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Editorial on the Research Topic

B Cells in Inflammatory and Neurodegenerative Diseases of the Central Nervous System

In recent years, the role of B cells in conditions affecting the central nervous system
(CNS) has substantially expanded our perspectives on mechanisms of neuroinflammation and
neurodegeneration. The success of B cell-depleting therapies (BCDT) in patients with diseases
such as neuromyelitis optica and multiple sclerosis (MS) has underscored the role of B cells
in both cellular and humoral-mediated CNS conditions. This Research Topic aimed to provide
a comprehensive overview of the functions of B cells in the CNS during homeostasis and in
the presence of inflammatory and/or neurodegenerative diseases. Ultimately, the contributions
received for this Research Topic covered three main areas (1) antibodies, (2) B cells functions, and
(3) therapies, mainly focusing on MS.

Two contributions are focused on the pathogenic role of antibodies. The presence of
persistent oligoclonal bands (OCBs) and IgG deposition in demyelinating plaques are essential
features of MS pathology. However, their role remains controversial. In their review, Yu et al.
hypothesized that circulating IgG1 and IgG3 diffuse across a transiently damaged blood-brain
barrier (BBB), contributing to the total intrathecal IgGs and increasing the risk of antibodies-
mediated cytotoxicity to CNS cells. However, MS still does not meet the full definition of
autoimmune disease, and more studies are needed to clarify the pathological role of antibodies
in MS.

Understanding the immunopathogenic functions of antibodies is relevant in a wide range
of CNS conditions other than MS. In their original research article, Hang et al. focus on the
anti-leucine-rich glioma-inactivated 1 antibody (anti-LGI1) encephalitis, a common autoimmune
encephalitis characterized by progressive cognitive impairment. By analyzing the clinical outcome
of 21 patients, the authors conclude that considerable antibodies-mediated damage is seen in
patients early in the disease, and early and long-term effective immunotherapy can obtain a better
cognitive functional prognosis.

Five additional contributions in this Research Topic are focused on the role and function of
B cells in CNS conditions. In their review, Chunder et al. discuss the involvement of B cells in
two different neuroinflammatory scenarios by drawing parallels between MS and virus-induced
neuroinflammation. Both conditions show similar signatures for B cell migration, retention, and
regulation in the CNS. Thus, the authors conclude that the basics of B cell biology remain the
same independently of the trigger of neuroinflammation, showing a balance between protective
and pathogenic functions.

As the nature of the B cell response differs considerably between the stages of the disease,
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Holloman et al. explore the mechanisms by which B cells
contribute to disease progression in primary-progressive MS
(PPMS), specifically focusing on cytokine production, antigen
presentation, and antibodies synthesis. Authors draw their
conclusions based on the analysis of clinical trial data
highlighting the existence of a subset of patients with PPMS. The
latter have active inflammation contributing to their progressive
disability and benefit from BCDTs such as Ocrelizumab.
Altogether, the data indicate that BCDTs likely reduce disease
progression in PPMS by reducing B cell-mediated inflammation.

Two more review articles focus on the function of specific
B cell phenotypes in MS. In their review, Ran et al. unravel
the role of regulatory B cells (Breg) and their diversification in
demyelinating diseases. An increasing number of studies have
confirmed that Breg improveMS. According to the inflammatory
microenvironment and the interactions with surrounding cells,
Breg can indeed be activated and differentiate into subgroups
of cells with beneficial rather than pathogenic functions.
Concurrently, DiSano et al. discuss the roles of memory B
cells (Bmem), both within the periphery and inside the CNS
compartment. Bmem are rising as a critical B cell phenotype
in MS due to their antigen experience and rapid response to
stimulation. Bmem display diverse effector functions, including
antigen presentation to CD4+ T cells and precursor to antibody-
secreting cells (ASC). On this same line of thought, Negron et
al. discuss the evidence supporting the interconnectedness of
CD4+ T cells, particularly follicular T helper (TFH) cells and
B cells. T cell-dependent B cell responses originate and take
shape in germinal centers (GCs), specialized microenvironments
that regulate B cell activation and subsequent differentiation into
ASCs or Bmem, a process for which TFH cells are indispensable.
GCs represent a critical site of B cell tolerance, and their
dysregulation has been implicated in the pathogenesis of several
autoimmune diseases, including MS.

Finally, three contributions to this Research Topic focus on
different aspects of MS treatment, two specifically discussing
BCDTs. Roach and Cross critically review the results of
past and ongoing clinical trials of anti-CD20 monoclonal
antibodies (mAb) with lytic effects on B cells in MS: Rituximab,
Ocrelizumab, and Ofatumumab. The authors review nicely and
succinctly also safety profiles, the potential mechanism of action,
and alternatives to interfere with B cell function, e.g., anti-
CD19 mAb. Complementary to this contribution is the original
work by Sempere et al., reporting their real-world experience

in a retrospective analysis of 70MS patients, both relapsing and
progressive, treated with Ocrelizumab. Authors report clinical
and MRI results, showing that 94% of relapsing patients achieved
no evidence of disease activity (NEDA). Despite the overall low
number of patients included, this study confirms the effectiveness
of BCDTs in the treatment of MS.

The last article on this topic is shifting gear by proposing a
new algorithm for progressive multifocal leukoencephalopathy
(PML) risk stratification in patients treated with Natalizumab, an
anti-α4 integrin mAb interfering with lymphocyte, both T and B
cells, migration through the BBB. In this study by Toboso et al.,
1,240 people with MS treated with Natalizumab were recruited
in 36 European Hospitals to evaluate patients’ clinical and
demographic characteristics as predictors of PML occurrence.
Thirty-five patients developed PML and based on the analysis of
B cell-related parameters like anti-lipid specific IgM OCBs and
anti-JC virus antibodies, besides disease activity and age, authors
established a new algorithm as a PML risk stratification tool for
individual patients.

In conclusion, this Research Topic highlights the involvement
of B cells in neuroinflammatory diseases. It discusses the evidence
supporting B cells’ pathogenic immunomodulatory functions in
neurological disorders, particularly B cell-directed therapies.
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Regulatory B Cells and Its Role in
Central Nervous System
Inflammatory Demyelinating
Diseases

Zhou Ran, Luo Yue-Bei, Zeng Qiu-Ming* and Yang Huan*

Department of Neurology, Xiangya Hospital, Central South University, Changsha, China

Regulatory B (Breg) cells represent a population of suppressor B cells that participate in

immunomodulatory processes and inhibition of excessive inflammation. The regulatory

function of Breg cells have been demonstrated in mice and human with inflammatory

diseases, cancer, after transplantation, and particularly in autoinflammatory disorders.

In order to suppress inflammation, Breg cells produce anti-inflammatory mediators,

induce death ligand-mediated apoptosis, and regulate many kinds of immune cells

such as suppressing the proliferation and differentiation of effector T cell and increasing

the number of regulatory T cells. Central nervous system Inflammatory demyelinating

diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the

background of an acute or chronic inflammatory process. With the advent of monoclonal

antibodies directed against B cells, breakthroughs have been made in the treatment

of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted

attention. Meanwhile, increasing number of studies have confirmed that Breg cells play

a role in alleviating autoimmune diseases, and treatment with Breg cells has also been

proposed as a new therapeutic direction. In this review, we focus on the understanding

of the development and function of Breg cells and on the diversification of Breg cells in

CNS IDDs.

Keywords: regulatory B cells, central nervous system, inflammatory demyelinating diseases, multiple sclerosis,

neuromyelitis optica

INTRODUCTION

The immune response feedback is an important mechanism that maintains the
immune balance. Inflammatory diseases such as systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA) and multiple sclerosis (MS) are hallmarks of immunologic
imbalances. As a major component of the immune system, B cells play both positive
and negative roles in innate and adaptive immunity, through effector molecules such
as antibodies and cytokines as well as through antigen-presention. On the one hand,
B cells can mediate several negative processes such as amplifying immune responses.
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Mechanistically, they differentiate into plasmablasts that
secrete effector antibodies (1), may modulate effector T cell
response through antigen presentation (2) and production
of inflammatory cytokines (3). In addition, there is also a
subset of B cells that regulates immune response to pathogens
and autoantigens. These regulatory B cells are core targets in
autoimmune and infectious diseases as well as cancer. These cells
have a huge therapeutic potential against the aforementioned
diseases. In one study performed in 1974 on delayed-type
hypersensitivity, it was found that when B cells were removed,
adoptively transferred splenocytes induced more intense
reactions and lost their ability to suppress the delayed-type
hypersensitivity reactions. This suggests that B cells or their
products mediates inhibition of excessive inflammatory response
(4). In another study conducted in 1996, it was found that mice
with experimental autoimmune encephalomyelitis (EAE) but
lacking B cells displayed greater differences in disease onset,
severity, and recovery compared with the wild type group
(5). Other studies on colitis and arthritis have demonstrated
that B cells have antibody-independent immunoregulatory
function (6, 7). Elsewhere, researchers have suggested that B
cells inhibits excessive inflammation. B cells associated with
inhibitory functions are referred to as Breg cells. IL-10 has been
found to play a crucial role in the recovery of EAE (8). Other
studies have further demonstrated that IL-10−/− mice display a
non-remitting course of EAE, similar to the B cell-deficient mice
(9). Combined, these findings suggest that B cells regulatory
functions are mediated by IL-10. B cell-derived IL-10 has indeed
been shown to play a key role in controlling autoimmunity (10).
Accordingly, expression of IL-10 has been widely used to define
suppressive B cell populations in mice and humans (11). B cells
also regulate inflammation by a variety of IL-10-independent
mechanisms (12).

Central nervous system Inflammatory demyelinating diseases
(CNS IDDs) is a term referring to several CNS disorders,
characterized by damaged myelin sheath of neurons, thus
impairing transmission of signal by affected nerves. CNS IDDs
can be differentiated based on disease severity and temporal
courses, imaging, laboratory test and pathological characteristics.
CNS IDDs mainly include MS, neuromyelitis spectrum disorders
(NMOSD), and myelin oligodendrocyte glycoprotein antibody-
associated disease (MOG-Ab associated disease) (13). IDDs
were considered to be primarily mediated by T lymphocytes.
Given the success of therapeutic B cell depletion in MS (14)
and NMOSD (15), there is growing concern on the role of B
cells in the pathogenesis of IDDs. Studies on auto antibodies
have improved our understanding of the role of B cells in
the pathogenesis of immune-mediated diseases such as the
appearance of oligoclonal IgG bands and deposition of IgG in
the cerebrospinal fluid of MS, the presence of AQP4-IgG in
NMOSD and antibodies against MOG in MOG-Ab associated
disease. In addition, Breg cells also play a role in CNS IDDs.
For instance, Breg cells deficiency is associated with severe
symptoms of MS (16) and NMOSD (17), suggesting that Breg
cells have the therapeutic potential to reduce immune-mediated
inflammatory disorders. Subsequently, this review aimed at
providing a summary of the current understanding on the

development and function of Breg cells, and their role in the
etiology of CNS IDDs.

DEVELOPMENT AND DIFFERENTIATION

OF BREG CELLS

There are two distinct populations of B cells identified in
mouse and human; the B1 and B2 subsets. Similar to other
immune cells, B cells are derived from hematopoietic stem cells
(HSCs), where they differentiate into progenitor B cells (Pro-
B), precursor B cells (Pre-B) and immature B cells (Figure 1).
Immature B cells undergo a “transitional” state, which is an
early phase to the mature phenotype, after which they leave
the bone marrow or fetal liver. B1 subset differentiates into
mature B1a cells expressing CD5, and mature B1b cells. After
stimulation with polysaccharides or lipids, mature B1 cells
differentiate into antibody-secreting plasmablasts and short-lived
plasma cells secreting antigen-specific antibodies. As for the
B2 subset, they undergo three consecutive transitional B cells
stages; transitional-1 (T1), transitional-2 (T2) and transitional-3
(T3). Transitional-B cells then migrates to the spleen and lymph
node follicles, where they eventually differentiate into either
follicular (FO) or marginal zone (MZ) B cells. The intermediate
subset between T-2 B and MZ B cells are transitional-2
marginal-zone precursors (T2-MZP) B cells. Activated MZ
B and FO B cells eventually differentiate into plasma cells,
antibody producing B cells. Under special conditions, transitional
B cells, MZ cells, T2-MZP cells, B1 cells, plasmablasts and
plasma cells can all be activated to differentiate into Breg cells.
Inflammatory microenvironment and intercellular interaction
have been identified to activate this differentiation. Details of
these processses will be discussed in the subsequent sections
(Figure 2).

Inflammatory Microenvironment
The inflammatory microenvironment such as infiltration of
cytokines and infection microenvironment can increase the
expression as well as enhance the inhibitory property of
Breg cells, implying that such factors play important roles in
differentiation of Breg cells.

Numerous studies show that most inflammatory cytokines
can indeed induce differentiation of Breg cells. As an
immunosuppressive heterodimeric cytokine, IL-35 binds
on its corresponding IL-35 receptor, activating signal transducer
and activator of transcription (STAT) 1 and 3 to induce
differentiation of resting B cells into IL-10 and IL-35-producing
Breg cells. This suggests that IL-35 has the potential to induce
autologous Breg cells as well as the treatment of autoimmune and
inflammatory diseases (18, 19). More studies have demonstrated
that IL-10-producing dendritic cells induced by IL-35 and
phosphorylating STAT3 can induce immunosuppressive
property of IL-10-producing B cells (20).

Similar to IL-35, IL-21 also induces production of IL-
10 via phosphorylating STAT3. Accordingly, inhibition of
phosphorylating STAT3 effectively blocks the production of IL-
10 during the differentiation of the Breg cells. The effect of IL-21
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FIGURE 1 | Development and differentiation of Breg cells. In bone marrow or fetal liver, hematopoietic stem cells (HSC) differentiate through progenitor B cells (Pro-B),

precursor B cells (pre-B), immature B cells and transitional B cells. For the B1 subset, migrating to the spleen or peripheral circulation, the transitional B cells

differentiate into either mature B1a cells or mature B1b cells and eventually differentiate into plasmablast cells and plasma cells. Meanwhile, for the B2 subset, the

transitional B cells differentiate either into follicular (FO) or marginal zone (MZ) B cells and eventually into plasmablast cells and plasma cells. Moreover, there is the

transitional-2 marginal-zone precursors (T2-MZPs) B cells stage which is the precursor of MZ B cells. Studies have proved that the transitional B cells, MZ cells,

T2-MZP cells, B1 cells, plasmablasts, and plasma cells can all differentiate into Breg cells with different phenotypes. Differentiation pathway of B10 cells in the middle

of the photograph are listed separately because there are still not enough studies to classify them. In the dotted box, there are Breg cells with different phenotype and

the source of them are still not clear.

on the differentiation of Breg cells strongly depends on additional
signals including inhibitors of Toll-like receptors (TLR) and
simulation of both B-cell receptor (BCR) stimulation and CD40
ligand. For instance, with the help of CD154 (CD40 ligand),
IL-21 induces the differentiation of B cells into plasma cells or
granzyme+ B lymphocytes (an important type of Breg cells) (21).
In addition, the maturation of Breg cells into effector cells that
secrete functional IL-10 requires homologous interactions with T
cells mediated by IL-21 and CD40 (22).

Other inflammatory cytokines critical for differentiation of
Breg cells include IL-1β, IL-6 and granulocyte-macrophage
colony-stimulating factor (GM-CSF). In mice with arthritis,
deficiency of B cell specific IL-6 or IL-1 receptors is shown to
exacerbate the disease compared with the controls (23). GM-
CSF and IL-15 are strong immunosuppressive molecules that can

induce differentiation of naive CD19+ B cells into Breg cells, a
process that can reverse the neuropathology of EAE (24).

Surprisingly, immune response to infectious diseases does
not always worsen autoimmune diseases. In some instances,
response to infectious diseases drives the development of IL-10-
producing Breg cells in both mice and humans. The helminth
parasite Schistosoma mansoni contains TLR4 inhibitor, thus is
able to induce secretion of IL-10 by B cells. This can then change
the course of MS and reduce the severity of the disease (25).
Similarly, Mycobacterium tuberculosis contains a TLR inhibitor,
thus infection by this bacteria can aid in the recovery of
EAE because it mediates the production of IL-10 by B cells.
In a clinical trial, Bacillus Calmette-Guerin (BCG), a vaccine
against tuberculosis disease, has been shown to alleviate clinically
isolated syndrome (CIS) by reducing the number of lesions and
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FIGURE 2 | Activation of Breg cells. Numerous mechanisms have been demonstrated to induce Breg cells, the most important of which are summarized as the

inflammatory micro-environment and intercellular interactions. The inflammatory microenvironment is mainly produced by inflammatory factors, such as IL-35, IL-21,

and other inflammatory cytokines. Cytokines often mediate activation of downstream signaling pathways by binding to cytokine receptors on the membrane.

Microorganisms infection is another essential part of the inflammatory environment in the body, including invasive bacteria and commensal microbiota. Most microbial

infections are activated by downstream molecular pathways mediated by membrane surface molecules, causing IL-10 transcription and translation and secretion.

Intercellular interactions play a vital role in the induction of regulatory B cells, such as apoptotic cells or type3 innate lymphoid cells. Intercellular interactions mainly

depend on the interaction of molecules on the surface of the membrane and the most classic surface molecules are Toll-like receptors (TLRs), CD40, B cell receptor

(BCR). Many environmental and pharmaceutical factors can activate TLRs and cause downstream pathways activation, such as STATs and ERK orMyD88-NF-κB

(Continued)
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FIGURE 2 | signaling pathway. CD40 can be activated by the CD40 ligand or binding immunoglobulin protein to mediate the activation of downstream signaling

pathways STATs, and the downstream signaling pathways can be enhanced through synergy with other cell membrane surface molecules. BCR is thought to be

involved in multiple functional processes of B cells, especially the induction of Breg cells. BCR combined with antigen can promote the release of calcium ions into the

cell from the endoplasmic reticulum (ER) and also promote the activation of STIM on the endoplasmic reticulum, which open the calcium ion channels (SOC channel)

on the cell membrane. A large amount of calcium influx increases the intracellular calcium ion concentration and promotes the phosphorylation of the nuclear factor of

activated T cells (NFAT) in the downstream pathway, thereby increasing the transcription and translation secretion of IL-10. Other membrane surface molecules can

promote Breg cell differentiation, such as Galectin-1and CD38. Research on regulatory B cell-specific transcription factors is still inconclusive, but the transcription

factors such as Blimp1, IRF4, andHIF-1α have been shown to promote the transcription of IL-10.

improving long-term disease course (26). In MS, the severity of
the disease significantly decreased after the reception with BCG
vaccine (27). The underlying infection is not limited to invasive
bacteria, but also includes the commensal microbiota in the
intestines. These microorganisms have been shown to promote
the differentiation of Breg cells in mesenteric lymph nodes and
the spleen (23).

Intercellular Interaction
Intercellular interaction can also induce the differentiation of
primary B cells into Breg cells, mainly through the activation
of surface molecules on B cells (such as TLRs, CD40, BCR) and
subsequent B cell downstream signaling pathway.

Gray M et al. found that apoptotic cells (ACs) affects the
production of IL-10. This was demonstrated by injection of
ACs into collagen-induced arthritis model, which induced the
production of IL-10 by Breg cells, a process that alleviates
inflammation (28). Gray M et al. also demonstrated the
mechanism underlying secretion of IL-10 by B cells. Here,

after recognizing the DNA containing complex on the surface
of ACs, naturally occurring B cells (such as MZ B cells)

bind and internalize the ACs surface chromatin complex,
thereby activating TLR9 to regulate proliferation of B cells
and secretion of IL-10 (29). Type 3 innate lymphoid cells
(ILC3s) and innate B cells interact through IL-15 and B
cell activating factors (BAFF), a process that promotes the
development of ILC3s with CD40 ligand. CD40 positive ILC3s
aid in the proliferation and differentiation of IL-10-secreting
B cells. This mutually beneficial relationship between cells is
important for maintaining immune tolerance, however, there
are several deficiencies in this relationship in allergic asthmatic
patients (30). By releasing IFN-α that interacts with CD40,
dendritic cells can also drive the differentiation of immature
B cells into IL-10-producing Breg cells. Conversely, Breg cells
inhibits production of IFN-α by dendritic cells mediated by
IL-10. In SLE, there are defects in this cross-talk, believed
to be associated with abnormal activation of STAT1 and
STAT3 (31).

TLRs are necessary for B cells to exert their inhibitory
effects such as inhibition of inflammatory T cell responses
and modulation of inflammation. TLRs-myeloid differentiation
factor88 (MyD88) pathway is closely associated with the anti-
inflammatory immune mechanism. In mouse and human, the
activation of TLR2, TLR4, and TLR9 transduction signal can
induce production of IL-10 in B cells. For instance, trametes
versicolor is a medicinal fungus that can promote differentiation
of B cells into CD1d+ Breg cells in acute colitis, through the

TLR2/4-mediated signaling pathway (32). Apart from chemical
means, physical activation of B cells by factors such as ultraviolet
radiation B has also been shown to induce differentiation
of B cells into Breg cells. This process also suppresses the
immune response through the TLR4-mediated signaling pathway
(33). However, not all TLR stimulation can induce B cells
to differentiate into Breg cells. For example, after activation
through TLR7 and interferon-α, transitional B cells develop into
pathogenic B cells, promoting the production of autoreactive
antibodies (34). Studies on downstream mechanisms found that
IFN-α can differentially regulate TLR7/8 and TLR9-activated
STAT3 and ERK in B cells (35). More specifically, stimulation
of B cells mediated by IFN-α and TLR7/8 inhibitors enhances
phosphorylation of ERK1/2 and STAT3, which intern mediated
production of IL-10 by B cells. Moreover, the activation of
ERK and STAT3 is also important in TLR9- mediated IL-10
producing by B cells. However, IFN-α is not able to enhance
the CpG-induced phosphorylation of ERK1/2 and STAT3 in B
cells. MyD88 is a key downstream molecule in the inflammatory
signaling pathway that also plays an important role in the
regulation of cellular mediated immunity during infection (36).
For instance, during Helicobacter felis infection, B cells activated
by Helicobacter TLR-2 ligands can actuate IL-10-producing B
cells in a MyD88 dependent manner (37). Endogenous TLR4
ligands are also found to be up-regulated, and activate B
cells to produce IL-10 via TLR4-MyD88 signaling (38, 39).
At transcription level, NF-κB plays an essential role in the
inflammatory and immune response of cells, and the mis-
regulation of NF-κB may cause autoimmune diseases, chronic
inflammation and many types of cancer. Most importantly, with
infectious diseases, activation of TLRs-MyD88-NF-κB can induce
production of B cells specific IL-10 (40). On tumor research,
one study found that activation of the TLRs-MyD88-NF-κB
signaling pathway is necessary for Breg cells differentiation
and the induced Breg cells with immunoregulatory functions
can contribute to the suppression of anti-tumor immunity
(41). This aside, IκBNS is a TLR-inducible nuclear IκB protein
important in the TLRs-mediated IL-10 production in B cells.
Mechanistically, IκBNS regulates inflammatory responses by
inhibiting the induction of a subset of TLR-dependent genes
through modulation of NF-κB activity (42). IκBNS-deficient B
cells show reduced expression of Breg cells transcription factors
including B lymphocyte induced maturation protein 1 (Blimp-1
protein) and interferon regulatory factor 4 (IRF4). They also fail
to generate IL-10 producing CD138+ plasmablasts (a subset of
Breg cells), suggesting that IκBNS is selectively required for IL-10
production in B cells, responding to TLR signals (43).
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CD40, a membrane-associated protein, is a member of the
tumor necrosis factor (TNF) receptor superfamily. The activation
of CD40 on B cells not only induces the maturation of B cells into
antibody-producing B cells, but is also crucial for the activation
of Breg cells. In transgenic mice, ectopic expression of the CD154
is associated with increased CD40 signaling, which can in turn
induce activation of the STAT3 pathway and an increase in the
proportion of Breg cells (44). In experimental lupus, stimulation
with CD40 inhibitor can induce IL-10-producing T2-like B cells
to suppress Th1 responses and induce suppressive capacity to
CD4+ T cells. This reduces the severity of the disease and delays
IL-10 dependent progression of the disease (45). Furthermore,
the synergistic effect of cell surface membrane molecules can
activate B cells to perform their regulatory functions. For
instance, co-stimulation of CD40 and TLRs has been shown to
induce the highest proportion of IL-10 producing Breg cells,
which plays a crucial role in recovery from MS relapse (46).
Besides, an immunoglobulin protein (BIP), a member of the heat
shock protein 70 family, can act in synergy with CD40 to induce
the differentiation of Breg cells as well as suppress proliferation
of T cells in a partially IL-10-dependent manner (47).

The BCR-STIM pathway is involved in most B cell
function processes, such as activation, differentiation and antigen
recognition, endocytosis, and presentation. BCR-stimulated B
cells can maintain long-term tolerance and protect vulnerable
mice from type 1 diabetes via an IL-10-dependent mechanism
(48). At transcription level, many regulatory molecules are
involved in IL-10 expression, including stromal interacting
molecules (STIM) of endoplasmic reticulum (ER), nuclear factor
of activated T cells (NFAT) family, IRF4 and a crucial cis-
regulatory element CNS-9 that is located 9kb upstream of the
transcription start site of il10. After BCR activation, calcium
sensory proteins STIM-1 and STIM-2 induce store-operated
Ca2+ (SOC) influx and proliferation to increase the intracellular
calcium concentration. This can activate the signaling pathway
of NFAT family and mediate secretion of IL-10 (49). Without
STIM1 or STIM2 proteins, B cells fail to produce IL-10 due to the
defect in the activation of NFAT after BCR stimulation. Besides,
the CNS-9 region contains clusters of NFAT and IRF binding
motifs, which enhances the expression of IL-10 mRNA through
the synergy effect of NFAT1 and IRF4. Therefore, deficiency of
Irf4 specific to B cells impairs secretion of IL-10 and abnormal
differentiation of Breg cell in dLNs. This intern predispose one to
EAE (50).

Some other surface molecules such as CD38, Galectin-1 (Gal-
1). may also play a role in the expression and function of Breg
cells. For instance, CD38 is a transmembrane protein expressed
in B lymphocytes. It can induce proliferation, differentiation
or apoptosis of Breg cells. Currently, studies have found that
the expression and effect of CD38 are inconsistent in different
diseases. Some studies have demonstrated that CD38−/− mice
are more suitable for generating and expanding regulatory B10
cells thanWTmice under appropriate stimulation (51). However,
other studies have suggested that CD1dhiCD5+ Breg cells highly
expresses CD38, and in the presence of a CD38 stimulator, the
percentage of Breg cells and their IL-10 production function
increases (52). Galectin-1 (Gal-1) is a class of protein necessary

for B cell development in the bone marrow. It plays a role in
inducing B cell regulatory functions. Compared with wild-type B
cells, Gal-1−/− B cells have impaired IL-10 and Tim-1 expression,
but with increased expression of TNF-α (53).

PHENOTYPES OF BREG CELLS

The activation process of immune cells is different in various
disease states. Therefore, many surface markers used to identify
Breg cells are either up- or down-regulated, which results in
the non-uniform molecular expression of Breg cells. Studies
in experimental animal models as well as in patients with
autoimmune diseases have identified multiple subsets of Breg
cells that exhibits diverse immune suppression mechanisms (see
Tables 1, 2 for the function of various Breg cell subtypes in mice
and humans). However, due to the intricate origins and activation
pathways of Breg cells, there is an ever-increasing list of new
phenotypic and functional markers associated with Breg cells.

Breg Cells in Mouse
Transitional-2 B Cells (CD1dhiCD21hiCD23hiCD24hi)
CD1d molecules are cell surface glycoproteins and the
cytoplasmic tail of CD1d participates in signaling cascades
associated with the transcription of IL-10 (82). In autoimmune
diseases, the induced B-cell subpopulation is characterized by
CD1d up-regulation, and the up-regulated CD1d can induce
B-cell subpopulations to produce IL-10, promote antigen-
specific regulatory T cell differentiation, and down-regulate
inflammatory cascades associated with IL-1 upregulation and
STAT3 activation (6). CD1d is expressed on a wide variety of cell
types, of which three different B cell subsets express high levels
of CD1d and have the potential to become Breg cells, including
T2 B cells, MZ B cells and T2-MZP B cells. In the early stages of
differentiation, B cells have already had the ability to differentiate
into Breg cells. In SLE model, the adoptive transfer of T2 B cells
can reverse autoimmunity and suppress the Th1 response (45).
CD40 ligation halts the apoptosis of T2 B cells and prevents
further differentiation into mature FO B cells (83), which can
induce and expand the differentiation of IL-10+ T2 B cells. In
allograft rejection model, T2 B cells isolated from tolerant mice
show higher survival rates and inhibit cytokine production of T
cells, thereby prolonging graft survival, suggesting that T2 B cells
have the potential to treat allograft rejection (54).

MZ B Cells

(IgMhiIgDloCD19+CD21hiCD23−CD24hiCD1dhi)
MZ B cells with CD1d high expression play a role in
the prevention of autoimmunity through the production
of regulatory cytokines and natural antibodies. Besides the
polyreactive BCRs, MZ B cells also express high levels of TLRs,
such as TLR9 which recognizes hypomethylated CpG motifs in
bacterial DNA or chromatin complexes expressed on the surface
of apoptotic cells (29). MZ B cells can differentiate into IL-10-
producing B cells and down-regulate the production of pro-
inflammatory cytokines in response to stimulation of ligands
or cytokines such as BAFF (84). Studies have demonstrated
that through inflammatory stimuli, T-bet-expressing MZ B cells
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TABLE 1 | The phenotype and function of mouse regulatory B cell subsets.

Name Phenotype Functions

Transitional2 B cells CD1dhiCD21hiCD23hiCD24hi 1.Supress the Th1 responses (45)

2.Inhibit T cell cytokine production to prolong graft survival (54)

MZ B cells IgMhi IgDloCD19+CD21hiCD23−CD24hiCD1dhi 1.Suppress CD8 and CD4 effector functions (55)

T2-MZP B cells* CD1dhiCD21hiCD23hi IgMhi 1.Inhibit inflammatory cytokines production, suppress Ag-specific T cell

activation and reduce in cells exhibiting Th1-type functional responses (56)

2.Regulate both CD4+CD25− T cells and regulatory T cells (57)

3.Promote tumor cell growth (58)

B10 cells CD19+CD1dhiCD5+ 1.Suppress proliferation and differentiation of Th17 cells (59)

2.Inhibit the production of Th1 cytokines, regulate the Th1/Th2 balance and

maintain Treg cells (60)

3.Inhibit microglial responses (61)

4.Promote tumor cell proliferation (62)

B1a cells CD19+CD5+ 1.Inhibit macrophage proinflammatory responses and promote Treg cell

responses (63)

2.Regulate neutrophil infiltration, CD4+ T cell activation and proinflammatory

cytokine production (64)

3.Inhibit proinflammatory cytokine secretion, mediate CD4+ T cell apoptosis

and prevent inflammation progressing (65)

4.Negatively regulate anti-tumor immunity (66)

Plasmablast CD138+CD44hi 1.Limit autoimmune inflammation and reduce disease severity (50)

Plasma B cells IgM+CD138hiTACI+CXCR4+CD1dintTim1int 1.Induce the Treg cell-mediated suppression (67)

2.Activate macrophages to produce cytokines that reduce the anti-tumor

immune response (68)

PD-L1hi B cells CD19+PD-L1hi 1.Mediate the generation of regulatory T cells (69)

TIM-1+ B cells TIM-1+ 1.Promote Th2 responses and regulate immune tolerance (70)

2.Promote the generation of regulatory T cells (71)

CD39+CD73+B cells B220+CD39+CD73+ 1.Suppress effector T cell functions (72)

*It is difficult to find a unified phenotype of T2 and T2-MZP B cells, so there are the most common and recognized cell phenotype of these two cells.

secrete IL-10, suggesting that T-bet might contribute to the
remission of autoimmune diseases by activating the regulatory
potential of MZ B cells (85). In collagen-induced arthritis model,
MZ B cells produce most of IL-10 in response to TLR stimulation
or apoptotic cells, and the adoptive transfer of MZ B cells could
protect mice from infection (28). Study of Leishmania donovani
infection have found that MZ B cells can interact with parasites
to secrete IL-10 in a MyD88-dependent manner, and MZ B
cells are involved in the suppression of CD8 and CD4 effector
functions (55).

T2-MZP B Cells (CD1dhiCD21hiCD23hiIgMhi)
Compared with MZ B cells, T2-MZP B cells also express highly
CD1d but produce IL-10 in much larger quantities. It is difficult
to find a unified phenotype of T2 and T2-MZP B cells, so the
distinction between these two cells is worthy of further research
and discussion. The immunomodulatory effects of T2-MZP B
cells in a variety of immune-mediated pathologies including
autoimmune diseases, allergy diseases and cancer. The regulatory
function of T2-MZP B cells has been first demonstrated in
experimental arthritis model, and the realization of its regulatory
effect depends on IL-10 mediation, inhibition the production
of inflammatory cytokines, suppression of Ag-specific T cell

activation, and reduction of Th1-type functional responses (56).
Moreover, the regulatory effect of T2-MZP B cells can ameliorate
the cellular infiltrates and the inflammatory damage by increasing
Foxp3+ Treg cells and reducing the number of Th1 and Th17
cells (57). In Helicobacter felis infection model, T2-MZP B
cells can induce the differentiation of T cells into a regulatory
phenotype to ameliorate the inflammatory damage (37). In
melanoma model, tumors initially signal via the lymphatic
drainage to stimulate the preferential accumulation of T2-MZP
Breg cells and this local response may be an early and critical
step in generating an immunosuppressive environment to permit
tumor growth and metastasis, suggesting T2-MZP B cells can
promote tumor growth (58).

B10 (CD19+CD1dhiCD5+)
With the continuous expansion of the research scope, the
exposure of B cells to different inflammatory environments
had limited the use of CD1d markers to identify Breg cells.
The co-expression of CD1d and CD5 on B10 cells has been
therefore used to characterize the spleen B cell population.
In mice, although B10 cells only account for about 1–2%
of spleen B cells and 7–8% of peritoneal B cells, they are
the main source of IL-10 production. Similar to B1a cells,
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TABLE 2 | The phenotype and function of human regulatory B cell subsets.

Name Phenotype Functions

Immature/Transitional B cells CD19+CD24hiCD38hi 1.Suppress effector T cell but enhance Treg cell functions (44, 73)

Memory B cells/B10 cells CD19+CD24hiCD27+ 1.Induce Foxp3 expression on regulatory T cells (74)

2.Have the value of evaluating the efficacy of biological drugs (75)

GrB+ B cells IgM+CD19+CD38+CD1d+CD147+ 1.Inversely related to disease activity and clinical characteristics (76)

2.Negatively modulate Th1 and Th17 cells, induce T cell apoptosis and

strongly suppress T cell proliferation (77)

3.Suppress antitumor immune responses (78)

Br1 cells CD25hiCD71hiCD73low 1.Suppress antigen-specific CD4+ T cell proliferation (79)

PD-L1hi B cells PD-L1+ 1.Suppress pro-inflammatory cytokine production (80)

2.Exhibit T cell suppressive capacity (69)

3.Repress the proliferation and activation of CD8+ T cells (81)

MZ B cells and T2-MZP B cells, B10 is able secrete a large
amount of IL-10 and express similar surface markers such
as CD19, CD1d, CD21, and CD24. However, each Breg cell
type may have different stimulatory requirements for IL-10
production. In vitro, B10 cells stimulated via the TLR2 and
TLR4 latter express cytoplasmic IL-10 at hour 5. Studies
show that B10 cells have a regulatory function in suppressing
immune responses such as IL-10-dependent regulation of T cell-
dependent autoimmune responses (11). The adoptive transfer of
B10 cells can suppress proliferation and differentiation of Th17
cells via the reduction of phosphorylating STAT3 and expression
of retinoid-related orphan receptorγt (RORγt). This cascade of
events delays the onset of inflammation and reduces clinical
symptoms and inflammatory damage (59). In silicosis, a disease
characterized by chronic lung inflammation and fibrosis, B10 can
inhibit the production of Th1 cytokines, regulate the Th1/Th2
balance and maintain Treg cells (60). In viral infection, B10
cells can infiltrate the chronically infected brains and inhibit
the microglial response (61). Generally, B10 cells are potent
negative regulators of antigen-specific inflammation and T-cell-
dependent autoimmune diseases. Therefore, the reinfusion of
B10 cells to control disease progression may provide an effective
treatment for both inflammatory and autoimmune conditions.
B10 cells play a pro-tumorigenic role by promoting tumor cell
proliferation. In pancreatic cancer, a recent research found that
the bruton’s tyrosine kinase signaling pathway can play a role
in regulating differentiation of B10 cells, thereby controlling the
cancer (62).

B1a Cells (CD19+CD5+)
B1a cells are another major source of IL-10, inhibiting the
progression of both innate and adaptive immune responses,
but at the cost of impeding pathogen clearance. The tissue-
specific signals and unique pathogen-derived signals combine to
determine whether the response of B1a cells is predominantly
regulatory or proinflammatory. Gray M et al. found that
in response to ACs, B1a cells can inhibit macrophage
proinflammatory responses and promote Treg cell responses
to self-antigens in an IL-10 dependent manner (63). In colitis
model, IL-10 production by B1a significantly reduced disease

severity by regulating neutrophil infiltration, CD4+ T cell
activation, and proinflammatory cytokine production during
disease onset (64). In collagen-induced arthritis model, IL-10
produced by B1a cells inhibits proinflammatory cytokines
secreted by activated macrophages and T cells in infectious
lesions, and expressing Fas ligand (FasL) B1a cells can mediate
CD4+ T cell apoptosis and prevent inflammation progressing
(65). In addition to secreting IL-10, in controlling immune
homeostasis, B1a cells can also convert naive T cells into T
cells with regulatory activity through cell-to-cell contact (86).
In melanoma tumor immunity, B1a cells negatively regulate
anti-tumor immunity by producing IL-10, suggesting they can
be a target for immunotherapy of tumor (66).

Plasmablast (CD138+CD44hi) and Plasma B Cells

(IgM+CD138hiTACI+CXCR4+CD1dintTim1int)
Studies have shown that in later stages of B-cell development such
as plasmablasts and plasma cells can also produce IL-10 and have
the inhibitory capacity. In autoimmune diseases, plasmablasts
in the dLNs serve as IL-10 producers to limit autoimmune
inflammation, while the absence of IL-10+ plasmablasts
increases disease severity (50). In Salmonella Typhimurium
infection, B cell-specific MyD88 signaling is essential for
optimal development of IL-10-producing CD19+CD138+ B
cells, especially in early stages of infection, and via MyD88
signaling, CD19+CD138+ B cells inhibit three key types of
cells: neutrophils, natural killer cells, and inflammatory T
cells (36). Similarly, plasma cells are also the major source
of B-cell-derived IL-10 and IL-35 which can induce the Treg
cell-mediated suppression (67). Plasma cells are found in the
CNS of MS patients and the expression of IL-10 by plasma
cells was necessary and sufficient to confer resistance toward
inflammation, suggesting that plasma cells play an unexpected
role in suppressing neuroinflammation (87). In hepatomamodel,
IgG-producing plasma cells activate macrophages to produce
cytokines that reduce the anti-tumor immune response, while
depletion of these plasma cells is able to prevent generation of
activated macrophages, increase the anti-tumor T cell response,
and reduce growth of tumor (68). As an essential regulator of
plasma cell development, Prdm1 (encoding the Blimp-1 protein)
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is strongly correlated with IL-10 production, and during the
formation of plasma cells, the prolonged elevation of Blimp-1
expression can elicit IL-10 production (88). Simon Fillatreau
et al. identified a natural plasma cell subset characterized by the
expression of the inhibitory receptor LAG-3, CD200, PD-L1, as
well as PD-L2. Via a TLR-driven mechanism, natural regulatory
plasma cells upregulate IL-10 expression within hours and
without proliferating, suggesting that this group of plasma cells
may be a potential disease treatment (89).

Other Breg Subsets
Programmed death ligand-1 (PD-L1) is important in controlling
immune function, and promoting the proliferation of antigen-
specific T cells. Besides this, programmed cell death receptor-1
(PD-1) binds to PD-L1 thereby transmitting inhibitory signals
that reduce T cell proliferation. In RA, PD-L1hi B cells can
suppress disease development by elevating the expression of PD-
L1. Presence of PD-L1 on B cells is positively correlated with
Treg cells but negatively correlated with effector T cells, implying
that PD-L1 mediates the generation of Tregs, an important
molecule on B cells (69). T cell immunoglobulin mucin domain-
1 (Tim)-1 is a membrane surface glycoprotein mainly expressed
on cells, and is associated with regulation of immune responses.
Apart from an inclusive marker for IL-10+ Breg cells derived
from T2-MZP B cells, B10 cells and CD138+ B cells (90),
Tim-1 is also critical for the induction and maintenance of
Breg cells. Co-stimulation of IL-21, anti-Tim1 and CD40L can
induce IL-10 activity in B10 cells and inhibit the progression
of experimental periodontitis (91). TIM-1+ B cells strongly
express IL-4 and IL-10, and promote Th2 responses, which
can directly regulate immune tolerance (70). Conversely, B cells
with Tim-1 defects are unable to produce IL-10 in response to
ACs or by specific ligation with anti-TIM-1, or are unable to
increase production of proinflammatory cytokine such as IL-
1 and IL-6. This effect promotes Th1 and Th17 responses. In
addition, B cells with defective Tim-1 can inhibit the generation
of regulatory T cells and enhance the severity of autoimmune
diseases (71). Collectively, these studies suggest that TIM-1 is
critical in both themaintenance and induction of Breg cells under
varied physiological conditions. CD39 andCD73 on their part are
two ectoenzymes that together catalyze the dephosphorylation
of adenine nucleotides to adenosine. Adenosine is known to
suppress effector T cell function by binding on several adenosine
receptors. Circulating B220+CD39+CD73+ B cells can drive
a shift from an ATP-driven pro-inflammatory environment to
an anti-inflammatory milieu induced by adenosine (72). A
recent research found that decreased CD73 expression and the
adoptive transfer of CD73+ B cells can impair production of
adenosine, which can reduce the severity of colitis. This implies
that CD39+CD73+ B cell adenosine can regulate autoimmune
inflammation (92).

Breg Cells in Humans
In humans, Breg cells maintains immune homeostasis. Breg cells
in both human and mice are predominantly identified based on
their IL-10 producing property.

Immature/Transitional B Cells (CD19+CD24hiCD38hi)
Previous studies have demonstrated that transitional B cells
can exert IL-10 mediated inhibition of the expression of IFN-γ
and TNF-α in T cells (44). In healthy individuals, transitional
B cells suppress proliferation of CD4+ T cell as well as
release of pro-inflammatory cytokines, a function that partially
mediated via the production of IL-10. However, in various
autoimmune diseases such as primary Sjögren’s syndrome (93)
and diabetic nephropathy (94), there is an under production
and defective functioning of transitional B cells, particularly
during the active phase of the disease. In autoimmune diseases,
defective transitional B cells have impaired IL-10 production
upon activation via the CD40. Due to a defect in STAT3
phosphorylation (44), Breg cells are unable to suppress Th1
responses and fail to mediate differentiation of CD4+T cells into
functionally suppressive Treg cells. This suggests that Breg cells
may fail to prevent the development of autoreactive responses
and inflammation. The higher number of transitional B cells
in patients receiving rituximab is associated with long-term
remissions, suggesting that the re-aggregation of Breg cells may
be associated with better disease outcome (95). Apart from
autoimmunity, transitional B cells have been shown to play a
key role in establishing transplant tolerance (96). Breg cells can
inhibit effector T cell function during the immune response in
transplantation (73). In infectious diseases such as with viruses,
enhanced production of IL-10-producing transitional B cells
positively correlates with the viral load. The Breg cells were
also shown to suppress virus-specific CD8+ T cell responses
but enhances function of regulatory T-cells via the production
of IL-10 and possibly expression of PD-L1. This suggests that
transitional B cells may contribute to immune dysfunction
in virus infection, which can hinder the elimination of the
infection (97).

Memory B Cells/B10 Cells (CD19+CD24hiCD27+)
Both memory B cells (also known as B10 cells in human)
and transitional B cells are the major IL-10-producing B cells.
They have similar functional characteristics such as suppressing
proliferation of CD4+ T cells and inhibiting expression of pro-
inflammatory cytokines. However, compared with transitional
B cells, B10 cells have higher growth factor β (TGF-β) and
shows stronger expression of granzyme B. B10 cells also express
higher levels of surface integrins and CD39, suggesting the
two Breg subsets have distinct functional characteristics (98).
B10 cell subset additionally expresses high levels of TLR9, a
receptor shown to be more sensitive to stimulation by CpG
oligonucleotides. A proliferation-inducing ligand (APRIL) can
stimulate signaling pathways activated by CpG (ERK1/2 and
STAT3), which can induce an increase in the production of B10.
This promotes production of IL-10 and induce expression of
Foxp3 on regulatory T cells (74). Moreover, it is reported that
miRNA-155 can regulate IL-10-Producing B10 cells in human
by enhancing the expression of il10 gene (99). Although B10
cells play a suppressive role, their function is altered differently
in several autoimmune diseases such as Bullous pemphigoid
(100). Moreover, B10 cells increases in RA patients treated with
biopharmaceuticals, suggesting that B10 cells may represent
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a predictive biomarker for response to the treatment (75).
In transplant-related diseases, the number of IL-10-producing
CD24hiCD27+ B cells decreases. The function of the same cells
is also impaired in graft-versus-host disease (cGVHD) (101).
Similarly, in liver transplantation, patients that suffered from
acute allograft rejection had significantly decreased proportions
of B10 cells, but they dramatically increased after anti-rejection
therapies (102).

Granzyme B+ B Cells

(IgM+CD19+CD38+CD1d+CD147+)
Granzyme B(GrB) is a serine protease with several functions
including antigen processing, matrix degradation, activation of
inflammatory cytokines and immunoregulatory effects. GrB is
dramatically elevated in chronic and inflammatory disorders.
Secretion of GrB by B cells may play a significant role in
early antiviral immune responses, regulation of autoimmune
responses and in cancer immuno-surveillance. Studies show
that co-stimulation of cytokines such as IL-21 and membrane
surface molecules such as BCR, CD40 and TLRs induces B
cells to differentiate into active forms that secrete cytotoxic
serine protease (103). The immunoregulatory function of
activated GrB+ B cells has been demonstrated in many human
autoimmune diseases, suggesting that the impairment of this
Breg cells subset is related to the pathogenesis of diseases (76).
In RA, GrB-producing Breg cells are significantly decreased, and
their proportion is negatively correlated with disease activity
and clinical features. Moreover, the optimual level of these
cells can be restored after effective therapy (104). Specifically,
GrB+ B cells negatively modulate Th1 and Th17 cells, induce
T cell apoptosis and strongly suppress T cell proliferation by
downregulating the T cell receptor (TCR) zeta chain (77). Similar
findings have been reported in tumor research. Other studies
found that GrB+ B cells infiltrate tumor microenvironment and
tumor-draining lymph nodes where they may participate in the
suppression of antitumor immune responses (78). In transplant-
related diseases such as in renal transplantation, the affected
patients showed a diminished level of GrB+ B cells compared to
healthy controls (105). In general, GrB+ B cells may participate
in early cell-mediated immune responses during inflammatory
and neoplastic processes. Therefore, a better understanding of
the role of GrB-secreting B cells in the immune system may
help develop and improve new immunotherapy methods for
infectious, autoimmune and malignant diseases.

Other Breg Subsets
Type 1 regulatory B (Br1) cells are characterized by
CD25hiCD71hiCD73low. They maintain peripheral blood
tolerance by producing IgG4 antibodies (106). After receiving
allergen-specific immunotherpay, the proportion of BR1 cells
increases, secreting high levels of IL-10 (107). In autoimmune
diseases, the function of Br1 is impaired while the inhibition of
Th2 response islimited, implying that Br1 plays an important
role in tolerance induction (79). Many Breg subtypes such as
PD-L1hi B cells are similar in both humans and mice. B cells can
modulate T cell immune responses through the expression of
regulatory molecules such as PD-L1. In autoimmune diseases,

CpG induces expression of PD-L1 on human B cells, which
suppresses pro-inflammatory cytokines produced from antigen-
stimulated CD4+ T cells (80). PD-L1hi B cells exhibiting T cell
suppressive capacity are significantly decreased in untreated RA
patients but normalize upon successful treatment (69). Besides,
Tumor-infiltrating B cells that express high levels of PD-L1,
IL-10 and TGF-β repress the proliferation and activation of
CD8+ T cells (81).

BREG CELL EFFECTOR FUNCTIONS

Breg cells identified in both mice and human have been
shown to downregulate inflammation associated with numerous
pathological processes and the ability of each Breg cell subtype
to negatively regulate immune responses as previously described.
Generally, the functional mechanism of Breg cells is split into two
parts; the immunomodulatory function by mediators produced
by B cells and the immune effects mediated by surface molecules
on B cells (see Figure 3).

The Immunomodulatory Function of

Mediator Produced by B Cells
As the hallmark of Breg cells, IL-10 cytokine is commonly
used as a marker for identification of Breg cells. As an
anti-inflammatory cytokine, IL-10 plays a pivotal role in
controlling excessive inflammation and downregulating the
immune response. Plasmacytoid dendritic cells interact with Breg
cells, where they drive the differentiation of immature B cells into
IL-10-producing Breg cells. Here, plasmacytoid dendritic cells
releases IFN-α that interacts with CD40 on B cells. Conversely,
Breg cells inhibits the production of IFN-α from plasmacytoid
dendritic cells by secreting IL-10. This cross-interaction is
however compromised in autoimmune diseases (31). There is a
regulatory feedback loop between macrophages or microglia and
Breg cells. In viral infection, B10 cells are able to inhibit microglia
secreted cytokines, in addition to modulating microglial cell
responses within the infected lesion (61). Moreover, B cells
can dampen the activation and influence the migration of
macrophages by secreting IL-10 (108). Mutually, M2 polarized
microglia can enhance the proportion of Breg cells to protects
against hyperactive autoimmunity (109). As for the T cells, IL-
10 inhibits secretion of cytokines by Th1, thus suppressing these
cells. On the other hand, IL-10 enhances polarization of Th2, thus
generating and maintaining the regulatory T cell pool (57).

In addition to producing IL-10, Breg cells produce other
immune-regulatory cytokines such as TGF-β and IL-35. TGF-
β is a pleiotropic cytokine involved in both suppressive and
inflammatory immune responses that has been shown to
suppress differentiation of Th1 by inhibiting the expression of
STAT4, but promotes the development of Treg cells (110). IL-
35 is the newest member of the IL-12 family. It is a potent
anti-inflammatory cytokine secreted by Treg cells (111). In
autoimmune diseases, IL-35 can induce production of IL-10 and
IL-35 by Breg cells, which inhibits pathogenic Th1/Th17 cells
(112). This prevents progression of the diseases and increases the
proportion of Treg cells (18). with regard to immunoregulatory

Frontiers in Immunology | www.frontiersin.org 10 August 2020 | Volume 11 | Article 188415

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ran et al. Regulatory B Cells and Neuroinflammation

FIGURE 3 | Function of Breg cells. The mechanism of Breg cell inhibitory effect mainly includes the secretion of inhibitory mediators and the inhibitory effect of

intercellular contact. IL-10, as the main secreted inhibitory cytokine of regulatory B cells, has a variety of effects such as inhibiting the release of pro-inflammatory

cytokines from immune cells, inhibiting the inflammatory differentiation of macrophage/microglia and promoting the conversion of T cells to regulatory T cells rather

than effector T cells. Similarly, TGF-β, IL-35, IgG, and IgM can also regulate the differentiation of T cells into regulatory T cells. Membrane-bound molecules at the

interface between regulatory B cells and T cells include CD80/86, CD40, MHC, FasL, PD-L1, and CD-1d, can regulate the differentiation of T cells into regulatory T

cells and activate natural killer T (NKT) cells with suppressive function.

property of IL-35, this cytokin, as well as its derivatives have been
shown to have a therapeutic potential against autoimmune and
infectious diseases (113). Besides this function, B cells are best
known for their ability to produce immunoglobulins, essential in
the induction of protective immunity against many pathogens.
IgM promotes the removal of apoptotic cells, phagocytosis by
macrophages and modulates activation of pro-inflammatory
signals through the FcγR (114). Moreover, in allograft rejection,
Peter I Lobo et al. found that high levels of IgM minimizes
the rejection rate of renal and cardiac allografts transplants in
recipient individuals. This tolerance is partially mediated by
inhibition of NF-kB translocation into the nucleus by blocking
TLR4. This inhibition in effect impairs differentiation of activated
T cells (115). Besides IgM, IgG can suppress overwhelming
immune response, important in maintaining tolerance (116).
In particular, IgG4, described as “anti-inflammatory IgG”
has the ability to shorten compliment processes and reduce
proinflammatory responses in natural immune cells (117).

The Immune Effects Mediated by Surface

Molecules of B Cells
Immunity by cell dependent mechanism can mediate the
inhibitory function of Breg cells, aided by several cell surface
molecules on Breg cells. These molecules on the surface of Breg

cells can induce the inhibition of immune cell function, promote
differentiation of regulatory T cell and apoptosis of target cells.

CD40-activated B cells produce Foxp3+ Treg cells more
efficiently compared with other antigen presenting cells. The
longer contact time enables IL-10+ B cells to up-regulate
expression of Foxp3 on CD4+ T cells, thus converts effector T
cells into Treg cells. Breg cells can inhibit the proliferation of
effector T cells via the CD40/CD40L interaction, suppressing
autoimmune inflammation (118). Moreover, patients with
the bare lymphocyte syndrome who do not express major
histocompatibility complex class II (MHC II) molecules have
impaired programmed cell death of autoreactive mature naive B
cells, suggesting that tolerance to peripheral B cell is dependent
on MHC II- TCR interaction (119). CD80 and CD86 molecules
in the B7 family are expressed on antigen presenting cells and
are important in establishing immune synapses and activating
adaptive immune responses. Blocking antibodies against CD80
or CD86 partially reduces the regulatory effect of transitional
B cells with regard to cytokine production, which implies that
production of cytokines by B cells depends on interaction
between B and T cells during antigen presentation (120). PD-L1
is another member of the B7 family with the ability to inhibit
activation of T cell by binding to PD-1. PD-L1hi Breg cells
negatively regulate differentiation of T cells. Adoptive transfer
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of PD-L1hi B cells can inhibit EAE, demonstrating that B cells
can activate Treg cells through PD-L1, thus suppressing immune
responses (121). In addition, Breg cells can trigger pathogenic
Th1 cells to undergo apoptosis through Fas–FasL interaction
and effectively downregulate pathogenic immunity of these cells
(122). CD1d expressed on MZB cells are recognized by TCR on
NKT cells, thus can exert their regulatory functions by activating
NKT cells (123). However, in autoimmune diseases, studies have
found that the expression of CD1d on B cells in individuals with
SLE patients is defective. This effect impairs the presentation and
recognition of glycolipids presented by CD1d via the TCRs on
NKT. Consequently, this inhibits the proliferation and activation
of iNKT cells. In addition, some studies have found that the
proportion of iNKT cells and the expression of CD1d in B cells
in individuals with SLE who positively responded to rituximab
treatment were significantly increased compared with patients
who did not respond to the drug.

BREGS AND CENTRAL NERVOUS SYSTEM

INFLAMMATORY DEMYELINATING

DISEASES

Breg Cells and Multiple Sclerosis
MS is an autoimmune disease which affects ∼2.5 million people
worldwide. It is characterized by chronic inflammation of CNS
and aberrant infiltration of inflammatory cells that eventually
leads to demyelination and axonal damage. This disease is
heterogeneous and complex, and thought to be caused by
interactions of genetic and environmental factors (124). The
disease was originally thought to be T cell-mediated, because
activated T cells were abundantly present in MS lesions. In
addition, EAE could also be induced by transfer of myelin-
reactive T cells. However, accumulating evidence on abnormal
increase of immunoglobulin levels in the cerebrospinal fluid of
affected patients, Antibody-deposition in brain lesions and the
successful alleviation of the disease by B cell-depleting therapies
shifted the focus to B cells as key players in immune-pathogenesis
of MS. Breg cells also play a key role in demyelinating diseases
of the nervous system. For instance, the occurrence of a
radiologically isolated syndrome (RIS) or a CIS usually precedes
MS. Further to this, individuals with RIS or CIS are more prone
to develop MS within 6 months if they are deficient of IL-10-
producing B cells. This suggests that Breg cells have an inhibitory
effect on the progression of MS (125, 126).

The B-cell-deficient mice failed to spontaneously recover from
EAE. Interestingly, this was the first study to demonstrate that
B cells modulate inflammation of the immune system (5). In
addition, studies have shown that Breg cells are detected in
CNS of EAE in a VLA-4 dependent manner, suggesting that
Breg cells may contribute to regulation of CNS autoimmunity in
situ (127). Recently, Simon Fillatreau et al. found that hypoxia-
inducible factor-1α (HIF-1α) is a critical transcription factor for
the production of IL-10 by B cells, and that HIF-1α-dependent
glycolysis facilitates increase in the proportion of CD1dhiCD5+

B cells. Mice with B cells lacking Hif1α have few IL-10-producing
B cells, which exacerbates EAE (128).

When exploring the influence of external signals on the
development and differentiation of immature B cells in the
bone marrow, Simon Fillatreau et al. found that the bone
marrow cells transiently stimulated by Toll-like receptor 9 can
generate a new Breg cell subset CpG-proBs. CpG-proBs can
slow down the development of EAE when transferred at the
onset of clinical symptoms. Mechanistically, CpG-proBs can
differentiate into mature Breg cells, trap T cells by releasing the
CCR7 ligand and CCL19 and limit the immunopathogenesis
of EAE through IL-10 production (129). Moreover, perforin-
expressing regulatory B-cells (BRegs) are a new subset of
Breg cells identified in patients with CIS and MS. BRegs
exert their regulatory property on the disease by inhibiting
proliferation of CD4+ T cells through the perforin/granzyme
pathway (130). The proportion of BRegs in RRMS increased
during relapse, suggesting that these new cells are associated
with disease progression (131). Generally, the study on Breg
cell subtypes and the mechanism with which they exert cell
suppression have opened up interesting prospects on cell therapy
during MS. Moreover, because some drugs used to treat MS
patients were incidentally found to increase the production
of IL-10 in human B cells, it provides promising prospect
of regulating B cells for clinical treatment. As the first-line
therapy against RRMS, IFN-β stimulates transformation of B
lymphocytes into a subpopulation of regulatory transitional
cells. Compared with untreated patients, the number of IL-10
producing transitional B lymphocytes in peripheral blood was
significantly higher in IFN-β treated patients, demonstrating
the role of IL-10-producing B cell populations in the disease
therapy (132). Fingolimod is an immunosuppressant drug
that modulates the sphingosine 1-phosphate receptor. It is
the first oral, active disease-modifying drug approved for the
treatment of MS. The proportion of IL-10 producing Breg
cells is up-regulated while the migration capacity of the cells
is enhanced after Fingolimod treatment (133). Alemtuzumab
is another drug that inhibits monoclonal antibodies against
CD52. It can restore the normal proportion of Breg cell subsets
(CD19+CD24hiCD38hi cells and CD19+PD-L1hi cells) in the
peripheral blood of patients with relapsing MS patients. This
suggests that CD19+CD24hiCD38hi and CD19+PD-L1hi are
promising candidate biomarkers for the efficacy of alemtuzumab
therapy (134). Recently, siponimod, a selective sphingosine
1-phosphate receptor-1 and 5 modulator, was approved for
active secondary progressive MS (SPMS). In one multi-centered
randomized, double-blind, placebo-controlled clinical trial on
SPMS patients, treatment with siponimod increased the number
of transitional B cells and B1 cell subsets. In addition, the balance
between Breg cells and memory B cells shifted in favor of Breg
cells. Interestingly, it was a shift toward an anti-inflammatory
and suppressive homeostatic immune state (135). However, in
a phase 2 trial of atacicept (a recombinant fusion protein that
suppresses B-cell function and proliferation), annualized relapse
rates were higher in groups that received atacicept, compared to
controls. One possible reason is that perhaps atacicept disrupt the
B cell regulatory pathways but in turn stimulate T cell responses,
a shift that sets in a proinflammatory environment and eventually
relapses (136).
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In conclusion, studies on the pathogenesis of MS have found
that Breg cells regulates Th1/Th2 balance, induces apoptosis
of effector T cells, neutralizes toxic substances, activates CD4+

T cells or natural killer cells (NK), inhibit the activation of
dendritic cells and clear apoptotic bodies among many other
functions. Further research on the Breg cell subtypes and
underlying mechanism of Breg cells in MS can elucidate on the
complex immune response in MS. This could provide a more
comprehensive and systematic insight into its pathogenesis of
the disease, and provide a basis for further exploration of new
immunotherapy targets.

Breg Cells and Neuromyelitis Optica

Spectrum Disorders
Neuromyletis optica sectrum disorder (NMOSD) is a rare
autoimmune disease of the CNS that primarily attacks the optic
neuritis and longitudinally extended transverse myelitis (137).
Epidemiologically, the disease has a globally distribution, and
is more common among young and middle-aged women and
results in high disability rate. A major advancement that helped
to distinguish NMOSD from MS was the discovery that 75%
of patients with NMOSD have detectable serum IgG auto-
antibodies against the aquaporin-4 water channel (AQP4), an
intergral water channel protein in astrocytes (138). After this
discovery together with the pathogenic characteristics of the two
diseases, it is believed that humoral mediated demyelination
of astrocytes in the CNS is the major mechanism underlying
the pathologenesis of the disease. The main features of the
disease pathology can be reproduced using patient-derived
monoclonal antibodies, thus reinforcing on the contribution
of autoantibodies to the CNS injury associated with the
disease (139). Moreover, studies on autoimmune diseases have
found that impaired B cell tolerance potentially contributes to
pathogenesis of the disease (140). In addition, accumulating
evidence show that B cells play a vital role in NMOSD. This
has been validated by B cell-targeted therapies such as rituximab,
which have shown encouraging results for NMOSD (141).

The role of Breg cells in the pathogenesis of NMOSD has
been extensively investigated. Some studies found that the
proportion of Breg cells and expression of IL-10 are significantly
lower in patients with NMOSD compared to those with MS,
suggesting that the degree of impairment to B cell regulatory
function can be considered as a distinctive marker between
NMOSD and MS (142). CD19+CD24hiCD38hi Breg cells are
less frequent in NMOSD patients positive for AQP4 antibodies
than those without these antibodies. This phenomenon is
also observed in CD19+CD5+CD1dhi Breg cells. In addition,
NMOSD patients at acute relapse phase have lower IL-10
levels and significant impairment of CD19+CD24hiCD38hi Breg
cells function (143). The advent of monoclonal antibodies has
also provided a new direction in the treatment of NMOSD.
For example, rituximab is an anti-CD20 chimeric monoclonal
antibody shown to be well-tolerated, safe and efficient, with only
minor risk of mild infusion reactions among NMOSD patients
(141). After rituximab treatment, the functional balance between
Breg cells and memory B cells inclines toward Breg cells as

opposed to pro-inflammatory cytokines producing memory B
cells (17). Tocilizumab on its part is a monoclonal antibody
against IL-6 receptor shown to reduce relapse rate, neuropathic
pain and fatigue in patients with NMOSD (144). Patients with
autoimmune diseases treated with ocilizumab show an increased
expression of TGF-β and CD25molecule on the surface of B cells,
reflective of activation of Breg cells (145). In summary, decrease
in the proportion of Breg cells plays a role in the pathogenesis
of neuroautoimmune diseases, and the number and function of
Bregs can be restored after effective treatment.

Breg Cells and MOG-Ab Associated

Demyelinating Disease
Myelin oligodendrocyte glycoprotein (MOG) is a glycoprotein
located in the outer membrane of myelin, and is solely
found within CNS, including in the brain, optic nerves and
spinal cord. This implies that patients with encephalomyelitis
attributed to MOG antibodies may develop bilateral optic
nerve and lumbar spinal cord injury (146). Compared with
NMOSD patients, patients with MOG antibody associated
encephalomyelitis usually have a single course of the disease and
show better recovery of neurological deficits after the attack.
Based on clinical, immunological and histopathological evidence,
encephalomyelitis associated with MOG antibodies has been
regarded as a distinct disease entity different from MS and
NMOSD (147).

In MOG antibody associated demyelinating disease,
studies have demonstrated that the Breg cells such as
CD19+CD24hiCD38hi and CD19+CD5+CD1dhi B cells are
numerically low and functionally impaired (148). Moreover,
research found that IL-6 secreted by the dendritic cells promotes
the differentiation of naïve CD4T cells into TFH cells, whereas
IL-21 secreted by TFH cells induce differentiation of B cells into
memory B cells and plasma cells. The latter process results in
the production of antibodies and disproportion of the memory
B cells/Breg cells ratio. Imbalance between the memory B cells
and Breg cells promotes pro-inflammatory cytokine responses
that ultimately contributes to active demyelination (148). As
the first-line therapy against NMOSD, methotrexate has also
been found to extend the remission period as well as reduce
the recurrence rate of the disease. It also results in minor side
effects. Elsewhere, methotrexate has been shown to stimulate
specific immune tolerance to auto-antigens mainly by enhancing
secretion of B lymphocytes that produce effector IL-10 and TGF-
β (149). Studies on the role of Breg cells in the pathogenesis of
MOG antibody associated demyelinating diseases remain scanty,
which creates the need to explore more potential therapeutic
uses of Breg cells.

DISCUSSION AND PERSPECTIVE

Regulatory B cells are important modulators of the immune
response and further promotes immune tolerance. From the
early immature stage to the late plasma cell stage, Breg
subpopulations have been found to evolve from different stages
of B cell development. Due to the different microenvironment,
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Breg cells have different phenotypes, but they all display
immunomodulatory functions. Activation of Breg cells via BCR,
TLR, or CD40 and cytokines has been shown to activate and
expand the function of these cells, but mechanisms that can
stabilize and maintain Breg cells remain elusive, thus there
is need for further research on the plasticity and functional
stability of Breg cells. In addition, numerous studies suggest
that the number and function of Breg cells are involved in
the pathogenesis of many diseases. Interestingly, the number
and function of Breg cells among diseases and in different
states are not exactly the same, which also suggests that the
role of Breg cells in many disease pathologies is complicated.
Therefore, it is necessary to expand our understanding on
the mechanisms underlying activation, proliferation and precise
functional mechanism of Breg cells in healthy individuals, as
well as individuals with various immune, inflammatory or tumor
diseases. Nonetheless, the important role of Breg cells in the
pathogenesis of CNS IDDs has been revealed, and with the
growing research on the function and contribution of Breg cells
in the pathogenesis of autoimmune diseases, the therapeutic
potential of Breg cells is gradually gaining acceptance. Although
the therapy encompassing depletion of B-cells in treating
autoimmune diseases achieved some success, this approach may
exhausts Breg cells involved in the suppression of inflammation.
Consequently, it would be advantageous to selectively increase
Breg cells depending on the condition of the disease. In his study,

Simon Fillatreau et al. suggested that reprogrammed quiescent
of B cells is a novel tool for suppressing undesirable immune
responses. This presents a noble research prospect for Breg
cells (150). Substantially, treatment with Breg cells has certain
theoretical feasibility and prospective clinical application, but its
ultimate goal in the practice remains elusive.
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Introduction: Anti-leucine-rich glioma-inactivated 1 antibody (anti-LGI1) encephalitis is

one of the most common autoimmune encephalitis. Anti-LGI1 encephalitis presented

with subacute or acute onset of cognitive impairment, psychiatric disturbances,

faciobrachial dystonic seizures (FBDSs), convulsions, and hyponatremia. The common

sequela of anti-LGI1 encephalitis is cognitive disorder, but there are few studies on

the recovery of cognitive function after immunotherapy. This study aimed to explore

clinical characteristics of cognitive impairment and 1-year outcome in patients with

anti-LGI1 encephalitis.

Methods: The clinical data and characteristics of cognitive impairment of 21

patients with anti-LGI1 encephalitis from 2016 to 2019 in Nanjing Brain Hospital

were analyzed retrospectively. At the time of onset of hospitalization and 1 year after

discharge, the cognitive functions in these patients were assessed using two cognitive

screening scales—Mini-Mental State Examination (MMSE) and Montreal Cognitive

Assessment-Basic (MoCA-B).

Results: Among the 21 patients, 13 were male and 8 were female, aged 51.10 ±

14.69 (age range 20–72) years. Nineteen patients, comprising 90.48%, had recent

memory deterioration. Routine electroencephalography (EEG) results of 13 cases were

abnormal. EEG results were epileptic or slow-wave activity involving the temporal lobes.

Eleven cases of brain MRI were abnormal, and the focus involved the hippocampus

and mediotemporal lobe. The decrease of short-term memory [recall scores: 0.57 ±

0.81 (MMSE), 0.76 ± 1.34 (MoCA-B)] is the most obvious at the time of admission.

After intravenous (IV) injection of methylprednisolone and/or immunoglobulin, the clinical

symptoms of the patients improved obviously. Total MMSE and MoCA-B scores of

patients were significant increased after 1 year (21.19 ± 3.54 vs. 26.10 ± 3.02, P <

0.001; and 19.00 ± 4.38 vs. 25.19 ± 4.25, P < 0.001, respectively). Recall scores and

orientation scores of MoCA-B were significantly improved after 1 year (0.76 ± 1.34 vs.

3.24 ± 1.48, P < 0.001; and 3.10 ± 1.26 vs. 5.00 ± 1.22, P < 0.001, respectively).

However, 3/21 (14.29%) patients still have obvious short-termmemory impairment (recall

scores ≤ 1).
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Conclusion: Cognitive impairment is one of the most common manifestations of

anti-LGI1 encephalitis, with the main prominent being acute or subacute short-term

memory loss. Although most patients with anti-LGI1 encephalitis respond well to

immunotherapy, a small number of patients still have cognitive disorders, mainly recent

memory impairment, after 1 year.

Keywords: anti-LGI1 encephalitis, short-term memory impairment, cognitive outcomes, mini-mental state

examination, montreal cognitive assessment-basic

INTRODUCTION

Autoimmune encephalitis (AE) is a rare and newly discovered
inflammation disease (1–6) of the nervous system, which is
related to specific autoantibodies (Abs). Among them, anti-
LGI1 encephalitis (2) is a treatable etiology of AE. LGI1-
Abs were found in 2010 (3), which may be the second
most common cause of AE following anti-N-methyl-D-aspartate
receptor (NMDAR) encephalitis and the most common cause
of limbic encephalitis (LE) (4–6). The common manifestations
of anti-LGI1 encephalitis are cognitive impairment or rapidly
progressive dementia (7), psychiatric disturbances, convulsions
(2, 8), faciobrachial dystonic seizures (FBDSs), and refractory
hyponatremia (7). Anti-LGI1 encephalitis typically evolves and
predominately affects middle-aged and elderly males over 50
years old (8, 9). Anti-LGI1 encephalitis has a good response to
hormone and other immune system-based therapy (8, 9).

Cognitive impairment could be seen in most patients with
anti-LGI1 encephalitis, and it is often (10), predominately,
memory deterioration. It is reported (9–11) that about 25% of
patients have complete recovery of cognitive function, whereas
in others, mild disability may be a persistent sequela of the
disease. There are more and more reports of patients with
anti-LGI1 encephalitis (7–11); however, the characteristics of
cognitive impairment in patients among the Chinese population
with anti-LGI1 encephalitis have not been described.

The Mini-Mental State Examination (MMSE) is the gold
standard of cognitive assessment for adults and the elderly. The
MMSE has been proven to be effective and reliable in clinical
and research settings, including adult, geriatric, hospital, and
residential environments. The MMSE is the most extensively
and widely validated tool (12) for cognitive assessment. The
MoCA is a cognitive screening tool similar to MMSE, which
pays more attention to and executive function of the frontal
lobe. Montreal Cognitive Examination-Basic (MoCA-B) (13)
is an improved version of MoCA, especially for the elderly
subjects. MMSE and MoCA-B tests enable health-care providers
to quickly assess patients’ cognitive health and accurately make
more informed medical decisions. MMSE and MoCA are two
commonly used tools to measure cognitive impairment. A few
studies have reported (9, 10) their application in AE cognitive
assessment. In this study, the MoCA-B was used to compare
the scores obtained by subjects to MMSE scores. The aim of
this study is to characterize the clinical presentation and 1-
year outcome, especially cognitive impairment in patients with
anti-LGI1 encephalitis.

METHODS AND MATERIALS

Patients and Laboratory Tests,
Electroencephalography, and Imaging
Examination
This was an observational study conducted from January 2016
to December 2019 on hospital inpatients at the Affiliated Brain
Hospital of Nanjing Medical University, China. We reviewed
21 patients who were diagnosed with anti-LGI1 encephalitis.
All patients underwent a series of laboratory tests, including
standard biochemistry, viral Abs (including herpes simplex
virus 1 and 2, and herpes zoster virus), syphilis, HIV, thyroid
function, rheumatic indicators, tumor biomarkers, and AE-
related Abs [NMDAR, LGI1, GABABR, contactin-associated
protein-like 2 (CASPR2), AMPA1R, and AMPA2R, and classical
paratuberculosis Abs, such as Hu, Ri,Yo, Ma2, amphiphysin,
CV2, ANNA-3, PCA-2, and Trand GAD], as well as other
laboratory tests. Autoimmune encephalitis-related Abs of these
patients also received a cerebrospinal fluid (CSF) test. The
blood and CSF AE-related Abs were tested with commercial
kits (Euroimmun, Germany) by indirect immunofluorescence
testing (IIFT) as we previously described (6). All the 21 patients
underwent chest CT, abdominal ultrasonography, brainmagnetic
resonance imaging (MRI), and routine electroencephalography
(EEG) examinations. Clinical data from 21 patients who
were diagnosed with anti-LGI1 encephalitis were collected
and analyzed.

Clinical Evaluations
The MMSE and MoCA-B are routinely administered in our
Department of Neurology. Both the MMSE and MoCA-B were
conducted on the same day by a trained clinical psychologist.
The MMSE andMoCA-B scores were used to assess the cognitive
function of each patient at the time of early onset (the MMSE
and MoCA-B collected within 1 week after admission) and at the
time of follow-up 1 year later (the MMSE and MoCA-B collected
15 days before discharge and 1 year after discharge).

The MMSE scale consists of 30 questions, and the highest
score is 30 points. Higher scores indicate better cognition. The
MMSE tests five cognitive domains: time and place orientation
(10 points), memory registration (3 points) and recall (3 points),
attention and calculation (5 points), and language and praxis
(9 points). MoCA-B measures nine cognitive domains including
executive (1 point), abstraction (3 points), recall (5 points),
verbal fluency (2 points), visuospatial (3 points), orientation (6
points), naming (4 points), calculation (3 points), and attention
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(3 points). The MoCA-B score is between 0 and 30, the higher
the score, the better the cognitive function. Subjects who scored
27 or more on MMSE and MoCA-B (14, 15) were considered
cognitively normal; those withMMSE score of 21–26 andMoCA-
B score of 18–26 suffer from mild cognitive impairment; those
with MMSE score of 10–20 and MoCA-B score of 10–17 suffer
from moderate cognitive impairment; and those with 9 points or
less suffer from severe cognitive impairment. All subjects were
assessed with the MMSE and the MoCA-B in addition to the
required radiological and laboratory examinations.

Treatment
During hospitalization, all patients accepted first-line immune
therapy [intravenous (IV) methylprednisolone], and 16 (76.19%)
were treated with combination of IV methylprednisolone and
immunoglobulins. The regimen was prednisolone at an initial
dose of 60mg daily, tapering (5 mg/half a month) within
half a year until total withdrawal. Fifteen of 19 anti-LGI1
encephalitis patients were treated with chronic immunotherapy
[mycophenolate mofetil (MMF)]. This study was approved
by the Ethics Committee of the Affiliated Brain Hospital of
Nanjing Medical University in accordance with the Declaration
of Helsinki. Written informed consent was obtained from
all patients.

Statistical Analysis
Data of MMSE and MoCA-B scores were represented as mean
± SD and were examined for the homogeneity of variance. The
paired samples t-test was used to compare the differences of
MMSE and MoCA-B scores at symptom onset and after 1-year
treatment. Correlations between serum and CSF anti-LGI1 Ab
titers, and MMSE and MoCA-B scores were evaluated using
a Pearson’s correlation coefficient. P < 0.05 was considered
statistically significant. All statistical analyses were performed
using SPSS version 16.0 software.

RESULTS

Demographic Data and Clinical Features
Among the 21 patients, 13 were male and 8 were female,
aged 51.10 ± 14.69 (age range 20–72) years (Table 1). These
patients had 11.76 ± 2.96 years of education. Interval from
symptom onset of the disease to this admission was 44.67
± 64.98 days and ranged from 5 for 270 days. Nineteen
patients, comprising 90.48%, had recent memory deterioration;
15 (71.43%) patients had dysphrenia; 13 (61.90%) patients had
hyponatremia; 15 (71.43%) patients had epileptic seizures; and
11 (52.38%) patients had FBDS. Routine EEG results of 13 cases
were abnormal. EEG results were epileptic or slow-wave activity
involving the temporal lobes. The brain MRI findings of 11 cases
were abnormal, and the lesions involved the hippocampus and
mediotemporal lobe. Two patients had tumor (one was thymoma
and the other was an adrenal space-occupying lesion). LGI1 Ab
was positive in the serum of 20 patients. LGI1 Ab was positive in
CSF of 18 patients. Both serum and CSF LGI1 Abs of 17 patients
were positive.

TABLE 1 | Demographic data and patient characteristics.

Demographic data and characteristic of the patients

Age at onset, mean ± SD (range) (years) 51.10 ± 14.69 (20–72)

Male, n (%) 13, 61.90%

Education (years) 11.76 ± 2.96

Time from onset to diagnosis (range) (days) 44.67 ± 64.98 (5–270)

Memory decline, n (%) 19 (90.48%)

Seizure, n (%) 15 (71.43%)

Dysphrenia, n (%) 15 (71.43%)

Hyponatremia, n (%) 13 (61.90%)

FBDS, n (%) 11 (52.38%)

Tumor, n (%) 2 (9.5%)

Abnormal EEG, n (%) 13 (61.90%)

Abnormal brain MRI, n (%) 11 (52.38%)

Positive antibodies to LGI1 (Serum), n (%) 20 (95.24%)

Positive antibodies to LGI1 (CSF), n (%) 18 (85.71%)

Double positive to LGI1 (serum + CSF), n (%) 17 (80.95%)

n, number of patients; FBDS, faciobrachial dystonic seizures; CSF, cerebrospinal fluid;

LGI1, leucine-rich glioma-inactivated 1; MRI, magnetic resonance imaging.

Brain MRI
The imaging manifestations of anti-LGI1 encephalitis patients
mainly were high T2 signal and fluid-attenuated inversion
recovery (FLAIR) in the bilateral temporal lobe. Some patients
had an abnormal signal in one or both sides of the hippocampus
region. In addition, the basal ganglia region and temporal
lobe are often involved. In this study, MRIs were abnormal
in 11 (52.38%) of the 21 cases. The most common lesions
involved the hippocampus and temporal lobe. Brain MRI in
most patients with anti-LGI1 encephalitis shows a hyperintense
signal in the unilateral or bilateral medial temporal lobes.
Brain MRI (Figure 1) showed an abnormal signal in the left
hippocampus region. Brain magnetic resonance spectroscopy
(MRS) showed moderately decreased N-acetyl aspartic acid
(NAA) andNAA/creatine (Cr) peak, and slightly elevated choline
compound (Cho) and Cho/Cr peak. Brain MRI (Figure 2)
showed the focus in the right temporal and insular lobes and
the thalamus. On T2WI and T2FLAIR sequences, the right
temporal and insular lobes and the right thalamus showed a
slightly higher abnormal signal; and on the diffusion-weighted
imaging (DWI) sequences, a slightly higher signal was seen. On
T2FLAIR sequence, there were abnormal hyperintensities in the
right hippocampus and no obvious abnormal signal in the left
hippocampus. Arterial spin labeling (ASL) showed significant
hyperperfusion in the right temporal and insular lobes and
the thalamus.

The Mini-Mental State Examination Scores
MMSE is the most commonly used cognitive function screening
tool. Figure 3A and Table 2 show the distribution of the MMSE
scores for the 21 cases at the time of hospitalization and 1 year
after discharge. Meanwhile, we counted the improvement of
scores mean± SD [95% confidence interval (CI)] (Table 2). Total
MMSE scores of patients were significantly increased after 1-year
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FIGURE 1 | Brain MRI (A) showed lesions in the left hippocampus. Brain

Magnetic resonance spectrum (MRS) showed a bit increased slightly elevated

Choline compound (Cho) and Cho/Cr peak, the moderately decreased the

N-acetyl aspartic acid (NAA) and NAA/Creatine (Cr) peak (B) in the

left hippocampus.

FIGURE 2 | Brain MRI (A) showed abnormal signal in right temporal and

insular lobe, thalamus. On T2WI (B) and T2Flair (C) sequences, the right

temporal and insular lobe, right thalamus showed slightly higher abnormal

signal, the local cortex was slightly swollen, and on the DWI sequences,

slightly higher signal was seen. On T2Flair sequence (C), there was high

abnormal signal in the right hippocampus and no obvious abnormal signal in

the left hippocampus. Arterial spin labeling (ASL) sequence (D) showed

significant hyperperfusion in the right temporal and insular lobe, thalamus.

follow-up (21.19 ± 3.54 vs. 26.10 ± 3.02, P < 0.001). After 1
year, the MMSE score of the patients improved by 4.90 ± 3.18
(3.46–6.35) compared with that of the patients at the time of
onset, and the difference was statistically significant (P < 0.001).
No moderate-to-severe cognitive impairment (MMSE ≤ 20) was
determined at 1 year (Figure 3A).

Because the decrease of short-term memory (recall scores:
0.57 ± 0.81) is the most obvious at the time of admission

(Figure 3A), we separately listed the distribution of patients
with different recall scores of MMSE (Figure 4A). The MMSE
recall items of 12 (57.14%) patients were scored 0 points at
the time of onset, whereas only two patients were scored 0
points after 1 year. Only one patient had a normal recall of 3
points during the onset, and nine patients had 3 points in this
item after 1 year. Orientation, registration, recall, and language
scores of MMSE were significantly improved after 1-year follow-
up (6.86 ± 1.82 vs. 9.14 ± 1.01, P < 0.001; 2.43 ± 0.51 vs.
2.71 ± 0.46, P = 0.03; 0.57 ± 0.81 vs. 2.14 ± 0.96, P <

0.001; and 7.00 ± 1.09 vs. 7.90 ± 1.09, P = 0.01, respectively).
One year after immunotherapy, the patients’ clinical symptoms
improved obviously; however, 4/21 (19.05%) patients still have
obvious short-term memory impairment (recall scores ≤ 1)
(Figure 4A).

The MoCA-B Scores
Figure 3B and Table 3 show the distribution of the MoCA-B
scores for the 21 cases at the time of hospitalization and 1 year
after discharge. Meanwhile, we counted the improvement of
scores mean ± SD (95% CI) (Table 3). Total MoCA-B scores of
patients were significant increased after 1-year follow-up (19.00
± 4.38 vs. 25.19 ± 4.25, P < 0.001). After 1 year, the MoCA-
B score of the patients improved by 6.19 ± 5.19 (3.83–8.55)
compared with that of the patients at the time of onset, and the
difference was statistically significant (P < 0.001). Moderate-to-
severe cognitive impairment (MoCA-B ≤ 20) was determined in
one of 21 patients at 1 year (Figure 3B).

Because the decrease of short-term memory (recall scores:
0.76 ± 1.34) is the most obvious at the time of admission, we
separately list the distribution of patients with different recall
scores of MMSE and MoCA-B (Figure 4). The MoCA-B recall
items (Figure 4B) of 14 (66.67%) patients at the time of onset
were scored 0 points, whereas those of only one patient after 1
year were scored 0 points. Only one patient had a normal recall
of 5 points during the onset, and five patients had 5 points in
this item after 1 year. Recall scores (0.76 ± 1.34) and orientation
scores (3.10 ± 1.26) of MoCA-B decreased significantly at the
symptom onset (Table 3). Recall scores and orientation scores
of MoCA-B were significantly improved after 1-year follow-up
(0.76 ± 1.34 vs. 3.24 ± 1.48, P < 0.001; and 3.10 ± 1.26 vs. 5.00
± 1.22, P < 0.001, respectively). One year after immunotherapy,
the patients’ clinical symptoms improved obviously; however,
3/21 (14.29%) patients still have short-term memory impairment
(recall scores ≤ 1) (Figure 4). There were three patients with
poor cognitive function recovery in the current study. The
three patients were diagnosed as anti-LGI1 encephalitis at 4,
5, and 9 months after onset and then immunotherapy. The
time from onset to diagnosis was significantly delayed compared
with that of most patients (average range: 44.67 ± 64.98 days)
(Table 1). One patient was diagnosed with anti-LGI1 encephalitis
9 months after the onset of the disease, and brain MRI
showed hippocampal atrophy. Because the effect of cognitive
decline was not obvious, the immunotherapy was not continued
after discharge.
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FIGURE 3 | Total scores of MMSE (A) and MoCA-B (B) of different patients. We separately list the different patient with total scores of MMSE and MoCA-B at the time

of hospitalization and 1 year after discharge. (A) Show the distribution of the MMSE scores for the 21 cases. (B) Show the distribution of the MoCA-B scores for the

21 cases. No moderate to severe cognitive impairment (MMSE ≤ 20) was determined at 1 year (A). MMSE, Mini-Mental State Examination; MoCA-B, Montreal

Cognitive Assessment-Basic.

TABLE 2 | Domains of MMSE test in patients with anti-LGI1 antibody encephalitis.

MMSE Onset time 1 year later Improved score (95% CI) P

Orientation (10 points) 6.86 ± 1.82 9.14 ± 1.01 2.57 ± 1.66 (1.46–3.11) <0.001※

Registration (3 points) 2.43 ± 0.51 2.71 ± 0.46 0.29 ± 0.56 (0.03–0.54) 0.03※

Attention and calculation (5 points) 4.33 ± 0.58 4.57 ± 0.51 0.14 ± 0.57 (−0.12–0.40) 0.09

Recall (3 points) 0.57 ± 0.81 2.14 ± 0.96 1.57 ± 0.81 (1.08–2.06) <0.001※

Language and praxis (9 points) 7.00 ± 1.09 7.90 ± 1.09 0.90 ± 1.04 (0.43–1.38) 0.01※

Total (30 points) 21.19 ± 3.54 26.10 ± 3.02 4.90 ± 3.18 (3.46–6.35) <0.001※

MMSE, Mini-Mental State Examination; LGI1, leucine-rich glioma-inactivated 1.
※Statistically significant value.

Anti-LGI1 Antibody Titers and Cognitive
Scores
No correlation was found betweenMMSE scores and serum anti-
LGI1 Ab titers (n = 20) during the onset (r = −0.139, P =

0.559) or after 1 year (r = 0.118, P = 0.621). No correlation
was found between MoCA-B scores and serum anti-LGI1 Ab
titers (n = 20) during the onset (r = 0.042, P = 0.860) or
after 1 year (r = −0.099, P = 0.677). There was no statistically
significant correlation between MMSE scores and CSF anti-LGI1
Ab titers (n = 18) during the onset (r = 0.095, P = 0.707) or
after 1 year (r = 0.159, P = 0.529). There was no statistically
significant correlation between MoCA-B scores and CSF anti-
LGI1 Ab titers (n = 18) during the onset (r = −0.419, P =

0.083) or after 1 year (r = −0.066, P = 0.796). There was no
significant correlation between the serum and CSF Ab titer and
the prognosis of cognitive impairment.

DISCUSSION

Autoimmune encephalitis accounts for 10–20% of cases of
encephalitis (1), with anti-NMDAR encephalitis being the most
common, accounting for about 80% of AE patients (6), followed

by anti-LGI1 encephalitis and anti-γ-aminobutyric acid type B
receptor (GABABR) Ab-related encephalitis. Anti-LGI1 Ab, anti-
GABABR, and anti-AMPAR Ab-associated encephalitis mainly
involve the limbic system and are called autoimmune LE (16).

LE is an AE involving the limbic system, including the medial
temporal lobe, amygdala, hippocampus, cingulate cortex, and
insular lobe. LE is considered to be a disease associated with

epilepsy, memory deterioration, and psychobehavioral disorders.
LE is associated with Abs to the voltage-gated potassium channel
complex (VGKC), and Abs mainly point to the VGKC-complex
proteins, CASPR2, or LGI1 protein (17). The Abs involved are

mostly LGI1, which is an anti-neuronal surface Ab, accounting
for 30% (18) of LE-related Abs. LGI1 is mainly a non-malignant
tumor (9–11) and thought to be responsive to immunotherapy.

The clinical manifestations of anti-LGI1 encephalitis
are various. Cognitive impairment is the most common
manifestation. Memory disorders, especially near memory
disorders, are the most prominent (9–11, 19). Some researchers
(19, 20) have confirmed that cognitive impairment was related to
the course of disease before immunotherapy. Among the cases
we studied, one case was diagnosed as anti-LGI1 encephalitis at
the time of 9 months after the onset of the disease, and the effect
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FIGURE 4 | Distribution of patients by short-term memory (recall) score. We separately list the distribution of patients with different recall scores of MMSE (A) and

MoCA-B (B). The MMSE recall items of 12 (57.14%) patients at the time of onset were scored 0 points, while only 2 patient after 1 year were scored 0 points. Only 1

patient had a normal recall of 3 points during the onset, and 9 patients got 3 points in this item after 1 year. MMSE, Mini-Mental State Examination; MoCA-B, Montreal

Cognitive Assessment-Basic; **P < 0.01.

of immunotherapy was poor. The MoCA and MMSE tests were
done in all the 21 patients, and the results found that 19 patients,
comprising 90.48%, suffered from memory deterioration. EEG
and MRI were consistent with involvement of the limbic system.
Figures 1, 2 show the abnormal MRI signals in the bilateral
or unilateral hippocampus. This indicated that the abnormal
signal changes in the hippocampus may be related to memory
impairment of the patients.

In 2010, Irani et al. (3) first discovered that LGI1 Ab was
involved in the pathogenesis of AE. Anti-LGI1 encephalitis is
more common (8) in middle-aged and elderly males (over 50
years of age). In the current study, 13 were male and 8 were
female, aged 51.10± 14.69 (age range 20–72) years. Most of them
have acute or subacute cognitive disorder. Anti-LGI1 encephalitis
is the main type of autoimmune LE, generally (7) associated with
rapidly progressing cognitive impairment. The main symptoms
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TABLE 3 | Domains of MoCA-B test in patients with anti-LGI1 antibody encephalitis.

MoCA-B Onset time 1 year later Improved score P

Executive (1 point) 0.76 ± 0.44 0.90 ± 0.30 0.14 ± 0.48 (−0.07–0.36) 0.17

Abstraction (3 points) 2.43 ± 0.60 2.71 ± 0.46 0.29 ± 0.72 (−0.04–0.61) 0.08

Recall (5 points) 0.76 ± 1.34 3.24 ± 1.48 2.48 ± 1.57 (1.76–3.19) <0.001※

Verbal fluency (2 points) 1.57 ± 0.60 1.86 ± 0.36 0.29 ± 0.72 (−0.04–0.61) 0.08

Visuospatial (3 points) 2.38 ± 0.59 2.62 ± 0.59 0.24 ± 0.62 (−0.05–0.52) 0.10

Orientation (6 points) 3.10 ± 1.26 5.00 ± 1.22 1.90 ± 1.48 (1.23–2.58) <0.001※

Naming (4 points) 3.38 ± 0.80 3.62 ± 0.74 0.24 ± 0.94 (−0.19–0.67) 0.26

Calculation (3 points) 2.29 ± 0.85 2.57 ± 0.68 0.29 ± 1.06 (−0.19–0.77) 0.23

Attention (3 points) 2.33 ± 0.66 2.67 ± 0.58 0.33 ± 0.80 (−0.03–0.70) 0.07

Total (30 points) 19.00 ± 4.38 25.19 ± 4.25 6.19 ± 5.19 (3.83–8.55) <0.001※

MoCA-B, Montreal Cognitive Assessment-Basic; LGI1, leucine-rich glioma-inactivated 1.
※Statistically significant value.

(8–11) were episodic memory impairment, temporal lobe
seizures, asymmetric FBDS, and mental behavior abnormalities.
As the most common type of VGKC-Ab encephalitis, cognitive
disorders are common in anti-LGI1 encephalitis. In our study, 19
patients, comprising 90.48%, had recent memory deterioration.

Although there is no clear standardized treatment,
immunotherapy, including first-line drugs (21)—IV
methylprednisolone, plasma exchange, IV immunoglobulin,
and other immune support—is strongly recommended.
All 21 patients accepted first-line immune therapy (IV
methylprednisolone), and 16 (76.19%) patients were treated with
combination of IV methylprednisolone and immunoglobulin.
The regimen was prednisolone at an initial dose of 60mg daily
after discharge, tapering (5 mg/half a month) within half a
year until total withdrawal. Fifteen of 19 anti-LGI1 encephalitis
patients were treated with chronic immunotherapyMMF 750mg
twice daily. After immunotherapy, the clinical symptoms of
all 21 patients were improved in varying degrees. One year
later, cognitive function had also been improved significantly
(Tables 2, 3). In the early stage, the patients are given the
treatments of IV; in particular, immunoglobulin combined with
hormone therapy is better than glucocorticoid alone (21, 22).
At present, most patients with anti-LGI1 encephalitis have a
relatively good prognosis after immunotherapy. FBDS can be
quickly relieved, and most symptoms can be improved; however,
cognitive status is slowly improved, and some patients (23) may
have permanent memory impairment. The better understanding
will be of great significance for early diagnosis, essentially
immunotherapy, and even better prognosis. Some studies
suggest (9–11, 23) that effective and long-term immunotherapy
should be given to prevent long-term complications, including
hippocampal atrophy (23) and sustained memory impairment
(13). Second-line drugs can be added to the therapy of patients
(23, 24) who did not respond well to the first-line drugs or had
a recurrence, including rituximab, MMF, or cyclophosphamide.
Once cognitive impairment is confirmed, patients should receive
immunotherapy (9–11) and long-term maintenance therapy to
relieve their symptoms (23, 24), improve prognosis, and avoid
intractable epilepsy and hippocampal atrophy. Anti-LGI1 Ab
encephalitis may recur or become chronic, as well as legacy
cognitive sequelae.

In our current study, the decrease of short-term memory
[recall scores: 0.57 ± 0.81 (MMSE), 0.76 ± 1.34 (MoCA-B)] is
the most obvious at the time of admission. After the combined
treatment of IV methylprednisolone and immunoglobulins, the
patients’ clinical symptoms improved obviously. Total MMSE
and MoCA-B scores of patients at symptom onset were
significant increased after 1 year (21.19 ± 3.54 vs. 26.10 ±

3.02, P < 0.001; and 19.00 ± 4.38 vs. 25.19 ± 4.25, P <

0.001, respectively). Recall scores of MMSE and MoCA-B were
significantly improved after 1-year follow-up (0.57 ± 0.81 vs.
2.14 ± 0.96, P < 0.001; and 0.76 ± 1.34 vs. 3.24 ± 1.48, P <

0.001, respectively). However, 3/21 (14.29%) patients still have
obvious short-term memory impairment (MoCA-B recall scores
≤ 1). The common sequela of anti-LGI1 encephalitis is cognitive
impairment, especially recent memory impairment. Therefore, it
is more necessary to add long-term immunotherapy including
MMF to the first-line immunotherapy.

Limitations and Conclusions
Cognitive impairment is one of themost commonmanifestations
of anti-LGI1 encephalitis, with the main prominent being acute
or subacute short-term loss. The MMSE and MoCA-B scales can
be used to evaluate cognitive function in patients with anti-LGI1
encephalitis. Although most patients of anti-LGI1 encephalitis
had a good cognitive outcome, a small number of patients
still have cognitive impairment, mainly short-term memory loss
after 1 year. Early and long-term effective immunotherapy of
anti-LGI1 encephalitis (10, 11, 20) can obtain better cognitive
functional prognosis, so early diagnosis and early treatment of
this disease are recommended.
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The presence of persistent intrathecal oligoclonal immunoglobulin G (IgG) bands (OCBs)

and lesional IgG deposition are seminal features of multiple sclerosis (MS) disease

pathology. Despite extensive investigations, the role of antibodies, the products of

mature CD19+ B cells, in disease development is still controversial and under significant

debate. Recent success of B cell depletion therapies has revealed that CD20+ B

cells contribute to MS pathogenesis via both antigen-presentation and T-cell-regulation.

However, the limited efficacy of CD20+ B cell depletion therapies for the treatment of

progressive MS indicates that additional mechanisms are involved. In this review, we

present findings suggesting a potential pathological role for increased intrathecal IgGs,

the relation of circulating antibodies to intrathecal IgGs, and the selective elevation of IgG1

and IgG3 subclasses in MS. We propose a working hypothesis that circulating B cells

and antibodies contribute significantly to intrathecal IgGs, thereby exerting primary and

pathogenic effects in MS development. Increased levels of IgG1 and IgG3 antibodies

induce potent antibody-mediated cytotoxicity to central nervous system (CNS) cells

and/or reduce the threshold required for antigen-driven antibody clustering leading

to optimal activation of immune responses. Direct proof of the pathogenic roles of

antibodies in MS may provide opportunities for novel blood biomarker identification as

well as strategies for the development of effective therapeutic interventions.

Keywords: multiple sclerosis, antibody, oligoclonal bands, immunoglobulin G, cytotoxicity, cerebrospinal fluid,

serum, B cells

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory disease that affects the central nervous system
(CNS), especially the brain, spinal cord, and optic nerves. About 1 million people in the US and
2.5 million worldwide live with a diagnosis of MS (1). After its first description in 1868 by Jean-
Martin Charcot, MS has been classified into different types such as clinically isolated syndrome
(CIS, a clinical syndrome highly suggestive of a first manifestation of MS), relapsing remitting
(RR), secondary progressive (SP), and primary progressive (PP) (2). Extensive pathological studies
have classified MS lesions as active, chronic active, inactive, and pre-active stages (3). Despite the
heterogeneous features of MS lesions, a consensus has emerged that the pathogenic mechanisms
of the disease are contributed by CNS inflammation and infiltration of peripheral immune cells,
resulting in neuronal and glial cell injury and subsequent loss of myelin sheath around nerves,
interruption of axonal communication, and neurologic deficits (4). However, the exact cause of MS
is unknown, and currently there is no cure for the disease.
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The presence of persistent CNS oligoclonal immunoglobulin
G (IgG) bands (OCBs) and lesional IgG deposition are hallmarks
of MS. OCBs consist of clonally restricted immunoglobulins
detected by isoelectric focusing (IEF) and are a key feature of
ongoing inflammatory events in CNS in a number of neuro-
inflammatory conditions and viral infections (5). Although the
pathological effects of OCBs have been implicated since their
discovery (6), the role of antibodies in the pathogenesis of
MS is controversial. In this review, we discuss pathological
and immunological studies regarding the role of antibodies in
MS. We propose a novel framework regarding the pathogenic
mechanism of disease, which could be mediated by increased
levels of serum IgG1 and IgG3 antibodies.

INCREASED INTRATHECAL SYNTHESIS

OF OCB IS THE MOST CHARACTERISTIC

FEATURE OF MS

Early biochemical studies ofMS autopsy brain plaques with active
lesions have demonstrated the presence of excessive amounts of
IgG antibodies in both free/soluble and tissue-bound/particulate
forms (7–9). The IgGs extracted from corresponding soluble and
particulate samples displayed OCBs (9). Extensive pathological
characterization of heterogeneous MS autopsy brain samples has
demonstrated the co-localization of IgG antibodies, complement,
and Fc gamma receptors (FcγR) in the active lesions, suggesting
a role for these antibodies in the early stages of the disease
(10, 11). Furthermore, complement activation is found in PPMS
cortical gray matter lesions (12), indicating that antibodies
may contribute to the worsening pathology that underlies the
irreversible progression of MS. These lines of evidence suggest
that the excessive presence of IgG antibodies in MS lesions
may induce complement-mediated and immune-cell-mediated
cytotoxicity, resulting in lesion formation.

The single most consistent laboratory abnormality in MS
is the presence of OCBs in the cerebrospinal fluid (CSF) of
up to 95% of patients (13, 14). Once present, the pattern of
OCB is characteristic for each individual and does not change
within patients over years, despite therapeutic interventions
(5, 13, 15, 16). Besides OCBs, the intrathecal IgG can also be
visualized with Reiber diagram, which uses CSF/serum quotient
diagrams with hyperbolic discrimination lines for IgG (17).
Plasma cells are found in the chronically inflamed MS CNS
(18). Long-lived plasma cells were demonstrated in chronically
inflamed CNS and chemokine CXCL12 is involved in plasma
cell persistence (19). For detailed review regarding the complex
nature of resident plasma cells and mechanism driving the
persistence in CNS, please see the review by Pryce and Baker
(5). Using a phage-displayed random peptide library approach,
we demonstrated that CSF IgGs obtained longitudinally fromMS
patients recognized identical epitopes over time, supporting the
notion of a temporal stability of CSF IgG specificity (20).

Accumulating evidence supports the pathological role of
CSF immunoglobulins. CSF OCBs were found to be associated
with increased levels of disease activity and disability, with the
conversion from a CIS to early RRMS, with greater brain atrophy,

and with increased levels of disease activity (21–28). Further,
CSF of MS patients induced inflammatory demyelination and
axonal damage inmice (29, 30).We demonstrated that a subset of
myelin-specific recombinant antibodies constructed from clonal
expanded plasma cells in MS CSF caused robust complement-
dependent cytotoxicity in oligodendrocytes and induced rapid
demyelination in mouse organotypic cerebellar slices (31, 32).
These studies support the pathogenic effects of CSF IgGs in
MS. Despite the significance of OCB in MS, no statistically
significant differences of both number of OCBs and IgG index
were found among subtypes of MS (CIS, RRMS, PPMS, and
SPMS) (33). New technologies such as recombinant antibodies
generated from clonally expanded single B cells/plasma cells and
directly from IgG sequences of OCBs provided promises for
determining the specificities of OCB, but have so far failed to
reveal a common targets ofMS (34–37) (https://www.jni-journal.
com/article/S0165-5728(20)30298-8/pdf).

Except for myelin, convincing CNS target antigens for OCBs
that are specific toMS are not known. Recently, it was shown that
some OCBs targeted ubiquitous self-proteins and intracellular
antigens (37–39), suggesting that CSF antibodies may develop as
a passive response to CNS injury, rather than mediating primary
pathogenic effects. Besides MS, CSF OCBs have been reported in
a number of neuro-inflammatory conditions and viral infections
(40). It has been argued that this intrathecal, poly-specific, and
oligoclonal immune response possibly indicates that it is not a
specific antigen that drives the development of OCBs in MS, but
rather a non-specific activation of CSF-localized B cells (41).

THE SOURCES OF INCREASED

INTRATHECAL IgG, A CONTROVERSY IN

MS

Correlation of Serum Antibodies With

Intrathecal IgGs
OCBs are thought to be produced by intrathecal parenchymal B
lymphocytes, as the CSF Ig proteome and transcriptome of CSF-
located B cells matched each other. In addition, intrathecal B
cells show signs of somatic hyper-mutation and clonal expansion,
pointing toward a germinal center-like reaction with antigen-
driven affinity maturation within the CNS (42, 43). However,
there is new evidence that terminally differentiated B cells in
MS CSF are not solely derived from intrathecal maturation,
but can emerge from the CNS compartment and interact with
the peripheral immune system (44–46). Recent deep-immune
repertoire studies revealed that MS CSF OCBs were not merely
produced by CNS B cells, and someOCB specificities were related
only to peripheral B cells, which indicate that disease-relevant
B cells circulate between the CNS and peripheral compartments
(47). We recently demonstrated that serum IgG in MS was
significantly elevated and there was a strong correlation between
CSF IgG and CSF albumin, and also between CSF IgG and serum
IgG (48). Since CSF albumin is exclusively derived from the blood
in MS, this correlation suggests that most of the CSF IgG is
derived from the blood. It has to be noted that about 50% of
MS sera did not show OCBs and patients with OCBs in sera
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had patterns either partially similar or completely different from
those seen in matching CSF (49). Because serum IgG is about 200
times more concentrated than CSF IgG (48), it is possible that
serum OCBs are masked by massive amounts of polyclonal IgGs.

Another line of evidence supporting serum and intrathecal
IgG exchange comes from the discrepancy between number of
CNS B cells and the quantities of intrathecal IgG. A careful
examination of MS plaques concluded that there were far too
few cells in the plaques to contribute to IgG (50). As calculated
by Tourtellotte’s formula, the normal values of the CNS IgG
synthesis rate were lower than 3.3 mg/day and the median value
in MS patients was 29 mg/day (51). It would take 3.2 billion
lymphocytes in MS to generate such large amounts of CNS IgG
(30mg in 500ml CSF) (52). We and others have demonstrated
that CSF leukocyte counts in most MS patients were <50 cells/µl
(about 2.5 million cells in 500ml CSF), of which 5% were B
cells (48, 53, 54). Therefore, CSF lymphocytes could only account
for <0.1% of the IgG in the MS CSF per day. The low number
of lymphocytes in MS CSF and the high level of intrathecal
IgG raise the question as to whether CNS B cells in MS can
be responsible for the massive amounts of elevated intrathecal
IgG. This apparent knowledge gap suggests that most of the
intrathecal IgG in MS may in fact be derived from the blood.

MRI Detection of the Central Vein Sign in

MS Lesions Supports a Peripheral Blood

Contribution to Disease Activity
Early histopathological studies detected a unique character of MS
lesions described as “centrifugally-spreading” that an MS plaque
did not spread or grow at its edges. Plaques began as collars of
demyelination around small veins and enlarged thereafter (50).
This perivenous distribution of MS plaques was confirmed by
ultra-high-field magnetic resonance imaging (MRI) (55–57). The
MRI-detectable central vein sign inside white matter lesions can
distinguish MS from other CNS inflammatory disorders and has
been proposed as a biomarker for inflammatory demyelination
(58). Further, the serum protein fibrinogen was found frequently
and extensively to be present diffusely in both extracellular
and intracellular spaces of MS motor cortex and in close
proximity to blood vessels, and was related to the extent of
neurodegeneration in progressive forms of MS (59). This line of
evidence supports the notion of peripheral blood contribution of
B cells and antibodies to intrathecal IgGs and their potential role
in disease development.

We propose that MS intrathecal IgGs are derived from B
cells in both the CNS and peripheral blood and may thus be
contributed by serum antibodies (Figure 1). Inside the CNS
compartments, clonally expanded antigen-experienced plasma
cells produce antibodies that may target cell surface antigens and
exert a pathogenic effect by activating complement-dependent or
immune-cell dependent cytotoxicity. A subpopulation of these
antibodies may direct against intracellular autoantigens released
during tissue destruction. On the other hand, serum B cells
and antibodies migrate across the blood barriers either by active
transportation or by barrier breakdown. Some of these serum
antibodies in MS are clearly pathogenic as reviewed below.

CIRCULATING ANTIBODIES CONTRIBUTE

TO MS DISEASE PATHOGENESIS

Pathogenic Effect of Serum Antibodies
The benefit shown in therapeutic plasma exchange and immune-
adsorption therapy in some MS patients (41, 60, 61) suggests
that serum antibodies in MS are pathogenic. Patients who had
lesions with prominent Ig deposition and complement activation
profited most from plasma exchange (60, 62). However, direct
proof of the pathogenic role of serum antibody in MS is
complicated by the marked heterogeneity of the disease and the
variability of experimental procedures.

Early in vitro demyelination studies have provided evidence
supporting a pathogenic role of serum antibodies (50) and
that there is strong correlation between disease activity and
demyelinative activity of MS serum. Lumsden (50) investigated
sera from 450MS patients and controls over 7 years with
1,300 tests. He found that over 80% of MS sera with natural
complement produced demyelination in live cultures of newborn
rat cerebellum. Further, he found patients’ immunoglobulins
and complement were fixed anti-mortem to CNS components,
indicating that circulating antibody in MS binds to myelin
and causes demyelination. Lumsden’s data indicate that serum
antibodies in their natural state are pathogenic when they
penetrate the CNS parenchyma. Using ex vivo assays, a number
of laboratories have reported that some MS patients have
serum factors that demyelinate myelinating explants (63–66).
Later, complement-dependent demyelinating IgG response was
detected with purified serum IgGs in ∼30% of 37MS patients
(67). However, the demyelinating effect of MS serum IgGs has
been controversial, which is due in part to variable tissue culture
and myelin imaging methods. Additionally, we postulate that the
different results may reflect the sources of antibodies used. The
antibody purification procedures may result in loss of the natural
state of antibodies and may fail to efficiently recover specific IgG
subclasses, resulting in a substantial reduction or a complete loss
of demyelinating effect. Lumsden’s work was carried out using
unpurified native serum antibodies (50).

The potential pathogenic role of serum antibodies may also
extend to enhancing inflammatory responses across the BBB in
MS. For example, significantly higher levels of anti-endothelial
cell antibodies and immune complexes were found in MS sera
(68), and serum antibodies from MS patients were detected in
micro-vessels in brain tissues and bound to endothelia cells (69,
70). Further, sera from RRMS and SPMS disrupt the BBB (71).
In summary, over 50 years of extensive scientific investigations
have provided accumulating evidence that serum antibodies in
their natural state exert primary antibody-dependent cytotoxicity
to glial cells, which leads to demyelinating effects that could
contribute to MS disease pathogenesis.

Insights From B Cell Depletion Therapies
B cell depletion therapies using monoclonal antibodies against
CD20; namely, Rituximab, Ocrelizumab, and Ofatumumab have
shown profound success in controlling MS relapses (41). CD20
is a four-transmembrane protein expressed on the surface of
B cells from the late pro-B cells through the memory cell
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FIGURE 1 | Model of the role of serum antibodies in MS disease pathogenesis. Circulating serum antibodies (IgG1 and IgG3, purple) and antibody-producing B cells

migrate across the impaired blood-barrier (arrow), and they are present in CSF OCBs and CNS lesion together with intrathecal IgGs (IgG1 and IgG3, turquoise). In the

brain, IgGs recognize antigens on the cell surfaces of neurons or/and glial cells and form immune complexes with complement factors and/or immune cells. Elevated

levels of IgG1 and IgG3 induce enhanced cytotoxicity or reduced threshold to trigger injury response to CNS cells, which, in turn, result in loss of myelin sheath

outside of axons. BCSFB, blood-CSF barrier.

stages, but not on antibody-producing plasma cells. Thus, the
efficacy of this B cell depletion therapy has been considered
to be mediated by B cell function independent of antibody
production, such as antigen-presentation for the activation of
T cells and pro-inflammatory cytokine secretion (72). Indeed,
serum antibody level and CSF OCB often persist despite CD20-
antibody depleting B cells (5, 73). In some instances, certain
serum antibodies were reduced in a proportion of patients after
intravenous Rituximab treatment (74). CSF plasma cell depletion
was observed following repeated intrathecal Rituximab injection
(75, 76). These reductions are thought to result from secondary
effects such as depletion of plasma cell precursors, depletion
of survival factors, or possibly destruction of B cell niches
rather than a direct influence on plasma cells. Interestingly,
Laquinimod, a T cell targeting oral disease-modifying therapy,
has been shown to modulate myelin antigen-specific B cell
immune response and inhibit development of MOG-specific IgG
antibodies (77). And treatment of Cladribine (another T cell

targeted drug) in MS is associated with depletion of memory B
cells (78).

However, reports of MS patients’ failure to respond to anti-
CD20 therapies, or even disease exacerbation thereafter, have
also been published. Anti-CD20 therapies have limited efficacy
in inhibiting disease progression (41). It is possible that these
therapies do not effectively target the antibody-producing B cells,
or do not significantly reduce the antibody levels in serum and
CSF. Another issue concerns the increased risk of infection that is
likely to accumulate with continuous B cell depletion with time.
In MS, only a fraction of B cells and antibodies are pathogenic,
while other subsets of B cells and antibodies exert essential
regulatory functions to limit chronic inflammation. For in-depth
reviews regarding B cell therapies and B cell biology between
subtypes of MS, please see review papers by Gelfand et al. (79),
Fraussen et al. (80), andMyhr et al. (81). It will be very important
to develop innovative strategies selectively abrogating pathogenic
B cells and antibodies. Thus, identifying the specific features of
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pathogenic antibodies in MS is crucial for the development of
successful therapeutic interventions.

ELEVATED LEVELS OF IgG1 AND IgG3

ANTIBODIES IN CSF AND SERUM, AN MS

SPECIFIC FEATURE

Selective Elevation of IgG1 and IgG3 in MS
The glycoprotein IgG can be separated into four subclasses: IgG1
(60–70% in plasma), IgG2 (20–30%), IgG3 (5–8%), and IgG4
(1–3%) (82). A selective elevation of the IgG1 in MS CSF was
observed (83, 84). The elevation of IgG1 and IgG3 indices in
MS were found more frequently than the elevation of the general
IgG index (21). Patients with a relapse were significantly more
frequently seropositive for anti-MOG and anti-MBP IgG3 than
those in remission (85). Further, the IgG3 allotype G3m was
MS-specific and present in active brain plaques (86). Subsequent
studies demonstrated that the susceptibility to MS was associated
with an IgG3 restriction fragment length polymorphism (87),
and a GWAS study showed that intrathecal IgG synthesis in
MS was significantly associated with the intronic region of the
IgG3 heavy chain gene SNPs (88). The significance of IgG3 in
MS was recently highlighted by a findings that higher serum
IgG3 levels may predict the development of MS from CIS (89)
and IgG3 + B cells are associated with the development of MS
(90). These data suggest that the presence of higher levels of
IgG1 and IgG3 antibodies may play a significant role in MS
disease activity.

Increased IgG1 and IgG3 Enhances

Effector Functions
IgG3 has an extended hinge region with highest flexibility
compared to other antibody subclasses. This subclass can
probe less exposed antigens. This feature could contribute
to the higher potential of IgG3, followed by IgG1, to
antibody oligomerization and activation of effector functions,
including enhanced antibody-mediated cellular cytotoxicity
(ADCC); opsonophagocytosis; complement activation; and
neutralization. Additionally, IgG3 has superior affinity to
FcγR and the first component of complement cascade,
C1q (78). Thus, increased IgG1 and IgG3 in MS serum

and CSF may enhance immune-mediated cytotoxicity
to CNS cells or may reduce the thresholds for antigen-
driven antibody clustering for optimal activation of
immune responses.

CONCLUSIONS

The role of antibodies in MS disease mechanisms has been
disputed over several decades due to the lack of direct
and reproducible proof of pathogenic effects. The limited
efficacy of CD20-B cell therapies in progressive MS patients
and in controlling disease progression implicates that CD20-
negative antibody-producing B cells, as well as antibodies,
play an important role in disease pathogenesis. The combined
accumulating data that there is a strong correlation between
serum and CSF IgG, insufficient B cells to produce large
quantities of intrathecal IgG, MRI detection of the central
vein sign in MS, and presence of pathogenic serum antibodies
provide evidence for the hypothesis that circulating antibodies
contribute to increased intrathecal IgG synthesis in MS. We
further propose that (1) serum antibodies exert primary and
pathogenic effects in MS development; (2) increased IgG1 and
IgG3 result in enhanced cytotoxicity to CNS cells and produce
antibody-mediated injury in MS pathogenesis (Figure 1). This
novel hypothesis may help to resolve the current controversy
regarding the roles of antibodies in MS and may draw attention
to the possibly pathogenic role of IgG3. It may also provide
novel opportunities for blood biomarker identification and the
development of effective therapeutic interventions for MS.
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Neuroinflammation can be defined as an inflammatory response within the central

nervous system (CNS) mediated by a complex crosstalk between CNS-resident and

infiltrating immune cells from the periphery. Triggers for neuroinflammation not only

include pathogens, trauma and toxic metabolites, but also autoimmune diseases

such as neuromyelitis optica spectrum disorders and multiple sclerosis (MS) where

the inflammatory response is recognized as a disease-escalating factor. B cells are

not considered as the first responders of neuroinflammation, yet they have recently

gained focus as a key component involved in the disease pathogenesis of several

neuroinflammatory disorders like MS. Traditionally, the prime focus of the role of

B cells in any disease, including neuroinflammatory diseases, was their ability to

produce antibodies. While that may indeed be an important contribution of B cells in

mediating disease pathogenesis, several lines of recent evidence indicate that B cells

are multifunctional players during an inflammatory response, including their ability to

present antigens and produce an array of cytokines. Moreover, interaction between

B cells and other cellular components of the immune system or nervous system can

either promote or dampen neuroinflammation depending on the disease. Given that the

interest in B cells in neuroinflammation is relatively new, the precise roles that they play

in the pathophysiology and progression of different neuroinflammatory disorders have

not yet been well-elucidated. Furthermore, the possibility that they might change their

function during the course of neuroinflammation adds another level of complexity and

the puzzle remains incomplete. Indeed, advancing our knowledge on the role of B cells in

neuroinflammation would also allow us to tackle these disorders better. Here, we review

the available literature to explore the relationship between autoimmune and infectious

neuroinflammation with a focus on the involvement of B cells in MS and viral infections

of the CNS.

Keywords: B cells, multiple sclerosis, neuroinflammation, central nervous system, viral infection, EBV

INTRODUCTION

Historically, the primary focus of B cells as enhancers of autoimmunity was their exclusive
ability to differentiate into plasma cells and produce autoantibodies. Over the last few decades
our understanding that B cells are merely responsible for the production of autoantibodies
has been challenged and antibody independent effector functions of B cells are now greatly
appreciated (1–8). Based on preclinical and clinical data, mounting evidences suggest that B
cells effectively collaborate with T cells to initiate and fine-tune T cell-dependent responses
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in the development of several autoimmune diseases (9–11). B
cells are also known to act as negative sensors of autoimmunity
that regulate immunological functions by suppressing T cell
proliferation, secreting anti-inflammatory cytokines (12, 13) and
controllingmonocyte activity (14–18). Consequently, B cells have
now emerged to take center stage as cells with effector as well as
immunoregulatory potential.

Indeed, a large volume of literature emphasizes on
the heterogenous roles of B cells in autoimmunity and
peripheral inflammation, yet our understanding of the extent
of B cell involvement in autoimmune neuroinflammation
remains incomplete.

Neuroinflammation can be defined as a coordinated and
complex interaction between CNS-resident cells and the
peripheral immune system and is characterized by a host
of cellular and molecular changes within the CNS (19, 20).
Neuroinflammation is a prominent feature in the etiology of
a number of neurological disorders and diseases including
multiple sclerosis (MS), and viral encephalitis (21) where
the inflammatory response is generally recognized as a
disease-escalating factor (22, 23). A common denominator for
neuroinflammatory disorders is the impairment of the integrity
of the endothelial, epithelial, and glial brain barriers that together
compartmentalize the CNS from the periphery (24–26).

Cells of the innate immune system are typically the focal point
for any discussion of neuroinflammation (19, 27), while B cells
are not considered as the first responders of an inflammatory
insult within the CNS. However, recent evidence suggests that
B cells, which are largely absent in the CNS parenchyma or
sparsely present in the cerebrospinal fluid (CSF) of healthy
individuals (27), rapidly accumulate in the CSF (28, 29) during
neuroinflammation and their numbers increase by several folds
in the CNS parenchyma or the perivascular spaces (30).

Taken together, it is only recently that the importance of B
cells as multifunctional players in neuroinflammatory disorders
is being acknowledged with several outstanding questions
requiring elucidation (31–33).

In this article, we discuss the literature available on how B cells
are involved in two different instances of neuroinflammation
by highlighting their beneficial and detrimental roles in
ameliorating or aggravating disease pathophysiology,
respectively. On the one hand, we focus on MS, which is a
classical example of autoimmune neuroinflammation and on
the other hand we extend our discussion by drawing parallels
between MS and virus-induced neuroinflammation with respect
to the involvement of B cells.

GENERAL INTRODUCTION TO B CELL
BIOLOGY

As B cells are in the focus of this review, this chapter will
briefly summarize the principles of B cell biology as well
as provide an overview of different B cell subsets and
their main functions. B cells belong to the population of
lymphocytes and they are part of the adaptive immune

system. They express clonally diverse antigen recognition
molecules known as immunoglobulins (Igs). Membrane-
bound Ig on the surface of B cells acts as a receptor, the
so-called B cell receptor (BCR), that recognizes specific
antigenic epitopes.

Very briefly, the development and differentiation of a B
cell begins in the bone marrow from a pro-B cell to an
immature naïve B cell (34, 35). At this stage of development,
B cells undergo various checkpoints including clonal deletion
and receptor editing, which prevents the development of auto-
reactive cells (36–38). B cells that successfully complete these
checkpoints leave the bone marrow as transitional B cells (39).
However, the checkpoints can be imperfect and B cells capable
of self-directed autoimmune responses are common and exist as
a part of the healthy immune repertoire (40, 41). An immature
naïve B cell migrates into a secondary lymphoid organ where
it then develops into a mature naïve B cell, expressing a BCR
with single antigenic specificity (42). A mature naïve B cell
can generally be divided into three further subsets: B-1 B cells,
marginal zone (MZ) B cells and follicular B cells, with the B-
1 B cells being further subdivided into B-1a (CD4+ helper T
cell-dependent) and B-1b (CD4+ helper T cell-independent)
B cells (43). B-1a cells provide protection against bacterial
infections while B-1b cells function independently of T helper
cells and provide adaptive immune response to polysaccharides,
for instance lipopolysaccharide, and other T cell-independent
antigens (44). When mature naïve B cells encounter their
cognate antigen in the secondary lymphoid tissue, they become
activated. While the primary signal for B cell activation is the
binding of antigen to its antigen-specific receptor expressed
by the B cell, secondary signals are also required. A B cell
response to the antigen is successful only by the synergy between
the engagement of their BCR and co-receptors like Toll-like
receptors (TLRs) and CD40, which control class switching and
affinity maturation in these activated B cells (45, 46). Following
activation, some of these B cells—in conjunction with CD4+ T
cell help—take part in germinal center (GC) reactions within the
lymphoid follicles.

Lymphoid follicles in secondary lymphoid tissue act as
a site of antigen-induced B cell proliferation and they have
a complex microenvironment, which consists of immune
cells, adhesion molecules and antigen-antibody complexes.
GCs are specialized areas within these lymphoid follicles
where B cells undergo somatic hypermutation leading to
affinity maturation to eventually develop into memory B cells
or antibody secreting plasma cells (47, 48). The adaptive
immune system can evoke an enhanced response to a
previously experienced pathogen. This response depends
on memory lymphocyte populations of which memory B
cells are a part. The improved responsiveness of memory
B cells is attributed to class switching and high affinity
BCR on their surface which they develop within the GC.
However, it is important to note that memory B cells are a
heterogenous population and can be further differentiated
into T cell-dependent/GC-dependent memory B cells or
GC-independent memory B cells (49).
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AUTOIMMUNE NEUROINFLAMMATION: A
FOCUS ON MULTIPLE SCLEROSIS (MS)

An Overview of the Disease
MS is a neuroinflammatory demyelinating disorder of the CNS
in genetically predisposed individuals (50). MS is considered
to be a heterogenous disease with different clinical courses
depending on the subtype (51). While ∼85–90% of MS patients
present with a relapsing-remitting form of MS (RRMS), most of
these patients develop secondary progressive disability (SPMS)
in the course of the disease. The rarer form of MS is primary
progressive MS (PPMS) which has an insidious disease onset and
is characterized by a steady increase in neurological disability
(52). The pathogenic role of inflammation in all the subtypes
of MS remains undisputed (53–55), and the inflammatory
reaction in MS is said to be a cumulative effect of a number
of factors including cells of the innate and adaptive immune
system, their mediators and effector molecules like cytokines and
antibodies (56–58).

Evidence of B Cells in MS
Despite historically being dubbed as a “T-cell mediated disease,”
emerging evidence suggests that B cells contribute to MS
pathogenesis in more than one way (59–62). The multifaceted
roles of B cells as “shapers” in MS disease progression include
antibody production, pro- and anti-inflammatory cytokine
secretion and antigen presentation (32, 63, 64).

One of the earliest indications that B cells contribute to
disease pathogenesis comes from the identification of persistent
oligoclonal bands (OCBs) in the CSF of > 90% of all patients
diagnosed with clinically definite MS (65, 66). In general, the
presence of OCBs suggests abnormal intrathecal production of
clonally expanded IgGs which is an indication of the pathogenic
role of B cells in neuroinflammatory and infectious diseases
of the CNS (67). In MS, a direct link between CSF-infiltrating
B cells as the source of Igs associated with these OCBs has
been established (68). Two studies have demonstrated that a
significantly increased accumulation of B cells in the CSF of
MS patients strongly correlates with intrathecal synthesis of IgG
(69, 70). Furthermore, these B cells have been characterized to
be of the IgM−IgD− class-switched memory and plasmablast
phenotypes. In line with the findings above, other studies have
separately identified that clonally expanded B cells in the CSF
of MS patients show evidence of somatic hypermutation and
affinity maturation (71, 72). Indeed, the presence of B cells is
not just restricted to the CSF but overlapping B cell populations
are common between the periphery and the different CNS
compartments (58, 73, 74) providing proof that clonally related
B cells participate in bidirectional exchange across the brain
barriers in the case of MS. In another study Ig gene repertoire
sequencing of CSF and peripheral blood B cells in treatment-
naïve MS patients has also revealed a clonal relationship between
the B cell populations in the two compartments (75).

The involvement of both B cells and autoantibodies in MS
also comes from neuropathological analysis of lesions from
patients. For instance, one of the most frequent patterns in MS
lesions is characterized by antibody deposition and complement

activation (76). Although the presence of complement supports
a pathogenic role of the antibodies in correlation with areas
of demyelination (76, 77), the antigenic targets for these
autoantibodies remain unclear. Moving from the detection of
antibodies to B cells in autopsied CNS tissue from MS patients,
immunohistochemical stainings have indicated the accumulation
of B cells and plasma cells in perivascular spaces of the brain
which are associated with active demyelination (78). A more
recent study has revealed a prominent presence of CD20+ B cells
in the lesions of patients with acute MS (79), indicating that B
cells may be important in the overall inflammatory process and
also in the early stages of the MS.

Furthermore, in the secondary progressive stages of MS,
lymphoid-like B cell follicles have been detected in the inflamed
meninges of up to 40% of patients (80–82). These ectopic
follicles containing a complex network of B- and T cells, plasma
cells as well as follicular dendritic cells (83) are preferentially
localized within the subarachnoid space, attached to the pial
membrane and their presence is often associated with a more
aggressive disease progression (60, 81). A connection between
the presence of these meningeal B cell follicular aggregates
and the sustenance of B cell maturation locally within the
CNS leading to a compartmentalized humoral immune response
has been made (61). In addition to these ectopic B cell
follicles in the leptomeninges of SPMS patients, meningeal
CD20+ B cell infiltrates have also been reported in patients
with PPMS which correlate with a higher degree of cortical
demyelination (84). However, as yet there is little knowledge
on the (immuno)phenotype of these B cells, their molecular
characteristics or the precise role they play within these follicular
structures or aggregates. Of importance are the difficulties faced
in studying these aggregates because of limited availability of
appropriate B cell follicle containing tissue, poor quality of tissue
and technical difficulties of detecting these follicles due to the easy
detachment of the meninges during autopsy (85).

A number of antigen experienced B cell clones have also been
detected within the CNS parenchyma in MS patients with a
chronic progressive or secondary progressive disease course (86).
Furthermore, a more recent study demonstrated the presence
of B cell follicles in the spinal meninges of SPMS patients that
were associated with demyelination and axonal loss (87). These
findings suggest that B cells are probably not just localized in the
extraparenchymal tissue of the brain but also populate different
areas of the CNS tissue, including the spinal cord.

Despite there being little doubt regarding the presence of B
cells in the different compartments of MS patients, the precise
site(s) or trigger(s) of B cell activation remain fairly speculative
(31, 63). One hypothesis for their activation could be that B cells
encounter their cognate antigen in the peripheral deep cervical
lymph nodes—which is the site of CSF-mediated drainage of
brain antigens—where they differentiate into memory B cells
or plasmablasts before migrating into the CNS (31). In the
inflamed CNS, these plasmablasts or memory B cells may
further differentiate into plasma cells. This differentiation may
be even in the absence of specific antigens but rather in an
antigen non-specific manner by a polyclonal stimulus (88). For
example, human herpesvirus 6 (HHV-6), which is an infectious
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agent implicated in the pathogenesis of MS, may be involved
in polyspecific B cell activation (89, 90). One of the obvious
manifestations of these antibody secreting plasma cells within the
CNS is in the form of OCBs as seen in the CSF of MS patients.
It may also be plausible that naïve B cells enter the CNS and
are activated within the CNS (for example, by taking part in
GC reactions within meningeal B cell follicles) and complete the
circle of eventually differentiating into plasma cells.

To summarize, the studies mentioned above indicate that
the number of B cells and their location possibly depends on
the disease course and duration, with a substantial amount of
variation between individual cases. It supports more careful
screening of autopsied CNS tissue from MS patients with a
chronic disease course with the purpose of characterizing the B
cells beyond their CD20 marker. The literature strongly suggests
that B cells are involved in MS and are present in all the different
compartments within the CNS and in the periphery. Yet, in
what ways these B cells establish themselves in the inflamed
brain, where and how they are activated has not yet been clearly
elucidated with only a limited number of studies addressing these
questions (91–93).

Role of B Cells in MS
The importance of different antibody-independent functions of B
cells in the pathogenesis of MS is highlighted by the success story
of treatment with monoclonal anti-CD20 antibodies. It has been
shown that depletion of circulating B cells by the chimeric anti-
CD20 monoclonal antibody rituximab effectively led to rapid
reduction in gadolinium (Gd)-enhancing lesions and MRI lesion
load as well as relapse activity in RRMS patients (94, 95). This
anti-CD20 monoclonal antibody has also shown high efficacy
in the removal of CD20+ B cells from the peripheral and CSF
compartments (96, 97). However, the reduction of B cells in
the CSF was comparatively much lower than in the periphery
(30, 98, 99). Ocrelizumab, a humanized anti-CD20 antibody, has
demonstrated high efficacy in reducing relapse rates in RRMS
patients in different clinical trials and is also associated with lower
rates of clinical and MRI progression in patients with progressive
MS (100, 101).

Since plasma cells do not express CD20, they are not directly
depleted by anti-CD20 therapy (96). Therefore, the decrease in
disease activity following treatment of MS patients with anti-
CD20 antibodies is possibly linked to one or more antibody-
independent functions of B cells such as antigen presentation (to
T cells) or cytokine production (32).

B cells can function as effective antigen presenting cells
(APCs) when they recognize the same antigen as T cells (102),
which is important for the activation of effector T cells (103). As
a part of this B- and T- cell cognate interactions, the combination
of co-stimulatory signals plays a key role in defining the T
cell response of which the interaction between CD80/CD86 and
CD28 is among the best characterized (32). One such antigen
presenting potential of B cells in the context of MS comes from
reports indicating that during MS disease exacerbations, the
number of CD80+ B cells abnormally increases (59, 63, 104).
Exactly what set of triggers is responsible for this upregulation of
CD80 in B cells ofMS patients is, however, less known. One of the

possibilities is that interferon (IFN)-β induces CD80 expression
(104, 105), which is a cytokine produced by innate immune
cells like macrophages and non-immune cells like fibroblasts and
epithelial cells. It has been shown that IFN-β therapy noticeably
reduces the number of circulating CD80 B cells (59, 104) in MS
patients. Secondly, ligands for TLR 1/2, 4, 7/8 are also known to
induce a strong activation of B cells and upregulation of CD40
and CD80 (106). In the context of MS, TLRs indeed play a major
role in the initiation of disease as well as in the triggering of
relapses (107, 108). Furthermore, a variety of cytokines like IL-
4 and IL-2 that are relevant in the context of MS, are also known
to induce CD80 expression on B cells (109).

The potential of memory B cells from RRMS patients to
activate T cells has also been demonstrated by Jelcic et al.
and Harp et al. (110, 111), where T helper cells promoted
B cell proliferation and differentiation, thus establishing a
bidirectional B- and T cell interaction that plays a key role in MS
pathogenesis (110).

Furthermore, circulating B cells of untreated MS patients
exhibit an abnormal balance of pro- to anti-inflammatory
cytokine responses (112–114). These abnormalities in the
effector-cytokine production by MS B cells in turn also affects
the myeloid as well as the T cell compartments. Of note, in vitro
studies using B cells from MS patients demonstrate the ability
of granulocyte-macrophage colony-stimulating factor (GM-CSF)
expressing B cells to efficiently enhance myeloid cell pro-
inflammatory responses in a GM-CSF dependent manner (115).
Another example comes from anti-CD20 depletion studies where
changes in the number of pro-inflammatory B cells correlated
with a persistent decrease of T cell lineage pro-inflammatory
responses (116). These studies have demonstrated that B cells
from MS patients in comparison to healthy controls cannot only
produce a myriad of pro-inflammatory cytokines (114, 115), but
these cytokines also have the ability to modify responses of other
immune cell populations (115, 117).

As mentioned earlier, cortical demyelination in a subgroup
of MS patients is associated with ectopic B cell follicles in
the meninges which implies that B cells may be involved in
cortical injury by secreting cytotoxic factors (63). In vitro studies
using B cells from RRMS patients substantiate that they are
capable of killing oligodendrocytes and neurons in an antibody-
independent manner involving apoptosis (118, 119), while the
identity of the cytotoxic products remains to be clarified.

However, it may also be necessary to note that the beneficial
effects of anti-CD20 therapy in MS patients cannot solely be
attributed to the depletion of B cells but rather CD20+ T cells
may also be targeted (120). Although CD20 is a hallmark cell
surface marker of B cells, a proportion of CD3+ T cells also
expresses this marker (121) which are found in an increased
number in the peripheral blood and CSF of MS patients (122).
While it has been proposed that T cells present in the blood
may acquire CD20 from B cells by a process called trogocytosis
and are therefore CD3+CD20+, Schuh et al. have elaborately
demonstrated that indeed a subset of T cells transcribes CD20
but no other molecules typically found on B cells (120).
CD20 expressing T cells have been reported to be a highly
activated pro-inflammatory cytokine-producing cell population
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with pathogenic potential (120, 121). Furthermore, several
studies have elaborately demonstrated that this population
of CD20+ T cells can be effectively depleted by rituximab
and ocrelizumab in patients with RRMS (122–124) suggesting
that depletion of this cell population might be an important
consideration in the overall clinical effectiveness of anti-CD20
directed therapies (125).

Animal Model(s) of MS: Experimental
Autoimmune Encephalomyelitis (EAE)
There are of course limitations of studying the pathomechanisms
of disease development in human subjects. Scientists have
therefore turned to using EAE, which is one of the best
characterized and most frequently used animal models for
studying neuroinflammation in the human disease MS. A wide
range of EAE models have been induced in a number of different
species (including rats, mice, and primates) with varying degrees
of efficacy to study different aspects of MS pathogenesis (126–
129). Yet, most of these models are biased towards a CD4+

T cell-restricted immune response and no single experimental
model covers all the immunological and pathological features of
the human disease (130, 131). In particular, some aspects of MS,
especially the progressive stage of MS, have so far been poorly
covered in commonly used experimental rodent models.

As discussed above, there is a growing appreciation of the
involvement of B cells in the later stage of MS where aggregates
of B cells have been found in the leptomeninges of SPMS patients
(81, 83). These B cell aggregates feature a complex follicle-like
structure and are most likely instrumental in strong meningeal
inflammation.Modeling this B cell aspect of the human disease in
the conventional EAEmodels has yielded varying results between
the different strains of rodents andwith regard to the immunizing
antigen(s) (85, 132).

One of the more robust mouse models that is both B cell-
and antibody-dependent on the C57BL/6 background is the
MP4-induced EAE (133). MP4 is a fusion protein that consists
of the human isoform of myelin basic protein (MBP) and
the three hydrophilic domains of proteolipid protein (PLP).
Using this model several studies have successfully demonstrated
both antibody-dependent and -independent roles of B cells in
EAE (which mirrors aspects of the human disease as well).
This includes induction of demyelination through complement
activation (76, 134) and a pathogenic role for antibodies (133,
135). Of interest, B cell infiltrates are also present in the spinal
cord, brain and cerebellum of MP4-immunized mice (136).
In particular, aggregation of B cells that acquired features of
lymphoid tissue in the chronic disease stage was detected in the
cerebellar parenchyma. A detailed characterization of these B
cell aggregates in MP4-induced EAE revealed that the lymphoid
structures in MP4-induced EAE were segregated into a B cell and
T cell zone, which is similar to secondary lymphoid tissues where
B cells reside in the follicles and T cells in the parafollicular zone.
Furthermore, in MP4-induced EAE, high endothelial venules
(HEVs) expressing the addressins CCL19 and CCL21 were also
detected in addition to the chemoattractant CXCL13 (83, 137).
Heavily proliferating B cells were also found indicating recent

and clonal activation (137, 138). Collectively, these findings from
the MP4-induced EAE model support a strong role for B cells in
MS that is not only restricted to their antibody secreting ability.
While the limited availability of human tissue in conjunction with
the fact that autopsied brain tissue of MS patients only provides
a “snapshot,” this B cell-dependent EAE model can be exploited
to answer a number of disease relevant questions. For example,
time course experiments on the development of B cell follicles
and studies to investigate whether B cells play a different role
depending on the disease stage at which they are found can be
demonstrated using this EAE model.

Role of B Cells in MS: Lessons From
Rodent Models of EAE
Studies done in other EAE models have also revealed some
important aspects of B cell involvement in disease progression
and pathogenesis with some of the examples mentioned below.

As mentioned earlier, B cells can function as effective APCs
especially when they recognize the same antigen as T cells (139).
This antigen presenting capacity of B cells has been highlighted
in different B cell-dependent EAE-based studies. In EAE induced
by recombinant myelin oligodendrocyte glycoprotein (rMOG)
protein, activated B cells have been shown to serve as APCs
that promote the differentiation and proliferation of Th1 and
Th17 cells. Accordingly, anti-CD20-mediated depletion of B
cells inhibited B cell-dependent activation of pathogenic T cells
contributing to the overall reduction of CNS inflammation (140).
Furthermore, using an adoptive transfer model of EAE, it has
been demonstrated that the development of autoimmune attacks
within the CNS is facilitated by induction of MHC class II on
B cells followed by pathogenic cognate interactions between B-
and T cells (141). Similarly, B cell-specific MHC class II knock-
out (KO) mice have been found to be resistant to rMOG-induced
disease indicating that B cells provide critical cellular functions
independent of their humoral involvements (142).

A more favorable role of B cells in EAE has been elaborated
in mice which did not express the anti-inflammatory cytokine
IL-35. These mice also lost their ability to recover from T
cell-mediated EAE confirming the importance of IL-10/IL-35
secreting B cells in ameliorating disease progression (143).
Regulatory roles for B cells during EAE immunopathogenesis
have also been discussed by other groups (144). A recent study
highlights that non-selective depletion of B cells using anti-
CD20 therapy concurrently abolishes preexisting regulatory B
cells which are important for limiting chronic disease progression
(145). Efforts to expand our understanding of this regulatory
population of B cells in improving EAE severity and reducing
neuroinflammation is a current topic of interest.

Taken together, there is plenty of evidence from studies
done in animal models and from MS itself which repeatedly
points towards a definite role of B cells in aggravating
disease pathogenesis in more than one way. In addition,
there is also indication of an anti-inflammatory cytokine
secreting “beneficial” population of B cells in both MS patients
(repopulating IL-10 secreting B cells following CD20 depletion
therapy) (32) and its EAE animal model (143). Nevertheless,
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FIGURE 1 | The pathogenic and beneficial effects of B cells in MS patients and in its animal model, EAE. In addition to antibody production, B cells present antigens

to T cells, form ectopic lymphoid structures consisting of B- and T-cell compartments, follicular dendritic cells and high endothelial venules and produce

pro-inflammatory cytokines to exacerbate the disease course. Besides the negative role of this cell population, there is evidence that B cells positively influence the

disease course by secreting anti-inflammatory cytokines. BC, B cell; TC, T cell.

several unanswered questions remain including, whether the
pathogenic B cell subset(s) in MS patients can be selectively
depleted, based on a more detailed characterization of this
cell population. Longitudinal studies to monitor changes in
the pro- vs. anti-inflammatory B cell subsets in the different
compartments of MS patients (or in relevant EAE models)
would also provide new insights into how B cells promote or
reduce neuroinflammation, respectively. Finally, it would also
be interesting to explore whether these new findings can be
translated into therapeutic potentials and treatment options for
patients (Figure 1).

Infectious Neuroinflammation: A Focus on
Viral Diseases
As evident by the studies discussed above, the involvement
of B cells as multifunctional players in MS as an example
of autoimmune neuroinflammation is clear. However, as
mentioned earlier, neuroinflammation can result from several
other insults to the CNS which is not just restricted to being
autoimmune (146). Infectious diseases of the CNS also result in
neuroinflammation as an inherent host-defense mechanism to
restore the normal function of the brain against the infecting
pathogen (147). The importance of B cells, in general, in
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providing several lines of defense against a variety of pathogens
and the ability of antibodies as their effector molecules in
eliminating viral particles is very well established and has been
discussed elsewhere (148–151). Therefore, neuroinflammation
can be considered a common denominator between these
two infectious and autoimmune triggers where B cells play
a significant role. It is also intuitive that the “gaps” in our
understanding of the contribution of B cells in autoimmune
neuroinflammation, as discussed earlier, can be compensated
by drawing parallels between the findings in infectious
and autoimmune neuroinflammation with a focus on the
involvement of B cells in both cases.

In that context, we discuss a few examples of viral infections
of the CNS where B cells have been indicated to play a role in
either clearing of the pathogen or progression of the infection.
Furthermore, we have included examples of viral infections
that are particularly relevant for MS. However, details of B cell
activation in the different types of viral infections related to the
CNS is beyond the scope of this review.

Viral Infections of the CNS
Viral infections of the CNS are the most prevalent cause of
encephalitis, meningitis as well as meningoencephalitis and
the number of cases surpasses all bacterial, fungal, protozoal
infections combined (152, 153). Following viral infections of the
CNS, inflammation can occur in different anatomical regions
including the meninges, brain parenchyma, the spinal cord or
simultaneously in multiple regions. Examples of viral infections
affecting the CNS include herpes simplex virus, adenoviruses,
arboviruses, flaviviruses, and enteroviruses (154). The complexity
of these viral infections is influenced by a number of different
factors including the tropism of the viruses, their routes of CNS
entry as well as the overall “health” of the immune system (152).

John Cunningham virus (JCV) is an important example
to learn about the interplay between opportunistic viral
replication and the adaptive immune system. JCV infection
of the CNS is associated with improper functioning of the
adaptive immune system with relation to both the B- and
T cell compartments (155). The occurrence of progressive
multifocal leucoencephalopathy (PML), an oftentimes deadly
demyelinating disease caused by JC virus replication in the
brain, has been linked to immunomodulatory treatments in
patients with autoimmune diseases (156), and is also observed
in immunocompromised individuals or those with hematological
malignancies. B cells appear to play a complex role in mediating
disease pathogenesis of PML because on the one hand, they
represent a potential reservoir for JCV and on the other hand they
likely play a role in the control of the infection (157). Evidence
from clinical studies and those done in animal models suggests
that B cells not only influence the T cell response through
cytokine secretion but are also able tomount an effective humoral
response against the virus which together allows the control of
infection (157). Although being a very rare event, the occurrence
of PML has been linked to anti-CD20 depletion therapies,
indicating a potential importance of B cells in controlling JCV
infection (155, 158). In general, it has been suggested that
profound perturbation of B cell homeostasis by anti-CD20

therapies (as in the case of rituximab) could contribute to the
development of PML (155). For instance, following anti-CD20
depletion the reconstituted B cell pool is mostly considered to
be IL-10+ (112, 115), with IL-10 being an anti-inflammatory
cytokine that suppresses both T cell- and innate cell-mediated
inflammatory responses. Whether this change in the overall B
cell cytokine profile together with the phenotype of the newly
appearing B cells aggravates the pathogenesis of PML is a current
topic of investigation (155). Nevertheless it is important to stress
that anti-CD20 therapy associated PML in MS patients is an
extremely rare complication compared to treatment with, for
instance, natalizumab (156).

Animal Models of Virus-Induced
Neuroinflammation
Owing to the limited availability of patient material, the
involvement of B cells in most viral infections of the CNS comes
from the relevant animal models (159, 160). Through these
various models it becomes well-established that B cells can play
both detrimental as well as beneficial roles during CNS infection
with encephalitic RNA viruses, such as Sindbis virus (SINV),
Semliki forest virus (SFV), West Nile virus (WNV), neurotropic
coronavirus, and murine cytomegalovirus (MCMV).

For instance, infection of mice with SFV suggests that
brain infiltrating B cells contribute to myelin injury in
SFV encephalomyelitis in both an antibody-dependent and -
independent manner (161).

Extending the role of B cells beyond their capacity to
modulate T cell functions, the study by Mutnal et al. is of note,
where the authors demonstrate a distinctive subset of CD5+ B
regulatory cells to infiltrate brains of mice chronically infected
with MCMV. This population of regulatory B cells was found
to control macrophage-dependent pro-inflammatory responses
while absence of this cell population resulted in exacerbated T
cell-mediated neuroinflammation post viral infection (162). In
another mouse model using attenuated rabies virus it has been
shown that the production of rabies-specific antibody by CNS
tissue infiltrating B cells is essential for the complete elimination
of the virus (163). Furthermore, studies done in mice infected
with WNV have shown that B cells are critical in providing
defense against early spread of infection in these mice as well as
limiting infection in the CNS (164).

While the data mentioned above highlight some of the dual
functions that B cells play in virus-induced neuroinflammation,
numerous studies using viral models have focused on specific
chemotactic signatures that allow B cell migration into the CNS.

Infection of the CNS with the neurotropic strain of mouse
hepatitis virus (JHMV) in a murine model results in an acute
CNS inflammatory response containing B cells (165). Antibody
secreting cells were directed toward the CNS in a virus-induced
chemotactic manner where CXCL9 and CXCL10 were identified
as two such chemokines induced by JHMV (165). On the other
hand, CXCR3 has also been identified as a chemokine receptor
recruiting plasmablasts to the CNS in the same murine viral
model (166). In response to another viral strain, SINV, a similar
trend was noticed where CXCL13 and CCL19 were induced
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in the brains of mice infected with the virus (167). Similarly,
during MCMV infection of the brain, CD19+ B cells isolated
from the brain expressed chemokine receptors CXCR3, CXCR5,
CCR5, and CCR7 (168). Overall, results from the different animal
models of viral infections suggest CNS infiltrating B cells during
viral infection migrate into the CNS in a CXCR3-, CXCR5-, and
CCR7-dependent manner whose ligands are also upregulated
within the CNS (169).

Whilemost of the above-mentioned studies highlight CXCL13
(the ligand for CXCR5) as an essential B cell chemotactic factor,
interestingly, during coronavirus encephalomyelitis infection in
mice, naïve and early activated IgD+ B cells were able to migrate
into the CNS independent of CXCL13-driven signals (170). This
of course suggests a more complex chemokine kinetics over the
course of an infection representing several possible “windows of
trafficking” for B cells into the CNS. Accordingly, the subset and
phenotype of B cells which migrate into the CNS may change
depending on the time point.

Not only do viral models of inflammation give clues on
migration patterns of B cells into the CNS but studies done
in different viral models also present evidence that the CNS
provides the necessary signals, including the expression of B-
cell activating factor (BAFF), for sustained B cell viability and
maintenance of a repertoire of virus-specific antibody secreting
cells within the CNS (165, 168, 171). Additionally, an increased
expression of BAFF mRNA in the CNS also coincides with long-
term maintenance of virus-specific antibody secreting B cells in
the brain (167). Sustained local antibody secretion by already
infiltrated B cells in the brain seems to be an effective strategy
in case of chronic viral infections of the CNS since the passage
of antibodies from the periphery through intact brain barriers
is insufficient (168). Another example of the CNS fostering
B cell survival and differentiation comes from the Theiler’s
murine encephalomyelitis virus-induced demyelinating disease
(TMEV-IDD) model. TMEV-IDD induced by injecting a virus
into susceptible mice strains captures several aspects of chronic
inflammation as seen in the progressive stages of MS (172).
Using this model, during chronic infection, the predominant B
cell phenotypes accumulating in the CNS were characterized to
include isotype-switched B cells, memory B cells and antibody
secreting cells. Mature and isotype-switched B cells were detected
in the meninges and perivascular space and B cell relevant
chemokines and tropic factors were elevated in the CNS in
the absence of ectopic B cell follicles. Therefore, results from
these studies revealed that the CNS has the ability to promote
accumulation of isotype-switched B cells as well as intrathecal
antibody synthesis independent of ectopic B cell follicle-like
structures during chronic inflammation (173, 174) (Figure 2).

Viral Infections Related to MS
On one hand, the involvement of B cells in the context of viral
infections resulting in neuroinflammation can be emphasized by
the examples mentioned above. On the other hand, viruses as
infectious agents in the etiology of MS have been suspected for
several decades (175). Here, we discuss the interplay between
viral infections and MS with a special focus on Epstein-Barr
virus (EBV).

Epstein-Barr Virus (EBV)
Among infectious factors, EBV has the strongest epidemiological
and serological connection to MS (176–178) and a relationship
between EBV infection with theMS brain has long been explored.
While some studies suggest that EBV may be responsible for
breaking immune tolerance to CNS myelin antigens through
molecular mimicry (179), others focus on the ability of the virus
to infect and promote immortalization of antibody secreting
B cell clones (180). It has also been suggested that the virus
can act as a possible antigenic stimulus of lasting immune
response within the CNS with a link to the presence of persisting
OCBs (181).

EBV is a ubiquitous B-lymphotropic virus with the ability
to infect, activate and latently persist in B cells for the lifetime
of the infected individual (182). Furthermore, EBV is known
to drive an infected B cell out of its resting state to become
activated into a B cell blast and eventually become a memory
B cell that can circulate in the blood (182). Suggestions have
been made that when EBV-infected B cells from the periphery
migrate into the CNS, they play a crucial role in propagating
CNS-compartmentalized neuroinflammation (183, 184). Given
that the general opinion for development of MS pathology is
thought to involve interactions between T- and B cells, whether
EBV-infected B cells can also activate T cells in the periphery is
an attractive hypothesis (183).

Elaborate histopathological evidence demonstrating a direct
link between EBV and B cells comes from the work of Aloisi
and others (185) where they repeatedly identified the presence
of EBV-infected B cells “exclusively” in the brain of MS patients
(180, 181, 186) and not in corresponding control patients. In
particular, areas with heavy B cell infiltrates have been identified
as major sites of viral persistence (186).

Interestingly, a link between EBV infection and induction
of human endogenous retoviral proteins on B cells has also
been made (187). For example, the activation of the human
endogenous retrovirus (HERV) has been suggested to be made
in the presence of EBV infection where high quantities of HERV-
W proteins are said to be expressed on the surface of B cells in
patients with active MS (188).

Nevertheless, it is important to note that other studies have
failed to establish any relationship between EBV infection, B cells
and MS (189, 190) leaving this question to what extent (if at all)
EBV might be involved in MS open-ended (Figure 3).

Cytomegalovirus (CMV)
CMV is a latent virus that is known to cause chronic activation
of the immune system (191) with the seroprevalence of CMV
in the general population being between 45 and 100% (192). An
association between CMV infection and MS risk has been made
in the past but with inconsistent results (193, 194).

Nevertheless, most studies have found that CMV
seropositivity is negatively associated with MS (195, 196)
with reports suggesting that CMV infection modulates the
immune response to a regulatory type (196, 197). More recently
it has been demonstrated that CMV infection regulates the
distribution of B cell subsets in MS patients to a reduced pro-
inflammatory phenotype (198)—a finding similar to what has
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FIGURE 2 | The pathogenic and beneficial effects of B cells in patients with viral infections of the CNS and their corresponding animal models. B cells can cause

aggravation of inflammation by pro-inflammatory cytokine and antibody production. In addition, they can act as a reservoir for the virus, and activate T cells.

Nevertheless, the role of B cells in viral infections is heterogenous. B cells control the infection by producing anti-inflammatory cytokines and antibodies to eliminate

the virus. Furthermore, they have a positive effect on other immune cells by promoting T cell homeostasis and controlling innate immune cell-mediated

pro-inflammatory responses (e.g., by macrophages). BC, B cell; TC, T cell; MΦ, macrophage.

Frontiers in Neurology | www.frontiersin.org 9 November 2020 | Volume 11 | Article 59189448

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chunder et al. B Cells in Neuroinflammation

FIGURE 3 | The effect of EBV on B cells in the context of MS. EBV-infected B cells can activate T cells, as well as differentiate into memory B cells and antibody

secreting plasma cells (PC). The virus can persist in the infected B cells for the lifetime of the patient. BC, B cell; MC, memory B cell; NC, nucleus; PC, plasma cell;

TC, T cell.

been previously described in the case of chronic CMV infection
(199). Another hypothesis of how CMVmay result in milder MS
symptoms could be that in patients that are CMV/EBV double
seropositive, there is a balance in the immune response between
these two viruses (196). However, in CMV seronegative patients,
EBV could drive the immune system towards a more aggressive
MS disease phenotype.

Other mechanisms by which CMV might influence MS
pathogenesis can be via molecular mimicry or bystander
activation (196, 200).

In summary, the interaction between different viruses and
the immune system—in particular B cells—in MS patients
seems complex with contradictory findings. Further longitudinal
studies with larger patient cohorts and rigorous methodologies
are required to unravel the relationship between viral infections
and disease initiation as well as progression in MS.

MS vs. Virus-Induced Neuroinflammation
It is reasonable to say that the basics of B cell biology remain
the same independent of the trigger of neuroinflammation.
Therefore, transferring the findings from one field of research
to another may not only allow us to tackle the “unknown”
better but also to look at the disorder from another perspective.
As evident from the different studies mentioned above, several
parallels can be drawn between virus-induced and autoimmune
neuroinflammation. Here we discuss a few such examples.

Studies done in murine models of neurotropic viral infections
indicate that B cells enter the CNS during acute viral infection
with early infiltrating B cells expressing CXCR3 and CXCR5
(among others) and upregulation of the corresponding ligands
in the CNS (169). A similar situation is observed in MS where

CXCL12 and CXCL13 are elevated in actively demyelinating MS
lesions (91, 201), fostering B cell entry into the CNS. Additional
evidence suggests the chemokines CXCL10, CCL2, and CCL3
also to be involved in attracting B cells into the CNS in MS
(202). Therefore, B cells in general appear to have a specific
and common chemotactic signature that allows them to migrate
into the CNS under neuroinflammatory conditions whether the
source is infectious or autoimmune.

Moreover, if one was to apply the findings in the viral model
(as mentioned above) by the group of Phares et al. (170) to MS,
it is indeed plausible that there is a variation in the chemotactic
factors in the CSF/serum over the course of the disease. This
plausible time-dependent change in chemokines in MS patients
may also affect the phenotype of B cells migrating into the
CNS. However, given the difficulties of following this “range” of
migration pattern of B cells into the CSF/CNS compartment in
MS patients, the question remains open.

While these are a few instances of the chemotactic “signature”
behind the migration of B cells into the CNS, there are also
similarities between viral models and MS with respect to how the
B cells may be able to establish themselves within the inflamed
brain. For example, in line with findings from viral models
(167), strong astrocytic expression of BAFF in MS lesions (87)
supports B cell survival making them active participants of
“trapped inflammation” (in the case of SPMS) (203). Enough
circumstantial evidence suggests that through the expression of
the necessary B cell survival factors, the MS brain creates an
environment that is conducive for the retention of B cells within
the CNS (87, 91, 202).

To what extent B cells can “establish” themselves within the
CNS and the role(s) they play from within this compartment
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have been discussed using both viral models and EAE. Using
the TMEV-IDD model DiSano et al. suggest that aggregates
of B cells, independent of ectopic lymphoid-like follicle
structures, are sufficient to drive B cell differentiation and
also contribute to intrathecal antibody synthesis (173). This
is an important finding because while there may not be

an obvious presence of ectopic B cell follicles in all cases
of progressive MS (189, 204), prominent CD20+ B cells
infiltrates or clusters are detected in a higher percentage of
MS patients (79, 189). Although the significance of these B
cell clusters has not been well-discussed in the field of MS
research, it might be interesting to see if these B cells also

FIGURE 4 | The comparison of autoimmune and infectious neuroinflammation in mouse and humans. Both diseases show a specific chemotactic signature for B cell

migration into the CNS. The retention of B cells in the CNS is supported by survival factors, like BAFF and APRIL, in autoimmune and infectious neuroinflammation. B

cells form aggregates during the disease course. The aggregates occurring in autoimmune diseases, like MS, can develop lymphoid follicle-like features, with

compartmentalization of B cells and T cells, follicular dendritic cells and high endothelial venules, unlike in viral infection. For regulation of inflammation, CD5+ B cells

are found in both kinds of neuroinflammation. BC, B cell; FDC, follicular dendritic cell; HEV, high endothelial venule; TC, T cell.
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participate in similar functions as observed in the TMEV-
IDD model.

The significance of a specific regulatory subset of CD5+

B cells in the CNS following chronic viral infection has
been demonstrated in animal models (162). The role of
CD5+ B cells with a potent regulatory capacity (205, 206)
has been reviewed previously (207, 208). Interestingly,
clinical data from MS patients suggest that regulatory B
cells with increased expression of CD5 predominantly
repopulate following anti-CD20 treatment, which—
when activated—secrete more anti-inflammatory IL-10
(209). Among other functions, the immunosuppressive
cytokine IL-10 is also associated with T cell exhaustion
allowing control of aggressive disease progression and
preventing excessive tissue injury (210). Indeed, in MS,
where demyelination and aggressive disease progression are
associated with the presence of T cells (211), exploiting this
immunoregulatory subset of IL-10 secreting CD5+ B cells to
dampen neuroinflammation remains a current research focus
(Figure 4).

CONCLUDING REMARKS

The contribution of B cells to CNS neuroinflammatory diseases
is unambiguous, as demonstrated by the examples mentioned
above. One can say that the B cell response in neuroinflammation
is complex and comprises a combination of both beneficial and
detrimental phenotypes. Furthermore, the nature of the B cell
response differs considerably between the different stages of
the disease.

Following limitations of human studies, it is often necessary to
extend our understanding of the involvement and importance of
a particular cell type by performing experiments in appropriate
animal models. Most of the animal disease models used
to identify mechanisms that underlie neuroinflammation are
induced artificially while mimicking all aspects of a human
disease in a single animal model is not feasible. Researchers
working on a particular disease often tend to use models
which are within their specific area of research, while neglecting
the relevance of the findings from other disease models.
As an example in this review we have compared studies
done in animal models of virus-induced neuroinflammation to
findings in MS, although similar comparisons between other
instances of neuroinflammation can also be established. It can
be assumed that application of the findings from infectious
neuroinflammation (with respect to the involvement of B cells)
to the field of autoimmune neuroinflammation may facilitate
the development of novel therapies to tackle neuroinflammatory
disorders like MS and vice versa.
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While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple

Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody

(mAb) therapies has shed new light on the complex cellular mechanisms underlying MS

pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent

and -independent capacities. T cell-dependent B cell responses originate and take

shape in germinal centers (GCs), specialized microenvironments that regulate B cell

activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory

B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are

indispensable. ASCs carry out their effector function primarily via secreted Ig but also

through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in

addition to being capable of rapidly differentiating into ASCs, can function as potent

antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell

responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are

key suppressors of GC-derived autoreactive B cell responses through the expression of

inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore,

GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has

been implicated in the pathogenesis of several autoimmune diseases. In MS patients,

the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted

their investigation as potential sources of pathogenic B and T cell responses. This

hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the

cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and

maintain GC reactions. Additionally, eLFs in post-mortemMS patient samples are notably

devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate

autoreactive B and T cell responses driving MS pathology makes them an attractive

target for therapeutic intervention. In this review, we will summarize the evidence from

both humans and animal models supporting B cells as drivers of MS, the role of GC-like

eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive

B cell responses in MS.

Keywords: germinal center, GCR, ectopic lymphoid follicles, ELF, follicular T helper cells, TFH, B cell, Th17
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INTRODUCTION

Multiple sclerosis (MS) is a neuroinflammatory autoimmune
disease affecting nearly 2.3 million people globally (1). MS
most commonly presents as episodes of neurological dysfunction
followed by periods of clinical recovery known as remission. The
accumulating damage resulting from the persistent repetition
of relapse and remission is thought to eventually lead to a
continuous phase of increased neurological dysfunction and
disability without remission, known as secondary-progressive
MS (SPMS). About 10% of patients immediately enter this
phase after clinical onset in form of primary-progressive MS
(PPMS) (2).

Evidence from human samples as well as from the animal
model of MS, experimental autoimmune encephalomyelitis
(EAE), has established that multiple cell types contribute to
disease pathogenesis, with CD4+ T cells as the primary drivers of
autoimmune pathology. However, the remarkable clinical success
of Rituximab (RTX), a B cell-depleting monoclonal antibody
(mAb) targeting CD20, challenged this long-held assumption,
demonstrating that the role of B cells in MS may have been
underappreciated (3). This proposition is further supported by
studies showing that B cells are a major target of previously
established disease-modifying therapies (DMTs), and specifically,
that positive therapeutic responses are strongly associated with
the elimination of pathogenic B cell subsets. The advent and
efficacy of B cell-depleting therapies (BCDTs) has necessitated the
reevaluation of the mechanisms underlying the pathogenesis and
progression of MS.

Despite the considerable success of B cell-targeting
therapeutics, clinical outcomes remain varied, similar
to previously established DMTs (4). More importantly,
the progressive forms of MS are refractory to nearly all
currently approved DMTs. Most likely, the inability to halt
disease progression is in large part a consequence of our
incomplete understanding of the mechanisms responsible for
progressive MS.

Along these lines, highly organized structures resembling
secondary lymphoid organs (SLOs), known as ectopic lymphoid
follicles (eLFs), were initially described in the 1980s and
subsequently reported as a common feature of several chronic
inflammatory autoimmune diseases (5–8). It is thought that
these structures facilitate the perpetuation of autoreactive B
cell responses. Interestingly, meningeal eLFs are found in a
substantial proportion of SPMS patients, and aggregates of B and
T cells were also observed in PPMS and RRMS patients, however,
these notably lack features of more developed follicles such as
follicular dendritic cells (FDCs), distinct T and B cell zones, and
high endothelial venules (HEVs) (9–12).

In this review, we will summarize the progress made in
understanding mechanisms of MS immunopathology, with
particular emphasis on the role of eLFs as drivers of disease
progression, cell types potentially involved in eLF development
in MS. Furthermore, we will discuss treatments either currently
available or in development that specifically target molecular or
cellular mediators of eLF formation or function. Lastly, we will
discuss key questions that remain unanswered.

THE GERMINAL CENTER REACTION

SLOs, such as the spleen and draining lymph nodes (DLNs), are
specialized structures within which T cell- and B cell-dependent
immune responses initiate and develop/mature. This is due to
their ability to support germinal center (GC) reactions. GC
reactions primarily serve to refine the B cell component of the
adaptive immune response through selection and expansion of
high-affinity B cell clones and subsequent differentiation into
either ASCs, such as plasmablasts (PBs), and plasma cells (PCs),
or into memory B cells (13–17). ASCs are effectors that function
in both primary and subsequent immune responses. PBs are
typically short-lived and serve to neutralize an acute threat by
infectious pathogens, while PCs are long-lived, and reside in
sites that are specially equipped to support their persistence (18).
Memory B cells are rapidly activated upon secondary antigen
encounter (19).

GCs are compartmentalized into a dark zone, within which
B cell clones proliferate and undergo affinity maturation, and a
light zone, where B cells undergo selection, differentiation, or are
directed to return to the dark zone to undergo further rounds of
affinity maturation and proliferation (16).

CD4+ T cells, specifically follicular T helper (TFH) cells, are
principal orchestrators of this process and direct B cell fate
decisions through the provision of surface-bound and soluble
stimulatory and inhibitory signals (20–22). Additionally, several
of these signals, such as interleukin-21 (IL-21) and CD40L,
influence class-switch recombination (CSR), thus directing the
nature of the B cell effector response. FDCs are a second
specialized cell type that display antigen bound in form of
immune complexes or with complement and therefore provide
B cell receptor (BCR)-mediated survival signals to high affinity B
cell clones.

Following resolution of the primary response, circulating and
resident memory T and B cells are on stand-by for secondary
antigen encounters, upon which they can undergo rapid
differentiation and restoration of effector function. Importantly,
these encounters can also result in the development of new GCs.

MS PATHOGENESIS

CD4+ T Cells in MS
MS has long been thought to be primarily mediated by
autoreactive CD4+ T cells directed against central nervous
system (CNS) antigens, such as myelin basic protein (MBP),
myelin oligodendrocyte glycoprotein (MOG), or aquaporin-4
(AQP4) (23, 24). The pathogenic role of T cells is undisputed
and is based mostly on the following observations: (1) The EAE
model of MS can be induced by adoptively transferring myelin-
reactive T cells into a healthy recipient animal; (2) the association
of MS with human leukocyte antigen (HLA) DRB1∗15:01; (3)
the exacerbation of MS following treatment with an altered
peptide ligand ofmyelin basic protein (MBP) that activatedMBP-
reactive T cells and led to disease exacerbations; (4) the de novo
onset and the re-activation of MS during immune checkpoint
inhibitors for cancer therapy; (5) the beneficial effects of T cell
depleting pharmacotherapies, such as alemtuzumab, or therapies
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that sequester T cells out of the CNS, such as natalizumab; (6) the
clonal expansion of CD4+ T cells infiltrating the CNS (25–35).

The importance of CD4+ T cells has been substantiated by
studies from both humans and the animal model of MS, EAE.
Indeed, CD4+ T cells are enriched in lesions of MS patients and
EAE studies further revealed two pathogenic T helper subsets
important for disease: interferon gamma (IFN-γ)-producing type
1 T helper (TH1) cells and IL-17 producing type 17 T helper
(TH17) cells (36). In line with this assertion, both IFN-γ and IL-
17 are detected in the lesions of MS patients (37). IFN-γ also
positively correlates with increased disease activity and increased
disability (38). Moreover, TH1 cells were found localized in CNS
lesions in MS patients and are also increased in the CSF of RRMS
patients during relapse compared with remission (39).

Taken together, experimental evidence from human MS
patients and experimental animal studies have led to a proposed
mechanism in which an unknown trigger results in the aberrant
activation of autoreactive CD4+ T cells in the immune periphery,
after which these encephalitogenic CD4+ T cells enter the CNS
from the choroid plexus (CP), are reactivated by local APCs
in the CNS, and initiate a proinflammatory cascade that results
in increased permeability of the blood-brain barrier (BBB),
subsequent recruitment of proinflammatory immune cells, and
subpial cortical damage (40).

A Trail of Breadcrumbs: Initial Evidence of
Antibody-Mediated B Cell Involvement
A potential role for B cells in the pathogenesis of MS was
initially suggested by the discovery of IgM and IgG antibodies
in the CSF of around 40% and 95% of MS patients, respectively
(24, 41). Intrathecal IgM and IgG, which are collectively referred
to as oligoclonal bands (OCBs), are considered a diagnostic
hallmark of MS due to their association with disease activity
and persistence throughout the entire course of disease. A study
comparing the CSF immunoglobulin (Ig) proteome and the Ig
transcriptome of B cells within the CNS showed a strong overlap,
demonstrating that ASCs generated from clonally expanded B
cells within the CSF are the major source of intrathecal OCBs
(42–44). Consequently, B cells were thought to contribute to MS
primarily via the production of autoreactive antibodies targeting
CNS antigens. In support of this, IgM antibodies targetingmyelin
lipids have been identified in MS patients and the presence of
these antibodies is associated with a more aggressive disease
course (45). Moreover, there was evidence of substantial IgG and
complement deposition, as well as the presence of macrophages
containing myelin-bound antibodies in patients exhibiting the
most common demyelination pattern, pattern II, which is present
in 60% of MS patients (46, 47).

Surprisingly, in stark contrast to classically antibody-mediated
autoimmune diseases such as myasthenia gravis or Goodpasture’s
syndrome, identification of a disease-specific antigenic target
remains elusive, and accumulating evidence supports reactivity
toward a variety of self-antigens, from ubiquitously expressed
intracellular proteins to neurofilament proteins (24, 48–50).
However, antibodies targeting viruses have also been observed,
such as the MRZ pattern, which consists of antibodies targeting

the measles, rubella, and zoster viruses (51). Moreover, evidence
suggests that these reactivities may be unique for different
patients (52). The contribution of autoantibodies was further
challenged by the finding that plasmapheresis was primarily
beneficial in patients exhibiting pattern II demyelination (53).

BCDTs: Ushering in a New Age
A phase 2 clinical trial testing the efficacy of the B cell-
depleting mAb RTX as a treatment for RRMS showed that
RTX was able to suppress inflammatory disease activity and
reduce relapse rates (54). The striking results vindicated the
previously overlooked pathogenic relevance of B cells and in
doing so challenged our understanding of the mechanisms
involved in MS pathogenesis and ushered in a new wave of
therapeutics specifically targeting B cells. Following RTX, three
subsequent anti-CD20 mAbs, each slightly varying in structure
and specificity, have been developed in an effort to optimize
safety and therapeutic efficacy: ocrelizumab (OCR), ofatumumab
(OFT), and ublituximab (UTX). Both OCR and OFT have
been approved and UTX is currently undergoing phase 3 trials
(ClinicalTrials.gov number, NCT03277248) (55).

However, the benefit of BCDTs went beyond their obvious
clinical efficacy. By studying the compositional changes in the
CSF and periphery associated with successful clinical outcomes
to BCDTs, our understanding of the dynamic involvement of
B cells in MS has greatly advanced. One of the most impactful
observations contributing to this advancement was that the
positive clinical responses elicited by BCDTs took place without
alterations in intrathecal OCBs. While this could have been
anticipated due to the lack of CD20 expression on mature
PCs, it indicated that B cells primarily exert their pathogenic
function not by autoantibody secretion, but rather by antibody-
independent mechanisms such as antigen presentation and pro-
inflammatory cytokine secretion (56).

Memory B cells can function as potent APCs and therefore
may contribute to the reactivation of CNS-reactive CD4+ T cells
due to their superior ability to capture and present antigens
present at very low concentrations compared with dendritic cells
(24, 57–63). In strong support of this, memory B cells are not only
increased inMS patients but also display elevated surface levels of
MHCII and the costimulatory molecules CD80 and CD86 (64–
66). Furthermore, these cells secrete proinflammatory cytokines
such as IL-6, GM-CSF, and TNFα upon restimulation (67–71).
Although B cells and even some subsets of ASCs such as IgA+

PCs are capable of secreting anti-inflammatory cytokines such as
IL-10, TGF-β, and IL-35, MS patients are abnormally deficient
in these regulatory-type B cell subsets, which further amplifies
the effects of the aforementioned proinflammatory cytokines
(68, 72–77). Subsequent studies investigating the cell populations
predominantly affected by BCDTs as well as previously existing
DMTs also point to memory B cells as a major pathogenic B cell
subset in MS (56).

Importantly, the discovery of bidirectional exchange of B cell
clones between the CNS compartment and the periphery gave
strong credence to the possibility that in MS patients, memory
B cells contribute to MS pathology by acting as the APCs
that reactivate encephalitogenic CD4+ T cells and subsequently
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produce proinflammatory cytokines that further contribute to
inflammation and damage within the CNS (43, 78).

The remarkable success of BCDTs in treating MS is blunted
however by heterogeneous clinical outcomes, and more-so by
the inability of these treatments to halt advancement of disease
progression (4). Even treatment with OCR and OFT, which have
been approved for the treatment of PPMS and active SPMS, only
slow rather than halt progression. However, the inability of these
antibodies to cross the BBB may provide a possible clue to their
failure in arresting disease progression (56).

OCBs: Pathognomonic Yet Poorly
Understood
Among the changes in our conceptual understanding of MS
pathogenesis, it is now acknowledged that MS involves both
peripheral as well as compartmentalized inflammatory processes
in the CNS. While our understanding of the mechanisms leading
to and sustaining compartmentalized inflammation remains
largely incomplete this process is thought to be driven by tissue
resident populations (12, 79–81).

OCBs are thought to be produced by ASCs derived from
the local antigen-driven reactivation of memory B cells
within the CNS, indicated by mutations highly concentrated
within the CDR3 regions (82). This finding has been
corroborated by other studies (83, 84). This evidence of a
CSF-restricted humoral response demonstrates that B cells
participate in and potentially contribute to compartmentalized
inflammation seen during later disease stages (85).

Importantly, the discovery of B cell-rich follicles in the
meninges of up to 40% of SPMS patients pointed to the possibility
that these structures might be involved in the reactivation
of encephalitogenic CD4+ T cells (12). Although initially not
considered as a pathognomonic feature of MS, these aggregates
correlate strongly with cortical pathology and disease severity
in PPMS and SPMS patients. Moreover, the continual antigen-
driven expansion of B cells in MS patients strongly implicated
eLFs as a prospective driver of MS progression and warrants their
investigation. Therefore, given their resemblance to eLFs seen in
other chronic inflammatory conditions, these structures might
offer a potential explanation as to the source of continual OCB
production seen in MS.

ECTOPIC LYMPHOID FOLLICLES IN
MULTIPLE SCLEROSIS: CENTERS FOR
DISEASE CONTROL

The development of structures analogous to SLOs has been
reported in peripheral tissues at sites of chronic inflammation,
serving as a reservoir for autoreactive B and T cell reactivation.
These structures are known by a variety of monikers, such as
tertiary lymphoid organs (TLOs), ectopic lymphoid structures
(ELS), and tertiary lymphoid tissues (TLTs), but will be referred
to as eLFs in this review (86, 87).

eLFs support the continuous antigen-driven expansion of B
cells in sites of chronic inflammation and are therefore a common
feature of several B cell-mediated autoimmune diseases such as

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),
and Sjögren’s syndrome (24). eLFs have been demonstrated in the
meninges of approximately 40% of SPMS patients (10, 80, 88).
Moreover, recent evidence suggested that these aggregates are not
restricted to late disease stages but rather are also present in early
stages of MS (12, 89). Indeed, meningeal inflammation strongly
correlates with subpial cortical injury in nearly all disease stages.

While eLFs share structural and functional similarities
with SLOs, the mechanisms underlying their initiation and
establishment as well as the cellular players involved and required
are quite different. Moreover, due to the specialized nature of
the CNS, meningeal eLFs warrant special considerations that set
them apart from eLFs in other disease settings. Molecular and
cellular traffic to and from the CNS is stringently regulated by
the blood-CSF and BBB, barriers that inadvertently provide a
significant level of protection for eLFs established within this
restricted tissue (90).

Here, we will detail (i) the similarities and differences
regarding the establishment and maintenance of SLOs and
eLFs, (ii) the unique nature of the CNS as a site of
chronic inflammation and eLF formation, and (iii) current
evidence supporting the potential role for eLFs in driving MS
disease progression.

SLO vs. eLF Establishment
SLOs are ideally suited entities for facilitating immune
surveillance and the adaptive immune responses, namely
the GC reaction. As a result of their importance in mediating
such a nuanced and vital process, the development and location
of these tissues is genetically preprogrammed. Broadly, SLO
formation involves three main phases: the establishment of
chemotactic gradients to facilitate B cell and T cell homing and
clustering, stimulation of tissue remodeling and angiogenesis,
and the formation of a stromal reticular network.

Lymphoid organogenesis is catalyzed by the interaction
of lymphoid tissue-inducer (LTi) cells with lymphoid tissue-
organizer (LTo) cells via the binding of lymphotoxin (LT)α1β2
to the LTβ receptor (89). This stimulates LTo cells to produce
the chemokines CCL19, CCL21, CXCL13, and CXCL12, as
well as growth factors such as VEGF-C and FGF2. The
resulting chemotactic gradient facilitates immune cell homing
and compartmentalization, while the growth factors stimulate the
development of lymphatic vessels and HEVs, allowing B and T
cell ingress. Importantly, the chemokines secreted by LTo cells
also continue to recruit LTi cells, forming a positive feedback
loop important for the maintenance of this process. LTo cells
also begin to express intercellular adhesion molecule (ICAM)-
1 and vascular cell adhesion molecule (VCAM)-1 in order to
aid in immune cell retention upon entry. Finally, LTo cells will
differentiate into FDCs, fibroblastic reticular cells (FRCs), and
marginal reticular cells, which comprise the stromal reticular
network (89, 91, 92).

The formation of eLFs follows the same basic developmental
steps as the formation of SLOs, however the first key distinction
is that eLF formation is triggered in response to inflammation
and thus can occur in a variety of non-lymphoid tissues and
the resulting structures are not encapsulated (90). In this
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context, immune cells have the capacity to function in a manner
analogous to LTi cells. For example, in the context of pulmonary
inflammation, the development of inducible bronchus-associated
lymphoid tissue (iBALT) was dependent on TH17-derived IL-
17 (90). B cells have also demonstrated this LTi-like ability in
a model of colitis, but in a LTα1β2-dependent manner (93).
In a similar fashion, the role of LTo cells is taken on by
stromal organizer cells such as fibroblasts and endothelial cells
that are activated by the inflammatory milieu. In addition to
providing the aforementioned homeostatic chemokines, these
activated stromal cells can also produce survival factors such
as B cell-activating factor (BAFF) and cytokines capable of
influencing the T cell response, such as IL-6 which promotes
TH17 responses (93).

Partially due to their formation being initiated by
inflammation, eLFs can form and dissipate quickly. As a
direct consequence of this transient nature, eLFs can display
significant organizational and cellular heterogeneity ranging
from small and disorganized aggregates of B and T cells to highly
organized structures containing compartmentalized T and B cell
zones, HEVs, FDCs, and a developed stromal reticular network
(10, 11, 80, 90, 91). It is important to note, however, that once
the reticular network has formed and an eLF has reached an
advanced state of maturation, eLFs become fairly stable and
are less likely to dissipate (94). The dependency of eLFs on the
inflammatory context is apparent in conditions such as RA,
where inflammation in articular joints is chronic and promotes
self-sustaining eLFs. Additionally, in diseases such as RA and
myasthenia gravis, the presence of disease-specific autoantigens
enables the long-term persistence of eLFs. Thus, the extent
of organization of an eLF is a consequence of the extent and
persistence of inflammation (87, 94, 95). Furthermore, in MS
mature meningeal eLFs are exclusively found in SPMS patients
as compared with PPMS and RRMS patients (10, 11, 80).

Importantly, smaller and less developed eLFs are still able
to support typical GC-related B cell processes such as affinity
maturation, proliferation, and differentiation (90). This might be
a result of the inflammatory microenvironment, as well as of the
tendency of eLFs to be comprised primarily of memory B and
T cell populations, which differ from their naïve counterparts
in regard to signaling requirements. Moreover, GC-related
processes in eLFs can occur independently of TFH cells, and are
instead facilitated by a TFH-like population known as peripheral
T helper cells, which lack the canonical TFH cell markers CXCR5
and BCL6 (96).

Nevertheless, it must be noted that inflammation is not the
sole prerequisite for eLF formation. Rather, the permissiveness
of a tissue to the influx and aggregation of lymphocytes is an
equally important consideration during this process (97, 98). This
quality is particularly apparent in the context ofMS, as the CNS is
unique in its structural and circulatory properties, both of which
can dramatically change in the context of inflammation.

Immune Cell Access to the CNS: Keys to
the Kingdom
The CNS is a vital system and the regulation of cellular and
molecular influx and efflux is accordingly more complex than

in most other tissues, a characteristic reflected in the structures
within and the barriers surrounding it, e.g., the BBB. The
CNS parenchyma is enveloped by the meninges, a structure
consisting of the dura mater, the arachnoid mater, and the
pia mater. The dura contains fenestrated blood vessels as well
as lymphatic vessels, both of which facilitate trafficking of
lymphocytes between the CNS and the deep cervical lymph nodes
(dCLN). The two innermost layers, the arachnoid mater and the
pia mater, are collectively known as the leptomeninges and are
separated by the subarachnoid space, a cavity filled with CSF (99).

Produced by the CP, CSF plays an important role in remote
immune surveillance of the CNS due to its role in the glymphatic
system in which the interstitial fluid, which contains molecules
drained from the parenchyma, is taken up by the CSF and flows
via the lymphatic vessels into the dCLN. This is thought to
be important for tolerance, as it facilitates the presentation of
parenchymal self-antigens in the absence of inflammation (100).
Additionally, it also provides a medium by which lymphocytes
circulate within and surveil the subarachnoid space.

Lymphocyte entry to the CNS is regulated by two specific
barriers: the BBB and the blood-cerebrospinal fluid barrier
(BCSFB). The BBB, which separates the leptomeningeal and deep
parenchymal capillaries from the perivascular subarachnoid and
Virchow-Robin (VR) spaces, is made up of endothelial cells
connected by tight junctions. In the parenchymal capillaries, cell
infiltration of the parenchyma is further restricted collectively by
the pia mater, the glia limitans, which is a thin barrier comprised
of astrocytic endfeet, and the parenchymal basal lamina.

The BCSFB regulates entry to the CSF-filled ventricles from
the capillaries embedded within the CP stroma. In contrast to
the BBB, this barrier is comprised of the fenestrated endothelium
of the choroidal capillaries, and the ependymal cells, which are
connected by tight junctions.

The BBB and BCSFB restricts lymphocyte access through
the dynamic expression of specific adhesion molecules such
as VCAM-1 and ICAM-1. In steady-state conditions, these
two barriers allow minimal lymphocyte entry. In response to
inflammatory signals, these barriers can becomemore permeable,
increasing infiltration by lymphocytes (89). Furthermore, the
leakiness of these barriers increases efflux of molecules such as
chemokines and cytokines, resulting in further recruitment of
potentially proinflammatory immune cells (101). Collectively,
these barriers stringently regulate entry and egress of cells as well
as macromolecules such as antibodies.

Evidence of eLFs in MS
In 1979, Prineas (9) observed what they described as “reticular-
like cells embedded within lymphoid-like structures and
lymphatic capillaries within old plaques” in the CNS of MS
patients. Subsequently it was shown that lymphocytic aggregates,
found in the meninges of SPMS patients, appeared proximal
to subpial lesions and correlated with disease severity and
progression (10, 80, 88). Following the seminal findings by
Prineas, Magliozzi, and Serafini, Lucchinetti et al. showed that
perivascular T and B cell infiltrates could also be detected in
acute and RRMS patients proximal to cortical plaques; however
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limited tissue availability prevented probing for other cell types
characteristic of eLFs, such as FDCs (12, 89).

Interestingly, eLFs found in MS patients resemble those
described in other chronic inflammatory autoimmune diseases
such as RA, SLE, and Sjögren’s syndrome. Moreover, the CSF
of MS patients during disease relapses contains elevated levels
of LTα and CXCL13, both of which are critical for lymphoid
organogenesis, and the latter of which also correlates with the
levels of intrathecal Ig and the frequency of B cells and PBs in
the CSF. Furthermore, these follicles have also been reported to
contain CXCL13, FRCs, and FDC-like CD35+ cells as well as
HEVs (10, 90, 102).

The presence of B cell clusters surrounded by T cells
makes meningeal eLFs ideal environments to facilitate GC
reactions. Indeed, high-throughput Ig repertoire analyses of B
cell clones from paired CNS and SLOs showed that antigen-
driven affinity maturation can occur within the CNS (103).
This view is further supported by the expression of activation-
induced cytidine deaminase (AID), a required transcription
factor for affinity maturation in the GC, in B cells from the
CSF (104). Proliferating Ki67+ centroblasts have also been
observed in the CSF but not the peripheral blood of MS
patients, further indicating a compartmentalized GC reaction
(105). Additionally, Ig repertoire analyses show a higher degree
of somatic hypermutation, specifically in the CDR3 region, in
CSF-derived IgM and IgG compared with those from peripheral
blood, indicating antigen-driven affinity maturation within the
CNS of MS patients (78, 82). The cytokine milieu in eLFs
specifically supports these processes and the survival of B cells.
The high concentration of BAFF, a potent B cell survival factor,
is particularly notable, due to its ability to rescue self-reactive B
cells from deletion (106). In RA, the abundance of survival factors
such as BAFF has been attributed to the resistance of eLFs to
BCDTs such as RTX (107). It is important to note that meningeal
inflammation observed in early stageMS has been associated with
pronounced subpial cortical pathology and is associated with
more aggressive disease course (80). In light of these findings,
and further supported by the correlation between meningeal
inflammation and cortical pathology throughout all stages of MS,
it is plausible that meningeal eLFs could serve as a supportive
niche for the reactivation and persistence of autoreactive CD4+

T cells and memory B cells, thereby representing an insidious
mechanism driving disease progression (24).

Catch Me If You Can: Hurdles in Studying
eLFs in MS
Despite the evidence detailed above, the ability to concretely
demonstrate the relationship between eLFs and progression is
mired by three critical limitations.

In MS, most observations are derived from analyzing post-
mortem tissue samples, which are understandably limited in their
availability. Importantly, these samples are typically obtained
at later stages of disease when inflammation is possibly less
pronounced (89). Therefore, while heterogeneous observations
between patients regarding cellular composition and structural
organization can partly be explained by the transient nature of

eLFs, it is more likely a consequence of differences in disease
stage and varying degrees of residual CNS inflammation between
patients (91).

Conceivably, EAE studies may provide a viable alternative
model to study eLFs. Indeed, EAE models have provided critical
insights into the immunological mechanisms involved in MS and
all therapeutics (such as natalizumab) have been developed as a
direct result of EAE studies (108). An additional advantage is that
the disease manifestations, including the involvement of specific
cell types, can be adjusted based on the immunogen as well as
the strain of mice. But despite their proven merit, current EAE
models remain incomplete models of MS (90).

In regard to studying eLFs in the CNS, only few EAE models
are able to form eLFs similar to those observed in humans
(90). Even so, these models exhibit substantial variability, both
between models and within the same model. The kinetics of eLF
formation and maturation is a major factor in this, since the
relatively short disease courses used may not provide enough
time for eLF maturation.

Another limitation involves inter-species differences. One
of the cell types strongly associated with eLF formation and
subsequent GC-like responses is the TFH subset. In humans,
TFH cells are substantial producers of CXCL13, a cytokine that
facilitates eLF formation and maintenance as well as recruitment
of CXCR5-expressing B cells. Murine TFH cells, however, do not
produce CXCL13 and instead parenchymal and stromal cells
are the primary producers of this cytokine (109, 110). While
interspecies differences like these are not uncommon by any
means, a recent study might impart physiological relevance to
this discrepancy: using a model of EAE in which MOG-specific
TH17 cells are adoptively transferred to naïve mice, a model
known to yield a high frequency of eLFs correlating to disease
severity, Quinn et al. (111) showed that TFH cells induced eLF
formation in a manner that required the CXCL13-mediated
homing of circulating memory TFH cells (90). In line with
these findings, the use of a blocking antibody to target CXCL13
could theoretically prevent eLF formation in humans. However,
this species-specific functional difference calls the translational
nature of the proposed axis into question.

Despite these limitations, clinical evidence still provides
a strong argument for the involvement of eLFs in driving
progression. Furthermore, the findings derived from EAE studies
still absolutely merit consideration and could still provide critical
insight into this potential link.

IF THE SHOE FITS: EVIDENCE
SUPPORTING A ROLE FOR eLFs IN MS

The persistent interrogation of the composition of treated and
untreated patient blood, serum, and CSF continues to reveal new
biomarkers and implicate new B and T cell subsets and functions
contributing to disease severity. These insights have consequently
necessitated an evolving, flexible view of the mechanisms
underlying MS pathogenesis and progression. Along these lines,
a plethora of cytokines and cell types upregulated in MS patients
strongly implicate eLFs as drivers of disease progression.
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TH17 Cells: Jack of All Trades
The functions and phenotypes of CD4+ T helper subsets
have canonically been viewed simplistically, with each subset
associated with a handful of signature cytokines, chemokine
receptors, and typically a single transcription factor. However,
CD4+ T cells are now known to display a remarkable degree of
plasticity and versatility, qualities exemplified by TH17 cells.

TH17 cells are thought to be the primary T helper subset
driving MS pathogenesis. Initially described in EAE models, this
hypothesis is also supported in humans as TH17 are elevated in
the CSF of MS patients, specifically during relapse (91). Several
TH17-associated cytokines are associated with MS pathology.
One study showed an increase in IL-22, a cytokine which
coincidentally shares with IL-17 the ability to promote BBB
breakdown, in the serum of patients experiencing relapse (112).
Moreover, IL-6 and IL-23, both of which are required for TH17
maturation andmaintenance, are also overrepresented in the CSF
of MS patients (113, 114).

As detailed above, infiltration of the CNS is tightly regulated
and varies depending on both the point of entry as well as on
the inflammatory context. CCR6, a chemokine receptor that is
required to cross the blood-CSF barrier in the choroid plexus, is
highly expressed by TH17 cells (115, 116). Additionally, CCL20,
the ligand of CCR6, was recently found to be upregulated in the
CSF of MS patients (117). Taken together, the strong association
of numerous cytokines and chemokines specifically related to the
TH17 subset makes the CNS of MS patients an auspicious locale
for the function and persistence encephalitogenic TH17 cells.

In addition to the more overt pathogenic contributions of this
subset, several recent findings have suggested that TH17 cells
might play a more inconspicuous role, namely in orchestrating
GC-like responses and inducing the formation of meningeal eLFs
in MS.

TH17 cells are known to secrete large amounts of IL-21, a
cytokine typically secreted by TFH cells (118, 119). TFH cells,
which are known to be upregulated in MS patients, are a
specialized subset required for directing B cell responses within
the GC reaction, such as proliferation, CSR, and differentiation
intomemory B cells and ASCs. Since IL-21 is primarily associated
with TFH cells, it would stand to reason that TH17 cells may have
the capacity to function in a TFH-like capacity. Indeed, a study
by Mitsdoerffer et al. (120) which showed that, upon adoptive
transfer to T cell-deficient mice, TH17 cells were able to initiate
GCs, promote isotype switching, and induce a pronounced
antibody response, confirmed this theory. Further establishing
the B-helper capacity of TH17 cells, a recent study showed that
IL-17, when combined with BAFF, a cytokine also upregulated
in MS patients, promoted B cell survival, proliferation, and
differentiation into PCs, providing a second method by which
TH17 cells can promote GC-like B cell responses within the
CNS (120).

The ability to induce eLF formation has been shown in
other contexts such as iBALT formation and occurred in an
IL-17-dependent manner (97). Likewise, this capacity was also
demonstrated in an EAE study that showed that adoptive transfer
of MOG-reactive TH17 cells induced the formation of eLFs
within the CNS through stimulating the production of CXCL13

by stromal cells (121). In a model of spontaneous arthritis, TH17-
derived IL-17 was also shown to be critical for the development of
autoreactive GCs (122). A separate study also showed the ability
of IL-17 to induce meningeal fibroblast remodeling in vivo and in
vitro (123). In mucosal tissues, IL-22 was also shown to induce
eLF formation by stimulating the production of homeostatic
chemokines by stromal cells (124, 125). This introduces the
possibility that the elevated levels of CXCL13 in the CSF of MS
patients may be due to TH17-derived IL-17 and IL-22.

B Cells: Bad Memories
Several chemokines and cytokines that are upregulated in the
CSF of MS patients are known to be important for facilitating
B cell migration, activation, differentiation, and survival. The
inflamed CNS of MS patients therefore seems to provide a
microenvironment that is particularly conducive for facilitating
B cell-mediated responses.

Memory B cells, specifically a subset known as IgD−CD27−

“double-negative” (DN) memory B cells, are abnormally
overrepresented in the peripheral blood and CSF of MS patients.
This subset of memory B cells has also been associated
with SLE and RA and is associated with disease severity
(83). The pathogenic relevance of memory B cells in MS
has been substantially corroborated by studies exploring the
immunological aspects of previously established non-B-cell-
targeting DMTs. Indeed, depletion of memory B cells was
associated with the efficacy of IFN-β, glatiramer acetate (GA),
and dimethyl fumarate (DMF) (126). Furthermore, the clinical
success of natalizumab has also been associated with its ability to
reduce the frequency of memory B cells in the CNS.

As previously stated, memory B cells from MS patients
secrete abnormally high quantities of IL-6, TNFα, and GM-
CSF (67). This particular milieu promotes inflammation by
increasing the permeability of the CNS vasculature, stimulating
the production of IL-6 and IL-12 by myeloid cells, and the
maintenance of pathogenic TH17 effector responses. Of note,
B cell-derived IL-6 has also been shown in a model of SLE
to be required for the formation of spontaneous eLFs (127).
A recent study also demonstrated that B cells from the CSF
of RRMS and progressive MS patients secrete large amounts
of VEGF and LTα, respectively. Importantly, both of these
growth factors promote the development of eLFs by stimulating
lymphangiogenesis (128). Additionally, the enhanced production
of neurotoxic factors by B cells from MS patients could offer
further explanation for the strong association between meningeal
inflammation and subpial cortical damage.

DN memory B cells have enhanced APC functions, indicated
by elevated levels of MHCII along with the costimulatory
molecules CD80, CD86, and CD40 (129). This was demonstrated
by a study which found that B cells fromMS patients were able to
activate T cells in the presence of neuroantigens, unlike B cells
from healthy controls. Memory B cells within the CNS of MS
patients therefore have an enhanced capacity to serve as potent
APCs to encephalitogenic memory CD4+ T cells and strongly
contribute to the proinflammatory milieu within the CNS. The
reactivation of encephalitogenic CD4+ T cells will result in the
reciprocal reactivation of the presenting memory B cell. It is
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important to note that while reactivation of memory B cells is
thought primarily to result in ASC generation, these cells are also
fully able to undergo further affinity maturation in secondary
GC-like reactions.

In addition to their proinflammatory functions within
the CNS, memory B cells from MS patients also seem to
have enhanced brain-infiltrating potential. In line with the
observations from natalizumab treatment, B cells from MS
patients express high levels of very late antigen-4 (VLA-4) (130).
These cells also express ICAM-1 and activated leukocyte cell
adhesion molecule (ALCAM), both of which facilitate migration
across the BBB and BCSFB (131, 132). Interestingly, the absence
of B cells within the parenchyma is supported by the enhanced
expression of molecules that preferentially facilitate migration
through meningeal vasculature.

In summary, memory B cells in MS patients display several
phenotypic and functional traits that support not only an
enhanced ability to migrate to, stimulate, and perpetuate
inflammatory responses within the meningeal spaces, but also to
promote the formation of eLFs.

TFH Cells: Hurting More Than Helping?
TFH cells are broadly identified as CXCR5+PD-1+BCL6+ICOS+

and their effector function is primarily associated with the
secretion of IL-21 (91). This subset is most strongly linked to GC
B cell responses and has only recently been included as a disease-
relevant subset in MS and other disease conditions (133, 134).
TFH cells have been associated with RA, SLE, and Sjögren’s
syndrome in a manner dependent on their ability to support GC
B cell responses (135). TFH and B cells provide critical signals to
each other including signals important for development, effector
function, and survival. Important TFH-derived signals include IL-
21, which stimulates CSR, CD40L, which delivers costimulatory
signals via CD40, and inducible T cell costimulator (ICOS).
Secretion of BAFF, a potent B cell survival factor, by mouse TFH

cells was reported; however, BAFF secretion has so far not been
reported by human TFH cells (136). Additionally, a link between
TFH cells and AID expression in GC B cells has been suggested.

GWAS studies have shown that polymorphisms in IL-21,
CXCR5, and PD-1 are genetic risk factors for MS. Moreover,
about 20% of the CD4+ T cells in the CSF of MS patients
express CXCR5, and active lesions have been shown to contain
IL-21+ as well as CD40L+ CD4+ T cells (102, 137). Additionally,
IL-21, BAFF, and CXCL13 are all abnormally elevated in MS
patients (89, 138). However, these observations only supported
the involvement of TFH cells indirectly, due to the fact that many
of these markers are also linked to other cell populations that are
known to play a role. For example, IL-21 is known to be secreted
by TH17 cells, a significant and well-known driver of MS (139).

The link between TFH cells and MS was solidified in a 2013
study by Christensen et al. (140) reporting an increase in TFH

cells in RRMS and SPMS as well as a correlation with progression.
Importantly, the same study showed that the TFH cells were
ICOS+ and correlated with the frequency of PBs. A subsequent
study also reported the elevation of TFH cells in the blood of
MS patients as well as a positive correlation with disease severity
(133). In further support of the importance of TFH cells in MS,

several studies showed that circulating TFH cells are among the
cells that are most prominently affected by DMTs, including
fingolimod, and abatacept (141, 142). These studies indicate
that a decrease in circulating TFH cells is a prominent feature
accompanying positive clinical responses.

In light of this cumulative body of evidence, it is plausible that
TFH cells in MS patients play a substantial role in eLF formation.
It is particularly intriguing that TFH cells share many features
with TH17 cells, including the secretion of IL-21 and the ability
to support GC responses. In fact, similar to studies showing the
ability of TH17 cells to become TFH -like TH17 cells, TFH cells
can become TH17-like TFH cells, which express the transcription
factor RORγt, the chemokine receptor CCR6, and secrete IL-17
as well as IL-21 (143). Notably, TH17-like TFH cells display a
formidable ability to induce antibody production (143). In MS
patients, DMF treatment was shown to decrease the frequency
of TH17-like TFH cells and increase that of TH2-like TFH cells,
giving credence to the relevance of this unique subset (144). This
reinforces evidence that TH17-like TFH cells were increased in
PPMS patients (140).

Importantly, the potential humoral dysregulation resulting
from an overrepresentation of TFH cells may be further amplified
in MS patients due to a decrease in TFR cells, the regulatory
counterpart of TFH cells, reported in a recent study (145). Similar
to what has been observed regarding Tregs, TFR cells in MS
patients also exhibit reduced suppressive capacity, indicated by
abnormal IgG production in the blood, and CSF (146). Notably,
a recent study reported that eLFs found in SPMS patients are
devoid of TFR cells, despite detection in the CSF. The lack of TFR

was also shown in the less-defined eLF aggregates from PPMS
patients (147).

Taken together, these observations strongly support a
potential contribution of TFH cells to the progression of MS,
namely via stimulating eLF formation, orchestrating GC-like
responses in the CNS, and providing signals that supportmultiple
inflammatory populations in the CNS. Of particular interest
is the ability to adopt TH17-like effector functions, for this
consequently amplifies the encephalitogenic potential of TFH

cells. The complex and multifaceted involvement of TFH cells
may represent the next paradigm shift in the journey toward
understanding the pathogenesis and progression of MS.

THE (UN)USUAL SUSPECTS: UNIQUE
INFLAMMATORY CELL SUBSETS AND
THEIR POTENTIAL CONTRIBUTION TO
eLF FORMATION

Studies attempting to elucidate the mechanisms underlying MS
have led to a single unanimous conclusion: it’s complicated. MS
pathogenesis is a complex process involving a vast array of cell
types, all of which vary in their phenotype and function, and thus
their pathogenic contribution, depending on the stage of disease.
However, the continuous advances in multiparametric analyses
have enabled us to more closely interrogate the characteristics
of specific immune cell subsets associated with MS. This ability
has revealed two subsets of particular relevance to progression,
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potentially via their contribution to eLF formation: TH1-like
TH17 cells and T-bet+ memory B cells. In this section, we
will describe the distinguishing features of these subsets and
the evidence supporting their involvement in MS pathogenesis
and progression, with a particular focus on their role in
eLF formation.

TH17.1 Cells: Potently Detrimental
Mechanisms of T cell plasticity are still enigmatic, and attempts
to define novel T helper subsets, though regularly proposed, often
lack sufficient evidence to merit their inclusion in the established
lineup. However, numerous studies have not only confirmed
the existence of TH1-like TH17 cells, but also established their
functional relevance in both pathogenesis and progression ofMS.

T helper subsets are conventionally characterized by the
expression of a signature transcription factor, cytokine, and
chemokine receptor. As mentioned above, TH17 and TH1 cells
are considered the two primary encephalitogenic T helper subsets
in MS and are identified as RORγt+IL-17+CCR6+ and T-
bet+IFN-γ+CXCR3+, respectively.

TH1-like TH17 cells are a recently described subset of
TH17 cells that, as the name suggests, express both TH1-
and TH17-associated signature molecules and are identified as
T-bet+RORγt+IFN-γ+IL-17+CXCR3+CCR6+. TH1-like TH17
cells have been identified in MS lesions and are selectively
expanded in RRMS patients with more severe disease (148).

Recently, a variant of this subset, distinguished primarily by
the additional expression of GM-CSF, was identified. Termed
TH17.1 cells, this subset is associated specifically with early
disease activity and correlated with the transition from clinically
isolated syndrome (CIS) to clinically definite MS (CDMS). This
observation is in line with the known role of GM-CSF as a critical
proinflammatory mediator early in disease.

It is important to note that, although all three cytokines are
expressed, TH17.1 cells express a relatively lower amount of IL-
17. Therefore, the authors posit that IFN-γ and GM-CSF are
considered the major proinflammatory cytokines responsible for
association with the transition from CIS to CDMS. Interestingly,
TH17.1 cells isolated from the CSF of relapsing patients express
IL-17 to a degree similar to IFN-γ, while GM-CSF expression
is decreased, suggesting that IL-17 is more important for
progression than for onset. This shift in cytokine secretion may
be attributable to the TH17-promoting milieu of the inflamed
CNS increasing the production of IL-17, the regulation of which
is antagonistic to that of GM-CSF in humans (149). Alternatively,
this could be a result of IL-21 signaling, which induces the
downregulation of T-bet and GM-CSF (149, 150).

In addition to the secretion of proinflammatory cytokines
known to be elevated in MS patients, the encephalitogenicity
of TH17.1 cells is also attributed to the enhanced brain-homing
potential imparted by the simultaneous expression of CXCR3,
CCR6, and VLA-4, all of which are important for trafficking
to the inflamed CNS. In support of this, CXCL10, CCL20, and
VCAM-1, the corresponding ligands, are highly upregulated
in the CSF of MS patients during inflammation. Interestingly,
TH17.1 cells have also been shown to acquire CCR2 expression
as disease progresses. The expression of this additional receptor

further amplifies this subset’s ability to infiltrate the CNS.
In further support of their clinical relevance, a recent study
investigating the effects of DMF on immune cell populations
found that TH17.1 cells are indeed downregulated as a result of
treatment (144). Additionally, TH17.1 cells were shown to be
markedly accumulated in the blood of patients who clinically
responded to natalizumab treatment, further implicating their
pathogenicity (151).

ABC’s and OCB’s: T-Bet+ DN Memory B
Cells and Their Potential Role in eLFs
The evidence that OCBs target ubiquitous intracellular self-
antigens in a patient-specific manner would suggest that these
likely originate in response to dead cell debris (49). Therefore,
since OCBs are considered to be derived from the reactivation
of DN memory B cells, this begs the question: where did these
autoreactive memory B cells come from? Autoreactive B cells
are present in the periphery of healthy individuals, but their
aberrant activation and subsequent differentiation into memory
B cells or autoantibody secreting PBs and PCs is prevented
through several peripheral tolerance mechanisms within the GC.
Therefore, the existence of memory B cells with such reactivity
indicates a breach of these GC-related peripheral tolerance
mechanisms (147).

As detailed above, DN memory B cells are considered a
major pathogenic cell type in MS. However, similar to other
immune cell types, more in-depth characterization of memory B
cells has revealed several functionally distinct subsets, including
recently described “atypical” memory B cell subsets. Atypical
memory cells expressing CD11c and T-bet are associated with
autoimmune diseases including SLE (152). Although initially
described as age-associated B cells (ABCs), these cells are present
in both healthy donors as well as aged mice and humans (153,
154). Functionally, these T-bet+ memory B cells are excellent
APCs (155).

T-bet+ memory B cells are thought to be generated in a
manner similar to extrafollicular responses (156). The expression
of T-bet in B cells is induced by IFN-γ stimulation. The inflamed
CNS of MS patients provides a microenvironment that supports
the differentiation and persistence of these cells, due to the
abundance of IFN-γ. Additionally, the reactivity of OCBs toward
antigens derived from dead cell-debris provides evidence that
the inflamed CNS also contains molecules that can stimulate
Toll-like receptor 9 (TLR9), the second signal required for T-
bet+ memory B cell development. Indeed, in all categories of
MS, T-bet+ memory B cells, are elevated. Importantly, T-bet+

memory B cells display the same proinflammatory attributes that
have been described for memory B cells in MS. In addition, T-
bet+ memory B cells also express high amounts of CD20 and
is therefore a major target of BCDTs. T-bet expression is also
strongly associated with IgG1 and IgG3 class-switching, which
are isotypes that are associated with MS (157).

The expression of CXCR3 in addition to CXCR5 enhances the
brain-homing potential of these cells, enabling migration toward
CXCL10 and CXCL13, both of which are elevated in the CSF of
MS patients. Additionally, in vitro studies have demonstrated an
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enhanced ability of T-bet+ memory B cells to migrate through
human brain endothelial layers. Similar to what was found
regarding TH17.1 cells, T-bet

+ memory B cells also accumulated
in the blood of natalizumab-treated patients.

Although the enhanced antigen-presenting capabilities and
proinflammatory characteristics of memory B cells from MS
patients have been well-established, these new findings provide
further evidence supporting the likelihood that T-bet+ memory
B cells reactivate encephalitogenic CD4+ T cells in the brain.
Importantly, a recent study showed that DNmemory B cells from
MS patients express ICOSL at levels only slightly lower that of
mature naïve B cells (158). This enables direct interaction with
TFH cells within the CNS, which, in concert with the milieu of
the inflamed CNS may promote meningeal eLF formation and
propagate GC-like responses therein.

FUTURE PERSPECTIVES: POTENTIAL
NOVEL APPROACHES TO TARGETING
eLFs IN MS

Despite the vast progress made regarding our understanding of
MS, the ability to halt disease progression remains an elusive
and enigmatic target. Several currently approved DMTs target
B cells and may affect development of eLFs in MS; however,
effects on eLFs may be limited by their access to the CNS.
Nevertheless, the collaboration between TFH cells and memory B
cells, which underlies eLF formation, offers attractive therapeutic
targets, especially in light of evidence implicating eLFs in driving
MS progression. In this section, we will describe potential novel
approaches to prevent formation of eLFs in MS by targeting B
cells and TFH cells.

BTK Inhibitors
The rationale for pursuing therapeutics that selectively target B
cells is clear, given the demonstrated efficacy of BCDTs. However,
the inability of thesemAbs to efficiently cross the BBB and BCSFB
poses a significant problem in the treatment of the progressive
forms of MS, as these barriers do not exhibit the same degree
of permeability as seen in earlier disease stages. As a result,
much interest has centered on pursuing compounds that can
penetrate the intact BBB and BCSFB in the CNS of progressive
MS patients, of which Bruton’s tyrosine kinase (BTK) inhibitors
have led the charge.

BTK is a tyrosine kinase that is essential for conveying signals
necessary for B cell maturation, activation and survival, and BTK
inhibitors showed efficacy in treating RRMS. Several different
inhibitors are currently being investigated, including evobrutinib
and PRN2246.

Evobrutinib has successfully completed phase 2 trials and
showed positive results in treatment of RRMS (ClinicalTrials.gov
number, NCT02975349) (159). Nevertheless, its degree of CNS
penetration has not been assessed yet. However, PRN2246,
another BTK inhibitor, can effectively penetrate the CNS and
achieve therapeutic levels (160).

A third BTK inhibitor, fenebrutinib (GDC-0853), is very
selective and potent as compared with previous inhibitors, and

phase 3 clinical trials evaluating its efficacy in RRMS (FENhance
1 and FENhance 2) and PPMS (FENtrepid; ClinicalTrials.gov
number, NCT04544449) are currently underway (161).

Targeting TFH Cells via CD28 and ICOS
The relevance of TFH cells to MS has been established in both
animal models as well as in human studies. As detailed above,
their potential involvement in the progressive phase of MS
via contributing to eLF formation makes them an attractive
therapeutic target, specifically by exploiting the importance of the
costimulatory receptors CD28 and ICOS for TFH development
and maintenance as well as for interacting with B cells (162, 163).

Abatacept is a fusion protein composed of the Fc region of
human IgG1 and the extracellular domain of CTLA4, which
binds CD80 and CD86, the ligands of CD28 as well as CTLA4.
Abatacept has been efficacious in the treatment of RA, psoriasis
vulgaris, and type 1 diabetes and is thought to act by abrogating
autoimmune T cell responses through blocking costimulation
through CD28. CD28 signaling is also thought to play a major
role in TFH cell development (164). Similar to MS, an increase
in circulating TFH cells has been associated with type 1 diabetes
(165–167). A recent study showed that abatacept was able to
decrease TFH cells in a mouse model of type 1 diabetes, even after
the disease is established (134). Furthermore, abatacept reduces
circulating TFH cells in RA and in Sjögren’s syndrome (168, 169).
While ACCLAIM, a phase 2 clinical trial studying the efficacy of
abatacept in patients with RRMS, showed no clinical benefit, a
subsequent study of samples obtained from patients participating
in that trial showed that TFH cells and Treg cells were selectively
decreased, the latter of which may be a significant disadvantage
of this treatment (142, 170). Abatacept was followed by the
development of belatacept, which has a higher affinity for both
CD80 and CD86, andMEDI5256, which binds CD80 with greater
affinity than CD86, although these have not been studied in the
context of MS (171, 172). Interestingly, in a nonhuman primate
model of transplantation, crosstalk between TFH cells and B cells
was more potently affected by treatment with a CD28 antagonist,
FR104, compared to belatacept, suggesting that targeting CD28
directly might be more beneficial (162, 163, 172–175).

The increase in ICOS+ TFH cells in MS is mirrored in several
autoimmune diseases, such as SLE, Sjögren’s syndrome, and
type 1 diabetes (176–179). ICOS is a critical signal for TFH cell
development, functions such as IL-21 secretion, and is highly
expressed on TFH cells as well as on TH17 cells, albeit to a
lesser extent (180, 181). Importantly, and in contrast to CD28
and CTLA4, ICOS expression is thought to be restricted to
TFH cells and antigen-experienced CD4+ memory T cells and is
upregulated during reactivation (172, 182). In MS, the increase
in IL-21- and ICOS-expressing CD4+ T cells would suggest a
potential benefit in targeting ICOS-ICOSL interactions.

Prezalumab, a human mAb that binds ICOSL and blocks
its interaction with ICOS, has been tested in SLE and arthritis;
however results from a phase 2 clinical trial in patients with
Sjögren’s syndrome showed no clinical improvement and its
development for the treatment of rheumatic diseases has been
discontinued (162, 172). In light of this result and considering
the restricted expression of ICOS to TFH cells and CD4+
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memory T cells, targeting ICOS might prove more effective than
targeting ICOSL.

MEDI-570 is a mAb that binds ICOS, blocking its interaction
with ICOSL. Additionally, MEDI-570 is afucosylated, a
modification in the Fc region that enhances antibody-dependent
cellular cytotoxicity by NK cells and macrophages (172, 183).
In the context of autoimmunity, this mAb has only been
evaluated in SLE; however the phase 1 study was terminated
due to commercial considerations (ClinicalTrials.gov number,
NCT01127321) (172). Nonetheless, the selective elimination
of TFH cells and CD4+ memory T cells, two CD4+ T cell
populations strongly associated with disease activity, bolsters the
rationale for further exploring this class of therapeutics.

Given the importance of both the CD28 and ICOS signaling
pathways in TFH cells, the recent development of a first-in-class
dual inhibitor targeting CD28 and ICOS named ALPN-101 is
particularly noteworthy, as it may offer the ability to compound
the benefits observed using CD28 - and ICOS-targeting mAbs
individually. While this compound has only completed phase
1 safety trials, preliminary evidence using an adoptive-transfer
EAE model has yielded promising results as it was able
to significantly ameliorate disease severity (ClinicalTrials.gov
number, NCT03748836). An important consideration is that
despite its molecular weight (80.8 kDa) being much smaller than
that of traditional mAbs (∼150 kDa), the BBB will likely still
impede CNS access and limit its effectiveness in MS.

Targeting eLF-Associated Molecules:
IL-17, IL-22, IL-23, IL-21, and CXCL13
As described above, the induction of eLFs is coordinated by
cytokines associated with TFH cells and TH17 cells, all of
which are overexpressed in MS. Both IL-17 and IL-22, which
are produced by TH17 cells, facilitate BBB disruption and
potentially induce the production of CXCL13 by meningeal
stromal cells (111, 112, 125, 184). In EAE, these cytokines
have also been shown to promote expansion of the reticular
network (89, 121). A proof-of-concept study of secukinumab,
a mAb targeting IL-17A, showed a reduction in annualized
relapse rates in patients with RRMS (185). However, follow-
up studies have not been reported. Currently, secukinumab
and ixekizumab, a second anti-IL17A mAb, are approved
for the treatment of psoriasis (186). A mAb targeting IL-
22, fezakinumab, is available and has undergone clinical
trials for psoriasis (ClinicalTrials.gov number, NCT00563524),
RA (ClinicalTrials.gov number, NCT00883896), and atopic
dermatitis (ClinicalTrials.gov number, NCT01941537); unlike
secukinumab, this antibody has not been investigated in
MS (187).

Meningeal stromal cells also secrete IL-23, required for TH17
maintenance, in inflammatory conditions (113, 114, 121, 188).
IL-23 promotes the release of IL-22 by synovial fibroblasts in
a model of arthritis (125). IL-23, which structurally shares the
p40 subunit with IL-12, has been explored as a target for RRMS
treatment in a phase 2 trial with ustekinumab, which targets
p40 and thus exhibits dual specificity for IL-23 and IL-12 (189).

Notably, guselkumab, a first-in-class mAb specific for the IL-23-
exclusive p19 subunit and has been approved for treatment of
psoriasis (190).

IL-21 is expressed by and induces the expansion of both TFH

cells and TH17 cells (191). IL-21 also promotes the generation
of T-bet+ DN memory B cells (130, 156). An anti-IL-21 mAb,
known as NNC01140006 or BOS161721, is currently being
investigated in SLE in a phase 2 trial, but has not been explored
in MS (ClinicalTrials.gov number, NCT03371251) (187, 192).

Lastly, CXCL13 is overexpressed in MS patients, strongly
correlates with disease activity as well as the frequency of B cells
and PBs in the CSF, and can be expressed by TFH cells in humans.
Reduction in CXCL13 levels in the CSF can be accomplished
by several DMTs, including natalizumab and fingolimod (193,
194). Quinn et al. (91, 111) showed that blocking CXCL13
protected against disease development in the TH17-mediated
adoptive transfer EAE model by reducing the influx of TFH

cells into the CNS, which resulted in a reduction of B cell-
mediated inflammation in the CNS. Additionally, a neutralizing
mAb directed against CXCL13, MAb 5261, inhibited CXCL13
function in vitro (195). However, it has not been explored in MS.

Given the association of these cytokines with MS and their
ability to support the continuous recruitment and differentiation
of inflammatory effector subsets, targeting these cytokines is
an approach that warrants investigation. Importantly, efficient
crossing of the BBB or BCSFB still remains a formidable
hinderance to the efficacy of these drugs. Although therapeutic
mAbs delivered intravenously can be detected in the CSF,
the concentration is vastly smaller than that in the serum
(196). RTX, for example, only reaches concentrations in the
CSF < 0.1% of that in the serum (197). While intrathecal
administration has been investigated, an abundance of efflux
transporters such as the neonatal Fc receptor (FcRn) present
on the BBB endothelium results in the rapid clearance of
therapeutic monoclonal antibodies from the CSF into the blood,
preventing the meaningful retention of these therapeutics within
the CNS (198–201). Indeed, human and animal studies show that
intrathecal RTX is rapidly cleared from the CSF and accompanied
by a concomitant increase in serum concentration (197, 200,
202, 203). Thus, CNS penetration remains a paramount issue to
address in the advancement of DMTs.

CONCLUDING REMARKS

The insights afforded by the more in-depth characterization
of disease-relevant immune and non-immune cell populations
bring us closer to an understanding of the mechanisms
driving MS relapses and progression. Specifically, the evidence
supporting the interconnectedness of TH17, TFH, and B cells and
the remarkable plasticity of each lineage could offer a possible
inroad for unraveling the puzzle of the factors that induce and
promote MS.

Ample evidence suggests that memory B cells in MS patients
are ideally equipped for the reactivation of encephalitogenic
CD4+ T cells, a process which can occur in the CNS or in the
dCLNs. In the CNS, the inflammatory microenvironment that
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results from the reactivation of CD4+ T cells can stimulate the
CXCL13-mediated recruitment of TFH cells to the CNS, which is
a particularly important link in the context of progression, due
to the strong association of this subset with eLFs seen in other
chronic inflammatory autoimmune diseases.

Importantly, CXCL13 will also result in the recruitment of
naïve B cells into the CNS. As the inflammation in the CNS
persists, it is possible that these infiltrating naïve B cells could
encounter dead cell debris containing myelin-derived proteins
and nucleic acids, the latter as potent ligands for TLR9 and
TLR7. The combination of these signals along with those received
from IFN-γ and TFH cell-derived IL-21, will result in the T cell-
independent generation of proinflammatory T-bet+ DNmemory
B cells (130). The generation of these autoreactive clones has
major implications for subsequent relapses, as these cells are
now not only more adept in their capacity to infiltrate the CNS
but they are also potent APCs that can potentially precipitate
a secondary break in CD4+ T cell tolerance. This can lead
to the development of GC-like reactions and the expansion of
further autoreactive B and T cell clones (204). These autoreactive
responses are well-supported in the MS CNS due to the presence
of proinflammatory cytokines and the abundance of BAFF, which
is known to be elevated in MS (130). Furthermore, in the absence
of TLR signaling, these cells will preferentially differentiate into
PBs upon stimulation with IFN-γ and IL-21, thus representing a
source of OCBs that may be unrelated to CNS autoantigens (204).
This would be in line with a recent study that suggested that
novel OCBs in RRMS patients result from the clonal expansion
of memory and PB/PC populations in the CSF (84).

As stated previously, these cells express ICOSL at levels
slightly lower than naïve B cells. The expression of ICOSL is
noteworthy in light of a recent study which found that naïve B

cells are able to reactivate effector memory CD4+ T cells from
SLE and RA patients in an ICOSL-dependent manner even in the

absence of T cell receptor triggering (205). Even more significant
is that ICOSL preferentially stimulates effector T cells to produce
IFN-γ, IL-17, and IL-22, all of which are highly expressed in
the inflamed CNS of MS patients. While it must be noted
that the effector memory cells expressed CD69, indicating they
were recently activated, this finding nonetheless has important
implications in the context of MS and could suggest that the
reactivation of encephalitogenic CD4+ T cells can be carried out
not only by non-cognate T-bet+ DN memory B cells, but also by
naïve B cells, which are present in the inflamed and steady-state
CNS. The result would be a population of autoreactive B and T
cell clones that would expand with each relapse (206).

While this concept is speculative, the identification of these
subsets and the evidence supporting their association with MS,
specifically regarding reactivations that initiate relapses, provides
a new lens through which we could view the inflammatory
events that lead up to progression. Considering the paucity of
inflammation during the progressive phase of MS, these potential
mechanisms may be superseded by other mechanisms during
those stages. Nonetheless, these findings help shed light on which
cell populations may have an important impact on promoting
relapses and would thus represent promising therapeutic targets.
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patients treated with natalizumab in 36 University Hospitals in Europe. We performed the

study in 1,307 multiple sclerosis patients (70.8% anti-John Cunninghan virus positive

antibodies) treated with natalizumab for a median time of 3.28 years. Epidemiological,

clinical, and laboratory variables were collected. Lipid-specific IgM oligoclonal band

status was available in 277 patients. Factors associated with progressive multifocal

leucoencephalopathy onset were explored by uni- and multivariate logistic regression.

Results: Thirty-five patients developed progressivemultifocal leucoencephalopathy. The

multivariate analysis identified anti-John Cunninghan virus antibody indices and relapse

rate as the best predictors for the onset of this serious opportunistic infection in the whole

cohort. They allowed to stratify progressive multifocal leucoencephalopathy risk before

natalizumab initiation in individual patients [area under the curve (AUC) = 0.85]. The risk

ranged from <1/3,300 in patients with anti-John Cunninghan virus antibody indices<0.9

and relapse rate >0.5, to 1/50 in the opposite case. In patients with lipid-specific IgM

oligoclonal bands assessment, age at natalizumab onset, anti-John Cunninghan virus

antibody indices, and lipid-specific IgM oligoclonal band status predicted progressive

multifocal leucoencephalopathy risk (AUC = 0.92). The absence of lipid-specific IgM

oligoclonal bands was the best individual predictor (OR = 40.94). The individual risk

ranged from <1/10,000 in patients younger than 45 years at natalizumab initiation,

who showed anti John Cunningham virus antibody indices <0.9 and lipid-specific IgM

oligoclonal bands to 1/33 in the opposite case.

Conclusions: In a perspective of personalized medicine, disease activity, anti-lipid

specific IgM oligoclonal bands, anti Jonh Cunninghan virus antibody levels, and age can

help tailor natalizumab therapy in multiple sclerosis patients, as predictors of progressive

multifocal leucoencephalopathy.

Keywords: multiple sclerosis, demyelinating diseases, biomarkers, natalizumab, progressive multifocal

leucoencephalopathy, disease modifying treatments

INTRODUCTION

The use of natalizumab, a highly effective therapy approved
for the treatment of active relapsing-remitting multiple
sclerosis (1), is limited by the risk of progressive multifocal
leucoencephalopathy (PML), a serious opportunistic
infection of the central nervous system caused by John
Cunninghan virus (JCV), appearing in about 1/250 treated
patients (2, 3).

The factors most frequently used to stratify PML risk in
multiple sclerosis patients treated with natalizumab are the
presence of anti-JCV antibodies or high anti-JCV indexes in
serum; prior immunosuppressive therapies; and duration of
natalizumab treatment (3–7). These factors have proven to be
effective in reducing the risk of PML in the clinical setting (8, 9).
However, these strategies present some limitations. They depend
on treatment duration and anti-JCV antibody levels, or negative
anti-JCV status may change a long time, and this modifies patient
prognosis (10, 11). Therefore, the search for new factors to stratify
PML risk is of great clinical relevance. A highly inflammatory
disease, revealed by the presence of lipid-specific oligoclonal
IgM bands (LS-OCMB) in cerebrospinal fluid (CSF), associates
with a lower PML risk in natalizumab treated patients (10).
However, it remains unknown if clinical data indicating high

inflammatory course prior natalizumab onset can also predict
PML risk.

It was also demonstrated that mean age is higher in multiple
sclerosis patients suffering PML during natalizumab treatment
(10, 12, 13). However, the role of age as PML risk factor has not
been fully explored.

We studied in a multicenter cohort of multiple sclerosis
patients treated with natalizumab whether patients’ clinical and
demographic characteristics can be useful in predicting PML
onset. Moreover, we further investigated the utility of LS-OCMB
for the stratification of PML risk in combination with other
clinical and laboratory variables.

MATERIALS AND METHODS

This was a multicenter cross-sectional study including 1,307
patients treated with natalizumab (natalizumab treatment
duration: 3.73 ± 2.13 years, mean ± SD) in 36 European
hospitals. The study was approved by the ethical committee
of Ramon y Cajal University Hospital. All patients signed and
informed consent before entering.

Patients were followed every 3–6 months in the neurology
clinics at every participating center, with additional visits in
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case of relapses. Demographic, clinical, and laboratory data
prospectively collected at every center were anonymized and
sent to the coordinator center. All patients signed an informed
consent obtained according to the Declaration of Helsinki
before entry.

Inclusion Criteria
We established the following inclusion criteria:

Patients had to be treated with natalizumab for at least
a year to avoid the effect of a short time of treatment as
confounder factor.

Clinical data had to be obtained prospectively since
disease onset to avoid the lack of accuracy of retrospective
data acquisition.

Data Collection
We established a minimum sample size of 1,000 patients
to analyze all the variables projected. A form was sent to
the participating centers comprising the following variables:
sex, age at first relapse, age at natalizumab initiation, time
between multiple sclerosis onset and natalizumab initiation,
duration of natalizumab treatment, Expanded Disability Status
Scale (EDSS) at natalizumab initiation, Multiple Sclerosis
Severity Scale (MSSS) (14) at natalizumab initiation, relapse
rate measured from multiple sclerosis onset to natalizumab
initiation, previous treatments, serum anti-JCV antibody status
(positive or negative), anti-JCV antibody index (which is
proportional to serum anti-JCV antibody levels) (5), IgG
oligoclonal bands (OCGB), and PML onset. LS-OCMB were
available in a sub-cohort of 277 patients recruited at 29 different
hospitals. LS-OCMBwere determined by isoelectric focusing and
immunoblotting, as previously described (15).

After receiving the first set of results, the database was
debugged three times to complete data collection and correct
inconsistent results. Finally, 69 patients were excluded, because
of incomplete data or treatment duration shorter than 1
year. All the analyses were performed in the remaining 1,240
multiple sclerosis patients. Missing data were found in the
following variables: Anti-John Cunninghan (JC) antibodies were
only available in 1,174 patients (97.5%). Thirty-four of them
developed PML, and 1,140 did not. Of note, in two PML cases
anti-JC antibodies were negative 4 and 6 months before PML
onset, when the last control test was performed. In both cases, the
anti-JC test became positive at PML diagnosis. Anti-JC antibody
levels were only available in 1,016 patients (82%). Twenty-seven
developed PML, and 989 did not; relapse rate before natalizumab
initiation was only obtained in 1,224 cases (98.7%). Thirty-five
developed PML, and 1,189 did not. Finally, data on OCGB were
only available in 756 patients (61%). Thirty-two developed PML,
and 726 did not. Data collection comprised from 31 March 2017
to 15 June 2018.

Statistical Analysis
Results were analyzed with STATA v.14 (StataCorp.2014.
Statistical Software: Release 14. College Station, TX, USA). p <

0.05 were considered as significant.

Normality of the different variables in PML and not PML
groups was assessed with Kolmogorov–Smirnov test. No variable
passed normality test in PML group. Thus, Mann–Whitney
U-test (two tailed) was applied for non-parametric tests and
Fisher exact test (two sided) was used for comparisons of
categorical variables between groups. Univariate tests based on
logistic regression were used to explore variables associated to
PML risk and to calculate odds ratios (OR) and confidence
intervals (CI). Significant results obtained in the univariate
analyses were explored by multivariate tests, and minimal
models were established by eliminating variables loosing
statistical significance.

To assess PML risk in individual patients, a nomogram was
generated from the minimal model logistic regression results.
In this analysis, the program assigns a score to every factor
increasing PML risk. It also creates two parallel scales with
total scores and the correspondent probability of PML. To
explore individual risk in a patient, the total score is calculated
and the corresponding risk read in the probability scale. To
avoid overestimating PML risk, probabilities were corrected by a
factor obtained by dividing previously described PML frequency
in natalizumab treated patients (3) and the one obtained in
our cohorts.

Data Availability
The study protocol, statistical analysis plan, and data not
provided in the article because of space limitations will
be shared upon request by any qualified investigator for
purposes of replicating procedures and results during 3 years
after publication.

RESULTS

We included in the study 1,240 multiple sclerosis patients treated
with natalizumab at 36 different hospitals. Thirty-five developed
PML during natalizumab treatment, and 1,205 did not suffer this
opportunistic infection. Clinical and demographic data of the
patients classified according to PML onset are shown inTable 1A.
The highest differences were found in age at natalizumab
initiation (p = 0.004), relapse rate before natalizumab (p <

0.0001), anti-JCV antibody positivity (p = 0.004), and anti-JCV
index levels (p < 0.0001). PML patients were older at treatment
initiation, showed a lower relapse rate, a higher proportion
tested positive for anti-JCV antibodies before PML, and had
increased anti-JCV antibody indices. We also found that PML
group showed an increased proportion of males (p = 0.04)
and had longer disease duration at natalizumab initiation (p =

0.02). No variation in other clinical or demographic variables
was associated with PML, including prior immunosuppression
or duration of natalizumab treatment. We further explored if
the values of this variable could change depending on anti-
JC antibody values. The median time of treatment was 3.28
years in the whole cohort, the range going from 1.00 to 13.40
years, and the interquartile range (IQR) from 2.06 to 4.82 years.
These values did not change substantially in patients with anti-JC
antibody levels higher (median = 3.32, range: 1.00–11.46, IQR:
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TABLE 1 | Demographic and clinical data.

(A) Total group (N = 1,240) (B) LS-OCMB group (N = 277)

Pml (n = 35) NoT PML

(n = 1,205)

P PML (N = 24) NOT PML

(N = 253)

p

Sex (M/F) 16/19 358/847 0.04 10/14 78/175 0.28

Age at 1st relapse (y) 30.1 ± 9.5 (23–36) 28.2 ± 8.7 (22–33) 0.33 31.1 ± 9.6 28.1 ± 8.41 0.14

Disease duration at

NTZ onset (y)

11.2 ± 7.4

(4.7–17.9)

8.3 ± 6.3 (3.4–11.9) 0.02 12.7 ± 7.8 6.7 ± 5.7 0.0002

Age at NTZ onset (y) 41.3 ± 8.9

(33.2–49.2)

36.5 ± 9.4

(29.9–42.7)

0.004 43.8 ± 8.7 34.8 ± 8.9 <0.0001

Duration of NTZ

treatment (y)

3.4 ± 1.5 (1.1–7.7) 3.8 ± 2.1 (1.0–13.4) 0.77 3.3 ± 1.6 3.47 ± 2.0 0.82

EDSS at NTZ onset 3.3 ± 1.4 (2–4) 3.2 ± 1.6 (2–4) 0.68 3.6 ± 1.4 3.1 ± 1.6 0.07

MSSS at NTZ onset 4.3 ± 2.5 (2.2–6.8) 4.8 ± 2.4 (2.8–6.6) 0.24 4.4 ± 2.6 5.1 ± 2.4 0.23

Relapse rate before

NTZ onset

0.8 ± 0.95

(0.25–0.93)

1.4 ± 1.4

(0.53–1.56)

<0.0001 0.6 ± 0.5 1.6 ± 1.7 <0.0001

Prior IS (yes/no) 7/28 139/1066 0.13 5/19 34/219 0.32

Anti-JCV Abs

(pos/neg)*

32/2 844/331 0.004 21/2 162/87 0.010

Anti-JCV Ab levels* 2.2 ± 1.2

(1.23–3.18)

0.9 ± 1.1

(0.09–1.45)

<0.0001 1.9 ± 1.3 1.0 ± 1.1 0.0047

OCGB (pos/neg) 30/2 651/73 0.48 22/2 234/19 0.88

LS-OCMB (pos/neg) 1/23 162/91 <0.0001

For continuous variables values are expressed as mean ± standard deviation (interquartile range).

*The last measure before study completion; 1st, first; Anti-JCV Ab, anti-John Cunningham virus antibodies; EDSS, expanded disability status scale; F, female; IS, immunosuppression;

LS-OCMB, lipid-specific oligoclonal IgM bands; M, male; MSSS, multiple sclerosis severity score; neg, negative; NOT PML, not progressive multifocal leukoencephalopathy; NTZ,

Natalizumab; OCGB, oligoclonal IgG bands; PML, progressive multifocal leukoencephalopathy; pos, positive; y, years.

2.01–5.03 years) or lower (median = 3.26, range: 1.00–13.40,
IQR: 2.08–4.3 years) than 0.9.

To better define associations of the different variables
with PML onset, we first performed univariate analyses
(Table 2A). Cutoff values were established using receiver
operating characteristic (ROC) curves in case of age, time until
natalizumab initiation, and relapse rate before treatment or pre-
established cutoffs for anti-JCV antibody levels and EDSS and
MSSS scores. The strongest association was found with high anti-
JCV index values, being the clearest one obtained for anti-JCV
indices higher than 0.9 (OR = 18.29, p < 0.001). Additionally,
having anti-JCV index levels >1.5 (OR = 8.58, p < 0.001) and
the presence of anti-JCV antibodies (OR = 6.27, p = 0.012) also
associated with PML onset. Age at natalizumab initiation ≥45
years also increased PML risk (OR = 3.20, p = 0.001). A disease
duration higher than 10 years at natalizumab initiation (OR =

2.37, p = 0.012) and an MSSS score lower than 3 (OR = 2.25, p
= 0.019) was also associated with PML onset. Finally, male sex
associated modestly with an increased PML risk (OR = 1.99, p
= 0.046). On the other hand, having an annualized relapse rate
higher than 0.5 before treatment initiation clearly diminished
PML risk (OR= 4.47, p < 0.001).

Based on univariate analyses, we performed three different
multivariate analyses according to anti-JCV antibody
classification. First, we included all the significant factors
and anti-JCV antibodies classified according to the positive
or negative results (Table 3). In the minimal model, anti-JCV

antibody positivity (OR = 6.04, p = 0.014), annualized relapse
rate before natalizumab <0.5 (OR = 4.25, p < 0.001), and age
at natalizumab initiation ≥45 years (OR = 2.33, p = 0.022)
significantly impacted on PML appearance. In this model area
under the ROC curve was 0.78.

The second multivariate analysis included anti-JCV
antibodies classified using the level of 0.9 as cutoff value.
In the minimal model, only anti-JCV antibody levels≥0.9 (OR=

18.72, p < 0.001) and annualized relapse rate before natalizumab
initiation<0.5 (OR= 4.66, p< 0.001) had an effect on PML risk.
Although only these two factors were significant in this model,
the area under ROC curve was higher (0.85).

Finally, we performed a multivariate analysis using 1.5 as
cutoff value for anti-JC antibody levels. Anti-JCV antibody levels
≥1.5 (OR = 7.85, p < 0.001), annualized relapse rate before
natalizumab initiation <0.5 (OR = 3.73, p = 0.001), and age
at natalizumab initiation ≥45 years (OR = 2.31, p = 0.048)
significantly increased PML risk in this model. The area under
the ROC curve was 0.84.

We made a nomogram analysis of the second multivariate
analysis (cutoff: anti-JCV antibody levels of 0.9) to explore the
contribution of each variable to PML risk. Data are shown
in Figure 1A. We adjusted the risk using a correction factor
obtained calculating the ratio between the numbers of PML cases
per 1,000 patients reported after commercialization (4.16‰) and
that of our cohort (28‰). Patients with anti-JCV antibody levels
lower than 0.9 and annualized relapse rate higher than 0.5 prior
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TABLE 2 | Univariate analysis to explore the ability of different clinical and demographic variables for predicting PML onset during natalizumab treatment.

(A) Total patient group

(n = 1,240)

(B) Patients with a LS-OCMB

study (n = 277)

OR 95% CI P OR 95% CI p

Male sex 1.99 1.06–4.17 0.046 1.60 0.68–3.77 0.28

Age at NTZ onset ≥45 years 3.20 1.60–6.39 0.001 7.36 3.06–17.72 <0.001

Disease duration at NTZ onset ≥10 years 2.37 1.21–4.66 0.012 4.60 1.94–10.90 0.001

NTZ treatment for >2 years 1.02 0.46–2.27 0.96 1.69 0.61–4.70 0.31

NTZ treatment for >3 years 1.25 0.63–2.48 0.53 1.29 0.56–2.99 0.55

NTZ treatment for >4 years 0.99 0.43–1.98 0.97 0.91 0.36–2.27 0.84

NTZ treatment for >5 years 0.43 0.15–1.23 0.12 0.41 0.09–1.80 0.24

Positive anti–JCV Abs 6.27 1.50–26.33 0.012 5.64 1.29–24.61 0.021

Anti-JCV Ab levels ≥0.9 18.29 5.46–61.19 <0.001 9.08 2.54–32.45 0.001

Anti-JC Ab levels ≥1.5 8.58 3.59–20.54 <0.001 4.78 1.71–13.33 0.003

EDSS at NTZ onset <3 0.75 0.38–1.51 0.42 0.43 0.17–1.07 0.07

EDSS at NTZ onset <6 1.15 0.35–3.82 0.82 1.31 0.29–5.90 0.72

MSSS at NTZ onset <3 2.25 1.14–4.43 0.019 2.25 0.95–5.32 0.06

MSSS at NTZ onset <6 0.95 0.47–1.94 0.90 0.86 0.35–2.09 0.74

Relapse rate before NTZ onset <0.5 4.47 2.26–8.86 <0.001 6.77 2.80–16.35 <0.001

Prior immunosuppression 1.92 0.82–4.47 0.13 1.70 0.59–4.84 0.32

LS-OCMB Negative 40.94 5.44–308.20 <0.001

Anti-JCV Abs, anti-John Cunningham virus antibodies; CI, confidence interval; EDSS, expanded disability status scale; LS-OCMB, lipid-specific oligoclonal IgM bands; MSSS, multiple

sclerosis severity score; NTZ, natalizumab; OR, odd ratio; PML, progressive multifocal leukoencephalopathy.

TABLE 3 | Factors predicting PML onset in the total group of patients.

OR 95% CI P

Minimal model with anti-JCV antibodies classified as positive/negative

Anti-JCV antibodies (positive)

Relapse rate before natalizumab

onset <0.5

Age at natalizumab onset ≥45 years

6.04

4.25

2.33

1.43–25.53

2.08–8.69

1.13–4.80

0.014

<0.001

0.022

Area under ROC curve: 0.78

Minimal model with anti-JCV antibodies classified using a level of 0.9 as cut off value

Anti-JCV antibody levels ≥0.9

Relapse rate before natalizumab

onset <0.5

18.7

4.66

5.56–63.02

2.10–10.35

<0.001

<0.001

Area under ROC curve: 0.85

Minimal model with anti-JCV antibodies classified using a level of 1.5 as cut off value

Anti-JCV antibodies levels ≥1.5

Relapse rate before natalizumab

onset <0.5

Age at natalizumab onset ≥45 years

7.85

3.73

2.31

3.25–19.00

1.67–8.34

1.01–5.28

<0.001

0.001

0.048

Area under ROC curve: 0.84

Multivariate analyses.

Anti-JC antibodies, anti-John Cunningham virus antibodies; CI, confident interval; OR, odd ratio; PML, progressive multifocal leukoencephalopathy; ROC, Receiver

operating characteristic.

natalizumab initiation showed a PML risk lower than 0.3‰. If
the annualized relapse rate was lower than 0.5, the PML risk
increased to 1.5‰, and if, in addition, anti-JCV antibody levels

were higher than 0.9, the risk was augmented to 2%. These values

are independent of the sex, disease duration, time on natalizumab

treatment, or previous treatment with anti-suppressive drugs.

Role of Lipid Specific Oligoclonal IgM
Bands in Risk Stratification
Two hundred seventy-seven patients (22.3% of the whole cohort)
were examined for LS-OCMB. Twenty-four of them (8.7%)
developed PML. Clinical and demographic data of these patients
are shown in Table 1B. One hundred and sixty-two of the 253
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FIGURE 1 | Nomogram for predicting progressive multifocal leukoencephalopathy (PML) onset in individual MS patients. The multivariate logistic regression analysis

assigns a score to every variable included in the minimal model. The sum of the scores obtained by a patient is interpolated in the total score point-probability line at

(Continued)
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FIGURE 1 | the bottom of each nomogram and gives the individual PML risk. (A) PML risk in the total cohort. Having a relapse rate lower than 0.5 gives a score of 5

and showing anti-John Cunningham virus antibody levels (anti-JC levels) higher than 0.9 provides a score of 10. Individual patient scores range from 0 to 15 and their

PML risk from <1/3,300 to 1/50, respectively. (B) PML risk in the patients with lipid-specific oligoclonal IgM band (LS-OCMB) detection. Being negative (Neg) for

LS-OCMB gives a score of 10. Showing anti-JC levels higher than 0.9 provides a score of 5.75. Being older than 45 years gives a score of 5.75. Individual patient

scores range from 0 to 21.5 and their PML risk from <1/10,000 to 1/30, respectively.

TABLE 4 | Factors predicting PML onset in the group of patients with LS-OCMB detection.

OR 95% CI P

Minimal model with anti-JCV antibodies classified as positive/negative

LS-OCMB negative

Age at natalizumab initiation ≥45

years

Relapse rate before natalizumab

initiation <0.5

30.44

4.80

3.21

3.94–234.91

1.76–13.14

1.19–8.66

<0.001

0.002

0.022

Area under ROC curve: 0.90

Minimal model with anti-JCV antibodies classified using a level of 0.9 as cut off value

LS-OCMB negative

Age at natalizumab initiation ≥45

years

Anti-JCV antibodies levels ≥0.9

26.83

6.74

6.52

3.33–216.29

2.00–22.73

1.64–25.85

0.002

0.002

0.008

Area under ROC curve: 0.92

Minimal model with anti-JCV antibodies classified using a level of 1.5 as cut off value

LS-OCMB negative

Age at natalizumab initiation ≥45

years

Anti-JCV antibodies levels ≥1.5

31.18

8.85

4.38

3.81–255.16

2.64–29.60

1.33–14.43

0.001

<0.001

0.015

Area under ROC curve: 0.92

Multivariate analyses.

Anti-JCV antibodies, anti-John Cunningham virus antibodies; CI, confident interval; LS-OCMB, lipid-specific oligoclonal IgM bands; OR, odd ratio; PML, progressive multifocal

leukoencephalopathy; ROC, Receiver operating characteristic.

patients not developing PML (64.0%) were LS-OCMB positive.
By contrast, only one of the 24 PML patients (4.2%) displayed
these antibodies (p < 0.0001). Similarly to the whole cohort,
patients suffering PML were older (p < 0.0001), had a longer
disease duration (p = 0.0002) at natalizumab initiation, and
had a lower relapse rate before natalizumab (p < 0.0001). A
higher percentage of these patients were anti-JCV positive (p =

0.010), and they also displayed higher anti-JCV antibody levels
(p= 0.0047).

We followed the same approach described for the entire
cohort. First, we performed univariate analyses (Table 2B). The
conditions associated with PML risk were the following: absence
of LS-OCMB (OR = 40.94; p < 0.001); levels of anti-JCV index
≥0.9 (OR = 9.08, p = 0.001) or ≥1.5 (OR = 4.78, p = 0.003);
or positive anti-JCV antibodies (OR = 5.64, p = 0.021); age
at natalizumab initiation ≥45 years (OR = 7.36, p < 0.001);
annualized relapse rate before natalizumab≤0.5 (OR= 6.77, p<

0.001), and disease duration at natalizumab initiation ≥10 years
(OR= 4.60, p= 0.001).

Again, we made three different multivariate models according
to anti-JCV antibody classification (Table 4). First, we included
all the significant variables and anti-JCV antibodies classified
according to having positive or negative results. In the minimal
model, only absence of LS-OCMB (OR = 30.44, p < 0.001), age
at natalizumab initiation ≥45 years (OR = 4.80, p = 0.002), and

relapse rate before natalizumab initiation <0.5 (OR = 3.21, p =

0.022) had an effect on PML risk. The area under the ROC curve
was 0.90.

In the second multivariate analysis we used an anti-JCV index
of 0.9 as cutoff value. In the minimal model the variables that
significantly impacted PML development were absence of LS-
OCMB (OR = 26.83, p = 0.002), age at natalizumab initiation
≥45 years (OR = 6.74, p = 0.002), and anti-JCV antibody index
≥0.9 (OR = 6.52, p = 0.008). In this model, the area under the
ROC curve was 0.92.

Finally, we performed a multivariate analysis using 1.5 as
cutoff value for anti-JCV antibody levels. Again, absence of LS-
OCMB (OR = 31.18, p = 0.001), age at natalizumab initiation
≥45 years (OR = 8.85, p < 0.001), and anti-JCV antibody levels
≥1.5 (OR = 4.38, p = 0.015) significantly increased PML risk.
The area under the ROC curve was 0.92.

Finally, we repeated a nomogram analysis of the second
multivariate analysis (cutoff: anti-JCV antibody levels of 0.9).
Data are shown in Figure 1B. We adjusted the risk using
a correction factor obtained calculating the ratio between
the numbers of PML cases per 1,000 patients reported after
commercialization (4.16‰) and that of our cohort (87‰).
Patients with LS-OCMB, anti-JCV antibody levels lower than 0.9,
and age at natalizumab initiation younger than 45 years showed a
PML risk lower than 0.1‰. When anti-JCV antibody levels were
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FIGURE 2 | Illustration of predicting progressive multifocal leukoencephalopathy (PML) risk depending on the results of the nomograms. (A) In the whole cohort PML

risk associates with the anti-John Cunningham virus antibody levels (JC) and the relapse rate (RR). (B) In patients with lipid-specific oligoclonal IgM band (LS-OCMB)

detection, PML risk associated with the LS-OCMB, and JC status, and the age at natalizumab onset (ANO).

higher than 0.9 or patients were older than 45 at natalizumab
onset, the risk was augmented to 0.5‰. If both conditions were

present, it rose to 3.5‰. If LS-OCMB were negative too, the risk

increased to 3%. Again, these values were independent of sex,
disease duration, prior immunosuppression, or the duration of

natalizumab treatment.
A graphic representation of PML risk in the two cohorts

depending of the results of the nomograms is shown in Figure 2.
Finally, we studied if OCMB could add some advantage to

previous risk factors in the 47 patients (29 female/19 male)
with anti-JCV antibody levels >1.5, who were treated with
natalizumab formore than 2 years (2.32, 2.01–4.32 years; median,
interquartile range). Results are shown in Table 5. Only one of 23
patients showing OCMB developed a PML. By contrast, 10 out of

TABLE 5 | Value of OCMB for predicting PML onset in patients with anti JC

antibody levels >1.5 and treated with natalizumab for more than 2 years.

PML+ PML-

LS-OCMB+ (n, %) 1, 4.35% 22, 95.65%

LS-OCMB- (n, %) 10, 41.67% 14, 58.33%

Total (n, %) 11, 23.40% 36, 76.60%

Pearson chi2 = 9.12 p = 0.003

LS-OCMB, lipid-specific oligoclonal IgM bands; PML, progressive

multifocal leukoencephalopathy.

24 OCMB negative patients suffered this opportunistic infection
(Pearson chi square= 9.12, p= 0.003).
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DISCUSSION

The appearance of highly effective immunotherapies has changed
disease course of patients with aggressive multiple sclerosis
(1, 16–18). However, efficacy associates with higher risk of
deleterious side effects (19–22). Finding biomarkers that allow
the best balance between efficacy and safety for individual
patients has become a challenge of the most clinical relevance in
multiple sclerosis research.

In case of natalizumab, the most important side effect is
the appearance of PML, an opportunistic infection of the brain
appearing in about one of every 250 treated patients (3, 23). It
may cause patient death or considerable increase of disability.
This has limited the use of this drug. Safety concerns, in both
patient and neurologist sides, often make it difficult to administer
this treatment for long. This is unfortunate, since the clinical
efficacy of this drug in the long term was demonstrated (24).

Additional factors reflecting patient inflammatory status can
contribute to further stratify PML risk. Decreased CD4+ T
cell expression of L-Selectin (CD62L), a molecule implicated
in leukocyte adhesion to the endothelium, during natalizumab
treatment was found to associate with an increase of PML risk
(25). Although validation studies gave no uniform results (26,
27), probably due to the difficulty of measuring this biomarker
in cryopreserved cells, these data may reflect that a decrease in
cells migrating to the central nervous system may increase PML
risk. Another factor indicating that patient inflammatory status
may contribute to stratifying PML risk is one of the actual risk
factors, prior immunosuppression. Previous treatments inducing
a strong immunosuppression increase PML risk (4, 6).

Age, another factor associated with inhibition of the adaptive
immune response in multiple sclerosis and with reduced
lymphocyte migration into the central nervous system (CNS),
also relates to a higher PML risk in multiple sclerosis patients
treated with different biological drugs (10–12, 28). By contrast,
a highly inflammatory disease course revealed by the presence of
LS-OCMB greatly diminishes PML risk (10). We studied here if
clinical data reflecting disease activity may contribute to stratify
PML risk in a cohort of 1,240 patients treated with natalizumab
in 36 European hospitals. We also studied the value of these
variables in combination with LS-OCMB in a sub-cohort of 277
patients in which these antibodies were analyzed.

We did not find any significant association between prior
immunosuppression and PML risk in our cohort, although the
proportion of patients showing prior immunosuppression was
higher in the group of PML patients (20%) than in those not
developing this opportunistic infection (11%). The lower number
of immunosuppressed patients in both PML and not PML cases
compared with previous studies (5) may account for the lack of
significance of this variable in our cohort. However, anti-JCV
antibodies andmostly anti-JCV indices higher than 0.9 continued
to increase the probability of PML in these patients. In addition,
clinical data associated with disease activity also contribute to
identify patients at higher risk. Thus, an MSSS score lower than 3
or relapse rates lower than 0.5 since disease onset is associated
with increased probability of PML. Age older than 45 years at

natalizumab onset also identified patients at higher PML risk.
When including all factors giving significant results in the total
cohort, in a multivariate logistic analysis to identify variables that
were statistically independent, the best predictive model to assess
PML risk included anti-JCV levels higher than 0.9 and annualized
relapse rate below 0.5. We assessed individual PML risk by a
nomogram analysis. When anti-JCV levels where below 0.9 and
relapse rate over 0.5, PML risk was below 1 in every 3,300 treated
patients. If the results were the opposite, it rose to 1/50.

By contrast, natalizumab treatment duration did not associate
with PML risk in our study. The divergence of these results
with those previously published can be partly due to the absence
of patients treated for less than a year, who have extremely
low PML risk, in our cohort. The relatively low number of
patients included in this study (1,306) compared to other cohorts
with more than 5,000 patients (5) may also contribute to
the loss of significance of treatment duration for PML risk
stratification. In addition, the particular characteristics of our
cohort which includes mainly active (median relapse rate 0.88
with a low interquartile range of 0.51) and relatively young
patients (median age at natalizumab onset = 36.5 years, with a
high interquartile range of 42.8 years) also can contribute to the
loss of significance in this variable. If these data are confirmed
in larger cohorts, they could indicate that treatment duration
impact on PML risk could be modulated by younger age and high
disease activity.

The presence of LS-OCMB further contributed to stratify
PML risk. When we performed a multivariate logistic analysis
in the sub-cohort of patients in which these antibodies were
assessed, the best predictive model to assess PML risk changed.
It included LS-OCMB as best individual predictor and anti-
JCV levels higher than 0.9 and age older than 45 years as
factors that equally contributed to PML risk. Nomogram analysis
showed that patients with CSF restricted LS-OCMB, anti-
JCV antibodies below 0.9, and age younger than 45 years at
natalizumab onset had a PML risk below 1 in every 10,000
treated patients. If anti-JCV antibody levels were higher than 0.9
or age at natalizumab onset over 45 years, PML risk was only
1/2,000 in LS-OCMB positive patients. When these two factors
coincided in a patient, the risk rose to 1/300 despite LS-OCMB
positivity and even increased to 1/33 in LS-OCMB negative
patients. These data are clinically relevant since they show that
patients with a more inflammatory disease, who get more clinical
benefit of this highly active drug, are at lower PML risk during
natalizumab treatment.

In conclusion, these data allow to introduce a new algorithm
in which PML risk can be established for individual patients
attending to clinical and laboratory data measured prior to
natalizumab treatment initiation.
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Objectives: The aim of this study was to describe the tolerability, safety, and

effectiveness of ocrelizumab for primary progressive multiple sclerosis (PPMS) and

relapsing multiple sclerosis (RMS) in a clinical practice setting.

Methods: In this retrospective observational study, we analyzed clinical and MRI data in

all patients with PPMS and RMS who had received at least one infusion of ocrelizumab

in two health areas in south-eastern Spain. Patients involved in any ocrelizumab trial and

those patients with a follow-up shorter than 6 months were excluded.

Results: The cohort included 70 patients (42 women) who had received ocrelizumab;

30% had PPMS and 70%, RMS. At baseline, patients’ mean age was 47.1 years in the

PPMS group and 39.2 years in the RMS group, while the median EDSS was 3.0 and 2.5,

respectively. Median follow-up was 13.6months. Themedian number of treatment cycles

was three. Most patients remained free from clinical and MRI activity after ocrelizumab

initiation. Baseline MRI showed T1 Gd-enhancing lesions in 57% of the patients; by the

first MRI control at 4–6 months, all patients except one were free of T1 Gd-enhancing

lesions (69/70, 98.6% P < 0.001). The proportion of patients with NEDA was 94% in the

group of RMS patients who were followed for at least 1 year. Ocrelizumab was generally

well-tolerated; the most common adverse events were infusion-related reactions and

infections, none of which were serious.

Conclusions: Our real-world study supports the tolerability, safety, and effectiveness of

ocrelizumab in clinical practice.

Keywords: multiple sclerosis, drug therapy, ocrelizumab, safety, tolerability, real-world, effectiveness, MRI

INTRODUCTION

The humanized anti-CD20 B cell-depleting antibody ocrelizumab is approved in Europe for
treating adults who have relapsing forms of multiple sclerosis (RMS) with active disease or early
primary progressivemultiple sclerosis (PPMS) with imaging features characteristic of inflammatory
activity (1). The pool of PPMS patients who are candidates for this drug differs from the population
studied in the pivotal phase 3 randomized clinical trials (RCT) with respect to the requirement
of evidence of inflammatory activity from magnetic resonance imaging (MRI) (T1 Gd-enhancing
lesions and/or new or enlarging T2 lesions), which was not present in the RCT inclusion criteria (2).
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In the 96-weeks OPERA I and II trials in patients with
RMS, ocrelizumab significantly reduced annualized relapse rates
vs. interferon β-1a by 46% and the number of gadolinium-
enhancing lesions by 94% (3). Likewise, in the ORATORIO trial
in patients with PPMS, ocrelizumab significantly reduced the
risk of confirmed disability progression relative to placebo (2).
Ocrelizumab was generally well-tolerated in these studies, with
mild to moderate infusion-related reactions and infections being
the most common adverse events (4).

Although RCTs are essential to establish the efficacy of a new
drug, they have limited validity because their results may not
be widely generalizable, since the enrollment of patients with
different comorbidities or previous treatments may be limited
by the inclusion criteria. Real-world studies can thus provide
useful information on the treatment tolerability, effectiveness and
safety (5). Real-world data on ocrelizumab is limited as only a
few studies have been published in Europe (6–8). The aim of this
study was to describe the tolerability, safety and effectiveness of
ocrelizumab for PPMS and RMS in clinical practice in a different
geographical setting.

METHODS

Patients and Study Design
This retrospective, observational study was performed in two
health areas in the province of Alicante: Marina Baixa and
Alicante, both situated in south-eastern Spain with a combined
population of about 500,000. Patients with multiple sclerosis
were attended at Marina Baixa General Hospital and Alicante
General Hospital. The patients of both centers were evaluated
jointly, under the same protocol. The healthcare system in Spain
is universal and free at the point of service.

The main inclusion criteria was a history of initiation of
ocrelizumab. Patients involved in any ocrelizumab trial and those
patients with a follow-up shorter than 6 months were excluded.
We retrospectively analyzed data in all patients with PPMS and
RMS who had received at least one infusion of ocrelizumab.
Multiple sclerosis was diagnosed according to the McDonald
criteria (9). Clinical relapse, disease progression, and adverse
events during ocrelizumab treatment were assessed by reviewing
medical reports until September 18, 2020.

The standard patient follow-up included visits at 3, 6, and
12 months and every 6 months thereafter. During follow-up
visits, clinicians considered new relapses and assessed patients
using the Expanded Disability Status Scale (EDSS). Trained
examiners with Neurostatus certification (APS, LBR) performed
all EDSS assessments.

Patients underwent brain MRI scans before ocrelizumab
initiation (baseline); at 4–6 months (before the second cycle of
ocrelizumab), at 12 months, and at 24 months. Spinal cord and
brain MRI scans, using 1.5 T and 3T scanners, were done on
an individual basis. At least contiguous, 3-mm axial sections,
T2-weighted, FLAIR and gadolinium-enhanced T1-weighted
scans through the whole brain were acquired in all patients
according to published guidelines (10). MRI scans were read by
experienced radiologists.

Baseline data collected from medical records were as follows:
(a) demographic variables, (b) type of multiple sclerosis, (c)
disease-modifying therapy before starting on ocrelizumab, (d)
EDSS score, (e) number of relapses in the previous year, (f) time
since diagnosis, (g) number of gadolinium-enhancing lesions
on MRI, and (g) reason for starting ocrelizumab. Variables
and outcomes assessed during follow-up were: (a) duration of
follow-up, (b) number of relapses, (c) EDSS at the last visit, (d)
number of ocrelizumab cycles, (e) adverse events, (f) number of
gadolinium-enhancing lesions on the first MRI after ocrelizumab
initiation (4–6 months), (g) number of new T2-lesions and
T1 gadolinium-enhancing lesions in the annual MRI, and (h)
discontinuation of ocrelizumab.

Clinical and MRI Outcomes
A relapse was defined as new or recurrent symptoms and
objective typical findings of multiple sclerosis with a duration of
at least 24 h, in the absence of fever or infection (9). Disability
progression was defined as a sustained (≥3 months) increase in
the EDSS score, of: 1.5 points if the baseline EDSS score was 0; 1
point if the baseline score was 1–5.5; and 0.5 points if the baseline
EDSS score was 6.0 or more. Disability improvement was defined
as a sustained (≥3 months) decrease in the EDSS score, of: 0.5
points if the baseline EDSS score was 6.5 or more, or one point if
the baseline score was 6.0 or less (11).

Clinical activity was defined as relapse and/or disability
progression, and MRI activity was defined as the presence of
T1 gadolinium-enhancing lesions at any time point or new T2
lesions on the annual MRI (compared to the MRI performed at
4–6 months). Highly active disease was defined as one or more
relapse in the previous year and one or more T1 gadolinium-
enhancing lesion on the baseline MRI.

No evidence of disease activity (NEDA) outcome was assessed
in RMS patients who were followed for at least 1 year. NEDA
status was defined as the combined absence of clinical (relapses
and disability progression) and MRI activity (12).

Treatment Protocol
Ocrelizumab was administered according to the schedule
recommended in its summary of product characteristics (1).
Before ocrelizumab administration, all patients were evaluated
by their attending neurologist about symptoms suggestive
of COVID-19 after Covid pandemic. The initial 600mg
cycle was administered as two separate intravenous infusions
of 300mg, at a 2-weeks interval. Subsequent cycles were
administered as a single 600mg intravenous infusion every 6
months. The premedication for all cases consisted of 100mg
intravenous methylprednisolone, 10mg of cetirizine or 5mg
of dexchlorpheniramine, and 1,000mg of paracetamol. Patients
were monitored at hospital during the infusion and for 1 h after
its completion. Infusion-related reactions included all symptoms
and events occurring during or within 24 h of the infusion (in
hospital or at home) and were graded as mild, moderate, severe,
or life-threatening according to Common Terminology Criteria
for Adverse Events (CTCAE) version 4.0 (13).
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Statistical Analysis
Quantitative variables are described using the mean ± standard
deviation (SD) or median and range and they were compared
with Student test or Mann–Whitney U depending on the
normality of the distribution. Qualitative variables are presented
as absolute and relative frequencies and were compared with
chi-squared test. We compared the number of patients with T1
gadolinium-enhancing lesions on MRI at baseline and follow-
up using McNemar’s test. All calculations were performed with
a statistical significance of 5% and for every relevant parameter,
we calculated the confidence interval (CI) of 95%. The statistical
package used was the IBM SPSS Statistics version 25.

RESULTS

Cohort Characteristics
A total of 70 patients (42 female and 28 male), who had received
at least the first cycle of ocrelizumab and with a follow-up
longer than 6 months were included. There were no significant
differences in baseline demographics and clinical characteristics
(age, sex, EDSS, disease duration) for the two centers. Their
clinical characteristics are summarized in Table 1. Twenty-one
patients (30%) with a mean age 47.1 years had PPMS, and 49
patients (70%) with a mean age of 39.2 years, RMS. Relevant
comorbidities according to the treating neurologist were present
in 24% of patients (Table 2).

The main reason for switching to ocrelizumab for RMS was
treatment failure due to clinical relapse, MRI activity or both
(36/39, 92%). One patient on fingolimod was switched due to
hepatic toxicity, and another one (also on fingolimod) because
of persistent vomiting after bariatric surgery. The patient on
rituximab was switched due to serum sickness.

In the RMS group at baseline, median EDSS at was 2.5, the
annualized relapse rate in the previous year was 1.3 ± 0.65, 63%
(31/49) of patients had gadolinium-enhancing lesions on MRI,
and 61% (30/49) had highly active disease. In the PPMS group at
baseline, median EDSS was 3.0 and 43% (9/21) of the patients had
gadolinium-enhancing lesions on MRI.

TABLE 1 | Baseline characteristics in our cohort of 70 patients with multiple

sclerosis treated with ocrelizumab.

Patients RMS (n = 49) PPMS (n = 21)

Age at ocrelizumab start 39.2 ± 10.9 47.1 ± 10.5

Sex (Female) 69% 38%

Time since diagnosis

(years)

7.7 ± 6.7 2.8 ± 4.1

Baseline EDSS; median

(IQR)

2.5 (2–3) 3.0 (3–4.8)

ARR previous year 1.3 ± 0.65 –

Treatment naive n/N (%) 10/49 (20%) 19/21 (90%)

Patients with at least

one Gd-enhancing

lesions, n/N (%)

31/49 (63%) 9/21 (43%)

ARR, anualized relapse rate; EDSS, Expanded Disability Status Scale; IQR,

interquartile range.

Ninety percent of PPMS patients were treatment-naive,
compared to 20% of RMS patients. Before starting ocrelizumab,
patients’ most recent treatments included beta-interferon (n
= 12), dimethyl fumarate (n = 11), fingolimod (n = 10),
teriflunomide (n = 2), cladribine (n = 2), glatiramer acetate
(n = 2), rituximab (n = 1), and alemtuzumab (n = 1). No
patient switched from natalizumab to ocrelizumab. There was
no washout period after beta-interferon and glatiramer acetate,
but for patients on fingolimod, it was 1 month; on teriflunomide,
2 weeks, after undergoing the accelerated elimination procedure
with cholestyramine; and on dimethyl fumarate, 1 week, except
for one patient with lymphopenia that required a longer washout
interval. The washout period for the patient on rituximab was
6 months, and the patient on alemtuzumab began ocrelizumab
16 months after the second cycle of alemtuzumab. No patient
experienced a relapse during the washout period.

Clinical Course After Treatment Initiation
With Ocrelizumab
The clinical course was assessed in all the patients who began
treatment with ocrelizumab, with a mean follow-up of 13.6
months (range 6–32). Follow-up was longer in the patients with
PPMS compared to those with RMS (17 vs. 12 months, p <

0.05). No patient was lost to follow-up. The median number of
treatment cycles was 3 (range 2–6).

The clinical and MRI outcomes after ocrelizumab initiation
are outlined in Table 3. Among the 21 patients with PPMS, one
patient (5%) experienced disability progression and discontinued
treatment. In the 49 patients with RMS, only one had a relapse,
none experienced disability progression, and nine showed
disability improvement (18%, 95% CI 10–31%). The annualized
relapse rate fell from 1.3 ± 0.65 before ocrelizumab initiation
to 0.02 ± 014 after (P < 0.001). There was no evidence of
clinical activity (relapses and/or disability progression) in 98% of
RMS patients.

Baseline MRI showed T1 Gd-enhancing lesions in 57% of
the patients (RMS: 63%, PPMS: 43%). All patients except one
were free of T1 Gd-enhancing lesions at the first control MRI

TABLE 2 | Comorbidities in patients treated with ocrelizumab (n = 70).

Comorbidity N patients

Bipolar disease 1

Cerebral palsy 1

Chronic migraine 1

Diabetes mellitus 2

Heart disease 2

Hepatitis B inactive carrier 1

Hodgkin’s lymphoma in remission 1

Hypertension 2

Morbid obesity 2

Pituitary adenoma 1

Psoriasis 1

Thrombocythemia 1

Uveitis 1
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TABLE 3 | Clinical and MRI outcomes (n = 70).

Outcome

Relapses in RMS patients

ARR 12 months prior to study inclusion 1.3

ARR after ocrelizumab initiation 0.02

Disability progression (EDSS) 1/70 (1.4%)

MRI

Patients with Gadolinium-enhancing lesions at:

Baseline 40/70 (57%)

4–6 months 1/70 (1.4%)

12 months 0/46 (0%)

New or enlarging T2-hyperintense lesions at 12

months

1/46 (2.2%)

ARR, annualized relapse rate; RMS, relapsing multiple sclerosis.

TABLE 4 | Adverse events in 70 patients treated with ocrelizumab.

Adverse event n (%)

Any adverse event 37 (53%)

Infusion-related reactions* 30 (43%)

Mild 14 (20%)

Moderate 16 (23%)

Severe 0

Infections 9 (13%)

Urinary tract infections 5

Pneumonia 1

Cellulitis 1

Gastroenteritis 1

Dental phlegmon 1

Others 2 (3%)

Alopecia areata 1

Biliary colic 1

*Infusion-related reactions included pruritus, sore throat, rash, flushing, urticaria,

erythema, headache, irritability and myalgias.

performed at 4–6 months (69/70, 98.6% P < 0.001). At the MRI
at 12 months, all patients were free of T1 Gd-enhancing lesions
(0/46, P < 0.001), and only one patient showed new T2 lesions
compared to the previous MRI (2.2%).

The proportion of patients with NEDAwas 94% (31/33) in the
group of RMS patients who were followed for at least 1 year.

Tolerance and Safety
Just over half (37/70, 53%) of the patients reported adverse
events, none of which were serious (Table 4). The risk of adverse
events was higher in the group of patients with previous DMT
(59%) than in the group of patients who were treatment-naïve
(45%) but the difference was not statistically significant (P =

0.257). The most frequent adverse events were infusion-related
reactions: 43% (95% CI 32–55%) reported at least one; all of these
were mild to moderate and were treated by reducing the infusion
rate and administering symptomatic therapy if needed. The rate
of this complication decreased from 40% (28/70) in the first cycle
to 16% (11/70) thereafter. Aspirin 300mg was included in the
premedication protocol in some patients to prevent flushing.

Nine patients had infections: five had urinary tract infections
and one each pneumonia, gastroenteritis, cellulitis, and dental
phlegmon. No patient developed symptoms suggestive of
COVID-19. No patient required hospitalization, and no
malignancies were detected. The switch from rituximab to
ocrelizumab due to rituximab-induced serum sickness was
well-tolerated and the patient did not develop serum sickness
after the first cycle (two infusions) of ocrelizumab.

Two patients (2.9%) discontinued ocrelizumab; one due to
pregnancy and the other one because of lack of efficacy, but none
did so because of an adverse event or tolerability.

DISCUSSION

Ocrelizumab has recently been approved in Europe for the
treatment of patients with multiple sclerosis, but European
data on its real-world use are limited (6–8). Our results
support the safety and effectiveness of ocrelizumab in a clinical
practice setting.

The results of clinical trials of ocrelizumab may not
be generalizable to clinical practice if patients’ baseline
characteristics are significantly different from those of trial
participants. With regard to age, disease duration and the
percentage of treatment-naïve patients, our cohort of PPMS
patients was similar to that in the ORATORIO phase 3 trial
of ocrelizumab. The number of patients with gadolinium-
enhancing lesions on the baseline MRI was slightly higher (43.5
vs. 27.5%). Only one of the 21 patients with PPMS in our cohort
experienced confirmed disability progression (mean follow-up
of 17 months). A recent real-world data study confirmed that
ocrelizumab can stabilize disability progression in patients
with PPMS and three out of 17 patients even showed clinically
relevant improvement in disability status (8). In the ORATORIO
trial, pre-specified non-powered subgroup analyses indicated
that patients who were younger or had T1 Gd-enhancing lesions
at baseline had a greater treatment benefit than older patients or
those without T1 Gd-enhancing lesions, which may explain the
low rate of disability progression in our cohort (14).

Our results confirm the rapid suppression of new focal brain
MRI lesion activity with ocrelizumab. In our cohort, 98.6% of
patients were free of T1 Gd-enhancing lesions at the first control
MRI performed at 4–6 months. The analysis of phase 2 MRI
data of the ocrelizumab 600mg dose revealed near-complete
suppression of T1 Gd-enhancing lesions by week 12 (15). MRI
data were lacking in the already published ocrelizumab real-
world studies (6–8).

The overall annualized relapse rate of patients with RMS
in the study by Ellwardt et al. was 0.17 (95% CI 0.10–0.24),
which was very similar to that of the OPERA 1 phase 3 clinical
trial (0.16, 95% CI 0.12–0.20). In our cohort, the proportion
of patients with NEDA was 94% in the group of RMS patients
who were followed for at least 1 year. The greater treatment
benefit observed in our study may be due to the higher
number of patients with highly active disease (61%). Subgroup
analyses comparing ocrelizumab and other disease-modifying
therapies (natalizumab, alemtuzumab, fingolimod, cladribine,
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teriflunomide, and dimethyl fumarate) have found higher efficacy
in patients with more active disease (16–22).

About three quarters of the RMS patients included in the
OPERA trial were treatment-naive, and the most common
previous therapies were interferon and glatiramer acetate (3). In
contrast, in our cohort and in other observational studies most
RMS patients had been previously treated with other disease-
modifying therapies (6, 7). Nonetheless, prior treatment per se did
not impact the magnitude of the beneficial effect of ocrelizumab
although previous therapies in the pivotal trial and in the
observational cohorts were rather different (16). Ocrelizumab
in the observational cohorts showed efficacy not only after
switching from first-line injectable treatments but also after
switching from highly effective therapies such as alemtuzumab,
natalizumab, fingolimod, and cladribine, although the participant
numbers were small.

As observed in the phase 3 trials and in the real-
world studies, mild to moderate infusion-related reactions and
mild infections were the most common adverse events. The
percentage of infusion-related reactions in our study (43%)
was similar to that of the pivotal clinical trials (ORATORIO:
39.9%, OPERA 1: 30.7%, OPERA 2: 37.6%) and higher
than in other observational studies (6, 7). The premedication
protocol in the three observational cohorts included intravenous
methylprednisolone, antipyretics, and antihistamines, but the
dose of methylprednisolone was different: we used 100mg
as indicated in the summary of product characteristics while
250mg was used in the other two studies. Whether the reason
for the observed difference in the rate of infusion-related
reactions resides in the different doses of methylprednisolone or
underreporting from patients warrants further study.

The most common infections observed in the clinical trials
of ocrelizumab were upper respiratory tract and urinary tract
infections. Minor infections were reported in 8 and 5% of
patients in other observational cohorts (6, 7). In our cohort,
this proportion was higher (13%) which may be explained by
the longer follow-up with ocrelizumab in our series. Besides,
it is likely that in our case there was underreporting of upper
respiratory tract infections since most patients do not consult
their physicians for symptoms of nasopharyngitis. While most
reported infections to date have beenminor, there have been a few
isolated case reports of severe viral infections, such as a fulminant
hepatitis associated with echovirus 25 and HSV-2 encephalitis, in
patients on ocrelizumab (23, 24). We did not observe any serious
infections, while the rate was 1.3% in the OPERA trial and 6.2%
in the ORATORIO trial (2, 3).

We observed a very low treatment discontinuation rate
with ocrelizumab, consistent with findings from the phase 3
trials and other observational studies. Only two patients (2.9%)
discontinued ocrelizumab; one due to pregnancy and the other
one because of lack of efficacy, but none did so due to safety
issues. The rate of treatment discontinuation due to adverse
events was 3.2% in the 96-weeks OPERA 1 trial and 4.1% in the
≥120-weeks ORATORIO trial (2, 3). The annual discontinuation
rate (3%) was lower for rituximab, another anti-CD20 B cell–
depleting antibody, compared to other DMTs in patients with
newly diagnosed RMS in a real-world study from Sweden (25).

The effectiveness of ocrelizumab in this study is similar to that
of rituximab in a similar general hospital setting although there
are some differences concerning secondary infectious adverse
events and discontinuation rate (26). The discontinuation rate
in this study was 2.8% and no patient required hospitalization
due to infectious adverse events while the discontinuation rate
was 14.4% in the rituximab observational study from Sweden and
four patients (4.8%) required hospitalization due to infectious
adverse events. However, the follow-up was longer and the
patients slightly older in the Swedish cohort which may explain
the observed differences.

The main limitations of this study are the small sample, its
retrospective design, a short time of follow-up and the absence of
a control group. On the other hand, the study provides MRI and
NEDA data that are not available from other real-world studies
and a longer time of follow-up. Besides, the study was conducted
in a general hospital setting with universal healthcare access,
eliminating the bias of a tertiary referral center or unequal access
to healthcare or DMTs.

In conclusion, our data confirm the short-term effectiveness,
tolerability, and safety of ocrelizumab in real-world clinical
practice. Further studies are needed to assess patient outcomes
with longer follow-up periods.
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Several clinical trials have demonstrated the efficacy of lytic therapies targeting B cells

in the treatment of relapsing multiple sclerosis (MS). More modest efficacy has been

noted in the primary progressive subtype of MS. Clinical success has increased interest

in the role of B cells in the pathogenesis of MS and in ways to potentially improve upon

current B cell therapies. In this mini review, we will critically review previous and ongoing

clinical trials of anti-CD20monoclonal antibodies in MS, including rituximab, ocrelizumab,

ofatumumab, and ublituximab. Side effects and adverse event profiles will be discussed.

Studies examining the proposed mechanisms of action of B cell depleting therapies will

also be reviewed.

Keywords: multiple sclerosis, anti-CD20 agent, rituximab, ofatumumab, ocrelizumab, ublituximab

INTRODUCTION

Four lytic monoclonal antibodies that target the CD20 molecule on B cells have now undergone
clinical trials in relapsing multiple sclerosis (RMS). These successful trials showed B cell depletion
to be an effective treatment for RMS, focusing scientific attention on the role of B cells in MS.
Here we summarize trials using anti-CD20 therapies in RMS and discuss proposed mechanisms
of action. Although rituximab (RTX) and ocrelizumab (OCR) have been studied in and OCR is
approved for primary progressive MS (PPMS) (1, 2), due to word limitations PPMS studies will not
be discussed.

CLINICAL TRIALS OF B-CELL THERAPIES IN RELAPSING
MULTIPLE SCLEROSIS

Rituximab
Rituximab is a chimeric mouse-human monoclonal lytic antibody directed at CD20 (3, 4). Two
early phase clinical trials of B-cell depletion using RTX as a therapy in relapsing-remitting MS
(RRMS) (5, 6) are summarized in Table 1A. An early phase 2 trial in 30 RMS patients with contrast-
enhanced lesions (CELs) on brain MRI used RTX at oncology dosing (375 mg/m2 weekly, 4 doses)
as add-on to injectable diseasemodifying therapies (DMTs) (5). It showed 88% reduction of number
of CELs on brain MRIs after RTX treatment (p < 0.0001).

The HERMES trial was the first double-blind, placebo-controlled trial of RTX in RMS, and
demonstrated a significant reduction in CELs (p < 0.001) along with an almost 50% reduction in
ARR at 48 weeks (p= 0.04) vs. placebo (6). CELs remained near zero at 48 weeks, despite no further
treatment. These and concurrent observational studies (10) led to increased interest in targeting B
cell therapies for the treatment of MS.

As a mouse-human chimeric mAb, development of anti-drug neutralizing mAbs is of concern.
RTX is approved for chronic use in several diseases, such as rheumatoid arthritis and Wegener’s
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granulomatosis (but not for MS in the United States).
Depending on the disease, the duration of exposure
to RTX and the assay methodology, anti-RTX Abs
(not all of which were shown to be neutralizing) have
been reported in 11 to >50% of people taking RTX
chronically (11).

Ocrelizumab
Ocrelizumab (OCR) is a fully humanized lytic mAb targeting
CD20 (14). As a fully humanized mAb, it evokes less anti-drug
antibody formation. A phase 2 randomized, double-blind

TABLE 1A | A summary of the phase 2 clinic trials of anti-CD20 therapies in RRMS.

Anti-

CD20

mAb

Primary

endpoint

Intervention/

control groups

Patient number

(% Female)

Mean age ±

Standard

deviation

ARR

[relative

reduction]

(p-value)

Disability

progression

(p-value)

Mean new

CELs

(p-value)

Mean new T2

lesions

(p-value)

References

RTX

(HERMES

Trial)

Number of

CELs at

weeks 12, 16,

20, and 24

RTX 1,000mg IV 69 (52%) 39.6 ± 8.7 0.20 [50%]

(p = 0.04)

NR 0.2 (p < 0.001) NS (6)

Placebo 35 (29%) 45.5 ± 8.5 0.40 NR 4.5 NS

RTX Number of

CELs on 3

pre-treatment

MRIs vs. 3

post-

treatment

MRIs

RTX 375 mg/m2

weekly × 4

doses as add on

to IFNβ or

glatiramer

acetate.

30 (73.3%) 43.5 (20–50) 0.23 NR 88% reduction

post-treatment

vs.

pre-treatment

NR (5)

OCR Number of

CELs at

weeks 12, 16,

20, 24

OCR 600mg 55 (64%) 35.6 ± 8.5 0.13 [79%]

(p = 0.0005)

NR 0.8

(p < 0.0001)

0.0

(p < 0.0001)

(7)

OCR 2,000mg 55 (69%) 38.5 ± 8.7 0.17

[73%],

(p = 0.0014)

NR 0.8

(p < 0.0001)

0.0

(p < 0.0001)

IFNβ-1a 30

mcg/week IM

54 (59%) 38.1 ± 9.3 0.36 [43%]

(p = 0.07)

NR 7.2 1.8

Placebo

infusions days 1

and 15, received

OCR at 24

weeks

54 (67%) 38.0 ± 8.8 0.64 NR 6.6 1.4

OFA Safety OFA 100, 300,

or 700mg × 2

doses followed

by placebo

26 (61.5%) 36.3 ± 7.9 NS NS 8–24 weeks

0.04

(p < 0.001)

24–48 weeks

0.12

8–24 weeks

0.12

(p < 0.001)

24–48 weeks

0.12

(8)

Placebo

followed by OFA

100, 300, or

700mg ×2

doses

12 (50%) 36.0 ± 9.1 NS NS 8–24 weeks

9.69

24–48 weeks

0.09

8–24 weeks

10.67

24–48 weeks

0.09

UTX B cell

depletion

Ublituximab

150mg IV

followed by 400

or 600mg at

weeks 2 and 24

36 (reported in

subgroups only)

Reported in

subgroups

only

0.07 12 weeks

7.0%

24

weeks 17.0%

0.00 24–48 weeks

0.2

(9)

Placebo 12 (NR) NR NR NR NR NR

ARR, annualized relapse rate; CEL, contrast enhancing lesions; mAb, monoclonal Antibody; NS, not significant; NR, not reported; OCR, Ocrelizumab; OFA, Ofatumumab; RRMS,

Relapsing Remitting MS; UTX, Ublituximab.

trial compared 600mg OCR and 2,000mg OCR delivered
intravenously on days 1 and 15 with placebo and with IFNβ-
1a 30 micrograms IM weekly 1:1:1:1 in 218 RRMS subjects
(Table 1A) (14). The study showed 89% reduction in the total
number of CELs at 24 weeks in the OCR 600mg group (p <

0.0001) and 96% reduction in the 2,000mg group (p < 0.0001)
vs. placebo. ARR at 24 weeks was 0.13 in the 600mg dose OCR
group, significantly<0.64 for placebo and 0.36 for IFNβ-1a. ARR
was also reduced in the 2,000mg dose OCR group compared
to placebo but did not reach statistical significance compared
to IFNβ-1a.
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TABLE 1B | A summary of the phase 3 clinical trials of anti-CD20 therapies in RRMS.

Anti-CD20

mAb

Primary

endpoint

Intervention/

Control groups

Patient

number (%

Female)

Mean age ±

Standard

deviation

ARR

[relative

reduction]

(p-value)

Disability

progression

(p-value)

Mean new

CELs

(p-value)

Mean new T2

lesions

(p-value)

References

OCR

(OPERA I)

ARR OCR 600mg

every 6 months

410 (65.9%) 37.1 ± 9.3 0.156 [46%]

(p < 0.0001)

12 weeks pooled

for OPERA I and II:

9.1% [60%]

(p < 0.001)

0.016

(p < 0.0001)

0.323

(p < 0.0001)

(12)

24 weeks pooled

6.9% [60%]

(p = 0.003)

IFNβ-1a 411 (66.2%) 36.9 ± 9.3 0.292 12 weeks pooled

13.6%

0.286 1.413

24 weeks pooled

10.5%

OCR

(OPERA II)

ARR OCR 600mg

every 6 months

417 (65%) 37.2 ± 9.1 0.155 [47%]

(p < 0.0001)

Pooled data above 0.291

(p < 0.0001)

0.325

(p < 0.0001)

IFNβ-1a 418 (67%) 37.4 ± 9.0 0.290 Pooled data above 0.416 1.904

OFA

(ASCLEPIOS

I)

ARR OFA 20mg every

4 weeks after

20-mg loading

doses on days

1, 7, and 14

465 (64.4%) 38.9 ± 8.8 0.11 (p <

0.001)

3 months pooled

for ASCLEPIOS I

and II: 9.3% [66%]

(p = 0.002)

0.012

(p < 0.001)

0.72/year

(p < 0.001)

(13)

6 months pooled

7.5% [68%]

(p = 0.012)

Teriflunomide

14mg daily

462 (68.6%) 37.8 ± 9.0 0.22 3 months pooled

13.7%

0.452 4.0/year

6 months pooled

10.6%

OFA

(ASCLEPIOS

II)

ARR OFA 20mg every

4 weeks after

20-mg loading

doses on days

1, 7, and 14

481 (66.3%) 38.0 ± 9.3 0.10

(p < 0.001)

Pooled data above 0.032

(p < 0.001)

0.64/year

(p < 0.001)

Teriflunomide

14mg daily

474 (67.3%) 38.2 ± 9.5 0.25 Pooled data above 0.514 4.15/year

ARR, annualized relapse rate; CEL, contrast enhancing lesions; mAb, monoclonal Antibody; NS, not significant; NR, not reported; OCR, Ocrelizumab; OFA, Ofatumumab; RRMS,

Relapsing Remitting MS; UTX, Ublituximab.

Two identically designed phase 3 trials (OPERA I and II)
compared OCR with IFNβ-1a in RRMS (12). These multicenter,
double-blind, double-dummy, parallel-group trials enrolled
1,656 RRMS patients (OPERA I 821; OPERA II 835) who were
randomized 1:1 to receive OCR 600mg every 24 weeks or IFNβ-
1a 44 micrograms subcutaneously injected three times per week
over 96 weeks. Patients were between 18 and 55 years of age,
with EDSS score ≤5.5, and had at least two documented clinical
attacks within 2 years, or 1 within 1 year prior to screening. The
primary endpoint, ARR, was reduced relative to IFNβ-1a by 46
and 47%, CELs were reduced by 94 and 95%, the number of new
and/or enlarging T2 lesions was reduced by 77 and 83%, and rate
of brain volume loss was reduce by 22.8 and 14.9% in OPERA
I and OPERA II, respectively. In pre-specified pooled analyses,
the percentage of subjects with 3 months confirmed disability
worsening (CDW) and 6-months CDW was 40% lower in the
OCR groups compared with IFNβ-1a (Table 1B).

Ofatumumab
Ofatumumab (OFA) is fully human mAb targeting CD20-
expressing cells (15). An early small phase 2, placebo-controlled,
double-blind trial demonstrated no safety concerns in 38 RRMS
subjects OFA or placebo 2 weeks apart (Table 1A) (8). This
study was followed by a larger, phase 2, multicenter, double-
blind study of OFA (17) that enrolled 232 RRMS subjects
randomized to receive subcutaneous OFA 3, 30, or 60mg every
12 weeks, OFA 60mg every 4 weeks, or placebo every 12 weeks
or every 4 weeks for 24 weeks. After the 12-weeks placebo-
controlled period, the placebo group received a single 3mg
OFA dose while the remaining subjects continued their original
dose of OFA. At 12 weeks, mean cumulative new CELs was
reduced 65% for all OFA groups compared with placebo (p <

0.001). Post-hoc analysis excluding weeks 1–4 estimated a ≥90%
reduction in CELs at 12 weeks for all groups that received
≥30 mg OFA.
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Two identically designed multicenter, double-blind,
double-dummy, parallel-group phase 3 trials compared 20mg
subcutaneous OFA every 4 weeks to 14mg oral teriflunomide
daily, randomized 1:1 (13). The trials enrolled 927 and 955
subjects, respectively. Subjects enrolled were mostly RRMS,
but a small percentage (5.9% in ASCLEPIOS I and 5.6% in
ASCLEPIOS II) had active secondary progressive MS (SPMS).
Inclusion required at least 2 documented clinical attacks within
2 years or 1 within 1 year of screening, or a CEL on MRI in
the year before randomization. EDSS scores at baseline were
≤5.5. Both studies met their primary endpoint with similar
and significant relative reductions in ARR in the OFA arms.
ARR for the OFA arms were reduced by over 50% relative to the
teriflunomide arms (0.11 vs. 0.22 and 0.10 vs. 0.25 in ASCLEPIOS
I and II, respectively). Significant (>30%) reductions in CDW
relative to teriflunomide were seen in pooled 3 and 6-months
CDW analyses (10.9 vs. 15.0% and 8.1 vs. 12.0%, respectively).
Six-months sustained disability improvement favored the OFA
arm in both trials but did not reach statistical significance.
Significant reductions in mean CELs per scan (0.01 vs. 0.45, and
0.03 vs. 0.51 in ASCLEPIOS I and II, respectively) and new or
enlarging T2 lesions per year (0.72 vs. 4.00, and 0.64 vs. 4.15,
respectively) were seen in the OFA vs. teriflunomide groups.
Serum neurofilament light chain concentrations were reduced
in the OFA arm relative to teriflunomide arm by 7% at month
3, 27% at month 12, and 23% at month 24 in ASCLEPIOS I and
by 11% at month 3, 26% at month 12, and 24% at month 24 in
ASCLEPIOS II (Table 1B).

Ublituximab
Ublituximab (UTX) is a chimeric mAb targeting CD20 that has
been glycoengineered to remove sugar molecules, resulting in
enhanced lytic potency (18) (Table 2). In a phase 2, placebo-
controlled trial of UTX, 48 RRMS subjects were randomized 3:1
to receive UTX IV or placebo on day 1, day 15, and week 24 (9).
No CELs were seen at weeks 24 and 48, and a 10.6% reduction in
T2 lesion volume was seen in the UTX group vs. placebo. Further
studies of this drug are ongoing. As a chimeric mAb, the potential
development of anti-UTX Abs will need to be monitored.

SAFETY CONSIDERATIONS

Infusion Reactions
Infusion reactions were the most common adverse events in
the OCR and RTX phase 3 trials. These were mostly mild
to moderate in severity and decreased in rate and severity
with subsequent dosing. There were no fatal or life-threatening
reactions in the phase 3 trials. Longer-term safety event reporting
data suggest that infusion related reactions occur at similar rates
in MS patients treated with RTX and OCR at 4.82 and 4.76%,
respectively (19). Injection reactions with subcutaneous OFA
occurred at 16.1 and 24.1% in the ASCLEPIOS I and II trials,
respectively and were largely confined to the first dose.

Infections Including Progressive Multifocal
Leukoencephalopathy (PML) and
COVID-19
The most common minor infections seen in the phase 3 trials
of RTX, OCR, and OFA were upper respiratory infections,
nasopharyngitis, and urinary tract infections (UTIs). These
occurred at similar rates in the anti-CD20 groups of these trials.
Recent real-world safety reporting data showed nearly a 2-fold
higher rate of minor infections in OCR compared to RTX with
significantly higher rates of UTIs, nasopharyngitis, and oral
herpes (19).

As of end of January 2020, nine cases of definite PML
according to AAN criteria have been reported in MS patients
receiving OCR (20). Seven of these cases were in anti-
JCV antibody positive patients who had previously received
natalizumab; one case occurred in a patient previously treated
with fingolimod. One reported case of PML occurred in a patient
treated with OCR that had not received prior DMTs, but this
was confounded by older patient age (78 years) and low absolute
lymphocyte counts prior to OCR treatment.

A potential risk of anti-CD20 therapies in people with MS
infected with SARS-CoV-2 has been reported. A retrospective
study of 784MS patients with SARS-CoV-2 infection conducted
by the Italian MS and COVID-19 registry found increased risk of
severe COVID-19 in people treated with OCR or RTX with an
odds ratio of 2.59 (p = 0.002) (21). A multi-center retrospective
French study with only 347 total patients did not find an
association of severe COVID-19 with anti-CD20 therapies (22).
The North American COViMS Registry has reported 858MS
patients with SARS-CoV-2 infection (23). Multivariable logistic
regression analysis demonstrated an OR of 2.31 (p < 0.002) for
those on anti-CD20 to have higher chance of death, ICU or
hospitalization compared with those on other DMTs. None of
these early reports have true denominators. Research in this area
is ongoing; COViMS Registry and several other worldwide efforts
continue to accrue data.

Malignancy
Fifteen malignancies were observed over the 96-weeks study
periods in patients randomized to OCR compared to 4 in the
IFNβ-1a or placebo groups in the phase 3 trials in RRMS
and PPMS. The latest OCR package insert (dated May 2020)
states that “an increased risk of malignancy, including breast
cancer, may exist with OCREVUS.” We recommend that all
patients taking anti-CD20 mAbs closely adhere to standard
cancer screening guidelines, including periodic skin checks for
skin cancers.

MECHANISM OF ACTION OF ANTI-CD20
MONOCLONAL ANTIBODIES IN MULTIPLE
SCLEROSIS

Themost consistent laboratory abnormality found inMS patients
is increased intrathecal production of antibodies (Abs), which is
most sensitively detected as cerebrospinal fluid (CSF)-restricted
oligoclonal bands (OCB). CSF-restricted OCBs are present in
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TABLE 2 | A summary of anti-CD20 antibody type, target, and mechanisms of lysing B lymphocytes.

mAb Antibody type and target Mechanism of action References

RTX Mouse/human chimeric IgG1 mAb that targets

CD20

Lyses B cells by direct signaling of apoptosis,

complement activation, and ADCC

(3, 4)

OCR Humanized IgG1 mAb that targets CD20 Lyses B cells by ADCC and complement

mediated lysis

(14)

OFA Fully human IgG1 mAb that targets CD20 Lyses B cells by CDC and ADCC (15)

UTX Mouse/human chimeric IgG1 mAb

glycoengineered for high affinity for FcγRIIIa

Enhanced lyses of B cells via ADCC compared to

RTX

Similar effects on apoptosis and CDC compared

to RTX

(16)

Ab, Antibody; ADCC, antibody dependent cellular cytotoxicity; CDC, complement dependent cytotoxicity; mAb, monoclonal antibody; OCR, Ocrelizumab; OFA, Ofatumumab; RTX,

Rituximab; UTX, Ublituximab.

FIGURE 1 | Mechanisms of B cells in MS pathogenesis. Depletion of B cells by targeting CD20 molecules on the B cell surface inhibits several of these mechanisms

either directly or indirectly. (Left) Antigen Presentation. B cells efficiently process and present antigens to T cells. B cells constitutively express MHC molecules and T

cell costimulatory molecules that allow for interaction and activation of autoreactive T cells. This process occurs in lymph nodes and may also occur in meningeal

ectopic lymphoid follicles in the meninges (bottom right). (Middle) Naive and memory B cells can produce cytokines and chemokines that have various downstream

effects on the immune system. B cell signaling via B cell receptor engagement and CD40 leads to production of several pro-inflammatory cytokines and down

regulation of IL-10. (Upper Right) Intrathecal antibody production detected by CSF oligoclonal banding is the most consistent laboratory abnormality identified in MS.

Antibodies are produced primarily by plasma cells which do not express CD20 and thus are not depleted by anti-CD20 monoclonal antibodies in the short term.

(Lower Right) Ectopic lymphoid follicles containing B cells, T cells, follicular dendritic cells, and plasma cells develop at sites of chronic inflammation. In MS, these can

develop in the meninges, where their presence has been associated with a worse clinical course.

more than 90% of persons with definite MS (24). Elevated levels
of CSF IgG and IgM, and number of OCBs have been correlated
with worse MS prognosis (25, 26). This indirectly implicates
B lymphocytes, as B cells produce Abs. However, plasma cells
(which differentiate from B cells but do not express CD20) are
the long-lived cells that produce most Abs.

Some insights into the mechanisms of action of B cell
depletion with anti-CD20 mAb derived from the Phase 2 study

we performed using oncologic doses of RTX (375 mg/m2 weekly
× 4 weeks). In this MRI-blinded open-label study (5), 26 of the
30 subjects underwent CSF and blood collection before and 6
months after RTX treatment. B cells declined in the CSF after
RTX treatment in 20 of the 26 subjects (p < 0.0001 by Wilcoxon
matched pairs test). In the remaining six subjects, B cells were
undetectable in CSF prior to or after RTX. CSF Abs as measured
by IgG index, IgG concentration, and oligoclonal band number
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did not decline 6 months post-RTX (27). Because the major
producers of Ab are plasma cells that do not express CD20, this
was not surprising. Given the rapidity of the beneficial effects of
anti-CD20 mAbs in RRMS, these studies suggested that reduced
Ab levels are unlikely to be critical for the mechanism of action
of anti-CD20 mAb therapies.

However, B cells have other functions aside from their role
in Ab production (Figure 1). B cells comprise several subtypes,
such as naïve and memory B cells, and including B cells that
produce proinflammatory (e.g., IL-6), or anti-inflammatory (e.g.,
IL-10) cytokines (28). Memory B cells are strongly implicated in
the underlying pathophysiology of MS (29, 30). For this reason,
studies to test the possibility of tailoring anti-CD20 treatments
to target continued absence of circulating memory B cells are
being pursued (31). Bar-Or and colleagues showed that B cell
signaling via the combination of B cell receptor engagement
and CD40 leads to production of several pro-inflammatory
cytokines (e.g., lymphotoxin and tumor necrosis alpha), while
reducing B cell production of IL-10 (32). Two chemokines,
CXCL13 and CCL19, were significantly decreased (P = 0.002,
P = 0.03, respectively) in post-RTX CSF (27). Lysis of B cells
using anti-CD20 eliminates their production of cytokines and
chemokines and may contribute to the mechanism of action of
anti-CD20 treatments.

T cells were also reduced in the CSF of 81% of subjects 6
months after RTX treatment (27, 33, 34). The mean reduction
of CSF B cells was 95% and of CSF T cells was 55%. T
cells were reduced in the CSF to a larger degree than the
12% reduction observed in blood, suggesting reduced T cell
trafficking into the CNS. Activated T cells express CXCR5, the
receptor for the chemoattractant factor CXCL13. CXCL13 is
increased in CSF during several CNS inflammatory conditions,
including MS (35) and CXCL13 was reduced 6 months post-
RTX (27). Reduced trafficking of T cells into the CSF appears
to be an indirect consequence of B cell elimination, especially
since B cells themselves do not produce CXCL13 (36). A better
understanding of the manifold effects of anti-CD20 mAb therapy
in MS is expected from a multicenter longitudinal study that is
underway (NCT02688985).

B cells are constitutively able to process and present antigen
to T cells, and they are extraordinarily efficient at this when
presenting their own cognate antigen to T cells recognizing
the same antigen (37, 38). B cells that target myelin recognize
it via surface B cell receptors, which enables efficient antigen
capture of a self-antigen that is at low concentration. As B
cells constitutively express MHC-I and MHC-II and the T
cell costimulatory molecules CD86 and CD80, they are ready
to process and present antigens to pathogenic autoreactive
T cells (39). A process by which B cells that capture low
concentration myelin antigens and then serve as antigen-
presenting cells (APCs) to activate myelin-reactive T cells is
postulated to be a trigger of MS activity. The interaction
of T with B cells further cross-activates the B cells. Several
groups have reported evidence that this process can occur
in deep cervical lymph nodes (40, 41). In established MS,
the process may occur in meningeal ectopic lymphoid-like
structures (42).

Yet another mechanism through which anti-CD20 mAbs
may act is the elimination of CD20-expressing T cells. A small
proportion of circulating T cells express surface CD20; these
cells are eliminated by anti-CD20 treatments. CD20+ T cells
comprise only 3–5% of circulating T cells of healthy persons (43),
but comprise a slightly higher proportion (up to 10%) in MS
patients (44, 45). CD4+ and CD8+ CD20+ T cells produce pro-
inflammatory cytokines, such as interferon gamma, TNF-alpha
and GM-CSF, which could contribute to MS pathogenesis (45).
In MS, CSF T cells are enriched for those expressing CD20+,
but are still <50% of CSF T cells (45) suggesting that the CSF
T cell reduction observed after RTX treatment cannot be fully
explained by their lysis by anti-CD20 mAb.

An early report using the lytic anti-CD19 mAb, inebilizumab,
in MS showed benefit on MRI activity to a similar strong degree
as seen with anti-CD20 therapies (46). This study may provide
insights, as the CD19 molecule is expressed on B cells but not
on T cells. Results using inebilizumab hinted that lysis of CD20+

T cells is not responsible for all beneficial effects of anti-CD20
mAb treatments.

OTHER EMERGING B CELL THERAPIES IN
MS

Success in therapeutics with targeting CD20 on B cells has raised
interest in other mechanisms to target B cells, but the results
have not always been as expected. Early on, the drug atacicept
was tried in two studies, one in optic neuritis patients in hope
of preventing MS development and the second in MS patients
in a phase 2 trial. Atacicept is a human recombinant fusion
protein that comprises the binding portion of a receptor for
both B-Lymphocyte Stimulator (B-LyS) and A PRoliferation-
Inducing Ligand (APRIL), two important factors supporting
B cell maturation and survival. Unexpectedly atacicept led to
more attacks (47). These ill-fated trials may in fact point to the
importance of memory B cells in MS activity because, while
inhibiting late state B cells and plasma cells, atacicept selectively
spares memory B cells (48).

Bruton’s tyrosine kinase (BTK) is a cytoplasmic enzyme
important for B cell signaling; inhibition of BTK results in B
cell inhibition (49). A phase 2 placebo-controlled trial in RMS
patients of varying doses of the oral BTK inhibitor evobrutinib
showed fewer CELS at the higher doses compared to placebo (50).
Currently, this and several other BTK inhibitors are being studied
in MS patients. Early reports suggest moderate efficacy of BTK
inhibitors that is not as profound as that seen with anti-CD20
mAb therapies.

CONCLUSIONS

In summary, eliminating circulating CD20+ B cells leads to a
profound reduction in MS clinical and MRI activity in RMS
patients. B cells likely contribute to MS pathogenesis in several
ways, including their enhancement of T cell activation and
proliferation. B cells are critical for capturing and presenting
low concentration antigens, such as myelin proteins to T cells.
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B cells also likely contribute to MS pathogenesis by direct
and indirect production of pro-inflammatory cytokines and
chemokines. Elimination of pro-inflammatory CD20+ T cells
may also play a role. The mechanism by which B cells contribute
to MS activity appears to be independent of their role in Ab
production. Collecting longer-term safety data will be important
to determine the safety of using these therapies chronically.
Studies to determine exactly how B cell depletion inhibits
MS activity will undoubtedly lead to better understanding of
MS pathogenesis.
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The success of ocrelizumab in reducing confirmed disability accumulation in primary

progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells

as causal agents in the pathogenesis of PPMS. This review explores the possible

mechanisms by which B cells contribute to disease progression in PPMS, specifically

exploring cytokine production, antigen presentation, and antibody synthesis. B cells may

contribute to disease progression in PPMS through cytokine production, specifically

GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory

Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic

cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS.

In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that

may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production

of IL-10 may contribute to disease worsening. B cells are also capable of potent

antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate

interactions. B cells may also contribute to disease activity via antibody synthesis,

although it’s unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement.

Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS.

Keywords: B cell, multiple sclerosis, immune pathogenesis, inflammation, primary progressive multiple sclerosis

INTRODUCTION

Multiple Sclerosis (MS) is the most prevalent chronic demyelinating disorder of the central nervous
system (CNS) affecting more than 2 million people worldwide and over 700,000 people in the
United States (1). There are multiple different subtypes of MS. Most common is the relapsing
remitting MS (RRMS) subtype that affects the vast majority of MS patients. Approximately
85–90% of patients present with RRMS (2), which is characterized by relapsing and then remitting
neurological deficits without progressive disability between relapses. In later stages, RRMS patients
may exhibit ongoing worsening without obvious remission, termed secondary progressive MS
(SPMS). Roughly 36–60% of patients who first develop RRMS will go on to develop SPMS, on
average 10 years after disease onset (3, 4). A less common subtype, primary progressiveMS (PPMS),
is characterized by gradual worsening of neurological function from disease onset without evidence
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of remission. Approximately 10–15% of patients with MS
have PPMS (2). Of all the MS subtypes, PPMS has the
worse prognosis, with patients reaching much higher levels of
disability compared to patients with RRMS and SPMS (5). The
pathophysiologic mechanisms leading to these distinct clinical
phenotypes in MS subtypes is an area of ongoing research. The
pathological hallmarks of MS are inflammation, demyelination,
remyelination, and neurodegeneration occurring either focally
or diffusely in the brain and spinal cord (6). These features
are present in all MS subtypes, although in PPMS and SPMS
there is a predominance of diffuse low level inflammation, slowly
expanding pre-existing lesions, and a more intact blood brain
barrier when compared to RRMS (7).

B cells have been implicated in the pathology of MS through
the presence and diagnostic significance of oligoclonal bands (8–
11), an increased concentration of unique B cells subsets in the
periphery and CNS of MS patients (12–15), and the formation of
CNS ectopic lymphoid follicles (16–18). B cells may contribute
to disease progression in PPMS through cytokine production,
antigen presentation and antibody synthesis. A summary of the
mechanism of action of B cells in the immunopathogenesis of
PPMS is shown in Figure 1. Further, the effect of B cells in MS
is likely subset-dependent with some B cells exerting an anti-
inflammatory effect (19–21), while others a pro-inflammatory
effect (22, 23). The influence of various B cell subgroups in MS is
supported by clinical trial data, which demonstrates a reduction
in relapses in RRMS patients treated with anti-CD20 antibodies
(24) and an increased relapse rate after depletion of plasma cells
and late stage B cells (23). In PPMS, the success of ocrelizumab
in reducing disability progression is likely a result of selective
depletion of pro-inflammatory B cell subsets in PPMS patients
withMRI evidence of clinically significant ongoing inflammation

PROGRESSIVE MS PATHOLOGY AND

CLINICAL CHARACTERISTICS

The pathology of PPMS and SPMS are characterized by
widespread diffuse inflammation with slowly expanding lesions,
abundant cortical demyelination, brain atrophy, and lymphocyte
infiltration and microglial activation in normal appearing white
matter (25). In contrast, RRMS is typified by new and active focal
inflammatory demyelinating lesions in the CNS white matter.
The pathogenic mechanisms underlying PPMS and SPMS are
incompletely understood and it remains unclear whether these
disease subtypes are caused by similar or unique pathogenic
mechanisms (26). Increasing recognition that relapses and MRI-
identified lesion activity also occur in some patients with PPMS
and SPMS, typically in the early stages of the disease, led
to a modification of the phenotypic categories of progressive
multiple sclerosis (27). Recent guidelines for diagnosing PPMS
and SPMS now include two qualifiers: (1) with or without disease
activity, defined by MRI or clinical evidence of inflammatory
lesions or relapses; and (2) with or without progression, defined
as gradual worsening disability independent of relapses (27).
There are multiple areas of clinical and pathological overlap

between the different disease subtypes which have led researchers
to hypothesize that two distinct yet related pathophysiologic
mechanisms are driving the phenotypic differences seen in
these subtypes of MS (28, 29). More specifically, one emerging
concept is that relapses and remissions, characteristic of RRMS,
are caused by an inflammatory process driven by autoreactive
effector T cells, while progressive accumulation of disability
without remission, characteristic of SPMS and PPMS, is the result
of a neurodegenerative process driven by dysfunction of the
innate immune system and B cells (30).

There are now over 20 FDA approved disease modifying
agents for MS, with one designated by the FDA as an effective
option for PPMS. Ocrelizumab is the only FDA approved
medication for PPMS, having been approved in early 2017 (31).
Ocrelizumab is a monoclonal antibody that targets CD20, a
cell marker found principally on B cells (24). The mechanism
of action of ocrelizumab is considered to be mainly anti-
inflammatory via selective depletion of B cells. In a randomized
double-blinded, placebo-controlled trial in patients with PPMS,
ocrelizumab reduced confirmed disability as defined by slowed
advancement in the expanded disability status scale (EDSS) (31).
Prior to this, numerous other immune-targeting therapeutic
drugs approved to treat RRMS had been trialed in PPMS without
success. Interferon β-1a (32) and β-1b (33), fingolimod (34),
rituximab (35) and glatiramer acetate (36) were ineffective at
reducing disability accumulation in PPMS. Dronabinol (37) and
high dose biotin (38) were also trialed in PPMS and SPMS
with the hope that these drugs would promote neuroprotection
and repair. Dronabinol showed no significant change in disease
worsening, whereas high dose biotin demonstrated disability
improvement in 12.6% of patients compared with 0% of the
placebo arm in a randomized double-blinded placebo controlled
study (38). However, a phase III clinical trial of high dose biotin
in the treatment of PPMS and SPMS demonstrated that high
dose biotin failed to meet its primary and secondary endpoints,
including improvement of disability or progression of disability
(39). Research into the mechanisms by which biotin may exert a
beneficial effect in progressiveMS is ongoing (40). Teriflunomide
(41), natalizumab (42), alemtuzumab (43), mitoxantrone (44),
and hematopoietic bone marrow transplantation (45, 46) have
also been found to alter B cells in MS patients but have not been
tested in large scale clinical trials for PPMS. It is not currently
known whether PPMS is pathogenetically distinct from RRMS
and SPMS but the clinical success of Ocrelizumab in PPMS,
viewed in the context of the failure of other disease-modifying
therapies, implies a difference in the disease mechanism of
PPMS. The mechanism or mechanisms by which B cell depletion
produces a therapeutic effect in PPMS will be explored herein.

EVIDENCE FOR A PATHOGENIC ROLE OF

B CELLS IN PPMS

Oligoclonal Bands
The presence of unique oligoclonal bands (OCBs) and increased
intrathecal IgG synthesis by antigen experienced B cells has
long been recognized as a component of MS (47). OCBs are
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FIGURE 1 | Impact of B cells on PPMS pathogenesis. Production of cytokines influences the function of CD4 T cells, including promoting and suppressing

inflammation. Production of the cytokines IL-6 and GM-CSF can induce differentiation of CD4 T cells into Th1 and Th17 T cells which can then cause CNS damage.

The cytokine IL-10 is believed to decrease activity of Th1 effector T cells and reduce neuroinflammation in EAE and MS. Decreased IL-10 production by B cells may

result in increased neuroinflammation in MS. B cells induce T cell activation and differentiation into pro-inflammatory T cell subsets via antigen presentation via the

tri-molecular complex of MHCII, antigen, and T cell receptor. B cells are capable of differentiating into antibody secreting cells which produce antibodies capable of

directly damaging the CNS. Binding of lymphotoxin (LT) by follicular dendritic cells induces secretion of CXCL13 which may serve as a chemoattractant for B cells and

T cells, increasing lymphocyte infiltration into the CNS. Created with BioRender.com.

detectable in ∼95% of patients upon first presentation who
subsequently go on to develop MS. Further, OCBs may have
prognostic value in determining the likelihood of progression
from CIS to multiple sclerosis and disability accumulation (9–
11). Preferential expression of variable gene segments in isolated
CNS immunoglobulin from patients with MS indicate that
immunoglobulins present in the CNS have undergone affinity
maturation likely driven by the presence of a specific antigen (48,
49).MS patients withOCBs have amore aggressive disease course
than MS patients without OCBs (50). Moreover, in patients
with progressive disease, oligoclonal IgM bands in the CSF are
linked to faster progression into SPMS (51, 52) and with active
inflammation in PPMS (53). These findings indicate a potential
pathogenic role for intrathecal immunoglobulins in MS.

B Cells in the CSF and Peripheral Blood
In healthy patients, B cells are hardly detectable in the CSF,
whereas in MS the mean frequency of B cells among CSF
leukocytes is about 5% (12, 13). In contrast to B cells in the
periphery, most B cells in the CNS are memory B cells, identified
by surface expression of CD27. In patients with RRMS, elevated
features of neurodegeneration, as revealed by MRI, correlate
with increased numbers of peripheral B cells and a higher
proportion of activated B cells (14). Patients with SPMS have
greater numbers of specific B cell populations in their peripheral
blood, notably DC-SIGN+ B cells and CD83+ B cells (54),
which correlate with disease progression. Another study found
that CD19+ B lymphocytes expressing TNFα in the periphery

are increased in patients with PPMS compared to patients with
SPMS, RRMS, or healthy controls (15). CD19+ B lymphocytes
from RRMS and SPMS patients display hyper-phosphorylation
of p65 (55), but this hyperactivity has not been confirmed in
PPMS. In addition, anti-inflammatory “regulatory B cells”, which
produce IL-13, IL-10, and TGF-β, are reduced in all subtypes
of MS compared to healthy controls. Multiple studies have
reported flow cytometric characterization of the phenotype of
both CSF and peripheral immune cells that offer insight into the
possible underlying mechanisms leading to B cell proliferation
and activation in MS. Overall, the presence of increased numbers
of activated B cells in the CSF and periphery of patients with
PPMS and SPMS, the lack of regulatory B cells in all forms of MS,
and the correlation of increased B cell populations with disease
progression in patients with SPMS indicate a unique role for B
cells in the pathology of progressive MS.

Ectopic Lymphoid Follicles
The CNS is separated physically from the peripheral circulation
by the blood brain barrier (BBB), which compartmentalizes the
CNS and restricts leukocyte migration into the brain and spinal
cord. Historically, the CNS was believed to be an immune-
privileged site, but recent evidence has demonstrated a steady
trafficking of memory T cells between the periphery and the
CNS (56). It is hypothesized that memory T cells enter the CSF
using specific adhesion molecules, chemokines, and chemokine
receptors and enter the CSF through the epithelium of the
choroid plexus (56). These memory T cells then circulate through
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the CSF and interact with CNS myeloid antigen presenting
cells (APCs) within the subarachnoid space surrounding the
leptomeninges where they may propagate an immune response.
Diverse immune cell infiltrates have been observed in the
leptomeninges in patients with RRMS, SPMS, and PPMS (17, 18).
Numerous studies have linked these immune cell infiltrates to
demyelination and neuronal degeneration in the adjacent cortex
(18, 57) leading researchers to postulate that leptomeningeal
inflammation is a potential driver of disease progression in MS
(16). The spectrum of leptomeningeal inflammation exhibits
significant variability, ranging from disorganized collections of
immune cells in some patients to well-organized collections of
immune cells with many features similar to lymphoid tissue in
others (58). These well-organized immune cell structures have
been termed ectopic lymphoid follicle-like structures (ELFs) and
are characterized by separate B and T cell regions, a network of
follicular dendritic cells, plasma cells, and proliferating B cells
with evidence of ongoing germinal center reactions (59). While
the true incidence and significance of these ELFs inMS patients is
still under heavy scrutiny, they are not uncommon in progressive
forms of MS. One autopsy study found evidence of ELFs in
the meninges in up to 40% of patients with SPMS, but not in
RRMS or PPMS (59). Further autopsy series of patients with MS
have supported the presence of meningeal ELFs in patients with
SPMS (17). Notably, the presence of ELFs is linked with increased
cortical demyelination (17).

Further studies looking exclusively at PPMS found no proof
of ELFs but instead evidence of more widespread disorganized
leptomeningeal inflammation (16). In an autopsy series of 26
patients with PPMS, formal organization of ELFs was not
detected; however, a subset of PPMS patients had extensive
meningeal immune cell infiltration, consisting of both B and
T cells. Patients with evidence of widespread leptomeningeal
inflammation had a more severe clinical course and increased
cortical demyelination. Further investigation corroborated these
findings and demonstrated the presence of ELFs in patients
with SPMS and generalized leptomeningeal inflammation in
patients with PPMS and RRMS (60). Interestingly, in progressive
patients, leptomeningeal inflammation is only present in patients
with pathologically active disease defined as the presence of
classically active or slowly expanding lesions at the time of
autopsy. Patients with pathologically inactive plaques do not
display features of leptomeningeal inflammation (60). The
makeup of the leptomeningeal immune cell infiltrate varies
by disease subtype, with an increased prevalence of plasma
cells in patients with either PPMS or SPMS. Additionally,
progressive patients with pathologically inactive disease have
levels of overall leptomeningeal inflammation similar to those of
healthy controls but still have a modest but significantly higher
number of plasma cells and overall B cells (60). Leptomeningeal
inflammation, given that it is more prevalent in the subset
of patients with PPMS who had active disease and can be
visualized on MRI (60, 61), may serve as a potential biomarker
to identify patients with PPMS who may benefit most from B
cell therapy.

Given the correlation between both ELFs in SPMS and
widespread disorganized leptomeningeal inflammation in

PPMS with adjacent cortical pathology, it is possible that
leptomeningeal inflammation is an independent driver of
disability, particularly in progressive MS (16, 17). However, the
specific role of leptomeningeal inflammation in MS pathogenesis
remains an area of active debate. Some studies have described
extensive subpial demyelination in patients with PPMS and
SPMS without convincing evidence of ELFs or B cell infiltration
(62). This seems to indicate that leptomeningeal inflammation
with ELFs or B cells may not be needed for cortical demyelination
observed in these patients. Additionally, given that most research
data on leptomeningeal inflammation inMS comes from autopsy
series, the possibility that the leptomeningeal inflammation is
a secondary response to primary cortical demyelination rather
than a causative factor remains.

MECHANISM OF ACTION OF B CELL

MEDIATED DISEASE PROGRESSION IN

PPMS

Antibody Production
The presence of unique oligoclonal bands in the CSF of MS
patients led to the hypothesis that B cells could be contributing
directly to MS pathogenesis via autoantibody mediated CNS
tissue damage (47). This idea is supported by the presence
of CNS B cell clonal populations in patients with MS that
demonstrate evidence of somatic hypermutation and antigen
driven affinity maturation (48, 49). Additionally, plasma cells
isolated from the CSF of MS patients produce antibodies that
make up oligoclonal bands (63). Compared to RRMS patients,
SPMS and PPMS patients have higher amounts of plasma
cells in perivascular and meningeal immune cell infiltrates
indicating a unique role of plasma cells in progressive disease
(60). Early studies exploring the role of antibodies in MS
pathogenesis demonstrated antibodies bound to disintegrating
myelin in acute MS lesions at autopsy and in the marmoset
model of EAE (64). Immunoglobulins bound to myelin could
induce tissue damage via complement activation (65), activation
of microglia/macrophages via activating Fc receptors (66),
disturbance of oligodendrocyte physiology (67), or by proteolytic
activity on myelin basic protein (68). Additionally, the number
of antibody-secreting plasma cells increases with age in patients
with PPMS and SPMS (60). Overall, these data indicate that CNS
plasma cell antibody production could be playing a role in PPMS
disease progression.

It should be emphasized that no specific self-antigen has
yet been identified that has consistently been verified as an
autoantibody target in MS (69). Evidence supporting intrathecal
antibody-mediated injury derives from a study involving
adoptive transfer of Ig from the CSF of PPMS patients to naïve
mice. These mice succumbed to motor deficits paralleled by
CNS pathology, including demyelination and axonal loss within
the spinal cord (70). Many potential self-antigens have been
implicated by the presence of specific autoantibodies in patients
with PPMS. Candidate targets for auto-antibodies in PPMS
include anti-neurofilament light (71), anti-ganglioside GM3 (72),
and anti-SPAG16 (54). However, these antibodies have not been
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reliably detected in large populations of PPMS patients, nor has
a causal mechanism of injury been well-established. In a study
of patients with all subtypes of MS, antibodies specific to KIR4.1
(an ATP-sensitive inward rectifying potassium channel expressed
found primarily on glial cells) were found in roughly half of the
subjects. However, the presence of anti-KIR4.1 antibodies did
not correspond to a specific MS phenotype (73) and subsequent
studies have failed to reproduce these findings (74). Overall, while
many autoantibodies have been identified in patients with PPMS,
no specific autoantibody has been reliably linked to CNS damage.

Clinical data from anti-CD20 treatment of patients with MS
argues against a link between treatment benefit and antibody
production. B cells down-regulate CD20 expression as they
develop into plasma cells and thus mature plasma cells secreting
antibodies do not express CD20 (75). Therefore, plasma cells
are not directly targeted by ocrelizumab or rituximab and anti-
CD20 therapies are unlikely to have a direct impact on intrathecal
antibody levels, at least in the short term. This is supported
by a lack of measurable change in total serum antibody levels
in MS patients treated with rituximab, even in those patients
experiencing clinical benefit (76). Additional clinical studies
specifically evaluating rituximab’s effect on antibody levels have
confirmed that rituximab does not change peripheral antibody
levels (77). Further, CSF IgG levels, IgG index and oligoclonal
band numbers are also unchanged in patients with RRMS treated
with rituximab, even in the presence of depleted CSF B and T cells
(78). Given that anti-CD20 therapy depletes the vast majority of
plasma cell precursor cells, it’s possible that long-term CD20-
targeted B cell depletion therapy may impact plasma cells in
treated patients and thereby alter antibody levels, but antibody
modulation does not appear to contribute to the clinical benefit
seen shortly after treatment in MS.

Cytokine Production
B cells exert both pro-inflammatory and anti-inflammatory
effects depending on distinct cytokine production (79). B cells are
capable of controlling the polarization of effector T cell responses
and the formation of memory T cells through cytokine secretion
(79). A subset of B cells exhibits anti-inflammatory properties
through the secretion of IL-10, TGF-β and IL-35. These unique
B cells are identified by CD markers CD19 and CD138 and have
been termed “regulatory B cells” due to their hypothesized role
in the production of these anti-inflammatory cytokines (79, 80).
B cells also produce cytokines that induce T-cell differentiation
toward Th1, Th2, or Th17 subtypes (81) and exert an anti-
inflammatory role in mouse models of autoimmunity (80).

Patients with RRMS and SPMS have a dysregulated cytokine
network, specifically demonstrating a decrease in the anti-
inflammatory cytokine IL-10 (82). B cells (particularly memory
B cells) isolated from individuals with RRMS and SPMS can
also be activated to produce abnormally high amounts of the
cytokines TNF-α, LT-α, IL-6, and GM-CSF (82, 83). A study on
the peripheral blood of MS patients demonstrated that peripheral
pro-inflammatory B cells, defined by the cell surface marker
CD19 and by secretion of the cytokine TNF-α, are significantly
increased in all subtypes of MS, particularly those with PPMS
(15). Additionally, peripheral B regulatory cells, identified by the

cell surface marker CD19 and secretion of the cytokines IL-10
and TGF-β, are reduced in all subtypes of MS, particularly those
with PPMS. The overproduction or underproduction of specific
cytokines by B cells could play a causal role in the pathogenesis
of PPMS.

B Cell Production of LTα

LTα is secreted by B and T cells and binding of membrane bound
LTα to follicular dendritic cells induces CXCL13 production (84).
CXCL13 is a ligand that binds to the chemokine receptor CXCR5,
which is expressed on virtually all B cells, a subset of T cells,
and transiently on T cells upon activation (85, 86). CXCL13 is
presumed to be a potent chemoattractant that plays a causative
role in T and B cell CNS infiltration and lesion formation in MS
(87) and is locally produced in active demyelinating MS lesions
(87). Elevated CSF CXCL13 also correlates with an increased
risk of relapse and unfavorable prognosis in patients with RRMS
(88). Elevated levels of CSF CXCL13 increase the likelihood of
conversion of CIS toMS (88). In patients with RRMS treated with
rituximab, decreased levels of the chemokine CXCL13 correlate
with decreased levels of T cells (89). This led study researchers
to hypothesize that B cell depletion induces secondary T cell
depletion through reduced LT-α-mediated follicular dendritic
cell production of CXCL13. Analysis of CSF cytokines has also
demonstrated an increase in CXCL13 in patients with PPMS
compared to healthy control (90). Additionally, in patients with
PPMS, CSF CXCL13 was found to correlate with CSF B and T
cell levels (91) and higher amounts of CXCL13 were found in
patients with disease activity compared to those without (92).
Overall, these data suggest a possible pathogenic role for B cells
in PPMS via LT-α and CXCL13, which may be mitigated by
anti-CD20 therapies.

B Cell Production of IL-6
Murine EAE is a commonly used animal model that has been
used to decipher the immunopathogenic mechanisms of MS and
devise novel therapies (93). EAE is induced by immunizing mice
with CNS tissue or myelin peptides in the presence of an adjuvant
or by the adoptive transfer of encephalitogenic T cells into naïve
mice. Different strains of mice will exhibit different pathology
after induction of disease. The SJL/J mouse strain typically
demonstrates a relapsing remitting form of demyelinating disease
when immunized, whereas C57BL/6 mice display a monophasic
or chronic progressive demyelinating disease (94). The latter is
considered a suitable model for studying the demyelination and
axonal damage present in PPMS and SPMS, although notable
differences between murine and human MS disease pathology
have raised obvious limitations for the interpretation of EAE
results (94).

B cells from mice with EAE produce more IL-6 than naive
mice and treatment with monoclonal anti-CD20 antibodies
leads to normalized B cell production of IL-6 (95). Genetic
deletion of IL-6 exclusively in B-cells during EAE demonstrates
a more indolent course compared to control mice without
B cell IL-6 deletion (95). In co-culture, B cells enhance Th1
and Th17T cell responses to fungal infection in vitro, partly
through IL-6 signaling (96). Additionally, analysis of CSF
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from patients with PPMS and RRMS revealed that patients
with PPMS have significantly higher levels of intrathecal IL-6
production (97). Recent clinical data demonstrates that treatment
of PPMS patients with ocrelizumab leads to a reduction in B
cell production of IL-6 which correlates with a shift in T cells
to a more anti-inflammatory phenotype (98). The concordance
of animal and human studies with clinical data in PPMS
patients treated with ocrelizumab offers strong evidence for a
role of IL-6 in the pathogenesis of PPMS. Taken together, these
findings indicate that B cell production of IL-6 could exert
inflammatory damage in PPMS by skewing T cells toward a
pro-inflammatory phenotype.

B Cell Production of IL-10
IL-10 is a potent immunoregulatorymolecule that is dysregulated
in several autoimmune diseases, such as inflammatory bowel
disease, rheumatoid arthritis and systemic lupus erythematous
(99). Selective genetic deletion of IL-10 in B cells during EAE
results in a non-remitting disease course believed to be driven by
increased Th1 cell activity (100), supporting an IL-10-mediated
anti-inflammatory effect of B cells. Disease is suppressed in EAE
mice that received IL-10-producing B cells (101). A distinct
subpopulation of B cells, termed B10 cells, potentially function
as negative regulators of inflammation and autoimmunity (80).
B10 cells have been isolated in the peripheral blood of patients
with PPMS, RRMS, and SPMS (102) leading to the hypothesis
that deficient functioning of this B cell population may be driving
MS pathogenesis (82). What remains unclear is the role of B10
cells in progressive disease; a specific function of B10 cells (or lack
thereof) has not been detailed in studies on PPMS to date. Given
that the evidence for the anti-inflammatory role of B cell derived
IL-10 in PPMS comes primarily from animal studies, it remains
to be seen whether these findings will be observed in patients with
PPMS and therefore it’s specific role in the pathogenesis of PPMS
remains unclear.

Reconstitution of Anti-inflammatory B Cell

Population
In addition to the immediate effects of anti-CD20 therapies on
patients with PPMS there is also the potential for more long-
lasting effects from treatment, specifically through reconstitution
of an anti-inflammatory B cell population that may further
modulate disease progression and/or activity. Treatment of
RRMS patients with rituximab leads to reconstitution of B
cells producing lower levels of GM-CSF and higher levels of
IL-10 (83). This suggests a durable effect of rituximab on
the immunologic underpinnings of MS pathogenic processes.
It remains to be seen whether such anti-inflammatory B cell
reconstitution occurs in PPMS patients treated with ocrelizumab.

Antigen Presentation to T Cells
B cells are extremely potent APCs for T cells. They selectively
internalize antigen bound to surface immunoglobin and
then present this to T cells via MHC II molecules. The
antigen concentration necessary for selective internalization and
presentation by B cells are 103- to 104-fold lower than those
required for presentation by monocytes (103) which potentially

makes B cells a necessary APC for T cell activation when antigen
levels are low (104). B cells are also more effective APCs when
they recognize the same antigen as T cells (103).

The relevance of B cell antigen presentation to MS
pathogenesis was initially explored in EAE mouse models. Mice
with selective deficiency of MHC II molecules on B cells are
resistant to EAE (105). In contrast, mice selectively expressing
MHC II only on MOG specific B cells and no other APCs are
susceptible to EAE (105). This suggests a causal role of B cells in
MS pathogenesis through a mechanism of antigen presentation
enhanced by a cognate antigen between B and T cells. In a
study exploring the role of B cells in mice with EAE induced by
recombinant MOG protein, which produces what is considered
a “B cell dependent” EAE mouse model, anti-CD20 treatment
reduces Th1 and Th17 subsets significantly more than in the EAE
model induced by immunization withMOG peptide residues 35–
55 (106). This indicates that B cells, via antigen presentation, may
induce a pro-inflammatory polarization with an increase in Th1
and Th17 subsets.

The antigen presentation function of B cells has been explored
further in recent human studies. In vitro T cell proliferation was
found to be increased in RRMS patients with the HLA-DR15+

risk haplotype compared to those RRMS patients without the
risk haplotype (107). Given that the HLA-DR15 gene encodes
a distinct MHC II, this data led to the hypothesis that the
increased risk of MS with this haplotype is a direct consequence
of antigen presentation by B cells. The study further explored
the pathogenicity of the HLA-DR15+ haplotype and found that
in vitro proliferation of T cells was dependent on co-culturing
with B cells. When HLA-DR expression by B cells was inhibited
by ibrutinib, T cell proliferation was decreased, implying an
HLA-DR dependent mechanism of T cell activation by B cells.
Additionally, in RRMS patients treated with rituximab, ex vivo
proliferation and production of pro-inflammatory cytokines by
T cells was substantially reduced. The addition of autologous
CD20+ B cells obtained pre-treatment with rituximab was found
to restore CD4+ T cell proliferation. Memory B cells, specifically
un-switched memory B cells, were the B cell population most
strongly correlated with T cell proliferation (107). A recent
pathological study demonstrated that PPMS patients had higher
amounts of B cells within their CNS lesions compared to patients
with RRMS (108). Additionally, lower amounts of B cells within
these lesions was correlated with decreased CNS T cell infiltration
a better clinical outcome (108). Overall, these data indicate that
B cell modulation of T cells via antigen presentation is a likely
contributor to MS pathogenesis with memory B cells implicated
as the B cell population contributing most to T cell proliferation
via antigen presentation. Current research studies have consisted
almost exclusively of animal studies and human studies in RRMS
and therefore it remains to be seen whether these findings can be
replicated in PPMS.

The Pro-inflammatory and

Anti-inflammatory Role of B Cells
The clinical success of ocrelizumab viewed alongside research
indicating both pro- and anti-inflammatory effects of distinct
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B cell populations and cytokines indicates a multi-faceted role
of B cells in inflammation. This idea is supported by the pro-
inflammatory effects of atacicept in MS, an anti-inflammatory
drug previously trialed to treat RRMS (23).

Atacicept is a human recombinant fusion protein that binds
to the receptor for both BLyS (B-Lymphocyte Stimulator)
and APRIL (A PRoliferation-Inducing Ligand) acting as an
antagonist to these ligands and inhibiting receptor activation.
These two cytokines are important for B-cell maturation,
function, and survival. Atacicept has selective effects on B cells,
depleting plasma cells and late stage B cells while sparing B-
cell progenitor cells and memory B cells (109). Atacicept is the
only immunotherapy for MS whose mechanism of action leads
to relative sparing of memory B cells (22).

In a randomized double-blind, placebo-controlled trial of
atacicept in patients with RRMS, patients who received atacicept
had a higher annualized relapse rate compared to those receiving
placebo (23). For this reason, the trial was suspended early and
has led to the hypothesis that atacicept’s depletion of plasma cells
and relative sparing of memory B cells implies that plasma cells
mainly function as anti-inflammatory cells while memory B cells
are pro-inflammatory in MS (13, 110).

This hypothesis is supported by further data highlighting these
distinct functions of plasma cells and memory B cells. In an EAE
mouse model, plasma cells from the gut were found to play an
anti-inflammatory role on neuroinflammation in EAE through
the secretion of IL-10 (19). This fits with previously mentioned
data regarding the anti-inflammatory effects of IL-10 in EAE
(101) and implicates plasma cells as the B cell subtype responsible
for IL-10 secretion. Additionally, immunoglobulin produced by
intrathecal plasma cells in progressive multiple sclerosis may
have a direct anti-inflammatory effect by binding to inhibitory Fc
receptors (111). Oligodendrocyte-specific Igs might also promote
remyelination (112). In contrast, memory B cells are likely pro-
inflammatory and recent research indicates that ex vivo memory
B cells play a prominent role in inducing CD4+ self-reactivity,
likely through a mechanism of antigen presentation (107).

Clinical evidence demonstrating that atacicept increases the
rate of MS relapses, taken in conjunction with additional findings
suggesting an anti-inflammatory role of plasma cells and a pro-
inflammatory role of memory B cells, indicates that B cells can
have both a pro and anti-inflammatory effect in MS depending
on their specific clonal subset, causing either disease mitigation
or progression, respectively.

OCRELIZUMAB IN PPMS

The success of ocrelizumab at reducing disability in PPMS, in
the context of previous failures of other anti-inflammatory drugs
approved for RRMS, in particular the anti-CD20 monoclonal
antibody rituximab, raises important questions about the specific
mechanisms by which ocrelizumab exerts its therapeutic benefit.
One hypothesis put forth regarding the success of ocrelizumab
and failure of rituximab derives from phenotypic differences in
the types of PPMS patients enrolled in each study. Rituximab
and ocrelizumab are both CD20 monoclonal antibodies. CD20

is a cell surface marker expressed on most B cell subsets with
the exception of early pro-B cells, late stage plasmablasts and
terminally differentiated plasma cells (113). In clinical trials,
ocrelizumab, but not rituximab, significantly reduced disability
progression in PPMS patients (31, 35). In the OLYMPUS
trial involving treatment of PPMS patients with rituximab, no
significant reduction in disease progression was observed overall
(35). However, a subgroup analysis revealed that younger age
(<51) and the presence of a gadolinium enhancing lesions
on MRI (≥1 gadolinium enhancing lesion at baseline) were
predictive of treatment responsiveness (35). In particular,
patients who had these characteristics in the placebo arm were
3 times more likely to have clinical disease progression compared
to the same demographic of patients treated with rituximab
(35). The subsequent ORATORIO trial of ocrelizumab in PPMS
was designed with recruitment directed at relatively younger
participants (mean age 44.6 years; maximum age 55 years),
with shorter disease durations (mean 6.4 years; maximum 15
years), and included a relatively high proportion of participants
with gadolinium enhancing lesions at baseline (26%) (31). For
comparison, in previous PPMS clinical trials with rituximab,
fingolimod, and glatiramer acetate, the percentage of participants
with any baseline gadolinium enhancement was 24.5, 13, and
14%, respectively (34–36). In ORATORIO, the subgroup of
patients with gadolinium-enhancing lesions at baseline had a
greater reduction in risk of disease progression (although the
difference was not significant) for those with enhancing lesions
(hazard ratio 0.65 [95% CI 0.40–1.06]) vs. for those without
enhancing lesions (0.84 [0.62–1.13]) (114). These differences in
the patient populations in each study have led to speculation
that there are a subset of patients with PPMS, specifically young
patients with evidence of active inflammation, who preferentially
benefit from B cell depletion therapy due to removal of a B
cell-mediated inflammatory effect (115).

A recent retrospective study examined the off-label use of
rituximab in the treatment of PPMS and found that 41.5% of
PPMS patients treated with rituximab had significant disease
progression after 3 years (116). The patients had a higher degree
of inflammation prior to treatment as demonstrated by the
presence of gadolinium enhancing lesions in 50% of the patients
on their baseline brain MRI (116). In contrast, ORATORIO
demonstrated a 32.9% incidence of disease progression at 12
weeks with a 26% incidence of gadolinium enhancing lesions
on baseline brain MRI (31). The off-label rituximab study had
numerous limitations including a retrospective design, which
prevented the researchers from including a control group, and
a relatively low amount of PPMS patients (43 total) (116).
Additionally, it is unclear the specific criteria that led to the
off-label use of rituximab and it is likely that the patients
were selected for treatment due to rapid disease progression
which may have led to a bias selection of patients with a more
aggressive form of PPMS. Nevertheless, the study suggests that a
significant amount of PPMS patients, despite having evidence of
inflammation on their brain MRI, will continue to progress after
B-cell depletion with rituximab.

Functional differences in the antibody structure of
ocrelizumab compared to rituximab may lead to more favorable
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safety and tolerability profiles but are unlikely to significantly
change the levels of circulating B cells in the periphery and
CNS of treated PPMS patients. Rituximab is a chimeric
antibody with an Fab domain derived from mouse protein,
whereas ocrelizumab is exclusively derived from human protein
(117). Compared to rituximab, ocrelizumab has a structurally
distinct Fc region domain that binds with higher affinity to
natural killer cells. This difference leads to relatively stronger
antibody-dependent cell cytotoxicity and relatively weaker
complement-dependent cytotoxicity for ocrelizumab compared
to rituximab (24). This relative decrease in complement-
dependent cytotoxicity is hypothesized to reduce the rate of
adverse effects by reducing rates of systemic complement
mediated cytokine release (118). Additionally, ocrelizumab has
a distinct Fab binding domain that alters its binding affinity
to CD20 (119). This difference in epitope binding affinity is
unlikely to translate to increased depletion of circulating B
cells with ocrelizumab compared to rituximab given that PPMS
patients treated with rituximab had near-complete depletion of
circulating B cells, defined as a >95% decrease of CD19+ B cells,
fromweek 2 to 96 after rituximab treatment (35). Additionally, in
RRMS patients treated with rituximab, CSF B cells were reduced
by 90% at 24 weeks post-treatment with rituximab (78). Another
study examining the efficacy of dual intravenous and intrathecal
rituximab for depleting CNS B cells in patients with SPMS found
that peripheral B cells were reliably depleted but CSF B cells were
incompletely and transiently depleted (120). While it’s possible
that ocrelizumab may deplete CSF B cells more effectively than
rituximab, given that ocrelizumab is administered intravenously
it is unlikely to achieve the CNS penetration necessary to
outperform intrathecal rituximab administration.

CONCLUSION

Ocrelizumab is the first and only FDA approved disease-
modifying therapy for patients with PPMS. The characteristics of
patients treated in ORATORIO indicate that ocrelizumab likely
exerts an anti-inflammatory effect with the most pronounced
benefit occurring in younger PPMS patients with a high
propensity for disease activity (114). This idea is supported in
the rituximab clinical trial in PPMS that showed benefit to a
subgroup of younger patients with gadolinium enhancing lesions
on MRI (35). Ocrelizumab likely induces an anti-inflammatory
effect primarily through abrogating B cell functions, such as
cytokine production and antigen presentation. B cells exhibit
a spectrum of activity in MS with memory B cells playing
a pro-inflammatory role and a subset of B cell lineage cells,
such as segments of plasmablasts/plasma cells contributing to
the suppression of inflammation. Cytokines produced by B
cells, including LT-α, IL-6, and GM-CSF, have been implicated
as drivers of the pro-inflammatory effects in MS via T-cell
differentiation from naïve T cells into inflammatory Th1/Th17
cells as well as via indirect myeloid cell stimulation of T cells.
In contrast, production of IL-10 by B cells may cause an
anti-inflammatory effect in PPMS. However, there is currently
a lack of clinical human studies to definitively support or
refute this claim. B cell antigen presentation also likely plays a
prominent role in driving T cell activity by inducing naïve T

cell differentiation to Th1/Th17 and driving MS pathogenesis.
Ocrelizumab is unlikely to exert benefit in MS through antibody
decrement given that immunoglobulin levels remain elevated
despite B and T cell depletion in the presence of a treatment
benefit. It is unclear if PPMS patients treated with ocrelizumab
will experience reconstitution of anti-inflammatory B cells
after therapy in a similar way to RRMS patients treated with
rituximab (83).

Altogether, the above data indicates that ocrelizumab likely
reduces disease progression in PPMS by reducing inflammation.
This mechanism of action represents a continuation of the
therapeutic paradigm used to treat RRMS in which the primary
treatment modality involves drugs that work via reducing
inflammation. The benefit of ocrelizumab but the failure of
multiple other RRMS anti-inflammatory drugs, in conjunction
with the phenotypic differences in PPMS compared to RRMS,
has important implications about disease pathogenesis and
treatment. Clinical trial data indicates that there is likely
a subset of patients with PPMS, typically younger, newly
diagnosed patients with gadolinium enhancing lesions on
MRI, who have active inflammation contributing to their
progressive disability who would benefit from a high potency
anti-inflammatory medication. These qualitative differences in
subgroups of PPMS patients have implications for the way
we classify patients with PPMS. The recent revisions to the
classification of MS to include new qualifiers for active disease
and presence of progression represents an effort to further
delineate PPMS into more clinically useful groups (27). Clinical
trials examining the effect of anti-inflammatory treatments on
PPMS in patients with or without active disease and with
or without progression would shed light on further clinically
meaningful phenotypic differences within the PPMS subtype.
Leptomeningeal inflammation, given that it is more prevalent
in the subset of patients with PPMS who had active disease
and that it can be visualized on MRI (60, 61), may serve
as a potential biomarker to identify patients with PPMS who
may benefit most from B cell therapy. The clinical data also
implies that for the majority of patients with PPMS, specifically
those older patients without evidence of active disease, further
anti-inflammatory treatment is unlikely to influence disease
progression. Dedicated research in patients with PPMS without
evidence of active inflammation and refinement of MS animal
models of neurodegeneration in the absence of inflammation
may help elucidate the non-inflammatory, neurodegenerative
processes contributing to PPMS disease progression.

Broadening our understanding of disease pathogenesis in
PPMS and harnessing that knowledge to develop new and
effective treatments represents the next frontier in MS research.
This goal carries with it unique challenges given the reduced
prevalence of PPMS compared to RRMS and SPMS, making
clinical trial recruitment more difficult. Additionally, the EAE
mouse model, the most widely studied animal model for
MS, is of questionable utility in PPMS given the lack of
progressive MS pathologic features (94). Dedicated clinical
studies of progressive disease, expanded and novel animal
models for progressive disease, and shifting treatment paradigms
will hopefully lead to future breakthroughs for patients
with PPMS.
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Memory B Cells in Multiple
Sclerosis: Emerging Players
in Disease Pathogenesis
Krista D. DiSano*, Francesca Gilli and Andrew R. Pachner

Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous
system. Once thought to be primarily driven by T cells, B cells are emerging as central
players in MS immunopathogenesis. Interest in multiple B cell phenotypes in MS
expanded following the efficacy of B cell-depleting agents targeting CD20 in relapsing-
remitting MS and inflammatory primary progressive MS patients. Interestingly, these
therapies primarily target non-antibody secreting cells. Emerging studies seek to explore
B cell functions beyond antibody-mediated roles, including cytokine production, antigen
presentation, and ectopic follicle-like aggregate formation. Importantly, memory B cells
(Bmem) are rising as a key B cell phenotype to investigate in MS due to their antigen-
experience, increased lifespan, and rapid response to stimulation. Bmem display diverse
effector functions including cytokine production, antigen presentation, and serving as
antigen-experienced precursors to antibody-secreting cells. In this review, we explore the
cellular and molecular processes involved in Bmem development, Bmem phenotypes,
and effector functions. We then examine how these concepts may be applied to the
potential role(s) of Bmem in MS pathogenesis. We investigate Bmem both within the
periphery and inside the CNS compartment, focusing on Bmem phenotypes and
proposed functions in MS and its animal models. Finally, we review how current
immunomodulatory therapies, including B cell-directed therapies and other
immunomodulatory therapies, modify Bmem and how this knowledge may be
harnessed to direct therapeutic strategies in MS.

Keywords: memory B cells, multiple sclerosis, neuroinflammation, B cells, multiple sclerosis-drug therapy
INTRODUCTION

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous
system (CNS), with a highly variable and unpredictable disease course that can manifest as a variety
of physical and cognitive symptoms. Although cellular inflammation in MS has historically focused
on one key player in adaptive immunity, T cells, B cells are now recognized as central mediators in
MS pathogenesis. B cell antibody-mediated immunity has been implicated in MS pathogenesis since
the discovery of elevated CSF IgG in 1942 (1). Subsequently, in 1959 oligoclonal bands (OCBs) in
the cerebrospinal fluid (CSF) were identified (2) and, to date, OCBs remain a diagnostic hallmark in
MS (3). OCB presence indicates niches of clonally-related antibody-secreting cells (ASC), including
org June 2021 | Volume 12 | Article 6766861112
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plasmablasts and plasma cells, within the CNS. Since the
discovery of OCBs in MS, researchers have dedicated intense
focus towards identifying the antigenic targets of ASC in the CNS
compartment. However, in contrast to CNS neuroinflammatory
diseases such as neuromyelitis optica, with clear autoantibody
targets (aquaporin-4), probing antibody specificity in MS has not
revealed consistent targets (4, 5), with some studies implicating
diverse CNS self-antigens (6, 7) and viral antigens (8). The role of
ASCs and OCBs in MS still remains elusive, with suggested
involvement in pro-inflammatory functions, including
autoantibody production, antibody- or complement-dependent
cellular cytotoxicity, and opsonization, or anti-inflammatory
functions, including production of the anti-inflammatory
cytokine IL-10 (9, 10).

Further interest in the role of non-ASC B cells as key players
in the MS immunopathogenesis followed the relatively recent
success of B cell depletion therapies targeting CD20. These
therapies, including rituximab (11, 12), ocrelizumab (13), and
ofatumumab (14) reduced new inflammatory lesions and
relapses despite the sparing of most ASCs, i.e. CD20- plasma
cells and some plasmablasts. These novel findings fueled
considerable interest in examining the phenotype and function
of non-ASC B cells in MS. Current research seeks to explore B
cell function in MS beyond antibody-dependent roles to define
antibody-independent mechanisms, including antigen
presentation, cytokine production, and ectopic lymphoid
follicle-like structures. Among non-ASC B cell subtypes,
increased attention has been directed towards the role of
memory B cells (Bmem) in regulating immune processes in
MS. Bmem have several unique features, including increased
longevity, the capacity to rapidly respond to re-exposure to
antigen, and the ability to serve as direct antigen-experienced
precursors to antibody-secreting cells. Due to the relatively
recent interest in Bmem, our knowledge regarding the exact
functions of Bmem in MS is expanding. This review aims to
explore our current understanding of this key component of
immunological memory in MS and its animal models.

In the first part of this review, we summarize the current
knowledge regarding Bmem development, trafficking, phenotypes,
and function during homeostasis and inflammatory conditions,
providing a basis for understanding the mechanisms in
which Bmem may contribute to MS and are targeted by
immunomodulatory therapies.

In the second part of this review, we describe Bmem in MS
and its animal models reviewing phenotypes and putative
functions, and finally, we examine the effectiveness of current
therapeutic approaches in targeting Bmem.
Bmem DEVELOPMENT

A key player in immunological memory, Bmem can be defined as
a B cell that has encountered antigen and remains in a quiescent
state until re-exposed to antigen, at which point the cell rapidly
responds to the second challenge. Upon first pathogen
encounter, the majority of Bmem are derived from germinal
Frontiers in Immunology | www.frontiersin.org 2113
center (GC) reactions. GCs are specialized structures within
secondary lymphoid tissue (SLT) where mature, antigen-
experienced B cells undergo cognate interactions with T cells,
proliferate, undergo somatic hypermutation to increase B cell
receptor (BCR) affinity for antigen, perform immunoglobulin
(Ig) isotype switching, and are selected based on affinity for a
specific antigenic target. Select GC B cells ultimately differentiate
to produce antigen-specific, isotype-switched ASC or Bmem.
Though GC B cells serve as the precursor for both ASC and
Bmem, the mechanisms regulating Bmem versus ASC
differentiation remain poorly understood. Numerous factors
have been proposed to contribute to Bmem formation, but no
“master regulator” for Bmem differentiation has been identified.
Animal models have suggested the transcription factor BACH2
selects GC B cells with intermediate affinity to differentiate into
Bmem (15). Additionally, Bmem generation is associated with an
increased expression of factors including ZBTB32 (16), KLF2 (17,
18), ABF-1 (19), STAT5, BCL-6 (20, 21), and SKI (21), which, in
general, repress differentiation to an ASC phenotype. Cytokines,
including IL-24 (22) and IL-9 (17) can enhance Bmem
formation. Moreover, in vitro, IL-2, IL-10, and CD40L were
demonstrated to be involved in differentiating GC B cells to a
Bmem phenotype (23). Outside of GC, a small proportion of
antigen-experienced B cells may additionally be selected for
based on low affinity to form Bmem in an early wave prior to
GC formation (24, 25). GC-independent isotype-unswitched
(IgM) or –switched (IgG) Bmem exhibit low affinity due to
unmutated Ig variable genes (26). In humans, few Bmem lack
somatic mutations for antigen (27), suggesting most Bmem are
GC-derived. Following Bmem formation, these cells may reside
in survival niches including SLT such as the spleen (28) for years
in a resting state independent of antigen; however, these niches
are localized near areas of antigen encounter (29). Bmem are also
observed in the tonsils and the bone marrow and may enter into
circulation to patrol at low levels (28). Bmem express higher
levels of the adhesion molecules LFA-1 and VLA-4 compared to
naive B cells, with VLA-4 primarily mediating Bmem retention
in SLT (30). In vitro, Bmem migrate towards CXCL12 (23, 31),
CCL19, and CXCL13 (23, 32) suggesting these chemokines may
be involved in movement within the SLT and trafficking to
survival niches or sites of inflammation. If the humoral
immunity generated from long-lived plasma cells residing in
the bone marrow is not sufficient to eliminate pathogens, Bmem
become actively involved in the inflammatory response. Upon
re-exposure to antigen, Bmem will generate a more rapid and
potent antigen-specific response relative to naïve B cells (33).
Bmem PHENOTYPES

In humans, Bmem are conventionally identified by the
expression of tumor necrosis factor superfamily member
CD27, a protein regulating entry into plasma cell lineage and
properties associated with Bmem including isotype switching
and Ig variable gene mutation (34, 35). However, CD27 is not
exclusive to Bmem and is likely a marker of GC and post-GC
June 2021 | Volume 12 | Article 676686
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activation as CD27 is also expressed on GC B cells and post-GC
B cells, including ASC (Figure 1). Thus, CD27 expression should
be coupled with low levels of CD23 (36) and the lack of
expression of the ASC marker CD138 (syndecan-1) to identify
Bmem in humans. Further inclusion of specific patterns of CD38
(37), CD21 (38), CD24 (39), CD19 (40), B220 (41), FCRL4
(FcRH4) (38, 42) and CD25 (43, 44) can delineate heterogeneous
Bmem populations (Figure 1). Thus far, the main populations of
CD19+CD27+CD138- Bmem present in peripheral blood and
bone marrow include three isotype-unswitched Bmem
phenotypes, including IgM+IgD+, IgM- IgD+, IgM+IgD− (IgM-
only memory cells), and isotype-switched IgM-IgD- phenotypes,
including IgG, IgA, or IgE+ Bmem. Bmem are typically isotype-
switched and primarily express IgG subclasses. IgG+ Bmem
comprise 15-20% of peripheral blood B cells, including
predominately IgG1, IgG2, IgG3 subclasses (45). Among IgG
Bmem, it should be noted that a small proportion of “atypical”
IgG Bmem may lack CD27 (38, 45, 46). Isotype-switched IgA
Bmem comprise around 10% of B cells in peripheral blood and
are generally implicated in mucosa-associated tissues (45) while
IgE Bmem involved in allergic responses are rarely detectable in
humans and mice and their development and lifespan is poorly
understood (45). Among isotype-unswitched phenotypes, IgM
and IgD-expressing Bmem, including IgM+ IgD+ (15% of B
cells), IgM- IgD+ (1%), or IgM+IgD- (5%) may be found within
the blood or bone marrow (34, 47, 48).
Frontiers in Immunology | www.frontiersin.org 3114
In rodent models, Bmem identification is hampered by the low
frequency of Bmem (49) and the lack of CD27 expression among
Bmem (50). Further definitive Bmem markers in mice have
remained elusive. Exploration of novel Bmem markers in mice
have relied on several methods including 1) boosting Bmem
frequencies using antigen-based cell enrichment protocols (51,
52), 2) protein immunization in BCR transgenic mice with a fixed
BCR specificity (29), 3) adoptive transfer of antigen-specific B cells
(53), or 4) genetic tagging of activation-induced cytidine deaminase
(AID), an enzyme essential for isotype switching and somatic
hypermutation identifying GC-derived B cells including Bmem
and ASC (33). Murine studies have proposed at least 10 Bmem
subsets utilizing Ig isotyping combined with surface expression of
CD80 (49, 54, 55), PDL2 (54, 55), CD73 (55, 56), CD38 (57).
However, these markers may be expressed on other murine B cell
subtypes, so a diverse panel of surface markers is necessary for
identifying Bmem (Figure 2). For isotype-switched Bmem, IgG
surface (IgGs) versus intracellular (IgGi) expression (58, 59) in
combination with CD138 or Blimp-1 (60, 61) may be used to
distinguish ASC (IgGihi/+, igGslow, CD138+, Blimp-1+) (62) and
Bmem (IgGilow, IgGshi/+, CD138-, Blimp-1-). Moreover, similar to
assaying human Bmem, in vitro stimulation using polyclonal
activators (i.e. CpG DNA, R848 TLR7/8 agonist) to convert
Bmem into ASC, combined with a conventional Enzyme-linked
ImmunoSPOT (ELISPOT) assay, may be used to quantify Bmem
and determine antigen specificity and Ig isotype in mice (63–65).
FIGURE 1 | Bmem phenotyping markers in humans. Overview of B cell differentiation in humans, focusing on naïve B cell to ASC phenotypes, with BCR isotype
and surface marker expression. Surface marker levels simplified to highlight relative expression, including low, intermediate, or high levels.
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Bmem FUNCTION

Compared to naïve mature B cells, Bmem display several
distinctive features. Bmem have enhanced longevity and can
survive for years and perhaps for the lifetime of the host
independent of antigen (66, 67). In comparison, naïve mature
B cells have a lifespan of weeks (68). Furthermore, since most
Bmem are GC-derived, Bmem are generally clonally expanded,
isotype-switched, and have undergone somatic hypermutation of
Ig variable genes to increase antigen affinity. Unlike naïve or
activated mature B cells, Bmem are able to rapidly proliferate and
differentiate into ASC with minimal stimulation requirements,
including re-exposure to low levels of antigen (69, 70), T cell help
(71–73), or polyclonal stimulation (73, 74). Bmem enter cell
cycle, differentiate into ASC, and potentially re-seed GC quicker
than mature B cells (75, 76). These advantages are likely due to a
combination of factors, including reduced quiescence factors
(Kruppel-like factor 4 and 9; PLZF) (77), higher expression of
co-stimulatory molecules (CD80, CD86) (78, 79), CD27 (50),
IL21R (80), SLAM (signaling lymphocytic activation molecule)
(79), TLR7/9 (81), and anti-apoptotic molecules (BCL2) (82).
Once activated, Bmem can follow two paths: 1) rapidly
differentiating into ASC or 2) re-entering into secondary GC
reactions to undergo further affinity maturation and isotype-
switching. In murine studies, IgG Bmem show a greater
proclivity to differentiate into ASC, while IgM Bmem are often
selected for re-entry in GC reactions (33, 51). Bmem
differentiating to ASC can contribute to the rapid and copious
production of high affinity antibodies to supplement antibody
produced by terminally differentiated plasma cells residing in
niches, such as the bone marrow. In addition to rapid
Frontiers in Immunology | www.frontiersin.org 4115
differentiation to ASC, Bmem are potent antigen-presenting
cells (APCs), expressing MHCII (83) that enables not only the
efficient recognition of antigen, but the ability to process antigen
for presentation to activate other immune cells, including T cells
(84). Finally, Bmem produce a wide array of cytokines including
TNF (85, 86), GM-CSF (86), IL-6 (86, 87), lymphotoxin (LT)
(85), and IL-10 (85).
Bmem IN MULTIPLE SCLEROSIS

In MS, B cells are located within multiple compartments in the
CNS, including the CSF, parenchyma, and meninges. However,
studies exploring Bmem in MS have primarily focused on the
peripheral blood and CSF, with few studies examining Bmem
localization in the parenchyma and meninges. Among these
studies, there are notable discrepancies in defining Bmem, with
the majority of studies defining Bmem based exclusively on
CD27 expression. Therefore, for each mentioned study, the
surface markers utilized to define Bmem will be noted.

Phenotype, Trafficking, and Localization
In MS, Bmem frequencies are elevated in the CSF compared to
peripheral blood (88, 89) and Bmem comprise the majority of B
cells populating the CSF (90, 91) (CD27+ IgD- (88, 91);
CD19+CD27+ (89); CD27+ CD138- (90); CD19+ CD27+ IgD-
and IgD+). In contrast to the peripheral blood, the proportion of
CD19+ B cells among total lymphocytes is significantly lower in
the CSF (91). However, the proportion of class-switched B cells,
including isotype-switched Bmem, among CD19+ B cells is
enriched in the CSF (91). Further studies have confirmed the
FIGURE 2 | Bmem phenotyping markers in murine models. Overview of B cell differentiation in mice, focusing on naïve B cell to ASC phenotypes, with BCR isotype
and surface marker expression. Surface marker levels simplified to highlight relative expression, including low, intermediate, or high levels.
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majority of Bmem populating the CSF display an isotype-
switched phenotype (71%; CD19+ CD27+ IgD- IgM-) (92). In
agreement with these findings, B cells populating the CSF,
including Bmem, bear extensive somatic mutations and exhibit
clonal expansion (88). Conversely, in a recent pre-print, Bmem
in peripheral blood from MS patients displayed an Ig isotype
distribution of 50% IgM, 30% IgA, and 20% IgG (93). In MS
patients, ASC populating the CSF exhibit a selective enrichment
towards the IgG1 allotype G1m1 compared to the peripheral
blood (94). In a recent pre-print, Bmem in the intrathecal
compartment did not exhibit the same dominance towards the
G1m1 allotype constant region polymorphism, suggesting
certain B cell-lineages may preferentially differentiate (95). To
date, it remains unclear if skewed Ig allotypes influence MS risk
and phenotype (96, 97).

Bmem are not restricted to the CSF compartment, and Bmem
(CD27+) are found within the brain parenchyma (98, 99).
Furthermore, B cells recovered from MS plaques display
mutations and clonal expansion (100, 101), suggesting
primarily differentiated B cells (Bmem/ASC) occupy the
parenchymal space, similar to the CSF. It has been suggested
that BCR mutations and clonal expansion may be acquired in the
CNS compartment (89), possibly aided by inflammatory
aggregates in the brain meninges mimicking some features of
ectopic lymphoid follicles (102). In a recent pre-print, extensive
clonal connections were found among Bmem and ASC in the
CSF compartment (95). Clonal connections between Bmem and
ASC were also found to span different isotypes, including IgM/
IgG1, IgG1/IgG2, and IgM/IgA1. These findings suggest ASC
and Bmem share a common origin, although it remains unclear
whether these clonal similarities originate in the periphery or the
intrathecal compartment. At least a proportion of B cells appear
to undergo an active exchange between the periphery and CNS in
MS, with CD27+ IgD- B cells sharing similar repertoires between
the peripheral blood and CSF (91, 103). Moreover, Stern et al.
demonstrated the B cell clonal families observed in MS brain
tissue were frequently derived from founders in the deep cervical
lymph nodes (104). Regardless of the mechanism promoting
Bmem persistence in the CNS, the exact chemokines initiating
and/or sustaining Bmem trafficking to the CNS compartment in
MS remain to be determined. Several chemokine receptors
including CXCR4 (105), CXCR5 (91), CXCR3 (95), CCR1,
CCR2 and CCR4 (88) have been implicated in trafficking and
are upregulated on CSF B cells compared to paired-peripheral
blood. Adhesion molecules regulating Bmem entry into the CNS
meninges and parenchymal compartments are less clearly
understood. VLA-4 has been implicated in aiding B cell
transmigration in ex vivo culture studies (106) and murine
studies (107), though these studies have examined global B cell
migration and further studies are required to determine whether
VLA-4 is essential for Bmem transmigration.

Function
Antibody Production and Antigen Specificity
Tracking Bmem conversion into ASC to investigate antibody
production and specificity in vivo remains challenging and often
Frontiers in Immunology | www.frontiersin.org 5116
requires specialized murine models. Alternatively, in vitro,
Bmem can be stimulated to convert into ASC utilizing
polyc lonal act ivators spec ifica l ly tr igger ing Bmem
differentiation, including the TLR7/8 agonist R848 (108, 109).
Bmem may subsequently be quantified and Ig isotype and
antibody production may be evaluated. Limited studies exist
examining Bmem conversion to ASC and antibody production
in MS. Hohmann et al. isolated B cells from the peripheral blood
of MS patients and compared IgG antibodies produced by ASCs
or Bmem-derived ASCs, i.e. B cells in vitro stimulated using R848
and IL-2 by ELISPOT (110). Bmem-derived ASCs generated
larger spot size compared to ASCs, suggesting enhanced IgG
secretion from Bmem-derived ASCs.

B cell antigen specificity in MS has remained unclear and is
documented as heterogeneous, with antibody targets ranging
from self-antigens to viral antigens. With regards to Bmem, there
have been few studies on this topic. Hohmann et al. exclusively
examined reactivity to normal human brain lysates (110).
Among 15 of the 30 relapsing-remitting MS (RRMS) patients
tested, brain-reactive Bmem-derived ASC were present in the
peripheral blood. In some patients, brain-reactive Bmem were
present in relapse and remission, while other patients displayed
brain-reactive Bmem in the relapse only. The presence of brain-
reactive B cells, including Bmem, predicted relapse. Brain-
reactive B cells were not observed in the peripheral blood of
healthy donors or other neurological disease controls (111).

Antigen Presentation
Bmem are conventionally regarded as potent APCs. In MS, CSF
Bmem (CD27+ IgD-) display upregulated expression of two co-
stimulatory molecules key in antigen presenting functions, CD80
and CD86, compared to naïve B cells (88). Although this is a
well-known feature of Bmem regardless of disease pathogenesis,
this finding suggests Bmem in the CSF of MS patients also
display an enhanced ability to engage with immune cells,
including T cells. In alignment with these findings, ex vivo
Bmem (CD19+ CD27+) isolated from RRMS patients elicited
autologous CD4 T cell proliferation in the presence of antigens
including, tetanus toxoid, myelin basic protein (MBP), and
myelin oligodendrocyte protein (MOG) (112). Moreover,
Bmem isolated from some RRMS patients are capable of
activating CD4 T helper (Th) cells in the presence of myelin
antigens in vitro, inducing T cell proliferation and IFNg
production (112). Furthermore, the in vitro spontaneous
proliferation of Th1 cells observed in patients carrying the risk
allele HLA-DR15 was found to be mediated by Bmem (CD27+)
with high MHCII surface receptor HLA-DR expression (113).

Cytokine Production
B cells, including Bmem, in MS patients may exhibit a propensity
towards a dysregulated cytokine network. An increased
frequency of Bmem (CD27+) producing GM-CSF was observed
in the peripheral blood obtained from MS patients compared to
healthy controls (86). Furthermore, in vitro stimulated B cells
isolated from the peripheral blood of RRMS and SPMS patients
exhibit a decreased production of the anti-inflammatory
June 2021 | Volume 12 | Article 676686
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cytokine IL-10 compared to healthy controls, while LT and TNF
levels were comparable (85). Further studies demonstrated
stimulated Bmem (CD19+ CD27+) obtained from RRMS
patients produce elevated LT and lower IL-10 than naïve B
cells (112). However, Bmem isolated from healthy donors
produced comparable levels of both cytokines. In vitro
stimulated Bmem obtained from healthy donors also exhibited
lower levels of IL-10 production compared to naïve B cells (85),
thus, low levels of IL-10 production seems to be typical Bmem
feature regardless of disease pathogenesis. The reduced IL-10
production by B cells observed in RRMS and SPMS patients may
therefore be attributed to another B cell phenotype, including IL-
10-producing regulatory B cells or ASC (9, 114).

Associations With Clinical Disease
Recent studies have sought to investigate the association of Bmem
with clinical outcomes inMS. In RRMS patients, an increased CD5+

Bmem subpopulation was associated with the remitting stage
compared to the relapsing stage (115). Furthermore, Nissimov
et al. demonstrated elevated peripheral blood Bmem frequencies
were associated with a lower expanded disability status scale score
(116). Conversely, Comabella et al. determined that increases in
isotype-unswitched and -switched Bmem (CD19+ CD27+ IgD+ or
IgD-) in the peripheral blood from RRMS patients were associated
with an MRI phenotype with high neurodegeneration, defined by
increased contrast-enhancing lesions and non-enhancing black
holes on T1-weighted images, and decreased brain parenchymal
fraction (117). Bmem populations also differ in peripheral blood
obtained from pediatric and adult MS patients (118). In pediatric
MS, Bmem (CD20+ CD27+) are elevated in the peripheral blood
compared to healthy children and adolescents. In contrast to adult
MS patients who display elevated isotype-switched Bmem (CD20+

CD27+ IgD-) and plasma cells in peripheral blood, non-switched
Bmem (CD20+ CD27+ IgD+) and plasmablasts were increased in
frequency in pediatric MS patients.
Bmem IN ANIMAL MODELS OF MS

Murine models of MS generally have been limited in exploring
Bmem due to the lack of conventional Bmem markers, the low
quantity of Bmem (25), the shifted surface expression of
proposed murine markers on Bmem isolated from CNS
compartment (63), and the time-consuming methods
utilized to isolate Bmem and quantify by in vitro stimulation
assays (64, 65). In this section, we will review data on
Bmem obtained from pre-clinical models of MS, including
two viral models of demyelination, mouse hepatitis virus
(MHV) and Theiler’s murine encephalomyelitis virus (TMEV),
and the autoimmune model, experimental autoimmune
encephalomyelitis (EAE).

Viral Models of Demyelination
Viral immune-mediated demyelination models emulating
features of MS, including MHV (coronavirus family) and
TMEV (picornavirus family), require B cell and antibody
Frontiers in Immunology | www.frontiersin.org 6117
responses for viral control (119, 120) and recruit diverse B
cell subtypes CNS (59, 121). There is also evidence for B cell
involvement in demyelination and clinical disability
(122–125).

Intracerebral MHV infection, including the A59 and JHM
strains, induces an acute inflammatory demyelinating disease,
with prominent B cell CNS infiltration mimicking the acute
inflammatory stages of MS. In MHV models, Bmem are present
in the CNS parenchyma as evaluated by flow cytometry (59),
genetic tagging of AID-expressing B cells (126), and in vitro
stimulation and evaluation via ELISPOT assays (63). Among
total CNS-infiltrating Bmem (CD19+, CD138-, IgD-, IgG2a/b
surface+, IgG2a/b intracellularlow) the majority comprise an
IgG2a/2b isotype-switched phenotype. ELISPOT analysis of in
vitro stimulated Bmem determined that ASC and Bmem are
initially recruited to the CNS (brain/spinal cord) with similar
kinetics, but during the chronic phase of infection (day 35 post
infection-p.i.), virus-specific IgG ASC persisted at higher
frequencies than IgG Bmem in the spinal cord, the
predominant site of inflammation and demyelination (63).
ELISPOT analyses revealed that antibody production levels
were similar between ASC and Bmem-derived ASC in both
brain and spinal cord tissues. Gene expression analysis of
chemokine receptors on CNS-infiltrating Bmem (CD19+ IgD-

CD138-) revealed highly upregulated expression of CXCR3 and
CCR7, with moderate expression of CXCR4 and CXCR5 (59).
Compared to ASC (CD138+), Bmem expressed higher levels of
CCR7 and CXCR5, with similar expression of CXCR4, and lower
expression of CXCR3. These results suggest multiple chemokine
receptors may be simultaneously regulated on Bmem to direct
recruitment. AID-genetically tagged Bmem and ASC were
continually recruited from the periphery to the CNS
concurrent with GC maturation (126). Moreover, once
recruited to the CNS, there was no evidence of AID mRNA
expression among Bmem, suggesting these cells were not
undergoing somatic hypermutation or isotype switching in the
CNS compartment during chronic infection (59). It still remains
unclear whether Bmem are required for sustaining the local
antibody production responsible for controlling viral
recrudescence. Future studies are also required to determine if
Bmem contribute to antibody-independent functions, including
local cytokine production and antigen presentation.

In the chronic progressive demyelinating disease model,
TMEV-induced demyelinating disease (TMEV-IDD), intracranial
infection with TMEV mimics several neurodegenerative and
clinical features of progressive MS (127). In chronic disease (day
120 p.i.) a phase of accumulating disability, Bmem (IgG+ CD138-)
were identified in spinal cord tissue (121). Although the function of
Bmem in TMEV-IDD remains to be determined, B cell depletion
therapy (anti-CD20) targeting non-ASC B cells, including Bmem,
exacerbated microglial activation, increased T cell infiltration,
demyelination, and axonal damage (123).

Autoimmune Models
Although a wide array of EAE models exist, the most commonly
utilized EAE models emulate the acute or relapsing/remitting stages
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of MS (128) and are induced independent of B cells (128–130). Due
to the limited B cell involvement in these models, including the
MOG35-55 peptide model induced in C57BL/6 mice, the role of
Bmem in EAE models remains relatively unexplored.

Several therapeutic interventions targeting B cell subtypes
including Bmem may provide insights into Bmem function in
EAE autoimmune models of MS. In anti-CD20 studies in EAE,
clinical disease is suppressed in murine MOG35-55 (131, 132) and
marmoset EAEmodels (133, 134). CD20 depletion was also found
to ablate IL-6 producing B cells (131), including Bmem. In a T-
independent protein immunization murine model (TNP-LPS)
anti-CD20 administration depleted existing and adoptively
transferred Bmem (135). Mice deficient in B cell maturation
antigen (BCMA), an important receptor for B cell-activating
factor (BAFF) and a proliferating inducing ligand (APRIL)
regulating ASC differentiation and survival, showed exacerbated
EAE disease severity (136). In vitro, BCMA expression directly
inhibited Bmem expansion and anti-inflammatory cytokine
production, suggesting BCMA deficient mice may show
increased proportions of Bmem. Together, these studies suggest
Bmem may contribute to EAE pathogenesis. However, other
therapeutic interventions have suggested Bmem may play a
dispensable or, perhaps, beneficial role in EAE pathogenesis.
Atacicept, a TACI fusion protein that inhibits the B cell survival
factors B lymphocyte stimulator (BlyS) and APRIL, spares B cell
progenitors and Bmem (137). Atacicept’s use has been explored in
both the B cell-dependent recombinant human MOG1-125

(rhMOG) and B cell-independent MOG35-55 models. In both
models, prophylactic treatment resulted in reduced B cell
infiltration into the CNS, delayed disease onset, and attenuated
disease severity (138). In addition, a key cytokine promoting
Bmem survival, IL-15, was found to be enhanced in a murine
lupus model following TACI-IgG treatment (139).

Altogether, further studies are required to determine Bmem
function in EAE models of MS as anti-CD20 therapies, atacicept,
and BCMA deficiency all affect multiple B cell subsets. Following
the success of B cell-depleting therapies in MS, increasingly
studies are utilizing B cell-dependent EAE models, including
rhMOG EAE and EAE induced in IgHMOG transgenic mice
where 30% of B cells are specific for MOG (140). Future studies
utilizing these models may pinpoint the exact Bmem phenotypes
and Bmem functions involved in autoimmune models of MS.
MS IMMUNOMODULATORY THERAPIES
AND THE EFFECT ON Bmem

B Cell-Directed Immunomodulatory
Therapies
B cell depletion therapies targeting CD20, including rituximab,
ocrelizumab, and ofatumumab, deplete all B cells except ASC
and pro-B cells (141) (Figure 1; Table 1) and have shown
significant efficacy in reducing clinical relapse rates and new
lesion formation in RRMS patients (11, 196). Additionally, in
young, inflammatory primary progressive MS (PPMS) patients,
Frontiers in Immunology | www.frontiersin.org 7118
ocrelizumab has been shown to reduce clinical disease
progression and brain atrophy (197). Following anti-CD20
therapies, B cells including Bmem are significantly decreased in
the peripheral blood of MS patients (142, 146) (Table 1), with
dramatic peripheral B cell depletion still evident by 6 months
post-treatment. In rituximab-treated patients, a reduction in CSF
B cells was also observed in RRMS patients (147, 148), while
PPMS patients were only shown to exhibit a moderate reduction
(149). In RRMS patients, rituximab treatment was shown to
normalize the ratio of GM-CSF to IL-10 producing B cells in the
peripheral blood (86). Eight-to-24 months post-treatment,
reappearing peripheral blood B cells were strongly diminished
in memory B cells (116).

Further B cell-directed therapies have sought to target a
more diverse range of B cell phenotypes. Inebilizumab
(MEDI-551), an anti-CD19 monoclonal antibody targets
pro-B cells through memory B cells, plasmablasts, and some
plasma cells (155, 198). In contrast to CD20 which is also
expressed on a subpopulation of CD4+ T cells, CD19 is
exclusively expressed on B cells (198). Similar to anti-
CD20 directed therapies, treatment in RRMS patients
results in reduced peripheral B cells (156, 157) and
decreased gadolinium-enhancing lesions (157). B cell
immunomodulatory therapies targeting B cell survival
factors have shown contrasting effects on clinical outcomes.
Atacicept treatment in RRMS patients resulted in an increased
annualized relapse rate and unaltered gadolinium-enhancing
lesions leading to the early termination of the phase II clinical
trial (199). In rheumatoid arthritis patients, atacicept
treatment led to an increase Bmem numbers in the
peripheral blood (152), confirming previous studies that
Bmem are spared (137). Similarly, tabalumab, an anti-BAFF
monoclonal antibody which blocks immature B cells, mature
B cells, and ASC survival, also fails to deplete Bmem (153,
154). Bmem were increased in the peripheral blood (154) and
no reduction in gadolinium-enhancing lesions was observed
in RRMS patients (200). The findings of unchanged or worse
clinical outcomes in atacicept and tabalumab may be due to
the minimal effect on Bmem (152, 201), although further
studies are required.

Recently, the landscape of MS therapies targeting B cells has
expanded to include Bruton’s tyrosine kinase (BTK) inhibitors.
BTK is a critical enzyme for signaling through the BCR, FcgR,
and GM-CSF receptor and is therefore involved in both adaptive
and innate immune responses (160, 202). BTK inhibition affects
myeloid cells, including microglia (203), and other
hematopoietic lineage cells with exception to T cells, plasma
cells, and natural killer cells (161). As small molecules, many
BTK inhibitors also rapidly penetrate the blood-brain barrier
(202, 203). The BTK inhibitors evobrutinib, tolebrutinib,
fenebrutinib, orelabrutinib, and B11091 are currently in clinical
development for relapsing and progressive forms of MS
(Table 1). In clinical trials, BTK inhibitors were shown to
reduce gadolinium-enhancing lesions (204) and new or
enlarging T2 hypointense lesions (205), but did not reduce
annualized relapse rates or disease progression in RRMS
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TABLE 1 | Immunomodulatory MS treatment effects on Bmem and B cell function.

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

Immunomodulatory: B cell-directed
Rituximab Chimeric mAb

Anti-CD20
-Expressed on all B cells,
but terminally
differentiated plasma cells
(141)
-Some T cells express
CD20 (142, 143)
-Greater CDC than
ADCC (144)

CD19+,
CD27+,
IgD- (142)
CD19+
(145),CD27+
(86)

Decreased
(142, 146)

RRMS:
CSF CD19+
B cells
decreased
(147, 148)
PPMS:
Moderate
reduction in
CSF B cells
compared to
PB (149)

RRMS: Ratio of GM-CSF
to IL-10 producing B cells
in PB normalized (86)

RRMS:
patients:
-Reductions in
new brain MRI
lesions
-Reduced
clinical relapse
rates

Phase II

Ocrelizumab Humanized IgG1
Anti-CD20

-Expressed on all B cells,
but terminally
differentiated plasma cells
-Some T cells express
CD20 (143)
-Greater ADCC than
CDC (144)

N/A Decreased
total CD19+
B cells (150)

Decreased
CD19+
B cells (151)

N/A RRMS:
-reduced gd-
enhancing
lesions and
new lesion
formation
-reduced
clinical
relapses
PPMS:
-clinical
progression
reduced
-reduction
whole brain
atrophy and
WM lesion
volume

FDA
approved:
RRMS and
PPMS

Ofatumumab Fully humanized
IgG1 Anti-CD20

Expressed on all B cells,
but terminally
differentiated plasma cells
-Some T cells express
CD20 (143)
-Greater CDC than
ADCC activity (144)

N/A Decreased
total CD19+
B cells (145)

N/A N/A RRMS:
-reduction in
number of new
gd+ lesions

Phase 2b

Atacicept Fully human
recombinant
TACI fusion
protein

-Blocks mature B cells
and plasma cell survival
-Memory B cells
spared (137)

Rheumatoid
arthritis:
CD19+,
CD20+,
CD27+,
CD38− (152)

-Increase in
Rheumatoid
arthritis
patients
(152)

N/A N/A RRMS:
-Annualized
relapse rates
increased
compared to
placebo
-Similar gd-
enhancing
lesions

Phase II
-Early
termination

Tabalumab Fully humanized
IgG4 mAb anti-
BAFF
(membrane
bound and
soluble)

Blocks immature/
transitional B cells, naïve/
mature B cells and
plasma cell survival
(153, 154)

CD19+,
CD27+, IgD-
(154)
CD19+,
CD27+, IgD
+ (154)

-Increase
(154)

N/A N/A RRMS:
-No reduction
in gd-
enhancing
lesions

Phase II

Inebilizumab
MEDI-551

Humanized IgG1
mAb Anti-CD19
-Afucosylated
IgG Fc region
enhances ADCC
(155, 156)

Targets pro-B cells
through memory B cells,
plasmablasts, and some
plasma cells (155, 156)

N/A -Total CD20
+ (156, 157),
and PC
gene
phenotype
reduced
(157)

N/A N/A RRMS:
-Reduction in
new gd-
enhancing
lesions over 24
weeks

Phase I
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TABLE 1 | Continued

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

BTK
inhibitors:
-Evobrutinib
-Tolebrutinib
-Fenebrutinib
-Orelabrutinib
-BIIB091

BTK binding
mechanism
(158):
Evobrutinib:
Covalent,
irreversible (159)
Tolebrutinib:
Covalent,
irreversible
Fenebrutinib:
Non-covalent,
reversible
Orelabrutinib:
Covalent,
irreversible
BIIB091:
Non-colavent,
reversible

B cells, myeloid cells, and
hematopoietic cell
lineages (160) except for
T cells, plasma cells, and
NK cells (161)

Evobrutinib:
CD19+
CD20+ IgD-
CD27+
CD38- (162)

Evobrutinib:
No reduction
in peripheral
blood Bmem
over 48
weeks (162)

N/A Evobrutinib:
Reduced CXCR3+ Bmem
migration across human
brain endothelial cells in
vitro (163)

Evobrutinib:
RRMS
-Reduced gd-
enhancing
lesions
-No effect on
annualized
relapse rates
or disability
progression
Tolebrutinib:
RRMS
Reduced new
gad-enhancing
lesions
-Reduced new
or enlarging T2
hypointense
lesions

Evobrutinib:
Phase 3
Tolebrutinib:
Phase 3
Fenebrutinib:
Phase 3
Orelabrutinib:
Phase 2
BIIB091:
Phase 1

Immunomodulatory
IFN-b
therapies

Binds to
Interferon a/b
receptor (IFNAR)

Widespread reduction in
cellular and molecular
pro-inflammatory
mediators and an
increase in anti-
inflammatory
mediators (164)

CD19+,
CD27+,
CD38-, IgM-
IgD- (165);
CD27+, IgD-
; and CD27
+, IgD+
(166)

Decreased
(165)
Decreased
(166)

N/A -Decreased MHCII on B
cells (167)
-Reduced CD80+ (168)
and CD40+ (169) B cells
-Increased IL-10
production by in vitro
stimulated B cells
(168, 170)

RRMS:
-Reduced
relapses
-Reduced MRI
lesion activity
-Reduced brain
atrophy
-Increased time
to reach CDMS
-Reduced risk
of sustained
disability
progression

FDA
approved:
RRMS

Glatiramer
acetate

Synthetic
polypeptide
mixture
resembling
myelin basic
protein

Widespread effects on
innate and adaptive
immunity; suppression of
pro-inflammatory
mediators; increase in
anti-inflammatory
mediators (171)

CD27+, IgD-
and CD27+,
IgD+ (172)

Decreased
(172)

(148) -Reduced CD69, CD25,
CD95 expression;
decreased TNFa
production; increased IL-
10 production (173)

RRMS
-Reduced
relapses
-Increased
proportion of
relapse free
patients
-reduction in
gd-enhancing
lesions and
new lesions

FDA
approved:
RRMS

Cladribine Synthetic
chlorinated
deoxyadenosine
analog

Preferential depletion of T
and B lymphocytes (174)

CD19+,
CD27+,
IgD-, IgM
(175)

Decreased
(175)

N/A N/A RRMS:
-Reduced
clinical relapse
-increased
proportion of
relapse-free
patients
-increased
proportion
patients free
from 3 month
confirmed
disability
progression
-reduced gd-

FDA
approved:
RRMS
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TABLE 1 | Continued

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

enhancing
lesions and
active T2
lesions

Fingolimod Structural analog
to sphingosine

S1P receptor expressing
lymphocytes

CD19+, IgD
+, CD27+;
CD19+, IgD-
, CD27+;
CD19+,
CD20+,
CD27+ (93,
176)
CD19+,
CD27+,
CD38int/
high (177)
CD27var,
CD38- (178)

Decreased
(177, 178)

No change in
CSF B cell
percentage
(93, 179)

Impaired CSF B cell
clonal expansion (93)
-Reduced activation of
memory b cells (177)

RRMS:
-Reduced
number and
volume of gd-
enhancing
lesions
-Reduced new
and enlarging
T2 lesions
-Reduced
relapse rate
-Increased
percentage of
relapse-free
patients
-Delayed
disability
progression

FDA
approved:
RRMS

Dimethyl
fumarate

Fumaric acid
ester

Widespread anti-
inflammatory properties,
including shift from Th1
to Th2 profile (180)

CD27+
(181, 182)
CD27var,
CD38- (178)
CD27+, IgA
or IgG+
class-
switched
Bmem;
CD27+, IgM
+
unswitched-
Bmem (183)

Decreased
(178, 181,
182)
Class-
switched
and
unswitched
both
reduced
(183)

Decreased
(184)

-Reduction in GM-CSF,
TNF-alpha, IL-6
producing B cells (181,
183)
-reducing
phosphorylation of
STAT5/6 and NFƘB in
surviving B cells (183)
-IL-10 production by B
cells intact (182)

RRMS:
-Number of gd
+ lesions
reduced
-Reduced new
or enlarging T2
lesions and
new T1
hyopintensities
-Improved
annualized
relapse rate
-Reduced risk
of disability
progression

FDA
approved:
RRMS

Teriflunomide Active metabolite
of leflunomide

Rapidly proliferating cells,
including T and B cells
via inhibition of de novo
pyrimidine synthesis (185)

CD19+,
CD27dim/+,
CD38dim
(186)

B cells
reduced
(185), but no
change in
Bmem
percentages
(186)

N/A -Inhibits B cell
proliferation (187)

RRMS
-Reduced
annualized
relapse rate
-Fewer patients
experience 3
month
sustained
disability
worsening
-More patients
relapse free
-Reduced MRI
total lesion
volume and gd-
enhancing
lesions

FDA
approved:
RRMS

Mitoxantrone synthetic
anthracenedione
derivative

Immunosuppressive
including B cell, T helper
and T cytotoxic
lymphocytes (188, 189)

CD19+,
CD27+ (85)

Decreased
(85)

N/A No effect of B cell
proliferation (188)
-Preferential death of
CD27+ B cells vs CD27-
B cells

RRMS:
-Reduced
proportion of
patients with
confirmed

FDA
approved:
RRMS
SPMS
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TABLE 1 | Continued

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

B cells show decrease in
lymphotoxin and TNF-a
production (85)
Increased IL-10
in vitro (85)

progression
over 2 years
-prolongs time
to first treated
relapse
SPMS:
-delayed
progression
-Reduced new
T2 lesions

Alemtuzumab Humanized mAb
IgGk anti-CD52

-High levels on T and B
cells

-Lower levels on NK
cells, monocytes,
DCs, macrophages,
and eosinophils

-Relative sparing of Tregs
and little/no
expression on
neutrophils, plasma
cells, hematopoietic
precursor cells
(190, 191)

CD19+,
CD27+ (192)

Decreased
(192)

N/A N/A RRMS:
-Reduced
annualized
relapse rate vs
subcutaneous
IFNb-1a
-Six-month
sustained
accumulation of
disability
reduced
-Improvement
of EDSS
-Increased
patients free
from any
clinical/MRI
disease activity

FDA
approved:
RRMS

Natalizumab humanized IgG1
mAb to a4b1
integrin

All leukocytes except
neutrophils (193, 194)

CD19, +,
CD27+,
IgD+ (193)
CD27var,
CD38- (178)

Increased
(178, 193)

Decreased B
cell
percentages
(179); Bmem
and
plasmablasts
(93)

- increased CD95+ B
cells, increased MHCII+ B
cells, increased CD40+ b
cell percentage, and
increases TNF and IL-6 in
in vitro stimulated B cells
(178)

RRMS:
-Reduced
annualized
relapse rate
Reduced risk of
sustained
disability
worsening at 2
years
-Decreased gd-
enhancing
lesions and
new/enlarging
T2-hypointense
lesions

FDA
approved:
RRMS

Daclizumab Humanized IgG1
mAb to CD25

Primarily CD4 T cells, but
also activated CD8 T
cells, dendritic cells,
NK cells, and activated
B cells and Bmem (195)

CD19+,
CD27+

Decreased N/A N/A RRMS:
-Reduced
annualized
relapse rate
-Reduced
contrast-
enhancing
lesions and
new/enlarging
T2 lesions
-Improved
clinical rating
scales

FDA
approved:
RRMS
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patients (204). Preliminary studies monitoring peripheral blood
B cells in evobrutinib-treated RRMS and SPMS patients revealed
no clinically relevant changes in the number of total B cells or
Bmem over the 48 week treatment period (162). However, in
vitro assays demonstrated an alteration in Bmem function, with
reduced CXCR3+ Bmem migration across human brain
endothelial cells (206).

Other Immunomodulatory Therapies
Numerous immunomodulatory therapies utilized in MS have
also been observed to affect Bmem. Although not traditionally
viewed as modulating the B cell compartment, these therapies
can have direct or indirect effects on Bmem survival and
function. Interferon (IFN)-b, glatiramer acetate, fingolimod,
dimethyl fumarate, and mitoxantrone all reduce Bmem
numbers in peripheral blood and alter global B cell function
following therapeutic treatment (Table 1). Peripheral blood B
cells obtained from IFN-b-treated patients exhibit reductions in
MHCII expression (167), reduced co-stimulatory molecules
CD80 (168) and CD40 (169), and an increase in IL-10
production (168, 170), suggesting a shift in the overall B cell
profile to an anti-inflammatory state. IFN-b treatment was also
found to increase Bmem apoptosis (115). Glatiramer acetate-
treated MS patients also show alterations in B cell function,
resulting in reduced activation markers (CD69, CD95),
decreased TNF production, and increased IL-10 production
(173). Fingolimod, which targets SIP receptor-expressing
lymphocytes such as T cells and B cells results in impaired
CSF B cell clonal expansion (93), including Bmem, and reduced
Bmem activation in peripheral blood from MS patients (177).
Dimethyl fumarate treatment results in similar modulation
reducing B cell activation (183) and the production of
the pro-inflammatory cytokines GM-CSF, TNF, and IL-6
(181, 183), while IL-10 production is unaltered (182).
Mitoxantrone treatment, immunosuppressive to T cells and B
cells, does not affect B cell proliferation (188), but results in the
preferential death of CD27-expressing B cells and a shift to an
anti-inflammatory state, with reduced LT and TNF production,
and increased IL-10 production in vitro (85). Conversely,
natalizumab, which blocks leukocyte a4b1-mediated entry
into the CNS, results in a 2.4-fold increase in Bmem in the
peripheral blood (178, 193), but a reduction of Bmem in the
Frontiers in Immunology | www.frontiersin.org 12123
CSF (93). In contrast to the aforementioned therapies, B cell
activation (CD95, CD40, MHCII expression) and TNF and IL-6
production was increased in the peripheral blood of
natalizumab-treated MS patients (178). Multiple other
immunomodulatory therapies which have shown to be
effective in improving clinical outcomes in RRMS patients,
including cladribine, teriflunomide, daclizumab, and
alemtuzumab all decrease peripheral Bmem numbers
(Table 1), though findings related to the functional changes
in B cells following therapeutic treatment remain to
be determined.

Bmem and Tailoring Therapeutic
Treatment
Bmem in peripheral blood may prove useful for monitoring
therapeutic effects in MS. In one study, Novi et al. utilized a
Bmem-based reinfusion protocol for rituximab administration.
Bmem monitoring (CD19+ CD27+ PBMCs) was used to
orchestrate rituximab reinfusion, leading to a reduced number
of reinfusions while still reducing disease activity (146). This
study highlights the potential role for monitoring Bmem to tailor
immunomodulatory treatments in MS. Future studies may also
investigate the utility of monitoring Bmem in peripheral blood to
predict response to therapy, including B cell depletion, in MS.
Bmem monitoring in peripheral blood is a currently utilized
strategy for predicting response to B cell depletion therapies in
several autoimmune diseases implicating B cells including
Sjogren’s syndrome, system lupus erythematosus, and
rheumatoid arthritis (207–209).

Altogether, future studies are required to determine the exact
effects on Bmem function following immunomodulatory
treatment, including whether Bmem are central to the efficacy
of disease-modifying therapies, and whether Bmem monitoring
can be used to “personalize” immunotherapy.
CONCLUDING REMARKS AND
FUTURE DIRECTIONS

The cause of MS is unknown but growing evidence suggests
multiple B cell phenotypes are central players in MS
pathogenesis. In MS, Bmem in both the peripheral and CNS
compartments are increasingly being explored to define the exact
relationship with disease development and progression.
Important observations highlighted in the current review
include the presence of Bmem alterations in both the
peripheral blood and CNS compartments in MS; evidence for
potential roles in antibody production, antigen presentation, and
cytokine production (Figure 3); and effective targeting of Bmem
using currently available immunomodulatory therapies.
Future studies should aim to address several key unresolved
questions to provide more in-depth insights regarding Bmem
in MS (Table 2), including trafficking mechanisms, action
within the CNS compartment, functional relevance in MS
immunopathogenesis, and defining associations with clinical
TABLE 2 | Bmem in MS: Unresolved questions.

What mechanisms promote Bmem trafficking to the CNS? Adhesion molecules,
chemokines etc.
Do Bmem participate in meningeal inflammation?
Do Bmem play a significant role in sustaining local ASC/Ab in the CNS?
What is the antigen specificity of Bmem recruited to the CNS? Is it the antigen
diversity similar to CSF Abs?
Are Bmem pro-inflammatory, anti-inflammatory, or do Bmem play a pleiotropic
role in MS?
Do Bmem phenotypes, kinetics, and functions differ by MS disease phenotype?
How do Bmem interact with other immune cells and CNS resident cells within the
CNS?
How can Bmem be utilized to monitor and optimize therapeutic effects?
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outcomes. These insights may help to guide therapeutic
strategies to develop novel agents specific for Bmem and tailor
current therapeutic treatment regimens.
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co-stimulation (co-stim), cytokine stimulation, or T cell-independent polyclonal stimulation. Upon differentiation, Bmem-derived ASC may be involved in sustaining
antibody responses in the CNS compartment. Bmem-derived ASC may also contribute to several antibody-dependent functions implicated in MS, including targeting
self or viral antigens, antibody-dependent cellular cytotoxicity (ADCC), opsonization/phagocytosis, and complement engagement.
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