet (IF2 in Figure 1)
was recorded with a high-speed camera (Phantom Miro M110,
Vision Research). Depending on the driving frequency, videos
from 30 fps up to 3,000 fps were acquired after a 10 s

FIGURE 2 | Four different pressure drops were studied for each PEO solution

in the range from 0.5 to 200 Hz. The experimental amplitude of pressure drop

was held almost constant at 225, 450, 700, or 900 Pa by adjusting the voltage

input to the piezoelectric actuator. Data shown corresponds to a PEO8

0.1% solution.

FIGURE 1 | Experimental setup. The displacement of a liquid slug within the microchannel is driven by the periodical movement of the piezoelectric actuator

compressing the air trapped between the elastic membrane and the left side of the fluid slug IF1. The position of one of the air-liquid interfaces, IF2, is visualized and

recorded by means of an inverted microscope and a high-speed camera.
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FIGURE 3 | Left: pressure drop, interface displacement, and interface velocity as a function of time for the same experiment. Right: Fourier spectrum analysis of the

corresponding quantities, showing that all of them have a dominant mode for their dynamics at 10 Hz. Data are for PEO5 0.1%, 1p = 225 Pa.

stabilization period of cycling movement to ensure recording
after transient states. The size of the fluid slug was verified after
each measurement to confirm that no evaporation had occurred.

2.4. Data Analysis
The piezoactuator movement was adjusted by regulating the
input voltage to keep the same reference pressure drop for all the
range of frequencies studied. For each PEO solution, oscillatory
pressure drops of four different amplitudes were used: 225, 450,
700, and 900 Pa, each in the frequency range from 0.5 to 200 Hz
(Figure 2). The sinusoidal shape of pressure drop allowed us to
fit a sinusoidal wave to obtain the amplitude of each signal.

The videos of the interface movement were analyzed using
MATLAB utilities, that track the position of all interface
points through time, then velocity was obtained by numerically
differentiating position data.

To prove that the frequency imposed by the piezoactuator was
consistent with the interface movement, Fourier transform of
the pressure drop, interface displacement and interface velocity
were performed. A dominant peak for the spectrum of all these
signals was observed at the same frequency of oscillation of the

piezoelectric transducer, indicating that the fluid slug follows the
dynamics imposed by the piezoactuator (Figure 3).

The dynamic contact angle of the interface was determined
from video image analysis of the advancing and receding time
lapses. The interface profile at every time, was fitted to a fourth-
degree polynomial function. The fit reproduces very well the
interface profile and was extrapolated to compute the contact
angle at the wall. Figure 4 top illustrates the change in contact
angle at five instants of an oscillation cycle. Figure 4 bottom
shows the dynamic contact angle oscillation in time.

3. RESULTS

The air-fluid interfaces of the polymeric solutions display
a characteristic curvature that flattens and bends in every
oscillation cycle. This is illustrated in Figure 4 middle. In
Figure 5, we show the air-fluid interface of PEO5 0.1%
through an entire oscillation cycle at four different frequencies.
A maximum amplitude of the displacement, Amax, for this
experiment occurs at 40 Hz. Peak-to-peak amplitude of the
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FIGURE 4 | Top: Interface profile at 5 time instants (T1− T5) during an

oscillation cycle. Middle: The maximum contact angle is associated with the

advancing stage of the cycle, while the minimum contact angle is associated

with the receding stage of it. Bottom: Dynamic angle as a function of time

obtained from the interface at the right of the fluid slug IF2. Data are for PEO8

oscillating at 40 Hz, driven by a 1pmax = 900 Pa.

displacement is highlighted in red so the frequency dependent
behavior can be assessed visually. It is clear that the neighboring
smaller or larger frequencies display a smaller displacement.

By changing the frequency but keeping constant the amplitude
of pressure drop driving the movement, a clear non-monotonic
behavior of the amplitude of the interface displacement is
observed for different driving frequencies, even for the PEO
of lowest molecular weight. Top panels in Figure 6 show that
the highest displacement for each fluid increases in magnitude
as the imposed pressure rises, which is an expected result for
an increasing driving force. The maximum interface movement
is observed for PEO1, the fluid with the smallest molecular
weight and viscosity. The interface velocity, at the center of
the microchannel, as a function of the oscillating frequency
shows an asymmetric bell-shape curve for each imposed pressure
(Figure 6 middle panels). As expected, the maximum velocity
amplitude rises as the pressure increases for all PEO solutions.
The peak of each curve is the resonance frequency, meaning
that at this frequency the amplitude of flow velocity is maximum
in the frequency range studied. A non-trivial effect is observed
in which the resonance frequency decreases with an increasing

FIGURE 5 | Interface profiles at 5 time instants (T1− T5) during an oscillation

cycle for four different frequencies, illustrating that the maximum amplitude of

the displacement is a non-monotonic function of frequency. T1 represents the

minimum position and T3 the maximum position of the cycle. Data are for

PEO5 oscillating in the range [20–80] Hz, driven by a 1pmax = 700 Pa.

pressure drop. This is part of the non-linear behavior of the
system response. Since we are driving the system with a one-
mode pressure drop, we expect that, at least in the linear regime,
the amplitude of the interface velocity would be given by the
maximum amplitude of the interface displacement multiplied by
its frequency. For this reason, the resonances observed in velocity
have higher frequencies than those obtained for the amplitude of
interface position.

We also analyzed the dynamic permeability of each polymer
solution as a function of frequency and amplitude of pressure
drop (Figure 6 bottom panels). We present an operational
definition of the amplitude of the local dynamic permeability at
the center of the channel, as the ratio between the maximum
amplitude of the velocity at the center of the channel, divided by
the pressure gradient—given by the quotient of pressure drop,
1p, and slug length, L,—that is,

K =
vmax

1p/L
. (1)

Derivation of Equation (1) will be given in section 4 Model
for small pressure drop values; however, we will use this
operational definition for all pressure drops studied, since it

Frontiers in Physics | www.frontiersin.org 5 June 2021 | Volume 9 | Article 636070194

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Vazquez-Vergara et al. Experimental Resonances in Viscoelastic Microfluidics

FIGURE 6 | Maximum amplitude of displacement, maximum amplitude of velocity and modulus of dynamic permeability, as a function of driving frequency for the

three PEO polymeric solutions and 4 different maximum amplitudes of the driving pressure drop.

is a convenient way to cancel out the small differences in
pressure drop amplitude for the different frequencies tested (see
Figure 2). In this sense,K can be interpreted as a velocity rescaled
by a pressure gradient. Accordingly, in the bottom panels of
Figure 6, we observe that the resonance frequencies of the local
permeability are roughly the same as those obtained for velocity
data. Also, as pressure drop increases, the resonance frequency
of the permeability decreases. This effect is more pronounced
for low molecular weights. For the dynamic permeability value
at resonance, there is no clear trend when the amplitude of the
pressure drop changes. For details and graphs describing this
behavior, see Supplementary Material.

Regarding the dynamics of the contact angle, we found that
advancing angles are larger than receding ones. As an example,
Figure 7 shows the dynamic angles obtained when the amplitude
of pressure drop is 225 Pa. It has been reported in the literature
that, when velocity increases, the advancing angle augments and
the receding angle decreases, so a larger difference between them
should be observed [52–55]. The difference of advancing and

receding angles, 1θ = θadv − θrec (sometimes called contact
angle hysteresis [52]), is shown as a function of frequency in
Figure 8. For a single-mode oscillatory flow, the fluid velocity
increases with frequency up to the resonance and then decreases.
We can observe that the same trend exists for 1θ as a function
of frequency. The fact that the dynamic contact angle difference
is affected by the interface velocity, has previously been reported
for capillary numbers close to the ones of our experiments (Ca=
10−5 to 10−3) [53, 55]. This phenomenon is attributed to surface
roughness and chemical heterogeneity [56, 57], but there is an
influence of the fluid rheological properties, like shear thinning or
elasticity [53]. In our slug, an important component of elasticity
is given by the presence of two interfaces.

4. MODEL

In order to explain theoretically our experimental results, we
build up a model containing two basic features: the viscoelastic
character of the fluid and the elastic character of interfaces. The
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FIGURE 7 | Contact angle as a function of frequency. For each plot, the upper line corresponds to the advancing angle and the lower line corresponds to the receding

angle. Left: PEO1. Center: PEO5. Right: PEO8. The difference between advancing and receding angle diminish as the molecular weight is higher.

FIGURE 8 | Contact angle hysteresis as a function of frequency for the three

PEO solutions with different molecular weights for 1p = 225 Pa (red line:

PEO1; blue line: PEO5; black line: PEO8).

interplay between these two elasticities will lead to a complex
behavior, the simpler the rheology of the viscoelastic fluid, the
easier the understanding of the physical interaction. Because
of this, we present a model for the uniaxial dynamics of a
viscoelastic slug, taking into account the presence of interfaces
and the viscoelastic character of a single-relaxation-time fluid,
that could be extended to models containing more characteristic
times. We build up a model for the dynamics of viscoelastic
slugs over a model presented for the dynamics of a Newtonian
slug [33].

A study of a pulsatile fluid slug consisting of a Newtonian
fluid and two air-fluid interfaces driven by a periodic pressure
gradient, has been recently proposed and validated [33]. In that
model, a stress tensor for a Newtonian fluid of the form τ =

−η∇v, together with Laplace condition for the pressure jump at
both sides of the air-fluid curved interfaces, 1p = 1pdriving +
σκ1 + σκ2, has been considered. In these expressions, η is
the fluid viscosity, v is the axial fluid velocity, σ is the surface
tension of the air-fluid interfaces, κ1 and κ2 are the left and right
hand side curvatures, respectively, and 1pdriving is the pressure
drop external to the fluid slug (on the air side). The dynamics

for such Newtonian slugs is described by an integro-differential
equation in space and time, which, in frequency domain, can be
written as a simple equation, differential in space and algebraic in
frequency, that reads:

− iωρv̂ = −
1p̂driving

L
+

[

η + i
2σ

ωL

]

∇2v̂, (2)

where ω denotes angular frequency, ρ is the fluid density, L is the
length of the fluid slug, and v̂ and p̂ denote Fourier transforms
of velocity and pressure, respectively. This equation incorporates
momentum conservation, the stress tensor for a Newtonian
fluid, Laplace equation for the pressure jump at the interfaces,
an approximation of interface curvatures as concavities, and
continuity of velocities at both interfaces. This model has given
a correct description of the experimental dynamics of a water
slug and of a 70% glycerol solution in water slug, when interfacial
curvatures are considered to be a response to a dynamic
external pressure gradient 1pdriving/L. Details of the derivation
of Equation (2) can be seen in [33].

A Newtonian slug stress tensor, that integrates stresses of the
Newtonian fluid and the interfaces, of the form

τ̂Nslug = −

[

η + i
2σ

ωL

]

∇ v̂, (3)

substituted in the linearized momentum conservation equation
for uniaxial flow in the x direction,

− iωρv̂ = −
1p̂driving

L
−

[

∇ · τ̂slug
]

x
, (4)

gives exactly Equation (2) for the dynamics of a Newtonian
slug. A stress tensor of the form (3) for a material consisting
of a volume of fluid and two air-fluid interfaces, has not been
introduced in the literature, to the best of our knowledge,
since classical treatments describe both fluid phases and
apply boundary conditions at air-fluid interfaces, rather than
describing the system fluid-interfaces as a composite material.
Vazquez-Vergara et al. [33] together with discussion in the
previous paragraph, show that introduction of a slug stress tensor,
as the one in Equation (3), is a consistent approach to describe the
zero-mean flow, linear pulsatile dynamics of Newtonian slugs.
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Viscoelastic fluids might involve, in general, several relaxation
times. The coupling of such times with the characteristic time
given by the presence of interfaces, is expected to lead to a
complex dynamics of viscoelastic slugs. To understand such
coupling, we start by introducing the simplest model of a
viscoelastic slug, consisting of a volume of linear Maxwellian
fluid, that has a single relaxation time, and two air-fluid
interfaces, with surface tension σ .1 We propose the following
expression for the viscoelastic slug stress tensor:

τ̂VEslug = −

[

η + i 2σ
ωL

]

1− iωtr
∇ v̂. (5)

where the parameter tr is the Maxwell relaxation time. Equation
(5) reduces to the constitutive equation of a Newtonian slug
(Equation 3) in the limit tr → 0, and reduces to the Maxwell
model in the absence of interfaces [58], that is, in the limit σ → 0.
Alongwith the previous consistency proofs, experimental validity
of the model given by Equation (5) must be demonstrated.

When the stress tensor (Equation 5) is substituted in the
momentum conservation equation (Equation 4), we can obtain
an equation for the dynamics of a viscoelastic slug,

[

η + i
2σ

ωL

]

∇2v̂− iωρ(1− iωtr)v̂ = (1− iωtr)
1p̂driving

L
. (6)

Solution of Equation (6) subject to no-slip boundary conditions,
for flow in a rectangular microchannel whose plates are separated
by a distance 2l, gives a linear relation between velocity and
pressure drop in frequency domain, that is,

v̂(z,ω) = −K(z,ω)
1p̂air

L
, (7)

where z is the coordinate perpendicular to the plates. The
complex local dynamic permeability, K(z,ω), is given by

K(z,ω) = −
1

iωρ

[

1−
cos(Az)

cos(Al)

]

with A2 = iωρ

[

1− iωtr

η + i 2σ
ωL

]

.

(8)
This linear relation is expected to coincide with experimental
results, for low values of the pressure drop, where K(z,ω) is
independent of the amplitude of the pulsatile forcing.

It is worth noticing that Equations (7) and (8), which are the
solution for the dynamics of a Maxwellian slug given by our
model, are consistent with the pulsatile solution of the linear
Maxwell model for a single fluid in a rectangular cell in the limit
of zero surface tension given in [26] (equivalent to the solution in
[23, 24, 59] in the cylindrical case).

Expressions (7) and (8) are valid for general periodic time-
dependent pressure drops, consisting of an arbitrary number of
sinusoidal modes. In particular, for a one-mode driving pressure

1This model can be generalized to other models containing more characteristic
times, in a more or less straightforward manner. For example, for a linearized
Oldroyd-B model, containing two relaxation times tr and t2, the viscoelastic stress

tensor proposed for the fluid slug would be τ̂OB
slug

= −

[

η+i 2σ
ωL

]

(1−iωt2)
(1−iωtr )

∇ v̂.

drop of frequency ω0, it can be shown that, in time domain, the
amplitude of the velocity at the center of the cell, vmax, is related
to the amplitude of the pressure drop, 1pmax, as

vmax =
∣

∣K(z = 0,ω0)
∣

∣

1pmax

L
, (9)

which is in agreement with the operational definition of K,
used to compute the permeability from experimental data
in Equation (1).

Our model has been deliberately developed for zero-mean
pulsatile flows, due to the oscillatory nature of our experimental
driving force. It therefore cannot be used to model fronts in
imbibition-like systems, where the pressure drop has always the
same sign and the interface curvature is due to wetting. In our
case, curvature effects due to wetting cancel out since they have
opposite signs on the left and right side interfaces [33], and
the dynamics of the slug will be governed by the instantaneous
interfacial curvatures caused by pulsatile forcing.

5. COMPARISON WITH EXPERIMENTAL
RESULTS

We compare the experimental results for K at low-amplitude
pressure drops (225 Pa) from Figure 6 with K(0,ω0) derived
from the linear model developed in the previous section. For the
figures, we simply useK to denote the local dynamic permeability
at the center of the microchannel. Figure 9 shows experimental
and theoretical predictions of K as a function of the driving
frequency for three PEOs. A log-log scale has been used to
highlight the tendency of low frequency data.

Figure 9 left shows, with green dots, the permeability
K obtained from experimental data for PEO1. With a red
continuous line, it shows the theoretical permeability, as
predicted by our model for a Maxwellian slug, obtained from
Equation (8) with z = 0 and a relaxation time, tr = 1.78
ms, reported as Maxwellian in the literature [41]. As reference,
we have also plotted, in a blue continuous line, the theoretical
permeability for a Newtonian slug. As Figure 9 left shows, the
agreement between experimental data and theoretical prediction
for a slug of a viscoelastic fluid obeying Equation (8) is excellent,
both, at low frequencies and around resonance; Figure 9 middle
shows equivalent curves for PEO5. Since the relaxation time, at
the concentration used in our experiments, is not reported in the
literature, we took one reported for PEO4, as surrogate [19]. The
agreement between the green dots, obtained from experimental
data, and the red line predicted by our model, is very good,
both, at small frequencies and around resonance, despite the fact
that the relaxation time used was obtained from a fit to a Cross
model [19, 60].

Before discussing Figure 9 right for PEO8, for which there
is no relaxation time reported in the literature, at the desired
concentration, we will discuss the theoretical behavior of the
resonance frequency, in terms of characteristic frequencies of
the system.

We can define three characteristic frequencies of the system
that depend on viscosity, η, surface tension, σ , relaxation time,
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FIGURE 9 | Comparison of theoretical (red and blue lines) and experimental results (green dots) for dynamic permeability for PEO solutions at 225 Pa of: (left) PEO1

solution; (middle) PEO5 solution; (right) PEO8 solution.

tr , and system’s geometry, l (half the microchannel thickness), as

ωη =
η

ρl2
, ωσ =

2σ

ηL
and ωrelax =

1

tr
. (10)

In terms of these frequencies, the argument of the cosine term,
Al, in Equation (8), can be written as

A2l2 = i
ω

ωη

[

1− i(ω/ωrelax)

1+ i(ωσ /ω)

]

. (11)

We find two different regimes for the resonance frequency. For
ωrelax ≪ ωη, the resonance frequency, ωres, is given by

ωres =
π

2

(

ωη ωσ

)1/2
, (12)

while for ωrelax ≫ ωη, it is given by

ωres =
π2/3

21/3
(

ωη ωσ ωrelax

)1/3
. (13)

The resonance frequency, with the proper scaling to make the
second of these regimes collapse, is given in Figure 10.

We have found numerically the maximum of the local
dynamic permeability in Equation (8) using characteristic values
of ωη and ωσ for each of the three PEO solutions employed
in the experiments. We have plotted the resonance frequency
as a function of the independent variable ωrelax/ωη. The red
curve corresponds to PEO1, the blue curve to PEO5 and the
gray curve to PEO8. Red and blue dots over the curves (for
PEO1 and for PEO5, respectively) represent pairs (tlitr ,ωres(tlitr )),
in the corresponding rescaled units of the graph, where ωres(tlitr )
is the theoretical resonance obtained using a relaxation time from
the literature.

Our resonance curves in Figure 10 could serve “as a
rheometer” to validate or estimate viscoelastic relaxation times.
Such a procedure is schematized with horizontal dashed lines
in Figure 10, which relate a reasonable resonance frequency
range—obtained by visual inspection of Figure 9—, with a
range of possible relaxation times, obtained from the vertical
dashed lines, through the theoretical curve in Figure 10. To
validate our method, we have estimated that the resonance

FIGURE 10 | Illustration for the way of estimating the value of relaxation time

(through ωrelax ) by visual estimation of the resonance frequency, and its

corresponding error bars. The theoretical model predicts a relation between

resonance frequency and relaxation frequency that can be exploited to validate

or estimate relaxation times. We have used PEO1 solution (red dashed lines),

and PEO5 solution (blue dashed lines) to validate the method. Then we have

used the method to estimate the relaxation of the PEO8 solution, from its

experimental resonance (gray dashed lines). Red and blue intervals, marked

with dashed lines, are in agreement with theoretical data of resonance

frequency and relaxation times (placed as a circle red dot) for PEO1 and

(placed as a circle blue dot) for PEO5. Black dashed line represents an

approximated relation for ωres in Equation (13). Continuous lines are exact

results for resonance, obtained by numerical means.

frequency for PEO1, is in the range [120:136] Hz, and in the
range [100:120] Hz for PEO5. As Table 1 shows, the range of
relaxation times estimated by the theory—from measurement of
the experimental resonance frequency—are in agreement with
the values for the relaxation time reported in the literature. We
consider that, as a proof of concept, this validates our method for
estimating relaxation times of single-relaxation-time viscoelastic
fluids. Accordingly, we estimate from Figure 9 that, for PEO8,
the resonance frequency is in the range [80:100] Hz, and estimate
that the relaxation time would be in the range [6.8:14.8] ms.
Even though this range is wide, when considering a value in
the middle of this range, we obtain the red curve in Figure 9

for the dynamic permeability,which, despite being less accurate

Frontiers in Physics | www.frontiersin.org 9 June 2021 | Volume 9 | Article 636070198

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Vazquez-Vergara et al. Experimental Resonances in Viscoelastic Microfluidics

TABLE 1 | Comparison between reported values in the literature of viscoelastic

relaxation time and the range estimated by the theoretical model via the

experimental resonance.

System Reported tr (ms) Estimated tr via fitting to model (ms)

PEO1 1.78a 1.76–3.04

PEO5 5.8b 3.21–6.21

PEO8 – 6.76–13.76

(a) Taken from [41]. (b) Taken from [19].

than the ones for the lower molecular weight polymers, still
gives a reasonable agreement for both, the tendency of the
experimental permeability at low frequencies, and the region
around resonance. It is important to note that the relaxation
times obtained with our method follow the trend that, the larger
the molecular weight of PEO, the larger the relaxation time.
This is in qualitative agreement with global trends observed
in literature for a vast range of concentrations and molecular
weights in PEO aqueous solutions [19, 41, 61]. Our method
promises to be valuable for low molecular weight polymers, for
which relaxation times are difficult to obtain experimentally by
conventional means. For high molecular weight polymers, more
sophisticated models, including shear thinning, might result
necessary to describe the dynamics and to obtain rheological
parameters from it, as it happens for high concentrations of
low molecular weight polymer solutions [19, 45]. It is worth
mentioning that the size of the fluid slug can be experimentally
adjusted to fall in the range where the approximated black dashed
line in Figure 10 is valid, that is, whenever it agrees with the
exact value of resonance frequency, given by the continuous
lines; at such regime, there is a simple analytical relation between
resonance frequency and relaxation time, and the indirect
determination of relaxation times could be carried out easily
using Equation (13). In contrast, the plateau observed for each
continuous line on the right side of Figure 10, corresponds to the
regime where the resonance frequency is given by Equation (12),
when the relaxation time is not relevant. The curves differ from
each other due to their viscous frequency, ωη.

Our theory is also able to predict the contact angle, given an
initial shape of the interface. Several models for front dynamics
in the literature establish a difference between a static contact
angle at equilibrium situations, and the angle observed due to an
imbibition-like front dynamics, where the pressure gradient has
always the same sign, this is typically called a dynamic contact
angle. In addition to such descriptions, recent studies have dealt
with a different time-varying dynamic contact angle, which is
affected not only by imbibition phenomena but also by oscillatory
driving forces [62]. This is the case of our dynamic contact angle.
We explain in a nutshell how do we compute dynamic contact
angles from our theoretical model: our differential equation
gives the slug velocity v(z, t) as a function of pressure drop.
Since interface shape, u(z, t), and velocity are related through
∂u/∂t = v, once the velocity v(z, t) is known, we can integrate
this equation to obtain u(z, t) =

∫

v(z, t)dt + u0(z), where u0(z)
is an integration constant which gives the interface profile at rest

(or, equivalently, at very high frequencies). Once the interfacial
profile is known in time, the arctangent of its slope close to the
wall gives the dynamic contact angle.

It is worth mentioning that our experiments measure an angle
along the channel width, not along the channel height, which
is the dimension modeled in Equation (6). So, it is necessary to
find out a relation between the angles measured in both planes.
We follow Tabeling results [63] on steady flow where the relation
between the slope of flow velocity at the channel walls in both
planes obeys a linear relation of the form

∂v

∂y

∣

∣

∣

∣

y=W/2
= m

∂v

∂z

∣

∣

∣

∣

z=l

(14)

where m is a factor that only depends on the aspect ratio W/2l
(see Figure 11 left). Since for a single-mode oscillatory flow,
interface shapes and velocity are linearly related through the
driving frequency, that is, ω0, as v(y, z, t) = ω0u(y, z, t), an
equivalent relation can be proposed for interfacial profiles, u, as

∂u

∂y

∣

∣

∣

∣

y=W/2
= m

∂u

∂z

∣

∣

∣

∣

z=l

(15)

This geometrical relation between the slope at both confining
dimensions is illustrated in Figure 11 left. The dynamics of both
angles is illustrated in Figure 11 right.

With the correction explained above, the experimentally
obtained contact angles are compared to the ones predicted by
our model. This is shown in Figure 12. We find that the contact
angle predicted by the theory is larger than the one obtained from
experiments; however, our theory correctly predicts the phase
difference between the angle and the pressure gradient.

A model for single Maxwellian fluids accounting for channel
width and height, has found that the effect of the second
confining dimension is relevant only at high frequencies [64].
We therefore consider that if such analysis were extended to
Maxwellian slugs, it would not affect the conclusions regarding
resonances and dynamic permeabilities presented in this work.

6. CONCLUSIONS AND PERSPECTIVES

We have made a thorough experimental study of the dynamic
behavior of pulsatile fluid slugs made by three biocompatible
viscoelastic fluids [65]. We have studied their responses in a wide
frequency range, from [0.5:200] Hz, at four different amplitudes
of the pressure drop, which have been maintained practically
constant in all the frequency range. We have chosen the dynamic
permeability as a parameter to characterize the fluid dynamics
since, in the regime where flow and pressure drop are linearly
related, it can be analytically demonstrated that it is a response
function of the system to a pulsatile pressure drop. At higher
pressure drops, it is a convenient way to represent a rescaled
velocity, which cancels, to linear order, the small differences in
pressure drop amplitude applied at different frequencies. We
have found that the permeability of the three viscoelastic slugs
present resonances, that is, a special frequency range of the
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FIGURE 11 | Left: Illustration of an instantaneous velocity profile in a cross section of a rectangular microchannel, computed theoretically following [63]. Right:

Illustration of the time behavior of the angle (given by the arctan of the slope) along the channel width (red), and along the channel height (blue), for a channel whose

width is three times its height.

FIGURE 12 | Comparison between predicted and measured contact angles

for a slug of PEO1 solution pulsated at frequency of 120 Hz, and a pressure

drop amplitude of 225 Pa. Blue and red lines correspond to the contact angle,

obtained from experimental measurements, at the left and right walls of the

microchannel, respectively; black line corresponds to the theoretical

prediction. Agreement between theoretical and experimental results is

noticeable, particularly because their oscillation is in phase.

oscillatory pressure gradient that maximizes the amplitude of
flow velocity.

We have also developed a continuum-mechanics linear model
of viscoelastic slugs, containing both, the elasticity of the fluid
and the elasticity given by air-fluid interfaces, through surface
tension. The slug model gives excellent agreement with our
experimental results at low-amplitude pressure drops. Such an
agreement was a necessary condition for model validation.
The dynamic permeability at all frequencies coincides very
well for PEO1 and PEO5 solutions, both, at small frequencies
and at resonance. Coincidence of experimental and theoretical
resonances provides an alternative strategy for measuring

relaxation times. We validated this strategy with relaxation
times reported in the literature for PEO1 and PEO5 solutions,
and estimated the relaxation time for PEO8. With such
estimation, the dynamic permeability for PEO8 gives the correct
slope as a function of frequency (in log-log scale), at small
frequencies, and gives a very good agreement around resonance.
It is worth mentioning that viscoelastic fluids, in general,
have several relaxation times. If one uses a single-relaxation-
time model, this one should correspond approximately to the
larger characteristic time experimentally observed. Our model
for viscoelastic slugs could be extended, in a more or less
straightforward manner, to models with several relaxation times.
The problem for validation in that case, would be the lack
of experimental information in the literature of the several
relaxation times reported for a specific molecular weight and
a specific concentration of a polymer solution obeying a
specific model.

Finally, we have compared the dynamics of the contact
angle, and found that theory and experiments predict similar
amplitudes and exactly the same phase shift with respect to
the oscillatory pressure drop. In our experiments, the interface
motion is negligible close to the wall, when compared to the
motion of the interface at the center of the channel. For this
reason, we have not included slip in our model and the contact
line displacement is not a concern for our relatively small-
amplitude pressure drops.

This is the first time that experimental resonances of
the dynamic permeability of viscoelastic fluids, confined at
microscales, are reported in the literature. Our results are relevant
for flow and shear rate control, with potential applications to
many systems, like organ-on-a-chip devices where the natural
mechanical conditions of cells are emulated [14–17]; and
biofluids, which are typically viscoelastic, are present. Our results
could also be useful to study how cells would respond to different
imposed, non-physiological, external stresses [66–71].
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Semiflexible Polymer Enclosed in a 3D
Compact Domain
Pavel Castro-Villarreal 1* and J. E. Ramírez2*

1Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico, 2Centro de
Agroecología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

The conformational states of a semiflexible polymer enclosed in a volume V :� ℓ
3 are

studied as stochastic realizations of paths using the stochastic curvature approach
developed in [Rev. E 100, 012503 (2019)], in the regime whenever 3ℓ/ℓp > 1, where ℓp

is the persistence length. The cases of a semiflexible polymer enclosed in a cube and
sphere are considered. In these cases, we explore the Spakowitz–Wang–type polymer
shape transition, where the critical persistence length distinguishes between an oscillating
and a monotonic phase at the level of the mean-square end-to-end distance. This shape
transition provides evidence of a universal signature of the behavior of a semiflexible
polymer confined in a compact domain.

Keywords: semiflexible polymer, stochastic curvature, shape transition, critical persistence length, mean-square
end-to-end distance, worm-like chain

1 INTRODUCTION

Semiflexible polymers is a term coined to understand a variety of physical systems that involve linear
molecules. The most popular polymers are industrial plastics, like polyethylene or polystyrene, with
various applications in daily life [1, 2]. Another prominent example is the DNA compacted in the
nucleus of cells or viral DNA/RNA packed in capsids [3, 4]. These last examples are of particular
interest since they are confined semiflexible polymers. Indeed, biopolymers’ functionality is ruled by
their conformation, which in turn is considerably modified in the geometrically confined or crowded
environment inside the cell [5–7].

A common well-known theoretical framework used to describe the fundamental properties of a
semiflexible polymer is the well-known worm-like chain model (WLC), which pictures a polymer as
a thin wire with a flexibility given by its bending rigidity constant α [8]. The central quantity in this
model is the persistence length defined by 2α/(kBT(d − 1)) [9, 10], with d being the space dimension;
however, here we simply use ℓp :� α/(kBT)1, which is the characteristic length along the chain over
which the directional correlation between segments disappears. kBT is the thermal energy, with kB
and T being the Boltzmann constant and the bath temperature, respectively [11].

In the absence of thermal fluctuations, when α≫ kBT , the conformations of the polymer are well
understood through different curve configurations determined by variational principles [12, 13]. For
the WLC model, the bending energy functional is given by

H[R] � α

2
∫ dsκ2(s), (1)
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whereR(s) is a polymer configuration and κ(s) is the curvature of
the chain, with s being the arc-length parameter. Additional terms
can be added to the Hamiltonian to account for other effects,
including multibody interactions, external fields, and constraints
on the chain dimensions [14, 15]. When the thermal fluctuations
are relevant, that is, αxkBT , then it is usual to introduce a
statistical mechanics description. Since H[R] represents the
bending energy for a curve configuration R, the most natural
approach is to define the canonical probability density

P(R)DR :� 1
Zc

exp( − ℓp

2
∫ dsκ2(s))DR , (2)

where Zc is the canonical partition function and DR is an
appropriate functional measure. In this description, the theory
turns out to be a one-dimensional statistical field theory.
Nonetheless, the theory is not easy to tackle since κ(s)
acquires nonlinear terms in R. To avoid this difficulty, a
different perspective was introduced by Saito’s et al. [8], where
the following probability density function was studied:

P(T)DT :� 1
Zs

exp( − ℓp

2
∫ dsκ2(s))DT, (3)

instead of Eq. 2. Here Zs is the Saito’s partition function and DT
is an appropriate functional measure for the tangent direction of a
given polymer configuration R. The Saito’s partition function can
be solved since one has κ2(s) � (dT(s)/ds)2; thus, one can relate
Zs with the Feynman’s partition function for a quantum particle
in the spherical surface described by T2 � 1. For the cases when
the semiflexible polymer is in an open Euclidean space, the Saito’s
approach works very well. For instance, it reproduces the
standard results of Kratky–Porod [16], among other results [8,
14]. However, for the cases when the semiflexible polymer is
confined to a bounded region of the space, the Saito’s approach is
difficult to use, with some exceptional cases like the situation for
semiflexible polymers confined to a spherical shell [24].

For semiflexible polymers in plane space, an alternative
theoretical approach to the above formalisms was introduced
in [17]. This consists of postulating that each conformational
realization of any polymer in the plane is described by a stochastic
path satisfying the stochastic Frenet equations, defined by
d
dsR(s) � T(s) and d

dsT(s) � κ(s)N(s), where R(s) is the
configuration of the polymer, T(s) is the tangent vector to the
curve describing the chain at s, N(s) :� ∈T(s) is the normal
stochastic unit vector, with ∈ a rotation by an angle of π/2, and
κ(s) is the stochastic curvature that satisfies the following
probability density function:

P(κ)Dκ :� 1
Zs−c

exp( − ℓp

2
∫ dsκ2(s))Dκ, (4)

where Zs−c is the partition function in the stochastic curvature
formalism andDκ is an appropriate measure for the curvature. This,
in particular, implies a white noise-like structure, that is, 〈κ(s)〉 � 0
and 〈κ(s)κ(s′)〉 � δ(s − s′)/ℓp [17]. This theoretical framework
successfully explains, by first principles, the Kratky–Porod results
for free chains confined to an open 2D-plane. Moreover, it correctly

describes the mean-square end-to-end distance for semiflexible
polymers confined to a square box, a key descriptor of the
statistical behavior of a polymer chain.

In the present work, we carry out an extension of the stochastic
curvature approach for semiflexible polymers in the three-
dimensional space R3. In particular, we analyze the
conformational states of a semiflexible polymer enclosed in a
bounded region in three-dimensional space. This polymer is in a
thermal bath with a uniform temperature. The shapes adopted by
the polymer are studied through the mean-square end-to-end
distance as a function of the polymer total length as well as its
persistence length. In particular, we analyze the cases of a polymer
confined to a cube of side a and a sphere of radius R.

The plan of this article is as follows. In Section 2, we introduce
the stochastic Frenet equations for the semiflexible polymers in
three-dimensional spaces, and by using a standard procedure, we
derive the corresponding Fokker–Planck equation. In particular,
the Kratky–Porod result for polymers in a 3D open space is
obtained. Section 3 contains the derivation of the mean-square
end-to-end distance for semiflexible polymers confined to a
compact domain. In Section 4, we present the analysis of the
mean square end-to-end distance for the cases when the compact
domain corresponds with a cube of side a and a sphere of radius
R. Finally, Section 5 contains our concluding remarks.

2 PRELIMINARY NOTATION AND
SEMIFLEXIBLE POLYMERS IN 3D

Let us consider a polymer in a three-dimensional Euclidean space
R3 as a space curve c, R : I ⊂ R→R3, parametrized by an arc-
length, s. For each point s ∈ I, a Frenet–Serret trihedron can be
defined in terms of the vector basis {T(s),N(s),B(s)}, where
T(s) � dR/ds is the tangent vector, whereasN(s) and B(s) are the
normal and bi-normal vectors, respectively. It is well known that
each regular curve c satisfies the Frenet–Serret structure
equations, namely, dT/ds � κ(s)N, dN/ds � −κ(s)T − τ(s)B
and dB/ds � τ(s)N, where κ(s) and τ(s) are the curvature and
the torsion of the space curve, respectively. In addition, the
fundamental theorem of space curves estates that given
continuous functions κ(s) and τ(s), one can determine the
shape curve uniquely, up to a Euclidean rigid motion [18].

2.1 Stochastic Curvature Approach in 3D
In order to study the conformational states of a semiflexible
polymer, we adapt the stochastic curvature approach introduced
in [17] to the case of semiflexible polymers in 3D Euclidean space.
For the 2D Euclidean space, the formalism starts by postulating
that each conformational realization of any polymer is described
by a stochastic path satisfying the stochastic Frenet equations. In
the 3D case, it is enough to consider the following stochastic
equations:

d
ds
R(s) � T(s), (5a)

d
ds
T(s) � PTκ(s), (5b)
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where R(s), T(s), and κ(s) are now random variables. Here, κ(s)
is named as stochastic vectorial curvature. Also, a normal
projection operator PT � 1 − T ⊗ T has been introduced such
that T(s) · ddsT(s) � 0. According to these equations, it can be
shown that |T(s)| is a constant that can be fixed to unit, where | |
is the standard 3D Euclidean norm. The remaining geometrical
notions also turn into random variables as follows. The stochastic
curvature is defined by κ(s) :� |κ(s)|. The stochastic normal and
bi-normal vectors are defined by N(s) :� κ(s)/κ(s) and
B(s) :� T(s) × κ(s)/κ(s), respectively, where κ(s) is the
stochastic curvature. In addition, the stochastic torsion is
defined with the equation τ(s) :� N(s) · d

dsB(s).
In addition to the stochastic Eq. 5a and Eq. 5b, the random

variable κ(s) is distributed according to the probability density
function

P(κ)Dκ :� 1
Zs−c

exp(−βH[κ])Dκ, (6)

whereH[κ] � α
2 ∫ κ

2ds is the bending energy and α is the bending
rigidity modulus. This energy functional corresponds to the
continuous form of the WLC model [8]. Also, in Eq. 6, Zs−c
is an appropriate normalization constant, Dκ :� ∏3

i�1Dκi is a
functional measure, and β � 1/kBT is the inverse of the thermal
energy. The Gaussian structure of the probability density implies
the zero mean 〈κi(s)〉 � 0 and the following 3D fluctuation
theorem:

〈κi(s)κj(s′)〉 � 1
ℓp
δijδ(s − s′), (7)

where κi(s) is the i−th component of the stochastic vectorial
curvature κ(s).

2.2 From Frenet–Serret Stochastic
Equations to Hermans–Ullman Equation
in 3D
In this section, we present the Fokker–Planck formalism
corresponding to the stochastic Eq. 5a and Eq. 5b. This
description allows us to determine an equation for the
probability density function associated to the position and
direction of the endings of the polymer
P(R,T|R′,T′; s) � 〈δ(R − R(s))δ(T − T(s))〉, where R and R′

are the ending positions of the polymer, and T and T′ are the
corresponding directions, respectively. The parameter s is the
polymer length.

Now, the stochastic Frenet–Serret Eq. 5a and Eq. 5b can be
identified with a multidimensional stochastic differential
equation in the Stratonovich perspective; thus, applying the
standard procedure [19], we find the following Fokker–Planck
type equation:

zP
zs

+ ∇ · (T P) � 1
2ℓp

ΔgP, (8)

where T is identified with the unit normal vector on S2, thus
satisfying the condition T2 � 1. The operator Δg is the
Laplace–Beltrami of the sphere S2. Similarly, as the situation

for semiflexible polymers confine to a plane space [17], this
equation is exactly the same as the one obtained by Hermans
and Ullman in 1952 [20], where the heuristic parameter they
included can now be identified exactly with 1/(2ℓp). In addition,
we can make a contact with the Saito’s approach [8] by
considering the marginal probability density function:

Zs(T,T′, s)∝ ∫ d3Rd3R′P(R,T|R′,T′, s). (9)

Using the Hermans–Ullman equation, we can show that Zc

satisfies a diffusion equation on a spherical surface with diffusion
coefficient equal to 1/(2ℓp) [8], that is,

zZc

zs
� 1
2ℓp

ΔS2Zs. (10)

An immediate consequence of the above equation is the
exponential decay of the correlation function between the two
ending directions C(L) :� 〈T(L) · T(0)〉 � exp(−L/ℓp), where L
is the polymer length. Indeed, this expectation value satisfies the
following equation: d

ds C(s) � 1
2ℓp

1
4π ∫S2dΩ(T(s) · T(s′))ΔS2Z,

where dΩ is the solid angle and 4π is a normalization
constant. Now, we can integrate twice by parts the r.h.s of last
equation and since S2 is a compact manifold the boundary terms
vanish. Also, using ΔS2T � − 2

R2 T, it is found that the correlation
function satisfies the ordinary differential equation
d
ds C(s) � − 2

R2 C(s). Now, we solve this equation using the
initial condition C(s′ � 0) � 1 and the length of the polymer
set up by s � L.

2.3 Modified Telegrapher Equation
As in the situation of the two-dimensional case [17], we carry
out a multipolar decomposition for HU equation in 3D. This
consists of expanding the probability density function
P(R,T|R′,T′; s) in a linear combination of the Cartesian
tensor basis elements 1, Ti, TiTj − 1

3δij, TiTjTk − 1
5δ(ijTk), /,

where the symbols (ijk) means symmetrization of the indices
i, j, and k, that is, δ(ijTk) � δijTk + δjkTi + δkiTj whose expansion
coefficients are hydrodynamic-like tensor fields. These tensors
are ρ(R, s), meaning by the manner how the ending positions are
distributed in the space; P(R, s), meaning as the local average of
the polymer direction; Qij(R, s), pointing the way how the
directions are correlated along the points of the space, etc.
These tensors are the moments associated to the Cartesian
tensor basis, for example, Pi � ∫ ​ dΩ4πTiP(R,T, s). These fields
satisfy the following hierarchy equations:

zρ(R, s)
zs

� −ziPi(R, s), (11)

zPi(R, s)
zs

� − 1
ℓp

Pi(R, s) − 1
3
ziρ(R, s) − zjQij(R, s), (12)

zQij(R, s)
zs

� − 3
ℓp
Qij(R, s) − 1

5
Tij(R, s) − zkRijk(R, s), (13)

where Tij � ziPj + zjPi − 2δij

3 zkP
k.

Now, by combining Eq. 11 and Eq. 12, we can obtain a
modified telegrapher equation:
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z2ρ(R, s)
zs2

+ 1
ℓp

zρ(R, s)
zs

� 1
3
∇2ρ(R, s) + zizjQ

ij(R, s), (14)

where ∇2 is the 3D Laplacian. In a mean-field point of view, one
can consider the preceding equation as an equation for the
probability density function ρ(R, s) under the presence of a
mean-field Qij(R, s). In particular, Qij(R, s) does not play any
role for the mean-square end-to-end distance for a semiflexible
polymer in the open Euclidean 3D space. Indeed, let us define the
end-to-end distance as δR :� R − R′; thus, the mean-square end-
to-end distance is given by

〈δR2〉D ≡ ∫
D×D

ρ(R|R′, s)δR2d3Rd3R′. (15)

Now, we implement the same procedure used in [17] to calculate
the mean-square end-to-end distance in the open three-dimensional
space D � R3, where it is used as the modify telegrapher of Eq. 14
and the traceless property of Qij(R, s). We can reproduce the
standard Kratky–Porod [16] result for a semiflexible polymer in
the three-dimensional space [16, 20].

〈δR2〉R3 � 2ℓpL − 2ℓ2p(1 − exp(−L
ℓp
)) (16)

with the typical well-known asymptotic limits: diffusive regime
〈δR2〉x2ℓpL for L≫ ℓp, and ballistic regime 〈δR2〉xL2 for
L≪ ℓp.

3 SEMIFLEXIBLE POLYMER IN A
COMPACT DOMAIN

In this section, we apply the hierarchy equations developed in the
previous section in order to determine the conformational states of a
semiflexible polymer confined to a compact volume domain of size
V. From the hierarchy Eq. 12 and Eq. 13, the tensors Pi(R, s) and
Qij(R, s) damp out as e−L/ℓp and e−3L/ℓp , respectively. Furthermore, if
we consider that the semiflexible polymer is enclosed in a compact
volume V :� ℓ

3, with a typical length ℓ; thus, as long as we consider
cases when 3ℓ/ℓp is far from one, we may assume that Qij(R, s) is
uniformly distributed. This condition corresponds to truncate the
hierarchy equations at the second level; that is, the only equations
that survive in this approximation are Eq. 11 and Eq. 12.

In the latter situation, the distribution ρ(R, s) of the endings of
the semiflexible polymer is described through the following
telegrapher’s equation:

z2ρ(R, s)
zs2

+ 1
ℓp

zρ(R, s)
zs

� 1
3
∇2ρ(R, s) (17)

that satisfies the initial conditions

lim
s→ 0

ρ(R|R′, s) � δ(3)(R − R′), (18)

lim
s→ 0

zρ(R|R′, s)
zs

� 0. (19)

The condition Eq. 18 means that the polymers’ ends coincide
when the polymer length is zero, whereas Eq. 19 means that the

polymer length does not change spontaneously. In addition, since
the polymer is enclosed in the compact domain D of volume
V(D), we also impose a Neumann boundary condition

∇ρ(R|R′, s) R,R′∈zD � 0, ∀s,
∣∣∣∣ (20)

where zD is a surface bounding the domain D. This boundary
condition means that the polymer does not cross the boundary
neither wrap the domain. The procedure to obtain a solution of
the above telegrapher’s Eq. 17 is identical to the one developed in
[17]. We just have to take into account the right factors and the
dimensionality considerations. In this sense, the probability
density function is given by

ρ(R|R′; s) � 1
V(D)∑k∈ I

G(
s
2ℓp

,
4ℓ2p
3
λk)ψ†

k(R)ψk(R′), (21)

where we recall from [17].

G(v,w) � e−v[cosh(v
�����
1 − w

√
) + sinh(v

�����
1 − w

√
)�����

1 − w
√ ] (22)

and {ψk} and {λk} are a complete set of orthonormal
eigenfunctions and a set of corresponding eigenvalues of the
Laplace operator −∇2 in R3. Notice that each ψk(R) must satisfy
the Neumann boundary equation ∇ψk|R∈zD � 0. In addition, it is
known [21, 22] that for Neumann boundary Laplacian eigenvalue
problem, there is a zero eigenvalue λ0 � 0 corresponding to a
positive eigenfunction given by ψ0 � 1/

��
V

√
.

Now, using Eq. 21, the mean-square end-to-end distance
〈δR2〉D can be computed in the standard fashion by

〈(δR)2〉D � ∑
k∈ I

akG(
s
2ℓp

,
4ℓ2p
3
λk), (23)

where the coefficients of ak are obtained from

ak � 1
V(D)∫D×D

(R − R′)2ψ†
k(R)ψk(R′)d3Rd3R′. (24)

We can have a further simplification after squaring the end-to-
end distance inside the last integral. It is not difficult to see that
the square terms R2 and R′2 in (R − R′)2 only the zero mode
contribute; thus, we have

〈(δR)2〉D � 2σ2(R) − 2
V(D)∑k≠0

r*k · rk G(
s
2ℓp

,
4ℓ2p
3
λk), (25)

where σ2(R) :� 〈R2〉g − 〈R〉2g is called the mean-square end

position, 〈/〉g :� 1
V(D)∫Dd

3R/ is termed as the geometric

average, and the factor rk :� ∫
D
Rψk(R)d3R for k ≠ 0. The factor

rk can be written in a simpler form for Neumann boundary
conditions, since ψk � − 1

λk
∇2ψk , and by integrating out by parts,

this factor is expressed in terms of a boundary integral

rk � 1
λk
∮

zD
dS nψk(RS), (26)

where RS ∈ zD and dS is the area element of zD. Since the function
G(v,w) decays exponentially as the polymer length gets larger values,
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we can convince ourselves that twice the mean-square end position
corresponds to a saturation value for the mean-square end-to-end
distance. An additional property of rk is the identity

1
V(D)∑k≠0

r*krk � σ2(R). (27)

This identity can be proved using the completeness relation
of the eigenfunctions, that is, ∑

k
ψ*
k(R)ψk(R′) � δ(3)(R′ − R).

This identity allows us to prove that in general 〈(δR)2〉D
starts at zero.

4 RESULTS

4.1 Semiflexible Polymer Enclosed by a
Cube Surface
In this section, we provide results for the mean-square end-to-end
distance for a semiflexible polymer enclosed inside of a cube domain.
All the problems are reduced to solve the Neumann eigenvalue
problem −∇2ψ � λψ with Neumann boundary condition, when the
compact domain C :� {(x, y, z) ∈ R3 : 0≤ x ≤ a, 0≤ y ≤ a, 0≤ z ≤ a}
is a cube of side a in the positive octant. This problem is widely studied
in different mathematical physics problems [21, 23]. The
eigenfunctions in this case can be given by

ψk(R) �
Nnmp

a3/2
cos(

πn
a
x)cos(

πm
a

y)cos(
πp
a
z), (28)

where x, y, and z are the standard Cartesian coordinates, and R �
(x, y, z) is the usual vector position. The eigenfunctions are
enumerated by the collective index nmp, with
n,m, p � 0, 1, 2,/. Nnmp is a normalization constant with
respect to the volume of the cube V(D) � a3, whose values
are given by N000 � 1; Nn00 � N0n0 � N00n �

�
2

√
, for n≠ 0;

Nnp0 � Nn0p � N0np � 2, for n, p≠ 0; and Nnpm � 2
�
2

√
, for

n,m, p≠ 0. The eigenvalues of the Laplacian are given by
λk � k2, where k � (πna , πma , πpa ). Now, we proceed to calculate

rk using its definition, that is, rk � ∫
C
Rψk(R)d3R. The three

components are given by

(rk)x � − �
2

√ a5/2

n2π2
(1 − (−1)n)δm0δp0,

(rk)y � − �
2

√ a5/2

m2π2
(1 − (−1)m)δn0δp0,

(rk)z � − �
2

√ a5/2

p2π2
(1 − (−1)p)δn0δm0,

(29)

In the following, we use the general expression in Eq. 25 for
the mean-square end-to-end distance. The mean-square end
position can be easily calculated as σ2(R) � a2

4 . Since the
Kronecker delta in rk , each contribution of (rk)i is the same,
thus taking into account the correct counting factor, the mean-
square end-to-end distance is

〈δR2〉C � a2

2
− 24a2∑

k�1

∞ (1 − (−1)k)
k4π4

G(
s
2ℓp

,
4
3
(
ℓp

a
)

2

π2k2). (30)

Following the same line of argument performed in [17], it is
observed that 24∑​ ∞

k�1
(1−(−1)k)

k4π4 � 1
2 consistently with Eq. 27; thus,

up to a numerical error of 10− 2, we claim that

〈δR2〉C
a2

x
1
2
− 1
2
exp(− L

2ℓp
)
⎧⎪⎨
⎪⎩cosh⎡⎢⎢⎢⎢⎣ L

2ℓp
(1 − 4π2

3

ℓ
2
p

a2
)

1
2

⎤⎥⎥⎥⎥⎦

+(1 − 4π2

3

ℓ
2
p

a2
)

− 1
2

sinh⎡⎢⎢⎢⎢⎣
L
2ℓp
(1 − 4π2

3

ℓ
2
p

a2
)

1
2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬
⎪⎭

(31)

Let us remark that for any fixed value of a, the r.h.s of Eq. 31, as a
function of L, shows the existence of a critical persistence length,
ℓ
*
p �

�
3

√
a/(2π) such that for all values of ℓp > ℓ*p, it exhibits an

oscillating behavior, whereas for ℓp < ℓ*p, it is monotonically
increasing. In Figure 1, we show the behavior of the mean-square
end-to-end distance versus the length of the polymer for several

FIGURE 1 | Monotonous and oscillating behaviors of the mean-square end-to-end distance (Eq. 30) of polymers with ℓp below (A) and above (B) the critical
persistence length ℓ

p
p � ��

3
√

/(2π)a in cubic confinement. Inside the plotting area, we sketch the conformational states of each class of polymers.
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values of the persistence length below and above ℓ*p. Moreover, we
also show sketches of conformational states corresponding to the
monotonous and oscillating behaviors of the mean-square end-to-
end distance. In addition, the same mathematical structure as the
mean-square end-to-end distance found by Spakowitz and Wang
[24] is noticeable for semiflexible polymers wrapping a spherical shell,
and recently for semiflexible polymers confined to a square box [17].

4.2 Semiflexible Polymer Enclosed by a
Spherical Surface
In this section, we provide results for the mean-square end-to-end
distance for a semiflexible polymer enclosed inside of a spherical
domain. All the problems are reduced to solve the Neumann
eigenvalue problem −∇2ψ � λψ with Neumann boundary
condition when the compact domain B :� {r ∈ R3 : r2 ≤R2} is a
center ball of radius R. This problem is widely studied in different
mathematical physics problems [21, 23]. The eigenfunctions in this
case can be given in terms of spherical Bessel functions jℓ(x) and
spherical harmonic functions Yℓm(θ,φ):

ψ
ℓmk(r, θ,φ) � Nℓk jℓ(αℓk

r
R
)Yℓm(θ,φ), (32)

where r, θ, and φ are the standard spherical coordinates. The
factor Nℓk is a normalization constant with respect to the volume
of the ball B, given by

Nℓk �
�
2

√
R3/2

αℓk

jℓ(αℓk)(α2ℓk − ℓ(ℓ + 1))1/2. (33)

The coefficients αℓk are the roots of zjℓ(x)/zx, which, by using
the identity ℓjℓ−1(x) − (ℓ + 1)jℓ+1 � (2ℓ + 1)zjℓ(x)/zx, satisfy the
equation ℓjℓ−1(αℓk) � (ℓ + 1)jℓ+1(αℓk). The eigenfunctions are
enumerated by the collective index ℓmk, with ℓ � 0, 1, 2,/
counting the order of spherical Bessel functions,
m � −ℓ,−ℓ + 1,/, ℓ, and k � 1, 2, 3,/ counting zeros. The
eigenvalues of the Laplacian are given by λℓmk � α2

ℓk/R
2, which

are independent of the numbers m. Now, we proceed to calculate
rℓmk by using Eq. 26. It is enough to calculate ∮S2dS n Yℓm(θ,φ),
since n∝Y1m; thus, ∮S2dS n Y1,±1(θ,φ) � −

��
2π
3

√
R2(±1, i, 0) and

∮S2dS n Y1,0(θ,φ) � 2
�
π
3

√
R2(0, 0, 1). Now, we call α1k :� αk; then,

using Eq. 33 one has

r1,±1,k � −2
��
π

3

√
R5/2

αk(α2
k − 2)1/2

(±1, i, 0), (34)

r1,0,k � 2

���
2π
3

√
R1/2

αk(α2k − 2)1/2
(0, 0, 1), (35)

where roots {αk} satisfy the equation j0(αk) � 2j2(αk). Using
explicit functions of the spherical Bessel functions, the root
condition is F(αk) � 0, where

F(x) � (x
2

2
− 1)sin x + x cos x. (36)

In the following, we use the general expression (Eq. 25) for the
mean-square end-to-end distance. We calculate the mean-square
end position, σ2(R) � 3

5R
2, and use the factors rℓmk; thus, the

mean square end-to-end distance is

〈δR2〉B � 6
5
R2 − 12R2∑

k�1

∞ 1
α2
k(α2

k − 2)
G(

s
2ℓp

,
4
3
(
ℓp

R
)

2

α2
k). (37)

Following the same line of argument performed in [17], we
observe numerically that 12∑ ​ N

k�1 1
α2k(α2k−2)→ 6/5 as N increases;

this is consistent with Eq. 27. Thus, up to a numerical error 10− 2,
we claim that

〈δR2〉B
R2

x
6
5
− 6
5
exp(− L

2ℓp
)
⎧⎪⎨
⎪⎩cosh⎡⎢⎢⎢⎢⎣

L
2ℓp
(1 − 4α21

3

ℓ
2
p

R2
)

1
2

⎤⎥⎥⎥⎥⎦

+(1 − 4α2
1

3

ℓ
2
p

R2
)

− 1
2

sinh⎡⎢⎢⎢⎢⎣
L
2ℓp
(1 − 4α2

1

3

ℓ
2
p

R2
)

1
2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬
⎪⎭

(38)

FIGURE 2 | Monotonous and oscillating behaviors of the mean-square end-to-end distance (Eq. 37) of polymers with ℓp below (A) and above (B) the critical
persistence length ℓ

p
p � ��

3
√

R/(2α1) in spherical confinement. Inside the plotting area, we sketch the conformational states of each class of polymers.
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Let us remark that for any fixed value of R, the r.h.s of Eq. 38,
as a function of L, shows the existence of a critical persistence
length, ℓ*p �

�
3

√
R/(2α1), with α1x2.08158 according to Eq. 36

such that for all values of ℓp > ℓ
*
p, it exhibits an oscillating

behavior, whereas for ℓp < ℓ*p, it is monotonically increasing. In
Figure 2, we show the behavior of the mean-square end-to-end
distance versus the length of the polymer for several values of the
persistence length below and above ℓ*p. Moreover, we also show
sketches of conformational states corresponding to the
monotonous and oscillating behaviors of the mean-square
end-to-end distance. In addition, it is noticeably that the same
mathematical structure as the mean-square end-to-end distance
found by Spakowitz and Wang [24] for semiflexible polymers
wrapping a spherical shell, and recently for semiflexible polymers,
confined to a square box [17].

5 CONCLUDING REMARKS

In this work, we carry out an extension of the stochastic curvature
formalism introduced in [17] to analyze the conformational states
of a semiflexible polymer in a thermal bath for the cases when the
polymer is in the open space R3 and when it is in a bounded
domain D ⊂ R3. The basic idea of formalism in the 3D case is
followed by two postulates, that is, each conformational state
corresponds to the realization of a path described by the
stochastic Frenet–Serret Eq. 5a and Eq. 5b, to introduce a
stochastic curvature vector k(s), and a second postulate that
gives the manner how κ(s) is distributed according to the thermal
fluctuations.

In the case of a polymer in an open space R3, the standard
Kratky–Porod formula for polymers is reproduced in three
dimensions [16], while when the polymer is confined to a
space bounded region D ⊂ R3, the conformational states show
the existence of a critical persistence length ℓ

*
p such that for all

values of ℓp > ℓ*p, the mean square distance from end to end
exhibits an oscillating behavior, while for ℓp < ℓ

*
p, it exhibits a

monotonic behavior in both cases of a cubic region and a
spherical region. Furthermore, for each value of ℓp, the
function converges to twice the mean-square end position
σ2(R), that is, twice the variance of R2 with respect to the
volume of the domain. The critical persistence length,

therefore, distinguishes two conformational behaviors of the
semiflexible polymer in the bound domain. On the one hand,
polymers with persistence length below the critical value have a
conformation similar to a Brownian random path. On the other
hand, polymers with persistence length above the critical value
adopt smooth conformations. In addition, it is highlighted that
the mean-square end-to-end distance exhibits the same
mathematical form for the discussed cases along with the
manuscript (Eq. 31 and Eq. 38) and with the results
reported for a polymer enclosed to a square box and rolling
up a spherical surface [17, 24]. Nevertheless, the value difference
of saturation and the critical persistence length reflect the
particular geometric nature of the compact domain,
including the dimensionality of the space. Note the particular
mathematical expression in our work is due to the probability
density function of the polymer’s ends, which is governed by a
modified telegrapher equation. As a consequence of this
resemblance, it can be concluded that the shape transition
from oscillating to monotonous conformational states
provides furthermore evidence of a universal signature for a
semiflexible polymer enclosed in compact space.
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